Sample records for spatial resolution leads

  1. Spatial resolution properties of motion-compensated tomographic image reconstruction methods.

    PubMed

    Chun, Se Young; Fessler, Jeffrey A

    2012-07-01

    Many motion-compensated image reconstruction (MCIR) methods have been proposed to correct for subject motion in medical imaging. MCIR methods incorporate motion models to improve image quality by reducing motion artifacts and noise. This paper analyzes the spatial resolution properties of MCIR methods and shows that nonrigid local motion can lead to nonuniform and anisotropic spatial resolution for conventional quadratic regularizers. This undesirable property is akin to the known effects of interactions between heteroscedastic log-likelihoods (e.g., Poisson likelihood) and quadratic regularizers. This effect may lead to quantification errors in small or narrow structures (such as small lesions or rings) of reconstructed images. This paper proposes novel spatial regularization design methods for three different MCIR methods that account for known nonrigid motion. We develop MCIR regularization designs that provide approximately uniform and isotropic spatial resolution and that match a user-specified target spatial resolution. Two-dimensional PET simulations demonstrate the performance and benefits of the proposed spatial regularization design methods.

  2. Spatial enhancement of ECG using diagnostic similarity score based lead selective multi-scale linear model.

    PubMed

    Nallikuzhy, Jiss J; Dandapat, S

    2017-06-01

    In this work, a new patient-specific approach to enhance the spatial resolution of ECG is proposed and evaluated. The proposed model transforms a three-lead ECG into a standard twelve-lead ECG thereby enhancing its spatial resolution. The three leads used for prediction are obtained from the standard twelve-lead ECG. The proposed model takes advantage of the improved inter-lead correlation in wavelet domain. Since the model is patient-specific, it also selects the optimal predictor leads for a given patient using a lead selection algorithm. The lead selection algorithm is based on a new diagnostic similarity score which computes the diagnostic closeness between the original and the spatially enhanced leads. Standard closeness measures are used to assess the performance of the model. The similarity in diagnostic information between the original and the spatially enhanced leads are evaluated using various diagnostic measures. Repeatability and diagnosability are performed to quantify the applicability of the model. A comparison of the proposed model is performed with existing models that transform a subset of standard twelve-lead ECG into the standard twelve-lead ECG. From the analysis of the results, it is evident that the proposed model preserves diagnostic information better compared to other models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Seismic Study of the Subsurface Structure and Dynamics of the Solar Interior from High Spatial Resolution Observations

    NASA Technical Reports Server (NTRS)

    Korzennik, Sylvain G.

    1997-01-01

    We have carried out the data reduction and analysis of Mt. Wilson 60' solar tower high spatial resolution observations. The reduction of the 100-day-long summer of 1990 observation campaign in terms of rotational splittings was completed leading to an excess of 600,000 splittings. The analysis of these splittings lead to a new inference of the solar internal rotation rate as a function of depth and latitude.

  4. The effects of transient attention on spatial resolution and the size of the attentional cue.

    PubMed

    Yeshurun, Yaffa; Carrasco, Marisa

    2008-01-01

    It has been shown that transient attention enhances spatial resolution, but is the effect of transient attention on spatial resolution modulated by the size of the attentional cue? Would a gradual increase in the size of the cue lead to a gradual decrement in spatial resolution? To test these hypotheses, we used a texture segmentation task in which performance depends on spatial resolution, and systematically manipulated the size of the attentional cue: A bar of different lengths (Experiment 1) or a frame of different sizes (Experiments 2-3) indicated the target region in a texture segmentation display. Observers indicated whether a target patch region (oriented line elements in a background of an orthogonal orientation), appearing at a range of eccentricities, was present in the first or the second interval. We replicated the attentional enhancement of spatial resolution found with small cues; attention improved performance at peripheral locations but impaired performance at central locations. However, there was no evidence of gradual resolution decrement with large cues. Transient attention enhanced spatial resolution at the attended location when it was attracted to that location by a small cue but did not affect resolution when it was attracted by a large cue. These results indicate that transient attention cannot adapt its operation on spatial resolution on the basis of the size of the attentional cue.

  5. Zonal wavefront sensing with enhanced spatial resolution.

    PubMed

    Pathak, Biswajit; Boruah, Bosanta R

    2016-12-01

    In this Letter, we introduce a scheme to enhance the spatial resolution of a zonal wavefront sensor. The zonal wavefront sensor comprises an array of binary gratings implemented by a ferroelectric spatial light modulator (FLCSLM) followed by a lens, in lieu of the array of lenses in the Shack-Hartmann wavefront sensor. We show that the fast response of the FLCSLM device facilitates quick display of several laterally shifted binary grating patterns, and the programmability of the device enables simultaneous capturing of each focal spot array. This eventually leads to a wavefront estimation with an enhanced spatial resolution without much sacrifice on the sensor frame rate, thus making the scheme suitable for high spatial resolution measurement of transient wavefronts. We present experimental and numerical simulation results to demonstrate the importance of the proposed wavefront sensing scheme.

  6. A comparative verification of high resolution precipitation forecasts using model output statistics

    NASA Astrophysics Data System (ADS)

    van der Plas, Emiel; Schmeits, Maurice; Hooijman, Nicolien; Kok, Kees

    2017-04-01

    Verification of localized events such as precipitation has become even more challenging with the advent of high-resolution meso-scale numerical weather prediction (NWP). The realism of a forecast suggests that it should compare well against precipitation radar imagery with similar resolution, both spatially and temporally. Spatial verification methods solve some of the representativity issues that point verification gives rise to. In this study a verification strategy based on model output statistics is applied that aims to address both double penalty and resolution effects that are inherent to comparisons of NWP models with different resolutions. Using predictors based on spatial precipitation patterns around a set of stations, an extended logistic regression (ELR) equation is deduced, leading to a probability forecast distribution of precipitation for each NWP model, analysis and lead time. The ELR equations are derived for predictands based on areal calibrated radar precipitation and SYNOP observations. The aim is to extract maximum information from a series of precipitation forecasts, like a trained forecaster would. The method is applied to the non-hydrostatic model Harmonie (2.5 km resolution), Hirlam (11 km resolution) and the ECMWF model (16 km resolution), overall yielding similar Brier skill scores for the 3 post-processed models, but larger differences for individual lead times. Besides, the Fractions Skill Score is computed using the 3 deterministic forecasts, showing somewhat better skill for the Harmonie model. In other words, despite the realism of Harmonie precipitation forecasts, they only perform similarly or somewhat better than precipitation forecasts from the 2 lower resolution models, at least in the Netherlands.

  7. Influence of mapping resolution on assessments of stream and streamside conditions: lessons from coastal Oregon, USA

    Treesearch

    Ken Vance-Borland; Kelly Burnett; Sharon Clarke

    2009-01-01

    1. Digital hydrographic data are commonly employed in research, planning, and monitoring for freshwater conservation, but hydrographic data sets differ in spatial resolution and accuracy of spatial representation, possibly leading to inaccurate conclusions or unsuitable policies for streams and streamside areas. 2. To examine and illustrate the potential for...

  8. Spatial Resolution Requirements for Accurate Identification of Drivers of Atrial Fibrillation

    PubMed Central

    Roney, Caroline H.; Cantwell, Chris D.; Bayer, Jason D.; Qureshi, Norman A.; Lim, Phang Boon; Tweedy, Jennifer H.; Kanagaratnam, Prapa; Vigmond, Edward J.; Ng, Fu Siong

    2017-01-01

    Background— Recent studies have demonstrated conflicting mechanisms underlying atrial fibrillation (AF), with the spatial resolution of data often cited as a potential reason for the disagreement. The purpose of this study was to investigate whether the variation in spatial resolution of mapping may lead to misinterpretation of the underlying mechanism in persistent AF. Methods and Results— Simulations of rotors and focal sources were performed to estimate the minimum number of recording points required to correctly identify the underlying AF mechanism. The effects of different data types (action potentials and unipolar or bipolar electrograms) and rotor stability on resolution requirements were investigated. We also determined the ability of clinically used endocardial catheters to identify AF mechanisms using clinically recorded and simulated data. The spatial resolution required for correct identification of rotors and focal sources is a linear function of spatial wavelength (the distance between wavefronts) of the arrhythmia. Rotor localization errors are larger for electrogram data than for action potential data. Stationary rotors are more reliably identified compared with meandering trajectories, for any given spatial resolution. All clinical high-resolution multipolar catheters are of sufficient resolution to accurately detect and track rotors when placed over the rotor core although the low-resolution basket catheter is prone to false detections and may incorrectly identify rotors that are not present. Conclusions— The spatial resolution of AF data can significantly affect the interpretation of the underlying AF mechanism. Therefore, the interpretation of human AF data must be taken in the context of the spatial resolution of the recordings. PMID:28500175

  9. Lead foil in dental X-ray film: Backscattering rejection or image intensifier?

    NASA Astrophysics Data System (ADS)

    Hönnicke, M. G.; Delben, G. J.; Godoi, W. C.; Swinka-Filho, V.

    2014-11-01

    Dental X-ray films are still largely used due to sterilization issues, simplicity and, mainly, economic reasons. These films almost always are double coated (double emulsion) and have a lead foil in contact with the film for X-ray backscattering rejection. Herein we explore the use of the lead foil as an image intensifier. In these studies, spatial resolution was investigated when images were acquired on the dental X-ray films with and without the lead foil. Also, the lead foil was subjected to atomic analysis (fluorescent measurements) and structure analysis (X-ray diffraction). We determined that the use of the lead foil reduces the exposure time, however, does not affect the spatial resolution on the acquired images. This suggests that the fluorescent radiation spread is smaller than the grain sizes of the dental X-ray films.

  10. The Analysis of Burrows Recognition Accuracy in XINJIANG'S Pasture Area Based on Uav Visible Images with Different Spatial Resolution

    NASA Astrophysics Data System (ADS)

    Sun, D.; Zheng, J. H.; Ma, T.; Chen, J. J.; Li, X.

    2018-04-01

    The rodent disaster is one of the main biological disasters in grassland in northern Xinjiang. The eating and digging behaviors will cause the destruction of ground vegetation, which seriously affected the development of animal husbandry and grassland ecological security. UAV low altitude remote sensing, as an emerging technique with high spatial resolution, can effectively recognize the burrows. However, how to select the appropriate spatial resolution to monitor the calamity of the rodent disaster is the first problem we need to pay attention to. The purpose of this study is to explore the optimal spatial scale on identification of the burrows by evaluating the impact of different spatial resolution for the burrows identification accuracy. In this study, we shoot burrows from different flight heights to obtain visible images of different spatial resolution. Then an object-oriented method is used to identify the caves, and we also evaluate the accuracy of the classification. We found that the highest classification accuracy of holes, the average has reached more than 80 %. At the altitude of 24 m and the spatial resolution of 1cm, the accuracy of the classification is the highest We have created a unique and effective way to identify burrows by using UAVs visible images. We draw the following conclusion: the best spatial resolution of burrows recognition is 1 cm using DJI PHANTOM-3 UAV, and the improvement of spatial resolution does not necessarily lead to the improvement of classification accuracy. This study lays the foundation for future research and can be extended to similar studies elsewhere.

  11. Spatially-controlled illumination with rescan confocal microscopy enhances image quality, resolution and reduces photodamage

    NASA Astrophysics Data System (ADS)

    Krishnaswami, Venkataraman; De Luca, Giulia M. R.; Breedijk, Ronald M. P.; Van Noorden, Cornelis J. F.; Manders, Erik M. M.; Hoebe, Ron A.

    2017-02-01

    Fluorescence microscopy is an important tool in biomedical imaging. An inherent trade-off lies between image quality and photodamage. Recently, we have introduced rescan confocal microscopy (RCM) that improves the lateral resolution of a confocal microscope down to 170 nm. Previously, we have demonstrated that with controlled-light exposure microscopy, spatial control of illumination reduces photodamage without compromising image quality. Here, we show that the combination of these two techniques leads to high resolution imaging with reduced photodamage without compromising image quality. Implementation of spatially-controlled illumination was carried out in RCM using a line scanning-based approach. Illumination is spatially-controlled for every line during imaging with the help of a prediction algorithm that estimates the spatial profile of the fluorescent specimen. The estimation is based on the information available from previously acquired line images. As a proof-of-principle, we show images of N1E-115 neuroblastoma cells, obtained by this new setup with reduced illumination dose, improved resolution and without compromising image quality.

  12. The spatial resolving power of earth resources satellites: A review

    NASA Technical Reports Server (NTRS)

    Townshend, J. R. G.

    1980-01-01

    The significance of spatial resolving power on the utility of current and future Earth resources satellites is critically discussed and the relative merits of different approaches in defining and estimating spatial resolution are outlined. It is shown that choice of a particular measure of spatial resolution depends strongly on the particular needs of the user. Several experiments have simulated the capabilities of future satellite systems by degradation of aircraft images. Surprisingly, many of these indicated that improvements in resolution may lead to a reduction in the classification accuracy of land cover types using computer assisted methods. However, where the frequency of boundary pixels is high, the converse relationship is found. Use of imagery dependent upon visual interpretation is likely to benefit more consistently from higher resolutions. Extraction of information from images will depend upon several other factors apart from spatial resolving power: these include characteristics of the terrain being sensed, the image processing methods that are applied as well as certain sensor characteristics.

  13. Spatial Resolution and Refractive Index Contrast of Resonant Photonic Crystal Surfaces for Biosensing

    PubMed Central

    Triggs, G. J.; Fischer, M.; Stellinga, D.; Scullion, M. G.; Evans, G. J. O.; Krauss, T. F.

    2015-01-01

    By depositing a resolution test pattern on top of a Si3N4 photonic crystal resonant surface, we have measured the dependence of spatial resolution on refractive index contrast Δn. Our experimental results and finite-difference time-domain (FDTD) simulations at different refractive index contrasts show that the spatial resolution of our device reduces with reduced contrast, which is an important consideration in biosensing, where the contrast may be of order 10−2. We also compare 1-D and 2-D gratings, taking into account different incidence polarizations, leading to a better understanding of the excitation and propagation of the resonant modes in these structures, as well as how this contributes to the spatial resolution. At Δn = 0.077, we observe resolutions of 2 and 6 μm parallel to and perpendicular to the grooves of a 1-D grating, respectively, and show that for polarized illumination of a 2-D grating, resolution remains asymmetrical. Illumination of a 2-D grating at 45° results in symmetric resolution. At very low index contrast, the resolution worsens dramatically, particularly for Δn < 0.01, where we observe a resolution exceeding 10 μm for our device. In addition, we measure a reduction in the resonance linewidth as the index contrast becomes lower, corresponding to a longer resonant mode propagation length in the structure and contributing to the change in spatial resolution. PMID:26356353

  14. When What You See Isn’t What You Get: How Viewshed Analysis is Impacted by Digital Surface Model (DSM) Resolution

    EPA Science Inventory

    A key factor for improving models of ecosystem benefits is the availability of high quality spatial data. High resolution LIDAR data are now commonly available and can be used to produce more accurate model outputs. However, increased resolution leads to higher computer resource...

  15. Full Spatial Resolution Infrared Sounding Application in the Preconvection Environment

    NASA Astrophysics Data System (ADS)

    Liu, C.; Liu, G.; Lin, T.

    2013-12-01

    Advanced infrared (IR) sounders such as the Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI) provide atmospheric temperature and moisture profiles with high vertical resolution and high accuracy in preconvection environments. The derived atmospheric stability indices such as convective available potential energy (CAPE) and lifted index (LI) from advanced IR soundings can provide critical information 1 ; 6 h before the development of severe convective storms. Three convective storms are selected for the evaluation of applying AIRS full spatial resolution soundings and the derived products on providing warning information in the preconvection environments. In the first case, the AIRS full spatial resolution soundings revealed local extremely high atmospheric instability 3 h ahead of the convection on the leading edge of a frontal system, while the second case demonstrates that the extremely high atmospheric instability is associated with the local development of severe thunderstorm in the following hours. The third case is a local severe storm that occurred on 7-8 August 2010 in Zhou Qu, China, which caused more than 1400 deaths and left another 300 or more people missing. The AIRS full spatial resolution LI product shows the atmospheric instability 3.5 h before the storm genesis. The CAPE and LI from AIRS full spatial resolution and operational AIRS/AMSU soundings along with Geostationary Operational Environmental Satellite (GOES) Sounder derived product image (DPI) products were analyzed and compared. Case studies show that full spatial resolution AIRS retrievals provide more useful warning information in the preconvection environments for determining favorable locations for convective initiation (CI) than do the coarser spatial resolution operational soundings and lower spectral resolution GOES Sounder retrievals. The retrieved soundings are also tested in a regional data assimilation WRF 3D-var system to evaluate the potential assist in the NWP model.

  16. Improved spatial resolution in PET scanners using sampling techniques

    PubMed Central

    Surti, Suleman; Scheuermann, Ryan; Werner, Matthew E.; Karp, Joel S.

