Sample records for spatial resolution land

  1. Improving urban land use and land cover classification from high-spatial-resolution hyperspectral imagery using contextual information

    USDA-ARS?s Scientific Manuscript database

    In this paper, we propose approaches to improve the pixel-based support vector machine (SVM) classification for urban land use and land cover (LULC) mapping from airborne hyperspectral imagery with high spatial resolution. Class spatial neighborhood relationship is used to correct the misclassified ...

  2. Effects of spatial resolution and landscape structure on land cover characterization

    NASA Astrophysics Data System (ADS)

    Yang, Wenli

    This dissertation addressed problems in scaling, problems that are among the main challenges in remote sensing. The principal objective of the research was to investigate the effects of changing spatial scale on the representation of land cover. A second objective was to determine the relationship between such effects, characteristics of landscape structure and scaling procedures. Four research issues related to spatial scaling were examined. They included: (1) the upscaling of Normalized Difference Vegetation Index (NDVI); (2) the effects of spatial scale on indices of landscape structure; (3) the representation of land cover databases at different spatial scales; and (4) the relationships between landscape indices and land cover area estimations. The overall bias resulting from non-linearity of NDVI in relation to spatial resolution is generally insignificant as compared to other factors such as influences of aerosols and water vapor. The bias is, however, related to land surface characteristics. Significant errors may be introduced in heterogeneous areas where different land cover types exhibit strong spectral contrast. Spatially upscaled SPOT and TM NDVIs have information content comparable with the AVHRR-derived NDVI. Indices of landscape structure and spatial resolution are generally related, but the exact forms of the relationships are subject to changes in other factors including the basic patch unit constituting a landscape and the proportional area of foreground land cover under consideration. The extent of agreement between spatially aggregated coarse resolution land cover datasets and full resolution datasets changes with the properties of the original datasets, including the pixel size and class definition. There are close relationships between landscape structure and class areas estimated from spatially aggregated land cover databases. The relationships, however, do not permit extension from one area to another. Inversion calibration across different geographic/ecological areas is, therefore, not feasible. Different rules govern the land cover area changes across resolutions when different upscaling methods are used. Special attention should be given to comparison between land cover maps derived using different methods.

  3. Land cover mapping and change detection in urban watersheds using QuickBird high spatial resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Hester, David Barry

    The objective of this research was to develop methods for urban land cover analysis using QuickBird high spatial resolution satellite imagery. Such imagery has emerged as a rich commercially available remote sensing data source and has enjoyed high-profile broadcast news media and Internet applications, but methods of quantitative analysis have not been thoroughly explored. The research described here consists of three studies focused on the use of pan-sharpened 61-cm spatial resolution QuickBird imagery, the spatial resolution of which is the highest of any commercial satellite. In the first study, a per-pixel land cover classification method is developed for use with this imagery. This method utilizes a per-pixel classification approach to generate an accurate six-category high spatial resolution land cover map of a developing suburban area. The primary objective of the second study was to develop an accurate land cover change detection method for use with QuickBird land cover products. This work presents an efficient fuzzy framework for transforming map uncertainty into accurate and meaningful high spatial resolution land cover change analysis. The third study described here is an urban planning application of the high spatial resolution QuickBird-based land cover product developed in the first study. This work both meaningfully connects this exciting new data source to urban watershed management and makes an important empirical contribution to the study of suburban watersheds. Its analysis of residential roads and driveways as well as retail parking lots sheds valuable light on the impact of transportation-related land use on the suburban landscape. Broadly, these studies provide new methods for using state-of-the-art remote sensing data to inform land cover analysis and urban planning. These methods are widely adaptable and produce land cover products that are both meaningful and accurate. As additional high spatial resolution satellites are launched and the cost of high resolution imagery continues to decline, this research makes an important contribution to this exciting era in the science of remote sensing.

  4. Generation of High Resolution Land Surface Parameters in the Community Land Model

    NASA Astrophysics Data System (ADS)

    Ke, Y.; Coleman, A. M.; Wigmosta, M. S.; Leung, L.; Huang, M.; Li, H.

    2010-12-01

    The Community Land Model (CLM) is the land surface model used for the Community Atmosphere Model (CAM) and the Community Climate System Model (CCSM). It examines the physical, chemical, and biological processes across a variety of spatial and temporal scales. Currently, efforts are being made to improve the spatial resolution of the CLM, in part, to represent finer scale hydrologic characteristics. Current land surface parameters of CLM4.0, in particular plant functional types (PFT) and leaf area index (LAI), are generated from MODIS and calculated at a 0.05 degree resolution. These MODIS-derived land surface parameters have also been aggregated to coarser resolutions (e.g., 0.5, 1.0 degrees). To evaluate the response of CLM across various spatial scales, higher spatial resolution land surface parameters need to be generated. In this study we examine the use of Landsat TM/ETM+ imagery and data fusion techniques for generating land surface parameters at a 1km resolution within the Pacific Northwest United States. . Land cover types and PFTs are classified based on Landsat multi-season spectral information, DEM, National Land Cover Database (NLCD) and the USDA-NASS Crop Data Layer (CDL). For each PFT, relationships between MOD15A2 high quality LAI values, Landsat-based vegetation indices, climate variables, terrain, and laser-altimeter derived vegetation height are used to generate monthly LAI values at a 30m resolution. The high-resolution PFT and LAI data are aggregated to create a 1km model grid resolution. An evaluation and comparison of CLM land surface response at both fine and moderate scale is presented.

  5. Mapping land cover change over continental Africa using Landsat and Google Earth Engine cloud computing.

    PubMed

    Midekisa, Alemayehu; Holl, Felix; Savory, David J; Andrade-Pacheco, Ricardo; Gething, Peter W; Bennett, Adam; Sturrock, Hugh J W

    2017-01-01

    Quantifying and monitoring the spatial and temporal dynamics of the global land cover is critical for better understanding many of the Earth's land surface processes. However, the lack of regularly updated, continental-scale, and high spatial resolution (30 m) land cover data limit our ability to better understand the spatial extent and the temporal dynamics of land surface changes. Despite the free availability of high spatial resolution Landsat satellite data, continental-scale land cover mapping using high resolution Landsat satellite data was not feasible until now due to the need for high-performance computing to store, process, and analyze this large volume of high resolution satellite data. In this study, we present an approach to quantify continental land cover and impervious surface changes over a long period of time (15 years) using high resolution Landsat satellite observations and Google Earth Engine cloud computing platform. The approach applied here to overcome the computational challenges of handling big earth observation data by using cloud computing can help scientists and practitioners who lack high-performance computational resources.

  6. Mapping land cover change over continental Africa using Landsat and Google Earth Engine cloud computing

    PubMed Central

    Holl, Felix; Savory, David J.; Andrade-Pacheco, Ricardo; Gething, Peter W.; Bennett, Adam; Sturrock, Hugh J. W.

    2017-01-01

    Quantifying and monitoring the spatial and temporal dynamics of the global land cover is critical for better understanding many of the Earth’s land surface processes. However, the lack of regularly updated, continental-scale, and high spatial resolution (30 m) land cover data limit our ability to better understand the spatial extent and the temporal dynamics of land surface changes. Despite the free availability of high spatial resolution Landsat satellite data, continental-scale land cover mapping using high resolution Landsat satellite data was not feasible until now due to the need for high-performance computing to store, process, and analyze this large volume of high resolution satellite data. In this study, we present an approach to quantify continental land cover and impervious surface changes over a long period of time (15 years) using high resolution Landsat satellite observations and Google Earth Engine cloud computing platform. The approach applied here to overcome the computational challenges of handling big earth observation data by using cloud computing can help scientists and practitioners who lack high-performance computational resources. PMID:28953943

  7. a Spiral-Based Downscaling Method for Generating 30 M Time Series Image Data

    NASA Astrophysics Data System (ADS)

    Liu, B.; Chen, J.; Xing, H.; Wu, H.; Zhang, J.

    2017-09-01

    The spatial detail and updating frequency of land cover data are important factors influencing land surface dynamic monitoring applications in high spatial resolution scale. However, the fragmentized patches and seasonal variable of some land cover types (e. g. small crop field, wetland) make it labor-intensive and difficult in the generation of land cover data. Utilizing the high spatial resolution multi-temporal image data is a possible solution. Unfortunately, the spatial and temporal resolution of available remote sensing data like Landsat or MODIS datasets can hardly satisfy the minimum mapping unit and frequency of current land cover mapping / updating at the same time. The generation of high resolution time series may be a compromise to cover the shortage in land cover updating process. One of popular way is to downscale multi-temporal MODIS data with other high spatial resolution auxiliary data like Landsat. But the usual manner of downscaling pixel based on a window may lead to the underdetermined problem in heterogeneous area, result in the uncertainty of some high spatial resolution pixels. Therefore, the downscaled multi-temporal data can hardly reach high spatial resolution as Landsat data. A spiral based method was introduced to downscale low spatial and high temporal resolution image data to high spatial and high temporal resolution image data. By the way of searching the similar pixels around the adjacent region based on the spiral, the pixel set was made up in the adjacent region pixel by pixel. The underdetermined problem is prevented to a large extent from solving the linear system when adopting the pixel set constructed. With the help of ordinary least squares, the method inverted the endmember values of linear system. The high spatial resolution image was reconstructed on the basis of high spatial resolution class map and the endmember values band by band. Then, the high spatial resolution time series was formed with these high spatial resolution images image by image. Simulated experiment and remote sensing image downscaling experiment were conducted. In simulated experiment, the 30 meters class map dataset Globeland30 was adopted to investigate the effect on avoid the underdetermined problem in downscaling procedure and a comparison between spiral and window was conducted. Further, the MODIS NDVI and Landsat image data was adopted to generate the 30m time series NDVI in remote sensing image downscaling experiment. Simulated experiment results showed that the proposed method had a robust performance in downscaling pixel in heterogeneous region and indicated that it was superior to the traditional window-based methods. The high resolution time series generated may be a benefit to the mapping and updating of land cover data.

  8. Comparing long-term geomorphic model outcomes with sediment archives highlights the need for high-resolution Holocene land cover reconstructions

    NASA Astrophysics Data System (ADS)

    De Brue, Hanne; Verstraeten, Gert

    2013-04-01

    During the last decade, several global land cover reconstructions have been produced that enable to quantify human impact on the landscape since the introduction of agriculture. Application of these land cover maps in geomorphic models potentially allows to estimate the anthropogenic impact on sediment fluxes and thus to reconstruct changes in landscape morphology through time. However, current land cover reconstructions face some drawbacks. First of all, their low spatial resolution (i.e. 5 arc-minutes at best) questions their use in geomorphic models, as sub-catchment vegetation patterns play an important role in sediment dynamics. Existing global land cover reconstructions also do not differentiate the typology of human impact (cropland, grazing land, disturbed forests), although the susceptibility of different anthropogenic land uses towards erosion varies greatly. Finally, the various land cover reconstructions differ significantly regarding the estimated intensity of human impact for the preindustrial period. In this study, we assessed the performance of a spatially distributed erosion and sediment redistribution model that operates at high resolution (100 m) to the quality and spatial resolution of input land cover maps. This was done through a comparison of two sets of model runs. Firstly, low-resolution land cover (expressed as percentage of non-natural vegetation) maps were resampled to a spatial resolution of 100 m without differentiation of non-natural vegetation types. For the second set of model runs, estimated non-natural vegetation was differentiated in areas of cropland and grassland, and spatially allocated to a high-resolution grid (100 m) using a logistic model that relates contemporary land cover classes to slope, soil characteristics, landforms and distance to rivers. For both land cover maps, different scenarios for the ratio between cropland and grassland were simulated. Analyses were performed for several time periods throughout the Holocene, for the Scheldt River Basin (19,000 km2) in Belgium and northern France. Results indicate that low-resolution land cover information, regardless of the considered cropland/grassland ratio, leads to largely overestimated sediment fluxes when compared to field-based sediment budgets. Allocation of land cover to a higher spatial resolution yields far better results. Variations in model outcomes are related to differences in landscape connectivity between allocated and non-allocated land cover. These results point towards the need for higher-resolution land cover maps that incorporate the patchiness of vegetation at relevant scales regarding geomorphic processes. Also, model results with allocated and non-allocated land cover maps differ greatly for different cropland/grassland ratios. This indicates that there is not only a need for land cover reconstructions at high spatial resolution, but also that differentiation between cropland and grassland is essential for accurate geomorphic modeling. Further improvements in land cover reconstructions are thus needed before reliable quantitative estimates of anthropogenic impact on soil profiles and sediment redistribution can be simulated at continental scales. Detailed historic sediment budgets can provide an important tool not only for validating but also for reconstructing land cover histories.

  9. Spatial heterogeneity of leaf area index across scales from simulation and remote sensing

    NASA Astrophysics Data System (ADS)

    Reichenau, Tim G.; Korres, Wolfgang; Montzka, Carsten; Schneider, Karl

    2016-04-01

    Leaf area index (LAI, single sided leaf area per ground area) influences mass and energy exchange of vegetated surfaces. Therefore LAI is an input variable for many land surface schemes of coupled large scale models, which do not simulate LAI. Since these models typically run on rather coarse resolution grids, LAI is often inferred from coarse resolution remote sensing. However, especially in agriculturally used areas, a grid cell of these products often covers more than a single land-use. In that case, the given LAI does not apply to any single land-use. Therefore, the overall spatial heterogeneity in these datasets differs from that on resolutions high enough to distinguish areas with differing land-use. Detailed process-based plant growth models simulate LAI for separate plant functional types or specific species. However, limited availability of observations causes reduced spatial heterogeneity of model input data (soil, weather, land-use). Since LAI is strongly heterogeneous in space and time and since processes depend on LAI in a nonlinear way, a correct representation of LAI spatial heterogeneity is also desirable on coarse resolutions. The current study assesses this issue by comparing the spatial heterogeneity of LAI from remote sensing (RapidEye) and process-based simulations (DANUBIA simulation system) across scales. Spatial heterogeneity is assessed by analyzing LAI frequency distributions (spatial variability) and semivariograms (spatial structure). Test case is the arable land in the fertile loess plain of the Rur catchment near the Germany-Netherlands border.

  10. Downscaling of Seasonal Landsat-8 and MODIS Land Surface Temperature (LST) in Kolkata, India

    NASA Astrophysics Data System (ADS)

    Garg, R. D.; Guha, S.; Mondal, A.; Lakshmi, V.; Kundu, S.

    2017-12-01

    The quality of life of urban people is affected by urban heat environment. The urban heat studies can be carried out using remotely sensed thermal infrared imagery for retrieving Land Surface Temperature (LST). Currently, high spatial resolution (<200 m) thermal images are limited and their temporal resolution is low (e.g., 17 days of Landsat-8). Coarse spatial resolution (1000 m) and high temporal resolution (daily) thermal images of MODIS (Moderate Resolution Imaging Spectroradiometer) are frequently available. The present study is to downscale spatially coarser resolution of the thermal image to fine resolution thermal image using regression based downscaling technique. This method is based on the relationship between (LST) and vegetation indices (e.g., Normalized Difference Vegetation Index or NDVI) over a heterogeneous landscape. The Kolkata metropolitan city, which experiences a tropical wet-and-dry type of climate has been selected for the study. This study applied different seasonal open source satellite images viz., Landsat-8 and Terra MODIS. The Landsat-8 images are aggregated at 960 m resolution and downscaled into 480, 240 120 and 60 m. Optical and thermal resolution of Landsat-8 and MODIS are 30 m and 60 m; 250 m and 1000 m respectively. The homogeneous land cover areas have shown better accuracy than heterogeneous land cover areas. The downscaling method plays a crucial role while the spatial resolution of thermal band renders it unable for advanced study. Key words: Land Surface Temperature (LST), Downscale, MODIS, Landsat, Kolkata

  11. Mapping Chinese tallow with color-infrared photography

    USGS Publications Warehouse

    Ramsey, Elijah W.; Nelson, G.A.; Sapkota, S.K.; Seeger, E.B.; Martella, K.D.

    2002-01-01

    Airborne color-infrared photography (CIR) (1:12,000 scale) was used to map localized occurrences of the widespread and aggressive Chinese tallow (Sapium sebiferum), an invasive species. Photography was collected during senescence when Chinese tallow's bright red leaves presented a high spectral contrast within the native bottomland hardwood and upland forests and marsh land-cover types. Mapped occurrences were conservative because not all senescing tallow leaves are bright red simultaneously. To simulate low spectral but high spatial resolution satellite/airborne image and digital video data, the CIR photography was transformed into raster images at spatial resolutions approximating 0.5 in and 1.0 m. The image data were then spectrally classified for the occurrence of bright red leaves associated with senescing Chinese tallow. Classification accuracies were greater than 95 percent at both spatial resolutions. There was no significant difference in either forest in the detection of tallow or inclusion of non-tallow trees associated with the two spatial resolutions. In marshes, slightly more tallow occurrences were mapped with the lower spatial resolution, but there were also more misclassifications of native land covers as tallow. Combining all land covers, there was no difference at detecting tallow occurrences (equal omission errors) between the two resolutions, but the higher spatial resolution was associated with less inclusion of non-tallow land covers as tallow (lower commission error). Overall, these results confirm that high spatial (???1 m) but low spectral resolution remote sensing data can be used for mapping Chinese tallow trees in dominant environments found in coastal and adjacent upland landscapes.

  12. Effects of satellite image spatial aggregation and resolution on estimates of forest land area

    Treesearch

    M.D. Nelson; R.E. McRoberts; G.R. Holden; M.E. Bauer

    2009-01-01

    Satellite imagery is being used increasingly in association with national forest inventories (NFIs) to produce maps and enhance estimates of forest attributes. We simulated several image spatial resolutions within sparsely and heavily forested study areas to assess resolution effects on estimates of forest land area, independent of other sensor characteristics. We...

  13. Effects of vegetation heterogeneity and surface topography on spatial scaling of net primary productivity

    NASA Astrophysics Data System (ADS)

    Chen, J. M.; Chen, X.; Ju, W.

    2013-03-01

    Due to the heterogeneous nature of the land surface, spatial scaling is an inevitable issue in the development of land models coupled with low-resolution Earth system models (ESMs) for predicting land-atmosphere interactions and carbon-climate feedbacks. In this study, a simple spatial scaling algorithm is developed to correct errors in net primary productivity (NPP) estimates made at a coarse spatial resolution based on sub-pixel information of vegetation heterogeneity and surface topography. An eco-hydrological model BEPS-TerrainLab, which considers both vegetation and topographical effects on the vertical and lateral water flows and the carbon cycle, is used to simulate NPP at 30 m and 1 km resolutions for a 5700 km2 watershed with an elevation range from 518 m to 3767 m in the Qinling Mountain, Shaanxi Province, China. Assuming that the NPP simulated at 30 m resolution represents the reality and that at 1 km resolution is subject to errors due to sub-pixel heterogeneity, a spatial scaling index (SSI) is developed to correct the coarse resolution NPP values pixel by pixel. The agreement between the NPP values at these two resolutions is improved considerably from R2 = 0.782 to R2 = 0.884 after the correction. The mean bias error (MBE) in NPP modeled at the 1 km resolution is reduced from 14.8 g C m-2 yr-1 to 4.8 g C m-2 yr-1 in comparison with NPP modeled at 30 m resolution, where the mean NPP is 668 g C m-2 yr-1. The range of spatial variations of NPP at 30 m resolution is larger than that at 1 km resolution. Land cover fraction is the most important vegetation factor to be considered in NPP spatial scaling, and slope is the most important topographical factor for NPP spatial scaling especially in mountainous areas, because of its influence on the lateral water redistribution, affecting water table, soil moisture and plant growth. Other factors including leaf area index (LAI), elevation and aspect have small and additive effects on improving the spatial scaling between these two resolutions.

  14. Effects of vegetation heterogeneity and surface topography on spatial scaling of net primary productivity

    NASA Astrophysics Data System (ADS)

    Chen, J. M.; Chen, X.; Ju, W.

    2013-07-01

    Due to the heterogeneous nature of the land surface, spatial scaling is an inevitable issue in the development of land models coupled with low-resolution Earth system models (ESMs) for predicting land-atmosphere interactions and carbon-climate feedbacks. In this study, a simple spatial scaling algorithm is developed to correct errors in net primary productivity (NPP) estimates made at a coarse spatial resolution based on sub-pixel information of vegetation heterogeneity and surface topography. An eco-hydrological model BEPS-TerrainLab, which considers both vegetation and topographical effects on the vertical and lateral water flows and the carbon cycle, is used to simulate NPP at 30 m and 1 km resolutions for a 5700 km2 watershed with an elevation range from 518 m to 3767 m in the Qinling Mountain, Shanxi Province, China. Assuming that the NPP simulated at 30 m resolution represents the reality and that at 1 km resolution is subject to errors due to sub-pixel heterogeneity, a spatial scaling index (SSI) is developed to correct the coarse resolution NPP values pixel by pixel. The agreement between the NPP values at these two resolutions is improved considerably from R2 = 0.782 to R2 = 0.884 after the correction. The mean bias error (MBE) in NPP modelled at the 1 km resolution is reduced from 14.8 g C m-2 yr-1 to 4.8 g C m-2 yr-1 in comparison with NPP modelled at 30 m resolution, where the mean NPP is 668 g C m-2 yr-1. The range of spatial variations of NPP at 30 m resolution is larger than that at 1 km resolution. Land cover fraction is the most important vegetation factor to be considered in NPP spatial scaling, and slope is the most important topographical factor for NPP spatial scaling especially in mountainous areas, because of its influence on the lateral water redistribution, affecting water table, soil moisture and plant growth. Other factors including leaf area index (LAI) and elevation have small and additive effects on improving the spatial scaling between these two resolutions.

  15. Multisource Imaging of Seasonal Dynamics in Land Surface Phenology Using Harmonized Landsat and Sentinel-2 Data

    NASA Astrophysics Data System (ADS)

    Melaas, E. K.; Graesser, J.; Friedl, M. A.

    2017-12-01

    Land surface phenology, including the timing of phenophase transitions and the entire seasonal cycle of surface reflectance and vegetation indices, is important for a myriad of applications including monitoring the response of terrestrial ecosystems to climate variability and extreme events, and land cover mapping. While methods to monitor and map phenology from coarse spatial resolution instruments such as MODIS are now relatively mature, the spatial resolution of these instruments is inadequate where vegetation properties, land use, and land cover vary at spatial scales of tens of meters. To address this need, algorithms to map phenology at moderate spatial resolution (30 m) using data from Landsat have recently been developed. However, the 16-day repeat cycle of Landsat presents significant challenges in regions where changes are rapid or where cloud cover reduces the frequency of clear-sky views. The European Space Agency's Sentinel-2 satellites, which are designed to provide moderate spatial resolution data at 5-day revisit frequency near the equator and 3 day revisit frequency in the mid-latitudes, will alleviate this constraint in many parts of the world. Here, we use harmonized time series of data from Sentinel-2A and Landsat OLI (HLS) to quantify the timing of land surface phenology metrics across a sample of deciduous forest and grassland-dominated sites, and then compare these estimates with co-located in situ observations. The resulting phenology maps demonstrate the improved information related to landscape-scale features that can be estimated from HLS data relative to comparable metrics from coarse spatial resolution instruments. For example, our results based on HLS data reveal spatial patterns in phenological metrics related to topographic and land cover controls that are not resolved in MODIS data, and show good agreement with transition dates observed from in situ measurements. Our results also show systematic bias toward earlier timing of spring, which is caused by inadequate density of observations that will be mitigated once data from Sentinel-2B are available. Overall, our results highlight the potential for using moderate spatial resolution data from Landsat and Sentinel-2 for developing operational phenology algorithms and products in support of the science community.

  16. High Resolution Land Surface Modeling with the next generation Land Data Assimilation Systems

    NASA Astrophysics Data System (ADS)

    Kumar, S. V.; Eylander, J.; Peters-Lidard, C.

    2005-12-01

    Knowledge of land surface processes is important to many real-world applications such as agricultural production, water resources management, and flood predication. The Air Force Weather Agency (AFWA) has provided the USDA and other customers global soil moisture and temperature data for the past 30 years using the agrometeorological data assimilation model (now called AGRMET), merging atmospheric data. Further, accurate initialization of land surface conditions has been shown to greatly influence and improve weather forecast model and seasonal-to-interannual climate predictions. The AFWA AGRMET model exploits real time precipitation observations and analyses, global forecast model and satellite data to generate global estimates of soil moisture, soil temperature and other land surface states at 48km spatial resolution. However, to truly address the land surface initialization and climate prediction problem, and to mitigate the errors introduced by the differences in spatial scales of models, representations of land surface conditions need to be developed at the same fine scales such as that of cloud resolving models. NASA's Goddard Space Flight Center has developed an offline land data assimilation system known as the Land Information System (LIS) capable of modeling land atmosphere interactions at spatial resolutions as fine as 1km. LIS provides a software architecture that integrates the use of the state of the art land surface models, data assimilation techniques, and high performance computing and data management tools. LIS also employs many high resolution surface parameters such as the NASA Earth Observing System (EOS)-era products. In this study we describe the development of a next generation high resolution land surface modeling and data assimilation system, combining the capabilities of LIS and AGRMET. We investigate the influence of high resolution land surface data and observations on the land surface conditions by comparing with the operational AGRMET outputs.

  17. Spatial scaling of net primary productivity using subpixel landcover information

    NASA Astrophysics Data System (ADS)

    Chen, X. F.; Chen, Jing M.; Ju, Wei M.; Ren, L. L.

    2008-10-01

    Gridding the land surface into coarse homogeneous pixels may cause important biases on ecosystem model estimations of carbon budget components at local, regional and global scales. These biases result from overlooking subpixel variability of land surface characteristics. Vegetation heterogeneity is an important factor introducing biases in regional ecological modeling, especially when the modeling is made on large grids. This study suggests a simple algorithm that uses subpixel information on the spatial variability of land cover type to correct net primary productivity (NPP) estimates, made at coarse spatial resolutions where the land surface is considered as homogeneous within each pixel. The algorithm operates in such a way that NPP obtained from calculations made at coarse spatial resolutions are multiplied by simple functions that attempt to reproduce the effects of subpixel variability of land cover type on NPP. Its application to a carbon-hydrology coupled model(BEPS-TerrainLab model) estimates made at a 1-km resolution over a watershed (named Baohe River Basin) located in the southwestern part of Qinling Mountains, Shaanxi Province, China, improved estimates of average NPP as well as its spatial variability.

  18. The influence of spectral and spatial resolution in classification approaches: Landsat TM data vs. Hyperspectral data

    NASA Astrophysics Data System (ADS)

    Rodríguez-Galiano, Víctor; Garcia-Soldado, Maria José; Chica-Olmo, Mario

    The importance of accurate and timely information describing the nature and extent of land and natural resources is increasing especially in rapidly growing metropolitan areas. While metropolitan area decision makers are in constant need of current geospatial information on patterns and trends in land cover and land use, relatively little researchers has investigated the influence of the satellite data resolution for monitoring geo-enviromental information. In this research a suite of remote sensing and GIS techniques is applied in a land use mapping study. The main task is to asses the influence of the spatial and spectral resolution in the separability between classes and in the classificatiońs accuracy. This study has been focused in a very dynamical area with respect to land use, located in the province of Granada (SE of Spain). The classifications results of the Airborne Hyperspectral Scanner (AHS, Daedalus Enterprise Inc., WA, EEUU) at different spatial resolutions: 2, 4 and 6 m and Landsat 5 TM data have been compared.

  19. Examples of Level Products Possible from Existing Assets

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.

    2012-01-01

    How do patterns of human environmental and infectious diseases respond to leading environmental changes, particularly to urban growth and change and the associated impacts of urbanization? We use HyspIRI high spatial resolution, multispectral, and multitemporal TIR data to track energy balance and energy flux characteristics for changing land covers/land uses through time to provide synoptic views of impacts on surface energy fluxes, emissivity and temperature and HyspIRI data in conjunction with spatial growth models to project land cover/land use changes in the future to assess impacts on natural and human ecosystems. We use multispectral thermal IR land cover maps at a high spatial resolution (60m) on a weekly basis for long-term validation of surface energy responses and changes in emissivity and integration of HyspIRI TIR data with spatial modeling to assess changes in land cover/land use through time and subsequent changes in thermal energy responses

  20. Classification of High Spatial Resolution, Hyperspectral Remote Sensing Imagery of the Little Miami River Watershed in Southwest Ohio, USA (Final)

    EPA Science Inventory

    EPA announced the availability of the final report,. This report and associated land use/land cover (LULC) coverage is the result o...

  1. Introducing MISR Version 23: Resolution and Content Improvements to MISR Aerosol and Land Surface Product

    NASA Astrophysics Data System (ADS)

    Garay, M. J.; Bull, M. A.; Witek, M. L.; Diner, D. J.; Seidel, F.

    2017-12-01

    Since early 2000, the Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite has been providing operational Level 2 (swath-based) aerosol optical depth (AOD) and particle property retrievals at 17.6 km spatial resolution and atmospherically corrected land surface products at 1.1 km resolution. A major, multi-year development effort has led to the release of updated operational MISR Level 2 aerosol and land surface retrieval products. The spatial resolution of the aerosol product has been increased to 4.4 km, allowing more detailed characterization of aerosol spatial variability, especially near local sources and in urban areas. The product content has been simplified and updated to include more robust measures of retrieval uncertainty and other fields to benefit users. The land surface product has also been updated to incorporate the Version 23 aerosol product as input and to improve spatial coverage, particularly over mountainous terrain and snow/ice-covered surfaces. We will describe the major upgrades incorporated in Version 23, present validation of the aerosol product, and describe some of the applications enabled by these product updates.

  2. Scaling effects on spring phenology detections from MODIS data at multiple spatial resolutions over the contiguous United States

    NASA Astrophysics Data System (ADS)

    Peng, Dailiang; Zhang, Xiaoyang; Zhang, Bing; Liu, Liangyun; Liu, Xinjie; Huete, Alfredo R.; Huang, Wenjiang; Wang, Siyuan; Luo, Shezhou; Zhang, Xiao; Zhang, Helin

    2017-10-01

    Land surface phenology (LSP) has been widely retrieved from satellite data at multiple spatial resolutions, but the spatial scaling effects on LSP detection are poorly understood. In this study, we collected enhanced vegetation index (EVI, 250 m) from collection 6 MOD13Q1 product over the contiguous United States (CONUS) in 2007 and 2008, and generated a set of multiple spatial resolution EVI data by resampling 250 m to 2 × 250 m and 3 × 250 m, 4 × 250 m, …, 35 × 250 m. These EVI time series were then used to detect the start of spring season (SOS) at various spatial resolutions. Further the SOS variation across scales was examined at each coarse resolution grid (35 × 250 m ≈ 8 km, refer to as reference grid) and ecoregion. Finally, the SOS scaling effects were associated with landscape fragment, proportion of primary land cover type, and spatial variability of seasonal greenness variation within each reference grid. The results revealed the influences of satellite spatial resolutions on SOS retrievals and the related impact factors. Specifically, SOS significantly varied lineally or logarithmically across scales although the relationship could be either positive or negative. The overall SOS values averaged from spatial resolutions between 250 m and 35 × 250 m at large ecosystem regions were generally similar with a difference less than 5 days, while the SOS values within the reference grid could differ greatly in some local areas. Moreover, the standard deviation of SOS across scales in the reference grid was less than 5 days in more than 70% of area over the CONUS, which was smaller in northeastern than in southern and western regions. The SOS scaling effect was significantly associated with heterogeneity of vegetation properties characterized using land landscape fragment, proportion of primary land cover type, and spatial variability of seasonal greenness variation, but the latter was the most important impact factor.

  3. Effect of spatial resolution on remote sensing estimation of total evaporation in the uMngeni catchment, South Africa

    NASA Astrophysics Data System (ADS)

    Shoko, Cletah; Clark, David; Mengistu, Michael; Dube, Timothy; Bulcock, Hartley

    2015-01-01

    This study evaluated the effect of two readily available multispectral sensors: the newly launched 30 m spatial resolution Landsat 8 and the long-serving 1000 m moderate resolution imaging spectroradiometer (MODIS) datasets in the spatial representation of total evaporation in the heterogeneous uMngeni catchment, South Africa, using the surface energy balance system model. The results showed that sensor spatial resolution plays a critical role in the accurate estimation of energy fluxes and total evaporation across a heterogeneous catchment. Landsat 8 estimates showed better spatial representation of the biophysical parameters and total evaporation for different land cover types, due to the relatively higher spatial resolution compared to the coarse spatial resolution MODIS sensor. Moreover, MODIS failed to capture the spatial variations of total evaporation estimates across the catchment. Analysis of variance (ANOVA) results showed that MODIS-based total evaporation estimates did not show any significant differences across different land cover types (one-way ANOVA; F1.924=1.412, p=0.186). However, Landsat 8 images yielded significantly different estimates between different land cover types (one-way ANOVA; F1.993=5.185, p<0.001). The validation results showed that Landsat 8 estimates were more comparable to eddy covariance (EC) measurements than the MODIS-based total evaporation estimates. EC measurement on May 23, 2013, was 3.8 mm/day, whereas the Landsat 8 estimate on the same day was 3.6 mm/day, with MODIS showing significantly lower estimates of 2.3 mm/day. The findings of this study underscore the importance of spatial resolution in estimating spatial variations of total evaporation at the catchment scale, thus, they provide critical information on the relevance of the readily available remote sensing products in water resources management in data-scarce environments.

  4. Long-term, high-spatial resolution carbon balance monitoring of the Amazonian frontier: Predisturbance and postdisturbance carbon emissions and uptake

    NASA Astrophysics Data System (ADS)

    Toomey, Michael; Roberts, Dar A.; Caviglia-Harris, Jill; Cochrane, Mark A.; Dewes, Candida F.; Harris, Daniel; Numata, Izaya; Sales, Marcio H.; Sills, Erin; Souza, Carlos M.

    2013-06-01

    We performed high-spatial and high-temporal resolution modeling of carbon stocks and fluxes in the state of Rondônia, Brazil for the period 1985-2009, using annual Landsat-derived land cover classifications and a modified bookkeeping modeling approach. According to these results, Rondônia contributed 3.5-4% of pantropical humid forest deforestation emissions over this period. Similar to well-known figures reported by the Brazilian Space Agency, we found a decline in deforestation rates since 2006. However, we estimate a lesser decrease, with deforestation rates continuing at levels similar to the early 2000s. Forest carbon stocks declined at an annual rate of 1.51%; emissions from postdisturbance land use nearly equaled those of the initial deforestation events. Carbon uptake by secondary forest was negligible due to limited spatial extent and high turnover rates. Net carbon emissions represented 93% of initial forest carbon stocks, due in part to repeated slash and pasture burnings and secondary forest clearing. We analyzed potential error incurred when spatially aggregating land cover by comparing results based on coarser-resolution (250 m) and full-resolution land cover products. At the coarser resolution, more than 90% of deforestation and secondary forest would be unresolvable, assuming that a 50% change threshold is necessary for detection. Therefore, we strongly suggest the use of Landsat-scale ( 30m) resolution carbon monitoring in tropical regions dominated by nonmechanized, smallholder land use change.

  5. Spatial resolution requirements for urban land cover mapping from space

    NASA Technical Reports Server (NTRS)

    Todd, William J.; Wrigley, Robert C.

    1986-01-01

    Very low resolution (VLR) satellite data (Advanced Very High Resolution Radiometer, DMSP Operational Linescan System), low resolution (LR) data (Landsat MSS), medium resolution (MR) data (Landsat TM), and high resolution (HR) satellite data (Spot HRV, Large Format Camera) were evaluated and compared for interpretability at differing spatial resolutions. VLR data (500 m - 1.0 km) is useful for Level 1 (urban/rural distinction) mapping at 1:1,000,000 scale. Feature tone/color is utilized to distinguish generalized urban land cover using LR data (80 m) for 1:250,000 scale mapping. Advancing to MR data (30 m) and 1:100,000 scale mapping, confidence in land cover mapping is greatly increased, owing to the element of texture/pattern which is now evident in the imagery. Shape and shadow contribute to detailed Level II/III urban land use mapping possible if the interpreter can use HR (10-15 m) satellite data; mapping scales can be 1:25,000 - 1:50,000.

  6. A Review of Land-Cover Mapping Activities in Coastal Alabama and Mississippi

    USGS Publications Warehouse

    Smith, Kathryn E.L.; Nayegandhi, Amar; Brock, John C.

    2010-01-01

    INTRODUCTION Land-use and land-cover (LULC) data provide important information for environmental management. Data pertaining to land-cover and land-management activities are a common requirement for spatial analyses, such as watershed modeling, climate change, and hazard assessment. In coastal areas, land development, storms, and shoreline modification amplify the need for frequent and detailed land-cover datasets. The northern Gulf of Mexico coastal area is no exception. The impact of severe storms, increases in urban area, dramatic changes in land cover, and loss of coastal-wetland habitat all indicate a vital need for reliable and comparable land-cover data. Four main attributes define a land-cover dataset: the date/time of data collection, the spatial resolution, the type of classification, and the source data. The source data are the foundation dataset used to generate LULC classification and are typically remotely sensed data, such as aerial photography or satellite imagery. These source data have a large influence on the final LULC data product, so much so that one can classify LULC datasets into two general groups: LULC data derived from aerial photography and LULC data derived from satellite imagery. The final LULC data can be converted from one format to another (for instance, vector LULC data can be converted into raster data for analysis purposes, and vice versa), but each subsequent dataset maintains the imprint of the source medium within its spatial accuracy and data features. The source data will also influence the spatial and temporal resolution, as well as the type of classification. The intended application of the LULC data typically defines the type of source data and methodology, with satellite imagery being selected for large landscapes (state-wide, national data products) and repeatability (environmental monitoring and change analysis). The coarse spatial scale and lack of refined land-use categories are typical drawbacks to satellite-based land-use classifications. Aerial photography is typically selected for smaller landscapes (watershed-basin scale), for greater definition of the land-use categories, and for increased spatial resolution. Disadvantages of using photography include time-consuming digitization, high costs for imagery collection, and lack of seasonal data. Recently, the availability of high-resolution satellite imagery has generated a new category of LULC data product. These new datasets have similar strengths to the aerial-photo-based LULC in that they possess the potential for refined definition of land-use categories and increased spatial resolution but also have the benefit of satellite-based classifications, such as repeatability for change analysis. LULC classification based on high-resolution satellite imagery is still in the early stages of development but merits greater attention because environmental-monitoring and landscape-modeling programs rely heavily on LULC data. This publication summarizes land-use and land-cover mapping activities for Alabama and Mississippi coastal areas within the U.S. Geological Survey (USGS) Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazard Susceptibility Project boundaries. Existing LULC datasets will be described, as well as imagery data sources and ancillary data that may provide ground-truth or satellite training data for a forthcoming land-cover classification. Finally, potential areas for a high-resolution land-cover classification in the Alabama-Mississippi region will be identified.

  7. Land use change detection based on multi-date imagery from different satellite sensor systems

    NASA Technical Reports Server (NTRS)

    Stow, Douglas A.; Collins, Doretta; Mckinsey, David

    1990-01-01

    An empirical study is conducted to assess the accuracy of land use change detection using satellite image data acquired ten years apart by sensors with differing spatial resolutions. The primary goals of the investigation were to (1) compare standard change detection methods applied to image data of varying spatial resolution, (2) assess whether to transform the raster grid of the higher resolution image data to that of the lower resolution raster grid or vice versa in the registration process, (3) determine if Landsat/Thermatic Mapper or SPOT/High Resolution Visible multispectral data provide more accurate detection of land use changes when registered to historical Landsat/MSS data. It is concluded that image ratioing of multisensor, multidate satellite data produced higher change detection accuracies than did principal components analysis, and that it is useful as a land use change enhancement method.

  8. Analysis of the impact of spatial resolution on land/water classifications using high-resolution aerial imagery

    USGS Publications Warehouse

    Enwright, Nicholas M.; Jones, William R.; Garber, Adrienne L.; Keller, Matthew J.

    2014-01-01

    Long-term monitoring efforts often use remote sensing to track trends in habitat or landscape conditions over time. To most appropriately compare observations over time, long-term monitoring efforts strive for consistency in methods. Thus, advances and changes in technology over time can present a challenge. For instance, modern camera technology has led to an increasing availability of very high-resolution imagery (i.e. submetre and metre) and a shift from analogue to digital photography. While numerous studies have shown that image resolution can impact the accuracy of classifications, most of these studies have focused on the impacts of comparing spatial resolution changes greater than 2 m. Thus, a knowledge gap exists on the impacts of minor changes in spatial resolution (i.e. submetre to about 1.5 m) in very high-resolution aerial imagery (i.e. 2 m resolution or less). This study compared the impact of spatial resolution on land/water classifications of an area dominated by coastal marsh vegetation in Louisiana, USA, using 1:12,000 scale colour-infrared analogue aerial photography (AAP) scanned at four different dot-per-inch resolutions simulating ground sample distances (GSDs) of 0.33, 0.54, 1, and 2 m. Analysis of the impact of spatial resolution on land/water classifications was conducted by exploring various spatial aspects of the classifications including density of waterbodies and frequency distributions in waterbody sizes. This study found that a small-magnitude change (1–1.5 m) in spatial resolution had little to no impact on the amount of water classified (i.e. percentage mapped was less than 1.5%), but had a significant impact on the mapping of very small waterbodies (i.e. waterbodies ≤ 250 m2). These findings should interest those using temporal image classifications derived from very high-resolution aerial photography as a component of long-term monitoring programs.

  9. A non-parametric, supervised classification of vegetation types on the Kaibab National Forest using decision trees

    Treesearch

    Suzanne M. Joy; R. M. Reich; Richard T. Reynolds

    2003-01-01

    Traditional land classification techniques for large areas that use Landsat Thematic Mapper (TM) imagery are typically limited to the fixed spatial resolution of the sensors (30m). However, the study of some ecological processes requires land cover classifications at finer spatial resolutions. We model forest vegetation types on the Kaibab National Forest (KNF) in...

  10. Downscaling Global Land Cover Projections from an Integrated Assessment Model for Use in Regional Analyses: Results and Evaluation for the US from 2005 to 2095

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, Tristram O.; Le Page, Yannick LB; Huang, Maoyi

    2014-06-05

    Projections of land cover change generated from Integrated Assessment Models (IAM) and other economic-based models can be applied for analyses of environmental impacts at subregional and landscape scales. For those IAM and economic models that project land use at the sub-continental or regional scale, these projections must be downscaled and spatially distributed prior to use in climate or ecosystem models. Downscaling efforts to date have been conducted at the national extent with relatively high spatial resolution (30m) and at the global extent with relatively coarse spatial resolution (0.5 degree).

  11. Globally scalable generation of high-resolution land cover from multispectral imagery

    NASA Astrophysics Data System (ADS)

    Stutts, S. Craig; Raskob, Benjamin L.; Wenger, Eric J.

    2017-05-01

    We present an automated method of generating high resolution ( 2 meter) land cover using a pattern recognition neural network trained on spatial and spectral features obtained from over 9000 WorldView multispectral images (MSI) in six distinct world regions. At this resolution, the network can classify small-scale objects such as individual buildings, roads, and irrigation ponds. This paper focuses on three key areas. First, we describe our land cover generation process, which involves the co-registration and aggregation of multiple spatially overlapping MSI, post-aggregation processing, and the registration of land cover to OpenStreetMap (OSM) road vectors using feature correspondence. Second, we discuss the generation of land cover derivative products and their impact in the areas of region reduction and object detection. Finally, we discuss the process of globally scaling land cover generation using cloud computing via Amazon Web Services (AWS).

  12. Regional forest land cover characterisation using medium spatial resolution satellite data

    USGS Publications Warehouse

    Huang, Chengquan; Homer, Collin G.; Yang, Limin; Wulder, Michael A.; Franklin, Steven E.

    2003-01-01

    Increasing demands on forest resources require comprehensive, consistent and up-to-date information on those resources at spatial scales appropriate for management decision-making and for scientific analysis. While such information can be derived using coarse spatial resolution satellite data (e.g. Tucker et al. 1984; Zhu and Evans 1994; Cihlar et al. 1996; Cihlar et al., Chapter 12), many regional applications require more spatial and thematic details than can be derived by using coarse resolution imagery. High spatial resolution satellite data such as IKONOS and Quick Bird images (Aplin et al. 1997), though usable for deriving detailed forest information (Culvenor, Chapter 9), are currently not feasible for wall-to-wall regional applications because of extremely high data cost, huge data volume, and lack of contiguous coverage over large areas. Forest studies over large areas have often been accomplished using data acquired by intermediate spatial resolution sensor systems, including the Multi-Spectral Scanner (MSS), Thematic Mapper (TM) and the Enhanced Thematic Mapper Plus (ETM+) of Landsat, the High Resolution Visible (HRV) of the Systeme Pour l'Observation de la Terre (SPOT), and the Linear Image Self-Scanner (LISS) of the Indian Remote Sensing satellite. These sensor systems are more appropriate for regional applications because they can routinely produce spatially contiguous data over large areas at relatively low cost, and can be used to derive a host of forest attributes (e.g. Cohen et al. 1995; Kimes et al. 1999; Cohen et al. 2001; Huang et al. 2001; Sugumaran 2001). Of the above intermediate spatial resolution satellites, Landsat is perhaps the most widely used in various types of land remote sensing applications, in part because it has provided more extensive spatial and temporal coverage of the globe than any other intermediate resolution satellite. Spatially contiguous Landsat data have been developed for many regions of the globe (e.g. Lunetta and Sturdevant 1993; Fuller et al. 1994b; Skole et al. 1997), and a circa 1990 Landsat image data set covering the entire land area of the globe has also been developed recently (Jones and Smith 2001). An acquisition strategy aimed at acquiring at least one cloud free image per year for the entire land area of the globe has been initiated for Landsat-7 (Arvidson et al. 2001). This will probably ensure the continued dominance of Landsat in the near future.

  13. Visualising landscape evolution: the effects of resolution on soil redistribution

    NASA Astrophysics Data System (ADS)

    Schoorl, Jeroen M.; Claessens, Lieven; (A) Veldkamp, Tom

    2017-04-01

    Landscape forming processes such as erosion by water, land sliding by water and gravity or ploughing by gravity, are closely related to resolution and land use changes. These processes may be controlled and influenced by multiple bio-physical and socio-economic driving factors, resulting in a complex multi-scale system. Consequently, land use changes should not be analysed in isolation without accounting for both on-site and off-site effects of these landscape processes in landscapes where water driven and or gravity driven processes are very active,. Especially the visualisation of these on- and off-site effects as a movie of evolving time series and changes is a potential valuable possibility in DEM modelling approaches. To investigate the interactions between land use, land use change, resolution of DEMs and landscape processes, a case study for the Álora region in southern Spain will presented, mainly as movies of modelling time-series, Starting from a baseline scenario of land use change, different levels of resolutions, interactions and feedbacks are added to the coupled LAPSUS model framework: Quantities and spatial patterns of both land use change and soil redistribution are compared between the baseline scenario without interactions and with each of the interaction mechanisms implemented consecutively. All as a function of spatial resolution. Keywords: LAPSUS; land use change; soil erosion, movie;

  14. Quantifying the Uncertainty in High Spatial and Temporal Resolution Synthetic Land Surface Reflectance at Pixel Level Using Ground-Based Measurements

    NASA Astrophysics Data System (ADS)

    Kong, J.; Ryu, Y.

    2017-12-01

    Algorithms for fusing high temporal frequency and high spatial resolution satellite images are widely used to develop dense time-series land surface observations. While many studies have revealed that the synthesized frequent high spatial resolution images could be successfully applied in vegetation mapping and monitoring, validation and correction of fused images have not been focused than its importance. To evaluate the precision of fused image in pixel level, in-situ reflectance measurements which could account for the pixel-level heterogeneity are necessary. In this study, the synthetic images of land surface reflectance were predicted by the coarse high-frequency images acquired from MODIS and high spatial resolution images from Landsat-8 OLI using the Flexible Spatiotemporal Data Fusion (FSDAF). Ground-based reflectance was measured by JAZ Spectrometer (Ocean Optics, Dunedin, FL, USA) on rice paddy during five main growth stages in Cheorwon-gun, Republic of Korea, where the landscape heterogeneity changes through the growing season. After analyzing the spatial heterogeneity and seasonal variation of land surface reflectance based on the ground measurements, the uncertainties of the fused images were quantified at pixel level. Finally, this relationship was applied to correct the fused reflectance images and build the seasonal time series of rice paddy surface reflectance. This dataset could be significant for rice planting area extraction, phenological stages detection, and variables estimation.

  15. Improving urban land use and land cover classification from high-spatial-resolution hyperspectral imagery using contextual information

    NASA Astrophysics Data System (ADS)

    Yang, He; Ma, Ben; Du, Qian; Yang, Chenghai

    2010-08-01

    In this paper, we propose approaches to improve the pixel-based support vector machine (SVM) classification for urban land use and land cover (LULC) mapping from airborne hyperspectral imagery with high spatial resolution. Class spatial neighborhood relationship is used to correct the misclassified class pairs, such as roof and trail, road and roof. These classes may be difficult to be separated because they may have similar spectral signatures and their spatial features are not distinct enough to help their discrimination. In addition, misclassification incurred from within-class trivial spectral variation can be corrected by using pixel connectivity information in a local window so that spectrally homogeneous regions can be well preserved. Our experimental results demonstrate the efficiency of the proposed approaches in classification accuracy improvement. The overall performance is competitive to the object-based SVM classification.

  16. A comparative analysis of the Global Land Cover 2000 and MODIS land cover data sets

    USGS Publications Warehouse

    Giri, C.; Zhu, Z.; Reed, B.

    2005-01-01

    Accurate and up-to-date global land cover data sets are necessary for various global change research studies including climate change, biodiversity conservation, ecosystem assessment, and environmental modeling. In recent years, substantial advancement has been achieved in generating such data products. Yet, we are far from producing geospatially consistent high-quality data at an operational level. We compared the recently available Global Land Cover 2000 (GLC-2000) and MODerate resolution Imaging Spectrometer (MODIS) global land cover data to evaluate the similarities and differences in methodologies and results, and to identify areas of spatial agreement and disagreement. These two global land cover data sets were prepared using different data sources, classification systems, and methodologies, but using the same spatial resolution (i.e., 1 km) satellite data. Our analysis shows a general agreement at the class aggregate level except for savannas/shrublands, and wetlands. The disagreement, however, increases when comparing detailed land cover classes. Similarly, percent agreement between the two data sets was found to be highly variable among biomes. The identified areas of spatial agreement and disagreement will be useful for both data producers and users. Data producers may use the areas of spatial agreement for training area selection and pay special attention to areas of disagreement for further improvement in future land cover characterization and mapping. Users can conveniently use the findings in the areas of agreement, whereas users might need to verify the informaiton in the areas of disagreement with the help of secondary information. Learning from past experience and building on the existing infrastructure (e.g., regional networks), further research is necessary to (1) reduce ambiguity in land cover definitions, (2) increase availability of improved spatial, spectral, radiometric, and geometric resolution satellite data, and (3) develop advanced classification algorithms.

  17. Generating daily high spatial land surface temperatures by combining ASTER and MODIS land surface temperature products for environmental process monitoring.

    PubMed

    Wu, Mingquan; Li, Hua; Huang, Wenjiang; Niu, Zheng; Wang, Changyao

    2015-08-01

    There is a shortage of daily high spatial land surface temperature (LST) data for use in high spatial and temporal resolution environmental process monitoring. To address this shortage, this work used the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM), and the Spatial and Temporal Data Fusion Approach (STDFA) to estimate high spatial and temporal resolution LST by combining Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) LST and Moderate Resolution Imaging Spectroradiometer (MODIS) LST products. The actual ASTER LST products were used to evaluate the precision of the combined LST images using the correlation analysis method. This method was tested and validated in study areas located in Gansu Province, China. The results show that all the models can generate daily synthetic LST image with a high correlation coefficient (r) of 0.92 between the synthetic image and the actual ASTER LST observations. The ESTARFM has the best performance, followed by the STDFA and the STARFM. Those models had better performance in desert areas than in cropland. The STDFA had better noise immunity than the other two models.

  18. Classification of High Spatial Resolution, Hyperspectral ...

    EPA Pesticide Factsheets

    EPA announced the availability of the final report,

  19. A multi-temporal analysis approach for land cover mapping in support of nuclear incident response

    NASA Astrophysics Data System (ADS)

    Sah, Shagan; van Aardt, Jan A. N.; McKeown, Donald M.; Messinger, David W.

    2012-06-01

    Remote sensing can be used to rapidly generate land use maps for assisting emergency response personnel with resource deployment decisions and impact assessments. In this study we focus on constructing accurate land cover maps to map the impacted area in the case of a nuclear material release. The proposed methodology involves integration of results from two different approaches to increase classification accuracy. The data used included RapidEye scenes over Nine Mile Point Nuclear Power Station (Oswego, NY). The first step was building a coarse-scale land cover map from freely available, high temporal resolution, MODIS data using a time-series approach. In the case of a nuclear accident, high spatial resolution commercial satellites such as RapidEye or IKONOS can acquire images of the affected area. Land use maps from the two image sources were integrated using a probability-based approach. Classification results were obtained for four land classes - forest, urban, water and vegetation - using Euclidean and Mahalanobis distances as metrics. Despite the coarse resolution of MODIS pixels, acceptable accuracies were obtained using time series features. The overall accuracies using the fusion based approach were in the neighborhood of 80%, when compared with GIS data sets from New York State. The classifications were augmented using this fused approach, with few supplementary advantages such as correction for cloud cover and independence from time of year. We concluded that this method would generate highly accurate land maps, using coarse spatial resolution time series satellite imagery and a single date, high spatial resolution, multi-spectral image.

  20. The first ISLSCP field experiment (FIFE). [International Satellite Land Surface Climatology Project

    NASA Technical Reports Server (NTRS)

    Sellers, P. J.; Hall, F. G.; Asrar, G.; Strebel, D. E.; Murphy, R. E.

    1988-01-01

    The background and planning of the first International Satellite Land Surface Climatology Project (ISLSCP) field experiment (FIFE) are discussed. In FIFE, the NOAA series of satellites and GOES will be used to provide a moderate-temporal resolution coarse-spatial resolution data set, with SPOT and aircraft data providing the high-spatial resolution pointable-instrument capability. The paper describes the experiment design, the measurement strategy, the configuration of the site of the experiment (which will be at and around the Konza prairie near Manhattan, Kansas), and the experiment's operations and execution.

  1. Satellite remotely-sensed land surface parameters and their climatic effects for three metropolitan regions

    USGS Publications Warehouse

    Xian, George

    2008-01-01

    By using both high-resolution orthoimagery and medium-resolution Landsat satellite imagery with other geospatial information, several land surface parameters including impervious surfaces and land surface temperatures for three geographically distinct urban areas in the United States – Seattle, Washington, Tampa Bay, Florida, and Las Vegas, Nevada, are obtained. Percent impervious surface is used to quantitatively define the spatial extent and development density of urban land use. Land surface temperatures were retrieved by using a single band algorithm that processes both thermal infrared satellite data and total atmospheric water vapor content. Land surface temperatures were analyzed for different land use and land cover categories in the three regions. The heterogeneity of urban land surface and associated spatial extents were shown to influence surface thermal conditions because of the removal of vegetative cover, the introduction of non-transpiring surfaces, and the reduction in evaporation over urban impervious surfaces. Fifty years of in situ climate data were integrated to assess regional climatic conditions. The spatial structure of surface heating influenced by landscape characteristics has a profound influence on regional climate conditions, especially through urban heat island effects.

  2. The challenges associated with applying global models in heterogeneous landscapes: A case study using MOD17 GPP estimates in Hawaii

    NASA Astrophysics Data System (ADS)

    Kimball, H.; Selmants, P. C.; Running, S. W.; Moreno, A.; Giardina, C. P.

    2016-12-01

    In this study we evaluate the influence of spatial data product accuracy and resolution on the application of global models for smaller scale heterogeneous landscapes. In particular, we assess the influence of locally specific land cover and high-resolution climate data products on estimates of Gross Primary Production (GPP) for the Hawaiian Islands using the MOD17 model. The MOD17 GPP algorithm uses a measure of the fraction of absorbed photosynthetically active radiation from the National Aeronautics and Space Administration's Earth Observation System. This direct measurement is combined with global land cover (500-m resolution) and climate models ( 1/2-degree resolution) to estimate GPP. We first compared the alignment between the global land cover model used in MOD17 with a Hawaii specific land cover data product. We found that there was a 51.6% overall agreement between the two land cover products. We then compared four MOD17 GPP models: A global model that used the global land cover and low-resolution global climate data products, a model produced using the Hawaii specific land cover and low-resolution global climate data products, a model with global land cover and high-resolution climate data products, and finally, a model using both Hawaii specific land cover and high-resolution climate data products. We found that including either the Hawaii specific land cover or the high-resolution Hawaii climate data products with MOD17 reduced overall estimates of GPP by 8%. When both were used, GPP estimates were reduced by 16%. The reduction associated with land cover is explained by a reduction of the total area designated as evergreen broad leaf forest and an increase in the area designated as barren or sparsely vegetated in the Hawaii land cover product as compared to the global product. The climate based reduction is explained primarily by the spatial resolution and distribution of solar radiation in the Hawaiian Islands. This study highlights the importance of accuracy and resolution when applying global models to highly variable landscapes and provides an estimate of the influence of land cover and climate data products on estimates of GPP using MOD17.

  3. Exploiting MISR products at the full spatial resolution (275m) to document changes in land properties in and around the Kruger National Park, South Africa

    NASA Astrophysics Data System (ADS)

    Verstraete, M. M.; Hunt, L. A.; Pinty, B.; Clerici, M.; Scholes, R. J.

    2009-12-01

    The MISR instrument on NASA's Terra platform has been acquiring data globally and continuously for almost 10 years. A wide range of atmospheric and land products are operationally generated at the LaRC ASDC, at spatial resolutions of 1.1 km or coarser. Yet, the intrinsic spatial resolution of that sensor is 275m and 12 out of the 36 spectro-directional data channels are transmitted to the ground segment at that resolution. Recent algorithmic developments have permitted us to reconstruct reasonable estimates of the other 24 channels and to account for atmospheric effects at the full original spatial resolution. Spectro-directional reflectances have been processed to characterize the anisotropy of observed land surfaces and then optimally estimate various geophysical properties of the environment such as the fluxes of radiation in and out of plant canopies, the albedo, FAPAR, etc. These detailed products allow us to investigate ecological and environmental changes in much greater spatial and thematic detail than was previously possible. The paper outlines the various methodological steps implemented and exhibits concrete results for a region of moderate size (280 by 380 km) in South Africa. Practical downstream applications of this approach include monitoring desertification and biomass burning, documenting urbanization or characterizing the phenology of vegetation.

  4. A dynamic aerodynamic resistance approach to calculate high resolution sensible heat fluxes in urban areas

    NASA Astrophysics Data System (ADS)

    Crawford, Ben; Grimmond, Sue; Kent, Christoph; Gabey, Andrew; Ward, Helen; Sun, Ting; Morrison, William

    2017-04-01

    Remotely sensed data from satellites have potential to enable high-resolution, automated calculation of urban surface energy balance terms and inform decisions about urban adaptations to environmental change. However, aerodynamic resistance methods to estimate sensible heat flux (QH) in cities using satellite-derived observations of surface temperature are difficult in part due to spatial and temporal variability of the thermal aerodynamic resistance term (rah). In this work, we extend an empirical function to estimate rah using observational data from several cities with a broad range of surface vegetation land cover properties. We then use this function to calculate spatially and temporally variable rah in London based on high-resolution (100 m) land cover datasets and in situ meteorological observations. In order to calculate high-resolution QH based on satellite-observed land surface temperatures, we also develop and employ novel methods to i) apply source area-weighted averaging of surface and meteorological variables across the study spatial domain, ii) calculate spatially variable, high-resolution meteorological variables (wind speed, friction velocity, and Obukhov length), iii) incorporate spatially interpolated urban air temperatures from a distributed sensor network, and iv) apply a modified Monte Carlo approach to assess uncertainties with our results, methods, and input variables. Modeled QH using the aerodynamic resistance method is then compared to in situ observations in central London from a unique network of scintillometers and eddy-covariance measurements.

  5. The National Land Cover Database

    USGS Publications Warehouse

    Homer, Collin G.; Fry, Joyce A.; Barnes, Christopher A.

    2012-01-01

    The National Land Cover Database (NLCD) serves as the definitive Landsat-based, 30-meter resolution, land cover database for the Nation. NLCD provides spatial reference and descriptive data for characteristics of the land surface such as thematic class (for example, urban, agriculture, and forest), percent impervious surface, and percent tree canopy cover. NLCD supports a wide variety of Federal, State, local, and nongovernmental applications that seek to assess ecosystem status and health, understand the spatial patterns of biodiversity, predict effects of climate change, and develop land management policy. NLCD products are created by the Multi-Resolution Land Characteristics (MRLC) Consortium, a partnership of Federal agencies led by the U.S. Geological Survey. All NLCD data products are available for download at no charge to the public from the MRLC Web site: http://www.mrlc.gov.

  6. Fine resolution probabilistic land cover classification of landscapes in the southeastern United States

    Treesearch

    Joseph St. Peter; John Hogland; Nathaniel Anderson; Jason Drake; Paul Medley

    2018-01-01

    Land cover classification provides valuable information for prioritizing management and conservation operations across large landscapes. Current regional scale land cover geospatial products within the United States have a spatial resolution that is too coarse to provide the necessary information for operations at the local and project scales. This paper describes a...

  7. Urban cover mapping using digital, high-resolution aerial imagery

    Treesearch

    Soojeong Myeong; David J. Nowak; Paul F. Hopkins; Robert H. Brock

    2003-01-01

    High-spatial resolution digital color-infrared aerial imagery of Syracuse, NY was analyzed to test methods for developing land cover classifications for an urban area. Five cover types were mapped: tree/shrub, grass/herbaceous, bare soil, water and impervious surface. Challenges in high-spatial resolution imagery such as shadow effect and similarity in spectral...

  8. Multi-Decadal Pathfinder Data Sets of Global Land Biophysical Variables from AVHRR and MODIS and their Use in GCM Studies of Biogeophysics and Biogeochemistry

    NASA Technical Reports Server (NTRS)

    Myneni, Ranga

    2003-01-01

    The problem of how the scale, or spatial resolution, of reflectance data impacts retrievals of vegetation leaf area index (LAI) and fraction absorbed photosynthetically active radiation (PAR) has been investigated. We define the goal of scaling as the process by which it is established that LAI and FPAR values derived from coarse resolution sensor data equal the arithmetic average of values derived independently from fine resolution sensor data. The increasing probability of land cover mixtures with decreasing resolution is defined as heterogeneity, which is a key concept in scaling studies. The effect of pixel heterogeneity on spectral reflectances and LAI/FPAR retrievals is investigated with 1 km Advanced Very High Resolution Radiometer (AVHRR) data aggregated to different coarse spatial resolutions. It is shown that LAI retrieval errors at coarse resolution are inversely related to the proportion of the dominant land cover in such pixel. Further, large errors in LAI retrievals are incurred when forests are minority biomes in non-forest pixels compared to when forest biomes are mixed with one another, and vice-versa. A physically based technique for scaling with explicit spatial resolution dependent radiative transfer formulation is developed. The successful application of this theory to scaling LAI retrievals from AVHRR data of different resolutions is demonstrated

  9. High spatial resolution satellite observations for validation of MODIS land products: IKONOS observations acquired under the NASA scientific data purchase.

    Treesearch

    Jeffrey T. Morisette; Jaime E. Nickeson; Paul Davis; Yujie Wang; Yuhong Tian; Curtis E. Woodcock; Nikolay Shabanov; Matthew Hansen; Warren B. Cohen; Doug R. Oetter; Robert E. Kennedy

    2003-01-01

    Phase 1I of the Scientific Data Purchase (SDP) has provided NASA investigators access to data from four different satellite and airborne data sources. The Moderate Resolution Imaging Spectrometer (MODIS) land discipline team (MODLAND) sought to utilize these data in support of land product validation activities with a lbcus on tile EOS Land Validation Core Sites. These...

  10. Land cover mapping at sub-pixel scales

    NASA Astrophysics Data System (ADS)

    Makido, Yasuyo Kato

    One of the biggest drawbacks of land cover mapping from remotely sensed images relates to spatial resolution, which determines the level of spatial details depicted in an image. Fine spatial resolution images from satellite sensors such as IKONOS and QuickBird are now available. However, these images are not suitable for large-area studies, since a single image is very small and therefore it is costly for large area studies. Much research has focused on attempting to extract land cover types at sub-pixel scale, and little research has been conducted concerning the spatial allocation of land cover types within a pixel. This study is devoted to the development of new algorithms for predicting land cover distribution using remote sensory imagery at sub-pixel level. The "pixel-swapping" optimization algorithm, which was proposed by Atkinson for predicting sub-pixel land cover distribution, is investigated in this study. Two limitations of this method, the arbitrary spatial range value and the arbitrary exponential model of spatial autocorrelation, are assessed. Various weighting functions, as alternatives to the exponential model, are evaluated in order to derive the optimum weighting function. Two different simulation models were employed to develop spatially autocorrelated binary class maps. In all tested models, Gaussian, Exponential, and IDW, the pixel swapping method improved classification accuracy compared with the initial random allocation of sub-pixels. However the results suggested that equal weight could be used to increase accuracy and sub-pixel spatial autocorrelation instead of using these more complex models of spatial structure. New algorithms for modeling the spatial distribution of multiple land cover classes at sub-pixel scales are developed and evaluated. Three methods are examined: sequential categorical swapping, simultaneous categorical swapping, and simulated annealing. These three methods are applied to classified Landsat ETM+ data that has been resampled to 210 meters. The result suggested that the simultaneous method can be considered as the optimum method in terms of accuracy performance and computation time. The case study employs remote sensing imagery at the following sites: tropical forests in Brazil and temperate multiple land mosaic in East China. Sub-areas for both sites are used to examine how the characteristics of the landscape affect the ability of the optimum technique. Three types of measurement: Moran's I, mean patch size (MPS), and patch size standard deviation (STDEV), are used to characterize the landscape. All results suggested that this technique could increase the classification accuracy more than traditional hard classification. The methods developed in this study can benefit researchers who employ coarse remote sensing imagery but are interested in detailed landscape information. In many cases, the satellite sensor that provides large spatial coverage has insufficient spatial detail to identify landscape patterns. Application of the super-resolution technique described in this dissertation could potentially solve this problem by providing detailed land cover predictions from the coarse resolution satellite sensor imagery.

  11. Spatio-temporal modeling with GIS and remote sensing for schistosomiasis control in Sichuan, China

    NASA Astrophysics Data System (ADS)

    Xu, Bing

    Schistosomiasis is a water-borne parasitic disease endemic in tropical and subtropical areas. Its transmission requires certain kind of snail as the intermediate host. Some efforts have been made to mapping snail habitats with remote sensing and schistosomiasis transmission modeling. However, the modeling is limited to isolated residential groups and does not include spatial interaction among those groups. Remotely sensed data are only used in snail habitat classification, not in estimation of snail abundance that is an important parameter in schistosomiasis transmission modeling. This research overcomes the above two problems using innovative geographic information system (GIS) and remote sensing technology. A mountainous environment near Xichang, China, is chosen as the test site. Environmental and epidemiological data are stored in a GIS to support modeling. Snail abundance is estimated from land-cover and land-use fractions derived from high spatial resolution IKONOS satellite data. Spatial interaction is determined in consideration of neighborhoods, group areas, relative slopes among groups, and natural barriers. Land-cover and land-use information extracted from 4 m high resolution IKONOS data is used as reference in scaling up to the regional level. The scale-up is done with coarser resolution satellite data including Landsat Thematic Mapper (TM), EO-1 Advanced Land Imager (ALI) and Hyperion data all at 30 m resolution. Snail abundance is estimated by regressing snail survey data with land-cover and land-use fractions. An R2 of 0.87 is obtained between the average snail density predicted and that surveyed at the group level. With such a model, a snail density map is generated for all residential groups in the study area. A spatio-temporal model of schistosomiasis transmission is finally built to incorporate the spatial interaction caused by miracidia and cercaria migration. Comparing the model results with and without spatial interaction has revealed a number of advantages of the spatio-temporal model. Particularly, with the inclusion of spatial interaction, more effective control of schistosomiasis transmission over the whole study area can be achieved.

  12. MODIS Vegetative Cover Conversion and Vegetation Continuous Fields

    NASA Astrophysics Data System (ADS)

    Carroll, Mark; Townshend, John; Hansen, Matthew; DiMiceli, Charlene; Sohlberg, Robert; Wurster, Karl

    Land cover change occurs at various spatial and temporal scales. For example, large-scale mechanical removal of forests for agro-industrial activities contrasts with the small-scale clearing of subsistence farmers. Such dynamics vary in spatial extent and rate of land conversion. Such changes are attributable to both natural and anthropogenic factors. For example, lightning- or human-ignited fires burn millions of acres of land surface each year. Further, land cover conversion requires ­contrasting with the land cover modification. In the first instance, the dynamic represents extensive categorical change between two land cover types. Land cover modification mechanisms such as selective logging and woody encroachment depict changes within a given land cover type rather than a conversion from one land cover type to another. This chapter describes the production of two standard MODIS land products used to document changes in global land cover. The Vegetative Cover Conversion (VCC) product is designed primarily to serve as a global alarm for areas where land cover change occurs rapidly (Zhan et al. 2000). The Vegetation Continuous Fields (VCF) product is designed to continuously ­represent ground cover as a proportion of basic vegetation traits. Terra's launch in December 1999 afforded a new opportunity to observe the entire Earth every 1.2 days at 250-m spatial resolution. The MODIS instrument's appropriate spatial and ­temporal resolutions provide the opportunity to substantially improve the characterization of the land surface and changes occurring thereupon (Townshend et al. 1991).

  13. Utilizing Higher Resolution Land Surface Remote Sensing Data for Assessing Recent Trends over Asia Monsoon Region

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory

    2010-01-01

    The slide presentation discusses the integration of 1-kilometer spatial resolution land temperature data from the Moderate Resolution Imaging Spectroradiometer (MODIS), with 8-day temporal resolution, into the NASA Monsoon-Asia Integrated Regional Study (MAIRS) Data Center. The data will be available for analysis and visualization in the Giovanni data system. It discusses the NASA MAIRS Data Center, presents an introduction to the data access tools, and an introduction of Products available from the service, discusses the higher resolution Land Surface Temperature (LST) and presents preliminary results of LST Trends over China.

  14. Downscaling of Remotely Sensed Land Surface Temperature with multi-sensor based products

    NASA Astrophysics Data System (ADS)

    Jeong, J.; Baik, J.; Choi, M.

    2016-12-01

    Remotely sensed satellite data provides a bird's eye view, which allows us to understand spatiotemporal behavior of hydrologic variables at global scale. Especially, geostationary satellite continuously observing specific regions is useful to monitor the fluctuations of hydrologic variables as well as meteorological factors. However, there are still problems regarding spatial resolution whether the fine scale land cover can be represented with the spatial resolution of the satellite sensor, especially in the area of complex topography. To solve these problems, many researchers have been trying to establish the relationship among various hydrological factors and combine images from multi-sensor to downscale land surface products. One of geostationary satellite, Communication, Ocean and Meteorological Satellite (COMS), has Meteorological Imager (MI) and Geostationary Ocean Color Imager (GOCI). MI performing the meteorological mission produce Rainfall Intensity (RI), Land Surface Temperature (LST), and many others every 15 minutes. Even though it has high temporal resolution, low spatial resolution of MI data is treated as major research problem in many studies. This study suggests a methodology to downscale 4 km LST datasets derived from MI in finer resolution (500m) by using GOCI datasets in Northeast Asia. Normalized Difference Vegetation Index (NDVI) recognized as variable which has significant relationship with LST are chosen to estimate LST in finer resolution. Each pixels of NDVI and LST are separated according to land cover provided from MODerate resolution Imaging Spectroradiometer (MODIS) to achieve more accurate relationship. Downscaled LST are compared with LST observed from Automated Synoptic Observing System (ASOS) for assessing its accuracy. The downscaled LST results of this study, coupled with advantage of geostationary satellite, can be applied to observe hydrologic process efficiently.

  15. Using High Resolution Commercial Satellite Imagery to Quantify Spatial Features of Urban Areas and their Relationship to Quality of Life Indicators in Accra, Ghana

    NASA Astrophysics Data System (ADS)

    Sandborn, A.; Engstrom, R.; Yu, Q.

    2014-12-01

    Mapping urban areas via satellite imagery is an important task for detecting and anticipating land cover and land use change at multiple scales. As developing countries experience substantial urban growth and expansion, remotely sensed based estimates of population and quality of life indicators can provide timely and spatially explicit information to researchers and planners working to determine how cities are changing. In this study, we use commercial high spatial resolution satellite imagery in combination with fine resolution census data to determine the ability of using remotely sensed data to reveal the spatial patterns of quality of life in Accra, Ghana. Traditionally, spectral characteristics are used on a per-pixel basis to determine land cover; however, in this study, we test a new methodology that quantifies spatial characteristics using a variety of spatial features observed in the imagery to determine the properties of an urban area. The spatial characteristics used in this study include histograms of oriented gradients, PanTex, Fourier transform, and line support regions. These spatial features focus on extracting structural and textural patterns of built-up areas, such as homogeneous building orientations and straight line indices. Information derived from aggregating the descriptive statistics of the spatial features at both the fine-resolution census unit and the larger neighborhood level are then compared to census derived quality of life indicators including information about housing, education, and population estimates. Preliminary results indicate that there are correlations between straight line indices and census data including available electricity and literacy rates. Results from this study will be used to determine if this methodology provides a new and improved way to measure a city structure in developing cities and differentiate between residential and commercial land use zones, as well as formal versus informal housing areas.

  16. Evaluating the role of land cover and climate uncertainties in computing gross primary production in Hawaiian Island ecosystems

    PubMed Central

    Selmants, Paul C.; Moreno, Alvaro; Running, Steve W.; Giardina, Christian P.

    2017-01-01

    Gross primary production (GPP) is the Earth’s largest carbon flux into the terrestrial biosphere and plays a critical role in regulating atmospheric chemistry and global climate. The Moderate Resolution Imaging Spectrometer (MODIS)-MOD17 data product is a widely used remote sensing-based model that provides global estimates of spatiotemporal trends in GPP. When the MOD17 algorithm is applied to regional scale heterogeneous landscapes, input data from coarse resolution land cover and climate products may increase uncertainty in GPP estimates, especially in high productivity tropical ecosystems. We examined the influence of using locally specific land cover and high-resolution local climate input data on MOD17 estimates of GPP for the State of Hawaii, a heterogeneous and discontinuous tropical landscape. Replacing the global land cover data input product (MOD12Q1) with Hawaii-specific land cover data reduced statewide GPP estimates by ~8%, primarily because the Hawaii-specific land cover map had less vegetated land area compared to the global land cover product. Replacing coarse resolution GMAO climate data with Hawaii-specific high-resolution climate data also reduced statewide GPP estimates by ~8% because of the higher spatial variability of photosynthetically active radiation (PAR) in the Hawaii-specific climate data. The combined use of both Hawaii-specific land cover and high-resolution Hawaii climate data inputs reduced statewide GPP by ~16%, suggesting equal and independent influence on MOD17 GPP estimates. Our sensitivity analyses within a heterogeneous tropical landscape suggest that refined global land cover and climate data sets may contribute to an enhanced MOD17 product at a variety of spatial scales. PMID:28886187

  17. Evaluating the role of land cover and climate uncertainties in computing gross primary production in Hawaiian Island ecosystems

    USGS Publications Warehouse

    Kimball, Heather L.; Selmants, Paul; Moreno, Alvaro; Running Steve W,; Giardina, Christian P.

    2017-01-01

    Gross primary production (GPP) is the Earth’s largest carbon flux into the terrestrial biosphere and plays a critical role in regulating atmospheric chemistry and global climate. The Moderate Resolution Imaging Spectrometer (MODIS)-MOD17 data product is a widely used remote sensing-based model that provides global estimates of spatiotemporal trends in GPP. When the MOD17 algorithm is applied to regional scale heterogeneous landscapes, input data from coarse resolution land cover and climate products may increase uncertainty in GPP estimates, especially in high productivity tropical ecosystems. We examined the influence of using locally specific land cover and high-resolution local climate input data on MOD17 estimates of GPP for the State of Hawaii, a heterogeneous and discontinuous tropical landscape. Replacing the global land cover data input product (MOD12Q1) with Hawaii-specific land cover data reduced statewide GPP estimates by ~8%, primarily because the Hawaii-specific land cover map had less vegetated land area compared to the global land cover product. Replacing coarse resolution GMAO climate data with Hawaii-specific high-resolution climate data also reduced statewide GPP estimates by ~8% because of the higher spatial variability of photosynthetically active radiation (PAR) in the Hawaii-specific climate data. The combined use of both Hawaii-specific land cover and high-resolution Hawaii climate data inputs reduced statewide GPP by ~16%, suggesting equal and independent influence on MOD17 GPP estimates. Our sensitivity analyses within a heterogeneous tropical landscape suggest that refined global land cover and climate data sets may contribute to an enhanced MOD17 product at a variety of spatial scales.

  18. Evaluating the role of land cover and climate uncertainties in computing gross primary production in Hawaiian Island ecosystems.

    PubMed

    Kimball, Heather L; Selmants, Paul C; Moreno, Alvaro; Running, Steve W; Giardina, Christian P

    2017-01-01

    Gross primary production (GPP) is the Earth's largest carbon flux into the terrestrial biosphere and plays a critical role in regulating atmospheric chemistry and global climate. The Moderate Resolution Imaging Spectrometer (MODIS)-MOD17 data product is a widely used remote sensing-based model that provides global estimates of spatiotemporal trends in GPP. When the MOD17 algorithm is applied to regional scale heterogeneous landscapes, input data from coarse resolution land cover and climate products may increase uncertainty in GPP estimates, especially in high productivity tropical ecosystems. We examined the influence of using locally specific land cover and high-resolution local climate input data on MOD17 estimates of GPP for the State of Hawaii, a heterogeneous and discontinuous tropical landscape. Replacing the global land cover data input product (MOD12Q1) with Hawaii-specific land cover data reduced statewide GPP estimates by ~8%, primarily because the Hawaii-specific land cover map had less vegetated land area compared to the global land cover product. Replacing coarse resolution GMAO climate data with Hawaii-specific high-resolution climate data also reduced statewide GPP estimates by ~8% because of the higher spatial variability of photosynthetically active radiation (PAR) in the Hawaii-specific climate data. The combined use of both Hawaii-specific land cover and high-resolution Hawaii climate data inputs reduced statewide GPP by ~16%, suggesting equal and independent influence on MOD17 GPP estimates. Our sensitivity analyses within a heterogeneous tropical landscape suggest that refined global land cover and climate data sets may contribute to an enhanced MOD17 product at a variety of spatial scales.

  19. Development and Implementation of the DTOPLATS-MP land surface model over the Continental US at 30 meters

    NASA Astrophysics Data System (ADS)

    Chaney, N.; Wood, E. F.

    2014-12-01

    The increasing accessibility of high-resolution land data (< 100 m) and high performance computing allows improved parameterizations of subgrid hydrologic processes in macroscale land surface models. Continental scale fully distributed modeling at these spatial scales is possible; however, its practicality for operational use is still unknown due to uncertainties in input data, model parameters, and storage requirements. To address these concerns, we propose a modeling framework that provides the spatial detail of a fully distributed model yet maintains the benefits of a semi-distributed model. In this presentation we will introduce DTOPLATS-MP, a coupling between the NOAH-MP land surface model and the Dynamic TOPMODEL hydrologic model. This new model captures a catchment's spatial heterogeneity by clustering high-resolution land datasets (soil, topography, and land cover) into hundreds of hydrologic similar units (HSUs). A prior DEM analysis defines the connections between each HSU. At each time step, the 1D land surface model updates each HSU; the HSUs then interact laterally via the subsurface and surface. When compared to the fully distributed form of the model, this framework allows a significant decrease in computation and storage while providing most of the same information and enabling parameter transferability. As a proof of concept, we will show how this new modeling framework can be run over CONUS at a 30-meter spatial resolution. For each catchment in the WBD HUC-12 dataset, the model is run between 2002 and 2012 using available high-resolution continental scale land and meteorological datasets over CONUS (dSSURGO, NLCD, NED, and NCEP Stage IV). For each catchment, the model is run with 1000 model parameter sets obtained from a Latin hypercube sample. This exercise will illustrate the feasibility of running the model operationally at continental scales while accounting for model parameter uncertainty.

  20. Urban Spatial Ecological Performance Based on the Data of Remote Sensing of Guyuan

    NASA Astrophysics Data System (ADS)

    Ren, X.-J.; Chen, X.-J.; Ma, Q.

    2018-04-01

    The evolution analysis of urban landuse and spatial ecological performance are necessary and useful to recognizing the stage of urban development and revealing the regularity and connotation of urban spatial expansion. Moreover, it lies in the core that should be exmined in the urban sustainable development. In this paper, detailed information has been acquired from the high-resolution satellite imageries of Guyuan, China case study. With the support of GIS, the land-use mapping information and the land cover changes are analyzed, and the process of urban spatial ecological performance evolution by the hierarchical methodology is explored. Results demonstrate that in the past 11 years, the urban spatial ecological performance show an improved process with the dramatic landcover change in Guyuan. Firstly, the landuse structure of Guyuan changes significantly and shows an obvious stage characteristic. Secondly, the urban ecological performance of Guyuan continues to be optimized over the 11 years. Thirdly, the findings suggest that a dynamic monitoring mechanism of urban land use based on high-resolution remote sensing data should be established in urban development, and the rational development of urban land use should be guided by the spatial ecological performance as the basic value orientation.

  1. Generating High-Temporal and Spatial Resolution TIR Image Data

    NASA Astrophysics Data System (ADS)

    Herrero-Huerta, M.; Lagüela, S.; Alfieri, S. M.; Menenti, M.

    2017-09-01

    Remote sensing imagery to monitor global biophysical dynamics requires the availability of thermal infrared data at high temporal and spatial resolution because of the rapid development of crops during the growing season and the fragmentation of most agricultural landscapes. Conversely, no single sensor meets these combined requirements. Data fusion approaches offer an alternative to exploit observations from multiple sensors, providing data sets with better properties. A novel spatio-temporal data fusion model based on constrained algorithms denoted as multisensor multiresolution technique (MMT) was developed and applied to generate TIR synthetic image data at both temporal and spatial high resolution. Firstly, an adaptive radiance model is applied based on spectral unmixing analysis of . TIR radiance data at TOA (top of atmosphere) collected by MODIS daily 1-km and Landsat - TIRS 16-day sampled at 30-m resolution are used to generate synthetic daily radiance images at TOA at 30-m spatial resolution. The next step consists of unmixing the 30 m (now lower resolution) images using the information about their pixel land-cover composition from co-registered images at higher spatial resolution. In our case study, TIR synthesized data were unmixed to the Sentinel 2 MSI with 10 m resolution. The constrained unmixing preserves all the available radiometric information of the 30 m images and involves the optimization of the number of land-cover classes and the size of the moving window for spatial unmixing. Results are still being evaluated, with particular attention for the quality of the data streams required to apply our approach.

  2. Estimating Carbon Storage and Sequestration by Urban Trees at Multiple Spatial Resolutions

    NASA Astrophysics Data System (ADS)

    Wu, J.; Tran, A.; Liao, A.

    2010-12-01

    Urban forests are an important component of urban-suburban environments. Urban trees provide not only a full range of social and psychological benefits to city dwellers, but also valuable ecosystem services to communities, such as removing atmospheric carbon dioxide, improving air quality, and reducing storm water runoff. There is an urgent need for developing strategic conservation plans for environmentally sustainable urban-suburban development based on the scientific understanding of the extent and function of urban forests. However, several challenges remain to accurately quantify various environmental benefits provided by urban trees, among which is to deal with the effect of changing spatial resolution and/or scale. In this study, we intended to examine the uncertainties of carbon storage and sequestration associated with the tree canopy coverage of different spatial resolutions. Multi-source satellite imagery data were acquired for the City of Fullerton, located in Orange County of California. The tree canopy coverage of the study area was classified at three spatial resolutions, ranging from 30 m (Landsat-5 Thematic Mapper), 15 m (Advanced Spaceborne Thermal Emission and Reflection Radiometer), to 2.5 m (QuickBird). We calculated the amount of carbon stored in the trees represented on the individual tree coverage maps and the annual carbon taken up by the trees with a model (i.e., CITYgreen) developed by the U.S. Forest Service. The results indicate that urban trees account for significant proportions of land cover in the study area even with the low spatial resolution data. The estimated carbon fixation benefits vary greatly depending on the details of land use and land cover classification. The extrapolation of estimation from the fine-resolution stand-level to the low-resolution landscape-scale will likely not preserve reasonable accuracy.

  3. Image interpreter tool: An ArcGIS tool for estimating vegetation cover from high-resolution imagery

    USDA-ARS?s Scientific Manuscript database

    Land managers need increased temporal and spatial resolution of rangeland assessment and monitoring data. However, with flat or declining land management and monitoring agency budgets, such increases in sampling intensity are unlikely unless new methods can be developed that capture data of key rang...

  4. Estimation of Fractional Plant Lifeform Cover Using Landsat and Airborne LiDAR/hyperspectral Data

    NASA Astrophysics Data System (ADS)

    Parra, A. S.; Xu, Q.; Dilts, T.; Weisberg, P.; Greenberg, J. A.

    2017-12-01

    Land-cover change has generally been understood as the result of local, landscape or regional-scale processes with most studies focusing on case-study landscapes or smaller regions. However, as we observe similar types of land-cover change occurring across different biomes worldwide, it becomes clear that global-scale processes such as climate change and CO2 fertilization, in interaction with local influences, are underlying drivers in land-cover change patterns. Prior studies on global land-cover change may not have had a suitable spatial, temporal and thematic resolution for allowing the identification of such patterns. Furthermore, the lack of globally consistent spatial data products also constitutes a limiting factor in evaluating both proximate and ultimate causes of land-cover change. In this study, we derived a global model for broadleaf tree, needleleaf tree, shrub, herbaceous, and "other" fractional cover using Landsat imagery. Combined LiDAR/hyperspectral data sets were used for calibration and validation of the Landsat-derived products. Spatially explicit uncertainties were also created as part of the data products. Our results highlight the potential for large-scale studies that model local and global influences on land-cover transition types and rates at fine thematic, spatial, and temporal resolutions. These spatial data products are relevant for identifying patterns in land-cover change due to underlying global-scale processes and can provide valuable insights into climatic and land-use factors determining vegetation distributions.

  5. Object-based land cover classification and change analysis in the Baltimore metropolitan area using multitemporal high resolution remote sensing data

    Treesearch

    Weiqi Zhou; Austin Troy; Morgan Grove

    2008-01-01

    Accurate and timely information about land cover pattern and change in urban areas is crucial for urban land management decision-making, ecosystem monitoring and urban planning. This paper presents the methods and results of an object-based classification and post-classification change detection of multitemporal high-spatial resolution Emerge aerial imagery in the...

  6. Canopies to Continents: What spatial scales are needed to represent landcover distributions in earth system models?

    NASA Astrophysics Data System (ADS)

    Guenther, A. B.; Duhl, T.

    2011-12-01

    Increasing computational resources have enabled a steady improvement in the spatial resolution used for earth system models. Land surface models and landcover distributions have kept ahead by providing higher spatial resolution than typically used in these models. Satellite observations have played a major role in providing high resolution landcover distributions over large regions or the entire earth surface but ground observations are needed to calibrate these data and provide accurate inputs for models. As our ability to resolve individual landscape components improves, it is important to consider what scale is sufficient for providing inputs to earth system models. The required spatial scale is dependent on the processes being represented and the scientific questions being addressed. This presentation will describe the development a contiguous U.S. landcover database using high resolution imagery (1 to 1000 meters) and surface observations of species composition and other landcover characteristics. The database includes plant functional types and species composition and is suitable for driving land surface models (CLM and MEGAN) that predict land surface exchange of carbon, water, energy and biogenic reactive gases (e.g., isoprene, sesquiterpenes, and NO). We investigate the sensitivity of model results to landcover distributions with spatial scales ranging over six orders of magnitude (1 meter to 1000000 meters). The implications for predictions of regional climate and air quality will be discussed along with recommendations for regional and global earth system modeling.

  7. The Use of Coarse Resolution Satellite Imagery to Predict Human Puumala Virus Epidemics in Sweden.

    DTIC Science & Technology

    1992-09-11

    the adverse effects on NDVI data quality can occur in both the spatial and temporal dimension. In other words, a specific pixel value recorded in...are compared to the land-oriented systems.22 On the other hand, the very course spatial resolution has the advantage of greatly reducing the volume...necessary on the scale of individual fields, in which case LANDSAT-TM has higher spatial resolution ; and secondly, when specific

  8. Spatial distribution of arable and abandoned land across former Soviet Union countries

    NASA Astrophysics Data System (ADS)

    Lesiv, Myroslava; Schepaschenko, Dmitry; Moltchanova, Elena; Bun, Rostyslav; Dürauer, Martina; Prishchepov, Alexander V.; Schierhorn, Florian; Estel, Stephan; Kuemmerle, Tobias; Alcántara, Camilo; Kussul, Natalia; Shchepashchenko, Maria; Kutovaya, Olga; Martynenko, Olga; Karminov, Viktor; Shvidenko, Anatoly; Havlik, Petr; Kraxner, Florian; See, Linda; Fritz, Steffen

    2018-04-01

    Knowledge of the spatial distribution of agricultural abandonment following the collapse of the Soviet Union is highly uncertain. To help improve this situation, we have developed a new map of arable and abandoned land for 2010 at a 10 arc-second resolution. We have fused together existing land cover and land use maps at different temporal and spatial scales for the former Soviet Union (fSU) using a training data set collected from visual interpretation of very high resolution (VHR) imagery. We have also collected an independent validation data set to assess the map accuracy. The overall accuracies of the map by region and country, i.e. Caucasus, Belarus, Kazakhstan, Republic of Moldova, Russian Federation and Ukraine, are 90±2%, 84±2%, 92±1%, 78±3%, 95±1%, 83±2%, respectively. This new product can be used for numerous applications including the modelling of biogeochemical cycles, land-use modelling, the assessment of trade-offs between ecosystem services and land-use potentials (e.g., agricultural production), among others.

  9. Spatial distribution of arable and abandoned land across former Soviet Union countries.

    PubMed

    Lesiv, Myroslava; Schepaschenko, Dmitry; Moltchanova, Elena; Bun, Rostyslav; Dürauer, Martina; Prishchepov, Alexander V; Schierhorn, Florian; Estel, Stephan; Kuemmerle, Tobias; Alcántara, Camilo; Kussul, Natalia; Shchepashchenko, Maria; Kutovaya, Olga; Martynenko, Olga; Karminov, Viktor; Shvidenko, Anatoly; Havlik, Petr; Kraxner, Florian; See, Linda; Fritz, Steffen

    2018-04-03

    Knowledge of the spatial distribution of agricultural abandonment following the collapse of the Soviet Union is highly uncertain. To help improve this situation, we have developed a new map of arable and abandoned land for 2010 at a 10 arc-second resolution. We have fused together existing land cover and land use maps at different temporal and spatial scales for the former Soviet Union (fSU) using a training data set collected from visual interpretation of very high resolution (VHR) imagery. We have also collected an independent validation data set to assess the map accuracy. The overall accuracies of the map by region and country, i.e. Caucasus, Belarus, Kazakhstan, Republic of Moldova, Russian Federation and Ukraine, are 90±2%, 84±2%, 92±1%, 78±3%, 95±1%, 83±2%, respectively. This new product can be used for numerous applications including the modelling of biogeochemical cycles, land-use modelling, the assessment of trade-offs between ecosystem services and land-use potentials (e.g., agricultural production), among others.

  10. Spatial distribution of arable and abandoned land across former Soviet Union countries

    PubMed Central

    Lesiv, Myroslava; Schepaschenko, Dmitry; Moltchanova, Elena; Bun, Rostyslav; Dürauer, Martina; Prishchepov, Alexander V.; Schierhorn, Florian; Estel, Stephan; Kuemmerle, Tobias; Alcántara, Camilo; Kussul, Natalia; Shchepashchenko, Maria; Kutovaya, Olga; Martynenko, Olga; Karminov, Viktor; Shvidenko, Anatoly; Havlik, Petr; Kraxner, Florian; See, Linda; Fritz, Steffen

    2018-01-01

    Knowledge of the spatial distribution of agricultural abandonment following the collapse of the Soviet Union is highly uncertain. To help improve this situation, we have developed a new map of arable and abandoned land for 2010 at a 10 arc-second resolution. We have fused together existing land cover and land use maps at different temporal and spatial scales for the former Soviet Union (fSU) using a training data set collected from visual interpretation of very high resolution (VHR) imagery. We have also collected an independent validation data set to assess the map accuracy. The overall accuracies of the map by region and country, i.e. Caucasus, Belarus, Kazakhstan, Republic of Moldova, Russian Federation and Ukraine, are 90±2%, 84±2%, 92±1%, 78±3%, 95±1%, 83±2%, respectively. This new product can be used for numerous applications including the modelling of biogeochemical cycles, land-use modelling, the assessment of trade-offs between ecosystem services and land-use potentials (e.g., agricultural production), among others. PMID:29611843

  11. Next generation of global land cover characterization, mapping, and monitoring

    USGS Publications Warehouse

    Giri, Chandra; Pengra, Bruce; Long, J.; Loveland, Thomas R.

