Spatial quantile regression using INLA with applications to childhood overweight in Malawi.
Mtambo, Owen P L; Masangwi, Salule J; Kazembe, Lawrence N M
2015-04-01
Analyses of childhood overweight have mainly used mean regression. However, using quantile regression is more appropriate as it provides flexibility to analyse the determinants of overweight corresponding to quantiles of interest. The main objective of this study was to fit a Bayesian additive quantile regression model with structured spatial effects for childhood overweight in Malawi using the 2010 Malawi DHS data. Inference was fully Bayesian using R-INLA package. The significant determinants of childhood overweight ranged from socio-demographic factors such as type of residence to child and maternal factors such as child age and maternal BMI. We observed significant positive structured spatial effects on childhood overweight in some districts of Malawi. We recommended that the childhood malnutrition policy makers should consider timely interventions based on risk factors as identified in this paper including spatial targets of interventions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Prunier, J G; Colyn, M; Legendre, X; Nimon, K F; Flamand, M C
2015-01-01
Direct gradient analyses in spatial genetics provide unique opportunities to describe the inherent complexity of genetic variation in wildlife species and are the object of many methodological developments. However, multicollinearity among explanatory variables is a systemic issue in multivariate regression analyses and is likely to cause serious difficulties in properly interpreting results of direct gradient analyses, with the risk of erroneous conclusions, misdirected research and inefficient or counterproductive conservation measures. Using simulated data sets along with linear and logistic regressions on distance matrices, we illustrate how commonality analysis (CA), a detailed variance-partitioning procedure that was recently introduced in the field of ecology, can be used to deal with nonindependence among spatial predictors. By decomposing model fit indices into unique and common (or shared) variance components, CA allows identifying the location and magnitude of multicollinearity, revealing spurious correlations and thus thoroughly improving the interpretation of multivariate regressions. Despite a few inherent limitations, especially in the case of resistance model optimization, this review highlights the great potential of CA to account for complex multicollinearity patterns in spatial genetics and identifies future applications and lines of research. We strongly urge spatial geneticists to systematically investigate commonalities when performing direct gradient analyses. © 2014 John Wiley & Sons Ltd.
Erdogan, Saffet
2009-10-01
The aim of the study is to describe the inter-province differences in traffic accidents and mortality on roads of Turkey. Two different risk indicators were used to evaluate the road safety performance of the provinces in Turkey. These indicators are the ratios between the number of persons killed in road traffic accidents (1) and the number of accidents (2) (nominators) and their exposure to traffic risk (denominator). Population and the number of registered motor vehicles in the provinces were used as denominators individually. Spatial analyses were performed to the mean annual rate of deaths and to the number of fatal accidents that were calculated for the period of 2001-2006. Empirical Bayes smoothing was used to remove background noise from the raw death and accident rates because of the sparsely populated provinces and small number of accident and death rates of provinces. Global and local spatial autocorrelation analyses were performed to show whether the provinces with high rates of deaths-accidents show clustering or are located closer by chance. The spatial distribution of provinces with high rates of deaths and accidents was nonrandom and detected as clustered with significance of P<0.05 with spatial autocorrelation analyses. Regions with high concentration of fatal accidents and deaths were located in the provinces that contain the roads connecting the Istanbul, Ankara, and Antalya provinces. Accident and death rates were also modeled with some independent variables such as number of motor vehicles, length of roads, and so forth using geographically weighted regression analysis with forward step-wise elimination. The level of statistical significance was taken as P<0.05. Large differences were found between the rates of deaths and accidents according to denominators in the provinces. The geographically weighted regression analyses did significantly better predictions for both accident rates and death rates than did ordinary least regressions, as indicated by adjusted R(2) values. Geographically weighted regression provided values of 0.89-0.99 adjusted R(2) for death and accident rates, compared with 0.88-0.95, respectively, by ordinary least regressions. Geographically weighted regression has the potential to reveal local patterns in the spatial distribution of rates, which would be ignored by the ordinary least regression approach. The application of spatial analysis and modeling of accident statistics and death rates at provincial level in Turkey will help to identification of provinces with outstandingly high accident and death rates. This could help more efficient road safety management in Turkey.
Regression methods for spatially correlated data: an example using beetle attacks in a seed orchard
Preisler Haiganoush; Nancy G. Rappaport; David L. Wood
1997-01-01
We present a statistical procedure for studying the simultaneous effects of observed covariates and unmeasured spatial variables on responses of interest. The procedure uses regression type analyses that can be used with existing statistical software packages. An example using the rate of twig beetle attacks on Douglas-fir trees in a seed orchard illustrates the...
Alados, C.L.; Pueyo, Y.; Giner, M.L.; Navarro, T.; Escos, J.; Barroso, F.; Cabezudo, B.; Emlen, J.M.
2003-01-01
We studied the effect of grazing on the degree of regression of successional vegetation dynamic in a semi-arid Mediterranean matorral. We quantified the spatial distribution patterns of the vegetation by fractal analyses, using the fractal information dimension and spatial autocorrelation measured by detrended fluctuation analyses (DFA). It is the first time that fractal analysis of plant spatial patterns has been used to characterize the regressive ecological succession. Plant spatial patterns were compared over a long-term grazing gradient (low, medium and heavy grazing pressure) and on ungrazed sites for two different plant communities: A middle dense matorral of Chamaerops and Periploca at Sabinar-Romeral and a middle dense matorral of Chamaerops, Rhamnus and Ulex at Requena-Montano. The two communities differed also in the microclimatic characteristics (sea oriented at the Sabinar-Romeral site and inland oriented at the Requena-Montano site). The information fractal dimension increased as we moved from a middle dense matorral to discontinuous and scattered matorral and, finally to the late regressive succession, at Stipa steppe stage. At this stage a drastic change in the fractal dimension revealed a change in the vegetation structure, accurately indicating end successional vegetation stages. Long-term correlation analysis (DFA) revealed that an increase in grazing pressure leads to unpredictability (randomness) in species distributions, a reduction in diversity, and an increase in cover of the regressive successional species, e.g. Stipa tenacissima L. These comparisons provide a quantitative characterization of the successional dynamic of plant spatial patterns in response to grazing perturbation gradient. ?? 2002 Elsevier Science B.V. All rights reserved.
Spatial Autocorrelation Approaches to Testing Residuals from Least Squares Regression.
Chen, Yanguang
2016-01-01
In geo-statistics, the Durbin-Watson test is frequently employed to detect the presence of residual serial correlation from least squares regression analyses. However, the Durbin-Watson statistic is only suitable for ordered time or spatial series. If the variables comprise cross-sectional data coming from spatial random sampling, the test will be ineffectual because the value of Durbin-Watson's statistic depends on the sequence of data points. This paper develops two new statistics for testing serial correlation of residuals from least squares regression based on spatial samples. By analogy with the new form of Moran's index, an autocorrelation coefficient is defined with a standardized residual vector and a normalized spatial weight matrix. Then by analogy with the Durbin-Watson statistic, two types of new serial correlation indices are constructed. As a case study, the two newly presented statistics are applied to a spatial sample of 29 China's regions. These results show that the new spatial autocorrelation models can be used to test the serial correlation of residuals from regression analysis. In practice, the new statistics can make up for the deficiencies of the Durbin-Watson test.
Spatial Autocorrelation Approaches to Testing Residuals from Least Squares Regression
Chen, Yanguang
2016-01-01
In geo-statistics, the Durbin-Watson test is frequently employed to detect the presence of residual serial correlation from least squares regression analyses. However, the Durbin-Watson statistic is only suitable for ordered time or spatial series. If the variables comprise cross-sectional data coming from spatial random sampling, the test will be ineffectual because the value of Durbin-Watson’s statistic depends on the sequence of data points. This paper develops two new statistics for testing serial correlation of residuals from least squares regression based on spatial samples. By analogy with the new form of Moran’s index, an autocorrelation coefficient is defined with a standardized residual vector and a normalized spatial weight matrix. Then by analogy with the Durbin-Watson statistic, two types of new serial correlation indices are constructed. As a case study, the two newly presented statistics are applied to a spatial sample of 29 China’s regions. These results show that the new spatial autocorrelation models can be used to test the serial correlation of residuals from regression analysis. In practice, the new statistics can make up for the deficiencies of the Durbin-Watson test. PMID:26800271
Stopka, Thomas J; Goulart, Michael A; Meyers, David J; Hutcheson, Marga; Barton, Kerri; Onofrey, Shauna; Church, Daniel; Donahue, Ashley; Chui, Kenneth K H
2017-04-20
Hepatitis C virus (HCV) infections have increased during the past decade but little is known about geographic clustering patterns. We used a unique analytical approach, combining geographic information systems (GIS), spatial epidemiology, and statistical modeling to identify and characterize HCV hotspots, statistically significant clusters of census tracts with elevated HCV counts and rates. We compiled sociodemographic and HCV surveillance data (n = 99,780 cases) for Massachusetts census tracts (n = 1464) from 2002 to 2013. We used a five-step spatial epidemiological approach, calculating incremental spatial autocorrelations and Getis-Ord Gi* statistics to identify clusters. We conducted logistic regression analyses to determine factors associated with the HCV hotspots. We identified nine HCV clusters, with the largest in Boston, New Bedford/Fall River, Worcester, and Springfield (p < 0.05). In multivariable analyses, we found that HCV hotspots were independently and positively associated with the percent of the population that was Hispanic (adjusted odds ratio [AOR]: 1.07; 95% confidence interval [CI]: 1.04, 1.09) and the percent of households receiving food stamps (AOR: 1.83; 95% CI: 1.22, 2.74). HCV hotspots were independently and negatively associated with the percent of the population that were high school graduates or higher (AOR: 0.91; 95% CI: 0.89, 0.93) and the percent of the population in the "other" race/ethnicity category (AOR: 0.88; 95% CI: 0.85, 0.91). We identified locations where HCV clusters were a concern, and where enhanced HCV prevention, treatment, and care can help combat the HCV epidemic in Massachusetts. GIS, spatial epidemiological and statistical analyses provided a rigorous approach to identify hotspot clusters of disease, which can inform public health policy and intervention targeting. Further studies that incorporate spatiotemporal cluster analyses, Bayesian spatial and geostatistical models, spatially weighted regression analyses, and assessment of associations between HCV clustering and the built environment are needed to expand upon our combined spatial epidemiological and statistical methods.
Mukerjee, Shaibal; Smith, Luther A; Johnson, Mary M; Neas, Lucas M; Stallings, Casson A
2009-08-01
Passive ambient air sampling for nitrogen dioxide (NO(2)) and volatile organic compounds (VOCs) was conducted at 25 school and two compliance sites in Detroit and Dearborn, Michigan, USA during the summer of 2005. Geographic Information System (GIS) data were calculated at each of 116 schools. The 25 selected schools were monitored to assess and model intra-urban gradients of air pollutants to evaluate impact of traffic and urban emissions on pollutant levels. Schools were chosen to be statistically representative of urban land use variables such as distance to major roadways, traffic intensity around the schools, distance to nearest point sources, population density, and distance to nearest border crossing. Two approaches were used to investigate spatial variability. First, Kruskal-Wallis analyses and pairwise comparisons on data from the schools examined coarse spatial differences based on city section and distance from heavily trafficked roads. Secondly, spatial variation on a finer scale and as a response to multiple factors was evaluated through land use regression (LUR) models via multiple linear regression. For weeklong exposures, VOCs did not exhibit spatial variability by city section or distance from major roads; NO(2) was significantly elevated in a section dominated by traffic and industrial influence versus a residential section. Somewhat in contrast to coarse spatial analyses, LUR results revealed spatial gradients in NO(2) and selected VOCs across the area. The process used to select spatially representative sites for air sampling and the results of coarse and fine spatial variability of air pollutants provide insights that may guide future air quality studies in assessing intra-urban gradients.
ERIC Educational Resources Information Center
Freisthler, Bridget; Gruenewald, Paul J.; Johnson, Fred W.; Treno, Andrew J.; Lascala, Elizabeth A.
2005-01-01
This study examines the spatial relationship between drug availability and rates of drug use in neighborhood areas. Responses from 16,083 individuals were analyzed at the zip code level (n = 158) and analyses were conducted separately for youth and adults using spatial regression techniques. The dependent variable is the percentage of respondents…
Spatial Autocorrelation of Cancer Incidence in Saudi Arabia
Al-Ahmadi, Khalid; Al-Zahrani, Ali
2013-01-01
Little is known about the geographic distribution of common cancers in Saudi Arabia. We explored the spatial incidence patterns of common cancers in Saudi Arabia using spatial autocorrelation analyses, employing the global Moran’s I and Anselin’s local Moran’s I statistics to detect nonrandom incidence patterns. Global ordinary least squares (OLS) regression and local geographically-weighted regression (GWR) were applied to examine the spatial correlation of cancer incidences at the city level. Population-based records of cancers diagnosed between 1998 and 2004 were used. Male lung cancer and female breast cancer exhibited positive statistically significant global Moran’s I index values, indicating a tendency toward clustering. The Anselin’s local Moran’s I analyses revealed small significant clusters of lung cancer, prostate cancer and Hodgkin’s disease among males in the Eastern region and significant clusters of thyroid cancers in females in the Eastern and Riyadh regions. Additionally, both regression methods found significant associations among various cancers. For example, OLS and GWR revealed significant spatial associations among NHL, leukemia and Hodgkin’s disease (r² = 0.49–0.67 using OLS and r² = 0.52–0.68 using GWR) and between breast and prostate cancer (r² = 0.53 OLS and 0.57 GWR) in Saudi Arabian cities. These findings may help to generate etiologic hypotheses of cancer causation and identify spatial anomalies in cancer incidence in Saudi Arabia. Our findings should stimulate further research on the possible causes underlying these clusters and associations. PMID:24351742
Farmer, William H.; Over, Thomas M.; Vogel, Richard M.
2015-01-01
Understanding the spatial structure of daily streamflow is essential for managing freshwater resources, especially in poorly-gaged regions. Spatial scaling assumptions are common in flood frequency prediction (e.g., index-flood method) and the prediction of continuous streamflow at ungaged sites (e.g. drainage-area ratio), with simple scaling by drainage area being the most common assumption. In this study, scaling analyses of daily streamflow from 173 streamgages in the southeastern US resulted in three important findings. First, the use of only positive integer moment orders, as has been done in most previous studies, captures only the probabilistic and spatial scaling behavior of flows above an exceedance probability near the median; negative moment orders (inverse moments) are needed for lower streamflows. Second, assessing scaling by using drainage area alone is shown to result in a high degree of omitted-variable bias, masking the true spatial scaling behavior. Multiple regression is shown to mitigate this bias, controlling for regional heterogeneity of basin attributes, especially those correlated with drainage area. Previous univariate scaling analyses have neglected the scaling of low-flow events and may have produced biased estimates of the spatial scaling exponent. Third, the multiple regression results show that mean flows scale with an exponent of one, low flows scale with spatial scaling exponents greater than one, and high flows scale with exponents less than one. The relationship between scaling exponents and exceedance probabilities may be a fundamental signature of regional streamflow. This signature may improve our understanding of the physical processes generating streamflow at different exceedance probabilities.
Spatial Representation in Blind Children. 3: Effects of Individual Differences.
ERIC Educational Resources Information Center
Fletcher, Janet F.
1981-01-01
Data from a study of spatial representation in blind children were subjected to two stepwise regression analyses to determine the relationships between several subject related variables and responses to "map" (cognitive map) and "route" (sequential memory) questions about the position of furniture in a recently explored room. (Author/SBH)
Jacob, Benjamin J; Krapp, Fiorella; Ponce, Mario; Gottuzzo, Eduardo; Griffith, Daniel A; Novak, Robert J
2010-05-01
Spatial autocorrelation is problematic for classical hierarchical cluster detection tests commonly used in multi-drug resistant tuberculosis (MDR-TB) analyses as considerable random error can occur. Therefore, when MDRTB clusters are spatially autocorrelated the assumption that the clusters are independently random is invalid. In this research, a product moment correlation coefficient (i.e., the Moran's coefficient) was used to quantify local spatial variation in multiple clinical and environmental predictor variables sampled in San Juan de Lurigancho, Lima, Peru. Initially, QuickBird 0.61 m data, encompassing visible bands and the near infra-red bands, were selected to synthesize images of land cover attributes of the study site. Data of residential addresses of individual patients with smear-positive MDR-TB were geocoded, prevalence rates calculated and then digitally overlaid onto the satellite data within a 2 km buffer of 31 georeferenced health centers, using a 10 m2 grid-based algorithm. Geographical information system (GIS)-gridded measurements of each health center were generated based on preliminary base maps of the georeferenced data aggregated to block groups and census tracts within each buffered area. A three-dimensional model of the study site was constructed based on a digital elevation model (DEM) to determine terrain covariates associated with the sampled MDR-TB covariates. Pearson's correlation was used to evaluate the linear relationship between the DEM and the sampled MDR-TB data. A SAS/GIS(R) module was then used to calculate univariate statistics and to perform linear and non-linear regression analyses using the sampled predictor variables. The estimates generated from a global autocorrelation analyses were then spatially decomposed into empirical orthogonal bases using a negative binomial regression with a non-homogeneous mean. Results of the DEM analyses indicated a statistically non-significant, linear relationship between georeferenced health centers and the sampled covariate elevation. The data exhibited positive spatial autocorrelation and the decomposition of Moran's coefficient into uncorrelated, orthogonal map pattern components revealed global spatial heterogeneities necessary to capture latent autocorrelation in the MDR-TB model. It was thus shown that Poisson regression analyses and spatial eigenvector mapping can elucidate the mechanics of MDR-TB transmission by prioritizing clinical and environmental-sampled predictor variables for identifying high risk populations.
A spatial analysis of social and economic determinants of tuberculosis in Brazil.
Harling, Guy; Castro, Marcia C
2014-01-01
We investigated the spatial distribution, and social and economic correlates, of tuberculosis in Brazil between 2002 and 2009 using municipality-level age/sex-standardized tuberculosis notification data. Rates were very strongly spatially autocorrelated, being notably high in urban areas on the eastern seaboard and in the west of the country. Non-spatial ecological regression analyses found higher rates associated with urbanicity, population density, poor economic conditions, household crowding, non-white population and worse health and healthcare indicators. These associations remained in spatial conditional autoregressive models, although the effect of poverty appeared partially confounded by urbanicity, race and spatial autocorrelation, and partially mediated by household crowding. Our analysis highlights both the multiple relationships between socioeconomic factors and tuberculosis in Brazil, and the importance of accounting for spatial factors in analysing socioeconomic determinants of tuberculosis. © 2013 Published by Elsevier Ltd.
Spatial patterns of species richness in New World coral snakes and the metabolic theory of ecology
NASA Astrophysics Data System (ADS)
Terribile, Levi Carina; Diniz-Filho, José Alexandre Felizola
2009-03-01
The metabolic theory of ecology (MTE) has attracted great interest because it proposes an explanation for species diversity gradients based on temperature-metabolism relationships of organisms. Here we analyse the spatial richness pattern of 73 coral snake species from the New World in the context of MTE. We first analysed the association between ln-transformed richness and environmental variables, including the inverse transformation of annual temperature (1/ kT). We used eigenvector-based spatial filtering to remove the residual spatial autocorrelation in the data and geographically weighted regression to account for non-stationarity in data. In a model I regression (OLS), the observed slope between ln-richness and 1/ kT was -0.626 ( r2 = 0.413), but a model II regression generated a much steeper slope (-0.975). When we added additional environmental correlates and the spatial filters in the OLS model, the R2 increased to 0.863 and the partial regression coefficient of 1/ kT was -0.676. The GWR detected highly significant non-stationarity, in data, and the median of local slopes of ln-richness against 1/ kT was -0.38. Our results expose several problems regarding the assumptions needed to test MTE: although the slope of OLS fell within that predicted by the theory and the dataset complied with the assumption of temperature-independence of average body size, the fact that coral snakes consist of a restricted taxonomic group and the non-stationarity of slopes across geographical space makes MTE invalid to explain richness in this case. Also, it is clear that other ecological and historical factors are important drivers of species richness patterns and must be taken into account both in theoretical modeling and data analysis.
Spatial association of public sports facilities with body mass index in Korea.
Han, Eun Jin; Kang, Kiyeon; Sohn, So Young
2018-05-07
Governments and also local councils create and enforce their own regional public health care plans for the problem of overweight and obesity in the population. Public sports facilities can help these plans. In this paper, we investigated the contribution of public sports facilities to the reduction of the obesity of local residents. We used the data obtained from the Fifth Korea National Health and Nutrition Examination Surveys; and measured the degree of obesity using body mass index (BMI). We conducted various spatial regression analyses including the global Moran's I test and local indicators of spatial autocorrelation analysis finding that there exists spatial dependence in the error term of spatial regression model for BMI. However, we also observed that the number of local public sports facilities is not significantly related to local BMI. This result can be caused by the low utilization ratio and an unbalanced spatial distribution of local public sports facilities. Based on our findings, we suggest that local councils need to improve the quality of public sports facilities encouraging the establishment of preferred types of pubic sports facilities.
Zhang, Jingyi; Li, Bin; Chen, Yumin; Chen, Meijie; Fang, Tao; Liu, Yongfeng
2018-06-11
This paper proposes a regression model using the Eigenvector Spatial Filtering (ESF) method to estimate ground PM 2.5 concentrations. Covariates are derived from remotely sensed data including aerosol optical depth, normal differential vegetation index, surface temperature, air pressure, relative humidity, height of planetary boundary layer and digital elevation model. In addition, cultural variables such as factory densities and road densities are also used in the model. With the Yangtze River Delta region as the study area, we constructed ESF-based Regression (ESFR) models at different time scales, using data for the period between December 2015 and November 2016. We found that the ESFR models effectively filtered spatial autocorrelation in the OLS residuals and resulted in increases in the goodness-of-fit metrics as well as reductions in residual standard errors and cross-validation errors, compared to the classic OLS models. The annual ESFR model explained 70% of the variability in PM 2.5 concentrations, 16.7% more than the non-spatial OLS model. With the ESFR models, we performed detail analyses on the spatial and temporal distributions of PM 2.5 concentrations in the study area. The model predictions are lower than ground observations but match the general trend. The experiment shows that ESFR provides a promising approach to PM 2.5 analysis and prediction.
Using Dual Regression to Investigate Network Shape and Amplitude in Functional Connectivity Analyses
Nickerson, Lisa D.; Smith, Stephen M.; Öngür, Döst; Beckmann, Christian F.
2017-01-01
Independent Component Analysis (ICA) is one of the most popular techniques for the analysis of resting state FMRI data because it has several advantageous properties when compared with other techniques. Most notably, in contrast to a conventional seed-based correlation analysis, it is model-free and multivariate, thus switching the focus from evaluating the functional connectivity of single brain regions identified a priori to evaluating brain connectivity in terms of all brain resting state networks (RSNs) that simultaneously engage in oscillatory activity. Furthermore, typical seed-based analysis characterizes RSNs in terms of spatially distributed patterns of correlation (typically by means of simple Pearson's coefficients) and thereby confounds together amplitude information of oscillatory activity and noise. ICA and other regression techniques, on the other hand, retain magnitude information and therefore can be sensitive to both changes in the spatially distributed nature of correlations (differences in the spatial pattern or “shape”) as well as the amplitude of the network activity. Furthermore, motion can mimic amplitude effects so it is crucial to use a technique that retains such information to ensure that connectivity differences are accurately localized. In this work, we investigate the dual regression approach that is frequently applied with group ICA to assess group differences in resting state functional connectivity of brain networks. We show how ignoring amplitude effects and how excessive motion corrupts connectivity maps and results in spurious connectivity differences. We also show how to implement the dual regression to retain amplitude information and how to use dual regression outputs to identify potential motion effects. Two key findings are that using a technique that retains magnitude information, e.g., dual regression, and using strict motion criteria are crucial for controlling both network amplitude and motion-related amplitude effects, respectively, in resting state connectivity analyses. We illustrate these concepts using realistic simulated resting state FMRI data and in vivo data acquired in healthy subjects and patients with bipolar disorder and schizophrenia. PMID:28348512
Variable selection and model choice in geoadditive regression models.
Kneib, Thomas; Hothorn, Torsten; Tutz, Gerhard
2009-06-01
Model choice and variable selection are issues of major concern in practical regression analyses, arising in many biometric applications such as habitat suitability analyses, where the aim is to identify the influence of potentially many environmental conditions on certain species. We describe regression models for breeding bird communities that facilitate both model choice and variable selection, by a boosting algorithm that works within a class of geoadditive regression models comprising spatial effects, nonparametric effects of continuous covariates, interaction surfaces, and varying coefficients. The major modeling components are penalized splines and their bivariate tensor product extensions. All smooth model terms are represented as the sum of a parametric component and a smooth component with one degree of freedom to obtain a fair comparison between the model terms. A generic representation of the geoadditive model allows us to devise a general boosting algorithm that automatically performs model choice and variable selection.
Peluso, Marco E M; Munnia, Armelle; Ceppi, Marcello
2014-11-05
Exposures to bisphenol-A, a weak estrogenic chemical, largely used for the production of plastic containers, can affect the rodent behaviour. Thus, we examined the relationships between bisphenol-A and the anxiety-like behaviour, spatial skills, and aggressiveness, in 12 toxicity studies of rodent offspring from females orally exposed to bisphenol-A, while pregnant and/or lactating, by median and linear splines analyses. Subsequently, the meta-regression analysis was applied to quantify the behavioural changes. U-shaped, inverted U-shaped and J-shaped dose-response curves were found to describe the relationships between bisphenol-A with the behavioural outcomes. The occurrence of anxiogenic-like effects and spatial skill changes displayed U-shaped and inverted U-shaped curves, respectively, providing examples of effects that are observed at low-doses. Conversely, a J-dose-response relationship was observed for aggressiveness. When the proportion of rodents expressing certain traits or the time that they employed to manifest an attitude was analysed, the meta-regression indicated that a borderline significant increment of anxiogenic-like effects was present at low-doses regardless of sexes (β)=-0.8%, 95% C.I. -1.7/0.1, P=0.076, at ≤120 μg bisphenol-A. Whereas, only bisphenol-A-males exhibited a significant inhibition of spatial skills (β)=0.7%, 95% C.I. 0.2/1.2, P=0.004, at ≤100 μg/day. A significant increment of aggressiveness was observed in both the sexes (β)=67.9,C.I. 3.4, 172.5, P=0.038, at >4.0 μg. Then, bisphenol-A treatments significantly abrogated spatial learning and ability in males (P<0.001 vs. females). Overall, our study showed that developmental exposures to low-doses of bisphenol-A, e.g. ≤120 μg/day, were associated to behavioural aberrations in offspring. Copyright © 2014. Published by Elsevier Ireland Ltd.
Environmental, Spatial, and Sociodemographic Factors Associated with Nonfatal Injuries in Indonesia.
Irianti, Sri; Prasetyoputra, Puguh
2017-01-01
Background . The determinants of injuries and their reoccurrence in Indonesia are not well understood, despite their importance in the prevention of injuries. Therefore, this study seeks to investigate the environmental, spatial, and sociodemographic factors associated with the reoccurrence of injuries among Indonesian people. Methods . Data from the 2013 round of the Indonesia Baseline Health Research (IBHR 2013) were analysed using a two-part hurdle regression model. A logit regression model was chosen for the zero-hurdle part , while a zero-truncated negative binomial regression model was selected for the counts part . Odds ratio (OR) and incidence rate ratio (IRR) were the measures of association, respectively. Results . The results suggest that living in a household with distant drinking water source, residing in slum areas, residing in Eastern Indonesia, having low educational attainment, being men, and being poorer are positively related to the likelihood of experiencing injury. Moreover, being a farmer or fishermen, having low educational attainment, and being men are positively associated with the frequency of injuries. Conclusion . This study would be useful to prioritise injury prevention programs in Indonesia based on the environmental, spatial, and sociodemographic characteristics.
Qin, Qianqian; Guo, Wei; Tang, Weiming; Mahapatra, Tanmay; Wang, Liyan; Zhang, Nanci; Ding, Zhengwei; Cai, Chang; Cui, Yan; Sun, Jiangping
2017-04-01
Studies have shown a recent upsurge in human immunodeficiency virus (HIV) burden among men who have sex with men (MSM) in China, especially in urban areas. For intervention planning and resource allocation, spatial analyses of HIV/AIDS case-clusters were required to identify epidemic foci and trends among MSM in China. Information regarding MSM recorded as HIV/AIDS cases during 2006-2015 were extracted from the National Case Reporting System. Demographic trends were determined through Cochran-Armitage trend tests. Distribution of case-clusters was examined using spatial autocorrelation. Spatial-temporal scan was used to detect disease clustering. Spatial correlations between cases and socioenvironmental factors were determined by spatial regression. Between 2006 and 2015, in China, 120 371 HIV/AIDS cases were identified among MSM. Newly identified HIV/AIDS cases among self-reported MSM increased from 487 cases in 2006 to >30 000 cases in 2015. Among those HIV/AIDS cases recorded during 2006-2015, 47.0% were 20-29 years old and 24.9% were aged 30-39 years. Based on clusters of HIV/AIDS cases identified through spatial analysis, the epidemic was concentrated among MSM in large cities. Spatial-temporal clusters contained municipalities, provincial capitals, and main cities such as Beijing, Shanghai, Chongqing, Chengdu, and Guangzhou. Spatial regression analysis showed that sociodemographic indicators such as population density, per capita gross domestic product, and number of county-level medical institutions had statistically significant positive correlations with HIV/AIDS among MSM. Assorted spatial analyses revealed an increasingly concentrated HIV epidemic among young MSM in Chinese cities, calling for targeted health education and intensive interventions at an early age. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
Neighborhood Characteristics and the Social Control of Registered Sex Offenders
ERIC Educational Resources Information Center
Socia, Kelly M.; Stamatel, Janet P.
2012-01-01
This study uses geospatial and regression analyses to examine the relationships among social disorganization, collective efficacy, social control, residence restrictions, spatial autocorrelation, and the neighborhood distribution of registered sex offenders (RSOs) in Chicago. RSOs were concentrated in neighborhoods that had higher levels of social…
Alexeeff, Stacey E.; Schwartz, Joel; Kloog, Itai; Chudnovsky, Alexandra; Koutrakis, Petros; Coull, Brent A.
2016-01-01
Many epidemiological studies use predicted air pollution exposures as surrogates for true air pollution levels. These predicted exposures contain exposure measurement error, yet simulation studies have typically found negligible bias in resulting health effect estimates. However, previous studies typically assumed a statistical spatial model for air pollution exposure, which may be oversimplified. We address this shortcoming by assuming a realistic, complex exposure surface derived from fine-scale (1km x 1km) remote-sensing satellite data. Using simulation, we evaluate the accuracy of epidemiological health effect estimates in linear and logistic regression when using spatial air pollution predictions from kriging and land use regression models. We examined chronic (long-term) and acute (short-term) exposure to air pollution. Results varied substantially across different scenarios. Exposure models with low out-of-sample R2 yielded severe biases in the health effect estimates of some models, ranging from 60% upward bias to 70% downward bias. One land use regression exposure model with greater than 0.9 out-of-sample R2 yielded upward biases up to 13% for acute health effect estimates. Almost all models drastically underestimated the standard errors. Land use regression models performed better in chronic effects simulations. These results can help researchers when interpreting health effect estimates in these types of studies. PMID:24896768
NASA Astrophysics Data System (ADS)
Pradhan, Biswajeet
2010-05-01
This paper presents the results of the cross-validation of a multivariate logistic regression model using remote sensing data and GIS for landslide hazard analysis on the Penang, Cameron, and Selangor areas in Malaysia. Landslide locations in the study areas were identified by interpreting aerial photographs and satellite images, supported by field surveys. SPOT 5 and Landsat TM satellite imagery were used to map landcover and vegetation index, respectively. Maps of topography, soil type, lineaments and land cover were constructed from the spatial datasets. Ten factors which influence landslide occurrence, i.e., slope, aspect, curvature, distance from drainage, lithology, distance from lineaments, soil type, landcover, rainfall precipitation, and normalized difference vegetation index (ndvi), were extracted from the spatial database and the logistic regression coefficient of each factor was computed. Then the landslide hazard was analysed using the multivariate logistic regression coefficients derived not only from the data for the respective area but also using the logistic regression coefficients calculated from each of the other two areas (nine hazard maps in all) as a cross-validation of the model. For verification of the model, the results of the analyses were then compared with the field-verified landslide locations. Among the three cases of the application of logistic regression coefficient in the same study area, the case of Selangor based on the Selangor logistic regression coefficients showed the highest accuracy (94%), where as Penang based on the Penang coefficients showed the lowest accuracy (86%). Similarly, among the six cases from the cross application of logistic regression coefficient in other two areas, the case of Selangor based on logistic coefficient of Cameron showed highest (90%) prediction accuracy where as the case of Penang based on the Selangor logistic regression coefficients showed the lowest accuracy (79%). Qualitatively, the cross application model yields reasonable results which can be used for preliminary landslide hazard mapping.
Pragmatic estimation of a spatio-temporal air quality model with irregular monitoring data
NASA Astrophysics Data System (ADS)
Sampson, Paul D.; Szpiro, Adam A.; Sheppard, Lianne; Lindström, Johan; Kaufman, Joel D.
2011-11-01
Statistical analyses of health effects of air pollution have increasingly used GIS-based covariates for prediction of ambient air quality in "land use" regression models. More recently these spatial regression models have accounted for spatial correlation structure in combining monitoring data with land use covariates. We present a flexible spatio-temporal modeling framework and pragmatic, multi-step estimation procedure that accommodates essentially arbitrary patterns of missing data with respect to an ideally complete space by time matrix of observations on a network of monitoring sites. The methodology incorporates a model for smooth temporal trends with coefficients varying in space according to Partial Least Squares regressions on a large set of geographic covariates and nonstationary modeling of spatio-temporal residuals from these regressions. This work was developed to provide spatial point predictions of PM 2.5 concentrations for the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air) using irregular monitoring data derived from the AQS regulatory monitoring network and supplemental short-time scale monitoring campaigns conducted to better predict intra-urban variation in air quality. We demonstrate the interpretation and accuracy of this methodology in modeling data from 2000 through 2006 in six U.S. metropolitan areas and establish a basis for likelihood-based estimation.
A Neighborhood Analysis of Public Library Use in New York City
ERIC Educational Resources Information Center
Japzon, Andrea C.; Gong, Hongmian
2005-01-01
The use of 200 public libraries in New York City was analyzed according to their neighborhood characteristics. In addition to demographic, economic, and cultural factors traditionally considered, the social and spatial interactions within a neighborhood were related to public library use. Correlation and regression analyses were implemented for…
Pearson, J L; Ferguson, L R
1989-01-01
Relationships were explored among three measures of spatial ability--the Embedded Figures Test (EFT), the Mental Rotations Test (MRT), and the Differential Aptitude Spatial Relations subtest (DAT)--an environmental cognition task (MAP), American College Testing (ACT) math and English achievement, and gender in a sample of 282 undergraduates. Variance attributable to gender among the spatial tasks ranged from 0.5% in the EFT to 12% in the MRT. Gender accounted for only 1% of the variance in the MAP task. Gender differences were noted in regression analyses; women's math and English achievement scores were both predictive of spatial ability, while for men, only math achievement was predictive of spatial ability. The results were interpreted as substantiating sex role socialization theory of cognitive abilities.
Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses.
Griffith, Daniel A; Peres-Neto, Pedro R
2006-10-01
Recently, analytical approaches based on the eigenfunctions of spatial configuration matrices have been proposed in order to consider explicitly spatial predictors. The present study demonstrates the usefulness of eigenfunctions in spatial modeling applied to ecological problems and shows equivalencies of and differences between the two current implementations of this methodology. The two approaches in this category are the distance-based (DB) eigenvector maps proposed by P. Legendre and his colleagues, and spatial filtering based upon geographic connectivity matrices (i.e., topology-based; CB) developed by D. A. Griffith and his colleagues. In both cases, the goal is to create spatial predictors that can be easily incorporated into conventional regression models. One important advantage of these two approaches over any other spatial approach is that they provide a flexible tool that allows the full range of general and generalized linear modeling theory to be applied to ecological and geographical problems in the presence of nonzero spatial autocorrelation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keser, Saniye; Duzgun, Sebnem; Department of Geodetic and Geographic Information Technologies, Middle East Technical University, 06800 Ankara
Highlights: Black-Right-Pointing-Pointer Spatial autocorrelation exists in municipal solid waste generation rates for different provinces in Turkey. Black-Right-Pointing-Pointer Traditional non-spatial regression models may not provide sufficient information for better solid waste management. Black-Right-Pointing-Pointer Unemployment rate is a global variable that significantly impacts the waste generation rates in Turkey. Black-Right-Pointing-Pointer Significances of global parameters may diminish at local scale for some provinces. Black-Right-Pointing-Pointer GWR model can be used to create clusters of cities for solid waste management. - Abstract: In studies focusing on the factors that impact solid waste generation habits and rates, the potential spatial dependency in solid waste generation datamore » is not considered in relating the waste generation rates to its determinants. In this study, spatial dependency is taken into account in determination of the significant socio-economic and climatic factors that may be of importance for the municipal solid waste (MSW) generation rates in different provinces of Turkey. Simultaneous spatial autoregression (SAR) and geographically weighted regression (GWR) models are used for the spatial data analyses. Similar to ordinary least squares regression (OLSR), regression coefficients are global in SAR model. In other words, the effect of a given independent variable on a dependent variable is valid for the whole country. Unlike OLSR or SAR, GWR reveals the local impact of a given factor (or independent variable) on the waste generation rates of different provinces. Results show that provinces within closer neighborhoods have similar MSW generation rates. On the other hand, this spatial autocorrelation is not very high for the exploratory variables considered in the study. OLSR and SAR models have similar regression coefficients. GWR is useful to indicate the local determinants of MSW generation rates. GWR model can be utilized to plan waste management activities at local scale including waste minimization, collection, treatment, and disposal. At global scale, the MSW generation rates in Turkey are significantly related to unemployment rate and asphalt-paved roads ratio. Yet, significances of these variables may diminish at local scale for some provinces. At local scale, different factors may be important in affecting MSW generation rates.« less
Gordon, Evan M.; Stollstorff, Melanie; Vaidya, Chandan J.
2012-01-01
Many researchers have noted that the functional architecture of the human brain is relatively invariant during task performance and the resting state. Indeed, intrinsic connectivity networks (ICNs) revealed by resting-state functional connectivity analyses are spatially similar to regions activated during cognitive tasks. This suggests that patterns of task-related activation in individual subjects may result from the engagement of one or more of these ICNs; however, this has not been tested. We used a novel analysis, spatial multiple regression, to test whether the patterns of activation during an N-back working memory task could be well described by a linear combination of ICNs delineated using Independent Components Analysis at rest. We found that across subjects, the cingulo-opercular Set Maintenance ICN, as well as right and left Frontoparietal Control ICNs, were reliably activated during working memory, while Default Mode and Visual ICNs were reliably deactivated. Further, involvement of Set Maintenance, Frontoparietal Control, and Dorsal Attention ICNs was sensitive to varying working memory load. Finally, the degree of left Frontoparietal Control network activation predicted response speed, while activation in both left Frontoparietal Control and Dorsal Attention networks predicted task accuracy. These results suggest that a close relationship between resting-state networks and task-evoked activation is functionally relevant for behavior, and that spatial multiple regression analysis is a suitable method for revealing that relationship. PMID:21761505
Template based rotation: A method for functional connectivity analysis with a priori templates☆
Schultz, Aaron P.; Chhatwal, Jasmeer P.; Huijbers, Willem; Hedden, Trey; van Dijk, Koene R.A.; McLaren, Donald G.; Ward, Andrew M.; Wigman, Sarah; Sperling, Reisa A.
2014-01-01
Functional connectivity magnetic resonance imaging (fcMRI) is a powerful tool for understanding the network level organization of the brain in research settings and is increasingly being used to study large-scale neuronal network degeneration in clinical trial settings. Presently, a variety of techniques, including seed-based correlation analysis and group independent components analysis (with either dual regression or back projection) are commonly employed to compute functional connectivity metrics. In the present report, we introduce template based rotation,1 a novel analytic approach optimized for use with a priori network parcellations, which may be particularly useful in clinical trial settings. Template based rotation was designed to leverage the stable spatial patterns of intrinsic connectivity derived from out-of-sample datasets by mapping data from novel sessions onto the previously defined a priori templates. We first demonstrate the feasibility of using previously defined a priori templates in connectivity analyses, and then compare the performance of template based rotation to seed based and dual regression methods by applying these analytic approaches to an fMRI dataset of normal young and elderly subjects. We observed that template based rotation and dual regression are approximately equivalent in detecting fcMRI differences between young and old subjects, demonstrating similar effect sizes for group differences and similar reliability metrics across 12 cortical networks. Both template based rotation and dual-regression demonstrated larger effect sizes and comparable reliabilities as compared to seed based correlation analysis, though all three methods yielded similar patterns of network differences. When performing inter-network and sub-network connectivity analyses, we observed that template based rotation offered greater flexibility, larger group differences, and more stable connectivity estimates as compared to dual regression and seed based analyses. This flexibility owes to the reduced spatial and temporal orthogonality constraints of template based rotation as compared to dual regression. These results suggest that template based rotation can provide a useful alternative to existing fcMRI analytic methods, particularly in clinical trial settings where predefined outcome measures and conserved network descriptions across groups are at a premium. PMID:25150630
Ecological and Topographic Features of Volcanic Ash-Influenced Forest Soils
Mark Kimsey; Brian Gardner; Alan Busacca
2007-01-01
Volcanic ash distribution and thickness were determined for a forested region of north-central Idaho. Mean ash thickness and multiple linear regression analyses were used to model the effect of environmental variables on ash thickness. Slope and slope curvature relationships with volcanic ash thickness varied on a local spatial scale across the study area. Ash...
Spatial/Temporal Variations of Crime: A Routine Activity Theory Perspective.
de Melo, Silas Nogueira; Pereira, Débora V S; Andresen, Martin A; Matias, Lindon Fonseca
2018-05-01
Temporal and spatial patterns of crime in Campinas, Brazil, are analyzed considering the relevance of routine activity theory in a Latin American context. We use geo-referenced criminal event data, 2010-2013, analyzing spatial patterns using census tracts and temporal patterns considering seasons, months, days, and hours. Our analyses include difference in means tests, count-based regression models, and Kulldorff's scan test. We find that crime in Campinas, Brazil, exhibits both temporal and spatial-temporal patterns. However, the presence of these patterns at the different temporal scales varies by crime type. Specifically, not all crime types have statistically significant temporal patterns at all scales of analysis. As such, routine activity theory works well to explain temporal and spatial-temporal patterns of crime in Campinas, Brazil. However, local knowledge of Brazilian culture is necessary for understanding a portion of these crime patterns.
NASA Astrophysics Data System (ADS)
Kriegs, Stefanie; Buddenbaum, Henning; Rogge, Derek; Steffens, Markus
2015-04-01
Laboratory imaging Vis-NIR spectroscopy of soil profiles is a novel technique in soil science that can determine quantity and quality of various chemical soil properties with a hitherto unreached spatial resolution in undisturbed soil profiles. We have applied this technique to soil cores in order to get quantitative proof of redoximorphic processes under two different tree species and to proof tree-soil interactions at microscale. Due to the imaging capabilities of Vis-NIR spectroscopy a spatially explicit understanding of soil processes and properties can be achieved. Spatial heterogeneity of the soil profile can be taken into account. We took six 30 cm long rectangular soil columns of adjacent Luvisols derived from quaternary aeolian sediments (Loess) in a forest soil near Freising/Bavaria using stainless steel boxes (100×100×300 mm). Three profiles were sampled under Norway spruce and three under European beech. A hyperspectral camera (VNIR, 400-1000 nm in 160 spectral bands) with spatial resolution of 63×63 µm² per pixel was used for data acquisition. Reference samples were taken at representative spots and analysed for organic carbon (OC) quantity and quality with a CN elemental analyser and for iron oxides (Fe) content using dithionite extraction followed by ICP-OES measurement. We compared two supervised classification algorithms, Spectral Angle Mapper and Maximum Likelihood, using different sets of training areas and spectral libraries. As established in chemometrics we used multivariate analysis such as partial least-squares regression (PLSR) in addition to multivariate adaptive regression splines (MARS) to correlate chemical data with Vis-NIR spectra. As a result elemental mapping of Fe and OC within the soil core at high spatial resolution has been achieved. The regression model was validated by a new set of reference samples for chemical analysis. Digital soil classification easily visualizes soil properties within the soil profiles. By combining both techniques, detailed soil maps, elemental balances and a deeper understanding of soil forming processes at the microscale become feasible for complete soil profiles.
Antunes, José Leopoldo Ferreira; Waldman, Eliseu Alves
2002-01-01
OBJECTIVE: To describe trends in the mortality of children aged 12-60 months and to perform spatial data analysis of its distribution at the inner city district level in São Paulo from 1980 to 1998. METHODS: Official mortality data were analysed in relation to the underlying causes of death. The population of children aged 12-60 months, disaggregated by sex and age, was estimated for each year. Educational levels, income, employment status, and other socioeconomic indices were also assessed. Statistical Package for Social Sciences software was used for the statistical processing of time series. The Cochrane-Orcutt procedure of generalized least squares regression analysis was used to estimate the regression parameters with control of first-order autocorrelation. Spatial data analysis employed the discrimination of death rates and socioeconomic indices at the inner city district level. For classifying area-level death rates the method of K-means cluster analysis was used. Spatial correlation between variables was analysed by the simultaneous autoregressive regression method. FINDINGS: There was a steady decline in death rates during the 1980s at an average rate of 3.08% per year, followed by a levelling off. Infectious diseases remained the major cause of mortality, accounting for 43.1% of deaths during the last three years of the study. Injuries accounted for 16.5% of deaths. Mortality rates at the area level clearly demonstrated inequity in the city's health profile: there was an increasing difference between the rich and the underprivileged social strata in this respect. CONCLUSION: The overall mortality rate among children aged 12-60 months dropped by almost 30% during the study period. Most of the decline happened during the 1980s. Many people still live in a state of deprivation in underserved areas. Time-series and spatial data analysis provided indications of potential value in the planning of social policies promoting well-being, through the identification of factors affecting child survival and the regions with the worst health profiles, to which programmes and resources should be preferentially directed. PMID:12077615
Spatial analysis of alcohol-related motor vehicle crash injuries in southeastern Michigan.
Meliker, Jaymie R; Maio, Ronald F; Zimmerman, Marc A; Kim, Hyungjin Myra; Smith, Sarah C; Wilson, Mark L
2004-11-01
Temporal, behavioral and social risk factors that affect injuries resulting from alcohol-related motor vehicle crashes have been characterized in previous research. Much less is known about spatial patterns and environmental associations of alcohol-related motor vehicle crashes. The aim of this study was to evaluate geographic patterns of alcohol-related motor vehicle crashes and to determine if locations of alcohol outlets are associated with those crashes. In addition, we sought to demonstrate the value of integrating spatial and traditional statistical techniques in the analysis of this preventable public health risk. The study design was a cross-sectional analysis of individual-level blood alcohol content, traffic report information, census block group data, and alcohol distribution outlets. Besag and Newell's spatial analysis and traditional logistic regression both indicated that areas of low population density had more alcohol-related motor vehicle crashes than expected (P < 0.05). There was no significant association between alcohol outlets and alcohol-related motor vehicle crashes using distance analyses, logistic regression, and Chi-square. Differences in environmental or behavioral factors characteristic of areas of low population density may be responsible for the higher proportion of alcohol-related crashes occurring in these areas.
2014-01-01
Background This study aims to suggest an approach that integrates multilevel models and eigenvector spatial filtering methods and apply it to a case study of self-rated health status in South Korea. In many previous health-related studies, multilevel models and single-level spatial regression are used separately. However, the two methods should be used in conjunction because the objectives of both approaches are important in health-related analyses. The multilevel model enables the simultaneous analysis of both individual and neighborhood factors influencing health outcomes. However, the results of conventional multilevel models are potentially misleading when spatial dependency across neighborhoods exists. Spatial dependency in health-related data indicates that health outcomes in nearby neighborhoods are more similar to each other than those in distant neighborhoods. Spatial regression models can address this problem by modeling spatial dependency. This study explores the possibility of integrating a multilevel model and eigenvector spatial filtering, an advanced spatial regression for addressing spatial dependency in datasets. Methods In this spatially filtered multilevel model, eigenvectors function as additional explanatory variables accounting for unexplained spatial dependency within the neighborhood-level error. The specification addresses the inability of conventional multilevel models to account for spatial dependency, and thereby, generates more robust outputs. Results The findings show that sex, employment status, monthly household income, and perceived levels of stress are significantly associated with self-rated health status. Residents living in neighborhoods with low deprivation and a high doctor-to-resident ratio tend to report higher health status. The spatially filtered multilevel model provides unbiased estimations and improves the explanatory power of the model compared to conventional multilevel models although there are no changes in the signs of parameters and the significance levels between the two models in this case study. Conclusions The integrated approach proposed in this paper is a useful tool for understanding the geographical distribution of self-rated health status within a multilevel framework. In future research, it would be useful to apply the spatially filtered multilevel model to other datasets in order to clarify the differences between the two models. It is anticipated that this integrated method will also out-perform conventional models when it is used in other contexts. PMID:24571639
Heino, Jani; Melo, Adriano S; Bini, Luis Mauricio; Altermatt, Florian; Al-Shami, Salman A; Angeler, David G; Bonada, Núria; Brand, Cecilia; Callisto, Marcos; Cottenie, Karl; Dangles, Olivier; Dudgeon, David; Encalada, Andrea; Göthe, Emma; Grönroos, Mira; Hamada, Neusa; Jacobsen, Dean; Landeiro, Victor L; Ligeiro, Raphael; Martins, Renato T; Miserendino, María Laura; Md Rawi, Che Salmah; Rodrigues, Marciel E; Roque, Fabio de Oliveira; Sandin, Leonard; Schmera, Denes; Sgarbi, Luciano F; Simaika, John P; Siqueira, Tadeu; Thompson, Ross M; Townsend, Colin R
2015-03-01
The hypotheses that beta diversity should increase with decreasing latitude and increase with spatial extent of a region have rarely been tested based on a comparative analysis of multiple datasets, and no such study has focused on stream insects. We first assessed how well variability in beta diversity of stream insect metacommunities is predicted by insect group, latitude, spatial extent, altitudinal range, and dataset properties across multiple drainage basins throughout the world. Second, we assessed the relative roles of environmental and spatial factors in driving variation in assemblage composition within each drainage basin. Our analyses were based on a dataset of 95 stream insect metacommunities from 31 drainage basins distributed around the world. We used dissimilarity-based indices to quantify beta diversity for each metacommunity and, subsequently, regressed beta diversity on insect group, latitude, spatial extent, altitudinal range, and dataset properties (e.g., number of sites and percentage of presences). Within each metacommunity, we used a combination of spatial eigenfunction analyses and partial redundancy analysis to partition variation in assemblage structure into environmental, shared, spatial, and unexplained fractions. We found that dataset properties were more important predictors of beta diversity than ecological and geographical factors across multiple drainage basins. In the within-basin analyses, environmental and spatial variables were generally poor predictors of variation in assemblage composition. Our results revealed deviation from general biodiversity patterns because beta diversity did not show the expected decreasing trend with latitude. Our results also call for reconsideration of just how predictable stream assemblages are along ecological gradients, with implications for environmental assessment and conservation decisions. Our findings may also be applicable to other dynamic systems where predictability is low.
Development of Super-Ensemble techniques for ocean analyses: the Mediterranean Sea case
NASA Astrophysics Data System (ADS)
Pistoia, Jenny; Pinardi, Nadia; Oddo, Paolo; Collins, Matthew; Korres, Gerasimos; Drillet, Yann
2017-04-01
Short-term ocean analyses for Sea Surface Temperature SST in the Mediterranean Sea can be improved by a statistical post-processing technique, called super-ensemble. This technique consists in a multi-linear regression algorithm applied to a Multi-Physics Multi-Model Super-Ensemble (MMSE) dataset, a collection of different operational forecasting analyses together with ad-hoc simulations produced by modifying selected numerical model parameterizations. A new linear regression algorithm based on Empirical Orthogonal Function filtering techniques is capable to prevent overfitting problems, even if best performances are achieved when we add correlation to the super-ensemble structure using a simple spatial filter applied after the linear regression. Our outcomes show that super-ensemble performances depend on the selection of an unbiased operator and the length of the learning period, but the quality of the generating MMSE dataset has the largest impact on the MMSE analysis Root Mean Square Error (RMSE) evaluated with respect to observed satellite SST. Lower RMSE analysis estimates result from the following choices: 15 days training period, an overconfident MMSE dataset (a subset with the higher quality ensemble members), and the least square algorithm being filtered a posteriori.
Subica, Andrew M; Douglas, Jason A; Kepple, Nancy J; Villanueva, Sandra; Grills, Cheryl T
2018-03-01
Tobacco shops, medical marijuana dispensaries (MMD), and off-sale alcohol outlets are legal and prevalent in South Los Angeles, California-a high-crime, low-income urban community of color. This research is the first to explore the geographic associations between these three legal drug outlets with surrounding crime and violence in a large low-income urban community of color. First, spatial buffer analyses were performed using point-location and publically accessible January-December 2014 crime data to examine the geography of all felony property and violent crimes occurring within 100, 200, 500, and 1000-foot buffers of these three legal drug outlet types across South Los Angeles. Next, spatial regression analyses explored the geographic associations between density of these outlets and property and violent crimes at the census tract level. Results indicated that mean property and violent crime rates within 100-foot buffers of tobacco shops and alcohol outlets-but not MMDs-substantially exceeded community-wide mean crime rates and rates around grocery/convenience stores (i.e., comparison properties licensed to sell both alcohol and tobacco). Spatial regression analyses confirmed that tobacco shops significantly positively associated with property and violent crimes after controlling for key neighborhood factors (poverty, renters, resident mobility, ethnic/racial heterogeneity). Thus, study findings provide the first empirical evidence that tobacco shops may constitute public health threats that associate with crime and violence in U.S. low-income urban communities of color. Implementing and enforcing control policies that regulate and monitor tobacco shops in these communities may promote community health by improving public safety. Copyright © 2017 Elsevier Inc. All rights reserved.
Ndiath, Mansour M; Cisse, Badara; Ndiaye, Jean Louis; Gomis, Jules F; Bathiery, Ousmane; Dia, Anta Tal; Gaye, Oumar; Faye, Babacar
2015-11-18
In Senegal, considerable efforts have been made to reduce malaria morbidity and mortality during the last decade. This resulted in a marked decrease of malaria cases. With the decline of malaria cases, transmission has become sparse in most Senegalese health districts. This study investigated malaria hotspots in Keur Soce sites by using geographically-weighted regression. Because of the occurrence of hotspots, spatial modelling of malaria cases could have a considerable effect in disease surveillance. This study explored and analysed the spatial relationships between malaria occurrence and socio-economic and environmental factors in small communities in Keur Soce, Senegal, using 6 months passive surveillance. Geographically-weighted regression was used to explore the spatial variability of relationships between malaria incidence or persistence and the selected socio-economic, and human predictors. A model comparison of between ordinary least square and geographically-weighted regression was also explored. Vector dataset (spatial) of the study area by village levels and statistical data (non-spatial) on malaria confirmed cases, socio-economic status (bed net use), population data (size of the household) and environmental factors (temperature, rain fall) were used in this exploratory analysis. ArcMap 10.2 and Stata 11 were used to perform malaria hotspots analysis. From Jun to December, a total of 408 confirmed malaria cases were notified. The explanatory variables-household size, housing materials, sleeping rooms, sheep and distance to breeding site returned significant t values of -0.25, 2.3, 4.39, 1.25 and 2.36, respectively. The OLS global model revealed that it explained about 70 % (adjusted R(2) = 0.70) of the variation in malaria occurrence with AIC = 756.23. The geographically-weighted regression of malaria hotspots resulted in coefficient intercept ranging from 1.89 to 6.22 with a median of 3.5. Large positive values are distributed mainly in the southeast of the district where hotspots are more accurate while low values are mainly found in the centre and in the north. Geographically-weighted regression and OLS showed important risks factors of malaria hotspots in Keur Soce. The outputs of such models can be a useful tool to understand occurrence of malaria hotspots in Senegal. An understanding of geographical variation and determination of the core areas of the disease may provide an explanation regarding possible proximal and distal contributors to malaria elimination in Senegal.
Analysis of the impact of immigration on labour market using spatial models
NASA Astrophysics Data System (ADS)
Polonyankina, Tatiana
2017-07-01
This paper investigates the impact of immigration on employment and unemployment of a host country. The question to answer is: How does employment/unemployment in the host country change after an increase in number of immigrants? The analysis is taking into account only legal immigrants in recession period. The model is combining classical regression of cross-sectional data with spatial econometrics models where cross-section dependencies are captured by a spatial matrix. The intention is by using spatial models analyse the sensitivity of employment/unemployment rate on change in a share of immigration in a region. The used panel data are based on the Labour force survey and on available macro data in Eurostat for 3 European countries (Germany, Austria and Czech Republic) grouped into cells by NUTS regions in a recession period.
Liu, Xiaoxiao; Bertazzon, Stefania
2017-01-01
Spatial and temporal analyses are critical to understand the pattern of myocardial infarction (MI) hospitalizations over space and time, and to identify their underlying determinants. In this paper, we analyze MI hospitalizations in Calgary from 2004 to 2013, stratified by age and gender. First, a seasonal trend decomposition analyzes the seasonality; then a linear regression models the trend component. Moran’s I and hot spot analyses explore the spatial pattern. Though exploratory, results show that most age and gender groups feature a statistically significant decline over the 10 years, consistent with previous studies in Canada. Decline rates vary across ages and genders, with the slowest decline observed for younger males. Each gender exhibits a seasonal pattern with peaks in both winter and summer. Spatially, MI hot spots are identified in older communities, and in socioeconomically and environmentally disadvantaged communities. In the older communities, higher MI rates appear to be more highly associated with demographics. Conversely, worse air quality appears to be locally associated with higher MI incidence in younger age groups. The study helps identify areas of concern, where MI hot spots are identified for younger age groups, suggesting the need for localized public health policies to target local risk factors. PMID:29232910
Spatial variation of natural radiation and childhood leukaemia incidence in Great Britain.
Richardson, S; Monfort, C; Green, M; Draper, G; Muirhead, C
This paper describes an analysis of the geographical variation of childhood leukaemia incidence in Great Britain over a 15 year period in relation to natural radiation (gamma and radon). Data at the level of the 459 district level local authorities in England, Wales and regional districts in Scotland are analysed in two complementary ways: first, by Poisson regressions with the inclusion of environmental covariates and a smooth spatial structure; secondly, by a hierarchical Bayesian model in which extra-Poisson variability is modelled explicitly in terms of spatial and non-spatial components. From this analysis, we deduce a strong indication that a main part of the variability is accounted for by a local neighbourhood 'clustering' structure. This structure is furthermore relatively stable over the 15 year period for the lymphocytic leukaemias which make up the majority of observed cases. We found no evidence of a positive association of childhood leukaemia incidence with outdoor or indoor gamma radiation levels. There is no consistent evidence of any association with radon levels. Indeed, in the Poisson regressions, a significant positive association was only observed for one 5-year period, a result which is not compatible with a stable environmental effect. Moreover, this positive association became clearly non-significant when over-dispersion relative to the Poisson distribution was taken into account.
Gao, Lu; Zhang, Ying; Ding, Guoyong; Liu, Qiyong; Jiang, Baofa
2016-01-01
The aim of this study was to explore infectious diseases related to the 2007 Huai River flood in Anhui Province, China. The study was based on the notified incidences of infectious diseases between June 29 and July 25 from 2004 to 2011. Daily incidences of notified diseases in 2007 were compared with the corresponding daily incidences during the same period in the other years (from 2004 to 2011, except 2007) by Poisson regression analysis. Spatial autocorrelation analysis was used to test the distribution pattern of the diseases. Spatial regression models were then performed to examine the association between the incidence of each disease and flood, considering lag effects and other confounders. After controlling the other meteorological and socioeconomic factors, malaria (odds ratio [OR] = 3.67, 95% confidence interval [CI] = 1.77–7.61), diarrhea (OR = 2.16, 95% CI = 1.24–3.78), and hepatitis A virus (HAV) infection (OR = 6.11, 95% CI = 1.04–35.84) were significantly related to the 2007 Huai River flood both from the spatial and temporal analyses. Special attention should be given to develop public health preparation and interventions with a focus on malaria, diarrhea, and HAV infection, in the study region. PMID:26903612
NASA Astrophysics Data System (ADS)
Kulkarni, Subodh
2008-10-01
Heterodera glycines Ichinohe, commonly known as soybean cyst nematode (SCN) is a serious widespread pathogen of soybean in the US. Present research primarily investigated feasibility of detecting SCN infestation in the field using aerial images and ground level spectrometric sensing. Non-spatial and spatial linear regression analyses were performed to correlate SCN population densities with Normalized Difference Vegetation Index (NDVI) and Green NDVI (GNDVI) derived from soybean canopy spectra. Field data were obtained from two fields; Field A and B under different nematode control strategies in 2003 and 2004. Analysis of aerial image data from July 18, 2004 from the Field A showed a significant relationship between SCN population at planting and the GNDVI (R2=0.17 at p=0.0006). Linear regression analysis revealed that SCN had a little effect on yield (R2 =0.14, at p=0.0001, RMSEP=1052.42 kg ha-1) and GNDVI (R 2=0.17 at p=0.0006, RMSEP=0.087) derived from the aerial imagery on a single date. However, the spatial regression analysis based on spherical semivariogram showed that the RMSEP was 0.037 for the GNDVI on July 18, 2004 and 427.32 kg ha-1 for yield on October 14, 2003 indicating better model performance. For July 18, 2004 data from Field B, a relationship between NDVI and the cyst counts at planting was significant (R2=0.5 at p=0.0468). Non-spatial analyses of the ground level spectrometric data for the first field showed that NDVI and GNDVI were correlated with cyst counts at planting (R 2=0.34 and 0.27 at p=0.0015 and 0.0127, respectively), and GNDVI was correlated with eggs count at planting (R2= 0.27 at p=0.0118). Both NDVI and GNDVI were correlated with egg counts at flowering (R 2=0.34 and 0.27 at p=0.0013 and 0.0018, respectively). However, paired T test to validate the above relationships showed that, predicted values of NDVI and GNDVI were significantly different. The statistical evidences suggested that variability in vegetation indices was caused by SCN infestation. Comparison of estimators such as -2 RLL, AIC, and BIC of non-spatial and spatial models affirmed that incorporating spatial covariance structure of observations improved model performances. These results demonstrated a limited potential of aerial imaging and ground level spectrometry for detecting nematode infestation in the field. However, it is strongly recommended that more multisite-multiyear trials must be performed to establish and validate empirical models to quantify SCN population densities and their impact on soybean canopy reflectance.
Spatial disparity in the distribution of superfund sites in South Carolina: an ecological study.
Burwell-Naney, Kristen; Zhang, Hongmei; Samantapudi, Ashok; Jiang, Chengsheng; Dalemarre, Laura; Rice, LaShanta; Williams, Edith; Wilson, Sacoby
2013-11-06
According to the US Environmental Protection Agency (EPA), Superfund is a federal government program implemented to clean up uncontrolled hazardous waste sites. Twenty-six sites in South Carolina (SC) have been included on the National Priorities List (NPL), which has serious human health and environmental implications. The purpose of this study was to assess spatial disparities in the distribution of Superfund sites in SC. The 2000 US census tract and block level data were used to generate population characteristics, which included race/ethnicity, socioeconomic status (SES), education, home ownership, and home built before 1950. Geographic Information Systems (GIS) were used to map Superfund facilities and develop choropleth maps based on the aforementioned sociodemographic variables. Spatial methods, including mean and median distance analysis, buffer analysis, and spatial approximation were employed to characterize burden disparities. Regression analysis was performed to assess the relationship between the number of Superfund facilities and population characteristics. Spatial coincidence results showed that of the 29.5% of Blacks living in SC, 55.9% live in Superfund host census tracts. Among all populations in SC living below poverty (14.2%), 57.2% were located in Superfund host census tracts. Buffer analyses results (0.5mi, 1.0mi, 5.0mi, 0.5km, 1.0km, and 5.0km) showed a higher percentage of Whites compared to Blacks hosting a Superfund facility. Conversely, a slightly higher percentage of Blacks hosted (30.2%) a Superfund facility than those not hosting (28.8%) while their White counterparts had more equivalent values (66.7% and 67.8%, respectively). Regression analyses in the reduced model (Adj. R2 = 0.038) only explained a small percentage of the variance. In addition, the mean distance for percent of Blacks in the 90th percentile for Superfund facilities was 0.48mi. Burden disparities exist in the distribution of Superfund facilities in SC at the block and census tract levels across varying levels of demographic composition for race/ethnicity and SES.
Rajah, M Natasha; Kromas, Michelle; Han, Jung Eun; Pruessner, Jens C
2010-12-01
The ability to retrieve temporal and spatial context information from memory declines with healthy aging. The hippocampus (HC) has been shown to be associated with successful encoding and retrieval of spatio-temporal context, versus item recognition information (Davachi, Mitchell, & Wagner, 2003; Nadel, Samsonovich, Ryan, & Moscovitch, 2000; Ross & Slotnick, 2008). Aging has been linked to volume reduction in the HC (Bouchard, Malykhin, Martin, Hanstock, Emery, Fisher, & Camicioli, 2008; Malykhin, Bouchard, Camicioli, & Coupland, 2008; Raz et al., 2005). As such, age-associated reductions in anterior HC volume may contribute to the context memory deficits observed in older adults. In the current MRI study we investigated whether item recognition, spatial context and temporal context memory performance would be predicted by regional volumes in HC head (HH), body (HB) and tail (HT) volumes, using within group multiple regression analyses in a sample of 19 healthy young (mean age 24.3) and 20 older adults (mean age 67.7). We further examined between age-group differences in the volumes of the same HC sub-regions. Multiple regression analyses revealed that in younger adults both spatial and temporal context retrieval performance was predicted by anterior HC volume. Older age was associated with significant volume reductions in HH and HB, but not HT; and with reduced ability to retrieve spatial and temporal contextual details from episodic memory. However, HC volumes did not predict context retrieval performance in older adults. We conclude that individual differences in anterior, not posterior, HC volumes predict context memory performance in young adults. With age there may be a posterior-to-anterior shift from using HC-related processes, due to HC volume loss, to employing the prefrontal cortex to aid in the performance of cognitively demanding context memory tasks. However, due to concomitant changes in the prefrontal system with age, there are limits to compensation in the aging brain. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.
Partitioning sources of variation in vertebrate species richness
Boone, R.B.; Krohn, W.B.
2000-01-01
Aim: To explore biogeographic patterns of terrestrial vertebrates in Maine, USA using techniques that would describe local and spatial correlations with the environment. Location: Maine, USA. Methods: We delineated the ranges within Maine (86,156 km2) of 275 species using literature and expert review. Ranges were combined into species richness maps, and compared to geomorphology, climate, and woody plant distributions. Methods were adapted that compared richness of all vertebrate classes to each environmental correlate, rather than assessing a single explanatory theory. We partitioned variation in species richness into components using tree and multiple linear regression. Methods were used that allowed for useful comparisons between tree and linear regression results. For both methods we partitioned variation into broad-scale (spatially autocorrelated) and fine-scale (spatially uncorrelated) explained and unexplained components. By partitioning variance, and using both tree and linear regression in analyses, we explored the degree of variation in species richness for each vertebrate group that Could be explained by the relative contribution of each environmental variable. Results: In tree regression, climate variation explained richness better (92% of mean deviance explained for all species) than woody plant variation (87%) and geomorphology (86%). Reptiles were highly correlated with environmental variation (93%), followed by mammals, amphibians, and birds (each with 84-82% deviance explained). In multiple linear regression, climate was most closely associated with total vertebrate richness (78%), followed by woody plants (67%) and geomorphology (56%). Again, reptiles were closely correlated with the environment (95%), followed by mammals (73%), amphibians (63%) and birds (57%). Main conclusions: Comparing variation explained using tree and multiple linear regression quantified the importance of nonlinear relationships and local interactions between species richness and environmental variation, identifying the importance of linear relationships between reptiles and the environment, and nonlinear relationships between birds and woody plants, for example. Conservation planners should capture climatic variation in broad-scale designs; temperatures may shift during climate change, but the underlying correlations between the environment and species richness will presumably remain.
Geographically differentiated pay in the labour market for nurses.
Elliott, Robert F; Ma, Ada H Y; Scott, Anthony; Bell, David; Roberts, Elizabeth
2007-01-01
This novel application of spatial wage theory to health service labour markets analyses the competitiveness of nurse's pay and how this differs between local labour markets in Britain. A switching regression model is estimated to derive standardised spatial wage differentials (SSWDs) for nurses and their comparators. An SSWD gap is constructed and its relationship to vacancies estimated. A reduction in the gap in a local area is shown to result in an increase in the long-term vacancy rate for National Health Service (NHS) nurses. The competitiveness of nursing pay is shown to have a strong effect on the ability of the NHS to attract and retain nurses.
Dorazio, Robert M.
2012-01-01
Several models have been developed to predict the geographic distribution of a species by combining measurements of covariates of occurrence at locations where the species is known to be present with measurements of the same covariates at other locations where species occurrence status (presence or absence) is unknown. In the absence of species detection errors, spatial point-process models and binary-regression models for case-augmented surveys provide consistent estimators of a species’ geographic distribution without prior knowledge of species prevalence. In addition, these regression models can be modified to produce estimators of species abundance that are asymptotically equivalent to those of the spatial point-process models. However, if species presence locations are subject to detection errors, neither class of models provides a consistent estimator of covariate effects unless the covariates of species abundance are distinct and independently distributed from the covariates of species detection probability. These analytical results are illustrated using simulation studies of data sets that contain a wide range of presence-only sample sizes. Analyses of presence-only data of three avian species observed in a survey of landbirds in western Montana and northern Idaho are compared with site-occupancy analyses of detections and nondetections of these species.
Access to environmental resources and physical activity levels of adults in Hawaii.
Geller, Karly S; Nigg, Claudio R; Ollberding, Nicholas J; Motl, Robert W; Horwath, Caroline; Dishman, Rodney K
2015-03-01
Examine associations between physical activity (PA) and spatial accessibility to environmental PA resources in Hawaii. Metabolic equivalents (METs) of mild, moderate, and strenuous PA were compared for accessibility with environmental PA resources within a population-based sample of Hawaiian adults (n = 381). Multiple linear regression estimated differences in PA levels for residing further from a PA resource or residing in an area with a greater number of resources. No associations were found in the total sample. Analyses within subsamples stratified by ethnicity revealed that greater spatial accessibility to a PA resource was positively associated with strenuous PA among Caucasians (P = .04) but negatively associated with moderate PA among Native Hawaiians (P = .00). The lack of association in the total sample may be a consequence of Hawaii's unique environment. Results of stratified sample analyses are unique, providing groundwork for future examinations within parallel environments and among similar ethnic groups. © 2012 APJPH.
NASA Astrophysics Data System (ADS)
Zhang, Chaosheng
2010-05-01
Outliers in urban soil geochemical databases may imply potential contaminated land. Different methodologies which can be easily implemented for the identification of global and spatial outliers were applied for Pb concentrations in urban soils of Galway City in Ireland. Due to its strongly skewed probability feature, a Box-Cox transformation was performed prior to further analyses. The graphic methods of histogram and box-and-whisker plot were effective in identification of global outliers at the original scale of the dataset. Spatial outliers could be identified by a local indicator of spatial association of local Moran's I, cross-validation of kriging, and a geographically weighted regression. The spatial locations of outliers were visualised using a geographical information system. Different methods showed generally consistent results, but differences existed. It is suggested that outliers identified by statistical methods should be confirmed and justified using scientific knowledge before they are properly dealt with.
ICA-based artefact and accelerated fMRI acquisition for improved Resting State Network imaging
Griffanti, Ludovica; Salimi-Khorshidi, Gholamreza; Beckmann, Christian F.; Auerbach, Edward J.; Douaud, Gwenaëlle; Sexton, Claire E.; Zsoldos, Enikő; Ebmeier, Klaus P; Filippini, Nicola; Mackay, Clare E.; Moeller, Steen; Xu, Junqian; Yacoub, Essa; Baselli, Giuseppe; Ugurbil, Kamil; Miller, Karla L.; Smith, Stephen M.
2014-01-01
The identification of resting state networks (RSNs) and the quantification of their functional connectivity in resting-state fMRI (rfMRI) are seriously hindered by the presence of artefacts, many of which overlap spatially or spectrally with RSNs. Moreover, recent developments in fMRI acquisition yield data with higher spatial and temporal resolutions, but may increase artefacts both spatially and/or temporally. Hence the correct identification and removal of non-neural fluctuations is crucial, especially in accelerated acquisitions. In this paper we investigate the effectiveness of three data-driven cleaning procedures, compare standard against higher (spatial and temporal) resolution accelerated fMRI acquisitions, and investigate the combined effect of different acquisitions and different cleanup approaches. We applied single-subject independent component analysis (ICA), followed by automatic component classification with FMRIB’s ICA-based X-noiseifier (FIX) to identify artefactual components. We then compared two first-level (within-subject) cleaning approaches for removing those artefacts and motion-related fluctuations from the data. The effectiveness of the cleaning procedures were assessed using timeseries (amplitude and spectra), network matrix and spatial map analyses. For timeseries and network analyses we also tested the effect of a second-level cleaning (informed by group-level analysis). Comparing these approaches, the preferable balance between noise removal and signal loss was achieved by regressing out of the data the full space of motion-related fluctuations and only the unique variance of the artefactual ICA components. Using similar analyses, we also investigated the effects of different cleaning approaches on data from different acquisition sequences. With the optimal cleaning procedures, functional connectivity results from accelerated data were statistically comparable or significantly better than the standard (unaccelerated) acquisition, and, crucially, with higher spatial and temporal resolution. Moreover, we were able to perform higher dimensionality ICA decompositions with the accelerated data, which is very valuable for detailed network analyses. PMID:24657355
Griffanti, Ludovica; Salimi-Khorshidi, Gholamreza; Beckmann, Christian F; Auerbach, Edward J; Douaud, Gwenaëlle; Sexton, Claire E; Zsoldos, Enikő; Ebmeier, Klaus P; Filippini, Nicola; Mackay, Clare E; Moeller, Steen; Xu, Junqian; Yacoub, Essa; Baselli, Giuseppe; Ugurbil, Kamil; Miller, Karla L; Smith, Stephen M
2014-07-15
The identification of resting state networks (RSNs) and the quantification of their functional connectivity in resting-state fMRI (rfMRI) are seriously hindered by the presence of artefacts, many of which overlap spatially or spectrally with RSNs. Moreover, recent developments in fMRI acquisition yield data with higher spatial and temporal resolutions, but may increase artefacts both spatially and/or temporally. Hence the correct identification and removal of non-neural fluctuations is crucial, especially in accelerated acquisitions. In this paper we investigate the effectiveness of three data-driven cleaning procedures, compare standard against higher (spatial and temporal) resolution accelerated fMRI acquisitions, and investigate the combined effect of different acquisitions and different cleanup approaches. We applied single-subject independent component analysis (ICA), followed by automatic component classification with FMRIB's ICA-based X-noiseifier (FIX) to identify artefactual components. We then compared two first-level (within-subject) cleaning approaches for removing those artefacts and motion-related fluctuations from the data. The effectiveness of the cleaning procedures was assessed using time series (amplitude and spectra), network matrix and spatial map analyses. For time series and network analyses we also tested the effect of a second-level cleaning (informed by group-level analysis). Comparing these approaches, the preferable balance between noise removal and signal loss was achieved by regressing out of the data the full space of motion-related fluctuations and only the unique variance of the artefactual ICA components. Using similar analyses, we also investigated the effects of different cleaning approaches on data from different acquisition sequences. With the optimal cleaning procedures, functional connectivity results from accelerated data were statistically comparable or significantly better than the standard (unaccelerated) acquisition, and, crucially, with higher spatial and temporal resolution. Moreover, we were able to perform higher dimensionality ICA decompositions with the accelerated data, which is very valuable for detailed network analyses. Copyright © 2014 Elsevier Inc. All rights reserved.
Spatial regression models of park and land-use impacts on the urban heat island in central Beijing.
Dai, Zhaoxin; Guldmann, Jean-Michel; Hu, Yunfeng
2018-06-01
Understanding the relationship between urban land structure and land surface temperatures (LST) is important for mitigating the urban heat island (UHI). This paper explores this relationship within central Beijing, an area located within the 2nd Ring Road. The urban variables include the Normalized Difference Vegetation Index (NDVI), the Normalized Difference Build-up Index (NDBI), the area of building footprints, the area of main roads, the area of water bodies and a gravity index for parks that account for both park size and distance. The data are captured over 8 grids of square cells (30 m, 60 m, 90 m, 120 m, 150 m, 180 m, 210 m, 240 m). The research involves: (1) estimating land surface temperatures using Landsat 8 satellite imagery, (2) building the database of urban variables, and (3) conducting regression analyses. The results show that (1) all the variables impact surface temperatures, (2) spatial regressions are necessary to capture neighboring effects, and (3) higher-order polynomial functions are more suitable for capturing the effects of NDVI and NDBI. Copyright © 2018 Elsevier B.V. All rights reserved.
Zoller, Thomas; Fèvre, Eric M; Welburn, Susan C; Odiit, Martin; Coleman, Paul G
2008-01-01
Background Sleeping sickness (HAT) caused by T.b. rhodesiense is a major veterinary and human public health problem in Uganda. Previous studies have investigated spatial risk factors for T.b. rhodesiense at large geographic scales, but none have properly investigated such risk factors at small scales, i.e. within affected villages. In the present work, we use a case-control methodology to analyse both behavioural and spatial risk factors for HAT in an endemic area. Methods The present study investigates behavioural and occupational risk factors for infection with HAT within villages using a questionnaire-based case-control study conducted in 17 villages endemic for HAT in SE Uganda, and spatial risk factors in 4 high risk villages. For the spatial analysis, the location of homesteads with one or more cases of HAT up to three years prior to the beginning of the study was compared to all non-case homesteads. Analysing spatial associations with respect to irregularly shaped geographical objects required the development of a new approach to geographical analysis in combination with a logistic regression model. Results The study was able to identify, among other behavioural risk factors, having a family member with a history of HAT (p = 0.001) as well as proximity of a homestead to a nearby wetland area (p < 0.001) as strong risk factors for infection. The novel method of analysing complex spatial interactions used in the study can be applied to a range of other diseases. Conclusion Spatial risk factors for HAT are maintained across geographical scales; this consistency is useful in the design of decision support tools for intervention and prevention of the disease. Familial aggregation of cases was confirmed for T. b. rhodesiense HAT in the study and probably results from shared behavioural and spatial risk factors amongmembers of a household. PMID:18590541
NASA Astrophysics Data System (ADS)
Baeza, Andrés; Estrada-Barón, Alejandra; Serrano-Candela, Fidel; Bojórquez, Luis A.; Eakin, Hallie; Escalante, Ana E.
2018-06-01
Due to unplanned growth, large extension and limited resources, most megacities in the developing world are vulnerable to hydrological hazards and infectious diseases caused by waterborne pathogens. Here we aim to elucidate the extent of the relation between the spatial heterogeneity of physical and socio-economic factors associated with hydrological hazards (flooding and scarcity) and the spatial distribution of gastrointestinal disease in Mexico City, a megacity with more than 8 million people. We applied spatial statistics and multivariate regression analyses to high resolution records of gastrointestinal diseases during two time frames (2007–2009 and 2010–2014). Results show a pattern of significant association between water flooding events and disease incidence in the city center (lowlands). We also found that in the periphery (highlands), higher incidence is generally associated with household infrastructure deficiency. Our findings suggest the need for integrated and spatially tailored interventions by public works and public health agencies, aimed to manage socio-hydrological vulnerability in Mexico City.
NASA Astrophysics Data System (ADS)
Bernales, A. M.; Antolihao, J. A.; Samonte, C.; Campomanes, F.; Rojas, R. J.; dela Serna, A. M.; Silapan, J.
2016-06-01
The threat of the ailments related to urbanization like heat stress is very prevalent. There are a lot of things that can be done to lessen the effect of urbanization to the surface temperature of the area like using green roofs or planting trees in the area. So land use really matters in both increasing and decreasing surface temperature. It is known that there is a relationship between land use land cover (LULC) and land surface temperature (LST). Quantifying this relationship in terms of a mathematical model is very important so as to provide a way to predict LST based on the LULC alone. This study aims to examine the relationship between LST and LULC as well as to create a model that can predict LST using class-level spatial metrics from LULC. LST was derived from a Landsat 8 image and LULC classification was derived from LiDAR and Orthophoto datasets. Class-level spatial metrics were created in FRAGSTATS with the LULC and LST as inputs and these metrics were analysed using a statistical framework. Multi linear regression was done to create models that would predict LST for each class and it was found that the spatial metric "Effective mesh size" was a top predictor for LST in 6 out of 7 classes. The model created can still be refined by adding a temporal aspect by analysing the LST of another farming period (for rural areas) and looking for common predictors between LSTs of these two different farming periods.
Accounting for spatial effects in land use regression for urban air pollution modeling.
Bertazzon, Stefania; Johnson, Markey; Eccles, Kristin; Kaplan, Gilaad G
2015-01-01
In order to accurately assess air pollution risks, health studies require spatially resolved pollution concentrations. Land-use regression (LUR) models estimate ambient concentrations at a fine spatial scale. However, spatial effects such as spatial non-stationarity and spatial autocorrelation can reduce the accuracy of LUR estimates by increasing regression errors and uncertainty; and statistical methods for resolving these effects--e.g., spatially autoregressive (SAR) and geographically weighted regression (GWR) models--may be difficult to apply simultaneously. We used an alternate approach to address spatial non-stationarity and spatial autocorrelation in LUR models for nitrogen dioxide. Traditional models were re-specified to include a variable capturing wind speed and direction, and re-fit as GWR models. Mean R(2) values for the resulting GWR-wind models (summer: 0.86, winter: 0.73) showed a 10-20% improvement over traditional LUR models. GWR-wind models effectively addressed both spatial effects and produced meaningful predictive models. These results suggest a useful method for improving spatially explicit models. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Duncan, Dustin T; Kawachi, Ichiro; Kum, Susan; Aldstadt, Jared; Piras, Gianfranco; Matthews, Stephen A; Arbia, Giuseppe; Castro, Marcia C; White, Kellee; Williams, David R
2014-04-01
The racial/ethnic and income composition of neighborhoods often influences local amenities, including the potential spatial distribution of trees, which are important for population health and community wellbeing, particularly in urban areas. This ecological study used spatial analytical methods to assess the relationship between neighborhood socio-demographic characteristics (i.e. minority racial/ethnic composition and poverty) and tree density at the census tact level in Boston, Massachusetts (US). We examined spatial autocorrelation with the Global Moran's I for all study variables and in the ordinary least squares (OLS) regression residuals as well as computed Spearman correlations non-adjusted and adjusted for spatial autocorrelation between socio-demographic characteristics and tree density. Next, we fit traditional regressions (i.e. OLS regression models) and spatial regressions (i.e. spatial simultaneous autoregressive models), as appropriate. We found significant positive spatial autocorrelation for all neighborhood socio-demographic characteristics (Global Moran's I range from 0.24 to 0.86, all P =0.001), for tree density (Global Moran's I =0.452, P =0.001), and in the OLS regression residuals (Global Moran's I range from 0.32 to 0.38, all P <0.001). Therefore, we fit the spatial simultaneous autoregressive models. There was a negative correlation between neighborhood percent non-Hispanic Black and tree density (r S =-0.19; conventional P -value=0.016; spatially adjusted P -value=0.299) as well as a negative correlation between predominantly non-Hispanic Black (over 60% Black) neighborhoods and tree density (r S =-0.18; conventional P -value=0.019; spatially adjusted P -value=0.180). While the conventional OLS regression model found a marginally significant inverse relationship between Black neighborhoods and tree density, we found no statistically significant relationship between neighborhood socio-demographic composition and tree density in the spatial regression models. Methodologically, our study suggests the need to take into account spatial autocorrelation as findings/conclusions can change when the spatial autocorrelation is ignored. Substantively, our findings suggest no need for policy intervention vis-à-vis trees in Boston, though we hasten to add that replication studies, and more nuanced data on tree quality, age and diversity are needed.
Separate but correlated: The latent structure of space and mathematics across development.
Mix, Kelly S; Levine, Susan C; Cheng, Yi-Ling; Young, Chris; Hambrick, D Zachary; Ping, Raedy; Konstantopoulos, Spyros
2016-09-01
The relations among various spatial and mathematics skills were assessed in a cross-sectional study of 854 children from kindergarten, third, and sixth grades (i.e., 5 to 13 years of age). Children completed a battery of spatial mathematics tests and their scores were submitted to exploratory factor analyses both within and across domains. In the within domain analyses, all of the measures formed single factors at each age, suggesting consistent, unitary structures across this age range. Yet, as in previous work, the 2 domains were highly correlated, both in terms of overall composite score and pairwise comparisons of individual tasks. When both spatial and mathematics scores were submitted to the same factor analysis, the 2 domain specific factors again emerged, but there also were significant cross-domain factor loadings that varied with age. Multivariate regressions replicated the factor analysis and further revealed that mental rotation was the best predictor of mathematical performance in kindergarten, and visual-spatial working memory was the best predictor of mathematical performance in sixth grade. The mathematical tasks that predicted the most variance in spatial skill were place value (K, 3rd, 6th), word problems (3rd, 6th), calculation (K), fraction concepts (3rd), and algebra (6th). Thus, although spatial skill and mathematics each have strong internal structures, they also share significant overlap, and have particularly strong cross-domain relations for certain tasks. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Global patterns of current and future road infrastructure
NASA Astrophysics Data System (ADS)
Meijer, Johan R.; Huijbregts, Mark A. J.; Schotten, Kees C. G. J.; Schipper, Aafke M.