    2009-01-01

    Increased focus towards improved detector spatial resolution in PET has led to the use of smaller crystals in some form of light sharing detector design. In this work we evaluate two sampling techniques that can be applied during calibrations for pixelated detector designs in order to improve the reconstructed spatial resolution. The inter-crystal positioning technique utilizes sub-sampling in the crystal flood map to better sample the Compton scatter events in the detector. The Compton scatter rejection technique, on the other hand, rejects those events that are located further from individual crystal centers in the flood map. We performed Monte Carlo simulations followed by measurements on two whole-body scanners for point source data. The simulations and measurements were performed for scanners using scintillators with Zeff ranging from 46.9 to 63 for LaBr3 and LYSO, respectively. Our results show that near the center of the scanner, inter-crystal positioning technique leads to a gain of about 0.5-mm in reconstructed spatial resolution (FWHM) for both scanner designs. In a small animal LYSO scanner the resolution improves from 1.9-mm to 1.6-mm with the inter-crystal technique. The Compton scatter rejection technique shows higher gains in spatial resolution but at the cost of reduction in scanner sensitivity. The inter-crystal positioning technique represents a modest acquisition software modification for an improvement in spatial resolution, but at a cost of potentially longer data correction and reconstruction times. The Compton scatter rejection technique, while also requiring a modest acquisition software change with no increased data correction and reconstruction times, will be useful in applications where the scanner sensitivity is very high and larger improvements in spatial resolution are desirable. PMID:19779586

  17. Modeling and simulation of Positron Emission Mammography (PEM) based on double-sided CdTe strip detectors

    NASA Astrophysics Data System (ADS)

    Ozsahin, I.; Unlu, M. Z.

    2014-03-01

    Breast cancer is the most common leading cause of cancer death among women. Positron Emission Tomography (PET) Mammography, also known as Positron Emission Mammography (PEM), is a method for imaging primary breast cancer. Over the past few years, PEMs based on scintillation crystals dramatically increased their importance in diagnosis and treatment of early stage breast cancer. However, these detectors have significant limitations like poor energy resolution resulting with false-negative result (missed cancer), and false-positive result which leads to suspecting cancer and suggests an unnecessary biopsy. In this work, a PEM scanner based on CdTe strip detectors is simulated via the Monte Carlo method and evaluated in terms of its spatial resolution, sensitivity, and image quality. The spatial resolution is found to be ~ 1 mm in all three directions. The results also show that CdTe strip detectors based PEM scanner can produce high resolution images for early diagnosis of breast cancer.

  18. Spatial variability of the Black Sea surface temperature from high resolution modeling and satellite measurements

    NASA Astrophysics Data System (ADS)

    Mizyuk, Artem; Senderov, Maxim; Korotaev, Gennady

    2016-04-01

    Large number of numerical ocean models were implemented for the Black Sea basin during last two decades. They reproduce rather similar structure of synoptical variability of the circulation. Since 00-s numerical studies of the mesoscale structure are carried out using high performance computing (HPC). With the growing capacity of computing resources it is now possible to reconstruct the Black Sea currents with spatial resolution of several hundreds meters. However, how realistic these results can be? In the proposed study an attempt is made to understand which spatial scales are reproduced by ocean model in the Black Sea. Simulations are made using parallel version of NEMO (Nucleus for European Modelling of the Ocean). A two regional configurations with spatial resolutions 5 km and 2.5 km are described. Comparison of the SST from simulations with two spatial resolutions shows rather qualitative difference of the spatial structures. Results of high resolution simulation are compared also with satellite observations and observation-based products from Copernicus using spatial correlation and spectral analysis. Spatial scales of correlations functions for simulated and observed SST are rather close and differs much from satellite SST reanalysis. Evolution of spectral density for modelled SST and reanalysis showed agreed time periods of small scales intensification. Using of the spectral analysis for satellite measurements is complicated due to gaps. The research leading to this results has received funding from Russian Science Foundation (project № 15-17-20020)

  19. Analyzing Protein Clusters on the Plasma Membrane: Application of Spatial Statistical Analysis Methods on Super-Resolution Microscopy Images.

    PubMed

    Paparelli, Laura; Corthout, Nikky; Pavie, Benjamin; Annaert, Wim; Munck, Sebastian

    2016-01-01

    The spatial distribution of proteins within the cell affects their capability to interact with other molecules and directly influences cellular processes and signaling. At the plasma membrane, multiple factors drive protein compartmentalization into specialized functional domains, leading to the formation of clusters in which intermolecule interactions are facilitated. Therefore, quantifying protein distributions is a necessity for understanding their regulation and function. The recent advent of super-resolution microscopy has opened up the possibility of imaging protein distributions at the nanometer scale. In parallel, new spatial analysis methods have been developed to quantify distribution patterns in super-resolution images. In this chapter, we provide an overview of super-resolution microscopy and summarize the factors influencing protein arrangements on the plasma membrane. Finally, we highlight methods for analyzing clusterization of plasma membrane proteins, including examples of their applications.

  20. a Spiral-Based Downscaling Method for Generating 30 M Time Series Image Data

    NASA Astrophysics Data System (ADS)

    Liu, B.; Chen, J.; Xing, H.; Wu, H.; Zhang, J.

    2017-09-01

    The spatial detail and updating frequency of land cover data are important factors influencing land surface dynamic monitoring applications in high spatial resolution scale. However, the fragmentized patches and seasonal variable of some land cover types (e. g. small crop field, wetland) make it labor-intensive and difficult in the generation of land cover data. Utilizing the high spatial resolution multi-temporal image data is a possible solution. Unfortunately, the spatial and temporal resolution of available remote sensing data like Landsat or MODIS datasets can hardly satisfy the minimum mapping unit and frequency of current land cover mapping / updating at the same time. The generation of high resolution time series may be a compromise to cover the shortage in land cover updating process. One of popular way is to downscale multi-temporal MODIS data with other high spatial resolution auxiliary data like Landsat. But the usual manner of downscaling pixel based on a window may lead to the underdetermined problem in heterogeneous area, result in the uncertainty of some high spatial resolution pixels. Therefore, the downscaled multi-temporal data can hardly reach high spatial resolution as Landsat data. A spiral based method was introduced to downscale low spatial and high temporal resolution image data to high spatial and high temporal resolution image data. By the way of searching the similar pixels around the adjacent region based on the spiral, the pixel set was made up in the adjacent region pixel by pixel. The underdetermined problem is prevented to a large extent from solving the linear system when adopting the pixel set constructed. With the help of ordinary least squares, the method inverted the endmember values of linear system. The high spatial resolution image was reconstructed on the basis of high spatial resolution class map and the endmember values band by band. Then, the high spatial resolution time series was formed with these high spatial resolution images image by image. Simulated experiment and remote sensing image downscaling experiment were conducted. In simulated experiment, the 30 meters class map dataset Globeland30 was adopted to investigate the effect on avoid the underdetermined problem in downscaling procedure and a comparison between spiral and window was conducted. Further, the MODIS NDVI and Landsat image data was adopted to generate the 30m time series NDVI in remote sensing image downscaling experiment. Simulated experiment results showed that the proposed method had a robust performance in downscaling pixel in heterogeneous region and indicated that it was superior to the traditional window-based methods. The high resolution time series generated may be a benefit to the mapping and updating of land cover data.

  1. Ultrabroadband infrared nanospectroscopic imaging

    PubMed Central

    Bechtel, Hans A.; Muller, Eric A.; Olmon, Robert L.; Martin, Michael C.; Raschke, Markus B.

    2014-01-01

    Characterizing and ultimately controlling the heterogeneity underlying biomolecular functions, quantum behavior of complex matter, photonic materials, or catalysis requires large-scale spectroscopic imaging with simultaneous specificity to structure, phase, and chemical composition at nanometer spatial resolution. However, as with any ultrahigh spatial resolution microscopy technique, the associated demand for an increase in both spatial and spectral bandwidth often leads to a decrease in desired sensitivity. We overcome this limitation in infrared vibrational scattering-scanning probe near-field optical microscopy using synchrotron midinfrared radiation. Tip-enhanced localized light–matter interaction is induced by low-noise, broadband, and spatially coherent synchrotron light of high spectral irradiance, and the near-field signal is sensitively detected using heterodyne interferometric amplification. We achieve sub-40-nm spatially resolved, molecular, and phonon vibrational spectroscopic imaging, with rapid spectral acquisition, spanning the full midinfrared (700–5,000 cm−1) with few cm−1 spectral resolution. We demonstrate the performance of synchrotron infrared nanospectroscopy on semiconductor, biomineral, and protein nanostructures, providing vibrational chemical imaging with subzeptomole sensitivity. PMID:24803431

  2. Ultra-long high-sensitivity Φ-OTDR for high spatial resolution intrusion detection of pipelines.

    PubMed

    Peng, Fei; Wu, Han; Jia, Xin-Hong; Rao, Yun-Jiang; Wang, Zi-Nan; Peng, Zheng-Pu

    2014-06-02

    An ultra-long phase-sensitive optical time domain reflectometry (Φ-OTDR) that can achieve high-sensitivity intrusion detection over 131.5km fiber with high spatial resolution of 8m is presented, which is the longest Φ-OTDR reported to date, to the best of our knowledge. It is found that the combination of distributed Raman amplification with heterodyne detection can extend the sensing distance and enhances the sensitivity substantially, leading to the realization of ultra-long Φ-OTDR with high sensitivity and spatial resolution. Furthermore, the feasibility of applying such an ultra-long Φ-OTDR to pipeline security monitoring is demonstrated and the features of intrusion signal can be extracted with improved SNR by using the wavelet detrending/denoising method proposed.

  3. The validity of flow approximations when simulating catchment-integrated flash floods

    NASA Astrophysics Data System (ADS)

    Bout, B.; Jetten, V. G.

    2018-01-01

    Within hydrological models, flow approximations are commonly used to reduce computation time. The validity of these approximations is strongly determined by flow height, flow velocity and the spatial resolution of the model. In this presentation, the validity and performance of the kinematic, diffusive and dynamic flow approximations are investigated for use in a catchment-based flood model. Particularly, the validity during flood events and for varying spatial resolutions is investigated. The OpenLISEM hydrological model is extended to implement both these flow approximations and channel flooding based on dynamic flow. The flow approximations are used to recreate measured discharge in three catchments, among which is the hydrograph of the 2003 flood event in the Fella river basin. Furthermore, spatial resolutions are varied for the flood simulation in order to investigate the influence of spatial resolution on these flow approximations. Results show that the kinematic, diffusive and dynamic flow approximation provide least to highest accuracy, respectively, in recreating measured discharge. Kinematic flow, which is commonly used in hydrological modelling, substantially over-estimates hydrological connectivity in the simulations with a spatial resolution of below 30 m. Since spatial resolutions of models have strongly increased over the past decades, usage of routed kinematic flow should be reconsidered. The combination of diffusive or dynamic overland flow and dynamic channel flooding provides high accuracy in recreating the 2003 Fella river flood event. Finally, in the case of flood events, spatial modelling of kinematic flow substantially over-estimates hydrological connectivity and flow concentration since pressure forces are removed, leading to significant errors.

  4. Development of a portable wireless system for bipolar concentric ECG recording

    NASA Astrophysics Data System (ADS)

    Prats-Boluda, G.; Ye-Lin, Y.; Bueno Barrachina, J. M.; Senent, E.; Rodriguez de Sanabria, R.; Garcia-Casado, J.

    2015-07-01

    Cardiovascular diseases (CVDs) remain the biggest cause of deaths worldwide. ECG monitoring is a key tool for early diagnosis of CVDs. Conventional monitors use monopolar electrodes resulting in poor spatial resolution surface recordings and requiring extensive wiring. High-spatial resolution surface electrocardiographic recordings provide valuable information for the diagnosis of a wide range of cardiac abnormalities, including infarction and arrhythmia. The aim of this work was to develop and test a wireless recording system for acquiring high spatial resolution ECG signals, based on a flexible tripolar concentric electrode (TCE) without cable wiring or external reference electrode which would make more comnfortable its use in clinical practice. For this, a portable, wireless sensor node for analogue conditioning, digitalization and transmission of a bipolar concentric ECG signal (BC-ECG) using a TCE and a Mason-likar Lead-I ECG (ML-Lead-I ECG) signal was developed. Experimental results from a total of 32 healthy volunteers showed that the ECG fiducial points in the BC-ECG signals, recorded with external and internal reference electrode, are consistent with those of simultaneous ML-Lead-I ECG. No statistically significant difference was found in either signal amplitude or morphology, regardless of the reference electrode used, being the signal-to-noise similar to that of ML-Lead-I ECG. Furthermore, it has been observed that BC-ECG signals contain information that could not available in conventional records, specially related to atria activity. The proposed wireless sensor node provides non-invasive high-local resolution ECG signals using only a TCE without additional wiring, which would have great potential in medical diagnosis of diseases such as atrial or ventricular fibrillations or arrhythmias that currently require invasive diagnostic procedures (catheterization).

  5. Influence of hydration and annealing on structure, PSL yield and spatial resolution of pressed powder imaging plates of the X-ray storage phosphor CsBr:Eu2+

    NASA Astrophysics Data System (ADS)

    Kersting, E.; von Seggern, H.

    2017-08-01

    A new production route for europium doped cesium bromide (CsBr:Eu2+) imaging plates has been developed, synthesizing CsBr:Eu2+ powder from a precipitation reaction of aqueous CsBr solution with ethanol. This new route allows the control of features like homogeneous grain size and grain shape of the obtained powder. After drying and subsequent compacting the powder, disk-like samples were fabricated, and their resulting photostimulated luminescence (PSL) properties like yield and spatial resolution were determined. It will be shown that hydration of such disks causes the CsBr:Eu2+ powder to recrystallize starting from the humidity exposed surfaces to the sample interior up to a completely polycrystalline sample resulting in a decreasing PSL yield and an increasing resolution. Subsequent annealing leads to grain refinement combined with a large PSL yield increment and a minor effect on the spatial resolution. By first annealing the "as made" disk, one observes a strong increment of the PSL yield and almost no effect on the spatial resolution. During subsequent hydration, the recrystallization is hindered by minor structural changes of the grains. The related PSL yield drops slightly with increasing hydration time, and the spatial resolution drops considerably. The obtained PSL properties with respect to structure will be discussed with a simple model.

  6. The Effect of Rainfall Measurement Technique and Its Spatiotemporal Resolution on Discharge Predictions in the Netherlands

    NASA Astrophysics Data System (ADS)

    Uijlenhoet, R.; Brauer, C.; Overeem, A.; Sassi, M.; Rios Gaona, M. F.

    2014-12-01

    Several rainfall measurement techniques are available for hydrological applications, each with its own spatial and temporal resolution. We investigated the effect of these spatiotemporal resolutions on discharge simulations in lowland catchments by forcing a novel rainfall-runoff model (WALRUS) with rainfall data from gauges, radars and microwave links. The hydrological model used for this analysis is the recently developed Wageningen Lowland Runoff Simulator (WALRUS). WALRUS is a rainfall-runoff model accounting for hydrological processes relevant to areas with shallow groundwater (e.g. groundwater-surface water feedback). Here, we used WALRUS for case studies in a freely draining lowland catchment and a polder with controlled water levels. We used rain gauge networks with automatic (hourly resolution but low spatial density) and manual gauges (high spatial density but daily resolution). Operational (real-time) and climatological (gauge-adjusted) C-band radar products and country-wide rainfall maps derived from microwave link data from a cellular telecommunication network were also used. Discharges simulated with these different inputs were compared to observations. We also investigated the effect of spatiotemporal resolution with a high-resolution X-band radar data set for catchments with different sizes. Uncertainty in rainfall forcing is a major source of uncertainty in discharge predictions, both with lumped and with distributed models. For lumped rainfall-runoff models, the main source of input uncertainty is associated with the way in which (effective) catchment-average rainfall is estimated. When catchments are divided into sub-catchments, rainfall spatial variability can become more important, especially during convective rainfall events, leading to spatially varying catchment wetness and spatially varying contribution of quick flow routes. Improving rainfall measurements and their spatiotemporal resolution can improve the performance of rainfall-runoff models, indicating their potential for reducing flood damage through real-time control.

  7. Scale Dependence of Cirrus Horizontal Heterogeneity Effects on TOA Measurements. Part I; MODIS Brightness Temperatures in the Thermal Infrared

    NASA Technical Reports Server (NTRS)

    Fauchez, Thomas; Platnick, Steven; Meyer, Kerry; Cornet, Celine; Szczap, Frederic; Varnai, Tamas

    2017-01-01

    This paper presents a study on the impact of cirrus cloud heterogeneities on MODIS simulated thermal infrared (TIR) brightness temperatures (BTs) at the top of the atmosphere (TOA) as a function of spatial resolution from 50 meters to 10 kilometers. A realistic 3-D (three-dimensional) cirrus field is generated by the 3DCLOUD model (average optical thickness of 1.4, cloudtop and base altitudes at 10 and 12 kilometers, respectively, consisting of aggregate column crystals of D (sub eff) equals 20 microns), and 3-D thermal infrared radiative transfer (RT) is simulated with the 3DMCPOL (3-D Monte Carlo Polarized) code. According to previous studies, differences between 3-D BT computed from a heterogenous pixel and 1-D (one-dimensional) RT computed from a homogeneous pixel are considered dependent at nadir on two effects: (i) the optical thickness horizontal heterogeneity leading to the plane-parallel homogeneous bias (PPHB); and the (ii) horizontal radiative transport (HRT) leading to the independent pixel approximation error (IPAE). A single but realistic cirrus case is simulated and, as expected, the PPHB mainly impacts the low-spatial resolution results (above approximately 250 meters), with averaged values of up to 5-7 K (thousand), while the IPAE mainly impacts the high-spatial resolution results (below approximately 250 meters) with average values of up to 1-2 K (thousand). A sensitivity study has been performed in order to extend these results to various cirrus optical thicknesses and heterogeneities by sampling the cirrus in several ranges of parameters. For four optical thickness classes and four optical heterogeneity classes, we have found that, for nadir observations, the spatial resolution at which the combination of PPHB and HRT effects is the smallest, falls between 100 and 250 meters. These spatial resolutions thus appear to be the best choice to retrieve cirrus optical properties with the smallest cloud heterogeneity-related total bias in the thermal infrared. For off-nadir observations, the average total effect is increased and the minimum is shifted to coarser spatial resolutions.