    2013-01-01

    Land cover change is increasingly affecting the biophysics, biogeochemistry, and biogeography of the Earth's surface and the atmosphere, with far-reaching consequences to human well-being. However, our scientific understanding of the distribution and dynamics of land cover and land cover change (LCLCC) is limited. Previous global land cover assessments performed using coarse spatial resolution (300 m–1 km) satellite data did not provide enough thematic detail or change information for global change studies and for resource management. High resolution (∼30 m) land cover characterization and monitoring is needed that permits detection of land change at the scale of most human activity and offers the increased flexibility of environmental model parameterization needed for global change studies. However, there are a number of challenges to overcome before producing such data sets including unavailability of consistent global coverage of satellite data, sheer volume of data, unavailability of timely and accurate training and validation data, difficulties in preparing image mosaics, and high performance computing requirements. Integration of remote sensing and information technology is needed for process automation and high-performance computing needs. Recent developments in these areas have created an opportunity for operational high resolution land cover mapping, and monitoring of the world. Here, we report and discuss these advancements and opportunities in producing the next generations of global land cover characterization, mapping, and monitoring at 30-m spatial resolution primarily in the context of United States, Group on Earth Observations Global 30 m land cover initiative (UGLC).

  12. NLCD 2011 database

    EPA Pesticide Factsheets

    National Land Cover Database 2011 (NLCD 2011) is the most recent national land cover product created by the Multi-Resolution Land Characteristics (MRLC) Consortium. NLCD 2011 provides - for the first time - the capability to assess wall-to-wall, spatially explicit, national land cover changes and trends across the United States from 2001 to 2011. As with two previous NLCD land cover products NLCD 2011 keeps the same 16-class land cover classification scheme that has been applied consistently across the United States at a spatial resolution of 30 meters. NLCD 2011 is based primarily on a decision-tree classification of circa 2011 Landsat satellite data. This dataset is associated with the following publication:Homer, C., J. Dewitz, L. Yang, S. Jin, P. Danielson, G. Xian, J. Coulston, N. Herold, J. Wickham , and K. Megown. Completion of the 2011 National Land Cover Database for the Conterminous United States – Representing a Decade of Land Cover Change Information. PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING. American Society for Photogrammetry and Remote Sensing, Bethesda, MD, USA, 81(0): 345-354, (2015).

  13. A Physically Based Runoff Routing Model for Land Surface and Earth System Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hongyi; Wigmosta, Mark S.; Wu, Huan

    2013-06-13

    A new physically based runoff routing model, called the Model for Scale Adaptive River Transport (MOSART), has been developed to be applicable across local, regional, and global scales. Within each spatial unit, surface runoff is first routed across hillslopes and then discharged along with subsurface runoff into a ‘‘tributary subnetwork’’ before entering the main channel. The spatial units are thus linked via routing through the main channel network, which is constructed in a scale-consistent way across different spatial resolutions. All model parameters are physically based, and only a small subset requires calibration.MOSART has been applied to the Columbia River basinmore » at 1/ 168, 1/ 88, 1/ 48, and 1/ 28 spatial resolutions and was evaluated using naturalized or observed streamflow at a number of gauge stations. MOSART is compared to two other routing models widely used with land surface models, the River Transport Model (RTM) in the Community Land Model (CLM) and the Lohmann routing model, included as a postprocessor in the Variable Infiltration Capacity (VIC) model package, yielding consistent performance at multiple resolutions. MOSART is further evaluated using the channel velocities derived from field measurements or a hydraulic model at various locations and is shown to be capable of producing the seasonal variation and magnitude of channel velocities reasonably well at different resolutions. Moreover, the impacts of spatial resolution on model simulations are systematically examined at local and regional scales. Finally, the limitations ofMOSART and future directions for improvements are discussed.« less

  14. An Updating System for the Gridded Population Database of China Based on Remote Sensing, GIS and Spatial Database Technologies.

    PubMed

    Yang, Xiaohuan; Huang, Yaohuan; Dong, Pinliang; Jiang, Dong; Liu, Honghui

    2009-01-01

    The spatial distribution of population is closely related to land use and land cover (LULC) patterns on both regional and global scales. Population can be redistributed onto geo-referenced square grids according to this relation. In the past decades, various approaches to monitoring LULC using remote sensing and Geographic Information Systems (GIS) have been developed, which makes it possible for efficient updating of geo-referenced population data. A Spatial Population Updating System (SPUS) is developed for updating the gridded population database of China based on remote sensing, GIS and spatial database technologies, with a spatial resolution of 1 km by 1 km. The SPUS can process standard Moderate Resolution Imaging Spectroradiometer (MODIS L1B) data integrated with a Pattern Decomposition Method (PDM) and an LULC-Conversion Model to obtain patterns of land use and land cover, and provide input parameters for a Population Spatialization Model (PSM). The PSM embedded in SPUS is used for generating 1 km by 1 km gridded population data in each population distribution region based on natural and socio-economic variables. Validation results from finer township-level census data of Yishui County suggest that the gridded population database produced by the SPUS is reliable.

  15. Definition of SMOS Level 3 Land Products for the Villafranca del Castillo Data Processing Centre (CP34)

    NASA Astrophysics Data System (ADS)

    Lopez-Baeza, E.; Monsoriu Torres, A.; Font, J.; Alonso, O.

    2009-04-01

    The ESA SMOS (Soil Moisture and Ocean Salinity) Mission is planned to be launched in July 2009. The satellite will measure soil moisture over the continents and surface salinity of the oceans at resolutions that are sufficient for climatological-type studies. This paper describes the procedure to be used at the Spanish SMOS Level 3 and 4 Data Processing Centre (CP34) to generate Soil Moisture and other Land Surface Product maps from SMOS Level 2 data. This procedure can be used to map Soil Moisture, Vegetation Water Content and Soil Dielectric Constant data into different pre-defined spatial grids with fixed temporal frequency. The L3 standard Land Surface Products to be generated at CP34 are: Soil Moisture products: maximum spatial resolution with no spatial averaging, temporal averaging of 3 days, daily generation maximum spatial resolution with no spatial averaging, temporal averaging of 10 days, generation frequency of once every 10 days. b': maximum spatial resolution with no spatial averaging, temporal averaging of monthly decades (1st to 10th of the month, 11th to 20th of the month, 21st to last day of the month), generation frequency of once every decade monthly average, temporal averaging from L3 decade averages, monthly generation Seasonal average, temporal averaging from L3 monthly averages, seasonally generation yearly average, temporal averaging from L3 monthly averages, yearly generation Vegetation Water Content products: maximum spatial resolution with no spatial averaging, temporal averaging of 10 days, generation frequency of once every 10 days. a': maximum spatial resolution with no spatial averaging, temporal averaging of monthly decades (1st to 10th of the month, 11th to 20th of the month, 21st to last day of the month) using simple averaging method over the L2 products in ISEA grid, generation frequency of once every decade monthly average, temporal averaging from L3 decade averages, monthly generation seasonal average, temporal averaging from L3 monthly averages, seasonally generation yearly average, temporal averaging from L3 monthly averages, yearly generation Dielectric Constant products: (the dielectric constant products are delivered together with soil moisture products, with the same averaging periods and generation frequency): maximum spatial resolution with no spatial averaging, temporal averaging of 3 days, daily generation maximum spatial resolution with no spatial averaging, temporal averaging of 10 days, generation frequency of once every 10 days. b': maximum spatial resolution with no spatial averaging, temporal averaging of monthly decades (1st to 10th of the month, 11th to 20th of the month, 21st to last day of the month), generation frequency of once every decade monthly average, temporal averaging from L3 decade averages, monthly generation seasonal average, temporal averaging from L3 monthly averages, seasonally generation yearly average, temporal averaging from L3 monthly averages, yearly generation.

  16. Scalability of grid- and subbasin-based land surface modeling approaches for hydrologic simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tesfa, Teklu K.; Ruby Leung, L.; Huang, Maoyi

    2014-03-27

    This paper investigates the relative merits of grid- and subbasin-based land surface modeling approaches for hydrologic simulations, with a focus on their scalability (i.e., abilities to perform consistently across a range of spatial resolutions) in simulating runoff generation. Simulations produced by the grid- and subbasin-based configurations of the Community Land Model (CLM) are compared at four spatial resolutions (0.125o, 0.25o, 0.5o and 1o) over the topographically diverse region of the U.S. Pacific Northwest. Using the 0.125o resolution simulation as the “reference”, statistical skill metrics are calculated and compared across simulations at 0.25o, 0.5o and 1o spatial resolutions of each modelingmore » approach at basin and topographic region levels. Results suggest significant scalability advantage for the subbasin-based approach compared to the grid-based approach for runoff generation. Basin level annual average relative errors of surface runoff at 0.25o, 0.5o, and 1o compared to 0.125o are 3%, 4%, and 6% for the subbasin-based configuration and 4%, 7%, and 11% for the grid-based configuration, respectively. The scalability advantages of the subbasin-based approach are more pronounced during winter/spring and over mountainous regions. The source of runoff scalability is found to be related to the scalability of major meteorological and land surface parameters of runoff generation. More specifically, the subbasin-based approach is more consistent across spatial scales than the grid-based approach in snowfall/rainfall partitioning, which is related to air temperature and surface elevation. Scalability of a topographic parameter used in the runoff parameterization also contributes to improved scalability of the rain driven saturated surface runoff component, particularly during winter. Hence this study demonstrates the importance of spatial structure for multi-scale modeling of hydrological processes, with implications to surface heat fluxes in coupled land-atmosphere modeling.« less

  17. A flexible spatiotemporal method for fusing satellite images with different resolutions

    Treesearch

    Xiaolin Zhu; Eileen H. Helmer; Feng Gao; Desheng Liu; Jin Chen; Michael A. Lefsky

    2016-01-01

    Studies of land surface dynamics in heterogeneous landscapes often require remote sensing datawith high acquisition frequency and high spatial resolution. However, no single sensor meets this requirement. This study presents a new spatiotemporal data fusion method, the Flexible Spatiotemporal DAta Fusion (FSDAF) method, to generate synthesized frequent high spatial...

  18. Using multi-satellite data fusion to estimate daily high spatial resolution evapotranspiration over a forested site in North Carolina

    USDA-ARS?s Scientific Manuscript database

    Atmosphere-Land Exchange Inverse model and associated disaggregation scheme (ALEXI/DisALEXI). Satellite-based ET retrievals from both the Moderate Resolution Imaging Spectoradiometer (MODIS; 1km, daily) and Landsat (30m, bi-weekly) are fused with The Spatial and Temporal Adaptive Reflective Fusion ...

  19. Mapping Impervious Surfaces Globally at 30m Resolution Using Global Land Survey Data

    NASA Technical Reports Server (NTRS)

    DeColstoun, Eric Brown; Huang, Chengquan; Tan, Bin; Smith, Sarah Elizabeth; Phillips, Jacqueline; Wang, Panshi; Ling, Pui-Yu; Zhan, James; Li, Sike; Taylor, Michael P.; hide

    2013-01-01

    Impervious surfaces, mainly artificial structures and roads, cover less than 1% of the world's land surface (1.3% over USA). Regardless of the relatively small coverage, impervious surfaces have a significant impact on the environment. They are the main source of the urban heat island effect, and affect not only the energy balance, but also hydrology and carbon cycling, and both land and aquatic ecosystem services. In the last several decades, the pace of converting natural land surface to impervious surfaces has increased. Quantitatively monitoring the growth of impervious surface expansion and associated urbanization has become a priority topic across both the physical and social sciences. The recent availability of consistent, global scale data sets at 30m resolution such as the Global Land Survey from the Landsat satellites provides an unprecedented opportunity to map global impervious cover and urbanization at this resolution for the first time, with unprecedented detail and accuracy. Moreover, the spatial resolution of Landsat is absolutely essential to accurately resolve urban targets such a buildings, roads and parking lots. With long term GLS data now available for the 1975, 1990, 2000, 2005 and 2010 time periods, the land cover/use changes due to urbanization can now be quantified at this spatial scale as well. In the Global Land Survey - Imperviousness Mapping Project (GLS-IMP), we are producing the first global 30 m spatial resolution impervious cover data set. We have processed the GLS 2010 data set to surface reflectance (8500+ TM and ETM+ scenes) and are using a supervised classification method using a regression tree to produce continental scale impervious cover data sets. A very large set of accurate training samples is the key to the supervised classifications and is being derived through the interpretation of high spatial resolution (approx. 2 m or less) commercial satellite data (Quickbird and Worldview2) available to us through the unclassified archive of the National Geospatial Intelligence Agency (NGA). For each continental area several million training pixels are derived by analysts using image segmentation algorithms and tools and then aggregated to the 30m resolution of Landsat. Here we will discuss the production/testing of this massive data set for Europe, North and South America and Africa, including assessments of the 2010 surface reflectance data. This type of analysis is only possible because of the availability of long term 30m data sets from GLS and shows much promise for integration of Landsat 8 data in the future.

  20. Mapping Impervious Surfaces Globally at 30m Resolution Using Landsat Global Land Survey Data

    NASA Astrophysics Data System (ADS)

    Brown de Colstoun, E.; Huang, C.; Wolfe, R. E.; Tan, B.; Tilton, J.; Smith, S.; Phillips, J.; Wang, P.; Ling, P.; Zhan, J.; Xu, X.; Taylor, M. P.

    2013-12-01

    Impervious surfaces, mainly artificial structures and roads, cover less than 1% of the world's land surface (1.3% over USA). Regardless of the relatively small coverage, impervious surfaces have a significant impact on the environment. They are the main source of the urban heat island effect, and affect not only the energy balance, but also hydrology and carbon cycling, and both land and aquatic ecosystem services. In the last several decades, the pace of converting natural land surface to impervious surfaces has increased. Quantitatively monitoring the growth of impervious surface expansion and associated urbanization has become a priority topic across both the physical and social sciences. The recent availability of consistent, global scale data sets at 30m resolution such as the Global Land Survey from the Landsat satellites provides an unprecedented opportunity to map global impervious cover and urbanization at this resolution for the first time, with unprecedented detail and accuracy. Moreover, the spatial resolution of Landsat is absolutely essential to accurately resolve urban targets such a buildings, roads and parking lots. With long term GLS data now available for the 1975, 1990, 2000, 2005 and 2010 time periods, the land cover/use changes due to urbanization can now be quantified at this spatial scale as well. In the Global Land Survey - Imperviousness Mapping Project (GLS-IMP), we are producing the first global 30 m spatial resolution impervious cover data set. We have processed the GLS 2010 data set to surface reflectance (8500+ TM and ETM+ scenes) and are using a supervised classification method using a regression tree to produce continental scale impervious cover data sets. A very large set of accurate training samples is the key to the supervised classifications and is being derived through the interpretation of high spatial resolution (~2 m or less) commercial satellite data (Quickbird and Worldview2) available to us through the unclassified archive of the National Geospatial Intelligence Agency (NGA). For each continental area several million training pixels are derived by analysts using image segmentation algorithms and tools and then aggregated to the 30m resolution of Landsat. Here we will discuss the production/testing of this massive data set for Europe, North and South America and Africa, including assessments of the 2010 surface reflectance data. This type of analysis is only possible because of the availability of long term 30m data sets from GLS and shows much promise for integration of Landsat 8 data in the future.

  1. Landsat continuity: issues and opportunities for land cover monitoring

    Treesearch

    Michael A. Wulder; Joanne C. White; Samuel N. Goward; Jeffrey G. Masek; James R. Irons; Martin Herold; Warren B. Cohen; Thomas R. Loveland; Curtis E. Woodcock

    2008-01-01

    Initiated in 1972, the Landsat program has provided a continuous record of Earth observation for 35 years. The assemblage of Landsat spatial, spectral, and temporal resolutions, over a reasonably sized image extent, results in imagery that can be processed to represent land cover over large areas with an amount of spatial detail that is absolutely unique and...

  2. Land subsidence and recovery in the Albuquerque Basin, New Mexico, 1993–2014

    USGS Publications Warehouse

    Driscoll, Jessica M.; Brandt, Justin T.

    2017-08-14

    The Albuquerque Bernalillo County Water Utility Authority (ABCWUA) drinking water supply was almost exclusively sourced from groundwater from within the Albuquerque Basin before 2008. In 2008, the San Juan-Chama Drinking Water Project (SJCDWP) provided surface-water resources to augment the groundwater supply, allowing for a reduction in groundwater pumping in the Albuquerque Basin. In 2013, the U.S. Geological Survey, in cooperation with the ABCWUA, began a study to measure and compare aquifer-system and land-surface elevation change before and after the SJCDWP in 2008. Three methods of data collection with different temporal and spatial resolutions were used for this study: (1) aquifer-system compaction data collected continuously at a single extensometer from 1994 to 2013; (2) land-surface elevation change from Global Positioning System (GPS) surveys of a network of monuments collected in 1994–95, 2005, and 2014; and (3) spatially distributed Interferometric Synthetic Aperture Radar (InSAR) satellite data from 1993 to 2010. Collection of extensometer data allows for direct and continuous measurement of aquifer-system compaction at the extensometer location. The GPS surveys of a network of monuments allow for periodic measurements of land-surface elevation change at monument locations. Interferograms are limited in time by lifespan of the satellite, orbital pattern, and data quality but allow for measurement of gridded land-surface elevation change over the study area. Each of these methods was employed to provide a better understanding of aquifer-system compaction and land-surface elevation change for the Albuquerque Basin.Results do not show large magnitudes of subsidence in the Albuquerque Basin. High temporal-resolution but low spatial-resolution data measurements of aquifer-system compaction at the Albuquerque extensometer show elastic aquifer-system response to recovering groundwater levels. Results from the GPS survey of the network of monuments show inconsistent land-surface elevation changes over the Albuquerque Basin, likely because of the lack of significant change and the complexity of subsurface stratigraphy in addition to the spatial and temporal heterogeneity of groundwater withdrawals over the study period. Results from the InSAR analysis show areas of land-surface elevation increase after 2008, which could be attributed to elastic recovery of the aquifer system. The spatial extent to which elastic recovery of the aquifer system has resulted in recovery of land-surface elevation is limited to the in-situ measurements at the extensometer. Examination of spatially distributed InSAR data relative to limited spatial extent of the complex heterogeneity subsurface stratigraphy may explain some of the heterogeneity of land-surface elevation changes over this study period.

  3. Downscaling Thermal Infrared Radiance for Subpixel Land Surface Temperature Retrieval

    PubMed Central

    Liu, Desheng; Pu, Ruiliang

    2008-01-01

    Land surface temperature (LST) retrieved from satellite thermal sensors often consists of mixed temperature components. Retrieving subpixel LST is therefore needed in various environmental and ecological studies. In this paper, we developed two methods for downscaling coarse resolution thermal infrared (TIR) radiance for the purpose of subpixel temperature retrieval. The first method was developed on the basis of a scale-invariant physical model on TIR radiance. The second method was based on a statistical relationship between TIR radiance and land cover fraction at high spatial resolution. The two methods were applied to downscale simulated 990-m ASTER TIR data to 90-m resolution. When validated against the original 90-m ASTER TIR data, the results revealed that both downscaling methods were successful in capturing the general patterns of the original data and resolving considerable spatial details. Further quantitative assessments indicated a strong agreement between the true values and the estimated values by both methods. PMID:27879844

  4. Downscaling Thermal Infrared Radiance for Subpixel Land Surface Temperature Retrieval.

    PubMed

    Liu, Desheng; Pu, Ruiliang

    2008-04-06

    Land surface temperature (LST) retrieved from satellite thermal sensors often consists of mixed temperature components. Retrieving subpixel LST is therefore needed in various environmental and ecological studies. In this paper, we developed two methods for downscaling coarse resolution thermal infrared (TIR) radiance for the purpose of subpixel temperature retrieval. The first method was developed on the basis of a scale-invariant physical model on TIR radiance. The second method was based on a statistical relationship between TIR radiance and land cover fraction at high spatial resolution. The two methods were applied to downscale simulated 990-m ASTER TIR data to 90-m resolution. When validated against the original 90-m ASTER TIR data, the results revealed that both downscaling methods were successful in capturing the general patterns of the original data and resolving considerable spatial details. Further quantitative assessments indicated a strong agreement between the true values and the estimated values by both methods.

  5. Spatial Heterogeneity of Leaf Area Index (LAI) and Its Temporal Course on Arable Land: Combining Field Measurements, Remote Sensing and Simulation in a Comprehensive Data Analysis Approach (CDAA).

    PubMed

    Reichenau, Tim G; Korres, Wolfgang; Montzka, Carsten; Fiener, Peter; Wilken, Florian; Stadler, Anja; Waldhoff, Guido; Schneider, Karl

    2016-01-01

    The ratio of leaf area to ground area (leaf area index, LAI) is an important state variable in ecosystem studies since it influences fluxes of matter and energy between the land surface and the atmosphere. As a basis for generating temporally continuous and spatially distributed datasets of LAI, the current study contributes an analysis of its spatial variability and spatial structure. Soil-vegetation-atmosphere fluxes of water, carbon and energy are nonlinearly related to LAI. Therefore, its spatial heterogeneity, i.e., the combination of spatial variability and structure, has an effect on simulations of these fluxes. To assess LAI spatial heterogeneity, we apply a Comprehensive Data Analysis Approach that combines data from remote sensing (5 m resolution) and simulation (150 m resolution) with field measurements and a detailed land use map. Test area is the arable land in the fertile loess plain of the Rur catchment on the Germany-Belgium-Netherlands border. LAI from remote sensing and simulation compares well with field measurements. Based on the simulation results, we describe characteristic crop-specific temporal patterns of LAI spatial variability. By means of these patterns, we explain the complex multimodal frequency distributions of LAI in the remote sensing data. In the test area, variability between agricultural fields is higher than within fields. Therefore, spatial resolutions less than the 5 m of the remote sensing scenes are sufficient to infer LAI spatial variability. Frequency distributions from the simulation agree better with the multimodal distributions from remote sensing than normal distributions do. The spatial structure of LAI in the test area is dominated by a short distance referring to field sizes. Longer distances that refer to soil and weather can only be derived from remote sensing data. Therefore, simulations alone are not sufficient to characterize LAI spatial structure. It can be concluded that a comprehensive picture of LAI spatial heterogeneity and its temporal course can contribute to the development of an approach to create spatially distributed and temporally continuous datasets of LAI.

  6. Spatial Heterogeneity of Leaf Area Index (LAI) and Its Temporal Course on Arable Land: Combining Field Measurements, Remote Sensing and Simulation in a Comprehensive Data Analysis Approach (CDAA)

    PubMed Central

    Korres, Wolfgang; Montzka, Carsten; Fiener, Peter; Wilken, Florian; Stadler, Anja; Waldhoff, Guido; Schneider, Karl

    2016-01-01

    The ratio of leaf area to ground area (leaf area index, LAI) is an important state variable in ecosystem studies since it influences fluxes of matter and energy between the land surface and the atmosphere. As a basis for generating temporally continuous and spatially distributed datasets of LAI, the current study contributes an analysis of its spatial variability and spatial structure. Soil-vegetation-atmosphere fluxes of water, carbon and energy are nonlinearly related to LAI. Therefore, its spatial heterogeneity, i.e., the combination of spatial variability and structure, has an effect on simulations of these fluxes. To assess LAI spatial heterogeneity, we apply a Comprehensive Data Analysis Approach that combines data from remote sensing (5 m resolution) and simulation (150 m resolution) with field measurements and a detailed land use map. Test area is the arable land in the fertile loess plain of the Rur catchment on the Germany-Belgium-Netherlands border. LAI from remote sensing and simulation compares well with field measurements. Based on the simulation results, we describe characteristic crop-specific temporal patterns of LAI spatial variability. By means of these patterns, we explain the complex multimodal frequency distributions of LAI in the remote sensing data. In the test area, variability between agricultural fields is higher than within fields. Therefore, spatial resolutions less than the 5 m of the remote sensing scenes are sufficient to infer LAI spatial variability. Frequency distributions from the simulation agree better with the multimodal distributions from remote sensing than normal distributions do. The spatial structure of LAI in the test area is dominated by a short distance referring to field sizes. Longer distances that refer to soil and weather can only be derived from remote sensing data. Therefore, simulations alone are not sufficient to characterize LAI spatial structure. It can be concluded that a comprehensive picture of LAI spatial heterogeneity and its temporal course can contribute to the development of an approach to create spatially distributed and temporally continuous datasets of LAI. PMID:27391858

  7. Completion of the 2011 National Land Cover Database for the Conterminous United States – Representing a Decade of Land Cover Change Information

    EPA Science Inventory

    The National Land Cover Database (NLCD) provides nationwide data on land cover and land cover change at the native 30-m spatial resolution of the Landsat Thematic Mapper (TM). The database is designed to provide five-year cyclical updating of United States land cover and associat...

  8. Does the spatial arrangement of vegetation and anthropogenic land cover features matter? Case studies of urban warming and cooling in Phoenix and Las Vegas

    NASA Astrophysics Data System (ADS)

    Myint, S. W.; Zheng, B.; Fan, C.; Kaplan, S.; Brazel, A.; Middel, A.; Smith, M.

    2014-12-01

    While the relationship between fractional cover of anthropogenic and vegetation features and the urban heat island has been well studied, the effect of spatial arrangements (e.g., clustered, dispersed) of these features on urban warming or cooling are not well understood. The goal of this study is to examine if and how spatial configuration of land cover features influence land surface temperatures (LST) in urban areas. This study focuses on Phoenix, AZ and Las Vegas, NV that have undergone dramatic urban expansion. The data used to classify detailed urban land cover types include Geoeye-1 (Las Vegas) and QuickBird (Phoenix). The Geoeye-1 image (3 m resolution) was acquired on October 12, 2011 and the QuickBird image (2.4 m resolution) was taken on May 29, 2007. Classification was performed using object based image analysis (OBIA). We employed a spatial autocorrelation approach (i.e., Moran's I) that measures the spatial dependence of a point to its neighboring points and describes how clustered or dispersed points are arranged in space. We used Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data acquired over Phoenix (daytime on June 10, 2011 and nighttime on October 17, 2011) and Las Vegas (daytime on July 6, 2005 and nighttime on August 27, 2005) to examine daytime and nighttime LST with regards to the spatial arrangement of anthropogenic and vegetation features. We spatially correlate Moran's I values of each land cover per surface temperature, and develop regression models. The spatial configuration of grass and trees shows strong negative correlations with LST, implying that clustered vegetation lowers surface temperatures more effectively. In contrast, a clustered spatial arrangement of anthropogenic land-cover features, especially impervious surfaces, significantly elevates surface temperatures. Results from this study suggest that the spatial configuration of anthropogenic and vegetation features influence urban warming and cooling.

  9. Upscaling and Downscaling of Land Surface Fluxes with Surface Temperature

    NASA Astrophysics Data System (ADS)

    Kustas, W. P.; Anderson, M. C.; Hain, C.; Albertson, J. D.; Gao, F.; Yang, Y.

    2015-12-01

    Land surface temperature (LST) is a key surface boundary condition that is significantly correlated to surface flux partitioning between latent and sensible heat. The spatial and temporal variation in LST is driven by radiation, wind, vegetation cover and roughness as well as soil moisture status in the surface and root zone. Data from airborne and satellite-based platforms provide LST from ~10 km to sub meter resolutions. A land surface scheme called the Two-Source Energy Balance (TSEB) model has been incorporated into a multi-scale regional modeling system ALEXI (Atmosphere Land Exchange Inverse) and a disaggregation scheme (DisALEXI) using higher resolution LST. Results with this modeling system indicates that it can be applied over heterogeneous land surfaces and estimate reliable surface fluxes with minimal in situ information. Consequently, this modeling system allows for scaling energy fluxes from subfield to regional scales in regions with little ground data. In addition, the TSEB scheme has been incorporated into a large Eddy Simulation (LES) model for investigating dynamic interactions between variations in the land surface state reflected in the spatial pattern in LST and the lower atmospheric air properties affecting energy exchange. An overview of research results on scaling of fluxes and interactions with the lower atmosphere from the subfield level to regional scales using the TSEB, ALEX/DisALEX and the LES-TSEB approaches will be presented. Some unresolved issues in the use of LST at different spatial resolutions for estimating surface energy balance and upscaling fluxes, particularly evapotranspiration, will be discussed.

  10. [Land cover classification of Four Lakes Region in Hubei Province based on MODIS and ENVISAT data].

    PubMed

    Xue, Lian; Jin, Wei-Bin; Xiong, Qin-Xue; Liu, Zhang-Yong

    2010-03-01

    Based on the differences of back scattering coefficient in ENVISAT ASAR data, a classification was made on the towns, waters, and vegetation-covered areas in the Four Lakes Region of Hubei Province. According to the local cropping systems and phenological characteristics in the region, and by using the discrepancies of the MODIS-NDVI index from late April to early May, the vegetation-covered areas were classified into croplands and non-croplands. The classification results based on the above-mentioned procedure was verified by the classification results based on the ETM data with high spatial resolution. Based on the DEM data, the non-croplands were categorized into forest land and bottomland; and based on the discrepancies of mean NDVI index per month, the crops were identified as mid rice, late rice, and cotton, and the croplands were identified as paddy field and upland field. The land cover classification based on the MODIS data with low spatial resolution was basically consistent with that based on the ETM data with high spatial resolution, and the total error rate was about 13.15% when the classification results based on ETM data were taken as the standard. The utilization of the above-mentioned procedures for large scale land cover classification and mapping could make the fast tracking of regional land cover classification.

  11. Sharpening advanced land imager multispectral data using a sensor model

    USGS Publications Warehouse

    Lemeshewsky, G.P.; ,

    2005-01-01

    The Advanced Land Imager (ALI) instrument on NASA's Earth Observing One (EO-1) satellite provides for nine spectral bands at 30m ground sample distance (GSD) and a 10m GSD panchromatic band. This report describes an image sharpening technique where the higher spatial resolution information of the panchromatic band is used to increase the spatial resolution of ALI multispectral (MS) data. To preserve the spectral characteristics, this technique combines reported deconvolution deblurring methods for the MS data with highpass filter-based fusion methods for the Pan data. The deblurring process uses the point spread function (PSF) model of the ALI sensor. Information includes calculation of the PSF from pre-launch calibration data. Performance was evaluated using simulated ALI MS data generated by degrading the spatial resolution of high resolution IKONOS satellite MS data. A quantitative measure of performance was the error between sharpened MS data and high resolution reference. This report also compares performance with that of a reported method that includes PSF information. Preliminary results indicate improved sharpening with the method reported here.

  12. It's time for a crisper image of the Face of the Earth: Landsat and climate time series for massive land cover & climate change mapping at detailed resolution.

    NASA Astrophysics Data System (ADS)

    Pons, Xavier; Miquel, Ninyerola; Oscar, González-Guerrero; Cristina, Cea; Pere, Serra; Alaitz, Zabala; Lluís, Pesquer; Ivette, Serral; Joan, Masó; Cristina, Domingo; Maria, Serra Josep; Jordi, Cristóbal; Chris, Hain; Martha, Anderson; Juanjo, Vidal

    2014-05-01

    Combining climate dynamics and land cover at a relative coarse resolution allows a very interesting approach to global studies, because in many cases these studies are based on a quite high temporal resolution, but they may be limited in large areas like the Mediterranean. However, the current availability of long time series of Landsat imagery and spatially detailed surface climate models allow thinking on global databases improving the results of mapping in areas with a complex history of landscape dynamics, characterized by fragmentation, or areas where relief creates intricate climate patterns that can be hardly monitored or modeled at coarse spatial resolutions. DinaCliVe (supported by the Spanish Government and ERDF, and by the Catalan Government, under grants CGL2012-33927 and SGR2009-1511) is the name of the project that aims analyzing land cover and land use dynamics as well as vegetation stress, with a particular emphasis on droughts, and the role that climate variation may have had in such phenomena. To meet this objective is proposed to design a massive database from long time series of Landsat land cover products (grouped in quinquennia) and monthly climate records (in situ climate data) for the Iberian Peninsula (582,000 km2). The whole area encompasses 47 Landsat WRS2 scenes (Landsat 4 to 8 missions, from path 197 to 202 and from rows 30 to 34), and 52 Landsat WRS1 scenes (for the previous Landsat missions, 212 to 221 and 30 to 34). Therefore, a mean of 49.5 Landsat scenes, 8 quinquennia per scene and a about 6 dates per quinquennium , from 1975 to present, produces around 2376 sets resulting in 30 m x 30 m spatial resolution maps. Each set is composed by highly coherent geometric and radiometric multispectral and multitemporal (to account for phenology) imagery as well as vegetation and wetness indexes, and several derived topographic information (about 10 Tbyte of data). Furthermore, on the basis on a previous work: the Digital Climatic Atlas of the Iberian Peninsula, spatio-temporal surface climate data has been generated with a monthly resolution (from January 1950 to December 2010) through a multiple regression model and residuals spatial interpolation using geographic variables (altitude, latitude and continentality) and solar radiation (only in the case of temperatures). This database includes precipitation, mean minimum and mean maximum air temperature and mean air temperature, improving the previous one by using the ASTER GDEM at 30 m spatial resolution, by deepening to a monthly resolution and by increasing the number of meteorological stations used, representing a total amount of 0.7 Tbyte of data. An initial validation shows accuracies higher than 85 % for land cover maps and an RMS of 1.2 ºC, 1.6 ºC and 22 mm for mean and extreme temperatures, and for precipitation, respectively. This amount of new detailed data for the Iberian Peninsula framework will be used to study the spatial direction, velocity and acceleration of the tendencies related to climate change, land cover and tree line dynamics. A global analysis using all these datasets will try to discriminate the climatic signal when interpreted together with anthropogenic driving forces. Ultimately, getting ready for massive database computation and analysis will improve predictions for global models that will require of the growing high-resolution information available.

  13. Super-resolution mapping using multi-viewing CHRIS/PROBA data

    NASA Astrophysics Data System (ADS)

    Dwivedi, Manish; Kumar, Vinay

    2016-04-01

    High-spatial resolution Remote Sensing (RS) data provides detailed information which ensures high-definition visual image analysis of earth surface features. These data sets also support improved information extraction capabilities at a fine scale. In order to improve the spatial resolution of coarser resolution RS data, the Super Resolution Reconstruction (SRR) technique has become widely acknowledged which focused on multi-angular image sequences. In this study multi-angle CHRIS/PROBA data of Kutch area is used for SR image reconstruction to enhance the spatial resolution from 18 m to 6m in the hope to obtain a better land cover classification. Various SR approaches like Projection onto Convex Sets (POCS), Robust, Iterative Back Projection (IBP), Non-Uniform Interpolation and Structure-Adaptive Normalized Convolution (SANC) chosen for this study. Subjective assessment through visual interpretation shows substantial improvement in land cover details. Quantitative measures including peak signal to noise ratio and structural similarity are used for the evaluation of the image quality. It was observed that SANC SR technique using Vandewalle algorithm for the low resolution image registration outperformed the other techniques. After that SVM based classifier is used for the classification of SRR and data resampled to 6m spatial resolution using bi-cubic interpolation. A comparative analysis is carried out between classified data of bicubic interpolated and SR derived images of CHRIS/PROBA and SR derived classified data have shown a significant improvement of 10-12% in the overall accuracy. The results demonstrated that SR methods is able to improve spatial detail of multi-angle images as well as the classification accuracy.

  14. Coupling a three-dimensional subsurface flow model with a land surface model to simulate stream-aquifer-land interactions

    NASA Astrophysics Data System (ADS)

    Huang, M.; Bisht, G.; Zhou, T.; Chen, X.; Dai, H.; Hammond, G. E.; Riley, W. J.; Downs, J.; Liu, Y.; Zachara, J. M.

    2016-12-01

    A fully coupled three-dimensional surface and subsurface land model is developed and applied to a site along the Columbia River to simulate three-way interactions among river water, groundwater, and land surface processes. The model features the coupling of the Community Land Model version 4.5 (CLM4.5) and a massively-parallel multi-physics reactive tranport model (PFLOTRAN). The coupled model (CLM-PFLOTRAN) is applied to a 400m×400m study domain instrumented with groundwater monitoring wells in the Hanford 300 Area along the Columbia River. CLM-PFLOTRAN simulations are performed at three different spatial resolutions over the period 2011-2015 to evaluate the impact of spatial resolution on simulated variables. To demonstrate the difference in model simulations with and without lateral subsurface flow, a vertical-only CLM-PFLOTRAN simulation is also conducted for comparison. Results show that the coupled model is skillful in simulating stream-aquifer interactions, and the land-surface energy partitioning can be strongly modulated by groundwater-river water interactions in high water years due to increased soil moisture availability caused by elevated groundwater table. In addition, spatial resolution does not seem to impact the land surface energy flux simulations, although it is a key factor for accurately estimating the mass exchange rates at the boundaries and associated biogeochemical reactions in the aquifer. The coupled model developed in this study establishes a solid foundation for understanding co-evolution of hydrology and biogeochemistry along the river corridors under historical and future hydro-climate changes.

  15. Dynamics of land change in India: a fine-scale spatial analysis

    NASA Astrophysics Data System (ADS)

    Meiyappan, P.; Roy, P. S.; Sharma, Y.; Jain, A. K.; Ramachandran, R.; Joshi, P. K.

    2015-12-01

    Land is scarce in India: India occupies 2.4% of worlds land area, but supports over 1/6th of worlds human and livestock population. This high population to land ratio, combined with socioeconomic development and increasing consumption has placed tremendous pressure on India's land resources for food, feed, and fuel. In this talk, we present contemporary (1985 to 2005) spatial estimates of land change in India using national-level analysis of Landsat imageries. Further, we investigate the causes of the spatial patterns of change using two complementary lines of evidence. First, we use statistical models estimated at macro-scale to understand the spatial relationships between land change patterns and their concomitant drivers. This analysis using our newly compiled extensive socioeconomic database at village level (~630,000 units), is 100x higher in spatial resolution compared to existing datasets, and covers over 200 variables. The detailed socioeconomic data enabled the fine-scale spatial analysis with Landsat data. Second, we synthesized information from over 130 survey based case studies on land use drivers in India to complement our macro-scale analysis. The case studies are especially useful to identify unobserved variables (e.g. farmer's attitude towards risk). Ours is the most detailed analysis of contemporary land change in India, both in terms of national extent, and the use of detailed spatial information on land change, socioeconomic factors, and synthesis of case studies.

  16. Evaluating Crop Area Mapping from MODIS Time-Series as an Assessment Tool for Zimbabwe’s “Fast Track Land Reform Programme”

    PubMed Central

    2016-01-01

    Moderate Resolution Imaging Spectroradiometer (MODIS) data forms the basis for numerous land use and land cover (LULC) mapping and analysis frameworks at regional scale. Compared to other satellite sensors, the spatial, temporal and spectral specifications of MODIS are considered as highly suitable for LULC classifications which support many different aspects of social, environmental and developmental research. The LULC mapping of this study was carried out in the context of the development of an evaluation approach for Zimbabwe’s land reform program. Within the discourse about the success of this program, a lack of spatially explicit methods to produce objective data, such as on the extent of agricultural area, is apparent. We therefore assessed the suitability of moderate spatial and high temporal resolution imagery and phenological parameters to retrieve regional figures about the extent of cropland area in former freehold tenure in a series of 13 years from 2001–2013. Time-series data was processed with TIMESAT and was stratified according to agro-ecological potential zoning of Zimbabwe. Random Forest (RF) classifications were used to produce annual binary crop/non crop maps which were evaluated with high spatial resolution data from other satellite sensors. We assessed the cropland products in former freehold tenure in terms of classification accuracy, inter-annual comparability and heterogeneity. Although general LULC patterns were depicted in classification results and an overall accuracy of over 80% was achieved, user accuracies for rainfed agriculture were limited to below 65%. We conclude that phenological analysis has to be treated with caution when rainfed agriculture and grassland in semi-humid tropical regions have to be separated based on MODIS spectral data and phenological parameters. Because classification results significantly underestimate redistributed commercial farmland in Zimbabwe, we argue that the method cannot be used to produce spatial information on land-use which could be linked to tenure change. Hence capabilities of moderate resolution data are limited to assess Zimbabwe’s land reform. To make use of the unquestionable potential of MODIS time-series analysis, we propose an analysis of plant productivity which allows to link annual growth and production of vegetation to ownership after Zimbabwe’s land reform. PMID:27253327

  17. Object Based Image Analysis Combining High Spatial Resolution Imagery and Laser Point Clouds for Urban Land Cover

    NASA Astrophysics Data System (ADS)

    Zou, Xiaoliang; Zhao, Guihua; Li, Jonathan; Yang, Yuanxi; Fang, Yong

    2016-06-01

    With the rapid developments of the sensor technology, high spatial resolution imagery and airborne Lidar point clouds can be captured nowadays, which make classification, extraction, evaluation and analysis of a broad range of object features available. High resolution imagery, Lidar dataset and parcel map can be widely used for classification as information carriers. Therefore, refinement of objects classification is made possible for the urban land cover. The paper presents an approach to object based image analysis (OBIA) combing high spatial resolution imagery and airborne Lidar point clouds. The advanced workflow for urban land cover is designed with four components. Firstly, colour-infrared TrueOrtho photo and laser point clouds were pre-processed to derive the parcel map of water bodies and nDSM respectively. Secondly, image objects are created via multi-resolution image segmentation integrating scale parameter, the colour and shape properties with compactness criterion. Image can be subdivided into separate object regions. Thirdly, image objects classification is performed on the basis of segmentation and a rule set of knowledge decision tree. These objects imagery are classified into six classes such as water bodies, low vegetation/grass, tree, low building, high building and road. Finally, in order to assess the validity of the classification results for six classes, accuracy assessment is performed through comparing randomly distributed reference points of TrueOrtho imagery with the classification results, forming the confusion matrix and calculating overall accuracy and Kappa coefficient. The study area focuses on test site Vaihingen/Enz and a patch of test datasets comes from the benchmark of ISPRS WG III/4 test project. The classification results show higher overall accuracy for most types of urban land cover. Overall accuracy is 89.5% and Kappa coefficient equals to 0.865. The OBIA approach provides an effective and convenient way to combine high resolution imagery and Lidar ancillary data for classification of urban land cover.

  18. Impact of High Resolution Land-Use Data in Meteorology and Air Quality Modeling Systems

    EPA Science Inventory

    Accurate land use information is important in meteorology for land surface exchanges, in emission modeling for emission spatial allocation, and in air quality modeling for chemical surface fluxes. Currently, meteorology, emission, and air quality models often use outdated USGS Gl...

  19. Modeling the Spatial Dynamics of Regional Land Use: The CLUE-S Model

    NASA Astrophysics Data System (ADS)

    Verburg, Peter H.; Soepboer, Welmoed; Veldkamp, A.; Limpiada, Ramil; Espaldon, Victoria; Mastura, Sharifah S. A.

    2002-09-01

    Land-use change models are important tools for integrated environmental management. Through scenario analysis they can help to identify near-future critical locations in the face of environmental change. A dynamic, spatially explicit, land-use change model is presented for the regional scale: CLUE-S. The model is specifically developed for the analysis of land use in small regions (e.g., a watershed or province) at a fine spatial resolution. The model structure is based on systems theory to allow the integrated analysis of land-use change in relation to socio-economic and biophysical driving factors. The model explicitly addresses the hierarchical organization of land use systems, spatial connectivity between locations and stability. Stability is incorporated by a set of variables that define the relative elasticity of the actual land-use type to conversion. The user can specify these settings based on expert knowledge or survey data. Two applications of the model in the Philippines and Malaysia are used to illustrate the functioning of the model and its validation.

  20. Modeling the spatial dynamics of regional land use: the CLUE-S model.

    PubMed

    Verburg, Peter H; Soepboer, Welmoed; Veldkamp, A; Limpiada, Ramil; Espaldon, Victoria; Mastura, Sharifah S A

    2002-09-01

    Land-use change models are important tools for integrated environmental management. Through scenario analysis they can help to identify near-future critical locations in the face of environmental change. A dynamic, spatially explicit, land-use change model is presented for the regional scale: CLUE-S. The model is specifically developed for the analysis of land use in small regions (e.g., a watershed or province) at a fine spatial resolution. The model structure is based on systems theory to allow the integrated analysis of land-use change in relation to socio-economic and biophysical driving factors. The model explicitly addresses the hierarchical organization of land use systems, spatial connectivity between locations and stability. Stability is incorporated by a set of variables that define the relative elasticity of the actual land-use type to conversion. The user can specify these settings based on expert knowledge or survey data. Two applications of the model in the Philippines and Malaysia are used to illustrate the functioning of the model and its validation.

  1. Impact of Urbanization on Spatial Variability of Rainfall-A case study of Mumbai city with WRF Model

    NASA Astrophysics Data System (ADS)

    Mathew, M.; Paul, S.; Devanand, A.; Ghosh, S.

    2015-12-01

    Urban precipitation enhancement has been identified over many cities in India by previous studies conducted. Anthropogenic effects such as change in land cover from hilly forest areas to flat topography with solid concrete infrastructures has certain effect on the local weather, the same way the greenhouse gas has on climate change. Urbanization could alter the large scale forcings to such an extent that it may bring about temporal and spatial changes in the urban weather. The present study investigate the physical processes involved in urban forcings, such as the effect of sudden increase in wind velocity travelling through the channel space in between the dense array of buildings, which give rise to turbulence and air mass instability in urban boundary layer and in return alters the rainfall distribution as well as rainfall initiation. A numerical model study is conducted over Mumbai metropolitan city which lies on the west coast of India, to assess the effect of urban morphology on the increase in number of extreme rainfall events in specific locations. An attempt has been made to simulate twenty extreme rainfall events that occurred over the summer monsoon period of the year 2014 using high resolution WRF-ARW (Weather Research and Forecasting-Advanced Research WRF) model to assess the urban land cover mechanisms that influences precipitation variability over this spatially varying urbanized region. The result is tested against simulations with altered land use. The correlation of precipitation with spatial variability of land use is found using a detailed urban land use classification. The initial and boundary conditions for running the model were obtained from the global model ECMWF(European Centre for Medium Range Weather Forecast) reanalysis data having a horizontal resolution of 0.75 °x 0.75°. The high resolution simulations show significant spatial variability in the accumulated rainfall, within a few kilometers itself. Understanding the spatial variability of precipitation will help in the planning and management of the built environment more efficiently.

  2. A multi-temporal fusion-based approach for land cover mapping in support of nuclear incident response

    NASA Astrophysics Data System (ADS)

    Sah, Shagan

    An increasingly important application of remote sensing is to provide decision support during emergency response and disaster management efforts. Land cover maps constitute one such useful application product during disaster events; if generated rapidly after any disaster, such map products can contribute to the efficacy of the response effort. In light of recent nuclear incidents, e.g., after the earthquake/tsunami in Japan (2011), our research focuses on constructing rapid and accurate land cover maps of the impacted area in case of an accidental nuclear release. The methodology involves integration of results from two different approaches, namely coarse spatial resolution multi-temporal and fine spatial resolution imagery, to increase classification accuracy. Although advanced methods have been developed for classification using high spatial or temporal resolution imagery, only a limited amount of work has been done on fusion of these two remote sensing approaches. The presented methodology thus involves integration of classification results from two different remote sensing modalities in order to improve classification accuracy. The data used included RapidEye and MODIS scenes over the Nine Mile Point Nuclear Power Station in Oswego (New York, USA). The first step in the process was the construction of land cover maps from freely available, high temporal resolution, low spatial resolution MODIS imagery using a time-series approach. We used the variability in the temporal signatures among different land cover classes for classification. The time series-specific features were defined by various physical properties of a pixel, such as variation in vegetation cover and water content over time. The pixels were classified into four land cover classes - forest, urban, water, and vegetation - using Euclidean and Mahalanobis distance metrics. On the other hand, a high spatial resolution commercial satellite, such as RapidEye, can be tasked to capture images over the affected area in the case of a nuclear event. This imagery served as a second source of data to augment results from the time series approach. The classifications from the two approaches were integrated using an a posteriori probability-based fusion approach. This was done by establishing a relationship between the classes, obtained after classification of the two data sources. Despite the coarse spatial resolution of MODIS pixels, acceptable accuracies were obtained using time series features. The overall accuracies using the fusion-based approach were in the neighborhood of 80%, when compared with GIS data sets from New York State. This fusion thus contributed to classification accuracy refinement, with a few additional advantages, such as correction for cloud cover and providing for an approach that is robust against point-in-time seasonal anomalies, due to the inclusion of multi-temporal data. We concluded that this approach is capable of generating land cover maps of acceptable accuracy and rapid turnaround, which in turn can yield reliable estimates of crop acreage of a region. The final algorithm is part of an automated software tool, which can be used by emergency response personnel to generate a nuclear ingestion pathway information product within a few hours of data collection.

  3. Spatial, Temporal and Spectral Satellite Image Fusion via Sparse Representation

    NASA Astrophysics Data System (ADS)

    Song, Huihui

    Remote sensing provides good measurements for monitoring and further analyzing the climate change, dynamics of ecosystem, and human activities in global or regional scales. Over the past two decades, the number of launched satellite sensors has been increasing with the development of aerospace technologies and the growing requirements on remote sensing data in a vast amount of application fields. However, a key technological challenge confronting these sensors is that they tradeoff between spatial resolution and other properties, including temporal resolution, spectral resolution, swath width, etc., due to the limitations of hardware technology and budget constraints. To increase the spatial resolution of data with other good properties, one possible cost-effective solution is to explore data integration methods that can fuse multi-resolution data from multiple sensors, thereby enhancing the application capabilities of available remote sensing data. In this thesis, we propose to fuse the spatial resolution with temporal resolution and spectral resolution, respectively, based on sparse representation theory. Taking the study case of Landsat ETM+ (with spatial resolution of 30m and temporal resolution of 16 days) and MODIS (with spatial resolution of 250m ~ 1km and daily temporal resolution) reflectance, we propose two spatial-temporal fusion methods to combine the fine spatial information of Landsat image and the daily temporal resolution of MODIS image. Motivated by that the images from these two sensors are comparable on corresponding bands, we propose to link their spatial information on available Landsat- MODIS image pair (captured on prior date) and then predict the Landsat image from the MODIS counterpart on prediction date. To well-learn the spatial details from the prior images, we use a redundant dictionary to extract the basic representation atoms for both Landsat and MODIS images based on sparse representation. Under the scenario of two prior Landsat-MODIS image pairs, we build the corresponding relationship between the difference images of MODIS and ETM+ by training a low- and high-resolution dictionary pair from the given prior image pairs. In the second scenario, i.e., only one Landsat- MODIS image pair being available, we directly correlate MODIS and ETM+ data through an image degradation model. Then, the fusion stage is achieved by super-resolving the MODIS image combining the high-pass modulation in a two-layer fusion framework. Remarkably, the proposed spatial-temporal fusion methods form a unified framework for blending remote sensing images with phenology change or land-cover-type change. Based on the proposed spatial-temporal fusion models, we propose to monitor the land use/land cover changes in Shenzhen, China. As a fast-growing city, Shenzhen faces the problem of detecting the rapid changes for both rational city planning and sustainable development. However, the cloudy and rainy weather in region Shenzhen located makes the capturing circle of high-quality satellite images longer than their normal revisit periods. Spatial-temporal fusion methods are capable to tackle this problem by improving the spatial resolution of images with coarse spatial resolution but frequent temporal coverage, thereby making the detection of rapid changes possible. On two Landsat-MODIS datasets with annual and monthly changes, respectively, we apply the proposed spatial-temporal fusion methods to the task of multiple change detection. Afterward, we propose a novel spatial and spectral fusion method for satellite multispectral and hyperspectral (or high-spectral) images based on dictionary-pair learning and sparse non-negative matrix factorization. By combining the spectral information from hyperspectral image, which is characterized by low spatial resolution but high spectral resolution and abbreviated as LSHS, and the spatial information from multispectral image, which is featured by high spatial resolution but low spectral resolution and abbreviated as HSLS, this method aims to generate the fused data with both high spatial and high spectral resolutions. Motivated by the observation that each hyperspectral pixel can be represented by a linear combination of a few endmembers, this method first extracts the spectral bases of LSHS and HSLS images by making full use of the rich spectral information in LSHS data. The spectral bases of these two categories data then formulate a dictionary-pair due to their correspondence in representing each pixel spectra of LSHS data and HSLS data, respectively. Subsequently, the LSHS image is spatially unmixed by representing the HSLS image with respect to the corresponding learned dictionary to derive its representation coefficients. Combining the spectral bases of LSHS data and the representation coefficients of HSLS data, we finally derive the fused data characterized by the spectral resolution of LSHS data and the spatial resolution of HSLS data.

  4. Geographically explicit urban land use change scenarios for Mega cities: a case study in Tokyo

    NASA Astrophysics Data System (ADS)

    Yamagata, Y.; Bagan, H.; Seya, H.; Nakamichi, K.

    2010-12-01

    In preparation for the IPCC 5th assessment report, the international modeling community is developing four Representative Concentration Paths employing the scenarios developed by four different Integrated Assessment Models. These RCPs will be employed as an input to climate models, such as Earth System Models. In these days, the importance of assessment of not only global but also local (city/zone level) impacts of global change has gradually been recognized, thereby downscaling climate models are one of the urgent problems to be solved. Needless to say, reliable downscaling requires spatially high resolution land use change scenarios. So far, there has been proposed a lot of methods for constructing land use change scenarios with considering economic behavior of human, such as agent-based model (e.g., Parker et al., 2001), and land use transport (LUT) model (e.g., Anas and Liu, 2007). The latter approach in particular has widely been applied to actual urban/transport policy; hence modeling the interaction between them is very important for creating reliable land use change scenarios. However, the LUT models are usually built based on the zones of cities/municipalities whose spatial resolutions are too low to derive sensible parameters of the climate models. Moreover, almost all of the works which attempt to build spatially high resolution LUT model employs very small regions as the study area. The objective of this research is deriving various input parameters to climate models such as population density, fractional green vegetation cover, and anthropogenic heat emission with spatially high resolution land use change scenarios constructed with LUT model. The study area of this research is Tokyo metropolitan area, which is the largest urban area in the world (United Nations., 2010). Firstly, this study employs very high ground resolution zones composed of micro districts around 1km2. Secondly, the research attempt to combine remote sensing techniques and LUT models to derive future distribution of fractional green vegetation cover. The study has created two extreme land-use scenarios: urban concentration (compact city) and dispersion scenarios in order to show possible range of future land use change, and derives the input parameters for the climate models. The authors are planning to open the scenarios and derived parameters to relate researches. Anas, A. and Y. Liu. (2007). A Regional Economy, Land Use, and Transportation Model (REULU-TRAN): Formulation, Algorithm Design, and Testing. Journal of Regional Science, 47, 415-455. Parker, D.C., T. Berger, S.M. Manson, Editors (2001). Agent-Based Models of Land-Use and Land-Cover Change. LUCC Report Series No. 6, (Accessed: 27 AUG. 2009; http://www.globallandproject.org/Documents/LUCC_No_6.pdf) United Nations. (2010). World urbanization prospects: City population.

  5. Spatial Downscaling of Alien Species Presences using Machine Learning

    NASA Astrophysics Data System (ADS)

    Daliakopoulos, Ioannis N.; Katsanevakis, Stelios; Moustakas, Aristides

    2017-07-01

    Large scale, high-resolution data on alien species distributions are essential for spatially explicit assessments of their environmental and socio-economic impacts, and management interventions for mitigation. However, these data are often unavailable. This paper presents a method that relies on Random Forest (RF) models to distribute alien species presence counts at a finer resolution grid, thus achieving spatial downscaling. A sufficiently large number of RF models are trained using random subsets of the dataset as predictors, in a bootstrapping approach to account for the uncertainty introduced by the subset selection. The method is tested with an approximately 8×8 km2 grid containing floral alien species presence and several indices of climatic, habitat, land use covariates for the Mediterranean island of Crete, Greece. Alien species presence is aggregated at 16×16 km2 and used as a predictor of presence at the original resolution, thus simulating spatial downscaling. Potential explanatory variables included habitat types, land cover richness, endemic species richness, soil type, temperature, precipitation, and freshwater availability. Uncertainty assessment of the spatial downscaling of alien species’ occurrences was also performed and true/false presences and absences were quantified. The approach is promising for downscaling alien species datasets of larger spatial scale but coarse resolution, where the underlying environmental information is available at a finer resolution than the alien species data. Furthermore, the RF architecture allows for tuning towards operationally optimal sensitivity and specificity, thus providing a decision support tool for designing a resource efficient alien species census.

  6. VLUIS, a land use data product for Victoria, Australia, covering 2006 to 2013

    PubMed Central

    Morse-McNabb, Elizabeth; Sheffield, Kathryn; Clark, Rob; Lewis, Hayden; Robson, Susan; Cherry, Don; Williams, Steve

    2015-01-01

    Land Use Information is a key dataset required to enable an understanding of the changing nature of our landscapes and the associated influences on natural resources and regional communities. The Victorian Land Use Information System (VLUIS) data product has been created within the State Government of Victoria to support land use assessments. The project began in 2007 using stakeholder engagement to establish product requirements such as format, classification, frequency and spatial resolution. Its genesis is significantly different to traditional methods, incorporating data from a range of jurisdictions to develop land use information designed for regular on-going creation and consistency. Covering the entire landmass of Victoria, the dataset separately describes land tenure, land use and land cover. These variables are co-registered to a common spatial base (cadastral parcels) across the state for the period 2006 to 2013; biennially for land tenure and land use, and annually for land cover. Data is produced as a spatial GIS feature class. PMID:26602150

  7. VLUIS, a land use data product for Victoria, Australia, covering 2006 to 2013.

    PubMed

    Morse-McNabb, Elizabeth; Sheffield, Kathryn; Clark, Rob; Lewis, Hayden; Robson, Susan; Cherry, Don; Williams, Steve

    2015-11-24

    Land Use Information is a key dataset required to enable an understanding of the changing nature of our landscapes and the associated influences on natural resources and regional communities. The Victorian Land Use Information System (VLUIS) data product has been created within the State Government of Victoria to support land use assessments. The project began in 2007 using stakeholder engagement to establish product requirements such as format, classification, frequency and spatial resolution. Its genesis is significantly different to traditional methods, incorporating data from a range of jurisdictions to develop land use information designed for regular on-going creation and consistency. Covering the entire landmass of Victoria, the dataset separately describes land tenure, land use and land cover. These variables are co-registered to a common spatial base (cadastral parcels) across the state for the period 2006 to 2013; biennially for land tenure and land use, and annually for land cover. Data is produced as a spatial GIS feature class.

  8. High resolution land surface response of inland moving Indian monsoon depressions over Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Rajesh, P. V.; Pattnaik, S.

    2016-05-01

    During Indian summer monsoon (ISM) season, nearly about half of the monsoonal rainfall is brought inland by the low pressure systems called as Monsoon Depressions (MDs). These systems bear large amount of rainfall and frequently give copious amount of rainfall over land regions, therefore accurate forecast of these synoptic scale systems at short time scale can help in disaster management, flood relief, food safety. The goal of this study is to investigate, whether an accurate moisture-rainfall feedback from land surface can improve the prediction of inland moving MDs. High Resolution Land Data Assimilation System (HRLDAS) is used to generate improved land state .i.e. soil moisture and soil temperature profiles by means of NOAH-MP land-surface model. Validation of the model simulated basic atmospheric parameters at surface layer and troposphere reveals that the incursion of high resolution land state yields least Root Mean Squared Error (RMSE) with a higher correlation coefficient and facilitates accurate depiction of MDs. Rainfall verification shows that HRLDAS simulations are spatially and quantitatively in more agreement with the observations and the improved surface characteristics could result in the realistic reproduction of the storm spatial structure, movement as well as intensity. These results signify the necessity of investigating more into the land surface-rainfall feedbacks through modifications in moisture flux convergence within the storm.

  9. Global Land Survey Impervious Mapping Project Web Site

    NASA Technical Reports Server (NTRS)

    DeColstoun, Eric Brown; Phillips, Jacqueline

    2014-01-01

    The Global Land Survey Impervious Mapping Project (GLS-IMP) aims to produce the first global maps of impervious cover at the 30m spatial resolution of Landsat. The project uses Global Land Survey (GLS) Landsat data as its base but incorporates training data generated from very high resolution commercial satellite data and using a Hierarchical segmentation program called Hseg. The web site contains general project information, a high level description of the science, examples of input and output data, as well as links to other relevant projects.

  10. Detecting spatio-temporal changes in agricultural land use in Heilongjiang province, China using MODIS time-series data and a random forest regression model

    NASA Astrophysics Data System (ADS)

    Hu, Q.; Friedl, M. A.; Wu, W.

    2017-12-01

    Accurate and timely information regarding the spatial distribution of crop types and their changes is essential for acreage surveys, yield estimation, water management, and agricultural production decision-making. In recent years, increasing population, dietary shifts and climate change have driven drastic changes in China's agricultural land use. However, no maps are currently available that document the spatial and temporal patterns of these agricultural land use changes. Because of its short revisit period, rich spectral bands and global coverage, MODIS time series data has been shown to have great potential for detecting the seasonal dynamics of different crop types. However, its inherently coarse spatial resolution limits the accuracy with which crops can be identified from MODIS in regions with small fields or complex agricultural landscapes. To evaluate this more carefully and specifically understand the strengths and weaknesses of MODIS data for crop-type mapping, we used MODIS time-series imagery to map the sub-pixel fractional crop area for four major crop types (rice, corn, soybean and wheat) at 500-m spatial resolution for Heilongjiang province, one of the most important grain-production regions in China where recent agricultural land use change has been rapid and pronounced. To do this, a random forest regression (RF-g) model was constructed to estimate the percentage of each sub-pixel crop type in 2006, 2011 and 2016. Crop type maps generated through expert visual interpretation of high spatial resolution images (i.e., Landsat and SPOT data) were used to calibrate the regression model. Five different time series of vegetation indices (155 features) derived from different spectral channels of MODIS land surface reflectance (MOD09A1) data were used as candidate features for the RF-g model. An out-of-bag strategy and backward elimination approach was applied to select the optimal spectra-temporal feature subset for each crop type. The resulting crop maps were assessed in two ways: (1) wall-to-wall pixel comparison with corresponding high spatial resolution reference maps; and (2) county-level comparison with census data. Based on these derived maps, changes in crop type, total area, and spatial patterns of change in Heilongjiang province during 2006-2016 were analyzed.

  11. An Iterated Global Mascon Solution with Focus on Land Ice Mass Evolution

    NASA Technical Reports Server (NTRS)

    Luthcke, S. B.; Sabaka, T.; Rowlands, D. D.; Lemoine, F. G.; Loomis, B. D.; Boy, J. P.

    2012-01-01

    Land ice mass evolution is determined from a new GRACE global mascon solution. The solution is estimated directly from the reduction of the inter-satellite K-band range rate observations taking into account the full noise covariance, and formally iterating the solution. The new solution increases signal recovery while reducing the GRACE KBRR observation residuals. The mascons are estimated with 10-day and 1-arc-degree equal area sampling, applying anisotropic constraints for enhanced temporal and spatial resolution of the recovered land ice signal. The details of the solution are presented including error and resolution analysis. An Ensemble Empirical Mode Decomposition (EEMD) adaptive filter is applied to the mascon solution time series to compute timing of balance seasons and annual mass balances. The details and causes of the spatial and temporal variability of the land ice regions studied are discussed.

  12. Enhanced Satellite Remote Sensing of Coastal Waters Using Spatially Improved Bio-Optical Products from SNPP-VIIRS

    DTIC Science & Technology

    2015-01-01

    a spatial resolution of 250-m. The Gumley et al. computation for MODIS sharpening is given as a ratio of high to low resolution top of the atmosphere...NIR) correction (Stumpf, Arnone, Gould, Martinolich, & Ransibrahamanakul, 2003). Standard flagswere used tomask interference from land, clouds , sun...technique This new approach expands on the methodology described by Gumley et al. (2010), with somemodifications. We will compute a sim- ilar spatial

  13. Determination of Destructed and Infracted Forest Areas with Multi-temporal High Resolution Satellite Images

    NASA Astrophysics Data System (ADS)

    Seker, D. Z.; Unal, A.; Kaya, S.; Alganci, U.

    2015-12-01

    Migration from rural areas to city centers and their surroundings is an important problem of not only our country but also the countries that under development stage. This uncontrolled and huge amount of migration brings out urbanization and socio - economic problems. The demand on settling the industrial areas and commercial activities nearby the city centers results with a negative change in natural land cover on cities. Negative impacts of human induced activities on natural resources and land cover has been continuously increasing for decades. The main human activities that resulted with destruction and infraction of forest areas can be defined as mining activities, agricultural activities, industrial / commercial activities and urbanization. Temporal monitoring of the changes in spatial distribution of forest areas is significantly important for effective management and planning progress. Changes can occur as spatially large destructions or small infractions. Therefore there is a need for reliable, fast and accurate data sources. At this point, satellite images proved to be a good data source for determination of the land use /cover changes with their capability of monitoring large areas with reasonable temporal resolutions. Spectral information derived from images provides discrimination of land use/cover types from each other. Developments in remote sensing technology in the last decade improved the spatial resolution of satellites and high resolution images were started to be used to detect even small changes in the land surface. As being the megacity of Turkey, Istanbul has been facing a huge migration for the last 20 years and effects of urbanization and other human based activities over forest areas are significant. Main focus of this study is to determine the destructions and infractions in forest areas of Istanbul, Turkey with 2.5m resolution SPOT 5 multi-temporal satellite imagery. Analysis was mainly constructed on threshold based classification of multi-temporal vegetation index data derived from satellite images. Determined changes were exported to GIS environment and spatial overlay and intersection analyses were performed with use of forest type maps and authorized area maps in order to demonstrate the actual situation of destructions and infractions.

  14. Agricultural Land Use mapping by multi-sensor approach for hydrological water quality monitoring

    NASA Astrophysics Data System (ADS)

    Brodsky, Lukas; Kodesova, Radka; Kodes, Vit

    2010-05-01

    The main objective of this study is to demonstrate potential of operational use of the high and medium resolution remote sensing data for hydrological water quality monitoring by mapping agriculture intensity and crop structures. In particular use of remote sensing mapping for optimization of pesticide monitoring. The agricultural mapping task is tackled by means of medium spatial and high temporal resolution ESA Envisat MERIS FR images together with single high spatial resolution IRS AWiFS image covering the whole area of interest (the Czech Republic). High resolution data (e.g. SPOT, ALOS, Landsat) are often used for agricultural land use classification, but usually only at regional or local level due to data availability and financial constraints. AWiFS data (nominal spatial resolution 56 m) due to the wide satellite swath seems to be more suitable for use at national level. Nevertheless, one of the critical issues for such a classification is to have sufficient image acquisitions over the whole vegetation period to describe crop development in appropriate way. ESA MERIS middle-resolution data were used in several studies for crop classification. The high temporal and also spectral resolution of MERIS data has indisputable advantage for crop classification. However, spatial resolution of 300 m results in mixture signal in a single pixel. AWiFS-MERIS data synergy brings new perspectives in agricultural Land Use mapping. Also, the developed methodology procedure is fully compatible with future use of ESA (GMES) Sentinel satellite images. The applied methodology of hybrid multi-sensor approach consists of these main stages: a/ parcel segmentation and spectral pre-classification of high resolution image (AWiFS); b/ ingestion of middle resolution (MERIS) vegetation spectro-temporal features; c/ vegetation signatures unmixing; and d/ semantic object-oriented classification of vegetation classes into final classification scheme. These crop groups were selected to be classified: winter crops, spring crops, oilseed rape, legumes, summer and other crops. This study highlights operational potentials of high temporal full resolution MERIS images in agricultural land use monitoring. Practical application of this methodology is foreseen, among others, in the water quality monitoring. Effective pesticide monitoring relies also on spatial distribution of applied pesticides, which can be derived from crop - plant protection product relationship. Knowledge of areas with predominant occurrence of specific crop based on remote sensing data described above can be used for a forecast of probable plant protection product application, thus cost-effective pesticide monitoring. The remote sensing data used on a continuous basis can be used in other long-term water management issues and provide valuable data for decision makers. Acknowledgement: Authors acknowledge the financial support of the Ministry of Education, Youth and Sports of the Czech Republic (grants No. 2B06095 and No. MSM 6046070901). The study was also supported by ESA CAT-1 (ref. 4358) and SOSI projects (Spatial Observation Services and Infrastructure; ref. GSTP-RTDA-EOPG-SW-08-0004).

  15. Effects of Topography-based Subgrid Structures on Land Surface Modeling

    NASA Astrophysics Data System (ADS)

    Tesfa, T. K.; Ruby, L.; Brunke, M.; Thornton, P. E.; Zeng, X.; Ghan, S. J.

    2017-12-01

    Topography has major control on land surface processes through its influence on atmospheric forcing, soil and vegetation properties, network topology and drainage area. Consequently, accurate climate and land surface simulations in mountainous regions cannot be achieved without considering the effects of topographic spatial heterogeneity. To test a computationally less expensive hyper-resolution land surface modeling approach, we developed topography-based landunits within a hierarchical subgrid spatial structure to improve representation of land surface processes in the ACME Land Model (ALM) with minimal increase in computational demand, while improving the ability to capture the spatial heterogeneity of atmospheric forcing and land cover influenced by topography. This study focuses on evaluation of the impacts of the new spatial structures on modeling land surface processes. As a first step, we compare ALM simulations with and without subgrid topography and driven by grid cell mean atmospheric forcing to isolate the impacts of the subgrid topography on the simulated land surface states and fluxes. Recognizing that subgrid topography also has important effects on atmospheric processes that control temperature, radiation, and precipitation, methods are being developed to downscale atmospheric forcings. Hence in the second step, the impacts of the subgrid topographic structure on land surface modeling will be evaluated by including spatial downscaling of the atmospheric forcings. Preliminary results on the atmospheric downscaling and the effects of the new spatial structures on the ALM simulations will be presented.

  16. Estimation of global soil respiration by accounting for land-use changes derived from remote sensing data.

    PubMed

    Adachi, Minaco; Ito, Akihiko; Yonemura, Seiichiro; Takeuchi, Wataru

    2017-09-15

    Soil respiration is one of the largest carbon fluxes from terrestrial ecosystems. Estimating global soil respiration is difficult because of its high spatiotemporal variability and sensitivity to land-use change. Satellite monitoring provides useful data for estimating the global carbon budget, but few studies have estimated global soil respiration using satellite data. We provide preliminary insights into the estimation of global soil respiration in 2001 and 2009 using empirically derived soil temperature equations for 17 ecosystems obtained by field studies, as well as MODIS climate data and land-use maps at a 4-km resolution. The daytime surface temperature from winter to early summer based on the MODIS data tended to be higher than the field-observed soil temperatures in subarctic and temperate ecosystems. The estimated global soil respiration was 94.8 and 93.8 Pg C yr -1 in 2001 and 2009, respectively. However, the MODIS land-use maps had insufficient spatial resolution to evaluate the effect of land-use change on soil respiration. The spatial variation of soil respiration (Q 10 ) values was higher but its spatial variation was lower in high-latitude areas than in other areas. However, Q 10 in tropical areas was more variable and was not accurately estimated (the values were >7.5 or <1.0) because of the low seasonal variation in soil respiration in tropical ecosystems. To solve these problems, it will be necessary to validate our results using a combination of remote sensing data at higher spatial resolution and field observations for many different ecosystems, and it will be necessary to account for the effects of more soil factors in the predictive equations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. A new map of global ecological land units—An ecophysiographic stratification approach

    USGS Publications Warehouse

    Sayre, Roger; Dangermond, Jack; Frye, Charlie; Vaughan, Randy; Aniello, Peter; Breyer, Sean P.; Cribbs, Douglas; Hopkins, Dabney; Nauman, Richard; Derrenbacher, William; Wright, Dawn J.; Brown, Clint; Convis, Charles; Smith, Jonathan H.; Benson, Laurence; Van Sistine, Darren; Warner, Harumi; Cress, Jill Janene; Danielson, Jeffrey J.; Hamann, Sharon L.; Cecere, Thomas; Reddy, Ashwan D.; Burton, Devon; Grosse, Andrea; True, Diane; Metzger, Marc; Hartmann, Jens; Moosdorf, Nils; Durr, Hans; Paganini, Marc; Defourny, Pierre; Arino, Olivier; Maynard, Simone; Anderson, Mark; Comer, Patrick

    2014-01-01

    In response to the need and an intergovernmental commission for a high resolution and data-derived global ecosystem map, land surface elements of global ecological pattern were characterized in an ecophysiographic stratification of the planet. The stratification produced 3,923 terrestrial ecological land units (ELUs) at a base resolution of 250 meters. The ELUs were derived from data on land surface features in a three step approach. The first step involved acquiring or developing four global raster datalayers representing the primary components of ecosystem structure: bioclimate, landform, lithology, and land cover. These datasets generally represent the most accurate, current, globally comprehensive, and finest spatial and thematic resolution data available for each of the four inputs. The second step involved a spatial combination of the four inputs into a single, new integrated raster dataset where every cell represents a combination of values from the bioclimate, landforms, lithology, and land cover datalayers. This foundational global raster datalayer, called ecological facets (EFs), contains 47,650 unique combinations of the four inputs. The third step involved an aggregation of the EFs into the 3,923 ELUs. This subdivision of the Earth’s surface into relatively fine, ecological land areas is designed to be useful for various types of ecosystem research and management applications, including assessments of climate change impacts to ecosystems, economic and non-economic valuation of ecosystem services, and conservation planning.

  18. Implications of high-spatial-resolution thermal infrared (Termoskan) data for Mars landing site selection

    NASA Technical Reports Server (NTRS)

    Betts, Bruce H.

    1994-01-01

    Thermal infrared observations of Mars from spacecraft provide physical information about the upper thermal skin depth of the surface, which is on the order of a few centimeters in depth and thus very significant for lander site selection. The Termoskan instrument onboard the Soviet Phobos '88 spacecraft acquired the highest spatial-resolution thermal infrared data obtained for Mars, ranging in resolution from 300 m to 3 km per pixel. It simultaneously obtained broadband reflected solar flux data. Although the 6 deg N - 30 deg S Termoskan coverage only slightly overlaps the nominal Mars Pathfinder target range, the implications of Termoskan data for that overlap region and the extrapolations that can be made to other regions give important clues for optimal landing site selection.

  19. Land use/cover classification in the Brazilian Amazon using satellite images.

    PubMed

    Lu, Dengsheng; Batistella, Mateus; Li, Guiying; Moran, Emilio; Hetrick, Scott; Freitas, Corina da Costa; Dutra, Luciano Vieira; Sant'anna, Sidnei João Siqueira

    2012-09-01

    Land use/cover classification is one of the most important applications in remote sensing. However, mapping accurate land use/cover spatial distribution is a challenge, particularly in moist tropical regions, due to the complex biophysical environment and limitations of remote sensing data per se. This paper reviews experiments related to land use/cover classification in the Brazilian Amazon for a decade. Through comprehensive analysis of the classification results, it is concluded that spatial information inherent in remote sensing data plays an essential role in improving land use/cover classification. Incorporation of suitable textural images into multispectral bands and use of segmentation-based method are valuable ways to improve land use/cover classification, especially for high spatial resolution images. Data fusion of multi-resolution images within optical sensor data is vital for visual interpretation, but may not improve classification performance. In contrast, integration of optical and radar data did improve classification performance when the proper data fusion method was used. Of the classification algorithms available, the maximum likelihood classifier is still an important method for providing reasonably good accuracy, but nonparametric algorithms, such as classification tree analysis, has the potential to provide better results. However, they often require more time to achieve parametric optimization. Proper use of hierarchical-based methods is fundamental for developing accurate land use/cover classification, mainly from historical remotely sensed data.

  20. Land use/cover classification in the Brazilian Amazon using satellite images

    PubMed Central

    Lu, Dengsheng; Batistella, Mateus; Li, Guiying; Moran, Emilio; Hetrick, Scott; Freitas, Corina da Costa; Dutra, Luciano Vieira; Sant’Anna, Sidnei João Siqueira

    2013-01-01

    Land use/cover classification is one of the most important applications in remote sensing. However, mapping accurate land use/cover spatial distribution is a challenge, particularly in moist tropical regions, due to the complex biophysical environment and limitations of remote sensing data per se. This paper reviews experiments related to land use/cover classification in the Brazilian Amazon for a decade. Through comprehensive analysis of the classification results, it is concluded that spatial information inherent in remote sensing data plays an essential role in improving land use/cover classification. Incorporation of suitable textural images into multispectral bands and use of segmentation-based method are valuable ways to improve land use/cover classification, especially for high spatial resolution images. Data fusion of multi-resolution images within optical sensor data is vital for visual interpretation, but may not improve classification performance. In contrast, integration of optical and radar data did improve classification performance when the proper data fusion method was used. Of the classification algorithms available, the maximum likelihood classifier is still an important method for providing reasonably good accuracy, but nonparametric algorithms, such as classification tree analysis, has the potential to provide better results. However, they often require more time to achieve parametric optimization. Proper use of hierarchical-based methods is fundamental for developing accurate land use/cover classification, mainly from historical remotely sensed data. PMID:24353353

  1. Variability in Surface BRDF at Different Spatial Scales (30m-500m) Over a Mixed Agricultural Landscape as Retrieved from Airborne and Satellite Spectral Measurements

    NASA Technical Reports Server (NTRS)

    Roman, Miguel O.; Gatebe, Charles K.; Schaaf, Crystal B.; Poudyal, Rajesh; Wang, Zhuosen; King, Michael D.

    2012-01-01

    Over the past decade, the role of multiangle 1 remote sensing has been central to the development of algorithms for the retrieval of global land surface properties including models of the bidirectional reflectance distribution function (BRDF), albedo, land cover/dynamics, burned area extent, as well as other key surface biophysical quantities represented by the anisotropic reflectance characteristics of vegetation. In this study, a new retrieval strategy for fine-to-moderate resolution multiangle observations was developed, based on the operational sequence used to retrieve the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 5 reflectance and BRDF/albedo products. The algorithm makes use of a semiempirical kernel-driven bidirectional reflectance model to provide estimates of intrinsic albedo (i.e., directional-hemispherical reflectance and bihemispherical reflectance), model parameters describing the BRDF, and extensive quality assurance information. The new retrieval strategy was applied to NASA's Cloud Absorption Radiometer (CAR) data acquired during the 2007 Cloud and Land Surface Interaction Campaign (CLASIC) over the well-instrumented Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site in Oklahoma, USA. For the case analyzed, we obtained approx.1.6 million individual surface bidirectional reflectance factor (BRF) retrievals, from nadir to 75deg off-nadir, and at spatial resolutions ranging from 3 m - 500 m. This unique dataset was used to examine the interaction of the spatial and angular 18 characteristics of a mixed agricultural landscape; and provided the basis for detailed assessments of: (1) the use of a priori knowledge in kernel-driven BRDF model inversions; (2) the interaction between surface reflectance anisotropy and instrument spatial resolution; and (3) the uncertainties that arise when sub-pixel differences in the BRDF are aggregated to a moderate resolution satellite pixel. Results offer empirical evidence concerning the influence of scale and spatial heterogeneity in kernel-driven BRDF models; providing potential new insights into the behavior and characteristics of different surface radiative properties related to land/use cover change and vegetation structure.

  2. Variability in Surface BRDF at Different Spatial Scales (30 m-500 m) Over a Mixed Agricultural Landscape as Retrieved from Airborne and Satellite Spectral Measurements

    NASA Technical Reports Server (NTRS)

    Roman, Miguel O.; Gatebe, Charles K.; Schaaf, Crystal B.; Poudyal, Rajesh; Wang, Zhousen; King, Michael D.

    2011-01-01

    Over the past decade, the role of multiangle remote sensing has been central to the development of algorithms for the retrieval of global land surface properties including models of the bidirectional reflectance distribution function (BRDF), albedo, land cover/dynamics, burned area extent, as well as other key surface biophysical quantities represented by the anisotropic reflectance characteristics of vegetation. In this study, a new retrieval strategy for fine-to-moderate resolution multiangle observations was developed, based on the operational sequence used to retrieve the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 5 reflectance and BRDF/albedo products. The algorithm makes use of a semiempirical kernel-driven bidirectional reflectance model to provide estimates of intrinsic albedo (i.e., directional-hemispherical reflectance and bihemispherical reflectance), model parameters describing the BRDF, and extensive quality assurance information. The new retrieval strategy was applied to NASA's Cloud Absorption Radiometer (CAR) data acquired during the 2007 Cloud and Land Surface Interaction Campaign (CLASIC) over the well-instrumented Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site in Oklahoma, USA. For the case analyzed, we obtained approx.1.6 million individual surface bidirectional reflectance factor (BRF) retrievals, from nadir to 75 off-nadir, and at spatial resolutions ranging from 3 m - 500 m. This unique dataset was used to examine the interaction of the spatial and angular characteristics of a mixed agricultural landscape; and provided the basis for detailed assessments of: (1) the use of a priori knowledge in kernel-driven BRDF model inversions; (2) the interaction between surface reflectance anisotropy and instrument spatial resolution; and (3) the uncertain ties that arise when sub-pixel differences in the BRDF are aggregated to a moderate resolution satellite pixel. Results offer empirical evidence concerning the influence of scale and spatial heterogeneity in kernel-driven BRDF models; providing potential new insights into the behavior and characteristics of different surface radiative properties related to land/use cover change and vegetation structure.

  3. Thematic and spatial resolutions affect model-based predictions of tree species distribution.

    PubMed

    Liang, Yu; He, Hong S; Fraser, Jacob S; Wu, ZhiWei

    2013-01-01

    Subjective decisions of thematic and spatial resolutions in characterizing environmental heterogeneity may affect the characterizations of spatial pattern and the simulation of occurrence and rate of ecological processes, and in turn, model-based tree species distribution. Thus, this study quantified the importance of thematic and spatial resolutions, and their interaction in predictions of tree species distribution (quantified by species abundance). We investigated how model-predicted species abundances changed and whether tree species with different ecological traits (e.g., seed dispersal distance, competitive capacity) had different responses to varying thematic and spatial resolutions. We used the LANDIS forest landscape model to predict tree species distribution at the landscape scale and designed a series of scenarios with different thematic (different numbers of land types) and spatial resolutions combinations, and then statistically examined the differences of species abundance among these scenarios. Results showed that both thematic and spatial resolutions affected model-based predictions of species distribution, but thematic resolution had a greater effect. Species ecological traits affected the predictions. For species with moderate dispersal distance and relatively abundant seed sources, predicted abundance increased as thematic resolution increased. However, for species with long seeding distance or high shade tolerance, thematic resolution had an inverse effect on predicted abundance. When seed sources and dispersal distance were not limiting, the predicted species abundance increased with spatial resolution and vice versa. Results from this study may provide insights into the choice of thematic and spatial resolutions for model-based predictions of tree species distribution.

  4. Thematic and Spatial Resolutions Affect Model-Based Predictions of Tree Species Distribution

    PubMed Central

    Liang, Yu; He, Hong S.; Fraser, Jacob S.; Wu, ZhiWei

    2013-01-01

    Subjective decisions of thematic and spatial resolutions in characterizing environmental heterogeneity may affect the characterizations of spatial pattern and the simulation of occurrence and rate of ecological processes, and in turn, model-based tree species distribution. Thus, this study quantified the importance of thematic and spatial resolutions, and their interaction in predictions of tree species distribution (quantified by species abundance). We investigated how model-predicted species abundances changed and whether tree species with different ecological traits (e.g., seed dispersal distance, competitive capacity) had different responses to varying thematic and spatial resolutions. We used the LANDIS forest landscape model to predict tree species distribution at the landscape scale and designed a series of scenarios with different thematic (different numbers of land types) and spatial resolutions combinations, and then statistically examined the differences of species abundance among these scenarios. Results showed that both thematic and spatial resolutions affected model-based predictions of species distribution, but thematic resolution had a greater effect. Species ecological traits affected the predictions. For species with moderate dispersal distance and relatively abundant seed sources, predicted abundance increased as thematic resolution increased. However, for species with long seeding distance or high shade tolerance, thematic resolution had an inverse effect on predicted abundance. When seed sources and dispersal distance were not limiting, the predicted species abundance increased with spatial resolution and vice versa. Results from this study may provide insights into the choice of thematic and spatial resolutions for model-based predictions of tree species distribution. PMID:23861828

  5. Predicting opportunities for greening and patterns of vegetation on private urban lands

    Treesearch

    Austin R. Troy; J. Morgan Grove; Jarlath P.M. O' Neil-Dunne; Steward T.A. Pickett; Mary L. Cadenasso

    2007-01-01

    This paper examines predictors of vegetative cover on private lands in Baltimore, Maryland. Using high-resolution spatial data, we generated two measures: "possible stewardship," which is the proportion of private land that does not have built structures on it and hence has the possibility of supporting vegetation, and "realized stewardship," which...

  6. Sensitivity of modeled estuarine circulation to spatial and temporal resolution of input meteorological forcing of a cold frontal passage

    NASA Astrophysics Data System (ADS)

    Weaver, Robert J.; Taeb, Peyman; Lazarus, Steven; Splitt, Michael; Holman, Bryan P.; Colvin, Jeffrey

    2016-12-01

    In this study, a four member ensemble of meteorological forcing is generated using the Weather Research and Forecasting (WRF) model in order to simulate a frontal passage event that impacted the Indian River Lagoon (IRL) during March 2015. The WRF model is run to provide high and low, spatial (0.005° and 0.1°) and temporal (30 min and 6 h) input wind and pressure fields. The four member ensemble is used to force the Advanced Circulation model (ADCIRC) coupled with Simulating Waves Nearshore (SWAN) and compute the hydrodynamic and wave response. Results indicate that increasing the spatial resolution of the meteorological forcing has a greater impact on the results than increasing the temporal resolution in coastal systems like the IRL where the length scales are smaller than the resolution of the operational meteorological model being used to generate the forecast. Changes in predicted water elevations are due in part to the upwind and downwind behavior of the input wind forcing. The significant wave height is more sensitive to the meteorological forcing, exhibited by greater ensemble spread throughout the simulation. It is important that the land mask, seen by the meteorological model, is representative of the geography of the coastal estuary as resolved by the hydrodynamic model. As long as the temporal resolution of the wind field captures the bulk characteristics of the frontal passage, computational resources should be focused so as to ensure that the meteorological model resolves the spatial complexities, such as the land-water interface, that drive the land use responsible for dynamic downscaling of the winds.

  7. Land Cover Classification in a Complex Urban-Rural Landscape with Quickbird Imagery

    PubMed Central

    Moran, Emilio Federico.

    2010-01-01

    High spatial resolution images have been increasingly used for urban land use/cover classification, but the high spectral variation within the same land cover, the spectral confusion among different land covers, and the shadow problem often lead to poor classification performance based on the traditional per-pixel spectral-based classification methods. This paper explores approaches to improve urban land cover classification with Quickbird imagery. Traditional per-pixel spectral-based supervised classification, incorporation of textural images and multispectral images, spectral-spatial classifier, and segmentation-based classification are examined in a relatively new developing urban landscape, Lucas do Rio Verde in Mato Grosso State, Brazil. This research shows that use of spatial information during the image classification procedure, either through the integrated use of textural and spectral images or through the use of segmentation-based classification method, can significantly improve land cover classification performance. PMID:21643433

  8. Mediterranean Land Use and Land Cover Classification Assessment Using High Spatial Resolution Data

    NASA Astrophysics Data System (ADS)

    Elhag, Mohamed; Boteva, Silvena

    2016-10-01

    Landscape fragmentation is noticeably practiced in Mediterranean regions and imposes substantial complications in several satellite image classification methods. To some extent, high spatial resolution data were able to overcome such complications. For better classification performances in Land Use Land Cover (LULC) mapping, the current research adopts different classification methods comparison for LULC mapping using Sentinel-2 satellite as a source of high spatial resolution. Both of pixel-based and an object-based classification algorithms were assessed; the pixel-based approach employs Maximum Likelihood (ML), Artificial Neural Network (ANN) algorithms, Support Vector Machine (SVM), and, the object-based classification uses the Nearest Neighbour (NN) classifier. Stratified Masking Process (SMP) that integrates a ranking process within the classes based on spectral fluctuation of the sum of the training and testing sites was implemented. An analysis of the overall and individual accuracy of the classification results of all four methods reveals that the SVM classifier was the most efficient overall by distinguishing most of the classes with the highest accuracy. NN succeeded to deal with artificial surface classes in general while agriculture area classes, and forest and semi-natural area classes were segregated successfully with SVM. Furthermore, a comparative analysis indicates that the conventional classification method yielded better accuracy results than the SMP method overall with both classifiers used, ML and SVM.

  9. Simulation of semi-arid hydrological processes at different spatial resolutions using the AgroEcoSystem-Watershed (AgES-W) model

    NASA Astrophysics Data System (ADS)

    Green, T. R.; Erksine, R. H.; David, O.; Ascough, J. C., II; Kipka, H.; Lloyd, W. J.; McMaster, G. S.

    2015-12-01

    Water movement and storage within a watershed may be simulated at different spatial resolutions of land areas or hydrological response units (HRUs). Here, effects of HRU size on simulated soil water and surface runoff are tested using the AgroEcoSystem-Watershed (AgES-W) model with three different resolutions of HRUs. We studied a 56-ha agricultural watershed in northern Colorado, USA farmed primarily under a wheat-fallow rotation. The delineation algorithm was based upon topography (surface flow paths), land use (crop management strips and native grass), and mapped soil units (three types), which produced HRUs that follow the land use and soil boundaries. AgES-W model parameters that control surface and subsurface hydrology were calibrated using simulated daily soil moisture at different landscape positions and depths where soil moisture was measured hourly and averaged up to daily values. Parameter sets were both uniform and spatially variable with depth and across the watershed (5 different calibration approaches). Although forward simulations were computationally efficient (less than 1 minute each), each calibration required thousands of model runs. Execution of such large jobs was facilitated by using the Object Modeling System with the Cloud Services Innovation Platform to manage four virtual machines on a commercial web service configured with a total of 64 computational cores and 120 GB of memory. Results show how spatially distributed and averaged soil moisture and runoff at the outlet vary with different HRU delineations. The results will help guide HRU delineation, spatial resolution and parameter estimation methods for improved hydrological simulations in this and other semi-arid agricultural watersheds.

  10. Relating mesocarnivore relative abundance to anthropogenic land-use with a hierarchical spatial count model

    USGS Publications Warehouse

    Crimmins, Shawn M.; Walleser, Liza R.; Hertel, Dan R.; McKann, Patrick C.; Rohweder, Jason J.; Thogmartin, Wayne E.

    2016-01-01

    There is growing need to develop models of spatial patterns in animal abundance, yet comparatively few examples of such models exist. This is especially true in situations where the abundance of one species may inhibit that of another, such as the intensively-farmed landscape of the Prairie Pothole Region (PPR) of the central United States, where waterfowl production is largely constrained by mesocarnivore nest predation. We used a hierarchical Bayesian approach to relate the distribution of various land-cover types to the relative abundances of four mesocarnivores in the PPR: coyote Canis latrans, raccoon Procyon lotor, red fox Vulpes vulpes, and striped skunk Mephitis mephitis. We developed models for each species at multiple spatial resolutions (41.4 km2, 10.4 km2, and 2.6 km2) to address different ecological and management-related questions. Model results for each species were similar irrespective of resolution. We found that the amount of row-crop agriculture was nearly ubiquitous in our best models, exhibiting a positive relationship with relative abundance for each species. The amount of native grassland land-cover was positively associated with coyote and raccoon relative abundance, but generally absent from models for red fox and skunk. Red fox and skunk were positively associated with each other, suggesting potential niche overlap. We found no evidence that coyote abundance limited that of other mesocarnivore species, as might be expected under a hypothesis of mesopredator release. The relationships between relative abundance and land-cover types were similar across spatial resolutions. Our results indicated that mesocarnivores in the PPR are most likely to occur in portions of the landscape with large amounts of agricultural land-cover. Further, our results indicated that track-survey data can be used in a hierarchical framework to gain inferences regarding spatial patterns in animal relative abundance.

  11. High-resolution land cover classification using low resolution global data

    NASA Astrophysics Data System (ADS)

    Carlotto, Mark J.

    2013-05-01

    A fusion approach is described that combines texture features from high-resolution panchromatic imagery with land cover statistics derived from co-registered low-resolution global databases to obtain high-resolution land cover maps. The method does not require training data or any human intervention. We use an MxN Gabor filter bank consisting of M=16 oriented bandpass filters (0-180°) at N resolutions (3-24 meters/pixel). The size range of these spatial filters is consistent with the typical scale of manmade objects and patterns of cultural activity in imagery. Clustering reduces the complexity of the data by combining pixels that have similar texture into clusters (regions). Texture classification assigns a vector of class likelihoods to each cluster based on its textural properties. Classification is unsupervised and accomplished using a bank of texture anomaly detectors. Class likelihoods are modulated by land cover statistics derived from lower resolution global data over the scene. Preliminary results from a number of Quickbird scenes show our approach is able to classify general land cover features such as roads, built up area, forests, open areas, and bodies of water over a wide range of scenes.

  12. Improved assessment of gross and net primary productivity of Canada's landmass

    NASA Astrophysics Data System (ADS)

    Gonsamo, Alemu; Chen, Jing M.; Price, David T.; Kurz, Werner A.; Liu, Jane; Boisvenue, Céline; Hember, Robbie A.; Wu, Chaoyang; Chang, Kuo-Hsien

    2013-12-01

    assess Canada's gross primary productivity (GPP) and net primary productivity (NPP) using boreal ecosystem productivity simulator (BEPS) at 250 m spatial resolution with improved input parameter and driver fields and phenology and nutrient release parameterization schemes. BEPS is a process-based two-leaf enzyme kinetic terrestrial ecosystem model designed to simulate energy, water, and carbon (C) fluxes using spatial data sets of meteorology, remotely sensed land surface variables, soil properties, and photosynthesis and respiration rate parameters. Two improved key land surface variables, leaf area index (LAI) and land cover type, are derived at 250 m from Moderate Resolution Imaging Spectroradiometer sensor. For diagnostic error assessment, we use nine forest flux tower sites where all measured C flux, meteorology, and ancillary data sets are available. The errors due to input drivers and parameters are then independently corrected for Canada-wide GPP and NPP simulations. The optimized LAI use, for example, reduced the absolute bias in GPP from 20.7% to 1.1% for hourly BEPS simulations. Following the error diagnostics and corrections, daily GPP and NPP are simulated over Canada at 250 m spatial resolution, the highest resolution simulation yet for the country or any other comparable region. Total NPP (GPP) for Canada's land area was 1.27 (2.68) Pg C for 2008, with forests contributing 1.02 (2.2) Pg C. The annual comparisons between measured and simulated GPP show that the mean differences are not statistically significant (p > 0.05, paired t test). The main BEPS simulation error sources are from the driver fields.