2018-06-01
Georeferenced information on road infrastructure is essential for spatial planning, socio-economic assessments and environmental impact analyses. Yet current global road maps are typically outdated or characterized by spatial bias in coverage. In the Global Roads Inventory Project we gathered, harmonized and integrated nearly 60 geospatial datasets on road infrastructure into a global roads dataset. The resulting dataset covers 222 countries and includes over 21 million km of roads, which is two to three times the total length in the currently best available country-based global roads datasets. We then related total road length per country to country area, population density, GDP and OECD membership, resulting in a regression model with adjusted R 2 of 0.90, and found that that the highest road densities are associated with densely populated and wealthier countries. Applying our regression model to future population densities and GDP estimates from the Shared Socioeconomic Pathway (SSP) scenarios, we obtained a tentative estimate of 3.0–4.7 million km additional road length for the year 2050. Large increases in road length were projected for developing nations in some of the world’s last remaining wilderness areas, such as the Amazon, the Congo basin and New Guinea. This highlights the need for accurate spatial road datasets to underpin strategic spatial planning in order to reduce the impacts of roads in remaining pristine ecosystems.
Importance of spatial autocorrelation in modeling bird distributions at a continental scale
Bahn, V.; O'Connor, R.J.; Krohn, W.B.
2006-01-01
Spatial autocorrelation in species' distributions has been recognized as inflating the probability of a type I error in hypotheses tests, causing biases in variable selection, and violating the assumption of independence of error terms in models such as correlation or regression. However, it remains unclear whether these problems occur at all spatial resolutions and extents, and under which conditions spatially explicit modeling techniques are superior. Our goal was to determine whether spatial models were superior at large extents and across many different species. In addition, we investigated the importance of purely spatial effects in distribution patterns relative to the variation that could be explained through environmental conditions. We studied distribution patterns of 108 bird species in the conterminous United States using ten years of data from the Breeding Bird Survey. We compared the performance of spatially explicit regression models with non-spatial regression models using Akaike's information criterion. In addition, we partitioned the variance in species distributions into an environmental, a pure spatial and a shared component. The spatially-explicit conditional autoregressive regression models strongly outperformed the ordinary least squares regression models. In addition, partialling out the spatial component underlying the species' distributions showed that an average of 17% of the explained variation could be attributed to purely spatial effects independent of the spatial autocorrelation induced by the underlying environmental variables. We concluded that location in the range and neighborhood play an important role in the distribution of species. Spatially explicit models are expected to yield better predictions especially for mobile species such as birds, even in coarse-grained models with a large extent. ?? Ecography.
NASA Technical Reports Server (NTRS)
Schlegel, Todd T.; Cortez, Daniel
2010-01-01
Our primary objective was to ascertain which commonly used 12-to-Frank-lead transformation yields spatial QRS-T angle values closest to those obtained from simultaneously collected true Frank-lead recordings. Simultaneous 12-lead and Frank XYZ-lead recordings were analyzed for 100 post-myocardial infarction patients and 50 controls. Relative agreement, with true Frank-lead results, of 12-to-Frank-lead transformed results for the spatial QRS-T angle using Kors regression versus inverse Dower was assessed via ANOVA, Lin s concordance and Bland-Altman plots. Spatial QRS-T angles from the true Frank leads were not significantly different than those derived from the Kors regression-related transformation but were significantly smaller than those derived from the inverse Dower-related transformation (P less than 0.001). Independent of method, spatial mean QRS-T angles were also always significantly larger than spatial maximum (peaks) QRS-T angles. Spatial QRS-T angles are best approximated by regression-related transforms. Spatial mean and spatial peaks QRS-T angles should also not be used interchangeably.
ERIC Educational Resources Information Center
Cepeda-Cuervo, Edilberto; Núñez-Antón, Vicente
2013-01-01
In this article, a proposed Bayesian extension of the generalized beta spatial regression models is applied to the analysis of the quality of education in Colombia. We briefly revise the beta distribution and describe the joint modeling approach for the mean and dispersion parameters in the spatial regression models' setting. Finally, we motivate…
Field Scale Spatial Modelling of Surface Soil Quality Attributes in Controlled Traffic Farming
NASA Astrophysics Data System (ADS)
Guenette, Kris; Hernandez-Ramirez, Guillermo
2017-04-01
The employment of controlled traffic farming (CTF) can yield improvements to soil quality attributes through the confinement of equipment traffic to tramlines with the field. There is a need to quantify and explain the spatial heterogeneity of soil quality attributes affected by CTF to further improve our understanding and modelling ability of field scale soil dynamics. Soil properties such as available nitrogen (AN), pH, soil total nitrogen (STN), soil organic carbon (SOC), bulk density, macroporosity, soil quality S-Index, plant available water capacity (PAWC) and unsaturated hydraulic conductivity (Km) were analysed and compared among trafficked and un-trafficked areas. We contrasted standard geostatistical methods such as ordinary kriging (OK) and covariate kriging (COK) as well as the hybrid method of regression kriging (ROK) to predict the spatial distribution of soil properties across two annual cropland sites actively employing CTF in Alberta, Canada. Field scale variability was quantified more accurately through the inclusion of covariates; however, the use of ROK was shown to improve model accuracy despite the regression model composition limiting the robustness of the ROK method. The exclusion of traffic from the un-trafficked areas displayed significant improvements to bulk density, macroporosity and Km while subsequently enhancing AN, STN and SOC. The ability of the regression models and the ROK method to account for spatial trends led to the highest goodness-of-fit and lowest error achieved for the soil physical properties, as the rigid traffic regime of CTF altered their spatial distribution at the field scale. Conversely, the COK method produced the most optimal predictions for the soil nutrient properties and Km. The use of terrain covariates derived from light ranging and detection (LiDAR), such as of elevation and topographic position index (TPI), yielded the best models in the COK method at the field scale.
Trends and spatial distribution of annual and seasonal rainfall in Ethiopia
Cheung, W.H.; Senay, G.B.; Singh, A.
2008-01-01
As a country whose economy is heavily dependent on low-productivity rainfed agriculture, rainfall trends are often cited as one of the more important factors in explaining various socio-economic problems such as food insecurity. Therefore, in order to help policymakers and developers make more informed decisions, this study investigated the temporal dynamics of rainfall and its spatial distribution within Ethiopia. Changes in rainfall were examined using data from 134 stations in 13 watersheds between 1960 and 2002. The variability and trends in seasonal and annual rainfall were analysed at the watershed scale with data (1) from all available years, and (2) excluding years that lacked observations from at least 25% of the gauges. Similar analyses were also performed at the gauge, regional, and national levels. By regressing annual watershed rainfall on time, results from the one-sample t-test show no significant changes in rainfall for any of the watersheds examined. However, in our regressions of seasonal rainfall averages against time, we found a significant decline in June to September rainfall (i.e. Kiremt) for the Baro-Akobo, Omo-Ghibe, Rift Valley, and Southern Blue Nile watersheds located in the southwestern and central parts of Ethiopia. While the gauge level analysis showed that certain gauge stations experienced recent changes in rainfall, these trends are not necessarily reflected at the watershed or regional levels.
A scoping review of spatial cluster analysis techniques for point-event data.
Fritz, Charles E; Schuurman, Nadine; Robertson, Colin; Lear, Scott
2013-05-01
Spatial cluster analysis is a uniquely interdisciplinary endeavour, and so it is important to communicate and disseminate ideas, innovations, best practices and challenges across practitioners, applied epidemiology researchers and spatial statisticians. In this research we conducted a scoping review to systematically search peer-reviewed journal databases for research that has employed spatial cluster analysis methods on individual-level, address location, or x and y coordinate derived data. To illustrate the thematic issues raised by our results, methods were tested using a dataset where known clusters existed. Point pattern methods, spatial clustering and cluster detection tests, and a locally weighted spatial regression model were most commonly used for individual-level, address location data (n = 29). The spatial scan statistic was the most popular method for address location data (n = 19). Six themes were identified relating to the application of spatial cluster analysis methods and subsequent analyses, which we recommend researchers to consider; exploratory analysis, visualization, spatial resolution, aetiology, scale and spatial weights. It is our intention that researchers seeking direction for using spatial cluster analysis methods, consider the caveats and strengths of each approach, but also explore the numerous other methods available for this type of analysis. Applied spatial epidemiology researchers and practitioners should give special consideration to applying multiple tests to a dataset. Future research should focus on developing frameworks for selecting appropriate methods and the corresponding spatial weighting schemes.
NASA Astrophysics Data System (ADS)
O'Connor, J. E.; Wise, D. R.; Mangano, J.; Jones, K.
2015-12-01
Empirical analyses of suspended sediment and bedload transport gives estimates of sediment flux for western Oregon and northwestern California. The estimates of both bedload and suspended load are from regression models relating measured annual sediment yield to geologic, physiographic, and climatic properties of contributing basins. The best models include generalized geology and either slope or precipitation. The best-fit suspended-sediment model is based on basin geology, precipitation, and area of recent wildfire. It explains 65% of the variance for 68 suspended sediment measurement sites within the model area. Predicted suspended sediment yields range from no yield from the High Cascades geologic province to 200 tonnes/ km2-yr in the northern Oregon Coast Range and 1000 tonnes/km2-yr in recently burned areas of the northern Klamath terrain. Bed-material yield is similarly estimated from a regression model based on 22 sites of measured bed-material transport, mostly from reservoir accumulation analyses but also from several bedload measurement programs. The resulting best-fit regression is based on basin slope and the presence/absence of the Klamath geologic terrane. For the Klamath terrane, bed-material yield is twice that of the other geologic provinces. This model explains more than 80% of the variance of the better-quality measurements. Predicted bed-material yields range up to 350 tonnes/ km2-yr in steep areas of the Klamath terrane. Applying these regressions to small individual watersheds (mean size; 66 km2 for bed-material; 3 km2 for suspended sediment) and cumulating totals down the hydrologic network (but also decreasing the bed-material flux by experimentally determined attrition rates) gives spatially explicit estimates of both bed-material and suspended sediment flux. This enables assessment of several management issues, including the effects of dams on bedload transport, instream gravel mining, habitat formation processes, and water-quality. The combined fluxes can also be compared to long-term rock uplift and cosmogenically determined landscape erosion rates.
Duncan, Dustin T.; Kawachi, Ichiro; Kum, Susan; Aldstadt, Jared; Piras, Gianfranco; Matthews, Stephen A.; Arbia, Giuseppe; Castro, Marcia C.; White, Kellee; Williams, David R.
2017-01-01
The racial/ethnic and income composition of neighborhoods often influences local amenities, including the potential spatial distribution of trees, which are important for population health and community wellbeing, particularly in urban areas. This ecological study used spatial analytical methods to assess the relationship between neighborhood socio-demographic characteristics (i.e. minority racial/ethnic composition and poverty) and tree density at the census tact level in Boston, Massachusetts (US). We examined spatial autocorrelation with the Global Moran’s I for all study variables and in the ordinary least squares (OLS) regression residuals as well as computed Spearman correlations non-adjusted and adjusted for spatial autocorrelation between socio-demographic characteristics and tree density. Next, we fit traditional regressions (i.e. OLS regression models) and spatial regressions (i.e. spatial simultaneous autoregressive models), as appropriate. We found significant positive spatial autocorrelation for all neighborhood socio-demographic characteristics (Global Moran’s I range from 0.24 to 0.86, all P=0.001), for tree density (Global Moran’s I=0.452, P=0.001), and in the OLS regression residuals (Global Moran’s I range from 0.32 to 0.38, all P<0.001). Therefore, we fit the spatial simultaneous autoregressive models. There was a negative correlation between neighborhood percent non-Hispanic Black and tree density (rS=−0.19; conventional P-value=0.016; spatially adjusted P-value=0.299) as well as a negative correlation between predominantly non-Hispanic Black (over 60% Black) neighborhoods and tree density (rS=−0.18; conventional P-value=0.019; spatially adjusted P-value=0.180). While the conventional OLS regression model found a marginally significant inverse relationship between Black neighborhoods and tree density, we found no statistically significant relationship between neighborhood socio-demographic composition and tree density in the spatial regression models. Methodologically, our study suggests the need to take into account spatial autocorrelation as findings/conclusions can change when the spatial autocorrelation is ignored. Substantively, our findings suggest no need for policy intervention vis-à-vis trees in Boston, though we hasten to add that replication studies, and more nuanced data on tree quality, age and diversity are needed. PMID:29354668
Multi-scaling allometric analysis for urban and regional development
NASA Astrophysics Data System (ADS)
Chen, Yanguang
2017-01-01
The concept of allometric growth is based on scaling relations, and it has been applied to urban and regional analysis for a long time. However, most allometric analyses were devoted to the single proportional relation between two elements of a geographical system. Few researches focus on the allometric scaling of multielements. In this paper, a process of multiscaling allometric analysis is developed for the studies on spatio-temporal evolution of complex systems. By means of linear algebra, general system theory, and by analogy with the analytical hierarchy process, the concepts of allometric growth can be integrated with the ideas from fractal dimension. Thus a new methodology of geo-spatial analysis and the related theoretical models emerge. Based on the least squares regression and matrix operations, a simple algorithm is proposed to solve the multiscaling allometric equation. Applying the analytical method of multielement allometry to Chinese cities and regions yields satisfying results. A conclusion is reached that the multiscaling allometric analysis can be employed to make a comprehensive evaluation for the relative levels of urban and regional development, and explain spatial heterogeneity. The notion of multiscaling allometry may enrich the current theory and methodology of spatial analyses of urban and regional evolution.
Price, Weather, and `Acreage Abandonment' in Western Great Plains Wheat Culture.
NASA Astrophysics Data System (ADS)
Michaels, Patrick J.
1983-07-01
Multivariate analyses of acreage abandonment patterns in the U.S. Great Plains winter wheat region indicate that the major mode of variation is an in-phase oscillation confined to the western half of the overall area, which is also the area with lowest average yields. This is one of the more agroclimatically marginal environments in the United States, with wide interannual fluctuations in both climate and profitability.We developed a multiple regression model to determine the relative roles of weather and expected price in the decision not to harvest. The overall model explained 77% of the spatial and temporal variation in abandonment. The 36.5% of the non-spatial variation was explained by two simple transformations of climatic data from three monthly aggregates-September-October, November-February and March-April. Price factors, expressed as indexed future delivery quotations,were barely significant, with only between 3 and 5% of the non-spatial variation explained, depending upon the model.The model was based upon weather, climate and price data from 1932 through 1975. It was tested by sequentially withholding three-year blocks of data, and using the respecified regression coefficients, along with observed weather and price, to estimate abandonment in the withheld years. Error analyses indicate no loss of model fidelity in the test mode. Also, prediction errors in the 1970-75 period, characterized by widely fluctuating prices, were not different from those in the rest of the model.The overall results suggest that the perceived quality of the crop, as influenced by weather, is a much more important determinant of the abandonment decision than are expected returns based upon price considerations.
Landscape characteristics influence pond occupancy by frogs after accounting for detectability
Mazerolle, M.J.; Desrochers, A.; Rochefort, L.
2005-01-01
Many investigators have hypothesized that landscape attributes such as the amount and proximity of habitat are important for amphibian spatial patterns. This has produced a number of studies focusing on the effects of landscape characteristics on amphibian patterns of occurrence in patches or ponds, most of which conclude that the landscape is important. We identified two concerns associated with these studies: one deals with their applicability to other landscape types, as most have been conducted in agricultural landscapes; the other highlights the need to account for the probability of detection. We tested the hypothesis that landscape characteristics influence spatial patterns of amphibian occurrence at ponds after accounting for the probability of detection in little-studied peatland landscapes undergoing peat mining. We also illustrated the costs of not accounting for the probability of detection by comparing our results to conventional logistic regression analyses. Results indicate that frog occurrence increased with the percent cover of ponds within 100, 250, and 1000 m, as well as the amount of forest cover within 1000 m. However, forest cover at 250 m had a negative influence on frog presence at ponds. Not accounting for the probability of detection resulted in underestimating the influence of most variables on frog occurrence, whereas a few were overestimated. Regardless, we show that conventional logistic regression can lead to different conclusions than analyses accounting for detectability. Our study is consistent with the hypothesis that landscape characteristics are important in determining the spatial patterns of frog occurrence at ponds. We strongly recommend estimating the probability of detection in field surveys, as this will increase the quality and conservation potential of models derived from such data. ?? 2005 by the Ecological Society of America.
Zhang, Chaosheng; Tang, Ya; Luo, Lin; Xu, Weilin
2009-11-01
Outliers in urban soil geochemical databases may imply potential contaminated land. Different methodologies which can be easily implemented for the identification of global and spatial outliers were applied for Pb concentrations in urban soils of Galway City in Ireland. Due to its strongly skewed probability feature, a Box-Cox transformation was performed prior to further analyses. The graphic methods of histogram and box-and-whisker plot were effective in identification of global outliers at the original scale of the dataset. Spatial outliers could be identified by a local indicator of spatial association of local Moran's I, cross-validation of kriging, and a geographically weighted regression. The spatial locations of outliers were visualised using a geographical information system. Different methods showed generally consistent results, but differences existed. It is suggested that outliers identified by statistical methods should be confirmed and justified using scientific knowledge before they are properly dealt with.
Spatial distribution of psychotic disorders in an urban area of France: an ecological study.
Pignon, Baptiste; Schürhoff, Franck; Baudin, Grégoire; Ferchiou, Aziz; Richard, Jean-Romain; Saba, Ghassen; Leboyer, Marion; Kirkbride, James B; Szöke, Andrei
2016-05-18
Previous analyses of neighbourhood variations of non-affective psychotic disorders (NAPD) have focused mainly on incidence. However, prevalence studies provide important insights on factors associated with disease evolution as well as for healthcare resource allocation. This study aimed to investigate the distribution of prevalent NAPD cases in an urban area in France. The number of cases in each neighbourhood was modelled as a function of potential confounders and ecological variables, namely: migrant density, economic deprivation and social fragmentation. This was modelled using statistical models of increasing complexity: frequentist models (using Poisson and negative binomial regressions), and several Bayesian models. For each model, assumptions validity were checked and compared as to how this fitted to the data, in order to test for possible spatial variation in prevalence. Data showed significant overdispersion (invalidating the Poisson regression model) and residual autocorrelation (suggesting the need to use Bayesian models). The best Bayesian model was Leroux's model (i.e. a model with both strong correlation between neighbouring areas and weaker correlation between areas further apart), with economic deprivation as an explanatory variable (OR = 1.13, 95% CI [1.02-1.25]). In comparison with frequentist methods, the Bayesian model showed a better fit. The number of cases showed non-random spatial distribution and was linked to economic deprivation.
Effect of vegetation on cutaneous leishmaniasis in Paraná, Brazil
Melo, Helen Aline; Rossoni, Diogo Francisco; Teodoro, Ueslei
2018-01-01
BACKGROUND Cutaneous leishmaniasis (CL) is endemic in the state of Paraná, Brazil. OBJECTIVE This study aimed at analysing the influence of the remaining native vegetation on the prevalence of CL in Paraná. METHODS Global testing was used for spatial autocorrelation along with simultaneous autoregressive model (SAR). The regression was based on the CL coefficient (cases/100,000 inhabitants) as a function of the percentage of natural vegetation cover, altitude, total number of cases, and spatial density (SD) per km2; the location data of the Paraná state municipalities and the detection coefficient (DC) (cases/100,000 inhabitants) of autochthonous cases of CL were obtained from the SINAN in 2012 and 2016. Data on the remaining forests were collected from the Fundação SOS Mata Atlântica and Instituto Nacional de Pesquisas Espaciais. FINDINGS The spatial regression of DC revealed statistical significance for SD (Z = 24.1359, p < 0.05, 2012-2013; Z = 24.0817, p < 0.05, 2013-2014; Z = 33.4824, p < 0.05, 2014-2015; and Z = 27.1515, p < 0.05, 2015-2016. CONCLUSIONS CL cases are reported in areas with native vegetation, such as in riparian forests. However, vegetation is not the only variable that influences the incidence of CL. PMID:29768531
Insaf, Tabassum Z; Talbot, Thomas
2016-07-01
To assess the geographic distribution of Low Birth Weight (LBW) in New York State among singleton births using a spatial regression approach in order to identify priority areas for public health actions. LBW was defined as birth weight less than 2500g. Geocoded data from 562,586 birth certificates in New York State (years 2008-2012) were merged with 2010 census data at the tract level. To provide stable estimates and maintain confidentiality, data were aggregated to yield 1268 areas of analysis. LBW prevalence among singleton births was related with area-level behavioral, socioeconomic and demographic characteristics using a Poisson mixed effects spatial error regression model. Observed low birth weight showed statistically significant auto-correlation in our study area (Moran's I 0.16 p value 0.0005). After over-dispersion correction and accounting for fixed effects for selected social determinants, spatial autocorrelation was fully accounted for (Moran's I-0.007 p value 0.241). The proportion of LBW was higher in areas with larger Hispanic or Black populations and high smoking prevalence. Smoothed maps with predicted prevalence were developed to identify areas at high risk of LBW. Spatial patterns of residual variation were analyzed to identify unique risk factors. Neighborhood racial composition contributes to disparities in LBW prevalence beyond differences in behavioral and socioeconomic factors. Small-area analyses of LBW can identify areas for targeted interventions and display unique local patterns that should be accounted for in prevention strategies. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Spatial disparity in the distribution of superfund sites in South Carolina: an ecological study
2013-01-01
Background According to the US Environmental Protection Agency (EPA), Superfund is a federal government program implemented to clean up uncontrolled hazardous waste sites. Twenty-six sites in South Carolina (SC) have been included on the National Priorities List (NPL), which has serious human health and environmental implications. The purpose of this study was to assess spatial disparities in the distribution of Superfund sites in SC. Methods The 2000 US census tract and block level data were used to generate population characteristics, which included race/ethnicity, socioeconomic status (SES), education, home ownership, and home built before 1950. Geographic Information Systems (GIS) were used to map Superfund facilities and develop choropleth maps based on the aforementioned sociodemographic variables. Spatial methods, including mean and median distance analysis, buffer analysis, and spatial approximation were employed to characterize burden disparities. Regression analysis was performed to assess the relationship between the number of Superfund facilities and population characteristics. Results Spatial coincidence results showed that of the 29.5% of Blacks living in SC, 55.9% live in Superfund host census tracts. Among all populations in SC living below poverty (14.2%), 57.2% were located in Superfund host census tracts. Buffer analyses results (0.5mi, 1.0mi, 5.0mi, 0.5km, 1.0km, and 5.0km) showed a higher percentage of Whites compared to Blacks hosting a Superfund facility. Conversely, a slightly higher percentage of Blacks hosted (30.2%) a Superfund facility than those not hosting (28.8%) while their White counterparts had more equivalent values (66.7% and 67.8%, respectively). Regression analyses in the reduced model (Adj. R2 = 0.038) only explained a small percentage of the variance. In addition, the mean distance for percent of Blacks in the 90th percentile for Superfund facilities was 0.48mi. Conclusion Burden disparities exist in the distribution of Superfund facilities in SC at the block and census tract levels across varying levels of demographic composition for race/ethnicity and SES. PMID:24195573
Spatial ability as a predictor of math achievement: the importance of sex and handedness patterns.
Casey, M B; Pezaris, E; Nuttall, R L
1992-01-01
In accordance with major theories of handedness and brain organization, differential predictors for math achievement were found as a function of sex and handedness subgroups among eighth graders. Although there was no difference in absolute levels of performance as a function of either sex or handedness, predictive structures did differ. Regression analyses showed that spatial ability predicts math achievement for: (1) girls with anomalous dominance (non-right-handers and right-handers with non-right-handed relatives), and (2) all boys (independent of handedness group). In contrast, for the standard dominance girls who are right-handed with all right-handed relatives (considered strongly left-hemisphere dominant for language), spatial ability did not predict for math achievement. These findings occurred, even when scholastic aptitude and verbal achievement factors were controlled. It was concluded that further studies of sex differences in math achievement should consider subgroup differences within the sexes, based on handedness patterns.
Edwards, Lindsey; Figueras, Berta; Mellanby, Jane; Langdon, Dawn
2011-01-01
The extent to which cognitive development and abilities are dependent on language remains controversial. In this study, the analogical reasoning skills of deaf and hard of hearing children are explored. Two groups of children (deaf and hard of hearing children with either cochlear implants or hearing aids and hearing children) completed tests of verbal and spatial analogical reasoning. Their vocabulary and grammar skills were also assessed to provide a measure of language attainment. Results indicated significant differences between the deaf and hard of hearing children (regardless of type of hearing device) and their hearing peers on vocabulary, grammar, and verbal reasoning tests. Regression analyses revealed that in the group of deaf and hard of hearing children, but not in the hearing group, the language measures were significant predictors of verbal analogical reasoning, when age and spatial analogical reasoning ability were controlled for. The implications of these findings are discussed.
Antidepressant sales and regional variations of suicide mortality in Germany.
Blüml, Victor; Helbich, Marco; Mayr, Michael; Turnwald, Roland; Vyssoki, Benjamin; Lewitzka, Ute; Hartung, Sebastian; Plener, Paul L; Fegert, Jörg M; Kapusta, Nestor D
2017-04-01
Suicides account for over one million deaths per year worldwide with depression among the most important risk factors. Epidemiological research into the relationship between antidepressant utilization and suicide mortality has shown heterogeneous and contradictory results. Different methodological approaches and limitations could at least partially explain varying results. This is the first study assessing the association of suicide mortality and antidepressant sales across Germany using complex statistical approaches in order to control for possible confounding factors including spatial dependency of data. German suicide counts were analyzed on a district level (n = 402) utilizing ecological Poisson regressions within a hierarchical Bayesian framework. Due to significant spatial effects between adjacent districts spatial models were calculated in addition to a baseline non-spatial model. Models were adjusted for several confounders including socioeconomic variables, quality of psychosocial care, and depression prevalence. Separate analyses were performed for Eastern and Western Germany and for different classes of antidepressants (SSRIs and TCAs). Overall antidepressant sales were significantly negatively associated with suicide mortality in the non-spatial baseline model, while after adjusting for spatially structured and unstructured effects the association turned out to be insignificant. In sub-analyses, analogue results were found for SSRIs and TCAs separately. Suicide risk shows a distinct heterogeneous pattern with a pronounced relative risk in Southeast Germany. In conclusion, the results reflect the heterogeneous findings of previous studies on the association between suicide mortality and antidepressant sales and point to the complexity of this hypothesized link. Furthermore, the findings support tailored suicide preventive efforts within high risk areas. Copyright © 2016 Elsevier Ltd. All rights reserved.
Van der Laan, Carina; Verweij, Pita A; Quiñones, Marcela J; Faaij, André Pc
2014-12-01
Land use and land cover change occurring in tropical forest landscapes contributes substantially to carbon emissions. Better insights into the spatial variation of aboveground biomass is therefore needed. By means of multiple statistical tests, including geographically weighted regression, we analysed the effects of eight variables on the regional spatial variation of aboveground biomass. North and East Kalimantan were selected as the case study region; the third largest carbon emitting Indonesian provinces. Strong positive relationships were found between aboveground biomass and the tested variables; altitude, slope, land allocation zoning, soil type, and distance to the nearest fire, road, river and city. Furthermore, the results suggest that the regional spatial variation of aboveground biomass can be largely attributed to altitude, distance to nearest fire and land allocation zoning. Our study showed that in this landscape, aboveground biomass could not be explained by one single variable; the variables were interrelated, with altitude as the dominant variable. Spatial analyses should therefore integrate a variety of biophysical and anthropogenic variables to provide a better understanding of spatial variation in aboveground biomass. Efforts to minimise carbon emissions should incorporate the identified factors, by 1) the maintenance of lands with high AGB or carbon stocks, namely in the identified zones at the higher altitudes; and 2) regeneration or sustainable utilisation of lands with low AGB or carbon stocks, dependent on the regeneration capacity of the vegetation. Low aboveground biomass densities can be found in the lowlands in burned areas, and in non-forest zones and production forests.
Deering, Kathleen N; Rusch, Melanie; Amram, Ofer; Chettiar, Jill; Nguyen, Paul; Feng, Cindy X; Shannon, Kate
2014-05-01
Employing innovative mapping and spatial analyses of individual and neighbourhood environment data, we examined the social, physical and structural features of overlapping street-based sex work and drug scenes and explored the utility of a 'spatial isolation index' in explaining exchanging sex for drugs and exchanging sex while high. Analyses drew on baseline interview and geographic data (January 2010-October 2011) from a large prospective cohort of street and off-street sex workers (SWs) in Metropolitan Vancouver and external publically-available, neighbourhood environment data. An index measuring 'spatial isolation' was developed from seven indicators measuring features of the built environment within 50m buffers (e.g., industrial or commercial zoning, lighting) surrounding sex work environments. Bivariate and multivariable logistic regression was used to examine associations between the two outcomes (exchanged sex for drugs; exchanged sex while high) and the index, as well as each individual indicator. Of 510 SWs, 328 worked in street-based/outdoor environments (e.g., streets, parks, alleys) and were included in the analyses. In multivariable analysis, increased spatial isolation surrounding street-based/outdoor SWs' main places of servicing clients as measured with the index was significantly associated with exchanging sex for drugs. Exchanging sex for drugs was also significantly positively associated with an indicator of the built environment suggesting greater spatial isolation (increased percent of parks) and negatively associated with those suggesting decreased spatial isolation (increased percent commercial areas, increased count of lighting, increased building footprint). Exchanging sex while high was negatively associated with increased percent of commercial zones but this association was removed when adjusting for police harassment. The results from our exploratory study highlight how built environment shapes risks within overlapping street-based sex work and drug scenes through the development of a novel index comprised of multiple indicators of the built environment available through publicly available data, This study informs the important role that spatially-oriented responses, such as safer-environment interventions, and structural responses, such as decriminalization of sex work can play in improving the health, safety and well-being of SWs. Copyright © 2013 Elsevier B.V. All rights reserved.
Deering, Kathleen N; Rusch, Melanie; Amram, Ofer; Chettiar, Jill; Nguyen, Paul; Feng, Cindy X; Shannon, Kate
2014-01-01
Background Employing innovative mapping and spatial analyses of individual and neighborhood environment data, we examined the social, physical and structural features of overlapping street-based sex work and drug scenes and explored the utility of a ‘spatial isolation index’ in explaining exchanging sex for drugs and exchanging sex while high. Methods Analyses drew on baseline interview and geographic data (Jan/10-Oct/11) from a large prospective cohort of street and off-street sex workers (SWs) in Metropolitan Vancouver and external publically-available, neighborhood environment data. An index measuring ‘spatial isolation’ was developed from seven indicators measuring features of the built environment within 50m buffers (e.g. industrial or commercial zoning, lighting) surrounding sex work environments. Bivariate and multivariable logistic regression was used to examine associations between the two outcomes (exchanged sex for drugs; exchanged sex while high) and the index, as well as each individual indicator. Results Of 510 SWs, 328 worked in street-based/outdoor environments (e.g. streets, parks, alleys) and were included in the analyses. In multivariable analysis, increased spatial isolation surrounding street-based/outdoor SWs’ main places of servicing clients as measured with the index was significantly associated with exchanging sex for drugs. Exchanging sex for drugs was also significantly positively associated with an indicator of the built environment suggesting greater spatial isolation (increased percent of parks) and negatively associated with those suggesting decreased spatial isolation (increased percent commercial areas, increased count of lighting, increased building footprint). Exchanging sex while high was negatively associated with increased percent of commercial zones but this association was removed when adjusting for police harassment. Conclusions The results from our exploratory study highlight how built environment shapes risks within overlapping street-based sex work and drug scenes through the development of a novel index comprised of multiple indicators of the built environment available through publicly available data, This study informs the important role that spatially-oriented responses, such as safer-environment interventions, and structural responses, such as decriminalization of sex work can play in improving the health, safety and well-being of SWs. PMID:24433813
Drivers of metacommunity structure diverge for common and rare Amazonian tree species.
Bispo, Polyanna da Conceição; Balzter, Heiko; Malhi, Yadvinder; Slik, J W Ferry; Dos Santos, João Roberto; Rennó, Camilo Daleles; Espírito-Santo, Fernando D; Aragão, Luiz E O C; Ximenes, Arimatéa C; Bispo, Pitágoras da Conceição
2017-01-01
We analysed the flora of 46 forest inventory plots (25 m x 100 m) in old growth forests from the Amazonian region to identify the role of environmental (topographic) and spatial variables (obtained using PCNM, Principal Coordinates of Neighbourhood Matrix analysis) for common and rare species. For the analyses, we used multiple partial regression to partition the specific effects of the topographic and spatial variables on the univariate data (standardised richness, total abundance and total biomass) and partial RDA (Redundancy Analysis) to partition these effects on composition (multivariate data) based on incidence, abundance and biomass. The different attributes (richness, abundance, biomass and composition based on incidence, abundance and biomass) used to study this metacommunity responded differently to environmental and spatial processes. Considering standardised richness, total abundance (univariate) and composition based on biomass, the results for common species differed from those obtained for all species. On the other hand, for total biomass (univariate) and for compositions based on incidence and abundance, there was a correspondence between the data obtained for the total community and for common species. Our data also show that in general, environmental and/or spatial components are important to explain the variability in tree communities for total and common species. However, with the exception of the total abundance, the environmental and spatial variables measured were insufficient to explain the attributes of the communities of rare species. These results indicate that predicting the attributes of rare tree species communities based on environmental and spatial variables is a substantial challenge. As the spatial component was relevant for several community attributes, our results demonstrate the importance of using a metacommunities approach when attempting to understand the main ecological processes underlying the diversity of tropical forest communities.
Assessment of the spatial scaling behaviour of floods in the United Kingdom
NASA Astrophysics Data System (ADS)
Formetta, Giuseppe; Stewart, Elizabeth; Bell, Victoria
2017-04-01
Floods are among the most dangerous natural hazards, causing loss of life and significant damage to private and public property. Regional flood-frequency analysis (FFA) methods are essential tools to assess the flood hazard and plan interventions for its mitigation. FFA methods are often based on the well-known index flood method that assumes the invariance of the coefficient of variation of floods with drainage area. This assumption is equivalent to the simple scaling or self-similarity assumption for peak floods, i.e. their spatial structure remains similar in a particular, relatively simple, way to itself over a range of scales. Spatial scaling of floods has been evaluated at national scale for different countries such as Canada, USA, and Australia. According our knowledge. Such a study has not been conducted for the United Kingdom even though the standard FFA method there is based on the index flood assumption. In this work we present an integrated approach to assess of the spatial scaling behaviour of floods in the United Kingdom using three different methods: product moments (PM), probability weighted moments (PWM), and quantile analysis (QA). We analyse both instantaneous and daily annual observed maximum floods and performed our analysis both across the entire country and in its sub-climatic regions as defined in the Flood Studies Report (NERC, 1975). To evaluate the relationship between the k-th moments or quantiles and the drainage area we used both regression with area alone and multiple regression considering other explanatory variables to account for the geomorphology, amount of rainfall, and soil type of the catchments. The latter multiple regression approach was only recently demonstrated being more robust than the traditional regression with area alone that can lead to biased estimates of scaling exponents and misinterpretation of spatial scaling behaviour. We tested our framework on almost 600 rural catchments in UK considered as entire region and split in 11 sub-regions with 50 catchments per region on average. Preliminary results from the three different spatial scaling methods are generally in agreement and indicate that: i) only some of the peak flow variability is explained by area alone (approximately 50% for the entire country and ranging between the 40% and 70% for the sub-regions); ii) this percentage increases to 90% for the entire country and ranges between 80% and 95% for the sub-regions when the multiple regression is used; iii) the simple scaling hypothesis holds in all sub-regions with the exception of weak multi-scaling found in the regions 2 (North), and 5 and 6 (South East). We hypothesize that these deviations can be explained by heterogeneity in large scale precipitation and by the influence of the soil type (predominantly chalk) on the flood formation process in regions 5 and 6.
Geographical Text Analysis: A new approach to understanding nineteenth-century mortality.
Porter, Catherine; Atkinson, Paul; Gregory, Ian
2015-11-01
This paper uses a combination of Geographic Information Systems (GIS) and corpus linguistic analysis to extract and analyse disease related keywords from the Registrar-General's Decennial Supplements. Combined with known mortality figures, this provides, for the first time, a spatial picture of the relationship between the Registrar-General's discussion of disease and deaths in England and Wales in the nineteenth and early twentieth centuries. Techniques such as collocation, density analysis, the Hierarchical Regional Settlement matrix and regression analysis are employed to extract and analyse the data resulting in new insight into the relationship between the Registrar-General's published texts and the changing mortality patterns during this time. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kierepka, E M; Latch, E K
2016-01-01
Landscape genetics is a powerful tool for conservation because it identifies landscape features that are important for maintaining genetic connectivity between populations within heterogeneous landscapes. However, using landscape genetics in poorly understood species presents a number of challenges, namely, limited life history information for the focal population and spatially biased sampling. Both obstacles can reduce power in statistics, particularly in individual-based studies. In this study, we genotyped 233 American badgers in Wisconsin at 12 microsatellite loci to identify alternative statistical approaches that can be applied to poorly understood species in an individual-based framework. Badgers are protected in Wisconsin owing to an overall lack in life history information, so our study utilized partial redundancy analysis (RDA) and spatially lagged regressions to quantify how three landscape factors (Wisconsin River, Ecoregions and land cover) impacted gene flow. We also performed simulations to quantify errors created by spatially biased sampling. Statistical analyses first found that geographic distance was an important influence on gene flow, mainly driven by fine-scale positive spatial autocorrelations. After controlling for geographic distance, both RDA and regressions found that Wisconsin River and Agriculture were correlated with genetic differentiation. However, only Agriculture had an acceptable type I error rate (3–5%) to be considered biologically relevant. Collectively, this study highlights the benefits of combining robust statistics and error assessment via simulations and provides a method for hypothesis testing in individual-based landscape genetics. PMID:26243136
Dilworth-Bart, Janean E; Miller, Kyle E; Hane, Amanda
2012-04-01
We examined the joint roles of child negative emotionality and parenting in the visual-spatial development of toddlers born preterm or with low birthweights (PTLBW). Neonatal risk data were collected at hospital discharge, observer- and parent-rated child negative emotionality was assessed at 9-months postterm, and mother-initiated task changes and flexibility during play were observed during a dyadic play interaction at 16-months postterm. Abbreviated IQ scores, and verbal/nonverbal and visual-spatial processing data were collected at 24-months postterm. Hierarchical regression analyses did not support our hypothesis that the visual-spatial processing of PTLBW toddlers with higher negative emotionality would be differentially susceptible to parenting behaviors during play. Instead, observer-rated distress and a negativity composite score were associated with less optimal visual-spatial processing when mothers were more flexible during the 16-month play interaction. Mother-initiated task changes did not interact with any of the negative emotionality variables to predict any of the 24-month neurocognitive outcomes, nor did maternal flexibility interact with mother-rated difficult temperament to predict the visual-spatial processing outcomes. Copyright © 2011 Elsevier Inc. All rights reserved.
Xie, Hualin; Liu, Zhifei; Wang, Peng; Liu, Guiying; Lu, Fucai
2013-01-01
Ecological land is one of the key resources and conditions for the survival of humans because it can provide ecosystem services and is particularly important to public health and safety. It is extremely valuable for effective ecological management to explore the evolution mechanisms of ecological land. Based on spatial statistical analyses, we explored the spatial disparities and primary potential drivers of ecological land change in the Poyang Lake Eco-economic Zone of China. The results demonstrated that the global Moran’s I value is 0.1646 during the 1990 to 2005 time period and indicated significant positive spatial correlation (p < 0.05). The results also imply that the clustering trend of ecological land changes weakened in the study area. Some potential driving forces were identified by applying the spatial autoregressive model in this study. The results demonstrated that the higher economic development level and industrialization rate were the main drivers for the faster change of ecological land in the study area. This study also tested the superiority of the spatial autoregressive model to study the mechanisms of ecological land change by comparing it with the traditional linear regressive model. PMID:24384778
Schistosomiasis Breeding Environment Situation Analysis in Dongting Lake Area
NASA Astrophysics Data System (ADS)
Li, Chuanrong; Jia, Yuanyuan; Ma, Lingling; Liu, Zhaoyan; Qian, Yonggang
2013-01-01
Monitoring environmental characteristics, such as vegetation, soil moisture et al., of Oncomelania hupensis (O. hupensis)’ spatial/temporal distribution is of vital importance to the schistosomiasis prevention and control. In this study, the relationship between environmental factors derived from remotely sensed data and the density of O. hupensis was analyzed by a multiple linear regression model. Secondly, spatial analysis of the regression residual was investigated by the semi-variogram method. Thirdly, spatial analysis of the regression residual and the multiple linear regression model were both employed to estimate the spatial variation of O. hupensis density. Finally, the approach was used to monitor and predict the spatial and temporal variations of oncomelania of Dongting Lake region, China. And the areas of potential O. hupensis habitats were predicted and the influence of Three Gorges Dam (TGB)project on the density of O. hupensis was analyzed.
Spatial regression analysis on 32 years of total column ozone data
NASA Astrophysics Data System (ADS)
Knibbe, J. S.; van der A, R. J.; de Laat, A. T. J.
2014-08-01
Multiple-regression analyses have been performed on 32 years of total ozone column data that was spatially gridded with a 1 × 1.5° resolution. The total ozone data consist of the MSR (Multi Sensor Reanalysis; 1979-2008) and 2 years of assimilated SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) ozone data (2009-2010). The two-dimensionality in this data set allows us to perform the regressions locally and investigate spatial patterns of regression coefficients and their explanatory power. Seasonal dependencies of ozone on regressors are included in the analysis. A new physically oriented model is developed to parameterize stratospheric ozone. Ozone variations on nonseasonal timescales are parameterized by explanatory variables describing the solar cycle, stratospheric aerosols, the quasi-biennial oscillation (QBO), El Niño-Southern Oscillation (ENSO) and stratospheric alternative halogens which are parameterized by the effective equivalent stratospheric chlorine (EESC). For several explanatory variables, seasonally adjusted versions of these explanatory variables are constructed to account for the difference in their effect on ozone throughout the year. To account for seasonal variation in ozone, explanatory variables describing the polar vortex, geopotential height, potential vorticity and average day length are included. Results of this regression model are compared to that of a similar analysis based on a more commonly applied statistically oriented model. The physically oriented model provides spatial patterns in the regression results for each explanatory variable. The EESC has a significant depleting effect on ozone at mid- and high latitudes, the solar cycle affects ozone positively mostly in the Southern Hemisphere, stratospheric aerosols affect ozone negatively at high northern latitudes, the effect of QBO is positive and negative in the tropics and mid- to high latitudes, respectively, and ENSO affects ozone negatively between 30° N and 30° S, particularly over the Pacific. The contribution of explanatory variables describing seasonal ozone variation is generally large at mid- to high latitudes. We observe ozone increases with potential vorticity and day length and ozone decreases with geopotential height and variable ozone effects due to the polar vortex in regions to the north and south of the polar vortices. Recovery of ozone is identified globally. However, recovery rates and uncertainties strongly depend on choices that can be made in defining the explanatory variables. The application of several trend models, each with their own pros and cons, yields a large range of recovery rate estimates. Overall these results suggest that care has to be taken in determining ozone recovery rates, in particular for the Antarctic ozone hole.
NASA Astrophysics Data System (ADS)
Mei, Zhixiong; Wu, Hao; Li, Shiyun
2018-06-01
The Conversion of Land Use and its Effects at Small regional extent (CLUE-S), which is a widely used model for land-use simulation, utilizes logistic regression to estimate the relationships between land use and its drivers, and thus, predict land-use change probabilities. However, logistic regression disregards possible spatial autocorrelation and self-organization in land-use data. Autologistic regression can depict spatial autocorrelation but cannot address self-organization, while logistic regression by considering only self-organization (NElogistic regression) fails to capture spatial autocorrelation. Therefore, this study developed a regression (NE-autologistic regression) method, which incorporated both spatial autocorrelation and self-organization, to improve CLUE-S. The Zengcheng District of Guangzhou, China was selected as the study area. The land-use data of 2001, 2005, and 2009, as well as 10 typical driving factors, were used to validate the proposed regression method and the improved CLUE-S model. Then, three future land-use scenarios in 2020: the natural growth scenario, ecological protection scenario, and economic development scenario, were simulated using the improved model. Validation results showed that NE-autologistic regression performed better than logistic regression, autologistic regression, and NE-logistic regression in predicting land-use change probabilities. The spatial allocation accuracy and kappa values of NE-autologistic-CLUE-S were higher than those of logistic-CLUE-S, autologistic-CLUE-S, and NE-logistic-CLUE-S for the simulations of two periods, 2001-2009 and 2005-2009, which proved that the improved CLUE-S model achieved the best simulation and was thereby effective to a certain extent. The scenario simulation results indicated that under all three scenarios, traffic land and residential/industrial land would increase, whereas arable land and unused land would decrease during 2009-2020. Apparent differences also existed in the simulated change sizes and locations of each land-use type under different scenarios. The results not only demonstrate the validity of the improved model but also provide a valuable reference for relevant policy-makers.
Jacob, Benjamin G; Griffith, Daniel A; Muturi, Ephantus J; Caamano, Erick X; Githure, John I; Novak, Robert J
2009-01-01
Background Autoregressive regression coefficients for Anopheles arabiensis aquatic habitat models are usually assessed using global error techniques and are reported as error covariance matrices. A global statistic, however, will summarize error estimates from multiple habitat locations. This makes it difficult to identify where there are clusters of An. arabiensis aquatic habitats of acceptable prediction. It is therefore useful to conduct some form of spatial error analysis to detect clusters of An. arabiensis aquatic habitats based on uncertainty residuals from individual sampled habitats. In this research, a method of error estimation for spatial simulation models was demonstrated using autocorrelation indices and eigenfunction spatial filters to distinguish among the effects of parameter uncertainty on a stochastic simulation of ecological sampled Anopheles aquatic habitat covariates. A test for diagnostic checking error residuals in an An. arabiensis aquatic habitat model may enable intervention efforts targeting productive habitats clusters, based on larval/pupal productivity, by using the asymptotic distribution of parameter estimates from a residual autocovariance matrix. The models considered in this research extends a normal regression analysis previously considered in the literature. Methods Field and remote-sampled data were collected during July 2006 to December 2007 in Karima rice-village complex in Mwea, Kenya. SAS 9.1.4® was used to explore univariate statistics, correlations, distributions, and to generate global autocorrelation statistics from the ecological sampled datasets. A local autocorrelation index was also generated using spatial covariance parameters (i.e., Moran's Indices) in a SAS/GIS® database. The Moran's statistic was decomposed into orthogonal and uncorrelated synthetic map pattern components using a Poisson model with a gamma-distributed mean (i.e. negative binomial regression). The eigenfunction values from the spatial configuration matrices were then used to define expectations for prior distributions using a Markov chain Monte Carlo (MCMC) algorithm. A set of posterior means were defined in WinBUGS 1.4.3®. After the model had converged, samples from the conditional distributions were used to summarize the posterior distribution of the parameters. Thereafter, a spatial residual trend analyses was used to evaluate variance uncertainty propagation in the model using an autocovariance error matrix. Results By specifying coefficient estimates in a Bayesian framework, the covariate number of tillers was found to be a significant predictor, positively associated with An. arabiensis aquatic habitats. The spatial filter models accounted for approximately 19% redundant locational information in the ecological sampled An. arabiensis aquatic habitat data. In the residual error estimation model there was significant positive autocorrelation (i.e., clustering of habitats in geographic space) based on log-transformed larval/pupal data and the sampled covariate depth of habitat. Conclusion An autocorrelation error covariance matrix and a spatial filter analyses can prioritize mosquito control strategies by providing a computationally attractive and feasible description of variance uncertainty estimates for correctly identifying clusters of prolific An. arabiensis aquatic habitats based on larval/pupal productivity. PMID:19772590
GIS-based spatial regression and prediction of water quality in river networks: A case study in Iowa
Yang, X.; Jin, W.
2010-01-01
Nonpoint source pollution is the leading cause of the U.S.'s water quality problems. One important component of nonpoint source pollution control is an understanding of what and how watershed-scale conditions influence ambient water quality. This paper investigated the use of spatial regression to evaluate the impacts of watershed characteristics on stream NO3NO2-N concentration in the Cedar River Watershed, Iowa. An Arc Hydro geodatabase was constructed to organize various datasets on the watershed. Spatial regression models were developed to evaluate the impacts of watershed characteristics on stream NO3NO2-N concentration and predict NO3NO2-N concentration at unmonitored locations. Unlike the traditional ordinary least square (OLS) method, the spatial regression method incorporates the potential spatial correlation among the observations in its coefficient estimation. Study results show that NO3NO2-N observations in the Cedar River Watershed are spatially correlated, and by ignoring the spatial correlation, the OLS method tends to over-estimate the impacts of watershed characteristics on stream NO3NO2-N concentration. In conjunction with kriging, the spatial regression method not only makes better stream NO3NO2-N concentration predictions than the OLS method, but also gives estimates of the uncertainty of the predictions, which provides useful information for optimizing the design of stream monitoring network. It is a promising tool for better managing and controlling nonpoint source pollution. ?? 2010 Elsevier Ltd.
Hendricks, Brian; Mark-Carew, Miguella; Conley, Jamison
2017-11-13
Domestic dogs and cats are potentially effective sentinel populations for monitoring occurrence and spread of Lyme disease. Few studies have evaluated the public health utility of sentinel programmes using geo-analytic approaches. Confirmed Lyme disease cases diagnosed by physicians and ticks submitted by veterinarians to the West Virginia State Health Department were obtained for 2014-2016. Ticks were identified to species, and only Ixodes scapularis were incorporated in the analysis. Separate ordinary least squares (OLS) and spatial lag regression models were conducted to estimate the association between average numbers of Ix. scapularis collected on pets and human Lyme disease incidence. Regression residuals were visualised using Local Moran's I as a diagnostic tool to identify spatial dependence. Statistically significant associations were identified between average numbers of Ix. scapularis collected from dogs and human Lyme disease in the OLS (β=20.7, P<0.001) and spatial lag (β=12.0, P=0.002) regression. No significant associations were identified for cats in either regression model. Statistically significant (P≤0.05) spatial dependence was identified in all regression models. Local Moran's I maps produced for spatial lag regression residuals indicated a decrease in model over- and under-estimation, but identified a higher number of statistically significant outliers than OLS regression. Results support previous conclusions that dogs are effective sentinel populations for monitoring risk of human exposure to Lyme disease. Findings reinforce the utility of spatial analysis of surveillance data, and highlight West Virginia's unique position within the eastern United States in regards to Lyme disease occurrence.
Tsai, Yu Hsin; Stow, Douglas; Weeks, John
2013-01-01
The goal of this study was to map and quantify the number of newly constructed buildings in Accra, Ghana between 2002 and 2010 based on high spatial resolution satellite image data. Two semi-automated feature detection approaches for detecting and mapping newly constructed buildings based on QuickBird very high spatial resolution satellite imagery were analyzed: (1) post-classification comparison; and (2) bi-temporal layerstack classification. Feature Analyst software based on a spatial contextual classifier and ENVI Feature Extraction that uses a true object-based image analysis approach of image segmentation and segment classification were evaluated. Final map products representing new building objects were compared and assessed for accuracy using two object-based accuracy measures, completeness and correctness. The bi-temporal layerstack method generated more accurate results compared to the post-classification comparison method due to less confusion with background objects. The spectral/spatial contextual approach (Feature Analyst) outperformed the true object-based feature delineation approach (ENVI Feature Extraction) due to its ability to more reliably delineate individual buildings of various sizes. Semi-automated, object-based detection followed by manual editing appears to be a reliable and efficient approach for detecting and enumerating new building objects. A bivariate regression analysis was performed using neighborhood-level estimates of new building density regressed on a census-derived measure of socio-economic status, yielding an inverse relationship with R2 = 0.31 (n = 27; p = 0.00). The primary utility of the new building delineation results is to support spatial analyses of land cover and land use and demographic change. PMID:24415810
Fraver, Shawn; D'Amato, Anthony W.; Bradford, John B.; Jonsson, Bengt Gunnar; Jönsson, Mari; Esseen, Per-Anders
2013-01-01
Question: What factors best characterize tree competitive environments in this structurally diverse old-growth forest, and do these factors vary spatially within and among stands? Location: Old-growth Picea abies forest of boreal Sweden. Methods: Using long-term, mapped permanent plot data augmented with dendrochronological analyses, we evaluated the effect of neighbourhood competition on focal tree growth by means of standard competition indices, each modified to include various metrics of trees size, neighbour mortality weighting (for neighbours that died during the inventory period), and within-neighbourhood tree clustering. Candidate models were evaluated using mixed-model linear regression analyses, with mean basal area increment as the response variable. We then analysed stand-level spatial patterns of competition indices and growth rates (via kriging) to determine if the relationship between these patterns could further elucidate factors influencing tree growth. Results: Inter-tree competition clearly affected growth rates, with crown volume being the size metric most strongly influencing the neighbourhood competitive environment. Including neighbour tree mortality weightings in models only slightly improved descriptions of competitive interactions. Although the within-neighbourhood clustering index did not improve model predictions, competition intensity was influenced by the underlying stand-level tree spatial arrangement: stand-level clustering locally intensified competition and reduced tree growth, whereas in the absence of such clustering, inter-tree competition played a lesser role in constraining tree growth. Conclusions: Our findings demonstrate that competition continues to influence forest processes and structures in an old-growth system that has not experienced major disturbances for at least two centuries. The finding that the underlying tree spatial pattern influenced the competitive environment suggests caution in interpreting traditional tree competition studies, in which tree spatial patterning is typically not taken into account. Our findings highlight the importance of forest structure – particularly the spatial arrangement of trees – in regulating inter-tree competition and growth in structurally diverse forests, and they provide insight into the causes and consequences of heterogeneity in this old-growth system.
Spatial Assessment of Model Errors from Four Regression Techniques
Lianjun Zhang; Jeffrey H. Gove; Jeffrey H. Gove
2005-01-01
Fomst modelers have attempted to account for the spatial autocorrelations among trees in growth and yield models by applying alternative regression techniques such as linear mixed models (LMM), generalized additive models (GAM), and geographicalIy weighted regression (GWR). However, the model errors are commonly assessed using average errors across the entire study...
Estimating future dental services' demand and supply: a model for Northern Germany.
Jäger, Ralf; van den Berg, Neeltje; Hoffmann, Wolfgang; Jordan, Rainer A; Schwendicke, Falk
2016-04-01
To plan dental services, a spatial estimation of future demands and supply is required. We aimed at estimating demand and supply in 2030 in Northern Germany based on the expected local socio-demography and oral-health-related morbidity, and the predicted number of dentists and their working time. All analyses were performed on zip-code level. Register data were used to determine the number of retiring dentists and to construct regression models for estimating the number of dentists moving into each zip-code area until 2030. Demand was modelled using projected demography and morbidities. Demand-supply ratios were evaluated and spatial analyses applied. Sensitivity analyses were employed to assess robustness of our findings. Compared with 2011, the population decreased (-7% to -11%) and aged (from mean 46 to 51 years) until 2030. Oral-health-related morbidity changed, leading to more periodontal and fewer prosthetic treatments needs, with the overall demand decreasing in all scenarios (-25% to -33%). In contrast, the overall number of dentists did only limitedly change, resulting in moderate decrease in the supplied service quantities (max. -22%). Thus, the demand-supply ratio increased in all but the worst case scenario, but was unequally distributed between spatial units, with several areas being over- and some being under- or none-serviced in 2030. Within the limitations of the underlying data and the required assumptions, this study expects an increasingly polarized ratio of dental services demand and supply in Northern Germany. Our estimation allows to assess the impact of different influence factors on demand or supply and to specifically identify potential challenges for workforce planning and regulation in different spatial units. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Dental Workforce Availability and Dental Services Utilization in Appalachia: A Geospatial Analysis
Feng, Xue; Sambamoorthi, Usha; Wiener, R. Constance
2016-01-01
Objectives There is considerable variation in dental services utilization across Appalachian counties, and a plausible explanation is that individuals in some geographical areas do not utilize dental care due to dental workforce shortage. We conducted an ecological study on dental workforce availability and dental services utilization in Appalachia. Methods We derived county-level (n = 364) data on demographic, socio-economic characteristics and dental services utilization in Appalachia from the 2010 Behavioral Risk Factor Surveillance System (BRFSS) using person-level data. We obtained county-level dental workforce availability and physician-to-population ratio estimates from Area Health Resource File, and linked them to the county-level BRFSS data. The dependent variable was the proportion using dental services within the last year in each county (ranging from 16.6% to 91.0%). We described the association between dental workforce availability and dental services utilization using ordinary least squares regression and spatial regression techniques. Spatial analyses consisted of bivariate Local Indicators of Spatial Association (LISA) and geographically weighted regression (GWR). Results Bivariate LISA showed that counties in the central and southern Appalachian regions had significant (p < .05) low-low spatial clusters (low dental workforce availability, low percent dental services utilization). GWR revealed considerable local variations in the association between dental utilization and dental workforce availability. In the multivariate GWR models, 8.5% (t-statistics >1.96) and 13.45% (t-statistics >1.96) of counties showed positive and statistically significant relationships between the dental services utilization and workforce availability of dentists and dental hygienists, respectively. Conclusions Dental workforce availability was associated with dental services utilization in the Appalachian region; however, this association was not statistically significant in all counties. The findings suggest that program and policy efforts to improve dental services utilization need to focus on factors other than increasing the dental workforce availability for many counties in Appalachia. PMID:27957773
Kauhl, Boris; Heil, Jeanne; Hoebe, Christian J P A; Schweikart, Jürgen; Krafft, Thomas; Dukers-Muijrers, Nicole H T M
2015-01-01
Hepatitis C Virus (HCV) infections are a major cause for liver diseases. A large proportion of these infections remain hidden to care due to its mostly asymptomatic nature. Population-based screening and screening targeted on behavioural risk groups had not proven to be effective in revealing these hidden infections. Therefore, more practically applicable approaches to target screenings are necessary. Geographic Information Systems (GIS) and spatial epidemiological methods may provide a more feasible basis for screening interventions through the identification of hotspots as well as demographic and socio-economic determinants. Analysed data included all HCV tests (n = 23,800) performed in the southern area of the Netherlands between 2002-2008. HCV positivity was defined as a positive immunoblot or polymerase chain reaction test. Population data were matched to the geocoded HCV test data. The spatial scan statistic was applied to detect areas with elevated HCV risk. We applied global regression models to determine associations between population-based determinants and HCV risk. Geographically weighted Poisson regression models were then constructed to determine local differences of the association between HCV risk and population-based determinants. HCV prevalence varied geographically and clustered in urban areas. The main population at risk were middle-aged males, non-western immigrants and divorced persons. Socio-economic determinants consisted of one-person households, persons with low income and mean property value. However, the association between HCV risk and demographic as well as socio-economic determinants displayed strong regional and intra-urban differences. The detection of local hotspots in our study may serve as a basis for prioritization of areas for future targeted interventions. Demographic and socio-economic determinants associated with HCV risk show regional differences underlining that a one-size-fits-all approach even within small geographic areas may not be appropriate. Future screening interventions need to consider the spatially varying association between HCV risk and associated demographic and socio-economic determinants.
2013-01-01
Background Developing countries in South Asia, such as Bangladesh, bear a disproportionate burden of diarrhoeal diseases such as Cholera, Typhoid and Paratyphoid. These seem to be aggravated by a number of social and environmental factors such as lack of access to safe drinking water, overcrowdedness and poor hygiene brought about by poverty. Some socioeconomic data can be obtained from census data whilst others are more difficult to elucidate. This study considers a range of both census data and spatial data from other sources, including remote sensing, as potential predictors of typhoid risk. Typhoid data are aggregated from hospital admission records for the period from 2005 to 2009. The spatial and statistical structures of the data are analysed and Principal Axis Factoring is used to reduce the degree of co-linearity in the data. The resulting factors are combined into a Quality of Life index, which in turn is used in a regression model of typhoid occurrence and risk. Results The three Principal Factors used together explain 87% of the variance in the initial candidate predictors, which eminently qualifies them for use as a set of uncorrelated explanatory variables in a linear regression model. Initial regression result using Ordinary Least Squares (OLS) were disappointing, this was explainable by analysis of the spatial autocorrelation inherent in the Principal factors. The use of Geographically Weighted Regression caused a considerable increase in the predictive power of regressions based on these factors. The best prediction, determined by analysis of the Akaike Information Criterion (AIC) was found when the three factors were combined into a quality of life index, using a method previously published by others, and had a coefficient of determination of 73%. Conclusions The typhoid occurrence/risk prediction equation was used to develop the first risk map showing areas of Dhaka Metropolitan Area whose inhabitants are at greater or lesser risk of typhoid infection. This, coupled with seasonal information on typhoid incidence also reported in this paper, has the potential to advise public health professionals on developing prevention strategies such as targeted vaccination. PMID:23497202
Corner, Robert J; Dewan, Ashraf M; Hashizume, Masahiro
2013-03-16
Developing countries in South Asia, such as Bangladesh, bear a disproportionate burden of diarrhoeal diseases such as cholera, typhoid and paratyphoid. These seem to be aggravated by a number of social and environmental factors such as lack of access to safe drinking water, overcrowdedness and poor hygiene brought about by poverty. Some socioeconomic data can be obtained from census data whilst others are more difficult to elucidate. This study considers a range of both census data and spatial data from other sources, including remote sensing, as potential predictors of typhoid risk. Typhoid data are aggregated from hospital admission records for the period from 2005 to 2009. The spatial and statistical structures of the data are analysed and principal axis factoring is used to reduce the degree of co-linearity in the data. The resulting factors are combined into a quality of life index, which in turn is used in a regression model of typhoid occurrence and risk. The three principal factors used together explain 87% of the variance in the initial candidate predictors, which eminently qualifies them for use as a set of uncorrelated explanatory variables in a linear regression model. Initial regression result using ordinary least squares (OLS) were disappointing, this was explainable by analysis of the spatial autocorrelation inherent in the principal factors. The use of geographically weighted regression caused a considerable increase in the predictive power of regressions based on these factors. The best prediction, determined by analysis of the Akaike information criterion (AIC) was found when the three factors were combined into a quality of life index, using a method previously published by others, and had a coefficient of determination of 73%. The typhoid occurrence/risk prediction equation was used to develop the first risk map showing areas of Dhaka metropolitan area whose inhabitants are at greater or lesser risk of typhoid infection. This, coupled with seasonal information on typhoid incidence also reported in this paper, has the potential to advise public health professionals on developing prevention strategies such as targeted vaccination.
2014-01-01
Background Identifying human and malaria parasite movements is important for control planning across all transmission intensities. Imported infections can reintroduce infections into areas previously free of infection, maintain ‘hotspots’ of transmission and import drug resistant strains, challenging national control programmes at a variety of temporal and spatial scales. Recent analyses based on mobile phone usage data have provided valuable insights into population and likely parasite movements within countries, but these data are restricted to sub-national analyses, leaving important cross-border movements neglected. Methods National census data were used to analyse and model cross-border migration and movement, using East Africa as an example. ‘Hotspots’ of origin-specific immigrants from neighbouring countries were identified for Kenya, Tanzania and Uganda. Populations of origin-specific migrants were compared to distance from origin country borders and population size at destination, and regression models were developed to quantify and compare differences in migration patterns. Migration data were then combined with existing spatially-referenced malaria data to compare the relative propensity for cross-border malaria movement in the region. Results The spatial patterns and processes for immigration were different between each origin and destination country pair. Hotspots of immigration, for example, were concentrated close to origin country borders for most immigrants to Tanzania, but for Kenya, a similar pattern was only seen for Tanzanian and Ugandan immigrants. Regression model fits also differed between specific migrant groups, with some migration patterns more dependent on population size at destination and distance travelled than others. With these differences between immigration patterns and processes, and heterogeneous transmission risk in East Africa and the surrounding region, propensities to import malaria infections also likely show substantial variations. Conclusion This was a first attempt to quantify and model cross-border movements relevant to malaria transmission and control. With national census available worldwide, this approach can be translated to construct a cross-border human and malaria movement evidence base for other malaria endemic countries. The outcomes of this study will feed into wider efforts to quantify and model human and malaria movements in endemic regions to facilitate improved intervention planning, resource allocation and collaborative policy decisions. PMID:24886389
Uneven Magnitude of Disparities in Cancer Risks from Air Toxics
James, Wesley; Jia, Chunrong; Kedia, Satish
2012-01-01
This study examines race- and income-based disparities in cancer risks from air toxics in Cancer Alley, LA, USA. Risk estimates were obtained from the 2005 National Air Toxics Assessment and socioeconomic and race data from the 2005 American Community Survey, both at the census tract level. Disparities were assessed using spatially weighted ordinary least squares (OLS) regression and quantile regression (QR) for five major air toxics, each with cancer risk greater than 10−6. Spatial OLS results showed that disparities in cancer risks were significant: People in low-income tracts bore a cumulative risk 12% more than those in high-income tracts (p < 0.05), and those in black-dominant areas 16% more than in white-dominant areas (p < 0.01). Formaldehyde and benzene were the two largest contributors to the disparities. Contributions from emission sources to disparities varied by compound. Spatial QR analyses showed that magnitude of disparity became larger at the high end of exposure range, indicating worsened disparity in the poorest and most highly concentrated black areas. Cancer risk of air toxics not only disproportionately affects socioeconomically disadvantaged and racial minority communities, but there is a gradient effect within these groups with poorer and higher minority concentrated segments being more affected than their counterparts. Risk reduction strategies should target emission sources, risk driver chemicals, and especially the disadvantaged neighborhoods. PMID:23208297
Deciphering factors controlling groundwater arsenic spatial variability in Bangladesh
NASA Astrophysics Data System (ADS)
Tan, Z.; Yang, Q.; Zheng, C.; Zheng, Y.
2017-12-01
Elevated concentrations of geogenic arsenic in groundwater have been found in many countries to exceed 10 μg/L, the WHO's guideline value for drinking water. A common yet unexplained characteristic of groundwater arsenic spatial distribution is the extensive variability at various spatial scales. This study investigates factors influencing the spatial variability of groundwater arsenic in Bangladesh to improve the accuracy of models predicting arsenic exceedance rate spatially. A novel boosted regression tree method is used to establish a weak-learning ensemble model, which is compared to a linear model using a conventional stepwise logistic regression method. The boosted regression tree models offer the advantage of parametric interaction when big datasets are analyzed in comparison to the logistic regression. The point data set (n=3,538) of groundwater hydrochemistry with 19 parameters was obtained by the British Geological Survey in 2001. The spatial data sets of geological parameters (n=13) were from the Consortium for Spatial Information, Technical University of Denmark, University of East Anglia and the FAO, while the soil parameters (n=42) were from the Harmonized World Soil Database. The aforementioned parameters were regressed to categorical groundwater arsenic concentrations below or above three thresholds: 5 μg/L, 10 μg/L and 50 μg/L to identify respective controlling factors. Boosted regression tree method outperformed logistic regression methods in all three threshold levels in terms of accuracy, specificity and sensitivity, resulting in an improvement of spatial distribution map of probability of groundwater arsenic exceeding all three thresholds when compared to disjunctive-kriging interpolated spatial arsenic map using the same groundwater arsenic dataset. Boosted regression tree models also show that the most important controlling factors of groundwater arsenic distribution include groundwater iron content and well depth for all three thresholds. The probability of a well with iron content higher than 5mg/L to contain greater than 5 μg/L, 10 μg/L and 50 μg/L As is estimated to be more than 91%, 85% and 51%, respectively, while the probability of a well from depth more than 160m to contain more than 5 μg/L, 10 μg/L and 50 μg/L As is estimated to be less than 38%, 25% and 14%, respectively.
Oliveira, André; Cabral, António J R; Mendes, Jorge M; Martins, Maria R O; Cabral, Pedro
2015-11-04
Stroke risk has been shown to display varying patterns of geographic distribution amongst countries but also between regions of the same country. Traditionally a disease of older persons, a global 25% increase in incidence instead was noticed between 1990 and 2010 in persons aged 20-≤64 years, particularly in low- and medium-income countries. Understanding spatial disparities in the association between socioeconomic factors and stroke is critical to target public health initiatives aiming to mitigate or prevent this disease, including in younger persons. We aimed to identify socioeconomic determinants of geographic disparities of stroke risk in people <65 years old, in municipalities of mainland Portugal, and the spatiotemporal variation of the association between these determinants and stroke risk during two study periods (1992-1996 and 2002-2006). Poisson and negative binomial global regression models were used to explore determinants of disease risk. Geographically weighted regression (GWR) represents a distinctive approach, allowing estimation of local regression coefficients. Models for both study periods were identified. Significant variables included education attainment, work hours per week and unemployment. Local Poisson GWR models achieved the best fit and evidenced spatially varying regression coefficients. Spatiotemporal inequalities were observed in significant variables, with dissimilarities between men and women. This study contributes to a better understanding of the relationship between stroke and socioeconomic factors in the population <65 years of age, one age group seldom analysed separately. It can thus help to improve the targeting of public health initiatives, even more in a context of economic crisis.
Liévanos, Raoul S
2015-11-01
This article contributes to environmental inequality outcomes research on the spatial and demographic factors associated with cumulative air-toxic health risks at multiple geographic scales across the United States. It employs a rigorous spatial cluster analysis of census tract-level 2005 estimated lifetime cancer risk (LCR) of ambient air-toxic emissions from stationary (e.g., facility) and mobile (e.g., vehicular) sources to locate spatial clusters of air-toxic LCR risk in the continental United States. It then tests intersectional environmental inequality hypotheses on the predictors of tract presence in air-toxic LCR clusters with tract-level principal component factor measures of economic deprivation by race and immigrant status. Logistic regression analyses show that net of controls, isolated Latino immigrant-economic deprivation is the strongest positive demographic predictor of tract presence in air-toxic LCR clusters, followed by black-economic deprivation and isolated Asian/Pacific Islander immigrant-economic deprivation. Findings suggest scholarly and practical implications for future research, advocacy, and policy. Copyright © 2015 Elsevier Inc. All rights reserved.
Spatial ecology of refuge selection by an herbivore under risk of predation
Wilson, Tammy L.; Rayburn, Andrew P.; Edwards, Thomas C.
2012-01-01
Prey species use structures such as burrows to minimize predation risk. The spatial arrangement of these resources can have important implications for individual and population fitness. For example, there is evidence that clustered resources can benefit individuals by reducing predation risk and increasing foraging opportunity concurrently, which leads to higher population density. However, the scale of clustering that is important in these processes has been ignored during theoretical and empirical development of resource models. Ecological understanding of refuge exploitation by prey can be improved by spatial analysis of refuge use and availability that incorporates the effect of scale. We measured the spatial distribution of pygmy rabbit (Brachylagus idahoensis) refugia (burrows) through censuses in four 6-ha sites. Point pattern analyses were used to evaluate burrow selection by comparing the spatial distribution of used and available burrows. The presence of food resources and additional overstory cover resources was further examined using logistic regression. Burrows were spatially clustered at scales up to approximately 25 m, and then regularly spaced at distances beyond ~40 m. Pygmy rabbit exploitation of burrows did not match availability. Burrows used by pygmy rabbits were likely to be located in areas with high overall burrow density (resource clusters) and high overstory cover, which together minimized predation risk. However, in some cases we observed an interaction between either overstory cover (safety) or understory cover (forage) and burrow density. The interactions show that pygmy rabbits will use burrows in areas with low relative burrow density (high relative predation risk) if understory food resources are high. This points to a potential trade-off whereby rabbits must sacrifice some safety afforded by additional nearby burrows to obtain ample forage resources. Observed patterns of clustered burrows and non-random burrow use improve understanding of the importance of spatial distribution of refugia for burrowing herbivores. The analyses used allowed for the estimation of the spatial scale where subtle trade-offs between predation avoidance and foraging opportunity are likely to occur in a natural system.
Spatial variation of pneumonia hospitalization risk in Twin Cities metro area, Minnesota.
Iroh Tam, P Y; Krzyzanowski, B; Oakes, J M; Kne, L; Manson, S
2017-11-01
Fine resolution spatial variability in pneumonia hospitalization may identify correlates with socioeconomic, demographic and environmental factors. We performed a retrospective study within the Fairview Health System network of Minnesota. Patients 2 months of age and older hospitalized with pneumonia between 2011 and 2015 were geocoded to their census block group, and pneumonia hospitalization risk was analyzed in relation to socioeconomic, demographic and environmental factors. Spatial analyses were performed using Esri's ArcGIS software, and multivariate Poisson regression was used. Hospital encounters of 17 840 patients were included in the analysis. Multivariate Poisson regression identified several significant associations, including a 40% increased risk of pneumonia hospitalization among census block groups with large, compared with small, populations of ⩾65 years, a 56% increased risk among census block groups in the bottom (first) quartile of median household income compared to the top (fourth) quartile, a 44% higher risk in the fourth quartile of average nitrogen dioxide emissions compared with the first quartile, and a 47% higher risk in the fourth quartile of average annual solar insolation compared to the first quartile. After adjusting for income, moving from the first to the second quartile of the race/ethnic diversity index resulted in a 21% significantly increased risk of pneumonia hospitalization. In conclusion, the risk of pneumonia hospitalization at the census-block level is associated with age, income, race/ethnic diversity index, air quality, and solar insolation, and varies by region-specific factors. Identifying correlates using fine spatial analysis provides opportunities for targeted prevention and control.
2014-01-01
Background There have been large-scale outbreaks of hand, foot and mouth disease (HFMD) in Mainland China over the last decade. These events varied greatly across the country. It is necessary to identify the spatial risk factors and spatial distribution patterns of HFMD for public health control and prevention. Climate risk factors associated with HFMD occurrence have been recognized. However, few studies discussed the socio-economic determinants of HFMD risk at a space scale. Methods HFMD records in Mainland China in May 2008 were collected. Both climate and socio-economic factors were selected as potential risk exposures of HFMD. Odds ratio (OR) was used to identify the spatial risk factors. A spatial autologistic regression model was employed to get OR values of each exposures and model the spatial distribution patterns of HFMD risk. Results Results showed that both climate and socio-economic variables were spatial risk factors for HFMD transmission in Mainland China. The statistically significant risk factors are monthly average precipitation (OR = 1.4354), monthly average temperature (OR = 1.379), monthly average wind speed (OR = 1.186), the number of industrial enterprises above designated size (OR = 17.699), the population density (OR = 1.953), and the proportion of student population (OR = 1.286). The spatial autologistic regression model has a good goodness of fit (ROC = 0.817) and prediction accuracy (Correct ratio = 78.45%) of HFMD occurrence. The autologistic regression model also reduces the contribution of the residual term in the ordinary logistic regression model significantly, from 17.25 to 1.25 for the odds ratio. Based on the prediction results of the spatial model, we obtained a map of the probability of HFMD occurrence that shows the spatial distribution pattern and local epidemic risk over Mainland China. Conclusions The autologistic regression model was used to identify spatial risk factors and model spatial risk patterns of HFMD. HFMD occurrences were found to be spatially heterogeneous over the Mainland China, which is related to both the climate and socio-economic variables. The combination of socio-economic and climate exposures can explain the HFMD occurrences more comprehensively and objectively than those with only climate exposures. The modeled probability of HFMD occurrence at the county level reveals not only the spatial trends, but also the local details of epidemic risk, even in the regions where there were no HFMD case records. PMID:24731248
Analysis of variability of tropical Pacific sea surface temperatures
NASA Astrophysics Data System (ADS)
Davies, Georgina; Cressie, Noel
2016-11-01
Sea surface temperature (SST) in the Pacific Ocean is a key component of many global climate models and the El Niño-Southern Oscillation (ENSO) phenomenon. We shall analyse SST for the period November 1981-December 2014. To study the temporal variability of the ENSO phenomenon, we have selected a subregion of the tropical Pacific Ocean, namely the Niño 3.4 region, as it is thought to be the area where SST anomalies indicate most clearly ENSO's influence on the global atmosphere. SST anomalies, obtained by subtracting the appropriate monthly averages from the data, are the focus of the majority of previous analyses of the Pacific and other oceans' SSTs. Preliminary data analysis showed that not only Niño 3.4 spatial means but also Niño 3.4 spatial variances varied with month of the year. In this article, we conduct an analysis of the raw SST data and introduce diagnostic plots (here, plots of variability vs. central tendency). These plots show strong negative dependence between the spatial standard deviation and the spatial mean. Outliers are present, so we consider robust regression to obtain intercept and slope estimates for the 12 individual months and for all-months-combined. Based on this mean-standard deviation relationship, we define a variance-stabilizing transformation. On the transformed scale, we describe the Niño 3.4 SST time series with a statistical model that is linear, heteroskedastic, and dynamical.
Exploration of walking behavior in Vermont using spatial regression.
DOT National Transportation Integrated Search
2015-06-01
This report focuses on the relationship between walking and its contributing factors by : applying spatial regression methods. Using the Vermont data from the New England : Transportation Survey (NETS), walking variables as well as 170 independent va...
NASA Astrophysics Data System (ADS)
Hess, Dale; van Lieshout, Marie-Colette; Payne, Bill; Stein, Alfred
This paper describes how spatial statistical techniques may be used to analyse weed occurrence in tropical fields. Quadrat counts of weed numbers are available over a series of years, as well as data on explanatory variables, and the aim is to smooth the data and assess spatial and temporal trends. We review a range of models for correlated count data. As an illustration, we consider data on striga infestation of a 60 × 24 m 2 millet field in Niger collected from 1985 until 1991, modelled by independent Poisson counts and a prior auto regression term enforcing spatial coherence. The smoothed fields show the presence of a seed bank, the estimated model parameters indicate a decay in the striga numbers over time, as well as a clear correlation with the amount of rainfall in 15 consecutive days following the sowing date. Such results could contribute to precision agriculture as a guide to more cost-effective striga control strategies.
Bagging Voronoi classifiers for clustering spatial functional data
NASA Astrophysics Data System (ADS)
Secchi, Piercesare; Vantini, Simone; Vitelli, Valeria
2013-06-01
We propose a bagging strategy based on random Voronoi tessellations for the exploration of geo-referenced functional data, suitable for different purposes (e.g., classification, regression, dimensional reduction, …). Urged by an application to environmental data contained in the Surface Solar Energy database, we focus in particular on the problem of clustering functional data indexed by the sites of a spatial finite lattice. We thus illustrate our strategy by implementing a specific algorithm whose rationale is to (i) replace the original data set with a reduced one, composed by local representatives of neighborhoods covering the entire investigated area; (ii) analyze the local representatives; (iii) repeat the previous analysis many times for different reduced data sets associated to randomly generated different sets of neighborhoods, thus obtaining many different weak formulations of the analysis; (iv) finally, bag together the weak analyses to obtain a conclusive strong analysis. Through an extensive simulation study, we show that this new procedure - which does not require an explicit model for spatial dependence - is statistically and computationally efficient.
NASA Astrophysics Data System (ADS)
Setiyorini, Anis; Suprijadi, Jadi; Handoko, Budhi
2017-03-01
Geographically Weighted Regression (GWR) is a regression model that takes into account the spatial heterogeneity effect. In the application of the GWR, inference on regression coefficients is often of interest, as is estimation and prediction of the response variable. Empirical research and studies have demonstrated that local correlation between explanatory variables can lead to estimated regression coefficients in GWR that are strongly correlated, a condition named multicollinearity. It later results on a large standard error on estimated regression coefficients, and, hence, problematic for inference on relationships between variables. Geographically Weighted Lasso (GWL) is a method which capable to deal with spatial heterogeneity and local multicollinearity in spatial data sets. GWL is a further development of GWR method, which adds a LASSO (Least Absolute Shrinkage and Selection Operator) constraint in parameter estimation. In this study, GWL will be applied by using fixed exponential kernel weights matrix to establish a poverty modeling of Java Island, Indonesia. The results of applying the GWL to poverty datasets show that this method stabilizes regression coefficients in the presence of multicollinearity and produces lower prediction and estimation error of the response variable than GWR does.
Liévanos, Raoul S
2018-04-16
The California Community Environmental Health Screening Tool (CalEnviroScreen) advances research and policy pertaining to environmental health vulnerability. However, CalEnviroScreen departs from its historical foundations and comparable screening tools by no longer considering racial status as an indicator of environmental health vulnerability and predictor of cumulative pollution burden. This study used conceptual frameworks and analytical techniques from environmental health and inequality literature to address the limitations of CalEnviroScreen, especially its inattention to race-based environmental health vulnerabilities. It developed an adjusted measure of cumulative pollution burden from the CalEnviroScreen 2.0 data that facilitates multivariate analyses of the effect of neighborhood racial composition on cumulative pollution burden, net of other indicators of population vulnerability, traffic density, industrial zoning, and local and regional clustering of pollution burden. Principal component analyses produced three new measures of population vulnerability, including Latina/o cumulative disadvantage that represents the spatial concentration of Latinas/os, economic disadvantage, limited English-speaking ability, and health vulnerability. Spatial error regression analyses demonstrated that concentrations of Latinas/os, followed by Latina/o cumulative disadvantage, are the strongest demographic determinants of adjusted cumulative pollution burden. Findings have implications for research and policy pertaining to cumulative impacts and race-based environmental health vulnerabilities within and beyond California.
2018-01-01
The California Community Environmental Health Screening Tool (CalEnviroScreen) advances research and policy pertaining to environmental health vulnerability. However, CalEnviroScreen departs from its historical foundations and comparable screening tools by no longer considering racial status as an indicator of environmental health vulnerability and predictor of cumulative pollution burden. This study used conceptual frameworks and analytical techniques from environmental health and inequality literature to address the limitations of CalEnviroScreen, especially its inattention to race-based environmental health vulnerabilities. It developed an adjusted measure of cumulative pollution burden from the CalEnviroScreen 2.0 data that facilitates multivariate analyses of the effect of neighborhood racial composition on cumulative pollution burden, net of other indicators of population vulnerability, traffic density, industrial zoning, and local and regional clustering of pollution burden. Principal component analyses produced three new measures of population vulnerability, including Latina/o cumulative disadvantage that represents the spatial concentration of Latinas/os, economic disadvantage, limited English-speaking ability, and health vulnerability. Spatial error regression analyses demonstrated that concentrations of Latinas/os, followed by Latina/o cumulative disadvantage, are the strongest demographic determinants of adjusted cumulative pollution burden. Findings have implications for research and policy pertaining to cumulative impacts and race-based environmental health vulnerabilities within and beyond California. PMID:29659481
Finding big shots: small-area mapping and spatial modelling of obesity among Swiss male conscripts.
Panczak, Radoslaw; Held, Leonhard; Moser, André; Jones, Philip A; Rühli, Frank J; Staub, Kaspar
2016-01-01
In Switzerland, as in other developed countries, the prevalence of overweight and obesity has increased substantially since the early 1990s. Most of the analyses so far have been based on sporadic surveys or self-reported data and did not offer potential for small-area analyses. The goal of this study was to investigate spatial variation and determinants of obesity among young Swiss men using recent conscription data. A complete, anonymized dataset of conscription records for the 2010-2012 period were provided by Swiss Armed Forces. We used a series of Bayesian hierarchical logistic regression models to investigate the spatial pattern of obesity across 3,187 postcodes, varying them by type of random effects (spatially unstructured and structured), level of adjustment by individual (age and professional status) and area-based [urbanicity and index of socio-economic position (SEP)] characteristics. The analysed dataset consisted of 100,919 conscripts, out of which 5,892 (5.8 %) were obese. Crude obesity prevalence increased with age among conscripts of lower individual and area-based SEP and varied greatly over postcodes. Best model's estimates of adjusted odds ratios of obesity on postcode level ranged from 0.61 to 1.93 and showed a strong spatial pattern of obesity risk across the country. Odds ratios above 1 concentrated in central and north Switzerland. Smaller pockets of elevated obesity risk also emerged around cities of Geneva, Fribourg and Lausanne. Lower estimates were observed in North-East and East as well as south of the Alps. Importantly, small regional outliers were observed and patterning did not follow administrative boundaries. Similarly as with crude obesity prevalence, the best fitting model confirmed increasing risk of obesity with age and among conscripts of lower professional status. The risk decreased with higher area-based SEP and, to a lesser degree - in rural areas. In Switzerland, there is a substantial spatial variation in obesity risk among young Swiss men. Small-area estimates of obesity risk derived from conscripts records contribute to its understanding and could be used to design further studies and interventions.
Area-to-point regression kriging for pan-sharpening
NASA Astrophysics Data System (ADS)
Wang, Qunming; Shi, Wenzhong; Atkinson, Peter M.
2016-04-01
Pan-sharpening is a technique to combine the fine spatial resolution panchromatic (PAN) band with the coarse spatial resolution multispectral bands of the same satellite to create a fine spatial resolution multispectral image. In this paper, area-to-point regression kriging (ATPRK) is proposed for pan-sharpening. ATPRK considers the PAN band as the covariate. Moreover, ATPRK is extended with a local approach, called adaptive ATPRK (AATPRK), which fits a regression model using a local, non-stationary scheme such that the regression coefficients change across the image. The two geostatistical approaches, ATPRK and AATPRK, were compared to the 13 state-of-the-art pan-sharpening approaches summarized in Vivone et al. (2015) in experiments on three separate datasets. ATPRK and AATPRK produced more accurate pan-sharpened images than the 13 benchmark algorithms in all three experiments. Unlike the benchmark algorithms, the two geostatistical solutions precisely preserved the spectral properties of the original coarse data. Furthermore, ATPRK can be enhanced by a local scheme in AATRPK, in cases where the residuals from a global regression model are such that their spatial character varies locally.