  8. Far Infrared Imaging Spectrometer for Large Aperture Infrared Telescope System

    DTIC Science & Technology

    1985-12-01

    resolution Fabry - Perot spectrometer (103 < Resolution < 104) for wavelengths from about 50 to 200 micrometer, employing extended field diffraction limited...photo- metry. The Naval Research Laboratory will provide a high resolution Far Infrared Imaging Spectrometer (FIRIS) using Fabry - Perot techniques in...detectors to provide spatial information. The Fabry - Perot uses electromagnetic coil displacement drivers with a lead screw drive to obtain parallel

  9. Comparing the imaging performance of computed super resolution and magnification tomosynthesis

    NASA Astrophysics Data System (ADS)

    Maidment, Tristan D.; Vent, Trevor L.; Ferris, William S.; Wurtele, David E.; Acciavatti, Raymond J.; Maidment, Andrew D. A.

    2017-03-01

    Computed super-resolution (SR) is a method of reconstructing images with pixels that are smaller than the detector element size; superior spatial resolution is achieved through the elimination of aliasing and alteration of the sampling function imposed by the reconstructed pixel aperture. By comparison, magnification mammography is a method of projection imaging that uses geometric magnification to increase spatial resolution. This study explores the development and application of magnification digital breast tomosynthesis (MDBT). Four different acquisition geometries are compared in terms of various image metrics. High-contrast spatial resolution was measured in various axes using a lead star pattern. A modified Defrise phantom was used to determine the low-frequency spatial resolution. An anthropomorphic phantom was used to simulate clinical imaging. Each experiment was conducted at three different magnifications: contact (1.04x), MAG1 (1.3x), and MAG2 (1.6x). All images were taken on our next generation tomosynthesis system, an in-house solution designed to optimize SR. It is demonstrated that both computed SR and MDBT (MAG1 and MAG2) provide improved spatial resolution over non-SR contact imaging. To achieve the highest resolution, SR and MDBT should be combined. However, MDBT is adversely affected by patient motion at higher magnifications. In addition, MDBT requires more radiation dose and delays diagnosis, since MDBT would be conducted upon recall. By comparison, SR can be conducted with the original screening data. In conclusion, this study demonstrates that computed SR and MDBT are both viable methods of imaging the breast.

  10. Radiometric Calibration Assessment of Commercial High Spatial Resolution Multispectral Image Products

    NASA Technical Reports Server (NTRS)

    Holekamp, Kara; Aaron, David; Thome, Kurtis

    2006-01-01

    Radiometric calibration of commercial imaging satellite products is required to ensure that science and application communities can better understand their properties. Inaccurate radiometric calibrations can lead to erroneous decisions and invalid conclusions and can limit intercomparisons with other systems. To address this calibration need, satellite at-sensor radiance values were compared to those estimated by each independent team member to determine the sensor's radiometric accuracy. The combined results of this evaluation provide the user community with an independent assessment of these commercially available high spatial resolution sensors' absolute calibration values.

  11. Change of spatial information under rescaling: A case study using multi-resolution image series

    NASA Astrophysics Data System (ADS)

    Chen, Weirong; Henebry, Geoffrey M.

    Spatial structure in imagery depends on a complicated interaction between the observational regime and the types and arrangements of entities within the scene that the image portrays. Although block averaging of pixels has commonly been used to simulate coarser resolution imagery, relatively little attention has been focused on the effects of simple rescaling on spatial structure and the explanation and a possible solution to the problem. Yet, if there are significant differences in spatial variance between rescaled and observed images, it may affect the reliability of retrieved biogeophysical quantities. To investigate these issues, a nested series of high spatial resolution digital imagery was collected at a research site in eastern Nebraska in 2001. An airborne Kodak DCS420IR camera acquired imagery at three altitudes, yielding nominal spatial resolutions ranging from 0.187 m to 1 m. The red and near infrared (NIR) bands of the co-registered image series were normalized using pseudo-invariant features, and the normalized difference vegetation index (NDVI) was calculated. Plots of grain sorghum planted in orthogonal crop row orientations were extracted from the image series. The finest spatial resolution data were then rescaled by averaging blocks of pixels to produce a rescaled image series that closely matched the spatial resolution of the observed image series. Spatial structures of the observed and rescaled image series were characterized using semivariogram analysis. Results for NDVI and its component bands show, as expected, that decreasing spatial resolution leads to decreasing spatial variability and increasing spatial dependence. However, compared to the observed data, the rescaled images contain more persistent spatial structure that exhibits limited variation in both spatial dependence and spatial heterogeneity. Rescaling via simple block averaging fails to consider the effect of scene object shape and extent on spatial information. As the features portrayed by pixels are equally weighted regardless of the shape and extent of the underlying scene objects, the rescaled image retains more of the original spatial information than would occur through direct observation at a coarser sensor spatial resolution. In contrast, for the observed images, due to the effect of the modulation transfer function (MTF) of the imaging system, high frequency features like edges are blurred or lost as the pixel size increases, resulting in greater variation in spatial structure. Successive applications of a low-pass spatial convolution filter are shown to mimic a MTF. Accordingly, it is recommended that such a procedure be applied prior to rescaling by simple block averaging, if insufficient image metadata exist to replicate the net MTF of the imaging system, as might be expected in land cover change analysis studies using historical imagery.

  12. High spatial resolution detection of low-energy electrons using an event-counting method, application to point projection microscopy

    NASA Astrophysics Data System (ADS)

    Salançon, Evelyne; Degiovanni, Alain; Lapena, Laurent; Morin, Roger

    2018-04-01

    An event-counting method using a two-microchannel plate stack in a low-energy electron point projection microscope is implemented. 15 μm detector spatial resolution, i.e., the distance between first-neighbor microchannels, is demonstrated. This leads to a 7 times better microscope resolution. Compared to previous work with neutrons [Tremsin et al., Nucl. Instrum. Methods Phys. Res., Sect. A 592, 374 (2008)], the large number of detection events achieved with electrons shows that the local response of the detector is mainly governed by the angle between the hexagonal structures of the two microchannel plates. Using this method in point projection microscopy offers the prospect of working with a greater source-object distance (350 nm instead of 50 nm), advancing toward atomic resolution.

  13. A method for generating high resolution satellite image time series

    NASA Astrophysics Data System (ADS)

    Guo, Tao

    2014-10-01

    There is an increasing demand for satellite remote sensing data with both high spatial and temporal resolution in many applications. But it still is a challenge to simultaneously improve spatial resolution and temporal frequency due to the technical limits of current satellite observation systems. To this end, much R&D efforts have been ongoing for years and lead to some successes roughly in two aspects, one includes super resolution, pan-sharpen etc. methods which can effectively enhance the spatial resolution and generate good visual effects, but hardly preserve spectral signatures and result in inadequate analytical value, on the other hand, time interpolation is a straight forward method to increase temporal frequency, however it increase little informative contents in fact. In this paper we presented a novel method to simulate high resolution time series data by combing low resolution time series data and a very small number of high resolution data only. Our method starts with a pair of high and low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and then projected onto the high resolution data plane and assigned to each high resolution pixel according to the predefined temporal change patterns of each type of ground objects. Finally the simulated high resolution data is generated. A preliminary experiment shows that our method can simulate a high resolution data with a reasonable accuracy. The contribution of our method is to enable timely monitoring of temporal changes through analysis of time sequence of low resolution images only, and usage of costly high resolution data can be reduces as much as possible, and it presents a highly effective way to build up an economically operational monitoring solution for agriculture, forest, land use investigation, environment and etc. applications.

  14. A Monte Carlo study on the performance evaluation of a parallel hole collimator for a HiReSPECT: A dedicated small-animal SPECT.

    PubMed

    Abbaspour, Samira; Tanha, Kaveh; Mahmoudian, Babak; Assadi, Majid; Pirayesh Islamian, Jalil

    2018-04-22

    Collimator geometry has an important contribution on the image quality in SPECT imaging. The purpose of this study was to investigate the effect of parallel hole collimator hole-size on the functional parameters (including the spatial resolution and sensitivity) and the image quality of a HiReSPECT imaging system using SIMIND Monte Carlo program. To find a proper trade-off between the sensitivity and spatial resolution, the collimator with hole diameter ranges of 0.3-1.5 mm (in steps of 0.3 mm) were used with a fixed septal and hole thickness values (0.2 mm and 34 mm, respectively). Lead, Gold, and Tungsten as the LEHR collimator material were also investigated. The results on a 99m Tc point source scanning with the experimental and also simulated systems were matched to validate the simulated imaging system. The results on the simulation showed that decreasing the collimator hole size, especially in the Gold collimator, improved the spatial resolution to 18% and 3.2% compared to the Lead and the Tungsten, respectively. Meanwhile, the Lead collimator provided a good sensitivity in about of 7% and 8% better than that of Tungsten and Gold, respectively. Overall, the spatial resolution and sensitivity showed small differences among the three types of collimator materials assayed within the defined energy. By increasing the hole size, the Gold collimator produced lower scatter and penetration fractions than Tungsten and Lead collimator. The minimum detectable size of hot rods in micro-Jaszczak phantom on the iterative maximum-likelihood expectation maximization (MLEM) reconstructed images, were determined in the sectors of 1.6, 1.8, 2.0, 2.4 and 2.6 mm for scanning with the collimators in hole sizes of 0.3, 0.6, 0.9, 1.2 and 1.5 mm at a 5 cm distance from the phantom. The Gold collimator with hole size of 0.3 mm provided a better image quality with the HiReSPECT imaging. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Identification of mosquito larval habitats in high resolution satellite data

    NASA Astrophysics Data System (ADS)

    Kiang, Richard K.; Hulina, Stephanie M.; Masuoka, Penny M.; Claborn, David M.

    2003-09-01

    Mosquito-born infectious diseases are a serious public health concern, not only for the less developed countries, but also for developed countries like the U.S. Larviciding is an effective method for vector control and adverse effects to non-target species are minimized when mosquito larval habitats are properly surveyed and treated. Remote sensing has proven to be a useful technique for large-area ground cover mapping, and hence, is an ideal tool for identifying potential larval habitats. Locating small larval habitats, however, requires data with very high spatial resolution. Textural and contextual characteristics become increasingly evident at higher spatial resolution. Per-pixel classification often leads to suboptimal results. In this study, we use pan-sharpened Ikonos data, with a spatial resolution approaching 1 meter, to classify potential mosquito larval habitats for a test site in South Korea. The test site is in a predominantly agricultural region. When spatial characteristics were used in conjunction with spectral data, reasonably good classification accuracy was obtained for the test site. In particular, irrigation and drainage ditches are important larval habitats but their footprints are too small to be detected with the original spectral data at 4-meter resolution. We show that the ditches are detectable using automated classification on pan-sharpened data.

  16. Developing a CCD camera with high spatial resolution for RIXS in the soft X-ray range

    NASA Astrophysics Data System (ADS)

    Soman, M. R.; Hall, D. J.; Tutt, J. H.; Murray, N. J.; Holland, A. D.; Schmitt, T.; Raabe, J.; Schmitt, B.

    2013-12-01

    The Super Advanced X-ray Emission Spectrometer (SAXES) at the Swiss Light Source contains a high resolution Charge-Coupled Device (CCD) camera used for Resonant Inelastic X-ray Scattering (RIXS). Using the current CCD-based camera system, the energy-dispersive spectrometer has an energy resolution (E/ΔE) of approximately 12,000 at 930 eV. A recent study predicted that through an upgrade to the grating and camera system, the energy resolution could be improved by a factor of 2. In order to achieve this goal in the spectral domain, the spatial resolution of the CCD must be improved to better than 5 μm from the current 24 μm spatial resolution (FWHM). The 400 eV-1600 eV energy X-rays detected by this spectrometer primarily interact within the field free region of the CCD, producing electron clouds which will diffuse isotropically until they reach the depleted region and buried channel. This diffusion of the charge leads to events which are split across several pixels. Through the analysis of the charge distribution across the pixels, various centroiding techniques can be used to pinpoint the spatial location of the X-ray interaction to the sub-pixel level, greatly improving the spatial resolution achieved. Using the PolLux soft X-ray microspectroscopy endstation at the Swiss Light Source, a beam of X-rays of energies from 200 eV to 1400 eV can be focused down to a spot size of approximately 20 nm. Scanning this spot across the 16 μm square pixels allows the sub-pixel response to be investigated. Previous work has demonstrated the potential improvement in spatial resolution achievable by centroiding events in a standard CCD. An Electron-Multiplying CCD (EM-CCD) has been used to improve the signal to effective readout noise ratio achieved resulting in a worst-case spatial resolution measurement of 4.5±0.2 μm and 3.9±0.1 μm at 530 eV and 680 eV respectively. A method is described that allows the contribution of the X-ray spot size to be deconvolved from these worst-case resolution measurements, estimating the spatial resolution to be approximately 3.5 μm and 3.0 μm at 530 eV and 680 eV, well below the resolution limit of 5 μm required to improve the spectral resolution by a factor of 2.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Pei-Hsin; Chung, Hsiao-Wen; Tsai, Ping-Huei

    Purpose: One of the technical advantages of functional magnetic resonance imaging (fMRI) is its precise localization of changes from neuronal activities. While current practice of fMRI acquisition at voxel size around 3 × 3 × 3 mm{sup 3} achieves satisfactory results in studies of basic brain functions, higher spatial resolution is required in order to resolve finer cortical structures. This study investigated spatial resolution effects on brain fMRI experiments using balanced steady-state free precession (bSSFP) imaging with 0.37 mm{sup 3} voxel volume at 3.0 T. Methods: In fMRI experiments, full and unilateral visual field 5 Hz flashing checkerboard stimulations weremore » given to healthy subjects. The bSSFP imaging experiments were performed at three different frequency offsets to widen the coverage, with functional activations in the primary visual cortex analyzed using the general linear model. Variations of the spatial resolution were achieved by removing outerk-space data components. Results: Results show that a reduction in voxel volume from 3.44 × 3.44 × 2 mm{sup 3} to 0.43 × 0.43 × 2 mm{sup 3} has resulted in an increase of the functional activation signals from (7.7 ± 1.7)% to (20.9 ± 2.0)% at 3.0 T, despite of the threefold SNR decreases in the original images, leading to nearly invariant functional contrast-to-noise ratios (fCNR) even at high spatial resolution. Activation signals aligning nicely with gray matter sulci at high spatial resolution would, on the other hand, have possibly been mistaken as noise at low spatial resolution. Conclusions: It is concluded that the bSSFP sequence is a plausible technique for fMRI investigations at submillimeter voxel widths without compromising fCNR. The reduction of partial volume averaging with nonactivated brain tissues to retain fCNR is uniquely suitable for high spatial resolution applications such as the resolving of columnar organization in the brain.« less

  18. A High-Resolution Aerosol Retrieval Method for Urban Areas Using MISR Data

    NASA Astrophysics Data System (ADS)

    Moon, T.; Wang, Y.; Liu, Y.; Yu, B.

    2012-12-01

    Satellite-retrieved Aerosol Optical Depth (AOD) can provide a cost-effective way to monitor particulate air pollution without using expensive ground measurement sensors. One of the current state-of-the-art AOD retrieval method is NASA's Multi-angle Imaging SpectroRadiometer (MISR) operational algorithm, which has the spatial resolution of 17.6 km x 17.6 km. While the MISR baseline scheme already leads to exciting research opportunities to study particle compositions at regional scale, its spatial resolution is too coarse for analyzing urban areas where the AOD level has stronger spatial variations. We develop a novel high-resolution AOD retrieval algorithm that still uses MISR's radiance observations but has the resolution of 4.4km x 4.4km. We achieve the high resolution AOD retrieval by implementing a hierarchical Bayesian model and Monte-Carlo Markov Chain (MCMC) inference method. Our algorithm not only improves the spatial resolution, but also extends the coverage of AOD retrieval and provides with additional composition information of aerosol components that contribute to the AOD. We validate our method using the recent NASA's DISCOVER-AQ mission data, which contains the ground measured AOD values for Washington DC and Baltimore area. The validation result shows that, compared to the operational MISR retrievals, our scheme has 41.1% more AOD retrieval coverage for the DISCOVER-AQ data points and 24.2% improvement in mean-squared error (MSE) with respect to the AERONET ground measurements.

  19. Correlation Plenoptic Imaging.

    PubMed

    D'Angelo, Milena; Pepe, Francesco V; Garuccio, Augusto; Scarcelli, Giuliano

    2016-06-03

    Plenoptic imaging is a promising optical modality that simultaneously captures the location and the propagation direction of light in order to enable three-dimensional imaging in a single shot. However, in standard plenoptic imaging systems, the maximum spatial and angular resolutions are fundamentally linked; thereby, the maximum achievable depth of field is inversely proportional to the spatial resolution. We propose to take advantage of the second-order correlation properties of light to overcome this fundamental limitation. In this Letter, we demonstrate that the correlation in both momentum and position of chaotic light leads to the enhanced refocusing power of correlation plenoptic imaging with respect to standard plenoptic imaging.

  20. Correlation Plenoptic Imaging

    NASA Astrophysics Data System (ADS)

    D'Angelo, Milena; Pepe, Francesco V.; Garuccio, Augusto; Scarcelli, Giuliano

    2016-06-01

    Plenoptic imaging is a promising optical modality that simultaneously captures the location and the propagation direction of light in order to enable three-dimensional imaging in a single shot. However, in standard plenoptic imaging systems, the maximum spatial and angular resolutions are fundamentally linked; thereby, the maximum achievable depth of field is inversely proportional to the spatial resolution. We propose to take advantage of the second-order correlation properties of light to overcome this fundamental limitation. In this Letter, we demonstrate that the correlation in both momentum and position of chaotic light leads to the enhanced refocusing power of correlation plenoptic imaging with respect to standard plenoptic imaging.