  13. Assessing land-use history for reporting on cropland dynamics - A case study using the Land-Parcel Identification System in Ireland

    NASA Astrophysics Data System (ADS)

    Zimmermann, Jesko; González, Ainhoa; Jones, Michael; O'Brien, Phillip; Stout, Jane C.; Green, Stuart

    2016-04-01

    In developed countries, cropland and grassland conversions and management can be a major factor in Land Use and Land Use Change (LULUC) related Greenhouse Gas (GHG) dynamics. Depending on land use, management and factors such as soil properties land can either act as source or sink for GHGs. Currently many countries depend on national statistics combined with socio-economic modelling to assess current land use as well as inter-annual changes. This potentially introduces a bias as it neither provides information on direct land- use change trajectories nor spatially explicit information to assess the environmental context. In order to improve reporting countries are shifting towards high resolution spatial datasets. In this case study, we used the Land Parcel Identification System (LPIS), a pan-European geographical database developed to assist farmers and authorities with agricultural subsidies, to analyse cropland dynamics in Ireland. The database offer high spatial resolution and is updated annually. Generally Ireland is considered grassland dominated with 90 % of its agricultural area under permanent grassland, and only a small area dedicated to cropland. However an in-depth analysis of the LPIS for the years 2000 to 2012 showed strong underlying dynamics. While the annual area reported as cropland remained relatively constant at 3752.3 ± 542.3 km2, the area of permanent cropland was only 1251.9 km2. Reversely, the area that was reported as cropland for at least one year during the timeframe was 7373.4 km2, revealing a significantly higher area with cropland history than annual statistics would suggest. Furthermore, the analysis showed that one quarter of the land converting from or to cropland will return to the previous land use within a year. To demonstrate potential policy impact, we assessed cropland/grassland dynamics from the 2008 to 2012 commitment period using (a) annual statistics, and (b) data including land use history derived from LPIS. Under current reporting standards temporary grassland is considered cropland for reporting purposes. Therefore taking land use history into account increases the area reported as cropland in 2008 by 45.7 % and the area remaining cropland in 2012 by 17.5 % compared to using annual statistics. In conclusion we showed that high resolution spatial datasets are an important tool to better understand land use dynamics, and can directly improve national GHG accounting efforts. Furthermore, knowledge of land use history is important to assess local GHG dynamics, and can therefore contribute to ultimately progress reporting to higher Tier level reporting.

  14. Towards realistic Holocene land cover scenarios: integration of archaeological, palynological and geomorphological records and comparison to global land cover scenarios.

    NASA Astrophysics Data System (ADS)

    De Brue, Hanne; Verstraeten, Gert; Broothaerts, Nils; Notebaert, Bastiaan

    2016-04-01

    Accurate and spatially explicit landscape reconstructions for distinct time periods in human history are essential for the quantification of the effect of anthropogenic land cover changes on, e.g., global biogeochemical cycles, ecology, and geomorphic processes, and to improve our understanding of interaction between humans and the environment in general. A long-term perspective covering Mid and Late Holocene land use changes is recommended in this context, as it provides a baseline to evaluate human impact in more recent periods. Previous efforts to assess the evolution and intensity of agricultural land cover in past centuries or millennia have predominantly focused on palynological records. An increasing number of quantitative techniques has been developed during the last two decades to transfer palynological data to land cover estimates. However, these techniques have to deal with equifinality issues and, furthermore, do not sufficiently allow to reconstruct spatial patterns of past land cover. On the other hand, several continental and global databases of historical anthropogenic land cover changes based on estimates of global population and the required agricultural land per capita have been developed in the past decennium. However, at such long temporal and spatial scales, reconstruction of past anthropogenic land cover intensities and spatial patterns necessarily involves many uncertainties and assumptions as well. Here, we present a novel approach that combines archaeological, palynological and geomorphological data for the Dijle catchment in the central Belgium Loess Belt in order to arrive at more realistic Holocene land cover histories. Multiple land cover scenarios (> 60.000) are constructed using probabilistic rules and used as input into a sediment delivery model (WaTEM/SEDEM). Model outcomes are confronted with a detailed geomorphic dataset on Holocene sediment fluxes and with REVEALS based estimates of vegetation cover using palynological data from six alluvial sites. This comparison drastically reduces the number of realistic land cover scenarios for various cultural periods. REVEALS based land cover histories provide more accurate estimates of Holocene sediment fluxes compared to global land cover scenarios (KK10 and HYDE 3.1). Both global land cover scenarios produce erroneous results when applied at their original coarse scale resolution. However, spatially allocating KK10 land cover data to a finer spatial resolution increases its performance, whereas this is not the case for HYDE 3.1. Results suggest that KK10 also offers a more realistic history of human impact than HYDE 3.1 although it overestimates human impact in the Belgian Loess Belt prior to the Roman Age, whereas it underestimates human impact from the Medieval Period onwards.

  15. Downscaling essential climate variable soil moisture using multisource data from 2003 to 2010 in China

    NASA Astrophysics Data System (ADS)

    Wang, Hui-Lin; An, Ru; You, Jia-jun; Wang, Ying; Chen, Yuehong; Shen, Xiao-ji; Gao, Wei; Wang, Yi-nan; Zhang, Yu; Wang, Zhe; Quaye-Ballard, Jonathan Arthur

    2017-10-01

    Soil moisture plays an important role in the water cycle within the surface ecosystem, and it is the basic condition for the growth of plants. Currently, the spatial resolutions of most soil moisture data from remote sensing range from ten to several tens of km, while those observed in-situ and simulated for watershed hydrology, ecology, agriculture, weather, and drought research are generally <1 km. Therefore, the existing coarse-resolution remotely sensed soil moisture data need to be downscaled. This paper proposes a universal and multitemporal soil moisture downscaling method suitable for large areas. The datasets comprise land surface, brightness temperature, precipitation, and soil and topographic parameters from high-resolution data and active/passive microwave remotely sensed essential climate variable soil moisture (ECV_SM) data with a spatial resolution of 25 km. Using this method, a total of 288 soil moisture maps of 1-km resolution from the first 10-day period of January 2003 to the last 10-day period of December 2010 were derived. The in-situ observations were used to validate the downscaled ECV_SM. In general, the downscaled soil moisture values for different land cover and land use types are consistent with the in-situ observations. Mean square root error is reduced from 0.070 to 0.061 using 1970 in-situ time series observation data from 28 sites distributed over different land uses and land cover types. The performance was also assessed using the GDOWN metric, a measure of the overall performance of the downscaling methods based on the same dataset. It was positive in 71.429% of cases, indicating that the suggested method in the paper generally improves the representation of soil moisture at 1-km resolution.

  16. A Simple Downscaling Algorithm for Remotely Sensed Land Surface Temperature

    NASA Astrophysics Data System (ADS)

    Sandholt, I.; Nielsen, C.; Stisen, S.

    2009-05-01

    The method is illustrated using a combination of MODIS NDVI data with a spatial resolution of 250m and 3 Km Meteosat Second Generation SEVIRI LST data. Geostationary Earth Observation data carry a large potential for assessment of surface state variables. Not the least the European Meteosat Second Generation platform with its SEVIRI sensor is well suited for studies of the dynamics of land surfaces due to its high temporal frequency (15 minutes) and its red, Near Infrared (NIR) channels that provides vegetation indices, and its two split window channels in the thermal infrared for assessment of Land Surface Temperature (LST). For some applications the spatial resolution in geostationary data is too coarse. Due to the low statial resolution of 4.8 km at nadir for the SEVIRI sensor, a means of providing sub pixel information is sought for. By combining and properly scaling two types of satellite images, namely data from the MODIS sensor onboard the polar orbiting platforms TERRA and AQUA and the coarse resolution MSG-SEVIRI, we exploit the best from two worlds. The vegetation index/surface temperature space has been used in a vast number of studies for assessment of air temperature, soil moisture, dryness indices, evapotranspiration and for studies of land use change. In this paper, we present an improved method to derive a finer resolution Land Surface Temperature (LST). A new, deterministic scaling method has been applied, and is compared to existing deterministic downscaling methods based on LST and NDVI. We also compare our results from in situ measurements of LST from the Dahra test site in West Africa.

  17. Towards high temporal and moderate spatial resolutions in the remote sensing retrieval of evapotranspiration by combining geostationary and polar orbit satellite data

    NASA Astrophysics Data System (ADS)

    Barrios, José Miguel; Ghilain, Nicolas; Arboleda, Alirio; Gellens-Meulenberghs, Françoise

    2014-05-01

    Evapotranspiration (ET) is the water flux going from the surface into the atmosphere as result of soil and surface water evaporation and plant transpiration. It constitutes a key component of the water cycle and its quantification is of crucial importance for a number of applications like water management, climatic modelling, agriculture monitoring and planning, etc. Estimating ET is not an easy task; specially if large areas are envisaged and various spatio-temporal patterns of ET are present as result of heterogeneity in land cover, land use and climatic conditions. In this respect, spaceborne remote sensing (RS) provides the only alternative to continuously measure surface parameters related to ET over large areas. The Royal Meteorological Institute (RMI) of Belgium, in the framework of EUMETSAT's "Land Surface Analysis-Satellite Application Facility" (LSA-SAF), has developed a model for the estimation of ET. The model is forced by RS data, numerical weather predictions and land cover information. The RS forcing is derived from measurements by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the Meteosat Second Generation (MSG) satellite. This ET model is operational and delivers ET estimations over the whole field of view of the MSG satellite (Europe, Africa and Eastern South America) (http://landsaf.meteo.pt) every 30 minutes. The spatial resolution of MSG is 3 x 3 km at subsatellite point and about 4 x 5 km in continental Europe. The spatial resolution of this product may constrain its full exploitation as the interest of potential users (farmers and natural resources scientists) may lie on smaller spatial units. This study aimed at testing methodological alternatives to combine RS imagery (geostationary and polar orbit satellites) for the estimation of ET such that the spatial resolution of the final product is improved. In particular, the study consisted in the implementation of two approaches for combining the current ET estimations with RS data containing information over vegetation parameters and captured by polar orbit spaceborne sensors. The first tested approach consisted in forcing the operational ET algorithm with RS measurements obtained from a moderate spatial resolution sensor. The variables with improved spatial resolution were leaf area index and albedo. Other variables of the model remained unchanged with respect to the operational version. In the second approach, a two phases procedure was implemented. Firstly, a preliminary approximation of ET was obtained as a function of solar radiation, air temperature and a vegetation index. The value was then statistically adjusted on the basis of the ET estimations by the operational algorithm. The results of implementing the different approaches were tested against eddy covariance ET derived from measurements in Fluxnet towers spread across Europe and representing different landscape characteristics. The analysis allowed the identification of pros and cons of the tested methodological approaches as well as their performance in different land cover arrangements.

  18. Enhanced Deforestation Mapping in North Korea using Spatial-temporal Image Fusion Method and Phenology-based Index

    NASA Astrophysics Data System (ADS)

    Jin, Y.; Lee, D.

    2017-12-01

    North Korea (the Democratic People's Republic of Korea, DPRK) is known to have some of the most degraded forest in the world. The characteristics of forest landscape in North Korea is complex and heterogeneous, the major vegetation cover types in the forest are hillside farm, unstocked forest, natural forest, and plateau vegetation. Better classification of types in high spatial resolution of deforested areas could provide essential information for decisions about forest management priorities and restoration of deforested areas. For mapping heterogeneous vegetation covers, the phenology-based indices are helpful to overcome the reflectance value confusion that occurs when using one season images. Coarse spatial resolution images may be acquired with a high repetition rate and it is useful for analyzing phenology characteristics, but may not capture the spatial detail of the land cover mosaic of the region of interest. Previous spatial-temporal fusion methods were only capture the temporal change, or focused on both temporal change and spatial change but with low accuracy in heterogeneous landscapes and small patches. In this study, a new concept for spatial-temporal image fusion method focus on heterogeneous landscape was proposed to produce fine resolution images at both fine spatial and temporal resolution. We classified the three types of pixels between the base image and target image, the first type is only reflectance changed caused by phenology, this type of pixels supply the reflectance, shape and texture information; the second type is both reflectance and spectrum changed in some bands caused by phenology like rice paddy or farmland, this type of pixels only supply shape and texture information; the third type is reflectance and spectrum changed caused by land cover type change, this type of pixels don't provide any information because we can't know how land cover changed in target image; and each type of pixels were applied different prediction methods. Results show that both STARFM and FSDAF predicted in low accuracy in second type pixels and small patches. Classification results used spatial-temporal image fusion method proposed in this study showed overall classification accuracy of 89.38%, with corresponding kappa coefficients of 0.87.

  19. A Tool for Creating Regionally Calibrated High-Resolution Land Cover Data Sets for the West African Sahel: Using Machine Learning to Scale Up Hand-Classified Maps in a Data-Sparse Environment

    NASA Astrophysics Data System (ADS)

    Van Gordon, M.; Van Gordon, S.; Min, A.; Sullivan, J.; Weiner, Z.; Tappan, G. G.

    2017-12-01

    Using support vector machine (SVM) learning and high-accuracy hand-classified maps, we have developed a publicly available land cover classification tool for the West African Sahel. Our classifier produces high-resolution and regionally calibrated land cover maps for the Sahel, representing a significant contribution to the data available for this region. Global land cover products are unreliable for the Sahel, and accurate land cover data for the region are sparse. To address this gap, the U.S. Geological Survey and the Regional Center for Agriculture, Hydrology and Meteorology (AGRHYMET) in Niger produced high-quality land cover maps for the region via hand-classification of Landsat images. This method produces highly accurate maps, but the time and labor required constrain the spatial and temporal resolution of the data products. By using these hand-classified maps alongside SVM techniques, we successfully increase the resolution of the land cover maps by 1-2 orders of magnitude, from 2km-decadal resolution to 30m-annual resolution. These high-resolution regionally calibrated land cover datasets, along with the classifier we developed to produce them, lay the foundation for major advances in studies of land surface processes in the region. These datasets will provide more accurate inputs for food security modeling, hydrologic modeling, analyses of land cover change and climate change adaptation efforts. The land cover classification tool we have developed will be publicly available for use in creating additional West Africa land cover datasets with future remote sensing data and can be adapted for use in other parts of the world.

  20. Spatial downscaling of SMAP soil moisture using MODIS land surface temperature and NDVI during SMAPVEX15

    USDA-ARS?s Scientific Manuscript database

    The SMAP (Soil Moisture Active Passive) mission provides global surface soil moisture product at 36 km resolution from its L-band radiometer. While the coarse resolution is satisfactory to many applications there are also a lot of applications which would benefit from a higher resolution soil moistu...

  1. Evaluation on newly developed high resolution of surface solar radiation from MTSAT observations for the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Niu, X.; Yang, K.; Tang, W.; Qin, J.

    2015-12-01

    Neither surface measurement nor existing remote sensing products of the Surface Solar Radiation (SSR) can meet the application requirements of hydrological and land process modeling in the Tibetan Plateau (TP). High resolution (hourly; 0.1⁰) of SSR estimates have been derived recently from the geostationary satellite observations - the Multi-functional Transport Satellite (MTSAT). This SSR estimation is based on updating an existing physical model, the UMD-SRB (University of Maryland Surface Radiation Budget) which is the basis of the well-known GEWEX-SRB model. In the updated framework introduced is the high-resolution Global Land Surface Broadband Albedo Product (GLASS) with spatial continuity. The developed SSR estimates are demonstrated at different temporal resolutions over the TP and are evaluated against ground observations and other satellite products from: (1) China Meteorological Administration (CMA) radiation stations in TP; (2) three TP radiation stations contributed from the Institute of Tibetan Plateau Research; (3) and the universal used satellite products (i.e. ISCCP-FD, GEWEX-SRB) in relatively low spatial resolution (0.5º-2.5º) and temporal resolution (3-hourly, daily, or monthly).

  2. Carbon emissions risk map from deforestation in the tropical Amazon

    NASA Astrophysics Data System (ADS)

    Ometto, J.; Soler, L. S.; Assis, T. D.; Oliveira, P. V.; Aguiar, A. P.

    2011-12-01

    Assis, Pedro Valle This work aims to estimate the carbon emissions from tropical deforestation in the Brazilian Amazon associated to the risk assessment of future land use change. The emissions are estimated by incorporating temporal deforestation dynamics, accounting for the biophysical and socioeconomic heterogeneity in the region, as well secondary forest growth dynamic in abandoned areas. The land cover change model that supported the risk assessment of deforestation, was run based on linear regressions. This method takes into account spatial heterogeneity of deforestation as the spatial variables adopted to fit the final regression model comprise: environmental aspects, economic attractiveness, accessibility and land tenure structure. After fitting a suitable regression models for each land cover category, the potential of each cell to be deforested (25x25km and 5x5 km of resolution) in the near future was used to calculate the risk assessment of land cover change. The carbon emissions model combines high-resolution new forest clear-cut mapping and four alternative sources of spatial information on biomass distribution for different vegetation types. The risk assessment map of CO2 emissions, was obtained by crossing the simulation results of the historical land cover changes to a map of aboveground biomass contained in the remaining forest. This final map represents the risk of CO2 emissions at 25x25km and 5x5 km until 2020, under a scenario of carbon emission reduction target.

  3. Mapping regional soil water erosion risk in the Brittany-Loire basin for water management agency

    NASA Astrophysics Data System (ADS)

    Degan, Francesca; Cerdan, Olivier; Salvador-Blanes, Sébastien; Gautier, Jean-Noël

    2014-05-01

    Soil water erosion is one of the main degradation processes that affect soils through the removal of soil particles from the surface. The impacts for environment and agricultural areas are diverse, such as water pollution, crop yield depression, organic matter loss and reduction in water storage capacity. There is therefore a strong need to produce maps at the regional scale to help environmental policy makers and soil and water management bodies to mitigate the effect of water and soil pollution. Our approach aims to model and map soil erosion risk at regional scale (155 000 km²) and high spatial resolution (50 m) in the Brittany - Loire basin. The factors responsible for soil erosion are different according to the spatial and time scales considered. The regional scale entails challenges about homogeneous data sets availability, spatial resolution of results, various erosion processes and agricultural practices. We chose to improve the MESALES model (Le Bissonnais et al., 2002) to map soil erosion risk, because it was developed specifically for water erosion in agricultural fields in temperate areas. The MESALES model consists in a decision tree which gives for each combination of factors the corresponding class of soil erosion risk. Four factors that determine soil erosion risk are considered: soils, land cover, climate and topography. The first main improvement of the model consists in using newly available datasets that are more accurate than the initial ones. The datasets used cover all the study area homogeneously. Soil dataset has a 1/1 000 000 scale and attributes such as texture, soil type, rock fragment and parent material are used. The climate dataset has a spatial resolution of 8 km and a temporal resolution of mm/day for 12 years. Elevation dataset has a spatial resolution of 50 m. Three different land cover datasets are used where the finest spatial resolution is 50 m over three years. Using these datasets, four erosion factors are characterized and quantified: the soil factors (soil sealing, erodibility and runoff), the rate of land cover over three years for each season and for 77 land use classes, the topographic factor (slope and drainage area) and the climate hazard (seasonal amount and rainfall erosivity). These modifications of the original MESALES model allow to better represent erosion risk for arable and bare land. We validated model results by stakeholder consultations and meetings over all the study area. The model has finally been modified taking into account validation results. Results are provided with a spatial resolution of 1 km, and then integrated into 2121 catchments. An erosion risk map for each season and an annual erosion risk map are produced. These new maps allow to organize in hierarchy 2121 catchments into three erosion risk classes. In the annual erosion risk map, 347 catchments have the highest erosion risk, which corresponds to 16 % of total Brittany-Loire basin area. Water management agency now uses these maps to identify priority areas and to plan specific preservation practices.

  4. Hyperspectral Sensor Data Capability for Retrieving Complex Urban Land Cover in Comparison with Multispectral Data: Venice City Case Study (Italy)

    PubMed Central

    Cavalli, Rosa Maria; Fusilli, Lorenzo; Pascucci, Simone; Pignatti, Stefano; Santini, Federico

    2008-01-01

    This study aims at comparing the capability of different sensors to detect land cover materials within an historical urban center. The main objective is to evaluate the added value of hyperspectral sensors in mapping a complex urban context. In this study we used: (a) the ALI and Hyperion satellite data, (b) the LANDSAT ETM+ satellite data, (c) MIVIS airborne data and (d) the high spatial resolution IKONOS imagery as reference. The Venice city center shows a complex urban land cover and therefore was chosen for testing the spectral and spatial characteristics of different sensors in mapping the urban tissue. For this purpose, an object-oriented approach and different common classification methods were used. Moreover, spectra of the main anthropogenic surfaces (i.e. roofing and paving materials) were collected during the field campaigns conducted on the study area. They were exploited for applying band-depth and sub-pixel analyses to subsets of Hyperion and MIVIS hyperspectral imagery. The results show that satellite data with a 30m spatial resolution (ALI, LANDSAT ETM+ and HYPERION) are able to identify only the main urban land cover materials. PMID:27879879

  5. Spatial fuel data products of the LANDFIRE Project

    Treesearch

    Matt Reeves; Kevin C. Ryan; Matthew G. Rollins; Thomas G. Thompson

    2009-01-01

    The Landscape Fire and Resource Management Planning Tools (LANDFIRE) Project is mapping wildland fuels, vegetation, and fire regime characteristics across the United States. The LANDFIRE project is unique because of its national scope, creating an integrated product suite at 30-m spatial resolution and complete spatial coverage of all lands within the 50...

  6. Online Time Series Analysis of Land Products over Asia Monsoon Region via Giovanni

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.; Gerasimov, Irina

    2011-01-01

    Time series analysis is critical to the study of land cover/land use changes and climate. Time series studies at local-to-regional scales require higher spatial resolution, such as 1km or less, data. MODIS land products of 250m to 1km resolution enable such studies. However, such MODIS land data files are distributed in 10ox10o tiles, due to large data volumes. Conducting a time series study requires downloading all tiles that include the study area for the time period of interest, and mosaicking the tiles spatially. This can be an extremely time-consuming process. In support of the Monsoon Asia Integrated Regional Study (MAIRS) program, NASA GES DISC (Goddard Earth Sciences Data and Information Services Center) has processed MODIS land products at 1 km resolution over the Asia monsoon region (0o-60oN, 60o-150oE) with a common data structure and format. The processed data have been integrated into the Giovanni system (Goddard Interactive Online Visualization ANd aNalysis Infrastructure) that enables users to explore, analyze, and download data over an area and time period of interest easily. Currently, the following regional MODIS land products are available in Giovanni: 8-day 1km land surface temperature and active fire, monthly 1km vegetation index, and yearly 0.05o, 500m land cover types. More data will be added in the near future. By combining atmospheric and oceanic data products in the Giovanni system, it is possible to do further analyses of environmental and climate changes associated with the land, ocean, and atmosphere. This presentation demonstrates exploring land products in the Giovanni system with sample case scenarios.

  7. The Canadian Hydrological Model (CHM): A multi-scale, variable-complexity hydrological model for cold regions

    NASA Astrophysics Data System (ADS)

    Marsh, C.; Pomeroy, J. W.; Wheater, H. S.

    2016-12-01

    There is a need for hydrological land surface schemes that can link to atmospheric models, provide hydrological prediction at multiple scales and guide the development of multiple objective water predictive systems. Distributed raster-based models suffer from an overrepresentation of topography, leading to wasted computational effort that increases uncertainty due to greater numbers of parameters and initial conditions. The Canadian Hydrological Model (CHM) is a modular, multiphysics, spatially distributed modelling framework designed for representing hydrological processes, including those that operate in cold-regions. Unstructured meshes permit variable spatial resolution, allowing coarse resolutions at low spatial variability and fine resolutions as required. Model uncertainty is reduced by lessening the necessary computational elements relative to high-resolution rasters. CHM uses a novel multi-objective approach for unstructured triangular mesh generation that fulfills hydrologically important constraints (e.g., basin boundaries, water bodies, soil classification, land cover, elevation, and slope/aspect). This provides an efficient spatial representation of parameters and initial conditions, as well as well-formed and well-graded triangles that are suitable for numerical discretization. CHM uses high-quality open source libraries and high performance computing paradigms to provide a framework that allows for integrating current state-of-the-art process algorithms. The impact of changes to model structure, including individual algorithms, parameters, initial conditions, driving meteorology, and spatial/temporal discretization can be easily tested. Initial testing of CHM compared spatial scales and model complexity for a spring melt period at a sub-arctic mountain basin. The meshing algorithm reduced the total number of computational elements and preserved the spatial heterogeneity of predictions.

  8. Diurnal Cycles of High Resolution Land Surface Temperatures (LSTs) Determined from UAV Platforms Across a Range of Surface Types

    NASA Astrophysics Data System (ADS)

    McCabe, M.; Rosas Aguilar, J.; Parkes, S. D.; Aragon, B.

    2017-12-01

    Observation of land surface temperature (LST) has many practical uses, from studying boundary layer dynamics and land-atmosphere coupling, to investigating surface properties such as soil moisture status, heat stress and surface heat fluxes. Typically, LST is observed via satellite based sensors such as LandSat or via point measurements using IR radiometers. These measurements provide either good spatial coverage and resolution or good temporal coverage. However, neither are able to provide the needed spatial and temporal resolution for many of the research applications described above. Technological developments in the use of Unmanned Aerial Vehicles (UAVs), together with small thermal frame cameras, has enabled a capacity to overcome this spatiotemporal constraint. Utilising UAV platforms to collect LST measurements across diurnal cycles provides an opportunity to study how meteorological and surface properties vary in both space and time. Here we describe the collection of LST data from a multi-rotor UAV across a study domain that is observed multiple times throughout the day. Flights over crops of Rhodes grass and alfalfa, along with a bare desert surface, were repeated with between 8 and 11 surveys covering the period from early morning to sunset. Analysis of the collected thermal imagery shows that the constructed LST maps illustrate a strong diurnal cycle consistent with expected trends, but with considerable spatial and temporal variability observed within and between the different domains. These results offer new insights into the dynamics of land surface behavior in both dry and wet soil conditions and at spatiotemporal scales that are unable to be replicated using traditional satellite platforms.

  9. Trajectory analysis of land use and land cover maps to improve spatial-temporal patterns, and impact assessment on groundwater recharge

    NASA Astrophysics Data System (ADS)

    Zomlot, Z.; Verbeiren, B.; Huysmans, M.; Batelaan, O.

    2017-11-01

    Land use/land cover (LULC) change is a consequence of human-induced global environmental change. It is also considered one of the major factors affecting groundwater recharge. Uncertainties and inconsistencies in LULC maps are one of the difficulties that LULC timeseries analysis face and which have a significant effect on hydrological impact analysis. Therefore, an accuracy assessment approach of LULC timeseries is needed for a more reliable hydrological analysis and prediction. The objective of this paper is to assess the impact of land use uncertainty and to improve the accuracy of a timeseries of CORINE (coordination of information on the environment) land cover maps by using a new approach of identifying spatial-temporal LULC change trajectories as a pre-processing tool. This ensures consistency of model input when dealing with land-use dynamics and as such improves the accuracy of land use maps and consequently groundwater recharge estimation. As a case study the impact of consistent land use changes from 1990 until 2013 on groundwater recharge for the Flanders-Brussels region is assessed. The change trajectory analysis successfully assigned a rational trajectory to 99% of all pixels. The methodology is shown to be powerful in correcting interpretation inconsistencies and overestimation errors in CORINE land cover maps. The overall kappa (cell-by-cell map comparison) improved from 0.6 to 0.8 and from 0.2 to 0.7 for forest and pasture land use classes respectively. The study shows that the inconsistencies in the land use maps introduce uncertainty in groundwater recharge estimation in a range of 10-30%. The analysis showed that during the period of 1990-2013 the LULC changes were mainly driven by urban expansion. The results show that the resolution at which the spatial analysis is performed is important; the recharge differences using original and corrected CORINE land cover maps increase considerably with increasing spatial resolution. This study indicates that improving consistency of land use map timeseries is of critical importance for assessing land use change and its environmental impact.

  10. Landsat 8 Multispectral and Pansharpened Imagery Processing on the Study of Civil Engineering Issues

    NASA Astrophysics Data System (ADS)

    Lazaridou, M. A.; Karagianni, A. Ch.

    2016-06-01

    Scientific and professional interests of civil engineering mainly include structures, hydraulics, geotechnical engineering, environment, and transportation issues. Topics included in the context of the above may concern urban environment issues, urban planning, hydrological modelling, study of hazards and road construction. Land cover information contributes significantly on the study of the above subjects. Land cover information can be acquired effectively by visual image interpretation of satellite imagery or after applying enhancement routines and also by imagery classification. The Landsat Data Continuity Mission (LDCM - Landsat 8) is the latest satellite in Landsat series, launched in February 2013. Landsat 8 medium spatial resolution multispectral imagery presents particular interest in extracting land cover, because of the fine spectral resolution, the radiometric quantization of 12bits, the capability of merging the high resolution panchromatic band of 15 meters with multispectral imagery of 30 meters as well as the policy of free data. In this paper, Landsat 8 multispectral and panchromatic imageries are being used, concerning surroundings of a lake in north-western Greece. Land cover information is extracted, using suitable digital image processing software. The rich spectral context of the multispectral image is combined with the high spatial resolution of the panchromatic image, applying image fusion - pansharpening, facilitating in this way visual image interpretation to delineate land cover. Further processing concerns supervised image classification. The classification of pansharpened image preceded multispectral image classification. Corresponding comparative considerations are also presented.

  11. The effect of spatial resolution on water scarcity estimates in Australia

    NASA Astrophysics Data System (ADS)

    Gevaert, Anouk; Veldkamp, Ted; van Dijk, Albert; Ward, Philip

    2017-04-01

    Water scarcity is an important global issue with severe socio-economic consequences, and its occurrence is likely to increase in many regions due to population growth, economic development and climate change. This has prompted a number of global and regional studies to identify areas that are vulnerable to water scarcity and to determine how this vulnerability will change in the future. A drawback of these studies, however, is that they typically have coarse spatial resolutions. Here, we studied the effect of increasing the spatial resolution of water scarcity estimates in Australia, and the Murray-Darling Basin in particular. This was achieved by calculating the water stress index (WSI), an indicator showing the ratio of water use to water availability, at 0.5 and 0.05 degree resolution for the period 1990-2010. Monthly water availability data were based on outputs of the Australian Water Resources Assessment Landscape model (AWRA-L), which was run at both spatial resolutions and at a daily time scale. Water use information was obtained from a monthly 0.5 degree global dataset that distinguishes between water consumption for irrigation, livestock, industrial and domestic uses. The data were downscaled to 0.05 degree by dividing the sectoral water uses over the areas covered by relevant land use types using a high resolution ( 0.5km) land use dataset. The monthly WSIs at high and low resolution were then used to evaluate differences in the patterns of water scarcity frequency and intensity. In this way, we assess to what extent increasing the spatial resolution can improve the identification of vulnerable areas and thereby assist in the development of strategies to lower this vulnerability. The results of this study provide insight into the scalability of water scarcity estimates and the added value of high resolution water scarcity information in water resources management.

  12. Seasonal and Non-seasonal Sea Level Variations by Exchange of Water with Land Hydrology

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.; Au, A. Y.

    2004-01-01

    The global ocean exchanges a large amount of water, seasonally or non-seasonally, with land hydrology. Apart from the long-term melting of ice sheets and glaciers, the water is exchanged directly as land runoff R, and indirectly via atmosphere in the form of precipitation minus evapo-transpiration P-E. On land, the hydrological budget balance is soil moisture S = P-E-R. The runoff R has been difficult to monitor; but now by combining the following two data sets one can obtain a global estimate, subject to the spatial and temporal resolutions afforded by the data: (1) The space gravity mission GRACE yields monthly S estimate on a spatial scale larger than approx. 1000 km over the last 2.5 years; (2) The atmospheric circulation model output, such as from NCEP, provides proxy estimates for P-E at monthly and approx. 200 km resolutions. We will discuss these estimates and the effects on the global ocean water budget and hence sea level.

  13. Land surface sensitivity of monsoon depressions formed over Bay of Bengal using improved high-resolution land state

    NASA Astrophysics Data System (ADS)

    Rajesh, P. V.; Pattnaik, S.; Mohanty, U. C.; Rai, D.; Baisya, H.; Pandey, P. C.

    2017-12-01

    Monsoon depressions (MDs) constitute a large fraction of the total rainfall during the Indian summer monsoon season. In this study, the impact of high-resolution land state is addressed by assessing the evolution of inland moving depressions formed over the Bay of Bengal using a mesoscale modeling system. Improved land state is generated using High Resolution Land Data Assimilation System employing Noah-MP land-surface model. Verification of soil moisture using Soil Moisture and Ocean Salinity (SMOS) and soil temperature using tower observations demonstrate promising results. Incorporating high-resolution land state yielded least root mean squared errors with higher correlation coefficient in the surface and mid tropospheric parameters. Rainfall forecasts reveal that simulations are spatially and quantitatively in accordance with observations and provide better skill scores. The improved land surface characteristics have brought about the realistic evolution of surface, mid-tropospheric parameters, vorticity and moist static energy that facilitates the accurate MDs dynamics in the model. Composite moisture budget analysis reveals that the surface evaporation is negligible compared to moisture flux convergence of water vapor, which supplies moisture into the MDs over land. The temporal relationship between rainfall and moisture convergence show high correlation, suggesting a realistic representation of land state help restructure the moisture inflow into the system through rainfall-moisture convergence feedback.

  14. Analyzing Variability in Landscape Nutrient Loading Using Spatially-Explicit Maps in the Great Lakes Basin

    NASA Astrophysics Data System (ADS)

    Hamlin, Q. F.; Kendall, A. D.; Martin, S. L.; Whitenack, H. D.; Roush, J. A.; Hannah, B. A.; Hyndman, D. W.

    2017-12-01

    Excessive loading of nitrogen and phosphorous to the landscape has caused biologically and economically damaging eutrophication and harmful algal blooms in the Great Lakes Basin (GLB) and across the world. We mapped source-specific loads of nitrogen and phosphorous to the landscape using broadly available data across the GLB. SENSMap (Spatially Explicit Nutrient Source Map) is a 30m resolution snapshot of nutrient loads ca. 2010. We use these maps to study variable nutrient loading and provide this information to watershed managers through NOAA's GLB Tipping Points Planner. SENSMap individually maps nutrient point sources and six non-point sources: 1) atmospheric deposition, 2) septic tanks, 3) non-agricultural chemical fertilizer, 4) agricultural chemical fertilizer, 5) manure, and 6) nitrogen fixation from legumes. To model source-specific loads at high resolution, SENSMap synthesizes a wide range of remotely sensed, surveyed, and tabular data. Using these spatially explicit nutrient loading maps, we can better calibrate local land use-based water quality models and provide insight to watershed managers on how to focus nutrient reduction strategies. Here we examine differences in dominant nutrient sources across the GLB, and how those sources vary by land use. SENSMap's high resolution, source-specific approach offers a different lens to understand nutrient loading than traditional semi-distributed or land use based models.

  15. Influence of Scale Effect and Model Performance in Downscaling ASTER Land Surface Temperatures to a Very High Spatial Resolution in an Agricultural Area

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Li, G.; Liu, S.; Zhan, W.; Zhang, X.

    2015-12-01

    At present land surface temperatures (LSTs) can be generated from thermal infrared remote sensing with spatial resolutions from ~100 m to tens of kilometers. However, LSTs with high spatial resolution, e.g. tens of meters, are still lack. The purpose of LST downscaling is to generate LSTs with finer spatial resolutions than their native spatial resolutions. The statistical linear or nonlinear regression models are most frequently used for LST downscaling. The basic assumption of these models is the scale-invariant relationships between LST and its descriptors, which is questioned but rare researches have been reported. In addition, few researches can be found for downscaling satellite LST or TIR data to a high spatial resolution, i.e. better than 100 m or even finer. The lack of LST with high spatial resolution cannot satisfy the requirements of applications such as evapotranspiration mapping at the field scale. By selecting a dynamically developing agricultural oasis as the study area, the aim of this study is to downscale the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) LSTs to 15 m, to satisfy the requirement of evapotranspiration mapping at the field scale. Twelve ASTER images from May to September in 2012, covering the entire growth stage of maize, were selected. Four statistical models were evaluated, including one global model, one piecewise model, and two local models. The influence from scale effect in downscaling LST was quantified. The downscaled LSTs are evaluated from accuracy and image quality. Results demonstrate that the influence from scale effect varies according to models and the maize growth stage. Significant influence about -4 K to 6 K existed at the early stage and weaker influence existed in the middle stage. When compared with the ground measured LSTs, the downscaled LSTs resulted from the global and local models yielded higher accuracies and better image qualities than the local models. In addition to the vegetation indices, the surface albedo is an important descriptor for downscaling LST through explaining its spatial variation induced by soil moisture.

  16. The sensitivity of ecosystem service models to choices of input data and spatial resolution

    USGS Publications Warehouse

    Bagstad, Kenneth J.; Cohen, Erika; Ancona, Zachary H.; McNulty, Steven; Sun, Ge

    2018-01-01

    Although ecosystem service (ES) modeling has progressed rapidly in the last 10–15 years, comparative studies on data and model selection effects have become more common only recently. Such studies have drawn mixed conclusions about whether different data and model choices yield divergent results. In this study, we compared the results of different models to address these questions at national, provincial, and subwatershed scales in Rwanda. We compared results for carbon, water, and sediment as modeled using InVEST and WaSSI using (1) land cover data at 30 and 300 m resolution and (2) three different input land cover datasets. WaSSI and simpler InVEST models (carbon storage and annual water yield) were relatively insensitive to the choice of spatial resolution, but more complex InVEST models (seasonal water yield and sediment regulation) produced large differences when applied at differing resolution. Six out of nine ES metrics (InVEST annual and seasonal water yield and WaSSI) gave similar predictions for at least two different input land cover datasets. Despite differences in mean values when using different data sources and resolution, we found significant and highly correlated results when using Spearman's rank correlation, indicating consistent spatial patterns of high and low values. Our results confirm and extend conclusions of past studies, showing that in certain cases (e.g., simpler models and national-scale analyses), results can be robust to data and modeling choices. For more complex models, those with different output metrics, and subnational to site-based analyses in heterogeneous environments, data and model choices may strongly influence study findings.

  17. Prescription of land-surface boundary conditions in GISS GCM 2: A simple method based on high-resolution vegetation data bases

    NASA Technical Reports Server (NTRS)

    Matthews, E.

    1984-01-01

    A simple method was developed for improved prescription of seasonal surface characteristics and parameterization of land-surface processes in climate models. This method, developed for the Goddard Institute for Space Studies General Circulation Model II (GISS GCM II), maintains the spatial variability of fine-resolution land-cover data while restricting to 8 the number of vegetation types handled in the model. This was achieved by: redefining the large number of vegetation classes in the 1 deg x 1 deg resolution Matthews (1983) vegetation data base as percentages of 8 simple types; deriving roughness length, field capacity, masking depth and seasonal, spectral reflectivity for the 8 types; and aggregating these surface features from the 1 deg x 1 deg resolution to coarser model resolutions, e.g., 8 deg latitude x 10 deg longitude or 4 deg latitude x 5 deg longitude.

  18. Difet: Distributed Feature Extraction Tool for High Spatial Resolution Remote Sensing Images

    NASA Astrophysics Data System (ADS)

    Eken, S.; Aydın, E.; Sayar, A.

    2017-11-01

    In this paper, we propose distributed feature extraction tool from high spatial resolution remote sensing images. Tool is based on Apache Hadoop framework and Hadoop Image Processing Interface. Two corner detection (Harris and Shi-Tomasi) algorithms and five feature descriptors (SIFT, SURF, FAST, BRIEF, and ORB) are considered. Robustness of the tool in the task of feature extraction from LandSat-8 imageries are evaluated in terms of horizontal scalability.

  19. Long-term vegetation activity trends in the Iberian Peninsula and The Balearic Islands using high spatial resolution NOAA-AVHRR data (1981 - 2015).

    NASA Astrophysics Data System (ADS)

    Martin-Hernandez, Natalia; Vicente-Serrano, Sergio; Azorin-Molina, Cesar; Begueria-Portugues, Santiago; Reig-Gracia, Fergus; Zabalza-Martínez, Javier

    2017-04-01

    We have analysed trends in the Normalized Difference Vegetation Index (NDVI) in the Iberian Peninsula and The Balearic Islands over the period 1981 - 2015 using a new high resolution data set from the entire available NOAA - AVHRR images (IBERIAN NDVI dataset). After a complete processing including geocoding, calibration, cloud removal, topographic correction and temporal filtering, we obtained bi-weekly time series. To assess the accuracy of the new IBERIAN NDVI time-series, we have compared temporal variability and trends of NDVI series with those results reported by GIMMS 3g and MODIS (MOD13A3) NDVI datasets. In general, the IBERIAN NDVI showed high reliability with these two products but showing higher spatial resolution than the GIMMS dataset and covering two more decades than the MODIS dataset. Using the IBERIAN NDVI dataset, we analysed NDVI trends by means of the non-parametric Mann-Kendall test and Theil-Sen slope estimator. In average, vegetation trends in the study area show an increase over the last decades. However, there are local spatial differences: the main increase has been recorded in humid regions of the north of the Iberian Peninsula. The statistical techniques allow finding abrupt and gradual changes in different land cover types during the analysed period. These changes are related with human activity due to land transformations (from dry to irrigated land), land abandonment and forest recovery.

  20. Rapid prototyping of soil moisture estimates using the NASA Land Information System

    NASA Astrophysics Data System (ADS)

    Anantharaj, V.; Mostovoy, G.; Li, B.; Peters-Lidard, C.; Houser, P.; Moorhead, R.; Kumar, S.

    2007-12-01

    The Land Information System (LIS), developed at the NASA Goddard Space Flight Center, is a functional Land Data Assimilation System (LDAS) that incorporates a suite of land models in an interoperable computational framework. LIS has been integrated into a computational Rapid Prototyping Capabilities (RPC) infrastructure. LIS consists of a core, a number of community land models, data servers, and visualization systems - integrated in a high-performance computing environment. The land surface models (LSM) in LIS incorporate surface and atmospheric parameters of temperature, snow/water, vegetation, albedo, soil conditions, topography, and radiation. Many of these parameters are available from in-situ observations, numerical model analysis, and from NASA, NOAA, and other remote sensing satellite platforms at various spatial and temporal resolutions. The computational resources, available to LIS via the RPC infrastructure, support e- Science experiments involving the global modeling of land-atmosphere studies at 1km spatial resolutions as well as regional studies at finer resolutions. The Noah Land Surface Model, available with-in the LIS is being used to rapidly prototype soil moisture estimates in order to evaluate the viability of other science applications for decision making purposes. For example, LIS has been used to further extend the utility of the USDA Soil Climate Analysis Network of in-situ soil moisture observations. In addition, LIS also supports data assimilation capabilities that are used to assimilate remotely sensed soil moisture retrievals from the AMSR-E instrument onboard the Aqua satellite. The rapid prototyping of soil moisture estimates using LIS and their applications will be illustrated during the presentation.

  1. Generating high temporal and spatial resolution thermal band imagery using robust sharpening approach

    USDA-ARS?s Scientific Manuscript database

    Thermal infrared band imagery provides key information for detecting wild fires, mapping land surface energy fluxes and evapotranspiration, monitoring urban heat fluxes and drought monitoring. Thermal infrared (TIR) imagery at fine resolution is required for field scale applications. However, therma...

  2. A PIXEL COMPOSITION-BASED REFERENCE DATA SET FOR THEMATIC ACCURACY ASSESSMENT

    EPA Science Inventory

    Developing reference data sets for accuracy assessment of land-cover classifications derived from coarse spatial resolution sensors such as MODIS can be difficult due to the large resolution differences between the image data and available reference data sources. Ideally, the spa...

  3. A Flexible Spatiotemporal Method for Fusing Satellite Images with Different Resolutions

    USDA-ARS?s Scientific Manuscript database

    Studies of land surface dynamics in heterogeneous landscapes often require remote sensing data with high acquisition frequency and high spatial resolution. However, no single sensor meets this requirement. This study presents a new spatiotemporal data fusion method, the Flexible Spatiotemporal DAta ...

  4. Extreme flood event analysis in Indonesia based on rainfall intensity and recharge capacity

    NASA Astrophysics Data System (ADS)

    Narulita, Ida; Ningrum, Widya

    2018-02-01

    Indonesia is very vulnerable to flood disaster because it has high rainfall events throughout the year. Flood is categorized as the most important hazard disaster because it is causing social, economic and human losses. The purpose of this study is to analyze extreme flood event based on satellite rainfall dataset to understand the rainfall characteristic (rainfall intensity, rainfall pattern, etc.) that happened before flood disaster in the area for monsoonal, equatorial and local rainfall types. Recharge capacity will be analyzed using land cover and soil distribution. The data used in this study are CHIRPS rainfall satellite data on 0.05 ° spatial resolution and daily temporal resolution, and GSMap satellite rainfall dataset operated by JAXA on 1-hour temporal resolution and 0.1 ° spatial resolution, land use and soil distribution map for recharge capacity analysis. The rainfall characteristic before flooding, and recharge capacity analysis are expected to become the important information for flood mitigation in Indonesia.

  5. NLCD - MODIS albedo data

    EPA Pesticide Factsheets

    The NLCD-MODIS land cover-albedo database integrates high-quality MODIS albedo observations with areas of homogeneous land cover from NLCD. The spatial resolution (pixel size) of the database is 480m-x-480m aligned to the standardized UGSG Albers Equal-Area projection. The spatial extent of the database is the continental United States. This dataset is associated with the following publication:Wickham , J., C.A. Barnes, and T. Wade. Combining NLCD and MODIS to Create a Land Cover-Albedo Dataset for the Continental United States. REMOTE SENSING OF ENVIRONMENT. Elsevier Science Ltd, New York, NY, USA, 170(0): 143-153, (2015).

  6. Considerations for applying digital soil mapping to ecological sites

    USDA-ARS?s Scientific Manuscript database

    Recent advancements in the spatial prediction of soil properties are not currently being fully utilized for ecological studies. Linking digital soil mapping (DSM) with ecological sites (ES) has the potential to better land management decisions by improving spatial resolution and precision as well as...

  7. High spatial resolution mapping of land cover types in a priority area for conservation in the Brazilian savanna

    NASA Astrophysics Data System (ADS)

    Ribeiro, F.; Roberts, D. A.; Hess, L. L.; Davis, F. W.; Caylor, K. K.; Nackoney, J.; Antunes Daldegan, G.

    2017-12-01

    Savannas are heterogeneous landscapes consisting of highly mixed land cover types that lack clear distinct boundaries. The Brazilian Cerrado is a Neotropical savanna considered a biodiversity hotspot for conservation due to its biodiversity richness and rapid transformation of its landscape by crop and pasture activities. The Cerrado is one of the most threatened Brazilian biomes and only 2.2% of its original extent is strictly protected. Accurate mapping and monitoring of its ecosystems and adjacent land use are important to select areas for conservation and to improve our understanding of the dynamics in this biome. Land cover mapping of savannas is difficult due to spectral similarity between land cover types resulting from similar vegetation structure, floristically similar components, generalization of land cover classes, and heterogeneity usually expressed as small patch sizes within the natural landscape. These factors are the major contributor to misclassification and low map accuracies among remote sensing studies in savannas. Specific challenges to map the Cerrado's land cover types are related to the spectral similarity between classes of land use and natural vegetation, such as natural grassland vs. cultivated pasture, and forest ecosystem vs. crops. This study seeks to classify and evaluate the land cover patterns across an area ranked as having extremely high priority for future conservation in the Cerrado. The main objective of this study is to identify the representativeness of each vegetation type across the landscape using high to moderate spatial resolution imagery using an automated scheme. A combination of pixel-based and object-based approaches were tested using RapidEye 3A imagery (5m spatial resolution) to classify the Cerrado's major land cover types. The random forest classifier was used to map the major ecosystems present across the area, and demonstrated to have an effective result with 68% of overall accuracy. Post-classification modification was performed to refine information to the major physiognomic groups of each ecosystem type. In this step, we used segmentation in eCognition, considering the random forest classification as input as well as other environmental layers (e.g. slope, soil types), which improved the overall classification to 75%.

  8. Spatial Differentiation of Arable Land and Permanent Grasslands to Improve a Regional Land Management Model for Nutrient Balancing

    NASA Astrophysics Data System (ADS)

    Gómez Giménez, M.; Della Peruta, R.; de Jong, R.; Keller, A.; Schaepman, M. E.

    2015-12-01

    Agroecosystems play an important role providing economic and ecosystem services, which directly impact society. Inappropriate land use and unsustainable agricultural management with associated nutrient cycles can jeopardize important soil functions such as food production, livestock feeding and conservation of biodiversity. The objective of this study was to integrate remotely sensed land cover information into a regional Land Management Model (LMM) to improve the assessment of spatial explicit nutrient balances for agroecosystems. Remotely sensed data as well as an optimized parameter set contributed to feed the LMM providing a better spatial allocation of agricultural data aggregated at farm level. The integration of land use information in the land allocation process relied predominantly on three factors: i) spatial resolution, ii) classification accuracy and iii) parcels definition. The best-input parameter combination resulted in two different land cover classifications with overall accuracies of 98%, improving the LMM performance by 16% as compared to using non-spatially explicit input. Firstly, the use of spatial explicit information improved the spatial allocation output resulting in a pattern that better followed parcel boundaries (Figure 1). Second, the high classification accuracies ensured consistency between the datasets used. Third, the use of a suitable spatial unit to define the parcels boundaries influenced the model in terms of computational time and the amount of farmland allocated. We conclude that the combined use of remote sensing (RS) data with the LMM has the potential to provide highly accurate information of spatial explicit nutrient balances that are crucial for policy options concerning sustainable management of agricultural soils. Figure 1. Details of the spatial pattern obtained: a) Using only the farm census data, b) using also land use information. Framed in black in the left image (a), examples of artifacts that disappeared when using land use information (right image, b). Colors represent different ownership.

  9. Modeled historical land use and land cover for the conterminous United States

    USGS Publications Warehouse

    Sohl, Terry L.; Reker, Ryan R.; Bouchard, Michelle A.; Sayler, Kristi L.; Dornbierer, Jordan; Wika, Steve; Quenzer, Robert; Friesz, Aaron M.

    2016-01-01

    The landscape of the conterminous United States has changed dramatically over the last 200 years, with agricultural land use, urban expansion, forestry, and other anthropogenic activities altering land cover across vast swaths of the country. While land use and land cover (LULC) models have been developed to model potential future LULC change, few efforts have focused on recreating historical landscapes. Researchers at the US Geological Survey have used a wide range of historical data sources and a spatially explicit modeling framework to model spatially explicit historical LULC change in the conterminous United States from 1992 back to 1938. Annual LULC maps were produced at 250-m resolution, with 14 LULC classes. Assessment of model results showed good agreement with trends and spatial patterns in historical data sources such as the Census of Agriculture and historical housing density data, although comparison with historical data is complicated by definitional and methodological differences. The completion of this dataset allows researchers to assess historical LULC impacts on a range of ecological processes.

  10. Combining High Spatial Resolution Optical and LIDAR Data for Object-Based Image Classification

    NASA Astrophysics Data System (ADS)

    Li, R.; Zhang, T.; Geng, R.; Wang, L.

    2018-04-01

    In order to classify high spatial resolution images more accurately, in this research, a hierarchical rule-based object-based classification framework was developed based on a high-resolution image with airborne Light Detection and Ranging (LiDAR) data. The eCognition software is employed to conduct the whole process. In detail, firstly, the FBSP optimizer (Fuzzy-based Segmentation Parameter) is used to obtain the optimal scale parameters for different land cover types. Then, using the segmented regions as basic units, the classification rules for various land cover types are established according to the spectral, morphological and texture features extracted from the optical images, and the height feature from LiDAR respectively. Thirdly, the object classification results are evaluated by using the confusion matrix, overall accuracy and Kappa coefficients. As a result, a method using the combination of an aerial image and the airborne Lidar data shows higher accuracy.

  11. Effects of Digitization and JPEG Compression on Land Cover Classification Using Astronaut-Acquired Orbital Photographs

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Webb, Edward L.; Evangelista, Arlene

    2000-01-01

    Studies that utilize astronaut-acquired orbital photographs for visual or digital classification require high-quality data to ensure accuracy. The majority of images available must be digitized from film and electronically transferred to scientific users. This study examined the effect of scanning spatial resolution (1200, 2400 pixels per inch [21.2 and 10.6 microns/pixel]), scanning density range option (Auto, Full) and compression ratio (non-lossy [TIFF], and lossy JPEG 10:1, 46:1, 83:1) on digital classification results of an orbital photograph from the NASA - Johnson Space Center archive. Qualitative results suggested that 1200 ppi was acceptable for visual interpretive uses for major land cover types. Moreover, Auto scanning density range was superior to Full density range. Quantitative assessment of the processing steps indicated that, while 2400 ppi scanning spatial resolution resulted in more classified polygons as well as a substantially greater proportion of polygons < 0.2 ha, overall agreement between 1200 ppi and 2400 ppi was quite high. JPEG compression up to approximately 46:1 also did not appear to have a major impact on quantitative classification characteristics. We conclude that both 1200 and 2400 ppi scanning resolutions are acceptable options for this level of land cover classification, as well as a compression ratio at or below approximately 46:1. Auto range density should always be used during scanning because it acquires more of the information from the film. The particular combination of scanning spatial resolution and compression level will require a case-by-case decision and will depend upon memory capabilities, analytical objectives and the spatial properties of the objects in the image.

  12. Reconstruction of a Three Hourly 1-km Land Surface Air Temperature Dataset in the Qinghai-Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Ding, L.

    2017-12-01

    Land surface air temperature (SAT) is an important parameter in the modeling of radiation balance and energy budget of the earth surface. Generally, SAT is measured at ground meteorological stations; then SAT mapping is possible though a spatial interpolation process. The interpolated SAT map relies on the spatial distribution of ground stations, the terrain, and many other factors; thus, it has great uncertainties in regions with complicated terrain. Instead, SAT map can also be obtained through physical modeling of interactions between the land surface and the atmosphere. Such dataset generally has coarse spatial resolution (e.g. coarser than 0.1°) and cannot satisfy the applications at fine scales, e.g. 1 km. This presentation reports the reconstruction of a three hourly 1-km SAT dataset from 2001 to 2015 over the Qinghai-Tibet Plateau. The terrain in the Qinghai-Tibet Plateau, especially in the eastern part, is extremely complicated. Two SAT datasets with good qualities are used in this study. The first one is from the 3h China Meteorological Forcing Dataset with a 0.1° resolution released by the Institute of Tibetan Plateau Research, Chinese Academy of Sciences (Yang et al., 2010); the second one is from the ERA-Interim product with the same temporal resolution and a 0.125° resolution. A statistical approach is developed to downscale the spatial resolution of the derived SAT to 1-km. The elevation and the normalized difference vegetation index (NDVI) are selected as two scaling factors in the downscaling approach. Results demonstrate there is significantly negative correlation between the SAT and elevation in all seasons; there is also significantly negative correlation between the SAT and NDVI in the vegetation growth seasons, while the correlation decreases in the other seasons. Therefore, a temporally dynamic downscaling approach is feasible to enhance the spatial resolution of the SAT. Compared with the SAT at the 0.1° or 0.125°, the reconstructed 1-km SAT can provide much more spatial details in areas with complicated terrain. Additionally, the 1-km SAT agrees well with the ground measured air temperatures as well as the SAT before downscaling. The reconstructed SAT will be beneficial for the modeling of surface radiation balance and energy budget over the Qinghai-Tibet Plateau.

  13. A Geospatial Database for Wind and Solar Energy Applications: The Kingdom of Bahrain Study Case

    NASA Astrophysics Data System (ADS)

    Al-Joburi, Khalil; Dahman, Nidal

    2017-11-01

    This research is aimed at designing, implementing, and testing a geospatial database for wind and solar energy applications in the Kingdom of Bahrain. All decision making needed to determine economic feasibility and establish site location for wind turbines or solar panels depends primarily on geospatial feature theme information and non-spatial (attribute) data for wind, solar, rainfall, temperature and weather characteristics of a particular region. Spatial data includes, but is not limited to, digital elevation, slopes, land use, zonings, parks, population density, road utility maps, and other related information. Digital elevations for over 450,000 spot at 50 m spatial horizontal resolution plus field surveying and GPS (at selected locations) was obtained from the Surveying and Land Registration Bureau (SLRB). Road, utilities, and population density are obtained from the Central Information Organization (CIO). Land use zoning, recreational parks, and other data are obtained from the Ministry of Municipalities and Agricultural Affairs. Wind, solar, humidity, rainfall, and temperature data are obtained from the Ministry of Transportation, Civil Aviation Section. LandSat Satellite and others images are obtained from NASA and online sources respectively. The collected geospatial data was geo-referenced to Ain el-Abd UTM Zone 39 North. 3D Digital Elevation Model (DEM)-50 m spatial resolutions was created using SLRB spot elevations. Slope and aspect maps were generate based on the DEM. Supervised image classification to identify open spaces was performed utilizing satellite images. Other geospatial data was converted to raster format with the same cell resolution. Non-spatial data are entered as an attribute to spatial features. To eliminate ambiguous solution, multi-criteria GIS model is developed based on, vector (discrete point, line, and polygon representations) as well as raster model (continuous representation). The model was tested at the Al-Areen proposed project, a relatively small area (15 km2). Optimum site spatial location for the location of wind turbines and solar panels was determined and initial results indicates that the combination of wind and solar energy would be sufficient for the project to meet the energy demand at the present per capita consummation rate..

  14. Monitoring algal blooms in drinking water reservoirs using the Landsat-8 Operational Land Imager

    EPA Science Inventory

    In this study, we demonstrated that the Landsat-8 Operational Land Imager (OLI) sensor is a powerful tool that can provide periodic and system-wide information on the condition of drinking water reservoirs. The OLI is a multispectral radiometer (30 m spatial resolution) that allo...

  15. Application of High-Resolution Thermal Infrared Remote Sensing and GIS to Assess the Urban Heat Island Effect

    NASA Technical Reports Server (NTRS)

    Lo, C. P.; Quattrochi, D. A.; Luvall, J. C.

    1997-01-01

    Day and night airborne thermal infrared image data at 5 m spatial resolution acquired with the 15-channel (0.45 micron - 12.2 micron) Advanced Thermal and Land Applications Sensor (ATLAS) over Alabama, Huntsville on 7 September, 1994 were used to study changes in the thermal signatures of urban land cover types between day and night. Thermal channel number 13 (9.6 micron - 10.2 micron) data with the best noise-equivalent temperature change (NEAT) of 0.25 C after atmospheric corrections and temperature calibration were selected for use in this analysis. This research also examined the relation between land cover irradiance and vegetation amount, using the Normalized Difference Vegetation Index (NDVI), obtained by ratioing the difference and the sum of the red (channel number 3: 0.60-0.63 micron) and reflected infrared (channel number 6: 0.76-0.90 micron) ATLAS data. Based on the mean radiance values, standard deviations, and NDVI extracted from 351 pairs of polygons of day and night channel number 13 images for the city of Huntsville, a spatial model of warming and cooling characteristics of commercial, residential, agricultural, vegetation, and water features was developed using a GIS approach. There is a strong negative correlation between NDVI and irradiance of residential, agricultural, and vacant/transitional land cover types, indicating that the irradiance of a land cover type is greatly influenced by the amount of vegetation present. The predominance of forests, agricultural, and residential uses associated with varying degrees of tree cover showed great contrasts with commercial and services land cover types in the center of the city, and favors the development of urban heat islands. The high-resolution thermal infrared images match the complexity of the urban environment, and are capable of characterizing accurately the urban land cover types for the spatial modeling of the urban heat island effect using a GIS approach.

  16. Who launched what, when and why; trends in global land-cover observation capacity from civilian earth observation satellites

    NASA Astrophysics Data System (ADS)

    Belward, Alan S.; Skøien, Jon O.

    2015-05-01

    This paper presents a compendium of satellites under civilian and/or commercial control with the potential to gather global land-cover observations. From this we show that a growing number of sovereign states are acquiring capacity for space based land-cover observations and show how geopolitical patterns of ownership are changing. We discuss how the number of satellites flying at any time has progressed as a function of increased launch rates and mission longevity, and how the spatial resolutions of the data they collect has evolved. The first such satellite was launched by the USA in 1972. Since then government and/or private entities in 33 other sovereign states and geopolitical groups have chosen to finance such missions and 197 individual satellites with a global land-cover observing capacity have been successfully launched. Of these 98 were still operating at the end of 2013. Since the 1970s the number of such missions failing within 3 years of launch has dropped from around 60% to less than 20%, the average operational life of a mission has almost tripled, increasing from 3.3 years in the 1970s to 8.6 years (and still lengthening), the average number of satellites launched per-year/per-decade has increased from 2 to 12 and spatial resolution increased from around 80 m to less than 1 m multispectral and less than half a meter for panchromatic; synthetic aperture radar resolution has also fallen, from 25 m in the 1970s to 1 m post 2007. More people in more countries have access to data from global land-cover observing spaceborne missions at a greater range of spatial resolutions than ever before. We provide a compendium of such missions, analyze the changes and shows how innovation, the need for secure data-supply, national pride, falling costs and technological advances may underpin the trends we document.

  17. Soil Carbon Change and Net Energy Associated with Biofuel Production on Marginal Lands: A Regional Modeling Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bandaru, Varaprasad; Izaurralde, Roberto C.; Manowitz, David H.

    2013-12-01

    The use of marginal lands (MLs) for biofuel production has been contemplated as a promising solution for meeting biofuel demands. However, there have been concerns with spatial location of MLs, their inherent biofuel potential, and possible environmental consequences with the cultivation of energy crops. Here, we developed a new quantitative approach that integrates high-resolution land cover and land productivity maps and uses conditional probability density functions for analyzing land use patterns as a function of land productivity to classify the agricultural lands. We subsequently applied this method to determine available productive croplands (P-CLs) and non-crop marginal lands (NC-MLs) in amore » nine-county Southern Michigan. Furthermore, Spatially Explicit Integrated Modeling Framework (SEIMF) using EPIC (Environmental Policy Integrated Climate) was used to understand the net energy (NE) and soil organic carbon (SOC) implications of cultivating different annual and perennial production systems.« less

  18. EnviroAtlas - New York, NY - One Meter Resolution Urban Land Cover Data (2008) Web Service

    EPA Pesticide Factsheets

    This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas ). The New York, NY EnviroAtlas Meter-scale Urban Land Cover (MULC) Data were generated by the University of Vermont Spatial Analysis Laboratory (SAL) under the direction of Jarlath O'Neil-Dunne as part of the United States Forest Service Urban Tree Canopy (UTC) assessment program. Seven classes were mapped using LiDAR and high resolution orthophotography: Tree Canopy, Grass/Shrub, Bare Soil, Water, Buildings, Roads/Railroads, and Other Paved Surfaces. These data were subsequently merged to fit with the EPA classification. The SAL project covered the five boroughs within the NYC city limits. However the EPA study area encompassed that area plus a 1 kilometer buffer. Additional land cover for the buffer area was generated from United States Department of Agriculture (USDA) National Agricultural Imagery Program (NAIP) four band (red, green, blue, and near infrared) aerial photography at 1 m spatial resolution from July, 2011 and LiDAR from 2010. Six land cover classes were mapped: water, impervious surfaces, soil and barren land, trees, grass-herbaceous non-woody vegetation, and agriculture. An accuracy assessment of 600 completely random and 55 stratified random photo interpreted reference points yielded an overall User's fuzzy accuracy of 87 percent. The area mapped is the US Census Bureau's 2010 Urban Statistical Area for New Yor

  19. Land cover in the Guayas Basin using SAR images from low resolution ASAR Global mode to high resolution Sentinel-1 images

    NASA Astrophysics Data System (ADS)

    Bourrel, Luc; Brodu, Nicolas; Frappart, Frédéric

    2016-04-01

    Remotely sensed images allow a frequent monitoring of land cover variations at regional and global scale. Recently launched Sentinel-1 satellite offers a global cover of land areas at an unprecedented spatial (20 m) and temporal (6 days at the Equator). We propose here to compare the performances of commonly used supervised classification techniques (i.e., k-nearest neighbors, linear and Gaussian support vector machines, naive Bayes, linear and quadratic discriminant analyzes, adaptative boosting, loggit regression, ridge regression with one-vs-one voting, random forest, extremely randomized trees) for land cover applications in the Guayas Basin, the largest river basin of the Pacific coast of Ecuator (area ~32,000 km²). The reason of this choice is the importance of this region in Ecuatorian economy as its watershed represents 13% of the total area of Ecuador where 40% of the Ecuadorian population lives. It also corresponds to the most productive region of Ecuador for agriculture and aquaculture. Fifty percents of the country shrimp farming production comes from this watershed, and represents with agriculture the largest source of revenue of the country. Similar comparisons are also performed using ENVISAT ASAR images acquired in global mode (1 km of spatial resolution). Accuracy of the results will be achieved using land cover map derived from multi-spectral images.

  20. Application of spatial pedotransfer functions to understand soil modulation of vegetation response to climate

    USDA-ARS?s Scientific Manuscript database

    A fundamental knowledge gap in understanding land-atmosphere interactions is accurate, high resolution spatial representation of soil physical and hydraulic properties. We present a novel approach to predict hydraulic soil parameters by combining digital soil mapping techniques with pedotransfer fun...

  1. The spatial resolving power of earth resources satellites: A review

    NASA Technical Reports Server (NTRS)

    Townshend, J. R. G.

    1980-01-01

    The significance of spatial resolving power on the utility of current and future Earth resources satellites is critically discussed and the relative merits of different approaches in defining and estimating spatial resolution are outlined. It is shown that choice of a particular measure of spatial resolution depends strongly on the particular needs of the user. Several experiments have simulated the capabilities of future satellite systems by degradation of aircraft images. Surprisingly, many of these indicated that improvements in resolution may lead to a reduction in the classification accuracy of land cover types using computer assisted methods. However, where the frequency of boundary pixels is high, the converse relationship is found. Use of imagery dependent upon visual interpretation is likely to benefit more consistently from higher resolutions. Extraction of information from images will depend upon several other factors apart from spatial resolving power: these include characteristics of the terrain being sensed, the image processing methods that are applied as well as certain sensor characteristics.

  2. Incorporating human-water dynamics in a hyper-resolution land surface model

    NASA Astrophysics Data System (ADS)

    Vergopolan, N.; Chaney, N.; Wanders, N.; Sheffield, J.; Wood, E. F.

    2017-12-01

    The increasing demand for water, energy, and food is leading to unsustainable groundwater and surface water exploitation. As a result, the human interactions with the environment, through alteration of land and water resources dynamics, need to be reflected in hydrologic and land surface models (LSMs). Advancements in representing human-water dynamics still leave challenges related to the lack of water use data, water allocation algorithms, and modeling scales. This leads to an over-simplistic representation of human water use in large-scale models; this is in turn leads to an inability to capture extreme events signatures and to provide reliable information at stakeholder-level spatial scales. The emergence of hyper-resolution models allows one to address these challenges by simulating the hydrological processes and interactions with the human impacts at field scales. We integrated human-water dynamics into HydroBlocks - a hyper-resolution, field-scale resolving LSM. HydroBlocks explicitly solves the field-scale spatial heterogeneity of land surface processes through interacting hydrologic response units (HRUs); and its HRU-based model parallelization allows computationally efficient long-term simulations as well as ensemble predictions. The implemented human-water dynamics include groundwater and surface water abstraction to meet agricultural, domestic and industrial water demands. Furthermore, a supply-demand water allocation scheme based on relative costs helps to determine sectoral water use requirements and tradeoffs. A set of HydroBlocks simulations over the Midwest United States (daily, at 30-m spatial resolution for 30 years) are used to quantify the irrigation impacts on water availability. The model captures large reductions in total soil moisture and water table levels, as well as spatiotemporal changes in evapotranspiration and runoff peaks, with their intensity related to the adopted water management strategy. By incorporating human-water dynamics in a hyper-resolution LSM this work allows for progress on hydrological monitoring and predictions, as well as drought preparedness and water impact assessments at relevant decision-making scales.

  3. Fusion of Modis and Palsar Principal Component Images Through Curvelet Transform for Land Cover Classification

    NASA Astrophysics Data System (ADS)

    Singh, Dharmendra; Kumar, Harish

    Earth observation satellites provide data that covers different portions of the electromagnetic spectrum at different spatial and spectral resolutions. The increasing availability of information products generated from satellite images are extending the ability to understand the patterns and dynamics of the earth resource systems at all scales of inquiry. In which one of the most important application is the generation of land cover classification from satellite images for understanding the actual status of various land cover classes. The prospect for the use of satel-lite images in land cover classification is an extremely promising one. The quality of satellite images available for land-use mapping is improving rapidly by development of advanced sensor technology. Particularly noteworthy in this regard is the improved spatial and spectral reso-lution of the images captured by new satellite sensors like MODIS, ASTER, Landsat 7, and SPOT 5. For the full exploitation of increasingly sophisticated multisource data, fusion tech-niques are being developed. Fused images may enhance the interpretation capabilities. The images used for fusion have different temporal, and spatial resolution. Therefore, the fused image provides a more complete view of the observed objects. It is one of the main aim of image fusion to integrate different data in order to obtain more information that can be de-rived from each of the single sensor data alone. A good example of this is the fusion of images acquired by different sensors having a different spatial resolution and of different spectral res-olution. Researchers are applying the fusion technique since from three decades and propose various useful methods and techniques. The importance of high-quality synthesis of spectral information is well suited and implemented for land cover classification. More recently, an underlying multiresolution analysis employing the discrete wavelet transform has been used in image fusion. It was found that multisensor image fusion is a tradeoff between the spectral information from a low resolution multi-spectral images and the spatial information from a high resolution multi-spectral images. With the wavelet transform based fusion method, it is easy to control this tradeoff. A new transform, the curvelet transform was used in recent years by Starck. A ridgelet transform is applied to square blocks of detail frames of undecimated wavelet decomposition, consequently the curvelet transform is obtained. Since the ridgelet transform possesses basis functions matching directional straight lines therefore, the curvelet transform is capable of representing piecewise linear contours on multiple scales through few significant coefficients. This property leads to a better separation between geometric details and background noise, which may be easily reduced by thresholding curvelet coefficients before they are used for fusion. The Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) instrument provides high radiometric sensitivity (12 bit) in 36 spectral bands ranging in wavelength from 0.4 m to 14.4 m and also it is freely available. Two bands are imaged at a nominal resolution of 250 m at nadir, with five bands at 500 m, and the remaining 29 bands at 1 km. In this paper, the band 1 of spatial resolution 250 m and bandwidth 620-670 nm, and band 2, of spatial resolution of 250m and bandwidth 842-876 nm is considered as these bands has special features to identify the agriculture and other land covers. In January 2006, the Advanced Land Observing Satellite (ALOS) was successfully launched by the Japan Aerospace Exploration Agency (JAXA). The Phased Arraytype L-band SAR (PALSAR) sensor onboard the satellite acquires SAR imagery at a wavelength of 23.5 cm (frequency 1.27 GHz) with capabilities of multimode and multipolarization observation. PALSAR can operate in several modes: the fine-beam single (FBS) polarization mode (HH), fine-beam dual (FBD) polariza-tion mode (HH/HV or VV/VH), polarimetric (PLR) mode (HH/HV/VH/VV), and ScanSAR (WB) mode (HH/VV) [15]. These makes PALSAR imagery very attractive for spatially and temporally consistent monitoring system. The Overview of Principal Component Analysis is that the most of the information within all the bands can be compressed into a much smaller number of bands with little loss of information. It allows us to extract the low-dimensional subspaces that capture the main linear correlation among the high-dimensional image data. This facilitates viewing the explained variance or signal in the available imagery, allowing both gross and more subtle features in the imagery to be seen. In this paper we have explored the fusion technique for enhancing the land cover classification of low resolution satellite data espe-cially freely available satellite data. For this purpose, we have considered to fuse the PALSAR principal component data with MODIS principal component data. Initially, the MODIS band 1 and band 2 is considered, its principal component is computed. Similarly the PALSAR HH, HV and VV polarized data are considered, and there principal component is also computed. con-sequently, the PALSAR principal component image is fused with MODIS principal component image. The aim of this paper is to analyze the effect of classification accuracy on major type of land cover types like agriculture, water and urban bodies with fusion of PALSAR data to MODIS data. Curvelet transformation has been applied for fusion of these two satellite images and Minimum Distance classification technique has been applied for the resultant fused image. It is qualitatively and visually observed that the overall classification accuracy of MODIS image after fusion is enhanced. This type of fusion technique may be quite helpful in near future to use freely available satellite data to develop monitoring system for different land cover classes on the earth.

  4. A hydrologic network supporting spatially referenced regression modeling in the Chesapeake Bay watershed

    USGS Publications Warehouse

    Brakebill, J.W.; Preston, S.D.

    2003-01-01

    The U.S. Geological Survey has developed a methodology for statistically relating nutrient sources and land-surface characteristics to nutrient loads of streams. The methodology is referred to as SPAtially Referenced Regressions On Watershed attributes (SPARROW), and relates measured stream nutrient loads to nutrient sources using nonlinear statistical regression models. A spatially detailed digital hydrologic network of stream reaches, stream-reach characteristics such as mean streamflow, water velocity, reach length, and travel time, and their associated watersheds supports the regression models. This network serves as the primary framework for spatially referencing potential nutrient source information such as atmospheric deposition, septic systems, point-sources, land use, land cover, and agricultural sources and land-surface characteristics such as land use, land cover, average-annual precipitation and temperature, slope, and soil permeability. In the Chesapeake Bay watershed that covers parts of Delaware, Maryland, Pennsylvania, New York, Virginia, West Virginia, and Washington D.C., SPARROW was used to generate models estimating loads of total nitrogen and total phosphorus representing 1987 and 1992 land-surface conditions. The 1987 models used a hydrologic network derived from an enhanced version of the U.S. Environmental Protection Agency's digital River Reach File, and course resolution Digital Elevation Models (DEMs). A new hydrologic network was created to support the 1992 models by generating stream reaches representing surface-water pathways defined by flow direction and flow accumulation algorithms from higher resolution DEMs. On a reach-by-reach basis, stream reach characteristics essential to the modeling were transferred to the newly generated pathways or reaches from the enhanced River Reach File used to support the 1987 models. To complete the new network, watersheds for each reach were generated using the direction of surface-water flow derived from the DEMs. This network improves upon existing digital stream data by increasing the level of spatial detail and providing consistency between the reach locations and topography. The hydrologic network also aids in illustrating the spatial patterns of predicted nutrient loads and sources contributed locally to each stream, and the percentages of nutrient load that reach Chesapeake Bay.

  5. Multiscale Spatial Assessment of Determinant Factors of Land Use Change: Study at Urban Area of Yogyakarta

    NASA Astrophysics Data System (ADS)

    Susilo, Bowo

    2017-12-01

    Studies of land use change have been undertaken by different researchers using various methods. Among those methods, modelling is widely utilized. Modelling land use change required several components remarked as model variables. Those represent any conditions or factors which considered relevant or have some degree of correlation to the changes of land use. Variables which have significant correlation to land use change are referred as determinant factors or driving forces. Those factors as well as changes of land use are distributed across space and therefore referred as spatial determinant factors. The main objective of the research was to examine land use change and its determinant factors. Area and location of land use change were analysed based on three different years of land use maps, which are 1993, 2000 and 2007. Spatial and temporal analysis were performed which emphasize to the influence of scale to both of analysis’s. Urban area of Yogyakarta was selected as study area. Study area covered three different districts (kabupaten), involving 20 sub districts and totally consists of 74 villages. Result of this study shows that during 14 years periods (1993 to 2007), there were about 1,460 hectares of land use change had been taken place. Dominant type of land use change is agricultural to residential. The uses of different spatial and temporal scale in analysis were able to reveal different factors related to land use change. In general, factors influencing the quantities of land use change in the study area were population growth and the availability of land. The use of data with different spatial resolution can reveal the presence of various factors associated with the location of the change. Locations of land use change were influenced or determined by accessibility factors.

  6. Towards a high resolution, integrated hydrology model of North America.

    NASA Astrophysics Data System (ADS)

    Maxwell, R. M.; Condon, L. E.

    2015-12-01

    Recent studies demonstrate feedbacks between groundwater dynamics, overland flow, land surface and vegetation processes, and atmospheric boundary layer development that significantly affect local and regional climate across a range of climatic conditions. Furthermore, the type and distribution of vegetation cover alters land-atmosphere water and energy fluxes, as well as runoff generation and overland flow processes. These interactions can result in significant feedbacks on local and regional climate. In mountainous regions, recent research has shown that spatial and temporal variability in annual evapotranspiration, and thus water budgets, is strongly dependent on lateral groundwater flow; however, the full effects of these feedbacks across varied terrain (e.g. from plains to mountains) are not well understood. Here, we present a high-resolution, integrated hydrology model that covers much of continental North America and encompasses the Mississippi and Colorado watersheds. The model is run in a fully-transient manner at hourly temporal resolution incorporating fully-coupled land energy states and fluxes with integrated surface and subsurface hydrology. Connections are seen between hydrologic variables (such as water table depth) and land energy fluxes (such as latent heat) and spatial and temporal scaling is shown to span many orders of magnitude. Using these transient simulations as a proof of concept, we present a vision for future integrated simulation capabilities.

  7. Extending a prototype knowledge- and object-based image analysis model to coarser spatial resolution imagery: an example from the Missouri River

    USGS Publications Warehouse

    Strong, Laurence L.

    2012-01-01

    A prototype knowledge- and object-based image analysis model was developed to inventory and map least tern and piping plover habitat on the Missouri River, USA. The model has been used to inventory the state of sandbars annually for 4 segments of the Missouri River since 2006 using QuickBird imagery. Interpretation of the state of sandbars is difficult when images for the segment are acquired at different river stages and different states of vegetation phenology and canopy cover. Concurrent QuickBird and RapidEye images were classified using the model and the spatial correspondence of classes in the land cover and sandbar maps were analysed for the spatial extent of the images and at nest locations for both bird species. Omission and commission errors were low for unvegetated land cover classes used for nesting by both bird species and for land cover types with continuous vegetation cover and water. Errors were larger for land cover classes characterized by a mixture of sand and vegetation. Sandbar classification decisions are made using information on land cover class proportions and disagreement between sandbar classes was resolved using fuzzy membership possibilities. Regression analysis of area for a paired sample of 47 sandbars indicated an average positive bias, 1.15 ha, for RapidEye that did not vary with sandbar size. RapidEye has potential to reduce temporal uncertainty about least tern and piping plover habitat but would not be suitable for mapping sandbar erosion, and characterization of sandbar shapes or vegetation patches at fine spatial resolution.

  8. Extending a prototype knowledge and object based image analysis model to coarser spatial resolution imagery: an example from the Missouri River

    USGS Publications Warehouse

    Strong, Laurence L.

    2012-01-01

    A prototype knowledge- and object-based image analysis model was developed to inventory and map least tern and piping plover habitat on the Missouri River, USA. The model has been used to inventory the state of sandbars annually for 4 segments of the Missouri River since 2006 using QuickBird imagery. Interpretation of the state of sandbars is difficult when images for the segment are acquired at different river stages and different states of vegetation phenology and canopy cover. Concurrent QuickBird and RapidEye images were classified using the model and the spatial correspondence of classes in the land cover and sandbar maps were analysed for the spatial extent of the images and at nest locations for both bird species. Omission and commission errors were low for unvegetated land cover classes used for nesting by both bird species and for land cover types with continuous vegetation cover and water. Errors were larger for land cover classes characterized by a mixture of sand and vegetation. Sandbar classification decisions are made using information on land cover class proportions and disagreement between sandbar classes was resolved using fuzzy membership possibilities. Regression analysis of area for a paired sample of 47 sandbars indicated an average positive bias, 1.15 ha, for RapidEye that did not vary with sandbar size. RapidEye has potential to reduce temporal uncertainty about least tern and piping plover habitat but would not be suitable for mapping sandbar erosion, and characterization of sandbar shapes or vegetation patches at fine spatial resolution.

  9. The Atlanta Urban Heat Island Mitigation and Air Quality Modeling Project: How High-Resoution Remote Sensing Data Can Improve Air Quality Models

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Estes, Maurice G., Jr.; Crosson, William L.; Khan, Maudood N.

    2006-01-01

    The Atlanta Urban Heat Island and Air Quality Project had its genesis in Project ATLANTA (ATlanta Land use Analysis: Temperature and Air quality) that began in 1996. Project ATLANTA examined how high-spatial resolution thermal remote sensing data could be used to derive better measurements of the Urban Heat Island effect over Atlanta. We have explored how these thermal remote sensing, as well as other imaged datasets, can be used to better characterize the urban landscape for improved air quality modeling over the Atlanta area. For the air quality modeling project, the National Land Cover Dataset and the local scale Landpro99 dataset at 30m spatial resolutions have been used to derive land use/land cover characteristics for input into the MM5 mesoscale meteorological model that is one of the foundations for the Community Multiscale Air Quality (CMAQ) model to assess how these data can improve output from CMAQ. Additionally, land use changes to 2030 have been predicted using a Spatial Growth Model (SGM). SGM simulates growth around a region using population, employment and travel demand forecasts. Air quality modeling simulations were conducted using both current and future land cover. Meteorological modeling simulations indicate a 0.5 C increase in daily maximum air temperatures by 2030. Air quality modeling simulations show substantial differences in relative contributions of individual atmospheric pollutant constituents as a result of land cover change. Enhanced boundary layer mixing over the city tends to offset the increase in ozone concentration expected due to higher surface temperatures as a result of urbanization.

  10. Constraining regional scale carbon budgets at the US West Coast using a high-resolution atmospheric inverse modeling approach

    NASA Astrophysics Data System (ADS)

    Goeckede, M.; Michalak, A. M.; Vickers, D.; Turner, D.; Law, B.

    2009-04-01

    The study presented is embedded within the NACP (North American Carbon Program) West Coast project ORCA2, which aims at determining the regional carbon balance of the US states Oregon, California and Washington. Our work specifically focuses on the effect of disturbance history and climate variability, aiming at improving our understanding of e.g. drought stress and stand age on carbon sources and sinks in complex terrain with fine-scale variability in land cover types. The ORCA2 atmospheric inverse modeling approach has been set up to capture flux variability on the regional scale at high temporal and spatial resolution. Atmospheric transport is simulated coupling the mesoscale model WRF (Weather Research and Forecast) with the STILT (Stochastic Time Inverted Lagrangian Transport) footprint model. This setup allows identifying sources and sinks that influence atmospheric observations with highly resolved mass transport fields and realistic turbulent mixing. Terrestrial biosphere carbon fluxes are simulated at spatial resolutions of up to 1km and subdaily timesteps, considering effects of ecoregion, land cover type and disturbance regime on the carbon budgets. Our approach assimilates high-precision atmospheric CO2 concentration measurements and eddy-covariance data from several sites throughout the model domain, as well as high-resolution remote sensing products (e.g. LandSat, MODIS) and interpolated surface meteorology (DayMet, SOGS, PRISM). We present top-down modeling results that have been optimized using Bayesian inversion, reflecting the information on regional scale carbon processes provided by the network of high-precision CO2 observations. We address the level of detail (e.g. spatial and temporal resolution) that can be resolved by top-down modeling on the regional scale, given the uncertainties introduced by various sources for model-data mismatch. Our results demonstrate the importance of accurate modeling of carbon-water coupling, with the representation of water availability and drought stress playing a dominant role to capture spatially variable CO2 exchange rates in a region characterized by strong climatic gradients.

  11. Evaluation of Pan-Sharpening Methods for Automatic Shadow Detection in High Resolution Images of Urban Areas

    NASA Astrophysics Data System (ADS)

    de Azevedo, Samara C.; Singh, Ramesh P.; da Silva, Erivaldo A.

    2017-04-01

    Finer spatial resolution of areas with tall objects within urban environment causes intense shadows that lead to wrong information in urban mapping. Due to the shadows, automatic detection of objects (such as buildings, trees, structures, towers) and to estimate the surface coverage from high spatial resolution is difficult. Thus, automatic shadow detection is the first necessary preprocessing step to improve the outcome of many remote sensing applications, particularly for high spatial resolution images. Efforts have been made to explore spatial and spectral information to evaluate such shadows. In this paper, we have used morphological attribute filtering to extract contextual relations in an efficient multilevel approach for high resolution images. The attribute selected for the filtering was the area estimated from shadow spectral feature using the Normalized Saturation-Value Difference Index (NSVDI) derived from pan-sharpening images. In order to assess the quality of fusion products and the influence on shadow detection algorithm, we evaluated three pan-sharpening methods - Intensity-Hue-Saturation (IHS), Principal Components (PC) and Gran-Schmidt (GS) through the image quality measures: Correlation Coefficient (CC), Root Mean Square Error (RMSE), Relative Dimensionless Global Error in Synthesis (ERGAS) and Universal Image Quality Index (UIQI). Experimental results over Worldview II scene from São Paulo city (Brazil) show that GS method provides good correlation with original multispectral bands with no radiometric and contrast distortion. The automatic method using GS method for NSDVI generation clearly provide a clear distinction of shadows and non-shadows pixels with an overall accuracy more than 90%. The experimental results confirm the effectiveness of the proposed approach which could be used for further shadow removal and reliable for object recognition, land-cover mapping, 3D reconstruction, etc. especially in developing countries where land use and land cover are rapidly changing with tall objects within urban areas.

  12. Research on image evidence in land supervision and GIS management

    NASA Astrophysics Data System (ADS)

    Li, Qiu; Wu, Lixin

    2006-10-01

    Land resource development and utilization brings many problems. The numbers, the scale and volume of illegal land use cases are on the increasing. Since the territory is vast, and the land violations are concealment, it is difficulty for an effective land supervision and management. In this paper, the concepts of evidence, and preservation of evidence were described first. The concepts of image evidence (IE), natural evidence (NE), natural preservation of evidence (NPE), general preservation of evidence (GPE) were proposed based on the characteristics of remote sensing image (RSI) which has a characteristic of objectiveness, truthfulness, high spatial resolution, more information included. Using MapObjects and Visual Basic 6.0, under the Access management to implement the conjunction of spatial vector database and attribute data table; taking RSI as the data sources and background layer; combining the powerful management of geographic information system (GIS) for spatial data, and visual analysis, a land supervision and GIS management system was design and implemented based on NPE. The practical use in Beijing shows that the system is running well, and solved some problems in land supervision and management.

  13. Potential Long-Term Records of Surface Albedo at Fine Spatiotemporal Resolution from Landsat/Sentinle-2A Surface Reflectance and MODIS/VIIRS BRDF

    NASA Astrophysics Data System (ADS)

    Li, Z.; Schaaf, C.; Shuai, Y.; Liu, Y.; Sun, Q.; Erb, A.; Wang, Z.

    2016-12-01

    The land surface albedo products at fine spatial resolutions are generated by coupling surface reflectance (SR) from Landsat (30 m) or Sentinel-2A (20 m) with concurrent surface anisotropy information (the Bidirectional Reflectance Distribution Function - BRDF) at coarser spatial resolutions from sequential multi-angular observations by the Moderate Resolution Imaging Spectroradiometer (MODIS) or its successor, the Visible Infrared Imaging Radiometer Suite (VIIRS). We assess the comparability of four types of fine-resolution albedo products (black-sky and white-sky albedos over the shortwave broad band) generated by coupling, (1) Landsat-8 Optical Land Imager (OLI) SR with MODIS BRDF; (2) OLI SR with VIIRS BRDF; (3) Sentinel-2A MultiSpectral Instrument (MSI) SR with MODIS BRDF; and (4) MSI SR with VIIRS BRDF. We evaluate the accuracy of these four types of fine-resolution albedo products using ground tower measurements of surface albedo over six SURFace RADiation Network (SURFRAD) sites in the United States. For comparison with the ground measurements, we estimate the actual (blue-sky) albedo values at the six sites by using the satellite-based retrievals of black-sky and white-sky albedos and taking into account the proportion of direct and diffuse solar radiation from the ground measurements at the sites. The coupling of the OLI and MSI SR with MODIS BRDF has already been shown to provide accurate fine-resolution albedo values. With demonstration of a high agreement in BRDF products from MODIS and VIIRS, we expect to see consistency between all four types of fine-resolution albedo products. This assurance of consistency between the couplings of both OLI and MSI with both MODIS and VIIRS guarantees the production of long-term records of surface albedo at fine spatial resolutions and an increased temporal resolution. Such products will be critical in studying land surface changes and associated surface energy balance over the dynamic and heterogeneous landscapes most susceptible to climate change (such as arctic, coastal, and high-elevation zones).

  14. Downscaling Satellite Land Surface Temperatures in Urban Regions for Surface Energy Balance Study and Heat Index Development

    NASA Astrophysics Data System (ADS)

    Norouzi, H.; Bah, A.; Prakash, S.; Nouri, N.; Blake, R.

    2017-12-01

    A great percentage of the world's population reside in urban areas that are exposed to the threats of global and regional climate changes and associated extreme weather events. Among them, urban heat islands have significant health and economic impacts due to higher thermal gradients of impermeable surfaces in urban regions compared to their surrounding rural areas. Therefore, accurate characterization of the surface energy balance in urban regions are required to predict these extreme events. High spatial resolution Land surface temperature (LST) in the scale of street level in the cities can provide wealth of information to study surface energy balance and eventually providing a reliable heat index. In this study, we estimate high-resolution LST maps using combination of LandSat 8 and infrared based satellite products such as Moderate Resolution Imaging Spectroradiometer (MODIS) and newly launched Geostationary Operational Environmental Satellite-R Series (GOES-R). Landsat 8 provides higher spatial resolution (30 m) estimates of skin temperature every 16 days. However, MODIS and GOES-R have lower spatial resolution (1km and 4km respectively) with much higher temporal resolution. Several statistical downscaling methods were investigated to provide high spatiotemporal LST maps in urban regions. The results reveal that statistical methods such as Principal Component Analysis (PCA) can provide reliable estimations of LST downscaling with 2K accuracy. Other methods also were tried including aggregating (up-scaling) the high-resolution data to a coarse one to examine the limitations and to build the model. Additionally, we deployed flux towers over distinct materials such as concrete, asphalt, and rooftops in New York City to monitor the sensible and latent heat fluxes through eddy covariance method. To account for the incoming and outgoing radiation, a 4-component radiometer is used that can observe both incoming and outgoing longwave and shortwave radiation. This enables us to accurately build the relationship between LST, air temperature, and the heat index in the future.

  15. Comparing SMAP to Macro-scale and Hyper-resolution Land Surface Models over Continental U. S.

    NASA Astrophysics Data System (ADS)

    Pan, Ming; Cai, Xitian; Chaney, Nathaniel; Wood, Eric

    2016-04-01

    SMAP sensors collect moisture information in top soil at the spatial resolution of ~40 km (radiometer) and ~1 to 3 km (radar, before its failure in July 2015). Such information is extremely valuable for understanding various terrestrial hydrologic processes and their implications on human life. At the same time, soil moisture is a joint consequence of numerous physical processes (precipitation, temperature, radiation, topography, crop/vegetation dynamics, soil properties, etc.) that happen at a wide range of scales from tens of kilometers down to tens of meters. Therefore, a full and thorough analysis/exploration of SMAP data products calls for investigations at multiple spatial scales - from regional, to catchment, and to field scales. Here we first compare the SMAP retrievals to the Variable Infiltration Capacity (VIC) macro-scale land surface model simulations over the continental U. S. region at 3 km resolution. The forcing inputs to the model are merged/downscaled from a suite of best available data products including the NLDAS-2 forcing, Stage IV and Stage II precipitation, GOES Surface and Insolation Products, and fine elevation data. The near real time VIC simulation is intended to provide a source of large scale comparisons at the active sensor resolution. Beyond the VIC model scale, we perform comparisons at 30 m resolution against the recently developed HydroBloks hyper-resolution land surface model over several densely gauged USDA experimental watersheds. Comparisons are also made against in-situ point-scale observations from various SMAP Cal/Val and field campaign sites.