Van Epps, J Scott; Chew, Douglas W; Vorp, David A
2009-10-01
Certain arteries (e.g., coronary, femoral, etc.) are exposed to cyclic flexure due to their tethering to surrounding tissue beds. It is believed that such stimuli result in a spatially variable biomechanical stress distribution, which has been implicated as a key modulator of remodeling associated with atherosclerotic lesion localization. In this study we utilized a combined ex vivo experimental/computational methodology to address the hypothesis that local variations in shear and mural stress associated with cyclic flexure influence the distribution of early markers of atherogenesis. Bilateral porcine femoral arteries were surgically harvested and perfused ex vivo under pulsatile arterial conditions. One of the paired vessels was exposed to cyclic flexure (0-0.7 cm(-1)) at 1 Hz for 12 h. During the last hour, the perfusate was supplemented with Evan's blue dye-labeled albumin. A custom tissue processing protocol was used to determine the spatial distribution of endothelial permeability, apoptosis, and proliferation. Finite element and computational fluid dynamics techniques were used to determine the mural and shear stress distributions, respectively, for each perfused segment. Biological data obtained experimentally and mechanical stress data estimated computationally were combined in an experiment-specific manner using multiple linear regression analyses. Arterial segments exposed to cyclic flexure had significant increases in intimal and medial apoptosis (3.42+/-1.02 fold, p=0.029) with concomitant increases in permeability (1.14+/-0.04 fold, p=0.026). Regression analyses revealed specific mural stress measures including circumferential stress at systole, and longitudinal pulse stress were quantitatively correlated with the distribution of permeability and apoptosis. The results demonstrated that local variation in mechanical stress in arterial segments subjected to cyclic flexure indeed influence the extent and spatial distribution of the early atherogenic markers. In addition, the importance of including mural stresses in the investigation of vascular mechanopathobiology was highlighted. Specific example results were used to describe a potential mechanism by which systemic risk factors can lead to a heterogeneous disease.
The spatial clustering of obesity: does the built environment matter?
Huang, R; Moudon, A V; Cook, A J; Drewnowski, A
2015-12-01
Obesity rates in the USA show distinct geographical patterns. The present study used spatial cluster detection methods and individual-level data to locate obesity clusters and to analyse them in relation to the neighbourhood built environment. The 2008-2009 Seattle Obesity Study provided data on the self-reported height, weight, and sociodemographic characteristics of 1602 King County adults. Home addresses were geocoded. Clusters of high or low body mass index were identified using Anselin's Local Moran's I and a spatial scan statistic with regression models that searched for unmeasured neighbourhood-level factors from residuals, adjusting for measured individual-level covariates. Spatially continuous values of objectively measured features of the local neighbourhood built environment (SmartMaps) were constructed for seven variables obtained from tax rolls and commercial databases. Both the Local Moran's I and a spatial scan statistic identified similar spatial concentrations of obesity. High and low obesity clusters were attenuated after adjusting for age, gender, race, education and income, and they disappeared once neighbourhood residential property values and residential density were included in the model. Using individual-level data to detect obesity clusters with two cluster detection methods, the present study showed that the spatial concentration of obesity was wholly explained by neighbourhood composition and socioeconomic characteristics. These characteristics may serve to more precisely locate obesity prevention and intervention programmes. © 2014 The British Dietetic Association Ltd.
Gaussian Process Regression Model in Spatial Logistic Regression
NASA Astrophysics Data System (ADS)
Sofro, A.; Oktaviarina, A.
2018-01-01
Spatial analysis has developed very quickly in the last decade. One of the favorite approaches is based on the neighbourhood of the region. Unfortunately, there are some limitations such as difficulty in prediction. Therefore, we offer Gaussian process regression (GPR) to accommodate the issue. In this paper, we will focus on spatial modeling with GPR for binomial data with logit link function. The performance of the model will be investigated. We will discuss the inference of how to estimate the parameters and hyper-parameters and to predict as well. Furthermore, simulation studies will be explained in the last section.
Estimating effects of limiting factors with regression quantiles
Cade, B.S.; Terrell, J.W.; Schroeder, R.L.
1999-01-01
In a recent Concepts paper in Ecology, Thomson et al. emphasized that assumptions of conventional correlation and regression analyses fundamentally conflict with the ecological concept of limiting factors, and they called for new statistical procedures to address this problem. The analytical issue is that unmeasured factors may be the active limiting constraint and may induce a pattern of unequal variation in the biological response variable through an interaction with the measured factors. Consequently, changes near the maxima, rather than at the center of response distributions, are better estimates of the effects expected when the observed factor is the active limiting constraint. Regression quantiles provide estimates for linear models fit to any part of a response distribution, including near the upper bounds, and require minimal assumptions about the form of the error distribution. Regression quantiles extend the concept of one-sample quantiles to the linear model by solving an optimization problem of minimizing an asymmetric function of absolute errors. Rank-score tests for regression quantiles provide tests of hypotheses and confidence intervals for parameters in linear models with heteroscedastic errors, conditions likely to occur in models of limiting ecological relations. We used selected regression quantiles (e.g., 5th, 10th, ..., 95th) and confidence intervals to test hypotheses that parameters equal zero for estimated changes in average annual acorn biomass due to forest canopy cover of oak (Quercus spp.) and oak species diversity. Regression quantiles also were used to estimate changes in glacier lily (Erythronium grandiflorum) seedling numbers as a function of lily flower numbers, rockiness, and pocket gopher (Thomomys talpoides fossor) activity, data that motivated the query by Thomson et al. for new statistical procedures. Both example applications showed that effects of limiting factors estimated by changes in some upper regression quantile (e.g., 90-95th) were greater than if effects were estimated by changes in the means from standard linear model procedures. Estimating a range of regression quantiles (e.g., 5-95th) provides a comprehensive description of biological response patterns for exploratory and inferential analyses in observational studies of limiting factors, especially when sampling large spatial and temporal scales.
Zulu, Leo C; Kalipeni, Ezekiel; Johannes, Eliza
2014-05-23
Although local spatiotemporal analysis can improve understanding of geographic variation of the HIV epidemic, its drivers, and the search for targeted interventions, it is limited in sub-Saharan Africa. Despite recent declines, Malawi's estimated 10.0% HIV prevalence (2011) remained among the highest globally. Using data on pregnant women in Malawi, this study 1) examines spatiotemporal trends in HIV prevalence 1994-2010, and 2) for 2010, identifies and maps the spatial variation/clustering of factors associated with HIV prevalence at district level. Inverse distance weighting was used within ArcGIS Geographic Information Systems (GIS) software to generate continuous surfaces of HIV prevalence from point data (1994, 1996, 1999, 2001, 2003, 2005, 2007, and 2010) obtained from surveillance antenatal clinics. From the surfaces prevalence estimates were extracted at district level and the results mapped nationally. Spatial dependency (autocorrelation) and clustering of HIV prevalence were also analyzed. Correlation and multiple regression analyses were used to identify factors associated with HIV prevalence for 2010 and their spatial variation/clustering mapped and compared to HIV clustering. Analysis revealed wide spatial variation in HIV prevalence at regional, urban/rural, district and sub-district levels. However, prevalence was spatially leveling out within and across 'sub-epidemics' while declining significantly after 1999. Prevalence exhibited statistically significant spatial dependence nationally following initial (1995-1999) localized, patchy low/high patterns as the epidemic spread rapidly. Locally, HIV "hotspots" clustered among eleven southern districts/cities while a "coldspot" captured configurations of six central region districts. Preliminary multiple regression of 2010 HIV prevalence produced a model with four significant explanatory factors (adjusted R2 = 0.688): mean distance to main roads, mean travel time to nearest transport, percentage that had taken an HIV test ever, and percentage attaining a senior primary education. Spatial clustering linked some factors to particular subsets of high HIV-prevalence districts. Spatial analysis enhanced understanding of local spatiotemporal variation in HIV prevalence, possible underlying factors, and potential for differentiated spatial targeting of interventions. Findings suggest that intervention strategies should also emphasize improved access to health/HIV services, basic education, and syphilis management, particularly in rural hotspot districts, as further research is done on drivers at finer scale.
2014-01-01
Background Although local spatiotemporal analysis can improve understanding of geographic variation of the HIV epidemic, its drivers, and the search for targeted interventions, it is limited in sub-Saharan Africa. Despite recent declines, Malawi’s estimated 10.0% HIV prevalence (2011) remained among the highest globally. Using data on pregnant women in Malawi, this study 1) examines spatiotemporal trends in HIV prevalence 1994-2010, and 2) for 2010, identifies and maps the spatial variation/clustering of factors associated with HIV prevalence at district level. Methods Inverse distance weighting was used within ArcGIS Geographic Information Systems (GIS) software to generate continuous surfaces of HIV prevalence from point data (1994, 1996, 1999, 2001, 2003, 2005, 2007, and 2010) obtained from surveillance antenatal clinics. From the surfaces prevalence estimates were extracted at district level and the results mapped nationally. Spatial dependency (autocorrelation) and clustering of HIV prevalence were also analyzed. Correlation and multiple regression analyses were used to identify factors associated with HIV prevalence for 2010 and their spatial variation/clustering mapped and compared to HIV clustering. Results Analysis revealed wide spatial variation in HIV prevalence at regional, urban/rural, district and sub-district levels. However, prevalence was spatially leveling out within and across ‘sub-epidemics’ while declining significantly after 1999. Prevalence exhibited statistically significant spatial dependence nationally following initial (1995-1999) localized, patchy low/high patterns as the epidemic spread rapidly. Locally, HIV “hotspots” clustered among eleven southern districts/cities while a “coldspot” captured configurations of six central region districts. Preliminary multiple regression of 2010 HIV prevalence produced a model with four significant explanatory factors (adjusted R2 = 0.688): mean distance to main roads, mean travel time to nearest transport, percentage that had taken an HIV test ever, and percentage attaining a senior primary education. Spatial clustering linked some factors to particular subsets of high HIV-prevalence districts. Conclusions Spatial analysis enhanced understanding of local spatiotemporal variation in HIV prevalence, possible underlying factors, and potential for differentiated spatial targeting of interventions. Findings suggest that intervention strategies should also emphasize improved access to health/HIV services, basic education, and syphilis management, particularly in rural hotspot districts, as further research is done on drivers at finer scale. PMID:24886573
Prediction of hourly PM2.5 using a space-time support vector regression model
NASA Astrophysics Data System (ADS)
Yang, Wentao; Deng, Min; Xu, Feng; Wang, Hang
2018-05-01
Real-time air quality prediction has been an active field of research in atmospheric environmental science. The existing methods of machine learning are widely used to predict pollutant concentrations because of their enhanced ability to handle complex non-linear relationships. However, because pollutant concentration data, as typical geospatial data, also exhibit spatial heterogeneity and spatial dependence, they may violate the assumptions of independent and identically distributed random variables in most of the machine learning methods. As a result, a space-time support vector regression model is proposed to predict hourly PM2.5 concentrations. First, to address spatial heterogeneity, spatial clustering is executed to divide the study area into several homogeneous or quasi-homogeneous subareas. To handle spatial dependence, a Gauss vector weight function is then developed to determine spatial autocorrelation variables as part of the input features. Finally, a local support vector regression model with spatial autocorrelation variables is established for each subarea. Experimental data on PM2.5 concentrations in Beijing are used to verify whether the results of the proposed model are superior to those of other methods.
Babcock, Chad; Finley, Andrew O.; Bradford, John B.; Kolka, Randall K.; Birdsey, Richard A.; Ryan, Michael G.
2015-01-01
Many studies and production inventory systems have shown the utility of coupling covariates derived from Light Detection and Ranging (LiDAR) data with forest variables measured on georeferenced inventory plots through regression models. The objective of this study was to propose and assess the use of a Bayesian hierarchical modeling framework that accommodates both residual spatial dependence and non-stationarity of model covariates through the introduction of spatial random effects. We explored this objective using four forest inventory datasets that are part of the North American Carbon Program, each comprising point-referenced measures of above-ground forest biomass and discrete LiDAR. For each dataset, we considered at least five regression model specifications of varying complexity. Models were assessed based on goodness of fit criteria and predictive performance using a 10-fold cross-validation procedure. Results showed that the addition of spatial random effects to the regression model intercept improved fit and predictive performance in the presence of substantial residual spatial dependence. Additionally, in some cases, allowing either some or all regression slope parameters to vary spatially, via the addition of spatial random effects, further improved model fit and predictive performance. In other instances, models showed improved fit but decreased predictive performance—indicating over-fitting and underscoring the need for cross-validation to assess predictive ability. The proposed Bayesian modeling framework provided access to pixel-level posterior predictive distributions that were useful for uncertainty mapping, diagnosing spatial extrapolation issues, revealing missing model covariates, and discovering locally significant parameters.
Zhang, Ling Yu; Liu, Zhao Gang
2017-12-01
Based on the data collected from 108 permanent plots of the forest resources survey in Maoershan Experimental Forest Farm during 2004-2016, this study investigated the spatial distribution of recruitment trees in natural secondary forest by global Poisson regression and geographically weighted Poisson regression (GWPR) with four bandwidths of 2.5, 5, 10 and 15 km. The simulation effects of the 5 regressions and the factors influencing the recruitment trees in stands were analyzed, a description was given to the spatial autocorrelation of the regression residuals on global and local levels using Moran's I. The results showed that the spatial distribution of the number of natural secondary forest recruitment was significantly influenced by stands and topographic factors, especially average DBH. The GWPR model with small scale (2.5 km) had high accuracy of model fitting, a large range of model parameter estimates was generated, and the localized spatial distribution effect of the model parameters was obtained. The GWPR model at small scale (2.5 and 5 km) had produced a small range of model residuals, and the stability of the model was improved. The global spatial auto-correlation of the GWPR model residual at the small scale (2.5 km) was the lowe-st, and the local spatial auto-correlation was significantly reduced, in which an ideal spatial distribution pattern of small clusters with different observations was formed. The local model at small scale (2.5 km) was much better than the global model in the simulation effect on the spatial distribution of recruitment tree number.
Comparing spatial regression to random forests for large environmental data sets
Environmental data may be “large” due to number of records, number of covariates, or both. Random forests has a reputation for good predictive performance when using many covariates, whereas spatial regression, when using reduced rank methods, has a reputatio...
Tsetse Fly (G.f. fuscipes) Distribution in the Lake Victoria Basin of Uganda
Albert, Mugenyi; Wardrop, Nicola A; Atkinson, Peter M; Torr, Steve J; Welburn, Susan C
2015-01-01
Tsetse flies transmit trypanosomes, the causative agent of human and animal African trypanosomiasis. The tsetse vector is extensively distributed across sub-Saharan Africa. Trypanosomiasis maintenance is determined by the interrelationship of three elements: vertebrate host, parasite and the vector responsible for transmission. Mapping the distribution and abundance of tsetse flies assists in predicting trypanosomiasis distributions and developing rational strategies for disease and vector control. Given scarce resources to carry out regular full scale field tsetse surveys to up-date existing tsetse maps, there is a need to devise inexpensive means for regularly obtaining dependable area-wide tsetse data to guide control activities. In this study we used spatial epidemiological modelling techniques (logistic regression) involving 5000 field-based tsetse-data (G. f. fuscipes) points over an area of 40,000 km2, with satellite-derived environmental surrogates composed of precipitation, temperature, land cover, normalised difference vegetation index (NDVI) and elevation at the sub-national level. We used these extensive tsetse data to analyse the relationships between presence of tsetse (G. f. fuscipes) and environmental variables. The strength of the results was enhanced through the application of a spatial autologistic regression model (SARM). Using the SARM we showed that the probability of tsetse presence increased with proportion of forest cover and riverine vegetation. The key outputs are a predictive tsetse distribution map for the Lake Victoria basin of Uganda and an improved understanding of the association between tsetse presence and environmental variables. The predicted spatial distribution of tsetse in the Lake Victoria basin of Uganda will provide significant new information to assist with the spatial targeting of tsetse and trypanosomiasis control. PMID:25875201
NASA Astrophysics Data System (ADS)
Madhu, B.; Ashok, N. C.; Balasubramanian, S.
2014-11-01
Multinomial logistic regression analysis was used to develop statistical model that can predict the probability of breast cancer in Southern Karnataka using the breast cancer occurrence data during 2007-2011. Independent socio-economic variables describing the breast cancer occurrence like age, education, occupation, parity, type of family, health insurance coverage, residential locality and socioeconomic status of each case was obtained. The models were developed as follows: i) Spatial visualization of the Urban- rural distribution of breast cancer cases that were obtained from the Bharat Hospital and Institute of Oncology. ii) Socio-economic risk factors describing the breast cancer occurrences were complied for each case. These data were then analysed using multinomial logistic regression analysis in a SPSS statistical software and relations between the occurrence of breast cancer across the socio-economic status and the influence of other socio-economic variables were evaluated and multinomial logistic regression models were constructed. iii) the model that best predicted the occurrence of breast cancer were identified. This multivariate logistic regression model has been entered into a geographic information system and maps showing the predicted probability of breast cancer occurrence in Southern Karnataka was created. This study demonstrates that Multinomial logistic regression is a valuable tool for developing models that predict the probability of breast cancer Occurrence in Southern Karnataka.
Tremblay, François; Mireault, Annie-Claude; Dessureault, Liam; Manning, Hélène; Sveistrup, Heidi
2005-07-01
In the present report, we extend our previous observations on the effect of age on postural stabilization from fingertip contact (Exp Brain Res 157 (2004) 275) to examine the possible influence of sensory thresholds measured at the fingertip on the magnitude of contact forces. Participants (young, n=25, 19-32 years; old, n=35, 60-86 years) underwent psychophysical testing of the right index finger to determine thresholds for spatial acuity, pressure sensitivity and kinesthetic acuity. Spatial acuity was determined from the ability to detect gaps of different widths, while Semmes-Weinstein monofilaments were used for pressure sensitivity. Kinesthetic acuity was determined by asking participants to discriminate plates of different thicknesses using a thumb-index precision grip. These tests were selected on the basis that each reflected different sensory coding mechanisms (resolution of spatial stimuli, detection of mechanical forces and integration of multi-sensory inputs for hand conformation) and thus provided specific information about the integrity and function of mechanoreceptive afferents innervating the hand. After log transformation, thresholds were first examined to determine the influence of age (young and old) and gender (male, female) on tactile acuity. Sensory thresholds were then entered into multiple linear regression models to examine their ability to predict fingertip contact forces (normal and tangential) applied to a smooth surface when subjects stood with eyes closed on either a firm or a compliant support surface. As expected, age exerted a significant effect (p<0.01) on all three thresholds, but its impact was greater on spatial acuity than on pressure sensitivity or kinesthetic acuity. Gender had a marginal impact on pressure sensitivity thresholds only. The regression analyses revealed that tactile thresholds determined at the index fingertip accounted for a substantial proportion of the variance (up to 30%) seen in the contact forces deployed on the touch-plate, especially those exerted in the normal direction. The same analyses further revealed that much of the variance explained by the models arose from inter-individual differences in tactile spatial acuity and not from differences in pressure sensitivity or in kinesthetic acuity. Thus, of all three tests, the spatial acuity task was the most sensitive at detecting differences in hand sensibility both within and between age groups and, accordingly, was also better at predicting the magnitude of fingertip forces deployed for postural stabilization. Since spatial acuity is critically dependent upon innervation density, we conclude that the degree of functional innervation at the fingertip was likely an important factor in determining the capacity of older participants to use contact cues for stability purposes, forcing the most affected individuals to exert unusually high pressures in order to achieve stabilization in the presence of reduced tactile inputs arising from contact with the touched surface.
Kauffman, M.J.; Sanjayan, M.; Lowenstein, J.; Nelson, A.; Jeo, R.M.; Crooks, K.R.
2007-01-01
Assessing the abundance and distribution of mammalian carnivores is vital for understanding their ecology and providing for their long-term conservation. Because of the difficulty of trapping and handling carnivores many studies have relied on abundance indices that may not accurately reflect real abundance and distribution patterns. We developed statistical analyses that detect spatial correlation in visitation data from combined scent station and camera-trap surveys, and we illustrate how to use such data to make inferences about changes in carnivore assemblages. As a case study we compared the carnivore communities of adjacent communal and freehold rangelands in central Namibia. We used an index of overdispersion to test for repeat visits to individual camera-trap scent stations and a bootstrap simulation to test for correlations in visits to camera neighbourhoods. After distilling our presence-absence data to the most defensible spatial scale, we assessed overall carnivore visitation using logistic regression. Our analyses confirmed the expected pattern of a depauparate fauna on the communal rangelands compared to the freehold rangelands. Additionally, the species that were not detected on communal sites were the larger-bodied carnivores. By modelling these rare visits as a Poisson process we illustrate a method of inferring whether or not such patterns are because of local extinction of species or are simply a result of low sample effort. Our Namibian case study indicates that these field methods and analyses can detect meaningful differences in the carnivore communities brought about by anthropogenic influences. ?? 2007 FFI.
NASA Astrophysics Data System (ADS)
Gaitan, Santiago; ten Veldhuis, Marie-Claire; van de Giesen, Nick
2013-04-01
Extreme weather events such as floods and storms are expected to cause severe economic losses in The Netherlands. Cumulative damage due to pluvial flooding can be considerable, especially in lowland areas where this type of floods occurs relatively frequently. Currently, in The Netherlands, water-related damages to property and contents are covered through private insurance. As pluvial flooding is becoming heavier and more likely to occur, sound modelling of damages is required to ensure that insurance systems are able to stand as an adaptation measure. Current damage models based on rainfall intensity, registries of insurance claims, and classifications of building types are unable to fully explain damage variability. Further developments assessing additional explanatory factors and reducing uncertainties, are required in order to significantly explain damage. In this study, urban topography is used as an explanatory factor for modelling of urban pluvial flooding. Flood damage is evaluated based on complaints data, a valuable resource for assessing vulnerability to urban pluvial flooding. Though previous research has shown coincidences between the localization of high complaint counts and large size catchments areas in Rotterdam, additional research is needed to establish the precise spatial relationship of those two variables. This additional task is the focus of the presented work. To that end a data base of complaints, that was made available by the Municipality Administration of the City, will be analysed. It comprises close to 36800 complaints from 2004 to 2011. The geographical position of the registries is aggregated into 4 to 6-digit Postal Code zones, which represents entire streets or relative positions along a street, respectively. The Municipality also provided the DEM, characterized by a spatial resolution of 0.5 m × 0.5 m, a vertical precision of 5 cm, and an accuracy better than two standard deviations of 15 cm. First the localization of complaints will be tested for spatial randomness: the distribution of Global Moran's I will be used as a measure of spatial aggregation of complaints. We expect high values of spatial aggregation, that would confirm the existence of a spatial structure in the distribution of complaints. Then we will probe how much does the extent of catchment areas influence such distribution of complaints. That will be done through both an ordinary least squares regression and a geographically weighted regression. By contrasting the results from these two regressions, the relationship between complaints and size of catchment area across the urban environment will be evaluated. The results will confirm whether complaints have a spatial distribution pattern. Furthermore, the results will provide insight into the importance of the size of catchment areas as a significant factor for complaints distribution, and for the assessment of urban vulnerability to pluvial flooding in the City of Rotterdam.
Jacob, Benjamin G; Novak, Robert J; Toe, Laurent; Sanfo, Moussa S; Afriyie, Abena N; Ibrahim, Mohammed A; Griffith, Daniel A; Unnasch, Thomas R
2012-01-01
The standard methods for regression analyses of clustered riverine larval habitat data of Simulium damnosum s.l. a major black-fly vector of Onchoceriasis, postulate models relating observational ecological-sampled parameter estimators to prolific habitats without accounting for residual intra-cluster error correlation effects. Generally, this correlation comes from two sources: (1) the design of the random effects and their assumed covariance from the multiple levels within the regression model; and, (2) the correlation structure of the residuals. Unfortunately, inconspicuous errors in residual intra-cluster correlation estimates can overstate precision in forecasted S.damnosum s.l. riverine larval habitat explanatory attributes regardless how they are treated (e.g., independent, autoregressive, Toeplitz, etc). In this research, the geographical locations for multiple riverine-based S. damnosum s.l. larval ecosystem habitats sampled from 2 pre-established epidemiological sites in Togo were identified and recorded from July 2009 to June 2010. Initially the data was aggregated into proc genmod. An agglomerative hierarchical residual cluster-based analysis was then performed. The sampled clustered study site data was then analyzed for statistical correlations using Monthly Biting Rates (MBR). Euclidean distance measurements and terrain-related geomorphological statistics were then generated in ArcGIS. A digital overlay was then performed also in ArcGIS using the georeferenced ground coordinates of high and low density clusters stratified by Annual Biting Rates (ABR). This data was overlain onto multitemporal sub-meter pixel resolution satellite data (i.e., QuickBird 0.61m wavbands ). Orthogonal spatial filter eigenvectors were then generated in SAS/GIS. Univariate and non-linear regression-based models (i.e., Logistic, Poisson and Negative Binomial) were also employed to determine probability distributions and to identify statistically significant parameter estimators from the sampled data. Thereafter, Durbin-Watson test statistics were used to test the null hypothesis that the regression residuals were not autocorrelated against the alternative that the residuals followed an autoregressive process in AUTOREG. Bayesian uncertainty matrices were also constructed employing normal priors for each of the sampled estimators in PROC MCMC. The residuals revealed both spatially structured and unstructured error effects in the high and low ABR-stratified clusters. The analyses also revealed that the estimators, levels of turbidity and presence of rocks were statistically significant for the high-ABR-stratified clusters, while the estimators distance between habitats and floating vegetation were important for the low-ABR-stratified cluster. Varying and constant coefficient regression models, ABR- stratified GIS-generated clusters, sub-meter resolution satellite imagery, a robust residual intra-cluster diagnostic test, MBR-based histograms, eigendecomposition spatial filter algorithms and Bayesian matrices can enable accurate autoregressive estimation of latent uncertainity affects and other residual error probabilities (i.e., heteroskedasticity) for testing correlations between georeferenced S. damnosum s.l. riverine larval habitat estimators. The asymptotic distribution of the resulting residual adjusted intra-cluster predictor error autocovariate coefficients can thereafter be established while estimates of the asymptotic variance can lead to the construction of approximate confidence intervals for accurately targeting productive S. damnosum s.l habitats based on spatiotemporal field-sampled count data.
Executive function in middle childhood and the relationship with theory of mind.
Wilson, Jennifer; Andrews, Glenda; Hogan, Christy; Wang, Si; Shum, David H K
2018-01-01
A group of 126 typically developing children (aged 5-12 years) completed three cool executive function tasks (spatial working memory, stop signal, intra-extra dimensional shift), two hot executive function tasks (gambling, delay of gratification), one advanced theory of mind task (strange stories with high versus low affective tone), and a vocabulary test. Older children performed better than younger children, consistent with the protracted development of hot and cool executive functions and theory of mind. Multiple regression analyses showed that hot and cool executive functions were correlated but they predicted theory of mind in different ways.
Mapping the Climate of Puerto Rico, Vieques and Culebra.
CHRISTOPHER DALY; E. H. HELMER; MAYA QUINONES
2003-01-01
Spatially explicit climate data contribute to watershed resource management, mapping vegetation type with satellite imagery, mapping present and hypothetical future ecological zones, and predicting species distributions. The regression based Parameter-elevation Regressions on Independent Slopes Model (PRISM) uses spatial data sets, a knowledge base and expert...
Bergholz, Peter W; Strawn, Laura K; Ryan, Gina T; Warchocki, Steven; Wiedmann, Martin
2016-03-01
Although flooding introduces microbiological, chemical, and physical hazards onto croplands, few data are available on the spatial extent, patterns, and development of contamination over time postflooding. To address this paucity of information, we conducted a spatially explicit study of Escherichia coli and Salmonella contamination prevalence and genetic diversity in produce fields after the catastrophic flooding that occurred in New England during 2011. Although no significant differences were detected between the two participating farms, both random forest and logistic regression revealed changes in the spatial pattern of E. coli contamination in drag swab samples over time. Analyses also indicated that E. coli detection was associated with changes in farm management to remediate the land after flooding. In particular, E. coli was widespread in drag swab samples at 21 days postflooding, but the spatial pattern changed by 238 days postflooding such that E. coli was then most prevalent in close proximity to surface water features. The combined results of several population genetics analyses indicated that over time postflooding E. coli populations on the farms (i) changed in composition and (ii) declined overall. Salmonella was primarily detected in surface water features, but some Salmonella strains were isolated from soil and drag swab samples at 21 and 44 days postflooding. Although postflood contamination and land management responses should always be evaluated in the context of each unique farm landscape, our results provide quantitative data on the general patterns of contamination after flooding and support the practice of establishing buffer zones between flood-contaminated cropland and harvestable crops in produce fields.
Liu, Wenzhi; Li, Siyue; Bu, Hongmei; Zhang, Quanfa; Liu, Guihua
2012-03-01
Lakes play an important role in socioeconomic development and ecological balance in China, but their water quality has deteriorated considerably in recent decades. In this study, we investigated the spatial-temporal variations of eutrophication parameters (secchi depth, total nitrogen, total phosphorus, chemical oxygen demand, chlorophyll-a, trophic level index, and trophic state index) and their relationships with lake morphology, watershed land use, and socioeconomic factors in the Yunnan Plateau lakes. Results indicated that about 77.8% of lakes were eutrophic according to trophic state index. The plateau lakes showed spatial variations in water quality and could be classified into high-nutrient and low-nutrient groups. However, because watersheds were dominated by vegetation, all eutrophication parameters except chlorophyll-a showed no significant differences between the wet and dry seasons. Lake depth, water residence time, volume, and percentage of built-up land were significantly related to several eutrophication parameters. Agricultural land use and social-economic factors had no significant correlation with all eutrophication parameters. Stepwise regression analyses demonstrated that lake depth and water residence time accounted for 73.8% to 87.6% of the spatial variation of single water quality variables, respectively. Redundancy analyses indicated that lake morphology, watershed land use, and socioeconomic factors together explained 74.3% of the spatial variation in overall water quality. The results imply that water quality degradation in the plateau lakes may be mainly due to the domestic and industrial wastewaters. This study will improve our understanding of the determinants of lake water quality and help to design efficient strategies for controlling eutrophication in the plateau region.
Fuentes, Cesar Mario; Hernandez, Vladimir
2013-01-01
The aim of this study is to examine the spatial distribution of pedestrian injury collisions and analyse the environmental (social and physical) risk factors in Ciudad Juarez, Mexico. More specifically, this study investigates the influence of land use, density, traffic and socio-economic characteristics. This cross sectional study is based on pedestrian injury collision data that were collected by the Municipal Transit Police during 2008-2009. This research presents an analysis of vehicle-pedestrian collisions and their spatial risk determinants using mixed methods that included (1) spatial/geographical information systems (GIS) analysis of pedestrian collision data and (2) ordinary least squares (OLS) regression analysis to explain the density of pedestrian collisions data. In our model, we found a higher probability for pedestrian collisions in census tracts with population and employment density, large concentration of commercial/retail land uses and older people (65 and more). Interventions to alleviate this situation including transportation planning such as decentralisation of municipal transport system, investment in road infrastructure - density of traffic lights, pedestrian crossing, road design, improves lane demarcation. Besides, land use planning interventions should be implemented in commercial/retail areas, in particular separating pedestrian and vehicular spaces.
Spatial pattern and temporal trend of mortality due to tuberculosis 10
de Queiroz, Ana Angélica Rêgo; Berra, Thaís Zamboni; Garcia, Maria Concebida da Cunha; Popolin, Marcela Paschoal; Belchior, Aylana de Souza; Yamamura, Mellina; dos Santos, Danielle Talita; Arroyo, Luiz Henrique; Arcêncio, Ricardo Alexandre
2018-01-01
ABSTRACT Objectives: To describe the epidemiological profile of mortality due to tuberculosis (TB), to analyze the spatial pattern of these deaths and to investigate the temporal trend in mortality due to tuberculosis in Northeast Brazil. Methods: An ecological study based on secondary mortality data. Deaths due to TB were included in the study. Descriptive statistics were calculated and gross mortality rates were estimated and smoothed by the Local Empirical Bayesian Method. Prais-Winsten’s regression was used to analyze the temporal trend in the TB mortality coefficients. The Kernel density technique was used to analyze the spatial distribution of TB mortality. Results: Tuberculosis was implicated in 236 deaths. The burden of tuberculosis deaths was higher amongst males, single people and people of mixed ethnicity, and the mean age at death was 51 years. TB deaths were clustered in the East, West and North health districts, and the tuberculosis mortality coefficient remained stable throughout the study period. Conclusions: Analyses of the spatial pattern and temporal trend in mortality revealed that certain areas have higher TB mortality rates, and should therefore be prioritized in public health interventions targeting the disease. PMID:29742272
Collevatti, Rosane G; Rodrigues, Eduardo E; Vitorino, Luciana C; Lima-Ribeiro, Matheus S; Chaves, Lázaro J; Telles, Mariana P C
2018-04-20
Spatial distribution of species genetic diversity is often driven by geographical distance (isolation by distance) or environmental conditions (isolation by environment), especially under climate change scenarios such as Quaternary glaciations. Here, we used coalescent analyses coupled with ecological niche modelling (ENM), spatially explicit quantile regression analyses and the multiple matrix regression with randomization (MMRR) approach to unravel the patterns of genetic differentiation in the widely distributed Neotropical savanna tree, Hancornia speciosa (Apocynaceae). Due to its high morphological differentiation, the species was originally classified into six botanical varieties by Monachino, and has recently been recognized as only two varieties by Flora do Brasil 2020. Thus, H. speciosa is a good biological model for learning about evolution of phenotypic plasticity under genetic and ecological effects, and predicting their responses to changing environmental conditions. We sampled 28 populations (777 individuals) of Monachino's four varieties of H. speciosa and used seven microsatellite loci to genotype them. Bayesian clustering showed five distinct genetic groups (K = 5) with high admixture among Monachino's varieties, mainly among populations in the central area of the species geographical range. Genetic differentiation among Monachino's varieties was lower than the genetic differentiation among populations within varieties, with higher within-population inbreeding. A high historical connectivity among populations of the central Cerrado shown by coalescent analyses may explain the high admixture among varieties. In addition, areas of higher climatic suitability also presented higher genetic diversity in such a way that the wide historical refugium across central Brazil might have promoted the long-term connectivity among populations. Yet, FST was significantly related to geographic distances, but not to environmental distances, and coalescent analyses and ENM predicted a demographical scenario of quasi-stability through time. Our findings show that demographical history and isolation by distance, but not isolation by environment, drove genetic differentiation of populations. Finally, the genetic clusters do not support the two recently recognized botanical varieties of H. speciosa, but partially support Monachino's classification at least for the four sampled varieties, similar to morphological variation.
NASA Astrophysics Data System (ADS)
Zhu, Qing; Liao, Kaihua; Doolittle, James; Lin, Henry
2014-05-01
Hydropedological dynamics including soil moisture variation, subsurface flow, and spatial distributions of different soil properties are important parameters in ecological, environmental, hydrological, and agricultural modeling and applications. However, technical gap exists in mapping these dynamics at intermediate spatial scale (e.g., farm and catchment scales). At intermediate scales, in-situ monitoring provides detailed data, but is restricted in number and spatial coverage; while remote sensing provides more acceptable spatial coverage, but has comparatively low spatial resolution, limited observation depths, and is greatly influenced by the surface condition and climate. As a non-invasive, fast, and convenient geophysical tool, electromagnetic induction (EMI) measures soil apparent electrical conductivity (ECa) and has great potential to bridge this technical gap. In this presentation, principles of different EMI meters are briefly introduced. Then, case studies of using repeated EMI to detect spatial distributions of subsurface convergent flow, soil moisture dynamics, soil types and their transition zones, and different soil properties are presented. The suitability, effectiveness, and accuracy of EMI are evaluated for mapping different hydropedological dynamics. Lastly, contributions of different hydropedological and terrain properties on soil ECa are quantified under different wetness conditions, seasons, and land use types using Classification and Regression Tree model. Trend removal and residual analysis are then used for further mining of EMI survey data. Based on these analyses, proper EMI survey designs and data processing are proposed.
NASA Astrophysics Data System (ADS)
Han, W.; Stammer, D.; Meehl, G. A.; Hu, A.; Sienz, F.
2016-12-01
Sea level varies on decadal and multi-decadal timescales over the Indian Ocean. The variations are not spatially uniform, and can deviate considerably from the global mean sea level rise (SLR) due to various geophysical processes. One of these processes is the change of ocean circulation, which can be partly attributed to natural internal modes of climate variability. Over the Indian Ocean, the most influential climate modes on decadal and multi-decadal timescales are the Interdecadal Pacific Oscillation (IPO) and decadal variability of the Indian Ocean dipole (IOD). Here, we first analyze observational datasets to investigate the impacts of IPO and IOD on spatial patterns of decadal and interdecadal (hereafter decal) sea level variability & multi-decadal trend over the Indian Ocean since the 1950s, using a new statistical approach of Bayesian Dynamical Linear regression Model (DLM). The Bayesian DLM overcomes the limitation of "time-constant (static)" regression coefficients in conventional multiple linear regression model, by allowing the coefficients to vary with time and therefore measuring "time-evolving (dynamical)" relationship between climate modes and sea level. For the multi-decadal sea level trend since the 1950s, our results show that climate modes and non-climate modes (the part that cannot be explained by climate modes) have comparable contributions in magnitudes but with different spatial patterns, with each dominating different regions of the Indian Ocean. For decadal variability, climate modes are the major contributors for sea level variations over most region of the tropical Indian Ocean. The relative importance of IPO and decadal variability of IOD, however, varies spatially. For example, while IOD decadal variability dominates IPO in the eastern equatorial basin (85E-100E, 5S-5N), IPO dominates IOD in causing sea level variations in the tropical southwest Indian Ocean (45E-65E, 12S-2S). To help decipher the possible contribution of external forcing to the multi-decadal sea level trend and decadal variability, we also analyze the model outputs from NCAR's Community Earth System Model (CESM) Large Ensemble Experiments, and compare the results with our observational analyses.
Spatial interpolation schemes of daily precipitation for hydrologic modeling
Hwang, Y.; Clark, M.R.; Rajagopalan, B.; Leavesley, G.
2012-01-01
Distributed hydrologic models typically require spatial estimates of precipitation interpolated from sparsely located observational points to the specific grid points. We compare and contrast the performance of regression-based statistical methods for the spatial estimation of precipitation in two hydrologically different basins and confirmed that widely used regression-based estimation schemes fail to describe the realistic spatial variability of daily precipitation field. The methods assessed are: (1) inverse distance weighted average; (2) multiple linear regression (MLR); (3) climatological MLR; and (4) locally weighted polynomial regression (LWP). In order to improve the performance of the interpolations, the authors propose a two-step regression technique for effective daily precipitation estimation. In this simple two-step estimation process, precipitation occurrence is first generated via a logistic regression model before estimate the amount of precipitation separately on wet days. This process generated the precipitation occurrence, amount, and spatial correlation effectively. A distributed hydrologic model (PRMS) was used for the impact analysis in daily time step simulation. Multiple simulations suggested noticeable differences between the input alternatives generated by three different interpolation schemes. Differences are shown in overall simulation error against the observations, degree of explained variability, and seasonal volumes. Simulated streamflows also showed different characteristics in mean, maximum, minimum, and peak flows. Given the same parameter optimization technique, LWP input showed least streamflow error in Alapaha basin and CMLR input showed least error (still very close to LWP) in Animas basin. All of the two-step interpolation inputs resulted in lower streamflow error compared to the directly interpolated inputs. ?? 2011 Springer-Verlag.
NASA Astrophysics Data System (ADS)
Poyatos, Rafael; Sus, Oliver; Badiella, Llorenç; Mencuccini, Maurizio; Martínez-Vilalta, Jordi
2018-05-01
The ubiquity of missing data in plant trait databases may hinder trait-based analyses of ecological patterns and processes. Spatially explicit datasets with information on intraspecific trait variability are rare but offer great promise in improving our understanding of functional biogeography. At the same time, they offer specific challenges in terms of data imputation. Here we compare statistical imputation approaches, using varying levels of environmental information, for five plant traits (leaf biomass to sapwood area ratio, leaf nitrogen content, maximum tree height, leaf mass per area and wood density) in a spatially explicit plant trait dataset of temperate and Mediterranean tree species (Ecological and Forest Inventory of Catalonia, IEFC, dataset for Catalonia, north-east Iberian Peninsula, 31 900 km2). We simulated gaps at different missingness levels (10-80 %) in a complete trait matrix, and we used overall trait means, species means, k nearest neighbours (kNN), ordinary and regression kriging, and multivariate imputation using chained equations (MICE) to impute missing trait values. We assessed these methods in terms of their accuracy and of their ability to preserve trait distributions, multi-trait correlation structure and bivariate trait relationships. The relatively good performance of mean and species mean imputations in terms of accuracy masked a poor representation of trait distributions and multivariate trait structure. Species identity improved MICE imputations for all traits, whereas forest structure and topography improved imputations for some traits. No method performed best consistently for the five studied traits, but, considering all traits and performance metrics, MICE informed by relevant ecological variables gave the best results. However, at higher missingness (> 30 %), species mean imputations and regression kriging tended to outperform MICE for some traits. MICE informed by relevant ecological variables allowed us to fill the gaps in the IEFC incomplete dataset (5495 plots) and quantify imputation uncertainty. Resulting spatial patterns of the studied traits in Catalan forests were broadly similar when using species means, regression kriging or the best-performing MICE application, but some important discrepancies were observed at the local level. Our results highlight the need to assess imputation quality beyond just imputation accuracy and show that including environmental information in statistical imputation approaches yields more plausible imputations in spatially explicit plant trait datasets.
Maggi, Federico; Bosco, Domenico; Galetto, Luciana; Palmano, Sabrina; Marzachì, Cristina
2017-01-01
Analyses of space-time statistical features of a flavescence dorée (FD) epidemic in Vitis vinifera plants are presented. FD spread was surveyed from 2011 to 2015 in a vineyard of 17,500 m2 surface area in the Piemonte region, Italy; count and position of symptomatic plants were used to test the hypothesis of epidemic Complete Spatial Randomness and isotropicity in the space-time static (year-by-year) point pattern measure. Space-time dynamic (year-to-year) point pattern analyses were applied to newly infected and recovered plants to highlight statistics of FD progression and regression over time. Results highlighted point patterns ranging from disperse (at small scales) to aggregated (at large scales) over the years, suggesting that the FD epidemic is characterized by multiscale properties that may depend on infection incidence, vector population, and flight behavior. Dynamic analyses showed moderate preferential progression and regression along rows. Nearly uniform distributions of direction and negative exponential distributions of distance of newly symptomatic and recovered plants relative to existing symptomatic plants highlighted features of vector mobility similar to Brownian motion. These evidences indicate that space-time epidemics modeling should include environmental setting (e.g., vineyard geometry and topography) to capture anisotropicity as well as statistical features of vector flight behavior, plant recovery and susceptibility, and plant mortality. PMID:28111581
NASA Astrophysics Data System (ADS)
Barbarossa, Valerio; Huijbregts, Mark A. J.; Beusen, Arthur H. W.; Beck, Hylke E.; King, Henry; Schipper, Aafke M.
2018-03-01
Streamflow data is highly relevant for a variety of socio-economic as well as ecological analyses or applications, but a high-resolution global streamflow dataset is yet lacking. We created FLO1K, a consistent streamflow dataset at a resolution of 30 arc seconds (~1 km) and global coverage. FLO1K comprises mean, maximum and minimum annual flow for each year in the period 1960-2015, provided as spatially continuous gridded layers. We mapped streamflow by means of artificial neural networks (ANNs) regression. An ensemble of ANNs were fitted on monthly streamflow observations from 6600 monitoring stations worldwide, i.e., minimum and maximum annual flows represent the lowest and highest mean monthly flows for a given year. As covariates we used the upstream-catchment physiography (area, surface slope, elevation) and year-specific climatic variables (precipitation, temperature, potential evapotranspiration, aridity index and seasonality indices). Confronting the maps with independent data indicated good agreement (R2 values up to 91%). FLO1K delivers essential data for freshwater ecology and water resources analyses at a global scale and yet high spatial resolution.
[Sociodemographic context of homicide in Mexico City: a spatial analysis].
Fuentes Flores, César; Sánchez Salinas, Omar
2015-12-01
Investigate the spatial distribution pattern of the homicide rate and its relation to sociodemographic features in the Benito Juárez, Coyoacán, and Cuauhtémoc districts of Mexico City in 2010. Inferential cross-sectional study that uses spatial analysis methods to study the spatial association of the homicide rate and demographic features. Spatial association was determined through the location quotient, multiple regression analysis, and the use of geographically weighted regression. Homicides show a heterogeneous location pattern with high rates in areas with non-residential land use, low population density, and low marginalization. Spatial analysis tools are powerful instruments for the design of prevention- and recreation-focused public safety policies that aim to reduce mortality from external causes such as homicides.
Molla, Yordanos B; Wardrop, Nicola A; Le Blond, Jennifer S; Baxter, Peter; Newport, Melanie J; Atkinson, Peter M; Davey, Gail
2014-06-20
The precise trigger of podoconiosis - endemic non-filarial elephantiasis of the lower legs - is unknown. Epidemiological and ecological studies have linked the disease with barefoot exposure to red clay soils of volcanic origin. Histopathology investigations have demonstrated that silicon, aluminium, magnesium and iron are present in the lower limb lymph node macrophages of both patients and non-patients living barefoot on these clays. We studied the spatial variation (variations across an area) in podoconiosis prevalence and the associated environmental factors with a goal to better understanding the pathogenesis of podoconiosis. Fieldwork was conducted from June 2011 to February 2013 in 12 kebeles (administrative units) in northern Ethiopia. Geo-located prevalence data and soil samples were collected and analysed along with secondary geological, topographic, meteorological and elevation data. Soil data were analysed for chemical composition, mineralogy and particle size, and were interpolated to provide spatially continuous information. Exploratory, spatial, univariate and multivariate regression analyses of podoconiosis prevalence were conducted in relation to primary (soil) and secondary (elevation, precipitation, and geology) covariates. Podoconiosis distribution showed spatial correlation with variation in elevation and precipitation. Exploratory analysis identified that phyllosilicate minerals, particularly clay (smectite and kaolinite) and mica groups, quartz (crystalline silica), iron oxide, and zirconium were associated with podoconiosis prevalence. The final multivariate model showed that the quantities of smectite (RR = 2.76, 95% CI: 1.35, 5.73; p = 0.007), quartz (RR = 1.16, 95% CI: 1.06, 1.26; p = 0.001) and mica (RR = 1.09, 95% CI: 1.05, 1.13; p < 0.001) in the soil had positive associations with podoconiosis prevalence. More quantities of smectite, mica and quartz within the soil were associated with podoconiosis prevalence. Together with previous work indicating that these minerals may influence water absorption, potentiate infection and be toxic to human cells, the present findings suggest that these particles may play a role in the pathogenesis of podoconiosis and acute adenolymphangitis, a common cause of morbidity in podoconiosis patients.
NASA Technical Reports Server (NTRS)
Caldas, M.; Walker, R. T.; Shirota, R.; Perz, S.; Skole, D.
2003-01-01
This paper examines the relationships between the socio-demographic characteristics of small settlers in the Brazilian Amazon and the life cycle hypothesis in the process of deforestation. The analysis was conducted combining remote sensing and geographic data with primary data of 153 small settlers along the TransAmazon Highway. Regression analyses and spatial autocorrelation tests were conducted. The results from the empirical model indicate that socio-demographic characteristics of households as well as institutional and market factors, affect the land use decision. Although remotely sensed information is not very popular among Brazilian social scientists, these results confirm that they can be very useful for this kind of study. Furthermore, the research presented by this paper strongly indicates that family and socio-demographic data, as well as market data, may result in misspecification problems. The same applies to models that do not incorporate spatial analysis.
Geostatistics and GIS: tools for characterizing environmental contamination.
Henshaw, Shannon L; Curriero, Frank C; Shields, Timothy M; Glass, Gregory E; Strickland, Paul T; Breysse, Patrick N
2004-08-01
Geostatistics is a set of statistical techniques used in the analysis of georeferenced data that can be applied to environmental contamination and remediation studies. In this study, the 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE) contamination at a Superfund site in western Maryland is evaluated. Concern about the site and its future clean up has triggered interest within the community because residential development surrounds the area. Spatial statistical methods, of which geostatistics is a subset, are becoming increasingly popular, in part due to the availability of geographic information system (GIS) software in a variety of application packages. In this article, the joint use of ArcGIS software and the R statistical computing environment are demonstrated as an approach for comprehensive geostatistical analyses. The spatial regression method, kriging, is used to provide predictions of DDE levels at unsampled locations both within the site and the surrounding areas where residential development is ongoing.
Hanks, Ephraim M.; Schliep, Erin M.; Hooten, Mevin B.; Hoeting, Jennifer A.
2015-01-01
In spatial generalized linear mixed models (SGLMMs), covariates that are spatially smooth are often collinear with spatially smooth random effects. This phenomenon is known as spatial confounding and has been studied primarily in the case where the spatial support of the process being studied is discrete (e.g., areal spatial data). In this case, the most common approach suggested is restricted spatial regression (RSR) in which the spatial random effects are constrained to be orthogonal to the fixed effects. We consider spatial confounding and RSR in the geostatistical (continuous spatial support) setting. We show that RSR provides computational benefits relative to the confounded SGLMM, but that Bayesian credible intervals under RSR can be inappropriately narrow under model misspecification. We propose a posterior predictive approach to alleviating this potential problem and discuss the appropriateness of RSR in a variety of situations. We illustrate RSR and SGLMM approaches through simulation studies and an analysis of malaria frequencies in The Gambia, Africa.
Collaer, Marcia L; Hindmarsh, Peter C; Pasterski, Vickie; Fane, Briony A; Hines, Melissa
2016-02-01
Girls and women with classical congenital adrenal hyperplasia (CAH) experience elevated androgens prenatally and show increased male-typical development for certain behaviors. Further, individuals with CAH receive glucocorticoid (GC) treatment postnatally, and this GC treatment could have negative cognitive consequences. We investigated two alternative hypotheses, that: (a) early androgen exposure in females with CAH masculinizes (improves) spatial perception and quantitative abilities at which males typically outperform females, or (b) CAH is associated with performance decrements in these domains, perhaps due to reduced short-term-memory (STM). Adolescent and adult individuals with CAH (40 female and 29 male) were compared with relative controls (29 female and 30 male) on spatial perception and quantitative abilities as well as on Digit Span (DS) to assess STM and on Vocabulary to assess general intelligence. Females with CAH did not perform better (more male-typical) on spatial perception or quantitative abilities than control females, failing to support the hypothesis of cognitive masculinization. Rather, in the sample as a whole individuals with CAH scored lower on spatial perception (p ≤ .009), a quantitative composite (p ≤ .036), and DS (p ≤ .001), despite no differences in general intelligence. Separate analyses of adolescent and adult participants suggested the spatial and quantitative effects might be present only in adult patients with CAH; however, reduced DS performance was found in patients with CAH regardless of age group. Separate regression analyses showed that DS predicted both spatial perception and quantitative performance (both p ≤ .001), when age, sex, and diagnosis status were controlled. Thus, reduced STM in CAH patients versus controls may have more general cognitive consequences, potentially reducing spatial perception and quantitative skills. Although hyponatremia or other aspects of salt-wasting crises or additional hormone abnormalities cannot be ruled out as potential contributors, elevated GCs appear to be the most likely contributor to reductions in STM. Additional efforts to monitor GC administration protocols may help achieve optimal cognitive outcomes. Educational intervention for individuals with CAH might also be useful. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wu, Shan-Shan; Yang, Hao; Guo, Fei; Han, Rui-Ming
2017-02-15
Multivariate statistical analyses combined with geographically weighted regression (GWR) were used to identify spatial variations of heavy metals in sediments and to examine relationships between metal pollution and land use practices in watersheds, including urban land, agriculture land, forest and water bodies. Seven metals (Cu, Zn, Pb, Cr, Ni, Mn and Fe) of sediments were measured at 31 sampling sites in Sheyang River. Most metals were under a certain degree enrichment based on the enrichment factors. Cluster analysis grouped all sites into four statistically significant cluster, severely contaminated areas were concentrated in areas with intensive human activities. Correlation analysis and PCA indicated Cu, Zn and Pb were derived from anthropogenic activities, while the sources of Cr and Ni were complicated. However, Fe and Mn originated from natural sources. According to results of GWR, there are stronger association between metal pollution with urban land than agricultural land and forest. Moreover, the relationships between land use and metal concentration were affected by the urbanization level of watersheds. Agricultural land had a weak associated with heavy metal pollution and the relationships might be stronger in less-urbanized. This study provided useful information for the assessment and management of heavy metal hazards in studied area. Copyright © 2016 Elsevier B.V. All rights reserved.
Climate change and epidemics in Chinese history: A multi-scalar analysis.
Lee, Harry F; Fei, Jie; Chan, Christopher Y S; Pei, Qing; Jia, Xin; Yue, Ricci P H
2017-02-01
This study seeks to provide further insight regarding the relationship of climate-epidemics in Chinese history through a multi-scalar analysis. Based on 5961 epidemic incidents in China during 1370-1909 CE we applied Ordinary Least Square regression and panel data regression to verify the climate-epidemic nexus over a range of spatial scales (country, macro region, and province). Results show that epidemic outbreaks were negatively correlated with the temperature in historical China at various geographic levels, while a stark reduction in the correlational strength was observed at lower geographic levels. Furthermore, cooling drove up epidemic outbreaks in northern and central China, where population pressure reached a clear threshold for amplifying the vulnerability of epidemic outbreaks to climate change. Our findings help to illustrate the modifiable areal unit and the uncertain geographic context problems in climate-epidemics research. Researchers need to consider the scale effect in the course of statistical analyses, which are currently predominantly conducted on a national/single scale; and also the importance of how the study area is delineated, an issue which is rarely discussed in the climate-epidemics literature. Future research may leverage our results and provide a cross-analysis with those derived from spatial analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Estimating carbon and showing impacts of drought using satellite data in regression-tree models
Boyte, Stephen; Wylie, Bruce K.; Howard, Danny; Dahal, Devendra; Gilmanov, Tagir G.
2018-01-01
Integrating spatially explicit biogeophysical and remotely sensed data into regression-tree models enables the spatial extrapolation of training data over large geographic spaces, allowing a better understanding of broad-scale ecosystem processes. The current study presents annual gross primary production (GPP) and annual ecosystem respiration (RE) for 2000–2013 in several short-statured vegetation types using carbon flux data from towers that are located strategically across the conterminous United States (CONUS). We calculate carbon fluxes (annual net ecosystem production [NEP]) for each year in our study period, which includes 2012 when drought and higher-than-normal temperatures influence vegetation productivity in large parts of the study area. We present and analyse carbon flux dynamics in the CONUS to better understand how drought affects GPP, RE, and NEP. Model accuracy metrics show strong correlation coefficients (r) (r ≥ 94%) between training and estimated data for both GPP and RE. Overall, average annual GPP, RE, and NEP are relatively constant throughout the study period except during 2012 when almost 60% less carbon is sequestered than normal. These results allow us to conclude that this modelling method effectively estimates carbon dynamics through time and allows the exploration of impacts of meteorological anomalies and vegetation types on carbon dynamics.
Modelling space of spread Dengue Hemorrhagic Fever (DHF) in Central Java use spatial durbin model
NASA Astrophysics Data System (ADS)
Ispriyanti, Dwi; Prahutama, Alan; Taryono, Arkadina PN
2018-05-01
Dengue Hemorrhagic Fever is one of the major public health problems in Indonesia. From year to year, DHF causes Extraordinary Event in most parts of Indonesia, especially Central Java. Central Java consists of 35 districts or cities where each region is close to each other. Spatial regression is an analysis that suspects the influence of independent variables on the dependent variables with the influences of the region inside. In spatial regression modeling, there are spatial autoregressive model (SAR), spatial error model (SEM) and spatial autoregressive moving average (SARMA). Spatial Durbin model is the development of SAR where the dependent and independent variable have spatial influence. In this research dependent variable used is number of DHF sufferers. The independent variables observed are population density, number of hospitals, residents and health centers, and mean years of schooling. From the multiple regression model test, the variables that significantly affect the spread of DHF disease are the population and mean years of schooling. By using queen contiguity and rook contiguity, the best model produced is the SDM model with queen contiguity because it has the smallest AIC value of 494,12. Factors that generally affect the spread of DHF in Central Java Province are the number of population and the average length of school.
Subgrid spatial variability of soil hydraulic functions for hydrological modelling
NASA Astrophysics Data System (ADS)
Kreye, Phillip; Meon, Günter
2016-07-01
State-of-the-art hydrological applications require a process-based, spatially distributed hydrological model. Runoff characteristics are demanded to be well reproduced by the model. Despite that, the model should be able to describe the processes at a subcatchment scale in a physically credible way. The objective of this study is to present a robust procedure to generate various sets of parameterisations of soil hydraulic functions for the description of soil heterogeneity on a subgrid scale. Relations between Rosetta-generated values of saturated hydraulic conductivity (Ks) and van Genuchten's parameters of soil hydraulic functions were statistically analysed. An universal function that is valid for the complete bandwidth of Ks values could not be found. After concentrating on natural texture classes, strong correlations were identified for all parameters. The obtained regression results were used to parameterise sets of hydraulic functions for each soil class. The methodology presented in this study is applicable on a wide range of spatial scales and does not need input data from field studies. The developments were implemented into a hydrological modelling system.
Kumi-Kyereme, Akwasi; Amo-Adjei, Joshua
2013-06-17
This study compares ownership of health insurance among Ghanaian women with respect to wealth status and spatial location. We explore the overarching research question by employing geographic and proxy means targeting through interactive analysis of wealth status and spatial issues. The paper draws on the 2008 Ghana Demographic and Health Survey. Bivariate descriptive analysis coupled with binary logistic regression estimation technique was used to analyse the data. By wealth status, the likelihood of purchasing insurance was significantly higher among respondents from the middle, richer and richest households compared to the poorest (reference category) and these differences widened more profoundly in the Northern areas after interacting wealth with zone of residence. Among women at the bottom of household wealth (poorest and poorer), there were no statistically significant differences in insurance subscription in all the areas. The results underscore the relevance of geographic and proxy means targeting in identifying populations who may be need of special interventions as part of the efforts to increase enrolment as well as means of social protection against the vulnerable.
2013-01-01
Background This study compares ownership of health insurance among Ghanaian women with respect to wealth status and spatial location. We explore the overarching research question by employing geographic and proxy means targeting through interactive analysis of wealth status and spatial issues. Methods The paper draws on the 2008 Ghana Demographic and Health Survey. Bivariate descriptive analysis coupled with binary logistic regression estimation technique was used to analyse the data. Results By wealth status, the likelihood of purchasing insurance was significantly higher among respondents from the middle, richer and richest households compared to the poorest (reference category) and these differences widened more profoundly in the Northern areas after interacting wealth with zone of residence. Among women at the bottom of household wealth (poorest and poorer), there were no statistically significant differences in insurance subscription in all the areas. Conclusions The results underscore the relevance of geographic and proxy means targeting in identifying populations who may be need of special interventions as part of the efforts to increase enrolment as well as means of social protection against the vulnerable. PMID:23768255
Species composition and morphologic variation of Porites in the Gulf of California
NASA Astrophysics Data System (ADS)
López-Pérez, R. A.
2013-09-01
Morphometric analysis of corallite calices confirmed that from the late Miocene to the Recent, four species of Porites have inhabited the Gulf of California: the extinct Porites carrizensis, the locally extirpated Porites lobata and the extant Porites sverdrupi and Porites panamensis. Furthermore, large-scale spatial and temporal phenotypic plasticity was observed in the dominant species P. panamensis. Canonical discriminant analysis and ANOVA demonstrated that the calice structures of P. panamensis experienced size reduction between the late Pleistocene and Recent. Similarly, PERMANOVA, regression and correlation analyses demonstrated that across the 800 km north to south in the gulf, P. panamensis populations displayed a similar reduction in calice structures. Based on correlation analysis with environmental data, these large spatial changes are likely related to changes in nutrient concentration and sea surface temperature. As such, the large-scale spatial and temporal phenotypic variation recorded in populations of P. panamensis in the Gulf of California is likely related to optimization of corallite performance (energy acquisition) within various environmental scenarios. These findings may have relevance to modern conservation efforts within this ecological dominant genus.
NASA Astrophysics Data System (ADS)
Farag, A. Z. A.; Sultan, M.; Elkadiri, R.; Abdelhalim, A.
2014-12-01
An integrated approach using remote sensing, landscape analysis and statistical methods was conducted to assess the role of groundwater sapping in shaping the Saharan landscape. A GIS-based logistic regression model was constructed to automatically delineate the spatial distribution of the sapping features over areas occupied by the Nubian Sandstone Aquifer System (NSAS): (1) an inventory was compiled of known locations of sapping features identified either in the field or from satellite datasets (e.g. Orbview-3 and Google Earth Digital Globe imagery); (2) spatial analyses were conducted in a GIS environment and seven geomorphological and geological predisposing factors (i.e. slope, stream density, cross-sectional and profile curvature, minimum and maximum curvature, and lithology) were identified; (3) a binary logistic regression model was constructed, optimized and validated to describe the relationship between the sapping locations and the set of controlling factors and (4) the generated model (prediction accuracy: 90.1%) was used to produce a regional sapping map over the NSAS. Model outputs indicate: (1) groundwater discharge and structural control played an important role in excavating the Saharan natural depressions as evidenced by the wide distribution of sapping features (areal extent: 1180 km2) along the fault-controlled escarpments of the Libyan Plateau; (2) proximity of mapped sapping features to reported paleolake and tufa deposits suggesting a causal effect. Our preliminary observations (from satellite imagery) and statistical analyses together with previous studies in the North Western Sahara Aquifer System (North Africa), Sinai Peninsula, Negev Desert, and The Plateau of Najd (Saudi Arabia) indicate extensive occurrence of sapping features along the escarpments bordering the northern margins of the Saharan-Arabian Desert; these areas share similar hydrologic settings with the NSAS domains and they too witnessed wet climatic periods in the Mid-Late Quaternary.
Ferrin, Maite; Vance, Alasdair
2014-12-01
Working memory (WM) deficits have been shown to be associated with core ADHD symptoms, worse academic achievement and peer-relationship problems. Internalizing symptoms, such as anxiety and depression, have also been associated with impaired WM performance. However, the association of anxiety and depression and WM performance remains unclear for children and adolescents with ADHD. Further, it is unknown how these comorbid conditions might affect WM performance in the two main ADHD subtypes. The association of anxiety and depression and the specific components of spatial (SWM) and verbal working memory (VWM) were examined in 303 children and adolescents with ADHD, combined type (ADHD-CT) and 77 ADHD, inattentive type (ADHD-IA) compared to 128 age- and gender-matched typically developing participants. The relationship between anxiety and depression and WM was assessed using multiple linear regression analyses and separate simple regression analyses. Higher levels of anxiety/depression were associated with (1) increased between-search errors in the typically developing participants alone, (2) a better strategy performance in the ADHD-CT group, and (3) a better spatial span performance in the ADHD-IA group. VWM was equally impaired in the ADHD-CT and ADHD-IA groups, independent of the levels of anxiety and depression. The results suggest that the effects of internalizing symptoms on WM differ in typically developing children and adolescents compared to those with ADHD. Further, high levels of anxiety and depression modified WM performance differently according to the specific ADHD subtypes. This might help explain contradictory findings observed in previous studies of mixed samples of participants with ADHD-CT and ADHD-IA.
Functional CAR models for large spatially correlated functional datasets.
Zhang, Lin; Baladandayuthapani, Veerabhadran; Zhu, Hongxiao; Baggerly, Keith A; Majewski, Tadeusz; Czerniak, Bogdan A; Morris, Jeffrey S
2016-01-01
We develop a functional conditional autoregressive (CAR) model for spatially correlated data for which functions are collected on areal units of a lattice. Our model performs functional response regression while accounting for spatial correlations with potentially nonseparable and nonstationary covariance structure, in both the space and functional domains. We show theoretically that our construction leads to a CAR model at each functional location, with spatial covariance parameters varying and borrowing strength across the functional domain. Using basis transformation strategies, the nonseparable spatial-functional model is computationally scalable to enormous functional datasets, generalizable to different basis functions, and can be used on functions defined on higher dimensional domains such as images. Through simulation studies, we demonstrate that accounting for the spatial correlation in our modeling leads to improved functional regression performance. Applied to a high-throughput spatially correlated copy number dataset, the model identifies genetic markers not identified by comparable methods that ignore spatial correlations.
NASA Astrophysics Data System (ADS)
Lin, Yingzhi; Deng, Xiangzheng; Li, Xing; Ma, Enjun
2014-12-01
Spatially explicit simulation of land use change is the basis for estimating the effects of land use and cover change on energy fluxes, ecology and the environment. At the pixel level, logistic regression is one of the most common approaches used in spatially explicit land use allocation models to determine the relationship between land use and its causal factors in driving land use change, and thereby to evaluate land use suitability. However, these models have a drawback in that they do not determine/allocate land use based on the direct relationship between land use change and its driving factors. Consequently, a multinomial logistic regression method was introduced to address this flaw, and thereby, judge the suitability of a type of land use in any given pixel in a case study area of the Jiangxi Province, China. A comparison of the two regression methods indicated that the proportion of correctly allocated pixels using multinomial logistic regression was 92.98%, which was 8.47% higher than that obtained using logistic regression. Paired t-test results also showed that pixels were more clearly distinguished by multinomial logistic regression than by logistic regression. In conclusion, multinomial logistic regression is a more efficient and accurate method for the spatial allocation of land use changes. The application of this method in future land use change studies may improve the accuracy of predicting the effects of land use and cover change on energy fluxes, ecology, and environment.
Waruru, Anthony; Achia, Thomas N O; Muttai, Hellen; Ng'ang'a, Lucy; Zielinski-Gutierrez, Emily; Ochanda, Boniface; Katana, Abraham; Young, Peter W; Tobias, James L; Juma, Peter; De Cock, Kevin M; Tylleskär, Thorkild
2018-01-01
Using spatial-temporal analyses to understand coverage and trends in elimination of mother-to-child transmission of HIV (e-MTCT) efforts may be helpful in ensuring timely services are delivered to the right place. We present spatial-temporal analysis of seven years of HIV early infant diagnosis (EID) data collected from 12 districts in western Kenya from January 2007 to November 2013, during pre-Option B+ use. We included in the analysis infants up to one year old. We performed trend analysis using extended Cochran-Mantel-Haenszel stratified test and logistic regression models to examine trends and associations of infant HIV status at first diagnosis with: early diagnosis (<8 weeks after birth), age at specimen collection, infant ever having breastfed, use of single dose nevirapine, and maternal antiretroviral therapy status. We examined these covariates and fitted spatial and spatial-temporal semiparametric Poisson regression models to explain HIV-infection rates using R-integrated nested Laplace approximation package. We calculated new infections per 100,000 live births and used Quantum GIS to map fitted MTCT estimates for each district in Nyanza region. Median age was two months, interquartile range 1.5-5.8 months. Unadjusted pooled positive rate was 11.8% in the seven-years period and declined from 19.7% in 2007 to 7.0% in 2013, p < 0.01. Uptake of testing ≤8 weeks after birth was under 50% in 2007 and increased to 64.1% by 2013, p < 0.01. By 2013, the overall standardized MTCT rate was 447 infections per 100,000 live births. Based on Bayesian deviance information criterion comparisons, the spatial-temporal model with maternal and infant covariates was best in explaining geographical variation in MTCT. Improved EID uptake and reduced MTCT rates are indicators of progress towards e-MTCT. Cojoined analysis of time and covariates in a spatial context provides a robust approach for explaining differences in programmatic impact over time. During this pre-Option B+ period, the prevention of mother to child transmission program in this region has not achieved e-MTCT target of ≤50 infections per 100,000 live births. Geographical disparities in program achievements may signify gaps in spatial distribution of e-MTCT efforts and could indicate areas needing further resources and interventions.
Comparing spatial regression to random forests for large ...
Environmental data may be “large” due to number of records, number of covariates, or both. Random forests has a reputation for good predictive performance when using many covariates, whereas spatial regression, when using reduced rank methods, has a reputation for good predictive performance when using many records. In this study, we compare these two techniques using a data set containing the macroinvertebrate multimetric index (MMI) at 1859 stream sites with over 200 landscape covariates. Our primary goal is predicting MMI at over 1.1 million perennial stream reaches across the USA. For spatial regression modeling, we develop two new methods to accommodate large data: (1) a procedure that estimates optimal Box-Cox transformations to linearize covariate relationships; and (2) a computationally efficient covariate selection routine that takes into account spatial autocorrelation. We show that our new methods lead to cross-validated performance similar to random forests, but that there is an advantage for spatial regression when quantifying the uncertainty of the predictions. Simulations are used to clarify advantages for each method. This research investigates different approaches for modeling and mapping national stream condition. We use MMI data from the EPA's National Rivers and Streams Assessment and predictors from StreamCat (Hill et al., 2015). Previous studies have focused on modeling the MMI condition classes (i.e., good, fair, and po
Role of Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse) in local dengue epidemics in Taiwan.
Tsai, Pui-Jen; Teng, Hwa-Jen
2016-11-09
Aedes mosquitoes in Taiwan mainly comprise Aedes albopictus and Ae. aegypti. However, the species contributing to autochthonous dengue spread and the extent at which it occurs remain unclear. Thus, in this study, we spatially analyzed real data to determine spatial features related to local dengue incidence and mosquito density, particularly that of Ae. albopictus and Ae. aegypti. We used bivariate Moran's I statistic and geographically weighted regression (GWR) spatial methods to analyze the globally spatial dependence and locally regressed relationship between (1) imported dengue incidences and Breteau indices (BIs) of Ae. albopictus, (2) imported dengue incidences and BI of Ae. aegypti, (3) autochthonous dengue incidences and BI of Ae. albopictus, (4) autochthonous dengue incidences and BI of Ae. aegypti, (5) all dengue incidences and BI of Ae. albopictus, (6) all dengue incidences and BI of Ae. aegypti, (7) BI of Ae. albopictus and human population density, and (8) BI of Ae. aegypti and human population density in 348 townships in Taiwan. In the GWR models, regression coefficients of spatially regressed relationships between the incidence of autochthonous dengue and vector density of Ae. aegypti were significant and positive in most townships in Taiwan. However, Ae. albopictus had significant but negative regression coefficients in clusters of dengue epidemics. In the global bivariate Moran's index, spatial dependence between the incidence of autochthonous dengue and vector density of Ae. aegypti was significant and exhibited positive correlation in Taiwan (bivariate Moran's index = 0.51). However, Ae. albopictus exhibited positively significant but low correlation (bivariate Moran's index = 0.06). Similar results were observed in the two spatial methods between all dengue incidences and Aedes mosquitoes (Ae. aegypti and Ae. albopictus). The regression coefficients of spatially regressed relationships between imported dengue cases and Aedes mosquitoes (Ae. aegypti and Ae. albopictus) were significant in 348 townships in Taiwan. The results indicated that local Aedes mosquitoes do not contribute to the dengue incidence of imported cases. The density of Ae. aegypti positively correlated with the density of human population. By contrast, the density of Ae. albopictus negatively correlated with the density of human population in the areas of southern Taiwan. The results indicated that Ae. aegypti has more opportunities for human-mosquito contact in dengue endemic areas in southern Taiwan. Ae. aegypti, but not Ae. albopictus, and human population density in southern Taiwan are closely associated with an increased risk of autochthonous dengue incidence.
Human impact on sediment fluxes within the Blue Nile and Atbara River basins
NASA Astrophysics Data System (ADS)
Balthazar, Vincent; Vanacker, Veerle; Girma, Atkilt; Poesen, Jean; Golla, Semunesh
2013-01-01
A regional assessment of the spatial variability in sediment yields allows filling the gap between detailed, process-based understanding of erosion at field scale and empirical sediment flux models at global scale. In this paper, we focus on the intrabasin variability in sediment yield within the Blue Nile and Atbara basins as biophysical and anthropogenic factors are presumably acting together to accelerate soil erosion. The Blue Nile and Atbara River systems are characterized by an important spatial variability in sediment fluxes, with area-specific sediment yield (SSY) values ranging between 4 and 4935 t/km2/y. Statistical analyses show that 41% of the observed variation in SSY can be explained by remote sensing proxy data of surface vegetation cover, rainfall intensity, mean annual temperature, and human impact. The comparison of a locally adapted regression model with global predictive sediment flux models indicates that global flux models such as the ART and BQART models are less suited to capture the spatial variability in area-specific sediment yields (SSY), but they are very efficient to predict absolute sediment yields (SY). We developed a modified version of the BQART model that estimates the human influence on sediment yield based on a high resolution composite measure of local human impact (human footprint index) instead of countrywide estimates of GNP/capita. Our modified version of the BQART is able to explain 80% of the observed variation in SY for the Blue Nile and Atbara basins and thereby performs only slightly less than locally adapted regression models.
Pes, Giovanni Mario; Bassotti, Gabrio; Dore, Maria Pina
2017-09-27
Background: Colorectal cancer (CRC) is one of the most diffuse malignancy in the world. In Southern Europe, the incidence and prevalence are lower than in most Western countries, although some hot spots of increased risk are emerging. In Sardinia, the cancer rate has risen steeply in the last years. Among risk factors for CRC, genomic homozygosity has been postulated. Glucose-6-phosphate dehydrogenase (G6PD) deficiency has been hypothesized to decrease CRC risk. In Sardinians, this disorder has a frequency of 12-24% due to selection by past malaria. In this study the relationship between mortality for CRC, homozygosity and G6PD deficiency was analysed using spatial analysis. Methods: The spatial association between CRC mortality and G6PD deficiency and homozygosity was assessed in the 377 municipalities of the island using ordinary least squares regression and geographically weighted regression. Results: A consanguinity index, available across all municipalities, was used as a proxy for homozygosity. A significant inverse correlation was found between CRC mortality and G6PD deficiency (ρ = ‒0.216; p = 0.002) whereas no association was found for consanguinity (ρ = ‒0.077; p = 0.498). The geographical map of CRC mortality showed a significant clustering in mountain areas compared to the population living in lowlands, whereas hot spot areas of G6PD deficiency were observed on the south-western side of Sardinia. Conclusions: These results indicate that G6PD deficiency might contribute to reduce colon carcinogenesis, and is in line with in vitro and in vivo studies. Creative Commons Attribution License
[Spatial differentiation and impact factors of Yutian Oasis's soil surface salt based on GWR model].
Yuan, Yu Yun; Wahap, Halik; Guan, Jing Yun; Lu, Long Hui; Zhang, Qin Qin
2016-10-01
In this paper, topsoil salinity data gathered from 24 sampling sites in the Yutian Oasis were used, nine different kinds of environmental variables closely related to soil salinity were selec-ted as influencing factors, then, the spatial distribution characteristics of topsoil salinity and spatial heterogeneity of influencing factors were analyzed by combining the spatial autocorrelation with traditional regression analysis and geographically weighted regression model. Results showed that the topsoil salinity in Yutian Oasis was not of random distribution but had strong spatial dependence, and the spatial autocorrelation index for topsoil salinity was 0.479. Groundwater salinity, groundwater depth, elevation and temperature were the main factors influencing topsoil salt accumulation in arid land oases and they were spatially heterogeneous. The nine selected environmental variables except soil pH had significant influences on topsoil salinity with spatial disparity. GWR model was superior to the OLS model on interpretation and estimation of spatial non-stationary data, also had a remarkable advantage in visualization of modeling parameters.
The Bayesian group lasso for confounded spatial data
Hefley, Trevor J.; Hooten, Mevin B.; Hanks, Ephraim M.; Russell, Robin E.; Walsh, Daniel P.
2017-01-01
Generalized linear mixed models for spatial processes are widely used in applied statistics. In many applications of the spatial generalized linear mixed model (SGLMM), the goal is to obtain inference about regression coefficients while achieving optimal predictive ability. When implementing the SGLMM, multicollinearity among covariates and the spatial random effects can make computation challenging and influence inference. We present a Bayesian group lasso prior with a single tuning parameter that can be chosen to optimize predictive ability of the SGLMM and jointly regularize the regression coefficients and spatial random effect. We implement the group lasso SGLMM using efficient Markov chain Monte Carlo (MCMC) algorithms and demonstrate how multicollinearity among covariates and the spatial random effect can be monitored as a derived quantity. To test our method, we compared several parameterizations of the SGLMM using simulated data and two examples from plant ecology and disease ecology. In all examples, problematic levels multicollinearity occurred and influenced sampling efficiency and inference. We found that the group lasso prior resulted in roughly twice the effective sample size for MCMC samples of regression coefficients and can have higher and less variable predictive accuracy based on out-of-sample data when compared to the standard SGLMM.
Brown, Louise A.
2016-01-01
Working memory is vulnerable to age-related decline, but there is debate regarding the age-sensitivity of different forms of spatial-sequential working memory task, depending on their passive or active nature. The functional architecture of spatial working memory was therefore explored in younger (18–40 years) and older (64–85 years) adults, using passive and active recall tasks. Spatial working memory was assessed using a modified version of the Spatial Span subtest of the Wechsler Memory Scale – Third Edition (WMS-III; Wechsler, 1998). Across both age groups, the effects of interference (control, visual, or spatial), and recall type (forward and backward), were investigated. There was a clear effect of age group, with younger adults demonstrating a larger spatial working memory capacity than the older adults overall. There was also a specific effect of interference, with the spatial interference task (spatial tapping) reliably reducing performance relative to both the control and visual interference (dynamic visual noise) conditions in both age groups and both recall types. This suggests that younger and older adults have similar dependence upon active spatial rehearsal, and that both forward and backward recall require this processing capacity. Linear regression analyses were then carried out within each age group, to assess the predictors of performance in each recall format (forward and backward). Specifically the backward recall task was significantly predicted by age, within both the younger and older adult groups. This finding supports previous literature showing lifespan linear declines in spatial-sequential working memory, and in working memory tasks from other domains, but contrasts with previous evidence that backward spatial span is no more sensitive to aging than forward span. The study suggests that backward spatial span is indeed more processing-intensive than forward span, even when both tasks include a retention period, and that age predicts backward spatial span performance across the adult lifespan, within both younger and older adulthood. PMID:27757096
Brown, Louise A
2016-01-01
Working memory is vulnerable to age-related decline, but there is debate regarding the age-sensitivity of different forms of spatial-sequential working memory task, depending on their passive or active nature. The functional architecture of spatial working memory was therefore explored in younger (18-40 years) and older (64-85 years) adults, using passive and active recall tasks. Spatial working memory was assessed using a modified version of the Spatial Span subtest of the Wechsler Memory Scale - Third Edition (WMS-III; Wechsler, 1998). Across both age groups, the effects of interference (control, visual, or spatial), and recall type (forward and backward), were investigated. There was a clear effect of age group, with younger adults demonstrating a larger spatial working memory capacity than the older adults overall. There was also a specific effect of interference, with the spatial interference task (spatial tapping) reliably reducing performance relative to both the control and visual interference (dynamic visual noise) conditions in both age groups and both recall types. This suggests that younger and older adults have similar dependence upon active spatial rehearsal, and that both forward and backward recall require this processing capacity. Linear regression analyses were then carried out within each age group, to assess the predictors of performance in each recall format (forward and backward). Specifically the backward recall task was significantly predicted by age, within both the younger and older adult groups. This finding supports previous literature showing lifespan linear declines in spatial-sequential working memory, and in working memory tasks from other domains, but contrasts with previous evidence that backward spatial span is no more sensitive to aging than forward span. The study suggests that backward spatial span is indeed more processing-intensive than forward span, even when both tasks include a retention period, and that age predicts backward spatial span performance across the adult lifespan, within both younger and older adulthood.
The Regional Differences of Gpp Estimation by Solar Induced Fluorescence
NASA Astrophysics Data System (ADS)
Wang, X.; Lu, S.
2018-04-01
Estimating gross primary productivity (GPP) at large spatial scales is important for studying the global carbon cycle and global climate change. In this study, the relationship between solar-induced chlorophyll fluorescence (SIF) and GPP is analysed in different levels of annual average temperature and annual total precipitation respectively using simple linear regression analysis. The results showed high correlation between SIF and GPP, when the area satisfied annual average temperature in the range of -5 °C to 15 °C and the annual total precipitation is higher than 200 mm. These results can provide a basis for future estimation of GPP research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yan; Piao, Shilong; Huang, Mengtian
Our aim is to investigate how ecosystem water-use efficiency (WUE) varies spatially under different climate conditions, and how spatial variations in WUE differ from those of transpiration-based water-use efficiency (WUE t) and transpiration-based inherent water-use efficiency (IWUE t). LocationGlobal terrestrial ecosystems. We investigated spatial patterns of WUE using two datasets of gross primary productivity (GPP) and evapotranspiration (ET) and four biosphere model estimates of GPP and ET. Spatial relationships between WUE and climate variables were further explored through regression analyses. Global WUE estimated by two satellite-based datasets is 1.9 ± 0.1 and 1.8 ± 0.6g C m -2mm -1 lowermore » than the simulations from four process-based models (2.0 ± 0.3g C m -2mm -1) but comparable within the uncertainty of both approaches. In both satellite-based datasets and process models, precipitation is more strongly associated with spatial gradients of WUE for temperate and tropical regions, but temperature dominates north of 50 degrees N. WUE also increases with increasing solar radiation at high latitudes. The values of WUE from datasets and process-based models are systematically higher in wet regions (with higher GPP) than in dry regions. WUE t shows a lower precipitation sensitivity than WUE, which is contrary to leaf- and plant-level observations. IWUE t, the product of WUE t and water vapour deficit, is found to be rather conservative with spatially increasing precipitation, in agreement with leaf- and plant-level measurements. In conclusion, WUE, WUE t and IWUE t produce different spatial relationships with climate variables. In dry ecosystems, water losses from evaporation from bare soil, uncorrelated with productivity, tend to make WUE lower than in wetter regions. Yet canopy conductance is intrinsically efficient in those ecosystems and maintains a higher IWUEt. This suggests that the responses of each component flux of evapotranspiration should be analysed separately when investigating regional gradients in WUE, its temporal variability and its trends.« less
Sun, Yan; Piao, Shilong; Huang, Mengtian; ...
2015-12-23
Our aim is to investigate how ecosystem water-use efficiency (WUE) varies spatially under different climate conditions, and how spatial variations in WUE differ from those of transpiration-based water-use efficiency (WUE t) and transpiration-based inherent water-use efficiency (IWUE t). LocationGlobal terrestrial ecosystems. We investigated spatial patterns of WUE using two datasets of gross primary productivity (GPP) and evapotranspiration (ET) and four biosphere model estimates of GPP and ET. Spatial relationships between WUE and climate variables were further explored through regression analyses. Global WUE estimated by two satellite-based datasets is 1.9 ± 0.1 and 1.8 ± 0.6g C m -2mm -1 lowermore » than the simulations from four process-based models (2.0 ± 0.3g C m -2mm -1) but comparable within the uncertainty of both approaches. In both satellite-based datasets and process models, precipitation is more strongly associated with spatial gradients of WUE for temperate and tropical regions, but temperature dominates north of 50 degrees N. WUE also increases with increasing solar radiation at high latitudes. The values of WUE from datasets and process-based models are systematically higher in wet regions (with higher GPP) than in dry regions. WUE t shows a lower precipitation sensitivity than WUE, which is contrary to leaf- and plant-level observations. IWUE t, the product of WUE t and water vapour deficit, is found to be rather conservative with spatially increasing precipitation, in agreement with leaf- and plant-level measurements. In conclusion, WUE, WUE t and IWUE t produce different spatial relationships with climate variables. In dry ecosystems, water losses from evaporation from bare soil, uncorrelated with productivity, tend to make WUE lower than in wetter regions. Yet canopy conductance is intrinsically efficient in those ecosystems and maintains a higher IWUEt. This suggests that the responses of each component flux of evapotranspiration should be analysed separately when investigating regional gradients in WUE, its temporal variability and its trends.« less
An investigation on thermal patterns in Iran based on spatial autocorrelation
NASA Astrophysics Data System (ADS)
Fallah Ghalhari, Gholamabbas; Dadashi Roudbari, Abbasali
2018-02-01
The present study aimed at investigating temporal-spatial patterns and monthly patterns of temperature in Iran using new spatial statistical methods such as cluster and outlier analysis, and hotspot analysis. To do so, climatic parameters, monthly average temperature of 122 synoptic stations, were assessed. Statistical analysis showed that January with 120.75% had the most fluctuation among the studied months. Global Moran's Index revealed that yearly changes of temperature in Iran followed a strong spatially clustered pattern. Findings showed that the biggest thermal cluster pattern in Iran, 0.975388, occurred in May. Cluster and outlier analyses showed that thermal homogeneity in Iran decreases in cold months, while it increases in warm months. This is due to the radiation angle and synoptic systems which strongly influence thermal order in Iran. The elevations, however, have the most notable part proved by Geographically weighted regression model. Iran's thermal analysis through hotspot showed that hot thermal patterns (very hot, hot, and semi-hot) were dominant in the South, covering an area of 33.5% (about 552,145.3 km2). Regions such as mountain foot and low lands lack any significant spatial autocorrelation, 25.2% covering about 415,345.1 km2. The last is the cold thermal area (very cold, cold, and semi-cold) with about 25.2% covering about 552,145.3 km2 of the whole area of Iran.