  1. Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating

    NASA Astrophysics Data System (ADS)

    Heintzmann, Rainer; Cremer, Christoph G.

    1999-01-01

    High spatial frequencies in the illuminating light of microscopes lead to a shift of the object spatial frequencies detectable through the objective lens. If a suitable procedure is found for evaluation of the measured data, a microscopic image with a higher resolution than under flat illumination can be obtained. A simple method for generation of a laterally modulated illumination pattern is discussed here. A specially constructed diffraction grating was inserted in the illumination beam path at the conjugate object plane (position of the adjustable aperture) and projected through the objective into the object. Microscopic beads were imaged with this method and evaluated with an algorithm based on the structure of the Fourier space. The results indicate an improvement of resolution.

  2. Novel microfabrication stage allowing for one-photon and multi-photon light assisted molecular immobilization and for multi-photon microscope

    NASA Astrophysics Data System (ADS)

    Gonçalves, Odete; Snider, Scott; Zadoyan, Ruben; Nguyen, Quoc-Thang; Vorum, Henrik; Petersen, Steffen B.; Neves-Petersen, Maria Teresa

    2017-02-01

    Light Assisted Molecular Immobilization (LAMI) results in spatially oriented and localized covalent coupling of biomolecules onto thiol reactive surfaces. LAMI is possible due to the conserved spatial proximity between aromatic residues and disulfide bridges in proteins. When aromatic residues are excited with UV light (275-295nm), disulphide bridges are disrupted and the formed thiol groups covalently bind to surfaces. Immobilization hereby reported is achieved in a microfabrication stage coupled to a fs-laser, through one- or multi-photon excitation. The fundamental 840nm output is tripled to 280nm and focused onto the sample, leading to one-photon excitation and molecular immobilization. The sample rests on a xyz-stage with micrometer step resolution and is illuminated according to a pattern uploaded to the software controlling the stage and the shutter. Molecules are immobilized according to such pattern, with micrometer spatial resolution. Spatial masks inserted in the light path lead to light diffraction patterns used to immobilize biomolecules with submicrometer spatial resolution. Light diffraction patterns are imaged by an inbuilt microscope. Two-photon microscopy and imaging of the fluorescent microbeads is shown. Immobilization of proteins, e.g. C-reactive protein, and of an engineered molecular beacon has been successfully achieved. The beacon was coupled to a peptide containing a disulfide bridge neighboring a tryptophan residue, being this way possible to immobilize the beacon on a surface using one-photon LAMI. This technology is being implemented in the creation of point-of-care biosensors aiming at the detection of cancer and cardiovascular disease markers.

  3. Incorporating human-water dynamics in a hyper-resolution land surface model

    NASA Astrophysics Data System (ADS)

    Vergopolan, N.; Chaney, N.; Wanders, N.; Sheffield, J.; Wood, E. F.

    2017-12-01

    The increasing demand for water, energy, and food is leading to unsustainable groundwater and surface water exploitation. As a result, the human interactions with the environment, through alteration of land and water resources dynamics, need to be reflected in hydrologic and land surface models (LSMs). Advancements in representing human-water dynamics still leave challenges related to the lack of water use data, water allocation algorithms, and modeling scales. This leads to an over-simplistic representation of human water use in large-scale models; this is in turn leads to an inability to capture extreme events signatures and to provide reliable information at stakeholder-level spatial scales. The emergence of hyper-resolution models allows one to address these challenges by simulating the hydrological processes and interactions with the human impacts at field scales. We integrated human-water dynamics into HydroBlocks - a hyper-resolution, field-scale resolving LSM. HydroBlocks explicitly solves the field-scale spatial heterogeneity of land surface processes through interacting hydrologic response units (HRUs); and its HRU-based model parallelization allows computationally efficient long-term simulations as well as ensemble predictions. The implemented human-water dynamics include groundwater and surface water abstraction to meet agricultural, domestic and industrial water demands. Furthermore, a supply-demand water allocation scheme based on relative costs helps to determine sectoral water use requirements and tradeoffs. A set of HydroBlocks simulations over the Midwest United States (daily, at 30-m spatial resolution for 30 years) are used to quantify the irrigation impacts on water availability. The model captures large reductions in total soil moisture and water table levels, as well as spatiotemporal changes in evapotranspiration and runoff peaks, with their intensity related to the adopted water management strategy. By incorporating human-water dynamics in a hyper-resolution LSM this work allows for progress on hydrological monitoring and predictions, as well as drought preparedness and water impact assessments at relevant decision-making scales.

  4. Integrating flood modelling in a hydrological catchment model: flow approximations and spatial resolution.

    NASA Astrophysics Data System (ADS)

    van den Bout, Bastian; Jetten, Victor

    2017-04-01

    Within hydrological models, flow approximations are commonly used to reduce computation time. The validity of these approximations is strongly determined by flow height, flow velocity, the spatial resolution of the model, and by the manner in which flow routing is implemented. The assumptions of these approximations can furthermore limit emergent behavior, and influence flow behavior under space-time scaling. In this presentation, the validity and performance of the kinematic, diffusive and dynamic flow approximations are investigated for use in a catchment-based flood model. Particularly, the validity during flood events and for varying spatial resolutions is investigated. The OpenLISEM hydrological model is extended to implement these flow approximations and channel flooding based on dynamic flow. The kinematic routing uses a predefined converging flow network, the diffusive and dynamic routing uses a 2D flow solution over a DEM. The channel flow in all cases is a 1D kinematic wave approximation. The flow approximations are used to recreate measured discharge in three catchments of different size in China, Spain and Italy, among which is the hydrograph of the 2003 flood event in the Fella river basin (Italy). Furthermore, spatial resolutions are varied for the flood simulation in order to investigate the influence of spatial resolution on these flow approximations. Results show that the kinematic, diffusive and dynamic flow approximation provide least to highest accuracy, respectively, in recreating measured temporal variation of the discharge. Kinematic flow, which is commonly used in hydrological modelling, substantially over-estimates hydrological connectivity in the simulations with a spatial resolution of below 30 meters. Since spatial resolutions of models have strongly increased over the past decades, usage of routed kinematic flow should be reconsidered. In the case of flood events, spatial modelling of kinematic flow substantially over-estimates hydrological connectivity and flow concentration, leading to significant errors. The combination of diffusive or dynamic overland flow and dynamic channel flooding provides high accuracy in recreating the 2003 Fella river flood event. Finally, flow approximations substantially influenced the predictive potential of the (flash) flood model.

  5. Evaluation of the spatial variability of soil water content at the spatial resolution of SMAP data products : case studies in Italy and Morocco

    NASA Astrophysics Data System (ADS)

    Menenti, Massimo; Akdim, Nadia; Alfieri, Silvia Maria; Labbassi, Kamal; De Lorenzi, Francesca; Bonfante, Antonello; Basile, Angelo

    2014-05-01

    Frequent and contiguous observations of soil water content such as the ones to be provided by SMAP are potentially useful to improve distributed models of soil water balance. This requires matching of observations and model estimates provided both sample spatial patterns consistently. The spatial resolution of SMAP soil water content data products ranges from 3 km X 3 km to 40 km X 40 km. Even the highest spatial resolution may not be sufficient to capture the spatial variability due to terrain, soil properties and precipitation. We have evaluated the SMAP spatial resolution against spatial variability of soil water content in two Mediterranean landscapes: a hilly area dominated by vineyards and olive orchards in Central Italy and a large irrigation schemes (Doukkala) in Morocco. The "Valle Telesina" is a 20,000 ha complex landscape located in South Italy in the Campania region, which has a complex geology and geomorphology and it is characterised by an E-W elongated graben where the Calore river flows. The main crops are grapevine (6,448 ha) and olive (3,390 ha). Soil information was mainly derived from an existing soil map at 1:50 000 scale (Terribile et al., 1996). The area includes 47 SMUs (Soil Mapping Units) and about 60 soil typological units (STUs). (Bonfante et al., 2011). In Doukkala, the soil water retention and unsaturated capillary conductivity were estimated from grain size distribution of a number of samples (22 pilot points, each one sampled in 3 horizons of 20cm), and combined with a soil map. The land use classification was carried out using a NDVI time series at high spatial resolution (Landsat TM and SPOT HRV). We have calculated soil water content for each soil unit in each area in response to several climate cases generating daily maps of soil water content at different depths. To reproduce spatial sampling by SMAP we have filtered these spatial patterns by calculating box averages with grid sizes of 1 km X 1 km and 5 km X 5 km. We have repeated this procedure for soil water content in the 0 to 5 cm and 0 to 10 cm depths. For each case we have compared the variance of filtered soil water content with the expected accuracy of SMAP soil water content. The two areas are very different as regards morphology and soil formation. The Valle Telesina is characterized by a very significant variability of soil hydrological properties leading to complex patterns in soil water content. Contrariwise, the soil properties estimated for all soil mapping units in the Dhoukkala collapse into just two pairs of water retention and hydraulic conductivity characteristics, leading to smoother patterns of soil water content.

  6. Scaling properties of Arctic sea ice deformation in high-resolution viscous-plastic sea ice models and satellite observations

    NASA Astrophysics Data System (ADS)

    Hutter, Nils; Losch, Martin; Menemenlis, Dimitris

    2017-04-01

    Sea ice models with the traditional viscous-plastic (VP) rheology and very high grid resolution can resolve leads and deformation rates that are localised along Linear Kinematic Features (LKF). In a 1-km pan-Arctic sea ice-ocean simulation, the small scale sea-ice deformations in the Central Arctic are evaluated with a scaling analysis in relation to satellite observations of the Envisat Geophysical Processor System (EGPS). A new coupled scaling analysis for data on Eulerian grids determines the spatial and the temporal scaling as well as the coupling between temporal and spatial scales. The spatial scaling of the modelled sea ice deformation implies multi-fractality. The spatial scaling is also coupled to temporal scales and varies realistically by region and season. The agreement of the spatial scaling and its coupling to temporal scales with satellite observations and models with the modern elasto-brittle rheology challenges previous results with VP models at coarse resolution where no such scaling was found. The temporal scaling analysis, however, shows that the VP model does not fully resolve the intermittency of sea ice deformation that is observed in satellite data.

  7. Collaborative classification of hyperspectral and visible images with convolutional neural network

    NASA Astrophysics Data System (ADS)

    Zhang, Mengmeng; Li, Wei; Du, Qian

    2017-10-01

    Recent advances in remote sensing technology have made multisensor data available for the same area, and it is well-known that remote sensing data processing and analysis often benefit from multisource data fusion. Specifically, low spatial resolution of hyperspectral imagery (HSI) degrades the quality of the subsequent classification task while using visible (VIS) images with high spatial resolution enables high-fidelity spatial analysis. A collaborative classification framework is proposed to fuse HSI and VIS images for finer classification. First, the convolutional neural network model is employed to extract deep spectral features for HSI classification. Second, effective binarized statistical image features are learned as contextual basis vectors for the high-resolution VIS image, followed by a classifier. The proposed approach employs diversified data in a decision fusion, leading to an integration of the rich spectral information, spatial information, and statistical representation information. In particular, the proposed approach eliminates the potential problems of the curse of dimensionality and excessive computation time. The experiments evaluated on two standard data sets demonstrate better classification performance offered by this framework.

  8. High-spatial-resolution mapping of precipitable water vapour using SAR interferograms, GPS observations and ERA-Interim reanalysis

    NASA Astrophysics Data System (ADS)

    Tang, Wei; Liao, Mingsheng; Zhang, Lu; Li, Wei; Yu, Weimin

    2016-09-01

    A high spatial and temporal resolution of the precipitable water vapour (PWV) in the atmosphere is a key requirement for the short-scale weather forecasting and climate research. The aim of this work is to derive temporally differenced maps of the spatial distribution of PWV by analysing the tropospheric delay "noise" in interferometric synthetic aperture radar (InSAR). Time series maps of differential PWV were obtained by processing a set of ENVISAT ASAR (Advanced Synthetic Aperture Radar) images covering the area of southern California, USA from 6 October 2007 to 29 November 2008. To get a more accurate PWV, the component of hydrostatic delay was calculated and subtracted by using ERA-Interim reanalysis products. In addition, the ERA-Interim was used to compute the conversion factors required to convert the zenith wet delay to water vapour. The InSAR-derived differential PWV maps were calibrated by means of the GPS PWV measurements over the study area. We validated our results against the measurements of PWV derived from the Medium Resolution Imaging Spectrometer (MERIS) which was located together with the ASAR sensor on board the ENVISAT satellite. Our comparative results show strong spatial correlations between the two data sets. The difference maps have Gaussian distributions with mean values close to zero and standard deviations below 2 mm. The advantage of the InSAR technique is that it provides water vapour distribution with a spatial resolution as fine as 20 m and an accuracy of ˜ 2 mm. Such high-spatial-resolution maps of PWV could lead to much greater accuracy in meteorological understanding and quantitative precipitation forecasts. With the launch of Sentinel-1A and Sentinel-1B satellites, every few days (6 days) new SAR images can be acquired with a wide swath up to 250 km, enabling a unique operational service for InSAR-based water vapour maps with unprecedented spatial and temporal resolution.

  9. Fuzzy Classification of High Resolution Remote Sensing Scenes Using Visual Attention Features.

    PubMed

    Li, Linyi; Xu, Tingbao; Chen, Yun

    2017-01-01

    In recent years the spatial resolutions of remote sensing images have been improved greatly. However, a higher spatial resolution image does not always lead to a better result of automatic scene classification. Visual attention is an important characteristic of the human visual system, which can effectively help to classify remote sensing scenes. In this study, a novel visual attention feature extraction algorithm was proposed, which extracted visual attention features through a multiscale process. And a fuzzy classification method using visual attention features (FC-VAF) was developed to perform high resolution remote sensing scene classification. FC-VAF was evaluated by using remote sensing scenes from widely used high resolution remote sensing images, including IKONOS, QuickBird, and ZY-3 images. FC-VAF achieved more accurate classification results than the others according to the quantitative accuracy evaluation indices. We also discussed the role and impacts of different decomposition levels and different wavelets on the classification accuracy. FC-VAF improves the accuracy of high resolution scene classification and therefore advances the research of digital image analysis and the applications of high resolution remote sensing images.

  10. Fuzzy Classification of High Resolution Remote Sensing Scenes Using Visual Attention Features

    PubMed Central

    Xu, Tingbao; Chen, Yun

    2017-01-01

    In recent years the spatial resolutions of remote sensing images have been improved greatly. However, a higher spatial resolution image does not always lead to a better result of automatic scene classification. Visual attention is an important characteristic of the human visual system, which can effectively help to classify remote sensing scenes. In this study, a novel visual attention feature extraction algorithm was proposed, which extracted visual attention features through a multiscale process. And a fuzzy classification method using visual attention features (FC-VAF) was developed to perform high resolution remote sensing scene classification. FC-VAF was evaluated by using remote sensing scenes from widely used high resolution remote sensing images, including IKONOS, QuickBird, and ZY-3 images. FC-VAF achieved more accurate classification results than the others according to the quantitative accuracy evaluation indices. We also discussed the role and impacts of different decomposition levels and different wavelets on the classification accuracy. FC-VAF improves the accuracy of high resolution scene classification and therefore advances the research of digital image analysis and the applications of high resolution remote sensing images. PMID:28761440

  11. TOPEM: A PET-TOF endorectal probe, compatible with MRI for diagnosis and follow up of prostate cancer

    NASA Astrophysics Data System (ADS)

    Garibaldi, F.; Capuani, S.; Colilli, S.; Cosentino, L.; Cusanno, F.; De Leo, R.; Finocchiaro, P.; Foresta, M.; Giove, F.; Giuliani, F.; Gricia, M.; Loddo, F.; Lucentini, M.; Maraviglia, B.; Meddi, F.; Monno, E.; Musico, P.; Pappalardo, A.; Perrino, R.; Ranieri, A.; Rivetti, A.; Santavenere, F.; Tamma, C.

    2013-02-01

    Prostate cancer is the most common disease in men and the second leading cause of cancer death. Generic large instruments for diagnosis have sensitivity, spatial resolution, and contrast inferior with respect to dedicated prostate imagers. Multimodality imaging can play a significant role merging anatomical and functional details coming from simultaneous PET and MRI. The TOPEM project has the goal of designing, building, and testing an endorectal PET-TOF MRI probe. The performance is dominated by the detector close to the source. Results from simulation show spatial resolution of ∼1.5 mm for source distances up to 80 mm. The efficiency is significantly improved with respect to the external PET. Mini-detectors have been built and tested. We obtained, for the first time, to our best knowledge, timing resolution of <400 ps and at the same time Depth Of Interaction (DOI) resolution of 1 mm or less.

  12. Estimation of Sea Ice Thickness Distributions through the Combination of Snow Depth and Satellite Laser Altimetry Data

    NASA Technical Reports Server (NTRS)

    Kurtz, Nathan T.; Markus, Thorsten; Cavalieri, Donald J.; Sparling, Lynn C.; Krabill, William B.; Gasiewski, Albin J.; Sonntag, John G.