  16. A large-area, spatially continuous assessment of land cover map error and its impact on downstream analyses.

    PubMed

    Estes, Lyndon; Chen, Peng; Debats, Stephanie; Evans, Tom; Ferreira, Stefanus; Kuemmerle, Tobias; Ragazzo, Gabrielle; Sheffield, Justin; Wolf, Adam; Wood, Eric; Caylor, Kelly

    2018-01-01

    Land cover maps increasingly underlie research into socioeconomic and environmental patterns and processes, including global change. It is known that map errors impact our understanding of these phenomena, but quantifying these impacts is difficult because many areas lack adequate reference data. We used a highly accurate, high-resolution map of South African cropland to assess (1) the magnitude of error in several current generation land cover maps, and (2) how these errors propagate in downstream studies. We first quantified pixel-wise errors in the cropland classes of four widely used land cover maps at resolutions ranging from 1 to 100 km, and then calculated errors in several representative "downstream" (map-based) analyses, including assessments of vegetative carbon stocks, evapotranspiration, crop production, and household food security. We also evaluated maps' spatial accuracy based on how precisely they could be used to locate specific landscape features. We found that cropland maps can have substantial biases and poor accuracy at all resolutions (e.g., at 1 km resolution, up to ∼45% underestimates of cropland (bias) and nearly 50% mean absolute error (MAE, describing accuracy); at 100 km, up to 15% underestimates and nearly 20% MAE). National-scale maps derived from higher-resolution imagery were most accurate, followed by multi-map fusion products. Constraining mapped values to match survey statistics may be effective at minimizing bias (provided the statistics are accurate). Errors in downstream analyses could be substantially amplified or muted, depending on the values ascribed to cropland-adjacent covers (e.g., with forest as adjacent cover, carbon map error was 200%-500% greater than in input cropland maps, but ∼40% less for sparse cover types). The average locational error was 6 km (600%). These findings provide deeper insight into the causes and potential consequences of land cover map error, and suggest several recommendations for land cover map users. © 2017 John Wiley & Sons Ltd.

  17. Impact of the spatial resolution of satellite remote sensing sensors in the quantification of total suspended sediment concentration: A case study in turbid waters of Northern Western Australia.

    PubMed

    Dorji, Passang; Fearns, Peter

    2017-01-01

    The impact of anthropogenic activities on coastal waters is a cause of concern because such activities add to the total suspended sediment (TSS) budget of the coastal waters, which have negative impacts on the coastal ecosystem. Satellite remote sensing provides a powerful tool in monitoring TSS concentration at high spatiotemporal resolution, but coastal managers should be mindful that the satellite-derived TSS concentrations are dependent on the satellite sensor's radiometric properties, atmospheric correction approaches, the spatial resolution and the limitations of specific TSS algorithms. In this study, we investigated the impact of different spatial resolutions of satellite sensor on the quantification of TSS concentration in coastal waters of northern Western Australia. We quantified the TSS product derived from MODerate resolution Imaging Spectroradiometer (MODIS)-Aqua, Landsat-8 Operational Land Image (OLI), and WorldView-2 (WV2) at native spatial resolutions of 250 m, 30 m and 2 m respectively and coarser spatial resolution (resampled up to 5 km) to quantify the impact of spatial resolution on the derived TSS product in different turbidity conditions. The results from the study show that in the waters of high turbidity and high spatial variability, the high spatial resolution WV2 sensor reported TSS concentration as high as 160 mg L-1 while the low spatial resolution MODIS-Aqua reported a maximum TSS concentration of 23.6 mg L-1. Degrading the spatial resolution of each satellite sensor for highly spatially variable turbid waters led to variability in the TSS concentrations of 114.46%, 304.68% and 38.2% for WV2, Landsat-8 OLI and MODIS-Aqua respectively. The implications of this work are particularly relevant in the situation of compliance monitoring where operations may be required to restrict TSS concentrations to a pre-defined limit.

  18. Impact of the spatial resolution of satellite remote sensing sensors in the quantification of total suspended sediment concentration: A case study in turbid waters of Northern Western Australia

    PubMed Central

    Fearns, Peter

    2017-01-01

    The impact of anthropogenic activities on coastal waters is a cause of concern because such activities add to the total suspended sediment (TSS) budget of the coastal waters, which have negative impacts on the coastal ecosystem. Satellite remote sensing provides a powerful tool in monitoring TSS concentration at high spatiotemporal resolution, but coastal managers should be mindful that the satellite-derived TSS concentrations are dependent on the satellite sensor’s radiometric properties, atmospheric correction approaches, the spatial resolution and the limitations of specific TSS algorithms. In this study, we investigated the impact of different spatial resolutions of satellite sensor on the quantification of TSS concentration in coastal waters of northern Western Australia. We quantified the TSS product derived from MODerate resolution Imaging Spectroradiometer (MODIS)-Aqua, Landsat-8 Operational Land Image (OLI), and WorldView-2 (WV2) at native spatial resolutions of 250 m, 30 m and 2 m respectively and coarser spatial resolution (resampled up to 5 km) to quantify the impact of spatial resolution on the derived TSS product in different turbidity conditions. The results from the study show that in the waters of high turbidity and high spatial variability, the high spatial resolution WV2 sensor reported TSS concentration as high as 160 mg L-1 while the low spatial resolution MODIS-Aqua reported a maximum TSS concentration of 23.6 mg L-1. Degrading the spatial resolution of each satellite sensor for highly spatially variable turbid waters led to variability in the TSS concentrations of 114.46%, 304.68% and 38.2% for WV2, Landsat-8 OLI and MODIS-Aqua respectively. The implications of this work are particularly relevant in the situation of compliance monitoring where operations may be required to restrict TSS concentrations to a pre-defined limit. PMID:28380059

  19. A high-resolution and harmonized model approach for reconstructing and analyzing historic land changes in Europe

    NASA Astrophysics Data System (ADS)

    Fuchs, R.; Herold, M.; Verburg, P. H.; Clevers, J. G. P. W.

    2012-10-01

    Currently, up to 30% of global carbon emission is estimated to originate from land use and land changes. Existing historic land change reconstructions on the European scale do not sufficiently meet the requirements of greenhouse gas (GHG) and climate assessments, due to insufficient spatial and thematic detail and the consideration of various land change types. This paper investigates if the combination of different data sources, more detailed modeling techniques and the integration of land conversion types allow us to create accurate, high resolution historic land change data for Europe suited for the needs of GHG and climate assessments. We validated our reconstruction with historic aerial photographs from 1950 and 1990 for 73 sample sites across Europe and compared it with other land reconstructions like Klein Goldewijk et al. (2010, 2011), Ramankutty and Foley (1999), Pongratz et al. (2008) and Hurtt et al. (2006). The results indicate that almost 700 000 km2 (15.5%) of land cover in Europe changes over the period 1950 to 2010, an area similar to France. In Southern Europe the relative amount was almost 3.5% higher than average (19%). Based on the results the specific types of conversion, hot-spots of change and their relation to political decisions and socio-economic transitions were studied. The analysis indicate that the main drivers of land change over the studied period were urbanization, the reforestation program after the timber shortage since the Second World War, the fall of the Iron Curtain, Common Agricultural Policy and accompanying afforestation actions of the EU. Compared to existing land cover reconstructions, the new method takes stock of the harmonization of different datasets by achieving a high spatial resolution and regional detail with a full coverage of different land categories. These characteristic allow the data to be used to support and improve ongoing GHG inventories and climate research.

  20. Development of an Independent Global Land Cover Validation Dataset

    NASA Astrophysics Data System (ADS)

    Sulla-Menashe, D. J.; Olofsson, P.; Woodcock, C. E.; Holden, C.; Metcalfe, M.; Friedl, M. A.; Stehman, S. V.; Herold, M.; Giri, C.

    2012-12-01

    Accurate information related to the global distribution and dynamics in global land cover is critical for a large number of global change science questions. A growing number of land cover products have been produced at regional to global scales, but the uncertainty in these products and the relative strengths and weaknesses among available products are poorly characterized. To address this limitation we are compiling a database of high spatial resolution imagery to support international land cover validation studies. Validation sites were selected based on a probability sample, and may therefore be used to estimate statistically defensible accuracy statistics and associated standard errors. Validation site locations were identified using a stratified random design based on 21 strata derived from an intersection of Koppen climate classes and a population density layer. In this way, the two major sources of global variation in land cover (climate and human activity) are explicitly included in the stratification scheme. At each site we are acquiring high spatial resolution (< 1-m) satellite imagery for 5-km x 5-km blocks. The response design uses an object-oriented hierarchical legend that is compatible with the UN FAO Land Cover Classification System. Using this response design, we are classifying each site using a semi-automated algorithm that blends image segmentation with a supervised RandomForest classification algorithm. In the long run, the validation site database is designed to support international efforts to validate land cover products. To illustrate, we use the site database to validate the MODIS Collection 4 Land Cover product, providing a prototype for validating the VIIRS Surface Type Intermediate Product scheduled to start operational production early in 2013. As part of our analysis we evaluate sources of error in coarse resolution products including semantic issues related to the class definitions, mixed pixels, and poor spectral separation between classes.

  1. Quantitative assessment of urban wetland dynamics using high spatial resolution satellite imagery between 2000 and 2013.

    PubMed

    Hu, Tangao; Liu, Jiahong; Zheng, Gang; Li, Yao; Xie, Bin

    2018-05-09

    Accurate and timely information describing urban wetland resources and their changes over time, especially in rapidly urbanizing areas, is becoming more important. We applied an object-based image analysis and nearest neighbour classifier to map and monitor changes in land use/cover using multi-temporal high spatial resolution satellite imagery in an urban wetland area (Hangzhou Xixi Wetland) from 2000, 2005, 2007, 2009 and 2013. The overall eight-class classification accuracies averaged 84.47% for the five years. The maps showed that between 2000 and 2013 the amount of non-wetland (urban) area increased by approximately 100%. Herbaceous (32.22%), forest (29.57%) and pond (23.85%) are the main land-cover types that changed to non-wetland, followed by cropland (6.97%), marsh (4.04%) and river (3.35%). In addition, the maps of change patterns showed that urban wetland loss is mainly distributed west and southeast of the study area due to real estate development, and the greatest loss of urban wetlands occurred from 2007 to 2013. The results demonstrate the advantages of using multi-temporal high spatial resolution satellite imagery to provide an accurate, economical means to map and analyse changes in land use/cover over time and the ability to use the results as inputs to urban wetland management and policy decisions.

  2. Downscaling Coarse Actual ET Data Using Land Surface Resistance

    NASA Astrophysics Data System (ADS)

    Shen, T.

    2017-12-01

    This study proposed a new approach of downscaling ETWATCH 1km actual evapotranspiration (ET) product to a spatial resolution of 30m using land surface resistance that simulated mainly from monthly Landsat8 data and Jarvis method, which combined the benefits of both high temporal resolution of ETWATCH product and fine spatial resolution of Landsat8. The driving factor, surface resistance (Rs), was chosen for the reason that could reflect the transfer ability of vapor flow over canopy. Combined resistance Rs both upon canopy conditions, atmospheric factors and available water content of soil, which remains stable inside one ETWATCH pixel (1km). In this research, we used ETWATCH 1km ten-day actual ET product from April to October in a total of twenty-one images and monthly 30 meters cloud-free NDVI of 2013 (two images from HJ as a substitute due to cloud contamination) combined meteorological indicators for downscaling. A good agreement and correlation were obtained between the downscaled data and three flux sites observation in the middle reach of Heihe basin. The downscaling results show good consistency with the original ETWATCH 1km data both temporal and spatial scale over different land cover types with R2 ranged from 0.8 to 0.98. Besides, downscaled result captured the progression of vegetation transpiration well. This study proved the practicability of new downscaling method in the water resource management.

  3. High-resolution assessment of land use impacts on biodiversity in life cycle assessment using species habitat suitability models.

    PubMed

    de Baan, Laura; Curran, Michael; Rondinini, Carlo; Visconti, Piero; Hellweg, Stefanie; Koellner, Thomas

    2015-02-17

    Agricultural land use is a main driver of global biodiversity loss. The assessment of land use impacts in decision-support tools such as life cycle assessment (LCA) requires spatially explicit models, but existing approaches are either not spatially differentiated or modeled at very coarse scales (e.g., biomes or ecoregions). In this paper, we develop a high-resolution (900 m) assessment method for land use impacts on biodiversity based on habitat suitability models (HSM) of mammal species. This method considers potential land use effects on individual species, and impacts are weighted by the species' conservation status and global rarity. We illustrate the method using a case study of crop production in East Africa, but the underlying HSMs developed by the Global Mammals Assessment are available globally. We calculate impacts of three major export crops and compare the results to two previously developed methods (focusing on local and regional impacts, respectively) to assess the relevance of the methodological innovations proposed in this paper. The results highlight hotspots of product-related biodiversity impacts that help characterize the links among agricultural production, consumption, and biodiversity loss.

  4. Spatially explicit land-use and land-cover scenarios for the Great Plains of the United States

    USGS Publications Warehouse

    Sohl, Terry L.; Sleeter, Benjamin M.; Sayler, Kristi L.; Bouchard, Michelle A.; Reker, Ryan R.; Bennett, Stacie L.; Sleeter, Rachel R.; Kanengieter, Ronald L.; Zhu, Zhi-Liang

    2012-01-01

    The Great Plains of the United States has undergone extensive land-use and land-cover change in the past 150 years, with much of the once vast native grasslands and wetlands converted to agricultural crops, and much of the unbroken prairie now heavily grazed. Future land-use change in the region could have dramatic impacts on ecological resources and processes. A scenario-based modeling framework is needed to support the analysis of potential land-use change in an uncertain future, and to mitigate potentially negative future impacts on ecosystem processes. We developed a scenario-based modeling framework to analyze potential future land-use change in the Great Plains. A unique scenario construction process, using an integrated modeling framework, historical data, workshops, and expert knowledge, was used to develop quantitative demand for future land-use change for four IPCC scenarios at the ecoregion level. The FORE-SCE model ingested the scenario information and produced spatially explicit land-use maps for the region at relatively fine spatial and thematic resolutions. Spatial modeling of the four scenarios provided spatial patterns of land-use change consistent with underlying assumptions and processes associated with each scenario. Economically oriented scenarios were characterized by significant loss of natural land covers and expansion of agricultural and urban land uses. Environmentally oriented scenarios experienced modest declines in natural land covers to slight increases. Model results were assessed for quantity and allocation disagreement between each scenario pair. In conjunction with the U.S. Geological Survey's Biological Carbon Sequestration project, the scenario-based modeling framework used for the Great Plains is now being applied to the entire United States.

  5. High resolution population distribution maps for Southeast Asia in 2010 and 2015.

    PubMed

    Gaughan, Andrea E; Stevens, Forrest R; Linard, Catherine; Jia, Peng; Tatem, Andrew J

    2013-01-01

    Spatially accurate, contemporary data on human population distributions are vitally important to many applied and theoretical researchers. The Southeast Asia region has undergone rapid urbanization and population growth over the past decade, yet existing spatial population distribution datasets covering the region are based principally on population count data from censuses circa 2000, with often insufficient spatial resolution or input data to map settlements precisely. Here we outline approaches to construct a database of GIS-linked circa 2010 census data and methods used to construct fine-scale (∼100 meters spatial resolution) population distribution datasets for each country in the Southeast Asia region. Landsat-derived settlement maps and land cover information were combined with ancillary datasets on infrastructure to model population distributions for 2010 and 2015. These products were compared with those from two other methods used to construct commonly used global population datasets. Results indicate mapping accuracies are consistently higher when incorporating land cover and settlement information into the AsiaPop modelling process. Using existing data, it is possible to produce detailed, contemporary and easily updatable population distribution datasets for Southeast Asia. The 2010 and 2015 datasets produced are freely available as a product of the AsiaPop Project and can be downloaded from: www.asiapop.org.

  6. High Resolution Population Distribution Maps for Southeast Asia in 2010 and 2015

    PubMed Central

    Gaughan, Andrea E.; Stevens, Forrest R.; Linard, Catherine; Jia, Peng; Tatem, Andrew J.

    2013-01-01

    Spatially accurate, contemporary data on human population distributions are vitally important to many applied and theoretical researchers. The Southeast Asia region has undergone rapid urbanization and population growth over the past decade, yet existing spatial population distribution datasets covering the region are based principally on population count data from censuses circa 2000, with often insufficient spatial resolution or input data to map settlements precisely. Here we outline approaches to construct a database of GIS-linked circa 2010 census data and methods used to construct fine-scale (∼100 meters spatial resolution) population distribution datasets for each country in the Southeast Asia region. Landsat-derived settlement maps and land cover information were combined with ancillary datasets on infrastructure to model population distributions for 2010 and 2015. These products were compared with those from two other methods used to construct commonly used global population datasets. Results indicate mapping accuracies are consistently higher when incorporating land cover and settlement information into the AsiaPop modelling process. Using existing data, it is possible to produce detailed, contemporary and easily updatable population distribution datasets for Southeast Asia. The 2010 and 2015 datasets produced are freely available as a product of the AsiaPop Project and can be downloaded from: www.asiapop.org. PMID:23418469

  7. Multidecadal Rates of Disturbance- and Climate Change-Induced Land Cover Change in Arctic and Boreal Ecosystems over Western Canada and Alaska Inferred from Dense Landsat Time Series

    NASA Astrophysics Data System (ADS)

    Wang, J.; Sulla-menashe, D. J.; Woodcock, C. E.; Sonnentag, O.; Friedl, M. A.

    2017-12-01

    Rapid climate change in arctic and boreal ecosystems is driving changes to land cover composition, including woody expansion in the arctic tundra, successional shifts following boreal fires, and thaw-induced wetland expansion and forest collapse along the southern limit of permafrost. The impacts of these land cover transformations on the physical climate and the carbon cycle are increasingly well-documented from field and model studies, but there have been few attempts to empirically estimate rates of land cover change at decadal time scale and continental spatial scale. Previous studies have used too coarse spatial resolution or have been too limited in temporal range to enable broad multi-decadal assessment of land cover change. As part of NASA's Arctic Boreal Vulnerability Experiment (ABoVE), we are using dense time series of Landsat remote sensing data to map disturbances and classify land cover types across the ABoVE extended domain (spanning western Canada and Alaska) over the last three decades (1982-2014) at 30 m resolution. We utilize regionally-complete and repeated acquisition high-resolution (<2 m) DigitalGlobe imagery to generate training data from across the region that follows a nested, hierarchical classification scheme encompassing plant functional type and cover density, understory type, wetland status, and land use. Additionally, we crosswalk plot-level field data into our scheme for additional high quality training sites. We use the Continuous Change Detection and Classification algorithm to estimate land cover change dates and temporal-spectral features in the Landsat data. These features are used to train random forest classification models and map land cover and analyze land cover change processes, focusing primarily on tundra "shrubification", post-fire succession, and boreal wetland expansion. We will analyze the high resolution data based on stratified random sampling of our change maps to validate and assess the accuracy of our model predictions. In this paper, we present initial results from this effort, including sub-regional analyses focused on several key areas, such as the Taiga Plains and the Southern Arctic ecozones, to calibrate our random forest models and assess results.

  8. Organizations challenged by global database development

    USGS Publications Warehouse

    Sturdevant, J.A.; Eidenshink, J.C.; Loveland, Thomas R.

    1991-01-01

    Several international programs have identified the need for a global 1-kilometer spatial database for land cover and land characterization studies. In 1992, the US Geological Survey (USGS) EROS Data Center (EDC), the European Space Agency (ESA), the National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA) will collect and archive all 1-kilometer Advanced Very High Resolution Radiometer (AVHRR) data acquired during afternoon orbital passes over land.

  9. A high-resolution and harmonized model approach for reconstructing and analysing historic land changes in Europe

    NASA Astrophysics Data System (ADS)

    Fuchs, R.; Herold, M.; Verburg, P. H.; Clevers, J. G. P. W.

    2013-03-01

    Human-induced land use changes are nowadays the second largest contributor to atmospheric carbon dioxide after fossil fuel combustion. Existing historic land change reconstructions on the European scale do not sufficiently meet the requirements of greenhouse gas (GHG) and climate assessments, due to insufficient spatial and thematic detail and the consideration of various land change types. This paper investigates if the combination of different data sources, more detailed modelling techniques, and the integration of land conversion types allow us to create accurate, high-resolution historic land change data for Europe suited for the needs of GHG and climate assessments. We validated our reconstruction with historic aerial photographs from 1950 and 1990 for 73 sample sites across Europe and compared it with other land reconstructions like Klein Goldewijk et al. (2010, 2011), Ramankutty and Foley (1999), Pongratz et al. (2008) and Hurtt et al. (2006). The results indicate that almost 700 000 km2 (15.5%) of land cover in Europe has changed over the period 1950-2010, an area similar to France. In Southern Europe the relative amount was almost 3.5% higher than average (19%). Based on the results the specific types of conversion, hot-spots of change and their relation to political decisions and socio-economic transitions were studied. The analysis indicates that the main drivers of land change over the studied period were urbanization, the reforestation program resulting from the timber shortage after the Second World War, the fall of the Iron Curtain, the Common Agricultural Policy and accompanying afforestation actions of the EU. Compared to existing land cover reconstructions, the new method considers the harmonization of different datasets by achieving a high spatial resolution and regional detail with a full coverage of different land categories. These characteristics allow the data to be used to support and improve ongoing GHG inventories and climate research.

  10. China's land cover and land use change from 1700 to 2005: Estimations from high-resolution satellite data and historical archives

    NASA Astrophysics Data System (ADS)

    Liu, Mingliang; Tian, Hanqin

    2010-09-01

    One of the major limitations in assessing the impacts of human activities on global biogeochemical cycles and climate is a shortage of reliable data on historical land cover and land use change (LCLUC). China had extreme discrepancies in estimating contemporary and historical patterns of LCLUC over the last 3 centuries because of its geographical complexity, long history of land use, and limited national surveys. This study aims to characterize the spatial and temporal patterns of China's LCLUC during 1700-2005 by reconstructing historical gridded data sets from high-resolution satellite data and long-term historical survey data. During this 300 year period, the major characteristics of LCLUC in China have been shrinking forest (decreased by 22%) and expanding cropland (increased by 42%) and urban areas (including urban and rural settlements, factories, quarries, mining, and other built-up land). New cropland areas have come almost equally from both forested and nonforested land. This study also revealed that substantial conversion between forest and woodland can be attributed to forest harvest, forest regeneration, and land degradation. During 1980-2005, LCLUC was characterized by shrinking cropland, expanding urban and forest areas, and large decadal variations on a national level. LCLUC in China showed significant spatial variations during different time periods, which were caused by spatial heterogeneity in vegetation, soils, and climate and regional imbalance in economy development. During 1700-2005, forests shrunk rapidly while croplands expanded in the northeast and southwest of China. During 1980-2005, we found a serious loss of cropland and urban sprawl in the eastern plain, north, and southeast regions of China and a large increase in forested area in the southeast and southwest regions. The reconstructed LCLUC data sets from this study could be used to assess the impacts of land use change on biogeochemical cycles, the water cycle, and the regional climate in China. To further eliminate uncertainties in this data set and make reliable projections of LCLUC for the future, we need to improve our understanding of the drivers of LCLUC and work toward developing an advanced, spatially explicit land use model.

  11. Modeling the Distribution of African Savanna Elephants in Kruger National Park: AN Application of Multi-Scale GLOBELAND30 Data

    NASA Astrophysics Data System (ADS)

    Xu, W.; Hays, B.; Fayrer-Hosken, R.; Presotto, A.

    2016-06-01

    The ability of remote sensing to represent ecologically relevant features at multiple spatial scales makes it a powerful tool for studying wildlife distributions. Species of varying sizes perceive and interact with their environment at differing scales; therefore, it is important to consider the role of spatial resolution of remotely sensed data in the creation of distribution models. The release of the Globeland30 land cover classification in 2014, with its 30 m resolution, presents the opportunity to do precisely that. We created a series of Maximum Entropy distribution models for African savanna elephants (Loxodonta africana) using Globeland30 data analyzed at varying resolutions. We compared these with similarly re-sampled models created from the European Space Agency's Global Land Cover Map (Globcover). These data, in combination with GIS layers of topography and distance to roads, human activity, and water, as well as elephant GPS collar data, were used with MaxEnt software to produce the final distribution models. The AUC (Area Under the Curve) scores indicated that the models created from 600 m data performed better than other spatial resolutions and that the Globeland30 models generally performed better than the Globcover models. Additionally, elevation and distance to rivers seemed to be the most important variables in our models. Our results demonstrate that Globeland30 is a valid alternative to the well-established Globcover for creating wildlife distribution models. It may even be superior for applications which require higher spatial resolution and less nuanced classifications.

  12. Assessing the performance of multiple spectral-spatial features of a hyperspectral image for classification of urban land cover classes using support vector machines and artificial neural network

    NASA Astrophysics Data System (ADS)

    Pullanagari, Reddy; Kereszturi, Gábor; Yule, Ian J.; Ghamisi, Pedram

    2017-04-01

    Accurate and spatially detailed mapping of complex urban environments is essential for land managers. Classifying high spectral and spatial resolution hyperspectral images is a challenging task because of its data abundance and computational complexity. Approaches with a combination of spectral and spatial information in a single classification framework have attracted special attention because of their potential to improve the classification accuracy. We extracted multiple features from spectral and spatial domains of hyperspectral images and evaluated them with two supervised classification algorithms; support vector machines (SVM) and an artificial neural network. The spatial features considered are produced by a gray level co-occurrence matrix and extended multiattribute profiles. All of these features were stacked, and the most informative features were selected using a genetic algorithm-based SVM. After selecting the most informative features, the classification model was integrated with a segmentation map derived using a hidden Markov random field. We tested the proposed method on a real application of a hyperspectral image acquired from AisaFENIX and on widely used hyperspectral images. From the results, it can be concluded that the proposed framework significantly improves the results with different spectral and spatial resolutions over different instrumentation.

  13. Land cover mapping, fire regeneration, and scaling studies in the Canadian boreal forest with 1 km AVHRR and Landsat TM data

    NASA Astrophysics Data System (ADS)

    Steyaert, L. T.; Hall, F. G.; Loveland, T. R.

    1997-12-01

    A multitemporal 1 km advanced very high resolution radiometer (AVHRR) land cover analysis approach was used as the basis for regional land cover mapping, fire disturbance-regeneration, and multiresolution land cover scaling studies in the boreal forest ecosystem of central Canada. The land cover classification was developed by using regional field observations from ground and low-level aircraft transits to analyze spectral-temporal clusters that were derived from an unsupervised cluster analysis of monthly normalized difference vegetation index (NDVI) image composites (April-September 1992). Quantitative areal proportions of the major boreal forest components were determined for a 821 km × 619 km region, ranging from the southern grasslands-boreal forest ecotone to the northern boreal transitional forest. The boreal wetlands (mostly lowland black spruce, tamarack, mosses, fens, and bogs) occupied approximately 33% of the region, while lakes accounted for another 13%. Upland mixed coniferous-deciduous forests represented 23% of the ecosystem. A SW-NE productivity gradient across the region is manifested by three levels of tree stand density for both the boreal wetland conifer and the mixed forest classes, which are generally aligned with isopleths of regional growing degree days. Approximately 30% of the region was directly affected by fire disturbance within the preceding 30-35 years, especially in the Canadian Shield Zone where large fire-regeneration patterns contribute to the heterogeneous boreal landscape. Intercomparisons with land cover classifications derived from 30-m Landsat Thematic Mapper (TM) data provided important insights into the relative accuracy of the 1 km AVHRR land cover classification. Primarily due to the multitemporal NDVI image compositing process, the 1 km AVHRR land cover classes have an effective spatial resolution in the 3-4 km range; therefore fens, bogs, small water bodies, and small patches of dry jack pine cannot be resolved within the wet conifer mosaic. Major differences in the 1-km AVHRR and 30-m Landsat TM-derived land cover classes are most likely due to differences in the spatial resolution of the data sets. In general, the 1 km AVHRR land cover classes are vegetation mosaics consisting of mixed combinations of the Landsat classes. Detailed mapping of the global boreal forest with this approach will benefit from algorithms for cloud screening and to atmospherically correct reflectance data for both aerosol and water vapor effects. We believe that this 1 km AVHRR land cover analysis provides new and useful information for regional water, energy, carbon, and trace gases studies in BOREAS, especially given the significant spatial variability in land cover type and associated biophysical land cover parameters (e.g., albedo, leaf area index, FPAR, and surface roughness). Multiresolution land cover comparisons (30 m, l km, and 100 km grid cells) also illustrated how heterogeneous landscape patterns are represented in land cover maps with differing spatial scales and provided insights on the requirements and challenges for parameterizing landscape heterogeneity as part of land surface process research.

  14. Land cover mapping, fire regeneration, and scaling studies in the Canadian boreal forest with 1 km AVHRR and Landsat TM data

    USGS Publications Warehouse

    Steyaert, L.T.; Hall, F.G.; Loveland, Thomas R.

    1997-01-01

    A multitemporal 1 km advanced very high resolution radiometer (AVHRR) land cover analysis approach was used as the basis for regional land cover mapping, fire disturbance-regeneration, and multiresolution land cover scaling studies in the boreal forest ecosystem of central Canada. The land cover classification was developed by using regional field observations from ground and low-level aircraft transits to analyze spectral-temporal clusters that were derived from an unsupervised cluster analysis of monthly normalized difference vegetation index (NDVI) image composites (April-September 1992). Quantitative areal proportions of the major boreal forest components were determined for a 821 km ?? 619 km region, ranging from the southern grasslands-boreal forest ecotone to the northern boreal transitional forest. The boreal wetlands (mostly lowland black spruce, tamarack, mosses, fens, and bogs) occupied approximately 33% of the region, while lakes accounted for another 13%. Upland mixed coniferous-deciduous forests represented 23% of the ecosystem. A SW-NE productivity gradient across the region is manifested by three levels of tree stand density for both the boreal wetland conifer and the mixed forest classes, which are generally aligned with isopleths of regional growing degree days. Approximately 30% of the region was directly affected by fire disturbance within the preceding 30-35 years, especially in the Canadian Shield Zone where large fire-regeneration patterns contribute to the heterogeneous boreal landscape. Intercomparisons with land cover classifications derived from 30-m Landsat Thematic Mapper (TM) data provided important insights into the relative accuracy of the 1 km AVHRR land cover classification. Primarily due to the multitemporal NDVI image compositing process, the 1 km AVHRR land cover classes have an effective spatial resolution in the 3-4 km range; therefore fens, bogs, small water bodies, and small patches of dry jack pine cannot be resolved within the wet conifer mosaic. Major differences in the 1-km AVHRR and 30-m Landsat TM-derived land cover classes are most likely due to differences in the spatial resolution of the data sets. In general, the 1 km AVHRR land cover classes are vegetation mosaics consisting of mixed combinations of the Landsat classes. Detailed mapping of the global boreal forest with this approach will benefit from algorithms for cloud screening and to atmospherically correct reflectance data for both aerosol and water vapor effects. We believe that this 1 km AVHRR land cover analysis provides new and useful information for regional water, energy, carbon, and trace gases studies in BOREAS, especially given the significant spatial variability in land cover type and associated biophysical land cover parameters (e.g., albedo, leaf area index, FPAR, and surface roughness). Multiresolution land cover comparisons (30 m, 1 km, and 100 km grid cells) also illustrated how heterogeneous landscape patterns are represented in land cover maps with differing spatial scales and provided insights on the requirements and challenges for parameterizing landscape heterogeneity as part of land surface process research.

  15. Effect of Downscaled Forcings and Soil Texture Properties on Hyperresolution Hydrologic Simulations in a Regional Basin in Northwest Mexico

    NASA Astrophysics Data System (ADS)

    Ko, A.; Mascaro, G.; Vivoni, E. R.

    2017-12-01

    Hyper-resolution (< 1 km) hydrological modeling is expected to support a range of studies related to the terrestrial water cycle. A critical need for increasing the utility of hyper-resolution modeling is the availability of meteorological forcings and land surface characteristics at high spatial resolution. Unfortunately, in many areas these datasets are only available at coarse (> 10 km) scales. In this study, we address some of the challenges by applying a parallel version of the Triangulated Irregular Network (TIN)-based Real Time Integrated Basin Simulator (tRIBS) to the Rio Sonora Basin (RSB) in northwest Mexico. The RSB is a large, semiarid watershed ( 21,000 km2) characterized by complex topography and a strong seasonality in vegetation conditions, due to the North American monsoon. We conducted simulations at an average spatial resolution of 88 m over a decadal (2004-2013) period using spatially-distributed forcings from remotely-sensed and reanalysis products. Meteorological forcings were derived from the North American Land Data Assimilation System (NLDAS) at the original resolution of 12 km and were downscaled at 1 km with techniques accounting for terrain effects. Two grids of soil properties were created from different sources, including: (i) CONABIO (Comisión Nacional para el Conocimiento y Uso de la Biodiversidad) at 6 km resolution; and (ii) ISRIC (International Soil Reference Information Centre) at 250 m. Time-varying vegetation parameters were derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) composite products. The model was first calibrated and validated through distributed soil moisture data from a network of 20 soil moisture stations during the monsoon season. Next, hydrologic simulations were conducted with five different combinations of coarse and downscaled forcings and soil properties. Outputs in the different configurations were then compared with independent observations of soil moisture, and with estimates of land surface temperature (1 km, daily) and evapotranspiration (1 km, monthly) from MODIS. This study is expected to support the community involved in hyper-resolution hydrologic modeling by identifying the crucial factors that, if available at higher resolution, lead to the largest improvement of the simulation prognostic capability.

  16. Applications of Fractal Analytical Techniques in the Estimation of Operational Scale

    NASA Technical Reports Server (NTRS)

    Emerson, Charles W.; Quattrochi, Dale A.

    2000-01-01

    The observational scale and the resolution of remotely sensed imagery are essential considerations in the interpretation process. Many atmospheric, hydrologic, and other natural and human-influenced spatial phenomena are inherently scale dependent and are governed by different physical processes at different spatial domains. This spatial and operational heterogeneity constrains the ability to compare interpretations of phenomena and processes observed in higher spatial resolution imagery to similar interpretations obtained from lower resolution imagery. This is a particularly acute problem, since longterm global change investigations will require high spatial resolution Earth Observing System (EOS), Landsat 7, or commercial satellite data to be combined with lower resolution imagery from older sensors such as Landsat TM and MSS. Fractal analysis is a useful technique for identifying the effects of scale changes on remotely sensed imagery. The fractal dimension of an image is a non-integer value between two and three which indicates the degree of complexity in the texture and shapes depicted in the image. A true fractal surface exhibits self-similarity, a property of curves or surfaces where each part is indistinguishable from the whole, or where the form of the curve or surface is invariant with respect to scale. Theoretically, if the digital numbers of a remotely sensed image resemble an ideal fractal surface, then due to the self-similarity property, the fractal dimension of the image will not vary with scale and resolution, and the slope of the fractal dimension-resolution relationship would be zero. Most geographical phenomena, however, are not self-similar at all scales, but they can be modeled by a stochastic fractal in which the scaling properties of the image exhibit patterns that can be described by statistics such as area-perimeter ratios and autocovariances. Stochastic fractal sets relax the self-similarity assumption and measure many scales and resolutions to represent the varying form of a phenomenon as the pixel size is increased in a convolution process. We have observed that for images of homogeneous land covers, the fractal dimension varies linearly with changes in resolution or pixel size over the range of past, current, and planned space-borne sensors. This relationship differs significantly in images of agricultural, urban, and forest land covers, with urban areas retaining the same level of complexity, forested areas growing smoother, and agricultural areas growing more complex as small pixels are aggregated into larger, mixed pixels. Images of scenes having a mixture of land covers have fractal dimensions that exhibit a non-linear, complex relationship to pixel size. Measuring the fractal dimension of a difference image derived from two images of the same area obtained on different dates showed that the fractal dimension increased steadily, then exhibited a sharp decrease at increasing levels of pixel aggregation. This breakpoint of the fractal dimension/resolution plot is related to the spatial domain or operational scale of the phenomenon exhibiting the predominant visible difference between the two images (in this case, mountain snow cover). The degree to which an image departs from a theoretical ideal fractal surface provides clues as to how much information is altered or lost in the processes of rescaling and rectification. The measured fractal dimension of complex, composite land covers such as urban areas also provides a useful textural index that can assist image classification of complex scenes.

  17. Combined Use of Satellite Observations with Urban Surface Characteristics to Estimate PM Concentrations by Employing Mixed-Effects Models

    NASA Astrophysics Data System (ADS)

    Beloconi, Anton; Benas, Nikolaos; Chrysoulakis, Nektarios; Kamarianakis, Yiannis

    2015-11-01

    Linear mixed effects models were developed for the estimation of the average daily Particulate Matter (PM) concentration spatial distribution over the area of Greater London (UK). Both fine (PM2.5) and coarse (PM10) concentrations were predicted for the 2002- 2012 time period, based on satellite data. The latter included Aerosol Optical Thickness (AOT) at 3×3 km spatial resolution, as well as the Surface Relative Humidity, Surface Temperature and K-Index derived from MODIS (Moderate Resolution Imaging Spectroradiometer) sensor. For a meaningful interpretation of the association among these variables, all data were homogenized with regard to spatial support and geographic projection, thus addressing the change of support problem and leading to a valid statistical inference. To this end, spatial (2D) and spatio- temporal (3D) kriging techniques were applied to in-situ particulate matter concentrations and the leave-one- station-out cross-validation was performed on a daily level to gauge the quality of the predictions. Satellite- derived covariates displayed clear seasonal patterns; in order to work with data which is stationary in mean, for each covariate, deviations from its estimated annual profiles were computed using nonlinear least squares and nonlinear absolute deviations. High-resolution land- cover and morphology static datasets were additionally incorporated in the analysis in order to catch the effects of nearby emission sources and sequestration sites. For pairwise comparisons of the particulate matter concentration means at distinct land-cover classes, the pairwise comparisons method for unequal sample sizes, known as Tukey's method, was performed. The use of satellite-derived products allowed better assessment of space-time interactions of PM, since these daily spatial measurements were able to capture differences in PM concentrations between grid cells, while the use of high- resolution land-cover and morphology static datasets allowed accounting for local industrial, domestic and traffic related air pollution. The developed methods are expected to fully exploit ESA's new Sentinel-3 observations to estimate spatial distributions of both PM10 and PM2.5 concentrations in arbitrary cities.

  18. Cloud-Free Satellite Image Mosaics with Regression Trees and Histogram Matching.

    Treesearch

    E.H. Helmer; B. Ruefenacht

    2005-01-01

    Cloud-free optical satellite imagery simplifies remote sensing, but land-cover phenology limits existing solutions to persistent cloudiness to compositing temporally resolute, spatially coarser imagery. Here, a new strategy for developing cloud-free imagery at finer resolution permits simple automatic change detection. The strategy uses regression trees to predict...

  19. A New Approach in Downscaling Microwave Soil Moisture Product using Machine Learning

    NASA Astrophysics Data System (ADS)

    Abbaszadeh, Peyman; Yan, Hongxiang; Moradkhani, Hamid

    2016-04-01

    Understating the soil moisture pattern has significant impact on flood modeling, drought monitoring, and irrigation management. Although satellite retrievals can provide an unprecedented spatial and temporal resolution of soil moisture at a global-scale, their soil moisture products (with a spatial resolution of 25-50 km) are inadequate for regional study, where a resolution of 1-10 km is needed. In this study, a downscaling approach using Genetic Programming (GP), a specialized version of Genetic Algorithm (GA), is proposed to improve the spatial resolution of satellite soil moisture products. The GP approach was applied over a test watershed in United States using the coarse resolution satellite data (25 km) from Advanced Microwave Scanning Radiometer - EOS (AMSR-E) soil moisture products, the fine resolution data (1 km) from Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation index, and ground based data including land surface temperature, vegetation and other potential physical variables. The results indicated the great potential of this approach to derive the fine resolution soil moisture information applicable for data assimilation and other regional studies.

  20. Multiscale comparison of GPM radar and passive microwave precipitation fields over oceans and land: effective resolution and global/regional/local diagnostics for improving retrieval algorithms

    NASA Astrophysics Data System (ADS)

    Guilloteau, C.; Foufoula-Georgiou, E.; Kummerow, C.; Kirstetter, P. E.

    2017-12-01

    A multiscale approach is used to compare precipitation fields retrieved from GMI using the last version of the GPROF algorithm (GPROF-2017) to the DPR fields all over the globe. Using a wavelet-based spectral analysis, which renders the multi-scale decompositions of the original fields independent of each other spatially and across scales, we quantitatively assess the various scales of variability of the retrieved fields, and thus define the spatially-variable "effective resolution" (ER) of the retrievals. Globally, a strong agreement is found between passive microwave and radar patterns at scales coarser than 80km. Over oceans the patterns match down to the 20km scale. Over land, comparison statistics are spatially heterogeneous. In most areas a strong discrepancy is observed between passive microwave and radar patterns at scales finer than 40-80km. The comparison is also supported by ground-based observations over the continental US derived from the NOAA/NSSL MRMS suite of products. While larger discrepancies over land than over oceans are classically explained by land complex surface emissivity perturbing the passive microwave retrieval, other factors are investigated here, such as intricate differences in the storm structure over oceans and land. Differences in term of statistical properties (PDF of intensities and spatial organization) of precipitation fields over land and oceans are assessed from radar data, as well as differences in the relation between the 89GHz brightness temperature and precipitation. Moreover, the multiscale approach allows quantifying the part of discrepancies caused by miss-match of the location of intense cells and instrument-related geometric effects. The objective is to diagnose shortcomings of current retrieval algorithms such that targeted improvements can be made to achieve over land the same retrieval performance as over oceans.

  1. Land-use Scene Classification in High-Resolution Remote Sensing Images by Multiscale Deeply Described Correlatons

    NASA Astrophysics Data System (ADS)

    Qi, K.; Qingfeng, G.

    2017-12-01

    With the popular use of High-Resolution Satellite (HRS) images, more and more research efforts have been placed on land-use scene classification. However, it makes the task difficult with HRS images for the complex background and multiple land-cover classes or objects. This article presents a multiscale deeply described correlaton model for land-use scene classification. Specifically, the convolutional neural network is introduced to learn and characterize the local features at different scales. Then, learnt multiscale deep features are explored to generate visual words. The spatial arrangement of visual words is achieved through the introduction of adaptive vector quantized correlograms at different scales. Experiments on two publicly available land-use scene datasets demonstrate that the proposed model is compact and yet discriminative for efficient representation of land-use scene images, and achieves competitive classification results with the state-of-art methods.

  2. Monitoring Cloud-prone Complex Landscapes At Multiple Spatial Scales Using Medium And High Resolution Optical Data: A Case Study In Central Africa

    NASA Astrophysics Data System (ADS)

    Basnet, Bikash

    Tracking land surface dynamics over cloud-prone areas with complex mountainous terrain and a landscape that is heterogeneous at a scale of approximately 10 m, is an important challenge in the remote sensing of tropical regions in developing nations, due to the small plot sizes. Persistent monitoring of natural resources in these regions at multiple spatial scales requires development of tools to identify emerging land cover transformation due to anthropogenic causes, such as agricultural expansion and climate change. Along with the cloud cover and obstructions by topographic distortions due to steep terrain, there are limitations to the accuracy of monitoring change using available historical satellite imagery, largely due to sparse data access and the lack of high quality ground truth for classifier training. One such complex region is the Lake Kivu region in Central Africa. This work addressed these problems to create an effective process for monitoring the Lake Kivu region located in Central Africa. The Lake Kivu region is a biodiversity hotspot with a complex and heterogeneous landscape and intensive agricultural development, where individual plot sizes are often at the scale of 10m. Procedures were developed that use optical data from satellite and aerial observations at multiple scales to tackle the monitoring challenges. First, a novel processing chain was developed to systematically monitor the spatio-temporal land cover dynamics of this region over the years 1988, 2001, and 2011 using Landsat data, complemented by ancillary data. Topographic compensation was performed on Landsat reflectances to avoid the strong illumination angle impacts and image compositing was used to compensate for frequent cloud cover and thus incomplete annual data availability in the archive. A systematic supervised classification, using the state-of-the-art machine learning classifier Random Forest, was applied to the composite Landsat imagery to obtain land cover thematic maps with overall accuracies of 90% and higher. Subsequent change analysis between these years found extensive conversions of the natural environment as a result of human related activities. The gross forest cover loss for 1988--2001 and 2001--2011 periods was 216.4 and 130.5 thousand hectares, respectively, signifying significant deforestation in the period of civil war and a relatively stable and lower deforestation rate later, possibly due to conservation and reforestation efforts in the region. The other dominant land cover changes in the region were aggressive subsistence farming and urban expansion displacing natural vegetation and arable lands. Despite limited data availability, this study fills the gap of much needed detailed and updated land cover change information for this biologically important region of Central Africa. While useful on a regional scale, Landsat data can be inadequate for more detailed studies of land cover change. Based on an increasing availability of high resolution imagery and light detection and ranging (LiDAR) data from manned and unmanned aerial platforms (<1m resolution), a study was performed leading to a novel generic framework for land cover monitoring at fine spatial scales. The approach fuses high spatial resolution aerial imagery and LiDAR data to produce land cover maps with high spatial detail using object-based image analysis techniques. The classification framework was tested for a scene with both natural and cultural features and was found to be more than 90 percent accurate, sufficient for detailed land cover change studies.

  3. The contribution of future agricultural trends in the US Midwest to global climate change mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomson, Allison M.; Kyle, G. Page; Zhang, Xuesong

    2014-01-19

    Land use change is a complex response to changing environmental and socioeconomic systems. Historical drivers of land use change include changes in the natural resource availability of a region, changes in economic conditions for production of certain products and changing policies. Most recently, introduction of policy incentives for biofuel production have influenced land use change in the US Midwest, leading to concerns that bioenergy production systems may compete with food production and land conservation. Here we explore how land use may be impacted by future climate mitigation measures by nesting a high resolution agricultural model (EPIC – Environmental Policy Indicatormore » Climate) for the US Midwest within a global integrated assessment model (GCAM – Global Change Assessment Model). This approach is designed to provide greater spatial resolution and detailed agricultural practice information by focusing on the climate mitigation potential of agriculture and land use in a specific region, while retaining the global economic context necessary to understand the far ranging effects of climate mitigation targets. We find that until the simulated carbon prices are very high, the US Midwest has a comparative advantage in producing traditional food and feed crops over bioenergy crops. Overall, the model responds to multiple pressures by adopting a mix of future responses. We also find that the GCAM model is capable of simulations at multiple spatial scales and agricultural technology resolution, which provides the capability to examine regional response to global policy and economic conditions in the context of climate mitigation.« less

  4. Spatially detailed retrievals of spring phenology from single-season high-resolution image time series

    NASA Astrophysics Data System (ADS)

    Vrieling, Anton; Skidmore, Andrew K.; Wang, Tiejun; Meroni, Michele; Ens, Bruno J.; Oosterbeek, Kees; O'Connor, Brian; Darvishzadeh, Roshanak; Heurich, Marco; Shepherd, Anita; Paganini, Marc

    2017-07-01

    Vegetation indices derived from satellite image time series have been extensively used to estimate the timing of phenological events like season onset. Medium spatial resolution (≥250 m) satellite sensors with daily revisit capability are typically employed for this purpose. In recent years, phenology is being retrieved at higher resolution (≤30 m) in response to increasing availability of high-resolution satellite data. To overcome the reduced acquisition frequency of such data, previous attempts involved fusion between high- and medium-resolution data, or combinations of multi-year acquisitions in a single phenological reconstruction. The objectives of this study are to demonstrate that phenological parameters can now be retrieved from single-season high-resolution time series, and to compare these retrievals against those derived from multi-year high-resolution and single-season medium-resolution satellite data. The study focuses on the island of Schiermonnikoog, the Netherlands, which comprises a highly-dynamic saltmarsh, dune vegetation, and agricultural land. Combining NDVI series derived from atmospherically-corrected images from RapidEye (5 m-resolution) and the SPOT5 Take5 experiment (10m-resolution) acquired between March and August 2015, phenological parameters were estimated using a function fitting approach. We then compared results with phenology retrieved from four years of 30 m Landsat 8 OLI data, and single-year 100 m Proba-V and 250 m MODIS temporal composites of the same period. Retrieved phenological parameters from combined RapidEye/SPOT5 displayed spatially consistent results and a large spatial variability, providing complementary information to existing vegetation community maps. Retrievals that combined four years of Landsat observations into a single synthetic year were affected by the inclusion of years with warmer spring temperatures, whereas adjustment of the average phenology to 2015 observations was only feasible for a few pixels due to cloud cover around phenological transition dates. The Proba-V and MODIS phenology retrievals scaled poorly relative to their high-resolution equivalents, indicating that medium-resolution phenology retrievals need to be interpreted with care, particularly in landscapes with fine-scale land cover variability.

  5. The fusion of satellite and UAV data: simulation of high spatial resolution band

    NASA Astrophysics Data System (ADS)

    Jenerowicz, Agnieszka; Siok, Katarzyna; Woroszkiewicz, Malgorzata; Orych, Agata

    2017-10-01

    Remote sensing techniques used in the precision agriculture and farming that apply imagery data obtained with sensors mounted on UAV platforms became more popular in the last few years due to the availability of low- cost UAV platforms and low- cost sensors. Data obtained from low altitudes with low- cost sensors can be characterised by high spatial and radiometric resolution but quite low spectral resolution, therefore the application of imagery data obtained with such technology is quite limited and can be used only for the basic land cover classification. To enrich the spectral resolution of imagery data acquired with low- cost sensors from low altitudes, the authors proposed the fusion of RGB data obtained with UAV platform with multispectral satellite imagery. The fusion is based on the pansharpening process, that aims to integrate the spatial details of the high-resolution panchromatic image with the spectral information of lower resolution multispectral or hyperspectral imagery to obtain multispectral or hyperspectral images with high spatial resolution. The key of pansharpening is to properly estimate the missing spatial details of multispectral images while preserving their spectral properties. In the research, the authors presented the fusion of RGB images (with high spatial resolution) obtained with sensors mounted on low- cost UAV platforms and multispectral satellite imagery with satellite sensors, i.e. Landsat 8 OLI. To perform the fusion of UAV data with satellite imagery, the simulation of the panchromatic bands from RGB data based on the spectral channels linear combination, was conducted. Next, for simulated bands and multispectral satellite images, the Gram-Schmidt pansharpening method was applied. As a result of the fusion, the authors obtained several multispectral images with very high spatial resolution and then analysed the spatial and spectral accuracies of processed images.

  6. Ecosystem services from converted land: the importance of tree cover in Amazonian pastures

    USGS Publications Warehouse

    Barrett, Kirsten; Valentim, Judson; Turner, B. L.

    2013-01-01

    Deforestation is responsible for a substantial fraction of global carbon emissions and changes in surface energy budgets that affect climate. Deforestation losses include wildlife and human habitat, and myriad forest products on which rural and urban societies depend for food, fiber, fuel, fresh water, medicine, and recreation. Ecosystem services gained in the transition from forests to pasture and croplands, however, are often ignored in assessments of the impact of land cover change. The role of converted lands in tropical areas in terms of carbon uptake and storage is largely unknown. Pastures represent the fastest-growing form of converted land use in the tropics, even in some areas of rapid urban expansion. Tree biomass stored in these areas spans a broad range, depending on tree cover. Trees in pasture increase carbon storage, provide shade for cattle, and increase productivity of forage material. As a result, increasing fractional tree cover can provide benefits land managers as well as important ecosystem services such as reducing conversion pressure on forests adjacent to pastures. This study presents an estimation of fractional tree cover in pasture in a dynamic region on the verge of large-scale land use change. An appropriate sampling interval is established for similar studies, one that balances the need for independent samples of sufficient number to characterize a pasture in terms of fractional tree cover. This information represents a useful policy tool for government organizations and NGOs interested in encouraging ecosystem services on converted lands. Using high spatial resolution remotely sensed imagery, fractional tree cover in pasture is quantified for the municipality of Rio Branco, Brazil. A semivariogram and devolving spatial resolution are employed to determine the coarsest sampling interval that may be used, minimizing effects of spatial autocorrelation. The coarsest sampling interval that minimizes spatial dependence was about 22 m. The area-weighted fractional tree cover for the study area was 1.85 %, corrected for a slight bias associated with the coarser sampling resolution. The pastures sampled for fractional tree cover were divided between ‘high’ and ‘low’ tree cover, which may be the result of intentional incorporation of arboreal species in pasture. Further research involving those ranchers that have a higher fractional tree cover may indicate ways to promote the practice on a broader scale in the region.

  7. EnviroAtlas - New York, NY - One Meter Resolution Urban Land Cover Data (2008)

    EPA Pesticide Factsheets

    The New York, NY EnviroAtlas Meter-scale Urban Land Cover (MULC) Data were generated by the University of Vermont Spatial Analysis Laboratory (SAL) under the direction of Jarlath O'Neil-Dunne as part of the United States Forest Service Urban Tree Canopy (UTC) assessment program. Seven classes were mapped using LiDAR and high resolution orthophotography: Tree Canopy, Grass/Shrub, Bare Soil, Water, Buildings, Roads/Railroads, and Other Paved Surfaces. These data were subsequently merged to fit with the EPA classification. The SAL project covered the five boroughs within the NYC city limits. However the EPA study area encompassed that area plus a 1 kilometer buffer. Additional land cover for the buffer area was generated from United States Department of Agriculture (USDA) National Agricultural Imagery Program (NAIP) four band (red, green, blue, and near infrared) aerial photography at 1 m spatial resolution from July, 2011 and LiDAR from 2010. Six land cover classes were mapped: water, impervious surfaces, soil and barren land, trees, grass-herbaceous non-woody vegetation, and agriculture. An accuracy assessment of 600 completely random and 55 stratified random photo interpreted reference points yielded an overall User's fuzzy accuracy of 87 percent. The area mapped is the US Census Bureau's 2010 Urban Statistical Area for New York City plus a 1 km buffer. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAt

  8. Towards a high resolution, integrated hydrology model of North America: Diagnosis of feedbacks between groundwater and land energy fluxes at continental scales.

    NASA Astrophysics Data System (ADS)

    Maxwell, Reed; Condon, Laura

    2016-04-01

    Recent studies demonstrate feedbacks between groundwater dynamics, overland flow, land surface and vegetation processes, and atmospheric boundary layer development that significantly affect local and regional climate across a range of climatic conditions. Furthermore, the type and distribution of vegetation cover alters land-atmosphere water and energy fluxes, as well as runoff generation and overland flow processes. These interactions can result in significant feedbacks on local and regional climate. In mountainous regions, recent research has shown that spatial and temporal variability in annual evapotranspiration, and thus water budgets, is strongly dependent on lateral groundwater flow; however, the full effects of these feedbacks across varied terrain (e.g. from plains to mountains) are not well understood. Here, we present a high-resolution, integrated hydrology model that covers much of continental North America and encompasses the Mississippi and Colorado watersheds. The model is run in a fully-transient manner at hourly temporal resolution incorporating fully-coupled land energy states and fluxes with integrated surface and subsurface hydrology. Connections are seen between hydrologic variables (such as water table depth) and land energy fluxes (such as latent heat) and spatial and temporal scaling is shown to span many orders of magnitude. Model results suggest that partitioning of plant transpiration to bare soil evaporation is a function of water table depth and later groundwater flow. Using these transient simulations as a proof of concept, we present a vision for future integrated simulation capabilities.

  9. The EO-1 hyperion and advanced land imager sensors for use in tundra classification studies within the Upper Kuparuk River Basin, Alaska

    NASA Astrophysics Data System (ADS)

    Hall-Brown, Mary

    The heterogeneity of Arctic vegetation can make land cover classification vey difficult when using medium to small resolution imagery (Schneider et al., 2009; Muller et al., 1999). Using high radiometric and spatial resolution imagery, such as the SPOT 5 and IKONOS satellites, have helped arctic land cover classification accuracies rise into the 80 and 90 percentiles (Allard, 2003; Stine et al., 2010; Muller et al., 1999). However, those increases usually come at a high price. High resolution imagery is very expensive and can often add tens of thousands of dollars onto the cost of the research. The EO-1 satellite launched in 2002 carries two sensors that have high specral and/or high spatial resolutions and can be an acceptable compromise between the resolution versus cost issues. The Hyperion is a hyperspectral sensor with the capability of collecting 242 spectral bands of information. The Advanced Land Imager (ALI) is an advanced multispectral sensor whose spatial resolution can be sharpened to 10 meters. This dissertation compares the accuracies of arctic land cover classifications produced by the Hyperion and ALI sensors to the classification accuracies produced by the Systeme Pour l' Observation de le Terre (SPOT), the Landsat Thematic Mapper (TM) and the Landsat Enhanced Thematic Mapper Plus (ETM+) sensors. Hyperion and ALI images from August 2004 were collected over the Upper Kuparuk River Basin, Alaska. Image processing included the stepwise discriminant analysis of pixels that were positively classified from coinciding ground control points, geometric and radiometric correction, and principle component analysis. Finally, stratified random sampling was used to perform accuracy assessments on satellite derived land cover classifications. Accuracy was estimated from an error matrix (confusion matrix) that provided the overall, producer's and user's accuracies. This research found that while the Hyperion sensor produced classfication accuracies that were equivalent to the TM and ETM+ sensor (approximately 78%), the Hyperion could not obtain the accuracy of the SPOT 5 HRV sensor. However, the land cover classifications derived from the ALI sensor exceeded most classification accuracies derived from the TM and ETM+ senors and were even comparable to most SPOT 5 HRV classifications (87%). With the deactivation of the Landsat series satellites, the monitoring of remote locations such as in the Arctic on an uninterupted basis thoughout the world is in jeopardy. The utilization of the Hyperion and ALI sensors are a way to keep that endeavor operational. By keeping the ALI sensor active at all times, uninterupted observation of the entire Earth can be accomplished. Keeping the Hyperion sensor as a "tasked" sensor can provide scientists with additional imagery and options for their studies without overburdening storage issues.

  10. Remotely sensed high resolution irrigated area mapping in India for 2000 to 2015

    PubMed Central

    Ambika, Anukesh Krishnankutty; Wardlow, Brian; Mishra, Vimal

    2016-01-01

    India is among the countries that uses a significant fraction of available water for irrigation. Irrigated area in India has increased substantially after the Green revolution and both surface and groundwater have been extensively used. Under warming climate projections, irrigation frequency may increase leading to increased irrigation water demands. Water resources planning and management in agriculture need spatially-explicit irrigated area information for different crops and different crop growing seasons. However, annual, high-resolution irrigated area maps for India for an extended historical record that can be used for water resources planning and management are unavailable. Using 250 m normalized difference vegetation index (NDVI) data from Moderate Resolution Imaging Spectroradiometer (MODIS) and 56 m land use/land cover data, high-resolution irrigated area maps are developed for all the agroecological zones in India for the period of 2000–2015. The irrigated area maps were evaluated using the agricultural statistics data from ground surveys and were compared with the previously developed irrigation maps. High resolution (250 m) irrigated area maps showed satisfactory accuracy (R2=0.95) and can be used to understand interannual variability in irrigated area at various spatial scales. PMID:27996974

  11. ICLUS v1.3 Population Projections

    EPA Pesticide Factsheets

    Climate and land-use change are major components of global environmental change with feedbacks between these components. The consequences of these interactions show that land use may exacerbate or alleviate climate change effects. Based on these findings it is important to use land-use scenarios that are consistent with the specific assumptions underlying climate-change scenarios. The Integrated Climate and Land-Use Scenarios (ICLUS) project developed land-use outputs that are based on a downscaled version of the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) social, economic, and demographic storylines. ICLUS outputs are derived from a pair of models. A demographic model generates county-level population estimates that are distributed by a spatial allocation model (SERGoM v3) as housing density across the landscape. Land-use outputs were developed for the four main SRES storylines and a baseline (base case). The model is run for the conterminous USA and output is available for each scenario by decade to 2100. In addition to housing density at a 1 hectare spatial resolution, this project also generated estimates of impervious surface at a resolution of 1 square kilometer. This shapefile holds population data for all counties of the conterminous USA for all decades (2010-2100) and SRES population growth scenarios (A1, A2, B1, B2), as well as a 'base case' (BC) scenario, for use in the Integrated Climate and Land Use

  12. Trend analysis of GIMMS and MODIS NDVI time series for establishing a land degradation neutrality national baseline

    NASA Astrophysics Data System (ADS)

    Gichenje, Helene; Godinho, Sergio

    2017-04-01

    Land degradation is a key global environment and development problem that is recognized as a priority by the international development community. The Sustainable Development Goals (SDGs) were adopted by the global community in 2015, and include a goal related to land degradation and the accompanying target to achieve a land degradation-neutral (LDN) world by 2030. The LDN concept encompasses two joint actions of reducing the rate of degradation and increasing the rate of restoration. Using Kenya as the study area, this study aims to develop and test a spatially explicit methodology for assessing and monitoring the operationalization of a land degradation neutrality scheme at the national level. Time series analysis is applied to Normalized Difference Vegetation Index (NDVI) satellite data records, based on the hypothesis that the resulting NDVI residual trend would enable successful detection of changes in vegetation photosynthetic capacity and thus serve as a proxy for land degradation and regeneration processes. Two NDVI data sets are used to identify the spatial and temporal distribution of degraded and regenerated areas: the long term coarse resolution (8km, 1982-2015) third generation Global Inventory Modeling and Mapping Studies (GIMMS) NDVI3g data record; and the shorter-term finer resolution (250m, 2001-2015) Moderate Resolution Imaging Spectroradiometer (MODIS) derived NDVI data record. Climate data (rainfall, temperature and soil moisture) are used to separate areas of human-induced vegetation productivity decline from those driven by climate dynamics. Further, weekly vegetation health (VH) indexes (4km, 1982-2015) developed by National Oceanic and Atmospheric Administration (NOAA), are assessed as indicators for early detection and monitoring of land degradation by estimating vegetation stress (moisture, thermal and combined conditions).

  13. Validation of Satellite Retrieved Land Surface Variables

    NASA Technical Reports Server (NTRS)

    Lakshmi, Venkataraman; Susskind, Joel

    1999-01-01

    The effective use of satellite observations of the land surface is limited by the lack of high spatial resolution ground data sets for validation of satellite products. Recent large scale field experiments include FIFE, HAPEX-Sahel and BOREAS which provide us with data sets that have large spatial coverage and long time coverage. It is the objective of this paper to characterize the difference between the satellite estimates and the ground observations. This study and others along similar lines will help us in utilization of satellite retrieved data in large scale modeling studies.

  14. The unusual suspect: Land use is a key predictor of biodiversity patterns in the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Martins, Inês Santos; Proença, Vânia; Pereira, Henrique Miguel

    2014-11-01

    Although land use change is a key driver of biodiversity change, related variables such as habitat area and habitat heterogeneity are seldom considered in modeling approaches at larger extents. To address this knowledge gap we tested the contribution of land use related variables to models describing richness patterns of amphibians, reptiles and passerines in the Iberian Peninsula. We analyzed the relationship between species richness and habitat heterogeneity at two spatial resolutions (i.e., 10 km × 10 km and 50 km × 50 km). Using both ordinary least square and simultaneous autoregressive models, we assessed the relative importance of land use variables, climate variables and topographic variables. We also compare the species-area relationship with a multi-habitat model, the countryside species-area relationship, to assess the role of the area of different types of habitats on species diversity across scales. The association between habitat heterogeneity and species richness varied with the taxa and spatial resolution. A positive relationship was detected for all taxa at a grain size of 10 km × 10 km, but only passerines responded at a grain size of 50 km × 50 km. Species richness patterns were well described by abiotic predictors, but habitat predictors also explained a considerable portion of the variation. Moreover, species richness patterns were better described by a multi-habitat species-area model, incorporating land use variables, than by the classic power model, which only includes area as the single explanatory variable. Our results suggest that the role of land use in shaping species richness patterns goes beyond the local scale and persists at larger spatial scales. These findings call for the need of integrating land use variables in models designed to assess species richness response to large scale environmental changes.

  15. Mesocell study area snow distributions for the Cold Land Processes Experiment (CLPX)

    Treesearch

    Glen E. Liston; Christopher A. Hiemstra; Kelly Elder; Donald W. Cline

    2008-01-01

    The Cold Land Processes Experiment (CLPX) had a goal of describing snow-related features over a wide range of spatial and temporal scales. This required linking disparate snow tools and datasets into one coherent, integrated package. Simulating realistic high-resolution snow distributions and features requires a snow-evolution modeling system (SnowModel) that can...

  16. GLASS daytime all-wave net radiation product: Algorithm development and preliminary validation

    DOE PAGES

    Jiang, Bo; Liang, Shunlin; Ma, Han; ...

    2016-03-09

    Mapping surface all-wave net radiation (R n) is critically needed for various applications. Several existing R n products from numerical models and satellite observations have coarse spatial resolutions and their accuracies may not meet the requirements of land applications. In this study, we develop the Global LAnd Surface Satellite (GLASS) daytime R n product at a 5 km spatial resolution. Its algorithm for converting shortwave radiation to all-wave net radiation using the Multivariate Adaptive Regression Splines (MARS) model is determined after comparison with three other algorithms. The validation of the GLASS R n product based on high-quality in situ measurementsmore » in the United States shows a coefficient of determination value of 0.879, an average root mean square error value of 31.61 Wm -2, and an average bias of 17.59 Wm -2. Furthermore, we also compare our product/algorithm with another satellite product (CERES-SYN) and two reanalysis products (MERRA and JRA55), and find that the accuracy of the much higher spatial resolution GLASS R n product is satisfactory. The GLASS R n product from 2000 to the present is operational and freely available to the public.« less

  17. GLASS daytime all-wave net radiation product: Algorithm development and preliminary validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Bo; Liang, Shunlin; Ma, Han

    Mapping surface all-wave net radiation (R n) is critically needed for various applications. Several existing R n products from numerical models and satellite observations have coarse spatial resolutions and their accuracies may not meet the requirements of land applications. In this study, we develop the Global LAnd Surface Satellite (GLASS) daytime R n product at a 5 km spatial resolution. Its algorithm for converting shortwave radiation to all-wave net radiation using the Multivariate Adaptive Regression Splines (MARS) model is determined after comparison with three other algorithms. The validation of the GLASS R n product based on high-quality in situ measurementsmore » in the United States shows a coefficient of determination value of 0.879, an average root mean square error value of 31.61 Wm -2, and an average bias of 17.59 Wm -2. Furthermore, we also compare our product/algorithm with another satellite product (CERES-SYN) and two reanalysis products (MERRA and JRA55), and find that the accuracy of the much higher spatial resolution GLASS R n product is satisfactory. The GLASS R n product from 2000 to the present is operational and freely available to the public.« less

  18. Impact of Land Cover Characterization and Properties on Snow Albedo in Climate Models

    NASA Astrophysics Data System (ADS)

    Wang, L.; Bartlett, P. A.; Chan, E.; Montesano, P.

    2017-12-01

    The simulation of winter albedo in boreal and northern environments has been a particular challenge for land surface modellers. Assessments of output from CMIP3 and CMIP5 climate models have revealed that many simulations are characterized by overestimation of albedo in the boreal forest. Recent studies suggest that inaccurate representation of vegetation distribution, improper simulation of leaf area index, and poor treatment of canopy-snow processes are the primary causes of albedo errors. While several land cover datasets are commonly used to derive plant functional types (PFT) for use in climate models, new land cover and vegetation datasets with higher spatial resolution have become available in recent years. In this study, we compare the spatial distribution of the dominant PFTs and canopy cover fractions based on different land cover datasets, and present results from offline simulations of the latest version Canadian Land Surface Scheme (CLASS) over the northern Hemisphere land. We discuss the impact of land cover representation and surface properties on winter albedo simulations in climate models.

  19. [Simulation for balanced effect of soil and water resources on cultivated land in Naoli River Basin, Northeast China under the RCPs climate scene].

    PubMed

    Zhou, Hao; Lei, Guo Ping; Yang, Xue Xin; Zhao, Yu Hui; Zhang, Ji Xin

    2018-04-01

    Under the scenarios of climate change, balancing the land and water resources is one of the key problems needed to be solved in land development. To reveal the water dynamics of the cultivated land in Naoli River Basin, we simulated the future scenarios by using the future land use simulation model based on Landsat Satellite images, the DEM data and the meteorological data. Results showed that the growth rate of cultivated land gradually decreased. It showed different changing characteristics in different time periods, which led to different balancing effect between land and water resources. In 1990, the water dynamics of the cultivated land resources was in good state, At the same time, the adjustment of crops structure caused the paddy fields increased dramatically. During 2002 to 2014, the cultivated land that in moderate and serious moisture shortage state increased slightly, the water deficit was deteriorating to a certain degree, and maintained sound development of water profit and loss situation gradually. By comparing the simulation accuracy with different spatial resolutions and time scales, we selected 200 m as the spatial resolution of the simulation, and simulated the land use status in 2038. The simulation results showed that the cultivated land's water profit and loss degree in the river basin showed significant polarization characteristic, in that the water profit and loss degree of the cultivated land would be further intensified, the area with the higher grades of moisture profit and loss degree would distribute more centralized, and partially high evaluated grades for the moisture shortage would expand. It is needed to develop the cultivated land irrigation schemes and adjust the cultivated land in Naoli River Basin to balance soil and water resources.

  20. Optimized AVHRR land surface temperature downscaling method for local scale observations: case study for the coastal area of the Gulf of Gdańsk

    NASA Astrophysics Data System (ADS)

    Chybicki, Andrzej; Łubniewski, Zbigniew

    2017-09-01

    Satellite imaging systems have known limitations regarding their spatial and temporal resolution. The approaches based on subpixel mapping of the Earth's environment, which rely on combining the data retrieved from sensors of higher temporal and lower spatial resolution with the data characterized by lower temporal but higher spatial resolution, are of considerable interest. The paper presents the downscaling process of the land surface temperature (LST) derived from low resolution imagery acquired by the Advanced Very High Resolution Radiometer (AVHRR), using the inverse technique. The effective emissivity derived from another data source is used as a quantity describing thermal properties of the terrain in higher resolution, and allows the downsampling of low spatial resolution LST images. The authors propose an optimized downscaling method formulated as the inverse problem and show that the proposed approach yields better results than the use of other downsampling methods. The proposed method aims to find estimation of high spatial resolution LST data by minimizing the global error of the downscaling. In particular, for the investigated region of the Gulf of Gdansk, the RMSE between the AVHRR image downscaled by the proposed method and the Landsat 8 LST reference image was 2.255°C with correlation coefficient R equal to 0.828 and Bias = 0.557°C. For comparison, using the PBIM method, it was obtained RMSE = 2.832°C, R = 0.775 and Bias = 0.997°C for the same satellite scene. It also has been shown that the obtained results are also good in local scale and can be used for areas much smaller than the entire satellite imagery scene, depicting diverse biophysical conditions. Specifically, for the analyzed set of small sub-datasets of the whole scene, the obtained RSME between the downscaled and reference image was smaller, by approx. 0.53°C on average, in the case of applying the proposed method than in the case of using the PBIM method.

  1. Remote sensing in support of high-resolution terrestrial carbon monitoring and modeling

    NASA Astrophysics Data System (ADS)

    Hurtt, G. C.; Zhao, M.; Dubayah, R.; Huang, C.; Swatantran, A.; ONeil-Dunne, J.; Johnson, K. D.; Birdsey, R.; Fisk, J.; Flanagan, S.; Sahajpal, R.; Huang, W.; Tang, H.; Armstrong, A. H.

    2014-12-01

    As part of its Phase 1 Carbon Monitoring System (CMS) activities, NASA initiated a Local-Scale Biomass Pilot study. The goals of the pilot study were to develop protocols for fusing high-resolution remotely sensed observations with field data, provide accurate validation test areas for the continental-scale biomass product, and demonstrate efficacy for prognostic terrestrial ecosystem modeling. In Phase 2, this effort was expanded to the state scale. Here, we present results of this activity focusing on the use of remote sensing in high-resolution ecosystem modeling. The Ecosystem Demography (ED) model was implemented at 90 m spatial resolution for the entire state of Maryland. We rasterized soil depth and soil texture data from SSURGO. For hourly meteorological data, we spatially interpolated 32-km 3-hourly NARR into 1-km hourly and further corrected them at monthly level using PRISM data. NLCD data were used to mask sand, seashore, and wetland. High-resolution 1 m forest/non-forest mapping was used to define forest fraction of 90 m cells. Three alternative strategies were evaluated for initialization of forest structure using high-resolution lidar, and the model was used to calculate statewide estimates of forest biomass, carbon sequestration potential, time to reach sequestration potential, and sensitivity to future forest growth and disturbance rates, all at 90 m resolution. To our knowledge, no dynamic ecosystem model has been run at such high spatial resolution over such large areas utilizing remote sensing and validated as extensively. There are over 3 million 90 m land cells in Maryland, greater than 43 times the ~73,000 half-degree cells in a state-of-the-art global land model.

  2. Accounting for small scale heterogeneity in ecohydrologic watershed models

    NASA Astrophysics Data System (ADS)

    Bhaskar, A.; Fleming, B.; Hogan, D. M.

    2016-12-01

    Spatially distributed ecohydrologic models are inherently constrained by the spatial resolution of their smallest units, below which land and processes are assumed to be homogenous. At coarse scales, heterogeneity is often accounted for by computing store and fluxes of interest over a distribution of land cover types (or other sources of heterogeneity) within spatially explicit modeling units. However this approach ignores spatial organization and the lateral transfer of water and materials downslope. The challenge is to account both for the role of flow network topology and fine-scale heterogeneity. We present a new approach that defines two levels of spatial aggregation and that integrates spatially explicit network approach with a flexible representation of finer-scale aspatial heterogeneity. Critically, this solution does not simply increase the resolution of the smallest spatial unit, and so by comparison, results in improved computational efficiency. The approach is demonstrated by adapting Regional Hydro-Ecologic Simulation System (RHESSys), an ecohydrologic model widely used to simulate climate, land use, and land management impacts. We illustrate the utility of our approach by showing how the model can be used to better characterize forest thinning impacts on ecohydrology. Forest thinning is typically done at the scale of individual trees, and yet management responses of interest include impacts on watershed scale hydrology and on downslope riparian vegetation. Our approach allow us to characterize the variability in tree size/carbon reduction and water transfers between neighboring trees while still capturing hillslope to watershed scale effects, Our illustrative example demonstrates that accounting for these fine scale effects can substantially alter model estimates, in some cases shifting the impacts of thinning on downslope water availability from increases to decreases. We conclude by describing other use cases that may benefit from this approach including characterizing urban vegetation and storm water management features and their impact on watershed scale hydrology and biogeochemical cycling.

  3. Accounting for small scale heterogeneity in ecohydrologic watershed models

    NASA Astrophysics Data System (ADS)

    Burke, W.; Tague, C.

    2017-12-01

    Spatially distributed ecohydrologic models are inherently constrained by the spatial resolution of their smallest units, below which land and processes are assumed to be homogenous. At coarse scales, heterogeneity is often accounted for by computing store and fluxes of interest over a distribution of land cover types (or other sources of heterogeneity) within spatially explicit modeling units. However this approach ignores spatial organization and the lateral transfer of water and materials downslope. The challenge is to account both for the role of flow network topology and fine-scale heterogeneity. We present a new approach that defines two levels of spatial aggregation and that integrates spatially explicit network approach with a flexible representation of finer-scale aspatial heterogeneity. Critically, this solution does not simply increase the resolution of the smallest spatial unit, and so by comparison, results in improved computational efficiency. The approach is demonstrated by adapting Regional Hydro-Ecologic Simulation System (RHESSys), an ecohydrologic model widely used to simulate climate, land use, and land management impacts. We illustrate the utility of our approach by showing how the model can be used to better characterize forest thinning impacts on ecohydrology. Forest thinning is typically done at the scale of individual trees, and yet management responses of interest include impacts on watershed scale hydrology and on downslope riparian vegetation. Our approach allow us to characterize the variability in tree size/carbon reduction and water transfers between neighboring trees while still capturing hillslope to watershed scale effects, Our illustrative example demonstrates that accounting for these fine scale effects can substantially alter model estimates, in some cases shifting the impacts of thinning on downslope water availability from increases to decreases. We conclude by describing other use cases that may benefit from this approach including characterizing urban vegetation and storm water management features and their impact on watershed scale hydrology and biogeochemical cycling.

  4. A Comparison of Spatial and Spectral Image Resolution for Mapping Invasive Plants in Coastal California

    NASA Astrophysics Data System (ADS)

    Underwood, Emma C.; Ustin, Susan L.; Ramirez, Carlos M.

    2007-01-01

    We explored the potential of detecting three target invasive species: iceplant ( Carpobrotus edulis), jubata grass ( Cortaderia jubata), and blue gum ( Eucalyptus globulus) at Vandenberg Air Force Base, California. We compared the accuracy of mapping six communities (intact coastal scrub, iceplant invaded coastal scrub, iceplant invaded chaparral, jubata grass invaded chaparral, blue gum invaded chaparral, and intact chaparral) using four images with different combinations of spatial and spectral resolution: hyperspectral AVIRIS imagery (174 wavebands, 4 m spatial resolution), spatially degraded AVIRIS (174 bands, 30 m), spectrally degraded AVIRIS (6 bands, 4 m), and both spatially and spectrally degraded AVIRIS (6 bands, 30 m, i.e., simulated Landsat ETM data). Overall success rates for classifying the six classes was 75% (kappa 0.7) using full resolution AVIRIS, 58% (kappa 0.5) for the spatially degraded AVIRIS, 42% (kappa 0.3) for the spectrally degraded AVIRIS, and 37% (kappa 0.3) for the spatially and spectrally degraded AVIRIS. A true Landsat ETM image was also classified to illustrate that the results from the simulated ETM data were representative, which provided an accuracy of 50% (kappa 0.4). Mapping accuracies using different resolution images are evaluated in the context of community heterogeneity (species richness, diversity, and percent species cover). Findings illustrate that higher mapping accuracies are achieved with images possessing high spectral resolution, thus capturing information across the visible and reflected infrared solar spectrum. Understanding the tradeoffs in spectral and spatial resolution can assist land managers in deciding the most appropriate imagery with respect to target invasives and community characteristics.

  5. On the Role of Urban and Vegetative Land Cover in the Identification of Tornado Damage Using Dual-Resolution Multispectral Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Kingfield, D.; de Beurs, K.

    2014-12-01

    It has been demonstrated through various case studies that multispectral satellite imagery can be utilized in the identification of damage caused by a tornado through the change detection process. This process involves the difference in returned surface reflectance between two images and is often summarized through a variety of ratio-based vegetation indices (VIs). Land cover type plays a large contributing role in the change detection process as the reflectance properties of vegetation can vary based on several factors (e.g. species, greenness, density). Consequently, this provides the possibility for a variable magnitude of loss, making certain land cover regimes less reliable in the damage identification process. Furthermore, the tradeoff between sensor resolution and orbital return period may also play a role in the ability to detect catastrophic loss. Moderate resolution imagery (e.g. Moderate Resolution Imaging Spectroradiometer (MODIS)) provides relatively coarse surface detail with a higher update rate which could hinder the identification of small regions that underwent a dynamic change. Alternatively, imagery with higher spatial resolution (e.g. Landsat) have a longer temporal return period between successive images which could result in natural recovery underestimating the absolute magnitude of damage incurred. This study evaluates the role of land cover type and sensor resolution on four high-end (EF3+) tornado events occurring in four different land cover groups (agriculture, forest, grassland, urban) in the spring season. The closest successive clear images from both Landsat 5 and MODIS are quality controlled for each case. Transacts of surface reflectance across a homogenous land cover type both inside and outside the damage swath are extracted. These metrics are synthesized through the calculation of six different VIs to rank the calculated change metrics by land cover type, sensor resolution and VI.

  6. SMAP Soil Moisture Disaggregation using Land Surface Temperature and Vegetation Data

    NASA Astrophysics Data System (ADS)

    Fang, B.; Lakshmi, V.

    2016-12-01

    Soil moisture (SM) is a key parameter in agriculture, hydrology and ecology studies. The global SM retrievals have been providing by microwave remote sensing technology since late 1970s and many SM retrieval algorithms have been developed, calibrated and applied on satellite sensors such as AMSR-E (Advanced Microwave Scanning Radiometer for the Earth Observing System), AMSR-2 (Advanced Microwave Scanning Radiometer 2) and SMOS (Soil Moisture and Ocean Salinity). Particularly, SMAP (Soil Moisture Active/Passive) satellite, which was developed by NASA, was launched in January 2015. SMAP provides soil moisture products of 9 km and 36 km spatial resolutions which are not capable for research and applications of finer scale. Toward this issue, this study applied a SM disaggregation algorithm to disaggregate SMAP passive microwave soil moisture 36 km product. This algorithm was developed based on the thermal inertial relationship between daily surface temperature variation and daily average soil moisture which is modulated by vegetation condition, by using remote sensing retrievals from AVHRR (Advanced Very High Resolution Radiometer, MODIS (Moderate Resolution Imaging Spectroradiometer), SPOT (Satellite Pour l'Observation de la Terre), as well as Land Surface Model (LSM) output from NLDAS (North American Land Data Assimilation System). The disaggregation model was built at 1/8o spatial resolution on monthly basis and was implemented to calculate and disaggregate SMAP 36 km SM retrievals to 1 km resolution in Oklahoma. The SM disaggregation results were also validated using MESONET (Mesoscale Network) and MICRONET (Microscale Network) ground SM measurements.

  7. Validation and Verification of Operational Land Analysis Activities at the Air Force Weather Agency

    NASA Technical Reports Server (NTRS)

    Shaw, Michael; Kumar, Sujay V.; Peters-Lidard, Christa D.; Cetola, Jeffrey

    2011-01-01

    The NASA developed Land Information System (LIS) is the Air Force Weather Agency's (AFWA) operational Land Data Assimilation System (LDAS) combining real time precipitation observations and analyses, global forecast model data, vegetation, terrain, and soil parameters with the community Noah land surface model, along with other hydrology module options, to generate profile analyses of global soil moisture, soil temperature, and other important land surface characteristics. (1) A range of satellite data products and surface observations used to generate the land analysis products (2) Global, 1/4 deg spatial resolution (3) Model analysis generated at 3 hours

  8. A Modeling Approach to Global Land Surface Monitoring with Low Resolution Satellite Imaging

    NASA Technical Reports Server (NTRS)

    Hlavka, Christine A.; Dungan, Jennifer; Livingston, Gerry P.; Gore, Warren J. (Technical Monitor)

    1998-01-01

    The effects of changing land use/land cover on global climate and ecosystems due to greenhouse gas emissions and changing energy and nutrient exchange rates are being addressed by federal programs such as NASA's Mission to Planet Earth (MTPE) and by international efforts such as the International Geosphere-Biosphere Program (IGBP). The quantification of these effects depends on accurate estimates of the global extent of critical land cover types such as fire scars in tropical savannas and ponds in Arctic tundra. To address the requirement for accurate areal estimates, methods for producing regional to global maps with satellite imagery are being developed. The only practical way to produce maps over large regions of the globe is with data of coarse spatial resolution, such as Advanced Very High Resolution Radiometer (AVHRR) weather satellite imagery at 1.1 km resolution or European Remote-Sensing Satellite (ERS) radar imagery at 100 m resolution. The accuracy of pixel counts as areal estimates is in doubt, especially for highly fragmented cover types such as fire scars and ponds. Efforts to improve areal estimates from coarse resolution maps have involved regression of apparent area from coarse data versus that from fine resolution in sample areas, but it has proven difficult to acquire sufficient fine scale data to develop the regression. A method for computing accurate estimates from coarse resolution maps using little or no fine data is therefore needed.

  9. Spatial structure, sampling design and scale in remotely-sensed imagery of a California savanna woodland

    NASA Technical Reports Server (NTRS)

    Mcgwire, K.; Friedl, M.; Estes, J. E.

    1993-01-01

    This article describes research related to sampling techniques for establishing linear relations between land surface parameters and remotely-sensed data. Predictive relations are estimated between percentage tree cover in a savanna environment and a normalized difference vegetation index (NDVI) derived from the Thematic Mapper sensor. Spatial autocorrelation in original measurements and regression residuals is examined using semi-variogram analysis at several spatial resolutions. Sampling schemes are then tested to examine the effects of autocorrelation on predictive linear models in cases of small sample sizes. Regression models between image and ground data are affected by the spatial resolution of analysis. Reducing the influence of spatial autocorrelation by enforcing minimum distances between samples may also improve empirical models which relate ground parameters to satellite data.

  10. An efficient approach for pixel decomposition to increase the spatial resolution of land surface temperature images from MODIS thermal infrared band data.

    PubMed

    Wang, Fei; Qin, Zhihao; Li, Wenjuan; Song, Caiying; Karnieli, Arnon; Zhao, Shuhe

    2014-12-25

    Land surface temperature (LST) images retrieved from the thermal infrared (TIR) band data of Moderate Resolution Imaging Spectroradiometer (MODIS) have much lower spatial resolution than the MODIS visible and near-infrared (VNIR) band data. The coarse pixel scale of MODIS LST images (1000 m under nadir) have limited their capability in applying to many studies required high spatial resolution in comparison of the MODIS VNIR band data with pixel scale of 250-500 m. In this paper we intend to develop an efficient approach for pixel decomposition to increase the spatial resolution of MODIS LST image using the VNIR band data as assistance. The unique feature of this approach is to maintain the thermal radiance of parent pixels in the MODIS LST image unchanged after they are decomposed into the sub-pixels in the resulted image. There are two important steps in the decomposition: initial temperature estimation and final temperature determination. Therefore the approach can be termed double-step pixel decomposition (DSPD). Both steps involve a series of procedures to achieve the final result of decomposed LST image, including classification of the surface patterns, establishment of LST change with normalized difference of vegetation index (NDVI) and building index (NDBI), reversion of LST into thermal radiance through Planck equation, and computation of weights for the sub-pixels of the resulted image. Since the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) with much higher spatial resolution than MODIS data was on-board the same platform (Terra) as MODIS for Earth observation, an experiment had been done in the study to validate the accuracy and efficiency of our approach for pixel decomposition. The ASTER LST image was used as the reference to compare with the decomposed LST image. The result showed that the spatial distribution of the decomposed LST image was very similar to that of the ASTER LST image with a root mean square error (RMSE) of 2.7 K for entire image. Comparison with the evaluation DisTrad (E-DisTrad) and re-sampling methods for pixel decomposition also indicate that our DSPD has the lowest RMSE in all cases, including urban region, water bodies, and natural terrain. The obvious increase in spatial resolution remarkably uplifts the capability of the coarse MODIS LST images in highlighting the details of LST variation. Therefore it can be concluded that, in spite of complicated procedures, the proposed DSPD approach provides an alternative to improve the spatial resolution of MODIS LST image hence expand its applicability to the real world.

  11. Scenarios of land use and land cover change in the conterminous United States: Utilizing the special report on emission scenarios at ecoregional scales

    USGS Publications Warehouse

    Sleeter, Benjamin M.; Sohl, Terry L.; Bouchard, Michelle A.; Reker, Ryan R.; Soulard, Christopher E.; Acevedo, William; Griffith, Glenn E.; Sleeter, Rachel R.; Auch, Roger F.; Sayler, Kristi L.; Prisley, Stephen; Zhu, Zhi-Liang

    2012-01-01

    Global environmental change scenarios have typically provided projections of land use and land cover for a relatively small number of regions or using a relatively coarse resolution spatial grid, and for only a few major sectors. The coarseness of global projections, in both spatial and thematic dimensions, often limits their direct utility at scales useful for environmental management. This paper describes methods to downscale projections of land-use and land-cover change from the Intergovernmental Panel on Climate Change's Special Report on Emission Scenarios to ecological regions of the conterminous United States, using an integrated assessment model, land-use histories, and expert knowledge. Downscaled projections span a wide range of future potential conditions across sixteen land use/land cover sectors and 84 ecological regions, and are logically consistent with both historical measurements and SRES characteristics. Results appear to provide a credible solution for connecting regionalized projections of land use and land cover with existing downscaled climate scenarios, under a common set of scenario-based socioeconomic assumptions.

  12. Using LiDAR and quickbird data to model plant production and quantify uncertainties associated with wetland detection and land cover generalizations

    USGS Publications Warehouse

    Cook, B.D.; Bolstad, P.V.; Naesset, E.; Anderson, R. Scott; Garrigues, S.; Morisette, J.T.; Nickeson, J.; Davis, K.J.

    2009-01-01

    Spatiotemporal data from satellite remote sensing and surface meteorology networks have made it possible to continuously monitor global plant production, and to identify global trends associated with land cover/use and climate change. Gross primary production (GPP) and net primary production (NPP) are routinely derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard satellites Terra and Aqua, and estimates generally agree with independent measurements at validation sites across the globe. However, the accuracy of GPP and NPP estimates in some regions may be limited by the quality of model input variables and heterogeneity at fine spatial scales. We developed new methods for deriving model inputs (i.e., land cover, leaf area, and photosynthetically active radiation absorbed by plant canopies) from airborne laser altimetry (LiDAR) and Quickbird multispectral data at resolutions ranging from about 30??m to 1??km. In addition, LiDAR-derived biomass was used as a means for computing carbon-use efficiency. Spatial variables were used with temporal data from ground-based monitoring stations to compute a six-year GPP and NPP time series for a 3600??ha study site in the Great Lakes region of North America. Model results compared favorably with independent observations from a 400??m flux tower and a process-based ecosystem model (BIOME-BGC), but only after removing vapor pressure deficit as a constraint on photosynthesis from the MODIS global algorithm. Fine-resolution inputs captured more of the spatial variability, but estimates were similar to coarse-resolution data when integrated across the entire landscape. Failure to account for wetlands had little impact on landscape-scale estimates, because vegetation structure, composition, and conversion efficiencies were similar to upland plant communities. Plant productivity estimates were noticeably improved using LiDAR-derived variables, while uncertainties associated with land cover generalizations and wetlands in this largely forested landscape were considered less important.

  13. Comparison of S-NPP VIIRS land surface temperature with SEVIRI

    NASA Astrophysics Data System (ADS)

    Ermida, Sofia L.; Trigo, Isabel F.; Liu, Yuling; Yu, Yunyue

    2017-04-01

    Land surface temperature (LST) is one of the key parameters in the physics of land surface processes. LST can be globally measured from space by infrared radiometers, with a wide range of spatial and temporal resolutions depending on the sensor design and orbit. The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument is the primary sensor onboard the Suomi National Polar-orbiting Partnership (S-NPP) satellite, which was launched in recent years. VIIRS was designed to improve upon the capabilities of the operational AVHRR and provide observation continuity with MODIS. A Split Window approach has been applied to the VIIRS moderate resolution channels M15 and M16 centered at 10.76 µm and 12.01 µm, respectively. VIIRS has a swath of 3000 km and a spatial resolution of 745m (nadir) up to about 1600 m (limb view), leading to relatively high re-visiting frequency. LST is retrieved for a wide range of viewing angles along the VIIRS path, allowing the study of the variability of LST with viewing geometry for various land cover types. Here we present a comparison of VIRS LST data with data provided by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on-board EUMETSAT's Meteosat Second Generation (MSG). SEVIRI-based LST is available every 15-minute, but at coarser spatial resolution (3-km at nadir) when compared to VIIRS LST. The analysis is performed over 6 areas over the SEVIRI disk characterized by different surface conditions. VIIRS has generally slightly warmer night-time LST compared with SEVIRI, with differences smaller than 2K. Larger differences are found during daytime, with VIIRS presenting overall lower LST values up to 5K. These differences are also analysed taking into account the surface type, view zenith angle (VZA) and topography. As seen in previous comparison studies, high VZA and elevation values are associated to higher discrepancies of the LST products.

  14. Using LIDAR and Quickbird Data to Model Plant Production and Quantify Uncertainties Associated with Wetland Detection and Land Cover Generalizations

    NASA Technical Reports Server (NTRS)

    Cook, Bruce D.; Bolstad, Paul V.; Naesset, Erik; Anderson, Ryan S.; Garrigues, Sebastian; Morisette, Jeffrey T.; Nickeson, Jaime; Davis, Kenneth J.

    2009-01-01

    Spatiotemporal data from satellite remote sensing and surface meteorology networks have made it possible to continuously monitor global plant production, and to identify global trends associated with land cover/use and climate change. Gross primary production (GPP) and net primary production (NPP) are routinely derived from the MOderate Resolution Imaging Spectroradiometer (MODIS) onboard satellites Terra and Aqua, and estimates generally agree with independent measurements at validation sites across the globe. However, the accuracy of GPP and NPP estimates in some regions may be limited by the quality of model input variables and heterogeneity at fine spatial scales. We developed new methods for deriving model inputs (i.e., land cover, leaf area, and photosynthetically active radiation absorbed by plant canopies) from airborne laser altimetry (LiDAR) and Quickbird multispectral data at resolutions ranging from about 30 m to 1 km. In addition, LiDAR-derived biomass was used as a means for computing carbon-use efficiency. Spatial variables were used with temporal data from ground-based monitoring stations to compute a six-year GPP and NPP time series for a 3600 ha study site in the Great Lakes region of North America. Model results compared favorably with independent observations from a 400 m flux tower and a process-based ecosystem model (BIOME-BGC), but only after removing vapor pressure deficit as a constraint on photosynthesis from the MODIS global algorithm. Fine resolution inputs captured more of the spatial variability, but estimates were similar to coarse-resolution data when integrated across the entire vegetation structure, composition, and conversion efficiencies were similar to upland plant communities. Plant productivity estimates were noticeably improved using LiDAR-derived variables, while uncertainties associated with land cover generalizations and wetlands in this largely forested landscape were considered less important.

  15. Aggregating pixel-level basal area predictions derived from LiDAR data to industrial forest stands in North-Central Idaho

    Treesearch

    Andrew T. Hudak; Jeffrey S. Evans; Nicholas L. Crookston; Michael J. Falkowski; Brant K. Steigers; Rob Taylor; Halli Hemingway

    2008-01-01

    Stand exams are the principal means by which timber companies monitor and manage their forested lands. Airborne LiDAR surveys sample forest stands at much finer spatial resolution and broader spatial extent than is practical on the ground. In this paper, we developed models that leverage spatially intensive and extensive LiDAR data and a stratified random sample of...

  16. Pattern-based, multi-scale segmentation and regionalization of EOSD land cover

    NASA Astrophysics Data System (ADS)

    Niesterowicz, Jacek; Stepinski, Tomasz F.