Wong, Man Sing; Ho, Hung Chak; Yang, Lin; Shi, Wenzhong; Yang, Jinxin; Chan, Ta-Chien
2017-07-24
Dust events have long been recognized to be associated with a higher mortality risk. However, no study has investigated how prolonged dust events affect the spatial variability of mortality across districts in a downwind city. In this study, we applied a spatial regression approach to estimate the district-level mortality during two extreme dust events in Hong Kong. We compared spatial and non-spatial models to evaluate the ability of each regression to estimate mortality. We also compared prolonged dust events with non-dust events to determine the influences of community factors on mortality across the city. The density of a built environment (estimated by the sky view factor) had positive association with excess mortality in each district, while socioeconomic deprivation contributed by lower income and lower education induced higher mortality impact in each territory planning unit during a prolonged dust event. Based on the model comparison, spatial error modelling with the 1st order of queen contiguity consistently outperformed other models. The high-risk areas with higher increase in mortality were located in an urban high-density environment with higher socioeconomic deprivation. Our model design shows the ability to predict spatial variability of mortality risk during an extreme weather event that is not able to be estimated based on traditional time-series analysis or ecological studies. Our spatial protocol can be used for public health surveillance, sustainable planning and disaster preparation when relevant data are available.
2014-01-01
Background Manson’s schistosomiasis continues to be a severe public health problem in Brazil, where thousands of people live under the risk of contracting this parasitosis. In the Northeast of Brazil, schistosomiasis has expanded from rural areas to the coast of Pernambuco State, where the intermediate host is Biomphalaria glabrata snails. This study aims at presenting situational analyses on schistosomiasis at the coastal locality of Porto de Galinhas, Pernambuco, Brazil, by determining the risk factors relating to its occurrence from the epidemiological and spatial perspectives. Methods In order to gather prevalence data, a parasitological census surveys were conducted in 2010 in the light of the Kato-Katz technique. Furthermore, malacological surveys were also conducted in the same years so as to define the density and infection rates of the intermediate host. Lastly, socioeconomic-behavioral survey was also conducted to determine the odds ratio for infection by Schistosoma mansoni. Based on these data, spatial analyses were done, resulting in maps of the risk of disease transmission. To predict the risk of schistosomiasis occurrence, a multivariate logistic regression was performed using R 2.13 software. Results Based on prevalence, malacological and socioeconomic-behavioural surveys, it was identified a prevalence of 15.7% in the investigated population (2,757 individuals). Due to the malacological survey, 36 breeding sites were identified, of which 11 were classified as foci of schistosomiasis transmission since they pointed out snails which were infected by Schistosoma mansoni. Overall, 11,012 snails (Biomphalaria glabrata) were collected. The multivariate regression model identified six explanatory variables of environmental, socioeconomic and demographic nature. Spatial sweep analysis by means of the Bernoulli method identified one statistically significant cluster in Salinas (RR = 2.2; p-value < 0.000), the district with the highest occurrence of cases. Conclusions Based on the resulting information from this study, the epidemiological dimensions of this disease are significant and severe, within the scenario of schistosomiasis in Pernambuco state. The risk factors which were identified in the predictive model made it clear that the environmental and social conditions influence on the schistosomiasis occurrences. PMID:24559264
as response to seasonal variability
Badano, Ernesto I; Labra, Fabio A; Martínez-Pérez, Cecilia G; Vergara, Carlos H
2016-03-01
Ecologists have been largely interested in the description and understanding of the power scaling relationships between body size and abundance of organisms. Many studies have focused on estimating the exponents of these functions across taxonomic groups and spatial scales, to draw inferences about the processes underlying this pattern. The exponents of these functions usually approximate -3/4 at geographical scales, but they deviate from this value when smaller spatial extensions are considered. This has led to propose that body size-abundance relationships at small spatial scales may reflect the impact of environmental changes. This study tests this hypothesis by examining body size spectra of benthic shrimps (Decapoda: Caridea) and snails (Gastropoda) in the Tamiahua lagoon, a brackish body water located in the Eastern coast of Mexico. We mea- sured water quality parameters (dissolved oxygen, salinity, pH, water temperature, sediment organic matter and chemical oxygen demand) and sampled benthic macrofauna during three different climatic conditions of the year (cold, dry and rainy season). Given the small size of most individuals in the benthic macrofaunal samples, we used body volume, instead of weight, to estimate their body size. Body size-abundance relationships of both taxonomic groups were described by tabulating data from each season into base-2 logarithmic body size bins. In both taxonomic groups, observed frequencies per body size class in each season were standardized to yield densities (i.e., individuals/m(3)). Nonlinear regression analyses were separately performed for each taxonomic group at each season to assess whether body size spectra followed power scaling functions. Additionally, for each taxonomic group, multiple regression analyses were used to determine whether these relationships varied among seasons. Our results indicated that, while body size-abundance relationships in both taxonomic groups followed power functions, the parameters defining the shape of these relationships varied among seasons. These variations in the parameters of the body size-abundance relationships seems to be related to changes in the abundance of individuals within the different body size classes, which seems to follow the seasonal changes that occur in the environmental conditions of the lagoon. Thus, we propose that these body size-abundance relation- ships are influenced by the frequency and intensity of environmental changes affecting this ecosystem.
Northrup, Joseph M.; Hooten, Mevin B.; Anderson, Charles R.; Wittemyer, George
2013-01-01
Habitat selection is a fundamental aspect of animal ecology, the understanding of which is critical to management and conservation. Global positioning system data from animals allow fine-scale assessments of habitat selection and typically are analyzed in a use-availability framework, whereby animal locations are contrasted with random locations (the availability sample). Although most use-availability methods are in fact spatial point process models, they often are fit using logistic regression. This framework offers numerous methodological challenges, for which the literature provides little guidance. Specifically, the size and spatial extent of the availability sample influences coefficient estimates potentially causing interpretational bias. We examined the influence of availability on statistical inference through simulations and analysis of serially correlated mule deer GPS data. Bias in estimates arose from incorrectly assessing and sampling the spatial extent of availability. Spatial autocorrelation in covariates, which is common for landscape characteristics, exacerbated the error in availability sampling leading to increased bias. These results have strong implications for habitat selection analyses using GPS data, which are increasingly prevalent in the literature. We recommend researchers assess the sensitivity of their results to their availability sample and, where bias is likely, take care with interpretations and use cross validation to assess robustness.
2013-01-01
Background Human brucellosis incidence in China has been increasing dramatically since 1999. However, epidemiological features and potential factors underlying the re-emergence of the disease remain less understood. Methods Data on human and animal brucellosis cases at the county scale were collected for the year 2004 to 2010. Also collected were environmental and socioeconomic variables. Epidemiological features including spatial and temporal patterns of the disease were characterized, and the potential factors related to the spatial heterogeneity and the temporal trend of were analysed using Poisson regression analysis, Granger causality analysis, and autoregressive distributed lag (ADL) models, respectively. Results The epidemic showed a significantly higher spatial correlation with the number of sheep and goats than swine and cattle. The disease was most prevalent in grassland areas with elevation between 800–1,600 meters. The ADL models revealed that local epidemics were correlated with comparatively lower temperatures and less sunshine in winter and spring, with a 1–7 month lag before the epidemic peak in May. Conclusions Our findings indicate that human brucellosis tended to occur most commonly in grasslands at moderate elevation where sheep and goats were the predominant livestock, and in years with cooler winter and spring or less sunshine. PMID:24238301
Li, Dan; Wang, Xia; Dey, Dipak K
2016-09-01
Our present work proposes a new survival model in a Bayesian context to analyze right-censored survival data for populations with a surviving fraction, assuming that the log failure time follows a generalized extreme value distribution. Many applications require a more flexible modeling of covariate information than a simple linear or parametric form for all covariate effects. It is also necessary to include the spatial variation in the model, since it is sometimes unexplained by the covariates considered in the analysis. Therefore, the nonlinear covariate effects and the spatial effects are incorporated into the systematic component of our model. Gaussian processes (GPs) provide a natural framework for modeling potentially nonlinear relationship and have recently become extremely powerful in nonlinear regression. Our proposed model adopts a semiparametric Bayesian approach by imposing a GP prior on the nonlinear structure of continuous covariate. With the consideration of data availability and computational complexity, the conditionally autoregressive distribution is placed on the region-specific frailties to handle spatial correlation. The flexibility and gains of our proposed model are illustrated through analyses of simulated data examples as well as a dataset involving a colon cancer clinical trial from the state of Iowa. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Carolyn B. Meyer; Sherri L. Miller; C. John Ralph
2004-01-01
The scale at which habitat variables are measured affects the accuracy of resource selection functions in predicting animal use of sites. We used logistic regression models for a wide-ranging species, the marbled murrelet, (Brachyramphus marmoratus) in a large region in California to address how much changing the spatial or temporal scale of...
Modeling vertebrate diversity in Oregon using satellite imagery
NASA Astrophysics Data System (ADS)
Cablk, Mary Elizabeth
Vertebrate diversity was modeled for the state of Oregon using a parametric approach to regression tree analysis. This exploratory data analysis effectively modeled the non-linear relationships between vertebrate richness and phenology, terrain, and climate. Phenology was derived from time-series NOAA-AVHRR satellite imagery for the year 1992 using two methods: principal component analysis and derivation of EROS data center greenness metrics. These two measures of spatial and temporal vegetation condition incorporated the critical temporal element in this analysis. The first three principal components were shown to contain spatial and temporal information about the landscape and discriminated phenologically distinct regions in Oregon. Principal components 2 and 3, 6 greenness metrics, elevation, slope, aspect, annual precipitation, and annual seasonal temperature difference were investigated as correlates to amphibians, birds, all vertebrates, reptiles, and mammals. Variation explained for each regression tree by taxa were: amphibians (91%), birds (67%), all vertebrates (66%), reptiles (57%), and mammals (55%). Spatial statistics were used to quantify the pattern of each taxa and assess validity of resulting predictions from regression tree models. Regression tree analysis was relatively robust against spatial autocorrelation in the response data and graphical results indicated models were well fit to the data.
Songhurst, Anna; Coulson, Tim
2014-03-01
Few universal trends in spatial patterns of wildlife crop-raiding have been found. Variations in wildlife ecology and movements, and human spatial use have been identified as causes of this apparent unpredictability. However, varying spatial patterns of spatial autocorrelation (SA) in human-wildlife conflict (HWC) data could also contribute. We explicitly explore the effects of SA on wildlife crop-raiding data in order to facilitate the design of future HWC studies. We conducted a comparative survey of raided and nonraided fields to determine key drivers of crop-raiding. Data were subsampled at different spatial scales to select independent raiding data points. The model derived from all data was fitted to subsample data sets. Model parameters from these models were compared to determine the effect of SA. Most methods used to account for SA in data attempt to correct for the change in P-values; yet, by subsampling data at broader spatial scales, we identified changes in regression estimates. We consequently advocate reporting both model parameters across a range of spatial scales to help biological interpretation. Patterns of SA vary spatially in our crop-raiding data. Spatial distribution of fields should therefore be considered when choosing the spatial scale for analyses of HWC studies. Robust key drivers of elephant crop-raiding included raiding history of a field and distance of field to a main elephant pathway. Understanding spatial patterns and determining reliable socio-ecological drivers of wildlife crop-raiding is paramount for designing mitigation and land-use planning strategies to reduce HWC. Spatial patterns of HWC are complex, determined by multiple factors acting at more than one scale; therefore, studies need to be designed with an understanding of the effects of SA. Our methods are accessible to a variety of practitioners to assess the effects of SA, thereby improving the reliability of conservation management actions.
Space, race, and poverty: Spatial inequalities in walkable neighborhood amenities?
Aldstadt, Jared; Whalen, John; White, Kellee; Castro, Marcia C.; Williams, David R.
2017-01-01
BACKGROUND Multiple and varied benefits have been suggested for increased neighborhood walkability. However, spatial inequalities in neighborhood walkability likely exist and may be attributable, in part, to residential segregation. OBJECTIVE Utilizing a spatial demographic perspective, we evaluated potential spatial inequalities in walkable neighborhood amenities across census tracts in Boston, MA (US). METHODS The independent variables included minority racial/ethnic population percentages and percent of families in poverty. Walkable neighborhood amenities were assessed with a composite measure. Spatial autocorrelation in key study variables were first calculated with the Global Moran’s I statistic. Then, Spearman correlations between neighborhood socio-demographic characteristics and walkable neighborhood amenities were calculated as well as Spearman correlations accounting for spatial autocorrelation. We fit ordinary least squares (OLS) regression and spatial autoregressive models, when appropriate, as a final step. RESULTS Significant positive spatial autocorrelation was found in neighborhood socio-demographic characteristics (e.g. census tract percent Black), but not walkable neighborhood amenities or in the OLS regression residuals. Spearman correlations between neighborhood socio-demographic characteristics and walkable neighborhood amenities were not statistically significant, nor were neighborhood socio-demographic characteristics significantly associated with walkable neighborhood amenities in OLS regression models. CONCLUSIONS Our results suggest that there is residential segregation in Boston and that spatial inequalities do not necessarily show up using a composite measure. COMMENTS Future research in other geographic areas (including international contexts) and using different definitions of neighborhoods (including small-area definitions) should evaluate if spatial inequalities are found using composite measures but also should use measures of specific neighborhood amenities. PMID:29046612
Revisiting crash spatial heterogeneity: A Bayesian spatially varying coefficients approach.
Xu, Pengpeng; Huang, Helai; Dong, Ni; Wong, S C
2017-01-01
This study was performed to investigate the spatially varying relationships between crash frequency and related risk factors. A Bayesian spatially varying coefficients model was elaborately introduced as a methodological alternative to simultaneously account for the unstructured and spatially structured heterogeneity of the regression coefficients in predicting crash frequencies. The proposed method was appealing in that the parameters were modeled via a conditional autoregressive prior distribution, which involved a single set of random effects and a spatial correlation parameter with extreme values corresponding to pure unstructured or pure spatially correlated random effects. A case study using a three-year crash dataset from the Hillsborough County, Florida, was conducted to illustrate the proposed model. Empirical analysis confirmed the presence of both unstructured and spatially correlated variations in the effects of contributory factors on severe crash occurrences. The findings also suggested that ignoring spatially structured heterogeneity may result in biased parameter estimates and incorrect inferences, while assuming the regression coefficients to be spatially clustered only is probably subject to the issue of over-smoothness. Copyright © 2016 Elsevier Ltd. All rights reserved.
Peng, Gao; Bing, Wang; Guangpo, Geng; Guangcan, Zhang
2013-01-01
The spatial variability of soil organic carbon (SOC) and total nitrogen (STN) levels is important in both global carbon-nitrogen cycle and climate change research. There has been little research on the spatial distribution of SOC and STN at the watershed scale based on geographic information systems (GIS) and geostatistics. Ninety-seven soil samples taken at depths of 0-20 cm were collected during October 2010 and 2011 from the Matiyu small watershed (4.2 km(2)) of a hilly area in Shandong Province, northern China. The impacts of different land use types, elevation, vegetation coverage and other factors on SOC and STN spatial distributions were examined using GIS and a geostatistical method, regression-kriging. The results show that the concentration variations of SOC and STN in the Matiyu small watershed were moderate variation based on the mean, median, minimum and maximum, and the coefficients of variation (CV). Residual values of SOC and STN had moderate spatial autocorrelations, and the Nugget/Sill were 0.2% and 0.1%, respectively. Distribution maps of regression-kriging revealed that both SOC and STN concentrations in the Matiyu watershed decreased from southeast to northwest. This result was similar to the watershed DEM trend and significantly correlated with land use type, elevation and aspect. SOC and STN predictions with the regression-kriging method were more accurate than those obtained using ordinary kriging. This research indicates that geostatistical characteristics of SOC and STN concentrations in the watershed were closely related to both land-use type and spatial topographic structure and that regression-kriging is suitable for investigating the spatial distributions of SOC and STN in the complex topography of the watershed.
Peng, Gao; Bing, Wang; Guangpo, Geng; Guangcan, Zhang
2013-01-01
The spatial variability of soil organic carbon (SOC) and total nitrogen (STN) levels is important in both global carbon-nitrogen cycle and climate change research. There has been little research on the spatial distribution of SOC and STN at the watershed scale based on geographic information systems (GIS) and geostatistics. Ninety-seven soil samples taken at depths of 0–20 cm were collected during October 2010 and 2011 from the Matiyu small watershed (4.2 km2) of a hilly area in Shandong Province, northern China. The impacts of different land use types, elevation, vegetation coverage and other factors on SOC and STN spatial distributions were examined using GIS and a geostatistical method, regression-kriging. The results show that the concentration variations of SOC and STN in the Matiyu small watershed were moderate variation based on the mean, median, minimum and maximum, and the coefficients of variation (CV). Residual values of SOC and STN had moderate spatial autocorrelations, and the Nugget/Sill were 0.2% and 0.1%, respectively. Distribution maps of regression-kriging revealed that both SOC and STN concentrations in the Matiyu watershed decreased from southeast to northwest. This result was similar to the watershed DEM trend and significantly correlated with land use type, elevation and aspect. SOC and STN predictions with the regression-kriging method were more accurate than those obtained using ordinary kriging. This research indicates that geostatistical characteristics of SOC and STN concentrations in the watershed were closely related to both land-use type and spatial topographic structure and that regression-kriging is suitable for investigating the spatial distributions of SOC and STN in the complex topography of the watershed. PMID:24391791
Monitoring Building Deformation with InSAR: Experiments and Validation.
Yang, Kui; Yan, Li; Huang, Guoman; Chen, Chu; Wu, Zhengpeng
2016-12-20
Synthetic Aperture Radar Interferometry (InSAR) techniques are increasingly applied for monitoring land subsidence. The advantages of InSAR include high accuracy and the ability to cover large areas; nevertheless, research validating the use of InSAR on building deformation is limited. In this paper, we test the monitoring capability of the InSAR in experiments using two landmark buildings; the Bohai Building and the China Theater, located in Tianjin, China. They were selected as real examples to compare InSAR and leveling approaches for building deformation. Ten TerraSAR-X images spanning half a year were used in Permanent Scatterer InSAR processing. These extracted InSAR results were processed considering the diversity in both direction and spatial distribution, and were compared with true leveling values in both Ordinary Least Squares (OLS) regression and measurement of error analyses. The detailed experimental results for the Bohai Building and the China Theater showed a high correlation between InSAR results and the leveling values. At the same time, the two Root Mean Square Error (RMSE) indexes had values of approximately 1 mm. These analyses show that a millimeter level of accuracy can be achieved by means of InSAR technique when measuring building deformation. We discuss the differences in accuracy between OLS regression and measurement of error analyses, and compare the accuracy index of leveling in order to propose InSAR accuracy levels appropriate for monitoring buildings deformation. After assessing the advantages and limitations of InSAR techniques in monitoring buildings, further applications are evaluated.
Role of Cattle Movements in Bovine Tuberculosis Spread in France between 2005 and 2014.
Palisson, Aurore; Courcoul, Aurélie; Durand, Benoit
2016-01-01
Live animal movements are a major transmission route for the spread of infectious agents such as Mycobacterium bovis, the main agent of bovine Tuberculosis (bTB). France became officially bTB-free in 2001, but M. bovis is still circulating in the cattle population, with about a hundred of outbreaks per year, most located in a few geographic areas. The aim of this study was to analyse the role of cattle movements in bTB spread in France between 2005 and 2014, using social network analysis and logistic regression models. At a global scale, the trade network was studied to assess the association between several centrality measures and bTB infection though a case-control analysis. The bTB infection status was associated with a higher in-degree (odds-ratio [OR] = 2.4 [1.1-5.4]) and with a higher ingoing contact chain (OR = 2.2 [1.0-4.7]). At a more local scale, a second case-control analysis was conducted to estimate the relative importance of cattle movements and spatial neighbourhood. Only direct purchase from infected herds was shown to be associated with bTB infection (OR = 2.9 [1.7-5.2]), spatial proximity to infected herds being the predominant risk factor, with decreasing ORs when distance increases. Indeed, the population attributable fraction was 12% [5%-18%] for cattle movements and 73% [68%-78%] for spatial neighbourhood. Based on these results, networks of potential effective contacts between herds were built and analysed for the three major spoligotypes reported in France. In these networks, the links representing cattle movements were associated with higher edge betweenness than those representing the spatial proximity between infected herds. They were often links connecting distinct communities and sometimes distinct geographical areas. Therefore, although their role was quantitatively lower than the one of spatial neighbourhood, cattle movements appear to have been essential in the French bTB dynamics between 2005 and 2014.
Brian R Miranda; Brian R Sturtevant; Susan I Stewart; Roger B. Hammer
2012-01-01
Most drivers underlying wildfire are dynamic, but at different spatial and temporal scales. We quantified temporal and spatial trends in wildfire patterns over two spatial extents in northern Wisconsin to identify drivers and their change through time. We used spatial point pattern analysis to quantify the spatial pattern of wildfire occurrences, and linear regression...
NASA Technical Reports Server (NTRS)
Mcgwire, K.; Friedl, M.; Estes, J. E.
1993-01-01
This article describes research related to sampling techniques for establishing linear relations between land surface parameters and remotely-sensed data. Predictive relations are estimated between percentage tree cover in a savanna environment and a normalized difference vegetation index (NDVI) derived from the Thematic Mapper sensor. Spatial autocorrelation in original measurements and regression residuals is examined using semi-variogram analysis at several spatial resolutions. Sampling schemes are then tested to examine the effects of autocorrelation on predictive linear models in cases of small sample sizes. Regression models between image and ground data are affected by the spatial resolution of analysis. Reducing the influence of spatial autocorrelation by enforcing minimum distances between samples may also improve empirical models which relate ground parameters to satellite data.
Pan, Wen-Juan; Wang, Xia; Deng, Yong-Ren; Li, Jia-Hang; Chen, Wei; Chiang, John Y.; Yang, Jian-Bo; Zheng, Lei
2015-01-01
The circadian clock, synchronized by daily cyclic environmental cues, regulates diverse aspects of plant growth and development and increases plant fitness. Even though much is known regarding the molecular mechanism of circadian clock, it remains challenging to quantify the temporal variation of major photosynthesis products as well as their metabolic output in higher plants in a real-time, nondestructive and intuitive manner. In order to reveal the spatial-temporal scenarios of photosynthesis and yield formation regulated by circadian clock, multispectral imaging technique has been employed for nondestructive determination of circadian chlorophyll rhythms in soybean leaves. By utilizing partial least square regression analysis, the determination coefficients R2, 0.9483 for chlorophyll a and 0.8906 for chlorophyll b, were reached, respectively. The predicted chlorophyll contents extracted from multispectral data showed an approximately 24-h rhythm which could be entrained by external light conditions, consistent with the chlorophyll contents measured by chemical analyses. Visualization of chlorophyll map in each pixel offers an effective way to analyse spatial-temporal distribution of chlorophyll. Our results revealed the potentiality of multispectral imaging as a feasible nondestructive universal assay for examining clock function and robustness, as well as monitoring chlorophyll a and b and other biochemical components in plants. PMID:26059057
NASA Astrophysics Data System (ADS)
Pan, Wen-Juan; Wang, Xia; Deng, Yong-Ren; Li, Jia-Hang; Chen, Wei; Chiang, John Y.; Yang, Jian-Bo; Zheng, Lei
2015-06-01
The circadian clock, synchronized by daily cyclic environmental cues, regulates diverse aspects of plant growth and development and increases plant fitness. Even though much is known regarding the molecular mechanism of circadian clock, it remains challenging to quantify the temporal variation of major photosynthesis products as well as their metabolic output in higher plants in a real-time, nondestructive and intuitive manner. In order to reveal the spatial-temporal scenarios of photosynthesis and yield formation regulated by circadian clock, multispectral imaging technique has been employed for nondestructive determination of circadian chlorophyll rhythms in soybean leaves. By utilizing partial least square regression analysis, the determination coefficients R2, 0.9483 for chlorophyll a and 0.8906 for chlorophyll b, were reached, respectively. The predicted chlorophyll contents extracted from multispectral data showed an approximately 24-h rhythm which could be entrained by external light conditions, consistent with the chlorophyll contents measured by chemical analyses. Visualization of chlorophyll map in each pixel offers an effective way to analyse spatial-temporal distribution of chlorophyll. Our results revealed the potentiality of multispectral imaging as a feasible nondestructive universal assay for examining clock function and robustness, as well as monitoring chlorophyll a and b and other biochemical components in plants.
Reconciling resource utilization and resource selection functions
Hooten, Mevin B.; Hanks, Ephraim M.; Johnson, Devin S.; Alldredge, Mat W.
2013-01-01
Summary: 1. Analyses based on utilization distributions (UDs) have been ubiquitous in animal space use studies, largely because they are computationally straightforward and relatively easy to employ. Conventional applications of resource utilization functions (RUFs) suggest that estimates of UDs can be used as response variables in a regression involving spatial covariates of interest. 2. It has been claimed that contemporary implementations of RUFs can yield inference about resource selection, although to our knowledge, an explicit connection has not been described. 3. We explore the relationships between RUFs and resource selection functions from a hueristic and simulation perspective. We investigate several sources of potential bias in the estimation of resource selection coefficients using RUFs (e.g. the spatial covariance modelling that is often used in RUF analyses). 4. Our findings illustrate that RUFs can, in fact, serve as approximations to RSFs and are capable of providing inference about resource selection, but only with some modification and under specific circumstances. 5. Using real telemetry data as an example, we provide guidance on which methods for estimating resource selection may be more appropriate and in which situations. In general, if telemetry data are assumed to arise as a point process, then RSF methods may be preferable to RUFs; however, modified RUFs may provide less biased parameter estimates when the data are subject to location error.
Impact Factors and Risk Analysis of Tropical Cyclones on a Highway Network.
Yang, Saini; Hu, Fuyu; Jaeger, Carlo
2016-02-01
Coastal areas typically have high social and economic development and are likely to suffer huge losses due to tropical cyclones. These cyclones have a great impact on the transportation network, but there have been a limited number of studies about tropical-cyclone-induced transportation network functional damages, especially in Asia. This study develops an innovative measurement and analytical tool for highway network functional damage and risk in the context of a tropical cyclone, with which we explored the critical spatial characteristics of tropical cyclones with regard to functional damage to a highway network by developing linear regression models to quantify their relationship. Furthermore, we assessed the network's functional risk and calculated the return periods under different damage levels. In our analyses, we consider the real-world highway network of Hainan province, China. Our results illustrate that the most important spatial characteristics were location (in particular, the midlands), travel distance, landfalling status, and origin coordinates. However, the trajectory direction did not obviously affect the results. Our analyses indicate that the highway network of Hainan province may suffer from a 90% functional damage scenario every 4.28 years. These results have critical policy implications for the transport sector in reference to emergency planning and disaster reduction. © 2015 Society for Risk Analysis.
NASA Astrophysics Data System (ADS)
Luce, Charles H.; Lopez-Burgos, Viviana; Holden, Zachary
2014-12-01
Empirical sensitivity analyses are important for evaluation of the effects of a changing climate on water resources and ecosystems. Although mechanistic models are commonly applied for evaluation of climate effects for snowmelt, empirical relationships provide a first-order validation of the various postulates required for their implementation. Previous studies of empirical sensitivity for April 1 snow water equivalent (SWE) in the western United States were developed by regressing interannual variations in SWE to winter precipitation and temperature. This offers a temporal analog for climate change, positing that a warmer future looks like warmer years. Spatial analogs are used to hypothesize that a warmer future may look like warmer places, and are frequently applied alternatives for complex processes, or states/metrics that show little interannual variability (e.g., forest cover). We contrast spatial and temporal analogs for sensitivity of April 1 SWE and the mean residence time of snow (SRT) using data from 524 Snowpack Telemetry (SNOTEL) stations across the western U.S. We built relatively strong models using spatial analogs to relate temperature and precipitation climatology to snowpack climatology (April 1 SWE, R2=0.87, and SRT, R2=0.81). Although the poorest temporal analog relationships were in areas showing the highest sensitivity to warming, spatial analog models showed consistent performance throughout the range of temperature and precipitation. Generally, slopes from the spatial relationships showed greater thermal sensitivity than the temporal analogs, and high elevation stations showed greater vulnerability using a spatial analog than shown in previous modeling and sensitivity studies. The spatial analog models provide a simple perspective to evaluate potential futures and may be useful in further evaluation of snowpack with warming.
Application of QuickBird imagery in fuel load estimation in the Daxinganling region, China.
Sen Jin; Shyh-Chin Chen
2012-01-01
A high spatial resolution QuickBird satellite image and a low spatial but high spectral resolution Landsat Thermatic Mapper image were used to linearly regress fuel loads of 70 plots with size 30X30m over the Daxinganling region of north-east China. The results were compared with loads from field surveys and from regression estimations by surveyed stand characteristics...
Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses.
Faul, Franz; Erdfelder, Edgar; Buchner, Axel; Lang, Albert-Georg
2009-11-01
G*Power is a free power analysis program for a variety of statistical tests. We present extensions and improvements of the version introduced by Faul, Erdfelder, Lang, and Buchner (2007) in the domain of correlation and regression analyses. In the new version, we have added procedures to analyze the power of tests based on (1) single-sample tetrachoric correlations, (2) comparisons of dependent correlations, (3) bivariate linear regression, (4) multiple linear regression based on the random predictor model, (5) logistic regression, and (6) Poisson regression. We describe these new features and provide a brief introduction to their scope and handling.
Exploring spatial patterns and drivers of forest fires in Portugal (1980-2014).
Nunes, A N; Lourenço, L; Meira, A C Castro
2016-12-15
Information on the spatial incidence of fire ignition density and burnt area, trends and drivers of wildfires is vitally important in providing support for environmental and civil protection policies, designing appropriate prevention measures and allocating firefighting resources. The key objectives of this study were to analyse the geographical incidence and temporal trends for wildfires, as well as the main drivers of fire ignition and burnt area in Portugal on a municipal level. The results show that fires are not distributed uniformly throughout Portuguese territory, both in terms of ignition density and burnt area. One spot in the north-western area is well defined, covering 10% of the municipalities where more than one third of the total fire ignitions are concentrated. In >80% of Portuguese municipalities, ignition density has registered a positive trend since the 1980s. With regard to burnt area, 60% of the municipalities had a nil annual trend, 35% showed a positive trend and 5%, located mainly in the central region, revealed negative trends. Geographically weighted regression proved more efficient in identifying the most relevant physical and anthropogenic drivers of municipal wildfires in comparison with simple linear regression models. Topography, density of population, land cover and livestock were found to be significant in both ignition density and burnt area, although considerable variations were observed in municipal explanatory power. Copyright © 2016 Elsevier B.V. All rights reserved.
Li, Qi-Quan; Wang, Chang-Quan; Zhang, Wen-Jiang; Yu, Yong; Li, Bing; Yang, Juan; Bai, Gen-Chuan; Cai, Yan
2013-02-01
In this study, a radial basis function neural network model combined with ordinary kriging (RBFNN_OK) was adopted to predict the spatial distribution of soil nutrients (organic matter and total N) in a typical hilly region of Sichuan Basin, Southwest China, and the performance of this method was compared with that of ordinary kriging (OK) and regression kriging (RK). All the three methods produced the similar soil nutrient maps. However, as compared with those obtained by multiple linear regression model, the correlation coefficients between the measured values and the predicted values of soil organic matter and total N obtained by neural network model increased by 12. 3% and 16. 5% , respectively, suggesting that neural network model could more accurately capture the complicated relationships between soil nutrients and quantitative environmental factors. The error analyses of the prediction values of 469 validation points indicated that the mean absolute error (MAE) , mean relative error (MRE), and root mean squared error (RMSE) of RBFNN_OK were 6.9%, 7.4%, and 5. 1% (for soil organic matter), and 4.9%, 6.1% , and 4.6% (for soil total N) smaller than those of OK (P<0.01), and 2.4%, 2.6% , and 1.8% (for soil organic matter), and 2.1%, 2.8%, and 2.2% (for soil total N) smaller than those of RK, respectively (P<0.05).
Mothers' education and childhood mortality in Ghana.
Buor, Daniel
2003-06-01
The significant extent to which maternal education affects child health has been advanced in several sociodemographic-medical literature, but not much has been done in analysing the spatial dimension of the problem; and also using graphic and linear regression models of representation. In Ghana, very little has been done to relate the two variables and offer pragmatic explanations. The need to correlate the two, using a regression model, which is rarely applied in previous studies, is a methodological necessity. The paper examines the impact of mothers' education on childhood mortality in Ghana using, primarily, Ghana Demographic and Health Survey data of 1998 and World Bank data of 2000. The survey has emphatically established that there is an inverse relationship between mothers' education and child survivorship. The use of basic health facilities that relate to childhood survival shows a direct relationship with mothers' education. Recommendations for policy initiatives to simultaneously emphasise the education of the girl-child, and to ensure adequate access to maternal and child health services, have been made. The need for an experimental project of integrating maternal education and child health services has also been recommended. A linear regression model that illustrates the relationship between maternal education and childhood survival has emerged.
Satterthwaite, Theodore D.; Elliott, Mark A.; Gerraty, Raphael T.; Ruparel, Kosha; Loughead, James; Calkins, Monica E.; Eickhoff, Simon B.; Hakonarson, Hakon; Gur, Ruben C.; Gur, Raquel E.; Wolf, Daniel H.
2013-01-01
Several recent reports in large, independent samples have demonstrated the influence of motion artifact on resting-state functional connectivity MRI (rsfc-MRI). Standard rsfc-MRI preprocessing typically includes regression of confounding signals and band-pass filtering. However, substantial heterogeneity exists in how these techniques are implemented across studies, and no prior study has examined the effect of differing approaches for the control of motion-induced artifacts. To better understand how in-scanner head motion affects rsfc-MRI data, we describe the spatial, temporal, and spectral characteristics of motion artifacts in a sample of 348 adolescents. Analyses utilize a novel approach for describing head motion on a voxelwise basis. Next, we systematically evaluate the efficacy of a range of confound regression and filtering techniques for the control of motion-induced artifacts. Results reveal that the effectiveness of preprocessing procedures on the control of motion is heterogeneous, and that improved preprocessing provides a substantial benefit beyond typical procedures. These results demonstrate that the effect of motion on rsfc-MRI can be substantially attenuated through improved preprocessing procedures, but not completely removed. PMID:22926292
NASA Astrophysics Data System (ADS)
Kiani, M.; Hernandez Ramirez, G.; Quideau, S.
2016-12-01
Improved knowledge about the spatial variability of plant available water (PAW), soil organic carbon (SOC), and microbial biomass carbon (MBC) as affected by land-use systems can underpin the identification and inventory of beneficial ecosystem good and services in both agricultural and wild lands. Little research has been done that addresses the spatial patterns of PAW, SOC, and MBC under different land use types at a field scale. Therefore, we collected 56 soil samples (5-10 cm depth increment), using a nested cyclic sampling design within both a native grassland (NG) site and an irrigated cultivated (IC) site located near Brooks, Alberta. Using classical statistical and geostatistical methods, we characterized the spatial heterogeneities of PAW, SOC, and MBC under NG and IC using several geostatistical methods such as ordinary kriging (OK), regression-kriging (RK), cokriging (COK), and regression-cokriging (RCOK). Converting the native grassland to irrigated cultivated land altered soil pore distribution by reducing macroporosity which led to lower saturated water content and half hydraulic conductivity in IC compared to NG. This conversion also decreased the relative abundance of gram-negative bacteria, while increasing both the proportion of gram-positive bacteria and MBC concentration. At both studied sites, the best fitted spatial model was Gaussian based on lower RSS and higher R2 as criteria. The IC had stronger degree of spatial dependence and longer range of spatial auto-correlation revealing a homogenization of the spatial variability of soil properties as a result of intensive, recurrent agricultural activities. Comparison of OK, RK, COK, and RCOK approaches indicated that cokriging method had the best performance demonstrating a profound improvement in the accuracy of spatial estimations of PAW, SOC, and MBC. It seems that the combination of terrain covariates such as elevation and depth-to-water with kriging techniques offers more capability for incorporating explicit ancillary information in predictive soil mapping. Overall, identification of spatial patterns of soil properties in agricultural lands gives a bird's eye view to land owners to implement and improve management practices which lead to more sustainable production.
Stopka, Thomas J; Brinkley-Rubinstein, Lauren; Johnson, Kendra; Chan, Philip A; Hutcheson, Marga; Crosby, Richard; Burke, Deirdre; Mena, Leandro; Nunn, Amy
2018-04-03
In recent years, more than half of new HIV infections in the United States occur among African Americans in the Southeastern United States. Spatial epidemiological analyses can inform public health responses in the Deep South by identifying HIV hotspots and community-level factors associated with clustering. The goal of this study was to identify and characterize HIV clusters in Mississippi through analysis of state-level HIV surveillance data. We used a combination of spatial epidemiology and statistical modeling to identify and characterize HIV hotspots in Mississippi census tracts (n=658) from 2008 to 2014. We conducted spatial analyses of all HIV infections, infections among men who have sex with men (MSM), and infections among African Americans. Multivariable logistic regression analyses identified community-level sociodemographic factors associated with HIV hotspots considering all cases. There were HIV hotspots for the entire population, MSM, and African American MSM identified in the Mississippi Delta region, Southern Mississippi, and in greater Jackson, including surrounding rural counties (P<.05). In multivariable models for all HIV cases, HIV hotspots were significantly more likely to include urban census tracts (adjusted odds ratio [AOR] 2.01, 95% CI 1.20-3.37) and census tracts that had a higher proportion of African Americans (AOR 3.85, 95% CI 2.23-6.65). The HIV hotspots were less likely to include census tracts with residents who had less than a high school education (AOR 0.95, 95% CI 0.92-0.98), census tracts with residents belonging to two or more racial/ethnic groups (AOR 0.46, 95% CI 0.30-0.70), and census tracts that had a higher percentage of the population living below the poverty level (AOR 0.51, 95% CI 0.28-0.92). We used spatial epidemiology and statistical modeling to identify and characterize HIV hotspots for the general population, MSM, and African Americans. HIV clusters concentrated in Jackson and the Mississippi Delta. African American race and urban location were positively associated with clusters, whereas having less than a high school education and having a higher percentage of the population living below the poverty level were negatively associated with clusters. Spatial epidemiological analyses can inform implementation science and public health response strategies, including improved HIV testing, targeted prevention and risk reduction education, and tailored preexposure prophylaxis to address HIV disparities in the South. ©Thomas J Stopka, Lauren Brinkley-Rubinstein, Kendra Johnson, Philip A Chan, Marga Hutcheson, Richard Crosby, Deirdre Burke, Leandro Mena, Amy Nunn. Originally published in JMIR Public Health and Surveillance (http://publichealth.jmir.org), 03.04.2018.
Human Activity Helps Prey Win the Predator-Prey Space Race
Muhly, Tyler B.; Semeniuk, Christina; Massolo, Alessandro; Hickman, Laura; Musiani, Marco
2011-01-01
Predator-prey interactions, including between large mammalian wildlife species, can be represented as a “space race”, where prey try to minimize and predators maximize spatial overlap. Human activity can also influence the distribution of wildlife species. In particular, high-human disturbance can displace large carnivore predators, a trait-mediated direct effect. Predator displacement by humans could then indirectly benefit prey species by reducing predation risk, a trait-mediated indirect effect of humans that spatially decouples predators from prey. The purpose of this research was to test the hypothesis that high-human activity was displacing predators and thus indirectly creating spatial refuge for prey species, helping prey win the “space race”. We measured the occurrence of eleven large mammal species (including humans and cattle) at 43 camera traps deployed on roads and trails in southwest Alberta, Canada. We tested species co-occurrence at camera sites using hierarchical cluster and nonmetric multidimensional scaling (NMS) analyses; and tested whether human activity, food and/or habitat influenced predator and prey species counts at camera sites using regression tree analysis. Cluster and NMS analysis indicated that at camera sites humans co-occurred with prey species more than predator species and predator species had relatively low co-occurrence with prey species. Regression tree analysis indicated that prey species were three times more abundant on roads and trails with >32 humans/day. However, predators were less abundant on roads and trails that exceeded 18 humans/day. Our results support the hypothesis that high-human activity displaced predators but not prey species, creating spatial refuge from predation. High-human activity on roads and trails (i.e., >18 humans/day) has the potential to interfere with predator-prey interactions via trait-mediated direct and indirect effects. We urge scientist and managers to carefully consider and quantify the trait-mediated indirect effects of humans, in addition to direct effects, when assessing human impacts on wildlife and ecosystems. PMID:21399682
Land Area Change in Coastal Louisiana: A Multidecadal Perspective (from 1956 to 2006)
Barras, John A.; Bernier, Julie C.; Morton, Robert A.
2008-01-01
The U.S. Geological Survey (USGS) analyzed changes in the configuration of land and water in coastal Louisiana by using a sequential series of 14 data sets summarizing land and water areas from 1956 to 2006. The purpose of this study is to provide a spatially and temporally consistent source of quantitative information on land area across coastal Louisiana, broken into three physiographic provinces (the term 'coastal Louisiana' is used to present data on the collective area). The land-water data sets used in this study are interpreted through spatial analysis and by linear regression analysis. The spatial depictions of land area change reveal a complex and interwoven mosaic of loss and gain patterns caused by natural and human-induced processes operating at varied temporal and spatial scales, resulting in fluctuating contributions to coastal loss. The linear regression analysis provides a robust estimate of recent change trends by comparing land area over time for all data sets from 1985 to 2004 and from 1985 to 2006 by physiographic province across coastal Louisiana. The 1956 to 2006 map showing multidecadal changes, along with the linear regressions of land area change presented in this study, provide a comprehensive and concise presentation of historical trends and rates of land area change in coastal Louisiana. Taking a broad historical view provides an in-depth understanding of land area changes over time. For example, one observation provided by our historical review is that the majority of the widespread, nontransitory land gains depicted on the map over the past 50 years, with the exception of the progradation of the Atchafafalaya River and Wax Lake deltas, are primarily related to sediment placement and landward migration of barrier islands. Another point revealed by our historical approach is that recent land losses caused by hurricanes sometimes commingled with or exacerbated older losses formed during the 1956 to 1978 period. Furthermore, our analyses also show how the immediate impacts of extreme storms can alter the long-term, time-averaged trends of landscape change, thus limiting the range of projections for the future. For this reason, this study does not include trend projections beyond 2015 because of uncertainties related to recovery from the 2005 hurricane season and the potential for other episodic events that could skew future rates of change.
NASA Astrophysics Data System (ADS)
Wilson, Seth Mark
Grizzly bear (Ursus arctos) deaths in the US tend to be concentrated on the periphery of core habitats. These deaths were often preceded by conflicts with humans. Management removals of "nuisance" and or habituated grizzly bears are a leading cause of death in many populations. This exploratory study focuses on the conditions that lead to human-grizzly bear conflicts on private lands near core habitat. I examined spatial associations among reported human-grizzly bear conflicts during 1986--2001, landscape features, and agricultural-attractants in north-central Montana. I surveyed 61 of a possible 64 active livestock related land users and I used geographic information system (GIS) techniques to collect information on cattle and sheep pasture locations, seasons of use, and bone yard (carcass dumps) and beehive locations. I used GIS spatial analyses, univariate tests, and logistic regression models to explore the associations among conflicts, landscape features, and attractants. A majority (75%) of conflicts were found in distinct seasonal conflict hotspots. Conflict hotspots with spatial overlap were associated with riparian vegetation, bone yards, and beehives in close proximity to one another and accounted for 62% of all conflicts. Consistently available seasonal attractants in overlapping hotspots such as calving areas, sheep lambing areas and spring, summer, and fall sheep and cattle pastures appear to perpetuate the occurrence of conflicts. I found that lambing areas and spring and summer sheep pastures were strongly associated with conflict locations as were cattle calving areas, spring cow/calf pastures, fall pastures, and bone yards. Logistic regression modeling revealed that the presence of riparian vegetation within a 1.6 km search radius strongly influenced the likelihood of conflict. After controlling for riparian vegetation, I found that unmanaged bone yards, unfenced and fenced beehives, all increased the odds of conflict. For every 1 km moved away from spring, summer, and fall sheep and cattle pastures, the odds of conflict decreased. The model confirmed the existence of conflict hotspots and illustrated that a collection of attractants beyond the effects of riparian vegetation were associated with conflicts. Contour probability plots of logistic regression models showed good predictive capacity. We discuss these findings and offer management recommendations.
Kheirbek, Iyad; Johnson, Sarah; Ross, Zev; Pezeshki, Grant; Ito, Kazuhiko; Eisl, Holger; Matte, Thomas
2012-07-31
Hazardous air pollutant exposures are common in urban areas contributing to increased risk of cancer and other adverse health outcomes. While recent analyses indicate that New York City residents experience significantly higher cancer risks attributable to hazardous air pollutant exposures than the United States as a whole, limited data exist to assess intra-urban variability in air toxics exposures. To assess intra-urban spatial variability in exposures to common hazardous air pollutants, street-level air sampling for volatile organic compounds and aldehydes was conducted at 70 sites throughout New York City during the spring of 2011. Land-use regression models were developed using a subset of 59 sites and validated against the remaining 11 sites to describe the relationship between concentrations of benzene, total BTEX (benzene, toluene, ethylbenzene, xylenes) and formaldehyde to indicators of local sources, adjusting for temporal variation. Total BTEX levels exhibited the most spatial variability, followed by benzene and formaldehyde (coefficient of variation of temporally adjusted measurements of 0.57, 0.35, 0.22, respectively). Total roadway length within 100 m, traffic signal density within 400 m of monitoring sites, and an indicator of temporal variation explained 65% of the total variability in benzene while 70% of the total variability in BTEX was accounted for by traffic signal density within 450 m, density of permitted solvent-use industries within 500 m, and an indicator of temporal variation. Measures of temporal variation, traffic signal density within 400 m, road length within 100 m, and interior building area within 100 m (indicator of heating fuel combustion) predicted 83% of the total variability of formaldehyde. The models built with the modeling subset were found to predict concentrations well, predicting 62% to 68% of monitored values at validation sites. Traffic and point source emissions cause substantial variation in street-level exposures to common toxic volatile organic compounds in New York City. Land-use regression models were successfully developed for benzene, formaldehyde, and total BTEX using spatial indicators of on-road vehicle emissions and emissions from stationary sources. These estimates will improve the understanding of health effects of individual pollutants in complex urban pollutant mixtures and inform local air quality improvement efforts that reduce disparities in exposure.
Archfield, Stacey A.; Pugliese, Alessio; Castellarin, Attilio; Skøien, Jon O.; Kiang, Julie E.
2013-01-01
In the United States, estimation of flood frequency quantiles at ungauged locations has been largely based on regional regression techniques that relate measurable catchment descriptors to flood quantiles. More recently, spatial interpolation techniques of point data have been shown to be effective for predicting streamflow statistics (i.e., flood flows and low-flow indices) in ungauged catchments. Literature reports successful applications of two techniques, canonical kriging, CK (or physiographical-space-based interpolation, PSBI), and topological kriging, TK (or top-kriging). CK performs the spatial interpolation of the streamflow statistic of interest in the two-dimensional space of catchment descriptors. TK predicts the streamflow statistic along river networks taking both the catchment area and nested nature of catchments into account. It is of interest to understand how these spatial interpolation methods compare with generalized least squares (GLS) regression, one of the most common approaches to estimate flood quantiles at ungauged locations. By means of a leave-one-out cross-validation procedure, the performance of CK and TK was compared to GLS regression equations developed for the prediction of 10, 50, 100 and 500 yr floods for 61 streamgauges in the southeast United States. TK substantially outperforms GLS and CK for the study area, particularly for large catchments. The performance of TK over GLS highlights an important distinction between the treatments of spatial correlation when using regression-based or spatial interpolation methods to estimate flood quantiles at ungauged locations. The analysis also shows that coupling TK with CK slightly improves the performance of TK; however, the improvement is marginal when compared to the improvement in performance over GLS.
Influence of landscape-scale factors in limiting brook trout populations in Pennsylvania streams
Kocovsky, P.M.; Carline, R.F.
2006-01-01
Landscapes influence the capacity of streams to produce trout through their effect on water chemistry and other factors at the reach scale. Trout abundance also fluctuates over time; thus, to thoroughly understand how spatial factors at landscape scales affect trout populations, one must assess the changes in populations over time to provide a context for interpreting the importance of spatial factors. We used data from the Pennsylvania Fish and Boat Commission's fisheries management database to investigate spatial factors that affect the capacity of streams to support brook trout Salvelinus fontinalis and to provide models useful for their management. We assessed the relative importance of spatial and temporal variation by calculating variance components and comparing relative standard errors for spatial and temporal variation. We used binary logistic regression to predict the presence of harvestable-length brook trout and multiple linear regression to assess the mechanistic links between landscapes and trout populations and to predict population density. The variance in trout density among streams was equal to or greater than the temporal variation for several streams, indicating that differences among sites affect population density. Logistic regression models correctly predicted the absence of harvestable-length brook trout in 60% of validation samples. The r 2-value for the linear regression model predicting density was 0.3, indicating low predictive ability. Both logistic and linear regression models supported buffering capacity against acid episodes as an important mechanistic link between landscapes and trout populations. Although our models fail to predict trout densities precisely, their success at elucidating the mechanistic links between landscapes and trout populations, in concert with the importance of spatial variation, increases our understanding of factors affecting brook trout abundance and will help managers and private groups to protect and enhance populations of wild brook trout. ?? Copyright by the American Fisheries Society 2006.
A spatial epidemiological analysis of self-rated mental health in the slums of Dhaka
2011-01-01
Background The deprived physical environments present in slums are well-known to have adverse health effects on their residents. However, little is known about the health effects of the social environments in slums. Moreover, neighbourhood quantitative spatial analyses of the mental health status of slum residents are still rare. The aim of this paper is to study self-rated mental health data in several slums of Dhaka, Bangladesh, by accounting for neighbourhood social and physical associations using spatial statistics. We hypothesised that mental health would show a significant spatial pattern in different population groups, and that the spatial patterns would relate to spatially-correlated health-determining factors (HDF). Methods We applied a spatial epidemiological approach, including non-spatial ANOVA/ANCOVA, as well as global and local univariate and bivariate Moran's I statistics. The WHO-5 Well-being Index was used as a measure of self-rated mental health. Results We found that poor mental health (WHO-5 scores < 13) among the adult population (age ≥15) was prevalent in all slum settlements. We detected spatially autocorrelated WHO-5 scores (i.e., spatial clusters of poor and good mental health among different population groups). Further, we detected spatial associations between mental health and housing quality, sanitation, income generation, environmental health knowledge, education, age, gender, flood non-affectedness, and selected properties of the natural environment. Conclusions Spatial patterns of mental health were detected and could be partly explained by spatially correlated HDF. We thereby showed that the socio-physical neighbourhood was significantly associated with health status, i.e., mental health at one location was spatially dependent on the mental health and HDF prevalent at neighbouring locations. Furthermore, the spatial patterns point to severe health disparities both within and between the slums. In addition to examining health outcomes, the methodology used here is also applicable to residuals of regression models, such as helping to avoid violating the assumption of data independence that underlies many statistical approaches. We assume that similar spatial structures can be found in other studies focussing on neighbourhood effects on health, and therefore argue for a more widespread incorporation of spatial statistics in epidemiological studies. PMID:21599932
NASA Astrophysics Data System (ADS)
Beck, Christoph; Philipp, Andreas; Jacobeit, Jucundus
2014-05-01
This contribution investigates the relationship between large-scale atmospheric circulation and interannual variations of the standardized precipitation index (SPI) in central Europe. To this end occurrence frequencies of circulation types (CT) derived from a variety of circulation type classifications (CTC) applied to daily sea level pressure (SLP) data and mean circulation indices of vorticity (V), zonality (Z) and meridionality (M) have been utilized as predictors within multiple regression models (MRM) for the estimation of gridded 3-month SPI values over central Europe for the period 1950 to 2010. CTC based MRMs used in the analyses comprise variants concerning the basic method for CT classification, the number of CTs, the size and location of the spatial domain used for CTCs and the exclusive use of CT frequencies or the combined use of CT frequencies and mean circulation indices as predictors. Adequate MRM predictor combinations have been identified by applying stepwise multiple regression analyses within a resampling framework. The performance (robustness) of the resulting MRMs has been quantified based on a leave-one out cross-validation procedure applying several skill scores. Furthermore the relative importance of individual predictors has been estimated for each MRM. From these analyses it can be stated that i.) the consideration of vorticity characteristics within CTCs, ii.) a relatively small size of the spatial domain to which CTCs are applied and iii.) the inclusion of mean circulation indices appear to improve model skill. However model skill exhibits distinct variations between seasons and regions. Whereas promising skill can be stated for the western and northwestern parts of the central European domain only unsatisfactorily skill is reached in the more continental regions and particularly during summer. Thus it can be concluded that the here presented approaches feature the potential for the downscaling of central European drought index variations from large-scale circulation at least for some regions. Further improvements of CTC based approaches may be expected from the optimization of CTCs for explaining the SPI e.g. via the inclusion of additional variables into the classification procedure.
NASA Astrophysics Data System (ADS)
Beck, Christoph; Philipp, Andreas; Jacobeit, Jucundus
2015-08-01
This contribution investigates the relationship between the large-scale atmospheric circulation and interannual variations of the standardized precipitation index (SPI) in Central Europe. To this end, circulation types (CT) have been derived from a variety of circulation type classifications (CTC) applied to daily sea level pressure (SLP) data and mean circulation indices of vorticity ( V), zonality ( Z) and meridionality ( M) have been calculated. Occurrence frequencies of CTs and circulation indices have been utilized as predictors within multiple regression models (MRM) for the estimation of gridded 3-month SPI values over Central Europe, for the period 1950 to 2010. CTC-based MRMs used in the analyses comprise variants concerning the basic method for CT classification, the number of CTs, the size and location of the spatial domain used for CTCs and the exclusive use of CT frequencies or the combined use of CT frequencies and mean circulation indices as predictors. Adequate MRM predictor combinations have been identified by applying stepwise multiple regression analyses within a resampling framework. The performance (robustness) of the resulting MRMs has been quantified based on a leave-one-out cross-validation procedure applying several skill scores. Furthermore, the relative importance of individual predictors has been estimated for each MRM. From these analyses, it can be stated that model skill is improved by (i) the consideration of vorticity characteristics within CTCs, (ii) a relatively small size of the spatial domain to which CTCs are applied and (iii) the inclusion of mean circulation indices. However, model skill exhibits distinct variations between seasons and regions. Whereas promising skill can be stated for the western and northwestern parts of the Central European domain, only unsatisfactory skill is reached in the more continental regions and particularly during summer. Thus, it can be concluded that the presented approaches feature the potential for the downscaling of Central European drought index variations from the large-scale circulation, at least for some regions. Further improvements of CTC-based approaches may be expected from the optimization of CTCs for explaining the SPI, e.g. via the inclusion of additional variables in the classification procedure.
SST algorithms in ACSPO reanalysis of AVHRR GAC data from 2002-2013
NASA Astrophysics Data System (ADS)
Petrenko, B.; Ignatov, A.; Kihai, Y.; Zhou, X.; Stroup, J.
2014-05-01
In response to a request from the NOAA Coral Reef Watch Program, NOAA SST Team initiated reprocessing of 4 km resolution GAC data from AVHRRs flown onboard NOAA and MetOp satellites. The objective is to create a longterm Level 2 Advanced Clear-Sky Processor for Oceans (ACSPO) SST product, consistent with NOAA operations. ACSPO-Reanalysis (RAN) is used as input in the NOAA geo-polar blended Level 4 SST and potentially other Level 4 SST products. In the first stage of reprocessing (reanalysis 1, or RAN1), data from NOAA-15, -16, -17, -18, -19, and Metop-A and -B, from 2002-present have been processed with ACSPO v2.20, and matched up with quality controlled in situ data from in situ Quality Monitor (iQuam) version 1. The ~12 years time series of matchups were used to develop and explore the SST retrieval algorithms, with emphasis on minimizing spatial biases in retrieved SSTs, close reproduction of the magnitudes of true SST variations, and maximizing temporal, spatial and inter-platform stability of retrieval metrics. Two types of SST algorithms were considered: conventional SST regressions, and recently developed incremental regressions. The conventional equations were adopted in the EUMETSAT OSI-SAF formulation, which, according to our previous analyses, provide relatively small regional biases and well-balanced combination of precision and sensitivity, in its class. Incremental regression equations were specifically elaborated to automatically correct for model minus observation biases, always present when RTM simulations are employed. Improved temporal stability was achieved by recalculation of SST coefficients from matchups on a daily basis, with a +/-45 day window around the current date. This presentation describes the candidate SST algorithms considered for the next round of ACSPO reanalysis, RAN2.
NASA Astrophysics Data System (ADS)
Hatvani, István Gábor; Leuenberger, Markus; Kohán, Balázs; Kern, Zoltán
2017-09-01
Water stable isotopes preserved in ice cores provide essential information about polar precipitation. In the present study, multivariate regression and variogram analyses were conducted on 22 δ2H and 53 δ18O records from 60 ice cores covering the second half of the 20th century. Taking the multicollinearity of the explanatory variables into account, as also the model's adjusted R2 and its mean absolute error, longitude, elevation and distance from the coast were found to be the main independent geographical driving factors governing the spatial δ18O variability of firn/ice in the chosen Antarctic macro region. After diminishing the effects of these factors, using variography, the weights for interpolation with kriging were obtained and the spatial autocorrelation structure of the dataset was revealed. This indicates an average area of influence with a radius of 350 km. This allows the determination of the areas which are as yet not covered by the spatial variability of the existing network of ice cores. Finally, the regional isoscape was obtained for the study area, and this may be considered the first step towards a geostatistically improved isoscape for Antarctica.
NASA Astrophysics Data System (ADS)
Muller, Sybrand Jacobus; van Niekerk, Adriaan
2016-07-01
Soil salinity often leads to reduced crop yield and quality and can render soils barren. Irrigated areas are particularly at risk due to intensive cultivation and secondary salinization caused by waterlogging. Regular monitoring of salt accumulation in irrigation schemes is needed to keep its negative effects under control. The dynamic spatial and temporal characteristics of remote sensing can provide a cost-effective solution for monitoring salt accumulation at irrigation scheme level. This study evaluated a range of pan-fused SPOT-5 derived features (spectral bands, vegetation indices, image textures and image transformations) for classifying salt-affected areas in two distinctly different irrigation schemes in South Africa, namely Vaalharts and Breede River. The relationship between the input features and electro conductivity measurements were investigated using regression modelling (stepwise linear regression, partial least squares regression, curve fit regression modelling) and supervised classification (maximum likelihood, nearest neighbour, decision tree analysis, support vector machine and random forests). Classification and regression trees and random forest were used to select the most important features for differentiating salt-affected and unaffected areas. The results showed that the regression analyses produced weak models (<0.4 R squared). Better results were achieved using the supervised classifiers, but the algorithms tend to over-estimate salt-affected areas. A key finding was that none of the feature sets or classification algorithms stood out as being superior for monitoring salt accumulation at irrigation scheme level. This was attributed to the large variations in the spectral responses of different crops types at different growing stages, coupled with their individual tolerances to saline conditions.
Linear regression metamodeling as a tool to summarize and present simulation model results.
Jalal, Hawre; Dowd, Bryan; Sainfort, François; Kuntz, Karen M
2013-10-01
Modelers lack a tool to systematically and clearly present complex model results, including those from sensitivity analyses. The objective was to propose linear regression metamodeling as a tool to increase transparency of decision analytic models and better communicate their results. We used a simplified cancer cure model to demonstrate our approach. The model computed the lifetime cost and benefit of 3 treatment options for cancer patients. We simulated 10,000 cohorts in a probabilistic sensitivity analysis (PSA) and regressed the model outcomes on the standardized input parameter values in a set of regression analyses. We used the regression coefficients to describe measures of sensitivity analyses, including threshold and parameter sensitivity analyses. We also compared the results of the PSA to deterministic full-factorial and one-factor-at-a-time designs. The regression intercept represented the estimated base-case outcome, and the other coefficients described the relative parameter uncertainty in the model. We defined simple relationships that compute the average and incremental net benefit of each intervention. Metamodeling produced outputs similar to traditional deterministic 1-way or 2-way sensitivity analyses but was more reliable since it used all parameter values. Linear regression metamodeling is a simple, yet powerful, tool that can assist modelers in communicating model characteristics and sensitivity analyses.
Shui, Wei; DU, Yong; Chen, Yi Ping; Jian, Xiao Mei; Fan, Bing Xiong
2017-04-18
Anxi County, specializing in tea cultivation, was taken as a case in this research. Pearson correlation analysis, ordinary least squares model (OLS) and geographically weighted regression model (GWR) were used to select four primary influence factors of specialization in tea cultivation (i.e., the average elevation, net income per capita, proportion of agricultural population, and the distance from roads) by analyzing the specialization degree of each town of Anxi County. Meanwhile, the spatial patterns of specialization in tea cultivation of Anxi County were evaluated. The results indicated that specialization in tea cultivation of Anxi County showed an obvious spatial auto-correlation, and a spatial pattern with "low-middle-high" circle structure, which was similar to Von Thünen's circle structure model, appeared from the county town to its surrounding region. Meanwhile, GWR (0.624) had a better fitting degree than OLS (0.595), and GWR could reasonably expound the spatial data. Contrary to the agricultural location theory of Von Thünen's model, which indicated that distance from market was a determination factor, the specialization degree of tea cultivation in Anxi was mainly decided by natural conditions of mountain area, instead of the social factors. Specialization degree of tea cultivation was positively correlated with the average elevation, net income per capita and the proportion of agricultural population, while a negative correlation was found between the distance from roads and specialization degree of tea cultivation. Coefficients of regression between the specialization degree of tea cultivation and two factors (i.e., the average elevation and net income per capita) showed a spatial pattern of higher level in the north direction and lower level in the south direction. On the contrary, the regression coefficients for the proportion of agricultural population increased from south to north of Anxi County. Furthermore, regression coefficient for the distance from roads showed a spatial pattern of higher level in the northeast direction and lower level in the southwest direction of Anxi County.
Kumar, Dushyant; Hariharan, Hari; Faizy, Tobias D; Borchert, Patrick; Siemonsen, Susanne; Fiehler, Jens; Reddy, Ravinder; Sedlacik, Jan
2018-05-12
We present a computationally feasible and iterative multi-voxel spatially regularized algorithm for myelin water fraction (MWF) reconstruction. This method utilizes 3D spatial correlations present in anatomical/pathological tissues and underlying B1 + -inhomogeneity or flip angle inhomogeneity to enhance the noise robustness of the reconstruction while intrinsically accounting for stimulated echo contributions using T2-distribution data alone. Simulated data and in vivo data acquired using 3D non-selective multi-echo spin echo (3DNS-MESE) were used to compare the reconstruction quality of the proposed approach against those of the popular algorithm (the method by Prasloski et al.) and our previously proposed 2D multi-slice spatial regularization spatial regularization approach. We also investigated whether the inter-sequence correlations and agreements improved as a result of the proposed approach. MWF-quantifications from two sequences, 3DNS-MESE vs 3DNS-gradient and spin echo (3DNS-GRASE), were compared for both reconstruction approaches to assess correlations and agreements between inter-sequence MWF-value pairs. MWF values from whole-brain data of six volunteers and two multiple sclerosis patients are being reported as well. In comparison with competing approaches such as Prasloski's method or our previously proposed 2D multi-slice spatial regularization method, the proposed method showed better agreements with simulated truths using regression analyses and Bland-Altman analyses. For 3DNS-MESE data, MWF-maps reconstructed using the proposed algorithm provided better depictions of white matter structures in subcortical areas adjoining gray matter which agreed more closely with corresponding contrasts on T2-weighted images than MWF-maps reconstructed with the method by Prasloski et al. We also achieved a higher level of correlations and agreements between inter-sequence (3DNS-MESE vs 3DNS-GRASE) MWF-value pairs. The proposed algorithm provides more noise-robust fits to T2-decay data and improves MWF-quantifications in white matter structures especially in the sub-cortical white matter and major white matter tract regions. Copyright © 2018 Elsevier Inc. All rights reserved.
Yang, Shun-hua; Zhang, Hai-tao; Guo, Long; Ren, Yan
2015-06-01
Relative elevation and stream power index were selected as auxiliary variables based on correlation analysis for mapping soil organic matter. Geographically weighted regression Kriging (GWRK) and regression Kriging (RK) were used for spatial interpolation of soil organic matter and compared with ordinary Kriging (OK), which acts as a control. The results indicated that soil or- ganic matter was significantly positively correlated with relative elevation whilst it had a significantly negative correlation with stream power index. Semivariance analysis showed that both soil organic matter content and its residuals (including ordinary least square regression residual and GWR resi- dual) had strong spatial autocorrelation. Interpolation accuracies by different methods were esti- mated based on a data set of 98 validation samples. Results showed that the mean error (ME), mean absolute error (MAE) and root mean square error (RMSE) of RK were respectively 39.2%, 17.7% and 20.6% lower than the corresponding values of OK, with a relative-improvement (RI) of 20.63. GWRK showed a similar tendency, having its ME, MAE and RMSE to be respectively 60.6%, 23.7% and 27.6% lower than those of OK, with a RI of 59.79. Therefore, both RK and GWRK significantly improved the accuracy of OK interpolation of soil organic matter due to their in- corporation of auxiliary variables. In addition, GWRK performed obviously better than RK did in this study, and its improved performance should be attributed to the consideration of sample spatial locations.
Celeste Journey; Anne B. Hoos; David E. Ladd; John W. brakebill; Richard A. Smith
2016-01-01
The U.S. Geological Survey (USGS) National Water Quality Assessment program has developed a web-based decision support system (DSS) to provide free public access to the steady-stateSPAtially Referenced Regressions On Watershed attributes (SPARROW) model simulation results on nutrient conditions in streams and rivers and to offer scenario testing capabilities for...
Hyper-Spectral Image Analysis With Partially Latent Regression and Spatial Markov Dependencies
NASA Astrophysics Data System (ADS)
Deleforge, Antoine; Forbes, Florence; Ba, Sileye; Horaud, Radu
2015-09-01
Hyper-spectral data can be analyzed to recover physical properties at large planetary scales. This involves resolving inverse problems which can be addressed within machine learning, with the advantage that, once a relationship between physical parameters and spectra has been established in a data-driven fashion, the learned relationship can be used to estimate physical parameters for new hyper-spectral observations. Within this framework, we propose a spatially-constrained and partially-latent regression method which maps high-dimensional inputs (hyper-spectral images) onto low-dimensional responses (physical parameters such as the local chemical composition of the soil). The proposed regression model comprises two key features. Firstly, it combines a Gaussian mixture of locally-linear mappings (GLLiM) with a partially-latent response model. While the former makes high-dimensional regression tractable, the latter enables to deal with physical parameters that cannot be observed or, more generally, with data contaminated by experimental artifacts that cannot be explained with noise models. Secondly, spatial constraints are introduced in the model through a Markov random field (MRF) prior which provides a spatial structure to the Gaussian-mixture hidden variables. Experiments conducted on a database composed of remotely sensed observations collected from the Mars planet by the Mars Express orbiter demonstrate the effectiveness of the proposed model.
Environmental species sorting dominates forest-bird community assembly across scales.
Özkan, Korhan; Svenning, Jens-Christian; Jeppesen, Erik
2013-01-01
Environmental species sorting and dispersal are seen as key factors in community assembly, but their relative importance and scale dependence remain uncertain, as the extent to which communities are consistently assembled throughout their biomes. To address these issues, we analysed bird metacommunity structure in a 1200-km(2) forested landscape (Istranca Forests) in Turkish Thrace at the margin of the Western Palaearctic (WP) temperate-forest biome. First, we used spatial regressions and Mantel tests to assess the relative importance of environmental and spatial factors as drivers of local species richness and composition within the metacommunity. Second, we analysed species' abundance-occupancy relationship across the metacommunity and used null models to assess whether occupancy is determined by species' environmental niches. Third, we used generalized linear models to test for links between species' metacommunity-wide occupancy and their broader WP regional populations and assessed whether these links are consistent with environmental species sorting. There was strong environmental control on local species richness and composition patterns within the metacommunity, but non-environmental spatial factors had also an important joint role. Null model analyses on randomized communities showed that species' occupancy across the metacommunity was strongly determined by species' environmental niches, with occupancy being related to niche position marginality. Species' metacommunity-wide occupancy correlated with their local abundance as well as with their range size and total abundance for the whole WP, suggesting that the same assembly mechanisms act consistently across local to regional scales. A species specialization index that was estimated by bird species' habitat use across France, incorporating both niche position and breadth, was significantly related to species' occupancy and abundance at both metacommunity and WP regional scales. Hence, the same niche-related assembly mechanisms appear to act consistently across the WP region. Overall, our results suggest that the structure of the Istranca Forest' bird metacommunity was predominantly controlled by environmental species sorting in a manner consistent with the broader WP region. However, variability in local community structure was also linked to purely spatial factors, albeit more weakly. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.
2014-01-01
Introduction The precise trigger of podoconiosis — endemic non-filarial elephantiasis of the lower legs — is unknown. Epidemiological and ecological studies have linked the disease with barefoot exposure to red clay soils of volcanic origin. Histopathology investigations have demonstrated that silicon, aluminium, magnesium and iron are present in the lower limb lymph node macrophages of both patients and non-patients living barefoot on these clays. We studied the spatial variation (variations across an area) in podoconiosis prevalence and the associated environmental factors with a goal to better understanding the pathogenesis of podoconiosis. Methods Fieldwork was conducted from June 2011 to February 2013 in 12 kebeles (administrative units) in northern Ethiopia. Geo-located prevalence data and soil samples were collected and analysed along with secondary geological, topographic, meteorological and elevation data. Soil data were analysed for chemical composition, mineralogy and particle size, and were interpolated to provide spatially continuous information. Exploratory, spatial, univariate and multivariate regression analyses of podoconiosis prevalence were conducted in relation to primary (soil) and secondary (elevation, precipitation, and geology) covariates. Results Podoconiosis distribution showed spatial correlation with variation in elevation and precipitation. Exploratory analysis identified that phyllosilicate minerals, particularly clay (smectite and kaolinite) and mica groups, quartz (crystalline silica), iron oxide, and zirconium were associated with podoconiosis prevalence. The final multivariate model showed that the quantities of smectite (RR = 2.76, 95% CI: 1.35, 5.73; p = 0.007), quartz (RR = 1.16, 95% CI: 1.06, 1.26; p = 0.001) and mica (RR = 1.09, 95% CI: 1.05, 1.13; p < 0.001) in the soil had positive associations with podoconiosis prevalence. Conclusions More quantities of smectite, mica and quartz within the soil were associated with podoconiosis prevalence. Together with previous work indicating that these minerals may influence water absorption, potentiate infection and be toxic to human cells, the present findings suggest that these particles may play a role in the pathogenesis of podoconiosis and acute adenolymphangitis, a common cause of morbidity in podoconiosis patients. PMID:24946801
Sheehan, Kenneth R.; Strager, Michael P.; Welsh, Stuart A.
2013-01-01
Stream habitat assessments are commonplace in fish management, and often involve nonspatial analysis methods for quantifying or predicting habitat, such as ordinary least squares regression (OLS). Spatial relationships, however, often exist among stream habitat variables. For example, water depth, water velocity, and benthic substrate sizes within streams are often spatially correlated and may exhibit spatial nonstationarity or inconsistency in geographic space. Thus, analysis methods should address spatial relationships within habitat datasets. In this study, OLS and a recently developed method, geographically weighted regression (GWR), were used to model benthic substrate from water depth and water velocity data at two stream sites within the Greater Yellowstone Ecosystem. For data collection, each site was represented by a grid of 0.1 m2 cells, where actual values of water depth, water velocity, and benthic substrate class were measured for each cell. Accuracies of regressed substrate class data by OLS and GWR methods were calculated by comparing maps, parameter estimates, and determination coefficient r 2. For analysis of data from both sites, Akaike’s Information Criterion corrected for sample size indicated the best approximating model for the data resulted from GWR and not from OLS. Adjusted r 2 values also supported GWR as a better approach than OLS for prediction of substrate. This study supports GWR (a spatial analysis approach) over nonspatial OLS methods for prediction of habitat for stream habitat assessments.
Spatial and Social Media Data Analytics of Housing Prices in Shenzhen, China.
Wu, Chao; Ye, Xinyue; Ren, Fu; Wan, You; Ning, Pengfei; Du, Qingyun
2016-01-01
Housing is among the most pressing issues in urban China and has received considerable scholarly attention. Researchers have primarily concentrated on identifying the factors that influence residential property prices and how such mechanisms function. However, few studies have examined the potential factors that influence housing prices from a big data perspective. In this article, we use a big data perspective to determine the willingness of buyers to pay for various factors. The opinions and geographical preferences of individuals for places can be represented by visit frequencies given different motivations. Check-in data from the social media platform Sina Visitor System is used in this article. Here, we use kernel density estimation (KDE) to analyse the spatial patterns of check-in spots (or places of interest, POIs) and employ the Getis-Ord [Formula: see text] method to identify the hot spots for different types of POIs in Shenzhen, China. New indexes are then proposed based on the hot-spot results as measured by check-in data to analyse the effects of these locations on housing prices. This modelling is performed using the hedonic price method (HPM) and the geographically weighted regression (GWR) method. The results show that the degree of clustering of POIs has a significant influence on housing values. Meanwhile, the GWR method has a better interpretive capacity than does the HPM because of the former method's ability to capture spatial heterogeneity. This article integrates big social media data to expand the scope (new study content) and depth (study scale) of housing price research to an unprecedented degree.
Bao, Jie; Liu, Pan; Yu, Hao; Xu, Chengcheng
2017-09-01
The primary objective of this study was to investigate how to incorporate human activity information in spatial analysis of crashes in urban areas using Twitter check-in data. This study used the data collected from the City of Los Angeles in the United States to illustrate the procedure. The following five types of data were collected: crash data, human activity data, traditional traffic exposure variables, road network attributes and social-demographic data. A web crawler by Python was developed to collect the venue type information from the Twitter check-in data automatically. The human activities were classified into seven categories by the obtained venue types. The collected data were aggregated into 896 Traffic Analysis Zones (TAZ). Geographically weighted regression (GWR) models were developed to establish a relationship between the crash counts reported in a TAZ and various contributing factors. Comparative analyses were conducted to compare the performance of GWR models which considered traditional traffic exposure variables only, Twitter-based human activity variables only, and both traditional traffic exposure and Twitter-based human activity variables. The model specification results suggested that human activity variables significantly affected the crash counts in a TAZ. The results of comparative analyses suggested that the models which considered both traditional traffic exposure and human activity variables had the best goodness-of-fit in terms of the highest R 2 and lowest AICc values. The finding seems to confirm the benefits of incorporating human activity information in spatial analysis of crashes using Twitter check-in data. Copyright © 2017 Elsevier Ltd. All rights reserved.
Spatial and Social Media Data Analytics of Housing Prices in Shenzhen, China
Ye, Xinyue; Ren, Fu; Wan, You; Ning, Pengfei; Du, Qingyun
2016-01-01
Housing is among the most pressing issues in urban China and has received considerable scholarly attention. Researchers have primarily concentrated on identifying the factors that influence residential property prices and how such mechanisms function. However, few studies have examined the potential factors that influence housing prices from a big data perspective. In this article, we use a big data perspective to determine the willingness of buyers to pay for various factors. The opinions and geographical preferences of individuals for places can be represented by visit frequencies given different motivations. Check-in data from the social media platform Sina Visitor System is used in this article. Here, we use kernel density estimation (KDE) to analyse the spatial patterns of check-in spots (or places of interest, POIs) and employ the Getis-Ord Gi* method to identify the hot spots for different types of POIs in Shenzhen, China. New indexes are then proposed based on the hot-spot results as measured by check-in data to analyse the effects of these locations on housing prices. This modelling is performed using the hedonic price method (HPM) and the geographically weighted regression (GWR) method. The results show that the degree of clustering of POIs has a significant influence on housing values. Meanwhile, the GWR method has a better interpretive capacity than does the HPM because of the former method’s ability to capture spatial heterogeneity. This article integrates big social media data to expand the scope (new study content) and depth (study scale) of housing price research to an unprecedented degree. PMID:27783645
Spatial and temporal variability of precipitation in Serbia for the period 1961-2010
NASA Astrophysics Data System (ADS)
Milovanović, Boško; Schuster, Phillip; Radovanović, Milan; Vakanjac, Vesna Ristić; Schneider, Christoph
2017-10-01
Monthly, seasonal and annual sums of precipitation in Serbia were analysed in this paper for the period 1961-2010. Latitude, longitude and altitude of 421 precipitation stations and terrain features in their close environment (slope and aspect of terrain within a radius of 10 km around the station) were used to develop a regression model on which spatial distribution of precipitation was calculated. The spatial distribution of annual, June (maximum values for almost all of the stations) and February (minimum values for almost all of the stations) precipitation is presented. Annual precipitation amounts ranged from 500 to 600 mm to over 1100 mm. June precipitation ranged from 60 to 140 mm and February precipitation from 30 to 100 mm. The validation results expressed as root mean square error (RMSE) for monthly sums ranged from 3.9 mm in October (7.5% of the average precipitation for this month) to 6.2 mm in April (10.4%). For seasonal sums, RMSE ranged from 10.4 mm during autumn (6.1% of the average precipitation for this season) to 20.5 mm during winter (13.4%). On the annual scale, RMSE was 68 mm (9.5% of the average amount of precipitation). We further analysed precipitation trends using Sen's estimation, while the Mann-Kendall test was used for testing the statistical significance of the trends. For most parts of Serbia, the mean annual precipitation trends fell between -5 and +5 and +5 and +15 mm/decade. June precipitation trends were mainly between -8 and +8 mm/decade. February precipitation trends generally ranged from -3 to +3 mm/decade.
NASA Astrophysics Data System (ADS)
Fiedukowicz, Anna; Gasiorowski, Jedrzej; Kowalski, Paweł; Olszewski, Robert; Pillich-Kolipinska, Agata
2012-11-01
The wide access to source data, published by numerous websites, results in situation, when
Developing and testing a global-scale regression model to quantify mean annual streamflow
NASA Astrophysics Data System (ADS)
Barbarossa, Valerio; Huijbregts, Mark A. J.; Hendriks, A. Jan; Beusen, Arthur H. W.; Clavreul, Julie; King, Henry; Schipper, Aafke M.
2017-01-01
Quantifying mean annual flow of rivers (MAF) at ungauged sites is essential for assessments of global water supply, ecosystem integrity and water footprints. MAF can be quantified with spatially explicit process-based models, which might be overly time-consuming and data-intensive for this purpose, or with empirical regression models that predict MAF based on climate and catchment characteristics. Yet, regression models have mostly been developed at a regional scale and the extent to which they can be extrapolated to other regions is not known. In this study, we developed a global-scale regression model for MAF based on a dataset unprecedented in size, using observations of discharge and catchment characteristics from 1885 catchments worldwide, measuring between 2 and 106 km2. In addition, we compared the performance of the regression model with the predictive ability of the spatially explicit global hydrological model PCR-GLOBWB by comparing results from both models to independent measurements. We obtained a regression model explaining 89% of the variance in MAF based on catchment area and catchment averaged mean annual precipitation and air temperature, slope and elevation. The regression model performed better than PCR-GLOBWB for the prediction of MAF, as root-mean-square error (RMSE) values were lower (0.29-0.38 compared to 0.49-0.57) and the modified index of agreement (d) was higher (0.80-0.83 compared to 0.72-0.75). Our regression model can be applied globally to estimate MAF at any point of the river network, thus providing a feasible alternative to spatially explicit process-based global hydrological models.
Li, Wenbo; Wang, Dongyan; Wang, Qing; Liu, Shuhan; Zhu, Yuanli; Wu, Wenjun
2017-01-01
Under rapid urban sprawl in Northeast China, land conversions are not only encroaching on the quantity of cultivated lands, but also posing a great threat to black soil conservation and food security. This study’s aim is to explore the spatial relationship between comprehensive cultivated soil heavy metal pollution and peri-urban land use patterns in the black soil region. We applied spatial lag regression to analyze the relationship between PLI (pollution load index) and influencing factors of land use by taking suburban cultivated land of Changchun Kuancheng District as an empirical case. The results indicate the following: (1) Similar spatial distribution characteristics are detected between Pb, Cu, and Zn, between Cr and Ni, and between Hg and Cd. The Yitong River catchment in the central region, and the residential community of Lanjia County in the west, are the main hotspots for eight heavy metals and PLI. Beihu Wetland Park, with a larger-area distribution of ecological land in the southeast, has low level for both heavy metal concentrations and PLI values. Spatial distribution characteristics of cultivated heavy metals are related to types of surrounding land use and industry; (2) Spatial lag regression has a better fit for PLI than the ordinary least squares regression. The regression results indicate the inverse relationship between heavy metal pollution degree and distance from long-standing residential land and surface water. Following rapid urban land expansion and a longer accumulation period, residential land sprawl is going to threaten cultivated land with heavy metal pollution in the suburban black soil region, and cultivated land irrigated with urban river water in the suburbs will have a higher tendency for heavy metal pollution. PMID:28327541
Li, Wenbo; Wang, Dongyan; Wang, Qing; Liu, Shuhan; Zhu, Yuanli; Wu, Wenjun
2017-03-22
Under rapid urban sprawl in Northeast China, land conversions are not only encroaching on the quantity of cultivated lands, but also posing a great threat to black soil conservation and food security. This study's aim is to explore the spatial relationship between comprehensive cultivated soil heavy metal pollution and peri-urban land use patterns in the black soil region. We applied spatial lag regression to analyze the relationship between PLI (pollution load index) and influencing factors of land use by taking suburban cultivated land of Changchun Kuancheng District as an empirical case. The results indicate the following: (1) Similar spatial distribution characteristics are detected between Pb, Cu, and Zn, between Cr and Ni, and between Hg and Cd. The Yitong River catchment in the central region, and the residential community of Lanjia County in the west, are the main hotspots for eight heavy metals and PLI. Beihu Wetland Park, with a larger-area distribution of ecological land in the southeast, has low level for both heavy metal concentrations and PLI values. Spatial distribution characteristics of cultivated heavy metals are related to types of surrounding land use and industry; (2) Spatial lag regression has a better fit for PLI than the ordinary least squares regression. The regression results indicate the inverse relationship between heavy metal pollution degree and distance from long-standing residential land and surface water. Following rapid urban land expansion and a longer accumulation period, residential land sprawl is going to threaten cultivated land with heavy metal pollution in the suburban black soil region, and cultivated land irrigated with urban river water in the suburbs will have a higher tendency for heavy metal pollution.
Duncan, Dustin T; Kawachi, Ichiro; White, Kellee; Williams, David R
2013-08-01
The geography of recreational open space might be inequitable in terms of minority neighborhood racial/ethnic composition and neighborhood poverty, perhaps due in part to residential segregation. This study evaluated the association between minority neighborhood racial/ethnic composition, neighborhood poverty, and recreational open space in Boston, Massachusetts (US). Across Boston census tracts, we computed percent non-Hispanic Black, percent Hispanic, and percent families in poverty as well as recreational open space density. We evaluated spatial autocorrelation in study variables and in the ordinary least squares (OLS) regression residuals via the Global Moran's I. We then computed Spearman correlations between the census tract socio-demographic characteristics and recreational open space density, including correlations adjusted for spatial autocorrelation. After this, we computed OLS regressions or spatial regressions as appropriate. Significant positive spatial autocorrelation was found for neighborhood socio-demographic characteristics (all p value = 0.001). We found marginally significant positive spatial autocorrelation in recreational open space (Global Moran's I = 0.082; p value = 0.053). However, we found no spatial autocorrelation in the OLS regression residuals, which indicated that spatial models were not appropriate. There was a negative correlation between census tract percent non-Hispanic Black and recreational open space density (r S = -0.22; conventional p value = 0.005; spatially adjusted p value = 0.019) as well as a negative correlation between predominantly non-Hispanic Black census tracts (>60 % non-Hispanic Black in a census tract) and recreational open space density (r S = -0.23; conventional p value = 0.003; spatially adjusted p value = 0.007). In bivariate and multivariate OLS models, percent non-Hispanic Black in a census tract and predominantly Black census tracts were associated with decreased density of recreational open space (p value < 0.001). Consistent with several previous studies in other geographic locales, we found that Black neighborhoods in Boston were less likely to have recreational open spaces, indicating the need for policy interventions promoting equitable access. Such interventions may contribute to reductions and disparities in obesity.
Welp, Gerhard; Thiel, Michael
2017-01-01
Accurate and detailed spatial soil information is essential for environmental modelling, risk assessment and decision making. The use of Remote Sensing data as secondary sources of information in digital soil mapping has been found to be cost effective and less time consuming compared to traditional soil mapping approaches. But the potentials of Remote Sensing data in improving knowledge of local scale soil information in West Africa have not been fully explored. This study investigated the use of high spatial resolution satellite data (RapidEye and Landsat), terrain/climatic data and laboratory analysed soil samples to map the spatial distribution of six soil properties–sand, silt, clay, cation exchange capacity (CEC), soil organic carbon (SOC) and nitrogen–in a 580 km2 agricultural watershed in south-western Burkina Faso. Four statistical prediction models–multiple linear regression (MLR), random forest regression (RFR), support vector machine (SVM), stochastic gradient boosting (SGB)–were tested and compared. Internal validation was conducted by cross validation while the predictions were validated against an independent set of soil samples considering the modelling area and an extrapolation area. Model performance statistics revealed that the machine learning techniques performed marginally better than the MLR, with the RFR providing in most cases the highest accuracy. The inability of MLR to handle non-linear relationships between dependent and independent variables was found to be a limitation in accurately predicting soil properties at unsampled locations. Satellite data acquired during ploughing or early crop development stages (e.g. May, June) were found to be the most important spectral predictors while elevation, temperature and precipitation came up as prominent terrain/climatic variables in predicting soil properties. The results further showed that shortwave infrared and near infrared channels of Landsat8 as well as soil specific indices of redness, coloration and saturation were prominent predictors in digital soil mapping. Considering the increased availability of freely available Remote Sensing data (e.g. Landsat, SRTM, Sentinels), soil information at local and regional scales in data poor regions such as West Africa can be improved with relatively little financial and human resources. PMID:28114334
Forkuor, Gerald; Hounkpatin, Ozias K L; Welp, Gerhard; Thiel, Michael
2017-01-01
Accurate and detailed spatial soil information is essential for environmental modelling, risk assessment and decision making. The use of Remote Sensing data as secondary sources of information in digital soil mapping has been found to be cost effective and less time consuming compared to traditional soil mapping approaches. But the potentials of Remote Sensing data in improving knowledge of local scale soil information in West Africa have not been fully explored. This study investigated the use of high spatial resolution satellite data (RapidEye and Landsat), terrain/climatic data and laboratory analysed soil samples to map the spatial distribution of six soil properties-sand, silt, clay, cation exchange capacity (CEC), soil organic carbon (SOC) and nitrogen-in a 580 km2 agricultural watershed in south-western Burkina Faso. Four statistical prediction models-multiple linear regression (MLR), random forest regression (RFR), support vector machine (SVM), stochastic gradient boosting (SGB)-were tested and compared. Internal validation was conducted by cross validation while the predictions were validated against an independent set of soil samples considering the modelling area and an extrapolation area. Model performance statistics revealed that the machine learning techniques performed marginally better than the MLR, with the RFR providing in most cases the highest accuracy. The inability of MLR to handle non-linear relationships between dependent and independent variables was found to be a limitation in accurately predicting soil properties at unsampled locations. Satellite data acquired during ploughing or early crop development stages (e.g. May, June) were found to be the most important spectral predictors while elevation, temperature and precipitation came up as prominent terrain/climatic variables in predicting soil properties. The results further showed that shortwave infrared and near infrared channels of Landsat8 as well as soil specific indices of redness, coloration and saturation were prominent predictors in digital soil mapping. Considering the increased availability of freely available Remote Sensing data (e.g. Landsat, SRTM, Sentinels), soil information at local and regional scales in data poor regions such as West Africa can be improved with relatively little financial and human resources.