    2009-01-01

    Combinations of sea ice freeboard and snow depth measurements from satellite data have the potential to provide a means to derive global sea ice thickness values. However, large differences in spatial coverage and resolution between the measurements lead to uncertainties when combining the data. High resolution airborne laser altimeter retrievals of snow-ice freeboard and passive microwave retrievals of snow depth taken in March 2006 provide insight into the spatial variability of these quantities as well as optimal methods for combining high resolution satellite altimeter measurements with low resolution snow depth data. The aircraft measurements show a relationship between freeboard and snow depth for thin ice allowing the development of a method for estimating sea ice thickness from satellite laser altimetry data at their full spatial resolution. This method is used to estimate snow and ice thicknesses for the Arctic basin through the combination of freeboard data from ICESat, snow depth data over first-year ice from AMSR-E, and snow depth over multiyear ice from climatological data. Due to the non-linear dependence of heat flux on ice thickness, the impact on heat flux calculations when maintaining the full resolution of the ICESat data for ice thickness estimates is explored for typical winter conditions. Calculations of the basin-wide mean heat flux and ice growth rate using snow and ice thickness values at the 70 m spatial resolution of ICESat are found to be approximately one-third higher than those calculated from 25 km mean ice thickness values.

  13. Examples of Level Products Possible from Existing Assets

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.

    2012-01-01

    How do patterns of human environmental and infectious diseases respond to leading environmental changes, particularly to urban growth and change and the associated impacts of urbanization? We use HyspIRI high spatial resolution, multispectral, and multitemporal TIR data to track energy balance and energy flux characteristics for changing land covers/land uses through time to provide synoptic views of impacts on surface energy fluxes, emissivity and temperature and HyspIRI data in conjunction with spatial growth models to project land cover/land use changes in the future to assess impacts on natural and human ecosystems. We use multispectral thermal IR land cover maps at a high spatial resolution (60m) on a weekly basis for long-term validation of surface energy responses and changes in emissivity and integration of HyspIRI TIR data with spatial modeling to assess changes in land cover/land use through time and subsequent changes in thermal energy responses

  14. Characterization and consequences of intermittent sediment oxygenation by macrofauna: interpretation of high-resolution data sets

    NASA Astrophysics Data System (ADS)

    Meile, C. D.; Dwyer, I.; Zhu, Q.; Polerecky, L.; Volkenborn, N.

    2017-12-01

    Mineralization of organic matter in marine sediments leads to the depletion of oxygen, while activities of infauna introduce oxygenated seawater to the subsurface. In permeable sediments solutes can be transported from animals and their burrows into the surrounding sediment through advection over several centimeters. The intermittency of pumping leads to a spatially heterogeneous distribution of oxidants, with the temporal dynamics depending on sediment reactivity and activity patterns of the macrofauna. Here, we present results from a series of experiments in which these dynamics are studied at high spatial and temporal resolution using planar optodes. From O2, pH and pCO2 optode data, we quantify rates of O2 consumption and dissolved inorganic carbon production, as well alkalinity dynamics, with millimeter-scale resolution. Simulating intermittent irrigation by imposed pumping patterns in thin aquaria, we derive porewater flow patterns, which together with the production and consumption rates cause the chemical distributions and the establishment of reaction fronts. Our analysis thus establishes a quantitative connection between the locally dynamic redox conditions relevant for biogeochemical transformations and macroscopic observations commonly made with sediment cores.

  15. The Canadian Hydrological Model (CHM): A multi-scale, variable-complexity hydrological model for cold regions

    NASA Astrophysics Data System (ADS)

    Marsh, C.; Pomeroy, J. W.; Wheater, H. S.

    2016-12-01

    There is a need for hydrological land surface schemes that can link to atmospheric models, provide hydrological prediction at multiple scales and guide the development of multiple objective water predictive systems. Distributed raster-based models suffer from an overrepresentation of topography, leading to wasted computational effort that increases uncertainty due to greater numbers of parameters and initial conditions. The Canadian Hydrological Model (CHM) is a modular, multiphysics, spatially distributed modelling framework designed for representing hydrological processes, including those that operate in cold-regions. Unstructured meshes permit variable spatial resolution, allowing coarse resolutions at low spatial variability and fine resolutions as required. Model uncertainty is reduced by lessening the necessary computational elements relative to high-resolution rasters. CHM uses a novel multi-objective approach for unstructured triangular mesh generation that fulfills hydrologically important constraints (e.g., basin boundaries, water bodies, soil classification, land cover, elevation, and slope/aspect). This provides an efficient spatial representation of parameters and initial conditions, as well as well-formed and well-graded triangles that are suitable for numerical discretization. CHM uses high-quality open source libraries and high performance computing paradigms to provide a framework that allows for integrating current state-of-the-art process algorithms. The impact of changes to model structure, including individual algorithms, parameters, initial conditions, driving meteorology, and spatial/temporal discretization can be easily tested. Initial testing of CHM compared spatial scales and model complexity for a spring melt period at a sub-arctic mountain basin. The meshing algorithm reduced the total number of computational elements and preserved the spatial heterogeneity of predictions.

  16. High Resolution Orientation Imaging Microscopy

    DTIC Science & Technology

    2012-05-02

    Structure of In-Situ Deformations of Steel , TMS, San Diego, 2011 13. Jay Basinger, David Fullwood, Brent Adams, EBSD Detail Extraction for Greater Spatial...Its use has contributed to the development of new steels , aluminum alloys, high TC superconductors, electronic materials, lead-free solders, optical...Resolution The simulated pattern method has been used to recover lattice tetragonality in high-strength low- alloy steels . Since the level of

  17. [High resolution reconstruction of PET images using the iterative OSEM algorithm].

    PubMed

    Doll, J; Henze, M; Bublitz, O; Werling, A; Adam, L E; Haberkorn, U; Semmler, W; Brix, G

    2004-06-01

    Improvement of the spatial resolution in positron emission tomography (PET) by incorporation of the image-forming characteristics of the scanner into the process of iterative image reconstruction. All measurements were performed at the whole-body PET system ECAT EXACT HR(+) in 3D mode. The acquired 3D sinograms were sorted into 2D sinograms by means of the Fourier rebinning (FORE) algorithm, which allows the usage of 2D algorithms for image reconstruction. The scanner characteristics were described by a spatially variant line-spread function (LSF), which was determined from activated copper-64 line sources. This information was used to model the physical degradation processes in PET measurements during the course of 2D image reconstruction with the iterative OSEM algorithm. To assess the performance of the high-resolution OSEM algorithm, phantom measurements performed at a cylinder phantom, the hotspot Jaszczack phantom, and the 3D Hoffmann brain phantom as well as different patient examinations were analyzed. Scanner characteristics could be described by a Gaussian-shaped LSF with a full-width at half-maximum increasing from 4.8 mm at the center to 5.5 mm at a radial distance of 10.5 cm. Incorporation of the LSF into the iteration formula resulted in a markedly improved resolution of 3.0 and 3.5 mm, respectively. The evaluation of phantom and patient studies showed that the high-resolution OSEM algorithm not only lead to a better contrast resolution in the reconstructed activity distributions but also to an improved accuracy in the quantification of activity concentrations in small structures without leading to an amplification of image noise or even the occurrence of image artifacts. The spatial and contrast resolution of PET scans can markedly be improved by the presented image restauration algorithm, which is of special interest for the examination of both patients with brain disorders and small animals.

  18. Performance study of large area encoding readout MRPC

    NASA Astrophysics Data System (ADS)

    Chen, X. L.; Wang, Y.; Chen, G.; Han, D.; Wang, X.; Zeng, M.; Zeng, Z.; Zhao, Z.; Guo, B.

    2018-02-01

    Muon tomography system built by the 2-D readout high spatial resolution Multi-gap Resistive Plate Chamber (MRPC) detector is a project of Tsinghua University. An encoding readout method based on the fine-fine configuration has been used to minimize the number of the readout electronic channels resulting in reducing the complexity and the cost of the system. In this paper, we provide a systematic comparison of the MRPC detector performance with and without fine-fine encoding readout. Our results suggest that the application of the fine-fine encoding readout leads us to achieve a detecting system with slightly worse spatial resolution but dramatically reduce the number of electronic channels.

  19. Final Technical Report for DE-SC0008149

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchanan, Kristen

    The major goal of this project is to study spin waves in magnetic thin films, especially how spin waves respond to external stimuli. This is expected to lead to new insight into dynamic processes and new ideas for methods to control spin waves. Experimental studies are being done primarily using time- and spatially-resolved Brillouin light scattering (BLS) measurements on extended and patterned magnetic thin films. BLS is a versatile tool that provides a non-invasive probe of spin dynamics with frequencies of ~1 GHz to well over 100 GHz, diffraction-limited spatial resolution, 250-ps temporal resolution, and it is sensitive enough tomore » detect thermal magnons.« less

  20. Unexpected materials in a Rembrandt painting characterized by high spatial resolution cluster-TOF-SIMS imaging.

    PubMed

    Sanyova, Jana; Cersoy, Sophie; Richardin, Pascale; Laprévote, Olivier; Walter, Philippe; Brunelle, Alain

    2011-02-01

    The painting materials of the Portrait of Nicolaes van Bambeeck (Royal Museums of Fine Arts of Belgium, Brussels, inv. 155) painted by Rembrandt van Rijn in 1641 has been studied using high resolution cluster-TOF-SIMS imaging. In the first step, a moderate spatial resolution (2 μm) was used to characterize the layer structure and the chemical composition of each layer on account of a high mass resolution. Then, in the second step, and despite a low mass resolution, the cluster primary ion beam was focused well below 1 μm in order to reveal smaller structures in the painting sample. The study confirmed the presence of starch in the second ground layer, which is quite surprising and, at least for Rembrandt paintings, has never been reported before. TOF-SIMS also indicated the presence of proteins, which, added to the size and shape of lake particles, suggests that it was manufactured from shearings (waste of textile manufacturing) of dyed wool, used as the source of the dyestuff. The analyses have also shown various lead carboxylates, being the products of the interaction between lead white and the oil of the binding medium. These findings considerably contribute to the understanding of Rembrandt's studio practice and thus demonstrate the importance and potential of cluster-TOF-SIMS imaging in the characterization on a submicrometer scale of artist painting materials.

  1. Resolution analysis of archive films for the purpose of their optimal digitization and distribution

    NASA Astrophysics Data System (ADS)

    Fliegel, Karel; Vítek, Stanislav; Páta, Petr; Myslík, Jiří; Pecák, Josef; Jícha, Marek

    2017-09-01

    With recent high demand for ultra-high-definition (UHD) content to be screened in high-end digital movie theaters but also in the home environment, film archives full of movies in high-definition and above are in the scope of UHD content providers. Movies captured with the traditional film technology represent a virtually unlimited source of UHD content. The goal to maintain complete image information is also related to the choice of scanning resolution and spatial resolution for further distribution. It might seem that scanning the film material in the highest possible resolution using state-of-the-art film scanners and also its distribution in this resolution is the right choice. The information content of the digitized images is however limited, and various degradations moreover lead to its further reduction. Digital distribution of the content in the highest image resolution might be therefore unnecessary or uneconomical. In other cases, the highest possible resolution is inevitable if we want to preserve fine scene details or film grain structure for archiving purposes. This paper deals with the image detail content analysis of archive film records. The resolution limit in captured scene image and factors which lower the final resolution are discussed. Methods are proposed to determine the spatial details of the film picture based on the analysis of its digitized image data. These procedures allow determining recommendations for optimal distribution of digitized video content intended for various display devices with lower resolutions. Obtained results are illustrated on spatial downsampling use case scenario, and performance evaluation of the proposed techniques is presented.

  2. Roles of Spatial Scale and Rarity on the Relationship between Butterfly Species Richness and Human Density in South Africa

    PubMed Central

    Mecenero, Silvia; Altwegg, Res; Colville, Jonathan F.; Beale, Colin M.

    2015-01-01

    Wildlife and humans tend to prefer the same productive environments, yet high human densities often lead to reduced biodiversity. Species richness is often positively correlated with human population density at broad scales, but this correlation could also be caused by unequal sampling effort leading to higher species tallies in areas of dense human activity. We examined the relationships between butterfly species richness and human population density at five spatial resolutions ranging from 2' to 60' across South Africa. We used atlas-type data and spatial interpolation techniques aimed at reducing the effect of unequal spatial sampling. Our results confirm the general positive correlation between total species richness and human population density. Contrary to our expectations, the strength of this positive correlation did not weaken at finer spatial resolutions. The patterns observed using total species richness were driven mostly by common species. The richness of threatened and restricted range species was not correlated to human population density. None of the correlations we examined were particularly strong, with much unexplained variance remaining, suggesting that the overlap between butterflies and humans is not strong compared to other factors not accounted for in our analyses. Special consideration needs to be made regarding conservation goals and variables used when investigating the overlap between species and humans for biodiversity conservation. PMID:25915899

  3. Roles of Spatial Scale and Rarity on the Relationship between Butterfly Species Richness and Human Density in South Africa.

    PubMed

    Mecenero, Silvia; Altwegg, Res; Colville, Jonathan F; Beale, Colin M

    2015-01-01

    Wildlife and humans tend to prefer the same productive environments, yet high human densities often lead to reduced biodiversity. Species richness is often positively correlated with human population density at broad scales, but this correlation could also be caused by unequal sampling effort leading to higher species tallies in areas of dense human activity. We examined the relationships between butterfly species richness and human population density at five spatial resolutions ranging from 2' to 60' across South Africa. We used atlas-type data and spatial interpolation techniques aimed at reducing the effect of unequal spatial sampling. Our results confirm the general positive correlation between total species richness and human population density. Contrary to our expectations, the strength of this positive correlation did not weaken at finer spatial resolutions. The patterns observed using total species richness were driven mostly by common species. The richness of threatened and restricted range species was not correlated to human population density. None of the correlations we examined were particularly strong, with much unexplained variance remaining, suggesting that the overlap between butterflies and humans is not strong compared to other factors not accounted for in our analyses. Special consideration needs to be made regarding conservation goals and variables used when investigating the overlap between species and humans for biodiversity conservation.

  4. High Resolution PET with 250 micrometer LSO Detectors and Adaptive Zoom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherry, Simon R.; Qi, Jinyi

    2012-01-08

    There have been impressive improvements in the performance of small-animal positron emission tomography (PET) systems since their first development in the mid 1990s, both in terms of spatial resolution and sensitivity, which have directly contributed to the increasing adoption of this technology for a wide range of biomedical applications. Nonetheless, current systems still are largely dominated by the size of the scintillator elements used in the detector. Our research predicts that developing scintillator arrays with an element size of 250 {micro}m or smaller will lead to an image resolution of 500 {micro}m when using 18F- or 64Cu-labeled radiotracers, giving amore » factor of 4-8 improvement in volumetric resolution over the highest resolution research systems currently in existence. This proposal had two main objectives: (i) To develop and evaluate much higher resolution and efficiency scintillator arrays that can be used in the future as the basis for detectors in a small-animal PET scanner where the spatial resolution is dominated by decay and interaction physics rather than detector size. (ii) To optimize one such high resolution, high sensitivity detector and adaptively integrate it into the existing microPET II small animal PET scanner as a 'zoom-in' detector that provides higher spatial resolution and sensitivity in a limited region close to the detector face. The knowledge gained from this project will provide valuable information for building future PET systems with a complete ring of very high-resolution detector arrays and also lay the foundations for utilizing high-resolution detectors in combination with existing PET systems for localized high-resolution imaging.« less

  5. Spatial downscaling of soil prediction models based on weighted generalized additive models in smallholder farm settings.

    PubMed

    Xu, Yiming; Smith, Scot E; Grunwald, Sabine; Abd-Elrahman, Amr; Wani, Suhas P; Nair, Vimala D

    2017-09-11

    Digital soil mapping (DSM) is gaining momentum as a technique to help smallholder farmers secure soil security and food security in developing regions. However, communications of the digital soil mapping information between diverse audiences become problematic due to the inconsistent scale of DSM information. Spatial downscaling can make use of accessible soil information at relatively coarse spatial resolution to provide valuable soil information at relatively fine spatial resolution. The objective of this research was to disaggregate the coarse spatial resolution soil exchangeable potassium (K ex ) and soil total nitrogen (TN) base map into fine spatial resolution soil downscaled map using weighted generalized additive models (GAMs) in two smallholder villages in South India. By incorporating fine spatial resolution spectral indices in the downscaling process, the soil downscaled maps not only conserve the spatial information of coarse spatial resolution soil maps but also depict the spatial details of soil properties at fine spatial resolution. The results of this study demonstrated difference between the fine spatial resolution downscaled maps and fine spatial resolution base maps is smaller than the difference between coarse spatial resolution base maps and fine spatial resolution base maps. The appropriate and economical strategy to promote the DSM technique in smallholder farms is to develop the relatively coarse spatial resolution soil prediction maps or utilize available coarse spatial resolution soil maps at the regional scale and to disaggregate these maps to the fine spatial resolution downscaled soil maps at farm scale.

  6. Influence of Gridded Standoff Measurement Resolution on Numerical Bathymetric Inversion

    NASA Astrophysics Data System (ADS)

    Hesser, T.; Farthing, M. W.; Brodie, K.