    2017-10-01

    The Earth Observation for Sustainable Development of Forests (EOSD) map is a 25 m resolution thematic map of Canadian forests. Because of its large spatial extent and relatively high resolution the EOSD is difficult to analyze using standard GIS methods. In this paper we propose multi-scale segmentation and regionalization of EOSD as new methods for analyzing EOSD on large spatial scales. Segments, which we refer to as forest land units (FLUs), are delineated as tracts of forest characterized by cohesive patterns of EOSD categories; we delineated from 727 to 91,885 FLUs within the spatial extent of EOSD depending on the selected scale of a pattern. Pattern of EOSD's categories within each FLU is described by 1037 landscape metrics. A shapefile containing boundaries of all FLUs together with an attribute table listing landscape metrics make up an SQL-searchable spatial database providing detailed information on composition and pattern of land cover types in Canadian forest. Shapefile format and extensive attribute table pertaining to the entire legend of EOSD are designed to facilitate broad range of investigations in which assessment of composition and pattern of forest over large areas is needed. We calculated four such databases using different spatial scales of pattern. We illustrate the use of FLU database for producing forest regionalization maps of two Canadian provinces, Quebec and Ontario. Such maps capture the broad scale variability of forest at the spatial scale of the entire province. We also demonstrate how FLU database can be used to map variability of landscape metrics, and thus the character of landscape, over the entire Canada.

  17. Downscaling Land Surface Temperature in an Urban Area: A Case Study for Hamburg, Germany

    NASA Astrophysics Data System (ADS)

    Bechtel, Benjamin; Zakšek, Klemen

    2013-04-01

    Land surface temperature (LST) is an important parameter for the urban radiation and heat balance and a boundary condition for the atmospheric urban heat island (UHI). The increase in urban surface temperatures compared to the surrounding area (surface urban heat island, SUHI) has been described and analysed with satellite-based measurements for several decades. Besides continuous progress in the development of new sensors, an operational monitoring is still severely limited by physical constraints regarding the spatial and temporal resolution of the satellite data. Essentially, two measurement concepts must be distinguished: Sensors on geostationary platforms have high temporal (several times per hour) and poor spatial resolution (~ 5 km) while those on low earth orbiters have high spatial (~ 100-1000 m) resolution and a long return period (one day to several weeks). To enable an observation with high temporal and spatial resolution, a downscaling scheme for LST from the Spinning Enhanced Visible Infra-Red Imager (SEVIRI) sensor onboard the geostationary meteorological Meteosat 9 to spatial resolutions between 100 and 1000 m was developed and tested for Hamburg in this case study. Therefore, various predictor sets (including parameters derived from multi-temporal thermal data, NDVI, and morphological parameters) were tested. The relationship between predictors and LST was empirically calibrated in the low resolution domain and then transferred to the high resolution domain. The downscaling was validated with LST data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) for the same time. Aggregated parameters from multi-temporal thermal data (in particular annual cycle parameters and principal components) proved particularly suitable. The results for the highest resolution of 100 m showed a high explained variance (R² = 0.71) and relatively low root mean square errors (RMSE = 2.2 K). Larger predictor sets resulted in higher errors, because they tended to overfit. As expected the results were better for coarser spatial resolutions (R² = 0.80, RMSE = 1.8 K for 500 m). These results are similar or slightly better than in previous studies, although we are not aware of any study with a comparably large downscaling factor. A considerable percentage of the error is systematic due to the different viewing geometry of the sensors (the high resolution LST was overestimated about 1.3 K). The study shows that downscaling of SEVIRI LST is possible up to a resolution of 100 m for urban areas and that multi-temporal thermal data are particularly suitable as predictors.

  18. Downscaling 250-m MODIS growing season NDVI based on multiple-date landsat images and data mining approaches

    USGS Publications Warehouse

    Gu, Yingxin; Wylie, Bruce K.

    2015-01-01

    The satellite-derived growing season time-integrated Normalized Difference Vegetation Index (GSN) has been used as a proxy for vegetation biomass productivity. The 250-m GSN data estimated from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors have been used for terrestrial ecosystem modeling and monitoring. High temporal resolution with a wide range of wavelengths make the MODIS land surface products robust and reliable. The long-term 30-m Landsat data provide spatial detailed information for characterizing human-scale processes and have been used for land cover and land change studies. The main goal of this study is to combine 250-m MODIS GSN and 30-m Landsat observations to generate a quality-improved high spatial resolution (30-m) GSN database. A rule-based piecewise regression GSN model based on MODIS and Landsat data was developed. Results show a strong correlation between predicted GSN and actual GSN (r = 0.97, average error = 0.026). The most important Landsat variables in the GSN model are Normalized Difference Vegetation Indices (NDVIs) in May and August. The derived MODIS-Landsat-based 30-m GSN map provides biophysical information for moderate-scale ecological features. This multiple sensor study retains the detailed seasonal dynamic information captured by MODIS and leverages the high-resolution information from Landsat, which will be useful for regional ecosystem studies.

  19. Remote sensing and GIS based information system for sustainable resources planning at Panchayat level

    NASA Astrophysics Data System (ADS)

    Velmurugan, A.; Bhatt, S.; Dadhwal, V. K.

    2006-12-01

    Spatial databases of natural resources are very much essential to ensure enhanced productivity by conserving soil and water and to maintain ecological integrity of any region. Integration of various thematic layers prepared from high resolution data and detailed field survey would be preferred for grass root level planning (Panchayat) aimed to realize the potential of production system on a sustained basis. In this study, a detailed spatial data base was created for part of Kasaragod dist., Kerala, India. Detailed soil survey was carried out using cadastral map and registered over high resolution satellite data (IRS LISS-IV) which helped to identify problems and potentials of the area. Nearly 600 ha of land were found to be at higher erosion risk category out of ten soil series identified in the study area. Remote sensing data was used to prepare land use/land cover map and coconut (53%) followed by mixed vegetation type (16%) were found to be dominant. Soil site suitability assessment for major crops of the area was carried out and crossed with present land use to get the mismatch in land use/land utilization type. Alternate land use plan was prepared considering the potentials and problems of various available resources. Decision Support System (DSS) along with user interface is developed to support decision and extract relevant information. As organic carbon is one of the most important indicators of soil fertility C stock in the present and proposed land use was also estimated to understand the environmental significance.

  20. A Model-based Approach to Scaling GPP and NPP in Support of MODIS Land Product Validation

    NASA Astrophysics Data System (ADS)

    Turner, D. P.; Cohen, W. B.; Gower, S. T.; Ritts, W. D.

    2003-12-01

    Global products from the Earth-orbiting MODIS sensor include land cover, leaf area index (LAI), FPAR, 8-day gross primary production (GPP), and annual net primary production (NPP) at the 1 km spatial resolution. The BigFoot Project was designed specifically to validate MODIS land products, and has initiated ground measurements at 9 sites representing a wide array of vegetation types. An ecosystem process model (Biome-BGC) is used to generate estimates of GPP and NPP for each 5 km x 5 km BigFoot site. Model inputs include land cover and LAI (from Landsat ETM+), daily meteorological data (from a centrally located eddy covariance flux tower), and soil characteristics. Model derived outputs are validated against field-measured NPP and flux tower-derived GPP. The resulting GPP and NPP estimates are then aggregated to the 1 km resolution for direct spatial comparison with corresponding MODIS products. At the high latitude sites (tundra and boreal forest), the MODIS GPP phenology closely tracks the BigFoot GPP, but there is a high bias in the MODIS GPP. In the temperate zone sites, problems with the timing and magnitude of the MODIS FPAR introduce differences in MODIS GPP compared to the validation data at some sites. However, the MODIS LAI/FPAR data are currently being reprocessed (=Collection 4) and new comparisons will be made for 2002. The BigFoot scaling approach permits precise overlap in spatial and temporal resolution between the MODIS products and BigFoot products, and thus permits the evaluation of specific components of the MODIS NPP algorithm. These components include meteorological inputs from the NASA Data Assimilation Office, LAI and FPAR from other MODIS algorithms, and biome-specific parameters for base respiration rate and light use efficiency.

  1. Observation and simulation of net primary productivity in Qilian Mountain, western China.

    PubMed

    Zhou, Y; Zhu, Q; Chen, J M; Wang, Y Q; Liu, J; Sun, R; Tang, S

    2007-11-01

    We modeled net primary productivity (NPP) at high spatial resolution using an advanced spaceborne thermal emission and reflection radiometer (ASTER) image of a Qilian Mountain study area using the boreal ecosystem productivity simulator (BEPS). Two key driving variables of the model, leaf area index (LAI) and land cover type, were derived from ASTER and moderate resolution imaging spectroradiometer (MODIS) data. Other spatially explicit inputs included daily meteorological data (radiation, precipitation, temperature, humidity), available soil water holding capacity (AWC), and forest biomass. NPP was estimated for coniferous forests and other land cover types in the study area. The result showed that NPP of coniferous forests in the study area was about 4.4 tCha(-1)y(-1). The correlation coefficient between the modeled NPP and ground measurements was 0.84, with a mean relative error of about 13.9%.

  2. Evaluating MODIS snow products for modelling snowmelt runoff: case study of the Rio Grande headwaters

    USDA-ARS?s Scientific Manuscript database

    Snow-covered area (SCA) is a key variable in the Snowmelt-Runoff Model (SRM). Landsat Thematic Mapper (TM) or Operational Land Imager (OLI) provide remotely sensed data at an appropriate spatial resolution for mapping SCA in small headwater basins, but the temporal resolution of the data is low and ...

  3. Land science with Sentinel-2 and Sentinel-3 data series synergy

    NASA Astrophysics Data System (ADS)

    Moreno, Jose; Guanter, Luis; Alonso, Luis; Gomez, Luis; Amoros, Julia; Camps, Gustavo; Delegido, Jesus

    2010-05-01

    Although the GMES/Sentinel satellite series were primarily designed to provide observations for operational services and routine applications, there is a growing interest in the scientific community towards the usage of Sentinel data for more advanced and innovative science. Apart from the improved spatial and spectral capabilities, the availability of consistent time series covering a period of over 20 years opens possibilities never explored before, such as systematic data assimilation approaches exploiting the time-series concept, or the incorporation in the modelling approaches of processes covering time scales from weeks to decades. Sentinel-3 will provide continuity to current ENVISAT MERIS/AATSR capabilities. The results already derived from MERIS/AATRS will be more systematically exploited by using OLCI in synergy with SLST. Particularly innovative is the case of Sentinel-2, which is specifically designed for land applications. Built on a constellation of two satellites operating simultaneously to provide 5 days geometric revisit time, the Sentinel-2 system will providing global and systematic acquisitions with high spatial resolution and with a high revisit time tailored towards the needs of land monitoring. Apart from providing continuity to Landsat and SPOT time series, the Sentinel-2 Multi-Spectral Instrument (MSI) incorporates new narrow bands around the red-edge for improved retrievals of biophysical parameters. The limitations imposed by the need of a proper cloud screening and atmospheric corrections have represented a serious constraint in the past for optical data. The fact that both Sentinel-2 and 3 have dedicated bands to allow such needed corrections for optical data represents an important step towards a proper exploitation, guarantying consistent time series showing actual variability in land surface conditions without the artefacts introduced by the atmosphere. Expected operational products (such as Land Cover maps, Leaf Area Index, Fractional Vegetation Cover, Fraction of Absorbed Photosynthetically Active Radiation, and Leaf Chlorophyll and Water Contents), will be enhanced with new scientific applications. Higher level products will also be provided, by means of mosaicking, averaging, synthesising or compositing of spatially and temporally resampled data. A key element in the exploitation of the Sentinel series will be the adequate use of data synergy, which will open new possibilities for improved Land Models. This paper analyses in particular the possibilities offered by mosaicking and compositing information derived from Sentinel-2 observations in high spatial resolution to complement dense time series derived from Sentinel-3 data with more frequent coverage. Interpolation of gaps in high spatial resolution time series (from Sentinel-2 data) by using medium/low resolution data from Sentinel-3 (OLCI and SLSTR) is also a way of making series more temporally consistent with high spatial resolution. The primary goal of such temporal interpolation / spatial mosaicking techniques is to derive consistent surface reflectance data virtually for every date and geographical location, no matter the initial spatial/temporal coverage of the original data used to produce the composite. As a result, biophysical products can be derived in a more consistent way from the spectral information of Sentinel-3 data by making use of a description of surface heterogeneity derived from Sentinel-2 data. Using data from dedicated experiments (SEN2FLEX, CEFLES2, SEN3EXP), that include a large dataset of satellite and airborne data and of ground-based measurements of atmospheric and vegetation parameters, different techniques are tested, including empirical / statistical approaches that builds nonlinear regression by mapping spectra to a high dimensional space, up to model inversion / data assimilation scenarios. Exploitation of the temporal domain and spatial multi-scale domain becomes then a driver for the systematic exploitation of GMES/Sentinels data time series. This paper review current status, and identifies research priorities in such direction.

  4. WaterWorld, a spatial hydrological model applied at scales from local to global: key challenges to local application

    NASA Astrophysics Data System (ADS)

    Burke, Sophia; Mulligan, Mark

    2017-04-01

    WaterWorld is a widely used spatial hydrological policy support system. The last user census indicates regular use by 1029 institutions across 141 countries. A key feature of WaterWorld since 2001 is that it comes pre-loaded with all of the required data for simulation anywhere in the world at a 1km or 1 ha resolution. This means that it can be easily used, without specialist technical ability, to examine baseline hydrology and the impacts of scenarios for change or management interventions to support policy formulation, hence its labelling as a policy support system. WaterWorld is parameterised by an extensive global gridded database of more than 600 variables, developed from many sources, since 1998, the so-called simTerra database. All of these data are available globally at 1km resolution and some variables (terrain, land cover, urban areas, water bodies) are available globally at 1ha resolution. If users have access to better data than is pre-loaded, they can upload their own data. WaterWorld is generally applied at the national or basin scale at 1km resolution, or locally (for areas of <10,000km2) at 1ha resolution, though continental (1km resolution) and global (10km resolution) applications are possible so it is a model with local to global applications. WaterWorld requires some 140 maps to run including monthly climate data, land cover and use, terrain, population, water bodies and more. Whilst publically-available terrain and land cover data are now well developed for local scale application, climate and land use data remain a challenge, with most global products being available at 1km or 10km resolution or worse, which is rather coarse for local application. As part of the EartH2Observe project we have used WFDEI (WATCH Forcing Data methodology applied to ERA-Interim data) at 1km resolution to provide an alternative input to WaterWorld's preloaded climate data. Here we examine the impacts of that on key hydrological outputs: water balance, water quality and outline the remaining challenges of using datasets like these for local scale application.

  5. Social sensing of urban land use based on analysis of Twitter users’ mobility patterns

    PubMed Central

    Soltani, Kiumars; Yin, Junjun; Padmanabhan, Anand; Wang, Shaowen

    2017-01-01

    A number of recent studies showed that digital footprints around built environments, such as geo-located tweets, are promising data sources for characterizing urban land use. However, challenges for achieving this purpose exist due to the volume and unstructured nature of geo-located social media. Previous studies focused on analyzing Twitter data collectively resulting in coarse resolution maps of urban land use. We argue that the complex spatial structure of a large collection of tweets, when viewed through the lens of individual-level human mobility patterns, can be simplified to a series of key locations for each user, which could be used to characterize urban land use at a higher spatial resolution. Contingent issues that could affect our approach, such as Twitter users’ biases and tendencies at locations where they tweet the most, were systematically investigated using 39 million geo-located Tweets and two independent datasets of the City of Chicago: 1) travel survey and 2) parcel-level land use map. Our results support that the majority of Twitter users show a preferential return, where their digital traces are clustered around a few key locations. However, we did not find a general relation among users between the ranks of locations for an individual—based on the density of tweets—and their land use types. On the contrary, temporal patterns of tweeting at key locations were found to be coherent among the majority of users and significantly associated with land use types of these locations. Furthermore, we used these temporal patterns to classify key locations into generic land use types with an overall classification accuracy of 0.78. The contribution of our research is twofold: a novel approach to resolving land use types at a higher resolution, and in-depth understanding of Twitter users’ location-related and temporal biases, promising to benefit human mobility and urban studies in general. PMID:28723936

  6. Social sensing of urban land use based on analysis of Twitter users' mobility patterns.

    PubMed

    Soliman, Aiman; Soltani, Kiumars; Yin, Junjun; Padmanabhan, Anand; Wang, Shaowen

    2017-01-01

    A number of recent studies showed that digital footprints around built environments, such as geo-located tweets, are promising data sources for characterizing urban land use. However, challenges for achieving this purpose exist due to the volume and unstructured nature of geo-located social media. Previous studies focused on analyzing Twitter data collectively resulting in coarse resolution maps of urban land use. We argue that the complex spatial structure of a large collection of tweets, when viewed through the lens of individual-level human mobility patterns, can be simplified to a series of key locations for each user, which could be used to characterize urban land use at a higher spatial resolution. Contingent issues that could affect our approach, such as Twitter users' biases and tendencies at locations where they tweet the most, were systematically investigated using 39 million geo-located Tweets and two independent datasets of the City of Chicago: 1) travel survey and 2) parcel-level land use map. Our results support that the majority of Twitter users show a preferential return, where their digital traces are clustered around a few key locations. However, we did not find a general relation among users between the ranks of locations for an individual-based on the density of tweets-and their land use types. On the contrary, temporal patterns of tweeting at key locations were found to be coherent among the majority of users and significantly associated with land use types of these locations. Furthermore, we used these temporal patterns to classify key locations into generic land use types with an overall classification accuracy of 0.78. The contribution of our research is twofold: a novel approach to resolving land use types at a higher resolution, and in-depth understanding of Twitter users' location-related and temporal biases, promising to benefit human mobility and urban studies in general.

  7. Monitoring vegetation dynamics with medium resolution MODIS-EVI time series at sub-regional scale in southern Africa

    NASA Astrophysics Data System (ADS)

    Dubovyk, Olena; Landmann, Tobias; Erasmus, Barend F. N.; Tewes, Andreas; Schellberg, Jürgen

    2015-06-01

    Currently there is a lack of knowledge on spatio-temporal patterns of land surface dynamics at medium spatial scale in southern Africa, even though this information is essential for better understanding of ecosystem response to climatic variability and human-induced land transformations. In this study, we analysed vegetation dynamics across a large area in southern Africa using the 14-years (2000-2013) of medium spatial resolution (250 m) MODIS-EVI time-series data. Specifically, we investigated temporal changes in the time series of key phenometrics including overall greenness, peak and timing of annual greenness over the monitoring period and study region. In order to specifically capture spatial and per pixel vegetation changes over time, we calculated trends in these phenometrics using a robust trend analysis method. The results showed that interannual vegetation dynamics followed precipitation patterns with clearly differentiated seasonality. The earliest peak greenness during 2000-2013 occurred at the end of January in the year 2000 and the latest peak greenness was observed at the mid of March in 2012. Specifically spatial patterns of long-term vegetation trends allowed mapping areas of (i) decrease or increase in overall greenness, (ii) decrease or increase of peak greenness, and (iii) shifts in timing of occurrence of peak greenness over the 14-year monitoring period. The observed vegetation decline in the study area was mainly attributed to human-induced factors. The obtained information is useful to guide selection of field sites for detailed vegetation studies and land rehabilitation interventions and serve as an input for a range of land surface models.

  8. Comparing riparian and catchment influences on stream habitat in a forested, montane landscape.

    Treesearch

    K.M. Burnett; G.H. Reeves

    2006-01-01

    The goal of this study was to understand relationships between salmon habitat and landscape characteristics, summarized at multiple spatial scales, in a montane basin where forestry is the dominant land use. Specific study objectives were to (1) examine differences among spatial scales for landscape characteristics described with relatively coarse-resolution data, (2)...

  9. Reconstructing the spatial pattern of historical forest land in China in the past 300 years

    NASA Astrophysics Data System (ADS)

    Yang, Xuhong; Jin, Xiaobin; Xiang, Xiaomin; Fan, Yeting; Shan, Wei; Zhou, Yinkang

    2018-06-01

    The reconstruction of the historical forest spatial distribution is of a great significance to understanding land surface cover in historical periods as well as its climate and ecological effects. Based on the maximum scope of historical forest land before human intervention, the characteristics of human behaviors in farmland reclamation and deforestation for heating and timber, we create a spatial evolution model to reconstruct the spatial pattern of historical forest land. The model integrates the land suitability for reclamation, the difficulty of deforestation, the attractiveness of timber trading markets and the abundance of forest resources to calibrate the potential scope of historical forest land with the rationale that the higher the probability of deforestation for reclamation and wood, the greater the likelihood that the forest land will be deforested. Compared to the satellite-based forest land distribution in 2000, about 78.5% of our reconstructed historical forest grids are of the absolute error between 25% and -25% while as many as 95.85% of those grids are of the absolute error between 50% and -50%, which indirectly validates the feasibility of our reconstructed model. Then, we simulate the spatial distribution of forest land in China in 1661, 1724, 1820, 1887, 1933 and 1952 with the grid resolution of 1 km × 1 km. Our result shows that (1) the reconstructed historical forest land in China in the past 300 years concentrates in DaXingAnLing, XiaoXingAnLing, ChangBaiShan, HengDuanShan, DaBaShan, WuYiShan, DaBieShan, XueFengShang and etc.; (2) in terms of the spatial evolution, historical forest land shrank gradually in LiaoHe plains, SongHuaJiang-NenJiang plains and SanJiang plains of eastnorth of China, Sichuan basins and YunNan-GuiZhou Plateaus; and (3) these observations are consistent to the proceeding of agriculture reclamation in China in past 300 years towards Northeast China and Southwest China.

  10. [Spatiotemporal differentiation of construction land expansion in a typical town of south Jiangsu Province].

    PubMed

    Zhou, Rui; Li, Yue-hui; Hu, Yuan-man; Su, Hai-long; Wang, Jin-nian

    2011-03-01

    Choosing Xinzhuang Town in south Jiangsu Province as study area, and by using 1980, 1991, 2001, and 2009 high-resolution remote sensing images and GIS spatial analysis technology, an integrated expansion degree index model was established based on the existing indicators of construction land expansion, and the general and spatiotemporal differentiation characteristics of construction land expansion in the Town in three time periods of 1980-2009 were quantitatively analyzed. In 1980-2009, with the acceleration of rural urbanization and industrialization, the area of construction land in the Town increased significantly by 19.24 km2, and especially in 2001-2009, the expanded area, expanded contribution rate, and expansion intensity reached the maximum. The construction land expansion had an obvious spatial differentiation characteristic. In 1980-1991, the newly increased construction land mainly concentrated in town area. After 1991, the focus of construction land gradually spread to the villages with developed industries. Most of the increased construction lands were converted from paddy field and dry land, accounting for 88.1% of the total increased area, while the contribution from other land types was relatively small.

  11. A high-resolution, regional analysis of stormwater runoff for managed aquifer recharge site assessment

    NASA Astrophysics Data System (ADS)

    Young, K. S.; Fisher, A. T.; Beganskas, S.; Harmon, R. E.; Teo, E. K.; Weir, W. B.; Lozano, S.

    2016-12-01

    Distributed Stormwater Collection-Managed Aquifer Recharge (DSC-MAR) presents a cost-effective method of aquifer replenishment by collecting runoff and infiltrating it into underlying aquifers, but its successful implementation demands thorough knowledge of the distribution and availability of hillslope runoff. We applied a surface hydrology model to analyze the dynamics of hillslope runoff at high resolution (0.1 to 1.0 km2) across the 350 km2 San Lorenzo River Basin (SLRB) watershed, northern Santa Cruz County, CA. We used a 3 m digital elevation model to create a detailed model grid, which we parameterized with high-resolution geologic, hydrologic, and land use data. To analyze hillslope runoff under a range of precipitation regimes, we developed dry, normal, and wet climate scenarios from historic daily precipitation records (1981-2014). Simulation results show high spatial variability of hillslope runoff generation as a function of differences in precipitation and soil and land use conditions, and reveal a consistent increase in the spatial and temporal variability of runoff under wetter climate scenarios. Our results suggest that there may be opportunities to develop successful DSC-MAR projects that provide benefits during all climate scenarios. In the SLRB, our results indicate that annual hillslope runoff generation achieves a target minimum of 100 acre-ft, per 100 acres of drainage area, in approximately 15% of the region during dry climate scenarios and 60% of the region during wet climate scenarios. The high spatial and temporal resolution of our simulation output enables quantification of hillslope runoff at sub-watershed scales, commensurate with the spacing and operation of DSC-MAR. This study demonstrates a viable tool for screening of potential DSC-MAR project sites and assessing project performance under a range of climate and land use scenarios.

  12. High-resolution satellite imagery is an important yet underutilized resource in conservation biology.

    PubMed

    Boyle, Sarah A; Kennedy, Christina M; Torres, Julio; Colman, Karen; Pérez-Estigarribia, Pastor E; de la Sancha, Noé U

    2014-01-01

    Technological advances and increasing availability of high-resolution satellite imagery offer the potential for more accurate land cover classifications and pattern analyses, which could greatly improve the detection and quantification of land cover change for conservation. Such remotely-sensed products, however, are often expensive and difficult to acquire, which prohibits or reduces their use. We tested whether imagery of high spatial resolution (≤5 m) differs from lower-resolution imagery (≥30 m) in performance and extent of use for conservation applications. To assess performance, we classified land cover in a heterogeneous region of Interior Atlantic Forest in Paraguay, which has undergone recent and dramatic human-induced habitat loss and fragmentation. We used 4 m multispectral IKONOS and 30 m multispectral Landsat imagery and determined the extent to which resolution influenced the delineation of land cover classes and patch-level metrics. Higher-resolution imagery more accurately delineated cover classes, identified smaller patches, retained patch shape, and detected narrower, linear patches. To assess extent of use, we surveyed three conservation journals (Biological Conservation, Biotropica, Conservation Biology) and found limited application of high-resolution imagery in research, with only 26.8% of land cover studies analyzing satellite imagery, and of these studies only 10.4% used imagery ≤5 m resolution. Our results suggest that high-resolution imagery is warranted yet under-utilized in conservation research, but is needed to adequately monitor and evaluate forest loss and conversion, and to delineate potentially important stepping-stone fragments that may serve as corridors in a human-modified landscape. Greater access to low-cost, multiband, high-resolution satellite imagery would therefore greatly facilitate conservation management and decision-making.

  13. Large-watershed flood simulation and forecasting based on different-resolution distributed hydrological model

    NASA Astrophysics Data System (ADS)

    Li, J.

    2017-12-01

    Large-watershed flood simulation and forecasting is very important for a distributed hydrological model in the application. There are some challenges including the model's spatial resolution effect, model performance and accuracy and so on. To cope with the challenge of the model's spatial resolution effect, different model resolution including 1000m*1000m, 600m*600m, 500m*500m, 400m*400m, 200m*200m were used to build the distributed hydrological model—Liuxihe model respectively. The purpose is to find which one is the best resolution for Liuxihe model in Large-watershed flood simulation and forecasting. This study sets up a physically based distributed hydrological model for flood forecasting of the Liujiang River basin in south China. Terrain data digital elevation model (DEM), soil type and land use type are downloaded from the website freely. The model parameters are optimized by using an improved Particle Swarm Optimization(PSO) algorithm; And parameter optimization could reduce the parameter uncertainty that exists for physically deriving model parameters. The different model resolution (200m*200m—1000m*1000m ) are proposed for modeling the Liujiang River basin flood with the Liuxihe model in this study. The best model's spatial resolution effect for flood simulation and forecasting is 200m*200m.And with the model's spatial resolution reduction, the model performance and accuracy also become worse and worse. When the model resolution is 1000m*1000m, the flood simulation and forecasting result is the worst, also the river channel divided based on this resolution is differs from the actual one. To keep the model with an acceptable performance, minimum model spatial resolution is needed. The suggested threshold model spatial resolution for modeling the Liujiang River basin flood is a 500m*500m grid cell, but the model spatial resolution with a 200m*200m grid cell is recommended in this study to keep the model at a best performance.

  14. Building a Continental Scale Land Cover Monitoring Framework for Australia

    NASA Astrophysics Data System (ADS)

    Thankappan, Medhavy; Lymburner, Leo; Tan, Peter; McIntyre, Alexis; Curnow, Steven; Lewis, Adam

    2012-04-01

    Land cover information is critical for national reporting and decision making in Australia. A review of information requirements for reporting on national environmental indicators identified the need for consistent land cover information to be compared against a baseline. A Dynamic Land Cover Dataset (DLCD) for Australia has been developed by Geoscience Australia and the Australian Bureau of Agriculture and Resource Economics and Sciences (ABARES) recently, to provide a comprehensive and consistent land cover information baseline to enable monitoring and reporting for sustainable farming practices, water resource management, soil erosion, and forests at national and regional scales. The DLCD was produced from the analysis of Enhanced Vegetation Index (EVI) data at 250-metre resolution derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) for the period from 2000 to 2008. The EVI time series data for each pixel was modelled as 12 coefficients based on the statistical, phenological and seasonal characteristics. The time series were then clustered in coefficients spaces and labelled using ancillary information on vegetation and land use at the catchment scale. The accuracy of the DLCD was assessed using field survey data over 25,000 locations provided by vegetation and land management agencies in State and Territory jurisdictions, and by ABARES. The DLCD is seen as the first in a series of steps to build a framework for national land cover monitoring in Australia. A robust methodology to provide annual updates to the DLCD is currently being developed at Geoscience Australia. There is also a growing demand from the user community for land cover information at better spatial resolution than currently available through the DLCD. Global land cover mapping initiatives that rely on Earth observation data offer many opportunities for national and international programs to work in concert and deliver better outcomes by streamlining efforts on development and validation of land cover products. Among the upcoming missions, the Global Monitoring for Environment and Security (GMES) Sentinel-2 satellites are seen as an important source of optical data for updating land cover information in Australia. This paper outlines the DLCD development, key applications that inform nationally significant issues, further work on updating the DLCD that would enable transition to a national land cover monitoring framework, challenges and approaches to delivering land cover information at higher spatial resolutions on a continental scale, and the potential value of data from the Sentinel-2 mission in supporting land cover monitoring in Australia and globally.

  15. Providing a Spatial Context for Crop Insurance in Ethiopia: Multiscale Comparisons of Vegetation Metrics in Tigray

    NASA Astrophysics Data System (ADS)

    Mann, B. F.; Small, C.

    2014-12-01

    Weather-based index insurance projects are rapidly expanding across the developing world. Many of these projects use satellite-based observations to detect extreme weather events, which inform and trigger payouts to smallholder farmers. While most index insurance programs use precipitation measurements to determine payouts, the use of remotely sensed observations of vegetation is currently being explored. In order to use vegetation indices as a basis for payouts, it is necessary to establish a consistent relationship between the vegetation index and the health and abundance of agriculture on the ground. The accuracy with which remotely sensed vegetation indices can detect changes in agriculture depends on both the spatial scale of the agriculture and the spatial resolution of the sensor. This study analyzes the relationship between meter and decameter scale vegetation fraction estimates derived from linear spectral mixture models with a more commonly used vegetation index (NDVI, EVI) at hectometer spatial scales. In addition, the analysis incorporates land cover/land use field observations collected in Tigray Ethiopia in July 2013. . It also tests the flexibility and utility of a standardized spectral mixture model in which land cover is represented as continuous fields of rock and soil substrate (S), vegetation (V) and dark surfaces (D; water, shadow). This analysis found strong linear relationships with vegetation metrics at 1.6-meter, 30-meter and 250-meter resolutions across spectrally diverse subsets of Tigray, Ethiopia and significantly correlated relationships using the Spearman's rho statistic. The observed linear scaling has positive implications for future use of moderate resolution vegetation indices in similar landscapes; especially index insurance projects that are scaling up across the developing world using remotely-sensed environmental information.

  16. Downscaling of Aircraft-, Landsat-, and MODIS-based Land Surface Temperature Images with Support Vector Machines

    NASA Astrophysics Data System (ADS)

    Ha, W.; Gowda, P. H.; Oommen, T.; Howell, T. A.; Hernandez, J. E.

    2010-12-01

    High spatial resolution Land Surface Temperature (LST) images are required to estimate evapotranspiration (ET) at a field scale for irrigation scheduling purposes. Satellite sensors such as Landsat 5 Thematic Mapper (TM) and Moderate Resolution Imaging Spectroradiometer (MODIS) can offer images at several spectral bandwidths including visible, near-infrared (NIR), shortwave-infrared, and thermal-infrared (TIR). The TIR images usually have coarser spatial resolutions than those from non-thermal infrared bands. Due to this technical constraint of the satellite sensors on these platforms, image downscaling has been proposed in the field of ET remote sensing. This paper explores the potential of the Support Vector Machines (SVM) to perform downscaling of LST images derived from aircraft (4 m spatial resolution), TM (120 m), and MODIS (1000 m) using normalized difference vegetation index images derived from simultaneously acquired high resolution visible and NIR data (1 m for aircraft, 30 m for TM, and 250 m for MODIS). The SVM is a new generation machine learning algorithm that has found a wide application in the field of pattern recognition and time series analysis. The SVM would be ideally suited for downscaling problems due to its generalization ability in capturing non-linear regression relationship between the predictand and the multiple predictors. Remote sensing data acquired over the Texas High Plains during the 2008 summer growing season will be used in this study. Accuracy assessment of the downscaled 1, 30, and 250 m LST images will be made by comparing them with LST data measured with infrared thermometers at a small spatial scale, upscaled 30 m aircraft-based LST images, and upscaled 250 m TM-based LST images, respectively.

  17. Spatial Modeling of Agricultural Land-Use Change at Global Scale

    NASA Astrophysics Data System (ADS)

    Meiyappan, Prasanth; Dalton, Michael; O'Neill, Brian C.; Jain, Atul K.

    2013-12-01

    Land use is both a source and consequence of climate change. Long-term modeling of land use is central in global scale assessments using Integrated Assessment Models (IAMs) to explore policy alternatives; especially because adaptation and mitigation of climate change requires long-term commitment. We present a land-use change modeling framework that can reproduce the past 100 years of evolution of global cropland and pastureland patterns to a reasonable accuracy. The novelty of our approach underlies in integrating knowledge from both the observed behavior and economic rationale behind land-use decisions, thereby making up for the intrinsic deficits in both the disciplines. The underlying economic rationale is profit maximization of individual landowners that implicitly reflects local-level decisions-making process at a larger scale. Observed behavior based on examining the relationships between contemporary land-use patterns and its socioeconomic and biophysical drivers, enters as an explicit factor into the economic framework. The land-use allocation is modified by autonomous developments and competition between land-use types. The framework accounts for spatial heterogeneity in the nature of driving factors across geographic regions. The model is currently configured to downscale continental-scale aggregate land-use information to region specific changes in land-use patterns (0.5-deg spatial resolution). The temporal resolution is one year. The historical validation experiment is facilitated by synthesizing gridded maps of a wide range of potential biophysical and socioeconomic driving factors for the 20th century. To our knowledge, this is the first retrospective analysis that has been successful in reproducing the historical experience at a global scale. We apply the method to gain useful insights on two questions: (1) what are the dominant socioeconomic and biophysical driving factors of contemporary cropland and pastureland patterns, across geographic regions, and (2) the impacts of various driving factors on shaping the cropland and pastureland patterns over the 20th century. Specifically, we focus on the causes of changes in land-use patterns in certain key regions of the world, such as the abandonment of cropland in the eastern US and a subsequent expansion to the mid-west US. This presentation will focus on the scientific basis behind the developed framework and motivations behind selecting specific statistical techniques to implement the scientific theory. Specifically, we will highlight the application of recently developed statistical techniques that are highly efficient in dealing with problems such as spatial autocorrelation and multicollinearity that are common in land-change studies. However, these statistical techniques have largely been confined to medical literature. We will present the validation results and an example application of the developed framework within an IAM. The presented framework provides a benchmark for long-term spatial modeling of land use that will benefit the IAM, land use and the Earth system modeling communities.

  18. Climatological Downscaling and Evaluation of AGRMET Precipitation Analyses Over the Continental U.S.

    NASA Astrophysics Data System (ADS)

    Garcia, M.; Peters-Lidard, C. D.; Eylander, J. B.; Daly, C.; Tian, Y.; Zeng, J.

    2007-05-01

    The spatially distributed application of a land surface model (LSM) over a region of interest requires the application of similarly distributed precipitation fields that can be derived from various sources, including surface gauge networks, surface-based radar, and orbital platforms. The spatial variability of precipitation influences the spatial organization of soil temperature and moisture states and, consequently, the spatial variability of land- atmosphere fluxes. The accuracy of spatially-distributed precipitation fields can contribute significantly to the uncertainty of model-based hydrological states and fluxes at the land surface. Collaborations between the Air Force Weather Agency (AFWA), NASA, and Oregon State University have led to improvements in the processing of meteorological forcing inputs for the NASA-GSFC Land Information System (LIS; Kumar et al. 2006), a sophisticated framework for LSM operation and model coupling experiments. Efforts at AFWA toward the production of surface hydrometeorological products are currently in transition from the legacy Agricultural Meteorology modeling system (AGRMET) to use of the LIS framework and procedures. Recent enhancements to meteorological input processing for application to land surface models in LIS include the assimilation of climate-based information for the spatial interpolation and downscaling of precipitation fields. Climatological information included in the LIS-based downscaling procedure for North America is provided by a monthly high-resolution PRISM (Daly et al. 1994, 2002; Daly 2006) dataset based on a 30-year analysis period. The combination of these sources and methods attempts to address the strengths and weaknesses of available legacy products, objective interpolation methods, and the PRISM knowledge-based methodology. All of these efforts are oriented on an operational need for timely estimation of spatial precipitation fields at adequate spatial resolution for customer dissemination and near-real-time simulations in regions of interest. This work focuses on value added to the AGRMET precipitation product by the inclusion of high-quality climatological information on a monthly time scale. The AGRMET method uses microwave-based satellite precipitation estimates from various polar-orbiting platforms (NOAA POES and DMSP), infrared-based estimates from geostationary platforms (GOES, METEOSAT, etc.), related cloud analysis products, and surface gauge observations in a complex and hierarchical blending process. Results from processing of the legacy AGRMET precipitation products over the U.S. using LIS-based methods for downscaling, both with and without climatological factors, are evaluated against high-resolution monthly analyses using the PRISM knowledge- based method (Daly et al. 2002). It is demonstrated that the incorporation of climatological information in a downscaling procedure can significantly enhance the accuracy, and potential utility, of AFWA precipitation products for military and civilian customer applications.

  19. An analysis of IGBP global land-cover characterization process

    USGS Publications Warehouse

    Loveland, Thomas R.; Zhu, Zhiliang; Ohlen, Donald O.; Brown, Jesslyn F.; Reed, Bradley C.; Yang, Limin

    1999-01-01

    The international Geosphere Biosphere Programme (IGBP) has called for the development of improved global land-cover data for use in increasingly sophisticated global environmental models. To meet this need, the staff of the U.S. Geological Survey and the University of Nebraska-Lincoln developed and applied a global land-cover characterization methodology using 1992-1993 1-km resolution Advanced Very High Resolution Radiometer (AVHRR) and other spatial data. The methodology, based on unsupervised classification with extensive postclassification refinement, yielded a multi-layer database consisting of eight land-cover data sets, descriptive attributes, and source data. An independent IGBP accuracy assessment reports a global accuracy of 73.5 percent, and continental results vary from 63 percent to 83 percent. Although data quality, methodology, interpreter performance, and logistics affected the results, significant problems were associated with the relationship between AVHRR data and fine-scale, spectrally similar land-cover patterns in complex natural or disturbed landscapes.

  20. Life cycle assessment needs predictive spatial modelling for biodiversity and ecosystem services

    PubMed Central

    Chaplin-Kramer, Rebecca; Sim, Sarah; Hamel, Perrine; Bryant, Benjamin; Noe, Ryan; Mueller, Carina; Rigarlsford, Giles; Kulak, Michal; Kowal, Virginia; Sharp, Richard; Clavreul, Julie; Price, Edward; Polasky, Stephen; Ruckelshaus, Mary; Daily, Gretchen

    2017-01-01

    International corporations in an increasingly globalized economy exert a major influence on the planet's land use and resources through their product design and material sourcing decisions. Many companies use life cycle assessment (LCA) to evaluate their sustainability, yet commonly-used LCA methodologies lack the spatial resolution and predictive ecological information to reveal key impacts on climate, water and biodiversity. We present advances for LCA that integrate spatially explicit modelling of land change and ecosystem services in a Land-Use Change Improved (LUCI)-LCA. Comparing increased demand for bioplastics derived from two alternative feedstock-location scenarios for maize and sugarcane, we find that the LUCI-LCA approach yields results opposite to those of standard LCA for greenhouse gas emissions and water consumption, and of different magnitudes for soil erosion and biodiversity. This approach highlights the importance of including information about where and how land-use change and related impacts will occur in supply chain and innovation decisions. PMID:28429710

  1. Life cycle assessment needs predictive spatial modelling for biodiversity and ecosystem services

    NASA Astrophysics Data System (ADS)

    Chaplin-Kramer, Rebecca; Sim, Sarah; Hamel, Perrine; Bryant, Benjamin; Noe, Ryan; Mueller, Carina; Rigarlsford, Giles; Kulak, Michal; Kowal, Virginia; Sharp, Richard; Clavreul, Julie; Price, Edward; Polasky, Stephen; Ruckelshaus, Mary; Daily, Gretchen

    2017-04-01

    International corporations in an increasingly globalized economy exert a major influence on the planet's land use and resources through their product design and material sourcing decisions. Many companies use life cycle assessment (LCA) to evaluate their sustainability, yet commonly-used LCA methodologies lack the spatial resolution and predictive ecological information to reveal key impacts on climate, water and biodiversity. We present advances for LCA that integrate spatially explicit modelling of land change and ecosystem services in a Land-Use Change Improved (LUCI)-LCA. Comparing increased demand for bioplastics derived from two alternative feedstock-location scenarios for maize and sugarcane, we find that the LUCI-LCA approach yields results opposite to those of standard LCA for greenhouse gas emissions and water consumption, and of different magnitudes for soil erosion and biodiversity. This approach highlights the importance of including information about where and how land-use change and related impacts will occur in supply chain and innovation decisions.

  2. Linkages between Land Surface Phenology Metrics and Natural and Anthropogenic Events in Drylands (Invited)

    NASA Astrophysics Data System (ADS)

    de Beurs, K.; Brown, M. E.; Ahram, A.; Walker, J.; Henebry, G. M.

    2013-12-01

    Tracking vegetation dynamics across landscapes using remote sensing, or 'land surface phenology,' is a key mechanism that allows us to understand ecosystem changes. Land surface phenology models rely on vegetation information from remote sensing, such as the datasets derived from the Advanced Very High Resolution Radiometer (AVHRR), the newer MODIS sensors on Aqua and Terra, and sometimes the higher spatial resolution Landsat data. Vegetation index data can aid in the assessment of variables such as the start of season, growing season length and overall growing season productivity. In this talk we use Landsat, MODIS and AVHRR data and derive growing season metrics based on land surface phenology models that couple vegetation indices with satellite derived accumulated growing degreeday and evapotranspiration estimates. We calculate the timing and the height of the peak of the growing season and discuss the linkage of these land surface phenology metrics with natural and anthropogenic changes on the ground in dryland ecosystems. First we will discuss how the land surface phenology metrics link with annual and interannual price fluctuations in 229 markets distributed over Africa. Our results show that there is a significant correlation between the peak height of the growing season and price increases for markets in countries such as Nigeria, Somalia and Niger. We then demonstrate how land surface phenology metrics can improve models of post-conflict resolution in global drylands. We link the Uppsala Conflict Data Program's dataset of political, economic and social factors involved in civil war termination with an NDVI derived phenology metric and the Palmer Drought Severity Index (PDSI). An analysis of 89 individual conflicts in 42 dryland countries (totaling 892 individual country-years of data between 1982 and 2005) revealed that, even accounting for economic and political factors, countries that have higher NDVI growth following conflict have a lower risk of reverting to civil war. Finally, the patchy and heterogeneous arrangement of vegetation in dryland areas sometimes complicates the extraction of phenological signals using existing remote sensing data. We conclude by demonstrating how the phenological analysis of a range of dryland land cover classes benefits from the availability of synthetic images at Landsat spatial resolution and MODIS time intervals.

  3. Suitable Site Selection of Small Dams Using Geo-Spatial Technique: a Case Study of Dadu Tehsil, Sindh

    NASA Astrophysics Data System (ADS)

    Khalil, Zahid

    2016-07-01

    Decision making about identifying suitable sites for any project by considering different parameters, is difficult. Using GIS and Multi-Criteria Analysis (MCA) can make it easy for those projects. This technology has proved to be an efficient and adequate in acquiring the desired information. In this study, GIS and MCA were employed to identify the suitable sites for small dams in Dadu Tehsil, Sindh. The GIS software is used to create all the spatial parameters for the analysis. The parameters that derived are slope, drainage density, rainfall, land use / land cover, soil groups, Curve Number (CN) and runoff index with a spatial resolution of 30m. The data used for deriving above layers include 30 meter resolution SRTM DEM, Landsat 8 imagery, and rainfall from National Centre of Environment Prediction (NCEP) and soil data from World Harmonized Soil Data (WHSD). Land use/Land cover map is derived from Landsat 8 using supervised classification. Slope, drainage network and watershed are delineated by terrain processing of DEM. The Soil Conservation Services (SCS) method is implemented to estimate the surface runoff from the rainfall. Prior to this, SCS-CN grid is developed by integrating the soil and land use/land cover raster. These layers with some technical and ecological constraints are assigned weights on the basis of suitability criteria. The pair wise comparison method, also known as Analytical Hierarchy Process (AHP) is took into account as MCA for assigning weights on each decision element. All the parameters and group of parameters are integrated using weighted overlay in GIS environment to produce suitable sites for the Dams. The resultant layer is then classified into four classes namely, best suitable, suitable, moderate and less suitable. This study reveals a contribution to decision making about suitable sites analysis for small dams using geo-spatial data with minimal amount of ground data. This suitability maps can be helpful for water resource management organizations in determination of feasible rainwater harvesting structures (RWH).

  4. Effects of land use/cover change and harvests on forest carbon dynamics in northern states of the United States from remote sensing and inventory data: 1992-2001

    Treesearch

    Daolan Zheng; Linda S. Heath; Mark J. Ducey; James E. Smith

    2011-01-01

    We examined spatial patterns of changes in forest area and nonsoil carbon (C) dynamics affected by land use/cover change (LUC) and harvests in 24 northern states of the United States using an integrated methodology combining remote sensing and ground inventory data between 1992 and 2001. We used the Retrofit Change Product from the Multi-Resolution Land Characteristics...

  5. Research on reconstructing spatial distribution of historical cropland over 300 years in traditional cultivated regions of China

    NASA Astrophysics Data System (ADS)

    Yang, Xuhong; Jin, Xiaobin; Guo, Beibei; Long, Ying; Zhou, Yinkang

    2015-05-01

    Constructing a spatially explicit time series of historical cultivated land is of upmost importance for climatic and ecological studies that make use of Land Use and Cover Change (LUCC) data. Some scholars have made efforts to simulate and reconstruct the quantitative information on historical land use at the global or regional level based on "top-down" decision-making behaviors to match overall cropland area to land parcels using land arability and universal parameters. Considering the concentrated distribution of cultivated land and various factors influencing cropland distribution, including environmental and human factors, this study developed a "bottom-up" model of historical cropland based on constrained Cellular Automaton (CA). Our model takes a historical cropland area as an external variable and the cropland distribution in 1980 as the maximum potential scope of historical cropland. We selected elevation, slope, water availability, average annual precipitation, and distance to the nearest rural settlement as the main influencing factors of land use suitability. Then, an available labor force index is used as a proxy for the amount of cropland to inspect and calibrate these spatial patterns. This paper applies the model to a traditional cultivated region in China and reconstructs its spatial distribution of cropland during 6 periods. The results are shown as follows: (1) a constrained CA is well suited for simulating and reconstructing the spatial distribution of cropland in China's traditional cultivated region. (2) Taking the different factors affecting spatial pattern of cropland into consideration, the partitioning of the research area effectively reflected the spatial differences in cropland evolution rules and rates. (3) Compared with "HYDE datasets", this research has formed higher-resolution Boolean spatial distribution datasets of historical cropland with a more definitive concept of spatial pattern in terms of fractional format. We conclude that our reconstruction is closer to the actual change pattern of the traditional cultivated region in China.

  6. Quantifying Urban Watershed Stressor Gradients and Evaluating How Different Land Cover Datasets Affect Stream Management.

    PubMed

    Smucker, Nathan J; Kuhn, Anne; Charpentier, Michael A; Cruz-Quinones, Carlos J; Elonen, Colleen M; Whorley, Sarah B; Jicha, Terri M; Serbst, Jonathan R; Hill, Brian H; Wehr, John D

    2016-03-01

    Watershed management and policies affecting downstream ecosystems benefit from identifying relationships between land cover and water quality. However, different data sources can create dissimilarities in land cover estimates and models that characterize ecosystem responses. We used a spatially balanced stream study (1) to effectively sample development and urban stressor gradients while representing the extent of a large coastal watershed (>4400 km(2)), (2) to document differences between estimates of watershed land cover using 30-m resolution national land cover database (NLCD) and <1-m resolution land cover data, and (3) to determine if predictive models and relationships between water quality and land cover differed when using these two land cover datasets. Increased concentrations of nutrients, anions, and cations had similarly significant correlations with increased watershed percent impervious cover (IC), regardless of data resolution. The NLCD underestimated percent forest for 71/76 sites by a mean of 11 % and overestimated percent wetlands for 71/76 sites by a mean of 8 %. The NLCD almost always underestimated IC at low development intensities and overestimated IC at high development intensities. As a result of underestimated IC, regression models using NLCD data predicted mean background concentrations of NO3 (-) and Cl(-) that were 475 and 177 %, respectively, of those predicted when using finer resolution land cover data. Our sampling design could help states and other agencies seeking to create monitoring programs and indicators responsive to anthropogenic impacts. Differences between land cover datasets could affect resource protection due to misguided management targets, watershed development and conservation practices, or water quality criteria.

  7. Generation and Evaluation of a Global Land Surface Phenology Product from Suomi-NPP VIIRS Observations

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Liu, L.; Yan, D.; Moon, M.; Liu, Y.; Henebry, G. M.; Friedl, M. A.; Schaaf, C.

    2017-12-01

    Land surface phenology (LSP) datasets have been produced from a variety of coarse spatial resolution satellite observations at both regional and global scales and spanning different time periods since 1982. However, the LSP product generated from NASA's MODerate Resolution Imaging Spectroradiometer (MODIS) data at a spatial resolution of 500m, which is termed Land Cover Dynamics (MCD12Q2), is the only global product operationally produced and freely accessible at annual time steps from 2001. Because MODIS instrument is aging and will be replaced by the Visible Infrared Imaging Radiometer Suite (VIIRS), this research focuses on the generation and evaluation of a global LSP product from Suomi-NPP VIIRS time series observations that provide continuity with the MCD12Q2 product. Specifically, we generate 500m VIIRS global LSP data using daily VIIRS Nadir BRDF (bidirectional reflectance distribution function)-Adjusted reflectances (NBAR) in combination with land surface temperature, snow cover, and land cover type as inputs. The product provides twelve phenological metrics (seven phenological dates and five phenological greenness magnitudes), along with six quality metrics characterizing the confidence and quality associated with phenology retrievals at each pixel. In this paper, we describe the input data and algorithms used to produce this new product, and investigate the impact of VIIRS data time series quality on phenology detections across various climate regimes and ecosystems. As part of our analysis, the VIIRS LSP is evaluated using PhenoCam imagery in North America and Asia, and using higher spatial resolution satellite observations from Landsat 8 over an agricultural area in the central USA. We also explore the impact of high frequency cloud cover on the VIIRS LSP product by comparing with phenology detected from the Advanced Himawari Imager (AHI) onboard Himawari-8. AHI is a new geostationary sensor that observes land surface every 10 minutes, which increases the ability to capture cloud-free observations relative to data collected from polar-orbiting satellites such as Suomi-NPP, thereby improving the quality of daily time series data in regions with heavy cloud cover. Finally, the VIIRS LSP is compared with MCD12Q2 data to investigate the continuity of long-term global LSP data records.

  8. Evaluation and sensitivity testing of a coupled Landsat-MODIS downscaling method for land surface temperature and vegetation indices in semi-arid regions

    NASA Astrophysics Data System (ADS)

    Kim, Jongyoun; Hogue, Terri S.

    2012-01-01

    The current study investigates a method to provide land surface parameters [i.e., land surface temperature (LST) and normalized difference vegetation index (NDVI)] at a high spatial (˜30 and 60 m) and temporal (daily and 8-day) resolution by combining advantages from Landsat and moderate-resolution imaging spectroradiometer (MODIS) satellites. We adopt a previously developed subtraction method that merges the spatial detail of higher-resolution imagery (Landsat) with the temporal change observed in coarser or moderate-resolution imagery (MODIS). Applying the temporal difference between MODIS images observed at two different dates to a higher-resolution Landsat image allows prediction of a combined or fused image (Landsat+MODIS) at a future date. Evaluation of the resultant merged products is undertaken within the Southeastern Arizona region where data is available from a range of flux tower sites. The Landsat+MODIS fused products capture the raw Landsat values and also reflect the MODIS temporal variation. The predicted Landsat+MODIS LST improves mean absolute error around 5°C at the more heterogeneous sites compared to the original satellite products. The fused Landsat+MODIS NDVI product also shows good correlation to ground-based data and is relatively consistent except during the acute (monsoon) growing season. The sensitivity of the fused product relative to temporal gaps in Landsat data appears to be more affected by uncertainty associated with regional precipitation and green-up, than the length of the gap associated with Landsat viewing, suggesting the potential to use a minimal number of original Landsat images during relatively stable land surface and climate conditions. Our extensive validation yields insight on the ability of the proposed method to integrate multiscale platforms and the potential for reducing costs associated with high-resolution satellite systems (e.g., SPOT, QuickBird, IKONOS).

  9. Mapping Urban Ecosystem Services Using High Resolution Aerial Photography

    NASA Astrophysics Data System (ADS)

    Pilant, A. N.; Neale, A.; Wilhelm, D.

    2010-12-01

    Ecosystem services (ES) are the many life-sustaining benefits we receive from nature: e.g., clean air and water, food and fiber, cultural-aesthetic-recreational benefits, pollination and flood control. The ES concept is emerging as a means of integrating complex environmental and economic information to support informed environmental decision making. The US EPA is developing a web-based National Atlas of Ecosystem Services, with a component for urban ecosystems. Currently, the only wall-to-wall, national scale land cover data suitable for this analysis is the National Land Cover Data (NLCD) at 30 m spatial resolution with 5 and 10 year updates. However, aerial photography is acquired at higher spatial resolution (0.5-3 m) and more frequently (1-5 years, typically) for most urban areas. Land cover was mapped in Raleigh, NC using freely available USDA National Agricultural Imagery Program (NAIP) with 1 m ground sample distance to test the suitability of aerial photography for urban ES analysis. Automated feature extraction techniques were used to extract five land cover classes, and an accuracy assessment was performed using standard techniques. Results will be presented that demonstrate applications to mapping ES in urban environments: greenways, corridors, fragmentation, habitat, impervious surfaces, dark and light pavement (urban heat island). Automated feature extraction results mapped over NAIP color aerial photograph. At this scale, we can look at land cover and related ecosystem services at the 2-10 m scale. Small features such as individual trees and sidewalks are visible and mappable. Classified aerial photo of Downtown Raleigh NC Red: impervious surface Dark Green: trees Light Green: grass Tan: soil

  10. High-Resolution Mesoscale Simulations of the 6-7 May 2000 Missouri Flash Flood: Impact of Model Initialization and Land Surface Treatment

    NASA Technical Reports Server (NTRS)

    Baker, R. David; Wang, Yansen; Tao, Wei-Kuo; Wetzel, Peter; Belcher, Larry R.

    2004-01-01

    High-resolution mesoscale model simulations of the 6-7 May 2000 Missouri flash flood event were performed to test the impact of model initialization and land surface treatment on timing, intensity, and location of extreme precipitation. In this flash flood event, a mesoscale convective system (MCS) produced over 340 mm of rain in roughly 9 hours in some locations. Two different types of model initialization were employed: 1) NCEP global reanalysis with 2.5-degree grid spacing and 12-hour temporal resolution, and 2) Eta reanalysis with 40- km grid spacing and $hour temporal resolution. In addition, two different land surface treatments were considered. A simple land scheme. (SLAB) keeps soil moisture fixed at initial values throughout the simulation, while a more sophisticated land model (PLACE) allows for r interactive feedback. Simulations with high-resolution Eta model initialization show considerable improvement in the intensity of precipitation due to the presence in the initialization of a residual mesoscale convective vortex (hlCV) from a previous MCS. Simulations with the PLACE land model show improved location of heavy precipitation. Since soil moisture can vary over time in the PLACE model, surface energy fluxes exhibit strong spatial gradients. These surface energy flux gradients help produce a strong low-level jet (LLJ) in the correct location. The LLJ then interacts with the cold outflow boundary of the MCS to produce new convective cells. The simulation with both high-resolution model initialization and time-varying soil moisture test reproduces the intensity and location of observed rainfall.

  11. Evaluating an image-fusion algorithm with synthetic-image-generation tools

    NASA Astrophysics Data System (ADS)

    Gross, Harry N.; Schott, John R.

    1996-06-01

    An algorithm that combines spectral mixing and nonlinear optimization is used to fuse multiresolution images. Image fusion merges images of different spatial and spectral resolutions to create a high spatial resolution multispectral combination. High spectral resolution allows identification of materials in the scene, while high spatial resolution locates those materials. In this algorithm, conventional spectral mixing estimates the percentage of each material (called endmembers) within each low resolution pixel. Three spectral mixing models are compared; unconstrained, partially constrained, and fully constrained. In the partially constrained application, the endmember fractions are required to sum to one. In the fully constrained application, all fractions are additionally required to lie between zero and one. While negative fractions seem inappropriate, they can arise from random spectral realizations of the materials. In the second part of the algorithm, the low resolution fractions are used as inputs to a constrained nonlinear optimization that calculates the endmember fractions for the high resolution pixels. The constraints mirror the low resolution constraints and maintain consistency with the low resolution fraction results. The algorithm can use one or more higher resolution sharpening images to locate the endmembers to high spatial accuracy. The algorithm was evaluated with synthetic image generation (SIG) tools. A SIG developed image can be used to control the various error sources that are likely to impair the algorithm performance. These error sources include atmospheric effects, mismodeled spectral endmembers, and variability in topography and illumination. By controlling the introduction of these errors, the robustness of the algorithm can be studied and improved upon. The motivation for this research is to take advantage of the next generation of multi/hyperspectral sensors. Although the hyperspectral images will be of modest to low resolution, fusing them with high resolution sharpening images will produce a higher spatial resolution land cover or material map.

  12. High Resolution Land Use Land Cover Classification using Landsat Earth Observation Data for the Continental Africa

    NASA Astrophysics Data System (ADS)

    Midekisa, A.; Bennet, A.; Gething, P. W.; Holl, F.; Andrade-Pacheco, R.; Savory, D. J.; Hugh, S. J.

    2016-12-01

    Spatially detailed and temporally dynamic land use land cover data is necessary to monitor the state of the land surface for various applications. Yet, such data at a continental to global scale is lacking. Here, we developed high resolution (30 meter) annual land use land cover layers for the continental Africa using Google Earth Engine. To capture ground truth training data, high resolution satellite imageries were visually inspected and used to identify 7, 212 sample Landsat pixels that were comprised entirely of one of seven land use land cover classes (water, man-made impervious surface, high biomass, low biomass, rock, sand and bare soil). For model validation purposes, 80% of points from each class were used as training data, with 20% withheld as a validation dataset. Cloud free Landsat 7 annual composites for 2000 to 2015 were generated and spectral bands from the Landsat images were then extracted for each of the training and validation sample points. In addition to the Landsat spectral bands, spectral indices such as normalized difference vegetation index (NDVI) and normalized difference water index (NDWI) were used as covariates in the model. Additionally, calibrated night time light imageries from the National Oceanic and Atmospheric Administration (NOAA) were included as a covariate. A decision tree classification algorithm was applied to predict the 7 land cover classes for the periods 2000 to 2015 using the training dataset. Using the validation dataset, classification accuracy including omission error and commission error were computed for each land cover class. Model results showed that overall accuracy of classification was high (88%). This high resolution land cover product developed for the continental Africa will be available for public use and can potentially enhance the ability of monitoring and studying the state of the Earth's surface.

  13. Estimating Morning Change in Land Surface Temperature from MODIS Day/Night Observations: Applications for Surface Energy Balance Modeling.

    PubMed

    Hain, Christopher R; Anderson, Martha C

    2017-10-16

    Observations of land surface temperature (LST) are crucial for the monitoring of surface energy fluxes from satellite. Methods that require high temporal resolution LST observations (e.g., from geostationary orbit) can be difficult to apply globally because several geostationary sensors are required to attain near-global coverage (60°N to 60°S). While these LST observations are available from polar-orbiting sensors, providing global coverage at higher spatial resolutions, the temporal sampling (twice daily observations) can pose significant limitations. For example, the Atmosphere Land Exchange Inverse (ALEXI) surface energy balance model, used for monitoring evapotranspiration and drought, requires an observation of the morning change in LST - a quantity not directly observable from polar-orbiting sensors. Therefore, we have developed and evaluated a data-mining approach to estimate the mid-morning rise in LST from a single sensor (2 observations per day) of LST from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor on the Aqua platform. In general, the data-mining approach produced estimates with low relative error (5 to 10%) and statistically significant correlations when compared against geostationary observations. This approach will facilitate global, near real-time applications of ALEXI at higher spatial and temporal coverage from a single sensor than currently achievable with current geostationary datasets.

  14. Development of a regionally consistent geospatial dataset of agricultural lands in the Upper Colorado River Basin, 2007-10

    USGS Publications Warehouse

    Buto, Susan G.; Gold, Brittany L.; Jones, Kimberly A.

    2014-01-01

    Irrigation in arid environments can alter the natural rate at which salts are dissolved and transported to streams. Irrigated agricultural lands are the major anthropogenic source of dissolved solids in the Upper Colorado River Basin (UCRB). Understanding the location, spatial distribution, and irrigation status of agricultural lands and the method used to deliver water to agricultural lands are important to help improve the understanding of agriculturally derived dissolved-solids loading to surface water in the UCRB. Irrigation status is the presence or absence of irrigation on an agricultural field during the selected growing season or seasons. Irrigation method is the system used to irrigate a field. Irrigation method can broadly be grouped into sprinkler or flood methods, although other techniques such as drip irrigation are used in the UCRB. Flood irrigation generally causes greater dissolved-solids loading to streams than sprinkler irrigation. Agricultural lands in the UCRB mapped by state agencies at varying spatial and temporal resolutions were assembled and edited to represent conditions in the UCRB between 2007 and 2010. Edits were based on examination of 1-meter resolution aerial imagery collected between 2009 and 2011. Remote sensing classification techniques were used to classify irrigation status for the June to September growing seasons between 2007 and 2010. The final dataset contains polygons representing approximately 1,759,900 acres of agricultural lands in the UCRB. Approximately 66 percent of the mapped agricultural lands were likely irrigated during the study period.

  15. Automated Land Cover Change Detection and Mapping from Hidden Parameter Estimates of Normalized Difference Vegetation Index (NDVI) Time-Series

    NASA Astrophysics Data System (ADS)

    Chakraborty, S.; Banerjee, A.; Gupta, S. K. S.; Christensen, P. R.; Papandreou-Suppappola, A.

    2017-12-01

    Multitemporal observations acquired frequently by satellites with short revisit periods such as the Moderate Resolution Imaging Spectroradiometer (MODIS), is an important source for modeling land cover. Due to the inherent seasonality of the land cover, harmonic modeling reveals hidden state parameters characteristic to it, which is used in classifying different land cover types and in detecting changes due to natural or anthropogenic factors. In this work, we use an eight day MODIS composite to create a Normalized Difference Vegetation Index (NDVI) time-series of ten years. Improved hidden parameter estimates of the nonlinear harmonic NDVI model are obtained using the Particle Filter (PF), a sequential Monte Carlo estimator. The nonlinear estimation based on PF is shown to improve parameter estimation for different land cover types compared to existing techniques that use the Extended Kalman Filter (EKF), due to linearization of the harmonic model. As these parameters are representative of a given land cover, its applicability in near real-time detection of land cover change is also studied by formulating a metric that captures parameter deviation due to change. The detection methodology is evaluated by considering change as a rare class problem. This approach is shown to detect change with minimum delay. Additionally, the degree of change within the change perimeter is non-uniform. By clustering the deviation in parameters due to change, this spatial variation in change severity is effectively mapped and validated with high spatial resolution change maps of the given regions.

  16. Operational use of Landsat data for timber inventory

    NASA Technical Reports Server (NTRS)

    Price, Curtis V.; Bowlin, Harry L.

    1987-01-01

    Landsat TM data, digital elevation model (DEM) data, and field observations were used to generate a timber type/structure and land-cover strata map of the Sequoia National Forest in California, U.S. and to create a classification data set. The spectral classes were identified as 32 information classes of land cover or timber type and structure. DEM data were used for the determination of major timber specie types by topographic regions of natural occurrence. The results suggest that, for inventories over large areas, traditional per-pixel classifiers are not appropriate for TM-resolution data sets over spatially complex regions such as forest lands; either resolution must be degraded, or more context-dependent classifiers, such as the ECHO classifier described by Landgrebe (1979), must be used.

  17. Mapping pre-European settlement vegetation at fine resolutions using a hierarchical Bayesian model and GIS

    Treesearch

    Hong S. He; Daniel C. Dey; Xiuli Fan; Mevin B. Hooten; John M. Kabrick; Christopher K. Wikle; Zhaofei. Fan

    2007-01-01

    In the Midwestern United States, the GeneralLandOffice (GLO) survey records provide the only reasonably accurate data source of forest composition and tree species distribution at the time of pre-European settlement (circa late 1800 to early 1850). However, GLO data have two fundamental limitations: coarse spatial resolutions (the square mile section and half mile...

  18. Future C loss in mid-latitude mineral soils: climate change exceeds land use mitigation potential in France

    PubMed Central

    Meersmans, Jeroen; Arrouays, Dominique; Van Rompaey, Anton J. J.; Pagé, Christian; De Baets, Sarah; Quine, Timothy A.

    2016-01-01

    Many studies have highlighted significant interactions between soil C reservoir dynamics and global climate and environmental change. However, in order to estimate the future soil organic carbon sequestration potential and related ecosystem services well, more spatially detailed predictions are needed. The present study made detailed predictions of future spatial evolution (at 250 m resolution) of topsoil SOC driven by climate change and land use change for France up to the year 2100 by taking interactions between climate, land use and soil type into account. We conclude that climate change will have a much bigger influence on future SOC losses in mid-latitude mineral soils than land use change dynamics. Hence, reducing CO2 emissions will be crucial to prevent further loss of carbon from our soils. PMID:27808169

  19. Future C loss in mid-latitude mineral soils: climate change exceeds land use mitigation potential in France.

    PubMed

    Meersmans, Jeroen; Arrouays, Dominique; Van Rompaey, Anton J J; Pagé, Christian; De Baets, Sarah; Quine, Timothy A

    2016-11-03

    Many studies have highlighted significant interactions between soil C reservoir dynamics and global climate and environmental change. However, in order to estimate the future soil organic carbon sequestration potential and related ecosystem services well, more spatially detailed predictions are needed. The present study made detailed predictions of future spatial evolution (at 250 m resolution) of topsoil SOC driven by climate change and land use change for France up to the year 2100 by taking interactions between climate, land use and soil type into account. We conclude that climate change will have a much bigger influence on future SOC losses in mid-latitude mineral soils than land use change dynamics. Hence, reducing CO 2 emissions will be crucial to prevent further loss of carbon from our soils.

  20. Sharpening method of satellite thermal image based on the geographical statistical model

    NASA Astrophysics Data System (ADS)

    Qi, Pengcheng; Hu, Shixiong; Zhang, Haijun; Guo, Guangmeng

    2016-04-01

    To improve the effectiveness of thermal sharpening in mountainous regions, paying more attention to the laws of land surface energy balance, a thermal sharpening method based on the geographical statistical model (GSM) is proposed. Explanatory variables were selected from the processes of land surface energy budget and thermal infrared electromagnetic radiation transmission, then high spatial resolution (57 m) raster layers were generated for these variables through spatially simulating or using other raster data as proxies. Based on this, the local adaptation statistical relationship between brightness temperature (BT) and the explanatory variables, i.e., the GSM, was built at 1026-m resolution using the method of multivariate adaptive regression splines. Finally, the GSM was applied to the high-resolution (57-m) explanatory variables; thus, the high-resolution (57-m) BT image was obtained. This method produced a sharpening result with low error and good visual effect. The method can avoid the blind choice of explanatory variables and remove the dependence on synchronous imagery at visible and near-infrared bands. The influences of the explanatory variable combination, sampling method, and the residual error correction on sharpening results were analyzed deliberately, and their influence mechanisms are reported herein.

  1. An operational methodology for riparian land cover fine scale regional mapping for the study of landscape influence on river ecological status

    NASA Astrophysics Data System (ADS)

    Tormos, T.; Kosuth, P.; Souchon, Y.; Villeneuve, B.; Durrieu, S.; Chandesris, A.

    2010-12-01

    Preservation and restoration of river ecosystems require an improved understanding of the mechanisms through which they are influenced by landscape at multiple spatial scales and particularly at river corridor scale considering the role of riparian vegetation for regulating and protecting river ecological status and the relevance of this specific area for implementing efficient and realistic strategies. Assessing correctly this influence over large river networks involves accurate broad scale (i.e. at least regional) information on Land Cover within Riparian Areas (LCRA). As the structure of land cover along rivers is generally not accessible using moderate-scale satellite imagery, finer spatial resolution imagery and specific mapping techniques are needed. For this purpose we developed a generic multi-scale Object Based Image Analysis (OBIA) scheme able to produce LCRA maps in different geographic context by exploiting information available from very high spatial resolution imagery (satellite or airborne) and/or metric to decametric spatial thematic data on a given study zone thanks to fuzzy expert knowledge classification rules. A first experimentation was carried out on the Herault river watershed (southern of France), a 2650 square kilometers basin that presents a contrasted landscape (different ecoregions) and a total stream length of 1150 Km, using high and very high multispectral remotely-sensed images (10m Spot5 multispectral images and 0.5m aerial photography) and existing spatial thematic data. Application of the OBIA scheme produced a detailed (22 classes) LCRA map with an overall accuracy of 89% and a Kappa index of 83% according to a land cover pressures typology (six categories). A second experimentation (using the same data sources) was carried out on a larger test zone, a part of the Normandy river network (25 000 square kilometers basin; 6000 km long river network; 155 ecological stations). This second work aimed at elaborating a robust statistical eco-regional model to study links between land cover spatial indicators calculated at local and watershed scales, and river ecological status assessed with macroinvertebrate indicators. Application of the OBIA scheme produced a detailed (62 classes) LCRA map which allowed the model to highlight influence of specific land use patterns: (i) the significant beneficial effect of 20-m riparian tree vegetation strip near a station and 20-m riparian grassland strip along the upstream network of a station and (ii) the negative impact on river ecological status of urban areas and roads on the upstream flood plain of a station. Results of these two experimentations highlight that (i) the application of an OBIA scheme using multi-source spatial data provides an efficient approach for mapping and monitoring LCRA that can be implemented operationally at regional or national scale and (ii) and the interest of using LCRA-maps derived from very high spatial resolution imagery (satellite or airborne) and/or metric spatial thematic data to study landscape influence on river ecological status and support managers in the definition of optimized riparian preservation and restoration strategies.

  2. Effects of Fine-Scale Landscape Variability on Satellite-Derived Land Surface Temperature Products Over Sparse Vegetation Canopies

    NASA Astrophysics Data System (ADS)

    Powell, R. L.; Goulden, M.; Peterson, S.; Roberts, D. A.; Still, C. J.

    2015-12-01

    Temperature is a primary environmental control on biological systems and processes at a range of spatial and temporal scales, from controlling biochemical processes such as photosynthesis to influencing continental-scale species distribution. The Landsat satellite series provides a long record (since the mid-1980s) of relatively high spatial resolution thermal infrared (TIR) imagery, from which we derive land surface temperature (LST) grids. Here, we investigate fine spatial resolution factors that influence Landsat-derived LST over a spectrally and spatially heterogeneous landscape. We focus on paired sites (inside/outside a 1994 fire scar) within a pinyon-juniper scrubland in Southern California. The sites have nearly identical micro-meteorology and vegetation species composition, but distinctly different vegetation abundance and structure. The tower at the unburned site includes a number of in-situ imaging tools to quantify vegetation properties, including a thermal camera on a pan-tilt mount, allowing hourly characterization of landscape component temperatures (e.g., sunlit canopy, bare soil, leaf litter). We use these in-situ measurements to assess the impact of fine-scale landscape heterogeneity on estimates of LST, including sensitivity to (i) the relative abundance of component materials, (ii) directional effects due to solar and viewing geometry, (iii) duration of sunlit exposure for each compositional type, and (iv) air temperature. To scale these properties to Landsat spatial resolution (~100-m), we characterize the sub-pixel composition of landscape components (in addition to shade) by applying spectral mixture analysis (SMA) to the Landsat Operational Land Imager (OLI) spectral bands and test the sensitivity of the relationships established with the in-situ data at this coarser scale. The effects of vegetation abundance and cover height versus other controls on satellite-derived estimates of LST will be assessed by comparing estimates at the burned vs. unburned sites across multiple seasons (~30 dates).

  3. The Impact of Infiltration Losses and Model Resolution on the Simulated Hydrometeorological Response of a Semi-Arid Catchment

    NASA Astrophysics Data System (ADS)

    Mitchell, M. F.; Goodrich, D. C.; Gochis, D. J.; Lahmers, T. M.

    2017-12-01

    In semi-arid environments with complex terrain, redistribution of moisture occurs through runoff, stream infiltration, and regional groundwater flow. In semi-arid regions, stream infiltration has been shown to account for 10-40% of total recharge in high runoff years. These processes can potentially significantly alter land-atmosphere interactions through changes in sensible and latent heat release. However, currently, their overall impact is still unclear as historical model simulations generally made use of a coarse grid resolution, where these smaller-scale processes were either parameterized or not accounted for. To improve our understanding on the importance of stream infiltration and our ability to represent them in a coupled land-atmosphere model, this study focuses on the Walnut Gulch Experimental Watershed (WGEW) and Long-Term Agro-ecosystem Research (LTAR) site, surrounding the city of Tombstone, AZ. High-resolution surface precipitation, meteorological forcing and distributed runoff measurements have been obtained in WGEW since the 1960s. These data will be used as input for the spatially distributed WRF-Hydro model, a spatially distributed hydrological model that uses the NOAH-MP land surface model. Recently, we have implemented an infiltration loss scheme to WRF-Hydro. We will present the performance of WRF-Hydro to account for stream infiltration by comparing model simulation with in-situ observations. More specifically, as the performance of the model simulations has been shown to depend on the used model grid resolution, in the current work results will present WRF-Hydro simulations obtained at different pixel resolution (10-1000m).

  4. Microscopic Views of Martian Soils and Evidence for Incipient Diagenesis

    NASA Technical Reports Server (NTRS)

    Goetz, W.; Madsen, M. B.; Bridges, N.; Clark, B.; Edgett, K. S.; Fisk, M.; Grotzinger, J. P.; Hviid, S. F.; Meslin, P.-Y.; Ming, D. W.; hide

    2014-01-01

    Mars landed missions returned im-ages at increasingly higher spatial resolution (Table 1). These images help to constrain the microstructure of Martian soils, i.e. the grain-by-grain association of chemistry and mineralogy with secondary properties, such as albedo, color, magnetic properties, and mor-phology (size, shape, texture). The secondary charac-teristics are controlled by mineralogical composition as well as the geo-setting (transport and weathering modes, e.g. water supply, pH, atmospheric properties, exposure to radiation, etc.). As of today this association is poorly constrained. However, it is important to un-derstand soil-forming processes on the surface of Mars. Here we analyze high-resolution images of soils re-turned by different landed missions. Eventually these images must be combined with other types of data (chemistry and mineralogy at small spatial scale) to nail down the microstructure of Martian soils.

  5. Application of Geostatistical Simulation to Enhance Satellite Image Products

    NASA Technical Reports Server (NTRS)

    Hlavka, Christine A.; Dungan, Jennifer L.; Thirulanambi, Rajkumar; Roy, David

    2004-01-01

    With the deployment of Earth Observing System (EOS) satellites that provide daily, global imagery, there is increasing interest in defining the limitations of the data and derived products due to its coarse spatial resolution. Much of the detail, i.e. small fragments and notches in boundaries, is lost with coarse resolution imagery such as the EOS MODerate-Resolution Imaging Spectroradiometer (MODIS) data. Higher spatial resolution data such as the EOS Advanced Spaceborn Thermal Emission and Reflection Radiometer (ASTER), Landsat and airborne sensor imagery provide more detailed information but are less frequently available. There are, however, both theoretical and analytical evidence that burn scars and other fragmented types of land covers form self-similar or self-affine patterns, that is, patterns that look similar when viewed at widely differing spatial scales. Therefore small features of the patterns should be predictable, at least in a statistical sense, with knowledge about the large features. Recent developments in fractal modeling for characterizing the spatial distribution of undiscovered petroleum deposits are thus applicable to generating simulations of finer resolution satellite image products. We will present example EOS products, analysis to investigate self-similarity, and simulation results.

  6. Downscaling soil moisture over East Asia through multi-sensor data fusion and optimization of regression trees

    NASA Astrophysics Data System (ADS)

    Park, Seonyoung; Im, Jungho; Park, Sumin; Rhee, Jinyoung

    2017-04-01

    Soil moisture is one of the most important keys for understanding regional and global climate systems. Soil moisture is directly related to agricultural processes as well as hydrological processes because soil moisture highly influences vegetation growth and determines water supply in the agroecosystem. Accurate monitoring of the spatiotemporal pattern of soil moisture is important. Soil moisture has been generally provided through in situ measurements at stations. Although field survey from in situ measurements provides accurate soil moisture with high temporal resolution, it requires high cost and does not provide the spatial distribution of soil moisture over large areas. Microwave satellite (e.g., advanced Microwave Scanning Radiometer on the Earth Observing System (AMSR2), the Advanced Scatterometer (ASCAT), and Soil Moisture Active Passive (SMAP)) -based approaches and numerical models such as Global Land Data Assimilation System (GLDAS) and Modern- Era Retrospective Analysis for Research and Applications (MERRA) provide spatial-temporalspatiotemporally continuous soil moisture products at global scale. However, since those global soil moisture products have coarse spatial resolution ( 25-40 km), their applications for agriculture and water resources at local and regional scales are very limited. Thus, soil moisture downscaling is needed to overcome the limitation of the spatial resolution of soil moisture products. In this study, GLDAS soil moisture data were downscaled up to 1 km spatial resolution through the integration of AMSR2 and ASCAT soil moisture data, Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM), and Moderate Resolution Imaging Spectroradiometer (MODIS) data—Land Surface Temperature, Normalized Difference Vegetation Index, and Land cover—using modified regression trees over East Asia from 2013 to 2015. Modified regression trees were implemented using Cubist, a commercial software tool based on machine learning. An optimization based on pruning of rules derived from the modified regression trees was conducted. Root Mean Square Error (RMSE) and Correlation coefficients (r) were used to optimize the rules, and finally 59 rules from modified regression trees were produced. The results show high validation r (0.79) and low validation RMSE (0.0556m3/m3). The 1 km downscaled soil moisture was evaluated using ground soil moisture data at 14 stations, and both soil moisture data showed similar temporal patterns (average r=0.51 and average RMSE=0.041). The spatial distribution of the 1 km downscaled soil moisture well corresponded with GLDAS soil moisture that caught both extremely dry and wet regions. Correlation between GLDAS and the 1 km downscaled soil moisture during growing season was positive (mean r=0.35) in most regions.

  7. Digital Astronaut Photography: A Discovery Dataset for Archaeology

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.

    2010-01-01

    Astronaut photography acquired from the International Space Station (ISS) using commercial off-the-shelf cameras offers a freely-accessible source for high to very high resolution (4-20 m/pixel) visible-wavelength digital data of Earth. Since ISS Expedition 1 in 2000, over 373,000 images of the Earth-Moon system (including land surface, ocean, atmospheric, and lunar images) have been added to the Gateway to Astronaut Photography of Earth online database (http://eol.jsc.nasa.gov ). Handheld astronaut photographs vary in look angle, time of acquisition, solar illumination, and spatial resolution. These attributes of digital astronaut photography result from a unique combination of ISS orbital dynamics, mission operations, camera systems, and the individual skills of the astronaut. The variable nature of astronaut photography makes the dataset uniquely useful for archaeological applications in comparison with more traditional nadir-viewing multispectral datasets acquired from unmanned orbital platforms. For example, surface features such as trenches, walls, ruins, urban patterns, and vegetation clearing and regrowth patterns may be accentuated by low sun angles and oblique viewing conditions (Fig. 1). High spatial resolution digital astronaut photographs can also be used with sophisticated land cover classification and spatial analysis approaches like Object Based Image Analysis, increasing the potential for use in archaeological characterization of landscapes and specific sites.

  8. High resolution modelling of soil moisture patterns with TerrSysMP: A comparison with sensor network data

    NASA Astrophysics Data System (ADS)

    Gebler, S.; Hendricks Franssen, H.-J.; Kollet, S. J.; Qu, W.; Vereecken, H.

    2017-04-01

    The prediction of the spatial and temporal variability of land surface states and fluxes with land surface models at high spatial resolution is still a challenge. This study compares simulation results using TerrSysMP including a 3D variably saturated groundwater flow model (ParFlow) coupled to the Community Land Model (CLM) of a 38 ha managed grassland head-water catchment in the Eifel (Germany), with soil water content (SWC) measurements from a wireless sensor network, actual evapotranspiration recorded by lysimeters and eddy covariance stations and discharge observations. TerrSysMP was discretized with a 10 × 10 m lateral resolution, variable vertical resolution (0.025-0.575 m), and the following parameterization strategies of the subsurface soil hydraulic parameters: (i) completely homogeneous, (ii) homogeneous parameters for different soil horizons, (iii) different parameters for each soil unit and soil horizon and (iv) heterogeneous stochastic realizations. Hydraulic conductivity and Mualem-Van Genuchten parameters in these simulations were sampled from probability density functions, constructed from either (i) soil texture measurements and Rosetta pedotransfer functions (ROS), or (ii) estimated soil hydraulic parameters by 1D inverse modelling using shuffle complex evolution (SCE). The results indicate that the spatial variability of SWC at the scale of a small headwater catchment is dominated by topography and spatially heterogeneous soil hydraulic parameters. The spatial variability of the soil water content thereby increases as a function of heterogeneity of soil hydraulic parameters. For lower levels of complexity, spatial variability of the SWC was underrepresented in particular for the ROS-simulations. Whereas all model simulations were able to reproduce the seasonal evapotranspiration variability, the poor discharge simulations with high model bias are likely related to short-term ET dynamics and the lack of information about bedrock characteristics and an on-site drainage system in the uncalibrated model. In general, simulation performance was better for the SCE setups. The SCE-simulations had a higher inverse air entry parameter resulting in SWC dynamics in better correspondence with data than the ROS simulations during dry periods. This illustrates that small scale measurements of soil hydraulic parameters cannot be transferred to the larger scale and that interpolated 1D inverse parameter estimates result in an acceptable performance for the catchment.

  9. Impact of land-use on groundwater quality: GIS-based study from an alluvial aquifer in the western Ganges basin

    NASA Astrophysics Data System (ADS)

    Khan, Arina; Khan, Haris Hasan; Umar, Rashid

    2017-12-01

    In this study, groundwater quality of an alluvial aquifer in the western Ganges basin is assessed using a GIS-based groundwater quality index (GQI) concept that uses groundwater quality data from field survey and laboratory analysis. Groundwater samples were collected from 42 wells during pre-monsoon and post-monsoon periods of 2012 and analysed for pH, EC, TDS, Anions (Cl, SO4, NO3), and Cations (Ca, Mg, Na). To generate the index, several parameters were selected based on WHO recommendations. The spatially variable grids of each parameter were modified by normalizing with the WHO standards and finally integrated into a GQI grid. The mean GQI values for both the season suggest good groundwater quality. However, spatial variations exist and are represented by GQI map of both seasons. This spatial variability was compared with the existing land-use, prepared using high-resolution satellite imagery available in Google earth. The GQI grids were compared to the land-use map using an innovative GIS-based method. Results indicate that the spatial variability of groundwater quality in the region is not fully controlled by the land-use pattern. This probably reflects the diffuse nature of land-use classes, especially settlements and plantations.

  10. Influence of crop type specification and spatial resolution on empirical modeling of field-scale Maize and Soybean carbon fluxes in the US Great Plains

    NASA Astrophysics Data System (ADS)

    McCombs, A. G.; Hiscox, A.; Wang, C.; Desai, A. R.

    2016-12-01

    A challenge in satellite land surface remote-sensing models of ecosystem carbon dynamics in agricultural systems is the lack of differentiation by crop type and management. This generalization can lead to large discrepancies between model predictions and eddy covariance flux tower observations of net ecosystem exchange of CO2 (NEE). Literature confirms that NEE varies remarkably among different crop types making the generalization of agriculture in remote sensing based models inaccurate. Here, we address this inaccuracy by identifying and mapping net ecosystem exchange (NEE) in agricultural fields by comparing bulk modeling and modeling by crop type, and using this information to develop empirical models for future use. We focus on mapping NEE in maize and soybean fields in the US Great Plains at higher spatial resolution using the fusion of MODIS and LandSAT surface reflectance. MODIS observed reflectance was downscaled using the ESTARFM downscaling methodology to match spatial scales to those found in LandSAT and that are more appropriate for carbon dynamics in agriculture fields. A multiple regression model was developed from surface reflectance of the downscaled MODIS and LandSAT remote sensing values calibrated against five FLUXNET/AMERIFLUX flux towers located on soybean and/or maize agricultural fields in the US Great Plains with multi-year NEE observations. Our new methodology improves upon bulk approximates to map and model carbon dynamics in maize and soybean fields, which have significantly different photosynthetic capacities.

  11. Spatially Complete Surface Albedo Data Sets: Value-Added Products Derived from Terra MODIS Land Products

    NASA Technical Reports Server (NTRS)

    Moody, E. G.; King, M. D.; Platnick, S.; Schaaf, C. B.; Gao, F.

    2004-01-01

    Spectral land surface albedo is an important parameter for describing the radiative properties of the Earth. Accordingly it reflects the consequences of natural and human interactions, such as anthropogenic, meteorological, and phenological effects, on global and local climatological trends. Consequently, albedos are integral parts in a variety of research areas, such as general circulation models (GCMs), energy balance studies, modeling of land use and land use change, and biophysical, oceanographic, and meteorological studies. The availability of global albedo data over a large range of spectral channels and at high spatial resolution has dramatically improved with the launch of the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard NASA s Earth Observing System (EOS) Terra spacecraft in December 1999. However, lack of spatial and temporal coverage due to cloud and snow effects can preclude utilization of official products in production and research studies. We report on a technique used to fill incomplete MOD43 albedo data sets with the intention of providing complete value-added maps. The technique is influenced by the phenological concept that within a certain area, a pixel s ecosystem class should exhibit similar growth cycle events over the same time period. The shape of an area s phenological temporal curve can be imposed upon existing pixel-level data to fill missing temporal points. The methodology will be reviewed by showcasing 2001 global and regional results of complete albedo and NDVl data sets.

  12. Developing a New North American Land Cover Product at 30m Resolution: Methods, Results and Future Plans

    NASA Astrophysics Data System (ADS)

    Homer, C.; Colditz, R. R.; Latifovic, R.; Llamas, R. M.; Pouliot, D.; Danielson, P.; Meneses, C.; Victoria, A.; Ressl, R.; Richardson, K.; Vulpescu, M.

    2017-12-01

    Land cover and land cover change information at regional and continental scales has become fundamental for studying and understanding the terrestrial environment. With recent advances in computer science and freely available image archives, continental land cover mapping has been advancing to higher spatial resolution products. The North American Land Change Monitoring System (NALCMS) remains the principal provider of seamless land cover maps of North America. Founded in 2006, this collaboration among the governments of Canada, Mexico and the United States has released two previous products based on 250m MODIS images, including a 2005 land cover and a 2005-2010 land cover change product. NALCMS has recently completed the next generation North America land cover product, based upon 30m Landsat images. This product now provides the first ever 30m land cover produced for the North American continent, providing 19 classes of seamless land cover. This presentation provides an overview of country-specific image classification processes, describes the continental map production process, provides results for the North American continent and discusses future plans. NALCMS is coordinated by the Commission for Environmental Cooperation (CEC) and all products can be obtained at their website - www.cec.org.

  13. Geostatistical uncertainty of assessing air quality using high-spatial-resolution lichen data: A health study in the urban area of Sines, Portugal.

    PubMed

    Ribeiro, Manuel C; Pinho, P; Branquinho, C; Llop, Esteve; Pereira, Maria J

    2016-08-15

    In most studies correlating health outcomes with air pollution, personal exposure assignments are based on measurements collected at air-quality monitoring stations not coinciding with health data locations. In such cases, interpolators are needed to predict air quality in unsampled locations and to assign personal exposures. Moreover, a measure of the spatial uncertainty of exposures should be incorporated, especially in urban areas where concentrations vary at short distances due to changes in land use and pollution intensity. These studies are limited by the lack of literature comparing exposure uncertainty derived from distinct spatial interpolators. Here, we addressed these issues with two interpolation methods: regression Kriging (RK) and ordinary Kriging (OK). These methods were used to generate air-quality simulations with a geostatistical algorithm. For each method, the geostatistical uncertainty was drawn from generalized linear model (GLM) analysis. We analyzed the association between air quality and birth weight. Personal health data (n=227) and exposure data were collected in Sines (Portugal) during 2007-2010. Because air-quality monitoring stations in the city do not offer high-spatial-resolution measurements (n=1), we used lichen data as an ecological indicator of air quality (n=83). We found no significant difference in the fit of GLMs with any of the geostatistical methods. With RK, however, the models tended to fit better more often and worse less often. Moreover, the geostatistical uncertainty results showed a marginally higher mean and precision with RK. Combined with lichen data and land-use data of high spatial resolution, RK is a more effective geostatistical method for relating health outcomes with air quality in urban areas. This is particularly important in small cities, which generally do not have expensive air-quality monitoring stations with high spatial resolution. Further, alternative ways of linking human activities with their environment are needed to improve human well-being. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Understanding Multifunctional Agricultural Land by Using Low Cost and Open Source Solutions to Quantify Ecosystem Function and Services

    NASA Astrophysics Data System (ADS)

    Forsmoo, Joel; Anderson, Karen; Brazier, Richard; Macleod, Kit; Wilkinson, Mark

    2016-04-01

    There is a need to advance our understanding of how the spatial structure of farmed landscapes contributes to the provision of functions and services. Agricultural land is of critical importance in NW Europe, covering large parts of NW Europe's temperate land. Moreover, these agricultural areas are primarily intensively managed, with a focus on maximizing food and fibre production. Such landscapes therefore can provide a wealth of ecosystem goods and services (ESs) including regulation of climate, erosion regulation, hydrology, water quality, nutrient cycling and biodiversity conservation. However, it has been shown they are key sources of sediment, phosphorous, nitrogen and storm runoff contributing to flooding, and therefore it is likely that most agricultural landscapes do not maximize the services or benefits that they might provide. The focus of this study is the spatio-temporal assessment of carbon sequestration (particularly through proxies such as above-ground biomass) and hydrological processes on agricultural land. Understanding and quantifying both of these is important to (a) inform payments for ecosystem services frameworks, (b) evaluate and improve carbon sequestration models, (c) manage the flood risk, (d) downstream water security and (e) water quality. Quantifying both of these ESs is dependent on data describing the fine spatial and temporal structure and function of the landscape. Common practice has been to use remote sensing techniques, e.g. satellites, providing coarse spatial resolution (around 30cm at 20° off nadir) and/or temporal resolution (around 5 days revisit time at <20° off nadir). In this paper we will explain how imaging data from lightweight and easily deployed unmanned aerial vehicles (UAVs) can be used to generate structure from motion (SFM) products describing the very fine detailed (<3 cm pixel resolution) structure of the agricultural environment. We will demonstrate how these products can be delivered using advanced free and open source post-processing alternatives and low cost sensors (digital cameras) and platforms (UAVs). We furthermore draw attention to the influence post-processing solutions have on the accuracy of the final product, the digital surface model (DSM), by using recently acquired data. Specifically, when applied in a structurally complex field site with irregular surface roughness patterns, over a land use gradient, from livestock grazing to agricultural crops. We will demonstrate the added value of using very fine detail data, highlighting important structural properties and patterns overlooked with coarser spatial resolution data.

  15. Spatio-Temporal Evolution and Scaling Properties of Human Settlements (Invited)

    NASA Astrophysics Data System (ADS)

    Small, C.; Milesi, C.; Elvidge, C.; Baugh, K.; Henebry, G. M.; Nghiem, S. V.