Impacts of human-related practices on Ommatissus lybicus infestations of date palm in Oman.
Al-Kindi, Khalifa M; Kwan, Paul; Andrew, Nigel R; Welch, Mitchell
2017-01-01
Date palm cultivation is economically important in the Sultanate of Oman, with significant financial investments coming from both the government and private individuals. However, a widespread Dubas bug (DB) (Ommatissus lybicus Bergevin) infestation has impacted regions including the Middle East, North Africa, Southeast Russia, and Spain, resulting in widespread damages to date palms. In this study, techniques in spatial statistics including ordinary least squares (OLS), geographically weighted regression (GRW), and exploratory regression (ER) were applied to (a) model the correlation between DB infestations and human-related practices that include irrigation methods, row spacing, palm tree density, and management of undercover and intercropped vegetation, and (b) predict the locations of future DB infestations in northern Oman. Firstly, we extracted row spacing and palm tree density information from remote sensed satellite images. Secondly, we collected data on irrigation practices and management by using a simple questionnaire, augmented with spatial data. Thirdly, we conducted our statistical analyses using all possible combinations of values over a given set of candidate variables using the chosen predictive modelling and regression techniques. Lastly, we identified the combination of human-related practices that are most conducive to the survival and spread of DB. Our results show that there was a strong correlation between DB infestations and several human-related practices parameters (R2 = 0.70). Variables including palm tree density, spacing between trees (less than 5 x 5 m), insecticide application, date palm and farm service (pruning, dethroning, remove weeds, and thinning), irrigation systems, offshoots removal, fertilisation and labour (non-educated) issues, were all found to significantly influence the degree of DB infestations. This study is expected to help reduce the extent and cost of aerial and ground sprayings, while facilitating the allocation of date palm plantations. An integrated pest management (IPM) system monitoring DB infestations, driven by GIS and remote sensed data collections and spatial statistical models, will allow for an effective DB management program in Oman. This will in turn ensure the competitiveness of Oman in the global date fruits market and help preserve national yields.
Mapping malaria risk among children in Côte d'Ivoire using Bayesian geo-statistical models.
Raso, Giovanna; Schur, Nadine; Utzinger, Jürg; Koudou, Benjamin G; Tchicaya, Emile S; Rohner, Fabian; N'goran, Eliézer K; Silué, Kigbafori D; Matthys, Barbara; Assi, Serge; Tanner, Marcel; Vounatsou, Penelope
2012-05-09
In Côte d'Ivoire, an estimated 767,000 disability-adjusted life years are due to malaria, placing the country at position number 14 with regard to the global burden of malaria. Risk maps are important to guide control interventions, and hence, the aim of this study was to predict the geographical distribution of malaria infection risk in children aged <16 years in Côte d'Ivoire at high spatial resolution. Using different data sources, a systematic review was carried out to compile and geo-reference survey data on Plasmodium spp. infection prevalence in Côte d'Ivoire, focusing on children aged <16 years. The period from 1988 to 2007 was covered. A suite of Bayesian geo-statistical logistic regression models was fitted to analyse malaria risk. Non-spatial models with and without exchangeable random effect parameters were compared to stationary and non-stationary spatial models. Non-stationarity was modelled assuming that the underlying spatial process is a mixture of separate stationary processes in each ecological zone. The best fitting model based on the deviance information criterion was used to predict Plasmodium spp. infection risk for entire Côte d'Ivoire, including uncertainty. Overall, 235 data points at 170 unique survey locations with malaria prevalence data for individuals aged <16 years were extracted. Most data points (n = 182, 77.4%) were collected between 2000 and 2007. A Bayesian non-stationary regression model showed the best fit with annualized rainfall and maximum land surface temperature identified as significant environmental covariates. This model was used to predict malaria infection risk at non-sampled locations. High-risk areas were mainly found in the north-central and western area, while relatively low-risk areas were located in the north at the country border, in the north-east, in the south-east around Abidjan, and in the central-west between two high prevalence areas. The malaria risk map at high spatial resolution gives an important overview of the geographical distribution of the disease in Côte d'Ivoire. It is a useful tool for the national malaria control programme and can be utilized for spatial targeting of control interventions and rational resource allocation.
Mapping malaria risk among children in Côte d’Ivoire using Bayesian geo-statistical models
2012-01-01
Background In Côte d’Ivoire, an estimated 767,000 disability-adjusted life years are due to malaria, placing the country at position number 14 with regard to the global burden of malaria. Risk maps are important to guide control interventions, and hence, the aim of this study was to predict the geographical distribution of malaria infection risk in children aged <16 years in Côte d’Ivoire at high spatial resolution. Methods Using different data sources, a systematic review was carried out to compile and geo-reference survey data on Plasmodium spp. infection prevalence in Côte d’Ivoire, focusing on children aged <16 years. The period from 1988 to 2007 was covered. A suite of Bayesian geo-statistical logistic regression models was fitted to analyse malaria risk. Non-spatial models with and without exchangeable random effect parameters were compared to stationary and non-stationary spatial models. Non-stationarity was modelled assuming that the underlying spatial process is a mixture of separate stationary processes in each ecological zone. The best fitting model based on the deviance information criterion was used to predict Plasmodium spp. infection risk for entire Côte d’Ivoire, including uncertainty. Results Overall, 235 data points at 170 unique survey locations with malaria prevalence data for individuals aged <16 years were extracted. Most data points (n = 182, 77.4%) were collected between 2000 and 2007. A Bayesian non-stationary regression model showed the best fit with annualized rainfall and maximum land surface temperature identified as significant environmental covariates. This model was used to predict malaria infection risk at non-sampled locations. High-risk areas were mainly found in the north-central and western area, while relatively low-risk areas were located in the north at the country border, in the north-east, in the south-east around Abidjan, and in the central-west between two high prevalence areas. Conclusion The malaria risk map at high spatial resolution gives an important overview of the geographical distribution of the disease in Côte d’Ivoire. It is a useful tool for the national malaria control programme and can be utilized for spatial targeting of control interventions and rational resource allocation. PMID:22571469
Crime Modeling using Spatial Regression Approach
NASA Astrophysics Data System (ADS)
Saleh Ahmar, Ansari; Adiatma; Kasim Aidid, M.
2018-01-01
Act of criminality in Indonesia increased both variety and quantity every year. As murder, rape, assault, vandalism, theft, fraud, fencing, and other cases that make people feel unsafe. Risk of society exposed to crime is the number of reported cases in the police institution. The higher of the number of reporter to the police institution then the number of crime in the region is increasing. In this research, modeling criminality in South Sulawesi, Indonesia with the dependent variable used is the society exposed to the risk of crime. Modelling done by area approach is the using Spatial Autoregressive (SAR) and Spatial Error Model (SEM) methods. The independent variable used is the population density, the number of poor population, GDP per capita, unemployment and the human development index (HDI). Based on the analysis using spatial regression can be shown that there are no dependencies spatial both lag or errors in South Sulawesi.
Finley, Andrew O.; Banerjee, Sudipto; Cook, Bruce D.; Bradford, John B.
2013-01-01
In this paper we detail a multivariate spatial regression model that couples LiDAR, hyperspectral and forest inventory data to predict forest outcome variables at a high spatial resolution. The proposed model is used to analyze forest inventory data collected on the US Forest Service Penobscot Experimental Forest (PEF), ME, USA. In addition to helping meet the regression model's assumptions, results from the PEF analysis suggest that the addition of multivariate spatial random effects improves model fit and predictive ability, compared with two commonly applied modeling approaches. This improvement results from explicitly modeling the covariation among forest outcome variables and spatial dependence among observations through the random effects. Direct application of such multivariate models to even moderately large datasets is often computationally infeasible because of cubic order matrix algorithms involved in estimation. We apply a spatial dimension reduction technique to help overcome this computational hurdle without sacrificing richness in modeling.
Takagi, Daisuke; Ikeda, Ken'ichi; Kawachi, Ichiro
2012-11-01
Crime is an important determinant of public health outcomes, including quality of life, mental well-being, and health behavior. A body of research has documented the association between community social capital and crime victimization. The association between social capital and crime victimization has been examined at multiple levels of spatial aggregation, ranging from entire countries, to states, metropolitan areas, counties, and neighborhoods. In multilevel analysis, the spatial boundaries at level 2 are most often drawn from administrative boundaries (e.g., Census tracts in the U.S.). One problem with adopting administrative definitions of neighborhoods is that it ignores spatial spillover. We conducted a study of social capital and crime victimization in one ward of Tokyo city, using a spatial Durbin model with an inverse-distance weighting matrix that assigned each respondent a unique level of "exposure" to social capital based on all other residents' perceptions. The study is based on a postal questionnaire sent to 20-69 years old residents of Arakawa Ward, Tokyo. The response rate was 43.7%. We examined the contextual influence of generalized trust, perceptions of reciprocity, two types of social network variables, as well as two principal components of social capital (constructed from the above four variables). Our outcome measure was self-reported crime victimization in the last five years. In the spatial Durbin model, we found that neighborhood generalized trust, reciprocity, supportive networks and two principal components of social capital were each inversely associated with crime victimization. By contrast, a multilevel regression performed with the same data (using administrative neighborhood boundaries) found generally null associations between neighborhood social capital and crime. Spatial regression methods may be more appropriate for investigating the contextual influence of social capital in homogeneous cultural settings such as Japan. Copyright © 2012 Elsevier Ltd. All rights reserved.
Semiparametric regression during 2003–2007*
Ruppert, David; Wand, M.P.; Carroll, Raymond J.
2010-01-01
Semiparametric regression is a fusion between parametric regression and nonparametric regression that integrates low-rank penalized splines, mixed model and hierarchical Bayesian methodology – thus allowing more streamlined handling of longitudinal and spatial correlation. We review progress in the field over the five-year period between 2003 and 2007. We find semiparametric regression to be a vibrant field with substantial involvement and activity, continual enhancement and widespread application. PMID:20305800
Multicomponent analysis of a digital Trail Making Test.
Fellows, Robert P; Dahmen, Jessamyn; Cook, Diane; Schmitter-Edgecombe, Maureen
2017-01-01
The purpose of the current study was to use a newly developed digital tablet-based variant of the TMT to isolate component cognitive processes underlying TMT performance. Similar to the paper-based trail making test, this digital variant consists of two conditions, Part A and Part B. However, this digital version automatically collects additional data to create component subtest scores to isolate cognitive abilities. Specifically, in addition to the total time to completion and number of errors, the digital Trail Making Test (dTMT) records several unique components including the number of pauses, pause duration, lifts, lift duration, time inside each circle, and time between circles. Participants were community-dwelling older adults who completed a neuropsychological evaluation including measures of processing speed, inhibitory control, visual working memory/sequencing, and set-switching. The abilities underlying TMT performance were assessed through regression analyses of component scores from the dTMT with traditional neuropsychological measures. Results revealed significant correlations between paper and digital variants of Part A (r s = .541, p < .001) and paper and digital versions of Part B (r s = .799, p < .001). Regression analyses with traditional neuropsychological measures revealed that Part A components were best predicted by speeded processing, while inhibitory control and visual/spatial sequencing were predictors of specific components of Part B. Exploratory analyses revealed that specific dTMT-B components were associated with a performance-based medication management task. Taken together, these results elucidate specific cognitive abilities underlying TMT performance, as well as the utility of isolating digital components.
NASA Astrophysics Data System (ADS)
Huber, Stephanie; Huber, Birgit; Stahl, Silvia; Schmid, Christoph; Reisch, Christoph
2017-08-01
Species diversity depends on, often interfering, multiple ecological drivers. Comprehensive approaches are hence needed to understand the mechanisms determining species diversity. In this study, we analysed the impact of vegetation structure, soil properties and fragmentation on the plant species diversity of remnant calcareous grasslands, therefore, in a comparative approach. We determined plant species diversity of 18 calcareous grasslands in south eastern Germany including all species and grassland specialists separately. Furthermore, we analysed the spatial structure of the grasslands as a result of fragmentation during the last 150 years (habitat area, distance to the nearest calcareous grassland and connectivity in 1830 and 2013). We also collected data concerning the vegetation structure (height of the vegetation, cover of bare soil, grass and litter) and the soil properties (content of phosphorous and potassium, ratio of carbon and nitrogen) of the grassland patches. Data were analysed using Bayesian multiple regressions. We observed a habitat loss of nearly 80% and increasing isolation between grasslands since 1830. In the Bayesian multiple regressions the species diversity of the studied grasslands depended negatively on cover of litter and to a lower degree on the distance to the nearest calcareous grassland in 2013, whereas soil properties had no significant impact. Our study supports the observation that vegetation structure, which strongly depends on land use, is often more important for the species richness of calcareous grasslands than fragmentation or soil properties. Even small and isolated grasslands may, therefore, contribute significantly to the conservation of species diversity, when they are still grazed.
Monitoring Building Deformation with InSAR: Experiments and Validation
Yang, Kui; Yan, Li; Huang, Guoman; Chen, Chu; Wu, Zhengpeng
2016-01-01
Synthetic Aperture Radar Interferometry (InSAR) techniques are increasingly applied for monitoring land subsidence. The advantages of InSAR include high accuracy and the ability to cover large areas; nevertheless, research validating the use of InSAR on building deformation is limited. In this paper, we test the monitoring capability of the InSAR in experiments using two landmark buildings; the Bohai Building and the China Theater, located in Tianjin, China. They were selected as real examples to compare InSAR and leveling approaches for building deformation. Ten TerraSAR-X images spanning half a year were used in Permanent Scatterer InSAR processing. These extracted InSAR results were processed considering the diversity in both direction and spatial distribution, and were compared with true leveling values in both Ordinary Least Squares (OLS) regression and measurement of error analyses. The detailed experimental results for the Bohai Building and the China Theater showed a high correlation between InSAR results and the leveling values. At the same time, the two Root Mean Square Error (RMSE) indexes had values of approximately 1 mm. These analyses show that a millimeter level of accuracy can be achieved by means of InSAR technique when measuring building deformation. We discuss the differences in accuracy between OLS regression and measurement of error analyses, and compare the accuracy index of leveling in order to propose InSAR accuracy levels appropriate for monitoring buildings deformation. After assessing the advantages and limitations of InSAR techniques in monitoring buildings, further applications are evaluated. PMID:27999403
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Qichun; Zhang, Xuesong; Xu, Xingya
Riverine carbon cycling is an important, but insufficiently investigated component of the global carbon cycle. Analyses of environmental controls on riverine carbon cycling are critical for improved understanding of mechanisms regulating carbon processing and storage along the terrestrial-aquatic continuum. Here, we compile and analyze riverine dissolved organic carbon (DOC) concentration data from 1402 United States Geological Survey (USGS) gauge stations to examine the spatial variability and environmental controls of DOC concentrations in the United States (U.S.) surface waters. DOC concentrations exhibit high spatial variability, with an average of 6.42 ± 6.47 mg C/ L (Mean ± Standard Deviation). In general,more » high DOC concentrations occur in the Upper Mississippi River basin and the Southeastern U.S., while low concentrations are mainly distributed in the Western U.S. Single-factor analysis indicates that slope of drainage areas, wetlands, forests, percentage of first-order streams, and instream nutrients (such as nitrogen and phosphorus) pronouncedly influence DOC concentrations, but the explanatory power of each bivariate model is lower than 35%. Analyses based on the general multi-linear regression models suggest DOC concentrations are jointly impacted by multiple factors. Soil properties mainly show positive correlations with DOC concentrations; forest and shrub lands have positive correlations with DOC concentrations, but urban area and croplands demonstrate negative impacts; total instream phosphorus and dam density correlate positively with DOC concentrations. Notably, the relative importance of these environmental controls varies substantially across major U.S. water resource regions. In addition, DOC concentrations and environmental controls also show significant variability from small streams to large rivers, which may be caused by changing carbon sources and removal rates by river orders. In sum, our results reveal that general multi-linear regression analysis of twenty one terrestrial and aquatic environmental factors can partially explain (56%) the DOC concentration variation. In conclusion, this study highlights the complexity of the interactions among these environmental factors in determining DOC concentrations, thus calls for processes-based, non-linear methodologies to constrain uncertainties in riverine DOC cycling.« less
Diversity and distribution of parasitic angiosperms in China.
Zhang, Guangfu; Li, Qian; Sun, Shucun
2018-05-01
Parasitic plants are an important component of vegetation worldwide, but their diversity and distribution in China have not been systematically reported. This study aimed to (1) explore floral characteristics of China's parasitic plants, (2) map spatial distribution of diversity of these species, and (3) explore factors influencing the distribution pattern. We compiled a nationwide species list of parasitic plants in China, and for each species, we recorded its phylogeny, endemism, and life form (e.g., herb vs. shrub; hemiparasite vs. holoparasite). Species richness and area-corrected species richness were calculated for 28 provinces, covering 98.89% of China's terrestrial area. Regression analyses were performed to determine relationships between provincial area-corrected species richness of parasitic plants and provincial total species richness (including nonparasitic plants) and physical settings (altitude, midlongitude, and midlatitude). A total of 678 species of parasitic angiosperms are recorded in China, 63.13% of which are endemic. Of the total, 59.73% (405 species) are perennials, followed by shrubs/subshrubs (14.75%) and vines (1.47%). About 76.11% (516 species) are of root hemiparasites, higher than that of stem parasites (100, 14.75%), root holoparasites (9.00%), and endophytic parasites (0.15%). A significant positive relationship is found between the area-corrected species richness and the total species richness, which has been previously demonstrated to increase with decreasing longitude and latitude. Moreover, more parasitic species are found in the southwest high-altitude areas than low areas. Consistently, the area-corrected species richness increases with increasing altitude, decreasing latitude, and decreasing longitude, as indicated by regression analyses. China is rich in parasitic flora with a high proportion of endemic species. Perennials and root hemiparasites are the dominant types. The spatial distribution of parasitic plants is largely heterogeneous, with more species living in southwest China, similar to the distribution pattern of Chinese angiosperms. The positive relationship between parasitic and nonparasitic plant species richness should be addressed in the future.
Ji, Lei; Peters, Albert J.
2004-01-01
The relationship between vegetation and climate in the grassland and cropland of the northern US Great Plains was investigated with Normalized Difference Vegetation Index (NDVI) (1989–1993) images derived from the Advanced Very High Resolution Radiometer (AVHRR), and climate data from automated weather stations. The relationship was quantified using a spatial regression technique that adjusts for spatial autocorrelation inherent in these data. Conventional regression techniques used frequently in previous studies are not adequate, because they are based on the assumption of independent observations. Six climate variables during the growing season; precipitation, potential evapotranspiration, daily maximum and minimum air temperature, soil temperature, solar irradiation were regressed on NDVI derived from a 10-km weather station buffer. The regression model identified precipitation and potential evapotranspiration as the most significant climatic variables, indicating that the water balance is the most important factor controlling vegetation condition at an annual timescale. The model indicates that 46% and 24% of variation in NDVI is accounted for by climate in grassland and cropland, respectively, indicating that grassland vegetation has a more pronounced response to climate variation than cropland. Other factors contributing to NDVI variation include environmental factors (soil, groundwater and terrain), human manipulation of crops, and sensor variation.
Analysing Relationships Between Urban Land Use Fragmentation Metrics and Socio-Economic Variables
NASA Astrophysics Data System (ADS)
Sapena, M.; Ruiz, L. A.; Goerlich, F. J.
2016-06-01
Analysing urban regions is essential for their correct monitoring and planning. This is mainly accounted for the sharp increase of people living in urban areas, and consequently, the need to manage them. At the same time there has been a rise in the use of spatial and statistical datasets, such as the Urban Atlas, which offers high-resolution urban land use maps obtained from satellite imagery, and the Urban Audit, which provides statistics of European cities and their surroundings. In this study, we analyse the relations between urban fragmentation metrics derived from Land Use and Land Cover (LULC) data from the Urban Atlas dataset, and socio-economic data from the Urban Audit for the reference years 2006 and 2012. We conducted the analysis on a sample of sixty-eight Functional Urban Areas (FUAs). One-date and two-date based fragmentation indices were computed for each FUA, land use class and date. Correlation tests and principal component analysis were then applied to select the most representative indices. Finally, multiple regression models were tested to explore the prediction of socio-economic variables, using different combinations of land use metrics as explanatory variables, both at a given date and in a dynamic context. The outcomes show that demography, living conditions, labour, and transportation variables have a clear relation with the morphology of the FUAs. This methodology allows us to compare European FUAs in terms of the spatial distribution of the land use classes, their complexity, and their structural changes, as well as to preview and model different growth patterns and socio-economic indicators.
Morrissey, Karyn
2015-01-01
Ecological influences on health outcomes are associated with the spatial stratification of health. However, the majority of studies that seek to understand these ecological influences utilise aspatial methods. Geographically weighted regression (GWR) is a spatial statistics tool that expands standard regression by allowing for spatial variance in parameters. This study contributes to the urban health literature, by employing GWR to uncover geographic variation in Limiting Long Term Illness (LLTI) and area level effects at the small area level in a relatively small, urban environment. Using GWR it was found that each of the three contextual covariates, area level deprivation scores, the percentage of the population aged 75 years plus and the percentage of residences of white ethnicity for each LSOA exhibited a non-stationary relationship with LLTI across space. Multicollinearity among the predictor variables was found not to be a problem. Within an international policy context, this research indicates that even at the city level, a “one-size fits all” policy strategy is not the most appropriate approach to address health outcomes. City “wide” health polices need to be spatially adaptive, based on the contextual characteristics of each area. PMID:29546118
Enhancing hyperspectral spatial resolution using multispectral image fusion: A wavelet approach
NASA Astrophysics Data System (ADS)
Jazaeri, Amin
High spectral and spatial resolution images have a significant impact in remote sensing applications. Because both spatial and spectral resolutions of spaceborne sensors are fixed by design and it is not possible to further increase the spatial or spectral resolution, techniques such as image fusion must be applied to achieve such goals. This dissertation introduces the concept of wavelet fusion between hyperspectral and multispectral sensors in order to enhance the spectral and spatial resolution of a hyperspectral image. To test the robustness of this concept, images from Hyperion (hyperspectral sensor) and Advanced Land Imager (multispectral sensor) were first co-registered and then fused using different wavelet algorithms. A regression-based fusion algorithm was also implemented for comparison purposes. The results show that the fused images using a combined bi-linear wavelet-regression algorithm have less error than other methods when compared to the ground truth. In addition, a combined regression-wavelet algorithm shows more immunity to misalignment of the pixels due to the lack of proper registration. The quantitative measures of average mean square error show that the performance of wavelet-based methods degrades when the spatial resolution of hyperspectral images becomes eight times less than its corresponding multispectral image. Regardless of what method of fusion is utilized, the main challenge in image fusion is image registration, which is also a very time intensive process. Because the combined regression wavelet technique is computationally expensive, a hybrid technique based on regression and wavelet methods was also implemented to decrease computational overhead. However, the gain in faster computation was offset by the introduction of more error in the outcome. The secondary objective of this dissertation is to examine the feasibility and sensor requirements for image fusion for future NASA missions in order to be able to perform onboard image fusion. In this process, the main challenge of image registration was resolved by registering the input images using transformation matrices of previously acquired data. The composite image resulted from the fusion process remarkably matched the ground truth, indicating the possibility of real time onboard fusion processing.
Homan, Tobias; Maire, Nicolas; Hiscox, Alexandra; Di Pasquale, Aurelio; Kiche, Ibrahim; Onoka, Kelvin; Mweresa, Collins; Mukabana, Wolfgang R; Ross, Amanda; Smith, Thomas A; Takken, Willem
2016-01-04
Large reductions in malaria transmission and mortality have been achieved over the last decade, and this has mainly been attributed to the scale-up of long-lasting insecticidal bed nets and indoor residual spraying with insecticides. Despite these gains considerable residual, spatially heterogeneous, transmission remains. To reduce transmission in these foci, researchers need to consider the local demographical, environmental and social context, and design an appropriate set of interventions. Exploring spatially variable risk factors for malaria can give insight into which human and environmental characteristics play important roles in sustaining malaria transmission. On Rusinga Island, western Kenya, malaria infection was tested by rapid diagnostic tests during two cross-sectional surveys conducted 3 months apart in 3632 individuals from 790 households. For all households demographic data were collected by means of questionnaires. Environmental variables were derived using Quickbird satellite images. Analyses were performed on 81 project clusters constructed by a traveling salesman algorithm, each containing 50-51 households. A standard linear regression model was fitted containing multiple variables to determine how much of the spatial variation in malaria prevalence could be explained by the demographic and environmental data. Subsequently, a geographically-weighted regression (GWR) was performed assuming non-stationarity of risk factors. Special attention was taken to investigate the effect of residual spatial autocorrelation and local multicollinearity. Combining the data from both surveys, overall malaria prevalence was 24%. Scan statistics revealed two clusters which had significantly elevated numbers of malaria cases compared to the background prevalence across the rest of the study area. A multivariable linear model including environmental and household factors revealed that higher socioeconomic status, outdoor occupation and population density were associated with increased malaria risk. The local GWR model improved the model fit considerably and the relationship of malaria with risk factors was found to vary spatially over the island; in different areas of the island socio-economic status, outdoor occupation and population density were found to be positively or negatively associated with malaria prevalence. Identification of risk factors for malaria that vary geographically can provide insight into the local epidemiology of malaria. Examining spatially variable relationships can be a helpful tool in exploring which set of targeted interventions could locally be implemented. Supplementary malaria control may be directed at areas, which are identified as at risk. For instance, areas with many people that work outdoors at night may need more focus in terms of vector control. Trialregister.nl NTR3496-SolarMal, registered on 20 June 2012.
Spatial regression analysis of traffic crashes in Seoul.
Rhee, Kyoung-Ah; Kim, Joon-Ki; Lee, Young-ihn; Ulfarsson, Gudmundur F
2016-06-01
Traffic crashes can be spatially correlated events and the analysis of the distribution of traffic crash frequency requires evaluation of parameters that reflect spatial properties and correlation. Typically this spatial aspect of crash data is not used in everyday practice by planning agencies and this contributes to a gap between research and practice. A database of traffic crashes in Seoul, Korea, in 2010 was developed at the traffic analysis zone (TAZ) level with a number of GIS developed spatial variables. Practical spatial models using available software were estimated. The spatial error model was determined to be better than the spatial lag model and an ordinary least squares baseline regression. A geographically weighted regression model provided useful insights about localization of effects. The results found that an increased length of roads with speed limit below 30 km/h and a higher ratio of residents below age of 15 were correlated with lower traffic crash frequency, while a higher ratio of residents who moved to the TAZ, more vehicle-kilometers traveled, and a greater number of access points with speed limit difference between side roads and mainline above 30 km/h all increased the number of traffic crashes. This suggests, for example, that better control or design for merging lower speed roads with higher speed roads is important. A key result is that the length of bus-only center lanes had the largest effect on increasing traffic crashes. This is important as bus-only center lanes with bus stop islands have been increasingly used to improve transit times. Hence the potential negative safety impacts of such systems need to be studied further and mitigated through improved design of pedestrian access to center bus stop islands. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nikolova, Silviya P; Small, Eusebius; Campillo, Claudia
2015-07-01
In low and high income countries alike, disability exacerbates social, economic, and health disparities, in spite of their differences. This study seeks to identify factors that predict the circumstances people with disabilities face, including poverty. A cross-sectional study design was employed using census track level data for the cities of Monterrey, Nuevo Leon, and Dallas, Texas, from Mexico 2010 and USA 2000 census data collections. Two methods, spatial autocorrelation and geographically weighted regression were used to identify spatial patterns of disability and to explore the relation between disability and context-specific socio-demographic factors. Results indicated that people with disabilities living below the poverty line experience high segregation levels in the semi-central zones of Dallas. In Monterrey, people with disabilities clustered in central areas of the city. A Geographically Weighted Regression (GWR) from both data analyses reported high goodness of fit (R ≥ 0.8 for Dallas data and R ≥ 0.7 for Monterrey data, respectively) and predictability of disability prevalence when social disadvantage factors such as unemployment, housing insecurity, household living conditions, and lack of education were present. The divergent and sometimes conflicting trends in practices and policies addressing disability in low and high income environments renders a reexamination of the framework of disability. An understanding of local characteristics joins a grounded socio-cultural understanding of the various contexts that shape location-based social networks and political decisions in providing such an analysis. Copyright © 2015 Elsevier Inc. All rights reserved.
Wen, Cheng; Dallimer, Martin; Carver, Steve; Ziv, Guy
2018-05-06
Despite the great potential of mitigating carbon emission, development of wind farms is often opposed by local communities due to the visual impact on landscape. A growing number of studies have applied nonmarket valuation methods like Choice Experiments (CE) to value the visual impact by eliciting respondents' willingness to pay (WTP) or willingness to accept (WTA) for hypothetical wind farms through survey questions. Several meta-analyses have been found in the literature to synthesize results from different valuation studies, but they have various limitations related to the use of the prevailing multivariate meta-regression analysis. In this paper, we propose a new meta-analysis method to establish general functions for the relationships between the estimated WTP or WTA and three wind farm attributes, namely the distance to residential/coastal areas, the number of turbines and turbine height. This method involves establishing WTA or WTP functions for individual studies, fitting the average derivative functions and deriving the general integral functions of WTP or WTA against wind farm attributes. Results indicate that respondents in different studies consistently showed increasing WTP for moving wind farms to greater distances, which can be fitted by non-linear (natural logarithm) functions. However, divergent preferences for the number of turbines and turbine height were found in different studies. We argue that the new analysis method proposed in this paper is an alternative to the mainstream multivariate meta-regression analysis for synthesizing CE studies and the general integral functions of WTP or WTA against wind farm attributes are useful for future spatial modelling and benefit transfer studies. We also suggest that future multivariate meta-analyses should include non-linear components in the regression functions. Copyright © 2018. Published by Elsevier B.V.
Rourke, Sean B; Bekele, Tsegaye; Tucker, Ruthann; Greene, Saara; Sobota, Michael; Koornstra, Jay; Monette, LaVerne; Bacon, Jean; Bhuiyan, Shafi; Rueda, Sergio; Watson, James; Hwang, Stephen W; Dunn, James; Hambly, Keith
2012-11-01
Although lack of housing is linked with adverse health outcomes, little is known about the impacts of the qualitative aspects of housing on health. This study examined the association between structural elements of housing, housing affordability, housing satisfaction and health-related quality of life over a 1-year period. Participants were 509 individuals living with HIV in Ontario, Canada. Regression analyses were conducted to examine relationships between housing variables and physical and mental health-related quality of life. We found significant cross-sectional associations between housing and neighborhood variables-including place of residence, housing affordability, housing stability, and satisfaction with material, meaningful and spatial dimensions of housing-and both physical and mental health-related quality of life. Our analyses also revealed longitudinal associations between housing and neighborhood variables and health-related quality of life. Interventions that enhance housing affordability and housing satisfaction may help improve health-related quality of life of people living with HIV.
Correlation of track irregularities and vehicle responses based on measured data
NASA Astrophysics Data System (ADS)
Karis, Tomas; Berg, Mats; Stichel, Sebastian; Li, Martin; Thomas, Dirk; Dirks, Babette
2018-06-01
Track geometry quality and dynamic vehicle response are closely related, but do not always correspond with each other in terms of maximum values and standard deviations. This can often be seen to give poor results in analyses with correlation coefficients or regression analysis. Measured data from both the EU project DynoTRAIN and the Swedish Green Train (Gröna Tåget) research programme is used in this paper to evaluate track-vehicle response for three vehicles. A single degree of freedom model is used as an inspiration to divide track-vehicle interaction into three parts, which are analysed in terms of correlation. One part, the vertical axle box acceleration divided by vehicle speed squared (?) and the second spatial derivative of the vertical track irregularities (?), is shown to be the weak link with lower correlation coefficients than the other parts. Future efforts should therefore be directed towards investigating the relation between axle box accelerations and track irregularity second derivatives.
An Analysis of San Diego's Housing Market Using a Geographically Weighted Regression Approach
NASA Astrophysics Data System (ADS)
Grant, Christina P.
San Diego County real estate transaction data was evaluated with a set of linear models calibrated by ordinary least squares and geographically weighted regression (GWR). The goal of the analysis was to determine whether the spatial effects assumed to be in the data are best studied globally with no spatial terms, globally with a fixed effects submarket variable, or locally with GWR. 18,050 single-family residential sales which closed in the six months between April 2014 and September 2014 were used in the analysis. Diagnostic statistics including AICc, R2, Global Moran's I, and visual inspection of diagnostic plots and maps indicate superior model performance by GWR as compared to both global regressions.
Kelleher, John D; Ross, Robert J; Sloan, Colm; Mac Namee, Brian
2011-02-01
Although data-driven spatial template models provide a practical and cognitively motivated mechanism for characterizing spatial term meaning, the influence of perceptual rather than solely geometric and functional properties has yet to be systematically investigated. In the light of this, in this paper, we investigate the effects of the perceptual phenomenon of object occlusion on the semantics of projective terms. We did this by conducting a study to test whether object occlusion had a noticeable effect on the acceptance values assigned to projective terms with respect to a 2.5-dimensional visual stimulus. Based on the data collected, a regression model was constructed and presented. Subsequent analysis showed that the regression model that included the occlusion factor outperformed an adaptation of Regier & Carlson's well-regarded AVS model for that same spatial configuration.
The Antivascular Actions of Mild Intensity Ultrasound on a Murine Neoplasm
NASA Astrophysics Data System (ADS)
Wood, Andrew K. W.; Bunte, Ralph M.; Ansaloni, Sara; Lee, William M.-F.; Sehgal, Chandra M.
2006-05-01
This study was aimed at determining whether mild intensity ultrasound affected the fragile and leaky angiogenic blood vessels in a tumor. In 27 mice (C3HV/HeN strain) a subcutaneous melanoma (K173522) was insonated with continuous physiotherapy ultrasound (1 MHz; spatial-average-temporal-average = 2.3 W cm-2). Analyses of contrast enhanced power Doppler observations showed that insonation significantly increased the avascular area in the neoplasm. A linear regression analysis demonstrated that each min of insonation lead to a 25% reduction in tumor vascularity. The predominant acute effect of insonation was an apparently irreparable dilation of the tumor capillaries; liquefactive necrosis of neoplastic cells, related to a secondary ischemia, was a delayed effect.
Liu, Yupeng; Wu, Jianguo; Yu, Deyong; Hao, Ruifang
2018-06-01
China's rapid economic growth during the past three decades has resulted in a number of environmental problems, including the deterioration of air quality. It is necessary to better understand how the spatial pattern of air pollutants varies with time scales and what drive these changes. To address these questions, this study focused on one of the most heavily air-polluted areas in North China. We first quantified the spatial pattern of air pollution, and then systematically examined the relationships of air pollution to several socioeconomic and climatic factors using the constraint line method, correlation analysis, and stepwise regression on decadal, annual, and seasonal scales. Our results indicate that PM 2.5 was the dominant air pollutant in the Beijing-Tianjin-Hebei region, while PM 2.5 and PM 10 were both important pollutants in the Agro-pastoral Transitional Zone (APTZ) region. Our statistical analyses suggest that energy consumption and gross domestic product (GDP) in the industry were the most important factors for air pollution on the decadal scale, but the impacts of climatic factors could also be significant. On the annual and seasonal scales, high wind speed, low relative humidity, and long sunshine duration constrained PM 2.5 accumulation; low wind speed and high relative humidity constrained PM 10 accumulation; and short sunshine duration and high wind speed constrained O 3 accumulation. Our study showed that analyses on multiple temporal scales are not only necessary to determine key drivers of air pollution, but also insightful for understanding the spatial patterns of air pollution, which was important for urban planning and air pollution control.
Shaver, Erika R; Sadler, Richard C; Hill, Alex B; Bell, Kendall; Ray, Myah; Choy-Shin, Jennifer; Lerner, Joy; Soldner, Teresa; Jones, Andrew D
2018-06-01
The goal of the present study was to use a methodology that accurately and reliably describes the availability, price and quality of healthy foods at both the store and community levels using the Nutrition Environment Measures Survey in Stores (NEMS-S), to propose a spatial methodology for integrating these store and community data into measures for defining objective food access. Two hundred and sixty-five retail food stores in and within 2 miles (3·2 km) of Flint, Michigan, USA, were mapped using ArcGIS mapping software. A survey based on the validated NEMS-S was conducted at each retail food store. Scores were assigned to each store based on a modified version of the NEMS-S scoring system and linked to the mapped locations of stores. Neighbourhood characteristics (race and socio-economic distress) were appended to each store. Finally, spatial and kernel density analyses were run on the mapped store scores to obtain healthy food density metrics. Regression analyses revealed that neighbourhoods with higher socio-economic distress had significantly lower dairy sub-scores compared with their lower-distress counterparts (β coefficient=-1·3; P=0·04). Additionally, supermarkets were present only in neighbourhoods with <60 % African-American population and low socio-economic distress. Two areas in Flint had an overall NEMS-S score of 0. By identifying areas with poor access to healthy foods via a validated metric, this research can be used help local government and organizations target interventions to high-need areas. Furthermore, the methodology used for the survey and the mapping exercise can be replicated in other cities to provide comparable results.
NASA Astrophysics Data System (ADS)
Shuler, C. K.; El-Kadi, A. I.; Dulaiova, H.; Glenn, C. R.; Fackrell, J.
2015-12-01
The quality of municipal groundwater supplies on Tutuila, the main island in American Samoa, is currently in question. A high vulnerability for contamination from surface activities has been recognized, and there exists a strong need to clearly identify anthropogenic sources of pollution and quantify their influence on the aquifer. This study examines spatial relationships and time series measurements of nutrients and other tracers to identify predominant pollution sources and determine the water quality impacts of the island's diverse land uses. Elevated groundwater nitrate concentrations are correlated with areas of human development, however, the mixture of residential and agricultural land use in this unique village based agrarian setting makes specific source identification difficult using traditional geospatial analysis. Spatial variation in anthropogenic impact was assessed by linking NO3- concentrations and δ15N(NO3) from an extensive groundwater survey to land-use types within well capture zones and groundwater flow-paths developed with MODFLOW, a numerical groundwater model. Land use types were obtained from high-resolution GIS data and compared to water quality results with multiple-regression analysis to quantify the impact that different land uses have on water quality. In addition, historical water quality data and new analyses of δD and δ18O in precipitation, groundwater, and mountain-front recharge waters were used to constrain the sources and mechanisms of contamination. Our analyses indicate that groundwater nutrient levels on Tutuila are controlled primarily by residential, not agricultural activity. Also a lack of temporal variation suggests that episodic pollution events are limited to individual water sources as opposed to the entire aquifer. These results are not only valuable for water quality management on Tutuila, but also provide insight into the sustainability of groundwater supplies on other islands with similar hydrogeology and land use history.
NASA Astrophysics Data System (ADS)
Liu, Yupeng; Wu, Jianguo; Yu, Deyong; Hao, Ruifang
2018-06-01
China's rapid economic growth during the past three decades has resulted in a number of environmental problems, including the deterioration of air quality. It is necessary to better understand how the spatial pattern of air pollutants varies with time scales and what drive these changes. To address these questions, this study focused on one of the most heavily air-polluted areas in North China. We first quantified the spatial pattern of air pollution, and then systematically examined the relationships of air pollution to several socioeconomic and climatic factors using the constraint line method, correlation analysis, and stepwise regression on decadal, annual, and seasonal scales. Our results indicate that PM2.5 was the dominant air pollutant in the Beijing-Tianjin-Hebei region, while PM2.5 and PM10 were both important pollutants in the Agro-pastoral Transitional Zone (APTZ) region. Our statistical analyses suggest that energy consumption and gross domestic product (GDP) in the industry were the most important factors for air pollution on the decadal scale, but the impacts of climatic factors could also be significant. On the annual and seasonal scales, high wind speed, low relative humidity, and long sunshine duration constrained PM2.5 accumulation; low wind speed and high relative humidity constrained PM10 accumulation; and short sunshine duration and high wind speed constrained O3 accumulation. Our study showed that analyses on multiple temporal scales are not only necessary to determine key drivers of air pollution, but also insightful for understanding the spatial patterns of air pollution, which was important for urban planning and air pollution control.
Spatial heterogeneity in parasite infections at different spatial scales in an intertidal bivalve.
Thieltges, David W; Reise, Karsten
2007-01-01
Spatial heterogeneities in the abundance of free-living organisms as well as in infection levels of their parasites are a common phenomenon, but knowledge on parasitism in invertebrate intermediate hosts in this respect is scarce. We investigated the spatial pattern of four dominant trematode species which utilize a common intertidal bivalve, the cockle Cerastoderma edule, as second intermediate host in their life cycles. Sampling of cockles from the same cohort at 15 sites in the northern Wadden Sea (North Sea) over a distance of 50 km revealed a conspicuous spatial heterogeneity in infection levels in all four species over the total sample as well as among and within sampling sites. Whereas multiple regression analyses indicated the density of first intermediate upstream hosts to be the strongest determinant of infection levels in cockles, the situation within sites was more complex with no single strong predictor variable. However, host size was positively and host density negatively correlated with infection levels and there was an indication of differential susceptibility of cockle hosts. Small-scale differences in physical properties of the habitat in the form of residual water at low tide resulted in increased infection levels of cockles which we experimentally transferred into pools. A complex interplay of these factors may be responsible for within-site heterogeneities. At larger spatial scales, these factors may be overridden by the strong effect of upstream hosts. In contrast to first intermediate trematode hosts, there was no indication for inter-specific interactions. In other terms, the recruitment of trematodes in second intermediate hosts seems to be largely controlled by pre-settlement processes both among and within host populations.
Mapping Tamarix: New techniques for field measurements, spatial modeling and remote sensing
NASA Astrophysics Data System (ADS)
Evangelista, Paul H.
Native riparian ecosystems throughout the southwestern United States are being altered by the rapid invasion of Tamarix species, commonly known as tamarisk. The effects that tamarisk has on ecosystem processes have been poorly quantified largely due to inadequate survey methods. I tested new approaches for field measurements, spatial models and remote sensing to improve our ability measure and to map tamarisk occurrence, and provide new methods that will assist in management and control efforts. Examining allometric relationships between basal cover and height measurements collected in the field, I was able to produce several models to accurately estimate aboveground biomass. The best two models were explained 97% of the variance (R 2 = 0.97). Next, I tested five commonly used predictive spatial models to identify which methods performed best for tamarisk using different types of data collected in the field. Most spatial models performed well for tamarisk, with logistic regression performing best with an Area Under the receiver-operating characteristic Curve (AUC) of 0.89 and overall accuracy of 85%. The results of this study also suggested that models may not perform equally with different invasive species, and that results may be influenced by species traits and their interaction with environmental factors. Lastly, I tested several approaches to improve the ability to remotely sense tamarisk occurrence. Using Landsat7 ETM+ satellite scenes and derived vegetation indices for six different months of the growing season, I examined their ability to detect tamarisk individually (single-scene analyses) and collectively (time-series). My results showed that time-series analyses were best suited to distinguish tamarisk from other vegetation and landscape features (AUC = 0.96, overall accuracy = 90%). June, August and September were the best months to detect unique phenological attributes that are likely related to the species' extended growing season and green-up during peak growing months. These studies demonstrate that new techniques can further our understanding of tamarisk's impacts on ecosystem processes, predict potential distribution and new invasions, and improve our ability to detect occurrence using remote sensing techniques. Collectively, the results of my studies may increase our ability to map tamarisk distributions and better quantify its impacts over multiple spatial and temporal scales.
NASA Astrophysics Data System (ADS)
Shafizadeh-Moghadam, Hossein; Helbich, Marco
2015-03-01
The rapid growth of megacities requires special attention among urban planners worldwide, and particularly in Mumbai, India, where growth is very pronounced. To cope with the planning challenges this will bring, developing a retrospective understanding of urban land-use dynamics and the underlying driving-forces behind urban growth is a key prerequisite. This research uses regression-based land-use change models - and in particular non-spatial logistic regression models (LR) and auto-logistic regression models (ALR) - for the Mumbai region over the period 1973-2010, in order to determine the drivers behind spatiotemporal urban expansion. Both global models are complemented by a local, spatial model, the so-called geographically weighted logistic regression (GWLR) model, one that explicitly permits variations in driving-forces across space. The study comes to two main conclusions. First, both global models suggest similar driving-forces behind urban growth over time, revealing that LRs and ALRs result in estimated coefficients with comparable magnitudes. Second, all the local coefficients show distinctive temporal and spatial variations. It is therefore concluded that GWLR aids our understanding of urban growth processes, and so can assist context-related planning and policymaking activities when seeking to secure a sustainable urban future.
Kennedy, Emma V; Tonk, Linda; Foster, Nicola L; Chollett, Iliana; Ortiz, Juan-Carlos; Dove, Sophie; Hoegh-Guldberg, Ove; Mumby, Peter J; Stevens, Jamie R
2016-11-16
The physiological performance of a reef-building coral is a combined outcome of both the coral host and its algal endosymbionts, Symbiodinium While Orbicella annularis-a dominant reef-building coral in the Wider Caribbean-is known to be a flexible host in terms of the diversity of Symbiodinium types it can associate with, it is uncertain how this diversity varies across the Caribbean, and whether spatial variability in the symbiont community is related to either O. annularis genotype or environment. Here, we target the Symbiodinium-ITS2 gene to characterize and map dominant Symbiodinium hosted by O. annularis at an unprecedented spatial scale. We reveal northwest-southeast partitioning across the Caribbean, both in terms of the dominant symbiont taxa hosted and in assemblage diversity. Multivariate regression analyses incorporating a suite of environmental and genetic factors reveal that observed spatial patterns are predominantly explained by chronic thermal stress (summer temperatures) and are unrelated to host genotype. Furthermore, we were able to associate the presence of specific Symbiodinium types with local environmental drivers (for example, Symbiodinium C7 with areas experiencing cooler summers, B1j with nutrient loading and B17 with turbidity), associations that have not previously been described. © 2016 The Authors.
Spatial regression test for ensuring temperature data quality in southern Spain
NASA Astrophysics Data System (ADS)
Estévez, J.; Gavilán, P.; García-Marín, A. P.
2018-01-01
Quality assurance of meteorological data is crucial for ensuring the reliability of applications and models that use such data as input variables, especially in the field of environmental sciences. Spatial validation of meteorological data is based on the application of quality control procedures using data from neighbouring stations to assess the validity of data from a candidate station (the station of interest). These kinds of tests, which are referred to in the literature as spatial consistency tests, take data from neighbouring stations in order to estimate the corresponding measurement at the candidate station. These estimations can be made by weighting values according to the distance between the stations or to the coefficient of correlation, among other methods. The test applied in this study relies on statistical decision-making and uses a weighting based on the standard error of the estimate. This paper summarizes the results of the application of this test to maximum, minimum and mean temperature data from the Agroclimatic Information Network of Andalusia (southern Spain). This quality control procedure includes a decision based on a factor f, the fraction of potential outliers for each station across the region. Using GIS techniques, the geographic distribution of the errors detected has been also analysed. Finally, the performance of the test was assessed by evaluating its effectiveness in detecting known errors.
Meléndez, María José; Báez, José Carlos; Serna-Quintero, José Miguel; Camiñas, Juan Antonio; Fernández, Ignacio de Loyola; Real, Raimundo; Macías, David
2017-01-01
Chondrichthyes, which include Elasmobranchii (sharks and batoids) and Holocephali (chimaeras), are a relatively small group in the Mediterranean Sea (89 species) playing a key role in the ecosystems where they are found. At present, many species of this group are threatened as a result of anthropogenic effects, including fishing activity. Knowledge of the spatial distribution of these species is of great importance to understand their ecological role and for the efficient management of their populations, particularly if affected by fisheries. This study aims to analyze the spatial patterns of the distribution of Chondrichthyes species richness in the Mediterranean Sea. Information provided by the studied countries was used to model geographical and ecological variables affecting the Chondrichthyes species richness. The species were distributed in 16 Operational Geographical Units (OGUs), derived from the Geographical Sub-Areas (GSA) adopted by the General Fisheries Commission of the Mediterranean Sea (GFCM). Regression analyses with the species richness as a target variable were adjusted with a set of environmental and geographical variables, being the model that links richness of Chondrichthyes species with distance to the Strait of Gibraltar and number of taxonomic families of bony fishes the one that best explains it. This suggests that both historical and ecological factors affect the current distribution of Chondrichthyes within the Mediterranean Sea.
Normative Data for the Hayling and Brixton Tests in an Italian Population.
Spitoni, Grazia Fernanda; Bevacqua, Sara; Cerini, Claudia; Ciurli, Paola; Piccardi, Laura; Guariglia, Paola; Pezzuti, Lina; Antonucci, Gabriella
2018-06-01
The Hayling and Brixton tests constitute a short test battery that quickly assesses verbal and spatial inhibition and flexibility. This battery has shown high construct validity and strong reliability in clinical and experimental settings. The aim of this study was to develop an Italian version of the Hayling and Brixton tests and obtain normative values. We collected normative data from 301 healthy Italian participants aged between 16 and 94 years, taking into account all demographics. To maximize the sample size, we used the overlapping interval strategy. Adjusted scores for demographics were obtained by linear regression analysis. The performance on the Hayling and Brixton tests was influenced by age and education. In particular, age affected verbal accuracy and response time on the Hayling Sentence Completion Test, whereas education only affected the former. Differently, the spatial component, as measured by the Brixton Spatial Anticipation Test, was shaped only by age, which decreased the number of correct responses. Our study provides normative data that have been adjusted for relevant demographics and percentile grids in an Italian population. Our data support the use of the Hayling and Brixton tests as a valid instrument for performing neuropsychological evaluations and longitudinal analyses of executive functions in clinical practice and for research purposes.
Tonk, Linda; Chollett, Iliana; Ortiz, Juan-Carlos; Dove, Sophie; Hoegh-Guldberg, Ove; Mumby, Peter J.
2016-01-01
The physiological performance of a reef-building coral is a combined outcome of both the coral host and its algal endosymbionts, Symbiodinium. While Orbicella annularis—a dominant reef-building coral in the Wider Caribbean—is known to be a flexible host in terms of the diversity of Symbiodinium types it can associate with, it is uncertain how this diversity varies across the Caribbean, and whether spatial variability in the symbiont community is related to either O. annularis genotype or environment. Here, we target the Symbiodinium-ITS2 gene to characterize and map dominant Symbiodinium hosted by O. annularis at an unprecedented spatial scale. We reveal northwest–southeast partitioning across the Caribbean, both in terms of the dominant symbiont taxa hosted and in assemblage diversity. Multivariate regression analyses incorporating a suite of environmental and genetic factors reveal that observed spatial patterns are predominantly explained by chronic thermal stress (summer temperatures) and are unrelated to host genotype. Furthermore, we were able to associate the presence of specific Symbiodinium types with local environmental drivers (for example, Symbiodinium C7 with areas experiencing cooler summers, B1j with nutrient loading and B17 with turbidity), associations that have not previously been described. PMID:27807263
Spatial patterns and broad-scale weather cues of beech mast seeding in Europe.
Vacchiano, Giorgio; Hacket-Pain, Andrew; Turco, Marco; Motta, Renzo; Maringer, Janet; Conedera, Marco; Drobyshev, Igor; Ascoli, Davide
2017-07-01
Mast seeding is a crucial population process in many tree species, but its spatio-temporal patterns and drivers at the continental scale remain unknown . Using a large dataset (8000 masting observations across Europe for years 1950-2014) we analysed the spatial pattern of masting across the entire geographical range of European beech, how it is influenced by precipitation, temperature and drought, and the temporal and spatial stability of masting-weather correlations. Beech masting exhibited a general distance-dependent synchronicity and a pattern structured in three broad geographical groups consistent with continental climate regimes. Spearman's correlations and logistic regression revealed a general pattern of beech masting correlating negatively with temperature in the summer 2 yr before masting, and positively with summer temperature 1 yr before masting (i.e. 2T model). The temperature difference between the two previous summers (DeltaT model) was also a good predictor. Moving correlation analysis applied to the longest eight chronologies (74-114 yr) revealed stable correlations between temperature and masting, confirming consistency in weather cues across space and time. These results confirm widespread dependency of masting on temperature and lend robustness to the attempts to reconstruct and predict mast years using temperature data. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Liu, Bilan; Qiu, Xing; Zhu, Tong; Tian, Wei; Hu, Rui; Ekholm, Sven; Schifitto, Giovanni; Zhong, Jianhui
2016-03-01
Subject-specific longitudinal DTI study is vital for investigation of pathological changes of lesions and disease evolution. Spatial Regression Analysis of Diffusion tensor imaging (SPREAD) is a non-parametric permutation-based statistical framework that combines spatial regression and resampling techniques to achieve effective detection of localized longitudinal diffusion changes within the whole brain at individual level without a priori hypotheses. However, boundary blurring and dislocation limit its sensitivity, especially towards detecting lesions of irregular shapes. In the present study, we propose an improved SPREAD (dubbed improved SPREAD, or iSPREAD) method by incorporating a three-dimensional (3D) nonlinear anisotropic diffusion filtering method, which provides edge-preserving image smoothing through a nonlinear scale space approach. The statistical inference based on iSPREAD was evaluated and compared with the original SPREAD method using both simulated and in vivo human brain data. Results demonstrated that the sensitivity and accuracy of the SPREAD method has been improved substantially by adapting nonlinear anisotropic filtering. iSPREAD identifies subject-specific longitudinal changes in the brain with improved sensitivity, accuracy, and enhanced statistical power, especially when the spatial correlation is heterogeneous among neighboring image pixels in DTI.
Ahmad, Sheikh Saeed; Aziz, Neelam; Butt, Amna; Shabbir, Rabia; Erum, Summra
2015-09-01
One of the features of medical geography that has made it so useful in health research is statistical spatial analysis, which enables the quantification and qualification of health events. The main objective of this research was to study the spatial distribution patterns of malaria in Rawalpindi district using spatial statistical techniques to identify the hot spots and the possible risk factor. Spatial statistical analyses were done in ArcGIS, and satellite images for land use classification were processed in ERDAS Imagine. Four hundred and fifty water samples were also collected from the study area to identify the presence or absence of any microbial contamination. The results of this study indicated that malaria incidence varied according to geographical location, with eco-climatic condition and showing significant positive spatial autocorrelation. Hotspots or location of clusters were identified using Getis-Ord Gi* statistic. Significant clustering of malaria incidence occurred in rural central part of the study area including Gujar Khan, Kaller Syedan, and some part of Kahuta and Rawalpindi Tehsil. Ordinary least square (OLS) regression analysis was conducted to analyze the relationship of risk factors with the disease cases. Relationship of different land cover with the disease cases indicated that malaria was more related with agriculture, low vegetation, and water class. Temporal variation of malaria cases showed significant positive association with the meteorological variables including average monthly rainfall and temperature. The results of the study further suggested that water supply and sewage system and solid waste collection system needs a serious attention to prevent any outbreak in the study area.
Agadjanian, Victor; Yao, Jing; Hayford, Sarah R.
2017-01-01
CONTEXT Although institutional coverage of childbirth is increasing in the developing world, a substantial minority of births in rural Mozambique still occur outside of health facilities. Identifying the remaining barriers to safe professional delivery services can aid in achieving universal coverage. METHODS Survey data collected in 2009 from 1,373 women in Gaza, Mozambique, were used in combination with spatial, meteorological and health facility data to examine patterns in place of delivery. Geographic information system–based visualization and mapping and exploratory spatial data analysis were used to outline the spatial distribution of home deliveries. Multilevel logistic regression models were constructed to identify associations between individual, spatial and other characteristics and whether women’s most recent delivery took place at home. RESULTS Spatial analysis revealed high- and low-prevalence clusters of home births. In multivariate analyses, women with a higher number of clinics within 10 kilometers of their home had a reduced likelihood of home delivery, but those living closer to urban centers had an increased likelihood. Giving birth during the rainy, high agricultural season was positively associated with home delivery, while household wealth was negatively associated with home birth. No associations were evident for measures of exposure to and experience with health institutions. CONCLUSIONS The results suggest the need for a comprehensive approach to expansion of professional delivery services. Such an approach should complement measures facilitating physical access to health institutions for residents of harder-to-reach areas with community-based interventions aimed at improving rural women’s living conditions and opportunities, while also taking into account seasonal and other variables. PMID:28770025
Bennett, Bradley C; Husby, Chad E
2008-03-28
Botanical pharmacopoeias are non-random subsets of floras, with some taxonomic groups over- or under-represented. Moerman [Moerman, D.E., 1979. Symbols and selectivity: a statistical analysis of Native American medical ethnobotany, Journal of Ethnopharmacology 1, 111-119] introduced linear regression/residual analysis to examine these patterns. However, regression, the commonly-employed analysis, suffers from several statistical flaws. We use contingency table and binomial analyses to examine patterns of Shuar medicinal plant use (from Amazonian Ecuador). We first analyzed the Shuar data using Moerman's approach, modified to better meet requirements of linear regression analysis. Second, we assessed the exact randomization contingency table test for goodness of fit. Third, we developed a binomial model to test for non-random selection of plants in individual families. Modified regression models (which accommodated assumptions of linear regression) reduced R(2) to from 0.59 to 0.38, but did not eliminate all problems associated with regression analyses. Contingency table analyses revealed that the entire flora departs from the null model of equal proportions of medicinal plants in all families. In the binomial analysis, only 10 angiosperm families (of 115) differed significantly from the null model. These 10 families are largely responsible for patterns seen at higher taxonomic levels. Contingency table and binomial analyses offer an easy and statistically valid alternative to the regression approach.
Lausch, Angela; Pause, Marion; Merbach, Ines; Zacharias, Steffen; Doktor, Daniel; Volk, Martin; Seppelt, Ralf
2013-02-01
Remote sensing is an important tool for studying patterns in surface processes on different spatiotemporal scales. However, differences in the spatiospectral and temporal resolution of remote sensing data as well as sensor-specific surveying characteristics very often hinder comparative analyses and effective up- and downscaling analyses. This paper presents a new methodical framework for combining hyperspectral remote sensing data on different spatial and temporal scales. We demonstrate the potential of using the "One Sensor at Different Scales" (OSADIS) approach for the laboratory (plot), field (local), and landscape (regional) scales. By implementing the OSADIS approach, we are able (1) to develop suitable stress-controlled vegetation indices for selected variables such as the Leaf Area Index (LAI), chlorophyll, photosynthesis, water content, nutrient content, etc. over a whole vegetation period. Focused laboratory monitoring can help to document additive and counteractive factors and processes of the vegetation and to correctly interpret their spectral response; (2) to transfer the models obtained to the landscape level; (3) to record imaging hyperspectral information on different spatial scales, achieving a true comparison of the structure and process results; (4) to minimize existing errors from geometrical, spectral, and temporal effects due to sensor- and time-specific differences; and (5) to carry out a realistic top- and downscaling by determining scale-dependent correction factors and transfer functions. The first results of OSADIS experiments are provided by controlled whole vegetation experiments on barley under water stress on the plot scale to model LAI using the vegetation indices Normalized Difference Vegetation Index (NDVI) and green NDVI (GNDVI). The regression model ascertained from imaging hyperspectral AISA-EAGLE/HAWK (DUAL) data was used to model LAI. This was done by using the vegetation index GNDVI with an R (2) of 0.83, which was transferred to airborne hyperspectral data on the local and regional scales. For this purpose, hyperspectral imagery was collected at three altitudes over a land cover gradient of 25 km within a timeframe of a few minutes, yielding a spatial resolution from 1 to 3 m. For all recorded spatial scales, both the LAI and the NDVI were determined. The spatial properties of LAI and NDVI of all recorded hyperspectral images were compared using semivariance metrics derived from the variogram. The first results show spatial differences in the heterogeneity of LAI and NDVI from 1 to 3 m with the recorded hyperspectral data. That means that differently recorded data on different scales might not sufficiently maintain the spatial properties of high spatial resolution hyperspectral images.
Exploring prediction uncertainty of spatial data in geostatistical and machine learning Approaches
NASA Astrophysics Data System (ADS)
Klump, J. F.; Fouedjio, F.
2017-12-01
Geostatistical methods such as kriging with external drift as well as machine learning techniques such as quantile regression forest have been intensively used for modelling spatial data. In addition to providing predictions for target variables, both approaches are able to deliver a quantification of the uncertainty associated with the prediction at a target location. Geostatistical approaches are, by essence, adequate for providing such prediction uncertainties and their behaviour is well understood. However, they often require significant data pre-processing and rely on assumptions that are rarely met in practice. Machine learning algorithms such as random forest regression, on the other hand, require less data pre-processing and are non-parametric. This makes the application of machine learning algorithms to geostatistical problems an attractive proposition. The objective of this study is to compare kriging with external drift and quantile regression forest with respect to their ability to deliver reliable prediction uncertainties of spatial data. In our comparison we use both simulated and real world datasets. Apart from classical performance indicators, comparisons make use of accuracy plots, probability interval width plots, and the visual examinations of the uncertainty maps provided by the two approaches. By comparing random forest regression to kriging we found that both methods produced comparable maps of estimated values for our variables of interest. However, the measure of uncertainty provided by random forest seems to be quite different to the measure of uncertainty provided by kriging. In particular, the lack of spatial context can give misleading results in areas without ground truth data. These preliminary results raise questions about assessing the risks associated with decisions based on the predictions from geostatistical and machine learning algorithms in a spatial context, e.g. mineral exploration.
Chang, Brian A; Pearson, William S; Owusu-Edusei, Kwame
2017-04-01
We used a combination of hot spot analysis (HSA) and spatial regression to examine county-level hot spot correlates for the most commonly reported nonviral sexually transmitted infections (STIs) in the 48 contiguous states in the United States (US). We obtained reported county-level total case rates of chlamydia, gonorrhea, and primary and secondary (P&S) syphilis in all counties in the 48 contiguous states from national surveillance data and computed temporally smoothed rates using 2008-2012 data. Covariates were obtained from county-level multiyear (2008-2012) American Community Surveys from the US census. We conducted HSA to identify hot spot counties for all three STIs. We then applied spatial logistic regression with the spatial error model to determine the association between the identified hot spots and the covariates. HSA indicated that ≥84% of hot spots for each STI were in the South. Spatial regression results indicated that, a 10-unit increase in the percentage of Black non-Hispanics was associated with ≈42% (P < 0.01) [≈22% (P < 0.01), for Hispanics] increase in the odds of being a hot spot county for chlamydia and gonorrhea, and ≈27% (P < 0.01) [≈11% (P < 0.01) for Hispanics] for P&S syphilis. Compared with the other regions (West, Midwest, and Northeast), counties in the South were 6.5 (P < 0.01; chlamydia), 9.6 (P < 0.01; gonorrhea), and 4.7 (P < 0.01; P&S syphilis) times more likely to be hot spots. Our study provides important information on hot spot clusters of nonviral STIs in the entire United States, including associations between hot spot counties and sociodemographic factors. Published by Elsevier Inc.
Logistic regression for southern pine beetle outbreaks with spatial and temporal autocorrelation
M. L. Gumpertz; C.-T. Wu; John M. Pye
2000-01-01
Regional outbreaks of southern pine beetle (Dendroctonus frontalis Zimm.) show marked spatial and temporal patterns. While these patterns are of interest in themselves, we focus on statistical methods for estimating the effects of underlying environmental factors in the presence of spatial and temporal autocorrelation. The most comprehensive available information on...
Uncomfortable images in art and nature.
Fernandez, Dominic; Wilkins, Arnold J
2008-01-01
The ratings of discomfort from a wide variety of images can be predicted from the energy at different spatial scales in the image, as measured by the Fourier amplitude spectrum of the luminance. Whereas comfortable images show the regression of Fourier amplitude against spatial frequency common in natural scenes, uncomfortable images show a regression with disproportionately greater amplitude at spatial frequencies within two octaves of 3 cycles deg(-1). In six studies, the amplitude in this spatial frequency range relative to that elsewhere in the spectrum explains variance in judgments of discomfort from art, from images constructed from filtered noise, and from art in which the phase or amplitude spectra have been altered. Striped patterns with spatial frequency within the above range are known to be uncomfortable and capable of provoking headaches and seizures in susceptible persons. The present findings show for the first time that, even in more complex images, the energy in this spatial-frequency range is associated with aversion. We propose a simple measurement that can predict aversion to those works of art that have reached the national media because of negative public reaction.
Uncomfortable images in art and nature
Fernandez, Dominic; Wilkins, Arnold J.
2008-01-01
We find that the ratings of discomfort from a wide variety of images can be predicted from the energy at different spatial scales in the image, as measured by the Fourier amplitude spectrum of the luminance. Whereas comfortable images show the regression of Fourier amplitude against spatial frequency common in natural scenes, uncomfortable images show a regression with disproportionately greater amplitude at spatial frequencies within two octaves of 3 cycles per degree. In six studies, the amplitude at this spatial frequency relative to that 3 octaves below explains variance in judgments of discomfort from art, from images constructed from filtered noise and from art in which the phase or amplitude spectra have been altered. Striped patterns with spatial frequency within the above range are known to be uncomfortable and capable of provoking headaches and seizures in susceptible persons. The present findings show for the first time that even in more complex images the energy in this spatial frequency range is associated with aversion. We propose a simple measurement that can predict aversion to those works of art that have reached the national media because of negative public reaction. PMID:18773732
Spectral-Spatial Shared Linear Regression for Hyperspectral Image Classification.
Haoliang Yuan; Yuan Yan Tang
2017-04-01
Classification of the pixels in hyperspectral image (HSI) is an important task and has been popularly applied in many practical applications. Its major challenge is the high-dimensional small-sized problem. To deal with this problem, lots of subspace learning (SL) methods are developed to reduce the dimension of the pixels while preserving the important discriminant information. Motivated by ridge linear regression (RLR) framework for SL, we propose a spectral-spatial shared linear regression method (SSSLR) for extracting the feature representation. Comparing with RLR, our proposed SSSLR has the following two advantages. First, we utilize a convex set to explore the spatial structure for computing the linear projection matrix. Second, we utilize a shared structure learning model, which is formed by original data space and a hidden feature space, to learn a more discriminant linear projection matrix for classification. To optimize our proposed method, an efficient iterative algorithm is proposed. Experimental results on two popular HSI data sets, i.e., Indian Pines and Salinas demonstrate that our proposed methods outperform many SL methods.
Gopalaswamy, Arjun M.; Royle, J. Andrew; Hines, James E.; Singh, Pallavi; Jathanna, Devcharan; Kumar, N. Samba; Karanth, K. Ullas
2012-01-01
1. The advent of spatially explicit capture-recapture models is changing the way ecologists analyse capture-recapture data. However, the advantages offered by these new models are not fully exploited because they can be difficult to implement. 2. To address this need, we developed a user-friendly software package, created within the R programming environment, called SPACECAP. This package implements Bayesian spatially explicit hierarchical models to analyse spatial capture-recapture data. 3. Given that a large number of field biologists prefer software with graphical user interfaces for analysing their data, SPACECAP is particularly useful as a tool to increase the adoption of Bayesian spatially explicit capture-recapture methods in practice.
Dong, Wen; Yang, Kun; Xu, Quan-Li; Yang, Yu-Lian
2015-01-01
This study investigated the spatial distribution, spatial autocorrelation, temporal cluster, spatial-temporal autocorrelation and probable risk factors of H7N9 outbreaks in humans from March 2013 to December 2014 in China. The results showed that the epidemic spread with significant spatial-temporal autocorrelation. In order to describe the spatial-temporal autocorrelation of H7N9, an improved model was developed by introducing a spatial-temporal factor in this paper. Logistic regression analyses were utilized to investigate the risk factors associated with their distribution, and nine risk factors were significantly associated with the occurrence of A(H7N9) human infections: the spatial-temporal factor φ (OR = 2546669.382, p < 0.001), migration route (OR = 0.993, p < 0.01), river (OR = 0.861, p < 0.001), lake(OR = 0.992, p < 0.001), road (OR = 0.906, p < 0.001), railway (OR = 0.980, p < 0.001), temperature (OR = 1.170, p < 0.01), precipitation (OR = 0.615, p < 0.001) and relative humidity (OR = 1.337, p < 0.001). The improved model obtained a better prediction performance and a higher fitting accuracy than the traditional model: in the improved model 90.1% (91/101) of the cases during February 2014 occurred in the high risk areas (the predictive risk > 0.70) of the predictive risk map, whereas 44.6% (45/101) of which overlaid on the high risk areas (the predictive risk > 0.70) for the traditional model, and the fitting accuracy of the improved model was 91.6% which was superior to the traditional model (86.1%). The predictive risk map generated based on the improved model revealed that the east and southeast of China were the high risk areas of A(H7N9) human infections in February 2014. These results provided baseline data for the control and prevention of future human infections. PMID:26633446
Effects of urban form on the urban heat island effect based on spatial regression model.
Yin, Chaohui; Yuan, Man; Lu, Youpeng; Huang, Yaping; Liu, Yanfang
2018-09-01
The urban heat island (UHI) effect is becoming more of a concern with the accelerated process of urbanization. However, few studies have examined the effect of urban form on land surface temperature (LST) especially from an urban planning perspective. This paper used spatial regression model to investigate the effects of both land use composition and urban form on LST in Wuhan City, China, based on the regulatory planning management unit. Landsat ETM+ image data was used to estimate LST. Land use composition was calculated by impervious surface area proportion, vegetated area proportion, and water proportion, while urban form indicators included sky view factor (SVF), building density, and floor area ratio (FAR). We first tested for spatial autocorrelation of urban LST, which confirmed that a traditional regression method would be invalid. A spatial error model (SEM) was chosen because its parameters were better than a spatial lag model (SLM). The results showed that urban form metrics should be the focus for mitigation efforts of UHI effects. In addition, analysis of the relationship between urban form and UHI effect based on the regulatory planning management unit was helpful for promoting corresponding UHI effect mitigation rules in practice. Finally, the spatial regression model was recommended to be an appropriate method for dealing with problems related to the urban thermal environment. Results suggested that the impact of urbanization on the UHI effect can be mitigated not only by balancing various land use types, but also by optimizing urban form, which is even more effective. This research expands the scientific understanding of effects of urban form on UHI by explicitly analyzing indicators closely related to urban detailed planning at the level of regulatory planning management unit. In addition, it may provide important insights and effective regulation measures for urban planners to mitigate future UHI effects. Copyright © 2018 Elsevier B.V. All rights reserved.
Spatial patterns of March and September streamflow trends in Pacific Northwest Streams, 1958-2008
Chang, Heejun; Jung, Il-Won; Steele, Madeline; Gannett, Marshall
2012-01-01
Summer streamflow is a vital water resource for municipal and domestic water supplies, irrigation, salmonid habitat, recreation, and water-related ecosystem services in the Pacific Northwest (PNW) in the United States. This study detects significant negative trends in September absolute streamflow in a majority of 68 stream-gauging stations located on unregulated streams in the PNW from 1958 to 2008. The proportion of March streamflow to annual streamflow increases in most stations over 1,000 m elevation, with a baseflow index of less than 50, while absolute March streamflow does not increase in most stations. The declining trends of September absolute streamflow are strongly associated with seven-day low flow, January–March maximum temperature trends, and the size of the basin (19–7,260 km2), while the increasing trends of the fraction of March streamflow are associated with elevation, April 1 snow water equivalent, March precipitation, center timing of streamflow, and October–December minimum temperature trends. Compared with ordinary least squares (OLS) estimated regression models, spatial error regression and geographically weighted regression (GWR) models effectively remove spatial autocorrelation in residuals. The GWR model results show spatial gradients of local R 2 values with consistently higher local R 2 values in the northern Cascades. This finding illustrates that different hydrologic landscape factors, such as geology and seasonal distribution of precipitation, also influence streamflow trends in the PNW. In addition, our spatial analysis model results show that considering various geographic factors help clarify the dynamics of streamflow trends over a large geographical area, supporting a spatial analysis approach over aspatial OLS-estimated regression models for predicting streamflow trends. Results indicate that transitional rain–snow surface water-dominated basins are likely to have reduced summer streamflow under warming scenarios. Consequently, a better understanding of the relationships among summer streamflow, precipitation, snowmelt, elevation, and geology can help water managers predict the response of regional summer streamflow to global warming.
NASA Astrophysics Data System (ADS)
Noth, Elizabeth M.; Hammond, S. Katharine; Biging, Gregory S.; Tager, Ira B.
2011-05-01
BackgroundPolycyclic aromatic hydrocarbons (PAHs) are generated as a byproduct of combustion, and are associated with respiratory symptoms and increased risk of asthma attacks. ObjectivesTo assign daily, outdoor exposures to participants in the Fresno Asthmatic Children's Environment Study (FACES) using land use regression models for the sum of 4-, 5- and 6-ring PAHs (PAH456). MethodsPAH data were collected daily at the EPA Supersite in Fresno, CA from 10/2000 through 2/2007. From 2/2002 to 2/2003, intensive air pollution sampling was conducted at 83 homes of participants in the FACES study. These measurement data were combined with meteorological data, source data, and other spatial variables to form a land use regression model to assign daily exposure at all FACES homes for all years of the study (2001-2008). ResultsThe model for daily, outdoor residential PAH456 concentrations accounted for 80% of the between-home variability and 18% of the within-home variability. Both temporal and spatial variables were significant in the model. Traffic characteristics and home heating fuel were the main spatial explanatory variables. ConclusionsBecause spatial and temporal distributions of PAHs vary on an intra-urban scale, the location of the child's home within the urban setting plays an important role in the level of exposure that each child has to PAHs.
Olugasa, Babasola O; Dogba, John B; Ogunro, Bamidele; Odigie, Eugene A; Nykoi, Jomah; Ojo, Johnson F; Taiwo, Olalekan; Kamara, Abraham; Mulbah, Charles K; Fasunla, Ayotunde J
2014-10-01
As Lassa fever continues to be a public health challenge in West Africa, it is critical to produce good maps of its risk pattern for use in active surveillance and control intervention. We identified eight spatial features related to the rubber plantation environment and used them as explanatory variables for Lassa fever (LF) outbreaks on the Uniroyal Liberian Agricultural Company (LAC) rubber plantation environment in Grand Bassa County, Liberia. We computed classical and spatial lag regression models on all spatial features, including proximity of residential camp to rubber tree-edge, main road in the plantation, LAC hospital, rice farmland, household refuse dump, human population density, post-harvest storage density of rice and density of rodent deterrent on rice storage. We found significant (p=0.0024) spatial autocorrelation between LF cases and the spatial features we have considered. We concluded that the rubber plantation environment influenced Mastomys species' breeding and transmission of Lassa virus along spatial scale to humans. The risk factors identified in this study offered a baseline for more effective surveillance and control of LF in the post-civil conflict Liberia. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mayfield, Helen J; Lowry, John H; Watson, Conall H; Kama, Mike; Nilles, Eric J; Lau, Colleen L
2018-05-01
Leptospirosis is a globally important zoonotic disease, with complex exposure pathways that depend on interactions between human beings, animals, and the environment. Major drivers of outbreaks include flooding, urbanisation, poverty, and agricultural intensification. The intensity of these drivers and their relative importance vary between geographical areas; however, non-spatial regression methods are incapable of capturing the spatial variations. This study aimed to explore the use of geographically weighted logistic regression (GWLR) to provide insights into the ecoepidemiology of human leptospirosis in Fiji. We obtained field data from a cross-sectional community survey done in 2013 in the three main islands of Fiji. A blood sample obtained from each participant (aged 1-90 years) was tested for anti-Leptospira antibodies and household locations were recorded using GPS receivers. We used GWLR to quantify the spatial variation in the relative importance of five environmental and sociodemographic covariates (cattle density, distance to river, poverty rate, residential setting [urban or rural], and maximum rainfall in the wettest month) on leptospirosis transmission in Fiji. We developed two models, one using GWLR and one with standard logistic regression; for each model, the dependent variable was the presence or absence of anti-Leptospira antibodies. GWLR results were compared with results obtained with standard logistic regression, and used to produce a predictive risk map and maps showing the spatial variation in odds ratios (OR) for each covariate. The dataset contained location information for 2046 participants from 1922 households representing 81 communities. The Aikaike information criterion value of the GWLR model was 1935·2 compared with 1254·2 for the standard logistic regression model, indicating that the GWLR model was more efficient. Both models produced similar OR for the covariates, but GWLR also detected spatial variation in the effect of each covariate. Maximum rainfall had the least variation across space (median OR 1·30, IQR 1·27-1·35), and distance to river varied the most (1·45, 1·35-2·05). The predictive risk map indicated that the highest risk was in the interior of Viti Levu, and the agricultural region and southern end of Vanua Levu. GWLR provided a valuable method for modelling spatial heterogeneity of covariates for leptospirosis infection and their relative importance over space. Results of GWLR could be used to inform more place-specific interventions, particularly for diseases with strong environmental or sociodemographic drivers of transmission. WHO, Australian National Health & Medical Research Council, University of Queensland, UK Medical Research Council, Chadwick Trust. Copyright © 2018 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Wang; Niu, Zheng; Gao, Shuai; Wang, Cheng
2014-11-01
Light Detection and Ranging (LiDAR) and Synthetic Aperture Radar (SAR) are two competitive active remote sensing techniques in forest above ground biomass estimation, which is important for forest management and global climate change study. This study aims to further explore their capabilities in temperate forest above ground biomass (AGB) estimation by emphasizing the spatial auto-correlation of variables obtained from these two remote sensing tools, which is a usually overlooked aspect in remote sensing applications to vegetation studies. Remote sensing variables including airborne LiDAR metrics, backscattering coefficient for different SAR polarizations and their ratio variables for Radarsat-2 imagery were calculated. First, simple linear regression models (SLR) was established between the field-estimated above ground biomass and the remote sensing variables. Pearson's correlation coefficient (R2) was used to find which LiDAR metric showed the most significant correlation with the regression residuals and could be selected as co-variable in regression co-kriging (RCoKrig). Second, regression co-kriging was conducted by choosing the regression residuals as dependent variable and the LiDAR metric (Hmean) with highest R2 as co-variable. Third, above ground biomass over the study area was estimated using SLR model and RCoKrig model, respectively. The results for these two models were validated using the same ground points. Results showed that both of these two methods achieved satisfactory prediction accuracy, while regression co-kriging showed the lower estimation error. It is proved that regression co-kriging model is feasible and effective in mapping the spatial pattern of AGB in the temperate forest using Radarsat-2 data calibrated by airborne LiDAR metrics.
NASA Astrophysics Data System (ADS)
Webb, Mathew A.; Hall, Andrew; Kidd, Darren; Minansy, Budiman
2016-05-01
Assessment of local spatial climatic variability is important in the planning of planting locations for horticultural crops. This study investigated three regression-based calibration methods (i.e. traditional versus two optimized methods) to relate short-term 12-month data series from 170 temperature loggers and 4 weather station sites with data series from nearby long-term Australian Bureau of Meteorology climate stations. The techniques trialled to interpolate climatic temperature variables, such as frost risk, growing degree days (GDDs) and chill hours, were regression kriging (RK), regression trees (RTs) and random forests (RFs). All three calibration methods produced accurate results, with the RK-based calibration method delivering the most accurate validation measures: coefficients of determination ( R 2) of 0.92, 0.97 and 0.95 and root-mean-square errors of 1.30, 0.80 and 1.31 °C, for daily minimum, daily maximum and hourly temperatures, respectively. Compared with the traditional method of calibration using direct linear regression between short-term and long-term stations, the RK-based calibration method improved R 2 and reduced root-mean-square error (RMSE) by at least 5 % and 0.47 °C for daily minimum temperature, 1 % and 0.23 °C for daily maximum temperature and 3 % and 0.33 °C for hourly temperature. Spatial modelling indicated insignificant differences between the interpolation methods, with the RK technique tending to be the slightly better method due to the high degree of spatial autocorrelation between logger sites.
Jacob, Benjamin G; Muturi, Ephantus J; Caamano, Erick X; Gunter, James T; Mpanga, Enoch; Ayine, Robert; Okelloonen, Joseph; Nyeko, Jack Pen-Mogi; Shililu, Josephat I; Githure, John I; Regens, James L; Novak, Robert J; Kakoma, Ibulaimu
2008-03-14
The aim of this study was to determine if remotely sensed data and Digital Elevation Model (DEM) can test relationships between Culex quinquefasciatus and Anopheles gambiae s.l. larval habitats and environmental parameters within Internally Displaced People (IDP) campgrounds in Gulu, Uganda. A total of 65 georeferenced aquatic habitats in various IDP camps were studied to compare the larval abundance of Cx. quinquefasciatus and An. gambiae s.l. The aquatic habitat dataset were overlaid onto Land Use Land Cover (LULC) maps retrieved from Landsat imagery with 150 m x 150 m grid cells stratified by levels of drainage. The LULC change was estimated over a period of 14 years. Poisson regression analyses and Moran's I statistics were used to model relationships between larval abundance and environmental predictors. Individual larval habitat data were further evaluated in terms of their covariations with spatial autocorrelation by regressing them on candidate spatial filter eigenvectors. Multispectral QuickBird imagery classification and DEM-based GIS methods were generated to evaluate stream flow direction and accumulation for identification of immature Cx. quinquefasciatus and An. gambiae s.l. and abundance. The main LULC change in urban Gulu IDP camps was non-urban to urban, which included about 71.5 % of the land cover. The regression models indicate that counts of An. gambiae s.l. larvae were associated with shade while Cx. quinquefasciatus were associated with floating vegetation. Moran's I and the General G statistics for mosquito density by species and instars, identified significant clusters of high densities of Anopheles; larvae, however, Culex are not consistently clustered. A stepwise negative binomial regression decomposed the immature An. gambiae s.l. data into empirical orthogonal bases. The data suggest the presence of roughly 11% to 28 % redundant information in the larval count samples. The DEM suggest a positive correlation for Culex (0.24) while for Anopheles there was a negative correlation (-0.23) for a local model distance to stream. These data demonstrate that optical remote sensing; geostatistics and DEMs can be used to identify parameters associated with Culex and Anopheles aquatic habitats.
Jacob, Benjamin G; Muturi, Ephantus J; Caamano, Erick X; Gunter, James T; Mpanga, Enoch; Ayine, Robert; Okelloonen, Joseph; Nyeko, Jack Pen-Mogi; Shililu, Josephat I; Githure, John I; Regens, James L; Novak, Robert J; Kakoma, Ibulaimu
2008-01-01
Background The aim of this study was to determine if remotely sensed data and Digital Elevation Model (DEM) can test relationships between Culex quinquefasciatus and Anopheles gambiae s.l. larval habitats and environmental parameters within Internally Displaced People (IDP) campgrounds in Gulu, Uganda. A total of 65 georeferenced aquatic habitats in various IDP camps were studied to compare the larval abundance of Cx. quinquefasciatus and An. gambiae s.l. The aquatic habitat dataset were overlaid onto Land Use Land Cover (LULC) maps retrieved from Landsat imagery with 150 m × 150 m grid cells stratified by levels of drainage. The LULC change was estimated over a period of 14 years. Poisson regression analyses and Moran's I statistics were used to model relationships between larval abundance and environmental predictors. Individual larval habitat data were further evaluated in terms of their covariations with spatial autocorrelation by regressing them on candidate spatial filter eigenvectors. Multispectral QuickBird imagery classification and DEM-based GIS methods were generated to evaluate stream flow direction and accumulation for identification of immature Cx. quinquefasciatus and An. gambiae s.l. and abundance. Results The main LULC change in urban Gulu IDP camps was non-urban to urban, which included about 71.5 % of the land cover. The regression models indicate that counts of An. gambiae s.l. larvae were associated with shade while Cx. quinquefasciatus were associated with floating vegetation. Moran's I and the General G statistics for mosquito density by species and instars, identified significant clusters of high densities of Anopheles; larvae, however, Culex are not consistently clustered. A stepwise negative binomial regression decomposed the immature An. gambiae s.l. data into empirical orthogonal bases. The data suggest the presence of roughly 11% to 28 % redundant information in the larval count samples. The DEM suggest a positive correlation for Culex (0.24) while for Anopheles there was a negative correlation (-0.23) for a local model distance to stream. Conclusion These data demonstrate that optical remote sensing; geostatistics and DEMs can be used to identify parameters associated with Culex and Anopheles aquatic habitats. PMID:18341699
Sumatran tiger survival threatened by deforestation despite increasing densities in parks.