    2016-02-01

    The bathymetry from the surfzone to the shoreline incurs frequent, active movement due to wave energy interacting with the seafloor. Methodologies to measure bathymetry range from point-source in-situ instruments, vessel-mounted single-beam or multi-beam sonar surveys, airborne bathymetric lidar, as well as inversion techniques from standoff measurements of wave processes from video or radar imagery. Each type of measurement has unique sources of error and spatial and temporal resolution and availability. Numerical bathymetry estimation frameworks can use these disparate data types in combination with model-based inversion techniques to produce a "best-estimate of bathymetry" at a given time. Understanding how the sources of error and varying spatial or temporal resolution of each data type affect the end result is critical for determining best practices and in turn increase the accuracy of bathymetry estimation techniques. In this work, we consider an initial step in the development of a complete framework for estimating bathymetry in the nearshore by focusing on gridded standoff measurements and in-situ point observations in model-based inversion at the U.S. Army Corps of Engineers Field Research Facility in Duck, NC. The standoff measurement methods return wave parameters computed using linear wave theory from the direct measurements. These gridded datasets can range in temporal and spatial resolution that do not match the desired model parameters and therefore could lead to a reduction in the accuracy of these methods. Specifically, we investigate the affect of numerical resolution on the accuracy of an Ensemble Kalman Filter bathymetric inversion technique in relation to the spatial and temporal resolution of the gridded standoff measurements. The accuracies of the bathymetric estimates are compared with both high-resolution Real Time Kinematic (RTK) single-beam surveys as well as alternative direct in-situ measurements using sonic altimeters.

  7. Computation of Surface Laplacian for tri-polar ring electrodes on high-density realistic geometry head model.

    PubMed

    Junwei Ma; Han Yuan; Sunderam, Sridhar; Besio, Walter; Lei Ding

    2017-07-01

    Neural activity inside the human brain generate electrical signals that can be detected on the scalp. Electroencephalograph (EEG) is one of the most widely utilized techniques helping physicians and researchers to diagnose and understand various brain diseases. Due to its nature, EEG signals have very high temporal resolution but poor spatial resolution. To achieve higher spatial resolution, a novel tri-polar concentric ring electrode (TCRE) has been developed to directly measure Surface Laplacian (SL). The objective of the present study is to accurately calculate SL for TCRE based on a realistic geometry head model. A locally dense mesh was proposed to represent the head surface, where the local dense parts were to match the small structural components in TCRE. Other areas without dense mesh were used for the purpose of reducing computational load. We conducted computer simulations to evaluate the performance of the proposed mesh and evaluated possible numerical errors as compared with a low-density model. Finally, with achieved accuracy, we presented the computed forward lead field of SL for TCRE for the first time in a realistic geometry head model and demonstrated that it has better spatial resolution than computed SL from classic EEG recordings.

  8. Higher Resolution and Faster MRI of 31Phosphorus in Bone

    NASA Astrophysics Data System (ADS)

    Frey, Merideth; Barrett, Sean; Sethna, Zachary; Insogna, Karl; Vanhouten, Joshua

    2013-03-01

    Probing the internal composition of bone on the sub-100 μm length scale is important to study normal features and to look for signs of disease. However, few useful non-destructive techniques are available to evaluate changes in the bone mineral chemical structure and functional micro-architecture on the interior of bones. MRI would be an excellent candidate, but bone is a particularly challenging tissue to study given the relatively low water density, wider linewidths of its solid components leading to low spatial resolution, and the long imaging time compared to conventional 1H MRI. Our lab has recently made advances in obtaining high spatial resolution (sub-400 μm)3 three-dimensional 31Phosphorus MRI of bone through use of the quadratic echo line-narrowing sequence (1). In this talk, we describe our current results using proton decoupling to push this technique even further towards the factor of 1000 increase in spatial resolution imposed by fundamental limits. We also discuss our work to speed up imaging through novel, faster reconstruction algorithms that can reconstruct the desired image from very sparse data sets. (1) M. Frey, et al. PNAS 109: 5190 (2012).

  9. Novel detector design for reducing intercell x-ray cross-talk in the variable resolution x-ray CT scanner: a Monte Carlo study.

    PubMed

    Arabi, Hosein; Asl, Ali Reza Kamali; Ay, Mohammad Reza; Zaidi, Habib

    2011-03-01

    The variable resolution x-ray (VRX) CT scanner provides substantial improvement in the spatial resolution by matching the scanner's field of view (FOV) to the size of the object being imaged. Intercell x-ray cross-talk is one of the most important factors limiting the spatial resolution of the VRX detector. In this work, a new cell arrangement in the VRX detector is suggested to decrease the intercell x-ray cross-talk. The idea is to orient the detector cells toward the opening end of the detector. Monte Carlo simulations were used for performance assessment of the oriented cell detector design. Previously published design parameters and simulation results of x-ray cross-talk for the VRX detector were used for model validation using the GATE Monte Carlo package. In the first step, the intercell x-ray cross-talk of the actual VRX detector model was calculated as a function of the FOV. The obtained results indicated an optimum cell orientation angle of 28 degrees to minimize the x-ray cross-talk in the VRX detector. Thereafter, the intercell x-ray cross-talk in the oriented cell detector was modeled and quantified. The intercell x-ray cross-talk in the actual detector model was considerably high, reaching up to 12% at FOVs from 24 to 38 cm. The x-ray cross-talk in the oriented cell detector was less than 5% for all possible FOVs, except 40 cm (maximum FOV). The oriented cell detector could provide considerable decrease in the intercell x-ray cross-talk for the VRX detector, thus leading to significant improvement in the spatial resolution and reduction in the spatial resolution nonuniformity across the detector length. The proposed oriented cell detector is the first dedicated detector design for the VRX CT scanners. Application of this concept to multislice and flat-panel VRX detectors would also result in higher spatial resolution.

  10. Estimation of sub-pixel water area on Tibet plateau using multiple endmembers spectral mixture spectral analysis from MODIS data

    NASA Astrophysics Data System (ADS)

    Cui, Qian; Shi, Jiancheng; Xu, Yuanliu

    2011-12-01

    Water is the basic needs for human society, and the determining factor of stability of ecosystem as well. There are lots of lakes on Tibet Plateau, which will lead to flood and mudslide when the water expands sharply. At present, water area is extracted from TM or SPOT data for their high spatial resolution; however, their temporal resolution is insufficient. MODIS data have high temporal resolution and broad coverage. So it is valuable resource for detecting the change of water area. Because of its low spatial resolution, mixed-pixels are common. In this paper, four spectral libraries are built using MOD09A1 product, based on that, water body is extracted in sub-pixels utilizing Multiple Endmembers Spectral Mixture Analysis (MESMA) using MODIS daily reflectance data MOD09GA. The unmixed result is comparing with contemporaneous TM data and it is proved that this method has high accuracy.

  11. Low-light-level image super-resolution reconstruction based on iterative projection photon localization algorithm

    NASA Astrophysics Data System (ADS)

    Ying, Changsheng; Zhao, Peng; Li, Ye

    2018-01-01

    The intensified charge-coupled device (ICCD) is widely used in the field of low-light-level (LLL) imaging. The LLL images captured by ICCD suffer from low spatial resolution and contrast, and the target details can hardly be recognized. Super-resolution (SR) reconstruction of LLL images captured by ICCDs is a challenging issue. The dispersion in the double-proximity-focused image intensifier is the main factor that leads to a reduction in image resolution and contrast. We divide the integration time into subintervals that are short enough to get photon images, so the overlapping effect and overstacking effect of dispersion can be eliminated. We propose an SR reconstruction algorithm based on iterative projection photon localization. In the iterative process, the photon image is sliced by projection planes, and photons are screened under the constraints of regularity. The accurate position information of the incident photons in the reconstructed SR image is obtained by the weighted centroids calculation. The experimental results show that the spatial resolution and contrast of our SR image are significantly improved.

  12. Study on the Spatial Resolution of Single and Multiple Coincidences Compton Camera

    NASA Astrophysics Data System (ADS)

    Andreyev, Andriy; Sitek, Arkadiusz; Celler, Anna

    2012-10-01

    In this paper we study the image resolution that can be obtained from the Multiple Coincidences Compton Camera (MCCC). The principle of MCCC is based on a simultaneous acquisition of several gamma-rays emitted in cascade from a single nucleus. Contrary to a standard Compton camera, MCCC can theoretically provide the exact location of a radioactive source (based only on the identification of the intersection point of three cones created by a single decay), without complicated tomographic reconstruction. However, practical implementation of the MCCC approach encounters several problems, such as low detection sensitivities result in very low probability of coincident triple gamma-ray detection, which is necessary for the source localization. It is also important to evaluate how the detection uncertainties (finite energy and spatial resolution) influence identification of the intersection of three cones, thus the resulting image quality. In this study we investigate how the spatial resolution of the reconstructed images using the triple-cone reconstruction (TCR) approach compares to images reconstructed from the same data using standard iterative method based on single-cone. Results show, that FWHM for the point source reconstructed with TCR was 20-30% higher than the one obtained from the standard iterative reconstruction based on expectation maximization (EM) algorithm and conventional single-cone Compton imaging. Finite energy and spatial resolutions of the MCCC detectors lead to errors in conical surfaces definitions (“thick” conical surfaces) which only amplify in image reconstruction when intersection of three cones is being sought. Our investigations show that, in spite of being conceptually appealing, the identification of triple cone intersection constitutes yet another restriction of the multiple coincidence approach which limits the image resolution that can be obtained with MCCC and TCR algorithm.

  13. Enhancing Spatial Resolution of Remotely Sensed Imagery Using Deep Learning

    NASA Astrophysics Data System (ADS)

    Beck, J. M.; Bridges, S.; Collins, C.; Rushing, J.; Graves, S. J.

    2017-12-01

    Researchers at the Information Technology and Systems Center at the University of Alabama in Huntsville are using Deep Learning with Convolutional Neural Networks (CNNs) to develop a method for enhancing the spatial resolutions of moderate resolution (10-60m) multispectral satellite imagery. This enhancement will effectively match the resolutions of imagery from multiple sensors to provide increased global temporal-spatial coverage for a variety of Earth science products. Our research is centered on using Deep Learning for automatically generating transformations for increasing the spatial resolution of remotely sensed images with different spatial, spectral, and temporal resolutions. One of the most important steps in using images from multiple sensors is to transform the different image layers into the same spatial resolution, preferably the highest spatial resolution, without compromising the spectral information. Recent advances in Deep Learning have shown that CNNs can be used to effectively and efficiently upscale or enhance the spatial resolution of multispectral images with the use of an auxiliary data source such as a high spatial resolution panchromatic image. In contrast, we are using both the spatial and spectral details inherent in low spatial resolution multispectral images for image enhancement without the use of a panchromatic image. This presentation will discuss how this technology will benefit many Earth Science applications that use remotely sensed images with moderate spatial resolutions.

  14. Extended-range high-resolution dynamical downscaling over a continental-scale spatial domain with atmospheric and surface nudging

    NASA Astrophysics Data System (ADS)

    Husain, S. Z.; Separovic, L.; Yu, W.; Fernig, D.

    2014-12-01

    Extended-range high-resolution mesoscale simulations with limited-area atmospheric models when applied to downscale regional analysis fields over large spatial domains can provide valuable information for many applications including the weather-dependent renewable energy industry. Long-term simulations over a continental-scale spatial domain, however, require mechanisms to control the large-scale deviations in the high-resolution simulated fields from the coarse-resolution driving fields. As enforcement of the lateral boundary conditions is insufficient to restrict such deviations, large scales in the simulated high-resolution meteorological fields are therefore spectrally nudged toward the driving fields. Different spectral nudging approaches, including the appropriate nudging length scales as well as the vertical profiles and temporal relaxations for nudging, have been investigated to propose an optimal nudging strategy. Impacts of time-varying nudging and generation of hourly analysis estimates are explored to circumvent problems arising from the coarse temporal resolution of the regional analysis fields. Although controlling the evolution of the atmospheric large scales generally improves the outputs of high-resolution mesoscale simulations within the surface layer, the prognostically evolving surface fields can nevertheless deviate from their expected values leading to significant inaccuracies in the predicted surface layer meteorology. A forcing strategy based on grid nudging of the different surface fields, including surface temperature, soil moisture, and snow conditions, toward their expected values obtained from a high-resolution offline surface scheme is therefore proposed to limit any considerable deviation. Finally, wind speed and temperature at wind turbine hub height predicted by different spectrally nudged extended-range simulations are compared against observations to demonstrate possible improvements achievable using higher spatiotemporal resolution.

  15. Does the choice of mobile C-arms lead to a reduction of the intraoperative radiation dose?

    PubMed

    Richter, P H; Steinbrener, J; Schicho, A; Gebhard, F

    2016-08-01

    Mobile C-arm imaging is commonly used in operating rooms worldwide. Especially in orthopaedic surgery, intraoperative C-arms are used on a daily basis. Because of new minimally-invasive surgical procedures a development in intraoperative imaging is required. The purpose of this article is investigate if the choice of mobile C-arms with flat panel detector technology (Siemens Cios Alpha and Ziehm Vision RFD) influences image quality and dose using standard, commercially available test devices. For a total of four clinical application settings, two zoom formats, and all dose levels provided, the transmission dose was measured and representative images were recorded for each test device. The data was scored by four observers to assess low contrast and spatial resolution performance. The results were converted to a relative image quality figure allowing for a direct image quality and dose comparison of the two systems. For one test device, the Cios Alpha system achieved equivalent (within the inter-observer standard error) or better low contrast resolution scores at significantly lower dose levels, while the results of the other test device suggested that both systems achieved similar image quality at the same dose. The Cios Alpha system achieved equivalent or better spatial resolution at significantly lower dose for all application settings except for Cardiac, where a comparable spatial resolution was achieved at the same dose. The correct choice of a mobile C-arm is very important, because it can lead to a reduction of the intraoperative radiation dose without negative effects on image quality. This can be a big advantage to reduce intraoperative radiation not only for the patient but also for the entire OR-team. Copyright © 2016. Published by Elsevier Ltd.

  16. Monte Carlo study of x-ray cross talk in a variable resolution x-ray detector

    NASA Astrophysics Data System (ADS)

    Melnyk, Roman; DiBianca, Frank A.

    2003-06-01

    A variable resolution x-ray (VRX) detector provides a great increase in the spatial resolution of a CT scanner. An important factor that limits the spatial resolution of the detector is x-ray cross-talk. A theoretical study of the x-ray cross-talk is presented in this paper. In the study, two types of the x-ray cross-talk were considered: inter-cell and inter-arm cross-talk. Both types of the x-ray cross-talk were simulated, using the Monte Carlo method, as functions of the detector field of view (FOV). The simulation was repeated for lead and tungsten separators between detector cells. The inter-cell x-ray cross-talk was maximum at the 34-36 cm FOV, but it was low at small and the maximum FOVs. The inter-arm x-ray cross-talk was high at small and medium FOVs, but it was greatly reduced when variable width collimators were placed on the front surfaces of the detector. The inter-cell, but not inter-arm, x-ray cross-talk was lower for tungsten than for lead separators. From the results, x-ray cross-talk in a VRX detector can be minimized by imaging all objects between 24 cm and 40 cm in diameter with the 40 cm FOV, using tungsten separators, and placing variable width collimators in front of the detector.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arabi, Hosein; Asl, Ali Reza Kamali; Ay, Mohammad Reza

    Purpose: The variable resolution x-ray (VRX) CT scanner provides substantial improvement in the spatial resolution by matching the scanner's field of view (FOV) to the size of the object being imaged. Intercell x-ray cross-talk is one of the most important factors limiting the spatial resolution of the VRX detector. In this work, a new cell arrangement in the VRX detector is suggested to decrease the intercell x-ray cross-talk. The idea is to orient the detector cells toward the opening end of the detector. Methods: Monte Carlo simulations were used for performance assessment of the oriented cell detector design. Previously publishedmore » design parameters and simulation results of x-ray cross-talk for the VRX detector were used for model validation using the GATE Monte Carlo package. In the first step, the intercell x-ray cross-talk of the actual VRX detector model was calculated as a function of the FOV. The obtained results indicated an optimum cell orientation angle of 28 deg. to minimize the x-ray cross-talk in the VRX detector. Thereafter, the intercell x-ray cross-talk in the oriented cell detector was modeled and quantified. Results: The intercell x-ray cross-talk in the actual detector model was considerably high, reaching up to 12% at FOVs from 24 to 38 cm. The x-ray cross-talk in the oriented cell detector was less than 5% for all possible FOVs, except 40 cm (maximum FOV). The oriented cell detector could provide considerable decrease in the intercell x-ray cross-talk for the VRX detector, thus leading to significant improvement in the spatial resolution and reduction in the spatial resolution nonuniformity across the detector length. Conclusions: The proposed oriented cell detector is the first dedicated detector design for the VRX CT scanners. Application of this concept to multislice and flat-panel VRX detectors would also result in higher spatial resolution.« less

  18. High resolution in-operando microimaging of solar cells with pulsed electrically-detected magnetic resonance

    NASA Astrophysics Data System (ADS)

    Katz, Itai; Fehr, Matthias; Schnegg, Alexander; Lips, Klaus; Blank, Aharon

    2015-02-01

    The in-operando detection and high resolution spatial imaging of paramagnetic defects, impurities, and states becomes increasingly important for understanding loss mechanisms in solid-state electronic devices. Electron spin resonance (ESR), commonly employed for observing these species, cannot meet this challenge since it suffers from limited sensitivity and spatial resolution. An alternative and much more sensitive method, called electrically-detected magnetic resonance (EDMR), detects the species through their magnetic fingerprint, which can be traced in the device's electrical current. However, until now it could not obtain high resolution images in operating electronic devices. In this work, the first spatially-resolved electrically-detected magnetic resonance images (EDMRI) of paramagnetic states in an operating real-world electronic device are provided. The presented method is based on a novel microwave pulse sequence allowing for the coherent electrical detection of spin echoes in combination with powerful pulsed magnetic-field gradients. The applicability of the method is demonstrated on a device-grade 1-μm-thick amorphous silicon (a-Si:H) solar cell and an identical device that was degraded locally by an electron beam. The degraded areas with increased concentrations of paramagnetic defects lead to a local increase in recombination that is mapped by EDMRI with ∼20-μm-scale pixel resolution. The novel approach presented here can be widely used in the nondestructive in-operando three-dimensional characterization of solid-state electronic devices with a resolution potential of less than 100 nm.