    2013-12-01

    Growth and evolution of cities and smaller settlements is usually studied in the context of population and other socioeconomic variables. While this is logical in the sense that settlements are groups of humans engaged in socioeconomic processes, our means of collecting information about spatio-temporal distributions of population and socioeconomic variables often lack the spatial and temporal resolution to represent the processes at scales which they are known to occur. Furthermore, metrics and definitions often vary with country and through time. However, remote sensing provides globally consistent, synoptic observations of several proxies for human settlement at spatial and temporal resolutions sufficient to represent the evolution of settlements over the past 40 years. We use several independent but complementary proxies for anthropogenic land cover to quantify spatio-temporal (ST) evolution and scaling properties of human settlements globally. In this study we begin by comparing land cover and night lights in 8 diverse settings - each spanning gradients of population density and degree of land surface modification. Stable anthropogenic night light is derived from multi-temporal composites of emitted luminance measured by the VIIRS and DMSP-OLS sensors. Land cover is represented as mixtures of sub-pixel fractions of rock, soil and impervious Substrates, Vegetation and Dark surfaces (shadow, water and absorptive materials) estimated from Landsat imagery with > 94% accuracy. Multi-season stability and variability of land cover fractions effectively distinguishes between spectrally similar land covers that corrupt thematic classifications based on single images. We find that temporal stability of impervious substrates combined with persistent shadow cast between buildings results in temporally stable aggregate reflectance across seasons at the 30 m scale of a Landsat pixel. Comparison of night light brightness with land cover composition, stability and variability yields several consistent relationships that persist across a variety of settlement types and physical environments. We use the multiple threshold method of Small et al (2011) to represent a continuum of settlement density by segmenting both night light brightness and multi-season land cover characteristics. Rank-size distributions of spatially contiguous segments quantify scaling and connectivity of land cover. Spatial and temporal evolution of rank-size distributions is consistent with power laws as suggested by Zipf's Law for city size based on population. However, unlike Zipf's Law, the observed distributions persist to global scales in which the larger agglomerations are much larger than individual cities. The scaling relations observed extend from the scale of cities and smaller settlements up to vast spatial networks of interconnected settlements.

  16. Towards High Spa-Temporal Resolution Estimates of Surface Radiative Fluxes from Geostationary Satellite Observations for the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Niu, X.; Yang, K.; Tang, W.; Qin, J.

    2014-12-01

    Surface Solar Radiation (SSR) plays an important role of the hydrological and land process modeling, which particularly contributes more than 90% to the total melt energy for the Tibetan Plateau (TP) ice melting. Neither surface measurement nor existing remote sensing products can meet that requirement in TP. The well-known satellite products (i.e. ISCCP-FD and GEWEX-SRB) are in relatively low spatial resolution (0.5º-2.5º) and temporal resolution (3-hourly, daily, or monthly). The objective of this study is to develop capabilities to improved estimates of SSR in TP based on geostationary satellite observations from the Multi-functional Transport Satellite (MTSAT) with high spatial (0.05º) and temporal (hourly) resolution. An existing physical model, the UMD-SRB (University of Maryland Surface Radiation Budget) which is the basis of the GEWEX-SRB model, is re-visited to improve SSR estimates in TP. The UMD-SRB algorithm transforms TOA radiances into broadband albedos in order to infer atmospheric transmissivity which finally determines the SSR. Specifically, main updates introduced in this study are: implementation at 0.05º spatial resolution at hourly intervals integrated to daily and monthly time scales; and improvement of surface albedo model by introducing the most recently developed Global Land Surface Broadband Albedo Product (GLASS) based on MODIS data. This updated inference scheme will be evaluated against ground observations from China Meteorological Administration (CMA) radiation stations and three TP radiation stations contributed from the Institute of Tibetan Plateau Research.

  17. Towards a New Assessment of Urban Areas from Local to Global Scales

    NASA Astrophysics Data System (ADS)

    Bhaduri, B. L.; Roy Chowdhury, P. K.; McKee, J.; Weaver, J.; Bright, E.; Weber, E.

    2015-12-01

    Since early 2000s, starting with NASA MODIS, satellite based remote sensing has facilitated collection of imagery with medium spatial resolution but high temporal resolution (daily). This trend continues with an increasing number of sensors and data products. Increasing spatial and temporal resolutions of remotely sensed data archives, from both public and commercial sources, have significantly enhanced the quality of mapping and change data products. However, even with automation of such analysis on evolving computing platforms, rates of data processing have been suboptimal largely because of the ever-increasing pixel to processor ratio coupled with limitations of the computing architectures. Novel approaches utilizing spatiotemporal data mining techniques and computational architectures have emerged that demonstrates the potential for sustained and geographically scalable landscape monitoring to be operational. We exemplify this challenge with two broad research initiatives on High Performance Geocomputation at Oak Ridge National Laboratory: (a) mapping global settlement distribution; (b) developing national critical infrastructure databases. Our present effort, on large GPU based architectures, to exploit high resolution (1m or less) satellite and airborne imagery for extracting settlements at global scale is yielding understanding of human settlement patterns and urban areas at unprecedented resolution. Comparison of such urban land cover database, with existing national and global land cover products, at various geographic scales in selected parts of the world is revealing intriguing patterns and insights for urban assessment. Early results, from the USA, Taiwan, and Egypt, indicate closer agreements (5-10%) in urban area assessments among databases at larger, aggregated geographic extents. However, spatial variability at local scales could be significantly different (over 50% disagreement).

  18. An Efficient Approach for Pixel Decomposition to Increase the Spatial Resolution of Land Surface Temperature Images from MODIS Thermal Infrared Band Data

    PubMed Central

    Wang, Fei; Qin, Zhihao; Li, Wenjuan; Song, Caiying; Karnieli, Arnon; Zhao, Shuhe

    2015-01-01

    Land surface temperature (LST) images retrieved from the thermal infrared (TIR) band data of Moderate Resolution Imaging Spectroradiometer (MODIS) have much lower spatial resolution than the MODIS visible and near-infrared (VNIR) band data. The coarse pixel scale of MODIS LST images (1000 m under nadir) have limited their capability in applying to many studies required high spatial resolution in comparison of the MODIS VNIR band data with pixel scale of 250–500 m. In this paper we intend to develop an efficient approach for pixel decomposition to increase the spatial resolution of MODIS LST image using the VNIR band data as assistance. The unique feature of this approach is to maintain the thermal radiance of parent pixels in the MODIS LST image unchanged after they are decomposed into the sub-pixels in the resulted image. There are two important steps in the decomposition: initial temperature estimation and final temperature determination. Therefore the approach can be termed double-step pixel decomposition (DSPD). Both steps involve a series of procedures to achieve the final result of decomposed LST image, including classification of the surface patterns, establishment of LST change with normalized difference of vegetation index (NDVI) and building index (NDBI), reversion of LST into thermal radiance through Planck equation, and computation of weights for the sub-pixels of the resulted image. Since the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) with much higher spatial resolution than MODIS data was on-board the same platform (Terra) as MODIS for Earth observation, an experiment had been done in the study to validate the accuracy and efficiency of our approach for pixel decomposition. The ASTER LST image was used as the reference to compare with the decomposed LST image. The result showed that the spatial distribution of the decomposed LST image was very similar to that of the ASTER LST image with a root mean square error (RMSE) of 2.7 K for entire image. Comparison with the evaluation DisTrad (E-DisTrad) and re-sampling methods for pixel decomposition also indicate that our DSPD has the lowest RMSE in all cases, including urban region, water bodies, and natural terrain. The obvious increase in spatial resolution remarkably uplifts the capability of the coarse MODIS LST images in highlighting the details of LST variation. Therefore it can be concluded that, in spite of complicated procedures, the proposed DSPD approach provides an alternative to improve the spatial resolution of MODIS LST image hence expand its applicability to the real world. PMID:25609048

  19. Generation of multi annual land use and crop rotation data for regional agro-ecosystem modeling

    NASA Astrophysics Data System (ADS)

    Waldhoff, G.; Lussem, U.; Sulis, M.; Bareth, G.

    2017-12-01

    For agro-ecosystem modeling on a regional scale with systems like the Community Land Model (CLM), detailed crop type and crop rotation information on the parcel-level is of key importance. Only with this, accurate assessments of the fluxes associated with the succession of crops and their management are possible. However, sophisticated agro-ecosystem modeling for large regions is only feasible at grid resolutions, which are much coarser than the spatial resolution of modern land use maps (usually ca. 30 m). As a result, much of the original information content of the maps has to be dismissed during resampling. Here we present our mapping approach for the Rur catchment (located in the west of Germany), which was developed to address these demands and issues. We integrated remote sensing and geographic information system (GIS) methods to classify multi temporal images of (e.g.) Landsat, RapidEye and Sentinel-2 to generate annual crop maps for the years 2008-2017 at 15 m spatial resolution (accuracy always ca. 90 %). A key aspect of our method is the consideration of crop phenology for the data selection and the analysis. In a GIS, the annul crop maps were integrated to a crop sequence dataset from which the major crop rotations were derived (based on the 10-years). To retain the multi annual crop succession and crop area information at coarser grid resolutions, cell-based land use fractions, including other land use classes were calculated for each year and for various target cell sizes (1-32 arc seconds). The resulting datasets contain the contribution (in percent) of every land use class to each cell. Our results show that parcels with the major crop types can be differentiated with a high accuracy and on an annual basis. The analysis of the crop sequence data revealed a very large number of different crop rotations, but only relatively few crop rotations cover larger areas. This strong diversity emphasizes the importance of information on crop rotations to reduce uncertainties in agro-ecosystem modeling. Through the combination of the multi annual land use fractions, the resulting datasets additionally inform about land use changes and trends within the coarser grid cells. We see this as a major advantage, because we are able to maintain much more precise land use information when a coarser cell size is used.

  20. Estimating Gross Primary Production in Cropland with High Spatial and Temporal Scale Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Lin, S.; Li, J.; Liu, Q.

    2018-04-01

    Satellite remote sensing data provide spatially continuous and temporally repetitive observations of land surfaces, and they have become increasingly important for monitoring large region of vegetation photosynthetic dynamic. But remote sensing data have their limitation on spatial and temporal scale, for example, higher spatial resolution data as Landsat data have 30-m spatial resolution but 16 days revisit period, while high temporal scale data such as geostationary data have 30-minute imaging period, which has lower spatial resolution (> 1 km). The objective of this study is to investigate whether combining high spatial and temporal resolution remote sensing data can improve the gross primary production (GPP) estimation accuracy in cropland. For this analysis we used three years (from 2010 to 2012) Landsat based NDVI data, MOD13 vegetation index product and Geostationary Operational Environmental Satellite (GOES) geostationary data as input parameters to estimate GPP in a small region cropland of Nebraska, US. Then we validated the remote sensing based GPP with the in-situ measurement carbon flux data. Results showed that: 1) the overall correlation between GOES visible band and in-situ measurement photosynthesis active radiation (PAR) is about 50 % (R2 = 0.52) and the European Center for Medium-Range Weather Forecasts ERA-Interim reanalysis data can explain 64 % of PAR variance (R2 = 0.64); 2) estimating GPP with Landsat 30-m spatial resolution data and ERA daily meteorology data has the highest accuracy(R2 = 0.85, RMSE < 3 gC/m2/day), which has better performance than using MODIS 1-km NDVI/EVI product import; 3) using daily meteorology data as input for GPP estimation in high spatial resolution data would have higher relevance than 8-day and 16-day input. Generally speaking, using the high spatial resolution and high frequency satellite based remote sensing data can improve GPP estimation accuracy in cropland.

  1. In need of combined topography and bathymetry DEM

    NASA Astrophysics Data System (ADS)

    Kisimoto, K.; Hilde, T.

    2003-04-01

    In many geoscience applications, digital elevation models (DEMs) are now more commonly used at different scales and greater resolution due to the great advancement in computer technology. Increasing the accuracy/resolution of the model and the coverage of the terrain (global model) has been the goal of users as mapping technology has improved and computers get faster and cheaper. The ETOPO5 (5 arc minutes spatial resolution land and seafloor model), initially developed in 1988 by Margo Edwards, then at Washington University, St. Louis, MO, has been the only global terrain model for a long time, and it is now being replaced by three new topographic and bathymetric DEMs, i.e.; the ETOPO2 (2 arc minutes spatial resolution land and seafloor model), the GTOPO30 land model with a spatial resolution of 30 arc seconds (c.a. 1km at equator) and the 'GEBCO 1-MINUTE GLOBAL BATHYMETRIC GRID' ocean floor model with a spatial resolution of 1 arc minute (c.a. 2 km at equator). These DEMs are products of projects through which compilation and reprocessing of existing and/or new datasets were made to meet user's new requirements. These ongoing efforts are valuable and support should be continued to refine and update these DEMs. On the other hand, a different approach to create a global bathymetric (seafloor) database exists. A method to estimate the seafloor topography from satellite altimetry combined with existing ships' conventional sounding data was devised and a beautiful global seafloor database created and made public by W.H. Smith and D.T. Sandwell in 1997. The big advantage of this database is the uniformity of coverage, i.e. there is no large area where depths are missing. It has a spatial resolution of 2 arc minute. Another important effort is found in making regional, not global, seafloor databases with much finer resolutions in many countries. The Japan Hydrographic Department has compiled and released a 500m-grid topography database around Japan, J-EGG500, in 1999. Although the coverage of this database is only a small portion of the Earth, the database has been highly appreciated in the academic community, and accepted in surprise by the general public when the database was displayed in 3D imagery to show its quality. This database could be rather smoothly combined with the finer land DEM of 250m spatial resolution (Japan250m.grd, K. Kisimoto, 2000). One of the most important applications of this combined DEM of topography and bathymetry is tsunami modeling. Understanding of the coastal environment, management and development of the coastal region are other fields in need of these data. There is, however, an important issue to consider when we create a combined DEM of topography and bathymetry in finer resolutions. The problem arises from the discrepancy of the standard datum planes or reference levels used for topographic leveling and bathymetric sounding. Land topography (altitude) is defined by leveling from the single reference point determined by average mean sea level, in other words, land height is measured from the geoid. On the other hand, depth charts are made based on depth measured from locally determined reference sea surface level, and this value of sea surface level is taken from the long term average of the lowest tidal height. So, to create a combined DEM of topography and bathymetry in very fine scale, we need to avoid this inconsistency between height and depth across the coastal region. Height and depth should be physically continuous relative to a single reference datum across the coast within such new high resolution DEMs. (N.B. Coast line is not equal to 'altitude-zero line' nor 'depth-zero line'. It is defined locally as the long term average of the highest tide level.) All of this said, we still need a lot of work on the ocean side. Global coverage with detailed bathymetric mapping is still poor. Seafloor imaging and other geophysical measurements/experiments should be organized and conducted internationally and interdisciplinary ways more than ever. We always need greater technological advancement and application of this technology in marine sciences, and more enthusiastic minds of seagoing researchers as well. Recent seafloor mapping technology/quality both in bathymetry and imagery is very promising and even favorably compared with the terrain mapping. We discuss and present on recent achievement and needs on the seafloor mapping using several most up-to-date global- and regional- DEMs available for science community at the poster session.

  2. Examining the utility of satellite-based wind sheltering estimates for lake hydrodynamic modeling

    USGS Publications Warehouse

    Van Den Hoek, Jamon; Read, Jordan S.; Winslow, Luke A.; Montesano, Paul; Markfort, Corey D.

    2015-01-01

    Satellite-based measurements of vegetation canopy structure have been in common use for the last decade but have never been used to estimate canopy's impact on wind sheltering of individual lakes. Wind sheltering is caused by slower winds in the wake of topography and shoreline obstacles (e.g. forest canopy) and influences heat loss and the flux of wind-driven mixing energy into lakes, which control lake temperatures and indirectly structure lake ecosystem processes, including carbon cycling and thermal habitat partitioning. Lakeshore wind sheltering has often been parameterized by lake surface area but such empirical relationships are only based on forested lakeshores and overlook the contributions of local land cover and terrain to wind sheltering. This study is the first to examine the utility of satellite imagery-derived broad-scale estimates of wind sheltering across a diversity of land covers. Using 30 m spatial resolution ASTER GDEM2 elevation data, the mean sheltering height, hs, being the combination of local topographic rise and canopy height above the lake surface, is calculated within 100 m-wide buffers surrounding 76,000 lakes in the U.S. state of Wisconsin. Uncertainty of GDEM2-derived hs was compared to SRTM-, high-resolution G-LiHT lidar-, and ICESat-derived estimates of hs, respective influences of land cover type and buffer width on hsare examined; and the effect of including satellite-based hs on the accuracy of a statewide lake hydrodynamic model was discussed. Though GDEM2 hs uncertainty was comparable to or better than other satellite-based measures of hs, its higher spatial resolution and broader spatial coverage allowed more lakes to be included in modeling efforts. GDEM2 was shown to offer superior utility for estimating hs compared to other satellite-derived data, but was limited by its consistent underestimation of hs, inability to detect within-buffer hs variability, and differing accuracy across land cover types. Nonetheless, considering a GDEM2 hs-derived wind sheltering potential improved the modeled lake temperature root mean square error for non-forested lakes by 0.72 °C compared to a commonly used wind sheltering model based on lake area alone. While results from this study show promise, the limitations of near-global GDEM2 data in timeliness, temporal and spatial resolution, and vertical accuracy were apparent. As hydrodynamic modeling and high-resolution topographic mapping efforts both expand, future remote sensing-derived vegetation structure data must be improved to meet wind sheltering accuracy requirements to expand our understanding of lake processes.

  3. A review of supervised object-based land-cover image classification

    NASA Astrophysics Data System (ADS)

    Ma, Lei; Li, Manchun; Ma, Xiaoxue; Cheng, Liang; Du, Peijun; Liu, Yongxue

    2017-08-01

    Object-based image classification for land-cover mapping purposes using remote-sensing imagery has attracted significant attention in recent years. Numerous studies conducted over the past decade have investigated a broad array of sensors, feature selection, classifiers, and other factors of interest. However, these research results have not yet been synthesized to provide coherent guidance on the effect of different supervised object-based land-cover classification processes. In this study, we first construct a database with 28 fields using qualitative and quantitative information extracted from 254 experimental cases described in 173 scientific papers. Second, the results of the meta-analysis are reported, including general characteristics of the studies (e.g., the geographic range of relevant institutes, preferred journals) and the relationships between factors of interest (e.g., spatial resolution and study area or optimal segmentation scale, accuracy and number of targeted classes), especially with respect to the classification accuracy of different sensors, segmentation scale, training set size, supervised classifiers, and land-cover types. Third, useful data on supervised object-based image classification are determined from the meta-analysis. For example, we find that supervised object-based classification is currently experiencing rapid advances, while development of the fuzzy technique is limited in the object-based framework. Furthermore, spatial resolution correlates with the optimal segmentation scale and study area, and Random Forest (RF) shows the best performance in object-based classification. The area-based accuracy assessment method can obtain stable classification performance, and indicates a strong correlation between accuracy and training set size, while the accuracy of the point-based method is likely to be unstable due to mixed objects. In addition, the overall accuracy benefits from higher spatial resolution images (e.g., unmanned aerial vehicle) or agricultural sites where it also correlates with the number of targeted classes. More than 95.6% of studies involve an area less than 300 ha, and the spatial resolution of images is predominantly between 0 and 2 m. Furthermore, we identify some methods that may advance supervised object-based image classification. For example, deep learning and type-2 fuzzy techniques may further improve classification accuracy. Lastly, scientists are strongly encouraged to report results of uncertainty studies to further explore the effects of varied factors on supervised object-based image classification.

  4. A cloud mask methodology for high resolution remote sensing data combining information from high and medium resolution optical sensors

    NASA Astrophysics Data System (ADS)

    Sedano, Fernando; Kempeneers, Pieter; Strobl, Peter; Kucera, Jan; Vogt, Peter; Seebach, Lucia; San-Miguel-Ayanz, Jesús

    2011-09-01

    This study presents a novel cloud masking approach for high resolution remote sensing images in the context of land cover mapping. As an advantage to traditional methods, the approach does not rely on thermal bands and it is applicable to images from most high resolution earth observation remote sensing sensors. The methodology couples pixel-based seed identification and object-based region growing. The seed identification stage relies on pixel value comparison between high resolution images and cloud free composites at lower spatial resolution from almost simultaneously acquired dates. The methodology was tested taking SPOT4-HRVIR, SPOT5-HRG and IRS-LISS III as high resolution images and cloud free MODIS composites as reference images. The selected scenes included a wide range of cloud types and surface features. The resulting cloud masks were evaluated through visual comparison. They were also compared with ad-hoc independently generated cloud masks and with the automatic cloud cover assessment algorithm (ACCA). In general the results showed an agreement in detected clouds higher than 95% for clouds larger than 50 ha. The approach produced consistent results identifying and mapping clouds of different type and size over various land surfaces including natural vegetation, agriculture land, built-up areas, water bodies and snow.

  5. Scaling Gross Primary Production (GPP) over boreal and deciduous forest landscapes in support of MODIS GPP product validation.

    Treesearch

    David P. Turner; William D. Ritts; Warren B. Cohen; Stith T. Gower; Maosheng Zhao; Steve W. Running; Steven C. Wofsy; Shawn Urbanski; Allison L. Dunn; J.W. Munger

    2003-01-01

    The Moderate Resolution Imaging Radiometer (MODIS) is the primary instrument in the NASA Earth Observing System for monitoring the seasonality of global terrestrial vegetation. Estimates of 8-day mean daily gross primary production (GPP) at the 1 km spatial resolution are now operationally produced by the MODIS Land Science Team for the global terrestrial surface using...

  6. Trading carbon for food: global comparison of carbon stocks vs. crop yields on agricultural land.

    PubMed

    West, Paul C; Gibbs, Holly K; Monfreda, Chad; Wagner, John; Barford, Carol C; Carpenter, Stephen R; Foley, Jonathan A

    2010-11-16

    Expanding croplands to meet the needs of a growing population, changing diets, and biofuel production comes at the cost of reduced carbon stocks in natural vegetation and soils. Here, we present a spatially explicit global analysis of tradeoffs between carbon stocks and current crop yields. The difference among regions is striking. For example, for each unit of land cleared, the tropics lose nearly two times as much carbon (∼120 tons·ha(-1) vs. ∼63 tons·ha(-1)) and produce less than one-half the annual crop yield compared with temperate regions (1.71 tons·ha(-1)·y(-1) vs. 3.84 tons·ha(-1)·y(-1)). Therefore, newly cleared land in the tropics releases nearly 3 tons of carbon for every 1 ton of annual crop yield compared with a similar area cleared in the temperate zone. By factoring crop yield into the analysis, we specify the tradeoff between carbon stocks and crops for all areas where crops are currently grown and thereby, substantially enhance the spatial resolution relative to previous regional estimates. Particularly in the tropics, emphasis should be placed on increasing yields on existing croplands rather than clearing new lands. Our high-resolution approach can be used to determine the net effect of local land use decisions.

  7. Modelling land use change in the Ganga basin

    NASA Astrophysics Data System (ADS)

    Moulds, Simon; Mijic, Ana; Buytaert, Wouter

    2014-05-01

    Over recent decades the green revolution in India has driven substantial environmental change. Modelling experiments have identified northern India as a "hot spot" of land-atmosphere coupling strength during the boreal summer. However, there is a wide range of sensitivity of atmospheric variables to soil moisture between individual climate models. The lack of a comprehensive land use change dataset to force climate models has been identified as a major contributor to model uncertainty. This work aims to construct a monthly time series dataset of land use change for the period 1966 to 2007 for northern India to improve the quantification of regional hydrometeorological feedbacks. The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on board the Aqua and Terra satellites provides near-continuous remotely sensed datasets from 2000 to the present day. However, the quality and availability of satellite products before 2000 is poor. To complete the dataset MODIS images are extrapolated back in time using the Conversion of Land Use and its Effects at Small regional extent (CLUE-S) modelling framework, recoded in the R programming language to overcome limitations of the original interface. Non-spatial estimates of land use area published by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) for the study period, available on an annual, district-wise basis, are used as a direct model input. Land use change is allocated spatially as a function of biophysical and socioeconomic drivers identified using logistic regression. The dataset will provide an essential input to a high-resolution, physically-based land-surface model to generate the lower boundary condition to assess the impact of land use change on regional climate.

  8. Spatial and Temporal Dust Source Variability in Northern China Identified Using Advanced Remote Sensing Analysis

    NASA Technical Reports Server (NTRS)

    Taramelli, A.; Pasqui, M.; Barbour, J.; Kirschbaum, D.; Bottai, L.; Busillo, C.; Calastrini, F.; Guarnieri, F.; Small, C.

    2013-01-01

    The aim of this research is to provide a detailed characterization of spatial patterns and temporal trends in the regional and local dust source areas within the desert of the Alashan Prefecture (Inner Mongolia, China). This problem was approached through multi-scale remote sensing analysis of vegetation changes. The primary requirements for this regional analysis are high spatial and spectral resolution data, accurate spectral calibration and good temporal resolution with a suitable temporal baseline. Landsat analysis and field validation along with the low spatial resolution classifications from MODIS and AVHRR are combined to provide a reliable characterization of the different potential dust-producing sources. The representation of intra-annual and inter-annual Normalized Difference Vegetation Index (NDVI) trend to assess land cover discrimination for mapping potential dust source using MODIS and AVHRR at larger scale is enhanced by Landsat Spectral Mixing Analysis (SMA). The combined methodology is to determine the extent to which Landsat can distinguish important soils types in order to better understand how soil reflectance behaves at seasonal and inter-annual timescales. As a final result mapping soil surface properties using SMA is representative of responses of different land and soil cover previously identified by NDVI trend. The results could be used in dust emission models even if they are not reflecting aggregate formation, soil stability or particle coatings showing to be critical for accurately represent dust source over different regional and local emitting areas.

  9. Accuracy assessment of seven global land cover datasets over China

    NASA Astrophysics Data System (ADS)

    Yang, Yongke; Xiao, Pengfeng; Feng, Xuezhi; Li, Haixing

    2017-03-01

    Land cover (LC) is the vital foundation to Earth science. Up to now, several global LC datasets have arisen with efforts of many scientific communities. To provide guidelines for data usage over China, nine LC maps from seven global LC datasets (IGBP DISCover, UMD, GLC, MCD12Q1, GLCNMO, CCI-LC, and GlobeLand30) were evaluated in this study. First, we compared their similarities and discrepancies in both area and spatial patterns, and analysed their inherent relations to data sources and classification schemes and methods. Next, five sets of validation sample units (VSUs) were collected to calculate their accuracy quantitatively. Further, we built a spatial analysis model and depicted their spatial variation in accuracy based on the five sets of VSUs. The results show that, there are evident discrepancies among these LC maps in both area and spatial patterns. For LC maps produced by different institutes, GLC 2000 and CCI-LC 2000 have the highest overall spatial agreement (53.8%). For LC maps produced by same institutes, overall spatial agreement of CCI-LC 2000 and 2010, and MCD12Q1 2001 and 2010 reach up to 99.8% and 73.2%, respectively; while more efforts are still needed if we hope to use these LC maps as time series data for model inputting, since both CCI-LC and MCD12Q1 fail to represent the rapid changing trend of several key LC classes in the early 21st century, in particular urban and built-up, snow and ice, water bodies, and permanent wetlands. With the highest spatial resolution, the overall accuracy of GlobeLand30 2010 is 82.39%. For the other six LC datasets with coarse resolution, CCI-LC 2010/2000 has the highest overall accuracy, and following are MCD12Q1 2010/2001, GLC 2000, GLCNMO 2008, IGBP DISCover, and UMD in turn. Beside that all maps exhibit high accuracy in homogeneous regions; local accuracies in other regions are quite different, particularly in Farming-Pastoral Zone of North China, mountains in Northeast China, and Southeast Hills. Special attention should be paid for data users who are interested in these regions.

  10. Assessing Landscape Connectivity and River Water Quality Changes Using an 8-Day, 30-Meter Land Cover Dataset

    NASA Astrophysics Data System (ADS)

    Kamarinas, I.; Julian, J.; Owsley, B.; de Beurs, K.; Hughes, A.

    2014-12-01

    Water quality is dictated by interactions among geomorphic processes, vegetation characteristics, weather patterns, and anthropogenic land uses over multiple spatio-temporal scales. In order to understand how changes in climate and land use impact river water quality, a suite of data with high temporal resolution over a long period is needed. Further, all of this data must be analyzed with respect to connectivity to the river, thus requiring high spatial resolution data. Here, we present how changes in climate and land use over the past 25 years have affected water quality in the 268 sq. km Hoteo River catchment in New Zealand. Hydro-climatic data included daily solar radiation, temperature, soil moisture, rainfall, drought indices, and runoff at 5-km resolution. Land cover changes were measured every 8 days at 30-m resolution by fusing Landsat and MODIS satellite imagery. Water quality was assessed using 15-min turbidity (2011-2014) and monthly data for a suite of variables (1990-2014). Watershed connectivity was modeled using a corrected 15-m DEM and a high-resolution drainage network. Our analyses revealed that this catchment experiences cyclical droughts which, when combined with intense land uses such as livestock grazing and plantation forest harvesting, leaves many areas in the catchment disturbed (i.e. exposed soil) that are connected to the river through surface runoff. As a result, flow-normalized turbidity was elevated during droughts and remained relatively low during wet periods. For example, disturbed land area decreased from 9% to 4% over 2009-2013, which was a relatively wet period. During the extreme drought of 2013, disturbed area increased to 6% in less than a year due mainly to slow pasture recovery after heavy stocking rates. The relationships found in this study demonstrate that high spatiotemporal resolution land cover datasets are very important to understanding the interactions between landscape and climate, and how these interactions affect water quality.

  11. The Influence of Land Use on the Grassland Fire Occurrence in the Northeastern Inner Mongolia Autonomous Region, China.

    PubMed

    Li, Yiping; Zhao, Jianjun; Guo, Xiaoyi; Zhang, Zhengxiang; Tan, Gang; Yang, Jihong

    2017-02-23

    Grassland, as one of the most important ecosystems on Earth, experiences fires that affect the local ecology, economy and society. Notably, grassland fires occur frequently each year in northeastern China. Fire occurrence is a complex problem with multiple causes, such as natural factors, human activities and land use. This paper investigates the disruptive effects of grassland fire in the northeastern Inner Mongolia Autonomous Region of China. In this study, we relied on thermal anomaly detection from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor to identify fire occurrences, and land use data were acquired by Landsat Thematic Mapper/Enhanced Thematic Mapper (TM/ETM). We discussed the relationship between land use and the spatial distribution of grassland fires. The results showed that the impact of land use on grassland fires was significant. Spatially, approximately 80% of grassland fires were clustered within 10 km of cultivated land, and grassland fires generally occurred in areas of intense human activity. The correlation between the spatial distribution of grassland fires and the land use degree in 2000, 2005 and 2010 was high, with R² values of 0.686, 0.716, 0.633, respectively ( p < 0.01). These results highlight the importance of the relationship between land use and grassland fire occurrence in the northeastern Inner Mongolia Autonomous Region. This study provides significance for local fire management and prevention.

  12. The Influence of Land Use on the Grassland Fire Occurrence in the Northeastern Inner Mongolia Autonomous Region, China

    PubMed Central

    Li, Yiping; Zhao, Jianjun; Guo, Xiaoyi; Zhang, Zhengxiang; Tan, Gang; Yang, Jihong

    2017-01-01

    Grassland, as one of the most important ecosystems on Earth, experiences fires that affect the local ecology, economy and society. Notably, grassland fires occur frequently each year in northeastern China. Fire occurrence is a complex problem with multiple causes, such as natural factors, human activities and land use. This paper investigates the disruptive effects of grassland fire in the northeastern Inner Mongolia Autonomous Region of China. In this study, we relied on thermal anomaly detection from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor to identify fire occurrences, and land use data were acquired by Landsat Thematic Mapper/Enhanced Thematic Mapper (TM/ETM). We discussed the relationship between land use and the spatial distribution of grassland fires. The results showed that the impact of land use on grassland fires was significant. Spatially, approximately 80% of grassland fires were clustered within 10 km of cultivated land, and grassland fires generally occurred in areas of intense human activity. The correlation between the spatial distribution of grassland fires and the land use degree in 2000, 2005 and 2010 was high, with R2 values of 0.686, 0.716, 0.633, respectively (p < 0.01). These results highlight the importance of the relationship between land use and grassland fire occurrence in the northeastern Inner Mongolia Autonomous Region. This study provides significance for local fire management and prevention. PMID:28241476

  13. Reanalysis of Water, Land Use, and Production Data for Assessing China's Agricultural Resources

    NASA Astrophysics Data System (ADS)

    Smith, T.; Pan, J.; McLaughlin, D.

    2016-12-01

    Quantitative data about water availability, crop evapotranspiration (ET), agricultural land use, and production are needed at high temporal and spatial resolutions to develop sustainable water and agricultural plan and policies. However, large-scale high-resolution measured data can be susceptible to errors, physically inconsistent, or incomplete. Reanalysis provides a way to develop improved physically consistent estimates of both measured and hidden variables. The reanalysis approach described here uses a least-squares technique constrained by water balances and crop water requirements to assimilate many possibly redundant data sources to yield estimates of water, land use, and food production variables that are physically consistent while minimizing differences from measured data. As an example, this methodology is applied in China, where food demand is expected to increase but land and water resources could constrain further increases in food production. Hydrologic fluxes, crop ET, agricultural land use, yields, and food production are characterized at 0.5o by 0.5o resolution for a nominal year around the year 2000 for 22 different crop groups. The reanalysis approach provides useful information for resource management and policy, both in China and around the world.

  14. GIEMS-D3: A new long-term, dynamical, high-spatial resolution inundation extent dataset at global scale

    NASA Astrophysics Data System (ADS)

    Aires, Filipe; Miolane, Léo; Prigent, Catherine; Pham Duc, Binh; Papa, Fabrice; Fluet-Chouinard, Etienne; Lehner, Bernhard

    2017-04-01

    The Global Inundation Extent from Multi-Satellites (GIEMS) provides multi-year monthly variations of the global surface water extent at 25kmx25km resolution. It is derived from multiple satellite observations. Its spatial resolution is usually compatible with climate model outputs and with global land surface model grids but is clearly not adequate for local applications that require the characterization of small individual water bodies. There is today a strong demand for high-resolution inundation extent datasets, for a large variety of applications such as water management, regional hydrological modeling, or for the analysis of mosquitos-related diseases. A new procedure is introduced to downscale the GIEMS low spatial resolution inundations to a 3 arc second (90 m) dataset. The methodology is based on topography and hydrography information from the HydroSHEDS database. A new floodability index is adopted and an innovative smoothing procedure is developed to ensure the smooth transition, in the high-resolution maps, between the low-resolution boxes from GIEMS. Topography information is relevant for natural hydrology environments controlled by elevation, but is more limited in human-modified basins. However, the proposed downscaling approach is compatible with forthcoming fusion with other more pertinent satellite information in these difficult regions. The resulting GIEMS-D3 database is the only high spatial resolution inundation database available globally at the monthly time scale over the 1993-2007 period. GIEMS-D3 is assessed by analyzing its spatial and temporal variability, and evaluated by comparisons to other independent satellite observations from visible (Google Earth and Landsat), infrared (MODIS) and active microwave (SAR).

  15. Patterns of land use, extensification, and intensification of Brazilian agriculture.

    PubMed

    Dias, Lívia C P; Pimenta, Fernando M; Santos, Ana B; Costa, Marcos H; Ladle, Richard J

    2016-08-01

    Sustainable intensification of agriculture is one of the main strategies to provide global food security. However, its implementation raises enormous political, technological, and social challenges. Meeting these challenges will require, among other things, accurate information on the spatial and temporal patterns of agricultural land use and yield. Here, we investigate historical patterns of agricultural land use (1940-2012) and productivity (1990-2012) in Brazil using a new high-resolution (approximately 1 km(2) ) spatially explicit reconstruction. Although Brazilian agriculture has been historically known for its extensification over natural vegetation (Amazon and Cerrado), data from recent years indicate that extensification has slowed down and was replaced by a strong trend of intensification. Our results provide the first comprehensive historical overview of agricultural land use and productivity in Brazil, providing clear insights to guide future territorial planning, sustainable agriculture, policy, and decision-making. © 2016 John Wiley & Sons Ltd.

  16. An evaluation of simulated Thematic Mapper data and Landsat MSS data for discriminating suburban and regional land use and land cover

    NASA Technical Reports Server (NTRS)

    Toll, D. L.

    1984-01-01

    An airborne multispectral scanner, operating in the same spectral channels as the Landsat Thematic Mapper (TM), was used in a region east of Denver, CO, for a simulation test performed in the framework of using TM to discriminate the level I and level II classes. It is noted that at the 30-m spatial resolution of the Thematic Mapper Simulator (TMS) the overall discrimination for such classes as commercial/industrial land, rangeland, irrigated sod, irrigated alfalfa, and irrigated pasture was superior to that of the Landsat Multispectral Scanner, primarily due to four added spectral bands. For residential and other spectrally heterogeneous classes, however, the higher resolution of TMS resulted in increased variability within the class and a larger spectral overlap.

  17. High spatial resolution mapping of the Cerrado's land cover and land use types in the priority area for conservation Chapada da Contagem, Brazil.

    NASA Astrophysics Data System (ADS)

    Ribeiro, F.; Roberts, D. A.; Davis, F. W.; Antunes Daldegan, G.; Nackoney, J.; Hess, L. L.

    2016-12-01

    The Brazilian savanna, Cerrado, is the second largest biome over South America and the most floristically diverse savanna in the world. This biome is considered a conservation hotspot in respect to its biodiversity importance and rapid transformation of its landscape. The Cerrado's natural vegetation has been severely transformed by agriculture and pasture activities. Currently it is the main agricultural frontier in Brazil and one of the most threatened Brazilian biomes. This scenario results in environmental impacts such as ecosystems fragmentation as well as losses in connectivity, biodiversity and gene flow, changes in the microclimate and energy, carbon and nutrients cycles, among others. The Priority Areas for Conservation is a governmental program from Brazil that identifies areas with high conservation priority. One of this program's recommendation is a natural vegetation map including their major ecosystem classes. This study aims to generate more precise information for the Cerrado's vegetation. The main objective of this study is to identify which ecosystems are being prioritized and/or threatened by land use, refining information for further protection. In order to test methods, the priority area for conservation Chapada da Contagem was selected as the study site. This area is ranked as "extremely high priority" by the government and is located in the Federal District and Goias State, Brazil. Satellites with finer spatial resolution may improve the classification of the Cerrado's vegetation. Remote sensing methods and two criteria were tested using RapidEye 3A imagery (5m spatial resolution) collected in 2014 in order to classify the Cerrado's major land cover types of this area, as well as its land use. One criterion considers the Cerrado's major terrestrial ecosystems, which are divided into forest, savanna and grassland. The other involves scaling it down to the major physiognomic groups of each ecosystem. Other sources of environmental dataset such as soil type and slope were incorporated into this test as they are correlated with the ecosystems and physiognomies presence. A Decision Tree was used to map the land cover and land use types present in the region and demonstrated to have an effective result due to the map's high accuracy and incorporation of environmental dataset.

  18. Land cover mapping at Alkali Flat and Lake Lucero, White Sands, New Mexico, USA using multi-temporal and multi-spectral remote sensing data

    NASA Astrophysics Data System (ADS)

    Ghrefat, Habes A.; Goodell, Philip C.

    2011-08-01

    The goal of this research is to map land cover patterns and to detect changes that occurred at Alkali Flat and Lake Lucero, White Sands using multispectral Landsat 7 Enhanced Thematic Mapper Plus (ETM+), Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Advanced Land Imager (ALI), and hyperspectral Hyperion and Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data. The other objectives of this study were: (1) to evaluate the information dimensionality limits of Landsat 7 ETM+, ASTER, ALI, Hyperion, and AVIRIS data with respect to signal-to-noise and spectral resolution, (2) to determine the spatial distribution and fractional abundances of land cover endmembers, and (3) to check ground correspondence with satellite data. A better understanding of the spatial and spectral resolution of these sensors, optimum spectral bands and their information contents, appropriate image processing methods, spectral signatures of land cover classes, and atmospheric effects are needed to our ability to detect and map minerals from space. Image spectra were validated using samples collected from various localities across Alkali Flat and Lake Lucero. These samples were measured in the laboratory using VNIR-SWIR (0.4-2.5 μm) spectra and X-ray Diffraction (XRD) method. Dry gypsum deposits, wet gypsum deposits, standing water, green vegetation, and clastic alluvial sediments dominated by mixtures of ferric iron (ferricrete) and calcite were identified in the study area using Minimum Noise Fraction (MNF), Pixel Purity Index (PPI), and n-D Visualization. The results of MNF confirm that AVIRIS and Hyperion data have higher information dimensionality thresholds exceeding the number of available bands of Landsat 7 ETM+, ASTER, and ALI data. ASTER and ALI data can be a reasonable alternative to AVIRIS and Hyperion data for the purpose of monitoring land cover, hydrology and sedimentation in the basin. The spectral unmixing analysis and dimensionality eigen analysis between the various datasets helped to uncover the most optimum spatial-spectral-temporal and radiometric-resolution sensor characteristics for remote sensing based on monitoring of seasonal land cover, surface water, groundwater, and alluvial sediment input changes within the basin. The results demonstrated good agreement between ground truth data and XRD analysis of samples, and the results of Matched Filtering (MF) mapping method.

  19. Identifying residential neighbourhood types from settlement points in a machine learning approach.

    PubMed

    Jochem, Warren C; Bird, Tomas J; Tatem, Andrew J

    2018-05-01

    Remote sensing techniques are now commonly applied to map and monitor urban land uses to measure growth and to assist with development and planning. Recent work in this area has highlighted the use of textures and other spatial features that can be measured in very high spatial resolution imagery. Far less attention has been given to using geospatial vector data (i.e. points, lines, polygons) to map land uses. This paper presents an approach to distinguish residential settlement types (regular vs. irregular) using an existing database of settlement points locating structures. Nine data features describing the density, distance, angles, and spacing of the settlement points are calculated at multiple spatial scales. These data are analysed alone and with five common remote sensing measures on elevation, slope, vegetation, and nighttime lights in a supervised machine learning approach to classify land use areas. The method was tested in seven provinces of Afghanistan (Balkh, Helmand, Herat, Kabul, Kandahar, Kunduz, Nangarhar). Overall accuracy ranged from 78% in Kandahar to 90% in Nangarhar. This research demonstrates the potential to accurately map land uses from even the simplest representation of structures.

  20. Spatial rule-based assessment of habitat potential to predict impact of land use changes on biodiversity at municipal scale.

    PubMed

    Scolozzi, Rocco; Geneletti, Davide

    2011-03-01

    In human dominated landscapes, ecosystems are under increasing pressures caused by urbanization and infrastructure development. In Alpine valleys remnant natural areas are increasingly affected by habitat fragmentation and loss. In these contexts, there is a growing risk of local extinction for wildlife populations; hence assessing the consequences on biodiversity of proposed land use changes is extremely important. The article presents a methodology to assess the impacts of land use changes on target species at a local scale. The approach relies on the application of ecological profiles of target species for habitat potential (HP) assessment, using high resolution GIS-data within a multiple level framework. The HP, in this framework, is based on a species-specific assessment of the suitability of a site, as well of surrounding areas. This assessment is performed through spatial rules, structured as sets of queries on landscape objects. We show that by considering spatial dependencies in habitat assessment it is possible to perform better quantification of impacts of local-level land use changes on habitats.

  1. Estimating Urban Gross Primary Productivity at High Spatial Resolution

    NASA Astrophysics Data System (ADS)

    Miller, David Lauchlin

    Gross primary productivity (GPP) is an important metric of ecosystem function and is the primary way carbon is transferred from the atmosphere to the land surface. Remote sensing techniques are commonly used to estimate regional and global GPP for carbon budgets. However, urban areas are typically excluded from such estimates due to a lack of parameters specific to urban vegetation and the modeling challenges that arise in mapping GPP across heterogeneous urban land cover. In this study, we estimated typical midsummer GPP within and among vegetation and land use types in the Minneapolis-Saint Paul, Minnesota metropolitan region by deriving light use efficiency parameters specific to urban vegetation types using in situ flux observations and WorldView-2 high spatial resolution satellite imagery. We produced a land cover classification using the satellite imagery, canopy height data from airborne lidar, and leaf-off color-infrared aerial orthophotos, and used regional GIS layers to mask certain land cover/land use types. The classification for built-up and vegetated urban land cover classes distinguished deciduous trees, evergreen trees, turf grass, and golf grass from impervious and soil surfaces, with an overall classification accuracy of 80% (kappa = 0.73). The full study area had 52.1% vegetation cover. The light use efficiency for each vegetation class, with the exception of golf grass, tended to be low compared to natural vegetation light use efficiencies in the literature. The mapped GPP estimates were within 11% of estimates from independent tall tower eddy covariance measurements. The order of the mapped vegetation classes for the full study area in terms of mean GPP from lowest to highest was: deciduous trees (2.52 gC m -2 d-1), evergreen trees (5.81 gC m-2 d-1), turf grass (6.05 gC m-2 d-1), and golf grass (11.77 gC m-2 d-1). Turf grass GPP had a larger coefficient of variation (0.18) than the other vegetation classes (˜0.10). Mean land use GPP for the full study area varied as a function of percent vegetation cover. Urban GPP in general, both including and excluding non-vegetated areas, tended to be low relative to natural forests and grasslands. Our results demonstrate that, at the scale of neighborhoods and city blocks within heterogeneous urban landscapes, high spatial resolution GPP estimates are valuable to develop comparisons such as within and among vegetation cover classes and land use types.

  2. Effects of spatial and temporal resolution on simulated feedbacks from polygonal tundra.

    NASA Astrophysics Data System (ADS)

    Coon, E.; Atchley, A. L.; Painter, S. L.; Karra, S.; Moulton, J. D.; Wilson, C. J.; Liljedahl, A.

    2014-12-01

    Earth system land models typically resolve permafrost regions at spatial resolutions grossly larger than the scales of topographic variation. This observation leads to two critical questions: How much error is introduced by this lack of resolution, and what is the effect of this approximation on other coupled components of the Earth system, notably the energy balance and carbon cycle? Here we use the Arctic Terrestrial Simulator (ATS) to run micro-topography resolving simulations of polygonal ground, driven by meteorological data from Barrow, AK, to address these questions. ATS couples surface and subsurface processes, including thermal hydrology, surface energy balance, and a snow model. Comparisons are made between one-dimensional "column model" simulations (similar to, for instance, CLM or other land models typically used in Earth System models) and higher-dimensional simulations which resolve micro-topography, allowing for distributed surface runoff, horizontal flow in the subsurface, and uneven snow distribution. Additionally, we drive models with meteorological data averaged over different time scales from daily to weekly moving windows. In each case, we compare fluxes important to the surface energy balance including albedo, latent and sensible heat fluxes, and land-to-atmosphere long-wave radiation. Results indicate that spatial topography variation and temporal variability are important in several ways. Snow distribution greatly affects the surface energy balance, fundamentally changing the partitioning of incoming solar radiation between the subsurface and the atmosphere. This has significant effects on soil moisture and temperature, with implications for vegetation and decomposition. Resolving temporal variability is especially important in spring, when early warm days can alter the onset of snowmelt by days to weeks. We show that high-resolution simulations are valuable in evaluating current land models, especially in areas of polygonal ground. This work was supported by LANL Laboratory Directed Research and Development Project LDRD201200068DR and by the The Next-Generation Ecosystem Experiments (NGEE Arctic) project. NGEE-Arctic is supported by the Office of Biological and Environmental Research in the DOE Office of Science. LA-UR-14-26227.

  3. Higher resolution satellite remote sensing and the impact on image mapping

    USGS Publications Warehouse

    Watkins, Allen H.; Thormodsgard, June M.

    1987-01-01

    Recent advances in spatial, spectral, and temporal resolution of civil land remote sensing satellite data are presenting new opportunities for image mapping applications. The U.S. Geological Survey's experimental satellite image mapping program is evolving toward larger scale image map products with increased information content as a result of improved image processing techniques and increased resolution. Thematic mapper data are being used to produce experimental image maps at 1:100,000 scale that meet established U.S. and European map accuracy standards. Availability of high quality, cloud-free, 30-meter ground resolution multispectral data from the Landsat thematic mapper sensor, along with 10-meter ground resolution panchromatic and 20-meter ground resolution multispectral data from the recently launched French SPOT satellite, present new cartographic and image processing challenges.The need to fully exploit these higher resolution data increases the complexity of processing the images into large-scale image maps. The removal of radiometric artifacts and noise prior to geometric correction can be accomplished by using a variety of image processing filters and transforms. Sensor modeling and image restoration techniques allow maximum retention of spatial and radiometric information. An optimum combination of spectral information and spatial resolution can be obtained by merging different sensor types. These processing techniques are discussed and examples are presented.

  4. Tracking changes in land-use and drainage status of organic soils using heterogeneous spatial datasets

    NASA Astrophysics Data System (ADS)

    Untenecker, Johanna; Tiemeyer, Bärbel; Freibauer, Annette; Laggner, Andreas; Luterbacher, Jürg

    2016-04-01

    Tracking land-use since 1990 is one of the major challenges in greenhouse gas (GHG) reporting under the United Nations Framework Convention on Climate Change (UNFCCC) and the Kyoto Protocol, as the data availability, especially for the base year 1990, is often poor. Even if data is available, spatial and thematic resolution will often change over time or differ even within one country. Such inconsistencies will cause a strong overestimation of land use change (LUC) if not adequately accounted for. Using different spatial datasets, we present a method that allows tracking changes in land-use and drainage status of organic soils. The drainage status is relevant for the Kyoto activities grazing land management (GM) and wetland drainage and rewetting (WDR) as the GHG emissions of organic soils strongly depend on the groundwater level. We used datasets that are already used for the German national inventory report (Digital Landscape Model of official cadastre data) and high resolution spatial datasets (CIR aerial photography) derived for biodiversity monitoring of six federal states in North and East Germany. This data is combined with the legal protection status such as nature conservation areas. To create a consistent time series, we developed a translation key which allows quantifying gross and net LUC in a spatially explicit manner. The developed method fills the lack of data for 1990 and allows GHG accounting on higher Tier levels as soon as detailed emission factors are ready to be implemented. LUC can be stratified by the protection status. Areas without a protection status show a trend towards both intensification of land-use and drier conditions. Highly protected areas show an opposite trend while a moderate protection level (e.g. by nature parks) did only have very weak effects. Furthermore, there are major differences between federal states. In Schleswig-Holstein, known as a federal state of high agricultural production, organic soils tend to become drier and even highly protected areas only show a slight decrease of land-use intensity. Organic soils in Mecklenburg-Western Pomerania, on the other hand, tend to become wetter and less intensively used even in not protected areas. This can be interpreted as a result of an extensive peatland protection programme. Thus, our method does not only allow tracking drainage status and land-use in a suitable way for higher Tier levels in GHG-inventories and for Kyoto-accounting, but offers additional information on the success of large scale rewetting practises.

  5. Greenhouse gas emission curves for advanced biofuel supply chains

    NASA Astrophysics Data System (ADS)

    Daioglou, Vassilis; Doelman, Jonathan C.; Stehfest, Elke; Müller, Christoph; Wicke, Birka; Faaij, Andre; van Vuuren, Detlef P.

    2017-12-01

    Most climate change mitigation scenarios that are consistent with the 1.5-2 °C target rely on a large-scale contribution from biomass, including advanced (second-generation) biofuels. However, land-based biofuel production has been associated with substantial land-use change emissions. Previous studies show a wide range of emission factors, often hiding the influence of spatial heterogeneity. Here we introduce a spatially explicit method for assessing the supply of advanced biofuels at different emission factors and present the results as emission curves. Dedicated crops grown on grasslands, savannahs and abandoned agricultural lands could provide 30 EJBiofuel yr-1 with emission factors less than 40 kg of CO2-equivalent (CO2e) emissions per GJBiofuel (for an 85-year time horizon). This increases to 100 EJBiofuel yr-1 for emission factors less than 60 kgCO2e GJBiofuel-1. While these results are uncertain and depend on model assumptions (including time horizon, spatial resolution, technology assumptions and so on), emission curves improve our understanding of the relationship between biofuel supply and its potential contribution to climate change mitigation while accounting for spatial heterogeneity.

  6. Spatial Downscaling of TRMM Precipitation using MODIS product in the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Cho, H.; Choi, M.

    2013-12-01

    Precipitation is a major driving force in the water cycle. But, it is difficult to provide spatially distributed precipitation data from isolated individual in situ. The Tropical Rainfall Monitoring Mission (TRMM) satellite can provide precipitation data with relatively coarse spatial resolution (0.25° scale) at daily basis. In order to overcome the coarse spatial resolution of TRMM precipitation products, we conducted a downscaling technique using a scaling parameter from the Moderate Resolution Imaging Spectroradiometers (MODIS) sensor. In this study, statistical relations between precipitation estimates derived from the TRMM satellite and the normalized difference vegetation index (NDVI) which is obtained from the MODIS sensor in TERRA satellite are found for different spatial scales on the Korean peninsula in northeast Asia. We obtain the downscaled precipitation mapping by regression equation between yearly TRMM precipitations values and annual average NDVI aggregating 1km to 25 degree. The downscaled precipitation is validated using time series of the ground measurements precipitation dataset provided by Korea Meteorological Organization (KMO) from 2002 to 2005. To improve the spatial downscaling of precipitation, we will conduct a study about correlation between precipitation and land surface temperature, perceptible water and other hydrological parameters.

  7. Evaluation of LIS-based Soil Moisture and Evapotranspiration in the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Jung, H. C.; Kang, D. H.; Kim, E. J.; Yoon, Y.; Kumar, S.; Peters-Lidard, C. D.; Baeck, S. H.; Hwang, E.; Chae, H.

    2017-12-01

    K-water is the South Korean national water agency. It is the government-funded private agency for water resource development that provides both civil and industrial water in S. Korea. K-water is interested in exploring how earth remote sensing and modeling can help their tasks. In this context, the NASA Land Information System (LIS) is implemented to simulate land surface processes in the Korean Peninsula. The Noah land surface model with Multi-Parameterization, version 3.6 (Noah-MP) is used to reproduce the water budget variables on a 1 km spatial resolution grid with a daily temporal resolution. The Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2) datasets is used to force the system. The rainfall data are spatially downscaled from high resolution WorldClim precipitation climatology. The other meteorological inputs (i.e. air temperature, humidity, pressure, winds, radiation) are also downscaled by statistical methods (i.e. lapse-rate, slope-aspect). Additional model experiments are conducted with local rainfall datasets and soil maps to replace the downscaled MERRA-2 precipitation field and the hybrid STATSGO/FAO soil texture, respectively. For the evaluation of model performance, daily soil moisture and evapotranspiration measurements at several stations are compared to the LIS-based outputs. This study demonstrates that application of NASA's LIS can enhance drought and flood prediction capabilities in South Asia and Korea.

  8. Improved MODIS aerosol retrieval in urban areas using a land classification approach and empirical orthogonal functions

    NASA Astrophysics Data System (ADS)

    Levitan, Nathaniel; Gross, Barry

    2016-10-01

    New, high-resolution aerosol products are required in urban areas to improve the spatial coverage of the products, in terms of both resolution and retrieval frequency. These new products will improve our understanding of the spatial variability of aerosols in urban areas and will be useful in the detection of localized aerosol emissions. Urban aerosol retrieval is challenging for existing algorithms because of the high spatial variability of the surface reflectance, indicating the need for improved urban surface reflectance models. This problem can be stated in the language of novelty detection as the problem of selecting aerosol parameters whose effective surface reflectance spectrum is not an outlier in some space. In this paper, empirical orthogonal functions, a reconstruction-based novelty detection technique, is used to perform single-pixel aerosol retrieval using the single angular and temporal sample provided by the MODIS sensor. The empirical orthogonal basis functions are trained for different land classes using the MODIS BRDF MCD43 product. Existing land classification products are used in training and aerosol retrieval. The retrieval is compared against the existing operational MODIS 3 KM Dark Target (DT) aerosol product and co-located AERONET data. Based on the comparison, our method allows for a significant increase in retrieval frequency and a moderate decrease in the known biases of MODIS urban aerosol retrievals.

  9. Tropical montane forest conversion affects spatial and temporal nitrogen dynamics in Kenyan headwater catchment

    NASA Astrophysics Data System (ADS)

    Jacobs, Suzanne; Weeser, Björn; Breuer, Lutz; Butterbach-Bahl, Klaus; Guzha, Alphonce; Rufino, Mariana

    2017-04-01

    Deforestation and land use change (LUC) are often stated as major contributors to changes in water quality, although other catchment characteristics such as topography, geology and climate can also play a role. Understanding how stream water chemistry is affected by LUC is essential for sustainable water management and land use planning. However, there is often a lack of reliable data, especially in less studied regions such as East Africa. This study focuses on three sub-catchments (27-36 km2) with different land use types (natural forest, smallholder agriculture and tea/tree plantations) nested in a 1023 km2 headwater catchment in the Mau Forest Complex, Kenya's largest closed-canopy indigenous tropical montane forest. In the past decades approx. 25% of the natural forest was lost due to land use change. We studied seasonal, diurnal and spatial patterns of total dissolved nitrogen (TDN), nitrate (NO3-N) and dissolved organic nitrogen (DON) using a combination of high-resolution in-situ measurements, bi-weekly stream water samples and spatial sampling campaigns. Multiple linear regression analysis of the spatial data indicates that land use shows a strong influence on TDN and nitrate, while DON is more influenced by precipitation. Highest TDN and nitrate concentrations are found in tea plantations, followed by smallholder agriculture and natural forest. This ranking does not change throughout the year, though concentrations of TDN and nitrate are respectively 27.6 and 25.4% lower in all catchments during the dry season. Maximum Overlap Discrete Wavelet Transform (MODWT) analysis of the high resolution nitrate data revealed a seasonal effect on diurnal patterns in the natural forest catchment, where the daily peak shifts from early morning in the wet season to mid-afternoon in the dry season. The smallholder and tea catchment do not exhibit clear diurnal patterns. The results suggest that land use affects dissolved nitrogen concentrations, leading to higher N export in catchments under managed land use. Furthermore, the changes in diurnal patterns in the forest catchment and absence of similar patterns in the other catchments are an indication that biogeochemical processes such as nitrification and denitrification in areas under different land use are affected as well. This could have implications for regional N-cycling.

  10. Validation and Temporal Analysis of Lai and Fapar Products Derived from Medium Resolution Sensor

    NASA Astrophysics Data System (ADS)

    Claverie, M.; Vermote, E. F.; Baret, F.; Weiss, M.; Hagolle, O.; Demarez, V.

    2012-12-01

    Leaf Area Index (LAI) and Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) have been defined as Essential Climate Variables. Many Earth surface monitoring applications are based on global estimation combined with a relatively high frequency. The medium spatial resolution sensors (MRS), such as SPOT-VGT, MODIS or MERIS, have been widely used to provide land surface products (mainly LAI and FAPAR) to the scientific community. These products require quality assessment and consistency. However, due to consistency of the ground measurements spatial sampling, the medium resolution is not appropriate for direct validation with in situ measurements sampling. It is thus more adequate to use high spatial resolution sensors which can integrate the spatial variability. The recent availability of combined high spatial (8 m) and temporal resolutions (daily) Formosat-2 data allows to evaluate the accuracy and the temporal consistency of medium resolution sensors products. In this study, we proposed to validate MRS products over a cropland area and to analyze their spatial and temporal consistency. As a matter of fact, this study belongs to the Stage 2 of the validation, as defined by the Land Product Validation sub-group of the Earth Observation Satellites. Reference maps, derived from the aggregation of Formosat-2 data (acquired during the 2006-2010 period over croplands in southwest of France), were compared with (i) two existing global biophysical variables products (GEOV1/VGT and MODIS-15 coll. 5), and (ii) a new product (MODdaily) derived from the inversion of PROSAIL radiative transfer model (EMMAH, INRA Avignon) applied on MODIS BRDF-corrected daily reflectance. Their uncertainty was calculated with 105 LAI and FAPAR reference maps, which uncertainties (22 % for LAI and 12% for FAPAR) were evaluated with in situ measurements performed over maize, sunflower and soybean. Inter-comparison of coarse resolution (0.05°) products showed that LAI and FAPAR have consistent phenology (Figure). The GEOLAND-2 showed the smoothest time series due to a 30-day composite, while MODdaily noise was satisfactory (<12%). The RMSE of LAI calculated for the period 2006-2010 were 0.46 for GEOV1/VGT, 0.19 for MODIS-15 and 0.16 for MODdaily. A significant overestimation (bias=0.43) of the LAI peak were observed for GEOV1/VGT products, while MOD-15 showed a small underestimation (bias=-0.14) of highest LAI. Finally, over a larger area (a quarter of France) covered by cropland, grassland and forest, the products displayed a good spatial consistency.; LAI 2006-2010 time-series of a coarse resolution pixel of cropland (extent in upper-left corner). Products are compared to Formosat-2 reference maps.

  11. Land cover mapping of Greater Mesoamerica using MODIS data

    USGS Publications Warehouse

    Giri, Chandra; Jenkins, Clinton N.

    2005-01-01

    A new land cover database of Greater Mesoamerica has been prepared using moderate resolution imaging spectroradiometer (MODIS, 500 m resolution) satellite data. Daily surface reflectance MODIS data and a suite of ancillary data were used in preparing the database by employing a decision tree classification approach. The new land cover data are an improvement over traditional advanced very high resolution radiometer (AVHRR) based land cover data in terms of both spatial and thematic details. The dominant land cover type in Greater Mesoamerica is forest (39%), followed by shrubland (30%) and cropland (22%). Country analysis shows forest as the dominant land cover type in Belize (62%), Cost Rica (52%), Guatemala (53%), Honduras (56%), Nicaragua (53%), and Panama (48%), cropland as the dominant land cover type in El Salvador (60.5%), and shrubland as the dominant land cover type in Mexico (37%). A three-step approach was used to assess the quality of the classified land cover data: (i) qualitative assessment provided good insight in identifying and correcting gross errors; (ii) correlation analysis of MODIS- and Landsat-derived land cover data revealed strong positive association for forest (r2 = 0.88), shrubland (r2 = 0.75), and cropland (r2 = 0.97) but weak positive association for grassland (r2 = 0.26); and (iii) an error matrix generated using unseen training data provided an overall accuracy of 77.3% with a Kappa coefficient of 0.73608. Overall, MODIS 500 m data and the methodology used were found to be quite useful for broad-scale land cover mapping of Greater Mesoamerica.

  12. Genetic particle filter application to land surface temperature downscaling

    NASA Astrophysics Data System (ADS)

    Mechri, Rihab; Ottlé, Catherine; Pannekoucke, Olivier; Kallel, Abdelaziz

    2014-03-01

    Thermal infrared data are widely used for surface flux estimation giving the possibility to assess water and energy budgets through land surface temperature (LST). Many applications require both high spatial resolution (HSR) and high temporal resolution (HTR), which are not presently available from space. It is therefore necessary to develop methodologies to use the coarse spatial/high temporal resolutions LST remote-sensing products for a better monitoring of fluxes at appropriate scales. For that purpose, a data assimilation method was developed to downscale LST based on particle filtering. The basic tenet of our approach is to constrain LST dynamics simulated at both HSR and HTR, through the optimization of aggregated temperatures at the coarse observation scale. Thus, a genetic particle filter (GPF) data assimilation scheme was implemented and applied to a land surface model which simulates prior subpixel temperatures. First, the GPF downscaling scheme was tested on pseudoobservations generated in the framework of the study area landscape (Crau-Camargue, France) and climate for the year 2006. The GPF performances were evaluated against observation errors and temporal sampling. Results show that GPF outperforms prior model estimations. Finally, the GPF method was applied on Spinning Enhanced Visible and InfraRed Imager time series and evaluated against HSR data provided by an Advanced Spaceborne Thermal Emission and Reflection Radiometer image acquired on 26 July 2006. The temperatures of seven land cover classes present in the study area were estimated with root-mean-square errors less than 2.4 K which is a very promising result for downscaling LST satellite products.

  13. Conservation businesses and conservation planning in a biological diversity hotspot.

    PubMed

    Di Minin, Enrico; Macmillan, Douglas Craig; Goodman, Peter Styan; Escott, Boyd; Slotow, Rob; Moilanen, Atte

    2013-08-01

    The allocation of land to biological diversity conservation competes with other land uses and the needs of society for development, food, and extraction of natural resources. Trade-offs between biological diversity conservation and alternative land uses are unavoidable, given the realities of limited conservation resources and the competing demands of society. We developed a conservation-planning assessment for the South African province of KwaZulu-Natal, which forms the central component of the Maputaland-Pondoland-Albany biological diversity hotspot. Our objective was to enhance biological diversity protection while promoting sustainable development and providing spatial guidance in the resolution of potential policy conflicts over priority areas for conservation at risk of transformation. The conservation-planning assessment combined spatial-distribution models for 646 conservation features, spatial economic-return models for 28 alternative land uses, and spatial maps for 4 threats. Nature-based tourism businesses were competitive with other land uses and could provide revenues of >US$60 million/year to local stakeholders and simultaneously help meeting conservation goals for almost half the conservation features in the planning region. Accounting for opportunity costs substantially decreased conflicts between biological diversity, agricultural use, commercial forestry, and mining. Accounting for economic benefits arising from conservation and reducing potential policy conflicts with alternative plans for development can provide opportunities for successful strategies that combine conservation and sustainable development and facilitate conservation action. © 2013 Society for Conservation Biology.

  14. [Spatial scale effect of urban land use landscape pattern in Shanghai City].

    PubMed

    Xu, Li-Hua; Yue, Wen Ze; Cao, Yu

    2007-12-01

    Based on geographic information system (GIS) and remote sensing (RS) techniques, the landscape classes of urban land use in Shanghai City were extracted from SPOT images with 5 m spatial resolution in 2002, and then, the classified data were applied to quantitatively explore the change patterns of several basic landscape metrics at different scales. The results indicated that landscape metrics were sensitive to grain- and extent variance. Urban landscape pattern was spatially dependent. In other words, different landscape metrics showed different responses to scale. The resolution of 40 m was an intrinsic observing scale for urban landscape in Shanghai City since landscape metrics showed random characteristics while the grain was less than 40 m. The extent of 24 km was a symbol scale in a series of extents, which was consistent with the boundary between urban built-up area and suburban area in Shanghai City. As a result, the extent of 12 km away from urban center would be an intrinsic handle scale for urban landscape in Shanghai City. However, due to the complexity of urban structure and asymmetry of urban spatial expansion, the intrinsic handle scale was not regular extent, and the square with size of 24 km was just an approximate intrinsic extent for Shanghai City.

  15. Seasonal land-cover regions of the United States

    USGS Publications Warehouse

    Loveland, Thomas R.; Merchant, James W.; Brown, Jesslyn F.; Ohlen, Donald O.; Reed, Bradley C.; Olson, Paul; Hutchinson, John

    1995-01-01

    Global-change investigations have been hindered by deficiencies in the availability and quality of land-cover data. The U.S. Geological Survey and the University of Nebraska-Lincoln have collaborated on the development of a new approach to land-cover characterization that attempts to address requirements of the global-change research community and others interested in regional patterns of land cover. An experimental 1 -kilometer-resolution database of land-cover characteristics for the coterminous U.S. has been prepared to test and evaluate the approach. Using multidate Advanced Very High Resolution Radiometer (AVHRR) satellite data complemented by elevation, climate, ecoregions, and other digital spatial datasets, the authors define 152, seasonal land-cover regions. The regionalization is based on a taxonomy of areas with respect to data on land cover, seasonality or phenology, and relative levels of primary production. The resulting database consists of descriptions of the vegetation, land cover, and seasonal, spectral, and site characteristics for each region. These data are used in the construction of an illustrative 1:7,500,000-scaIe map of the seasonal land-cover regions as well as of smaller-scale maps portraying general land cover and seasonality. The seasonal land-cover characteristics database can also be tailored to provide a broad range of other landscape parameters useful in national and global-scale environmental modeling and assessment.

  16. Identifying landscape features associated with Rift Valley fever virus transmission, Ferlo region, Senegal, using very high spatial resolution satellite imagery.

    PubMed

    Soti, Valérie; Chevalier, Véronique; Maura, Jonathan; Bégué, Agnès; Lelong, Camille; Lancelot, Renaud; Thiongane, Yaya; Tran, Annelise

    2013-03-01

    Dynamics of most of vector-borne diseases are strongly linked to global and local environmental changes. Landscape changes are indicators of human activities or natural processes that are likely to modify the ecology of the diseases. Here, a landscape approach developed at a local scale is proposed for extracting mosquito favourable biotopes, and for testing ecological parameters when identifying risk areas of Rift Valley fever (RVF) transmission. The study was carried out around Barkedji village, Ferlo region, Senegal. In order to test whether pond characteristics may influence the density and the dispersal behaviour of RVF vectors, and thus the spatial variation in RVFV transmission, we used a very high spatial resolution remote sensing image (2.4 m resolution) provided by the Quickbird sensor to produce a detailed land-cover map of the study area. Based on knowledge of vector and disease ecology, seven landscape attributes were defined at the pond level and computed from the land-cover map. Then, the relationships between landscape attributes and RVF serologic incidence rates in small ruminants were analyzed through a beta-binomial regression. Finally, the best statistical model according to the Akaike Information Criterion corrected for small samples (AICC), was used to map areas at risk for RVF. Among the derived landscape variables, the vegetation density index (VDI) computed within a 500 m buffer around ponds was positively correlated with serologic incidence (p<0.001), suggesting that the risk of RVF transmission was higher in the vicinity of ponds surrounded by a dense vegetation cover. The final risk map of RVF transmission displays a heterogeneous spatial distribution, corroborating previous findings from the same area. Our results highlight the potential of very high spatial resolution remote sensing data for identifying environmental risk factors and mapping RVF risk areas at a local scale.

  17. Identifying landscape features associated with Rift Valley fever virus transmission, Ferlo region, Senegal, using very high spatial resolution satellite imagery

    PubMed Central

    2013-01-01

    Introduction Dynamics of most of vector-borne diseases are strongly linked to global and local environmental changes. Landscape changes are indicators of human activities or natural processes that are likely to modify the ecology of the diseases. Here, a landscape approach developed at a local scale is proposed for extracting mosquito favourable biotopes, and for testing ecological parameters when identifying risk areas of Rift Valley fever (RVF) transmission. The study was carried out around Barkedji village, Ferlo region, Senegal. Methods In order to test whether pond characteristics may influence the density and the dispersal behaviour of RVF vectors, and thus the spatial variation in RVFV transmission, we used a very high spatial resolution remote sensing image (2.4 m resolution) provided by the Quickbird sensor to produce a detailed land-cover map of the study area. Based on knowledge of vector and disease ecology, seven landscape attributes were defined at the pond level and computed from the land-cover map. Then, the relationships between landscape attributes and RVF serologic incidence rates in small ruminants were analyzed through a beta-binomial regression. Finally, the best statistical model according to the Akaike Information Criterion corrected for small samples (AICC), was used to map areas at risk for RVF. Results Among the derived landscape variables, the vegetation density index (VDI) computed within a 500 m buffer around ponds was positively correlated with serologic incidence (p<0.001), suggesting that the risk of RVF transmission was higher in the vicinity of ponds surrounded by a dense vegetation cover. The final risk map of RVF transmission displays a heterogeneous spatial distribution, corroborating previous findings from the same area. Conclusions Our results highlight the potential of very high spatial resolution remote sensing data for identifying environmental risk factors and mapping RVF risk areas at a local scale. PMID:23452759

  18. Application of Modis Data to Assess the Latest Forest Cover Changes of Sri Lanka

    NASA Astrophysics Data System (ADS)

    Perera, K.; Herath, S.; Apan, A.; Tateishi, R.

    2012-07-01

    Assessing forest cover of Sri Lanka is becoming important to lower the pressure on forest lands as well as man-elephant conflicts. Furthermore, the land access to north-east Sri Lanka after the end of 30 years long civil war has increased the need of regularly updated land cover information for proper planning. This study produced an assessment of the forest cover of Sri Lanka using two satellite data based maps within 23 years of time span. For the old forest cover map, the study used one of the first island-wide digital land cover classification produced by the main author in 1988. The old land cover classification was produced at 80 m spatial resolution, using Landsat MSS data. A previously published another study by the author has investigated the application feasibility of MODIS and Landsat MSS imagery for a selected sub-section of Sri Lanka to identify the forest cover changes. Through the light of these two studies, the assessment was conducted to investigate the application possibility of MODIS 250 m over a small island like Sri Lanka. The relation between the definition of forest in the study and spatial resolution of the used satellite data sets were considered since the 2012 map was based on MODIS data. The forest cover map of 1988 was interpolated into 250 m spatial resolution to integrate with the GIS data base. The results demonstrated the advantages as well as disadvantages of MODIS data in a study at this scale. The successful monitoring of forest is largely depending on the possibility to update the field conditions at regular basis. Freely available MODIS data provides a very valuable set of information of relatively large green patches on the ground at relatively real-time basis. Based on the changes of forest cover from 1988 to 2012, the study recommends the use of MODIS data as a resalable method to forest assessment and to identify hotspots to be re-investigated. It's noteworthy to mention the possibility of uncounted small isolated pockets of forest, or sub-pixel size forest patches when MODIS 250 m x 250 m data used in small regions.

  19. Unmanned aerial systems for forest reclamation monitoring: throwing balloons in the air

    NASA Astrophysics Data System (ADS)

    Andrade, Rita; Vaz, Eric; Panagopoulos, Thomas; Guerrero, Carlos

    2014-05-01

    Wildfires are a recurrent phenomenon in Mediterranean landscapes, deteriorating environment and ecosystems, calling out for adequate land management. Monitoring burned areas enhances our abilities to reclaim them. Remote sensing has become an increasingly important tool for environmental assessment and land management. It is fast, non-intrusive, and provides continuous spatial coverage. This paper reviews remote sensing methods, based on space-borne, airborne or ground-based multispectral imagery, for monitoring the biophysical properties of forest areas for site specific management. The usage of satellite imagery for land use management has been frequent in the last decades, it is of great use to determine plants health and crop conditions, allowing a synergy between the complexity of environment, anthropogenic landscapes and multi-temporal understanding of spatial dynamics. Aerial photography increments on spatial resolution, nevertheless it is heavily dependent on airborne availability as well as cost. Both these methods are required for wide areas management and policy planning. Comprising an active and high resolution imagery source, that can be brought at a specific instance, reducing cost while maintaining locational flexibility is of utmost importance for local management. In this sense, unmanned aerial vehicles provide maximum flexibility with image collection, they can incorporate thermal and multispectral sensors, however payload and engine operation time limit flight time. Balloon remote sensing is becoming increasingly sought after for site specific management, catering rapid digital analysis, permitting greater control of the spatial resolution as well as of datasets collection in a given time. Different wavelength sensors may be used to map spectral variations in plant growth, monitor water and nutrient stress, assess yield and plant vitality during different stages of development. Proximity could be an asset when monitoring forest plants vitality. Early predictions of re-vegetation success facilitate precise and timely diagnosis of stress, thus remedial actions can be taken at localized detail.

  20. Choice of satellite imagery and attribution of changes to disturbance type strongly affects forest carbon balance estimates.

    PubMed

    Mascorro, Vanessa S; Coops, Nicholas C; Kurz, Werner A; Olguín, Marcela

    2015-12-01

    Remote sensing products can provide regular and consistent observations of the Earth´s surface to monitor and understand the condition and change of forest ecosystems and to inform estimates of terrestrial carbon dynamics. Yet, challenges remain to select the appropriate satellite data source for ecosystem carbon monitoring. In this study we examine the impacts of three attributes of four remote sensing products derived from Landsat, Landsat-SPOT, and MODIS satellite imagery on estimates of greenhouse gas emissions and removals: (1) the spatial resolution (30 vs. 250 m), (2) the temporal resolution (annual vs. multi-year observations), and (3) the attribution of forest cover changes to disturbance types using supplementary data. With a spatially-explicit version of the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3), we produced annual estimates of carbon fluxes from 2002 to 2010 over a 3.2 million ha forested region in the Yucatan Peninsula, Mexico. The cumulative carbon balance for the 9-year period differed by 30.7 million MgC (112.5 million Mg CO 2e ) among the four remote sensing products used. The cumulative difference between scenarios with and without attribution of disturbance types was over 5 million Mg C for a single Landsat scene. Uncertainty arising from activity data (rates of land-cover changes) can be reduced by, in order of priority, increasing spatial resolution from 250 to 30 m, obtaining annual observations of forest disturbances, and by attributing land-cover changes by disturbance type. Even missing a single year in the land-cover observations can lead to substantial errors in ecosystems with rapid forest regrowth, such as the Yucatan Peninsula.

  1. Locally adaptive, spatially explicit projection of US population for 2030 and 2050.

    PubMed

    McKee, Jacob J; Rose, Amy N; Bright, Edward A; Huynh, Timmy; Bhaduri, Budhendra L

    2015-02-03

    Localized adverse events, including natural hazards, epidemiological events, and human conflict, underscore the criticality of quantifying and mapping current population. Building on the spatial interpolation technique previously developed for high-resolution population distribution data (LandScan Global and LandScan USA), we have constructed an empirically informed spatial distribution of projected population of the contiguous United States for 2030 and 2050, depicting one of many possible population futures. Whereas most current large-scale, spatially explicit population projections typically rely on a population gravity model to determine areas of future growth, our projection model departs from these by accounting for multiple components that affect population distribution. Modeled variables, which included land cover, slope, distances to larger cities, and a moving average of current population, were locally adaptive and geographically varying. The resulting weighted surface was used to determine which areas had the greatest likelihood for future population change. Population projections of county level numbers were developed using a modified version of the US Census's projection methodology, with the US Census's official projection as the benchmark. Applications of our model include incorporating multiple various scenario-driven events to produce a range of spatially explicit population futures for suitability modeling, service area planning for governmental agencies, consequence assessment, mitigation planning and implementation, and assessment of spatially vulnerable populations.

  2. Soil moisture downscaling using a simple thermal based proxy

    NASA Astrophysics Data System (ADS)

    Peng, Jian; Loew, Alexander; Niesel, Jonathan

    2016-04-01

    Microwave remote sensing has been largely applied to retrieve soil moisture (SM) from active and passive sensors. The obvious advantage of microwave sensor is that SM can be obtained regardless of atmospheric conditions. However, existing global SM products only provide observations at coarse spatial resolutions, which often hamper their applications in regional hydrological studies. Therefore, various downscaling methods have been proposed to enhance the spatial resolution of satellite soil moisture products. The aim of this study is to investigate the validity and robustness of a simple Vegetation Temperature Condition Index (VTCI) downscaling scheme over different climates and regions. Both polar orbiting (MODIS) and geostationary (MSG SEVIRI) satellite data are used to improve the spatial resolution of the European Space Agency's Water Cycle Multi-mission Observation Strategy and Climate Change Initiative (ESA CCI) soil moisture, which is a merged product based on both active and passive microwave observations. The results from direct validation against soil moisture in-situ measurements, spatial pattern comparison, as well as seasonal and land use analyses show that the downscaling method can significantly improve the spatial details of CCI soil moisture while maintain the accuracy of CCI soil moisture. The application of the scheme with different satellite platforms and over different regions further demonstrate the robustness and effectiveness of the proposed method. Therefore, the VTCI downscaling method has the potential to facilitate relevant hydrological applications that require high spatial and temporal resolution soil moisture.

  3. Mapping Land Cover and Land Use Changes in the Congo Basin Forests with Optical Satellite Remote Sensing: a Pilot Project Exploring Methodologies that Improve Spatial Resolution and Map Accuracy

    NASA Astrophysics Data System (ADS)

    Molinario, G.; Baraldi, A.; Altstatt, A. L.; Nackoney, J.

    2011-12-01

    The University of Maryland has been a USAID Central Africa Rregional Program for the Environment (CARPE) cross-cutting partner for many years, providing remote sensing derived information on forest cover and forest cover changes in support of CARPE's objectives of diminishing forest degradation, loss and biodiversity loss as a result of poor or inexistent land use planning strategies. Together with South Dakota State University, Congo Basin-wide maps have been provided that map forest cover loss at a maximum of 60m resolution, using Landsat imagery and higher resolution imagery for algorithm training and validation. However, to better meet the needs within the CARPE Landscapes, which call for higher resolution, more accurate land cover change maps, UMD has been exploring the use of the SIAM automatic spectral -rule classifier together with pan-sharpened Landsat data (15m resolution) and Very High Resolution imagery from various sources. The pilot project is being developed in collaboration with the African Wildlife Foundation in the Maringa Lopori Wamba CARPE Landscape. If successful in the future this methodology will make the creation of high resolution change maps faster and easier, making it accessible to other entities in the Congo Basin that need accurate land cover and land use change maps in order, for example, to create sustainable land use plans, conserve biodiversity and resources and prepare Reducing Emissions from forest Degradation and Deforestation (REDD) Measurement, Reporting and Verification (MRV) projects. The paper describes the need for higher resolution land cover change maps that focus on forest change dynamics such as the cycling between primary forests, secondary forest, agriculture and other expanding and intensifying land uses in the Maringa Lopori Wamba CARPE Landscape in the Equateur Province of the Democratic Republic of Congo. The Methodology uses the SIAM remote sensing imagery automatic spectral rule classifier, together with pan-sharpened Landsat imagery with 15m resolution and Very High Resolution imagery from different sensors, obtained from the Department of Defense database that was recently opened to NASA and its Earth Observation partners. Particular emphasis is placed on the detection of agricultural fields and their expansion in primary forests or intensification in secondary forests and fallow fields, as this is the primary driver of deforestation in this area. Fields in this area area also of very small size and irregular shapes, often partly obscured by neighboring forest canopy, hence the technical challenge of correctly detecting them and tracking them through time. Finally, the potential for use of this methodology in other regions where information on land cover changes is needed for land use sustainability planning, is also addressed.

  4. The FORE-SCE model: a practical approach for projecting land cover change using scenario-based modeling

    USGS Publications Warehouse

    Sohl, Terry L.; Sayler, Kristi L.; Drummond, Mark A.; Loveland, Thomas R.

    2007-01-01

    A wide variety of ecological applications require spatially explicit, historic, current, and projected land use and land cover data. The U.S. Land Cover Trends project is analyzing contemporary (1973–2000) land-cover change in the conterminous United States. The newly developed FORE-SCE model used Land Cover Trends data and theoretical, statistical, and deterministic modeling techniques to project future land cover change through 2020 for multiple plausible scenarios. Projected proportions of future land use were initially developed, and then sited on the lands with the highest potential for supporting that land use and land cover using a statistically based stochastic allocation procedure. Three scenarios of 2020 land cover were mapped for the western Great Plains in the US. The model provided realistic, high-resolution, scenario-based land-cover products suitable for multiple applications, including studies of climate and weather variability, carbon dynamics, and regional hydrology.

  5. Upscaling surface energy fluxes over the North Slope of Alaska using airborne eddy-covariance measurements and environmental response functions

    NASA Astrophysics Data System (ADS)

    Serafimovich, Andrei; Metzger, Stefan; Hartmann, Jörg; Kohnert, Katrin; Zona, Donatella; Sachs, Torsten

    2018-03-01

    The objective of this study was to upscale airborne flux measurements of sensible heat and latent heat and to develop high resolution flux maps. In order to support the evaluation of coupled atmospheric/land-surface models we investigated spatial patterns of energy fluxes in relation to land-surface properties. We used airborne eddy-covariance measurements acquired by the POLAR 5 research aircraft in June-July 2012 to analyze surface fluxes. Footprint-weighted surface properties were then related to 21 529 sensible heat flux observations and 25 608 latent heat flux observations using both remote sensing and modelled data. A boosted regression tree technique was used to estimate environmental response functions between spatially and temporally resolved flux observations and corresponding biophysical and meteorological drivers. In order to improve the spatial coverage and spatial representativeness of energy fluxes we used relationships extracted across heterogeneous Arctic landscapes to infer high-resolution surface energy flux maps, thus directly upscaling the observational data. These maps of projected sensible heat and latent heat fluxes were used to assess energy partitioning in northern ecosystems and to determine the dominant energy exchange processes in permafrost areas. This allowed us to estimate energy fluxes for specific types of land cover, taking into account meteorological conditions. Airborne and modelled fluxes were then compared with measurements from an eddy-covariance tower near Atqasuk. Our results are an important contribution for the advanced, scale-dependent quantification of surface energy fluxes and provide new insights into the processes affecting these fluxes for the main vegetation types in high-latitude permafrost areas.

  6. The Utility of the Real-Time NASA Land Information System Data for Drought Monitoring Applications

    NASA Technical Reports Server (NTRS)

    White, Kristopher D.; Case, Jonathan L.

    2013-01-01

    Measurements of soil moisture are a crucial component for the proper monitoring of drought conditions. The large spatial variability of soil moisture complicates the problem. Unfortunately, in situ soil moisture observing networks typically consist of sparse point observations, and conventional numerical model analyses of soil moisture used to diagnose drought are of coarse spatial resolution. Decision support systems such as the U.S. Drought Monitor contain drought impact resolution on sub-county scales, which may not be supported by the existing soil moisture networks or analyses. The NASA Land Information System, which is run with 3 km grid spacing over the eastern United States, has demonstrated utility for monitoring soil moisture. Some of the more useful output fields from the Land Information System are volumetric soil moisture in the 0-10 cm and 40-100 cm layers, column-integrated relative soil moisture, and the real-time green vegetation fraction derived from MODIS (Moderate Resolution Imaging Spectroradiometer) swath data that are run within the Land Information System in place of the monthly climatological vegetation fraction. While these and other variables have primarily been used in local weather models and other operational forecasting applications at National Weather Service offices, the use of the Land Information System for drought monitoring has demonstrated utility for feedback to the Drought Monitor. Output from the Land Information System is currently being used at NWS Huntsville to assess soil moisture, and to provide input to the Drought Monitor. Since feedback to the Drought Monitor takes place on a weekly basis, weekly difference plots of column-integrated relative soil moisture are being produced by the NASA Short-term Prediction Research and Transition Center and analyzed to facilitate the process. In addition to the Drought Monitor, these data are used to assess drought conditions for monthly feedback to the Alabama Drought Monitoring and Impact Group and the Tennessee Drought Task Force, which are comprised of federal, state, and local agencies and other water resources professionals.

  7. Moving across scales: Challenges and opportunities in upscaling carbon fluxes

    NASA Astrophysics Data System (ADS)

    Naithani, K. J.

    2016-12-01

    Light use efficiency (LUE) type models are commonly used to upscale terrestrial C fluxes and estimate regional and global C budgets. Model parameters are often estimated for each land cover type (LCT) using flux observations from one or more eddy covariance towers, and then spatially extrapolated by integrating land cover, meteorological, and remotely sensed data. Decisions regarding the type of input data (spatial resolution of land cover data, spatial and temporal length of flux data), representation of landscape structure (land use vs. disturbance regime), and the type of modeling framework (common risk vs. hierarchical) all influence the estimates CO2 fluxes and the associated uncertainties, but are rarely considered together. This work presents a synthesis of past and present efforts for upscaling CO2 fluxes and associated uncertainties in the ChEAS (Chequamegon Ecosystem Atmosphere Study) region in northern Wisconsin and the Upper Peninsula of Michigan. This work highlights two key future research needs. First, the characterization of uncertainties due to all of the abovementioned factors reflects only a (hopefully relevant) subset the overall uncertainties. Second, interactions among these factors are likely critical, but are poorly represented by the tower network at landscape scales. Yet, results indicate significant spatial and temporal heterogeneity of uncertainty in CO2 fluxes which can inform carbon management efforts and prioritize data needs.

  8. Integrating Statistical and Expert Knowledge to Develop Phenoregions for the Continental United States

    NASA Astrophysics Data System (ADS)

    Hoffman, F. M.; Kumar, J.; Hargrove, W. W.

    2013-12-01

    Vegetated ecosystems typically exhibit unique phenological behavior over the course of a year, suggesting that remotely sensed land surface phenology may be useful for characterizing land cover and ecoregions. However, phenology is also strongly influenced by temperature and water stress; insect, fire, and storm disturbances; and climate change over seasonal, interannual, decadal and longer time scales. Normalized difference vegetation index (NDVI), a remotely sensed measure of greenness, provides a useful proxy for land surface phenology. We used NDVI for the conterminous United States (CONUS) derived from the Moderate Resolution Spectroradiometer (MODIS) at 250 m resolution to develop phenological signatures of emergent ecological regimes called phenoregions. By applying a unsupervised, quantitative data mining technique to NDVI measurements for every eight days over the entire MODIS record, annual maps of phenoregions were developed. This technique produces a prescribed number of prototypical phenological states to which every location belongs in any year. To reduce the impact of short-term disturbances, we derived a single map of the mode of annual phenological states for the CONUS, assigning each map cell to the state with the largest integrated NDVI in cases where multiple states tie for the highest frequency. Since the data mining technique is unsupervised, individual phenoregions are not associated with an ecologically understandable label. To add automated supervision to the process, we applied the method of Mapcurves, developed by Hargrove and Hoffman, to associate individual phenoregions with labeled polygons in expert-derived maps of biomes, land cover, and ecoregions. Utilizing spatial overlays with multiple expert-derived maps, this "label-stealing"' technique exploits the knowledge contained in a collection of maps to identify biome characteristics of our statistically derived phenoregions. Generalized land cover maps were produced by combining phenoregions according to their degree of spatial coincidence with expert-developed land cover or biome regions. Goodness-of-fit maps, which show the strength the spatial correspondence, were also generated.

  9. Towards Improved High-Resolution Land Surface Hydrologic Reanalysis Using a Physically-Based Hydrologic Model and Data Assimilation

    NASA Astrophysics Data System (ADS)

    Shi, Y.; Davis, K. J.; Zhang, F.; Duffy, C.; Yu, X.

    2014-12-01

    A coupled physically based land surface hydrologic model, Flux-PIHM, has been developed by incorporating a land surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model. Flux-PIHM has been implemented and manually calibrated at the Shale Hills watershed (0.08 km2) in central Pennsylvania. Model predictions of discharge, point soil moisture, point water table depth, sensible and latent heat fluxes, and soil temperature show good agreement with observations. When calibrated only using discharge, and soil moisture and water table depth at one point, Flux-PIHM is able to resolve the observed 101 m scale soil moisture pattern at the Shale Hills watershed when an appropriate map of soil hydraulic properties is provided. A Flux-PIHM data assimilation system has been developed by incorporating EnKF for model parameter and state estimation. Both synthetic and real data assimilation experiments have been performed at the Shale Hills watershed. Synthetic experiment results show that the data assimilation system is able to simultaneously provide accurate estimates of multiple parameters. In the real data experiment, the EnKF estimated parameters and manually calibrated parameters yield similar model performances, but the EnKF method significantly decreases the time and labor required for calibration. The data requirements for accurate Flux-PIHM parameter estimation via data assimilation using synthetic observations have been tested. Results show that by assimilating only in situ outlet discharge, soil water content at one point, and the land surface temperature averaged over the whole watershed, the data assimilation system can provide an accurate representation of watershed hydrology. Observations of these key variables are available with national and even global spatial coverage (e.g., MODIS surface temperature, SMAP soil moisture, and the USGS gauging stations). National atmospheric reanalysis products, soil databases and land cover databases (e.g., NLDAS-2, SSURGO, NLCD) can provide high resolution forcing and input data. Therefore the Flux-PIHM data assimilation system could be readily expanded to other watersheds to provide regional scale land surface and hydrologic reanalysis with high spatial temporal resolution.

  10. WILDLAND FIRE EMISSION MODELING FOR CMAQ: AN UPDATE

    EPA Science Inventory

    This paper summarizes recent efforts to improve the methods used for modeling wild land fire emissions both for retrospective modeling and real-time forecasting. These improvements focus on the temporal and spatial resolution of the activity data as well as the methods to estimat...

  11. Using Remote Sensing and Radar Meteorological Data to Support Watershed Assessments Comprising Integrated Environmental Modeling

    EPA Science Inventory

    Meteorological (MET) data required by watershed assessments comprising Integrated Environmental Modeling (IEM) traditionally have been provided by land-based weather (gauge) stations, although these data may not be the most appropriate for adequate spatial and temporal resolution...

  12. An approach for mapping large-area impervious surfaces: Synergistic use of Landsat-7 ETM+ and high spatial resolution imagery

    USGS Publications Warehouse

    Yang, Limin; Huang, Chengquan; Homer, Collin G.; Wylie, Bruce K.; Coan, Michael

    2003-01-01

    A wide range of urban ecosystem studies, including urban hydrology, urban climate, land use planning, and resource management, require current and accurate geospatial data of urban impervious surfaces. We developed an approach to quantify urban impervious surfaces as a continuous variable by using multisensor and multisource datasets. Subpixel percent impervious surfaces at 30-m resolution were mapped using a regression tree model. The utility, practicality, and affordability of the proposed method for large-area imperviousness mapping were tested over three spatial scales (Sioux Falls, South Dakota, Richmond, Virginia, and the Chesapeake Bay areas of the United States). Average error of predicted versus actual percent impervious surface ranged from 8.8 to 11.4%, with correlation coefficients from 0.82 to 0.91. The approach is being implemented to map impervious surfaces for the entire United States as one of the major components of the circa 2000 national land cover database.