Luskin, Matthew Scott; Albert, Wido Rizki; Tobler, Mathias W
2017-12-05
The continuing development of improved capture-recapture (CR) modeling techniques used to study apex predators has also limited robust temporal and cross-site analyses due to different methods employed. We develop an approach to standardize older non-spatial CR and newer spatial CR density estimates and examine trends for critically endangered Sumatran tigers (Panthera tigris sumatrae) using a meta-regression of 17 existing densities and new estimates from our own fieldwork. We find that tiger densities were 47% higher in primary versus degraded forests and, unexpectedly, increased 4.9% per yr from 1996 to 2014, likely indicating a recovery from earlier poaching. However, while tiger numbers may have temporarily risen, the total potential island-wide population declined by 16.6% from 2000 to 2012 due to forest loss and degradation and subpopulations are significantly more fragmented. Thus, despite increasing densities in smaller parks, we conclude that there are only two robust populations left with >30 breeding females, indicating Sumatran tigers still face a high risk of extinction unless deforestation can be controlled.
Ecological validity of neuropsychological assessment and perceived employability.
Wen, Johnny H; Boone, Kyle; Kim, Kevin
2006-11-01
Ecological validity studies that have examined the relationship between cognitive abilities and employment in psychiatric and medical populations have found that a wide range of cognitive domains predict employability, although memory and executive skills appear to be the most important. However, no information is available regarding a patient's self-perceived work attributes and objective neuropsychological performance, and whether the same cognitive domains associated with successful employment are also related to a patient's self-perception of work competence. In the present study, 73 medical and psychiatric patients underwent comprehensive neuropsychological assessment. Step-wise multiple regression analyses revealed that the visual-spatial domain was the only significant predictor of self-perceived work attributes and work competence as measured by the Working Inventory (WI) and the Work Adjustment Inventory (WAI), accounting for 7% to 10% of inventory score variability. The results raise the intriguing possibility that targeting of visual spatial skills for remediation and development might play a separate and unique role in the vocational rehabilitation of a lower SES population, specifically, by leading to enhanced self-perception of work competence as these individuals attempt to enter the job market.
Airborne hyperspectral imaging for the detection of powdery mildew in wheat
NASA Astrophysics Data System (ADS)
Franke, Jonas; Mewes, Thorsten; Menz, Gunter
2008-08-01
Plant stresses, in particular fungal diseases, show a high variability in spatial and temporal dimension with respect to their impact on the host. Recent "Precision Agriculture"-techniques allow for a spatially and temporally adjusted pest control that might reduce the amount of cost-intensive and ecologically harmful agrochemicals. Conventional stressdetection techniques such as random monitoring do not meet demands of such optimally placed management actions. The prerequisite is an accurate sensor-based detection of stress symptoms. The present study focuses on a remotely sensed detection of the fungal disease powdery mildew (Blumeria graminis) in wheat, Europe's main crop. In a field experiment, the potential of hyperspectral data for an early detection of stress symptoms was tested. A sophisticated endmember selection procedure was used and, additionally, a linear spectral mixture model was applied to a pixel spectrum with known characteristics, in order to derive an endmember representing 100% powdery mildew-infected wheat. Regression analyses of matched fraction estimates of this endmember and in-field-observed powdery mildew severities showed promising results (r=0.82 and r2=0.67).
NASA Technical Reports Server (NTRS)
Mattikalli, N. M.; Engman, E. T.; Jackson, T. J.; Ahuja, L. R.
1997-01-01
This paper demonstrates the use of multitemporal soil moisture derived from microwave remote sensing to estimate soil physical properties. The passive microwave ESTAR instrument was employed during June 10-18, 1992, to obtain brightness temperature (TB) and surface soil moisture data in the Little Washita watershed, Oklahoma. Analyses of spatial and temporal variations of TB and soil moisture during the dry-down period revealed a direct relationship between changes in T and soil moisture and soil physical (viz. texture) and hydraulic (viz. saturated hydraulic conductivity, K(sat)) properties. Statistically significant regression relationships were developed for the ratio of percent sand to percent clay (RSC) and K(sat), in terms of change components of TB and surface soil moisture. Validation of results using field measured values and soil texture map indicated that both RSC and K(sat) can be estimated with reasonable accuracy. These findings have potential applications of microwave remote sensing to obtain quick estimates of the spatial distributions of K(sat), over large areas for input parameterization of hydrologic models.
Koppenol-Gonzalez, Gabriela V; Bouwmeester, Samantha; Boonstra, A Marije
2010-12-01
The Tower of London (TOL) is a widely used instrument for assessing planning ability. Inhibition and (spatial) working memory are assumed to contribute to performance on the TOL, but findings about the relationship between these cognitive processes are often inconsistent. Moreover, the influence of specific properties of TOL problems on cognitive processes and difficulty level is often not taken into account. Furthermore, it may be expected that several planning strategies can be distinguished that cannot be extracted from the total score. In this study, a factor analysis and a latent class regression analysis were performed to address these issues. The results showed that 4 strategy groups that differed with respect to preplanning time could be distinguished. The effect of problem properties also differed for the 4 groups. Additional analyses showed that the groups differed on average planning performance but that there were no significant differences between inhibition and spatial working memory performance. Finally, it seemed that multiple factors influence performance on the TOL, the most important ones being the score measurements, the problem properties, and strategy use.
Glasser, Matthew F; Coalson, Timothy S; Bijsterbosch, Janine D; Harrison, Samuel J; Harms, Michael P; Anticevic, Alan; Van Essen, David C; Smith, Stephen M
2018-06-02
Temporal fluctuations in functional Magnetic Resonance Imaging (fMRI) have been profitably used to study brain activity and connectivity for over two decades. Unfortunately, fMRI data also contain structured temporal "noise" from a variety of sources, including subject motion, subject physiology, and the MRI equipment. Recently, methods have been developed to automatically and selectively remove spatially specific structured noise from fMRI data using spatial Independent Components Analysis (ICA) and machine learning classifiers. Spatial ICA is particularly effective at removing spatially specific structured noise from high temporal and spatial resolution fMRI data of the type acquired by the Human Connectome Project and similar studies. However, spatial ICA is mathematically, by design, unable to separate spatially widespread "global" structured noise from fMRI data (e.g., blood flow modulations from subject respiration). No methods currently exist to selectively and completely remove global structured noise while retaining the global signal from neural activity. This has left the field in a quandary-to do or not to do global signal regression-given that both choices have substantial downsides. Here we show that temporal ICA can selectively segregate and remove global structured noise while retaining global neural signal in both task-based and resting state fMRI data. We compare the results before and after temporal ICA cleanup to those from global signal regression and show that temporal ICA cleanup removes the global positive biases caused by global physiological noise without inducing the network-specific negative biases of global signal regression. We believe that temporal ICA cleanup provides a "best of both worlds" solution to the global signal and global noise dilemma and that temporal ICA itself unlocks interesting neurobiological insights from fMRI data. Copyright © 2018 Elsevier Inc. All rights reserved.
Determinants of single family residential water use across scales in four western US cities.
Chang, Heejun; Bonnette, Matthew Ryan; Stoker, Philip; Crow-Miller, Britt; Wentz, Elizabeth
2017-10-15
A growing body of literature examines urban water sustainability with increasing evidence that locally-based physical and social spatial interactions contribute to water use. These studies however are based on single-city analysis and often fail to consider whether these interactions occur more generally. We examine a multi-city comparison using a common set of spatially-explicit water, socioeconomic, and biophysical data. We investigate the relative importance of variables for explaining the variations of single family residential (SFR) water uses at Census Block Group (CBG) and Census Tract (CT) scales in four representative western US cities - Austin, Phoenix, Portland, and Salt Lake City, - which cover a wide range of climate and development density. We used both ordinary least squares regression and spatial error regression models to identify the influence of spatial dependence on water use patterns. Our results show that older downtown areas show lower water use than newer suburban areas in all four cities. Tax assessed value and building age are the main determinants of SFR water use across the four cities regardless of the scale. Impervious surface area becomes an important variable for summer water use in all cities, and it is important in all seasons for arid environments such as Phoenix. CT level analysis shows better model predictability than CBG analysis. In all cities, seasons, and spatial scales, spatial error regression models better explain the variations of SFR water use. Such a spatially-varying relationship of urban water consumption provides additional evidence for the need to integrate urban land use planning and municipal water planning. Copyright © 2017 Elsevier B.V. All rights reserved.
Richards, K K; Hazelton, M L; Stevenson, M A; Lockhart, C Y; Pinto, J; Nguyen, L
2014-10-01
The widespread availability of computer hardware and software for recording and storing disease event information means that, in theory, we have the necessary information to carry out detailed analyses of factors influencing the spatial distribution of disease in animal populations. However, the reliability of such analyses depends on data quality, with anomalous records having the potential to introduce significant bias and lead to inappropriate decision making. In this paper we promote the use of exceedance probabilities as a tool for detecting anomalies when applying hierarchical spatio-temporal models to animal health data. We illustrate this methodology through a case study data on outbreaks of foot-and-mouth disease (FMD) in Viet Nam for the period 2006-2008. A flexible binomial logistic regression was employed to model the number of FMD infected communes within each province of the country. Standard analyses of the residuals from this model failed to identify problems, but exceedance probabilities identified provinces in which the number of reported FMD outbreaks was unexpectedly low. This finding is interesting given that these provinces are on major cattle movement pathways through Viet Nam. Copyright © 2014 Elsevier Ltd. All rights reserved.
Chen, Wen; Zhou, Fangjing; Hall, Brian J; Tucker, Joseph D; Latkin, Carl; Renzaho, Andre M N; Ling, Li
2017-01-01
Achieving high coverage of HIV testing services is critical in many health systems, especially where HIV testing services remain centralized and inconvenient for many. As a result, planning the optimal spatial distribution of HIV testing sites is increasingly important. We aimed to assess the relationship between geographic distance and uptake of HIV testing services among the general population in Guangzhou, China. Utilizing spatial epidemiological methods and stratified household random sampling, we studied 666 adults aged 18-59. Computer-assisted interviews assessed self-reported HIV testing history. Spatial scan statistic assessed the clustering of participants who have ever been tested for HIV, and two-level logistic regression models assessed the association between uptake of HIV testing and the mean driving distance from the participant's residence to all HIV testing sites in the research sites. The percentage of participants who have ever been tested for HIV was 25.2% (168/666, 95%CI: 21.9%, 28.5%), and the majority (82.7%) of participants tested for HIV in Centres for Disease Control and Prevention, public hospitals or STIs clinics. None reported using self-testing. Spatial clustering analyses found a hotspot included 48 participants who have ever been tested for HIV and 25.8 expected cases (Rate Ratio = 1.86, P = 0.002). Adjusted two-level logistic regression found an inverse relationship between geographic distance (kilometers) and ever being tested for HIV (aOR = 0.90, 95%CI: 0.84, 0.96). Married or cohabiting participants (aOR = 2.14, 95%CI: 1.09, 4.20) and those with greater social support (aOR = 1.04, 95%CI: 1.01, 1.07) were more likely to be tested for HIV. Our findings underscore the importance of considering the geographical distribution of HIV testing sites to increase testing. In addition, expanding HIV testing coverage by introducing non-facility based HIV testing services and self-testing might be useful to achieve the goal that 90% of people living with HIV knowing their HIV status by the year 2020.
[Soil and forest structure in the Colombian Amazon].
Calle-Rendón, Bayron R; Moreno, Flavio; Cárdenas López, Dairon
2011-09-01
Forests structural differences could result of environmental variations at different scales. Because soils are an important component of plant's environment, it is possible that edaphic and structural variables are associated and that, in consequence, spatial autocorrelation occurs. This paper aims to answer two questions: (1) are structural and edaphic variables associated at local scale in a terra firme forest of Colombian Amazonia? and (2) are these variables regionalized at the scale of work? To answer these questions we analyzed the data of a 6ha plot established in a terra firme forest of the Amacayacu National Park. Structural variables included basal area and density of large trees (diameter > or = 10cm) (Gdos and Ndos), basal area and density of understory individuals (diameter < 10cm) (Gsot and Nsot) and number of species of large trees (sp). Edaphic variables included were pH, organic matter, P, Mg, Ca, K, Al, sand, silt and clay. Structural and edaphic variables were reduced through a principal component analysis (PCA); then, the association between edaphic and structural components from PCA was evaluated by multiple regressions. The existence of regionalization of these variables was studied through isotropic variograms, and autocorrelated variables were spatially mapped. PCA found two significant components for structure, corresponding to the structure of large trees (G, Gdos, Ndos and sp) and of small trees (N, Nsot and Gsot), which explained 43.9% and 36.2% of total variance, respectively. Four components were identified for edaphic variables, which globally explained 81.9% of total variance and basically represent drainage and soil fertility. Regression analyses were significant (p < 0.05) and showed that the structure of both large and small trees is associated with greater sand contents and low soil fertility, though they explained a low proportion of total variability (R2 was 4.9% and 16.5% for the structure of large trees and small tress, respectively). Variables with spatial autocorrelation were the structure of small trees, Al, silt, and sand. Among them, Nsot and sand content showed similar patterns of spatial distribution inside the plot.
Siordia, Carlos; Saenz, Joseph; Tom, Sarah E.
2014-01-01
Type II diabetes is a growing health problem in the United States. Understanding geographic variation in diabetes prevalence will inform where resources for management and prevention should be allocated. Investigations of the correlates of diabetes prevalence have largely ignored how spatial nonstationarity might play a role in the macro-level distribution of diabetes. This paper introduces the reader to the concept of spatial nonstationarity—variance in statistical relationships as a function of geographical location. Since spatial nonstationarity means different predictors can have varying effects on model outcomes, we make use of a geographically weighed regression to calculate correlates of diabetes as a function of geographic location. By doing so, we demonstrate an exploratory example in which the diabetes-poverty macro-level statistical relationship varies as a function of location. In particular, we provide evidence that when predicting macro-level diabetes prevalence, poverty is not always positively associated with diabetes PMID:25414731
Siordia, Carlos; Saenz, Joseph; Tom, Sarah E
2012-01-01
Type II diabetes is a growing health problem in the United States. Understanding geographic variation in diabetes prevalence will inform where resources for management and prevention should be allocated. Investigations of the correlates of diabetes prevalence have largely ignored how spatial nonstationarity might play a role in the macro-level distribution of diabetes. This paper introduces the reader to the concept of spatial nonstationarity-variance in statistical relationships as a function of geographical location. Since spatial nonstationarity means different predictors can have varying effects on model outcomes, we make use of a geographically weighed regression to calculate correlates of diabetes as a function of geographic location. By doing so, we demonstrate an exploratory example in which the diabetes-poverty macro-level statistical relationship varies as a function of location. In particular, we provide evidence that when predicting macro-level diabetes prevalence, poverty is not always positively associated with diabetes.
Jason B. Dunham; Brian S. Cade; James W. Terrell
2002-01-01
We used regression quantiles to model potentially limiting relationships between the standing crop of cutthroat trout Oncorhynchus clarki and measures of stream channel morphology. Regression quantile models indicated that variation in fish density was inversely related to the width:depth ratio of streams but not to stream width or depth alone. The...
A Review of the Statistical and Quantitative Methods Used to Study Alcohol-Attributable Crime.
Fitterer, Jessica L; Nelson, Trisalyn A
2015-01-01
Modelling the relationship between alcohol consumption and crime generates new knowledge for crime prevention strategies. Advances in data, particularly data with spatial and temporal attributes, have led to a growing suite of applied methods for modelling. In support of alcohol and crime researchers we synthesized and critiqued existing methods of spatially and quantitatively modelling the effects of alcohol exposure on crime to aid method selection, and identify new opportunities for analysis strategies. We searched the alcohol-crime literature from 1950 to January 2014. Analyses that statistically evaluated or mapped the association between alcohol and crime were included. For modelling purposes, crime data were most often derived from generalized police reports, aggregated to large spatial units such as census tracts or postal codes, and standardized by residential population data. Sixty-eight of the 90 selected studies included geospatial data of which 48 used cross-sectional datasets. Regression was the prominent modelling choice (n = 78) though dependent on data many variations existed. There are opportunities to improve information for alcohol-attributable crime prevention by using alternative population data to standardize crime rates, sourcing crime information from non-traditional platforms (social media), increasing the number of panel studies, and conducting analysis at the local level (neighbourhood, block, or point). Due to the spatio-temporal advances in crime data, we expect a continued uptake of flexible Bayesian hierarchical modelling, a greater inclusion of spatial-temporal point pattern analysis, and shift toward prospective (forecast) modelling over small areas (e.g., blocks).
A Review of the Statistical and Quantitative Methods Used to Study Alcohol-Attributable Crime
Fitterer, Jessica L.; Nelson, Trisalyn A.
2015-01-01
Modelling the relationship between alcohol consumption and crime generates new knowledge for crime prevention strategies. Advances in data, particularly data with spatial and temporal attributes, have led to a growing suite of applied methods for modelling. In support of alcohol and crime researchers we synthesized and critiqued existing methods of spatially and quantitatively modelling the effects of alcohol exposure on crime to aid method selection, and identify new opportunities for analysis strategies. We searched the alcohol-crime literature from 1950 to January 2014. Analyses that statistically evaluated or mapped the association between alcohol and crime were included. For modelling purposes, crime data were most often derived from generalized police reports, aggregated to large spatial units such as census tracts or postal codes, and standardized by residential population data. Sixty-eight of the 90 selected studies included geospatial data of which 48 used cross-sectional datasets. Regression was the prominent modelling choice (n = 78) though dependent on data many variations existed. There are opportunities to improve information for alcohol-attributable crime prevention by using alternative population data to standardize crime rates, sourcing crime information from non-traditional platforms (social media), increasing the number of panel studies, and conducting analysis at the local level (neighbourhood, block, or point). Due to the spatio-temporal advances in crime data, we expect a continued uptake of flexible Bayesian hierarchical modelling, a greater inclusion of spatial-temporal point pattern analysis, and shift toward prospective (forecast) modelling over small areas (e.g., blocks). PMID:26418016
Geographic distribution of HIV stigma among women of childbearing age in rural Kenya
Akullian, Adam; Kohler, Pamela; Kinuthia, John; Laserson, Kayla; Mills, Lisa A.; Okanda, John; Olilo, George; Ombok, Maurice; Odhiambo, Frank; Rao, Deepa; Wakefield, Jonathan; John-Stewart, Grace
2015-01-01
Objective(s) HIV stigma is considered to be a major driver of the HIV/AIDS pandemic, yet there is a limited understanding of its occurrence. We describe the geographic patterns of two forms of HIV stigma in a cross-sectional sample of women of childbearing age from western Kenya: internalized stigma (associated with shame) and externalized stigma (associated with blame). Design Geographic studies of HIV stigma provide a first step in generating hypotheses regarding potential community-level causes of stigma and may lead to more effective community-level interventions. Methods Spatial regression using generalized additive models and point pattern analyses using K-functions were used to assess the spatial scale(s) at which each form of HIV stigma clusters, and to assess whether the spatial clustering of each stigma indicator was present after adjustment for individual-level characteristics. Results There was evidence that externalized stigma (blame) was geographically heterogeneous across the study area, even after controlling for individual-level factors (P=0.01). In contrast, there was less evidence (P=0.70) of spatial trend or clustering of internalized stigma (shame). Conclusion Our results may point to differences in the underlying social processes motivating each form of HIV stigma. Externalized stigma may be driven more by cultural beliefs disseminated within communities, whereas internalized stigma may be the result of individual-level characteristics outside the domain of community influence. These data may inform community-level interventions to decrease HIV-related stigma, and thus impact the HIV epidemic. PMID:24835356
Bowen, Stephen R; Chappell, Richard J; Bentzen, Søren M; Deveau, Michael A; Forrest, Lisa J; Jeraj, Robert
2012-01-01
Purpose To quantify associations between pre-radiotherapy and post-radiotherapy PET parameters via spatially resolved regression. Materials and methods Ten canine sinonasal cancer patients underwent PET/CT scans of [18F]FDG (FDGpre), [18F]FLT (FLTpre), and [61Cu]Cu-ATSM (Cu-ATSMpre). Following radiotherapy regimens of 50 Gy in 10 fractions, veterinary patients underwent FDG PET/CT scans at three months (FDGpost). Regression of standardized uptake values in baseline FDGpre, FLTpre and Cu-ATSMpre tumour voxels to those in FDGpost images was performed for linear, log-linear, generalized-linear and mixed-fit linear models. Goodness-of-fit in regression coefficients was assessed by R2. Hypothesis testing of coefficients over the patient population was performed. Results Multivariate linear model fits of FDGpre to FDGpost were significantly positive over the population (FDGpost~0.17 FDGpre, p=0.03), and classified slopes of RECIST non-responders and responders to be different (0.37 vs. 0.07, p=0.01). Generalized-linear model fits related FDGpre to FDGpost by a linear power law (FDGpost~FDGpre0.93, p<0.001). Univariate mixture model fits of FDGpre improved R2 from 0.17 to 0.52. Neither baseline FLT PET nor Cu-ATSM PET uptake contributed statistically significant multivariate regression coefficients. Conclusions Spatially resolved regression analysis indicates that pre-treatment FDG PET uptake is most strongly associated with three-month post-treatment FDG PET uptake in this patient population, though associations are histopathology-dependent. PMID:22682748
John W. Edwards; Susan C. Loeb; David C. Guynn
1994-01-01
Multiple regression and use-availability analyses are two methods for examining habitat selection. Use-availability analysis is commonly used to evaluate macrohabitat selection whereas multiple regression analysis can be used to determine microhabitat selection. We compared these techniques using behavioral observations (n = 5534) and telemetry locations (n = 2089) of...
Cohen, Michael X
2015-09-01
The purpose of this paper is to compare the effects of different spatial transformations applied to the same scalp-recorded EEG data. The spatial transformations applied are two referencing schemes (average and linked earlobes), the surface Laplacian, and beamforming (a distributed source localization procedure). EEG data were collected during a speeded reaction time task that provided a comparison of activity between error vs. correct responses. Analyses focused on time-frequency power, frequency band-specific inter-electrode connectivity, and within-subject cross-trial correlations between EEG activity and reaction time. Time-frequency power analyses showed similar patterns of midfrontal delta-theta power for errors compared to correct responses across all spatial transformations. Beamforming additionally revealed error-related anterior and lateral prefrontal beta-band activity. Within-subject brain-behavior correlations showed similar patterns of results across the spatial transformations, with the correlations being the weakest after beamforming. The most striking difference among the spatial transformations was seen in connectivity analyses: linked earlobe reference produced weak inter-site connectivity that was attributable to volume conduction (zero phase lag), while the average reference and Laplacian produced more interpretable connectivity results. Beamforming did not reveal any significant condition modulations of connectivity. Overall, these analyses show that some findings are robust to spatial transformations, while other findings, particularly those involving cross-trial analyses or connectivity, are more sensitive and may depend on the use of appropriate spatial transformations. Copyright © 2014 Elsevier B.V. All rights reserved.
K.yle J. Haynes; Ottar N. Bjornstad; Andrew J. Allstadt; Andrew M. Liebhold
2012-01-01
Despite the pervasiveness of spatial synchrony of population fluctuations in virtually every taxon, it remains difficult to disentangle its underlying mechanisms, such as environmental perturbations and dispersal. We used multiple regression of distance matrices (MRMs) to statistically partition the importance of several factors potentially synchronizing the dynamics...
NASA Astrophysics Data System (ADS)
Rose, K.; Glosser, D.; Bauer, J. R.; Barkhurst, A.
2015-12-01
The products of spatial analyses that leverage the interpolation of sparse, point data to represent continuous phenomena are often presented without clear explanations of the uncertainty associated with the interpolated values. As a result, there is frequently insufficient information provided to effectively support advanced computational analyses and individual research and policy decisions utilizing these results. This highlights the need for a reliable approach capable of quantitatively producing and communicating spatial data analyses and their inherent uncertainties for a broad range of uses. To address this need, we have developed the Variable Grid Method (VGM), and associated Python tool, which is a flexible approach that can be applied to a variety of analyses and use case scenarios where users need a method to effectively study, evaluate, and analyze spatial trends and patterns while communicating the uncertainty in the underlying spatial datasets. The VGM outputs a simultaneous visualization representative of the spatial data analyses and quantification of underlying uncertainties, which can be calculated using data related to sample density, sample variance, interpolation error, uncertainty calculated from multiple simulations, etc. We will present examples of our research utilizing the VGM to quantify key spatial trends and patterns for subsurface data interpolations and their uncertainties and leverage these results to evaluate storage estimates and potential impacts associated with underground injection for CO2 storage and unconventional resource production and development. The insights provided by these examples identify how the VGM can provide critical information about the relationship between uncertainty and spatial data that is necessary to better support their use in advance computation analyses and informing research, management and policy decisions.
NASA Astrophysics Data System (ADS)
Aghayari, M.; Pahlavani, P.; Bigdeli, B.
2017-09-01
Based on world health organization (WHO) report, driving incidents are counted as one of the eight initial reasons for death in the world. The purpose of this paper is to develop a method for regression on effective parameters of highway crashes. In the traditional methods, it was assumed that the data are completely independent and environment is homogenous while the crashes are spatial events which are occurring in geographic space and crashes have spatial data. Spatial data have spatial features such as spatial autocorrelation and spatial non-stationarity in a way working with them is going to be a bit difficult. The proposed method has implemented on a set of records of fatal crashes that have been occurred in highways connecting eight east states of US. This data have been recorded between the years 2007 and 2009. In this study, we have used GWR method with two Gaussian and Tricube kernels. The Number of casualties has been considered as dependent variable and number of persons in crash, road alignment, number of lanes, pavement type, surface condition, road fence, light condition, vehicle type, weather, drunk driver, speed limitation, harmful event, road profile, and junction type have been considered as explanatory variables according to previous studies in using GWR method. We have compered the results of implementation with OLS method. Results showed that R2 for OLS method is 0.0654 and for the proposed method is 0.9196 that implies the proposed GWR is better method for regression in rural highway crashes.
Sensitivity of bud burst in key tree species in the UK to recent climate variability and change
NASA Astrophysics Data System (ADS)
Abernethy, Rachel; Cook, Sally; Hemming, Deborah; McCarthy, Mark
2017-04-01
Analysing the relationship between the changing climate of the UK and the spatial and temporal distribution of spring bud burst plays an important role in understanding ecosystem functionality and predicting future phenological trends. The location and timing of bud burst of eleven species of trees alongside climatic factors such as, temperature, precipitation and hours of sunshine (photoperiod) were used to investigate: i. which species' bud burst timing experiences the greatest impact from a changing climate, ii. which climatic factor has the greatest influence on the timing of bud burst, and iii. whether the location of bud burst is influenced by climate variability. Winter heatwave duration was also analysed as part of an investigation into the relationship between temperature trends of a specific winter period and the following spring events. Geographic Information Systems (GIS) and statistical analysis tools were used to visualise spatial patterns and to analyse the phenological and climate data through regression and analysis of variance (ANOVA) tests. Where there were areas that showed a strong positive or negative relationship between phenology and climate, satellite imagery was used to calculate a Normalised Difference Vegetation Index (NDVI) and a Leaf Area Index (LAI) to further investigate the relationships found. It was expected that in the north of the UK, where bud burst tends to occur later in the year than in the south, that the bud bursts would begin to occur earlier due to increasing temperatures and increased hours of sunshine. However, initial results show that for some species, the bud burst timing tends to remain or become later in the year. Interesting results will be found when investigating the statistical significance between the changing location of the bud bursts and each climatic factor.
NASA Astrophysics Data System (ADS)
Altmoos, Michael; Henle, Klaus
2010-11-01
Habitat models for animal species are important tools in conservation planning. We assessed the need to consider several scales in a case study for three amphibian and two grasshopper species in the post-mining landscapes near Leipzig (Germany). The two species groups were selected because habitat analyses for grasshoppers are usually conducted on one scale only whereas amphibians are thought to depend on more than one spatial scale. First, we analysed how the preference to single habitat variables changed across nested scales. Most environmental variables were only significant for a habitat model on one or two scales, with the smallest scale being particularly important. On larger scales, other variables became significant, which cannot be recognized on lower scales. Similar preferences across scales occurred in only 13 out of 79 cases and in 3 out of 79 cases the preference and avoidance for the same variable were even reversed among scales. Second, we developed habitat models by using a logistic regression on every scale and for all combinations of scales and analysed how the quality of habitat models changed with the scales considered. To achieve a sufficient accuracy of the habitat models with a minimum number of variables, at least two scales were required for all species except for Bufo viridis, for which a single scale, the microscale, was sufficient. Only for the European tree frog ( Hyla arborea), at least three scales were required. The results indicate that the quality of habitat models increases with the number of surveyed variables and with the number of scales, but costs increase too. Searching for simplifications in multi-scaled habitat models, we suggest that 2 or 3 scales should be a suitable trade-off, when attempting to define a suitable microscale.
NASA Astrophysics Data System (ADS)
Singh, Vishal; Goyal, Manish Kumar
2016-01-01
This paper draws attention to highlight the spatial and temporal variability in precipitation lapse rate (PLR) and precipitation extreme indices (PEIs) through the mesoscale characterization of Teesta river catchment, which corresponds to north Sikkim eastern Himalayas. A PLR rate is an important variable for the snowmelt runoff models. In a mountainous region, the PLR could be varied from lower elevation parts to high elevation parts. In this study, a PLR was computed by accounting elevation differences, which varies from around 1500 m to 7000 m. A precipitation variability and extremity were analysed using multiple mathematical functions viz. quantile regression, spatial mean, spatial standard deviation, Mann-Kendall test and Sen's estimation. For this reason, a daily precipitation, in the historical (years 1980-2005) as measured/observed gridded points and projected experiments for the 21st century (years 2006-2100) simulated by CMIP5 ESM-2 M model (Coupled Model Intercomparison Project Phase 5 Earth System Model 2) employing three different radiative forcing scenarios (Representative Concentration Pathways), utilized for the research work. The outcomes of this study suggest that a PLR is significantly varied from lower elevation to high elevation parts. The PEI based analysis showed that the extreme high intensity events have been increased significantly, especially after 2040s. The PEI based observations also showed that the numbers of wet days are increased for all the RCPs. The quantile regression plots showed significant increments in the upper and lower quantiles of the various extreme indices. The Mann-Kendall test and Sen's estimation tests clearly indicated significant changing patterns in the frequency and intensity of the precipitation indices across all the sub-basins and RCP scenario in an intra-decadal time series domain. The RCP8.5 showed extremity of the projected outcomes.
GIS Tools to Estimate Average Annual Daily Traffic
DOT National Transportation Integrated Search
2012-06-01
This project presents five tools that were created for a geographical information system to estimate Annual Average Daily : Traffic using linear regression. Three of the tools can be used to prepare spatial data for linear regression. One tool can be...
A Dialogue on Space and Method in Qualitative Research on Education
ERIC Educational Resources Information Center
Gildersleeve, Ryan Evely; Kuntz, Aaron M.
2011-01-01
In this article, the authors critically examine the use of space in education research and illustrate how spatial analyses of education reframe persistent educational problems in productive, actionable ways. The authors juxtapose critical spatial analyses with traditional temporal analyses. The authors approach the knowledge-construction process…
NASA Astrophysics Data System (ADS)
Gao, Shengguo; Zhu, Zhongli; Liu, Shaomin; Jin, Rui; Yang, Guangchao; Tan, Lei
2014-10-01
Soil moisture (SM) plays a fundamental role in the land-atmosphere exchange process. Spatial estimation based on multi in situ (network) data is a critical way to understand the spatial structure and variation of land surface soil moisture. Theoretically, integrating densely sampled auxiliary data spatially correlated with soil moisture into the procedure of spatial estimation can improve its accuracy. In this study, we present a novel approach to estimate the spatial pattern of soil moisture by using the BME method based on wireless sensor network data and auxiliary information from ASTER (Terra) land surface temperature measurements. For comparison, three traditional geostatistic methods were also applied: ordinary kriging (OK), which used the wireless sensor network data only, regression kriging (RK) and ordinary co-kriging (Co-OK) which both integrated the ASTER land surface temperature as a covariate. In Co-OK, LST was linearly contained in the estimator, in RK, estimator is expressed as the sum of the regression estimate and the kriged estimate of the spatially correlated residual, but in BME, the ASTER land surface temperature was first retrieved as soil moisture based on the linear regression, then, the t-distributed prediction interval (PI) of soil moisture was estimated and used as soft data in probability form. The results indicate that all three methods provide reasonable estimations. Co-OK, RK and BME can provide a more accurate spatial estimation by integrating the auxiliary information Compared to OK. RK and BME shows more obvious improvement compared to Co-OK, and even BME can perform slightly better than RK. The inherent issue of spatial estimation (overestimation in the range of low values and underestimation in the range of high values) can also be further improved in both RK and BME. We can conclude that integrating auxiliary data into spatial estimation can indeed improve the accuracy, BME and RK take better advantage of the auxiliary information compared to Co-OK, and BME outperforms RK by integrating the auxiliary data in a probability form.
Regional temperature models are needed for characterizing and mapping stream thermal regimes, establishing reference conditions, predicting future impacts and identifying critical thermal refugia. Spatial statistical models have been developed to improve regression modeling techn...
2011-01-01
Background Although prostate cancer-related incidence and mortality have declined recently, striking racial/ethnic differences persist in the United States. Visualizing and modelling temporal trends of prostate cancer late-stage incidence, and how they vary according to geographic locations and race, should help explaining such disparities. Joinpoint regression is increasingly used to identify the timing and extent of changes in time series of health outcomes. Yet, most analyses of temporal trends are aspatial and conducted at the national level or for a single cancer registry. Methods Time series (1981-2007) of annual proportions of prostate cancer late-stage cases were analyzed for non-Hispanic Whites and non-Hispanic Blacks in each county of Florida. Noise in the data was first filtered by binomial kriging and results were modelled using joinpoint regression. A similar analysis was also conducted at the state level and for groups of metropolitan and non-metropolitan counties. Significant racial differences were detected using tests of parallelism and coincidence of time trends. A new disparity statistic was introduced to measure spatial and temporal changes in the frequency of racial disparities. Results State-level percentage of late-stage diagnosis decreased 50% since 1981; a decline that accelerated in the 90's when Prostate Specific Antigen (PSA) screening was introduced. Analysis at the metropolitan and non-metropolitan levels revealed that the frequency of late-stage diagnosis increased recently in urban areas, and this trend was significant for white males. The annual rate of decrease in late-stage diagnosis and the onset years for significant declines varied greatly among counties and racial groups. Most counties with non-significant average annual percent change (AAPC) were located in the Florida Panhandle for white males, whereas they clustered in South-eastern Florida for black males. The new disparity statistic indicated that the spatial extent of racial disparities reached a peak in 1990 because of an early decline in frequency of late-stage diagnosis observed for black males. Conclusions Analyzing temporal trends in cancer incidence and mortality rates outside a spatial framework is unsatisfactory, since it leads one to overlook significant geographical variation which can potentially generate new insights about the impact of various interventions. Differences observed among nested geographies in Florida show how the modifiable areal unit problem (MAUP) also impacts the analysis of temporal changes. PMID:22142274
Goovaerts, Pierre; Xiao, Hong
2011-12-05
Although prostate cancer-related incidence and mortality have declined recently, striking racial/ethnic differences persist in the United States. Visualizing and modelling temporal trends of prostate cancer late-stage incidence, and how they vary according to geographic locations and race, should help explaining such disparities. Joinpoint regression is increasingly used to identify the timing and extent of changes in time series of health outcomes. Yet, most analyses of temporal trends are aspatial and conducted at the national level or for a single cancer registry. Time series (1981-2007) of annual proportions of prostate cancer late-stage cases were analyzed for non-Hispanic Whites and non-Hispanic Blacks in each county of Florida. Noise in the data was first filtered by binomial kriging and results were modelled using joinpoint regression. A similar analysis was also conducted at the state level and for groups of metropolitan and non-metropolitan counties. Significant racial differences were detected using tests of parallelism and coincidence of time trends. A new disparity statistic was introduced to measure spatial and temporal changes in the frequency of racial disparities. State-level percentage of late-stage diagnosis decreased 50% since 1981; a decline that accelerated in the 90's when Prostate Specific Antigen (PSA) screening was introduced. Analysis at the metropolitan and non-metropolitan levels revealed that the frequency of late-stage diagnosis increased recently in urban areas, and this trend was significant for white males. The annual rate of decrease in late-stage diagnosis and the onset years for significant declines varied greatly among counties and racial groups. Most counties with non-significant average annual percent change (AAPC) were located in the Florida Panhandle for white males, whereas they clustered in South-eastern Florida for black males. The new disparity statistic indicated that the spatial extent of racial disparities reached a peak in 1990 because of an early decline in frequency of late-stage diagnosis observed for black males. Analyzing temporal trends in cancer incidence and mortality rates outside a spatial framework is unsatisfactory, since it leads one to overlook significant geographical variation which can potentially generate new insights about the impact of various interventions. Differences observed among nested geographies in Florida show how the modifiable areal unit problem (MAUP) also impacts the analysis of temporal changes.
NASA Astrophysics Data System (ADS)
Hellack, Bryan; Sugiri, Dorothea; Schins, Roel P. F.; Schikowski, Tamara; Krämer, Ursula; Kuhlbusch, Thomas A. J.; Hoffmann, Barbara
2017-12-01
While land use regression models (LUR) are commonly used, e.g. for the prediction of spatially variable air pollutant mass concentrations, they are scarcely used for predicting the oxidative potential (OP), a suggested unifying predictor of health effects. Therefore a LUR model was developed to examine if long-term OP of fine particulate exposure can be reasonably predicted by LUR modeling and whether it is related to health effects in a study region comprised of urban and rural areas. Four 14-day sampling periods over 1 year at 40 sites in the western Ruhr Area and adjacent northern rural area, Germany, in 2002/2003 were conducted and annual Nitrogen Dioxide (NO2), fine particles (PM2.5), and OP were calculated. LUR models were developed to estimate spatially-resolved annual OP, NO2 and PM2.5 concentrations. The model performance was checked by leave-one-out cross validation (LOOCV) and cox regression was used to analyze the association of modeled residential OP and NO2 with incident type 2 diabetes mellitus (T2DM) in 1784 elderly women during a mean follow-up of 16 years (baseline 1985-1994). The measured OP and NO2 concentrations were moderately correlated (rSpearman 0.57). The LUR models explained 62% and 92% of the OP and NO2 variance (adjusted LOOCV R2 57% and 90%). PM10 emission from combustion in a 5000 m buffer was the most important predictor for OP and NO2. Modeled pollutants were highly correlated (rSpearman 0.87). Model quality for OP was sensitive to the inclusion of a single influential measurement site. For PM2.5 mass only an insufficient model with a low explained variance of 22% (adjusted R2) was developed so no health effects analyses were conducted with estimated PM2.5. Increases in OP and NO2 were associated with an increase in risk of T2DM by a hazard ratio of 1.38 (95% CI 1.06-1.80) and 1.39 (95% CI 1.07-1.81) per interquartile range of OP and NO2, respectively. We conclude that spatially-resolved OP can be predicted by LUR modeling, but future work is needed to investigate the possibility to increase OP model quality with refined predictors.
Suzuki, Satoshi N; Kachi, Naoki; Suzuki, Jun-Ichirou
2008-09-01
During the development of an even-aged plant population, the spatial distribution of individuals often changes from a clumped pattern to a random or regular one. The development of local size hierarchies in an Abies forest was analysed for a period of 47 years following a large disturbance in 1959. In 1980 all trees in an 8 x 8 m plot were mapped and their height growth after the disturbance was estimated. Their mortality and growth were then recorded at 1- to 4-year intervals between 1980 and 2006. Spatial distribution patterns of trees were analysed by the pair correlation function. Spatial correlations between tree heights were analysed with a spatial autocorrelation function and the mark correlation function. The mark correlation function was able to detect a local size hierarchy that could not be detected by the spatial autocorrelation function alone. The small-scale spatial distribution pattern of trees changed from clumped to slightly regular during the 47 years. Mortality occurred in a density-dependent manner, which resulted in regular spacing between trees after 1980. The spatial autocorrelation and mark correlation functions revealed the existence of tree patches consisting of large trees at the initial stage. Development of a local size hierarchy was detected within the first decade after the disturbance, although the spatial autocorrelation was not negative. Local size hierarchies that developed persisted until 2006, and the spatial autocorrelation became negative at later stages (after about 40 years). This is the first study to detect local size hierarchies as a prelude to regular spacing using the mark correlation function. The results confirm that use of the mark correlation function together with the spatial autocorrelation function is an effective tool to analyse the development of a local size hierarchy of trees in a forest.
Chen, Jing; Zhou, Chunshan; Wang, Shaojian; Hu, Jincan
2018-06-04
Air pollution contributes significantly to premature death in China. However, only a limited number of studies have identified the potential determinants of population exposure to PM 2.5 from a socioeconomic perspective. This paper analyses the socioeconomic determinants of population exposure at the city level in China. We first estimated population exposure to PM 2.5 by integrating high resolution spatial distribution maps of PM 2.5 concentrations and population density, using data for 2013. Then, geographically weighted regression (GWR) modeling was undertaken to explore the strength and direction of relationships between the selected socioeconomic factors and population exposure. The results indicate that approximately 75% of the population of China lived in an area where PM 2.5 concentrations were over 35 μg/m 3 in 2013. From the GWR models, we found that the percentages for cities that showed a statistically significant relationship (p < 0.05) between population exposure and each of the six factors were: urbanization, 91.92%; industry share, 91.58%; construction level, 88.55%; urban expansion, 73.40%; income disparity, 64.98%; and private vehicles, 27.27%. The R-squared value for the six factors in the multivariable GWR model was 0.88, and all cities demonstrated a statistically significant relationship. More importantly, the association between the six factors and population exposure was found to be spatially heterogeneous at the local geographic level. Consideration of these six drivers of population exposure can help policy makers and epidemiologists to evaluate and reduce population exposure risks. Copyright © 2018 Elsevier Ltd. All rights reserved.
Tervonen, Hanna E; Morrell, Stephen; Aranda, Sanchia; Roder, David; You, Hui; Niyonsenga, Theo; Walton, Richard; Baker, Deborah; Currow, David
2016-12-13
When using area-level disadvantage measures, size of geographic unit can have major effects on recorded socioeconomic cancer disparities. This study examined the extent of changes in recorded socioeconomic inequalities in cancer survival and distant stage when the measure of socioeconomic disadvantage was based on smaller Census Collection Districts (CDs) instead of Statistical Local Areas (SLAs). Population-based New South Wales Cancer Registry data were used to identify cases diagnosed with primary invasive cancer in 2000-2008 (n=264,236). Logistic regression and competing risk regression modelling were performed to examine socioeconomic differences in odds of distant stage and hazard of cancer death for all sites combined and separately for breast, prostate, colorectal and lung cancers. For all sites collectively, associations between socioeconomic disadvantage and cancer survival and distant stage were stronger when the CD-based socioeconomic disadvantage measure was used compared with the SLA-based measure. The CD-based measure showed a more consistent socioeconomic gradient with a linear upward trend of risk of cancer death/distant stage with increasing socioeconomic disadvantage. Site-specific analyses provided similar findings for the risk of death but less consistent results for the likelihood of distant stage. The use of socioeconomic disadvantage measure based on the smallest available spatial unit should be encouraged in the future. Implications for Public Health: Disadvantage measures based on small spatial units can more accurately identify socioeconomic cancer disparities to inform priority settings in service planning. © 2016 Public Health Association of Australia.
Drewnowski, Adam; Rehm, Colin D; Moudon, Anne V; Arterburn, David
2014-07-24
Identifying areas of high diabetes prevalence can have an impact on public health prevention and intervention programs. Local health practitioners and public health agencies lack small-area data on obesity and diabetes. Clinical data from the Group Health Cooperative health care system were used to estimate diabetes prevalence among 59,767 adults by census tract. Area-based measures of socioeconomic status and the Modified Retail Food Environment Index were obtained at the census-tract level in King County, Washington. Spatial analyses and regression models were used to assess the relationship between census tract-level diabetes and area-based socioeconomic status and food environment variables. The mediating effect of obesity on the geographic distribution of diabetes was also examined. In this population of insured adults, diabetes was concentrated in south and southeast King County, with smoothed diabetes prevalence ranging from 6.9% to 21.2%. In spatial regression models, home value and college education were more strongly associated with diabetes than was household income. For each 50% increase in median home value, diabetes prevalence was 1.2 percentage points lower. The Modified Retail Food Environment Index was not related to diabetes at the census-tract level. The observed associations between area-based socioeconomic status and diabetes were largely mediated by obesity (home value, 58%; education, 47%). The observed geographic disparities in diabetes among insured adults by census tract point to the importance of area socioeconomic status. Small-area studies can help health professionals design community-based programs for diabetes prevention and control.
Bayesian structured additive regression modeling of epidemic data: application to cholera
2012-01-01
Background A significant interest in spatial epidemiology lies in identifying associated risk factors which enhances the risk of infection. Most studies, however, make no, or limited use of the spatial structure of the data, as well as possible nonlinear effects of the risk factors. Methods We develop a Bayesian Structured Additive Regression model for cholera epidemic data. Model estimation and inference is based on fully Bayesian approach via Markov Chain Monte Carlo (MCMC) simulations. The model is applied to cholera epidemic data in the Kumasi Metropolis, Ghana. Proximity to refuse dumps, density of refuse dumps, and proximity to potential cholera reservoirs were modeled as continuous functions; presence of slum settlers and population density were modeled as fixed effects, whereas spatial references to the communities were modeled as structured and unstructured spatial effects. Results We observe that the risk of cholera is associated with slum settlements and high population density. The risk of cholera is equal and lower for communities with fewer refuse dumps, but variable and higher for communities with more refuse dumps. The risk is also lower for communities distant from refuse dumps and potential cholera reservoirs. The results also indicate distinct spatial variation in the risk of cholera infection. Conclusion The study highlights the usefulness of Bayesian semi-parametric regression model analyzing public health data. These findings could serve as novel information to help health planners and policy makers in making effective decisions to control or prevent cholera epidemics. PMID:22866662
Crighton, Eric J; Elliott, Susan J; Moineddin, Rahim; Kanaroglou, Pavlos; Upshur, Ross
2007-04-01
Previous research on the determinants of pneumonia and influenza has focused primarily on the role of individual level biological and behavioural risk factors resulting in partial explanations and largely curative approaches to reducing the disease burden. This study examines the geographic patterns of pneumonia and influenza hospitalizations and the role that broad ecologic-level factors may have in determining them. We conducted a county level, retrospective, ecologic study of pneumonia and influenza hospitalizations in the province of Ontario, Canada, between 1992 and 2001 (N=241,803), controlling for spatial dependence in the data. Non-spatial and spatial regression models were estimated using a range of environmental, social, economic, behavioural, and health care predictors. Results revealed low education to be positively associated with hospitalization rates over all age groups and both genders. The Aboriginal population variable was also positively associated in most models except for the 65+-year age group. Behavioural factors (daily smoking and heavy drinking), environmental factors (passive smoking, poor housing, temperature), and health care factors (influenza vaccination) were all significantly associated in different age and gender-specific models. The use of spatial error regression models allowed for unbiased estimation of regression parameters and their significance levels. These findings demonstrate the importance of broad age and gender-specific population-level factors in determining pneumonia and influenza hospitalizations, and illustrate the need for place and population-specific policies that take these factors into consideration.
NASA Astrophysics Data System (ADS)
Szymanowski, Mariusz; Kryza, Maciej
2017-02-01
Our study examines the role of auxiliary variables in the process of spatial modelling and mapping of climatological elements, with air temperature in Poland used as an example. The multivariable algorithms are the most frequently applied for spatialization of air temperature, and their results in many studies are proved to be better in comparison to those obtained by various one-dimensional techniques. In most of the previous studies, two main strategies were used to perform multidimensional spatial interpolation of air temperature. First, it was accepted that all variables significantly correlated with air temperature should be incorporated into the model. Second, it was assumed that the more spatial variation of air temperature was deterministically explained, the better was the quality of spatial interpolation. The main goal of the paper was to examine both above-mentioned assumptions. The analysis was performed using data from 250 meteorological stations and for 69 air temperature cases aggregated on different levels: from daily means to 10-year annual mean. Two cases were considered for detailed analysis. The set of potential auxiliary variables covered 11 environmental predictors of air temperature. Another purpose of the study was to compare the results of interpolation given by various multivariable methods using the same set of explanatory variables. Two regression models: multiple linear (MLR) and geographically weighted (GWR) method, as well as their extensions to the regression-kriging form, MLRK and GWRK, respectively, were examined. Stepwise regression was used to select variables for the individual models and the cross-validation method was used to validate the results with a special attention paid to statistically significant improvement of the model using the mean absolute error (MAE) criterion. The main results of this study led to rejection of both assumptions considered. Usually, including more than two or three of the most significantly correlated auxiliary variables does not improve the quality of the spatial model. The effects of introduction of certain variables into the model were not climatologically justified and were seen on maps as unexpected and undesired artefacts. The results confirm, in accordance with previous studies, that in the case of air temperature distribution, the spatial process is non-stationary; thus, the local GWR model performs better than the global MLR if they are specified using the same set of auxiliary variables. If only GWR residuals are autocorrelated, the geographically weighted regression-kriging (GWRK) model seems to be optimal for air temperature spatial interpolation.
Alexeeff, Stacey E; Carroll, Raymond J; Coull, Brent
2016-04-01
Spatial modeling of air pollution exposures is widespread in air pollution epidemiology research as a way to improve exposure assessment. However, there are key sources of exposure model uncertainty when air pollution is modeled, including estimation error and model misspecification. We examine the use of predicted air pollution levels in linear health effect models under a measurement error framework. For the prediction of air pollution exposures, we consider a universal Kriging framework, which may include land-use regression terms in the mean function and a spatial covariance structure for the residuals. We derive the bias induced by estimation error and by model misspecification in the exposure model, and we find that a misspecified exposure model can induce asymptotic bias in the effect estimate of air pollution on health. We propose a new spatial simulation extrapolation (SIMEX) procedure, and we demonstrate that the procedure has good performance in correcting this asymptotic bias. We illustrate spatial SIMEX in a study of air pollution and birthweight in Massachusetts. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Kang, Dongwoo; Dall'erba, Sandy
2016-04-01
Griliches' knowledge production function has been increasingly adopted at the regional level where location-specific conditions drive the spatial differences in knowledge creation dynamics. However, the large majority of such studies rely on a traditional regression approach that assumes spatially homogenous marginal effects of knowledge input factors. This paper extends the authors' previous work (Kang and Dall'erba in Int Reg Sci Rev, 2015. doi: 10.1177/0160017615572888) to investigate the spatial heterogeneity in the marginal effects by using nonparametric local modeling approaches such as geographically weighted regression (GWR) and mixed GWR with two distinct samples of the US Metropolitan Statistical Area (MSA) and non-MSA counties. The results indicate a high degree of spatial heterogeneity in the marginal effects of the knowledge input variables, more specifically for the local and distant spillovers of private knowledge measured across MSA counties. On the other hand, local academic knowledge spillovers are found to display spatially homogenous elasticities in both MSA and non-MSA counties. Our results highlight the strengths and weaknesses of each county's innovation capacity and suggest policy implications for regional innovation strategies.
High Incidence of Breast Cancer in Light-Polluted Areas with Spatial Effects in Korea.
Kim, Yun Jeong; Park, Man Sik; Lee, Eunil; Choi, Jae Wook
2016-01-01
We have reported a high prevalence of breast cancer in light-polluted areas in Korea. However, it is necessary to analyze the spatial effects of light polluted areas on breast cancer because light pollution levels are correlated with region proximity to central urbanized areas in studied cities. In this study, we applied a spatial regression method (an intrinsic conditional autoregressive [iCAR] model) to analyze the relationship between the incidence of breast cancer and artificial light at night (ALAN) levels in 25 regions including central city, urbanized, and rural areas. By Poisson regression analysis, there was a significant correlation between ALAN, alcohol consumption rates, and the incidence of breast cancer. We also found significant spatial effects between ALAN and the incidence of breast cancer, with an increase in the deviance information criterion (DIC) from 374.3 to 348.6 and an increase in R2 from 0.574 to 0.667. Therefore, spatial analysis (an iCAR model) is more appropriate for assessing ALAN effects on breast cancer. To our knowledge, this study is the first to show spatial effects of light pollution on breast cancer, despite the limitations of an ecological study. We suggest that a decrease in ALAN could reduce breast cancer more than expected because of spatial effects.
Evaluation of land use regression models in Detroit, Michigan
Introduction: Land use regression (LUR) models have emerged as a cost-effective tool for characterizing exposure in epidemiologic health studies. However, little critical attention has been focused on validation of these models as a step toward temporal and spatial extension of ...
NASA Astrophysics Data System (ADS)
Wheeler, David C.; Waller, Lance A.
2009-03-01
In this paper, we compare and contrast a Bayesian spatially varying coefficient process (SVCP) model with a geographically weighted regression (GWR) model for the estimation of the potentially spatially varying regression effects of alcohol outlets and illegal drug activity on violent crime in Houston, Texas. In addition, we focus on the inherent coefficient shrinkage properties of the Bayesian SVCP model as a way to address increased coefficient variance that follows from collinearity in GWR models. We outline the advantages of the Bayesian model in terms of reducing inflated coefficient variance, enhanced model flexibility, and more formal measuring of model uncertainty for prediction. We find spatially varying effects for alcohol outlets and drug violations, but the amount of variation depends on the type of model used. For the Bayesian model, this variation is controllable through the amount of prior influence placed on the variance of the coefficients. For example, the spatial pattern of coefficients is similar for the GWR and Bayesian models when a relatively large prior variance is used in the Bayesian model.
Spatial-temporal event detection in climate parameter imagery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKenna, Sean Andrew; Gutierrez, Karen A.
Previously developed techniques that comprise statistical parametric mapping, with applications focused on human brain imaging, are examined and tested here for new applications in anomaly detection within remotely-sensed imagery. Two approaches to analysis are developed: online, regression-based anomaly detection and conditional differences. These approaches are applied to two example spatial-temporal data sets: data simulated with a Gaussian field deformation approach and weekly NDVI images derived from global satellite coverage. Results indicate that anomalies can be identified in spatial temporal data with the regression-based approach. Additionally, la Nina and el Nino climatic conditions are used as different stimuli applied to themore » earth and this comparison shows that el Nino conditions lead to significant decreases in NDVI in both the Amazon Basin and in Southern India.« less
Measurement Error Correction for Predicted Spatiotemporal Air Pollution Exposures.
Keller, Joshua P; Chang, Howard H; Strickland, Matthew J; Szpiro, Adam A
2017-05-01
Air pollution cohort studies are frequently analyzed in two stages, first modeling exposure then using predicted exposures to estimate health effects in a second regression model. The difference between predicted and unobserved true exposures introduces a form of measurement error in the second stage health model. Recent methods for spatial data correct for measurement error with a bootstrap and by requiring the study design ensure spatial compatibility, that is, monitor and subject locations are drawn from the same spatial distribution. These methods have not previously been applied to spatiotemporal exposure data. We analyzed the association between fine particulate matter (PM2.5) and birth weight in the US state of Georgia using records with estimated date of conception during 2002-2005 (n = 403,881). We predicted trimester-specific PM2.5 exposure using a complex spatiotemporal exposure model. To improve spatial compatibility, we restricted to mothers residing in counties with a PM2.5 monitor (n = 180,440). We accounted for additional measurement error via a nonparametric bootstrap. Third trimester PM2.5 exposure was associated with lower birth weight in the uncorrected (-2.4 g per 1 μg/m difference in exposure; 95% confidence interval [CI]: -3.9, -0.8) and bootstrap-corrected (-2.5 g, 95% CI: -4.2, -0.8) analyses. Results for the unrestricted analysis were attenuated (-0.66 g, 95% CI: -1.7, 0.35). This study presents a novel application of measurement error correction for spatiotemporal air pollution exposures. Our results demonstrate the importance of spatial compatibility between monitor and subject locations and provide evidence of the association between air pollution exposure and birth weight.
NASA Astrophysics Data System (ADS)
Kishore, P.; Jyothi, S.; Basha, Ghouse; Rao, S. V. B.; Rajeevan, M.; Velicogna, Isabella; Sutterley, Tyler C.
2016-01-01
Changing rainfall patterns have significant effect on water resources, agriculture output in many countries, especially the country like India where the economy depends on rain-fed agriculture. Rainfall over India has large spatial as well as temporal variability. To understand the variability in rainfall, spatial-temporal analyses of rainfall have been studied by using 107 (1901-2007) years of daily gridded India Meteorological Department (IMD) rainfall datasets. Further, the validation of IMD precipitation data is carried out with different observational and different reanalysis datasets during the period from 1989 to 2007. The Global Precipitation Climatology Project data shows similar features as that of IMD with high degree of comparison, whereas Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation data show similar features but with large differences, especially over northwest, west coast and western Himalayas. Spatially, large deviation is observed in the interior peninsula during the monsoon season with National Aeronautics Space Administration-Modern Era Retrospective-analysis for Research and Applications (NASA-MERRA), pre-monsoon with Japanese 25 years Re Analysis (JRA-25), and post-monsoon with climate forecast system reanalysis (CFSR) reanalysis datasets. Among the reanalysis datasets, European Centre for Medium-Range Weather Forecasts Interim Re-Analysis (ERA-Interim) shows good comparison followed by CFSR, NASA-MERRA, and JRA-25. Further, for the first time, with high resolution and long-term IMD data, the spatial distribution of trends is estimated using robust regression analysis technique on the annual and seasonal rainfall data with respect to different regions of India. Significant positive and negative trends are noticed in the whole time series of data during the monsoon season. The northeast and west coast of the Indian region shows significant positive trends and negative trends over western Himalayas and north central Indian region.
Wet-season spatial variability of N2O emissions from a tea field in subtropical central China
NASA Astrophysics Data System (ADS)
Fu, X.; Liu, X.; Li, Y.; Shen, J.; Wang, Y.; Zou, G.; Li, H.; Song, L.; Wu, J.
2015-01-01
Tea fields emit large amounts of nitrous oxide (N2O) to the atmosphere. Obtaining accurate estimations of N2O emissions from tea-planted soils is challenging due to strong spatial variability. We examined the spatial variability of N2O emissions from a red-soil tea field in Hunan province, China, on 22 April 2012 (in a wet season) using 147 static mini chambers approximately regular gridded in a 4.0 ha tea field. The N2O fluxes for a 30 min snapshot (10-10.30 a.m.) ranged from -1.73 to 1659.11 g N ha-1 d-1 and were positively skewed with an average flux of 102.24 g N ha-1 d-1. The N2O flux data were transformed to a normal distribution by using a logit function. The geostatistical analyses of our data indicated that the logit-transformed N2O fluxes (FLUX30t) exhibited strong spatial autocorrelation, which was characterized by an exponential semivariogram model with an effective range of 25.2 m. As observed in the wet season, the logit-transformed soil ammonium-N (NH4Nt), soil nitrate-N (NO3Nt), soil organic carbon (SOCt), total soil nitrogen (TSNt) were all found to be significantly correlated with FLUX30t (r=0.57-0.71, p<0.001). Three spatial interpolation methods (ordinary kriging, regression kriging and cokriging) were applied to estimate the spatial distribution of N2O emissions over the study area. Cokriging with NH4Nt and NO3Nt as covariables (r= 0.74 and RMSE =1.18) outperformed ordinary kriging (r= 0.18 and RMSE =1.74), regression kriging with the sample position as a predictor (r= 0.49 and RMSE =1.55) and cokriging with SOCt as a covariable (r= 0.58 and RMSE =1.44). The predictions of the three kriging interpolation methods for the total N2O emissions of the 4.0 ha tea field ranged from 148.2 to 208.1 g N d-1, based on the 30 min snapshots obtained during the wet season. Our findings suggested that to accurately estimate the total N2O emissions over a region, the environmental variables (e.g., soil properties) and the current land use pattern (e.g., tea row transects in the present study) must be included in spatial interpolation. Additionally, compared with other kriging approaches, the cokriging prediction approach showed great advantages in being easily deployed, and more importantly providing accurate regional estimation of N2O emissions from tea-planted soils.
Wet-season spatial variability in N2O emissions from a tea field in subtropical central China
NASA Astrophysics Data System (ADS)
Fu, X.; Liu, X.; Li, Y.; Shen, J.; Wang, Y.; Zou, G.; Li, H.; Song, L.; Wu, J.
2015-06-01
Tea fields emit large amounts of nitrous oxide (N2O) to the atmosphere. Obtaining accurate estimations of N2O emissions from tea-planted soils is challenging due to strong spatial variability. We examined the spatial variability in N2O emissions from a red-soil tea field in Hunan Province, China, on 22 April 2012 (in a wet season) using 147 static mini chambers approximately regular gridded in a 4.0 ha tea field. The N2O fluxes for a 30 min snapshot (10:00-10:30 a.m.) ranged from -1.73 to 1659.11 g N ha-1 d-1 and were positively skewed with an average flux of 102.24 g N ha-1 d-1. The N2O flux data were transformed to a normal distribution by using a logit function. The geostatistical analyses of our data indicated that the logit-transformed N2O fluxes (FLUX30t) exhibited strong spatial autocorrelation, which was characterized by an exponential semivariogram model with an effective range of 25.2 m. As observed in the wet season, the logit-transformed soil ammonium-N (NH4Nt), soil nitrate-N (NO3Nt), soil organic carbon (SOCt) and total soil nitrogen (TSNt) were all found to be significantly correlated with FLUX30t (r = 0.57-0.71, p < 0.001). Three spatial interpolation methods (ordinary kriging, regression kriging and cokriging) were applied to estimate the spatial distribution of N2O emissions over the study area. Cokriging with NH4Nt and NO3Nt as covariables (r = 0.74 and RMSE = 1.18) outperformed ordinary kriging (r = 0.18 and RMSE = 1.74), regression kriging with the sample position as a predictor (r = 0.49 and RMSE = 1.55) and cokriging with SOCt as a covariable (r = 0.58 and RMSE = 1.44). The predictions of the three kriging interpolation methods for the total N2O emissions of 4.0 ha tea field ranged from 148.2 to 208.1 g N d-1, based on the 30 min snapshots obtained during the wet season. Our findings suggested that to accurately estimate the total N2O emissions over a region, the environmental variables (e.g., soil properties) and the current land use pattern (e.g., tea row transects in the present study) must be included in spatial interpolation. Additionally, compared with other kriging approaches, the cokriging prediction approach showed great advantages in being easily deployed and, more importantly, providing accurate regional estimation of N2O emissions from tea-planted soils.
Multiple imputation of missing fMRI data in whole brain analysis
Vaden, Kenneth I.; Gebregziabher, Mulugeta; Kuchinsky, Stefanie E.; Eckert, Mark A.
2012-01-01
Whole brain fMRI analyses rarely include the entire brain because of missing data that result from data acquisition limits and susceptibility artifact, in particular. This missing data problem is typically addressed by omitting voxels from analysis, which may exclude brain regions that are of theoretical interest and increase the potential for Type II error at cortical boundaries or Type I error when spatial thresholds are used to establish significance. Imputation could significantly expand statistical map coverage, increase power, and enhance interpretations of fMRI results. We examined multiple imputation for group level analyses of missing fMRI data using methods that leverage the spatial information in fMRI datasets for both real and simulated data. Available case analysis, neighbor replacement, and regression based imputation approaches were compared in a general linear model framework to determine the extent to which these methods quantitatively (effect size) and qualitatively (spatial coverage) increased the sensitivity of group analyses. In both real and simulated data analysis, multiple imputation provided 1) variance that was most similar to estimates for voxels with no missing data, 2) fewer false positive errors in comparison to mean replacement, and 3) fewer false negative errors in comparison to available case analysis. Compared to the standard analysis approach of omitting voxels with missing data, imputation methods increased brain coverage in this study by 35% (from 33,323 to 45,071 voxels). In addition, multiple imputation increased the size of significant clusters by 58% and number of significant clusters across statistical thresholds, compared to the standard voxel omission approach. While neighbor replacement produced similar results, we recommend multiple imputation because it uses an informed sampling distribution to deal with missing data across subjects that can include neighbor values and other predictors. Multiple imputation is anticipated to be particularly useful for 1) large fMRI data sets with inconsistent missing voxels across subjects and 2) addressing the problem of increased artifact at ultra-high field, which significantly limit the extent of whole brain coverage and interpretations of results. PMID:22500925
Shoff, Carla; Chen, Vivian Yi-Ju; Yang, Tse-Chuan
2014-01-01
Using geographically weighted regression (GWR), a recent study by Shoff and colleagues (2012) investigated the place-specific risk factors for prenatal care utilization in the US and found that most of the relationships between late or not prenatal care and its determinants are spatially heterogeneous. However, the GWR approach may be subject to the confounding effect of spatial homogeneity. The goal of this study is to address this concern by including both spatial homogeneity and heterogeneity into the analysis. Specifically, we employ an analytic framework where a spatially lagged (SL) effect of the dependent variable is incorporated into the GWR model, which is called GWR-SL. Using this innovative framework, we found evidence to argue that spatial homogeneity is neglected in the study by Shoff et al. (2012) and the results are changed after considering the spatially lagged effect of prenatal care utilization. The GWR-SL approach allows us to gain a place-specific understanding of prenatal care utilization in US counties. In addition, we compared the GWR-SL results with the results of conventional approaches (i.e., OLS and spatial lag models) and found that GWR-SL is the preferred modeling approach. The new findings help us to better estimate how the predictors are associated with prenatal care utilization across space, and determine whether and how the level of prenatal care utilization in neighboring counties matters. PMID:24893033
Taljaard, Monica; McKenzie, Joanne E; Ramsay, Craig R; Grimshaw, Jeremy M
2014-06-19
An interrupted time series design is a powerful quasi-experimental approach for evaluating effects of interventions introduced at a specific point in time. To utilize the strength of this design, a modification to standard regression analysis, such as segmented regression, is required. In segmented regression analysis, the change in intercept and/or slope from pre- to post-intervention is estimated and used to test causal hypotheses about the intervention. We illustrate segmented regression using data from a previously published study that evaluated the effectiveness of a collaborative intervention to improve quality in pre-hospital ambulance care for acute myocardial infarction (AMI) and stroke. In the original analysis, a standard regression model was used with time as a continuous variable. We contrast the results from this standard regression analysis with those from segmented regression analysis. We discuss the limitations of the former and advantages of the latter, as well as the challenges of using segmented regression in analysing complex quality improvement interventions. Based on the estimated change in intercept and slope from pre- to post-intervention using segmented regression, we found insufficient evidence of a statistically significant effect on quality of care for stroke, although potential clinically important effects for AMI cannot be ruled out. Segmented regression analysis is the recommended approach for analysing data from an interrupted time series study. Several modifications to the basic segmented regression analysis approach are available to deal with challenges arising in the evaluation of complex quality improvement interventions.
Spatial vulnerability assessments by regression kriging
NASA Astrophysics Data System (ADS)
Pásztor, László; Laborczi, Annamária; Takács, Katalin; Szatmári, Gábor
2016-04-01
Two fairly different complex environmental phenomena, causing natural hazard were mapped based on a combined spatial inference approach. The behaviour is related to various environmental factors and the applied approach enables the inclusion of several, spatially exhaustive auxiliary variables that are available for mapping. Inland excess water (IEW) is an interrelated natural and human induced phenomenon causes several problems in the flat-land regions of Hungary, which cover nearly half of the country. The term 'inland excess water' refers to the occurrence of inundations outside the flood levee that originate from sources differing from flood overflow, it is surplus surface water forming due to the lack of runoff, insufficient absorption capability of soil or the upwelling of groundwater. There is a multiplicity of definitions, which indicate the complexity of processes that govern this phenomenon. Most of the definitions have a common part, namely, that inland excess water is temporary water inundation that occurs in flat-lands due to both precipitation and groundwater emerging on the surface as substantial sources. Radon gas is produced in the radioactive decay chain of uranium, which is an element that is naturally present in soils. Radon is transported mainly by diffusion and convection mechanisms through the soil depending mainly on soil physical and meteorological parameters and can enter and accumulate in the buildings. Health risk originating from indoor radon concentration attributed to natural factors is characterized by geogenic radon potential (GRP). In addition to geology and meteorology, physical soil properties play significant role in the determination of GRP. Identification of areas with high risk requires spatial modelling, that is mapping of specific natural hazards. In both cases external environmental factors determine the behaviour of the target process (occurrence/frequncy of IEW and grade of GRP respectively). Spatial auxiliary information representing IEW or GRP forming environmental factors were taken into account to support the spatial inference of the locally experienced IEW frequency and measured GRP values respectively. An efficient spatial prediction methodology was applied to construct reliable maps, namely regression kriging (RK) using spatially exhaustive auxiliary data on soil, geology, topography, land use and climate. RK divides the spatial inference into two parts. Firstly the deterministic component of the target variable is determined by a regression model. The residuals of the multiple linear regression analysis represent the spatially varying but dependent stochastic component, which are interpolated by kriging. The final map is the sum of the two component predictions. Application of RK also provides the possibility of inherent accuracy assessment. The resulting maps are characterized by global and local measures of its accuracy. Additionally the method enables interval estimation for spatial extension of the areas of predefined risk categories. All of these outputs provide useful contribution to spatial planning, action planning and decision making. Acknowledgement: Our work was partly supported by the Hungarian National Scientific Research Foundation (OTKA, Grant No. K105167).
Estimating riparian understory vegetation cover with beta regression and copula models
Eskelson, Bianca N.I.; Madsen, Lisa; Hagar, Joan C.; Temesgen, Hailemariam
2011-01-01
Understory vegetation communities are critical components of forest ecosystems. As a result, the importance of modeling understory vegetation characteristics in forested landscapes has become more apparent. Abundance measures such as shrub cover are bounded between 0 and 1, exhibit heteroscedastic error variance, and are often subject to spatial dependence. These distributional features tend to be ignored when shrub cover data are analyzed. The beta distribution has been used successfully to describe the frequency distribution of vegetation cover. Beta regression models ignoring spatial dependence (BR) and accounting for spatial dependence (BRdep) were used to estimate percent shrub cover as a function of topographic conditions and overstory vegetation structure in riparian zones in western Oregon. The BR models showed poor explanatory power (pseudo-R2 ≤ 0.34) but outperformed ordinary least-squares (OLS) and generalized least-squares (GLS) regression models with logit-transformed response in terms of mean square prediction error and absolute bias. We introduce a copula (COP) model that is based on the beta distribution and accounts for spatial dependence. A simulation study was designed to illustrate the effects of incorrectly assuming normality, equal variance, and spatial independence. It showed that BR, BRdep, and COP models provide unbiased parameter estimates, whereas OLS and GLS models result in slightly biased estimates for two of the three parameters. On the basis of the simulation study, 93–97% of the GLS, BRdep, and COP confidence intervals covered the true parameters, whereas OLS and BR only resulted in 84–88% coverage, which demonstrated the superiority of GLS, BRdep, and COP over OLS and BR models in providing standard errors for the parameter estimates in the presence of spatial dependence.
NASA Astrophysics Data System (ADS)
Alexander, L.; Hupp, C. R.; Forman, R. T.
2002-12-01
Many geodisturbances occur across large spatial scales, spanning entire landscapes and creating ecological phenomena in their wake. Ecological study at large scales poses special problems: (1) large-scale studies require large-scale resources, and (2) sampling is not always feasible at the appropriate scale, and researchers rely on data collected at smaller scales to interpret patterns across broad regions. A criticism of landscape ecology is that findings at small spatial scales are "scaled up" and applied indiscriminately across larger spatial scales. In this research, landscape scaling is addressed through process-pattern relationships between hydrogeomorphic processes and patterns of plant diversity in forested wetlands. The research addresses: (1) whether patterns and relationships between hydrogeomorphic, vegetation, and spatial variables can transcend scale; and (2) whether data collected at small spatial scales can be used to describe patterns and relationships across larger spatial scales. Field measurements of hydrologic, geomorphic, spatial, and vegetation data were collected or calculated for 15- 1-ha sites on forested floodplains of six (6) Chesapeake Bay Coastal Plain streams over a total area of about 20,000 km2. Hydroperiod (day/yr), floodplain surface elevation range (m), discharge (m3/s), stream power (kg-m/s2), sediment deposition (mm/yr), relative position downstream and other variables were used in multivariate analyses to explain differences in species richness, tree diversity (Shannon-Wiener Diversity Index H'), and plant community composition at four spatial scales. Data collected at the plot (400-m2) and site- (c. 1-ha) scales are applied to and tested at the river watershed and regional spatial scales. Results indicate that plant species richness and tree diversity (Shannon-Wiener diversity index H') can be described by hydrogeomorphic conditions at all scales, but are best described at the site scale. Data collected at plot and site scales are tested for spatial heterogeneity across the Chesapeake Bay Coastal Plain using a geostatistical variogram, and multiple regression analysis is used to relate plant diversity, spatial, and hydrogeomorphic variables across Coastal Plain regions and hydrologic regimes. Results indicate that relationships between hydrogeomorphic processes and patterns of plant diversity at finer scales can proxy relationships at coarser scales in some, not all, cases. Findings also suggest that data collected at small scales can be used to describe trends across broader scales under limited conditions.
ERIC Educational Resources Information Center
Shafiq, M. Najeeb
2011-01-01
Using quantile regression analyses, this study examines gender gaps in mathematics, science, and reading in Azerbaijan, Indonesia, Jordan, the Kyrgyz Republic, Qatar, Tunisia, and Turkey among 15 year-old students. The analyses show that girls in Azerbaijan achieve as well as boys in mathematics and science and overachieve in reading. In Jordan,…
Reduced Lung Cancer Mortality With Lower Atmospheric Pressure.
Merrill, Ray M; Frutos, Aaron
2018-01-01
Research has shown that higher altitude is associated with lower risk of lung cancer and improved survival among patients. The current study assessed the influence of county-level atmospheric pressure (a measure reflecting both altitude and temperature) on age-adjusted lung cancer mortality rates in the contiguous United States, with 2 forms of spatial regression. Ordinary least squares regression and geographically weighted regression models were used to evaluate the impact of climate and other selected variables on lung cancer mortality, based on 2974 counties. Atmospheric pressure was significantly positively associated with lung cancer mortality, after controlling for sunlight, precipitation, PM2.5 (µg/m 3 ), current smoker, and other selected variables. Positive county-level β coefficient estimates ( P < .05) for atmospheric pressure were observed throughout the United States, higher in the eastern half of the country. The spatial regression models showed that atmospheric pressure is positively associated with age-adjusted lung cancer mortality rates, after controlling for other selected variables.
Spatial-temporal analysis of building surface temperatures in Hung Hom
NASA Astrophysics Data System (ADS)
Zeng, Ying; Shen, Yueqian
2015-12-01
This thesis presents a study on spatial-temporal analysis of building surface temperatures in Hung Hom. Observations were collected from Aug 2013 to Oct 2013 at a 30-min interval, using iButton sensors (N=20) covering twelve locations in Hung Hom. And thermal images were captured in PolyU from 05 Aug 2013 to 06 Aug 2013. A linear regression model of iButton and thermal records is established to calibrate temperature data. A 3D modeling system is developed based on Visual Studio 2010 development platform, using ArcEngine10.0 component, Microsoft Access 2010 database and C# programming language. The system realizes processing data, spatial analysis, compound query and 3D face temperature rendering and so on. After statistical analyses, building face azimuths are found to have a statistically significant relationship with sun azimuths at peak time. And seasonal building temperature changing also corresponds to the sun angle and sun azimuth variations. Building materials are found to have a significant effect on building surface temperatures. Buildings with lower albedo materials tend to have higher temperatures and larger thermal conductivity material have significant diurnal variations. For the geographical locations, the peripheral faces of campus have higher temperatures than the inner faces during day time and buildings located at the southeast are cooler than the western. Furthermore, human activity is found to have a strong relationship with building surface temperatures through weekday and weekend comparison.
NASA Astrophysics Data System (ADS)
Rice, Joshua S.; Emanuel, Ryan E.; Vose, James M.; Nelson, Stacy A. C.
2015-08-01
Changes in streamflow are an important area of ongoing research in the hydrologic sciences. To better understand spatial patterns in past changes in streamflow, we examined relationships between watershed-scale spatial characteristics and trends in streamflow. Trends in streamflow were identified by analyzing mean daily flow observations between 1940 and 2009 from 967 U.S. Geological Survey stream gages. Results indicated that streamflow across the continental U.S., as a whole, increased while becoming less extreme between 1940 and 2009. However, substantial departures from the continental U.S. (CONUS) scale pattern occurred at the regional scale, including increased annual maxima, decreased annual minima, overall drying trends, and changes in streamflow variability. A subset of watersheds belonging to a reference data set exhibited significantly smaller trend magnitudes than those observed in nonreference watersheds. Boosted regression tree models were applied to examine the influence of watershed characteristics on streamflow trend magnitudes at both the CONUS and regional scale. Geographic location was found to be of particular importance at the CONUS scale while local variability in hydroclimate and topography tended to have a strong influence on regional-scale patterns in streamflow trends. This methodology facilitates detailed, data-driven analyses of how the characteristics of individual watersheds interact with large-scale hydroclimate forces to influence how changes in streamflow manifest.
Serna-Quintero, José Miguel; Camiñas, Juan Antonio; Fernández, Ignacio de Loyola; Real, Raimundo; Macías, David
2017-01-01
Chondrichthyes, which include Elasmobranchii (sharks and batoids) and Holocephali (chimaeras), are a relatively small group in the Mediterranean Sea (89 species) playing a key role in the ecosystems where they are found. At present, many species of this group are threatened as a result of anthropogenic effects, including fishing activity. Knowledge of the spatial distribution of these species is of great importance to understand their ecological role and for the efficient management of their populations, particularly if affected by fisheries. This study aims to analyze the spatial patterns of the distribution of Chondrichthyes species richness in the Mediterranean Sea. Information provided by the studied countries was used to model geographical and ecological variables affecting the Chondrichthyes species richness. The species were distributed in 16 Operational Geographical Units (OGUs), derived from the Geographical Sub-Areas (GSA) adopted by the General Fisheries Commission of the Mediterranean Sea (GFCM). Regression analyses with the species richness as a target variable were adjusted with a set of environmental and geographical variables, being the model that links richness of Chondrichthyes species with distance to the Strait of Gibraltar and number of taxonomic families of bony fishes the one that best explains it. This suggests that both historical and ecological factors affect the current distribution of Chondrichthyes within the Mediterranean Sea. PMID:28406963
A proposed metric for assessing the measurement quality of individual microarrays
Kim, Kyoungmi; Page, Grier P; Beasley, T Mark; Barnes, Stephen; Scheirer, Katherine E; Allison, David B
2006-01-01
Background High-density microarray technology is increasingly applied to study gene expression levels on a large scale. Microarray experiments rely on several critical steps that may introduce error and uncertainty in analyses. These steps include mRNA sample extraction, amplification and labeling, hybridization, and scanning. In some cases this may be manifested as systematic spatial variation on the surface of microarray in which expression measurements within an individual array may vary as a function of geographic position on the array surface. Results We hypothesized that an index of the degree of spatiality of gene expression measurements associated with their physical geographic locations on an array could indicate the summary of the physical reliability of the microarray. We introduced a novel way to formulate this index using a statistical analysis tool. Our approach regressed gene expression intensity measurements on a polynomial response surface of the microarray's Cartesian coordinates. We demonstrated this method using a fixed model and presented results from real and simulated datasets. Conclusion We demonstrated the potential of such a quantitative metric for assessing the reliability of individual arrays. Moreover, we showed that this procedure can be incorporated into laboratory practice as a means to set quality control specifications and as a tool to determine whether an array has sufficient quality to be retained in terms of spatial correlation of gene expression measurements. PMID:16430768
Miao, Minmin; Zeng, Hong; Wang, Aimin; Zhao, Changsen; Liu, Feixiang
2017-02-15
Common spatial pattern (CSP) is most widely used in motor imagery based brain-computer interface (BCI) systems. In conventional CSP algorithm, pairs of the eigenvectors corresponding to both extreme eigenvalues are selected to construct the optimal spatial filter. In addition, an appropriate selection of subject-specific time segments and frequency bands plays an important role in its successful application. This study proposes to optimize spatial-frequency-temporal patterns for discriminative feature extraction. Spatial optimization is implemented by channel selection and finding discriminative spatial filters adaptively on each time-frequency segment. A novel Discernibility of Feature Sets (DFS) criteria is designed for spatial filter optimization. Besides, discriminative features located in multiple time-frequency segments are selected automatically by the proposed sparse time-frequency segment common spatial pattern (STFSCSP) method which exploits sparse regression for significant features selection. Finally, a weight determined by the sparse coefficient is assigned for each selected CSP feature and we propose a Weighted Naïve Bayesian Classifier (WNBC) for classification. Experimental results on two public EEG datasets demonstrate that optimizing spatial-frequency-temporal patterns in a data-driven manner for discriminative feature extraction greatly improves the classification performance. The proposed method gives significantly better classification accuracies in comparison with several competing methods in the literature. The proposed approach is a promising candidate for future BCI systems. Copyright © 2016 Elsevier B.V. All rights reserved.
A general framework for the use of logistic regression models in meta-analysis.
Simmonds, Mark C; Higgins, Julian Pt
2016-12-01
Where individual participant data are available for every randomised trial in a meta-analysis of dichotomous event outcomes, "one-stage" random-effects logistic regression models have been proposed as a way to analyse these data. Such models can also be used even when individual participant data are not available and we have only summary contingency table data. One benefit of this one-stage regression model over conventional meta-analysis methods is that it maximises the correct binomial likelihood for the data and so does not require the common assumption that effect estimates are normally distributed. A second benefit of using this model is that it may be applied, with only minor modification, in a range of meta-analytic scenarios, including meta-regression, network meta-analyses and meta-analyses of diagnostic test accuracy. This single model can potentially replace the variety of often complex methods used in these areas. This paper considers, with a range of meta-analysis examples, how random-effects logistic regression models may be used in a number of different types of meta-analyses. This one-stage approach is compared with widely used meta-analysis methods including Bayesian network meta-analysis and the bivariate and hierarchical summary receiver operating characteristic (ROC) models for meta-analyses of diagnostic test accuracy. © The Author(s) 2014.
Brakebill, J.W.; Preston, S.D.
2003-01-01
The U.S. Geological Survey has developed a methodology for statistically relating nutrient sources and land-surface characteristics to nutrient loads of streams. The methodology is referred to as SPAtially Referenced Regressions On Watershed attributes (SPARROW), and relates measured stream nutrient loads to nutrient sources using nonlinear statistical regression models. A spatially detailed digital hydrologic network of stream reaches, stream-reach characteristics such as mean streamflow, water velocity, reach length, and travel time, and their associated watersheds supports the regression models. This network serves as the primary framework for spatially referencing potential nutrient source information such as atmospheric deposition, septic systems, point-sources, land use, land cover, and agricultural sources and land-surface characteristics such as land use, land cover, average-annual precipitation and temperature, slope, and soil permeability. In the Chesapeake Bay watershed that covers parts of Delaware, Maryland, Pennsylvania, New York, Virginia, West Virginia, and Washington D.C., SPARROW was used to generate models estimating loads of total nitrogen and total phosphorus representing 1987 and 1992 land-surface conditions. The 1987 models used a hydrologic network derived from an enhanced version of the U.S. Environmental Protection Agency's digital River Reach File, and course resolution Digital Elevation Models (DEMs). A new hydrologic network was created to support the 1992 models by generating stream reaches representing surface-water pathways defined by flow direction and flow accumulation algorithms from higher resolution DEMs. On a reach-by-reach basis, stream reach characteristics essential to the modeling were transferred to the newly generated pathways or reaches from the enhanced River Reach File used to support the 1987 models. To complete the new network, watersheds for each reach were generated using the direction of surface-water flow derived from the DEMs. This network improves upon existing digital stream data by increasing the level of spatial detail and providing consistency between the reach locations and topography. The hydrologic network also aids in illustrating the spatial patterns of predicted nutrient loads and sources contributed locally to each stream, and the percentages of nutrient load that reach Chesapeake Bay.
German M. Izon; Michael S. Hand; Daniel W. Mccollum; Jennifer A. Thacher; Robert P. Berrens
2016-01-01
The existing literature suggests that the presence of natural amenities, such as open spaces, can be highly valued and affect economic decisions about where people live and work. This article contributes to previous research by testing this hypothesis using a unique micro-level data set and by examining spatial variations in income levels and housing prices in the...
Rifai, Sami W; Urquiza Muñoz, José D; Negrón-Juárez, Robinson I; Ramírez Arévalo, Fredy R; Tello-Espinoza, Rodil; Vanderwel, Mark C; Lichstein, Jeremy W; Chambers, Jeffrey Q; Bohlman, Stephanie A
2016-10-01
Wind disturbance can create large forest blowdowns, which greatly reduces live biomass and adds uncertainty to the strength of the Amazon carbon sink. Observational studies from within the central Amazon have quantified blowdown size and estimated total mortality but have not determined which trees are most likely to die from a catastrophic wind disturbance. Also, the impact of spatial dependence upon tree mortality from wind disturbance has seldom been quantified, which is important because wind disturbance often kills clusters of trees due to large treefalls killing surrounding neighbors. We examine (1) the causes of differential mortality between adult trees from a 300-ha blowdown event in the Peruvian region of the northwestern Amazon, (2) how accounting for spatial dependence affects mortality predictions, and (3) how incorporating both differential mortality and spatial dependence affect the landscape level estimation of necromass produced from the blowdown. Standard regression and spatial regression models were used to estimate how stem diameter, wood density, elevation, and a satellite-derived disturbance metric influenced the probability of tree death from the blowdown event. The model parameters regarding tree characteristics, topography, and spatial autocorrelation of the field data were then used to determine the consequences of non-random mortality for landscape production of necromass through a simulation model. Tree mortality was highly non-random within the blowdown, where tree mortality rates were highest for trees that were large, had low wood density, and were located at high elevation. Of the differential mortality models, the non-spatial models overpredicted necromass, whereas the spatial model slightly underpredicted necromass. When parameterized from the same field data, the spatial regression model with differential mortality estimated only 7.5% more dead trees across the entire blowdown than the random mortality model, yet it estimated 51% greater necromass. We suggest that predictions of forest carbon loss from wind disturbance are sensitive to not only the underlying spatial dependence of observations, but also the biological differences between individuals that promote differential levels of mortality. © 2016 by the Ecological Society of America.