  19. BLIPPED (BLIpped Pure Phase EncoDing) high resolution MRI with low amplitude gradients

    NASA Astrophysics Data System (ADS)

    Xiao, Dan; Balcom, Bruce J.

    2017-12-01

    MRI image resolution is proportional to the maximum k-space value, i.e. the temporal integral of the magnetic field gradient. High resolution imaging usually requires high gradient amplitudes and/or long spatial encoding times. Special gradient hardware is often required for high amplitudes and fast switching. We propose a high resolution imaging sequence that employs low amplitude gradients. This method was inspired by the previously proposed PEPI (π Echo Planar Imaging) sequence, which replaced EPI gradient reversals with multiple RF refocusing pulses. It has been shown that when the refocusing RF pulse is of high quality, i.e. sufficiently close to 180°, the magnetization phase introduced by the spatial encoding magnetic field gradient can be preserved and transferred to the following echo signal without phase rewinding. This phase encoding scheme requires blipped gradients that are identical for each echo, with low and constant amplitude, providing opportunities for high resolution imaging. We now extend the sequence to 3D pure phase encoding with low amplitude gradients. The method is compared with the Hybrid-SESPI (Spin Echo Single Point Imaging) technique to demonstrate the advantages in terms of low gradient duty cycle, compensation of concomitant magnetic field effects and minimal echo spacing, which lead to superior image quality and high resolution. The 3D imaging method was then applied with a parallel plate resonator RF probe, achieving a nominal spatial resolution of 17 μm in one dimension in the 3D image, requiring a maximum gradient amplitude of only 5.8 Gauss/cm.

  20. Effects of spatial resolution ratio in image fusion

    USGS Publications Warehouse

    Ling, Y.; Ehlers, M.; Usery, E.L.; Madden, M.

    2008-01-01

    In image fusion, the spatial resolution ratio can be defined as the ratio between the spatial resolution of the high-resolution panchromatic image and that of the low-resolution multispectral image. This paper attempts to assess the effects of the spatial resolution ratio of the input images on the quality of the fused image. Experimental results indicate that a spatial resolution ratio of 1:10 or higher is desired for optimal multisensor image fusion provided the input panchromatic image is not downsampled to a coarser resolution. Due to the synthetic pixels generated from resampling, the quality of the fused image decreases as the spatial resolution ratio decreases (e.g. from 1:10 to 1:30). However, even with a spatial resolution ratio as small as 1:30, the quality of the fused image is still better than the original multispectral image alone for feature interpretation. In cases where the spatial resolution ratio is too small (e.g. 1:30), to obtain better spectral integrity of the fused image, one may downsample the input high-resolution panchromatic image to a slightly lower resolution before fusing it with the multispectral image.

  1. Stellar interferometers and hypertelescopes: new insights on an angular spatial frequency approach to their non-invariant imaging

    NASA Astrophysics Data System (ADS)

    Dettwiller, L.; Lépine, T.

    2017-12-01

    A general and pure wave theory of image formation for all types of stellar interferometers, including hypertelescopes, is developed in the frame of Fresnel's paraxial approximations of diffraction. For a hypertelescope, we show that the severe lack of translation invariance leads to multiple and strong spatial frequency heterodyning, which codes the very high frequencies detected by the hypertelescope into medium spatial frequencies and introduces a moiré-type ambiguity for extended objects. This explains mathematically the disappointing appearance of poor resolution observed in some image simulations for hypertelescopes.

  2. Spatiotemporal evolution of premonitory fault slip prior to stick-slip instability: New insight into the earthquake preparation

    NASA Astrophysics Data System (ADS)

    Zhuo, Y. Q.; Liu, P.; Guo, Y.; Ji, Y.; Ma, J.

    2017-12-01

    Premonitory fault slip, which begins with quasistatic propagation followed by quasidynamic propagation, may be a key clue bridging the "stick" state and "slip" state of a fault. More attentions have been paid for a long time to the temporal resolution of measurement than the spatial resolution, leading to the incomplete interpretation for the spatial evolution of premonitory slip, particularly during the quasistatic phase. In the present study, measurement of the quasistatic propagation of premonitory slip is achieved at an ultrahigh spatial resolution via a digital image correlation method. Multiple premonitory slip zones are observed and found to be controlled spatially by the fault contact heterogeneity, particularly the strong contact patches that prevent the propagation of premonitory slip and accumulate strain. As a result, premonitory slip is accelerated within constrained week contact spaces and consequently triggers the breakout of quasidynamic propagation. The results provide new insights into the quasistatic propagation of premonitory slip and may offer new interpretations for the earthquake nucleation process. This work is fund by the National Natural Science Foundation of China (Grant No. 41572181), the Basic Scientific Funding of Chinese National Nonprofit Institutes (Grant No. IGCEA1415, IGCEA1525), and the Early-Stage Work of Key Breakthrough Plan in Seismology from China Earthquake Administration.

  3. Preparatory neural activity predicts performance on a conflict task.

    PubMed

    Stern, Emily R; Wager, Tor D; Egner, Tobias; Hirsch, Joy; Mangels, Jennifer A

    2007-10-24

    Advance preparation has been shown to improve the efficiency of conflict resolution. Yet, with little empirical work directly linking preparatory neural activity to the performance benefits of advance cueing, it is not clear whether this relationship results from preparatory activation of task-specific networks, or from activity associated with general alerting processes. Here, fMRI data were acquired during a spatial Stroop task in which advance cues either informed subjects of the upcoming relevant feature of conflict stimuli (spatial or semantic) or were neutral. Informative cues decreased reaction time (RT) relative to neutral cues, and cues indicating that spatial information would be task-relevant elicited greater activity than neutral cues in multiple areas, including right anterior prefrontal and bilateral parietal cortex. Additionally, preparatory activation in bilateral parietal cortex and right dorsolateral prefrontal cortex predicted faster RT when subjects responded to spatial location. No regions were found to be specific to semantic cues at conventional thresholds, and lowering the threshold further revealed little overlap between activity associated with spatial and semantic cueing effects, thereby demonstrating a single dissociation between activations related to preparing a spatial versus semantic task-set. This relationship between preparatory activation of spatial processing networks and efficient conflict resolution suggests that advance information can benefit performance by leading to domain-specific biasing of task-relevant information.

  4. HIGH SPATIAL RESOLUTION SATELLITE REMOTE SENSING FOR PLANNING AND LOCATING ANIMAL FEEDING OPERATIONS

    EPA Science Inventory


    Surface runoff of animal waste and its infiltration into groundwater can pose a number of risks to water quality mainly because of the amount of animal manure and wastewater they produce. Excess nutrients from livestock facilities can lead to groundwater and soil contaminatio...

  5. Benefits of GMR sensors for high spatial resolution NDT applications

    NASA Astrophysics Data System (ADS)

    Pelkner, M.; Stegemann, R.; Sonntag, N.; Pohl, R.; Kreutzbruck, M.

    2018-04-01

    Magneto resistance sensors like GMR (giant magneto resistance) or TMR (tunnel magneto resistance) are widely used in industrial applications; examples are position measurement and read heads of hard disk drives. However, in case of non-destructive testing (NDT) applications these sensors, although their properties are outstanding like high spatial resolution, high field sensitivity, low cost and low energy consumption, never reached a technical transfer to an application beyond scientific scope. This paper deals with benefits of GMR/TMR sensors in terms of high spatial resolution testing for different NDT applications. The first example demonstrates the preeminent advantages of MR-elements compared with conventional coils used in eddy current testing (ET). The probe comprises one-wire excitation with an array of MR elements. This led to a better spatial resolution in terms of neighboring defects. The second section concentrates on MFL-testing (magnetic flux leakage) with active field excitation during and before testing. The latter illustrated the capability of highly resolved crack detection of a crossed notch. This example is best suited to show the ability of tiny magnetic field sensors for magnetic material characterization of a sample surface. Another example is based on characterization of samples after tensile test. Here, no external field is applied. The magnetization is only changed due to external load and magnetostriction leading to a field signature which GMR sensors can resolve. This gives access to internal changes of the magnetization state of the sample under test.

  6. HiPS - Hierarchical Progressive Survey Version 1.0

    NASA Astrophysics Data System (ADS)

    Fernique, Pierre; Allen, Mark; Boch, Thomas; Donaldson, Tom; Durand, Daniel; Ebisawa, Ken; Michel, Laurent; Salgado, Jesus; Stoehr, Felix; Fernique, Pierre

    2017-05-01

    This document presents HiPS, a hierarchical scheme for the description, storage and access of sky survey data. The system is based on hierarchical tiling of sky regions at finer and finer spatial resolution which facilitates a progressive view of a survey, and supports multi-resolution zooming and panning. HiPS uses the HEALPix tessellation of the sky as the basis for the scheme and is implemented as a simple file structure with a direct indexing scheme that leads to practical implementations.

  7. Nonlinear hybridization of the fundamental eigenmodes of microscopic ferromagnetic ellipses.

    PubMed

    Demidov, V E; Buchmeier, M; Rott, K; Krzysteczko, P; Münchenberger, J; Reiss, G; Demokritov, S O

    2010-05-28

    We have studied experimentally with high spatial resolution the nonlinear eigenmodes of microscopic Permalloy elliptical elements. We show that the nonlinearity affects the frequencies of the edge and the center modes in an essentially different way. This leads to repulsion of corresponding resonances and to nonlinear mode hybridization resulting in qualitative modifications of the spatial characteristics of the modes. We find that the nonlinear counterparts of the edge and the center modes simultaneously exhibit features specific for both their linear analogues.

  8. Tablet disintegration studied by high-resolution real-time magnetic resonance imaging.

    PubMed

    Quodbach, Julian; Moussavi, Amir; Tammer, Roland; Frahm, Jens; Kleinebudde, Peter

    2014-01-01

    The present work employs recent advances in high-resolution real-time magnetic resonance imaging (MRI) to investigate the disintegration process of tablets containing disintegrants. A temporal resolution of 75 ms and a spatial resolution of 80 × 80 µm with a section thickness of only 600 µm were achieved. The histograms of MRI videos were quantitatively analyzed with MATLAB. The mechanisms of action of six commercially available disintegrants, the influence of relative tablet density, and the impact of disintegrant concentration were examined. Crospovidone seems to be the only disintegrant acting by a shape memory effect, whereas the others mainly swell. A higher relative density of tablets containing croscarmellose sodium leads to a more even distribution of water within the tablet matrix but hardly impacts the disintegration kinetics. Increasing the polacrilin potassium disintegrant concentration leads to a quicker and more thorough disintegration process. Real-time MRI emerges as valuable tool to visualize and investigate the process of tablet disintegration.

  9. Hydrologic Implications of Dynamical and Statistical Approaches to Downscaling Climate Model Outputs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Andrew W; Leung, Lai R; Sridhar, V

    Six approaches for downscaling climate model outputs for use in hydrologic simulation were evaluated, with particular emphasis on each method's ability to produce precipitation and other variables used to drive a macroscale hydrology model applied at much higher spatial resolution than the climate model. Comparisons were made on the basis of a twenty-year retrospective (1975–1995) climate simulation produced by the NCAR-DOE Parallel Climate Model (PCM), and the implications of the comparison for a future (2040–2060) PCM climate scenario were also explored. The six approaches were made up of three relatively simple statistical downscaling methods – linear interpolation (LI), spatial disaggregationmore » (SD), and bias-correction and spatial disaggregation (BCSD) – each applied to both PCM output directly (at T42 spatial resolution), and after dynamical downscaling via a Regional Climate Model (RCM – at ½-degree spatial resolution), for downscaling the climate model outputs to the 1/8-degree spatial resolution of the hydrological model. For the retrospective climate simulation, results were compared to an observed gridded climatology of temperature and precipitation, and gridded hydrologic variables resulting from forcing the hydrologic model with observations. The most significant findings are that the BCSD method was successful in reproducing the main features of the observed hydrometeorology from the retrospective climate simulation, when applied to both PCM and RCM outputs. Linear interpolation produced better results using RCM output than PCM output, but both methods (PCM-LI and RCM-LI) lead to unacceptably biased hydrologic simulations. Spatial disaggregation of the PCM output produced results similar to those achieved with the RCM interpolated output; nonetheless, neither PCM nor RCM output was useful for hydrologic simulation purposes without a bias-correction step. For the future climate scenario, only the BCSD-method (using PCM or RCM) was able to produce hydrologically plausible results. With the BCSD method, the RCM-derived hydrology was more sensitive to climate change than the PCM-derived hydrology.« less

  10. Three dimensional live-cell STED microscopy at increased depth using a water immersion objective

    NASA Astrophysics Data System (ADS)

    Heine, Jörn; Wurm, Christian A.; Keller-Findeisen, Jan; Schönle, Andreas; Harke, Benjamin; Reuss, Matthias; Winter, Franziska R.; Donnert, Gerald

    2018-05-01

    Modern fluorescence superresolution microscopes are capable of imaging living cells on the nanometer scale. One of those techniques is stimulated emission depletion (STED) which increases the microscope's resolution many times in the lateral and the axial directions. To achieve these high resolutions not only close to the coverslip but also at greater depths, the choice of objective becomes crucial. Oil immersion objectives have frequently been used for STED imaging since their high numerical aperture (NA) leads to high spatial resolutions. But during live-cell imaging, especially at great penetration depths, these objectives have a distinct disadvantage. The refractive index mismatch between the immersion oil and the usually aqueous embedding media of living specimens results in unwanted spherical aberrations. These aberrations distort the point spread functions (PSFs). Notably, during z- and 3D-STED imaging, the resolution increase along the optical axis is majorly hampered if at all possible. To overcome this limitation, we here use a water immersion objective in combination with a spatial light modulator for z-STED measurements of living samples at great depths. This compact design allows for switching between objectives without having to adapt the STED beam path and enables on the fly alterations of the STED PSF to correct for aberrations. Furthermore, we derive the influence of the NA on the axial STED resolution theoretically and experimentally. We show under live-cell imaging conditions that a water immersion objective leads to far superior results than an oil immersion objective at penetration depths of 5-180 μm.

  11. Image reconstruction and system modeling techniques for virtual-pinhole PET insert systems

    PubMed Central

    Keesing, Daniel B; Mathews, Aswin; Komarov, Sergey; Wu, Heyu; Song, Tae Yong; O'Sullivan, Joseph A; Tai, Yuan-Chuan

    2012-01-01

    Virtual-pinhole PET (VP-PET) imaging is a new technology in which one or more high-resolution detector modules are integrated into a conventional PET scanner with lower-resolution detectors. It can locally enhance the spatial resolution and contrast recovery near the add-on detectors, and depending on the configuration, may also increase the sensitivity of the system. This novel scanner geometry makes the reconstruction problem more challenging compared to the reconstruction of data from a standalone PET scanner, as new techniques are needed to model and account for the non-standard acquisition. In this paper, we present a general framework for fully 3D modeling of an arbitrary VP-PET insert system. The model components are incorporated into a statistical reconstruction algorithm to estimate an image from the multi-resolution data. For validation, we apply the proposed model and reconstruction approach to one of our custom-built VP-PET systems – a half-ring insert device integrated into a clinical PET/CT scanner. Details regarding the most important implementation issues are provided. We show that the proposed data model is consistent with the measured data, and that our approach can lead to reconstructions with improved spatial resolution and lesion detectability. PMID:22490983

  12. Remotely sensed high resolution irrigated area mapping in India for 2000 to 2015

    PubMed Central

    Ambika, Anukesh Krishnankutty; Wardlow, Brian; Mishra, Vimal

    2016-01-01

    India is among the countries that uses a significant fraction of available water for irrigation. Irrigated area in India has increased substantially after the Green revolution and both surface and groundwater have been extensively used. Under warming climate projections, irrigation frequency may increase leading to increased irrigation water demands. Water resources planning and management in agriculture need spatially-explicit irrigated area information for different crops and different crop growing seasons. However, annual, high-resolution irrigated area maps for India for an extended historical record that can be used for water resources planning and management are unavailable. Using 250 m normalized difference vegetation index (NDVI) data from Moderate Resolution Imaging Spectroradiometer (MODIS) and 56 m land use/land cover data, high-resolution irrigated area maps are developed for all the agroecological zones in India for the period of 2000–2015. The irrigated area maps were evaluated using the agricultural statistics data from ground surveys and were compared with the previously developed irrigation maps. High resolution (250 m) irrigated area maps showed satisfactory accuracy (R2=0.95) and can be used to understand interannual variability in irrigated area at various spatial scales. PMID:27996974

  13. Scaling Properties of Arctic Sea Ice Deformation in a High‐Resolution Viscous‐Plastic Sea Ice Model and in Satellite Observations

    PubMed Central

    Losch, Martin; Menemenlis, Dimitris

    2018-01-01

    Abstract Sea ice models with the traditional viscous‐plastic (VP) rheology and very small horizontal grid spacing can resolve leads and deformation rates localized along Linear Kinematic Features (LKF). In a 1 km pan‐Arctic sea ice‐ocean simulation, the small‐scale sea ice deformations are evaluated with a scaling analysis in relation to satellite observations of the Envisat Geophysical Processor System (EGPS) in the Central Arctic. A new coupled scaling analysis for data on Eulerian grids is used to determine the spatial and temporal scaling and the coupling between temporal and spatial scales. The spatial scaling of the modeled sea ice deformation implies multifractality. It is also coupled to temporal scales and varies realistically by region and season. The agreement of the spatial scaling with satellite observations challenges previous results with VP models at coarser resolution, which did not reproduce the observed scaling. The temporal scaling analysis shows that the VP model, as configured in this 1 km simulation, does not fully resolve the intermittency of sea ice deformation that is observed in satellite data. PMID:29576996

  14. Scaling Properties of Arctic Sea Ice Deformation in a High-Resolution Viscous-Plastic Sea Ice Model and in Satellite Observations

    NASA Astrophysics Data System (ADS)

    Hutter, Nils; Losch, Martin; Menemenlis, Dimitris

    2018-01-01

    Sea ice models with the traditional viscous-plastic (VP) rheology and very small horizontal grid spacing can resolve leads and deformation rates localized along Linear Kinematic Features (LKF). In a 1 km pan-Arctic sea ice-ocean simulation, the small-scale sea ice deformations are evaluated with a scaling analysis in relation to satellite observations of the Envisat Geophysical Processor System (EGPS) in the Central Arctic. A new coupled scaling analysis for data on Eulerian grids is used to determine the spatial and temporal scaling and the coupling between temporal and spatial scales. The spatial scaling of the modeled sea ice deformation implies multifractality. It is also coupled to temporal scales and varies realistically by region and season. The agreement of the spatial scaling with satellite observations challenges previous results with VP models at coarser resolution, which did not reproduce the observed scaling. The temporal scaling analysis shows that the VP model, as configured in this 1 km simulation, does not fully resolve the intermittency of sea ice deformation that is observed in satellite data.