  13. Histogram Curve Matching Approaches for Object-based Image Classification of Land Cover and Land Use

    PubMed Central

    Toure, Sory I.; Stow, Douglas A.; Weeks, John R.; Kumar, Sunil

    2013-01-01

    The classification of image-objects is usually done using parametric statistical measures of central tendency and/or dispersion (e.g., mean or standard deviation). The objectives of this study were to analyze digital number histograms of image objects and evaluate classifications measures exploiting characteristic signatures of such histograms. Two histograms matching classifiers were evaluated and compared to the standard nearest neighbor to mean classifier. An ADS40 airborne multispectral image of San Diego, California was used for assessing the utility of curve matching classifiers in a geographic object-based image analysis (GEOBIA) approach. The classifications were performed with data sets having 0.5 m, 2.5 m, and 5 m spatial resolutions. Results show that histograms are reliable features for characterizing classes. Also, both histogram matching classifiers consistently performed better than the one based on the standard nearest neighbor to mean rule. The highest classification accuracies were produced with images having 2.5 m spatial resolution. PMID:24403648

  14. Spatial resolution enhancement of satellite image data using fusion approach

    NASA Astrophysics Data System (ADS)

    Lestiana, H.; Sukristiyanti

    2018-02-01

    Object identification using remote sensing data has a problem when the spatial resolution is not in accordance with the object. The fusion approach is one of methods to solve the problem, to improve the object recognition and to increase the objects information by combining data from multiple sensors. The application of fusion image can be used to estimate the environmental component that is needed to monitor in multiple views, such as evapotranspiration estimation, 3D ground-based characterisation, smart city application, urban environments, terrestrial mapping, and water vegetation. Based on fusion application method, the visible object in land area has been easily recognized using the method. The variety of object information in land area has increased the variation of environmental component estimation. The difficulties in recognizing the invisible object like Submarine Groundwater Discharge (SGD), especially in tropical area, might be decreased by the fusion method. The less variation of the object in the sea surface temperature is a challenge to be solved.

  15. A Real-Time MODIS Vegetation Composite for Land Surface Models and Short-Term Forecasting

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; LaFontaine, Frank J.; Kumar, Sujay V.; Jedlovec, Gary J.

    2011-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center is producing real-time, 1- km resolution Normalized Difference Vegetation Index (NDVI) gridded composites over a Continental U.S. domain. These composites are updated daily based on swath data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the polar orbiting NASA Aqua and Terra satellites, with a product time lag of about one day. A simple time-weighting algorithm is applied to the NDVI swath data that queries the previous 20 days of data to ensure a continuous grid of data populated at all pixels. The daily composites exhibited good continuity both spatially and temporally during June and July 2010. The composites also nicely depicted high greenness anomalies that resulted from significant rainfall over southwestern Texas, Mexico, and New Mexico during July due to early-season tropical cyclone activity. The SPoRT Center is in the process of computing greenness vegetation fraction (GVF) composites from the MODIS NDVI data at the same spatial and temporal resolution for use in the NASA Land Information System (LIS). The new daily GVF dataset would replace the monthly climatological GVF database (based on Advanced Very High Resolution Radiometer [AVHRR] observations from 1992-93) currently available to the Noah land surface model (LSM) in both LIS and the public version of the Weather Research and Forecasting (WRF) model. The much higher spatial resolution (1 km versus 0.15 degree) and daily updates based on real-time satellite observations have the capability to greatly improve the simulation of the surface energy budget in the Noah LSM within LIS and WRF. Once code is developed in LIS to incorporate the daily updated GVFs, the SPoRT Center will conduct simulation sensitivity experiments to quantify the impacts and improvements realized by the MODIS real-time GVF data. This presentation will describe the methodology used to develop the 1-km MODIS NDVI composites and show sample output from summer 2010, compare the MODIS GVF data to the AVHRR monthly climatology, and illustrate the sensitivity of the Noah LSM within LIS and/or the coupled LIS/WRF system to the new MODIS GVF dataset.

  16. Impact of land cover data on the simulation of urban heat island for Berlin using WRF coupled with bulk approach of Noah-LSM

    NASA Astrophysics Data System (ADS)

    Li, Huidong; Wolter, Michael; Wang, Xun; Sodoudi, Sahar

    2017-09-01

    Urban-rural difference of land cover is the key determinant of urban heat island (UHI). In order to evaluate the impact of land cover data on the simulation of UHI, a comparative study between up-to-date CORINE land cover (CLC) and Urban Atlas (UA) with fine resolution (100 and 10 m) and old US Geological Survey (USGS) data with coarse resolution (30 s) was conducted using the Weather Research and Forecasting model (WRF) coupled with bulk approach of Noah-LSM for Berlin. The comparison between old data and new data partly reveals the effect of urbanization on UHI and the historical evolution of UHI, while the comparison between different resolution data reveals the impact of resolution of land cover on the simulation of UHI. Given the high heterogeneity of urban surface and the fine-resolution land cover data, the mosaic approach was implemented in this study to calculate the sub-grid variability in land cover compositions. Results showed that the simulations using UA and CLC data perform better than that using USGS data for both air and land surface temperatures. USGS-based simulation underestimates the temperature, especially in rural areas. The longitudinal variations of both temperature and land surface temperature show good agreement with urban fraction for all the three simulations. To better study the comprehensive characteristic of UHI over Berlin, the UHI curves (UHIC) are developed for all the three simulations based on the relationship between temperature and urban fraction. CLC- and UA-based simulations show smoother UHICs than USGS-based simulation. The simulation with old USGS data obviously underestimates the extent of UHI, while the up-to-date CLC and UA data better reflect the real urbanization and simulate the spatial distribution of UHI more accurately. However, the intensity of UHI simulated by CLC and UA data is not higher than that simulated by USGS data. The simulated air temperature is not dominated by the land cover as much as the land surface temperature, as air temperature is also affected by air advection.

  17. Measurements from an Aerial Vehicle: A New Tool for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Wright, Henry S.; Levine, Joel S.; Croom, Mark A.; Edwards, William C.; Qualls, Garry D.; Gasbarre, Joseph F.

    2004-01-01

    Aerial vehicles fill a unique planetary science measurement gap, that of regional-scale, near-surface observation, while providing a fresh perspective for potential discovery. Aerial vehicles used in planetary exploration bridge the scale and resolution measurement gaps between orbiters (global perspective with limited spatial resolution) and landers (local perspective with high spatial resolution) thus complementing and extending orbital and landed measurements. Planetary aerial vehicles can also survey scientifically interesting terrain that is inaccessible or hazardous to landed missions. The use of aerial assets for performing observations on Mars, Titan, or Venus will enable direct measurements and direct follow-ons to recent discoveries. Aerial vehicles can be used for remote sensing of the interior, surface and atmosphere of Mars, Venus and Titan. Types of aerial vehicles considered are airplane "heavier than air" and airships and balloons "lighter than air". Interdependencies between the science measurements, science goals and objectives, and platform implementation illustrate how the proper balance of science, engineering, and cost, can be achieved to allow for a successful mission. Classification of measurement types along with how those measurements resolve science questions and how these instruments are accommodated within the mission context are discussed.

  18. A Study of Feature Extraction Using Divergence Analysis of Texture Features

    NASA Technical Reports Server (NTRS)

    Hallada, W. A.; Bly, B. G.; Boyd, R. K.; Cox, S.

    1982-01-01

    An empirical study of texture analysis for feature extraction and classification of high spatial resolution remotely sensed imagery (10 meters) is presented in terms of specific land cover types. The principal method examined is the use of spatial gray tone dependence (SGTD). The SGTD method reduces the gray levels within a moving window into a two-dimensional spatial gray tone dependence matrix which can be interpreted as a probability matrix of gray tone pairs. Haralick et al (1973) used a number of information theory measures to extract texture features from these matrices, including angular second moment (inertia), correlation, entropy, homogeneity, and energy. The derivation of the SGTD matrix is a function of: (1) the number of gray tones in an image; (2) the angle along which the frequency of SGTD is calculated; (3) the size of the moving window; and (4) the distance between gray tone pairs. The first three parameters were varied and tested on a 10 meter resolution panchromatic image of Maryville, Tennessee using the five SGTD measures. A transformed divergence measure was used to determine the statistical separability between four land cover categories forest, new residential, old residential, and industrial for each variation in texture parameters.

  19. Multi-sensor fusion of Landsat 8 thermal infrared (TIR) and panchromatic (PAN) images.

    PubMed

    Jung, Hyung-Sup; Park, Sung-Whan

    2014-12-18

    Data fusion is defined as the combination of data from multiple sensors such that the resulting information is better than would be possible when the sensors are used individually. The multi-sensor fusion of panchromatic (PAN) and thermal infrared (TIR) images is a good example of this data fusion. While a PAN image has higher spatial resolution, a TIR one has lower spatial resolution. In this study, we have proposed an efficient method to fuse Landsat 8 PAN and TIR images using an optimal scaling factor in order to control the trade-off between the spatial details and the thermal information. We have compared the fused images created from different scaling factors and then tested the performance of the proposed method at urban and rural test areas. The test results show that the proposed method merges the spatial resolution of PAN image and the temperature information of TIR image efficiently. The proposed method may be applied to detect lava flows of volcanic activity, radioactive exposure of nuclear power plants, and surface temperature change with respect to land-use change.

  20. New Approach for Monitoring Seismic and Volcanic Activities Using Microwave Radiometer Data

    NASA Astrophysics Data System (ADS)

    Maeda, Takashi; Takano, Tadashi

    Interferograms formed from the data of satellite-borne synthetic aperture radar (SAR) enable us to detect slight land-surface deformations related to volcanic eruptions and earthquakes. Currently, however, we cannot determine when land-surface deformations occurred with high time resolution since the time lag between two scenes of SAR used to form interferograms is longer than the recurrent period of the satellite carrying it (several tens of days). In order to solve this problem, we are investigating new approach to monitor seismic and vol-canic activities with higher time resolution from satellite-borne sensor data, and now focusing on a satellite-borne microwave radiometer. It is less subject to clouds and rainfalls over the ground than an infrared spectrometer, so more suitable to observe an emission from land sur-faces. With this advantage, we can expect that thermal microwave energy by increasing land surface temperatures is detected before a volcanic eruption. Additionally, laboratory experi-ments recently confirmed that rocks emit microwave energy when fractured. This microwave energy may result from micro discharges in the destruction of materials, or fragment motions with charged surfaces of materials. We first extrapolated the microwave signal power gener-ated by rock failures in an earthquake from the experimental results and concluded that the microwave signals generated by rock failures near the land surface are strong enough to be detected by a satellite-borne radiometer. Accordingly, microwave energy generated by rock failures associated with a seismic activity is likely to be detected as well. However, a satellite-borne microwave radiometer has a serious problem that its spatial res-olution is too coarse compared to SAR or an infrared spectrometer. In order to raise the possibility of detection, a new methodology to compensate the coarse spatial resolution is es-sential. Therefore, we investigated and developed an analysis method to detect local and faint changes from the data of the Advanced Microwave Scanning Radiometer for Earth-Observation System (AMSR-E) aboard the Aqua satellite, and then an algorithm to evaluate microwave energy from land surfaces. Finally, using this algorithm, we have detected characteristic microwave signals emitted from land surfaces in association with some large earthquakes which occurred in Morocco (2004), Sumatra (2007) and Wenchuan (2008) and some large volcanic eruptions which occurred at Reventador in Ecuador (2002) and Chaiten in Chile (2008). In this presentation, the results of these case studies are presented.

  1. A method for generating high resolution satellite image time series

    NASA Astrophysics Data System (ADS)

    Guo, Tao

    2014-10-01

    There is an increasing demand for satellite remote sensing data with both high spatial and temporal resolution in many applications. But it still is a challenge to simultaneously improve spatial resolution and temporal frequency due to the technical limits of current satellite observation systems. To this end, much R&D efforts have been ongoing for years and lead to some successes roughly in two aspects, one includes super resolution, pan-sharpen etc. methods which can effectively enhance the spatial resolution and generate good visual effects, but hardly preserve spectral signatures and result in inadequate analytical value, on the other hand, time interpolation is a straight forward method to increase temporal frequency, however it increase little informative contents in fact. In this paper we presented a novel method to simulate high resolution time series data by combing low resolution time series data and a very small number of high resolution data only. Our method starts with a pair of high and low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and then projected onto the high resolution data plane and assigned to each high resolution pixel according to the predefined temporal change patterns of each type of ground objects. Finally the simulated high resolution data is generated. A preliminary experiment shows that our method can simulate a high resolution data with a reasonable accuracy. The contribution of our method is to enable timely monitoring of temporal changes through analysis of time sequence of low resolution images only, and usage of costly high resolution data can be reduces as much as possible, and it presents a highly effective way to build up an economically operational monitoring solution for agriculture, forest, land use investigation, environment and etc. applications.

  2. A zone-based approach to identifying urban land uses using nationally-available data

    NASA Astrophysics Data System (ADS)

    Falcone, James A.

    Accurate identification of urban land use is essential for many applications in environmental study, ecological assessment, and urban planning, among other fields. However, because physical surfaces of land cover types are not necessarily related to their use and economic function, differentiating among thematically-detailed urban land uses (single-family residential, multi-family residential, commercial, industrial, etc.) using remotely-sensed imagery is a challenging task, particularly over large areas. Because the process requires an interpretation of tone/color, size, shape, pattern, and neighborhood association elements within a scene, it has traditionally been accomplished via manual interpretation of aerial photography or high-resolution satellite imagery. Although success has been achieved for localized areas using various automated techniques based on high-spatial or high-spectral resolution data, few detailed (Anderson Level II equivalent or greater) urban land use mapping products have successfully been created via automated means for broad (multi-county or larger) areas, and no such product exists today for the United States. In this study I argue that by employing a zone-based approach it is feasible to map thematically-detailed urban land use classes over large areas using appropriate combinations of non-image based predictor data which are nationally and publicly available. The approach presented here uses U.S. Census block groups as the basic unit of geography, and predicts the percent of each of ten land use types---nine of them urban---for each block group based on a number of data sources, to include census data, nationally-available point locations of features from the USGS Geographic Names Information System, historical land cover, and metrics which characterize spatial pattern, context (e.g. distance to city centers or other features), and measures of spatial autocorrelation. The method was demonstrated over a four-county area surrounding the city of Boston. A generalized version of the method (six land use classes) was also developed and cross-validated among additional geographic settings: Atlanta, Los Angeles, and Providence. The results suggest that even with the thematically-detailed ten-class structure, it is feasible to map most urban land uses with reasonable accuracy at the block group scale, and results improve with class aggregation. When classified by predicted majority land use, 79% of block groups correctly matched the actual majority land use with the ten-class models. Six-class models typically performed well for the geographic area they were developed from, however models had mixed performance when transported to other geographic settings. Contextual variables, which characterized a block group's spatial relationship to city centers, transportation routes, and other amenities, were consistently strong predictors of most land uses, a result which corresponds to classic urban land use theory. The method and metrics derived here provide a prototype for mapping urban land uses from readily-available data over broader geographic areas than is generally practiced today using current image-based solutions.

  3. Bridging the Past with Today's Microwave Remote Sensing: A Case Study of Long Term Inundation Patterns in Two River Deltas

    NASA Astrophysics Data System (ADS)

    McDonald, K. C.; Jensen, K.; Schroeder, R.; Tessler, Z. D.

    2016-12-01

    Surface inundation extent and its predictability vary tremendously across the globe. This dynamic is being and has been captured by three general categories of satellite imagery: a) low-spatial-resolution microwave sensors with global coverage and a long record of observations (e.g., SSM/I), b) optical sensors with high spatial and temporal resolution and global coverage as well, but with cloud contamination (e.g. MODIS), and also c) less frequently in ``snapshot'' form by high-resolution synthetic aperture radar (SAR) sensors. We explore the ability to bridge techniques that can exploit the higher spatial resolution of more recent data products back in time with the help of the temporal evolution of lower resolution products. We present a study of long term (20+ yrs) inundation patterns in two river deltas: (1) the Mekong, and (2) the Ganges-Brahmaputra. This research utilizes baseline observations from the Surface Water Microwave Product Series (SWAMPS), an inundation area fraction product derived at 25km scale from active and passive microwave instruments (ERS, QuikSCAT, ASCAT, and SSM/I) that spans from Jan 1992 to the present. Every hydrological basin has unique characteristics - such as its topography, land cover / land use, and spatio-temporal variability - thus, a downscaling algorithm needs to take into account these idiosyncrasies. We merge SWAMPS with topographical information derived from 30m SRTM DEM, river networks from USGS HydroSHEDS, and train a downscaling algorithm to learn from two sets of classified SAR data: (1) L-band imaging radar from ALOS PALSAR, 2007-2010, and (2) more recent C-band imagery from the Sentinel-1 mission (2014 to present). We present an accuracy assessment of retrospective downscaled flood extent with Landsat imagery and address potential sources of biases. With a higher spatial resolution of past flooding extent, we can improve our understanding of how delta surface hydrology has responded to climate events and human activities. This is important both in the short-term for accurate flood prediction, as well as on longer-term planning horizons.

  4. Trend Assessment of Spatio-Temporal Change of Tehran Heat Island Using Satellite Images

    NASA Astrophysics Data System (ADS)

    Saradjian, M. R.; Sherafati, Sh.

    2015-12-01

    Numerous investigations on Urban Heat Island (UHI) show that land cover change is the main factor of increasing Land Surface Temperature (LST) in urban areas, especially conversion of vegetation and bare soil to concrete, asphalt and other man-made structures. On the other hand, other human activities like those which cause to burning fossil fuels, that increase the amount of carbon dioxide, may raise temperature in global scale in comparison with small scales (urban areas). In this study, multiple satellite images with different spatial and temporal resolutions have been used to determine Land Surface Temperature (LST) variability in Tehran metropolitan area. High temporal resolution of AVHRR images have been used as the main data source when investigating temperature variability in the urban area. The analysis shows that UHI appears more significant at afternoon and night hours. But the urban class temperature is almost equal to its surrounding vegetation and bare soil classes at around noon. It also reveals that there is no specific difference in UHI intense during the days throughout the year. However, it can be concluded that in the process of city expansion in years, UHI has been grown both spatially and in magnitude. In order to locate land-cover types and relate them to LST, Thematic Mapper (TM) images have been exploited. The influence of elevation on the LST has also been studied, using digital elevation model derived from SRTM database.

  5. Deriving temporally continuous soil moisture estimations at fine resolution by downscaling remotely sensed product

    NASA Astrophysics Data System (ADS)

    Jin, Yan; Ge, Yong; Wang, Jianghao; Heuvelink, Gerard B. M.

    2018-06-01

    Land surface soil moisture (SSM) has important roles in the energy balance of the land surface and in the water cycle. Downscaling of coarse-resolution SSM remote sensing products is an efficient way for producing fine-resolution data. However, the downscaling methods used most widely require full-coverage visible/infrared satellite data as ancillary information. These methods are restricted to cloud-free days, making them unsuitable for continuous monitoring. The purpose of this study is to overcome this limitation to obtain temporally continuous fine-resolution SSM estimations. The local spatial heterogeneities of SSM and multiscale ancillary variables were considered in the downscaling process both to solve the problem of the strong variability of SSM and to benefit from the fusion of ancillary information. The generation of continuous downscaled remote sensing data was achieved via two principal steps. For cloud-free days, a stepwise hybrid geostatistical downscaling approach, based on geographically weighted area-to-area regression kriging (GWATARK), was employed by combining multiscale ancillary variables with passive microwave remote sensing data. Then, the GWATARK-estimated SSM and China Soil Moisture Dataset from Microwave Data Assimilation SSM data were combined to estimate fine-resolution data for cloudy days. The developed methodology was validated by application to the 25-km resolution daily AMSR-E SSM product to produce continuous SSM estimations at 1-km resolution over the Tibetan Plateau. In comparison with ground-based observations, the downscaled estimations showed correlation (R ≥ 0.7) for both ascending and descending overpasses. The analysis indicated the high potential of the proposed approach for producing a temporally continuous SSM product at fine spatial resolution.

  6. Skylab and ERTS-1 investigations of coastal land use and water properties. [Delaware Bay

    NASA Technical Reports Server (NTRS)

    Klemas, V. (Principal Investigator); Bartlett, D.; Rogers, R.

    1974-01-01

    The author has identified the following significant results. ERTS-1 multispectral scanner and Skylab's S190A, S190B, and S192 data products were evaluated for their utility in studying current circulation, suspended sediment concentrations and pollution dispersal in Delaware Bay and in mapping coastal vegetation and land use. Imagery from the ERTS-1 MSS, S190A and S190B cameras shows considerable detail in water structure, circulation, suspended sediment distribution and within waste disposal plumes in shelf waters. These data products were also used in differentiating and mapping twelve coastal vegetation and land use classes. The spatial resolution of the S190A multispectral facility appears to be about 30 to 70 meters while that of the S190B earth terrain camera is about 10 to 30 meters. Such resolution, along with good cartographic quality, indicates a considerable potential for mapping coastal land use and monitoring water properties in estuaries and on the continental shelf. The ERTS-1 MSS has a resolution of about 70-100 meters. Moreover, its regular 18-day cycle permits observation of important changes, including the environmental impact of coastal zone development on coastal vegetation and ecology.

  7. Using Remote Sensing and Radar MET Data to Support Watershed Assessments Comprising IEM

    USDA-ARS?s Scientific Manuscript database

    Meteorological (MET) data required by watershed assessments that comprise Integrated Environmental Modeling (IEM) have traditionally been provided by land-based weather (gauge) stations; although these data may not be most appropriate for describing adequate spatial and temporal resolution if the ME...

  8. Using NASA Techniques to Atmospherically Correct AWiFS Data for Carbon Sequestration Studies

    NASA Technical Reports Server (NTRS)

    Holekamp, Kara L.

    2007-01-01

    Carbon dioxide is a greenhouse gas emitted in a number of ways, including the burning of fossil fuels and the conversion of forest to agriculture. Research has begun to quantify the ability of vegetative land cover and oceans to absorb and store carbon dioxide. The USDA (U.S. Department of Agriculture) Forest Service is currently evaluating a DSS (decision support system) developed by researchers at the NASA Ames Research Center called CASA-CQUEST (Carnegie-Ames-Stanford Approach-Carbon Query and Evaluation Support Tools). CASA-CQUEST is capable of estimating levels of carbon sequestration based on different land cover types and of predicting the effects of land use change on atmospheric carbon amounts to assist land use management decisions. The CASA-CQUEST DSS currently uses land cover data acquired from MODIS (the Moderate Resolution Imaging Spectroradiometer), and the CASA-CQUEST project team is involved in several projects that use moderate-resolution land cover data derived from Landsat surface reflectance. Landsat offers higher spatial resolution than MODIS, allowing for increased ability to detect land use changes and forest disturbance. However, because of the rate at which changes occur and the fact that disturbances can be hidden by regrowth, updated land cover classifications may be required before the launch of the Landsat Data Continuity Mission, and consistent classifications will be needed after that time. This candidate solution investigates the potential of using NASA atmospheric correction techniques to produce science-quality surface reflectance data from the Indian Remote Sensing Advanced Wide-Field Sensor on the RESOURCESAT-1 mission to produce land cover classification maps for the CASA-CQUEST DSS.

  9. Integrating remote sensing and local vegetation information for a high-resolution biogenic emissions inventory--application to an urbanized, semiarid region.

    PubMed

    Diem, J E; Comrie, A C

    2000-11-01

    This paper presents a methodology for the development of a high-resolution (30-m), standardized biogenic volatile organic compound (BVOC) emissions inventory and a subsequent application of the methodology to Tucson, AZ. The region's heterogeneous vegetation cover cannot be modeled accurately with low-resolution (e.g., 1-km) land cover and vegetation information. Instead, local vegetation data are used in conjunction with multispectral satellite data to generate a detailed vegetation-based land-cover database of the region. A high-resolution emissions inventory is assembled by associating the vegetation data with appropriate emissions factors. The inventory reveals a substantial variation in BVOC emissions across the region, resulting from the region's diversity of both native and exotic vegetation. The importance of BVOC emissions from forest lands, desert lands, and the urban forest changes according to regional, metropolitan, and urban scales. Within the entire Tucson region, the average isoprene, monoterpene, and OVOC fluxes observed were 454, 248, and 91 micrograms/m2/hr, respectively, with forest and desert lands emitting nearly all of the BVOCs. Within the metropolitan area, which does not include the forest lands, the average fluxes were 323, 181, and 70 micrograms/m2/hr, respectively. Within the urban area, the average fluxes were 801, 100, and 100 micrograms/m2/hr, respectively, with exotic trees such as eucalyptus, pine, and palm emitting most of the urban BVOCs. The methods presented in this paper can be modified to create detailed, standardized BVOC emissions inventories for other regions, especially those with spatially complex vegetation patterns.

  10. Change of spatial information under rescaling: A case study using multi-resolution image series

    NASA Astrophysics Data System (ADS)

    Chen, Weirong; Henebry, Geoffrey M.

    Spatial structure in imagery depends on a complicated interaction between the observational regime and the types and arrangements of entities within the scene that the image portrays. Although block averaging of pixels has commonly been used to simulate coarser resolution imagery, relatively little attention has been focused on the effects of simple rescaling on spatial structure and the explanation and a possible solution to the problem. Yet, if there are significant differences in spatial variance between rescaled and observed images, it may affect the reliability of retrieved biogeophysical quantities. To investigate these issues, a nested series of high spatial resolution digital imagery was collected at a research site in eastern Nebraska in 2001. An airborne Kodak DCS420IR camera acquired imagery at three altitudes, yielding nominal spatial resolutions ranging from 0.187 m to 1 m. The red and near infrared (NIR) bands of the co-registered image series were normalized using pseudo-invariant features, and the normalized difference vegetation index (NDVI) was calculated. Plots of grain sorghum planted in orthogonal crop row orientations were extracted from the image series. The finest spatial resolution data were then rescaled by averaging blocks of pixels to produce a rescaled image series that closely matched the spatial resolution of the observed image series. Spatial structures of the observed and rescaled image series were characterized using semivariogram analysis. Results for NDVI and its component bands show, as expected, that decreasing spatial resolution leads to decreasing spatial variability and increasing spatial dependence. However, compared to the observed data, the rescaled images contain more persistent spatial structure that exhibits limited variation in both spatial dependence and spatial heterogeneity. Rescaling via simple block averaging fails to consider the effect of scene object shape and extent on spatial information. As the features portrayed by pixels are equally weighted regardless of the shape and extent of the underlying scene objects, the rescaled image retains more of the original spatial information than would occur through direct observation at a coarser sensor spatial resolution. In contrast, for the observed images, due to the effect of the modulation transfer function (MTF) of the imaging system, high frequency features like edges are blurred or lost as the pixel size increases, resulting in greater variation in spatial structure. Successive applications of a low-pass spatial convolution filter are shown to mimic a MTF. Accordingly, it is recommended that such a procedure be applied prior to rescaling by simple block averaging, if insufficient image metadata exist to replicate the net MTF of the imaging system, as might be expected in land cover change analysis studies using historical imagery.

  11. Unmixing AVHRR Imagery to Assess Clearcuts and Forest Regrowth in Oregon

    NASA Technical Reports Server (NTRS)

    Hlavka, Christine A.; Spanner, Michael A.

    1995-01-01

    Advanced Very High Resolution Radiometer imagery provides frequent and low-cost coverage of the earth, but its coarse spatial resolution (approx. 1.1 km by 1.1 km) does not lend itself to standard techniques of automated categorization of land cover classes because the pixels are generally mixed; that is, the extent of the pixel includes several land use/cover classes. Unmixing procedures were developed to extract land use/cover class signatures from mixed pixels, using Landsat Thematic Mapper data as a source for the training set, and to estimate fractions of class coverage within pixels. Application of these unmixing procedures to mapping forest clearcuts and regrowth in Oregon indicated that unmixing is a promising approach for mapping major trends in land cover with AVHRR bands 1 and 2. Including thermal bands by unmixing AVHRR bands 1-4 did not lead to significant improvements in accuracy, but experiments with unmixing these four bands did indicate that use of weighted least squares techniques might lead to improvements in other applications of unmixing.

  12. Comparison of the Spectral Properties of Pansharpened Images Generated from AVNIR-2 and Prism Onboard Alos

    NASA Astrophysics Data System (ADS)

    Matsuoka, M.

    2012-07-01

    A considerable number of methods for pansharpening remote-sensing images have been developed to generate higher spatial resolution multispectral images by the fusion of lower resolution multispectral images and higher resolution panchromatic images. Because pansharpening alters the spectral properties of multispectral images, method selection is one of the key factors influencing the accuracy of subsequent analyses such as land-cover classification or change detection. In this study, seven pixel-based pansharpening methods (additive wavelet intensity, additive wavelet principal component, generalized Laplacian pyramid with spectral distortion minimization, generalized intensity-hue-saturation (GIHS) transform, GIHS adaptive, Gram-Schmidt spectral sharpening, and block-based synthetic variable ratio) were compared using AVNIR-2 and PRISM onboard ALOS from the viewpoint of the preservation of spectral properties of AVNIR-2. A visual comparison was made between pansharpened images generated from spatially degraded AVNIR-2 and original images over urban, agricultural, and forest areas. The similarity of the images was evaluated in terms of the image contrast, the color distinction, and the brightness of the ground objects. In the quantitative assessment, three kinds of statistical indices, correlation coefficient, ERGAS, and Q index, were calculated by band and land-cover type. These scores were relatively superior in bands 2 and 3 compared with the other two bands, especially over urban and agricultural areas. Band 4 showed a strong dependency on the land-cover type. This was attributable to the differences in the observing spectral wavelengths of the sensors and local scene variances.

  13. Toward global crop type mapping using a hybrid machine learning approach and multi-sensor imagery

    NASA Astrophysics Data System (ADS)

    Wang, S.; Le Bras, S.; Azzari, G.; Lobell, D. B.

    2017-12-01

    Current global scale datasets on agricultural land use do not have sufficient spatial or temporal resolution to meet the needs of many applications. The recent rapid increase in public availability of fine- to moderate-resolution satellite imagery from Landsat OLI and Copernicus Sentinel-2 provides a unique opportunity to improve agricultural land use datasets. This project leverages these new satellite data streams, existing census data, and a novel training approach to develop global, annual maps that indicate the presence of (i) cropland and (ii) specific crops at a 20m resolution. Our machine learning methodology consists of two steps. The first is a supervised classifier trained with explicitly labelled data to distinguish between crop and non-crop pixels, creating a binary mask. For ground truth, we use labels collected by previous mapping efforts (e.g. IIASA's crowdsourced data (Fritz et al. 2015) and AFSIS's geosurvey data) in combination with new data collected manually. The crop pixels output by the binary mask are input to the second step: a semi-supervised clustering algorithm to resolve different crop types and generate a crop type map. We do not use field-level information on crop type to train the algorithm, making this approach scalable spatially and temporally. We instead incorporate size constraints on clusters based on aggregated agricultural land use statistics and other, more generalizable domain knowledge. We employ field-level data from the U.S., Southern Europe, and Eastern Africa to validate crop-to-cluster assignments.

  14. Cubesats and drones: bridging the spatio-temporal divide for enhanced earth observation

    NASA Astrophysics Data System (ADS)

    McCabe, M. F.; Aragon, B.; Parkes, S. D.; Mascaro, J.; Houborg, R.

    2017-12-01

    In just the last few years, a range of advances in remote sensing technologies have enabled an unprecedented opportunity in earth observation. Parallel developments in cubesats and unmanned aerial vehicles (UAVs) have overcome one of the outstanding challenges in observing the land surface: the provision of timely retrievals at a spatial resolution that is sufficiently detailed to make field-level decisions. Planet cubesats have revolutionized observing capacity through their objective of near daily global retrieval. These nano-satellite systems provide high resolution (approx. 3 m) retrievals in red-green-blue and near-infrared wavelengths, offering capacity to develop vegetation metrics for both hydrological and precision agricultural applications. Apart from satellite based advances, nearer to earth technology is being exploited for a range of observation needs. UAVs provide an adaptable platform from which a variety of sensing systems can be deployed. Combinations of optical, thermal, multi- and hyper-spectral systems allow for the estimation of a range of land surface variables, including vegetation structure, vegetation health, land surface temperature and evaporation. Here we explore some of these exciting developments in the context of agricultural hydrology, providing examples of cubesat and UAV imagery that has been used to inform upon crop health and water use. An investigation of the spatial and temporal advantage of these complementary systems is undertaken, with examples of multi-day high-resolution vegetation dynamics from cubesats presented alongside diurnal-cycle responses derived from multiple within-day UAV flights.

  15. MODIS 3 Km Aerosol Product: Applications over Land in an Urban/suburban Region

    NASA Technical Reports Server (NTRS)

    Munchak, L. A.; Levy, R. C.; Mattoo, S.; Remer, L. A.; Holben, B. N.; Schafer, J. S.; Hostetler, C. A.; Ferrare, R. A.

    2013-01-01

    MODerate resolution Imaging Spectroradiometer (MODIS) instruments aboard the Terra and Aqua satellites have provided a rich dataset of aerosol information at a 10 km spatial scale. Although originally intended for climate applications, the air quality community quickly became interested in using the MODIS aerosol data. However, 10 km resolution is not sufficient to resolve local scale aerosol features. With this in mind, MODIS Collection 6 is including a global aerosol product with a 3 km resolution. Here, we evaluate the 3 km product over the Baltimore/Washington D.C., USA, corridor during the summer of 2011, by comparing with spatially dense data collected as part of the DISCOVER-AQ campaign these data were measured by the NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL) and a network of 44 sun photometers (SP) spaced approximately 10 km apart. The HSRL instrument shows that AOD can vary by up to 0.2 within a single 10 km MODIS pixel, meaning that higher resolution satellite retrievals may help to characterize aerosol spatial distributions in this region. Different techniques for validating a high-resolution aerosol product against SP measurements are considered. Although the 10 km product is more statistically reliable than the 3 km product, the 3 km product still performs acceptably, with more than two-thirds of MODIS/SP collocations falling within the expected error envelope with high correlation (R > 0.90). The 3 km product can better resolve aerosol gradients and retrieve closer to clouds and shorelines than the 10 km product, but tends to show more significant noise especially in urban areas. This urban degradation is quantified using ancillary land cover data. Overall, we show that the MODIS 3 km product adds new information to the existing set of satellite derived aerosol products and validates well over the region, but due to noise and problems in urban areas, should be treated with some degree of caution.

  16. Alternative Land-Use Scenarios for Bioenergy Production in the U.S. and Brazil

    NASA Astrophysics Data System (ADS)

    Campbell, J. E.; Spak, S.; Tsao, C. C.; Mena, M.; Chen, Y.

    2015-12-01

    Agriculture is historically a dominant form of global environmental degradation, and the potential for increased future degradation may be enhanced by growing demand for biofuels. Here, we apply high-resolution cropland inventories and agronomic models to characterize land-use impacts and mitigation scenarios for bioenergy production in the U.S. and Brazil. In the U.S., our gridded historical cropland maps show potential for production in the U.S. on 68 Mha of abandoned croplands in the U.S. which is as much as 70% larger than previous estimates due to a reduction in aggregation effects. In Brazil, a critical land-use impact is associated with non-GHG air pollutants from the management and expansion of sugarcane feedstocks. Our bottom-up estimate for these Brazilian land-use emissions is seven times larger than estimated from remote-sensing data due to the improved spatial resolution of our approach. While current land-use policies in Brazil and the U.S. seek to reduce life-cycle biofuel emissions, these policies may not support the mitigation alternatives identified here.

  17. The 1 km resolution global data set: needs of the International Geosphere Biosphere Programme

    USGS Publications Warehouse

    Townshend, J.R.G.; Justice, C.O.; Skole, D.; Malingreau, J.-P.; Cihlar, J.; Teillet, P.; Sadowski, F.; Ruttenberg, S.

    1994-01-01

    Examination of the scientific priorities for the International Geosphere Biosphere Programme (IGBP) reveals a requirement for global land data sets in several of its Core Projects. These data sets need to be at several space and time scales. Requirements are demonstrated for the regular acquisition of data at spatial resolutions of 1 km and finer and at high temporal frequencies. Global daily data at a resolution of approximately 1 km are sensed by the Advanced Very High Resolution Radiometer (AVHRR), but they have not been available in a single archive. It is proposed, that a global data set of the land surface is created from remotely sensed data from the AVHRR to support a number of IGBP's projects. This data set should have a spatial resolution of 1 km and should be generated at least once every 10 days for the entire globe. The minimum length of record should be a year, and ideally a system should be put in place which leads to the continuous acquisition of 1 km data to provide a base line data set prior to the Earth Observing System (EOS) towards the end of the decade. Because of the high cloud cover in many parts of the world, it is necessary to plan for the collection of data from every orbit. Substantial effort will be required in the preprocessing of the data set involving radiometric calibration, atmospheric correction, geometric correction and temporal compositing, to make it suitable for the extraction of information.

  18. High temporal resolution aerosol retrieval using Geostationary Ocean Color Imager: application and initial validation

    NASA Astrophysics Data System (ADS)

    Zhang, Yuhuan; Li, Zhengqiang; Zhang, Ying; Hou, Weizhen; Xu, Hua; Chen, Cheng; Ma, Yan

    2014-01-01

    The Geostationary Ocean Color Imager (GOCI) provides multispectral imagery of the East Asia region hourly from 9:00 to 16:00 local time (GMT+9) and collects multispectral imagery at eight spectral channels (412, 443, 490, 555, 660, 680, 745, and 865 nm) with a spatial resolution of 500 m. Thus, this technology brings significant advantages to high temporal resolution environmental monitoring. We present the retrieval of aerosol optical depth (AOD) in northern China based on GOCI data. Cross-calibration was performed against Moderate Resolution Imaging Spectrometer (MODIS) data in order to correct the land calibration bias of the GOCI sensor. AOD retrievals were then accomplished using a look-up table (LUT) strategy with assumptions of a quickly varying aerosol and a slowly varying surface with time. The AOD retrieval algorithm calculates AOD by minimizing the surface reflectance variations of a series of observations in a short period of time, such as several days. The monitoring of hourly AOD variations was implemented, and the retrieved AOD agreed well with AErosol RObotic NETwork (AERONET) ground-based measurements with a good R2 of approximately 0.74 at validation sites at the cities of Beijing and Xianghe, although intercept bias may be high in specific cases. The comparisons with MODIS products also show a good agreement in AOD spatial distribution. This work suggests that GOCI imagery can provide high temporal resolution monitoring of atmospheric aerosols over land, which is of great interest in climate change studies and environmental monitoring.

  19. Developing a 30-m grassland productivity estimation map for central Nebraska using 250-m MODIS and 30-m Landsat-8 observations

    USGS Publications Warehouse

    Gu, Yingxin; Wylie, Bruce K.

    2015-01-01

    Accurately estimating aboveground vegetation biomass productivity is essential for local ecosystem assessment and best land management practice. Satellite-derived growing season time-integrated Normalized Difference Vegetation Index (GSN) has been used as a proxy for vegetation biomass productivity. A 250-m grassland biomass productivity map for the Greater Platte River Basin had been developed based on the relationship between Moderate Resolution Imaging Spectroradiometer (MODIS) GSN and Soil Survey Geographic (SSURGO) annual grassland productivity. However, the 250-m MODIS grassland biomass productivity map does not capture detailed ecological features (or patterns) and may result in only generalized estimation of the regional total productivity. Developing a high or moderate spatial resolution (e.g., 30-m) productivity map to better understand the regional detailed vegetation condition and ecosystem services is preferred. The 30-m Landsat data provide spatial detail for characterizing human-scale processes and have been successfully used for land cover and land change studies. The main goal of this study is to develop a 30-m grassland biomass productivity estimation map for central Nebraska, leveraging 250-m MODIS GSN and 30-m Landsat data. A rule-based piecewise regression GSN model based on MODIS and Landsat (r = 0.91) was developed, and a 30-m MODIS equivalent GSN map was generated. Finally, a 30-m grassland biomass productivity estimation map, which provides spatially detailed ecological features and conditions for central Nebraska, was produced. The resulting 30-m grassland productivity map was generally supported by the SSURGO biomass production map and will be useful for regional ecosystem study and local land management practices.

  20. Parameterization of air temperature in high temporal and spatial resolution from a combination of the SEVIRI and MODIS instruments

    NASA Astrophysics Data System (ADS)

    Zakšek, Klemen; Schroedter-Homscheidt, Marion

    Some applications, e.g. from traffic or energy management, require air temperature data in high spatial and temporal resolution at two metres height above the ground ( T2m), sometimes in near-real-time. Thus, a parameterization based on boundary layer physical principles was developed that determines the air temperature from remote sensing data (SEVIRI data aboard the MSG and MODIS data aboard Terra and Aqua satellites). The method consists of two parts. First, a downscaling procedure from the SEVIRI pixel resolution of several kilometres to a one kilometre spatial resolution is performed using a regression analysis between the land surface temperature ( LST) and the normalized differential vegetation index ( NDVI) acquired by the MODIS instrument. Second, the lapse rate between the LST and T2m is removed using an empirical parameterization that requires albedo, down-welling surface short-wave flux, relief characteristics and NDVI data. The method was successfully tested for Slovenia, the French region Franche-Comté and southern Germany for the period from May to December 2005, indicating that the parameterization is valid for Central Europe. This parameterization results in a root mean square deviation RMSD of 2.0 K during the daytime with a bias of -0.01 K and a correlation coefficient of 0.95. This is promising, especially considering the high temporal (30 min) and spatial resolution (1000 m) of the results.

  1. Combining HJ CCD, GF-1 WFV and MODIS Data to Generate Daily High Spatial Resolution Synthetic Data for Environmental Process Monitoring.

    PubMed

    Wu, Mingquan; Huang, Wenjiang; Niu, Zheng; Wang, Changyao

    2015-08-20

    The limitations of satellite data acquisition mean that there is a lack of satellite data with high spatial and temporal resolutions for environmental process monitoring. In this study, we address this problem by applying the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) and the Spatial and Temporal Data Fusion Approach (STDFA) to combine Huanjing satellite charge coupled device (HJ CCD), Gaofen satellite no. 1 wide field of view camera (GF-1 WFV) and Moderate Resolution Imaging Spectroradiometer (MODIS) data to generate daily high spatial resolution synthetic data for land surface process monitoring. Actual HJ CCD and GF-1 WFV data were used to evaluate the precision of the synthetic images using the correlation analysis method. Our method was tested and validated for two study areas in Xinjiang Province, China. The results show that both the ESTARFM and STDFA can be applied to combine HJ CCD and MODIS reflectance data, and GF-1 WFV and MODIS reflectance data, to generate synthetic HJ CCD data and synthetic GF-1 WFV data that closely match actual data with correlation coefficients (r) greater than 0.8989 and 0.8643, respectively. Synthetic red- and near infrared (NIR)-band data generated by ESTARFM are more suitable for the calculation of Normalized Different Vegetation Index (NDVI) than the data generated by STDFA.

  2. Combining HJ CCD, GF-1 WFV and MODIS Data to Generate Daily High Spatial Resolution Synthetic Data for Environmental Process Monitoring

    PubMed Central

    Wu, Mingquan; Huang, Wenjiang; Niu, Zheng; Wang, Changyao

    2015-01-01

    The limitations of satellite data acquisition mean that there is a lack of satellite data with high spatial and temporal resolutions for environmental process monitoring. In this study, we address this problem by applying the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) and the Spatial and Temporal Data Fusion Approach (STDFA) to combine Huanjing satellite charge coupled device (HJ CCD), Gaofen satellite no. 1 wide field of view camera (GF-1 WFV) and Moderate Resolution Imaging Spectroradiometer (MODIS) data to generate daily high spatial resolution synthetic data for land surface process monitoring. Actual HJ CCD and GF-1 WFV data were used to evaluate the precision of the synthetic images using the correlation analysis method. Our method was tested and validated for two study areas in Xinjiang Province, China. The results show that both the ESTARFM and STDFA can be applied to combine HJ CCD and MODIS reflectance data, and GF-1 WFV and MODIS reflectance data, to generate synthetic HJ CCD data and synthetic GF-1 WFV data that closely match actual data with correlation coefficients (r) greater than 0.8989 and 0.8643, respectively. Synthetic red- and near infrared (NIR)-band data generated by ESTARFM are more suitable for the calculation of Normalized Different Vegetation Index (NDVI) than the data generated by STDFA. PMID:26308017

  3. A patch-based convolutional neural network for remote sensing image classification.

    PubMed

    Sharma, Atharva; Liu, Xiuwen; Yang, Xiaojun; Shi, Di

    2017-11-01

    Availability of accurate land cover information over large areas is essential to the global environment sustainability; digital classification using medium-resolution remote sensing data would provide an effective method to generate the required land cover information. However, low accuracy of existing per-pixel based classification methods for medium-resolution data is a fundamental limiting factor. While convolutional neural networks (CNNs) with deep layers have achieved unprecedented improvements in object recognition applications that rely on fine image structures, they cannot be applied directly to medium-resolution data due to lack of such fine structures. In this paper, considering the spatial relation of a pixel to its neighborhood, we propose a new deep patch-based CNN system tailored for medium-resolution remote sensing data. The system is designed by incorporating distinctive characteristics of medium-resolution data; in particular, the system computes patch-based samples from multidimensional top of atmosphere reflectance data. With a test site from the Florida Everglades area (with a size of 771 square kilometers), the proposed new system has outperformed pixel-based neural network, pixel-based CNN and patch-based neural network by 24.36%, 24.23% and 11.52%, respectively, in overall classification accuracy. By combining the proposed deep CNN and the huge collection of medium-resolution remote sensing data, we believe that much more accurate land cover datasets can be produced over large areas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Accuracy Sampling Design Bias on Coarse Spatial Resolution Land Cover Data in the Great Lakes Region (United States and Canada)

    EPA Science Inventory

    A number of articles have investigated the impact of sampling design on remotely sensed landcover accuracy estimates. Gong and Howarth (1990) found significant differences for Kappa accuracy values when comparing purepixel sampling, stratified random sampling, and stratified sys...

  5. The Utilization of Edge-of-Field Monitoring of Agricultural Runoff in Addressing Nonpoint Source Pollution

    USDA-ARS?s Scientific Manuscript database

    While basin-scale studies and modeling are important tools in relating land uses to water quality concerns, edge-of-field monitoring (EOFM) provides the necessary resolution to spatially target, design, and evaluate in-field conservation practices for reducing nutrient and sediment loading from agri...

  6. Passive microwave soil moisture downscaling using vegetation index and skin surface temperature

    USDA-ARS?s Scientific Manuscript database

    Soil moisture satellite estimates are available from a variety of passive microwave satellite sensors, but their spatial resolution is frequently too coarse for use by land managers and other decision makers. In this paper, a soil moisture downscaling algorithm based on a regression relationship bet...

  7. Agricultural conservation planning framework: 1. Developing multi-practice watershed planning scenarios and assessing nutrient reduction potential

    USDA-ARS?s Scientific Manuscript database

    We show that spatial data on soils, land use, and high-resolution topography, combined with knowledge of conservation practice effectiveness, can be leveraged to identify and assess alternatives to reduce nutrient discharge from small (HUC12) agricultural watersheds. Databases comprising soil attrib...

  8. AgroEcoSystem-Watershed (AgES-W) model delineation and scaling

    USDA-ARS?s Scientific Manuscript database

    Water movement and storage within an agricultural watershed can be simulated at different spatial resolutions of land areas or hydrological response units (HRUs). Interactions between HRUs in space and time vary with the HRU sizes, such that natural scaling relationships are confounded with the simu...

  9. Inferring High-Resolution Individual’s Activity and Trip Purposes with the Fusion of Social Media, Land Use and Connected Vehicle Trajectories

    DOT National Transportation Integrated Search

    2017-11-30

    Trip purpose is crucial to travel behavior modeling and travel demand estimation for transportation planning and investment decisions. However, the spatial-temporal complexity of human activities makes the prediction of trip purpose a challenging pro...

  10. Wildland economics: theory and practice

    Treesearch

    Pete Morton

    2000-01-01

    Since passage of the Wilderness Act, economists have derived the total economic valuation framework for estimating wildland benefits. Over the same time period, policies adopted by public land management agencies have been slow to internalize wilderness economics into management decisions. The lack of spatial resolution and modeler bias associated with the FORPLAN...

  11. Exploration into technical procedures for vertical integration. [information systems

    NASA Technical Reports Server (NTRS)

    Michel, R. J.; Maw, K. D.

    1979-01-01

    Issues in the design and use of a digital geographic information system incorporating landuse, zoning, hazard, LANDSAT, and other data are discussed. An eleven layer database was generated. Issues in spatial resolution, registration, grid versus polygonal structures, and comparison of photointerpreted landuse to LANDSAT land cover are examined.

  12. Hydrologic impacts of land cover variability and change at seasonal to decadal time scales over North America, 1992-2016

    NASA Astrophysics Data System (ADS)

    Bohn, T. J.; Vivoni, E. R.

    2017-12-01

    Land cover variability and change have been shown to influence the terrestrial hydrologic cycle by altering the partitioning of moisture and energy fluxes. However, the magnitude and directionality of the relationship between land cover and surface hydrology has been shown to vary substantially across regions. Here, we provide an assessment of the impacts of land cover change on hydrologic processes at seasonal (vegetation phenology) to decadal scales (land cover conversion) in the United States and Mexico. To this end, we combine time series of remotely-sensed land surface characteristics with land cover maps for different decades as input to the Variable Infiltration Capacity hydrologic model. Land surface characteristics (leaf area index, surface albedo, and canopy fraction derived from normalized difference vegetation index) were obtained from the Moderate Resolution Imaging Spectrometer (MODIS) at 8-day intervals over the period 2000-2016. Land cover maps representing conditions in 1992, 2001, and 2011 were derived by homogenizing the National Land Cover Database over the US and the INEGI Series I through V maps over Mexico. An additional map covering all of North America was derived from the most frequent land cover class observed in each pixel of the MODIS MOD12Q1 product during 2001-2013. Land surface characteristics were summarized over land cover fractions at 1/16 degree (6 km) resolution. For each land cover map, hydrologic simulations were conducted that covered the period 1980-2013, using the best-available, hourly meteorological forcings at a similar spatial resolution. Based on these simulations, we present a comparison of the contributions of land cover change and climate variability at seasonal to decadal scales on the hydrologic and energy budgets, identifying the dominant components through time and space. This work also offers a valuable dataset on land cover variability and its hydrologic response for continental-scale assessments and modeling.

  13. Multi-Scale Fractal Analysis of Image Texture and Pattern

    NASA Technical Reports Server (NTRS)

    Emerson, Charles W.; Lam, Nina Siu-Ngan; Quattrochi, Dale A.

    1999-01-01

    Analyses of the fractal dimension of Normalized Difference Vegetation Index (NDVI) images of homogeneous land covers near Huntsville, Alabama revealed that the fractal dimension of an image of an agricultural land cover indicates greater complexity as pixel size increases, a forested land cover gradually grows smoother, and an urban image remains roughly self-similar over the range of pixel sizes analyzed (10 to 80 meters). A similar analysis of Landsat Thematic Mapper images of the East Humboldt Range in Nevada taken four months apart show a more complex relation between pixel size and fractal dimension. The major visible difference between the spring and late summer NDVI images is the absence of high elevation snow cover in the summer image. This change significantly alters the relation between fractal dimension and pixel size. The slope of the fractal dimension-resolution relation provides indications of how image classification or feature identification will be affected by changes in sensor spatial resolution.

  14. Multi-Scale Fractal Analysis of Image Texture and Pattern

    NASA Technical Reports Server (NTRS)

    Emerson, Charles W.; Lam, Nina Siu-Ngan; Quattrochi, Dale A.

    1999-01-01

    Analyses of the fractal dimension of Normalized Difference Vegetation Index (NDVI) images of homogeneous land covers near Huntsville, Alabama revealed that the fractal dimension of an image of an agricultural land cover indicates greater complexity as pixel size increases, a forested land cover gradually grows smoother, and an urban image remains roughly self-similar over the range of pixel sizes analyzed (10 to 80 meters). A similar analysis of Landsat Thematic Mapper images of the East Humboldt Range in Nevada taken four months apart show a more complex relation between pixel size and fractal dimension. The major visible difference between the spring and late summer NDVI images of the absence of high elevation snow cover in the summer image. This change significantly alters the relation between fractal dimension and pixel size. The slope of the fractal dimensional-resolution relation provides indications of how image classification or feature identification will be affected by changes in sensor spatial resolution.

  15. Distributed hydrological models to quantify ecosystem services and inform land use decisions in Europe

    NASA Astrophysics Data System (ADS)

    Wilebore, Beccy; Willis, Kathy

    2016-04-01

    Landcover conversion is one of the largest anthropogenic threats to ecological services globally; in the EU around 1500 ha of biodiverse land are lost every day to changes in infrastructure and urbanisation. This land conversion directly affects key ecosystem services that support natural infrastructure, including water flow regulation and the mitigation of flood risks. We assess the sensitivity of runoff production to landcover in the UK at a high spatial resolution, using a distributed hydrologic model in the regional land-surface model JULES (Joint UK Land Environment Simulator). This work, as part of the wider initiative 'NaturEtrade', will create a novel suite of easy-to-use tools and mechanisms to allow EU landowners to quickly map and assess the value of their land in providing key ecosystem services.

  16. The Effects of Fine-scale Soil Moisture and Canopy Heterogeneities on Energy and Soil Water Fluxes in a Temperate Mixed Deciduous Forest

    NASA Astrophysics Data System (ADS)

    He, L.; Ivanov, V. Y.; Bohrer, G.; Maurer, K.; Vogel, C. S.; Moghaddam, M.

    2011-12-01

    Vegetation is heterogeneous at different scales, influencing spatially variable energy and water exchanges between land-surface and atmosphere. Current land surface parameterizations of large-scale models consider spatial variability at a scale of a few kilometers and treat vegetation cover as aggregated patches with uniform properties. However, the coupling mechanisms between fine-scale soil moisture, vegetation, and energy fluxes such as evapotranspiration are strongly nonlinear; the aggregation of surface variations may produce biased energy fluxes. This study aims to improve the understanding of the scale impact in atmosphere-biosphere-hydrosphere interactions, which affects predictive capabilities of land surface models. The study uses a high-resolution, physically-based ecohydrological model tRIBS + VEGGIE as a data integration tool to upscale the heterogeneity of canopy distribution resolved at a few meters to the watershed scale. The study was carried out for a spatially heterogeneous, temperate mixed forest environment of Northern Michigan located near the University of Michigan Biological Station (UMBS). Energy and soil water dynamics were simulated at the tree-canopy resolution in the horizontal plane for a small domain (~2 sq. km) located within a footprint of the AmeriFlux tower. A variety of observational data were used to constrain and confirm the model, including a 3-m profile continuous soil moisture dataset and energy flux data (measured at the AmeriFlux tower footprint). A scenario with a spatially uniform canopy, corresponding to the commonly used 'big-leaf' scheme in land surface parameterizations was used to infer the effects of coarse-scale averaging. To gain insights on how heterogeneous canopy and soil moisture interact and contribute to the domain-averaged transpiration, several scenarios of tree-scale leaf area and soil moisture spatial variability were designed. Specifically, for the same mean states, the scenarios of variability of canopy biomass account for the spatial distribution of photosynthesis (and thus the stomatal resistance), the aerodynamic and leaf boundary layer resistances as well as the differential radiation forcing due to tall tree exposure and lateral shading of short trees. The numerical experiments show that by transpiring spatially varying amounts of water, heterogeneous canopies adjust the spatial soil water state to the scaled inverse of the canopy biomass regardless of the initial moisture state. Such a spatial distribution can be further wiped out because of the differential water stress. The aggregation of canopy-scale atmosphere-biosphere-hydrosphere interactions demonstrates non-linear relationship between soil moisture and evapotranspiration, influencing domain-averaged energy fluxes.

  17. The Dynamic General Vegetation Model MC1 over the United States and Canada at a 5-arcminute resolution: model inputs and outputs

    Treesearch

    Ray Drapek; John B. Kim; Ronald P. Neilson

    2015-01-01

    Land managers need to include climate change in their decisionmaking, but the climate models that project future climates operate at spatial scales that are too coarse to be of direct use. To create a dataset more useful to managers, soil and historical climate were assembled for the United States and Canada at a 5-arcminute grid resolution. Nine CMIP3 future climate...

  18. Simulation of Urban Heat Island Mitigation Strategies in Atlanta, GA Using High-Resolution Land Use/Land Cover Data Set to Enhance Meteorological Modeling

    NASA Technical Reports Server (NTRS)

    Crosson, William L.; Dembek, Scott; Estes, Maurice G., Jr.; Limaye, Ashutosh S.; Lapenta, William; Quattrochi, Dale A.; Johnson, Hoyt; Khan, Maudood

    2006-01-01

    The specification of land use/land cover (LULC) and associated land surface parameters in meteorological models at all scales has a major influence on modeled surface energy fluxes and boundary layer states. In urban areas, accurate representation of the land surface may be even more important than in undeveloped regions due to the large heterogeneity within the urban area. Deficiencies in the characterization of the land surface related to the spatial or temporal resolution of the data, the number of LULC classes defined, the accuracy with which they are defined, or the degree of heterogeneity of the land surface properties within each class may degrade the performance of the models. In this study, an experiment was conducted to test a new high-resolution LULC data set for meteorological simulations for the Atlanta, Georgia metropolitan area using a mesoscale meteorological model and to evaluate the effects of urban heat island (UHI) mitigation strategies on modeled meteorology for 2030. Simulation results showed that use of the new LULC data set reduced a major deficiency of the land use data used previously, specifically the poor representation of urban and suburban land use. Performance of the meteorological model improved substantially, with the overall daytime cold bias reduced by over 30%. UHI mitigation strategies were projected to offset much of a predicted urban warming between 2000 and 2030. In fact, for the urban core, the cooling due to UHI mitigation strategies was slightly greater than the warming associated with urbanization over this period. For the larger metropolitan area, cooling only partially offset the projected warming trend.

  19. The Urban Heat Island Impact in Consideration of Spatial Pattern of Urban Landscape and Structure

    NASA Astrophysics Data System (ADS)

    Kim, J.; Lee, D. K.; Jeong, W.; Sung, S.; Park, J.

    2015-12-01

    Preceding study has established a clear relationship between land surface temperature and area of land covers. However, only few studies have specifically examined the effects of spatial patterns of land covers and urban structure. To examine how much the local climate is affected by the spatial pattern in highly urbanized city, we investigated the correlation between land surface temperature and spatial patterns of land covers. In the analysis of correlation, we categorized urban structure to four different land uses: Apartment residential area, low rise residential area, industrial area and central business district. Through this study, we aims to examine the types of residential structure and land cover pattern for reducing urban heat island and sustainable development. Based on land surface temperature, we investigated the phenomenon of urban heat island through using the data of remote sensing. This study focused on Daegu in Korea. This city, one of the hottest city in Korea has basin form. We used high-resolution land cover data and land surface temperature by using Landsat8 satellite image to examine 100 randomly selected sample sites of 884.15km2 (1)In each land use, we quantified several landscape-levels and class-level landscape metrics for the sample study sites. (2)In addition, we measured the land surface temperature in 3 year hot summer seasons (July to September). Then, we investigated the pattern of land surface temperature for each land use through Ecognition package. (3)We deducted the Pearson correlation coefficients between land surface temperature and each landscape metrics. (4)We analyzed the variance among the four land uses. (5)Using linear regression, we determined land surface temperature model for each land use. (6)Through this analysis, we aims to examine the best pattern of land cover and artificial structure for reducing urban heat island effect in highly urbanized city. The results of linear regression showed that proportional land cover of grass, tree, water and impervious surfaces well explained the temperature in apartment residential areas. In contrast, the changes in the pattern of water, grass, tree and impervious surfaces were the best to determine the temperature in low rise residential area, central business district and industrial area.

  20. Downscaling MODIS Land Surface Temperature for Urban Public Health Applications

    NASA Technical Reports Server (NTRS)

    Al-Hamdan, Mohammad; Crosson, William; Estes, Maurice, Jr.; Estes, Sue; Quattrochi, Dale; Johnson, Daniel

    2013-01-01

    This study is part of a project funded by the NASA Applied Sciences Public Health Program, which focuses on Earth science applications of remote sensing data for enhancing public health decision-making. Heat related death is currently the number one weather-related killer in the United States. Mortality from these events is expected to increase as a function of climate change. This activity sought to augment current Heat Watch/Warning Systems (HWWS) with NASA remotely sensed data, and models used in conjunction with socioeconomic and heatrelated mortality data. The current HWWS do not take into account intra-urban spatial variation in risk assessment. The purpose of this effort is to evaluate a potential method to improve spatial delineation of risk from extreme heat events in urban environments by integrating sociodemographic risk factors with estimates of land surface temperature (LST) derived from thermal remote sensing data. In order to further improve the consideration of intra-urban variations in risk from extreme heat, we also developed and evaluated a number of spatial statistical techniques for downscaling the 1-km daily MODerate-resolution Imaging Spectroradiometer (MODIS) LST data to 60 m using Landsat-derived LST data, which have finer spatial but coarser temporal resolution than MODIS. In this paper, we will present these techniques, which have been demonstrated and validated for Phoenix, AZ using data from the summers of 2000-2006.

  1. Locally-Adaptive, Spatially-Explicit Projection of U.S. Population for 2030 and 2050

    DOE PAGES

    McKee, Jacob J.; Rose, Amy N.; Bright, Eddie A.; ...

    2015-02-03

    Localized adverse events, including natural hazards, epidemiological events, and human conflict, underscore the criticality of quantifying and mapping current population. Moreover, knowing the spatial distribution of future population allows for increased preparation in the event of an emergency. Building on the spatial interpolation technique previously developed for high resolution population distribution data (LandScan Global and LandScan USA), we have constructed an empirically-informed spatial distribution of the projected population of the contiguous U.S. for 2030 and 2050. Whereas most current large-scale, spatially explicit population projections typically rely on a population gravity model to determine areas of future growth, our projection modelmore » departs from these by accounting for multiple components that affect population distribution. Modelled variables, which included land cover, slope, distances to larger cities, and a moving average of current population, were locally adaptive and geographically varying. The resulting weighted surface was used to determine which areas had the greatest likelihood for future population change. Population projections of county level numbers were developed using a modified version of the U.S. Census s projection methodology with the U.S. Census s official projection as the benchmark. Applications of our model include, but are not limited to, suitability modelling, service area planning for governmental agencies, consequence assessment, mitigation planning and implementation, and assessment of spatially vulnerable populations.« less

  2. Locally-Adaptive, Spatially-Explicit Projection of U.S. Population for 2030 and 2050

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKee, Jacob J.; Rose, Amy N.; Bright, Eddie A.

    Localized adverse events, including natural hazards, epidemiological events, and human conflict, underscore the criticality of quantifying and mapping current population. Moreover, knowing the spatial distribution of future population allows for increased preparation in the event of an emergency. Building on the spatial interpolation technique previously developed for high resolution population distribution data (LandScan Global and LandScan USA), we have constructed an empirically-informed spatial distribution of the projected population of the contiguous U.S. for 2030 and 2050. Whereas most current large-scale, spatially explicit population projections typically rely on a population gravity model to determine areas of future growth, our projection modelmore » departs from these by accounting for multiple components that affect population distribution. Modelled variables, which included land cover, slope, distances to larger cities, and a moving average of current population, were locally adaptive and geographically varying. The resulting weighted surface was used to determine which areas had the greatest likelihood for future population change. Population projections of county level numbers were developed using a modified version of the U.S. Census s projection methodology with the U.S. Census s official projection as the benchmark. Applications of our model include, but are not limited to, suitability modelling, service area planning for governmental agencies, consequence assessment, mitigation planning and implementation, and assessment of spatially vulnerable populations.« less

  3. Desertification in the south Junggar Basin, 2000-2009: Part I. Spatial analysis and indicator retrieval

    NASA Astrophysics Data System (ADS)

    Jiang, Miao; Lin, Yi

    2018-07-01

    Desertification is a serious environmental problem that threatens ecological balance and society sustainability, and pursuit of efficient techniques for its monitoring is always highlighted. Compared to in-situ investigation, remote sensing (RS) has proved to be an efficient solution plan, particularly for large covers, whereas previous RS-based studies mostly focused on proposal and validation of various indicators for different scenarios. To comprehensively reflect desertification and project its trend, this study attempted to develop a new comprehensive RS information model, with the scenario for test deployed at the south Junggar Basin, China in the last decade (2000-2009). The premise of establishing such a model, however, is not simple, involving selection of RS images with appropriate spatial resolutions and uniform retrievals of indicators with high accuracies. To handle these fundamental problems, this Part I compared the merits and faults of MODIS and TM images in desertification characterization, by making spatial analyses including land cover patch- and pixel-scale analyses and land attribute semi-variance and scale-agreement analyses. After the MODIS images with the resolution of 250 m were identified to be the appropriate choice, multiple representative indicators including NDVI, fraction of vegetation cover, land surface temperature, albedo and soil moisture that relate to different aspects of desertification processes were uniformly retrieved by using their individual effective algorithms and downscaling. Tests showed the spatial analyses did help in ensuring the premise of the whole study and the retrievals of indicators were reliable. The contributions are of fundamental implications for improving RS-based desertification analysis and have created a firm foundation for developing a RS information model in Part II.

  4. Multispectral multisensor image fusion using wavelet transforms

    USGS Publications Warehouse

    Lemeshewsky, George P.

    1999-01-01

    Fusion techniques can be applied to multispectral and higher spatial resolution panchromatic images to create a composite image that is easier to interpret than the individual images. Wavelet transform-based multisensor, multiresolution fusion (a type of band sharpening) was applied to Landsat thematic mapper (TM) multispectral and coregistered higher resolution SPOT panchromatic images. The objective was to obtain increased spatial resolution, false color composite products to support the interpretation of land cover types wherein the spectral characteristics of the imagery are preserved to provide the spectral clues needed for interpretation. Since the fusion process should not introduce artifacts, a shift invariant implementation of the discrete wavelet transform (SIDWT) was used. These results were compared with those using the shift variant, discrete wavelet transform (DWT). Overall, the process includes a hue, saturation, and value color space transform to minimize color changes, and a reported point-wise maximum selection rule to combine transform coefficients. The performance of fusion based on the SIDWT and DWT was evaluated with a simulated TM 30-m spatial resolution test image and a higher resolution reference. Simulated imagery was made by blurring higher resolution color-infrared photography with the TM sensors' point spread function. The SIDWT based technique produced imagery with fewer artifacts and lower error between fused images and the full resolution reference. Image examples with TM and SPOT 10-m panchromatic illustrate the reduction in artifacts due to the SIDWT based fusion.

  5. Approximating tasseled cap values to evaluate brightness, greenness, and wetness for the Advanced Land Imager (ALI)

    USGS Publications Warehouse

    Yamamoto, Kristina H.; Finn, Michael P.

    2012-01-01

    The Tasseled Cap transformation is a method of image band conversion to enhance spectral information. It primarily is used to detect vegetation using the derived brightness, greenness, and wetness bands. An approximation of Tasseled Cap values for the Advanced Land Imager was investigated and compared to the Landsat Thematic Mapper Tasseled Cap values. Despite sharing similar spectral, temporal, and spatial resolution, the two systems are not interchangeable with regard to Tasseled Cap matrices.

  6. High resolution satellite image indexing and retrieval using SURF features and bag of visual words

    NASA Astrophysics Data System (ADS)

    Bouteldja, Samia; Kourgli, Assia

    2017-03-01

    In this paper, we evaluate the performance of SURF descriptor for high resolution satellite imagery (HRSI) retrieval through a BoVW model on a land-use/land-cover (LULC) dataset. Local feature approaches such as SIFT and SURF descriptors can deal with a large variation of scale, rotation and illumination of the images, providing, therefore, a better discriminative power and retrieval efficiency than global features, especially for HRSI which contain a great range of objects and spatial patterns. Moreover, we combine SURF and color features to improve the retrieval accuracy, and we propose to learn a category-specific dictionary for each image category which results in a more discriminative image representation and boosts the image retrieval performance.

  7. Modeling landscape evapotranspiration by integrating land surface phenology and a water balance algorithm

    USGS Publications Warehouse

    Senay, Gabriel B.

    2008-01-01

    The main objective of this study is to present an improved modeling technique called Vegetation ET (VegET) that integrates commonly used water balance algorithms with remotely sensed Land Surface Phenology (LSP) parameter to conduct operational vegetation water balance modeling of rainfed systems at the LSP’s spatial scale using readily available global data sets. Evaluation of the VegET model was conducted using Flux Tower data and two-year simulation for the conterminous US. The VegET model is capable of estimating actual evapotranspiration (ETa) of rainfed crops and other vegetation types at the spatial resolution of the LSP on a daily basis, replacing the need to estimate crop- and region-specific crop coefficients.

  8. On the effects of scale for ecosystem services mapping

    USGS Publications Warehouse

    Grêt-Regamey, Adrienne; Weibel, Bettina; Bagstad, Kenneth J.; Ferrari, Marika; Geneletti, Davide; Klug, Hermann; Schirpke, Uta; Tappeiner, Ulrike

    2014-01-01

    Ecosystems provide life-sustaining services upon which human civilization depends, but their degradation largely continues unabated. Spatially explicit information on ecosystem services (ES) provision is required to better guide decision making, particularly for mountain systems, which are characterized by vertical gradients and isolation with high topographic complexity, making them particularly sensitive to global change. But while spatially explicit ES quantification and valuation allows the identification of areas of abundant or limited supply of and demand for ES, the accuracy and usefulness of the information varies considerably depending on the scale and methods used. Using four case studies from mountainous regions in Europe and the U.S., we quantify information gains and losses when mapping five ES - carbon sequestration, flood regulation, agricultural production, timber harvest, and scenic beauty - at coarse and fine resolution (250 m vs. 25 m in Europe and 300 m vs. 30 m in the U.S.). We analyze the effects of scale on ES estimates and their spatial pattern and show how these effects are related to different ES, terrain structure and model properties. ES estimates differ substantially between the fine and coarse resolution analyses in all case studies and across all services. This scale effect is not equally strong for all ES. We show that spatially explicit information about non-clustered, isolated ES tends to be lost at coarse resolution and against expectation, mainly in less rugged terrain, which calls for finer resolution assessments in such contexts. The effect of terrain ruggedness is also related to model properties such as dependency on land use-land cover data. We close with recommendations for mapping ES to make the resulting maps more comparable, and suggest a four-step approach to address the issue of scale when mapping ES that can deliver information to support ES-based decision making with greater accuracy and reliability.

  9. On the Effects of Scale for Ecosystem Services Mapping

    PubMed Central

    Grêt-Regamey, Adrienne; Weibel, Bettina; Bagstad, Kenneth J.; Ferrari, Marika; Geneletti, Davide; Klug, Hermann; Schirpke, Uta; Tappeiner, Ulrike

    2014-01-01

    Ecosystems provide life-sustaining services upon which human civilization depends, but their degradation largely continues unabated. Spatially explicit information on ecosystem services (ES) provision is required to better guide decision making, particularly for mountain systems, which are characterized by vertical gradients and isolation with high topographic complexity, making them particularly sensitive to global change. But while spatially explicit ES quantification and valuation allows the identification of areas of abundant or limited supply of and demand for ES, the accuracy and usefulness of the information varies considerably depending on the scale and methods used. Using four case studies from mountainous regions in Europe and the U.S., we quantify information gains and losses when mapping five ES - carbon sequestration, flood regulation, agricultural production, timber harvest, and scenic beauty - at coarse and fine resolution (250 m vs. 25 m in Europe and 300 m vs. 30 m in the U.S.). We analyze the effects of scale on ES estimates and their spatial pattern and show how these effects are related to different ES, terrain structure and model properties. ES estimates differ substantially between the fine and coarse resolution analyses in all case studies and across all services. This scale effect is not equally strong for all ES. We show that spatially explicit information about non-clustered, isolated ES tends to be lost at coarse resolution and against expectation, mainly in less rugged terrain, which calls for finer resolution assessments in such contexts. The effect of terrain ruggedness is also related to model properties such as dependency on land use-land cover data. We close with recommendations for mapping ES to make the resulting maps more comparable, and suggest a four-step approach to address the issue of scale when mapping ES that can deliver information to support ES-based decision making with greater accuracy and reliability. PMID:25549256

  10. On the effects of scale for ecosystem services mapping.

    PubMed

    Grêt-Regamey, Adrienne; Weibel, Bettina; Bagstad, Kenneth J; Ferrari, Marika; Geneletti, Davide; Klug, Hermann; Schirpke, Uta; Tappeiner, Ulrike

    2014-01-01

    Ecosystems provide life-sustaining services upon which human civilization depends, but their degradation largely continues unabated. Spatially explicit information on ecosystem services (ES) provision is required to better guide decision making, particularly for mountain systems, which are characterized by vertical gradients and isolation with high topographic complexity, making them particularly sensitive to global change. But while spatially explicit ES quantification and valuation allows the identification of areas of abundant or limited supply of and demand for ES, the accuracy and usefulness of the information varies considerably depending on the scale and methods used. Using four case studies from mountainous regions in Europe and the U.S., we quantify information gains and losses when mapping five ES - carbon sequestration, flood regulation, agricultural production, timber harvest, and scenic beauty - at coarse and fine resolution (250 m vs. 25 m in Europe and 300 m vs. 30 m in the U.S.). We analyze the effects of scale on ES estimates and their spatial pattern and show how these effects are related to different ES, terrain structure and model properties. ES estimates differ substantially between the fine and coarse resolution analyses in all case studies and across all services. This scale effect is not equally strong for all ES. We show that spatially explicit information about non-clustered, isolated ES tends to be lost at coarse resolution and against expectation, mainly in less rugged terrain, which calls for finer resolution assessments in such contexts. The effect of terrain ruggedness is also related to model properties such as dependency on land use-land cover data. We close with recommendations for mapping ES to make the resulting maps more comparable, and suggest a four-step approach to address the issue of scale when mapping ES that can deliver information to support ES-based decision making with greater accuracy and reliability.

  11. Fire modeling in the Brazilian arc of deforestation through nested coupling of atmosphere, dynamic vegetation, LUCC and fire spread models

    NASA Astrophysics Data System (ADS)

    Tourigny, E.; Nobre, C.; Cardoso, M. F.

    2012-12-01

    Deforestation of tropical forests for logging and agriculture, associated to slash-and-burn practices, is a major source of CO2 emissions, both immediate due to biomass burning and future due to the elimination of a potential CO2 sink. Feedbacks between climate change and LUCC (Land-Use and Land-Cover Change) can potentially increase the loss of tropical forests and increase the rate of CO2 emissions, through mechanisms such as land and soil degradation and the increase in wildfire occurrence and severity. However, current understanding of the processes of fires (including ignition, spread and consequences) in tropical forests and climatic feedbacks are poorly understood and need further research. As the processes of LUCC and associated fires occur at local scales, linking them to large-scale atmospheric processes requires a means of up-scaling higher resolutions processes to lower resolutions. Our approach is to couple models which operate at various spatial and temporal scales: a Global Climate Model (GCM), Dynamic Global Vegetation Model (DGVM) and local-scale LUCC and fire spread model. The climate model resolves large scale atmospheric processes and forcings, which are imposed on the surface DGVM and fed-back to climate. Higher-resolution processes such as deforestation, land use management and associated (as well as natural) fires are resolved at the local level. A dynamic tiling scheme allows to represent local-scale heterogeneity while maintaining computational efficiency of the land surface model, compared to traditional landscape models. Fire behavior is modeled at the regional scale (~500m) to represent the detailed landscape using a semi-empirical fire spread model. The relatively coarse scale (as compared to other fire spread models) is necessary due to the paucity of detailed land-cover information and fire history (particularly in the tropics and developing countries). This work presents initial results of a spatially-explicit fire spread model coupled to the IBIS DGVM model. Our area of study comprises selected regions in and near the Brazilian "arc of deforestation". For model training and evaluation, several areas have been mapped using high-resolution imagery from the Landsat TM/ETM+ sensors (Figure 1). This high resolution reference data is used for local-scale simulations and also to evaluate the accuracy of the global MCD45 burned area product, which will be used in future studies covering the entire "arc of deforestation".; Area of study along the arc of deforestation and cerrado: landsat scenes used and burned area (2010) from MCD45 product.

  12. Change detection from remotely sensed images: From pixel-based to object-based approaches

    NASA Astrophysics Data System (ADS)

    Hussain, Masroor; Chen, Dongmei; Cheng, Angela; Wei, Hui; Stanley, David

    2013-06-01

    The appetite for up-to-date information about earth's surface is ever increasing, as such information provides a base for a large number of applications, including local, regional and global resources monitoring, land-cover and land-use change monitoring, and environmental studies. The data from remote sensing satellites provide opportunities to acquire information about land at varying resolutions and has been widely used for change detection studies. A large number of change detection methodologies and techniques, utilizing remotely sensed data, have been developed, and newer techniques are still emerging. This paper begins with a discussion of the traditionally pixel-based and (mostly) statistics-oriented change detection techniques which focus mainly on the spectral values and mostly ignore the spatial context. This is succeeded by a review of object-based change detection techniques. Finally there is a brief discussion of spatial data mining techniques in image processing and change detection from remote sensing data. The merits and issues of different techniques are compared. The importance of the exponential increase in the image data volume and multiple sensors and associated challenges on the development of change detection techniques are highlighted. With the wide use of very-high-resolution (VHR) remotely sensed images, object-based methods and data mining techniques may have more potential in change detection.

  13. Flood and Landslide Applications of High Time Resolution Satellite Rain Products

    NASA Technical Reports Server (NTRS)

    Adler, Robert F.; Hong, Yang; Huffman, George J.

    2006-01-01

    Experimental, potentially real-time systems to detect floods and landslides related to heavy rain events are described. A key basis for these applications is high time resolution satellite rainfall analyses. Rainfall is the primary cause for devastating floods across the world. However, in many countries, satellite-based precipitation estimation may be the best source of rainfall data due to insufficient ground networks and absence of data sharing along many trans-boundary river basins. Remotely sensed precipitation from the NASA's TRMM Multi-satellite Precipitation Analysis (TMPA) operational system (near real-time precipitation at a spatial-temporal resolution of 3 hours and 0.25deg x 0.25deg) is used to monitor extreme precipitation events. Then these data are ingested into a macro-scale hydrological model which is parameterized using spatially distributed elevation, soil and land cover datasets available globally from satellite remote sensing. Preliminary flood results appear reasonable in terms of location and frequency of events, with implementation on a quasi-global basis underway. With the availability of satellite rainfall analyses at fine time resolution, it has also become possible to assess landslide risk on a near-global basis. Early results show that landslide occurrence is closely associated with the spatial patterns and temporal distribution of TRMM rainfall characteristics. Particularly, the number of landslides triggered by rainfall is related to rainfall climatology, antecedent rainfall accumulation, and intensity-duration of rainstorms. For the purpose of prediction, an empirical TMPA-based rainfall intensity-duration threshold is developed and shown to have skill in determining potential areas of landslides. These experimental findings, in combination with landslide surface susceptibility information based on satellite-based land surface information, form a starting point towards a potential operational landslide monitoring/warning system around the globe.

  14. Drone based estimation of actual evapotranspiration over different forest types

    NASA Astrophysics Data System (ADS)

    Marzahn, Philip; Gampe, David; Castro, Saulo; Vega-Araya, Mauricio; Sanchez-Azofeifa, Arturo; Ludwig, Ralf

    2017-04-01

    Actual evapotranspiration (Eta) plays an important role in surface-atmosphere interactions. Traditionally, Eta is measured by means of lysimeters, eddy-covariance systems or fiber optics, providing estimates which are spatially restricted to a footprint from a few square meters up to several hectares . In the past, several methods have been developed to derive Eta by means of multi-spectral remote sensing data using thermal and VIS/NIR satellite imagery of the land surface. As such approaches do have their justification on coarser scales, they do not provide Eta information on the fine resolution plant level over large areas which is mandatory for the detection of water stress or tree mortality. In this study, we present a comparison of a drone based assessment of Eta with eddy-covariance measurements over two different forest types - a deciduous forest in Alberta, Canada and a tropical dry forest in Costa Rica. Drone based estimates of Eta were calculated applying the Triangle-Method proposed by Jiang and Islam (1999). The Triangle-Method estimates actual evapotranspiration (Eta) by means of the Normalized Difference Vegetation Index (NDVI) and land surface temperature (LST) provided by two camera systems (MicaSense RedEdge, FLIR TAU2 640) flown simultaneously on an octocopter. . Results indicate a high transferability of the original approach from Jiang and Islam (1999) developed for coarse to medium resolution satellite imagery tothe high resolution drone data, leading to a deviation in Eta estimates of 10% compared to the eddy-covariance measurements. In addition, the spatial footprint of the eddy-covariance measurement can be detected with this approach, by showing the spatial heterogeneities of Eta due to the spatial distribution of different trees and understory vegetation.

  15. A spectral-structural bag-of-features scene classifier for very high spatial resolution remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Zhao, Bei; Zhong, Yanfei; Zhang, Liangpei

    2016-06-01

    Land-use classification of very high spatial resolution remote sensing (VHSR) imagery is one of the most challenging tasks in the field of remote sensing image processing. However, the land-use classification is hard to be addressed by the land-cover classification techniques, due to the complexity of the land-use scenes. Scene classification is considered to be one of the expected ways to address the land-use classification issue. The commonly used scene classification methods of VHSR imagery are all derived from the computer vision community that mainly deal with terrestrial image recognition. Differing from terrestrial images, VHSR images are taken by looking down with airborne and spaceborne sensors, which leads to the distinct light conditions and spatial configuration of land cover in VHSR imagery. Considering the distinct characteristics, two questions should be answered: (1) Which type or combination of information is suitable for the VHSR imagery scene classification? (2) Which scene classification algorithm is best for VHSR imagery? In this paper, an efficient spectral-structural bag-of-features scene classifier (SSBFC) is proposed to combine the spectral and structural information of VHSR imagery. SSBFC utilizes the first- and second-order statistics (the mean and standard deviation values, MeanStd) as the statistical spectral descriptor for the spectral information of the VHSR imagery, and uses dense scale-invariant feature transform (SIFT) as the structural feature descriptor. From the experimental results, the spectral information works better than the structural information, while the combination of the spectral and structural information is better than any single type of information. Taking the characteristic of the spatial configuration into consideration, SSBFC uses the whole image scene as the scope of the pooling operator, instead of the scope generated by a spatial pyramid (SP) commonly used in terrestrial image classification. The experimental results show that the whole image as the scope of the pooling operator performs better than the scope generated by SP. In addition, SSBFC codes and pools the spectral and structural features separately to avoid mutual interruption between the spectral and structural features. The coding vectors of spectral and structural features are then concatenated into a final coding vector. Finally, SSBFC classifies the final coding vector by support vector machine (SVM) with a histogram intersection kernel (HIK). Compared with the latest scene classification methods, the experimental results with three VHSR datasets demonstrate that the proposed SSBFC performs better than the other classification methods for VHSR image scenes.

  16. Estimation of the high-spatial-resolution variability in extreme wind speeds for forestry applications

    NASA Astrophysics Data System (ADS)

    Venäläinen, Ari; Laapas, Mikko; Pirinen, Pentti; Horttanainen, Matti; Hyvönen, Reijo; Lehtonen, Ilari; Junila, Päivi; Hou, Meiting; Peltola, Heli M.

    2017-07-01

    The bioeconomy has an increasing role to play in climate change mitigation and the sustainable development of national economies. In Finland, a forested country, over 50 % of the current bioeconomy relies on the sustainable management and utilization of forest resources. Wind storms are a major risk that forests are exposed to and high-spatial-resolution analysis of the most vulnerable locations can produce risk assessment of forest management planning. In this paper, we examine the feasibility of the wind multiplier approach for downscaling of maximum wind speed, using 20 m spatial resolution CORINE land-use dataset and high-resolution digital elevation data. A coarse spatial resolution estimate of the 10-year return level of maximum wind speed was obtained from the ERA-Interim reanalyzed data. Using a geospatial re-mapping technique the data were downscaled to 26 meteorological station locations to represent very diverse environments. Applying a comparison, we find that the downscaled 10-year return levels represent 66 % of the observed variation among the stations examined. In addition, the spatial variation in wind-multiplier-downscaled 10-year return level wind was compared with the WAsP model-simulated wind. The heterogeneous test area was situated in northern Finland, and it was found that the major features of the spatial variation were similar, but in some locations, there were relatively large differences. The results indicate that the wind multiplier method offers a pragmatic and computationally feasible tool for identifying at a high spatial resolution those locations with the highest forest wind damage risks. It can also be used to provide the necessary wind climate information for wind damage risk model calculations, thus making it possible to estimate the probability of predicted threshold wind speeds for wind damage and consequently the probability (and amount) of wind damage for certain forest stand configurations.

  17. Enhancing Conservation with High Resolution Productivity Datasets for the Conterminous United States

    NASA Astrophysics Data System (ADS)

    Robinson, Nathaniel Paul

    Human driven alteration of the earth's terrestrial surface is accelerating through land use changes, intensification of human activity, climate change, and other anthropogenic pressures. These changes occur at broad spatio-temporal scales, challenging our ability to effectively monitor and assess the impacts and subsequent conservation strategies. While satellite remote sensing (SRS) products enable monitoring of the earth's terrestrial surface continuously across space and time, the practical applications for conservation and management of these products are limited. Often the processes driving ecological change occur at fine spatial resolutions and are undetectable given the resolution of available datasets. Additionally, the links between SRS data and ecologically meaningful metrics are weak. Recent advances in cloud computing technology along with the growing record of high resolution SRS data enable the development of SRS products that quantify ecologically meaningful variables at relevant scales applicable for conservation and management. The focus of my dissertation is to improve the applicability of terrestrial gross and net primary productivity (GPP/NPP) datasets for the conterminous United States (CONUS). In chapter one, I develop a framework for creating high resolution datasets of vegetation dynamics. I use the entire archive of Landsat 5, 7, and 8 surface reflectance data and a novel gap filling approach to create spatially continuous 30 m, 16-day composites of the normalized difference vegetation index (NDVI) from 1986 to 2016. In chapter two, I integrate this with other high resolution datasets and the MOD17 algorithm to create the first high resolution GPP and NPP datasets for CONUS. I demonstrate the applicability of these products for conservation and management, showing the improvements beyond currently available products. In chapter three, I utilize this dataset to evaluate the relationships between land ownership and terrestrial production across the CONUS domain. The main results of this work are three publicly available datasets: 1) 30 m Landsat NDVI; 2) 250 m MODIS based GPP and NPP; and 3) 30 m Landsat based GPP and NPP. My goal is that these products prove useful for the wider scientific, conservation, and land management communities as we continue to strive for better conservation and management practices.

  18. Mapping carbon storage in urban trees with multi-source remote sensing data: relationships between biomass, land use, and demographics in Boston neighborhoods.

    PubMed

    Raciti, Steve M; Hutyra, Lucy R; Newell, Jared D

    2014-12-01

    High resolution maps of urban vegetation and biomass are powerful tools for policy-makers and community groups seeking to reduce rates of urban runoff, moderate urban heat island effects, and mitigate the effects of greenhouse gas emissions. We developed a very high resolution map of urban tree biomass, assessed the scale sensitivities in biomass estimation, compared our results with lower resolution estimates, and explored the demographic relationships in biomass distribution across the City of Boston. We integrated remote sensing data (including LiDAR-based tree height estimates) and field-based observations to map canopy cover and aboveground tree carbon storage at ~1m spatial scale. Mean tree canopy cover was estimated to be 25.5±1.5% and carbon storage was 355Gg (28.8MgCha(-1)) for the City of Boston. Tree biomass was highest in forest patches (110.7MgCha(-1)), but residential (32.8MgCha(-1)) and developed open (23.5MgCha(-1)) land uses also contained relatively high carbon stocks. In contrast with previous studies, we did not find significant correlations between tree biomass and the demographic characteristics of Boston neighborhoods, including income, education, race, or population density. The proportion of households that rent was negatively correlated with urban tree biomass (R(2)=0.26, p=0.04) and correlated with Priority Planting Index values (R(2)=0.55, p=0.001), potentially reflecting differences in land management among rented and owner-occupied residential properties. We compared our very high resolution biomass map to lower resolution biomass products from other sources and found that those products consistently underestimated biomass within urban areas. This underestimation became more severe as spatial resolution decreased. This research demonstrates that 1) urban areas contain considerable tree carbon stocks; 2) canopy cover and biomass may not be related to the demographic characteristics of Boston neighborhoods; and 3) that recent advances in high resolution remote sensing have the potential to improve the characterization and management of urban vegetation. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Heavy rainfall induced flash flood management

    NASA Astrophysics Data System (ADS)

    Weiler, Markus; Steinbrich, Andreas; Stölzle, Michael; Leistert, Hannes

    2016-04-01

    Heavy rain induced flash floods are still a serious hazard. In context of climate change even a rise of threat potential of flash flood must be suspected. To improve prediction of endangered areas hydraulic models was developed in the past that implement topography information in heigh resolution, gathered by laser scan applications. To run such models it is crucial to estimate the runoff input spatial distributed. However, this information is usually derived with relatively simple models lacking the process rigour that is required for prediction in engaged basins. Though available rain runoff models are able to model runoff response integral for measured catchments they do not indicate the spatial distribution of processes. Moreover they are commonly calibrated to measured runoff data and not applicable in other environments. Since runoff generation is commonly not measured, a calibration on it is hardly possible. In this study, we present a new approach for quantification of runoff generation in height spatial and temporal resolution. A suited model needs to work without calibration in every given environment under any given conditions. It is possible to develop such a model by combining spatial distributed input data of land surface properties (e.g. soil, geology, land use, …) with worldwide findings of runoff generation research. We developed such a model for the state of Baden-Württemberg, what has an extensive pool of spatial data. E.g. a digital elevation model of 1*1m² resolution, degree of sealing of the earth surface in 1*1m² resolution, soil properties (1:50.000) and geology (1:200.000). Within the state of Baden-Württemberg different regions are situated, with distinct environmental characteristics concerning as well climate, soil properties, land use, topography and geology. The model was tested and validated by modelling 36 observed flood events in 13 mesoscale catchments representing the different regions of Baden-Württemberg as well as by modelling 7 large area (70 m²) sprinkler experiments on 5 different plots in different regions of Switzerland. It was found, that the model was able to reproduce the temporal runoff dynamics as well as the peak discharge and the runoff volume in both, mesoscale catchments and 70 m² plots. It works in every given environment under every given conditions as antecedent moisture and precipitation characteristics. Since it works well under given different conditions in different regions and on different scales without any calibration, it is predestinated for the purpose of quantification of runoff generation for flash floods while heavy rain events in the different regions of Baden-Württemberg. Therefore we have it applied on the whole area of Baden-Württemberg on a spatial resolution of 5*5m² to model the runoff generation for one hour precipitation events of the return period 50, 100 and 1000 years and different antecedent moisture conditions. The pattern and effects are studied in detail as well as other interesting features.

  20. Assessing the competing roles of model resolution and meteorological forcing fidelity in hyperresolution simulations of snowpack and streamflow in the southern Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Gochis, D. J.; Dugger, A. L.; Karsten, L. R.; Barlage, M. J.; Sampson, K. M.; Yu, W.; Pan, L.; McCreight, J. L.; Howard, K.; Busto, J.; Deems, J. S.

    2017-12-01

    Hydrometeorological processes vary over comparatively short length scales in regions of complex terrain such as the southern Rocky Mountains. Changes in temperature, precipitation, wind and solar radiation can vary significantly across elevation gradients, terrain landform and land cover conditions throughout the region. Capturing such variability in hydrologic models can necessitate the utilization of so-called `hyper-resolution' spatial meshes with effective element spacings of less than 100m. However, it is often difficult to obtain meteorological forcings of high quality in such regions at those resolutions which can result in significant uncertainty in fundamental in hydrologic model inputs. In this study we examine the comparative influences of meteorological forcing data fidelity and spatial resolution on seasonal simulations of snowpack evolution, runoff and streamflow in a set of high mountain watersheds in southern Colorado. We utilize the operational, NOAA National Water Model configuration of the community WRF-Hydro system as a baseline and compare against it, additional model scenarios with differing specifications of meteorological forcing data, with and without topographic downscaling adjustments applied, with and without experimental high resolution radar derived precipitation estimates and with WRF-Hydro configurations of progressively finer spatial resolution. The results suggest significant influence from and importance of meteorological downscaling techniques in controlling spatial distributions of meltout and runoff timing. The use of radar derived precipitation exhibits clear sensitivity on hydrologic simulation skill compared with the use of coarser resolution, background precipitation analyses. Advantages and disadvantages of the utilization of progressively higher resolution model configurations both in terms of computational requirements and model fidelity are also discussed.

  1. Standard Deviation of Spatially-Averaged Surface Cross Section Data from the TRMM Precipitation Radar

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Jones, Jeffrey A.

    2010-01-01

    We investigate the spatial variability of the normalized radar cross section of the surface (NRCS or Sigma(sup 0)) derived from measurements of the TRMM Precipitation Radar (PR) for the period from 1998 to 2009. The purpose of the study is to understand the way in which the sample standard deviation of the Sigma(sup 0) data changes as a function of spatial resolution, incidence angle, and surface type (land/ocean). The results have implications regarding the accuracy by which the path integrated attenuation from precipitation can be inferred by the use of surface scattering properties.

  2. Estimation of Actual Crop ET of Paddy Using the Energy Balance Model SMARET and Validation with Field Water Balance Measurements and a Crop Growth Model (ORYZA)

    NASA Astrophysics Data System (ADS)

    Nallasamy, N. D.; Muraleedharan, B. V.; Kathirvel, K.; Narasimhan, B.

    2014-12-01

    Sustainable management of water resources requires reliable estimates of actual evapotranspiration (ET) at fine spatial and temporal resolution. This is significant in the case of rice based irrigation systems, one of the major consumers of surface water resources and where ET forms a major component of water consumption. However huge tradeoff in the spatial and temporal resolution of satellite images coupled with lack of adequate number of cloud free images within a growing season act as major constraints in deriving ET at fine spatial and temporal resolution using remote sensing based energy balance models. The scale at which ET is determined is decided by the spatial and temporal scale of Land Surface Temperature (LST) and Normalized Difference Vegetation Index (NDVI), which form inputs to energy balance models. In this context, the current study employed disaggregation algorithms (NL-DisTrad and DisNDVI) to generate time series of LST and NDVI images at fine resolution. The disaggregation algorithms aimed at generating LST and NDVI at finer scale by integrating temporal information from concurrent coarse resolution data and spatial information from a single fine resolution image. The temporal frequency of the disaggregated images is further improved by employing composite images of NDVI and LST in the spatio-temporal disaggregation method. The study further employed half-hourly incoming surface insolation and outgoing long wave radiation obtained from the Indian geostationary satellite (Kalpana-1) to convert the instantaneous ET into daily ET and subsequently to the seasonal ET, thereby improving the accuracy of ET estimates. The estimates of ET were validated with field based water balance measurements carried out in Gadana, a subbasin predominated by rice paddy fields, located in Tamil Nadu, India.