Mahara, Gehendra; Wang, Chao; Yang, Kun; Chen, Sipeng; Guo, Jin; Gao, Qi; Wang, Wei; Wang, Quanyi; Guo, Xiuhua
2016-01-01
(1) Background: Evidence regarding scarlet fever and its relationship with meteorological, including air pollution factors, is not very available. This study aimed to examine the relationship between ambient air pollutants and meteorological factors with scarlet fever occurrence in Beijing, China. (2) Methods: A retrospective ecological study was carried out to distinguish the epidemic characteristics of scarlet fever incidence in Beijing districts from 2013 to 2014. Daily incidence and corresponding air pollutant and meteorological data were used to develop the model. Global Moran’s I statistic and Anselin’s local Moran’s I (LISA) were applied to detect the spatial autocorrelation (spatial dependency) and clusters of scarlet fever incidence. The spatial lag model (SLM) and spatial error model (SEM) including ordinary least squares (OLS) models were then applied to probe the association between scarlet fever incidence and meteorological including air pollution factors. (3) Results: Among the 5491 cases, more than half (62%) were male, and more than one-third (37.8%) were female, with the annual average incidence rate 14.64 per 100,000 population. Spatial autocorrelation analysis exhibited the existence of spatial dependence; therefore, we applied spatial regression models. After comparing the values of R-square, log-likelihood and the Akaike information criterion (AIC) among the three models, the OLS model (R2 = 0.0741, log likelihood = −1819.69, AIC = 3665.38), SLM (R2 = 0.0786, log likelihood = −1819.04, AIC = 3665.08) and SEM (R2 = 0.0743, log likelihood = −1819.67, AIC = 3665.36), identified that the spatial lag model (SLM) was best for model fit for the regression model. There was a positive significant association between nitrogen oxide (p = 0.027), rainfall (p = 0.036) and sunshine hour (p = 0.048), while the relative humidity (p = 0.034) had an adverse association with scarlet fever incidence in SLM. (4) Conclusions: Our findings indicated that meteorological, as well as air pollutant factors may increase the incidence of scarlet fever; these findings may help to guide scarlet fever control programs and targeting the intervention. PMID:27827946
Mahara, Gehendra; Wang, Chao; Yang, Kun; Chen, Sipeng; Guo, Jin; Gao, Qi; Wang, Wei; Wang, Quanyi; Guo, Xiuhua
2016-11-04
(1) Background: Evidence regarding scarlet fever and its relationship with meteorological, including air pollution factors, is not very available. This study aimed to examine the relationship between ambient air pollutants and meteorological factors with scarlet fever occurrence in Beijing, China. (2) Methods: A retrospective ecological study was carried out to distinguish the epidemic characteristics of scarlet fever incidence in Beijing districts from 2013 to 2014. Daily incidence and corresponding air pollutant and meteorological data were used to develop the model. Global Moran's I statistic and Anselin's local Moran's I (LISA) were applied to detect the spatial autocorrelation (spatial dependency) and clusters of scarlet fever incidence. The spatial lag model (SLM) and spatial error model (SEM) including ordinary least squares (OLS) models were then applied to probe the association between scarlet fever incidence and meteorological including air pollution factors. (3) Results: Among the 5491 cases, more than half (62%) were male, and more than one-third (37.8%) were female, with the annual average incidence rate 14.64 per 100,000 population. Spatial autocorrelation analysis exhibited the existence of spatial dependence; therefore, we applied spatial regression models. After comparing the values of R-square, log-likelihood and the Akaike information criterion (AIC) among the three models, the OLS model (R² = 0.0741, log likelihood = -1819.69, AIC = 3665.38), SLM (R² = 0.0786, log likelihood = -1819.04, AIC = 3665.08) and SEM (R² = 0.0743, log likelihood = -1819.67, AIC = 3665.36), identified that the spatial lag model (SLM) was best for model fit for the regression model. There was a positive significant association between nitrogen oxide ( p = 0.027), rainfall ( p = 0.036) and sunshine hour ( p = 0.048), while the relative humidity ( p = 0.034) had an adverse association with scarlet fever incidence in SLM. (4) Conclusions: Our findings indicated that meteorological, as well as air pollutant factors may increase the incidence of scarlet fever; these findings may help to guide scarlet fever control programs and targeting the intervention.
Student Moon Observations and Spatial-Scientific Reasoning
ERIC Educational Resources Information Center
Cole, Merryn; Wilhelm, Jennifer; Yang, Hongwei
2015-01-01
Relationships between sixth grade students' moon journaling and students' spatial-scientific reasoning after implementation of an Earth/Space unit were examined. Teachers used the project-based Realistic Explorations in Astronomical Learning curriculum. We used a regression model to analyze the relationship between the students' Lunar Phases…
NASA Astrophysics Data System (ADS)
Schlögel, R.; Marchesini, I.; Alvioli, M.; Reichenbach, P.; Rossi, M.; Malet, J.-P.
2018-01-01
We perform landslide susceptibility zonation with slope units using three digital elevation models (DEMs) of varying spatial resolution of the Ubaye Valley (South French Alps). In so doing, we applied a recently developed algorithm automating slope unit delineation, given a number of parameters, in order to optimize simultaneously the partitioning of the terrain and the performance of a logistic regression susceptibility model. The method allowed us to obtain optimal slope units for each available DEM spatial resolution. For each resolution, we studied the susceptibility model performance by analyzing in detail the relevance of the conditioning variables. The analysis is based on landslide morphology data, considering either the whole landslide or only the source area outline as inputs. The procedure allowed us to select the most useful information, in terms of DEM spatial resolution, thematic variables and landslide inventory, in order to obtain the most reliable slope unit-based landslide susceptibility assessment.
Biondi-Zoccai, Giuseppe; Mastrangeli, Simona; Romagnoli, Enrico; Peruzzi, Mariangela; Frati, Giacomo; Roever, Leonardo; Giordano, Arturo
2018-01-17
Atherosclerosis has major morbidity and mortality implications globally. While it has often been considered an irreversible degenerative process, recent evidence provides compelling proof that atherosclerosis can be reversed. Plaque regression is however difficult to appraise and quantify, with competing diagnostic methods available. Given the potential of evidence synthesis to provide clinical guidance, we aimed to review recent meta-analyses on diagnostic methods for atherosclerotic plaque regression. We identified 8 meta-analyses published between 2015 and 2017, including 79 studies and 14,442 patients, followed for a median of 12 months. They reported on atherosclerotic plaque regression appraised with carotid duplex ultrasound, coronary computed tomography, carotid magnetic resonance, coronary intravascular ultrasound, and coronary optical coherence tomography. Overall, all meta-analyses showed significant atherosclerotic plaque regression with lipid-lowering therapy, with the most notable effects on echogenicity, lipid-rich necrotic core volume, wall/plaque volume, dense calcium volume, and fibrous cap thickness. Significant interactions were found with concomitant changes in low density lipoprotein cholesterol, high density lipoprotein cholesterol, and C-reactive protein levels, and with ethnicity. Atherosclerotic plaque regression and conversion to a stable phenotype is possible with intensive medical therapy and can be demonstrated in patients using a variety of non-invasive and invasive imaging modalities.
Accounting for and predicting the influence of spatial autocorrelation in water quality modeling
NASA Astrophysics Data System (ADS)
Miralha, L.; Kim, D.
2017-12-01
Although many studies have attempted to investigate the spatial trends of water quality, more attention is yet to be paid to the consequences of considering and ignoring the spatial autocorrelation (SAC) that exists in water quality parameters. Several studies have mentioned the importance of accounting for SAC in water quality modeling, as well as the differences in outcomes between models that account for and ignore SAC. However, the capacity to predict the magnitude of such differences is still ambiguous. In this study, we hypothesized that SAC inherently possessed by a response variable (i.e., water quality parameter) influences the outcomes of spatial modeling. We evaluated whether the level of inherent SAC is associated with changes in R-Squared, Akaike Information Criterion (AIC), and residual SAC (rSAC), after accounting for SAC during modeling procedure. The main objective was to analyze if water quality parameters with higher Moran's I values (inherent SAC measure) undergo a greater increase in R² and a greater reduction in both AIC and rSAC. We compared a non-spatial model (OLS) to two spatial regression approaches (spatial lag and error models). Predictor variables were the principal components of topographic (elevation and slope), land cover, and hydrological soil group variables. We acquired these data from federal online sources (e.g. USGS). Ten watersheds were selected, each in a different state of the USA. Results revealed that water quality parameters with higher inherent SAC showed substantial increase in R² and decrease in rSAC after performing spatial regressions. However, AIC values did not show significant changes. Overall, the higher the level of inherent SAC in water quality variables, the greater improvement of model performance. This indicates a linear and direct relationship between the spatial model outcomes (R² and rSAC) and the degree of SAC in each water quality variable. Therefore, our study suggests that the inherent level of SAC in response variables can predict improvements in models even before performing spatial regression approaches. We also recognize the constraints of this research and suggest that further studies focus on better ways of defining spatial neighborhoods, considering the differences among stations set in tributaries near to each other and in upstream areas.
Modeling Forest Understory Fires in an Eastern Amazonian Landscape
NASA Technical Reports Server (NTRS)
Alencar, A. A. C.; Solorzano, L. A.; Nepstad, D. C.
2004-01-01
Forest understory fires are an increasingly important cause of forest impoverishment in Ammonia, but little is known of the landscape characteristics and climatic phenomena that determine their occurrence. We developed empirical functions relating the occurrence of understory fires to landscape features near Paragominas, a 35- yr-old ranching and logging center in eastern Ammonia. An historical sequence of maps of forest understory fire was created based on field interviews With local farmers and Landsat TM images. Several landscape features that might explain spatial variations in the occurrence of understory fires were also mapped and co-registered for each of the sample dates, including: forest fragment size and shape, forest impoverishment through logging and understory fires, source of ignition (settlements and charcoal pits), roads, forest edges, and others. The spatial relationship between forest understory fire and each landscape characteristic was tested by regression analyses. Fire probability models were then developed for various combinations of landscape characteristics. The analyses were conducted separately for years of the El Nino Southern Oscillation (ENSO), which are associated with severe drought in eastern Amazonia, and non-ENS0 years. Most (91 %) of the forest area that burned during the 10-yr sequence caught fire during ENSO years, when severe drought may have increased both forest flammability and the escape of agricultural management fires. Forest understory fires were associated with forest edges, as reported in previous studies from Ammonia. But the strongest predictor of forest fire was the percentage of the forest fragment that had been previously logged or burned. Forest fragment size, distance to charcoal pits, distance to agricultural settlement, proximity to forest edge, and distance to roads were also correlated with forest understory fire. Logistic regression models using information on fragment degradation and distance to ignition sources accurately predicted the location of lss than 80% of the forest fires observed during the ENSO event of 1997- 1998. In this Amazon landscape, forest understory fire is a complex function of several variables that influence both the flammability and ignition exposure of the forest.
Yang, Qichun; Zhang, Xuesong; Xu, Xingya; ...
2017-05-29
Riverine carbon cycling is an important, but insufficiently investigated component of the global carbon cycle. Analyses of environmental controls on riverine carbon cycling are critical for improved understanding of mechanisms regulating carbon processing and storage along the terrestrial-aquatic continuum. Here, we compile and analyze riverine dissolved organic carbon (DOC) concentration data from 1402 United States Geological Survey (USGS) gauge stations to examine the spatial variability and environmental controls of DOC concentrations in the United States (U.S.) surface waters. DOC concentrations exhibit high spatial variability, with an average of 6.42 ± 6.47 mg C/ L (Mean ± Standard Deviation). In general,more » high DOC concentrations occur in the Upper Mississippi River basin and the Southeastern U.S., while low concentrations are mainly distributed in the Western U.S. Single-factor analysis indicates that slope of drainage areas, wetlands, forests, percentage of first-order streams, and instream nutrients (such as nitrogen and phosphorus) pronouncedly influence DOC concentrations, but the explanatory power of each bivariate model is lower than 35%. Analyses based on the general multi-linear regression models suggest DOC concentrations are jointly impacted by multiple factors. Soil properties mainly show positive correlations with DOC concentrations; forest and shrub lands have positive correlations with DOC concentrations, but urban area and croplands demonstrate negative impacts; total instream phosphorus and dam density correlate positively with DOC concentrations. Notably, the relative importance of these environmental controls varies substantially across major U.S. water resource regions. In addition, DOC concentrations and environmental controls also show significant variability from small streams to large rivers, which may be caused by changing carbon sources and removal rates by river orders. In sum, our results reveal that general multi-linear regression analysis of twenty one terrestrial and aquatic environmental factors can partially explain (56%) the DOC concentration variation. In conclusion, this study highlights the complexity of the interactions among these environmental factors in determining DOC concentrations, thus calls for processes-based, non-linear methodologies to constrain uncertainties in riverine DOC cycling.« less
Fakunle, D O; Milam, A J; Furr-Holden, C D; Butler, J; Thorpe, R J; LaVeist, T A
2016-07-01
Studies have shown that communities with higher concentrations of low-income racial and ethnic minorities correlate with a greater presence of tobacco outlets. Community-level income has consistently been among the strongest predictors of tobacco outlet density. This study analyzes two Maryland geopolitical areas with similar racial concentrations yet differing income levels in an attempt to disentangle the race-income relationship with tobacco outlet density. In this cross-sectional examination of tobacco outlet and census tract-level sociodemographic data, Baltimore City, Maryland, and Prince George's County, Maryland, were geocoded to determine tobacco outlet density. Tobacco outlet density was defined as the mean number of tobacco outlets per 1000 persons per census tract. Comparisons of tobacco outlet density and sociodemographic variables were analysed via two-sample t-tests, and the direct effect of sociodemographic variables on tobacco outlet density for each area was analysed via spatial lag regressions. Prince George's County, the area with the higher income level ($77,190 vs $43,571), has a significantly lower tobacco outlet density than Baltimore City (P < 0.001). Prince George's County has a 67.5% Black population and an average of 3.94 tobacco outlets per 1000 persons per tract. By contrast, Baltimore City has a 65.3% Black population and an average of 7.95 tobacco outlets per 1000 persons per tract. Spatial lag regression model results indicate an inverse relationship between income and tobacco outlet density in Baltimore City and Prince George's County (β = -0.03, P < 0.01 &β = -0.01, P = 0.02, respectively), and a significant interaction term indicating a greater magnitude in the relationship between income and tobacco outlet density in Baltimore City (β = -0.05, P < 0.01). Results suggest that higher socio-economic status, even in primarily underrepresented racial and ethnic geopolitical areas, is linked to lower tobacco outlet density. Copyright © 2016 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.
Determination of fat and total protein content in milk using conventional digital imaging.
Kucheryavskiy, Sergey; Melenteva, Anastasiia; Bogomolov, Andrey
2014-04-01
The applicability of conventional digital imaging to quantitative determination of fat and total protein in cow's milk, based on the phenomenon of light scatter, has been proved. A new algorithm for extracting features from digital images of milk samples has been developed. The algorithm takes into account spatial distribution of light, diffusely transmitted through a sample. The proposed method has been tested on two sample sets prepared from industrial raw milk standards, with variable fat and protein content. Partial Least-Squares (PLS) regression on the features calculated from images of monochromatically illuminated milk samples resulted in models with high prediction performance when analysed the sets separately (best models with cross-validated R(2)=0.974 for protein and R(2)=0.973 for fat content). However when analysed the sets jointly with the obtained results were significantly worse (best models with cross-validated R(2)=0.890 for fat content and R(2)=0.720 for protein content). The results have been compared with previously published Vis/SW-NIR spectroscopic study of similar samples. Copyright © 2013 Elsevier B.V. All rights reserved.
Recent ecological transitions in China: greening, browning, and influential factors
NASA Astrophysics Data System (ADS)
Lü, Yihe; Zhang, Liwei; Feng, Xiaoming; Zeng, Yuan; Fu, Bojie; Yao, Xueling; Li, Junran; Wu, Bingfang
2015-03-01
Ecological conservation and restoration are necessary to mitigate environmental degradation problems. China has taken great efforts in such actions. To understand the ecological transition during 2000-2010 in China, this study analysed trends in vegetation change using remote sensing and linear regression. Climate and socioeconomic factors were included to screen the driving forces for vegetation change using correlation or comparative analyses. Our results indicated that China experienced both vegetation greening (restoration) and browning (degradation) with great spatial heterogeneity. Socioeconomic factors, such as human populations and economic production, were the most significant factors for vegetation change. Nature reserves have contributed slightly to the deceleration of vegetation browning and the promotion of greening; however, a large-scale conservation approach beyond nature reserves was more effective. The effectiveness of the Three-North Shelter Forest Program lay between the two above approaches. The findings of this study highlighted that vegetation trend detection is a practical approach for large-scale ecological transition assessments, which can inform decision-making that promotes vegetation greening via proper socioeconomic development and ecosystem management.
Recent ecological transitions in China: greening, browning, and influential factors.
Lü, Yihe; Zhang, Liwei; Feng, Xiaoming; Zeng, Yuan; Fu, Bojie; Yao, Xueling; Li, Junran; Wu, Bingfang
2015-03-04
Ecological conservation and restoration are necessary to mitigate environmental degradation problems. China has taken great efforts in such actions. To understand the ecological transition during 2000-2010 in China, this study analysed trends in vegetation change using remote sensing and linear regression. Climate and socioeconomic factors were included to screen the driving forces for vegetation change using correlation or comparative analyses. Our results indicated that China experienced both vegetation greening (restoration) and browning (degradation) with great spatial heterogeneity. Socioeconomic factors, such as human populations and economic production, were the most significant factors for vegetation change. Nature reserves have contributed slightly to the deceleration of vegetation browning and the promotion of greening; however, a large-scale conservation approach beyond nature reserves was more effective. The effectiveness of the Three-North Shelter Forest Program lay between the two above approaches. The findings of this study highlighted that vegetation trend detection is a practical approach for large-scale ecological transition assessments, which can inform decision-making that promotes vegetation greening via proper socioeconomic development and ecosystem management.
Modelling of capital asset pricing by considering the lagged effects
NASA Astrophysics Data System (ADS)
Sukono; Hidayat, Y.; Bon, A. Talib bin; Supian, S.
2017-01-01
In this paper the problem of modelling the Capital Asset Pricing Model (CAPM) with the effect of the lagged is discussed. It is assumed that asset returns are analysed influenced by the market return and the return of risk-free assets. To analyse the relationship between asset returns, the market return, and the return of risk-free assets, it is conducted by using a regression equation of CAPM, and regression equation of lagged distributed CAPM. Associated with the regression equation lagged CAPM distributed, this paper also developed a regression equation of Koyck transformation CAPM. Results of development show that the regression equation of Koyck transformation CAPM has advantages, namely simple as it only requires three parameters, compared with regression equation of lagged distributed CAPM.
Techniques for estimating flood-peak discharges of rural, unregulated streams in Ohio
Koltun, G.F.; Roberts, J.W.
1990-01-01
Multiple-regression equations are presented for estimating flood-peak discharges having recurrence intervals of 2, 5, 10, 25, 50, and 100 years at ungaged sites on rural, unregulated streams in Ohio. The average standard errors of prediction for the equations range from 33.4% to 41.4%. Peak discharge estimates determined by log-Pearson Type III analysis using data collected through the 1987 water year are reported for 275 streamflow-gaging stations. Ordinary least-squares multiple-regression techniques were used to divide the State into three regions and to identify a set of basin characteristics that help explain station-to- station variation in the log-Pearson estimates. Contributing drainage area, main-channel slope, and storage area were identified as suitable explanatory variables. Generalized least-square procedures, which include historical flow data and account for differences in the variance of flows at different gaging stations, spatial correlation among gaging station records, and variable lengths of station record were used to estimate the regression parameters. Weighted peak-discharge estimates computed as a function of the log-Pearson Type III and regression estimates are reported for each station. A method is provided to adjust regression estimates for ungaged sites by use of weighted and regression estimates for a gaged site located on the same stream. Limitations and shortcomings cited in an earlier report on the magnitude and frequency of floods in Ohio are addressed in this study. Geographic bias is no longer evident for the Maumee River basin of northwestern Ohio. No bias is found to be associated with the forested-area characteristic for the range used in the regression analysis (0.0 to 99.0%), nor is this characteristic significant in explaining peak discharges. Surface-mined area likewise is not significant in explaining peak discharges, and the regression equations are not biased when applied to basins having approximately 30% or less surface-mined area. Analyses of residuals indicate that the equations tend to overestimate flood-peak discharges for basins having approximately 30% or more surface-mined area. (USGS)
Evaluation of Land use Regression Models for NO2 in El Paso, Texas, USA
Developing suitable exposure estimates for air pollution health studies is problematic due to spatial and temporal variation in concentrations and often limited monitoring data. Though land use regression models (LURs) are often used for this purpose, their applicability to later...
Techniques for estimating flood-peak discharges of rural, unregulated streams in Ohio
Koltun, G.F.
2003-01-01
Regional equations for estimating 2-, 5-, 10-, 25-, 50-, 100-, and 500-year flood-peak discharges at ungaged sites on rural, unregulated streams in Ohio were developed by means of ordinary and generalized least-squares (GLS) regression techniques. One-variable, simple equations and three-variable, full-model equations were developed on the basis of selected basin characteristics and flood-frequency estimates determined for 305 streamflow-gaging stations in Ohio and adjacent states. The average standard errors of prediction ranged from about 39 to 49 percent for the simple equations, and from about 34 to 41 percent for the full-model equations. Flood-frequency estimates determined by means of log-Pearson Type III analyses are reported along with weighted flood-frequency estimates, computed as a function of the log-Pearson Type III estimates and the regression estimates. Values of explanatory variables used in the regression models were determined from digital spatial data sets by means of a geographic information system (GIS), with the exception of drainage area, which was determined by digitizing the area within basin boundaries manually delineated on topographic maps. Use of GIS-based explanatory variables represents a major departure in methodology from that described in previous reports on estimating flood-frequency characteristics of Ohio streams. Examples are presented illustrating application of the regression equations to ungaged sites on ungaged and gaged streams. A method is provided to adjust regression estimates for ungaged sites by use of weighted and regression estimates for a gaged site on the same stream. A region-of-influence method, which employs a computer program to estimate flood-frequency characteristics for ungaged sites based on data from gaged sites with similar characteristics, was also tested and compared to the GLS full-model equations. For all recurrence intervals, the GLS full-model equations had superior prediction accuracy relative to the simple equations and therefore are recommended for use.
NASA Astrophysics Data System (ADS)
Erener, Arzu; Sivas, A. Abdullah; Selcuk-Kestel, A. Sevtap; Düzgün, H. Sebnem
2017-07-01
All of the quantitative landslide susceptibility mapping (QLSM) methods requires two basic data types, namely, landslide inventory and factors that influence landslide occurrence (landslide influencing factors, LIF). Depending on type of landslides, nature of triggers and LIF, accuracy of the QLSM methods differs. Moreover, how to balance the number of 0 (nonoccurrence) and 1 (occurrence) in the training set obtained from the landslide inventory and how to select which one of the 1's and 0's to be included in QLSM models play critical role in the accuracy of the QLSM. Although performance of various QLSM methods is largely investigated in the literature, the challenge of training set construction is not adequately investigated for the QLSM methods. In order to tackle this challenge, in this study three different training set selection strategies along with the original data set is used for testing the performance of three different regression methods namely Logistic Regression (LR), Bayesian Logistic Regression (BLR) and Fuzzy Logistic Regression (FLR). The first sampling strategy is proportional random sampling (PRS), which takes into account a weighted selection of landslide occurrences in the sample set. The second method, namely non-selective nearby sampling (NNS), includes randomly selected sites and their surrounding neighboring points at certain preselected distances to include the impact of clustering. Selective nearby sampling (SNS) is the third method, which concentrates on the group of 1's and their surrounding neighborhood. A randomly selected group of landslide sites and their neighborhood are considered in the analyses similar to NNS parameters. It is found that LR-PRS, FLR-PRS and BLR-Whole Data set-ups, with order, yield the best fits among the other alternatives. The results indicate that in QLSM based on regression models, avoidance of spatial correlation in the data set is critical for the model's performance.
Statistical Approaches Used to Assess the Equity of Access to Food Outlets: A Systematic Review
Lamb, Karen E.; Thornton, Lukar E.; Cerin, Ester; Ball, Kylie
2015-01-01
Background Inequalities in eating behaviours are often linked to the types of food retailers accessible in neighbourhood environments. Numerous studies have aimed to identify if access to healthy and unhealthy food retailers is socioeconomically patterned across neighbourhoods, and thus a potential risk factor for dietary inequalities. Existing reviews have examined differences between methodologies, particularly focussing on neighbourhood and food outlet access measure definitions. However, no review has informatively discussed the suitability of the statistical methodologies employed; a key issue determining the validity of study findings. Our aim was to examine the suitability of statistical approaches adopted in these analyses. Methods Searches were conducted for articles published from 2000–2014. Eligible studies included objective measures of the neighbourhood food environment and neighbourhood-level socio-economic status, with a statistical analysis of the association between food outlet access and socio-economic status. Results Fifty-four papers were included. Outlet accessibility was typically defined as the distance to the nearest outlet from the neighbourhood centroid, or as the number of food outlets within a neighbourhood (or buffer). To assess if these measures were linked to neighbourhood disadvantage, common statistical methods included ANOVA, correlation, and Poisson or negative binomial regression. Although all studies involved spatial data, few considered spatial analysis techniques or spatial autocorrelation. Conclusions With advances in GIS software, sophisticated measures of neighbourhood outlet accessibility can be considered. However, approaches to statistical analysis often appear less sophisticated. Care should be taken to consider assumptions underlying the analysis and the possibility of spatially correlated residuals which could affect the results. PMID:29546115
Havard, Sabrina; Reich, Brian J; Bean, Kathy; Chaix, Basile
2011-05-01
To explore social inequalities in residential exposure to road traffic noise in an urban area. Environmental injustice in road traffic noise exposure was investigated in Paris, France, using the RECORD Cohort Study (n = 2130) and modelled noise data. Associations were assessed by estimating noise exposure within the local area around participants' residence, considering various socioeconomic variables defined at both individual and neighbourhood level, and comparing different regression models attempting or not to control for spatial autocorrelation in noise levels. After individual-level adjustment, participants' noise exposure increased with neighbourhood educational level and dwelling value but also with proportion of non-French citizens, suggesting seemingly contradictory findings. However, when country of citizenship was defined according to its human development level, noise exposure in fact increased and decreased with the proportions of citizens from advantaged and disadvantaged countries, respectively. These findings were consistent with those reported for the other socioeconomic characteristics, suggesting higher road traffic noise exposure in advantaged neighbourhoods. Substantial collinearity between neighbourhood explanatory variables and spatial random effects caused identifiability problems that prevented successful control for spatial autocorrelation. Contrary to previous literature, this study shows that people living in advantaged neighbourhoods were more exposed to road traffic noise in their residential environment than their deprived counterparts. This case study demonstrates the need to systematically perform sensitivity analyses with multiple socioeconomic characteristics to avoid incorrect inferences about an environmental injustice situation and the complexity of effectively controlling for spatial autocorrelation when fixed and random components of the model are correlated.
Zeilhofer, Peter; Santos, Emerson Soares dos; Ribeiro, Ana LM; Miyazaki, Rosina D; Santos, Marina Atanaka dos
2007-01-01
Background Hydropower plants provide more than 78 % of Brazil's electricity generation, but the country's reservoirs are potential new habitats for main vectors of malaria. In a case study in the surroundings of the Manso hydropower plant in Mato Grosso state, Central Brazil, habitat suitability of Anopheles darlingi was studied. Habitat profile was characterized by collecting environmental data. Remote sensing and GIS techniques were applied to extract additional spatial layers of land use, distance maps, and relief characteristics for spatial model building. Results Logistic regression analysis and ROC curves indicate significant relationships between the environment and presence of An. darlingi. Probabilities of presence strongly vary as a function of land cover and distance from the lake shoreline. Vector presence was associated with spatial proximity to reservoir and semi-deciduous forests followed by Cerrado woodland. Vector absence was associated with open vegetation formations such as grasslands and agricultural areas. We suppose that non-significant differences of vector incidences between rainy and dry seasons are associated with the availability of anthropogenic breeding habitat of the reservoir throughout the year. Conclusion Satellite image classification and multitemporal shoreline simulations through DEM-based GIS-analyses consist in a valuable tool for spatial modeling of A. darlingi habitats in the studied hydropower reservoir area. Vector presence is significantly increased in forested areas near reservoirs in bays protected from wind and wave action. Construction of new reservoirs under the tropical, sub-humid climatic conditions should therefore be accompanied by entomologic studies to predict the risk of malaria epidemics. PMID:17343728
Cordova-Kreylos, A. L.; Cao, Y.; Green, P.G.; Hwang, H.-M.; Kuivila, K.M.; LaMontagne, M.G.; Van De Werfhorst, L. C.; Holden, P.A.; Scow, K.M.
2006-01-01
The Pacific Estuarine Ecosystem Indicators Research Consortium seeks to develop bioindicators of toxicant-induced stress and bioavailability for wetland biota. Within this framework, the effects of environmental and pollutant variables on microbial communities were studied at different spatial scales over a 2-year period. Six salt marshes along the California coastline were characterized using phospholipid fatty acid (PLFA) analysis and terminal restriction fragment length polymorphism (TRFLP) analysis. Additionally, 27 metals, six currently used pesticides, total polychlorinated biphenyls and polycyclic aromatic hydrocarbons, chlordanes, nonachlors, dichlorodiphenyldichloroethane, and dichlorodiphenyldichloroethylene were analyzed. Sampling was performed over large (between salt marshes), medium (stations within a marsh), and small (different channel depths) spatial scales. Regression and ordination analysis suggested that the spatial variation in microbial communities exceeded the variation attributable to pollutants. PLFA analysis and TRFLP canonical correspondence analysis (CCA) explained 74 and 43% of the variation, respectively, and both methods attributed 34% of the variation to tidal cycles, marsh, year, and latitude. After accounting for spatial variation using partial CCA, we found that metals had a greater effect on microbial community composition than organic pollutants had. Organic carbon and nitrogen contents were positively correlated with PLFA biomass, whereas total metal concentrations were positively correlated with biomass and diversity. Higher concentrations of heavy metals were negatively correlated with branched PLFAs and positively correlated with methyl- and cyclo-substituted PLFAs. The strong relationships observed between pollutant concentrations and some of the microbial indicators indicated the potential for using microbial community analyses in assessments of the ecosystem health of salt marshes. Copyright ?? 2006, American Society for Microbiology. All Rights Reserved.
Córdova-Kreylos, Ana Lucía; Cao, Yiping; Green, Peter G.; Hwang, Hyun-Min; Kuivila, Kathryn M.; LaMontagne, Michael G.; Van De Werfhorst, Laurie C.; Holden, Patricia A.; Scow, Kate M.
2006-01-01
The Pacific Estuarine Ecosystem Indicators Research Consortium seeks to develop bioindicators of toxicant-induced stress and bioavailability for wetland biota. Within this framework, the effects of environmental and pollutant variables on microbial communities were studied at different spatial scales over a 2-year period. Six salt marshes along the California coastline were characterized using phospholipid fatty acid (PLFA) analysis and terminal restriction fragment length polymorphism (TRFLP) analysis. Additionally, 27 metals, six currently used pesticides, total polychlorinated biphenyls and polycyclic aromatic hydrocarbons, chlordanes, nonachlors, dichlorodiphenyldichloroethane, and dichlorodiphenyldichloroethylene were analyzed. Sampling was performed over large (between salt marshes), medium (stations within a marsh), and small (different channel depths) spatial scales. Regression and ordination analysis suggested that the spatial variation in microbial communities exceeded the variation attributable to pollutants. PLFA analysis and TRFLP canonical correspondence analysis (CCA) explained 74 and 43% of the variation, respectively, and both methods attributed 34% of the variation to tidal cycles, marsh, year, and latitude. After accounting for spatial variation using partial CCA, we found that metals had a greater effect on microbial community composition than organic pollutants had. Organic carbon and nitrogen contents were positively correlated with PLFA biomass, whereas total metal concentrations were positively correlated with biomass and diversity. Higher concentrations of heavy metals were negatively correlated with branched PLFAs and positively correlated with methyl- and cyclo-substituted PLFAs. The strong relationships observed between pollutant concentrations and some of the microbial indicators indicated the potential for using microbial community analyses in assessments of the ecosystem health of salt marshes. PMID:16672478
Strong, Laurence L.
2012-01-01
A prototype knowledge- and object-based image analysis model was developed to inventory and map least tern and piping plover habitat on the Missouri River, USA. The model has been used to inventory the state of sandbars annually for 4 segments of the Missouri River since 2006 using QuickBird imagery. Interpretation of the state of sandbars is difficult when images for the segment are acquired at different river stages and different states of vegetation phenology and canopy cover. Concurrent QuickBird and RapidEye images were classified using the model and the spatial correspondence of classes in the land cover and sandbar maps were analysed for the spatial extent of the images and at nest locations for both bird species. Omission and commission errors were low for unvegetated land cover classes used for nesting by both bird species and for land cover types with continuous vegetation cover and water. Errors were larger for land cover classes characterized by a mixture of sand and vegetation. Sandbar classification decisions are made using information on land cover class proportions and disagreement between sandbar classes was resolved using fuzzy membership possibilities. Regression analysis of area for a paired sample of 47 sandbars indicated an average positive bias, 1.15 ha, for RapidEye that did not vary with sandbar size. RapidEye has potential to reduce temporal uncertainty about least tern and piping plover habitat but would not be suitable for mapping sandbar erosion, and characterization of sandbar shapes or vegetation patches at fine spatial resolution.
Strong, Laurence L.
2012-01-01
A prototype knowledge- and object-based image analysis model was developed to inventory and map least tern and piping plover habitat on the Missouri River, USA. The model has been used to inventory the state of sandbars annually for 4 segments of the Missouri River since 2006 using QuickBird imagery. Interpretation of the state of sandbars is difficult when images for the segment are acquired at different river stages and different states of vegetation phenology and canopy cover. Concurrent QuickBird and RapidEye images were classified using the model and the spatial correspondence of classes in the land cover and sandbar maps were analysed for the spatial extent of the images and at nest locations for both bird species. Omission and commission errors were low for unvegetated land cover classes used for nesting by both bird species and for land cover types with continuous vegetation cover and water. Errors were larger for land cover classes characterized by a mixture of sand and vegetation. Sandbar classification decisions are made using information on land cover class proportions and disagreement between sandbar classes was resolved using fuzzy membership possibilities. Regression analysis of area for a paired sample of 47 sandbars indicated an average positive bias, 1.15 ha, for RapidEye that did not vary with sandbar size. RapidEye has potential to reduce temporal uncertainty about least tern and piping plover habitat but would not be suitable for mapping sandbar erosion, and characterization of sandbar shapes or vegetation patches at fine spatial resolution.
Zeilhofer, Peter; dos Santos, Emerson Soares; Ribeiro, Ana L M; Miyazaki, Rosina D; dos Santos, Marina Atanaka
2007-03-07
Hydropower plants provide more than 78 % of Brazil's electricity generation, but the country's reservoirs are potential new habitats for main vectors of malaria. In a case study in the surroundings of the Manso hydropower plant in Mato Grosso state, Central Brazil, habitat suitability of Anopheles darlingi was studied. Habitat profile was characterized by collecting environmental data. Remote sensing and GIS techniques were applied to extract additional spatial layers of land use, distance maps, and relief characteristics for spatial model building. Logistic regression analysis and ROC curves indicate significant relationships between the environment and presence of An. darlingi. Probabilities of presence strongly vary as a function of land cover and distance from the lake shoreline. Vector presence was associated with spatial proximity to reservoir and semi-deciduous forests followed by Cerrado woodland. Vector absence was associated with open vegetation formations such as grasslands and agricultural areas. We suppose that non-significant differences of vector incidences between rainy and dry seasons are associated with the availability of anthropogenic breeding habitat of the reservoir throughout the year. Satellite image classification and multitemporal shoreline simulations through DEM-based GIS-analyses consist in a valuable tool for spatial modeling of A. darlingi habitats in the studied hydropower reservoir area. Vector presence is significantly increased in forested areas near reservoirs in bays protected from wind and wave action. Construction of new reservoirs under the tropical, sub-humid climatic conditions should therefore be accompanied by entomologic studies to predict the risk of malaria epidemics.
Song, Chao; Kwan, Mei-Po; Zhu, Jiping
2017-04-08
An increasing number of fires are occurring with the rapid development of cities, resulting in increased risk for human beings and the environment. This study compares geographically weighted regression-based models, including geographically weighted regression (GWR) and geographically and temporally weighted regression (GTWR), which integrates spatial and temporal effects and global linear regression models (LM) for modeling fire risk at the city scale. The results show that the road density and the spatial distribution of enterprises have the strongest influences on fire risk, which implies that we should focus on areas where roads and enterprises are densely clustered. In addition, locations with a large number of enterprises have fewer fire ignition records, probably because of strict management and prevention measures. A changing number of significant variables across space indicate that heterogeneity mainly exists in the northern and eastern rural and suburban areas of Hefei city, where human-related facilities or road construction are only clustered in the city sub-centers. GTWR can capture small changes in the spatiotemporal heterogeneity of the variables while GWR and LM cannot. An approach that integrates space and time enables us to better understand the dynamic changes in fire risk. Thus governments can use the results to manage fire safety at the city scale.
Song, Chao; Kwan, Mei-Po; Zhu, Jiping
2017-01-01
An increasing number of fires are occurring with the rapid development of cities, resulting in increased risk for human beings and the environment. This study compares geographically weighted regression-based models, including geographically weighted regression (GWR) and geographically and temporally weighted regression (GTWR), which integrates spatial and temporal effects and global linear regression models (LM) for modeling fire risk at the city scale. The results show that the road density and the spatial distribution of enterprises have the strongest influences on fire risk, which implies that we should focus on areas where roads and enterprises are densely clustered. In addition, locations with a large number of enterprises have fewer fire ignition records, probably because of strict management and prevention measures. A changing number of significant variables across space indicate that heterogeneity mainly exists in the northern and eastern rural and suburban areas of Hefei city, where human-related facilities or road construction are only clustered in the city sub-centers. GTWR can capture small changes in the spatiotemporal heterogeneity of the variables while GWR and LM cannot. An approach that integrates space and time enables us to better understand the dynamic changes in fire risk. Thus governments can use the results to manage fire safety at the city scale. PMID:28397745
Cross-taxon congruence and environmental conditions.
Toranza, Carolina; Arim, Matías
2010-07-16
Diversity patterns of different taxa typically covary in space, a phenomenon called cross-taxon congruence. This pattern has been explained by the effect of one taxon diversity on taxon diversity, shared biogeographic histories of different taxa, and/or common responses to environmental conditions. A meta-analysis of the association between environment and diversity patterns found that in 83 out of 85 studies, more than 60% of the spatial variability in species richness was related to variables representing energy, water or their interaction. The role of the environment determining taxa diversity patterns leads us to hypothesize that this would explain the observed cross-taxon congruence. However, recent analyses reported the persistence of cross-taxon congruence when environmental effect was statistically removed. Here we evaluate this hypothesis, analyzing the cross-taxon congruence between birds and mammals in the Brazilian Cerrado, and assess the environmental role on the spatial covariation in diversity patterns. We found a positive association between avian and mammal richness and a positive latitudinal trend for both groups in the Brazilian Cerrado. Regression analyses indicated an effect of latitude, PET, and mean temperature over both biological groups. In addition, we show that NDVI was only associated with avian diversity; while the annual relative humidity, was only correlated with mammal diversity. We determined the environmental effects on diversity in a path analysis that accounted for 73% and 76% of the spatial variation in avian and mammal richness. However, an association between avian and mammal diversity remains significant. Indeed, the importance of this link between bird and mammal diversity was also supported by a significant association between birds and mammal spatial autoregressive model residuals. Our study corroborates the main role of environmental conditions on diversity patterns, but suggests that other important mechanisms, which have not been properly evaluated, are involved in the observed cross-taxon congruence. The approaches introduced here indicate that the prevalence of a significant association among taxa, after considering the environmental determinant, could indicate both the need to incorporate additional processes (e.g. biogeographic and evolutionary history or trophic interactions) and/or the existence of a shared trend in detection biases among taxa and regions.
NASA Astrophysics Data System (ADS)
Freeman, Mary Pyott
ABSTRACT An Analysis of Tree Mortality Using High Resolution Remotely-Sensed Data for Mixed-Conifer Forests in San Diego County by Mary Pyott Freeman The montane mixed-conifer forests of San Diego County are currently experiencing extensive tree mortality, which is defined as dieback where whole stands are affected. This mortality is likely the result of the complex interaction of many variables, such as altered fire regimes, climatic conditions such as drought, as well as forest pathogens and past management strategies. Conifer tree mortality and its spatial pattern and change over time were examined in three components. In component 1, two remote sensing approaches were compared for their effectiveness in delineating dead trees, a spatial contextual approach and an OBIA (object based image analysis) approach, utilizing various dates and spatial resolutions of airborne image data. For each approach transforms and masking techniques were explored, which were found to improve classifications, and an object-based assessment approach was tested. In component 2, dead tree maps produced by the most effective techniques derived from component 1 were utilized for point pattern and vector analyses to further understand spatio-temporal changes in tree mortality for the years 1997, 2000, 2002, and 2005 for three study areas: Palomar, Volcan and Laguna mountains. Plot-based fieldwork was conducted to further assess mortality patterns. Results indicate that conifer mortality was significantly clustered, increased substantially between 2002 and 2005, and was non-random with respect to tree species and diameter class sizes. In component 3, multiple environmental variables were used in Generalized Linear Model (GLM-logistic regression) and decision tree classifier model development, revealing the importance of climate and topographic factors such as precipitation and elevation, in being able to predict areas of high risk for tree mortality. The results from this study highlight the importance of multi-scale spatial as well as temporal analyses, in order to understand mixed-conifer forest structure, dynamics, and processes of decline, which can lead to more sustainable management of forests with continued natural and anthropogenic disturbance.
2017-01-01
Background A number of biotic and abiotic factors have been proposed as drivers of geographic variation in species richness. As biotic elements, inter-specific interactions are the most widely recognized. Among abiotic factors, in particular for plants, climate and topographic variables as well as their historical variation have been correlated with species richness and endemism. In this study, we determine the extent to which the species richness and endemism of monocot geophyte species in Mesoamerica is predicted by current climate, historical climate stability and topography. Methods Using approximately 2,650 occurrence points representing 507 geophyte taxa, species richness (SR) and weighted endemism (WE) were estimated at a geographic scale using grids of 0.5 × 0.5 decimal degrees resolution using Mexico as the geographic extent. SR and WE were also estimated using species distributions inferred from ecological niche modeling for species with at least five spatially unique occurrence points. Current climate, current to Last Glacial Maximum temperature, precipitation stability and topographic features were used as predictor variables on multiple spatial regression analyses (i.e., spatial autoregressive models, SAR) using the estimates of SR and WE as response variables. The standardized coefficients of the predictor variables that were significant in the regression models were utilized to understand the observed patterns of species richness and endemism. Results Our estimates of SR and WE based on direct occurrence data and distribution modeling generally yielded similar results, though estimates based on ecological niche modeling indicated broader distribution areas for SR and WE than when species richness was directly estimated using georeferenced coordinates. The SR and WE of monocot geophytes were highest along the Trans-Mexican Volcanic Belt, in both cases with higher levels in the central area of this mountain chain. Richness and endemism were also elevated in the southern regions of the Sierra Madre Oriental and Occidental mountain ranges, and in the Tehuacán Valley. Some areas of the Sierra Madre del Sur and Sierra Madre Oriental had high levels of WE, though they are not the areas with the highest SR. The spatial regressions suggest that SR is mostly influenced by current climate, whereas endemism is mainly affected by topography and precipitation stability. Conclusions Both methods (direct occurrence data and ecological niche modeling) used to estimate SR and WE in this study yielded similar results and detected a key area that should be considered in plant conservation strategies: the central region of the Trans-Mexican Volcanic Belt. Our results also corroborated that species richness is more closely correlated with current climate factors while endemism is related to differences in topography and to changes in precipitation levels compared to the LGM climatic conditions. PMID:29062605
Chirombo, James; Lowe, Rachel; Kazembe, Lawrence
2014-01-01
Background After years of implementing Roll Back Malaria (RBM) interventions, the changing landscape of malaria in terms of risk factors and spatial pattern has not been fully investigated. This paper uses the 2010 malaria indicator survey data to investigate if known malaria risk factors remain relevant after many years of interventions. Methods We adopted a structured additive logistic regression model that allowed for spatial correlation, to more realistically estimate malaria risk factors. Our model included child and household level covariates, as well as climatic and environmental factors. Continuous variables were modelled by assuming second order random walk priors, while spatial correlation was specified as a Markov random field prior, with fixed effects assigned diffuse priors. Inference was fully Bayesian resulting in an under five malaria risk map for Malawi. Results Malaria risk increased with increasing age of the child. With respect to socio-economic factors, the greater the household wealth, the lower the malaria prevalence. A general decline in malaria risk was observed as altitude increased. Minimum temperatures and average total rainfall in the three months preceding the survey did not show a strong association with disease risk. Conclusions The structured additive regression model offered a flexible extension to standard regression models by enabling simultaneous modelling of possible nonlinear effects of continuous covariates, spatial correlation and heterogeneity, while estimating usual fixed effects of categorical and continuous observed variables. Our results confirmed that malaria epidemiology is a complex interaction of biotic and abiotic factors, both at the individual, household and community level and that risk factors are still relevant many years after extensive implementation of RBM activities. PMID:24991915
Chirombo, James; Lowe, Rachel; Kazembe, Lawrence
2014-01-01
After years of implementing Roll Back Malaria (RBM) interventions, the changing landscape of malaria in terms of risk factors and spatial pattern has not been fully investigated. This paper uses the 2010 malaria indicator survey data to investigate if known malaria risk factors remain relevant after many years of interventions. We adopted a structured additive logistic regression model that allowed for spatial correlation, to more realistically estimate malaria risk factors. Our model included child and household level covariates, as well as climatic and environmental factors. Continuous variables were modelled by assuming second order random walk priors, while spatial correlation was specified as a Markov random field prior, with fixed effects assigned diffuse priors. Inference was fully Bayesian resulting in an under five malaria risk map for Malawi. Malaria risk increased with increasing age of the child. With respect to socio-economic factors, the greater the household wealth, the lower the malaria prevalence. A general decline in malaria risk was observed as altitude increased. Minimum temperatures and average total rainfall in the three months preceding the survey did not show a strong association with disease risk. The structured additive regression model offered a flexible extension to standard regression models by enabling simultaneous modelling of possible nonlinear effects of continuous covariates, spatial correlation and heterogeneity, while estimating usual fixed effects of categorical and continuous observed variables. Our results confirmed that malaria epidemiology is a complex interaction of biotic and abiotic factors, both at the individual, household and community level and that risk factors are still relevant many years after extensive implementation of RBM activities.
Sparse modeling of spatial environmental variables associated with asthma
Chang, Timothy S.; Gangnon, Ronald E.; Page, C. David; Buckingham, William R.; Tandias, Aman; Cowan, Kelly J.; Tomasallo, Carrie D.; Arndt, Brian G.; Hanrahan, Lawrence P.; Guilbert, Theresa W.
2014-01-01
Geographically distributed environmental factors influence the burden of diseases such as asthma. Our objective was to identify sparse environmental variables associated with asthma diagnosis gathered from a large electronic health record (EHR) dataset while controlling for spatial variation. An EHR dataset from the University of Wisconsin’s Family Medicine, Internal Medicine and Pediatrics Departments was obtained for 199,220 patients aged 5–50 years over a three-year period. Each patient’s home address was geocoded to one of 3,456 geographic census block groups. Over one thousand block group variables were obtained from a commercial database. We developed a Sparse Spatial Environmental Analysis (SASEA). Using this method, the environmental variables were first dimensionally reduced with sparse principal component analysis. Logistic thin plate regression spline modeling was then used to identify block group variables associated with asthma from sparse principal components. The addresses of patients from the EHR dataset were distributed throughout the majority of Wisconsin’s geography. Logistic thin plate regression spline modeling captured spatial variation of asthma. Four sparse principal components identified via model selection consisted of food at home, dog ownership, household size, and disposable income variables. In rural areas, dog ownership and renter occupied housing units from significant sparse principal components were associated with asthma. Our main contribution is the incorporation of sparsity in spatial modeling. SASEA sequentially added sparse principal components to Logistic thin plate regression spline modeling. This method allowed association of geographically distributed environmental factors with asthma using EHR and environmental datasets. SASEA can be applied to other diseases with environmental risk factors. PMID:25533437
Sparse modeling of spatial environmental variables associated with asthma.
Chang, Timothy S; Gangnon, Ronald E; David Page, C; Buckingham, William R; Tandias, Aman; Cowan, Kelly J; Tomasallo, Carrie D; Arndt, Brian G; Hanrahan, Lawrence P; Guilbert, Theresa W
2015-02-01
Geographically distributed environmental factors influence the burden of diseases such as asthma. Our objective was to identify sparse environmental variables associated with asthma diagnosis gathered from a large electronic health record (EHR) dataset while controlling for spatial variation. An EHR dataset from the University of Wisconsin's Family Medicine, Internal Medicine and Pediatrics Departments was obtained for 199,220 patients aged 5-50years over a three-year period. Each patient's home address was geocoded to one of 3456 geographic census block groups. Over one thousand block group variables were obtained from a commercial database. We developed a Sparse Spatial Environmental Analysis (SASEA). Using this method, the environmental variables were first dimensionally reduced with sparse principal component analysis. Logistic thin plate regression spline modeling was then used to identify block group variables associated with asthma from sparse principal components. The addresses of patients from the EHR dataset were distributed throughout the majority of Wisconsin's geography. Logistic thin plate regression spline modeling captured spatial variation of asthma. Four sparse principal components identified via model selection consisted of food at home, dog ownership, household size, and disposable income variables. In rural areas, dog ownership and renter occupied housing units from significant sparse principal components were associated with asthma. Our main contribution is the incorporation of sparsity in spatial modeling. SASEA sequentially added sparse principal components to Logistic thin plate regression spline modeling. This method allowed association of geographically distributed environmental factors with asthma using EHR and environmental datasets. SASEA can be applied to other diseases with environmental risk factors. Copyright © 2014 Elsevier Inc. All rights reserved.
Brown, C. Erwin
1993-01-01
Correlation analysis in conjunction with principal-component and multiple-regression analyses were applied to laboratory chemical and petrographic data to assess the usefulness of these techniques in evaluating selected physical and hydraulic properties of carbonate-rock aquifers in central Pennsylvania. Correlation and principal-component analyses were used to establish relations and associations among variables, to determine dimensions of property variation of samples, and to filter the variables containing similar information. Principal-component and correlation analyses showed that porosity is related to other measured variables and that permeability is most related to porosity and grain size. Four principal components are found to be significant in explaining the variance of data. Stepwise multiple-regression analysis was used to see how well the measured variables could predict porosity and (or) permeability for this suite of rocks. The variation in permeability and porosity is not totally predicted by the other variables, but the regression is significant at the 5% significance level. ?? 1993.
Bulka, Catherine; Nastoupil, Loretta J; Koff, Jean L; Bernal-Mizrachi, Leon; Ward, Kevin C; Williams, Jessica N; Bayakly, A Rana; Switchenko, Jeffrey M; Waller, Lance A; Flowers, Christopher R
2016-10-01
Examining the spatial patterns of diffuse large B-cell lymphoma (DLBCL) incidence and residential proximity to toxic release locations may provide insight regarding environmental and sociodemographic risk factors. We linked and geocoded cancer incidence data for the period 1999-2008 from the Georgia Comprehensive Cancer Registry with population data from the US Census and the Environmental Protection Agency's Toxics Release Inventory. We conducted cluster analyses and constructed Poisson regression models to assess DLBCL incidence as a function of mean distance to the toxic release sites. In total, 3851 incident DLBCL cases occurred among adults residing in Georgia between 1999 and 2008. Significant focal clustering was observed around 57% of ethylene oxide sites, 5% of benzene sites, 9% of tetrachloroethylene sites, 7% of styrene sites, 10% of formaldehyde sites, 5% of trichloroethylene sites, and 10% of all release sites. Mean distance to sites was significantly associated with DLBCL risk for all chemicals. Proximity to Toxics Release Inventory sites can be linked to increased DLBCL risk as assessed through focal clustering and Poisson regression, and confirmatory studies using geospatial mapping can aid in further specifying risk factors for DLBCL.
Wright, David K.; MacEachern, Scott; Lee, Jaeyong
2014-01-01
The locations of diy-geδ-bay (DGB) sites in the Mandara Mountains, northern Cameroon are hypothesized to occur as a function of their ability to see and be seen from points on the surrounding landscape. A series of geostatistical, two-way and Bayesian logistic regression analyses were performed to test two hypotheses related to the intervisibility of the sites to one another and their visual prominence on the landscape. We determine that the intervisibility of the sites to one another is highly statistically significant when compared to 10 stratified-random permutations of DGB sites. Bayesian logistic regression additionally demonstrates that the visibility of the sites to points on the surrounding landscape is statistically significant. The location of sites appears to have also been selected on the basis of lower slope than random permutations of sites. Using statistical measures, many of which are not commonly employed in archaeological research, to evaluate aspects of visibility on the landscape, we conclude that the placement of DGB sites improved their conspicuousness for enhanced ritual, social cooperation and/or competition purposes. PMID:25383883
Wei, Wang; Yuan-Yuan, Jin; Ci, Yan; Ahan, Alayi; Ming-Qin, Cao
2016-10-06
The spatial interplay between socioeconomic factors and tuberculosis (TB) cases contributes to the understanding of regional tuberculosis burdens. Historically, local Poisson Geographically Weighted Regression (GWR) has allowed for the identification of the geographic disparities of TB cases and their relevant socioeconomic determinants, thereby forecasting local regression coefficients for the relations between the incidence of TB and its socioeconomic determinants. Therefore, the aims of this study were to: (1) identify the socioeconomic determinants of geographic disparities of smear positive TB in Xinjiang, China (2) confirm if the incidence of smear positive TB and its associated socioeconomic determinants demonstrate spatial variability (3) compare the performance of two main models: one is Ordinary Least Square Regression (OLS), and the other local GWR model. Reported smear-positive TB cases in Xinjiang were extracted from the TB surveillance system database during 2004-2010. The average number of smear-positive TB cases notified in Xinjiang was collected from 98 districts/counties. The population density (POPden), proportion of minorities (PROmin), number of infectious disease network reporting agencies (NUMagen), proportion of agricultural population (PROagr), and per capita annual gross domestic product (per capita GDP) were gathered from the Xinjiang Statistical Yearbook covering a period from 2004 to 2010. The OLS model and GWR model were then utilized to investigate socioeconomic determinants of smear-positive TB cases. Geoda 1.6.7, and GWR 4.0 software were used for data analysis. Our findings indicate that the relations between the average number of smear-positive TB cases notified in Xinjiang and their socioeconomic determinants (POPden, PROmin, NUMagen, PROagr, and per capita GDP) were significantly spatially non-stationary. This means that in some areas more smear-positive TB cases could be related to higher socioeconomic determinant regression coefficients, but in some areas more smear-positive TB cases were found to do with lower socioeconomic determinant regression coefficients. We also found out that the GWR model could be better exploited to geographically differentiate the relationships between the average number of smear-positive TB cases and their socioeconomic determinants, which could interpret the dataset better (adjusted R 2 = 0.912, AICc = 1107.22) than the OLS model (adjusted R 2 = 0.768, AICc = 1196.74). POPden, PROmin, NUMagen, PROagr, and per capita GDP are socioeconomic determinants of smear-positive TB cases. Comprehending the spatial heterogeneity of POPden, PROmin, NUMagen, PROagr, per capita GDP, and smear-positive TB cases could provide valuable information for TB precaution and control strategies.
NASA Astrophysics Data System (ADS)
Park, Seonyoung; Im, Jungho; Park, Sumin; Rhee, Jinyoung
2017-04-01
Soil moisture is one of the most important keys for understanding regional and global climate systems. Soil moisture is directly related to agricultural processes as well as hydrological processes because soil moisture highly influences vegetation growth and determines water supply in the agroecosystem. Accurate monitoring of the spatiotemporal pattern of soil moisture is important. Soil moisture has been generally provided through in situ measurements at stations. Although field survey from in situ measurements provides accurate soil moisture with high temporal resolution, it requires high cost and does not provide the spatial distribution of soil moisture over large areas. Microwave satellite (e.g., advanced Microwave Scanning Radiometer on the Earth Observing System (AMSR2), the Advanced Scatterometer (ASCAT), and Soil Moisture Active Passive (SMAP)) -based approaches and numerical models such as Global Land Data Assimilation System (GLDAS) and Modern- Era Retrospective Analysis for Research and Applications (MERRA) provide spatial-temporalspatiotemporally continuous soil moisture products at global scale. However, since those global soil moisture products have coarse spatial resolution ( 25-40 km), their applications for agriculture and water resources at local and regional scales are very limited. Thus, soil moisture downscaling is needed to overcome the limitation of the spatial resolution of soil moisture products. In this study, GLDAS soil moisture data were downscaled up to 1 km spatial resolution through the integration of AMSR2 and ASCAT soil moisture data, Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM), and Moderate Resolution Imaging Spectroradiometer (MODIS) data—Land Surface Temperature, Normalized Difference Vegetation Index, and Land cover—using modified regression trees over East Asia from 2013 to 2015. Modified regression trees were implemented using Cubist, a commercial software tool based on machine learning. An optimization based on pruning of rules derived from the modified regression trees was conducted. Root Mean Square Error (RMSE) and Correlation coefficients (r) were used to optimize the rules, and finally 59 rules from modified regression trees were produced. The results show high validation r (0.79) and low validation RMSE (0.0556m3/m3). The 1 km downscaled soil moisture was evaluated using ground soil moisture data at 14 stations, and both soil moisture data showed similar temporal patterns (average r=0.51 and average RMSE=0.041). The spatial distribution of the 1 km downscaled soil moisture well corresponded with GLDAS soil moisture that caught both extremely dry and wet regions. Correlation between GLDAS and the 1 km downscaled soil moisture during growing season was positive (mean r=0.35) in most regions.
NASA Astrophysics Data System (ADS)
Smith, Tony E.; Lee, Ka Lok
2012-01-01
There is a common belief that the presence of residual spatial autocorrelation in ordinary least squares (OLS) regression leads to inflated significance levels in beta coefficients and, in particular, inflated levels relative to the more efficient spatial error model (SEM). However, our simulations show that this is not always the case. Hence, the purpose of this paper is to examine this question from a geometric viewpoint. The key idea is to characterize the OLS test statistic in terms of angle cosines and examine the geometric implications of this characterization. Our first result is to show that if the explanatory variables in the regression exhibit no spatial autocorrelation, then the distribution of test statistics for individual beta coefficients in OLS is independent of any spatial autocorrelation in the error term. Hence, inferences about betas exhibit all the optimality properties of the classic uncorrelated error case. However, a second more important series of results show that if spatial autocorrelation is present in both the dependent and explanatory variables, then the conventional wisdom is correct. In particular, even when an explanatory variable is statistically independent of the dependent variable, such joint spatial dependencies tend to produce "spurious correlation" that results in over-rejection of the null hypothesis. The underlying geometric nature of this problem is clarified by illustrative examples. The paper concludes with a brief discussion of some possible remedies for this problem.
Benavides-Varela, S; Piva, D; Burgio, F; Passarini, L; Rolma, G; Meneghello, F; Semenza, C
2017-03-01
Arithmetical deficits in right-hemisphere damaged patients have been traditionally considered secondary to visuo-spatial impairments, although the exact relationship between the two deficits has rarely been assessed. The present study implemented a voxelwise lesion analysis among 30 right-hemisphere damaged patients and a controlled, matched-sample, cross-sectional analysis with 35 cognitively normal controls regressing three composite cognitive measures on standardized numerical measures. The results showed that patients and controls significantly differ in Number comprehension, Transcoding, and Written operations, particularly subtractions and multiplications. The percentage of patients performing below the cutoffs ranged between 27% and 47% across these tasks. Spatial errors were associated with extensive lesions in fronto-temporo-parietal regions -which frequently lead to neglect- whereas pure arithmetical errors appeared related to more confined lesions in the right angular gyrus and its proximity. Stepwise regression models consistently revealed that spatial errors were primarily predicted by composite measures of visuo-spatial attention/neglect and representational abilities. Conversely, specific errors of arithmetic nature linked to representational abilities only. Crucially, the proportion of arithmetical errors (ranging from 65% to 100% across tasks) was higher than that of spatial ones. These findings thus suggest that unilateral right hemisphere lesions can directly affect core numerical/arithmetical processes, and that right-hemisphere acalculia is not only ascribable to visuo-spatial deficits as traditionally thought. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mapping soil textural fractions across a large watershed in north-east Florida.
Lamsal, S; Mishra, U
2010-08-01
Assessment of regional scale soil spatial variation and mapping their distribution is constrained by sparse data which are collected using field surveys that are labor intensive and cost prohibitive. We explored geostatistical (ordinary kriging-OK), regression (Regression Tree-RT), and hybrid methods (RT plus residual Sequential Gaussian Simulation-SGS) to map soil textural fractions across the Santa Fe River Watershed (3585 km(2)) in north-east Florida. Soil samples collected from four depths (L1: 0-30 cm, L2: 30-60 cm, L3: 60-120 cm, and L4: 120-180 cm) at 141 locations were analyzed for soil textural fractions (sand, silt and clay contents), and combined with textural data (15 profiles) assembled under the Florida Soil Characterization program. Textural fractions in L1 and L2 were autocorrelated, and spatially mapped across the watershed. OK performance was poor, which may be attributed to the sparse sampling. RT model structure varied among textural fractions, and the model explained variations ranged from 25% for L1 silt to 61% for L2 clay content. Regression residuals were simulated using SGS, and the average of simulated residuals were used to approximate regression residual distribution map, which were added to regression trend maps. Independent validation of the prediction maps showed that regression models performed slightly better than OK, and regression combined with average of simulated regression residuals improved predictions beyond the regression model. Sand content >90% in both 0-30 and 30-60 cm covered 80.6% of the watershed area. Copyright 2010 Elsevier Ltd. All rights reserved.
Data from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network are used to estimate organic mass to organic carbon (OM/OC) ratios across the United States by extending previously published multiple regression techniques. Our new methodology addresses com...
Spatial analysis studies have included application of land use regression models (LURs) for health and air quality assessments. Recent LUR studies have collected nitrogen dioxide (NO2) and volatile organic compounds (VOCs) using passive samplers at urban air monitoring networks ...
Ching, Teresa Yc; Zhang, Vicky W; Flynn, Christopher; Burns, Lauren; Button, Laura; Hou, Sanna; McGhie, Karen; Van Buynder, Patricia
2017-07-07
We investigated the factors influencing speech perception in babble for 5-year-old children with hearing loss who were using hearing aids (HAs) or cochlear implants (CIs). Speech reception thresholds (SRTs) for 50% correct identification were measured in two conditions - speech collocated with babble, and speech with spatially separated babble. The difference in SRTs between the two conditions give a measure of binaural unmasking, commonly known as spatial release from masking (SRM). Multiple linear regression analyses were conducted to examine the influence of a range of demographic factors on outcomes. Participants were 252 children enrolled in the Longitudinal Outcomes of Children with Hearing Impairment (LOCHI) study. Children using HAs or CIs required a better signal-to-noise ratio to achieve the same level of performance as their normal-hearing peers but demonstrated SRM of a similar magnitude. For children using HAs, speech perception was significantly influenced by cognitive and language abilities. For children using CIs, age at CI activation and language ability were significant predictors of speech perception outcomes. Speech perception in children with hearing loss can be enhanced by improving their language abilities. Early age at cochlear implantation was also associated with better outcomes.
Influence of estuarine processes on spatiotemporal variation in bioavailable selenium
Stewart, Robin; Luoma, Samuel N.; Elrick, Kent A.; Carter, James L.; van der Wegen, Mick
2013-01-01
Dynamic processes (physical, chemical and biological) challenge our ability to quantify and manage the ecological risk of chemical contaminants in estuarine environments. Selenium (Se) bioavailability (defined by bioaccumulation), stable isotopes and molar carbon-tonitrogen ratios in the benthic clam Potamocorbula amurensis, an important food source for predators, were determined monthly for 17 yr in northern San Francisco Bay. Se concentrations in the clams ranged from a low of 2 to a high of 22 μg g-1 over space and time. Little of that variability was stochastic, however. Statistical analyses and preliminary hydrodynamic modeling showed that a constant mid-estuarine input of Se, which was dispersed up- and down-estuary by tidal currents, explained the general spatial patterns in accumulated Se among stations. Regression of Se bioavailability against river inflows suggested that processes driven by inflows were the primary driver of seasonal variability. River inflow also appeared to explain interannual variability but within the range of Se enrichment established at each station by source inputs. Evaluation of risks from Se contamination in estuaries requires the consideration of spatial and temporal variability on multiple scales and of the processes that drive that variability.
Benmarhnia, Tarik; Kihal-Talantikite, Wahida; Ragettli, Martina S; Deguen, Séverine
2017-08-15
Heat-waves have a substantial public health burden. Understanding spatial heterogeneity at a fine spatial scale in relation to heat and related mortality is central to target interventions towards vulnerable communities. To determine the spatial variability of heat-wave-related mortality risk among elderly in Paris, France at the census block level. We also aimed to assess area-level social and environmental determinants of high mortality risk within Paris. We used daily mortality data from 2004 to 2009 among people aged >65 at the French census block level within Paris. We used two heat wave days' definitions that were compared to non-heat wave days. A Bernoulli cluster analysis method was applied to identify high risk clusters of mortality during heat waves. We performed random effects meta-regression analyses to investigate factors associated with the magnitude of the mortality risk. The spatial approach revealed a spatial aggregation of death cases during heat wave days. We found that small scale chronic PM 10 exposure was associated with a 0.02 (95% CI: 0.001; 0.045) increase of the risk of dying during a heat wave episode. We also found a positive association with the percentage of foreigners and the percentage of labor force, while the proportion of elderly people living in the neighborhood was negatively associated. We also found that green space density had a protective effect and inversely that the density of constructed feature increased the risk of dying during a heat wave episode. We showed that a spatial variation in terms of heat-related vulnerability exists within Paris and that it can be explained by some contextual factors. This study can be useful for designing interventions targeting more vulnerable areas and reduce the burden of heat waves. Copyright © 2017 Elsevier B.V. All rights reserved.
Tomintz, Melanie; Kosar, Bernhard; Clarke, Graham
2016-10-07
Reducing the smoking population is still high on the policy agenda, as smoking leads to many preventable diseases, such as lung cancer, heart disease, diabetes, and more. In Austria, data on smoking prevalence only exists at the federal state level. This provides an interesting overview about the current health situation, but for regional planning authorities these data are often insufficient as they can hide pockets of high and low smoking prevalence in certain municipalities. This paper presents a spatial-temporal change of estimated smokers for municipalities from 2001 and 2011. A synthetic dataset of smokers is built by combining individual large-scale survey data and small area census data using a deterministic spatial microsimulation approach. Statistical analysis, including chi-square test and binary logistic regression, are applied to find the best variables for the simulation model and to validate its results. As no easy-to-use spatial microsimulation software for non-programmers is available yet, a flexible web-based spatial microsimulation application for health decision support (called simSALUD) has been developed and used for these analyses. The results of the simulation show in general a decrease of smoking prevalence within municipalities between 2001 and 2011 and differences within areas are identified. These results are especially valuable to policy decision makers for future planning strategies. This case study shows the application of smokeSALUD to model the spatial-temporal changes in the smoking population in Austria between 2001 and 2011. This is important as no data on smoking exists at this geographical scale (municipality). However, spatial microsimulation models are useful tools to estimate small area health data and to overcome these problems. The simulations and analysis should support health decision makers to identify hot spots of smokers and this should help to show where to spend health resources best in order to reduce health inequalities.
Morgan, Geoffrey G.; Jalaludin, Bin B.; Bauman, Adrian E.
2018-01-01
Walkability describes the capacity of the built environment to promote walking, and has been proposed as a potential focus for community-level mental health planning. We evaluated this possibility by examining the contribution of area-level walkability to variation in psychosocial distress in a population cohort at spatial scales comparable to those used for regional planning in Sydney, Australia. Data on psychosocial distress were analysed for 91,142 respondents to the 45 and Up Study baseline survey between January 2006 and April 2009. We fit conditional auto regression models at the postal area level to obtain smoothed “disease maps” for psychosocial distress, and assess its association with area-level walkability after adjusting for individual- and area-level factors. Prevalence of psychosocial distress was 7.8%; similar for low (7.9%), low-medium (7.9%), medium-high (8.0%), and high (7.4%) walkability areas; and decreased with reducing postal area socioeconomic disadvantage: 12.2% (most), 9.3%, 7.5%, 5.9%, and 4.7% (least). Unadjusted disease maps indicated strong geographic clustering of psychosocial distress with 99.0% of excess prevalence due to unobserved and spatially structured factors, which was reduced to 55.3% in fully adjusted maps. Spatial and unstructured variance decreased by 97.3% and 39.8% after adjusting for individual-level factors, and another 2.3% and 4.2% with the inclusions of area-level factors. Excess prevalence of psychosocial distress in postal areas was attenuated in adjusted models but remained spatially structured. Postal area prevalence of high psychosocial distress is geographically clustered in Sydney, but is unrelated to postal area walkability. Area-level socioeconomic disadvantage makes a small contribution to this spatial structure; however, community-level mental health planning will likely deliver greatest benefits by focusing on individual-level contributors to disease burden and inequality associated with psychosocial distress. PMID:29415461
Mayne, Darren J; Morgan, Geoffrey G; Jalaludin, Bin B; Bauman, Adrian E
2018-02-06
Walkability describes the capacity of the built environment to promote walking, and has been proposed as a potential focus for community-level mental health planning. We evaluated this possibility by examining the contribution of area-level walkability to variation in psychosocial distress in a population cohort at spatial scales comparable to those used for regional planning in Sydney, Australia. Data on psychosocial distress were analysed for 91,142 respondents to the 45 and Up Study baseline survey between January 2006 and April 2009. We fit conditional auto regression models at the postal area level to obtain smoothed "disease maps" for psychosocial distress, and assess its association with area-level walkability after adjusting for individual- and area-level factors. Prevalence of psychosocial distress was 7.8%; similar for low (7.9%), low-medium (7.9%), medium-high (8.0%), and high (7.4%) walkability areas; and decreased with reducing postal area socioeconomic disadvantage: 12.2% (most), 9.3%, 7.5%, 5.9%, and 4.7% (least). Unadjusted disease maps indicated strong geographic clustering of psychosocial distress with 99.0% of excess prevalence due to unobserved and spatially structured factors, which was reduced to 55.3% in fully adjusted maps. Spatial and unstructured variance decreased by 97.3% and 39.8% after adjusting for individual-level factors, and another 2.3% and 4.2% with the inclusions of area-level factors. Excess prevalence of psychosocial distress in postal areas was attenuated in adjusted models but remained spatially structured. Postal area prevalence of high psychosocial distress is geographically clustered in Sydney, but is unrelated to postal area walkability. Area-level socioeconomic disadvantage makes a small contribution to this spatial structure; however, community-level mental health planning will likely deliver greatest benefits by focusing on individual-level contributors to disease burden and inequality associated with psychosocial distress.
Domnich, Alexander; Arata, Lucia; Amicizia, Daniela; Signori, Alessio; Gasparini, Roberto; Panatto, Donatella
2016-11-16
Geographical accessibility is an important determinant for the utilisation of community pharmacies. The present study explored patterns of spatial accessibility with respect to pharmacies in Liguria, Italy, a region with particular geographical and demographic features. Municipal density of pharmacies was proxied as the number of pharmacies per capita and per km2, and spatial autocorrelation analysis was performed to identify spatial clusters. Both non-spatial and spatial models were constructed to predict the study outcome. Spatial autocorrelation analysis showed a highly significant clustered pattern in the density of pharmacies per capita (I=0.082) and per km2 (I=0.295). Potentially under-supplied areas were mostly located in the mountainous hinterland. Ordinary least-squares (OLS) regressions established a significant positive relationship between the density of pharmacies and income among municipalities located at high altitudes, while no such association was observed in lower-lying areas. However, residuals of the OLS models were spatially auto-correlated. The best-fitting mixed geographically weighted regression (GWR) models outperformed the corresponding OLS models. Pharmacies per capita were best predicted by two local predictors (altitude and proportion of immigrants) and two global ones (proportion of elderly residents and income), while the local terms population, mean altitude and rural status and the global term income functioned as independent variables predicting pharmacies per km2. The density of pharmacies in Liguria was found to be associated with both socio-economic and landscape factors. Mapping of mixed GWR results would be helpful to policy-makers.
Quantile regression models of animal habitat relationships
Cade, Brian S.
2003-01-01
Typically, all factors that limit an organism are not measured and included in statistical models used to investigate relationships with their environment. If important unmeasured variables interact multiplicatively with the measured variables, the statistical models often will have heterogeneous response distributions with unequal variances. Quantile regression is an approach for estimating the conditional quantiles of a response variable distribution in the linear model, providing a more complete view of possible causal relationships between variables in ecological processes. Chapter 1 introduces quantile regression and discusses the ordering characteristics, interval nature, sampling variation, weighting, and interpretation of estimates for homogeneous and heterogeneous regression models. Chapter 2 evaluates performance of quantile rankscore tests used for hypothesis testing and constructing confidence intervals for linear quantile regression estimates (0 ≤ τ ≤ 1). A permutation F test maintained better Type I errors than the Chi-square T test for models with smaller n, greater number of parameters p, and more extreme quantiles τ. Both versions of the test required weighting to maintain correct Type I errors when there was heterogeneity under the alternative model. An example application related trout densities to stream channel width:depth. Chapter 3 evaluates a drop in dispersion, F-ratio like permutation test for hypothesis testing and constructing confidence intervals for linear quantile regression estimates (0 ≤ τ ≤ 1). Chapter 4 simulates from a large (N = 10,000) finite population representing grid areas on a landscape to demonstrate various forms of hidden bias that might occur when the effect of a measured habitat variable on some animal was confounded with the effect of another unmeasured variable (spatially and not spatially structured). Depending on whether interactions of the measured habitat and unmeasured variable were negative (interference interactions) or positive (facilitation interactions), either upper (τ > 0.5) or lower (τ < 0.5) quantile regression parameters were less biased than mean rate parameters. Sampling (n = 20 - 300) simulations demonstrated that confidence intervals constructed by inverting rankscore tests provided valid coverage of these biased parameters. Quantile regression was used to estimate effects of physical habitat resources on a bivalve mussel (Macomona liliana) in a New Zealand harbor by modeling the spatial trend surface as a cubic polynomial of location coordinates.
Impact of Contextual Factors on Prostate Cancer Risk and Outcomes
2013-07-01
framework with random effects (“frailty models”) while the case-control analyses (Aim 4) will use multilevel unconditional logistic regression models...contextual-level SES on prostate cancer risk within racial/ethnic groups. The survival analyses (Aims 1-3) will utilize a proportional hazards regression
Spatial analysis of relative humidity during ungauged periods in a mountainous region
NASA Astrophysics Data System (ADS)
Um, Myoung-Jin; Kim, Yeonjoo
2017-08-01
Although atmospheric humidity influences environmental and agricultural conditions, thereby influencing plant growth, human health, and air pollution, efforts to develop spatial maps of atmospheric humidity using statistical approaches have thus far been limited. This study therefore aims to develop statistical approaches for inferring the spatial distribution of relative humidity (RH) for a mountainous island, for which data are not uniformly available across the region. A multiple regression analysis based on various mathematical models was used to identify the optimal model for estimating monthly RH by incorporating not only temperature but also location and elevation. Based on the regression analysis, we extended the monthly RH data from weather stations to cover the ungauged periods when no RH observations were available. Then, two different types of station-based data, the observational data and the data extended via the regression model, were used to form grid-based data with a resolution of 100 m. The grid-based data that used the extended station-based data captured the increasing RH trend along an elevation gradient. Furthermore, annual RH values averaged over the regions were examined. Decreasing temporal trends were found in most cases, with magnitudes varying based on the season and region.
Kumar, S.; Spaulding, S.A.; Stohlgren, T.J.; Hermann, K.A.; Schmidt, T.S.; Bahls, L.L.
2009-01-01
The diatom Didymosphenia geminata is a single-celled alga found in lakes, streams, and rivers. Nuisance blooms of D geminata affect the diversity, abundance, and productivity of other aquatic organisms. Because D geminata can be transported by humans on waders and other gear, accurate spatial prediction of habitat suitability is urgently needed for early detection and rapid response, as well as for evaluation of monitoring and control programs. We compared four modeling methods to predict D geminata's habitat distribution; two methods use presence-absence data (logistic regression and classification and regression tree [CART]), and two involve presence data (maximum entropy model [Maxent] and genetic algorithm for rule-set production [GARP]). Using these methods, we evaluated spatially explicit, bioclimatic and environmental variables as predictors of diatom distribution. The Maxent model provided the most accurate predictions, followed by logistic regression, CART, and GARP. The most suitable habitats were predicted to occur in the western US, in relatively cool sites, and at high elevations with a high base-flow index. The results provide insights into the factors that affect the distribution of D geminata and a spatial basis for the prediction of nuisance blooms. ?? The Ecological Society of America.
Lécrivain, Nathalie; Aurenche, Vincent; Cottin, Nathalie; Frossard, Victor; Clément, Bernard
2018-04-01
The lake littoral sediment is exposed to a large array of contaminants that can exhibit significant spatial variability and challenge our ability to assess contamination at lake scale. In this study, littoral sediment contamination was characterized among ten different sites in a large peri-alpine lake (Lake Bourget) regarding three groups of contaminants: 6 heavy metals, 15 polycyclic aromatic hydrocarbons and 7 polychlorinated biphenyls. The contamination profiles significantly varied among sites and differed from those previously reported for the deepest zone of the lake. An integrative approach including chemical and biological analyses was conducted to relate site contamination to ecological risk. The chemical approach consisted in mean PEC quotient calculation (average of the ratios of the contaminants concentration to their corresponding Probable Effect Concentration values) and revealed a low and heterogeneous toxicity of the contaminant mixture along the littoral. Biological analysis including both laboratory (microcosm assays) and in situ (Acetylcholine Esterase (AChE) and Glutathione S-Transferase (GST) activity measurements) experiments highlighted significant differences among sites both in the field and in laboratory assays suggesting a spatial variation of the biota response to contamination. Linear regressions were performed between mean PEC quotients and biological results to assess whether littoral ecological risk was explained by the contamination profiles. The results highly depended on the study benthic or pelagic compartment. Regarding autochthonous Corbicula fluminea, no significant relationship between mean PEC quotients and biomarker activity was found while a significant increase in AChE was observed on autochthonous chironomids, suggesting different stress among benthic organisms. Both AChE and GST in caged pelagic Daphnia magna showed a significant positive relationship with mean PEC quotients. This study underlines the importance of accounting for spatial variations in lake littoral sediment contamination and the need for performing an integrative approach coupling chemical, field and laboratory analyses to assess the ecological risk. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ivory, S.; Russell, J. L.; Cohen, A. S.
2010-12-01
Threats to tropical biodiversity with serious and costly implications for both ecosystems and human well-being in Africa have led the IPCC to classify this region as vulnerable to negative impacts from climate change. Yet little is known about how vegetation communities respond to altered patterns of rainfall and evaporation. Paleoclimate records within the tropics can help answer questions about how vegetation response to climate forcing changes over time. However, sparse spatial extent of records and uncertainty surrounding the climate-vegetation relationship complicate these insights. Understanding the climatic mechanisms involved in landscape change at all temporal scales creates the need for quantitative constraints of the modern relationship between climatic controls, hydrology, and vegetation. Though modern observational data can help elucidate this relationship, low resolution and complicated rainfall/vegetation associations make them less than ideal. Satellite data of vegetation productivity (NDVI) with continuous high-resolution spatial coverage provides a robust and elegant tool for identifying the link between global and regional controls and vegetation. We use regression analyses of variables either previously proposed or potentially important in regulating Afro-tropical vegetation (insolation, out-going long-wave radiation, geopotential height, Southern Oscillation Index, Indian Ocean Dipole, Indian Monsoon precipitation, sea-level pressure, surface wind, sea-surface temperature) on continuous, time-varying spatial fields of 8km NDVI for sub-Saharan Africa. These analyses show the importance of global atmospheric controls in producing regional intra-annual and inter-annual vegetation variability. Dipole patterns emerge primarily correlated with both the seasonal and inter-annual extent of the Intertropical Convergence Zone (ITCZ). Inter-annual ITCZ variability drives patterns in African vegetation resulting from the effect of insolation anomalies and ENSO events on atmospheric circulation rather than sea surface temperatures or teleconnections to mid/high latitudes. Global controls on tropical atmospheric circulation regulate vegetation throughout sub-Saharan Africa on many time scales through alteration of dry season length and moisture convergence, rather than precipitation amount.
NASA Astrophysics Data System (ADS)
Granger, Victoria; Fromentin, Jean-Marc; Bez, Nicolas; Relini, Giulio; Meynard, Christine N.; Gaertner, Jean-Claude; Maiorano, Porzia; Garcia Ruiz, Cristina; Follesa, Cristina; Gristina, Michele; Peristeraki, Panagiota; Brind'Amour, Anik; Carbonara, Pierluigi; Charilaou, Charis; Esteban, Antonio; Jadaud, Angélique; Joksimovic, Aleksandar; Kallianiotis, Argyris; Kolitari, Jerina; Manfredi, Chiara; Massuti, Enric; Mifsud, Roberta; Quetglas, Antoni; Refes, Wahid; Sbrana, Mario; Vrgoc, Nedo; Spedicato, Maria Teresa; Mérigot, Bastien
2015-01-01
Increasing human pressures and global environmental change may severely affect the diversity of species assemblages and associated ecosystem services. Despite the recent interest in phylogenetic and functional diversity, our knowledge on large spatio-temporal patterns of demersal fish diversity sampled by trawling remains still incomplete, notably in the Mediterranean Sea, one of the most threatened marine regions of the world. We investigated large spatio-temporal diversity patterns by analysing a dataset of 19,886 hauls from 10 to 800 m depth performed annually during the last two decades by standardised scientific bottom trawl field surveys across the Mediterranean Sea, within the MEDITS program. A multi-component (eight diversity indices) and multi-scale (local assemblages, biogeographic regions to basins) approach indicates that only the two most traditional components (species richness and evenness) were sufficient to reflect patterns in taxonomic, phylogenetic or functional richness and divergence. We also put into question the use of widely computed indices that allow comparing directly taxonomic, phylogenetic and functional diversity within a unique mathematical framework. In addition, demersal fish assemblages sampled by trawl do not follow a continuous decreasing longitudinal/latitudinal diversity gradients (spatial effects explained up to 70.6% of deviance in regression tree and generalised linear models), for any of the indices and spatial scales analysed. Indeed, at both local and regional scales species richness was relatively high in the Iberian region, Malta, the Eastern Ionian and Aegean seas, meanwhile the Adriatic Sea and Cyprus showed a relatively low level. In contrast, evenness as well as taxonomic, phylogenetic and functional divergences did not show regional hotspots. All studied diversity components remained stable over the last two decades. Overall, our results highlight the need to use complementary diversity indices through different spatial scales when developing conservation strategies and defining delimitations for protected areas.
Wolf, Kathrin; Cyrys, Josef; Harciníková, Tatiana; Gu, Jianwei; Kusch, Thomas; Hampel, Regina; Schneider, Alexandra; Peters, Annette
2017-02-01
Important health relevance has been suggested for ultrafine particles (UFP) and ozone, but studies on long-term effects are scarce, mainly due to the lack of appropriate spatial exposure models. We designed a measurement campaign to develop land use regression (LUR) models to predict the spatial variability focusing on particle number concentration (PNC) as indicator for UFP, ozone and several other air pollutants in the Augsburg region, Southern Germany. Three bi-weekly measurements of PNC, ozone, particulate matter (PM 10 , PM 2.5 ), soot (PM 2.5 abs) and nitrogen oxides (NO x , NO 2 ) were performed at 20 sites in 2014/15. Annual average concentration were calculated and temporally adjusted by measurements from a continuous background station. As geographic predictors we offered several traffic and land use variables, altitude, population and building density. Models were validated using leave-one-out cross-validation. Adjusted model explained variance (R 2 ) was high for PNC and ozone (0.89 and 0.88). Cross-validation adjusted R 2 was slightly lower (0.82 and 0.81) but still indicated a very good fit. LUR models for other pollutants performed well with adjusted R 2 between 0.68 (PM coarse ) and 0.94 (NO 2 ). Contrary to previous studies, ozone showed a moderate correlation with NO 2 (Pearson's r=-0.26). PNC was moderately correlated with ozone and PM 2.5 , but highly correlated with NO x (r=0.91). For PNC and NO x , LUR models comprised similar predictors and future epidemiological analyses evaluating health effects need to consider these similarities. Copyright © 2016 Elsevier B.V. All rights reserved.