  3. Remote sensing of forest dynamics and land use in Amazonia

    NASA Astrophysics Data System (ADS)

    Toomey, Michael Paul

    The rich, vast Amazonian ecosystem is directly and indirectly threatened by human activities; remote sensing serves as an essential tool for monitoring, understanding and mitigating these threats. A multi-faceted body of work is described here, addressing three major issues that employ and advance remote sensing techniques for the study of Amazonia and other tropical rainforest regions. In Chapter 2, canopy reflectance modeling and satellite observations were used to quantify the effect of epiphylls on remote sensing of humid forests. Modeling simulations demonstrated sensitivity of canopy-level near infrared and green reflectance to epiphylls on leaves. Time series of Moderate Resolution Imaging Spectrometer (MODIS) data corroborated the modeling results, suggesting a degree of coupling between epiphyll cover and vegetation indices which must be accounted for when using optical remote sensing in humid forests. In Chapter 4, 11 years (2000--2010) of MODIS land surface temperature (LST) data covering the entire Amazon basin were used to ascertain the role of heat stress during droughts in 2005 and 2010. Preliminary accuracy assessments showed that LST data provided reasonably accurate estimates of daytime air temperatures (RMSE = 1.45°C; Chapter 3). There were moderate to strong correlations between LST-based air temperature estimates and tower measurements (mean r = 0.64), illustrating a sensitivity to temporal variability. During both droughts, MODIS LST data detected anomalously high daytime and nighttime canopy temperatures throughout drought-affected regions. Multivariate linear models of LST and precipitation anomalies explained 65.1% of the variability in forest biomass losses, as determined from a wide network of forest inventory plots. These results suggest that models should incorporate both heat and moisture to predict drought effects on tropical forests. In Chapter 5, I performed high spatial and temporal resolution modeling of carbon stocks and fluxes in the state of Rondonia, Brazil for the period 1985--2009. Based on this analysis, Rondonia contributed ˜4% of pan-tropical humid forest deforestation emissions while carbon uptake by secondary forest was negligible due to limited spatial extent and high turnover rates. Spatial analysis of land cover change demonstrated the necessity for fine resolution carbon monitoring in tropical regions dominated by non-mechanized, smallholder land uses.

  4. Using Landsat and a Bayesian hard classifier to study forest change in the Salmon Creek Watershed area from 1972-2013

    NASA Astrophysics Data System (ADS)

    Mullis, David Stone

    The Salmon Creek Watershed in Sonoma County, California, USA, is home to a variety of wildlife, and many of its residents are mindful of their place in its ecology. In the past half century, several of its native and rare species have become threatened, endangered, or extinct, most notably the once common Coho salmon and Chinook salmon. The cause of this decline is believed to be a combination of global climate change, local land use, and land cover change. More specifically, the clearing of forested land to create vineyards, as well as other agricultural and residential uses, has led to a decline in biodiversity and habitat structure. I studied sub-scenes of Landsat data from 1972 to 2013 for the Salmon Creek Watershed area to estimate forest cover over this period. I used a maximum likelihood hard classifier to determine forest area, a Mahalanobis distance soft classifier to show the software's uncertainty in classification, and manually digitized forest cover to test and compare results for the 2013 30 m image. Because the earliest images were lower spatial resolution, I also tested the effects of resolution on these statistics. The images before 1985 are at 60 m spatial resolution while the later images are at 30 m resolution. Each image was processed individually and the training data were based on knowledge of the area and a mosaic of aerial photography. Each sub-scene was classified into five categories: water, forest, pasture, vineyard/orchard, and developed/barren. The research shows a decline in forest area from 1972 to around the mid-1990s, then an increase in forest area from the mid-1990s to present. The forest statistics can be helpful for conservation and restoration purposes, while the study on resolution can be helpful for landscape analysis on many levels.

  5. A reduced-order modeling approach to represent subgrid-scale hydrological dynamics for land-surface simulations: application in a polygonal tundra landscape

    DOE PAGES

    Pau, G. S. H.; Bisht, G.; Riley, W. J.

    2014-09-17

    Existing land surface models (LSMs) describe physical and biological processes that occur over a wide range of spatial and temporal scales. For example, biogeochemical and hydrological processes responsible for carbon (CO 2, CH 4) exchanges with the atmosphere range from the molecular scale (pore-scale O 2 consumption) to tens of kilometers (vegetation distribution, river networks). Additionally, many processes within LSMs are nonlinearly coupled (e.g., methane production and soil moisture dynamics), and therefore simple linear upscaling techniques can result in large prediction error. In this paper we applied a reduced-order modeling (ROM) technique known as "proper orthogonal decomposition mapping method" thatmore » reconstructs temporally resolved fine-resolution solutions based on coarse-resolution solutions. We developed four different methods and applied them to four study sites in a polygonal tundra landscape near Barrow, Alaska. Coupled surface–subsurface isothermal simulations were performed for summer months (June–September) at fine (0.25 m) and coarse (8 m) horizontal resolutions. We used simulation results from three summer seasons (1998–2000) to build ROMs of the 4-D soil moisture field for the study sites individually (single-site) and aggregated (multi-site). The results indicate that the ROM produced a significant computational speedup (> 10 3) with very small relative approximation error (< 0.1%) for 2 validation years not used in training the ROM. We also demonstrate that our approach: (1) efficiently corrects for coarse-resolution model bias and (2) can be used for polygonal tundra sites not included in the training data set with relatively good accuracy (< 1.7% relative error), thereby allowing for the possibility of applying these ROMs across a much larger landscape. By coupling the ROMs constructed at different scales together hierarchically, this method has the potential to efficiently increase the resolution of land models for coupled climate simulations to spatial scales consistent with mechanistic physical process representation.« less

  6. Analysis of terrestrial conditions and dynamics

    NASA Technical Reports Server (NTRS)

    Goward, S. N. (Principal Investigator)

    1984-01-01

    Land spectral reflectance properties for selected locations, including the Goddard Space Flight Center, the Wallops Flight Facility, a MLA test site in Cambridge, Maryland, and an acid test site in Burlington, Vermont, were measured. Methods to simulate the bidirectional reflectance properties of vegetated landscapes and a data base for spatial resolution were developed. North American vegetation patterns observed with the Advanced Very High Resolution Radiometer were assessed. Data and methods needed to model large-scale vegetation activity with remotely sensed observations and climate data were compiled.

  7. Satellite image time series simulation for environmental monitoring

    NASA Astrophysics Data System (ADS)

    Guo, Tao

    2014-11-01

    The performance of environmental monitoring heavily depends on the availability of consecutive observation data and it turns out an increasing demand in remote sensing community for satellite image data in the sufficient resolution with respect to both spatial and temporal requirements, which appear to be conflictive and hard to tune tradeoffs. Multiple constellations could be a solution if without concerning cost, and thus it is so far interesting but very challenging to develop a method which can simultaneously improve both spatial and temporal details. There are some research efforts to deal with the problem from various aspects, a type of approaches is to enhance the spatial resolution using techniques of super resolution, pan-sharpen etc. which can produce good visual effects, but mostly cannot preserve spectral signatures and result in losing analytical value. Another type is to fill temporal frequency gaps by adopting time interpolation, which actually doesn't increase informative context at all. In this paper we presented a novel method to generate satellite images in higher spatial and temporal details, which further enables satellite image time series simulation. Our method starts with a pair of high-low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and the temporal change is then projected onto high resolution data plane and assigned to each high resolution pixel referring the predefined temporal change patterns of each type of ground objects to generate a simulated high resolution data. A preliminary experiment shows that our method can simulate a high resolution data with a good accuracy. We consider the contribution of our method is to enable timely monitoring of temporal changes through analysis of low resolution images time series only, and usage of costly high resolution data can be reduced as much as possible, and it presents an efficient solution with great cost performance to build up an economically operational monitoring service for environment, agriculture, forest, land use investigation, and other applications.

  8. Potential Impacts of Future Warming and Land Use Changes on Intra-Urban Heat Exposure in Houston, Texas

    PubMed Central

    Conlon, Kathryn; Monaghan, Andrew; Hayden, Mary; Wilhelmi, Olga

    2016-01-01

    Extreme heat events in the United States are projected to become more frequent and intense as a result of climate change. We investigated the individual and combined effects of land use and warming on the spatial and temporal distribution of daily minimum temperature (Tmin) and daily maximum heat index (HImax) during summer in Houston, Texas. Present-day (2010) and near-future (2040) parcel-level land use scenarios were embedded within 1-km resolution land surface model (LSM) simulations. For each land use scenario, LSM simulations were conducted for climatic scenarios representative of both the present-day and near-future periods. LSM simulations assuming present-day climate but 2040 land use patterns led to spatially heterogeneous temperature changes characterized by warmer conditions over most areas, with summer average increases of up to 1.5°C (Tmin) and 7.3°C (HImax) in some newly developed suburban areas compared to simulations using 2010 land use patterns. LSM simulations assuming present-day land use but a 1°C temperature increase above the urban canopy (consistent with warming projections for 2040) yielded more spatially homogeneous metropolitan-wide average increases of about 1°C (Tmin) and 2.5°C (HImax), respectively. LSM simulations assuming both land use and warming for 2040 led to summer average increases of up to 2.5°C (Tmin) and 8.3°C (HImax), with the largest increases in areas projected to be converted to residential, industrial and mixed-use types. Our results suggest that urbanization and climate change may significantly increase the average number of summer days that exceed current threshold temperatures for initiating a heat advisory for metropolitan Houston, potentially increasing population exposure to extreme heat. PMID:26863298

  9. Land Cover Change in Colombia: Surprising Forest Recovery Trends between 2001 and 2010

    PubMed Central

    Sánchez-Cuervo, Ana María; Aide, T. Mitchell; Clark, Matthew L.; Etter, Andrés

    2012-01-01

    Background Monitoring land change at multiple spatial scales is essential for identifying hotspots of change, and for developing and implementing policies for conserving biodiversity and habitats. In the high diversity country of Colombia, these types of analyses are difficult because there is no consistent wall-to-wall, multi-temporal dataset for land-use and land-cover change. Methodology/Principal Findings To address this problem, we mapped annual land-use and land-cover from 2001 to 2010 in Colombia using MODIS (250 m) products coupled with reference data from high spatial resolution imagery (QuickBird) in Google Earth. We used QuickBird imagery to visually interpret percent cover of eight land cover classes used for classifier training and accuracy assessment. Based on these maps we evaluated land cover change at four spatial scales country, biome, ecoregion, and municipality. Of the 1,117 municipalities, 820 had a net gain in woody vegetation (28,092 km2) while 264 had a net loss (11,129 km2), which resulted in a net gain of 16,963 km2 in woody vegetation at the national scale. Woody regrowth mainly occurred in areas previously classified as mixed woody/plantation rather than agriculture/herbaceous. The majority of this gain occurred in the Moist Forest biome, within the montane forest ecoregions, while the greatest loss of woody vegetation occurred in the Llanos and Apure-Villavicencio ecoregions. Conclusions The unexpected forest recovery trend, particularly in the Andes, provides an opportunity to expand current protected areas and to promote habitat connectivity. Furthermore, ecoregions with intense land conversion (e.g. Northern Andean Páramo) and ecoregions under-represented in the protected area network (e.g. Llanos, Apure-Villavicencio Dry forest, and Magdalena-Urabá Moist forest ecoregions) should be considered for new protected areas. PMID:22952816

  10. Simulation of population-based commuter exposure to NO₂ using different air pollution models.

    PubMed

    Ragettli, Martina S; Tsai, Ming-Yi; Braun-Fahrländer, Charlotte; de Nazelle, Audrey; Schindler, Christian; Ineichen, Alex; Ducret-Stich, Regina E; Perez, Laura; Probst-Hensch, Nicole; Künzli, Nino; Phuleria, Harish C

    2014-05-12

    We simulated commuter routes and long-term exposure to traffic-related air pollution during commute in a representative population sample in Basel (Switzerland), and evaluated three air pollution models with different spatial resolution for estimating commute exposures to nitrogen dioxide (NO2) as a marker of long-term exposure to traffic-related air pollution. Our approach includes spatially and temporally resolved data on actual commuter routes, travel modes and three air pollution models. Annual mean NO2 commuter exposures were similar between models. However, we found more within-city and within-subject variability in annual mean (±SD) NO2 commuter exposure with a high resolution dispersion model (40 ± 7 µg m(-3), range: 21-61) than with a dispersion model with a lower resolution (39 ± 5 µg m(-3); range: 24-51), and a land use regression model (41 ± 5 µg m(-3); range: 24-54). Highest median cumulative exposures were calculated along motorized transport and bicycle routes, and the lowest for walking. For estimating commuter exposure within a city and being interested also in small-scale variability between roads, a model with a high resolution is recommended. For larger scale epidemiological health assessment studies, models with a coarser spatial resolution are likely sufficient, especially when study areas include suburban and rural areas.

  11. Assessing Hurricane Katrina Damage to the Mississippi Gulf Coast Using IKONOS Imagery

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph; McKellip, Rodney

    2006-01-01

    Hurricane Katrina hit southeastern Louisiana and the Mississippi Gulf Coast as a Category 3 hurricane with storm surges as high as 9 m. Katrina devastated several coastal towns by destroying or severely damaging hundreds of homes. Several Federal agencies are assessing storm impacts and assisting recovery using high-spatial-resolution remotely sensed data from satellite and airborne platforms. High-quality IKONOS satellite imagery was collected on September 2, 2005, over southwestern Mississippi. Pan-sharpened IKONOS multispectral data and ERDAS IMAGINE software were used to classify post-storm land cover for coastal Hancock and Harrison Counties. This classification included a storm debris category of interest to FEMA for disaster mitigation. The classification resulted from combining traditional unsupervised and supervised classification techniques. Higher spatial resolution aerial and handheld photography were used as reference data. Results suggest that traditional classification techniques and IKONOS data can map wood-dominated storm debris in open areas if relevant training areas are used to develop the unsupervised classification signatures. IKONOS data also enabled other hurricane damage assessment, such as flood-deposited mud on lawns and vegetation foliage loss from the storm. IKONOS data has also aided regional Katrina vegetation damage surveys from multidate Land Remote Sensing Satellite and Moderate Resolution Imaging Spectroradiometer data.

  12. Crop area estimation using high and medium resolution satellite imagery in areas with complex topography

    USGS Publications Warehouse

    Husak, G.J.; Marshall, M. T.; Michaelsen, J.; Pedreros, Diego; Funk, Christopher C.; Galu, G.

    2008-01-01

    Reliable estimates of cropped area (CA) in developing countries with chronic food shortages are essential for emergency relief and the design of appropriate market-based food security programs. Satellite interpretation of CA is an effective alternative to extensive and costly field surveys, which fail to represent the spatial heterogeneity at the country-level. Bias-corrected, texture based classifications show little deviation from actual crop inventories, when estimates derived from aerial photographs or field measurements are used to remove systematic errors in medium resolution estimates. In this paper, we demonstrate a hybrid high-medium resolution technique for Central Ethiopia that combines spatially limited unbiased estimates from IKONOS images, with spatially extensive Landsat ETM+ interpretations, land-cover, and SRTM-based topography. Logistic regression is used to derive the probability of a location being crop. These individual points are then aggregated to produce regional estimates of CA. District-level analysis of Landsat based estimates showed CA totals which supported the estimates of the Bureau of Agriculture and Rural Development. Continued work will evaluate the technique in other parts of Africa, while segmentation algorithms will be evaluated, in order to automate classification of medium resolution imagery for routine CA estimation in the future.

  13. Crop area estimation using high and medium resolution satellite imagery in areas with complex topography

    NASA Astrophysics Data System (ADS)

    Husak, G. J.; Marshall, M. T.; Michaelsen, J.; Pedreros, D.; Funk, C.; Galu, G.

    2008-07-01

    Reliable estimates of cropped area (CA) in developing countries with chronic food shortages are essential for emergency relief and the design of appropriate market-based food security programs. Satellite interpretation of CA is an effective alternative to extensive and costly field surveys, which fail to represent the spatial heterogeneity at the country-level. Bias-corrected, texture based classifications show little deviation from actual crop inventories, when estimates derived from aerial photographs or field measurements are used to remove systematic errors in medium resolution estimates. In this paper, we demonstrate a hybrid high-medium resolution technique for Central Ethiopia that combines spatially limited unbiased estimates from IKONOS images, with spatially extensive Landsat ETM+ interpretations, land-cover, and SRTM-based topography. Logistic regression is used to derive the probability of a location being crop. These individual points are then aggregated to produce regional estimates of CA. District-level analysis of Landsat based estimates showed CA totals which supported the estimates of the Bureau of Agriculture and Rural Development. Continued work will evaluate the technique in other parts of Africa, while segmentation algorithms will be evaluated, in order to automate classification of medium resolution imagery for routine CA estimation in the future.

  14. Built-Up Area and Land Cover Extraction Using High Resolution Pleiades Satellite Imagery for Midrand, in Gauteng Province, South Africa

    NASA Astrophysics Data System (ADS)

    Fundisi, E.; Musakwa, W.

    2017-09-01

    Urban areas, particularly in developing countries face immense challenges such as climate change, poverty, lack of resources poor land use management systems, and week environmental management practices. Mitigating against these challenges is often hampered by lack of data on urban expansion, urban footprint and land cover. To support the recently adopted new urban agenda 2030 there is need for the provision of information to support decision making in the urban areas. Earth observation has been identified as a tool to foster sustainable urban planning and smarter cities as recognized by the new urban agenda, because it is a solution to unavailability of data. Accordingly, this study uses high resolution EO data Pleiades satellite imagery to map and document land cover for the rapidly expanding area of Midrand in Johannesburg, South Africa. An unsupervised land cover classification of the Pleiades satellite imagery was carried out using ENVI software, whereas NDVI was derived using ArcGIS software. The land cover had an accuracy of 85% that is highly adequate to document the land cover in Midrand. The results are useful because it provides a highly accurate land cover and NDVI datasets at localised spatial scale that can be used to support land use management strategies within Midrand and the City of Johannesburg South Africa.

  15. Multi-scales and multi-satellites estimates of evapotranspiration with a residual energy balance model in the Muzza agricultural district in Northern Italy

    NASA Astrophysics Data System (ADS)

    Corbari, C.; Bissolati, M.; Mancini, M.

    2015-05-01

    Evapotranspiration estimates were performed with a residual energy balance model (REB) over an agricultural area using remote sensing data. REB uses land surface temperature (LST) as main input parameter so that energy fluxes were computed instantaneously at the time of data acquisition. Data from MODIS and SEVIRI sensors were used and downscaling techniques were implemented to improve their spatial resolutions. Energy fluxes at the original spatial resolutions (1000 m for MODIS and 5000 m for SEVIRI) as well as at the downscaled resolutions (250 m for MODIS and 1000 m for SEVIRI) were calculated with the REB model. Ground eddy covariance data and remote sensing information from the Muzza agricultural irrigation district in Italy from 2010 to 2012 gave the opportunity to validate and compare spatially distributed energy fluxes. The model outputs matched quite well ground observations when ground LST data were used, while differences increased when MODIS and SEVIRI LST were used. The spatial analysis revealed significant differences between the two sensors both in term of LST (around 2.8 °C) and of latent heat fluxes with values (around 100 W m-2).

  16. Using High-Resolution Satellite Aerosol Optical Depth To Estimate Daily PM2.5 Geographical Distribution in Mexico City.

    PubMed

    Just, Allan C; Wright, Robert O; Schwartz, Joel; Coull, Brent A; Baccarelli, Andrea A; Tellez-Rojo, Martha María; Moody, Emily; Wang, Yujie; Lyapustin, Alexei; Kloog, Itai

    2015-07-21

    Recent advances in estimating fine particle (PM2.5) ambient concentrations use daily satellite measurements of aerosol optical depth (AOD) for spatially and temporally resolved exposure estimates. Mexico City is a dense megacity that differs from other previously modeled regions in several ways: it has bright land surfaces, a distinctive climatological cycle, and an elevated semi-enclosed air basin with a unique planetary boundary layer dynamic. We extend our previous satellite methodology to the Mexico City area, a region with higher PM2.5 than most U.S. and European urban areas. Using a novel 1 km resolution AOD product from the MODIS instrument, we constructed daily predictions across the greater Mexico City area for 2004-2014. We calibrated the association of AOD to PM2.5 daily using municipal ground monitors, land use, and meteorological features. Predictions used spatial and temporal smoothing to estimate AOD when satellite data were missing. Our model performed well, resulting in an out-of-sample cross-validation R(2) of 0.724. Cross-validated root-mean-squared prediction error (RMSPE) of the model was 5.55 μg/m(3). This novel model reconstructs long- and short-term spatially resolved exposure to PM2.5 for epidemiological studies in Mexico City.

  17. Using high-resolution satellite aerosol optical depth to estimate daily PM2.5 geographical distribution in Mexico City

    PubMed Central

    Just, Allan C.; Wright, Robert O.; Schwartz, Joel; Coull, Brent A.; Baccarelli, Andrea A.; Tellez-Rojo, Martha María; Moody, Emily; Wang, Yujie; Lyapustin, Alexei; Kloog, Itai

    2015-01-01

    Recent advances in estimating fine particle (PM2.5) ambient concentrations use daily satellite measurements of aerosol optical depth (AOD) for spatially and temporally resolved exposure estimates. Mexico City is a dense megacity that differs from other previously modeled regions in several ways: it has bright land surfaces, a distinctive climatological cycle, and an elevated semi-enclosed air basin with a unique planetary boundary layer dynamic. We extend our previous satellite methodology to the Mexico City area, a region with higher PM2.5 than most US and European urban areas. Using a novel 1 km resolution AOD product from the MODIS instrument, we constructed daily predictions across the greater Mexico City area for 2004–2014. We calibrated the association of AOD to PM2.5 daily using municipal ground monitors, land use, and meteorological features. Predictions used spatial and temporal smoothing to estimate AOD when satellite data were missing. Our model performed well, resulting in an out-of-sample cross validation R2 of 0.724. Cross-validated root mean squared prediction error (RMSPE) of the model was 5.55 μg/m3. This novel model reconstructs long- and short-term spatially resolved exposure to PM2.5 for epidemiological studies in Mexico City. PMID:26061488

  18. Assessing temporally and spatially resolved PM 2.5 exposures for epidemiological studies using satellite aerosol optical depth measurements

    NASA Astrophysics Data System (ADS)

    Kloog, Itai; Koutrakis, Petros; Coull, Brent A.; Lee, Hyung Joo; Schwartz, Joel

    2011-11-01

    Land use regression (LUR) models provide good estimates of spatially resolved long-term exposures, but are poor at capturing short term exposures. Satellite-derived Aerosol Optical Depth (AOD) measurements have the potential to provide spatio-temporally resolved predictions of both long and short term exposures, but previous studies have generally showed relatively low predictive power. Our objective was to extend our previous work on day-specific calibrations of AOD data using ground PM 2.5 measurements by incorporating commonly used LUR variables and meteorological variables, thus benefiting from both the spatial resolution from the LUR models and the spatio-temporal resolution from the satellite models. Later we use spatial smoothing to predict PM 2.5 concentrations for day/locations with missing AOD measures. We used mixed models with random slopes for day to calibrate AOD data for 2000-2008 across New-England with monitored PM 2.5 measurements. We then used a generalized additive mixed model with spatial smoothing to estimate PM 2.5 in location-day pairs with missing AOD, using regional measured PM 2.5, AOD values in neighboring cells, and land use. Finally, local (100 m) land use terms were used to model the difference between grid cell prediction and monitored value to capture very local traffic particles. Out-of-sample ten-fold cross-validation was used to quantify the accuracy of our predictions. For days with available AOD data we found high out-of-sample R2 (mean out-of-sample R2 = 0.830, year to year variation 0.725-0.904). For days without AOD values, our model performance was also excellent (mean out-of-sample R2 = 0.810, year to year variation 0.692-0.887). Importantly, these R2 are for daily, rather than monthly or yearly, values. Our model allows one to assess short term and long-term human exposures in order to investigate both the acute and chronic effects of ambient particles, respectively.

  19. Estimation of improved resolution soil moisture in vegetated areas using passive AMSR-E data

    NASA Astrophysics Data System (ADS)

    Moradizadeh, Mina; Saradjian, Mohammad R.

    2018-03-01

    Microwave remote sensing provides a unique capability for soil parameter retrievals. Therefore, various soil parameters estimation models have been developed using brightness temperature (BT) measured by passive microwave sensors. Due to the low resolution of satellite microwave radiometer data, the main goal of this study is to develop a downscaling approach to improve the spatial resolution of soil moisture estimates with the use of higher resolution visible/infrared sensor data. Accordingly, after the soil parameters have been obtained using Simultaneous Land Parameters Retrieval Model algorithm, the downscaling method has been applied to the soil moisture estimations that have been validated against in situ soil moisture data. Advance Microwave Scanning Radiometer-EOS BT data in Soil Moisture Experiment 2003 region in the south and north of Oklahoma have been used to this end. Results illustrated that the soil moisture variability is effectively captured at 5 km spatial scales without a significant degradation of the accuracy.

  20. Modelling land cover change in the Ganga basin

    NASA Astrophysics Data System (ADS)

    Moulds, S.; Tsarouchi, G.; Mijic, A.; Buytaert, W.

    2013-12-01

    Over recent decades the green revolution in India has driven substantial environmental change. Modelling experiments have identified northern India as a 'hot spot' of land-atmosphere coupling strength during the boreal summer. However, there is a wide range of sensitivity of atmospheric variables to soil moisture between individual climate models. The lack of a comprehensive land cover change dataset to force climate models has been identified as a major contributor to model uncertainty. In this work a time series dataset of land cover change between 1970 and 2010 is constructed for northern India to improve the quantification of regional hydrometeorological feedbacks. The MODIS instrument on board the Aqua and Terra satellites provides near-continuous remotely sensed datasets from 2000 to the present day. However, the quality of satellite products before 2000 is poor. To complete the dataset MODIS images are extrapolated back in time using the Conversion of Land Use and its Effects at small regional extent (CLUE-s) modelling framework. Non-spatial estimates of land cover area from national agriculture and forest statistics, available on a state-wise, annual basis, are used as a direct model input. Land cover change is allocated spatially as a function of biophysical and socioeconomic drivers identified using logistic regression. This dataset will provide an essential input to a high resolution, physically based land surface model to generate the lower boundary condition to assess the impact of land cover change on regional climate.

  1. [Dynamic changes of landscape pattern and hemeroby in Ximen Island wetland, Zhejiang Province, China].

    PubMed

    Xiao, Cui; Xie, Xue-Fen; Wu, Tao; Jiang, Guo-Jun; Bian, Hua-Jing; Xu, Wei

    2014-11-01

    Abstract: The hemeroby type classification system of Ximen Island wetland of Zhejiang Province was established based on the multiple datasets: SOPT-5 image data with a spatial resolution of 5 m in 2007 and 2010, its wetland land cover and land use status, the National Land Use Classification (on trail), and sea area use classification of marine industry standards as well as remote sensing data features. Meanwhile, the dynamic relationship between the landscape pattern and the degree of hemeroby in Ximen Island was investigated with the landscape indices and hemeroby index (HI) derived from the landscape pattern index and GIS spatial analysis. The results showed that the wetland landscape spatial heterogeneity, fragmentation and dominance index dropped, and the landscape shape index complexity was low. The human disturbance center developed from a dispersion type to a concentration type. The landscape type of the disturbance center was bare land and settlement. The HI rose up from the sea to the land. Settlement, wharf and traffic land had the highest HI. The HI of the mudflat cultivation, mudflats and raft-cultivation dramatically changed. Marine-terrestrial interlaced zone showed a low total HI with unstable characteristics. The number of patches declined of undisturbed, partially disturbed and completely disturbed landscapes. Mean patch areas of partially disturbed and completely disturbed landscapes increased, and that of the undisturbed decreased. Mean shape index of the undisturbed landscape decreased, while the partially disturbed and completely disturbed landscapes showed a trend of shape complication.

  2. Spatial dependence of predictions from image segmentation: A variogram-based method to determine appropriate scales for producing land-management information

    USDA-ARS?s Scientific Manuscript database

    A significant challenge in ecological studies has been defining scales of observation that correspond to the relevant ecological scales for organisms or processes of interest. Remote sensing has become commonplace in ecological studies and management, but the default resolution of imagery often used...

  3. APPLYING MULTIMETRIC INDICES AT HIGH RESOLUTION: AN INVESTIGATION OF SPATIAL PATTERNS AND TEMPORAL VARIATION WITHIN AN OREGON WATERSHED

    EPA Science Inventory

    Like many inland waters worldwide, streams and rivers of the Western U.S. are faced with a multitude of challenges stemming from past land use practices and changing future conditions. To address these issues, the USEPA has developed empirical tools for evaluating instream condi...

  4. Roles of Fog and Topography in Redwood Forest Hydrology

    NASA Astrophysics Data System (ADS)

    Francis, E. J.; Asner, G. P.

    2017-12-01

    Spatial variability of water in forests is a function of both climatic gradients that control water inputs and topo-edaphic variation that determines the flows of water belowground, as well as interactions of climate with topography. Coastal redwood forests are hydrologically unique because they are influenced by coastal low clouds, or fog, that is advected onto land by a strong coastal-to-inland temperature difference. Where fog intersects the land surface, annual water inputs from summer fog drip can be greater than that of winter rainfall. In this study, we take advantage of mapped spatial gradients in forest canopy water storage, topography, and fog cover in California to better understand the roles and interactions of fog and topography in the hydrology of redwood forests. We test a conceptual model of redwood forest hydrology with measurements of canopy water content derived from high-resolution airborne imaging spectroscopy, topographic variables derived from high-resolution LiDAR data, and fog cover maps derived from NASA MODIS data. Landscape-level results provide insight into hydrological processes within redwood forests, and cross-site analyses shed light on their generality.

  5. The impact of map and data resolution on the determination of the agricultural utilisation of organic soils in Germany.

    PubMed

    Roeder, Norbert; Osterburg, Bernhard

    2012-06-01

    Due to its nature, agricultural land use depends on local site characteristics such as production potential, costs and external effects. To assess the relevance of the modifying areal unit problem (MAUP), we investigated as to how a change in the data resolution regarding both soil and land use data influences the results obtained for different land use indicators. For the assessment we use the example of the greenhouse gas (GHG) emissions from agriculturally used organic soils (mainly fens and bogs). Although less than 5 % of the German agricultural area in use is located on organic soils, the drainage of these areas to enable their agricultural utilization causes roughly 37 % of the GHG emissions of the German agricultural sector. The abandonment of the cultivation and rewetting of organic soils would be an effective policy to reduce national GHG emissions. To assess the abatement costs, it is essential to know which commodities, and at what quantities, are actually produced on this land. Furthermore, in order to limit windfall profits, information on the differences of the profitability among farms are needed. However, high-resolution data regarding land use and soil characteristics are often not available, and their generation is costly or the access is strictly limited because of legal constraints. Therefore, in this paper, we analyse how indicators for land use on organic soils respond to changes in the spatial aggregation of the data. In Germany, organic soils are predominantly used for forage cropping. Marked differences between the various regions of Germany are apparent with respect to the dynamics and the intensity of land use. Data resolution mainly impairs the derived extent of agriculturally used peatland and the observed intensity gradient, while its impact on the average value for the investigated set of land-use indicators is generally minor.

  6. Remote sensing of environmental impact of land use activities

    NASA Technical Reports Server (NTRS)

    Paul, C. K.

    1977-01-01

    The capability to monitor land cover, associated in the past with aerial film cameras and radar systems, was discussed in regard to aircraft and spacecraft multispectral scanning sensors. A proposed thematic mapper with greater spectral and spatial resolutions for the fourth LANDSAT is expected to usher in new environmental monitoring capability. In addition, continuing improvements in image classification by supervised and unsupervised computer techniques are being operationally verified for discriminating environmental impacts of human activities on the land. The benefits of employing remote sensing for this discrimination was shown to far outweigh the incremental costs of converting to an aircraft-satellite multistage system.

  7. The Application of Chinese High-Spatial Remote Sensing Satellite Image in Land Law Enforcement Information Extraction

    NASA Astrophysics Data System (ADS)

    Wang, N.; Yang, R.

    2018-04-01

    Chinese high -resolution (HR) remote sensing satellites have made huge leap in the past decade. Commercial satellite datasets, such as GF-1, GF-2 and ZY-3 images, the panchromatic images (PAN) resolution of them are 2 m, 1 m and 2.1 m and the multispectral images (MS) resolution are 8 m, 4 m, 5.8 m respectively have been emerged in recent years. Chinese HR satellite imagery has been free downloaded for public welfare purposes using. Local government began to employ more professional technician to improve traditional land management technology. This paper focused on analysing the actual requirements of the applications in government land law enforcement in Guangxi Autonomous Region. 66 counties in Guangxi Autonomous Region were selected for illegal land utilization spot extraction with fusion Chinese HR images. The procedure contains: A. Defines illegal land utilization spot type. B. Data collection, GF-1, GF-2, and ZY-3 datasets were acquired in the first half year of 2016 and other auxiliary data were collected in 2015. C. Batch process, HR images were collected for batch preprocessing through ENVI/IDL tool. D. Illegal land utilization spot extraction by visual interpretation. E. Obtaining attribute data with ArcGIS Geoprocessor (GP) model. F. Thematic mapping and surveying. Through analysing 42 counties results, law enforcement officials found 1092 illegal land using spots and 16 suspicious illegal mining spots. The results show that Chinese HR satellite images have great potential for feature information extraction and the processing procedure appears robust.

  8. Spatial Relationships between Biomass Burning and Land Use / Land Cover Dynamics in Northern Sub-Saharan Africa

    NASA Astrophysics Data System (ADS)

    Ellison, L.; Ichoku, C. M.

    2016-12-01

    Biomass burning (BB) is an extensive and persistent phenomenon across the world, and is a result of either natural (via lightning strikes) or anthropogenic processes, depending on the location. In Northern Sub-Saharan Africa (NSSA), where access to affordable modern farming equipment is extremely limited, agricultural practices dominate and BB is completely anthropogenic for all practical purposes, resulting in NSSA consistently contributing 15-20% of the total global annual emission of particulate matter from fires, according to estimates from version 1.0 of the Fire Energetics and Emissions Research BB emissions inventory (FEERv1.0, http://feer.gsfc.nasa.gov/data/emissions/). The FEERv1.0 algorithm uses a land cover type (LCT) product at either 0.5° or 0.1° resolutions for the conversion of total particulate matter estimates to various other smoke constituents. Due to the fact that fires are closely associated with land cover types, it became apparent that a fire-prone land cover type product at those spatial resolutions were needed, resulting in the FEERv1 BB-LCT product (http://feer.gsfc.nasa.gov/data/landcover/). In version 2 of the product, it was found that 6% of all grid cells with partial or full land cover in the original 0.5° LCT product is reclassified when considering BB practices. In NSSA, we see that the differences fall mainly along the borders between major regions of different LCT. Roughly speaking, fires along the cropland/savanna and savanna/forest borders in NSSA are mostly from from savanna burning. An in-depth analysis of the spatial extent and variability of fires and land cover in NSSA reveals that within the last one-and-a-half decades, the maximum fire activity occurred in the 2006/07 fire season and has been decreasing ever since. Interestingly, despite this decrease in fire activity, we observe a continuing increase in land cover conversion to cropland over the same time period at a rate of 0.3%/yr, which is equal to ≈37,500 km2/yr, or about 9 million new farms each year (assuming a farm size of one acre.) Attempts to understand this relationship are ongoing, and will also be summarized.

  9. The impact of soil moisture extremes and their spatiotemporal variability on Zambian maize yields

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Estes, L. D.; Vergopolan, N.

    2017-12-01

    Food security in sub-Saharan Africa is highly sensitive to climate variability. While it is well understood that extreme heat has substantial negative impacts on crop yield, the impacts of precipitation extremes, particularly over large spatial extents, are harder to quantify. There are three primary reasons for this difficulty, which are (1) lack of high quality, high resolution precipitation data, (2) rainfall data provide incomplete information on plant water availability, the variable that most directly affects crop performance, and (3) the type of rainfall extreme that most affects crop yields varies throughout the crop development stage. With respect to the first reason, the spatial and temporal variation of precipitation is much greater than that of temperature, yet the spatial resolution of rainfall data is typically even coarser than it is for temperature, particularly within Africa. Even if there were high-resolution rainfall data, the amount of water available to crops also depends on other physical factors that affect evapotranspiration, which are strongly influenced by heterogeneity in the land surface related to topography, soil properties, and land cover. In this context, soil moisture provides a better measure of crop water availability than rainfall. Furthermore, soil moisture has significantly different influences on crop yield depending on the crop's growth stage. The goal of this study is to understand how the spatiotemporal scales of soil moisture extremes interact with crops, more specifically, the timing and the spatial scales of extreme events like droughts and flooding. In this study, we simulate daily-1km soil moisture using HydroBlocks - a physically based land surface model - and compare it with precipitation and remote sensing derived maize yields between 2000 and 2016 in Zambia. We use a novel combination of the SCYM (scalable satellite-based yield mapper) method with DSSAT crop model, which is a mechanistic model responsive to water stress. Understanding the relationships between soil moisture spatiotemporal variability and yields can help to improve agricultural drought risk assessment and seasonal crop yield forecasting as well as early season warning of potential famines.

  10. Testing the Joint UK Land Environment Simulator (JULES) for flood forecasting

    NASA Astrophysics Data System (ADS)

    Batelis, Stamatios-Christos; Rosolem, Rafael; Han, Dawei; Rahman, Mostaquimur

    2017-04-01

    Land Surface Models (LSM) are based on physics principles and simulate the exchanges of energy, water and biogeochemical cycles between the land surface and lower atmosphere. Such models are typically applied for climate studies or effects of land use changes but as the resolution of LSMs and supporting observations are continuously increasing, its representation of hydrological processes need to be addressed adequately. For example, changes in climate and land use can alter the hydrology of a region, for instance, by altering its flooding regime. LSMs can be a powerful tool because of their ability to spatially represent a region with much finer resolution. However, despite such advantages, its performance has not been extensively assessed for flood forecasting simply because its representation of typical hydrological processes, such as overland flow and river routing, are still either ignored or roughly represented. In this study, we initially test the Joint UK Land Environment Simulator (JULES) as a flood forecast tool focusing on its river routing scheme. In particular, JULES river routing parameterization is based on the Rapid Flow Model (RFM) which relies on six prescribed parameters (two surface and two subsurface wave celerities, and two return flow fractions). Although this routing scheme is simple, the prescription of its six default parameters is still too generalized. Our aim is to understand the importance of each RFM parameter in a series of JULES simulations at a number of catchments in the UK for the 2006-2015 period. This is carried out, for instance, by making a number of assumptions of parameter behaviour (e.g., spatially uniform versus varying and/or temporally constant or time-varying parameters within each catchment). Hourly rainfall radar in combination with the CHESS (Climate, Hydrological and Ecological research Support System) meteorological daily data both at 1 km2 resolution are used. The evaluation of the model is based on hourly runoff data provided by the National River Flood Archive using a number of model performance metrics. We use a calibrated conceptually-based lumped model, more typically applied in flood studies, as a benchmark for our analysis.

  11. Land cover and land use changes in the oil and gas regions of Northwestern Siberia under changing climatic conditions

    NASA Astrophysics Data System (ADS)

    Yu, Qin; Epstein, Howard E.; Engstrom, Ryan; Shiklomanov, Nikolay; Strelestskiy, Dmitry

    2015-12-01

    Northwestern Siberia has been undergoing a range of land cover and land use changes associated with climate change, animal husbandry and development of mineral resources, particularly oil and gas. The changes caused by climate and oil/gas development Southeast of the city of Nadym were investigated using multi-temporal and multi-spatial remotely sensed images. Comparison between high spatial resolution imagery acquired in 1968 and 2006 indicates that 8.9% of the study area experienced an increase in vegetation cover (e.g. establishment of new saplings, extent of vegetated cover) in response to climate warming while 10.8% of the area showed a decrease in vegetation cover due to oil and gas development and logging activities. Waterlogging along linear structures and vehicle tracks was found near the oil and gas development site, while in natural landscapes the drying of thermokarst lakes is evident due to warming caused permafrost degradation. A Landsat time series dataset was used to document the spatial and temporal dynamics of these ecosystems in response to climate change and disturbances. The impacts of land use on surface vegetation, radiative, and hydrological properties were evaluated using Landsat image-derived biophysical indices. The spatial and temporal analyses suggest that the direct impacts associated with infrastructure development were mostly within 100 m distance from the disturbance source. While these impacts are rather localized they persist for decades despite partial recovery of vegetation after the initial disturbance and can have significant implications for changes in permafrost dynamics and surface energy budgets at landscape and regional scales.

  12. Estimating The Effect of Biofuel on Land Cover Change Using Multi-Year Modis Land Cover Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Nagendra; Bhaduri, Budhendra L

    2010-01-01

    There has been a growing debate on the effects of the increase in demands of biofuels on land use land cover (LULC) change with apprehension in some quarters that the growing demand for bioenergy as a clean fuel will result in widespread direct and indirect LULC change. However estimating both direct and indirect LULC change is challenging and will require development of accurate high frequency, high resolution (temporal and spatial) land use land cover data as well as new LULC models which can be used to locate, quantify and predict these changes. To assess whether the demand for biofuel hasmore » caused significant LULC we used MODIS land cover data (MCD12Q1) from 2001 to 2008 along with cropland data layer (CDL) to estimate cropland and grassland changes in United States for the years 2002-2008 as well as its correlation with biofuel growth.« less

  13. Coupling a three-dimensional subsurface flow and transport model with a land surface model to simulate stream-aquifer-land interactions (CP v1.0)

    NASA Astrophysics Data System (ADS)

    Bisht, Gautam; Huang, Maoyi; Zhou, Tian; Chen, Xingyuan; Dai, Heng; Hammond, Glenn E.; Riley, William J.; Downs, Janelle L.; Liu, Ying; Zachara, John M.

    2017-12-01

    A fully coupled three-dimensional surface and subsurface land model is developed and applied to a site along the Columbia River to simulate three-way interactions among river water, groundwater, and land surface processes. The model features the coupling of the Community Land Model version 4.5 (CLM4.5) and a massively parallel multiphysics reactive transport model (PFLOTRAN). The coupled model, named CP v1.0, is applied to a 400 m × 400 m study domain instrumented with groundwater monitoring wells along the Columbia River shoreline. CP v1.0 simulations are performed at three spatial resolutions (i.e., 2, 10, and 20 m) over a 5-year period to evaluate the impact of hydroclimatic conditions and spatial resolution on simulated variables. Results show that the coupled model is capable of simulating groundwater-river-water interactions driven by river stage variability along managed river reaches, which are of global significance as a result of over 30 000 dams constructed worldwide during the past half-century. Our numerical experiments suggest that the land-surface energy partitioning is strongly modulated by groundwater-river-water interactions through expanding the periodically inundated fraction of the riparian zone, and enhancing moisture availability in the vadose zone via capillary rise in response to the river stage change. Meanwhile, CLM4.5 fails to capture the key hydrologic process (i.e., groundwater-river-water exchange) at the site, and consequently simulates drastically different water and energy budgets. Furthermore, spatial resolution is found to significantly impact the accuracy of estimated the mass exchange rates at the boundaries of the aquifer, and it becomes critical when surface and subsurface become more tightly coupled with groundwater table within 6 to 7 meters below the surface. Inclusion of lateral subsurface flow influenced both the surface energy budget and subsurface transport processes as a result of river-water intrusion into the subsurface in response to an elevated river stage that increased soil moisture for evapotranspiration and suppressed available energy for sensible heat in the warm season. The coupled model developed in this study can be used for improving mechanistic understanding of ecosystem functioning and biogeochemical cycling along river corridors under historical and future hydroclimatic changes. The dataset presented in this study can also serve as a good benchmarking case for testing other integrated models.

  14. Improving surface-subsurface water budgeting for Brownfield study sites using high resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Dujardin, J.; Boel, S.; Anibas, C.; Batelaan, O.; Canters, F.

    2009-04-01

    Countries around the world have problems with contaminated brownfield sites as resulting from a relatively anarchic economical and industrial development during the 19th and 20th centuries. Since a few decades policy makers and stakeholders have become more aware of the risk posed by these sites because some of these sites present direct public hazards. Water is often the main vector of the mobility of contaminants. In order to propose remediation measures for the contaminated sites, it is required to describe and to quantify as accurately as possible the surface and subsurface water fluxes in the polluted site. In this research a modelling approach with integrated remote sensing analysis has been developed for accurately calculating water and contaminant fluxes on the polluted sites. Groundwater pollution in urban environments is linked to patterns of land use, so to identify the sources of contamination with great accuracy in urban environments it is essential to characterize the land cover in a detailed way. The use of high resolution spatial information is required because of the complexity of the urban land use. An object-oriented classification approach applied on high resolution satellite data has been adopted. Cluster separability analysis and visual interpretation of the image objects belonging to each cluster resulted in the selection of 8 land-cover categories (water, bare soil, meadow, mixed forest, grey urban surfaces, red roofs, bright roofs and shadow).To assign the image objects to one of the 8 selected classes a multiple layer perceptron (MLP) approach was adopted, using the NeuralWorks Predict software. After a post-classification shadow removal and a rule-based classification enhancement a kappa-value of 0.86 was obtained. Once the land cover was characterized, the groundwater recharge has been simulated using the spatially distributed WetSpass model and the subsurface water flow was simulated with GMS 6.0 in order to identify and budget the water fluxes on the brownfield. The obtained land use map shows to have a strong impact on the groundwater recharge, resulting in a high spatial variability. Simulated groundwater fluxes from brownfield to a receiving river where independently verified by measurements and simulation of groundwater-surface water interaction based on thermal gradients in the river bed. It is concluded that in order to better quantify total fluxes of contaminants from brownfields in the groundwater, remote sensing imagery can be operationally integrated in a modelling procedure. The developed methodology is applied to a case site in Vilvoorde, Brussels (Belgium).

  15. Coupling a three-dimensional subsurface flow and transport model with a land surface model to simulate stream–aquifer–land interactions (CP v1.0)

    DOE PAGES

    Bisht, Gautam; Huang, Maoyi; Zhou, Tian; ...

    2017-12-12

    A fully coupled three-dimensional surface and subsurface land model is developed and applied to a site along the Columbia River to simulate three-way interactions among river water, groundwater, and land surface processes. The model features the coupling of the Community Land Model version 4.5 (CLM4.5) and a massively parallel multiphysics reactive transport model (PFLOTRAN). The coupled model, named CP v1.0, is applied to a 400 m × 400 m study domain instrumented with groundwater monitoring wells along the Columbia River shoreline. CP v1.0 simulations are performed at three spatial resolutions (i.e., 2, 10, and 20 m) over a 5-year periodmore » to evaluate the impact of hydroclimatic conditions and spatial resolution on simulated variables. Results show that the coupled model is capable of simulating groundwater–river-water interactions driven by river stage variability along managed river reaches, which are of global significance as a result of over 30 000 dams constructed worldwide during the past half-century. Our numerical experiments suggest that the land-surface energy partitioning is strongly modulated by groundwater–river-water interactions through expanding the periodically inundated fraction of the riparian zone, and enhancing moisture availability in the vadose zone via capillary rise in response to the river stage change. Meanwhile, CLM4.5 fails to capture the key hydrologic process (i.e., groundwater–river-water exchange) at the site, and consequently simulates drastically different water and energy budgets. Furthermore, spatial resolution is found to significantly impact the accuracy of estimated the mass exchange rates at the boundaries of the aquifer, and it becomes critical when surface and subsurface become more tightly coupled with groundwater table within 6 to 7 meters below the surface. Inclusion of lateral subsurface flow influenced both the surface energy budget and subsurface transport processes as a result of river-water intrusion into the subsurface in response to an elevated river stage that increased soil moisture for evapotranspiration and suppressed available energy for sensible heat in the warm season. The coupled model developed in this study can be used for improving mechanistic understanding of ecosystem functioning and biogeochemical cycling along river corridors under historical and future hydroclimatic changes. The dataset presented in this study can also serve as a good benchmarking case for testing other integrated models.« less

  16. Coupling a three-dimensional subsurface flow and transport model with a land surface model to simulate stream–aquifer–land interactions (CP v1.0)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisht, Gautam; Huang, Maoyi; Zhou, Tian

    A fully coupled three-dimensional surface and subsurface land model is developed and applied to a site along the Columbia River to simulate three-way interactions among river water, groundwater, and land surface processes. The model features the coupling of the Community Land Model version 4.5 (CLM4.5) and a massively parallel multiphysics reactive transport model (PFLOTRAN). The coupled model, named CP v1.0, is applied to a 400 m × 400 m study domain instrumented with groundwater monitoring wells along the Columbia River shoreline. CP v1.0 simulations are performed at three spatial resolutions (i.e., 2, 10, and 20 m) over a 5-year period to evaluate themore » impact of hydroclimatic conditions and spatial resolution on simulated variables. Results show that the coupled model is capable of simulating groundwater–river-water interactions driven by river stage variability along managed river reaches, which are of global significance as a result of over 30 000 dams constructed worldwide during the past half-century. Our numerical experiments suggest that the land-surface energy partitioning is strongly modulated by groundwater–river-water interactions through expanding the periodically inundated fraction of the riparian zone, and enhancing moisture availability in the vadose zone via capillary rise in response to the river stage change. Meanwhile, CLM4.5 fails to capture the key hydrologic process (i.e., groundwater–river-water exchange) at the site, and consequently simulates drastically different water and energy budgets. Furthermore, spatial resolution is found to significantly impact the accuracy of estimated the mass exchange rates at the boundaries of the aquifer, and it becomes critical when surface and subsurface become more tightly coupled with groundwater table within 6 to 7 meters below the surface. Inclusion of lateral subsurface flow influenced both the surface energy budget and subsurface transport processes as a result of river-water intrusion into the subsurface in response to an elevated river stage that increased soil moisture for evapotranspiration and suppressed available energy for sensible heat in the warm season. The coupled model developed in this study can be used for improving mechanistic understanding of ecosystem functioning and biogeochemical cycling along river corridors under historical and future hydroclimatic changes. The dataset presented in this study can also serve as a good benchmarking case for testing other integrated models.« less

  17. Coupling a three-dimensional subsurface flow and transport model with a land surface model to simulate stream–aquifer–land interactions (CP v1.0)

    DOE PAGES

    Bisht, Gautam; Huang, Maoyi; Zhou, Tian; ...

    2017-01-01

    A fully coupled three-dimensional surface and subsurface land model is developed and applied to a site along the Columbia River to simulate three-way interactions among river water, groundwater, and land surface processes. The model features the coupling of the Community Land Model version 4.5 (CLM4.5) and a massively parallel multiphysics reactive transport model (PFLOTRAN). The coupled model, named CP v1.0, is applied to a 400 m × 400 m study domain instrumented with groundwater monitoring wells along the Columbia River shoreline. CP v1.0 simulations are performed at three spatial resolutions (i.e., 2, 10, and 20 m) over a 5-year period to evaluate themore » impact of hydroclimatic conditions and spatial resolution on simulated variables. Results show that the coupled model is capable of simulating groundwater–river-water interactions driven by river stage variability along managed river reaches, which are of global significance as a result of over 30 000 dams constructed worldwide during the past half-century. Our numerical experiments suggest that the land-surface energy partitioning is strongly modulated by groundwater–river-water interactions through expanding the periodically inundated fraction of the riparian zone, and enhancing moisture availability in the vadose zone via capillary rise in response to the river stage change. Meanwhile, CLM4.5 fails to capture the key hydrologic process (i.e., groundwater–river-water exchange) at the site, and consequently simulates drastically different water and energy budgets. Furthermore, spatial resolution is found to significantly impact the accuracy of estimated the mass exchange rates at the boundaries of the aquifer, and it becomes critical when surface and subsurface become more tightly coupled with groundwater table within 6 to 7 meters below the surface. Inclusion of lateral subsurface flow influenced both the surface energy budget and subsurface transport processes as a result of river-water intrusion into the subsurface in response to an elevated river stage that increased soil moisture for evapotranspiration and suppressed available energy for sensible heat in the warm season. The coupled model developed in this study can be used for improving mechanistic understanding of ecosystem functioning and biogeochemical cycling along river corridors under historical and future hydroclimatic changes. The dataset presented in this study can also serve as a good benchmarking case for testing other integrated models.« less

  18. Coupling a three-dimensional subsurface flow and transport model with a land surface model to simulate stream–aquifer–land interactions (CP v1.0)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisht, Gautam; Huang, Maoyi; Zhou, Tian

    A fully coupled three-dimensional surface and subsurface land model is developed and applied to a site along the Columbia River to simulate three-way interactions among river water, groundwater, and land surface processes. The model features the coupling of the Community Land Model version 4.5 (CLM4.5) and a massively parallel multiphysics reactive transport model (PFLOTRAN). The coupled model, named CP v1.0, is applied to a 400 m × 400 m study domain instrumented with groundwater monitoring wells along the Columbia River shoreline. CP v1.0 simulations are performed at three spatial resolutions (i.e., 2, 10, and 20 m) over a 5-year periodmore » to evaluate the impact of hydroclimatic conditions and spatial resolution on simulated variables. Results show that the coupled model is capable of simulating groundwater–river-water interactions driven by river stage variability along managed river reaches, which are of global significance as a result of over 30 000 dams constructed worldwide during the past half-century. Our numerical experiments suggest that the land-surface energy partitioning is strongly modulated by groundwater–river-water interactions through expanding the periodically inundated fraction of the riparian zone, and enhancing moisture availability in the vadose zone via capillary rise in response to the river stage change. Meanwhile, CLM4.5 fails to capture the key hydrologic process (i.e., groundwater–river-water exchange) at the site, and consequently simulates drastically different water and energy budgets. Furthermore, spatial resolution is found to significantly impact the accuracy of estimated the mass exchange rates at the boundaries of the aquifer, and it becomes critical when surface and subsurface become more tightly coupled with groundwater table within 6 to 7 meters below the surface. Inclusion of lateral subsurface flow influenced both the surface energy budget and subsurface transport processes as a result of river-water intrusion into the subsurface in response to an elevated river stage that increased soil moisture for evapotranspiration and suppressed available energy for sensible heat in the warm season. The coupled model developed in this study can be used for improving mechanistic understanding of ecosystem functioning and biogeochemical cycling along river corridors under historical and future hydroclimatic changes. The dataset presented in this study can also serve as a good benchmarking case for testing other integrated models.« less

  19. Hyperresolution Global Land Surface Modeling: Meeting a Grand Challenge for Monitoring Earth's Terrestrial Water

    NASA Technical Reports Server (NTRS)

    Wood, Eric F.; Roundy, Joshua K.; Troy, Tara J.; van Beek, L. P. H.; Bierkens, Marc F. P.; 4 Blyth, Eleanor; de Roo, Ad; Doell. Petra; Ek, Mike; Famiglietti, James; hide

    2011-01-01

    Monitoring Earth's terrestrial water conditions is critically important to many hydrological applications such as global food production; assessing water resources sustainability; and flood, drought, and climate change prediction. These needs have motivated the development of pilot monitoring and prediction systems for terrestrial hydrologic and vegetative states, but to date only at the rather coarse spatial resolutions (approx.10-100 km) over continental to global domains. Adequately addressing critical water cycle science questions and applications requires systems that are implemented globally at much higher resolutions, on the order of 1 km, resolutions referred to as hyperresolution in the context of global land surface models. This opinion paper sets forth the needs and benefits for a system that would monitor and predict the Earth's terrestrial water, energy, and biogeochemical cycles. We discuss six major challenges in developing a system: improved representation of surface-subsurface interactions due to fine-scale topography and vegetation; improved representation of land-atmospheric interactions and resulting spatial information on soil moisture and evapotranspiration; inclusion of water quality as part of the biogeochemical cycle; representation of human impacts from water management; utilizing massively parallel computer systems and recent computational advances in solving hyperresolution models that will have up to 10(exp 9) unknowns; and developing the required in situ and remote sensing global data sets. We deem the development of a global hyperresolution model for monitoring the terrestrial water, energy, and biogeochemical cycles a grand challenge to the community, and we call upon the international hydrologic community and the hydrological science support infrastructure to endorse the effort.

  20. Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water

    NASA Astrophysics Data System (ADS)

    Wood, Eric F.; Roundy, Joshua K.; Troy, Tara J.; van Beek, L. P. H.; Bierkens, Marc F. P.; Blyth, Eleanor; de Roo, Ad; DöLl, Petra; Ek, Mike; Famiglietti, James; Gochis, David; van de Giesen, Nick; Houser, Paul; Jaffé, Peter R.; Kollet, Stefan; Lehner, Bernhard; Lettenmaier, Dennis P.; Peters-Lidard, Christa; Sivapalan, Murugesu; Sheffield, Justin; Wade, Andrew; Whitehead, Paul

    2011-05-01

    Monitoring Earth's terrestrial water conditions is critically important to many hydrological applications such as global food production; assessing water resources sustainability; and flood, drought, and climate change prediction. These needs have motivated the development of pilot monitoring and prediction systems for terrestrial hydrologic and vegetative states, but to date only at the rather coarse spatial resolutions (˜10-100 km) over continental to global domains. Adequately addressing critical water cycle science questions and applications requires systems that are implemented globally at much higher resolutions, on the order of 1 km, resolutions referred to as hyperresolution in the context of global land surface models. This opinion paper sets forth the needs and benefits for a system that would monitor and predict the Earth's terrestrial water, energy, and biogeochemical cycles. We discuss six major challenges in developing a system: improved representation of surface-subsurface interactions due to fine-scale topography and vegetation; improved representation of land-atmospheric interactions and resulting spatial information on soil moisture and evapotranspiration; inclusion of water quality as part of the biogeochemical cycle; representation of human impacts from water management; utilizing massively parallel computer systems and recent computational advances in solving hyperresolution models that will have up to 109 unknowns; and developing the required in situ and remote sensing global data sets. We deem the development of a global hyperresolution model for monitoring the terrestrial water, energy, and biogeochemical cycles a "grand challenge" to the community, and we call upon the international hydrologic community and the hydrological science support infrastructure to endorse the effort.

  1. Estimation of net ecosystem production in Asia using the diagnostic-type ecosystem model with a 10 km grid-scale resolution

    NASA Astrophysics Data System (ADS)

    Sasai, Takahiro; Obikawa, Hiroki; Murakami, Kazutaka; Kato, Soushi; Matsunaga, Tsuneo; Nemani, Ramakrishna R.

    2016-06-01

    The terrestrial carbon cycle in Asia is highly uncertain, and it affects our understanding of global warming. One of the important issues is the need for an enhancement of spatial resolution, since local regions in Asia are heterogeneous with regard to meteorology, land form, and land cover type, which greatly impacts the detailed spatial patterns in its ecosystem. Thus, an important goal of this study is to reasonably reproduce the heterogeneous biogeochemical patterns in Asia by enhancing the spatial resolution of the ecosystem model biosphere model integrating eco-physiological and mechanistic approaches using satellite data (BEAMS). We estimated net ecosystem production (NEP) over eastern Asia and examined the spatial differences in the factors controlling NEP by using a 10 km grid-scale approach over two different decades (2001-2010 and 2091-2100). The present and future meteorological inputs were derived from satellite observations and the downscaled Coupled Model Intercomparison Project Phase 5 (CMIP5) data set, respectively. The results showed that the present NEP in whole eastern Asia was carbon source (-214.9 TgC yr-1) and in future scenarios, the greatest positive (76.4 TgC yr-1) and least negative (-95.9 TgC yr-1) NEPs were estimated from the Representative Concentration Pathways (RCP) 6.0 and RCP8.5 scenarios, respectively. Calculated annual NEP in RCP8.5 was mostly positive in the southern part of East Asia and Southeast Asia and negative in northern and central parts of East Asia. Under the RCP scenario with higher greenhouse gases emission (RCP8.5), deciduous needleleaf and mixed forests distributed in the middle and high latitudes served as carbon source. In contrast, evergreen broadleaf forests distributed in low latitudes served as carbon sink. The sensitivity study demonstrated that the spatial tendency of NEP was largely influenced by atmospheric CO2 and temperature.

  2. Generating Ground Reference Data for a Global Impervious Surface Survey

    NASA Technical Reports Server (NTRS)

    Tilton, James C.; deColstoun, Eric Brown; Wolfe, Robert E.; Tan, Bin; Huang, Chengquan

    2012-01-01

    We are engaged in a project to produce a 30m impervious cover data set of the entire Earth for the years 2000 and 2010 based on the Landsat Global Land Survey (GLS) data set. The GLS data from Landsat provide an unprecedented opportunity to map global urbanization at this resolution for the first time, with unprecedented detail and accuracy. Moreover, the spatial resolution of Landsat is absolutely essential to accurately resolve urban targets such as buildings, roads and parking lots. Finally, with GLS data available for the 1975, 1990, 2000, and 2005 time periods, and soon for the 2010 period, the land cover/use changes due to urbanization can now be quantified at this spatial scale as well. Our approach works across spatial scales using very high spatial resolution commercial satellite data to both produce and evaluate continental scale products at the 30m spatial resolution of Landsat data. We are developing continental scale training data at 1m or so resolution and aggregating these to 30m for training a regression tree algorithm. Because the quality of the input training data are critical, we have developed an interactive software tool, called HSegLearn, to facilitate the photo-interpretation of high resolution imagery data, such as Quickbird or Ikonos data, into an impervious versus non-impervious map. Previous work has shown that photo-interpretation of high resolution data at 1 meter resolution will generate an accurate 30m resolution ground reference when coarsened to that resolution. Since this process can be very time consuming when using standard clustering classification algorithms, we are looking at image segmentation as a potential avenue to not only improve the training process but also provide a semi-automated approach for generating the ground reference data. HSegLearn takes as its input a hierarchical set of image segmentations produced by the HSeg image segmentation program [1, 2]. HSegLearn lets an analyst specify pixel locations as being either positive or negative examples, and displays a classification of the study area based on these examples. For our study, the positive examples are examples of impervious surfaces and negative examples are examples of non-impervious surfaces. HSegLearn searches the hierarchical segmentation from HSeg for the coarsest level of segmentation at which selected positive example locations do not conflict with negative example locations and labels the image accordingly. The negative example regions are always defined at the finest level of segmentation detail. The resulting classification map can be then further edited at a region object level using the previously developed HSegViewer tool [3]. After providing an overview of the HSeg image segmentation program, we provide a detailed description of the HSegLearn software tool. We then give examples of using HSegLearn to generate ground reference data and conclude with comments on the effectiveness of the HSegLearn tool.

  3. Global Aerosol Remote Sensing from MODIS

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Kaufman, Yoram J.; Remer, Lorraine A.; Chu, D. Allen; Mattoo, Shana; Tanre, Didier; Levy, Robert; Li, Rong-Rong; Martins, Jose V.; Lau, William K. M. (Technical Monitor)

    2002-01-01

    The physical characteristics, composition, abundance, spatial distribution and dynamics of global aerosols are still very poorly known, and new data from satellite sensors have long been awaited to improve current understanding and to give a boost to the effort in future climate predictions. The derivation of aerosol parameters from the MODerate resolution Imaging Spectro-radiometer (MODIS) sensors aboard the Earth Observing System (EOS) Terra and Aqua polar-orbiting satellites ushers in a new era in aerosol remote sensing from space. Terra and Aqua were launched on December 18, 1999 and May 4, 2002 respectively, with daytime equator crossing times of approximately 10:30 am and 1:30 pm respectively. Several aerosol parameters are retrieved at 10-km spatial resolution (level 2) from MODIS daytime data. The MODIS aerosol algorithm employs different approaches to retrieve parameters over land and ocean surfaces, because of the inherent differences in the solar spectral radiance interaction with these surfaces. The parameters retrieved include: aerosol optical thickness (AOT) at 0.47, 0.55 and 0.66 micron wavelengths over land, and at 0.47, 0.55, 0.66, 0.87, 1.2, 1.6, and 2.1 micron over ocean; Angstrom exponent over land and ocean; and effective radii, and the proportion of AOT contributed by the small mode aerosols over ocean. To ensure the quality of these parameters, a substantial part of the Terra-MODIS aerosol products were validated globally and regionally, based on cross correlation with corresponding parameters derived from ground-based measurements from AERONET (AErosol RObotic NETwork) sun photometers. Similar validation efforts are planned for the Aqua-MODIS aerosol products. The MODIS level 2 aerosol products are operationally aggregated to generate global daily, eight-day (weekly), and monthly products at one-degree spatial resolution (level 3). MODIS aerosol data are used for the detailed study of local, regional, and global aerosol concentration, distribution, and temporal dynamics, as well as for radiative forcing calculations. We show several examples of these results and comparisons with model output.

  4. Assessment of spectral, misregistration, and spatial uncertainties inherent in the cross-calibration study

    USGS Publications Warehouse

    Chander, G.; Helder, D.L.; Aaron, David; Mishra, N.; Shrestha, A.K.

    2013-01-01

    Cross-calibration of satellite sensors permits the quantitative comparison of measurements obtained from different Earth Observing (EO) systems. Cross-calibration studies usually use simultaneous or near-simultaneous observations from several spaceborne sensors to develop band-by-band relationships through regression analysis. The investigation described in this paper focuses on evaluation of the uncertainties inherent in the cross-calibration process, including contributions due to different spectral responses, spectral resolution, spectral filter shift, geometric misregistrations, and spatial resolutions. The hyperspectral data from the Environmental Satellite SCanning Imaging Absorption SpectroMeter for Atmospheric CartograpHY and the EO-1 Hyperion, along with the relative spectral responses (RSRs) from the Landsat 7 Enhanced Thematic Mapper (TM) Plus and the Terra Moderate Resolution Imaging Spectroradiometer sensors, were used for the spectral uncertainty study. The data from Landsat 5 TM over five representative land cover types (desert, rangeland, grassland, deciduous forest, and coniferous forest) were used for the geometric misregistrations and spatial-resolution study. The spectral resolution uncertainty was found to be within 0.25%, spectral filter shift within 2.5%, geometric misregistrations within 0.35%, and spatial-resolution effects within 0.1% for the Libya 4 site. The one-sigma uncertainties presented in this paper are uncorrelated, and therefore, the uncertainties can be summed orthogonally. Furthermore, an overall total uncertainty was developed. In general, the results suggested that the spectral uncertainty is more dominant compared to other uncertainties presented in this paper. Therefore, the effect of the sensor RSR differences needs to be quantified and compensated to avoid large uncertainties in cross-calibration results.

  5. Sensitivity of MODIS evapotranspiration algorithm (MOD16) to the acuracy of meteorological data and land use and land cover parameterization

    NASA Astrophysics Data System (ADS)

    Ruhoff, Anderson; Santini Adamatti, Daniela

    2017-04-01

    MODIS evapotranspiration (MOD16) is currently available with 1 km of spatial resolution over 109.03 Million km2 of vegetated land surface areas and this information is widely used to evaluate the linkages between hydrological, energy and carbon cycles. The algorithm is driven by meteorological reanalysis data and MODIS remotely-sensed data, which include land use and land cover classification (MCD12Q1), leaf area index (LAI) and fraction of absorbed photosynthetically active radiation (FPAR) (MOD15A2) and albedo (MOD43b3). For calibration and parameterization, the algorithm uses a Biome Property Look-up Table (BPLUT) based on MCD12Q1 land cover classification. Several studies evaluated MOD16 accuracy using evapotranspiration measurements and water balance analysis, showing that this product can reproduce global evapotranspiration effectively under a variety climate condition, from local to wide-basin scale, with uncertainties up to 25%. In this study, we evaluated the sensitivity of MOD16 algorithm to land use and land cover parameterization and to meteorological data. Considering that MCD12Q1 has an accuracy between 70 and 85% at continental scale, we changed land cover parametererization to understand the influence of land use and land cover classification on MOD16 evapotranspiration estimations. Knowing that meteorological reanalysis data also have uncertainties (mostly related to the coarse spatial resolution), we compared MOD16 evapotranspiration driven by observed meteorological data to those driven by the reanalysis data. Our analysis were carried in South America, with evapotranspiration and meteorological measurements from the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) at 8 different sites, including tropical rainforest, tropical dry forest, selective logged forest, seasonal flooded forest and pasture/agriculture. Our results indicate that land use and land cover classification has a strong influence on MOD16 algorithm. The use of incorrect parametererization due to land use and land cover misclassification can introduce large erros in estimates of evapotranspiration. We also found that the biases in meteorological reanalysis data can introduce considerable errors into the estimations. Overall, there is a significant potential for mapping and monitoring global evapotranspiration using MODIS remotely-sensed images combined to meteorological reanalysis data.

  6. A spectral-knowledge-based approach for urban land-cover discrimination

    NASA Technical Reports Server (NTRS)

    Wharton, Stephen W.

    1987-01-01

    A prototype expert system was developed to demonstrate the feasibility of classifying multispectral remotely sensed data on the basis of spectral knowledge. The spectral expert was developed and tested with Thematic Mapper Simulator (TMS) data having eight spectral bands and a spatial resolution of 5 m. A knowledge base was developed that describes the target categories in terms of characteristic spectral relationships. The knowledge base was developed under the following assumptions: the data are calibrated to ground reflectance, the area is well illuminated, the pixels are dominated by a single category, and the target categories can be recognized without the use of spatial knowledge. Classification decisions are made on the basis of convergent evidence as derived from applying the spectral rules to a multiple spatial resolution representation of the image. The spectral expert achieved an accuracy of 80-percent correct or higher in recognizing 11 spectral categories in TMS data for the washington, DC, area. Classification performance can be expected to decrease for data that do not satisfy the above assumptions as illustrated by the 63-percent accuracy for 30-m resolution Thematic Mapper data.

  7. Spatial connectivity, scaling, and temporal trajectories as emergent urban stormwater impacts

    NASA Astrophysics Data System (ADS)

    Jovanovic, T.; Gironas, J. A.; Hale, R. L.; Mejia, A.

    2016-12-01

    Urban watersheds are structurally complex systems comprised of multiple components (e.g., streets, pipes, ponds, vegetated swales, wetlands, riparian corridors, etc.). These multiple engineered components interact in unanticipated and nontrivial ways with topographic conditions, climate variability, land use/land cover changes, and the underlying eco-hydrogeomorphic dynamics. Such interactions can result in emergent urban stormwater impacts with cascading effects that can negatively influence the overall functioning of the urban watershed. For example, the interaction among many detention ponds has been shown, in some situations, to synchronize flow volumes and ultimately lead to downstream flow amplifications and increased pollutant mobilization. Additionally, interactions occur at multiple temporal and spatial scales requiring that urban stormwater dynamics be represented at the long-term temporal (decadal) and across spatial scales (from the single lot to the watershed scale). In this study, we develop and implement an event-based, high-resolution, network hydro-engineering model (NHEM), and demonstrate an approach to reconstruct the long-term regional infrastructure and land use/land cover conditions of an urban watershed. As the study area, we select an urban watershed in the metropolitan area of Scottsdale, Arizona. Using the reconstructed landscapes to drive the NHEM, we find that distinct surficial, hydrologic connectivity patterns result from the intersection of hydrologic processes, infrastructure, and land use/land cover arrangements. These spatial patters, in turn, exhibit scaling characteristics. For example, the scaling of urban watershed dispersion mechanisms shows altered scaling exponents with respect to pre-urban conditions. For example, the scaling exponent associated with geomorphic dispersion tends to increase for urban conditions, reflecting increased surficial path heterogeneity. Both the connectivity and scaling results can be used to delineate impact trajectories (i.e. the evolution of spatially referenced impacts over time). We find that the impact trajectories provide insight about the urban stormwater sustainability of watersheds as well as clues about the potential imprint of socio-environmental feedbacks in the evolutionary dynamics.

  8. Relationships between brightness of nighttime lights and population density

    NASA Astrophysics Data System (ADS)

    Naizhuo, Z.

    2012-12-01

    Brightness of nighttime lights has been proven to be a good proxy for socioeconomic and demographic statistics. Moreover, the satellite nighttime lights data have been used to spatially disaggregate amounts of gross domestic product (GDP), fossil fuel carbon dioxide emission, and electric power consumption (Ghosh et al., 2010; Oda and Maksyutov, 2011; Zhao et al., 2012). Spatial disaggregations were performed in these previous studies based on assumed linear relationships between digital number (DN) value of pixels in the nighttime light images and socioeconomic data. However, reliability of the linear relationships was never tested due to lack of relative high-spatial-resolution (equal to or finer than 1 km × 1 km) statistical data. With the similar assumption that brightness linearly correlates to population, Bharti et al. (2011) used nighttime light data as a proxy for population density and then developed a model about seasonal fluctuations of measles in West Africa. The Oak Ridge National Laboratory used sub-national census population data and high spatial resolution remotely-sensed-images to produce LandScan population raster datasets. The LandScan population datasets have 1 km × 1 km spatial resolution which is consistent with the spatial resolution of the nighttime light images. Therefore, in this study I selected 2008 LandScan population data as baseline reference data and the contiguous United State as study area. Relationships between DN value of pixels in the 2008 Defense Meteorological Satellite Program's Operational Linescan System (DMSP-OLS) stable light image and population density were established. Results showed that an exponential function can more accurately reflect the relationship between luminosity and population density than a linear function. Additionally, a certain number of saturated pixels with DN value of 63 exist in urban core areas. If directly using the exponential function to estimate the population density for the whole brightly lit area, relatively large under-estimations would emerge in the urban core regions. Previous studies have shown that GDP, carbon dioxide emission, and electric power consumption strongly correlate to urban population (Ghosh et al., 2010; Sutton et al., 2007; Zhao et al., 2012). Thus, although this study only examined the relationships between brightness of nighttime lights and population density, the results can provide insight for the spatial disaggregations of socioeconomic data (e.g. GDP, carbon dioxide emission, and electric power consumption) using the satellite nighttime light image data. Simply distributing the socioeconomic data to each pixel in proportion to the DN value of the nighttime light images may generate relatively large errors. References Bharit N, Tatem AJ, Ferrari MJ, Grais RF, Djibo A, Grenfell BT, 2011. Science, 334:1424-1427. Ghosh T, Elvidge CD, Sutton PC, Baugh KE, Ziskin D, Tuttle BT, 2010. Energies, 3:1895-1913. Oda T, Maksyutov S, 2011. Atmospheric Chemistry and Physics, 11:543-556. Sutton PC, Elvidge CD, Ghosh T, 2007. International Journal of Ecological Economics and Statistics, 8:5-21. Zhao N, Ghosh T, Samson EL, 2012. International Journal of Remote sensing, 33:6304-6320.

  9. Air quality high resolution simulations of Italian urban areas with WRF-CHIMERE

    NASA Astrophysics Data System (ADS)

    Falasca, Serena; Curci, Gabriele

    2017-04-01

    The new European Directive on ambient air quality and cleaner air for Europe (2008/50/EC) encourages the use of modeling techniques to support the observations in the assessment and forecasting of air quality. The modelling system based on the combination of the WRF meteorological model and the CHIMERE chemistry-transport model is used to perform simulations at high resolution over the main Italian cities (e.g. Milan, Rome). Three domains covering Europe, Italy and the urban areas are nested with a decreasing grid size up to 1 km. Numerical results are produced for a winter month and a summer month of the year 2010 and are validated using ground-based observations (e.g. from the European air quality database AirBase). A sensitivity study is performed using different physics options, domain resolution and grid ratio; different urban parameterization schemes are tested using also characteristic morphology parameters for the cities considered. A spatial reallocation of anthropogenic emissions derived from international (e.g. EMEP, TNO, HTAP) and national (e.g. CTN-ACE) emissions inventories and based on the land cover datasets (Global Land Cover Facility and GlobCover) and the OpenStreetMap tool is also included. Preliminary results indicate that the introduction of the spatial redistribution at high-resolution allows a more realistic reproduction of the distribution of the emission flows and thus the concentrations of the pollutants, with significant advantages especially for the urban environments.

  10. Mapping irrigated lands at 250-m scale by merging MODIS data and National Agricultural Statistics

    USGS Publications Warehouse

    Pervez, Md Shahriar; Brown, Jesslyn F.

    2010-01-01

    Accurate geospatial information on the extent of irrigated land improves our understanding of agricultural water use, local land surface processes, conservation or depletion of water resources, and components of the hydrologic budget. We have developed a method in a geospatial modeling framework that assimilates irrigation statistics with remotely sensed parameters describing vegetation growth conditions in areas with agricultural land cover to spatially identify irrigated lands at 250-m cell size across the conterminous United States for 2002. The geospatial model result, known as the Moderate Resolution Imaging Spectroradiometer (MODIS) Irrigated Agriculture Dataset (MIrAD-US), identified irrigated lands with reasonable accuracy in California and semiarid Great Plains states with overall accuracies of 92% and 75% and kappa statistics of 0.75 and 0.51, respectively. A quantitative accuracy assessment of MIrAD-US for the eastern region has not yet been conducted, and qualitative assessment shows that model improvements are needed for the humid eastern regions where the distinction in annual peak NDVI between irrigated and non-irrigated crops is minimal and county sizes are relatively small. This modeling approach enables consistent mapping of irrigated lands based upon USDA irrigation statistics and should lead to better understanding of spatial trends in irrigated lands across the conterminous United States. An improved version of the model with revised datasets is planned and will employ 2007 USDA irrigation statistics.

  11. Comparison of MODIS and SWAT evapotranspiration over a complex terrain at different spatial scales

    NASA Astrophysics Data System (ADS)

    Abiodun, Olanrewaju O.; Guan, Huade; Post, Vincent E. A.; Batelaan, Okke

    2018-05-01

    In most hydrological systems, evapotranspiration (ET) and precipitation are the largest components of the water balance, which are difficult to estimate, particularly over complex terrain. In recent decades, the advent of remotely sensed data based ET algorithms and distributed hydrological models has provided improved spatially upscaled ET estimates. However, information on the performance of these methods at various spatial scales is limited. This study compares the ET from the MODIS remotely sensed ET dataset (MOD16) with the ET estimates from a SWAT hydrological model on graduated spatial scales for the complex terrain of the Sixth Creek Catchment of the Western Mount Lofty Ranges, South Australia. ET from both models was further compared with the coarser-resolution AWRA-L model at catchment scale. The SWAT model analyses are performed on daily timescales with a 6-year calibration period (2000-2005) and 7-year validation period (2007-2013). Differences in ET estimation between the SWAT and MOD16 methods of up to 31, 19, 15, 11 and 9 % were observed at respectively 1, 4, 9, 16 and 25 km2 spatial resolutions. Based on the results of the study, a spatial scale of confidence of 4 km2 for catchment-scale evapotranspiration is suggested in complex terrain. Land cover differences, HRU parameterisation in AWRA-L and catchment-scale averaging of input climate data in the SWAT semi-distributed model were identified as the principal sources of weaker correlations at higher spatial resolution.

  12. Object-based vegetation classification with high resolution remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Yu, Qian

    Vegetation species are valuable indicators to understand the earth system. Information from mapping of vegetation species and community distribution at large scales provides important insight for studying the phenological (growth) cycles of vegetation and plant physiology. Such information plays an important role in land process modeling including climate, ecosystem and hydrological models. The rapidly growing remote sensing technology has increased its potential in vegetation species mapping. However, extracting information at a species level is still a challenging research topic. I proposed an effective method for extracting vegetation species distribution from remotely sensed data and investigated some ways for accuracy improvement. The study consists of three phases. Firstly, a statistical analysis was conducted to explore the spatial variation and class separability of vegetation as a function of image scale. This analysis aimed to confirm that high resolution imagery contains the information on spatial vegetation variation and these species classes can be potentially separable. The second phase was a major effort in advancing classification by proposing a method for extracting vegetation species from high spatial resolution remote sensing data. The proposed classification employs an object-based approach that integrates GIS and remote sensing data and explores the usefulness of ancillary information. The whole process includes image segmentation, feature generation and selection, and nearest neighbor classification. The third phase introduces a spatial regression model for evaluating the mapping quality from the above vegetation classification results. The effects of six categories of sample characteristics on the classification uncertainty are examined: topography, sample membership, sample density, spatial composition characteristics, training reliability and sample object features. This evaluation analysis answered several interesting scientific questions such as (1) whether the sample characteristics affect the classification accuracy and how significant if it does; (2) how much variance of classification uncertainty can be explained by above factors. This research is carried out on a hilly peninsular area in Mediterranean climate, Point Reyes National Seashore (PRNS) in Northern California. The area mainly consists of a heterogeneous, semi-natural broadleaf and conifer woodland, shrub land, and annual grassland. A detailed list of vegetation alliances is used in this study. Research results from the first phase indicates that vegetation spatial variation as reflected by the average local variance (ALV) keeps a high level of magnitude between 1 m and 4 m resolution. (Abstract shortened by UMI.)

  13. Vegetation cover in relation to socioeconomic factors in a tropical city assessed from sub-meter resolution imagery.

    PubMed

    Martinuzzi, Sebastián; Ramos-González, Olga M; Muñoz-Erickson, Tischa A; Locke, Dexter H; Lugo, Ariel E; Radeloff, Volker C

    2018-04-01

    Fine-scale information about urban vegetation and social-ecological relationships is crucial to inform both urban planning and ecological research, and high spatial resolution imagery is a valuable tool for assessing urban areas. However, urban ecology and remote sensing have largely focused on cities in temperate zones. Our goal was to characterize urban vegetation cover with sub-meter (<1 m) resolution aerial imagery, and identify social-ecological relationships of urban vegetation patterns in a tropical city, the San Juan Metropolitan Area, Puerto Rico. Our specific objectives were to (1) map vegetation cover using sub-meter spatial resolution (0.3-m) imagery, (2) quantify the amount of residential and non-residential vegetation, and (3) investigate the relationship between patterns of urban vegetation vs. socioeconomic and environmental factors. We found that 61% of the San Juan Metropolitan Area was green and that our combination of high spatial resolution imagery and object-based classification was highly successful for extracting vegetation cover in a moist tropical city (97% accuracy). In addition, simple spatial pattern analysis allowed us to separate residential from non-residential vegetation with 76% accuracy, and patterns of residential and non-residential vegetation varied greatly across the city. Both socioeconomic (e.g., population density, building age, detached homes) and environmental variables (e.g., topography) were important in explaining variations in vegetation cover in our spatial regression models. However, important socioeconomic drivers found in cities in temperate zones, such as income and home value, were not important in San Juan. Climatic and cultural differences between tropical and temperate cities may result in different social-ecological relationships. Our study provides novel information for local land use planners, highlights the value of high spatial resolution remote sensing data to advance ecological research and urban planning in tropical cities, and emphasizes the need for more studies in tropical cities. © 2017 by the Ecological Society of America.

  14. Determining urban land uses through building-associated element attributes derived from lidar and aerial photographs

    NASA Astrophysics Data System (ADS)

    Meng, Xuelian

    Urban land-use research is a key component in analyzing the interactions between human activities and environmental change. Researchers have conducted many experiments to classify urban or built-up land, forest, water, agriculture, and other land-use and land-cover types. Separating residential land uses from other land uses within urban areas, however, has proven to be surprisingly troublesome. Although high-resolution images have recently become more available for land-use classification, an increase in spatial resolution does not guarantee improved classification accuracy by traditional classifiers due to the increase of class complexity. This research presents an approach to detect and separate residential land uses on a building scale directly from remotely sensed imagery to enhance urban land-use analysis. Specifically, the proposed methodology applies a multi-directional ground filter to generate a bare ground surface from lidar data, then utilizes a morphology-based building detection algorithm to identify buildings from lidar and aerial photographs, and finally separates residential buildings using a supervised C4.5 decision tree analysis based on the seven selected building land-use indicators. Successful execution of this study produces three independent methods, each corresponding to the steps of the methodology: lidar ground filtering, building detection, and building-based object-oriented land-use classification. Furthermore, this research provides a prototype as one of the few early explorations of building-based land-use analysis and successful separation of more than 85% of residential buildings based on an experiment on an 8.25-km2 study site located in Austin, Texas.

  15. Combining NLCD and MODIS to create a land cover-albedo database for the continental United States

    USGS Publications Warehouse

    Wickham, J.; Barnes, Christopher A.; Nash, M.S.; Wade, T.G.

    2015-01-01

    Land surface albedo is an essential climate variable that is tightly linked to land cover, such that specific land cover classes (e.g., deciduous broadleaf forest, cropland) have characteristic albedos. Despite the normative of land-cover class specific albedos, there is considerable variability in albedo within a land cover class. The National Land Cover Database (NLCD) and the Moderate Resolution Imaging Spectroradiometer (MODIS) albedo product were combined to produce a long-term (14 years) integrated land cover-albedo database for the continental United States that can be used to examine the temporal behavior of albedo as a function of land cover. The integration identifies areas of homogeneous land cover at the nominal spatial resolution of the MODIS (MCD43A) albedo product (500 m × 500 m) from the NLCD product (30 m × 30 m), and provides an albedo data record per 500 m × 500 m pixel for 14 of the 16 NLCD land cover classes. Individual homogeneous land cover pixels have up to 605 albedo observations, and 75% of the pixels have at least 319 MODIS albedo observations (≥ 50% of the maximum possible number of observations) for the study period (2000–2013). We demonstrated the utility of the database by conducting a multivariate analysis of variance of albedo for each NLCD land cover class, showing that locational (pixel-to-pixel) and inter-annual variability were significant factors in addition to expected seasonal (intra-annual) and geographic (latitudinal) effects.

  16. Automated feature extraction and classification from image sources

    USGS Publications Warehouse

    ,

    1995-01-01

    The U.S. Department of the Interior, U.S. Geological Survey (USGS), and Unisys Corporation have completed a cooperative research and development agreement (CRADA) to explore automated feature extraction and classification from image sources. The CRADA helped the USGS define the spectral and spatial resolution characteristics of airborne and satellite imaging sensors necessary to meet base cartographic and land use and land cover feature classification requirements and help develop future automated geographic and cartographic data production capabilities. The USGS is seeking a new commercial partner to continue automated feature extraction and classification research and development.

  17. High-resolution digital mapping of soil organic carbon in permafrost terrain using machine learning: a case study in a sub-Arctic peatland environment

    NASA Astrophysics Data System (ADS)

    Siewert, Matthias B.

    2018-03-01

    Soil organic carbon (SOC) stored in northern peatlands and permafrost-affected soils are key components in the global carbon cycle. This article quantifies SOC stocks in a sub-Arctic mountainous peatland environment in the discontinuous permafrost zone in Abisko, northern Sweden. Four machine-learning techniques are evaluated for SOC quantification: multiple linear regression, artificial neural networks, support vector machine and random forest. The random forest model performed best and was used to predict SOC for several depth increments at a spatial resolution of 1 m (1×1 m). A high-resolution (1 m) land cover classification generated for this study is the most relevant predictive variable. The landscape mean SOC storage (0-150 cm) is estimated to be 8.3 ± 8.0 kg C m-2 and the SOC stored in the top meter (0-100 cm) to be 7.7 ± 6.2 kg C m-2. The predictive modeling highlights the relative importance of wetland areas and in particular peat plateaus for the landscape's SOC storage. The total SOC was also predicted at reduced spatial resolutions of 2, 10, 30, 100, 250 and 1000 m and shows a significant drop in land cover class detail and a tendency to underestimate the SOC at resolutions > 30 m. This is associated with the occurrence of many small-scale wetlands forming local hot-spots of SOC storage that are omitted at coarse resolutions. Sharp transitions in SOC storage associated with land cover and permafrost distribution are the most challenging methodological aspect. However, in this study, at local, regional and circum-Arctic scales, the main factor limiting robust SOC mapping efforts is the scarcity of soil pedon data from across the entire environmental space. For the Abisko region, past SOC and permafrost dynamics indicate that most of the SOC is barely 2000 years old and very dynamic. Future research needs to investigate the geomorphic response of permafrost degradation and the fate of SOC across all landscape compartments in post-permafrost landscapes.

  18. Integrating Landsat Data and High-Resolution Imagery for Applied Conservation Assessment of Forest Cover in Latin American Heterogenous Landscapes

    NASA Astrophysics Data System (ADS)

    Thomas, N.; Rueda, X.; Lambin, E.; Mendenhall, C. D.

    2012-12-01

    Large intact forested regions of the world are known to be critical to maintaining Earth's climate, ecosystem health, and human livelihoods. Remote sensing has been successfully implemented as a tool to monitor forest cover and landscape dynamics over broad regions. Much of this work has been done using coarse resolution sensors such as AVHRR and MODIS in combination with moderate resolution sensors, particularly Landsat. Finer scale analysis of heterogeneous and fragmented landscapes is commonly performed with medium resolution data and has had varying success depending on many factors including the level of fragmentation, variability of land cover types, patch size, and image availability. Fine scale tree cover in mixed agricultural areas can have a major impact on biodiversity and ecosystem sustainability but may often be inadequately captured with the global to regional (coarse resolution and moderate resolution) satellite sensors and processing techniques widely used to detect land use and land cover changes. This study investigates whether advanced remote sensing methods are able to assess and monitor percent tree canopy cover in spatially complex human-dominated agricultural landscapes that prove challenging for traditional mapping techniques. Our study areas are in high altitude, mixed agricultural coffee-growing regions in Costa Rica and the Colombian Andes. We applied Random Forests regression tree analysis to Landsat data along with additional spectral, environmental, and spatial variables to predict percent tree canopy cover at 30m resolution. Image object-based texture, shape, and neighborhood metrics were generated at the Landsat scale using eCognition and included in the variable suite. Training and validation data was generated using high resolution imagery from digital aerial photography at 1m to 2.5 m resolution. Our results are promising with Pearson's correlation coefficients between observed and predicted percent tree canopy cover of .86 (Costa Rica) and .83 (Colombia). The tree cover mapping developed here supports two distinct projects on sustaining biodiversity and natural and human capital: in Costa Rica the tree canopy cover map is utilized to predict bird community composition; and in Colombia the mapping is performed for two time periods and used to assess the impact of coffee eco-certification programs on the landscape. This research identifies ways to leverage readily available, high quality, and cost-free Landsat data or other medium resolution satellite data sources in combination with high resolution data, such as that frequently available through Google Earth, to monitor and support sustainability efforts in fragmented and heterogeneous landscapes.

  19. Land-use planning of Volyn region (Ukraine) using Geographic Information Systems (GIS) technologies

    NASA Astrophysics Data System (ADS)

    Strielko, Irina; Pereira, Paulo

    2014-05-01

    Land-use development planning is carried out in order to create a favourable environment for human life, sustainable socioeconomic and spatial development. Landscape planning is an important part of land-use development that aims to meet the fundamental principles of sustainable development. Geographic Information Systems (GIS) is a fundamental tool to make a better landscape planning at different territorial levels, providing data and maps to support decision making. The objective of this work is to create spatio-temporal, territorial and ecological model of development of Volyn region (Ukraine). It is based on existing spatial raster and vector data and includes the analysis of territory dynamics as the aspects responsible for it. A spatial analyst tool was used to zone the areas according to their environmental components and economic activity. This analysis is fundamental to define the basic parameters of sustainability of Volyn region. To carry out this analysis, we determined the demographic capacity of districts and the analysis of spatial parameters of land use. On the basis of the existing natural resources, we observed that there is a need of landscape protection and integration of more are natural areas in the Pan-European Ecological Network. Using GIS technologies to landscape planning in Volyn region, allowed us to identify, natural areas of interest, contribute to a better resource management and conflict resolution. Geographic Information Systems will help to formulate and implement landscape policies, reform the existing administrative system of Volyn region and contribute to a better sustainable development.

  20. Using NASA Earth Observing Satellites and Statistical Model Analysis to Monitor Vegetation and Habitat Rehabilitation in Southwest Virginia's Reclaimed Mine Lands

    NASA Astrophysics Data System (ADS)

    Tate, Z.; Dusenge, D.; Elliot, T. S.; Hafashimana, P.; Medley, S.; Porter, R. P.; Rajappan, R.; Rodriguez, P.; Spangler, J.; Swaminathan, R. S.; VanGundy, R. D.

    2014-12-01

    The majority of the population in southwest Virginia depends economically on coal mining. In 2011, coal mining generated $2,000,000 in tax revenue to Wise County alone. However, surface mining completely removes land cover and leaves the land exposed to erosion. The destruction of the forest cover directly impacts local species, as some are displaced and others perish in the mining process. Even though surface mining has a negative impact on the environment, land reclamation efforts are in place to either restore mined areas to their natural vegetated state or to transform these areas for economic purposes. This project aimed to monitor the progress of land reclamation and the effect on the return of local species. By incorporating NASA Earth observations, such as Landsat 8 Operational Land Imager (OLI) and Landsat 5 Thematic Mapper (TM), re-vegetation process in reclamation sites was estimated through a Time series analysis using the Normalized Difference Vegetation Index (NDVI). A continuous source of cloud free images was accomplished by utilizing the Spatial and Temporal Adaptive Reflectance Fusion Model (STAR-FM). This model developed synthetic Landsat imagery by integrating the high-frequency temporal information from Terra/Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) and high-resolution spatial information from Landsat sensors In addition, the Maximum Entropy Modeling (MaxENT), an eco-niche model was used to estimate the adaptation of animal species to the newly formed habitats. By combining factors such as land type, precipitation from Tropical Rainfall Measuring Mission (TRMM), and slope from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), the MaxENT model produced a statistical analysis on the probability of species habitat. Altogether, the project compiled the ecological information which can be used to identify suitable habitats for local species in reclaimed mined areas.

Top