Ross, S. Lunetta; Joseph, F. Knight; Hans, W. Paerl; John, J. Streicher; Benjamin, L. Peierls; Tom, Gallo; John, G. Lyon; Thomas, H. Mace; Christopher, P. Buzzelli
2009-01-01
The monitoring of water colour parameters can provide an important diagnostic tool for the assessment of aquatic ecosystem condition. Remote sensing has long been used to effectively monitor chlorophyll concentrations in open ocean systems; however, operational monitoring in coastal and estuarine areas has been limited because of the inherent complexities of coastal systems, and the coarse spectral and spatial resolutions of available satellite systems. Data were collected using the National Aeronautics and Space Administration (NASA) Advanced Visible-Infrared Imaging Spectrometer (AVIRIS) flown at an altitude of approximately 20000 m to provide hyperspectral imagery and simulate both MEdium Resolution Imaging Spectrometer (MERIS) and Moderate Resolution Imaging Spectrometer (MODIS) data. AVIRIS data were atmospherically corrected using a radiative transfer modelling approach and analysed using band ratio and linear regression models. Regression analysis was performed with simultaneous field measurements data in the Neuse River Estuary (NRE) and Pamlico Sound on 15 May 2002. Chlorophyll a (Chl a) concentrations were optimally estimated using AVIRIS bands (9.5 nm) centred at 673.6 and 692.7 nm, resulting in a coefficient of determination (R2) of 0.98. Concentrations of Chromophoric Dissolved Organic Matter (CDOM), Total Suspended Solids (TSS) and Fixed Suspended Solids (FSS) were also estimated, resulting in coefficients of determination of R2=0.90, 0.59 and 0.64, respectively. Ratios of AVIRIS bands centred at or near those corresponding to the MERIS and MODIS sensors indicated that relatively good satellite-based estimates could potentially be derived for water colour constituents at a spatial resolution of 300 and 500 m, respectively. PMID:25937680
NASA Astrophysics Data System (ADS)
Willis, Kyle V.; Srogi, LeeAnn; Lutz, Tim; Monson, Frederick C.; Pollock, Meagen
2017-12-01
Textures and compositions are critical information for interpreting rock formation. Existing methods to integrate both types of information favor high-resolution images of mineral compositions over small areas or low-resolution images of larger areas for phase identification. The method in this paper produces images of individual phases in which textural and compositional details are resolved over three orders of magnitude, from tens of micrometers to tens of millimeters. To construct these images, called Phase Composition Maps (PCMs), we make use of the resolution in backscattered electron (BSE) images and calibrate the gray scale values with mineral analyses by energy-dispersive X-ray spectrometry (EDS). The resulting images show the area of a standard thin section (roughly 40 mm × 20 mm) with spatial resolution as good as 3.5 μm/pixel, or more than 81 000 pixels/mm2, comparable to the resolution of X-ray element maps produced by wavelength-dispersive spectrometry (WDS). Procedures to create PCMs for mafic igneous rocks with multivariate linear regression models for minerals with solid solution (olivine, plagioclase feldspar, and pyroxenes) are presented and are applicable to other rock types. PCMs are processed using threshold functions based on the regression models to image specific composition ranges of minerals. PCMs are constructed using widely-available instrumentation: a scanning-electron microscope (SEM) with BSE and EDS X-ray detectors and standard image processing software such as ImageJ and Adobe Photoshop. Three brief applications illustrate the use of PCMs as petrologic tools: to reveal mineral composition patterns at multiple scales; to generate crystal size distributions for intracrystalline compositional zones and compare growth over time; and to image spatial distributions of minerals at different stages of magma crystallization by integrating textures and compositions with thermodynamic modeling.
2011-01-01
Background Various studies show major regional differences in the prevalence of cardio-vascular disease morbidity and mortality, both in Europe and within European countries. In Austria, these differences are documented by an East-West gradient with declining morbidity and mortality rates when moving from the East to the West of the country. It was the aim of this study to analyse if, and to what extent, socio-demographic and socio-economic determinants, social resources and health behaviour can contribute to the clarification of this East-West gradient by conducting secondary analyses of an existing Austrian health dataset. Results The data were analysed using bivariate analyses, as well as univariate and multivariate logistic regression models. These analyses revealed significant East-West gradients for various risk factors, as well as socio-demographic and socio-economic health determinants. There was a gradual decrease of hypertension, diabetes mellitus, obesity, and psycho-social discomfort in both sexes, with the highest prevalences in those Austrian regions with the highest cardio-vascular mortality and a stepwise decrease to the regions with the lowest cardio-vascular mortality. Controlling for educational level significantly raised the odds for diabetes, hypertension and obesity. In the results of the multivariate analyses, factors that significantly and independently predicted diabetes mellitus were geographic location, psycho-social discomfort, lack of physical exercise, and age in both sexes. For women these factors additionally included a low educational level, lack of social support, and being born abroad. Conclusions Our study shows a clear gradual decline of cardio-vascular mortality and some of its risk factors from East to West in Austria. Concerning these risk factors, the geographic region and psycho-social discomfort showed the greatest association with diabetes mellitus, hypertension, and obesity. Hence, they contribute to the explanation of the variance in spatial cardio-vascular disease mortality. Yet, a large proportion of this variance remains unexplained. It would be of great importance to public health and preventive measures to take a closer look at spatial differences in cardio-vascular disease morbidity and mortality to better tailor programmes to the regional environments and settings. Our results also call for a greater importance of preventative measures for psycho-social discomfort and increase of social support. PMID:22082341
Modeling habitat and environmental factors affecting mosquito abundance in Chesapeake, Virginia
NASA Astrophysics Data System (ADS)
Bellows, Alan Scott
The models I present in this dissertation were designed to enable mosquito control agencies in the mid-Atlantic region that oversee large jurisdictions to rapidly track the spatial and temporal distributions of mosquito species, especially those species known to be vectors of eastern equine encephalitis and West Nile virus. I was able to keep these models streamlined, user-friendly, and not cost-prohibitive using empirically based digital data to analyze mosquito-abundance patterns in real landscapes. This research is presented in three major chapters: (II) a series of semi-static habitat suitability indices (HSI) grounded on well-documented associations between mosquito abundance and environmental variables, (III) a dynamic model for predicting both spatial and temporal mosquito abundance based on a topographic soil moisture index and recent weather patterns, and (IV) a set of protocols laid out to aid mosquito control agencies for the use of these models. The HSIs (Chapter II) were based on relationships of mosquitoes to digital surrogates of soil moisture and vegetation characteristics. These models grouped mosquitoes species derived from similarities in habitat requirements, life-cycle type, and vector competence. Quantification of relationships was determined using multiple linear regression models. As in Chapter II, relationships between mosquito abundance and environmental factors in Chapter III were quantified using regression models. However, because this model was, in part, a function of changes in weather patterns, it enables the prediction of both 'where' and 'when' mosquito outbreaks are likely to occur. This model is distinctive among similar studies in the literature because of my use of NOAA's NEXRAD Doppler radar (3-hr precipitation accumulation data) to quantify the spatial and temporal distributions in precipitation accumulation. \\ Chapter IV is unique among the chapters in this dissertation because in lieu of presenting new research, it summarizes the preprocessing steps and analyses used in the HSIs and the dynamic, weather-based, model generated in Chapters II and III. The purpose of this chapter is to provide the reader and potential users with the necessary protocols for modeling the spatial and temporal abundances and distributions of mosquitoes, with emphasis on Culiseta melanura, in a real-world landscape of the mid-Atlantic region. This chapter also provides enhancements that could easily be incorporated into an environmentally sensitive integrated pest management program.
Spatial and temporal epidemiological analysis in the Big Data era.
Pfeiffer, Dirk U; Stevens, Kim B
2015-11-01
Concurrent with global economic development in the last 50 years, the opportunities for the spread of existing diseases and emergence of new infectious pathogens, have increased substantially. The activities associated with the enormously intensified global connectivity have resulted in large amounts of data being generated, which in turn provides opportunities for generating knowledge that will allow more effective management of animal and human health risks. This so-called Big Data has, more recently, been accompanied by the Internet of Things which highlights the increasing presence of a wide range of sensors, interconnected via the Internet. Analysis of this data needs to exploit its complexity, accommodate variation in data quality and should take advantage of its spatial and temporal dimensions, where available. Apart from the development of hardware technologies and networking/communication infrastructure, it is necessary to develop appropriate data management tools that make this data accessible for analysis. This includes relational databases, geographical information systems and most recently, cloud-based data storage such as Hadoop distributed file systems. While the development in analytical methodologies has not quite caught up with the data deluge, important advances have been made in a number of areas, including spatial and temporal data analysis where the spectrum of analytical methods ranges from visualisation and exploratory analysis, to modelling. While there used to be a primary focus on statistical science in terms of methodological development for data analysis, the newly emerged discipline of data science is a reflection of the challenges presented by the need to integrate diverse data sources and exploit them using novel data- and knowledge-driven modelling methods while simultaneously recognising the value of quantitative as well as qualitative analytical approaches. Machine learning regression methods, which are more robust and can handle large datasets faster than classical regression approaches, are now also used to analyse spatial and spatio-temporal data. Multi-criteria decision analysis methods have gained greater acceptance, due in part, to the need to increasingly combine data from diverse sources including published scientific information and expert opinion in an attempt to fill important knowledge gaps. The opportunities for more effective prevention, detection and control of animal health threats arising from these developments are immense, but not without risks given the different types, and much higher frequency, of biases associated with these data. Copyright © 2015 Elsevier B.V. All rights reserved.
Baur, Albert H; Lauf, Steffen; Förster, Michael; Kleinschmit, Birgit
2015-07-01
Substantive and concerted action is needed to mitigate climate change. However, international negotiations struggle to adopt ambitious legislation and to anticipate more climate-friendly developments. Thus, stronger actions are needed from other players. Cities, being greenhouse gas emission centers, play a key role in promoting the climate change mitigation movement by becoming hubs for smart and low-carbon lifestyles. In this context, a stronger linkage between greenhouse gas emissions and urban development and policy-making seems promising. Therefore, simple approaches are needed to objectively identify crucial emission drivers for deriving appropriate emission reduction strategies. In analyzing 44 European cities, the authors investigate possible socioeconomic and spatial determinants of urban greenhouse gas emissions. Multiple statistical analyses reveal that the average household size and the edge density of discontinuous dense urban fabric explain up to 86% of the total variance of greenhouse gas emissions of EU cities (when controlled for varying electricity carbon intensities). Finally, based on these findings, a multiple regression model is presented to determine greenhouse gas emissions. It is independently evaluated with ten further EU cities. The reliance on only two indicators shows that the model can be easily applied in addressing important greenhouse gas emission sources of European urbanites, when varying power generations are considered. This knowledge can help cities develop adequate climate change mitigation strategies and promote respective policies on the EU or the regional level. The results can further be used to derive first estimates of urban greenhouse gas emissions, if no other analyses are available. Copyright © 2015 Elsevier B.V. All rights reserved.
Study of Maowusu Sandy Land Vegetation Coverage Change Based on Modis Ndvi
NASA Astrophysics Data System (ADS)
Ye, Q.; Liu, H.; Lin, Y.; Han, R.
2018-04-01
This paper selected 2006-2016 MODIS NDVI data with a spatial resolution of 500m and time resolution of 16d, got the 11 years' time series NDVI data of Maowusu sandy land through mosaicking, projection transformation, cutting process in batch. Analysed the spatial and temporal distribution and variation characteristics of vegetation cover in year, season and month time scales by maximum value composite, and unary linear regression analysis. Then, we combined the meteorological data of 33 sites around the sandy area, analysed the response characteristics of vegetation cover change to temperature and precipitation through Pearson correlation coefficient. Studies have shown that: (1) The NDVI value has a stable increase trend, which rate is 0.0075 / a. (2) The vegetation growth have significantly difference in four seasons, the NDVI value of summer > autumn > spring > winter. (3) The NDVI value change trend is conformed to the gauss normal distribution in a year, and it comes to be largest in August, its green season is in April, and yellow season is in the middle of November, the growth period is about 220 d. (4) The vegetation has a decreasing trend from the southeast to the northwest, most part is slightly improved, and Etuokeqianqi improved significantly. (5) The correlation indexes of annual NDVI with temperature and precipitation are -0.2178 and 0.6309, the vegetation growth is mainly affected by precipitation. In this study, a complete vegetation cover analysis and evaluation model for sandy land is established. It has important guiding significance for the sand ecological environment protection.
Cloud-Free Satellite Image Mosaics with Regression Trees and Histogram Matching.
E.H. Helmer; B. Ruefenacht
2005-01-01
Cloud-free optical satellite imagery simplifies remote sensing, but land-cover phenology limits existing solutions to persistent cloudiness to compositing temporally resolute, spatially coarser imagery. Here, a new strategy for developing cloud-free imagery at finer resolution permits simple automatic change detection. The strategy uses regression trees to predict...
This paper presents a GIS-based regression spatial method, known as land-use regression (LUR) modeling, to estimate ambient air pollution exposures used in the EPA El Paso Children's Health Study. Passive measurements of select volatile organic compounds (VOC) and nitrogen dioxi...
Shrinkage regression-based methods for microarray missing value imputation.
Wang, Hsiuying; Chiu, Chia-Chun; Wu, Yi-Ching; Wu, Wei-Sheng
2013-01-01
Missing values commonly occur in the microarray data, which usually contain more than 5% missing values with up to 90% of genes affected. Inaccurate missing value estimation results in reducing the power of downstream microarray data analyses. Many types of methods have been developed to estimate missing values. Among them, the regression-based methods are very popular and have been shown to perform better than the other types of methods in many testing microarray datasets. To further improve the performances of the regression-based methods, we propose shrinkage regression-based methods. Our methods take the advantage of the correlation structure in the microarray data and select similar genes for the target gene by Pearson correlation coefficients. Besides, our methods incorporate the least squares principle, utilize a shrinkage estimation approach to adjust the coefficients of the regression model, and then use the new coefficients to estimate missing values. Simulation results show that the proposed methods provide more accurate missing value estimation in six testing microarray datasets than the existing regression-based methods do. Imputation of missing values is a very important aspect of microarray data analyses because most of the downstream analyses require a complete dataset. Therefore, exploring accurate and efficient methods for estimating missing values has become an essential issue. Since our proposed shrinkage regression-based methods can provide accurate missing value estimation, they are competitive alternatives to the existing regression-based methods.
Dunham, J.B.; Cade, B.S.; Terrell, J.W.
2002-01-01
We used regression quantiles to model potentially limiting relationships between the standing crop of cutthroat trout Oncorhynchus clarki and measures of stream channel morphology. Regression quantile models indicated that variation in fish density was inversely related to the width:depth ratio of streams but not to stream width or depth alone. The spatial and temporal stability of model predictions were examined across years and streams, respectively. Variation in fish density with width:depth ratio (10th-90th regression quantiles) modeled for streams sampled in 1993-1997 predicted the variation observed in 1998-1999, indicating similar habitat relationships across years. Both linear and nonlinear models described the limiting relationships well, the latter performing slightly better. Although estimated relationships were transferable in time, results were strongly dependent on the influence of spatial variation in fish density among streams. Density changes with width:depth ratio in a single stream were responsible for the significant (P < 0.10) negative slopes estimated for the higher quantiles (>80th). This suggests that stream-scale factors other than width:depth ratio play a more direct role in determining population density. Much of the variation in densities of cutthroat trout among streams was attributed to the occurrence of nonnative brook trout Salvelinus fontinalis (a possible competitor) or connectivity to migratory habitats. Regression quantiles can be useful for estimating the effects of limiting factors when ecological responses are highly variable, but our results indicate that spatiotemporal variability in the data should be explicitly considered. In this study, data from individual streams and stream-specific characteristics (e.g., the occurrence of nonnative species and habitat connectivity) strongly affected our interpretation of the relationship between width:depth ratio and fish density.
NASA Astrophysics Data System (ADS)
Gholizadeh, H.; Robeson, S. M.
2015-12-01
Empirical models have been widely used to estimate global chlorophyll content from remotely sensed data. Here, we focus on the standard NASA empirical models that use blue-green band ratios. These band ratio ocean color (OC) algorithms are in the form of fourth-order polynomials and the parameters of these polynomials (i.e. coefficients) are estimated from the NASA bio-Optical Marine Algorithm Data set (NOMAD). Most of the points in this data set have been sampled from tropical and temperate regions. However, polynomial coefficients obtained from this data set are used to estimate chlorophyll content in all ocean regions with different properties such as sea-surface temperature, salinity, and downwelling/upwelling patterns. Further, the polynomial terms in these models are highly correlated. In sum, the limitations of these empirical models are as follows: 1) the independent variables within the empirical models, in their current form, are correlated (multicollinear), and 2) current algorithms are global approaches and are based on the spatial stationarity assumption, so they are independent of location. Multicollinearity problem is resolved by using partial least squares (PLS). PLS, which transforms the data into a set of independent components, can be considered as a combined form of principal component regression (PCR) and multiple regression. Geographically weighted regression (GWR) is also used to investigate the validity of spatial stationarity assumption. GWR solves a regression model over each sample point by using the observations within its neighbourhood. PLS results show that the empirical method underestimates chlorophyll content in high latitudes, including the Southern Ocean region, when compared to PLS (see Figure 1). Cluster analysis of GWR coefficients also shows that the spatial stationarity assumption in empirical models is not likely a valid assumption.
The Relationship Between Surface Curvature and Abdominal Aortic Aneurysm Wall Stress.
de Galarreta, Sergio Ruiz; Cazón, Aitor; Antón, Raúl; Finol, Ender A
2017-08-01
The maximum diameter (MD) criterion is the most important factor when predicting risk of rupture of abdominal aortic aneurysms (AAAs). An elevated wall stress has also been linked to a high risk of aneurysm rupture, yet is an uncommon clinical practice to compute AAA wall stress. The purpose of this study is to assess whether other characteristics of the AAA geometry are statistically correlated with wall stress. Using in-house segmentation and meshing algorithms, 30 patient-specific AAA models were generated for finite element analysis (FEA). These models were subsequently used to estimate wall stress and maximum diameter and to evaluate the spatial distributions of wall thickness, cross-sectional diameter, mean curvature, and Gaussian curvature. Data analysis consisted of statistical correlations of the aforementioned geometry metrics with wall stress for the 30 AAA inner and outer wall surfaces. In addition, a linear regression analysis was performed with all the AAA wall surfaces to quantify the relationship of the geometric indices with wall stress. These analyses indicated that while all the geometry metrics have statistically significant correlations with wall stress, the local mean curvature (LMC) exhibits the highest average Pearson's correlation coefficient for both inner and outer wall surfaces. The linear regression analysis revealed coefficients of determination for the outer and inner wall surfaces of 0.712 and 0.516, respectively, with LMC having the largest effect on the linear regression equation with wall stress. This work underscores the importance of evaluating AAA mean wall curvature as a potential surrogate for wall stress.
Assessing wildfire risks at multiple spatial scales
Justin Fitch
2008-01-01
In continuation of the efforts to advance wildfire science and develop tools for wildland fire managers, a spatial wildfire risk assessment was carried out using Classification and Regression Tree analysis (CART) and Geographic Information Systems (GIS). The analysis was performed at two scales. The small-scale assessment covered the entire state of New Mexico, while...
Modeling stream network-scale variation in Coho salmon overwinter survival and smolt size
Joseph L. Ebersole; Mike E. Colvin; Parker J. Wigington; Scott G. Leibowitz; Joan P. Baker; Jana E. Compton; Bruce A. Miller; Michael A. Carins; Bruce P. Hansen; Henry R. La Vigne
2009-01-01
We used multiple regression and hierarchical mixed-effects models to examine spatial patterns of overwinter survival and size at smolting in juvenile coho salmon Oncorhynchus kisutch in relation to habitat attributes across an extensive stream network in southwestern Oregon over 3 years. Contributing basin area explained the majority of spatial...
Schmidt, Johannes; Glaser, Bruno
2016-01-01
Tropical forests are significant carbon sinks and their soils’ carbon storage potential is immense. However, little is known about the soil organic carbon (SOC) stocks of tropical mountain areas whose complex soil-landscape and difficult accessibility pose a challenge to spatial analysis. The choice of methodology for spatial prediction is of high importance to improve the expected poor model results in case of low predictor-response correlations. Four aspects were considered to improve model performance in predicting SOC stocks of the organic layer of a tropical mountain forest landscape: Different spatial predictor settings, predictor selection strategies, various machine learning algorithms and model tuning. Five machine learning algorithms: random forests, artificial neural networks, multivariate adaptive regression splines, boosted regression trees and support vector machines were trained and tuned to predict SOC stocks from predictors derived from a digital elevation model and satellite image. Topographical predictors were calculated with a GIS search radius of 45 to 615 m. Finally, three predictor selection strategies were applied to the total set of 236 predictors. All machine learning algorithms—including the model tuning and predictor selection—were compared via five repetitions of a tenfold cross-validation. The boosted regression tree algorithm resulted in the overall best model. SOC stocks ranged between 0.2 to 17.7 kg m-2, displaying a huge variability with diffuse insolation and curvatures of different scale guiding the spatial pattern. Predictor selection and model tuning improved the models’ predictive performance in all five machine learning algorithms. The rather low number of selected predictors favours forward compared to backward selection procedures. Choosing predictors due to their indiviual performance was vanquished by the two procedures which accounted for predictor interaction. PMID:27128736
Ließ, Mareike; Schmidt, Johannes; Glaser, Bruno
2016-01-01
Tropical forests are significant carbon sinks and their soils' carbon storage potential is immense. However, little is known about the soil organic carbon (SOC) stocks of tropical mountain areas whose complex soil-landscape and difficult accessibility pose a challenge to spatial analysis. The choice of methodology for spatial prediction is of high importance to improve the expected poor model results in case of low predictor-response correlations. Four aspects were considered to improve model performance in predicting SOC stocks of the organic layer of a tropical mountain forest landscape: Different spatial predictor settings, predictor selection strategies, various machine learning algorithms and model tuning. Five machine learning algorithms: random forests, artificial neural networks, multivariate adaptive regression splines, boosted regression trees and support vector machines were trained and tuned to predict SOC stocks from predictors derived from a digital elevation model and satellite image. Topographical predictors were calculated with a GIS search radius of 45 to 615 m. Finally, three predictor selection strategies were applied to the total set of 236 predictors. All machine learning algorithms-including the model tuning and predictor selection-were compared via five repetitions of a tenfold cross-validation. The boosted regression tree algorithm resulted in the overall best model. SOC stocks ranged between 0.2 to 17.7 kg m-2, displaying a huge variability with diffuse insolation and curvatures of different scale guiding the spatial pattern. Predictor selection and model tuning improved the models' predictive performance in all five machine learning algorithms. The rather low number of selected predictors favours forward compared to backward selection procedures. Choosing predictors due to their indiviual performance was vanquished by the two procedures which accounted for predictor interaction.
Werb, Dan; Strathdee, Steffanie A; Vera, Alicia; Arredondo, Jaime; Beletsky, Leo; Gonzalez-Zuniga, Patricia; Gaines, Tommi
2016-07-01
In the context of a public health-oriented drug policy reform in Mexico, we assessed the spatial distribution of police encounters among people who inject drugs (PWID) in Tijuana, determined the association between these encounters and the location of addiction treatment centers and explored the association between police encounters and treatment access. Geographically weighted regression (GWR) and logistic regression analysis using prospective spatial data from a community-recruited cohort of PWID in Tijuana and official geographical arrest data from the Tijuana Municipal Police Department. Tijuana, Mexico. A total of 608 participants (median age 37; 28.4% female) in the prospective Proyecto El Cuete cohort study recruited between January and December 2011. We compared the mean distance of police encounters and a randomly distributed set of events to treatment centers. GWR was undertaken to model the spatial relationship between police interactions and treatment centers. Logistic regression analysis was used to investigate factors associated with reporting police interactions. During the study period, 27.5% of police encounters occurred within 500 m of treatment centers. The GWR model suggested spatial correlation between encounters and treatment centers (global R(2) = 0.53). Reporting a need for addiction treatment was associated with reporting arrest and police assault [adjusted odds ratio = 2.74, 95% confidence interval (CI) = 1.25-6.02, P = 0.012]. A geospatial analysis suggests that, in Mexico, people who inject drugs are at greater risk of being a victim of police violence if they consider themselves in need of addiction treatment, and their interactions with police appear to be more frequent around treatment centers. © 2016 Society for the Study of Addiction.
Werb, D; Strathdee, SA; Vera, A; Arredondo, J; Beletsky, L; Gonzalez-Zuniga, P; Gaines, T
2016-01-01
Aims In the context of a public health-oriented drug policy reform in Mexico, we assessed the spatial distribution of police encounters among people who inject drugs (PWID) in Tijuana; determined the association between these encounters and the location of addiction treatment centers; and explored the association between police encounters and treatment access. Design Geographically weighted regression (GWR) and logistic regression analysis using prospective spatial data from a community-recruited cohort of PWID in Tijuana and official geographic arrest data from the Tijuana Municipal Police Department. Setting Tijuana, Mexico. Participants 608 participants (median age 37; 28.4% female) in the prospective Proyecto El Cuete cohort study recruited between January and December 2011. Measurements We compared the mean distance of police encounters and a randomly distributed set of events to treatment centers. GWR was undertaken to model the spatial relationship between police interactions and treatment centers. Logistic regression analysis was used to investigate factors associated with reporting police interactions. Findings During the study period, 27.5% of police encounters occurred within 500 meters of treatment centers. The GWR model suggested spatial correlation between encounters and treatment centers (Global R2 = 0.53). Reporting a need for addiction treatment was associated with reporting arrest and police assault (Adjusted Odds Ratio = 2.74, 95% Confidence Interval [CI]: 1.25–6.02, p = 0.012). Conclusions A geospatial analysis suggests that in Mexico, people who inject drugs are at greater risk of being a victim of police violence if they consider themselves in need of addiction treatment, and their interactions with police appear to be more frequent around treatment centres. PMID:26879179
Hjort, Jan; Hugg, Timo T; Antikainen, Harri; Rusanen, Jarmo; Sofiev, Mikhail; Kukkonen, Jaakko; Jaakkola, Maritta S; Jaakkola, Jouni J K
2016-05-01
Despite the recent developments in physically and chemically based analysis of atmospheric particles, no models exist for resolving the spatial variability of pollen concentration at urban scale. We developed a land use regression (LUR) approach for predicting spatial fine-scale allergenic pollen concentrations in the Helsinki metropolitan area, Finland, and evaluated the performance of the models against available empirical data. We used grass pollen data monitored at 16 sites in an urban area during the peak pollen season and geospatial environmental data. The main statistical method was generalized linear model (GLM). GLM-based LURs explained 79% of the spatial variation in the grass pollen data based on all samples, and 47% of the variation when samples from two sites with very high concentrations were excluded. In model evaluation, prediction errors ranged from 6% to 26% of the observed range of grass pollen concentrations. Our findings support the use of geospatial data-based statistical models to predict the spatial variation of allergenic grass pollen concentrations at intra-urban scales. A remote sensing-based vegetation index was the strongest predictor of pollen concentrations for exposure assessments at local scales. The LUR approach provides new opportunities to estimate the relations between environmental determinants and allergenic pollen concentration in human-modified environments at fine spatial scales. This approach could potentially be applied to estimate retrospectively pollen concentrations to be used for long-term exposure assessments. Hjort J, Hugg TT, Antikainen H, Rusanen J, Sofiev M, Kukkonen J, Jaakkola MS, Jaakkola JJ. 2016. Fine-scale exposure to allergenic pollen in the urban environment: evaluation of land use regression approach. Environ Health Perspect 124:619-626; http://dx.doi.org/10.1289/ehp.1509761.
Plant leaf chlorophyll content retrieval based on a field imaging spectroscopy system.
Liu, Bo; Yue, Yue-Min; Li, Ru; Shen, Wen-Jing; Wang, Ke-Lin
2014-10-23
A field imaging spectrometer system (FISS; 380-870 nm and 344 bands) was designed for agriculture applications. In this study, FISS was used to gather spectral information from soybean leaves. The chlorophyll content was retrieved using a multiple linear regression (MLR), partial least squares (PLS) regression and support vector machine (SVM) regression. Our objective was to verify the performance of FISS in a quantitative spectral analysis through the estimation of chlorophyll content and to determine a proper quantitative spectral analysis method for processing FISS data. The results revealed that the derivative reflectance was a more sensitive indicator of chlorophyll content and could extract content information more efficiently than the spectral reflectance, which is more significant for FISS data compared to ASD (analytical spectral devices) data, reducing the corresponding RMSE (root mean squared error) by 3.3%-35.6%. Compared with the spectral features, the regression methods had smaller effects on the retrieval accuracy. A multivariate linear model could be the ideal model to retrieve chlorophyll information with a small number of significant wavelengths used. The smallest RMSE of the chlorophyll content retrieved using FISS data was 0.201 mg/g, a relative reduction of more than 30% compared with the RMSE based on a non-imaging ASD spectrometer, which represents a high estimation accuracy compared with the mean chlorophyll content of the sampled leaves (4.05 mg/g). Our study indicates that FISS could obtain both spectral and spatial detailed information of high quality. Its image-spectrum-in-one merit promotes the good performance of FISS in quantitative spectral analyses, and it can potentially be widely used in the agricultural sector.
Plant Leaf Chlorophyll Content Retrieval Based on a Field Imaging Spectroscopy System
Liu, Bo; Yue, Yue-Min; Li, Ru; Shen, Wen-Jing; Wang, Ke-Lin
2014-01-01
A field imaging spectrometer system (FISS; 380–870 nm and 344 bands) was designed for agriculture applications. In this study, FISS was used to gather spectral information from soybean leaves. The chlorophyll content was retrieved using a multiple linear regression (MLR), partial least squares (PLS) regression and support vector machine (SVM) regression. Our objective was to verify the performance of FISS in a quantitative spectral analysis through the estimation of chlorophyll content and to determine a proper quantitative spectral analysis method for processing FISS data. The results revealed that the derivative reflectance was a more sensitive indicator of chlorophyll content and could extract content information more efficiently than the spectral reflectance, which is more significant for FISS data compared to ASD (analytical spectral devices) data, reducing the corresponding RMSE (root mean squared error) by 3.3%–35.6%. Compared with the spectral features, the regression methods had smaller effects on the retrieval accuracy. A multivariate linear model could be the ideal model to retrieve chlorophyll information with a small number of significant wavelengths used. The smallest RMSE of the chlorophyll content retrieved using FISS data was 0.201 mg/g, a relative reduction of more than 30% compared with the RMSE based on a non-imaging ASD spectrometer, which represents a high estimation accuracy compared with the mean chlorophyll content of the sampled leaves (4.05 mg/g). Our study indicates that FISS could obtain both spectral and spatial detailed information of high quality. Its image-spectrum-in-one merit promotes the good performance of FISS in quantitative spectral analyses, and it can potentially be widely used in the agricultural sector. PMID:25341439
Terziotti, Silvia; Capel, Paul D.; Tesoriero, Anthony J.; Hopple, Jessica A.; Kronholm, Scott C.
2018-03-07
The water quality of the Chesapeake Bay may be adversely affected by dissolved nitrate carried in groundwater discharge to streams. To estimate the concentrations, loads, and yields of nitrate from groundwater to streams for the Chesapeake Bay watershed, a regression model was developed based on measured nitrate concentrations from 156 small streams with watersheds less than 500 square miles (mi2 ) at baseflow. The regression model has three predictive variables: geologic unit, percent developed land, and percent agricultural land. Comparisons of estimated and actual values within geologic units were closely matched. The coefficient of determination (R2 ) for the model was 0.6906. The model was used to calculate baseflow nitrate concentrations at over 83,000 National Hydrography Dataset Plus Version 2 catchments and aggregated to 1,966 total 12-digit hydrologic units in the Chesapeake Bay watershed. The modeled output geospatial data layers provided estimated annual loads and yields of nitrate from groundwater into streams. The spatial distribution of annual nitrate yields from groundwater estimated by this method was compared to the total watershed yields of all sources estimated from a Chesapeake Bay SPAtially Referenced Regressions On Watershed attributes (SPARROW) water-quality model. The comparison showed similar spatial patterns. The regression model for groundwater contribution had similar but lower yields, suggesting that groundwater is an important source of nitrogen for streams in the Chesapeake Bay watershed.
Covariate Imbalance and Adjustment for Logistic Regression Analysis of Clinical Trial Data
Ciolino, Jody D.; Martin, Reneé H.; Zhao, Wenle; Jauch, Edward C.; Hill, Michael D.; Palesch, Yuko Y.
2014-01-01
In logistic regression analysis for binary clinical trial data, adjusted treatment effect estimates are often not equivalent to unadjusted estimates in the presence of influential covariates. This paper uses simulation to quantify the benefit of covariate adjustment in logistic regression. However, International Conference on Harmonization guidelines suggest that covariate adjustment be pre-specified. Unplanned adjusted analyses should be considered secondary. Results suggest that that if adjustment is not possible or unplanned in a logistic setting, balance in continuous covariates can alleviate some (but never all) of the shortcomings of unadjusted analyses. The case of log binomial regression is also explored. PMID:24138438
Can We Use Regression Modeling to Quantify Mean Annual Streamflow at a Global-Scale?
NASA Astrophysics Data System (ADS)
Barbarossa, V.; Huijbregts, M. A. J.; Hendriks, J. A.; Beusen, A.; Clavreul, J.; King, H.; Schipper, A.
2016-12-01
Quantifying mean annual flow of rivers (MAF) at ungauged sites is essential for a number of applications, including assessments of global water supply, ecosystem integrity and water footprints. MAF can be quantified with spatially explicit process-based models, which might be overly time-consuming and data-intensive for this purpose, or with empirical regression models that predict MAF based on climate and catchment characteristics. Yet, regression models have mostly been developed at a regional scale and the extent to which they can be extrapolated to other regions is not known. In this study, we developed a global-scale regression model for MAF using observations of discharge and catchment characteristics from 1,885 catchments worldwide, ranging from 2 to 106 km2 in size. In addition, we compared the performance of the regression model with the predictive ability of the spatially explicit global hydrological model PCR-GLOBWB [van Beek et al., 2011] by comparing results from both models to independent measurements. We obtained a regression model explaining 89% of the variance in MAF based on catchment area, mean annual precipitation and air temperature, average slope and elevation. The regression model performed better than PCR-GLOBWB for the prediction of MAF, as root-mean-square error values were lower (0.29 - 0.38 compared to 0.49 - 0.57) and the modified index of agreement was higher (0.80 - 0.83 compared to 0.72 - 0.75). Our regression model can be applied globally at any point of the river network, provided that the input parameters are within the range of values employed in the calibration of the model. The performance is reduced for water scarce regions and further research should focus on improving such an aspect for regression-based global hydrological models.
Scheperle, Rachel A; Abbas, Paul J
2015-01-01
The ability to perceive speech is related to the listener's ability to differentiate among frequencies (i.e., spectral resolution). Cochlear implant (CI) users exhibit variable speech-perception and spectral-resolution abilities, which can be attributed in part to the extent of electrode interactions at the periphery (i.e., spatial selectivity). However, electrophysiological measures of peripheral spatial selectivity have not been found to correlate with speech perception. The purpose of this study was to evaluate auditory processing at the periphery and cortex using both simple and spectrally complex stimuli to better understand the stages of neural processing underlying speech perception. The hypotheses were that (1) by more completely characterizing peripheral excitation patterns than in previous studies, significant correlations with measures of spectral selectivity and speech perception would be observed, (2) adding information about processing at a level central to the auditory nerve would account for additional variability in speech perception, and (3) responses elicited with spectrally complex stimuli would be more strongly correlated with speech perception than responses elicited with spectrally simple stimuli. Eleven adult CI users participated. Three experimental processor programs (MAPs) were created to vary the likelihood of electrode interactions within each participant. For each MAP, a subset of 7 of 22 intracochlear electrodes was activated: adjacent (MAP 1), every other (MAP 2), or every third (MAP 3). Peripheral spatial selectivity was assessed using the electrically evoked compound action potential (ECAP) to obtain channel-interaction functions for all activated electrodes (13 functions total). Central processing was assessed by eliciting the auditory change complex with both spatial (electrode pairs) and spectral (rippled noise) stimulus changes. Speech-perception measures included vowel discrimination and the Bamford-Kowal-Bench Speech-in-Noise test. Spatial and spectral selectivity and speech perception were expected to be poorest with MAP 1 (closest electrode spacing) and best with MAP 3 (widest electrode spacing). Relationships among the electrophysiological and speech-perception measures were evaluated using mixed-model and simple linear regression analyses. All electrophysiological measures were significantly correlated with each other and with speech scores for the mixed-model analysis, which takes into account multiple measures per person (i.e., experimental MAPs). The ECAP measures were the best predictor. In the simple linear regression analysis on MAP 3 data, only the cortical measures were significantly correlated with speech scores; spectral auditory change complex amplitude was the strongest predictor. The results suggest that both peripheral and central electrophysiological measures of spatial and spectral selectivity provide valuable information about speech perception. Clinically, it is often desirable to optimize performance for individual CI users. These results suggest that ECAP measures may be most useful for within-subject applications when multiple measures are performed to make decisions about processor options. They also suggest that if the goal is to compare performance across individuals based on a single measure, then processing central to the auditory nerve (specifically, cortical measures of discriminability) should be considered.
An Empirical Study of Eight Nonparametric Tests in Hierarchical Regression.
ERIC Educational Resources Information Center
Harwell, Michael; Serlin, Ronald C.
When normality does not hold, nonparametric tests represent an important data-analytic alternative to parametric tests. However, the use of nonparametric tests in educational research has been limited by the absence of easily performed tests for complex experimental designs and analyses, such as factorial designs and multiple regression analyses,…
How Many Subjects Does It Take to Do a Regression Analysis?
ERIC Educational Resources Information Center
Green, Samuel B.
1991-01-01
An evaluation of the rules-of-thumb used to determine the minimum number of subjects required to conduct multiple regression analyses suggests that researchers who use a rule of thumb rather than power analyses trade simplicity of use for accuracy and specificity of response. Insufficient power is likely to result. (SLD)
Hydrology and trout populations of cold-water rivers of Michigan and Wisconsin
Hendrickson, G.E.; Knutilla, R.L.
1974-01-01
Statistical multiple-regression analyses showed significant relationships between trout populations and hydrologic parameters. Parameters showing the higher levels of significance were temperature, hardness of water, percentage of gravel bottom, percentage of bottom vegetation, variability of streamflow, and discharge per unit drainage area. Trout populations increase with lower levels of annual maximum water temperatures, with increase in water hardness, and with increase in percentage of gravel and bottom vegetation. Trout populations also increase with decrease in variability of streamflow, and with increase in discharge per unit drainage area. Most hydrologic parameters were significant when evaluated collectively, but no parameter, by itself, showed a high degree of correlation with trout populations in regression analyses that included all the streams sampled. Regression analyses of stream segments that were restricted to certain limits of hardness, temperature, or percentage of gravel bottom showed improvements in correlation. Analyses of trout populations, in pounds per acre and pounds per mile and hydrologic parameters resulted in regression equations from which trout populations could be estimated with standard errors of 89 and 84 per cent, respectively.
Mapping and spatial-temporal modeling of Bromus tectorum invasion in central Utah
NASA Astrophysics Data System (ADS)
Jin, Zhenyu
Cheatgrass, or Downy Brome, is an exotic winter annual weed native to the Mediterranean region. Since its introduction to the U.S., it has become a significant weed and aggressive invader of sagebrush, pinion-juniper, and other shrub communities, where it can completely out-compete native grasses and shrubs. In this research, remotely sensed data combined with field collected data are used to investigate the distribution of the cheatgrass in Central Utah, to characterize the trend of the NDVI time-series of cheatgrass, and to construct a spatially explicit population-based model to simulate the spatial-temporal dynamics of the cheatgrass. This research proposes a method for mapping the canopy closure of invasive species using remotely sensed data acquired at different dates. Different invasive species have their own distinguished phenologies and the satellite images in different dates could be used to capture the phenology. The results of cheatgrass abundance prediction have a good fit with the field data for both linear regression and regression tree models, although the regression tree model has better performance than the linear regression model. To characterize the trend of NDVI time-series of cheatgrass, a novel smoothing algorithm named RMMEH is presented in this research to overcome some drawbacks of many other algorithms. By comparing the performance of RMMEH in smoothing a 16-day composite of the MODIS NDVI time-series with that of two other methods, which are the 4253EH, twice and the MVI, we have found that RMMEH not only keeps the original valid NDVI points, but also effectively removes the spurious spikes. The reconstructed NDVI time-series of different land covers are of higher quality and have smoother temporal trend. To simulate the spatial-temporal dynamics of cheatgrass, a spatially explicit population-based model is built applying remotely sensed data. The comparison between the model output and the ground truth of cheatgrass closure demonstrates that the model could successfully simulate the spatial-temporal dynamics of cheatgrass in a simple cheatgrass-dominant environment. The simulation of the functional response of different prescribed fire rates also shows that this model is helpful to answer management questions like, "What are the effects of prescribed fire to invasive species?" It demonstrates that a medium fire rate of 10% can successfully prevent cheatgrass invasion.
Ibert, Fabienne; Eckstein, Monika; Günther, Frank; Mutters, Nico T
2017-01-01
Background: Spatial isolation is a common infection control measure, but negative psychological effects are often neglected. We investigated which factors influence the perception of single room isolated patients. Methods: In the present correlative cross-sectional study, 32 isolated patients have been interviewed within three departments of the Heidelberg University Hospital, one of Germany's largest hospitals. The following questionnaires were used: 10-Item Big Five Inventory (BFI-10), Positive and Negative Affect Schedule (PANAS), Hospital Anxiety and Depression Scale (HADS) and a self-developed questionnaire to evaluate the individual experience of isolation. Data were analysed using correlation and regression analysis. Results: A significant positive correlation was found between the isolation period and anxiety (r=.42, p<.05). Interestingly, a significant positive correlation was demonstrated between the duration of contact to nursing staff and negative daydreaming (r=.89, p<.01). The activity watching television was associated with higher levels of anxiety (r=.38, p<.05). Surfing the internet had a positive relationship with thinking about beautiful things (r=.41, p<.05). Conclusions: Our study results have implications how to improve the psychological situation of patients during spatial isolation. Contact between nursing staff and patients is crucial, since this contact significantly associated with negative daydreaming, probably due to increased neediness of emotional and physical care in some patients. The duration of the isolation has an influence on the experience of anxiety. Activities to cope with the isolation, however, not always have positive effects on the well-being of the patient.
How do schizophrenia patients use visual information to decode facial emotion?
Lee, Junghee; Gosselin, Frédéric; Wynn, Jonathan K; Green, Michael F
2011-09-01
Impairment in recognizing facial emotions is a prominent feature of schizophrenia patients, but the underlying mechanism of this impairment remains unclear. This study investigated the specific aspects of visual information that are critical for schizophrenia patients to recognize emotional expression. Using the Bubbles technique, we probed the use of visual information during a facial emotion discrimination task (fear vs. happy) in 21 schizophrenia patients and 17 healthy controls. Visual information was sampled through randomly located Gaussian apertures (or "bubbles") at 5 spatial frequency scales. Online calibration of the amount of face exposed through bubbles was used to ensure 75% overall accuracy for each subject. Least-square multiple linear regression analyses between sampled information and accuracy were performed to identify critical visual information that was used to identify emotional expression. To accurately identify emotional expression, schizophrenia patients required more exposure of facial areas (i.e., more bubbles) compared with healthy controls. To identify fearful faces, schizophrenia patients relied less on bilateral eye regions at high-spatial frequency compared with healthy controls. For identification of happy faces, schizophrenia patients relied on the mouth and eye regions; healthy controls did not utilize eyes and used the mouth much less than patients did. Schizophrenia patients needed more facial information to recognize emotional expression of faces. In addition, patients differed from controls in their use of high-spatial frequency information from eye regions to identify fearful faces. This study provides direct evidence that schizophrenia patients employ an atypical strategy of using visual information to recognize emotional faces.
Statistical analysis of dendritic spine distributions in rat hippocampal cultures
2013-01-01
Background Dendritic spines serve as key computational structures in brain plasticity. Much remains to be learned about their spatial and temporal distribution among neurons. Our aim in this study was to perform exploratory analyses based on the population distributions of dendritic spines with regard to their morphological characteristics and period of growth in dissociated hippocampal neurons. We fit a log-linear model to the contingency table of spine features such as spine type and distance from the soma to first determine which features were important in modeling the spines, as well as the relationships between such features. A multinomial logistic regression was then used to predict the spine types using the features suggested by the log-linear model, along with neighboring spine information. Finally, an important variant of Ripley’s K-function applicable to linear networks was used to study the spatial distribution of spines along dendrites. Results Our study indicated that in the culture system, (i) dendritic spine densities were "completely spatially random", (ii) spine type and distance from the soma were independent quantities, and most importantly, (iii) spines had a tendency to cluster with other spines of the same type. Conclusions Although these results may vary with other systems, our primary contribution is the set of statistical tools for morphological modeling of spines which can be used to assess neuronal cultures following gene manipulation such as RNAi, and to study induced pluripotent stem cells differentiated to neurons. PMID:24088199
West, Amanda; Kumar, Sunil; Jarnevich, Catherine S.
2016-01-01
Regional analysis of large wildfire potential given climate change scenarios is crucial to understanding areas most at risk in the future, yet wildfire models are not often developed and tested at this spatial scale. We fit three historical climate suitability models for large wildfires (i.e. ≥ 400 ha) in Colorado andWyoming using topography and decadal climate averages corresponding to wildfire occurrence at the same temporal scale. The historical models classified points of known large wildfire occurrence with high accuracies. Using a novel approach in wildfire modeling, we applied the historical models to independent climate and wildfire datasets, and the resulting sensitivities were 0.75, 0.81, and 0.83 for Maxent, Generalized Linear, and Multivariate Adaptive Regression Splines, respectively. We projected the historic models into future climate space using data from 15 global circulation models and two representative concentration pathway scenarios. Maps from these geospatial analyses can be used to evaluate the changing spatial distribution of climate suitability of large wildfires in these states. April relative humidity was the most important covariate in all models, providing insight to the climate space of large wildfires in this region. These methods incorporate monthly and seasonal climate averages at a spatial resolution relevant to land management (i.e. 1 km2) and provide a tool that can be modified for other regions of North America, or adapted for other parts of the world.
LaMotte, A.E.; Greene, E.A.
2007-01-01
Spatial relations between land use and groundwater quality in the watershed adjacent to Assateague Island National Seashore, Maryland and Virginia, USA were analyzed by the use of two spatial models. One model used a logit analysis and the other was based on geostatistics. The models were developed and compared on the basis of existing concentrations of nitrate as nitrogen in samples from 529 domestic wells. The models were applied to produce spatial probability maps that show areas in the watershed where concentrations of nitrate in groundwater are likely to exceed a predetermined management threshold value. Maps of the watershed generated by logistic regression and probability kriging analysis showing where the probability of nitrate concentrations would exceed 3 mg/L (>0.50) compared favorably. Logistic regression was less dependent on the spatial distribution of sampled wells, and identified an additional high probability area within the watershed that was missed by probability kriging. The spatial probability maps could be used to determine the natural or anthropogenic factors that best explain the occurrence and distribution of elevated concentrations of nitrate (or other constituents) in shallow groundwater. This information can be used by local land-use planners, ecologists, and managers to protect water supplies and identify land-use planning solutions and monitoring programs in vulnerable areas. ?? 2006 Springer-Verlag.
NASA Astrophysics Data System (ADS)
Fritz, Andreas; Enßle, Fabian; Zhang, Xiaoli; Koch, Barbara
2016-08-01
The present study analyses the two earth observation sensors regarding their capability of modelling forest above ground biomass and forest density. Our research is carried out at two different demonstration sites. The first is located in south-western Germany (region Karlsruhe) and the second is located in southern China in Jiangle County (Province Fujian). A set of spectral and spatial predictors are computed from both, Sentinel-2A and WorldView-2 data. Window sizes in the range of 3*3 pixels to 21*21 pixels are computed in order to cover the full range of the canopy sizes of mature forest stands. Textural predictors of first and second order (grey-level-co-occurrence matrix) are calculated and are further used within a feature selection procedure. Additionally common spectral predictors from WorldView-2 and Sentinel-2A data such as all relevant spectral bands and NDVI are integrated in the analyses. To examine the most important predictors, a predictor selection algorithm is applied to the data, whereas the entire predictor set of more than 1000 predictors is used to find most important ones. Out of the original set only the most important predictors are then further analysed. Predictor selection is done with the Boruta package in R (Kursa and Rudnicki (2010)), whereas regression is computed with random forest. Prior the classification and regression a tuning of parameters is done by a repetitive model selection (100 runs), based on the .632 bootstrapping. Both are implemented in the caret R pack- age (Kuhn et al. (2016)). To account for the variability in the data set 100 independent runs are performed. Within each run 80 percent of the data is used for training and the 20 percent are used for an independent validation. With the subset of original predictors mapping of above ground biomass is performed.
Influences of climate on aflatoxin producing fungi and aflatoxin contamination.
Cotty, Peter J; Jaime-Garcia, Ramon
2007-10-20
Aflatoxins are potent mycotoxins that cause developmental and immune system suppression, cancer, and death. As a result of regulations intended to reduce human exposure, crop contamination with aflatoxins causes significant economic loss for producers, marketers, and processors of diverse susceptible crops. Aflatoxin contamination occurs when specific fungi in the genus Aspergillus infect crops. Many industries frequently affected by aflatoxin contamination know from experience and anecdote that fluctuations in climate impact the extent of contamination. Climate influences contamination, in part, by direct effects on the causative fungi. As climate shifts, so do the complex communities of aflatoxin-producing fungi. This includes changes in the quantity of aflatoxin-producers in the environment and alterations to fungal community structure. Fluctuations in climate also influence predisposition of hosts to contamination by altering crop development and by affecting insects that create wounds on which aflatoxin-producers proliferate. Aflatoxin contamination is prevalent both in warm humid climates and in irrigated hot deserts. In temperate regions, contamination may be severe during drought. The contamination process is frequently broken down into two phases with the first phase occurring on the developing crop and the second phase affecting the crop after maturation. Rain and temperature influence the phases differently with dry, hot conditions favoring the first and warm, wet conditions favoring the second. Contamination varies with climate both temporally and spatially. Geostatistics and multiple regression analyses have shed light on influences of weather on contamination. Geostatistical analyses have been used to identify recurrent contamination patterns and to match these with environmental variables. In the process environmental conditions with the greatest impact on contamination are identified. Likewise, multiple regression analyses allow ranking of environmental variables based on relative influence on contamination. Understanding the impact of climate may allow development of improved management procedures, better allocation of monitoring efforts, and adjustment of agronomic practices in anticipation of global climate change.
Zhu, Xiang; Stephens, Matthew
2017-01-01
Bayesian methods for large-scale multiple regression provide attractive approaches to the analysis of genome-wide association studies (GWAS). For example, they can estimate heritability of complex traits, allowing for both polygenic and sparse models; and by incorporating external genomic data into the priors, they can increase power and yield new biological insights. However, these methods require access to individual genotypes and phenotypes, which are often not easily available. Here we provide a framework for performing these analyses without individual-level data. Specifically, we introduce a “Regression with Summary Statistics” (RSS) likelihood, which relates the multiple regression coefficients to univariate regression results that are often easily available. The RSS likelihood requires estimates of correlations among covariates (SNPs), which also can be obtained from public databases. We perform Bayesian multiple regression analysis by combining the RSS likelihood with previously proposed prior distributions, sampling posteriors by Markov chain Monte Carlo. In a wide range of simulations RSS performs similarly to analyses using the individual data, both for estimating heritability and detecting associations. We apply RSS to a GWAS of human height that contains 253,288 individuals typed at 1.06 million SNPs, for which analyses of individual-level data are practically impossible. Estimates of heritability (52%) are consistent with, but more precise, than previous results using subsets of these data. We also identify many previously unreported loci that show evidence for association with height in our analyses. Software is available at https://github.com/stephenslab/rss. PMID:29399241
Hoos, A.B.; McMahon, G.
2009-01-01
Understanding how nitrogen transport across the landscape varies with landscape characteristics is important for developing sound nitrogen management policies. We used a spatially referenced regression analysis (SPARROW) to examine landscape characteristics influencing delivery of nitrogen from sources in a watershed to stream channels. Modelled landscape delivery ratio varies widely (by a factor of 4) among watersheds in the southeastern United States - higher in the western part (Tennessee, Alabama, and Mississippi) than in the eastern part, and the average value for the region is lower compared to other parts of the nation. When we model landscape delivery ratio as a continuous function of local-scale landscape characteristics, we estimate a spatial pattern that varies as a function of soil and climate characteristics but exhibits spatial structure in residuals (observed load minus predicted load). The spatial pattern of modelled landscape delivery ratio and the spatial pattern of residuals coincide spatially with Level III ecoregions and also with hydrologic landscape regions. Subsequent incorporation into the model of these frameworks as regional scale variables improves estimation of landscape delivery ratio, evidenced by reduced spatial bias in residuals, and suggests that cross-scale processes affect nitrogen attenuation on the landscape. The model-fitted coefficient values are logically consistent with the hypothesis that broad-scale classifications of hydrologic response help to explain differential rates of nitrogen attenuation, controlling for local-scale landscape characteristics. Negative model coefficients for hydrologic landscape regions where the primary flow path is shallow ground water suggest that a lower fraction of nitrogen mass will be delivered to streams; this relation is reversed for regions where the primary flow path is overland flow.
Hoos, Anne B.; McMahon, Gerard
2009-01-01
Understanding how nitrogen transport across the landscape varies with landscape characteristics is important for developing sound nitrogen management policies. We used a spatially referenced regression analysis (SPARROW) to examine landscape characteristics influencing delivery of nitrogen from sources in a watershed to stream channels. Modelled landscape delivery ratio varies widely (by a factor of 4) among watersheds in the southeastern United States—higher in the western part (Tennessee, Alabama, and Mississippi) than in the eastern part, and the average value for the region is lower compared to other parts of the nation. When we model landscape delivery ratio as a continuous function of local-scale landscape characteristics, we estimate a spatial pattern that varies as a function of soil and climate characteristics but exhibits spatial structure in residuals (observed load minus predicted load). The spatial pattern of modelled landscape delivery ratio and the spatial pattern of residuals coincide spatially with Level III ecoregions and also with hydrologic landscape regions. Subsequent incorporation into the model of these frameworks as regional scale variables improves estimation of landscape delivery ratio, evidenced by reduced spatial bias in residuals, and suggests that cross-scale processes affect nitrogen attenuation on the landscape. The model-fitted coefficient values are logically consistent with the hypothesis that broad-scale classifications of hydrologic response help to explain differential rates of nitrogen attenuation, controlling for local-scale landscape characteristics. Negative model coefficients for hydrologic landscape regions where the primary flow path is shallow ground water suggest that a lower fraction of nitrogen mass will be delivered to streams; this relation is reversed for regions where the primary flow path is overland flow.
Gau, Susan Shur-Fen; Chiang, Huey-Ling
2013-01-01
Deficits in short-term memory are common in adolescents with attention-deficit/hyperactivity disorder (ADHD), but their current ADHD symptoms cannot well predict their short-term performance. Taking a developmental perspective, we wanted to clarify the association between ADHD symptoms at early childhood and short-term memory in late childhood and adolescence. The participants included 401 patients with a clinical diagnosis of DSM-IV ADHD, 213 siblings, and 176 unaffected controls aged 8-17 years (mean age, 12.02 ± 2.24). All participants and their mothers were interviewed using the Chinese Kiddie Epidemiologic version of the Schedule for Affective Disorders and Schizophrenia to obtain information about ADHD symptoms and other psychiatric disorders retrospectively, at an earlier age first, then currently. The participants were assessed with the Wechsler Intelligence Scale for Children--3rd edition, including Digit Span, and the Spatial working memory task of the Cambridge Neuropsychological Test Automated Battery. Multi-level regression models were used for data analysis. Although crude analyses revealed that inattention, hyperactivity, and impulsivity symptoms significantly predicted deficits in short-term memory, only inattention symptoms had significant effects (all p<0.001) in a model that included all three ADHD symptoms. After further controlling for comorbidity, age of assessment, treatment with methylphenidate, and Full-scale IQ, the severity of childhood inattention symptoms was still significantly associated with worse verbal (p = 0.008) and spatial (p ranging from 0.017 to 0.002) short-term memory at the current assessment. Therefore, our findings suggest that earlier inattention symptoms are associated with impaired verbal and visuo-spatial short-term memory at a later development stage. Impaired short-term memory in adolescence can be detected earlier by screening for the severity of inattention in childhood. Copyright © 2012 Elsevier Ltd. All rights reserved.
Zhang, Jinqu; Wang, Yunpeng
2008-01-01
Ten cities with different population and urban sizes located in the Pearl River Delta, Guangdong Province, P.R. China were selected to study the relationships between the spatial extent of surface urban heat islands (SUHI) and five urban characteristic factors such as urban size, development area, water proportion, mean NDVI (Normalized Vegetation Index) and population density, etc. The spatial extent of SUHI was quantified by using the hot island area (HIA). All the cities are almost at the same latitude, showing similar climate and solar radiation, the influence of which could thus be eliminated during our computation and comparative study. The land surface temperatures (LST) were retrieved from the data of Landsat 7 Enhanced Thematic Mapper Plus (ETM+) band 6 using a mono-window algorithm. A variance-segmenting method was proposed to compute HIA for each city from the retrieved LST. Factors like urban size, development area and water proportion were extracted directly from the classification images of the same ETM+ data and the population density factor is from the official census. Correlation and regression analyses were performed to study the relationships between the HIA and the related factors, and the results show that HIA is highly correlated to urban size (r=0.95), population density (r=0.97) and development area (r=0.83) in this area. It was also proved that a weak negative correlation existed between HIA and both mean NDVI and water proportion for each city. Linear functions between HIA and its related factors were established, respectively. The HIA can reflect the spatial extent and magnitude of the surface urban heat island effect, and can be used as reference in the urban planning. PMID:27873939
2011-01-01
Background This paper analyses the relationship between public perceptions of access to general practitioners (GPs) surgeries and hospitals against health status, car ownership and geographic distance. In so doing it explores the different dimensions associated with facility access and accessibility. Methods Data on difficulties experienced in accessing health services, respondent health status and car ownership were collected through an attitudes survey. Road distances to the nearest service were calculated for each respondent using a GIS. Difficulty was related to geographic distance, health status and car ownership using logistic generalized linear models. A Geographically Weighted Regression (GWR) was used to explore the spatial non-stationarity in the results. Results Respondent long term illness, reported bad health and non-car ownership were found to be significant predictors of difficulty in accessing GPs and hospitals. Geographic distance was not a significant predictor of difficulty in accessing hospitals but was for GPs. GWR identified the spatial (local) variation in these global relationships indicating locations where the predictive strength of the independent variables was higher or lower than the global trend. The impacts of bad health and non-car ownership on the difficulties experienced in accessing health services varied spatially across the study area, whilst the impacts of geographic distance did not. Conclusions Difficulty in accessing different health facilities was found to be significantly related to health status and car ownership, whilst the impact of geographic distance depends on the service in question. GWR showed how these relationships were varied across the study area. This study demonstrates that the notion of access is a multi-dimensional concept, whose composition varies with location, according to the facility being considered and the health and socio-economic status of the individual concerned. PMID:21787394
Bayesian Unimodal Density Regression for Causal Inference
ERIC Educational Resources Information Center
Karabatsos, George; Walker, Stephen G.
2011-01-01
Karabatsos and Walker (2011) introduced a new Bayesian nonparametric (BNP) regression model. Through analyses of real and simulated data, they showed that the BNP regression model outperforms other parametric and nonparametric regression models of common use, in terms of predictive accuracy of the outcome (dependent) variable. The other,…
Yu, Hwa-Lung; Wang, Chih-Hsih; Liu, Ming-Che; Kuo, Yi-Ming
2011-01-01
Fine airborne particulate matter (PM2.5) has adverse effects on human health. Assessing the long-term effects of PM2.5 exposure on human health and ecology is often limited by a lack of reliable PM2.5 measurements. In Taipei, PM2.5 levels were not systematically measured until August, 2005. Due to the popularity of geographic information systems (GIS), the landuse regression method has been widely used in the spatial estimation of PM concentrations. This method accounts for the potential contributing factors of the local environment, such as traffic volume. Geostatistical methods, on other hand, account for the spatiotemporal dependence among the observations of ambient pollutants. This study assesses the performance of the landuse regression model for the spatiotemporal estimation of PM2.5 in the Taipei area. Specifically, this study integrates the landuse regression model with the geostatistical approach within the framework of the Bayesian maximum entropy (BME) method. The resulting epistemic framework can assimilate knowledge bases including: (a) empirical-based spatial trends of PM concentration based on landuse regression, (b) the spatio-temporal dependence among PM observation information, and (c) site-specific PM observations. The proposed approach performs the spatiotemporal estimation of PM2.5 levels in the Taipei area (Taiwan) from 2005–2007. PMID:21776223
Yu, Hwa-Lung; Wang, Chih-Hsih; Liu, Ming-Che; Kuo, Yi-Ming
2011-06-01
Fine airborne particulate matter (PM2.5) has adverse effects on human health. Assessing the long-term effects of PM2.5 exposure on human health and ecology is often limited by a lack of reliable PM2.5 measurements. In Taipei, PM2.5 levels were not systematically measured until August, 2005. Due to the popularity of geographic information systems (GIS), the landuse regression method has been widely used in the spatial estimation of PM concentrations. This method accounts for the potential contributing factors of the local environment, such as traffic volume. Geostatistical methods, on other hand, account for the spatiotemporal dependence among the observations of ambient pollutants. This study assesses the performance of the landuse regression model for the spatiotemporal estimation of PM2.5 in the Taipei area. Specifically, this study integrates the landuse regression model with the geostatistical approach within the framework of the Bayesian maximum entropy (BME) method. The resulting epistemic framework can assimilate knowledge bases including: (a) empirical-based spatial trends of PM concentration based on landuse regression, (b) the spatio-temporal dependence among PM observation information, and (c) site-specific PM observations. The proposed approach performs the spatiotemporal estimation of PM2.5 levels in the Taipei area (Taiwan) from 2005-2007.
Logistic regression applied to natural hazards: rare event logistic regression with replications
NASA Astrophysics Data System (ADS)
Guns, M.; Vanacker, V.
2012-06-01
Statistical analysis of natural hazards needs particular attention, as most of these phenomena are rare events. This study shows that the ordinary rare event logistic regression, as it is now commonly used in geomorphologic studies, does not always lead to a robust detection of controlling factors, as the results can be strongly sample-dependent. In this paper, we introduce some concepts of Monte Carlo simulations in rare event logistic regression. This technique, so-called rare event logistic regression with replications, combines the strength of probabilistic and statistical methods, and allows overcoming some of the limitations of previous developments through robust variable selection. This technique was here developed for the analyses of landslide controlling factors, but the concept is widely applicable for statistical analyses of natural hazards.
Valdivia, Nelson; Díaz, María J.; Holtheuer, Jorge; Garrido, Ignacio; Huovinen, Pirjo; Gómez, Iván
2014-01-01
Understanding the variation of biodiversity along environmental gradients and multiple spatial scales is relevant for theoretical and management purposes. Hereby, we analysed the spatial variability in diversity and structure of intertidal and subtidal macrobenthic Antarctic communities along vertical environmental stress gradients and across multiple horizontal spatial scales. Since biotic interactions and local topographic features are likely major factors for coastal assemblages, we tested the hypothesis that fine-scale processes influence the effects of the vertical environmental stress gradients on the macrobenthic diversity and structure. We used nested sampling designs in the intertidal and subtidal habitats, including horizontal spatial scales ranging from few centimetres to 1000s of metres along the rocky shore of Fildes Peninsula, King George Island. In both intertidal and subtidal habitats, univariate and multivariate analyses showed a marked vertical zonation in taxon richness and community structure. These patterns depended on the horizontal spatial scale of observation, as all analyses showed a significant interaction between height (or depth) and the finer spatial scale analysed. Variance and pseudo-variance components supported our prediction for taxon richness, community structure, and the abundance of dominant species such as the filamentous green alga Urospora penicilliformis (intertidal), the herbivore Nacella concinna (intertidal), the large kelp-like Himantothallus grandifolius (subtidal), and the red crustose red alga Lithothamnion spp. (subtidal). We suggest that in coastal ecosystems strongly governed by physical factors, fine-scale processes (e.g. biotic interactions and refugia availability) are still relevant for the structuring and maintenance of the local communities. The spatial patterns found in this study serve as a necessary benchmark to understand the dynamics and adaptation of natural assemblages in response to observed and predicted environmental changes in Antarctica. PMID:24956114
Determining the response of sea level to atmospheric pressure forcing using TOPEX/POSEIDON data
NASA Technical Reports Server (NTRS)
Fu, Lee-Lueng; Pihos, Greg
1994-01-01
The static response of sea level to the forcing of atmospheric pressure, the so-called inverted barometer (IB) effect, is investigated using TOPEX/POSEIDON data. This response, characterized by the rise and fall of sea level to compensate for the change of atmospheric pressure at a rate of -1 cm/mbar, is not associated with any ocean currents and hence is normally treated as an error to be removed from sea level observation. Linear regression and spectral transfer function analyses are applied to sea level and pressure to examine the validity of the IB effect. In regions outside the tropics, the regression coefficient is found to be consistently close to the theoretical value except for the regions of western boundary currents, where the mesoscale variability interferes with the IB effect. The spectral transfer function shows near IB response at periods of 30 degrees is -0.84 +/- 0.29 cm/mbar (1 standard deviation). The deviation from = 1 cm /mbar is shown to be caused primarily by the effect of wind forcing on sea level, based on multivariate linear regression model involving both pressure and wind forcing. The regression coefficient for pressure resulting from the multivariate analysis is -0.96 +/- 0.32 cm/mbar. In the tropics the multivariate analysis fails because sea level in the tropics is primarily responding to remote wind forcing. However, after removing from the data the wind-forced sea level estimated by a dynamic model of the tropical Pacific, the pressure regression coefficient improves from -1.22 +/- 0.69 cm/mbar to -0.99 +/- 0.46 cm/mbar, clearly revealing an IB response. The result of the study suggests that with a proper removal of the effect of wind forcing the IB effect is valid in most of the open ocean at periods longer than 20 days and spatial scales larger than 500 km.
Wodschow, Kirstine; Hansen, Birgitte; Schullehner, Jörg; Ersbøll, Annette Kjær
2018-06-08
Concentrations and spatial variations of the four cations Na, K, Mg and Ca are known to some extent for groundwater and to a lesser extent for drinking water. Using Denmark as case, the purpose of this study was to analyze the spatial and temporal variations in the major cations in drinking water. The results will contribute to a better exposure estimation in future studies of the association between cations and diseases. Spatial and temporal variations and the association with aquifer types, were analyzed with spatial scan statistics, linear regression and a multilevel mixed-effects linear regression model. About 65,000 water samples of each cation (1980⁻2017) were included in the study. Results of mean concentrations were 31.4 mg/L, 3.5 mg/L, 12.1 mg/L and 84.5 mg/L for 1980⁻2017 for Na, K, Mg and Ca, respectively. An expected west-east trend in concentrations were confirmed, mainly explained by variations in aquifer types. The trend in concentration was stable for about 31⁻45% of the public water supply areas. It is therefore recommended that the exposure estimate in future health related studies not only be based on a single mean value, but that temporal and spatial variations should also be included.
Brakebill, John W.; Wolock, David M.; Terziotti, Silvia
2011-01-01
Digital hydrologic networks depicting surface-water pathways and their associated drainage catchments provide a key component to hydrologic analysis and modeling. Collectively, they form common spatial units that can be used to frame the descriptions of aquatic and watershed processes. In addition, they provide the ability to simulate and route the movement of water and associated constituents throughout the landscape. Digital hydrologic networks have evolved from derivatives of mapping products to detailed, interconnected, spatially referenced networks of water pathways, drainage areas, and stream and watershed characteristics. These properties are important because they enhance the ability to spatially evaluate factors that affect the sources and transport of water-quality constituents at various scales. SPAtially Referenced Regressions On Watershed attributes (SPARROW), a process-based ⁄ statistical model, relies on a digital hydrologic network in order to establish relations between quantities of monitored contaminant flux, contaminant sources, and the associated physical characteristics affecting contaminant transport. Digital hydrologic networks modified from the River Reach File (RF1) and National Hydrography Dataset (NHD) geospatial datasets provided frameworks for SPARROW in six regions of the conterminous United States. In addition, characteristics of the modified RF1 were used to update estimates of mean-annual streamflow. This produced more current flow estimates for use in SPARROW modeling.
Svenning, J.-C.; Engelbrecht, B.M.J.; Kinner, D.A.; Kursar, T.A.; Stallard, R.F.; Wright, S.J.
2006-01-01
We used regression models and information-theoretic model selection to assess the relative importance of environment, local dispersal and historical contingency as controls of the distributions of 26 common plant species in tropical forest on Barro Colorado Island (BCI), Panama. We censused eighty-eight 0.09-ha plots scattered across the landscape. Environmental control, local dispersal and historical contingency were represented by environmental variables (soil moisture, slope, soil type, distance to shore, old-forest presence), a spatial autoregressive parameter (??), and four spatial trend variables, respectively. We built regression models, representing all combinations of the three hypotheses, for each species. The probability that the best model included the environmental variables, spatial trend variables and ?? averaged 33%, 64% and 50% across the study species, respectively. The environmental variables, spatial trend variables, ??, and a simple intercept model received the strongest support for 4, 15, 5 and 2 species, respectively. Comparing the model results to information on species traits showed that species with strong spatial trends produced few and heavy diaspores, while species with strong soil moisture relationships were particularly drought-sensitive. In conclusion, history and local dispersal appeared to be the dominant controls of the distributions of common plant species on BCI. Copyright ?? 2006 Cambridge University Press.
J. Michael Bowker; D. Murphy; H. Ken Cordell; Donald B.K. English; J.C. Bergstrom; C.M. Starbuck; C.J. Betz; G.T. Green
2006-01-01
This paper explores the influence of demographic and spatial variables on individual participation and consumption of wildland area recreation. Data from the National Survey on Recreation and the Environment are combined with geographical information systembased distance measures to develop nonlinear regression models used to predict both participation and the number...
Poverty and Algebra Performance: A Comparative Spatial Analysis of a Border South State
ERIC Educational Resources Information Center
Tate, William F.; Hogrebe, Mark C.
2015-01-01
This research uses two measures of poverty, as well as mobility and selected education variables to study how their relationships vary across 543 Missouri high school districts. Using Missouri and U.S. Census American Community Survey (ACS) data, local R[superscript 2]'s from geographically weighted regressions are spatially mapped to demonstrate…
Regression and Geostatistical Techniques: Considerations and Observations from Experiences in NE-FIA
Rachel Riemann; Andrew Lister
2005-01-01
Maps of forest variables improve our understanding of the forest resource by allowing us to view and analyze it spatially. The USDA Forest Service's Northeastern Forest Inventory and Analysis unit (NE-FIA) has used geostatistical techniques, particularly stochastic simulation, to produce maps and spatial data sets of FIA variables. That work underscores the...
Preliminary results of spatial modeling of selected forest health variables in Georgia
Brock Stewart; Chris J. Cieszewski
2009-01-01
Variables relating to forest health monitoring, such as mortality, are difficult to predict and model. We present here the results of fitting various spatial regression models to these variables. We interpolate plot-level values compiled from the Forest Inventory and Analysis National Information Management System (FIA-NIMS) data that are related to forest health....
Alan K. Swanson; Solomon Z. Dobrowski; Andrew O. Finley; James H. Thorne; Michael K. Schwartz
2013-01-01
The uncertainty associated with species distribution model (SDM) projections is poorly characterized, despite its potential value to decision makers. Error estimates from most modelling techniques have been shown to be biased due to their failure to account for spatial autocorrelation (SAC) of residual error. Generalized linear mixed models (GLMM) have the ability to...
Lowrey, Chris E.; Longshore, Kathleen M.; Riddle, Brett R.; Mantooth, Stacy
2016-01-01
Although montane sky islands surrounded by desert scrub and shrub steppe comprise a large part of the biological diversity of the Basin and Range Province of southwestern North America, comprehensive ecological and population demographic studies for high-elevation small mammals within these areas are rare. Here, we examine the ecology and population parameters of the Palmer’s chipmunk (Tamias palmeri) in the Spring Mountains of southern Nevada, and present a predictive GIS-based distribution and probability of occurrence model at both home range and geographic spatial scales. Logistic regression analyses and Akaike Information Criterion model selection found variables of forest type, slope, and distance to water sources as predictive of chipmunk occurrence at the geographic scale. At the home range scale, increasing population density, decreasing overstory canopy cover, and decreasing understory canopy cover contributed to increased survival rates.
A comparison of proxy performance in coral biodiversity monitoring
NASA Astrophysics Data System (ADS)
Richards, Zoe T.
2013-03-01
The productivity and health of coral reef habitat is diminishing worldwide; however, the effect that habitat declines have on coral reef biodiversity is not known. Logistical and financial constraints mean that surveys of hard coral communities rarely collect data at the species level; hence it is important to know if there are proxy metrics that can reliably predict biodiversity. Here, the performances of six proxy metrics are compared using regression analyses on survey data from a location in the northern Great Barrier Reef. Results suggest generic richness is a strong explanatory variable for spatial patterns in species richness (explaining 82 % of the variation when measured on a belt transect). The most commonly used metric of reef health, percentage live coral cover, is not positively or linearly related to hard coral species richness. This result raises doubt as to whether management actions based on such reefscape information will be effective for the conservation of coral biodiversity.
Kang, Chuan-Zhi; Zhou, Tao; Jiang, Wei-Ke; Guo, Lan-Ping; Zhang, Xiao-Bo; Xiao, Cheng-Hong; Zhao, Dan
2016-07-01
Maxent model was applied in the study to filtering the climate factors layer by layer. Polysaccharides and pseudostellarin B the two internal quality evaluation index were combined to analyse the interlinkages between climate factors and chemical constituents in order to search for the critical climate factors of Pseudostellaria heterophylla. Then based on the key climate factors to explicit the quality spatial distribution of P. heterophylla. The results showed that polysaccharides and climatic factors had no significant correlation, suggesting that the indicator was not climate-driven metabolites. Pseudostellarin B could construct regression model with the precipitation. And quality regionalization results showed that pseudostellarin B content presented firstly increased and then decreased trend from southeast to northwest, which was the consistent change with precipitation. It clearly proposed that precipitation was the key climate factor, which affected the accumulation of cyclopeptide compound for Pseudostellariae Radix. Copyright© by the Chinese Pharmaceutical Association.
Estimating life expectancies for US small areas: a regression framework
NASA Astrophysics Data System (ADS)
Congdon, Peter
2014-01-01
Analysis of area mortality variations and estimation of area life tables raise methodological questions relevant to assessing spatial clustering, and socioeconomic inequalities in mortality. Existing small area analyses of US life expectancy variation generally adopt ad hoc amalgamations of counties to alleviate potential instability of mortality rates involved in deriving life tables, and use conventional life table analysis which takes no account of correlated mortality for adjacent areas or ages. The alternative strategy here uses structured random effects methods that recognize correlations between adjacent ages and areas, and allows retention of the original county boundaries. This strategy generalizes to include effects of area category (e.g. poverty status, ethnic mix), allowing estimation of life tables according to area category, and providing additional stabilization of estimated life table functions. This approach is used here to estimate stabilized mortality rates, derive life expectancies in US counties, and assess trends in clustering and in inequality according to county poverty category.
Geospatial Resource Access Analysis In Hedaru, Tanzania
NASA Astrophysics Data System (ADS)
Clark, Dylan G.; Premkumar, Deepak; Mazur, Robert; Kisimbo, Elibariki
2013-12-01
Populations around the world are facing increased impacts of anthropogenic-induced environmental changes and rapid population movements. These environmental and social shifts are having an elevated impact on the livelihoods of agriculturalists and pastoralists in developing countries. This appraisal integrates various tools—usually used independently— to gain a comprehensive understanding of the regional livelihood constraints in the rural Hedaru Valley of northeastern Tanzania. Conducted in three villages with different natural resources, using three primary methods: 1) participatory mapping of infrastructures; 2) administration of quantitative, spatially-tied surveys (n=80) and focus groups (n=14) that examined land use, household health, education, and demographics; 3) conducting quantitative time series analysis of Landsat- based Normalized Difference Vegetation Index images. Through various geospatial and multivariate linear regression analyses, significant geospatial trends emerged. This research added to the academic understanding of the region while establishing pathways for climate change adaptation strategies.
Mitigation of two pyrethroid insecticides in a Mississippi Delta constructed wetland.
Moore, M T; Cooper, C M; Smith, S; Cullum, R F; Knight, S S; Locke, M A; Bennett, E R
2009-01-01
Constructed wetlands are a suggested best management practice to help mitigate agricultural runoff before entering receiving aquatic ecosystems. A constructed wetland system (180 m x 30 m), comprising a sediment retention basin and two treatment cells, was used to determine the fate and transport of simulated runoff containing the pyrethroid insecticides lambda-cyhalothrin and cyfluthrin, as well as suspended sediment. Wetland water, sediment, and plant samples were collected spatially and temporally over 55 d. Results showed 49 and 76% of the study's measured lambda-cyhalothrin and cyfluthrin masses were associated with vegetation, respectively. Based on conservative effects concentrations for invertebrates and regression analyses of maximum observed wetland aqueous concentrations, a wetland length of 215 m x 30 m width would be required to adequately mitigate 1% pesticide runoff from a 14 ha contributing area. Results of this experiment can be used to model future design specifications for constructed wetland mitigation of pyrethroid insecticides.
Diagnostic efficiency of an ability-focused battery.
Miller, Justin B; Fichtenberg, Norman L; Millis, Scott R
2010-05-01
An ability-focused battery (AFB) is a selected group of well-validated neuropsychological measures that assess the conventional range of cognitive domains. This study examined the diagnostic efficiency of an AFB for use in clinical decision making with a mixed sample composed of individuals with neurological brain dysfunction and individuals referred for cognitive assessment without evidence of neurological disorders. Using logistic regression analyses and ROC curve analysis, a five-domain model composed of attention, processing speed, visual-spatial reasoning, language/verbal reasoning, and memory domain scores was fitted that had an AUC of.89 (95% CI =.84-.95). A more parsimonious two-domain model using processing speed and memory was also fitted that had an AUC of.90 (95% confidence interval =.84-.95). A model composed of a global ability score calculated from the mean of the individual domain scores was also fitted with an AUC of.88 (95% CI =.82-.94).
When mechanism matters: Bayesian forecasting using models of ecological diffusion
Hefley, Trevor J.; Hooten, Mevin B.; Russell, Robin E.; Walsh, Daniel P.; Powell, James A.
2017-01-01
Ecological diffusion is a theory that can be used to understand and forecast spatio-temporal processes such as dispersal, invasion, and the spread of disease. Hierarchical Bayesian modelling provides a framework to make statistical inference and probabilistic forecasts, using mechanistic ecological models. To illustrate, we show how hierarchical Bayesian models of ecological diffusion can be implemented for large data sets that are distributed densely across space and time. The hierarchical Bayesian approach is used to understand and forecast the growth and geographic spread in the prevalence of chronic wasting disease in white-tailed deer (Odocoileus virginianus). We compare statistical inference and forecasts from our hierarchical Bayesian model to phenomenological regression-based methods that are commonly used to analyse spatial occurrence data. The mechanistic statistical model based on ecological diffusion led to important ecological insights, obviated a commonly ignored type of collinearity, and was the most accurate method for forecasting.
NASA Astrophysics Data System (ADS)
Pham, Binh Thai; Prakash, Indra; Tien Bui, Dieu
2018-02-01
A hybrid machine learning approach of Random Subspace (RSS) and Classification And Regression Trees (CART) is proposed to develop a model named RSSCART for spatial prediction of landslides. This model is a combination of the RSS method which is known as an efficient ensemble technique and the CART which is a state of the art classifier. The Luc Yen district of Yen Bai province, a prominent landslide prone area of Viet Nam, was selected for the model development. Performance of the RSSCART model was evaluated through the Receiver Operating Characteristic (ROC) curve, statistical analysis methods, and the Chi Square test. Results were compared with other benchmark landslide models namely Support Vector Machines (SVM), single CART, Naïve Bayes Trees (NBT), and Logistic Regression (LR). In the development of model, ten important landslide affecting factors related with geomorphology, geology and geo-environment were considered namely slope angles, elevation, slope aspect, curvature, lithology, distance to faults, distance to rivers, distance to roads, and rainfall. Performance of the RSSCART model (AUC = 0.841) is the best compared with other popular landslide models namely SVM (0.835), single CART (0.822), NBT (0.821), and LR (0.723). These results indicate that performance of the RSSCART is a promising method for spatial landslide prediction.
Ahearn, Elizabeth A.
2004-01-01
Multiple linear-regression equations were developed to estimate the magnitudes of floods in Connecticut for recurrence intervals ranging from 2 to 500 years. The equations can be used for nonurban, unregulated stream sites in Connecticut with drainage areas ranging from about 2 to 715 square miles. Flood-frequency data and hydrologic characteristics from 70 streamflow-gaging stations and the upstream drainage basins were used to develop the equations. The hydrologic characteristics?drainage area, mean basin elevation, and 24-hour rainfall?are used in the equations to estimate the magnitude of floods. Average standard errors of prediction for the equations are 31.8, 32.7, 34.4, 35.9, 37.6 and 45.0 percent for the 2-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals, respectively. Simplified equations using only one hydrologic characteristic?drainage area?also were developed. The regression analysis is based on generalized least-squares regression techniques. Observed flows (log-Pearson Type III analysis of the annual maximum flows) from five streamflow-gaging stations in urban basins in Connecticut were compared to flows estimated from national three-parameter and seven-parameter urban regression equations. The comparison shows that the three- and seven- parameter equations used in conjunction with the new statewide equations generally provide reasonable estimates of flood flows for urban sites in Connecticut, although a national urban flood-frequency study indicated that the three-parameter equations significantly underestimated flood flows in many regions of the country. Verification of the accuracy of the three-parameter or seven-parameter national regression equations using new data from Connecticut stations was beyond the scope of this study. A technique for calculating flood flows at streamflow-gaging stations using a weighted average also is described. Two estimates of flood flows?one estimate based on the log-Pearson Type III analyses of the annual maximum flows at the gaging station, and the other estimate from the regression equation?are weighted together based on the years of record at the gaging station and the equivalent years of record value determined from the regression. Weighted averages of flood flows for the 2-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals are tabulated for the 70 streamflow-gaging stations used in the regression analysis. Generally, weighted averages give the most accurate estimate of flood flows at gaging stations. An evaluation of the Connecticut's streamflow-gaging network was performed to determine whether the spatial coverage and range of geographic and hydrologic conditions are adequately represented for transferring flood characteristics from gaged to ungaged sites. Fifty-one of 54 stations in the current (2004) network support one or more flood needs of federal, state, and local agencies. Twenty-five of 54 stations in the current network are considered high-priority stations by the U.S. Geological Survey because of their contribution to the longterm understanding of floods, and their application for regionalflood analysis. Enhancements to the network to improve overall effectiveness for regionalization can be made by increasing the spatial coverage of gaging stations, establishing stations in regions of the state that are not well-represented, and adding stations in basins with drainage area sizes not represented. Additionally, the usefulness of the network for characterizing floods can be maintained and improved by continuing operation at the current stations because flood flows can be more accurately estimated at stations with continuous, long-term record.
Maternal adiposity negatively influences infant brain white matter development.
Ou, Xiawei; Thakali, Keshari M; Shankar, Kartik; Andres, Aline; Badger, Thomas M
2015-05-01
To study potential effects of maternal body composition on central nervous system (CNS) development of newborn infants. Diffusion tensor imaging (DTI) was used to evaluate brain white matter development in 2-week-old, full-term, appropriate for gestational age (AGA) infants from uncomplicated pregnancies of normal-weight (BMI < 25 at conception) or obese ( BMI = 30 at conception) and otherwise healthy mothers. Tract-based spatial statistics (TBSS) analyses were used for voxel-wise group comparison of fractional anisotropy (FA), a sensitive measure of white matter integrity. DNA methylation analyses of umbilical cord tissue focused on genes known to be important in CNS development were also performed. Newborns from obese women had significantly lower FA values in multiple white matter regions than those born of normal-weight mothers. Global and regional FA values negatively correlated (P < 0.05) with maternal fat mass percentage. Linear regression analysis followed by gene ontology enrichment showed that methylation status of 68 CpG sites representing 57 genes with GO terms related to CNS development was significantly associated with maternal adiposity status. These results suggest a negative association between maternal adiposity and white matter development in offspring. © 2015 The Obesity Society.
An Investigation of Executive Functioning in Pediatric Anxiety.
Murphy, Yolanda E; Luke, Anna; Brennan, Elle; Francazio, Sarah; Christopher, Isabella; Flessner, Christopher A
2018-01-01
Although science's understanding (e.g., etiology, maintaining factors, etc.) of pediatric anxiety and related problems has grown substantially over recent years, several aspects to anxiety in youths remain elusive, particularly with relation to executive functioning. To this end, the current study sought to examine several facets to executive functioning (i.e., cognitive flexibility, inhibition, planning, working memory) within a transdiagnostic sample of youths exhibiting varying degrees of anxiety symptoms. One hundred six youths completed a comprehensive battery, including several self-report measures (e.g., Multidimensional Anxiety Scale for Children [MASC] or MASC-2) and an automated neurocognitive battery of several executive functioning tasks (Intradimensional/Extradimensional [IDED], Stop Signal [SST], Spatial Span [SSP], Stockings of Cambridge [SOC] tasks). Regression analyses indicated that youths exhibiting marked anxiety symptoms demonstrated increased planning time and probability of inhibition compared with youths with minimal or no anxiety symptoms. Youths with marked anxiety symptoms similarly demonstrated better cognitive flexibility (i.e., set shifting) compared with youths with minimal anxiety. In addition, analyses indicated a trend such that youths exhibiting marked anxiety symptoms demonstrated poorer working memory compared with youths with no anxiety symptoms. Group classification did not predict remaining outcomes. Limitations and future areas of research are discussed.