  15. Scaling Properties of Arctic Sea Ice Deformation in a High-Resolution Viscous-Plastic Sea Ice Model and in Satellite Observations.

    PubMed

    Hutter, Nils; Losch, Martin; Menemenlis, Dimitris

    2018-01-01

    Sea ice models with the traditional viscous-plastic (VP) rheology and very small horizontal grid spacing can resolve leads and deformation rates localized along Linear Kinematic Features (LKF). In a 1 km pan-Arctic sea ice-ocean simulation, the small-scale sea ice deformations are evaluated with a scaling analysis in relation to satellite observations of the Envisat Geophysical Processor System (EGPS) in the Central Arctic. A new coupled scaling analysis for data on Eulerian grids is used to determine the spatial and temporal scaling and the coupling between temporal and spatial scales. The spatial scaling of the modeled sea ice deformation implies multifractality. It is also coupled to temporal scales and varies realistically by region and season. The agreement of the spatial scaling with satellite observations challenges previous results with VP models at coarser resolution, which did not reproduce the observed scaling. The temporal scaling analysis shows that the VP model, as configured in this 1 km simulation, does not fully resolve the intermittency of sea ice deformation that is observed in satellite data.

  16. Assessment of the Suitability of High Resolution Numerical Weather Model Outputs for Hydrological Modelling in Mountainous Cold Regions

    NASA Astrophysics Data System (ADS)

    Rasouli, K.; Pomeroy, J. W.; Hayashi, M.; Fang, X.; Gutmann, E. D.; Li, Y.

    2017-12-01

    The hydrology of mountainous cold regions has a large spatial variability that is driven both by climate variability and near-surface process variability associated with complex terrain and patterns of vegetation, soils, and hydrogeology. There is a need to downscale large-scale atmospheric circulations towards the fine scales that cold regions hydrological processes operate at to assess their spatial variability in complex terrain and quantify uncertainties by comparison to field observations. In this research, three high resolution numerical weather prediction models, namely, the Intermediate Complexity Atmosphere Research (ICAR), Weather Research and Forecasting (WRF), and Global Environmental Multiscale (GEM) models are used to represent spatial and temporal patterns of atmospheric conditions appropriate for hydrological modelling. An area covering high mountains and foothills of the Canadian Rockies was selected to assess and compare high resolution ICAR (1 km × 1 km), WRF (4 km × 4 km), and GEM (2.5 km × 2.5 km) model outputs with station-based meteorological measurements. ICAR with very low computational cost was run with different initial and boundary conditions and with finer spatial resolution, which allowed an assessment of modelling uncertainty and scaling that was difficult with WRF. Results show that ICAR, when compared with WRF and GEM, performs very well in precipitation and air temperature modelling in the Canadian Rockies, while all three models show a fair performance in simulating wind and humidity fields. Representation of local-scale atmospheric dynamics leading to realistic fields of temperature and precipitation by ICAR, WRF, and GEM makes these models suitable for high resolution cold regions hydrological predictions in complex terrain, which is a key factor in estimating water security in western Canada.

  17. A multi-directional backlight for a wide-angle, glasses-free three-dimensional display.

    PubMed

    Fattal, David; Peng, Zhen; Tran, Tho; Vo, Sonny; Fiorentino, Marco; Brug, Jim; Beausoleil, Raymond G

    2013-03-21

    Multiview three-dimensional (3D) displays can project the correct perspectives of a 3D image in many spatial directions simultaneously. They provide a 3D stereoscopic experience to many viewers at the same time with full motion parallax and do not require special glasses or eye tracking. None of the leading multiview 3D solutions is particularly well suited to mobile devices (watches, mobile phones or tablets), which require the combination of a thin, portable form factor, a high spatial resolution and a wide full-parallax view zone (for short viewing distance from potentially steep angles). Here we introduce a multi-directional diffractive backlight technology that permits the rendering of high-resolution, full-parallax 3D images in a very wide view zone (up to 180 degrees in principle) at an observation distance of up to a metre. The key to our design is a guided-wave illumination technique based on light-emitting diodes that produces wide-angle multiview images in colour from a thin planar transparent lightguide. Pixels associated with different views or colours are spatially multiplexed and can be independently addressed and modulated at video rate using an external shutter plane. To illustrate the capabilities of this technology, we use simple ink masks or a high-resolution commercial liquid-crystal display unit to demonstrate passive and active (30 frames per second) modulation of a 64-view backlight, producing 3D images with a spatial resolution of 88 pixels per inch and full-motion parallax in an unprecedented view zone of 90 degrees. We also present several transparent hand-held prototypes showing animated sequences of up to six different 200-view images at a resolution of 127 pixels per inch.

  18. AN ACTIVE-PASSIVE COMBINED ALGORITHM FOR HIGH SPATIAL RESOLUTION RETRIEVAL OF SOIL MOISTURE FROM SATELLITE SENSORS (Invited)

    NASA Astrophysics Data System (ADS)

    Lakshmi, V.; Mladenova, I. E.; Narayan, U.

    2009-12-01

    Soil moisture is known to be an essential factor in controlling the partitioning of rainfall into surface runoff and infiltration and solar energy into latent and sensible heat fluxes. Remote sensing has long proven its capability to obtain soil moisture in near real-time. However, at the present time we have the Advanced Scanning Microwave Radiometer (AMSR-E) on board NASA’s AQUA platform is the only satellite sensor that supplies a soil moisture product. AMSR-E coarse spatial resolution (~ 50 km at 6.9 GHz) strongly limits its applicability for small scale studies. A very promising technique for spatial disaggregation by combining radar and radiometer observations has been demonstrated by the authors using a methodology is based on the assumption that any change in measured brightness temperature and backscatter from one to the next time step is due primarily to change in soil wetness. The approach uses radiometric estimates of soil moisture at a lower resolution to compute the sensitivity of radar to soil moisture at the lower resolution. This estimate of sensitivity is then disaggregated using vegetation water content, vegetation type and soil texture information, which are the variables on which determine the radar sensitivity to soil moisture and are generally available at a scale of radar observation. This change detection algorithm is applied to several locations. We have used aircraft observed active and passive data over Walnut Creek watershed in Central Iowa in 2002; the Little Washita Watershed in Oklahoma in 2003 and the Murrumbidgee Catchment in southeastern Australia for 2006. All of these locations have different soils and land cover conditions which leads to a rigorous test of the disaggregation algorithm. Furthermore, we compare the derived high spatial resolution soil moisture to in-situ sampling and ground observation networks

  19. Elevation-dependent warming in global climate model simulations at high spatial resolution

    NASA Astrophysics Data System (ADS)

    Palazzi, Elisa; Mortarini, Luca; Terzago, Silvia; von Hardenberg, Jost

    2018-06-01

    The enhancement of warming rates with elevation, so-called elevation-dependent warming (EDW), is one of the regional, still not completely understood, expressions of global warming. Sentinels of climate and environmental changes, mountains have experienced more rapid and intense warming trends in the recent decades, leading to serious impacts on mountain ecosystems and downstream. In this paper we use a state-of-the-art Global Climate Model (EC-Earth) to investigate the impact of model spatial resolution on the representation of this phenomenon and to highlight possible differences in EDW and its causes in different mountain regions of the Northern Hemisphere. To this end we use EC-Earth climate simulations at five different spatial resolutions, from ˜ 125 to ˜ 16 km, to explore the existence and the driving mechanisms of EDW in the Colorado Rocky Mountains, the Greater Alpine Region and the Tibetan Plateau-Himalayas. Our results show that the more frequent EDW drivers in all regions and seasons are the changes in albedo and in downward thermal radiation and this is reflected in both daytime and nighttime warming. In the Tibetan Plateau-Himalayas and in the Greater Alpine Region, an additional driver is the change in specific humidity. We also find that, while generally the model shows no clear resolution dependence in its ability to simulate the existence of EDW in the different regions, specific EDW characteristics such as its intensity and the relative role of different driving mechanisms may be different in simulations performed at different spatial resolutions. Moreover, we find that the role of internal climate variability can be significant in modulating the EDW signal, as suggested by the spread found in the multi-member ensemble of the EC-Earth experiments which we use.

  20. Resolution of VTI anisotropy with elastic full-waveform inversion: theory and basic numerical examples

    NASA Astrophysics Data System (ADS)

    Podgornova, O.; Leaney, S.; Liang, L.

    2018-07-01

    Extracting medium properties from seismic data faces some limitations due to the finite frequency content of the data and restricted spatial positions of the sources and receivers. Some distributions of the medium properties make low impact on the data (including none). If these properties are used as the inversion parameters, then the inverse problem becomes overparametrized, leading to ambiguous results. We present an analysis of multiparameter resolution for the linearized inverse problem in the framework of elastic full-waveform inversion. We show that the spatial and multiparameter sensitivities are intertwined and non-sensitive properties are spatial distributions of some non-trivial combinations of the conventional elastic parameters. The analysis accounts for the Hessian information and frequency content of the data; it is semi-analytical (in some scenarios analytical), easy to interpret and enhances results of the widely used radiation pattern analysis. Single-type scattering is shown to have limited sensitivity, even for full-aperture data. Finite-frequency data lose multiparameter sensitivity at smooth and fine spatial scales. Also, we establish ways to quantify a spatial-multiparameter coupling and demonstrate that the theoretical predictions agree well with the numerical results.

  1. Hartmann characterization of the PEEM-3 aberration-corrected X-ray photoemission electron microscope.

    PubMed

    Scholl, A; Marcus, M A; Doran, A; Nasiatka, J R; Young, A T; MacDowell, A A; Streubel, R; Kent, N; Feng, J; Wan, W; Padmore, H A

    2018-05-01

    Aberration correction by an electron mirror dramatically improves the spatial resolution and transmission of photoemission electron microscopes. We will review the performance of the recently installed aberration corrector of the X-ray Photoemission Electron Microscope PEEM-3 and show a large improvement in the efficiency of the electron optics. Hartmann testing is introduced as a quantitative method to measure the geometrical aberrations of a cathode lens electron microscope. We find that aberration correction leads to an order of magnitude reduction of the spherical aberrations, suggesting that a spatial resolution of below 100 nm is possible at 100% transmission of the optics when using x-rays. We demonstrate this improved performance by imaging test patterns employing element and magnetic contrast. Published by Elsevier B.V.

  2. Ultrasound modulation of bioluminescence generated inside a turbid medium

    NASA Astrophysics Data System (ADS)

    Ahmad, Junaid; Jayet, Baptiste; Hill, Philip J.; Mather, Melissa L.; Dehghani, Hamid; Morgan, Stephen P.

    2017-03-01

    In vivo bioluminescence imaging (BLI) has poor spatial resolution owing to strong light scattering by tissue, which also affects quantitative accuracy. This paper proposes a hybrid acousto-optic imaging platform that images bioluminescence modulated at ultrasound (US) frequency inside an optically scattering medium. This produces an US modulated light within the tissue that reduces the effects of light scattering and improves the spatial resolution. The system consists of a continuously excited 3.5 MHz US transducer applied to a tissue like phantom of known optical properties embedded with bio-or chemiluminescent sources that are used to mimic in vivo experiments. Scanning US over the turbid medium modulates the luminescent sources deep inside tissue at several US scan points. These modulated signals are recorded by a photomultiplier tube and lock-in detection to generate a 1D profile. Indeed, high frequency US enables small focal volume to improve spatial resolution, but this leads to lower signal-to-noise ratio. First experimental results show that US enables localization of a small luminescent source (around 2 mm wide) deep ( 20 mm) inside a tissue phantom having a scattering coefficient of 80 cm-1. Two sources separated by 10 mm could be resolved 20 mm inside a chicken breast.

  3. Impacting the effect of fMRI noise through hardware and acquisition choices - Implications for controlling false positive rates.

    PubMed

    Wald, Lawrence L; Polimeni, Jonathan R

    2017-07-01

    We review the components of time-series noise in fMRI experiments and the effect of image acquisition parameters on the noise. In addition to helping determine the total amount of signal and noise (and thus temporal SNR), the acquisition parameters have been shown to be critical in determining the ratio of thermal to physiological induced noise components in the time series. Although limited attention has been given to this latter metric, we show that it determines the degree of spatial correlations seen in the time-series noise. The spatially correlations of the physiological noise component are well known, but recent studies have shown that they can lead to a higher than expected false-positive rate in cluster-wise inference based on parametric statistical methods used by many researchers. Based on understanding the effect of acquisition parameters on the noise mixture, we propose several acquisition strategies that might be helpful reducing this elevated false-positive rate, such as moving to high spatial resolution or using highly-accelerated acquisitions where thermal sources dominate. We suggest that the spatial noise correlations at the root of the inflated false-positive rate problem can be limited with these strategies, and the well-behaved spatial auto-correlation functions (ACFs) assumed by the conventional statistical methods are retained if the high resolution data is smoothed to conventional resolutions. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Moving microphone arrays to reduce spatial aliasing in the beamforming technique: theoretical background and numerical investigation.

    PubMed

    Cigada, Alfredo; Lurati, Massimiliano; Ripamonti, Francesco; Vanali, Marcello

    2008-12-01

    This paper introduces a measurement technique aimed at reducing or possibly eliminating the spatial aliasing problem in the beamforming technique. Beamforming main disadvantages are a poor spatial resolution, at low frequency, and the spatial aliasing problem, at higher frequency, leading to the identification of false sources. The idea is to move the microphone array during the measurement operation. In this paper, the proposed approach is theoretically and numerically investigated by means of simple sound propagation models, proving its efficiency in reducing the spatial aliasing. A number of different array configurations are numerically investigated together with the most important parameters governing this measurement technique. A set of numerical results concerning the case of a planar rotating array is shown, together with a first experimental validation of the method.

  5. Spatial resolution of pace mapping of idiopathic ventricular tachycardia/ectopy originating in the right ventricular outflow tract.

    PubMed

    Bogun, Frank; Taj, Majid; Ting, Michael; Kim, Hyungjin Myra; Reich, Stephen; Good, Eric; Jongnarangsin, Krit; Chugh, Aman; Pelosi, Frank; Oral, Hakan; Morady, Fred

    2008-03-01

    Pace mapping has been used to identify the site of origin of focal ventricular arrhythmias. The spatial resolution of pace mapping has not been adequately quantified using currently available three-dimensional mapping systems. The purpose of this study was to determine the spatial resolution of pace mapping in patients with idiopathic ventricular tachycardia or premature ventricular contractions originating in the right ventricular outflow tract. In 16 patients with idiopathic ventricular tachycardia/ectopy from the right ventricular outflow tract, comparisons and classifications of pace maps were performed by two observers (good pace map: match >10/12 leads; inadequate pace map: match < or =10/12 leads) and a customized MATLAB 6.0 program (assessing correlation coefficient and normalized root mean square of the difference (nRMSd) between test and template signals). With an electroanatomic mapping system, the correlation coefficient of each pace map was correlated with the distance between the pacing site and the effective ablation site. The endocardial area within the 10-ms activation isochrone was measured. The ablation procedure was effective in all patients. Sites with good pace maps had a higher correlation coefficient and lower nRMSd than sites with inadequate pace maps (correlation coefficient: 0.96 +/- 0.03 vs 0.76 +/- 0.18, P <.0001; nRMSd: 0.41 +/- 0.16 vs 0.89 +/- 0.39, P <.0001). Using receiver operating characteristic curves, appropriate cutoff values were >0.94 for correlation coefficient (sensitivity 81%, specificity 89%) and < or =0.54 for nRMSd (sensitivity 76%, specificity 80%). Good pace maps were located a mean of 7.3 +/- 5.0 mm from the effective ablation site and had a mean activation time of -24 +/- 7 ms. However, in 3 (18%) of 16 patients, the best pace map was inadequate at the effective ablation site, with an endocardial activation time at these sites of -25 +/- 12 ms. Pace maps with correlation coefficient > or =0.94 were confined to an area of 1.8 +/- 0.6 cm2. The 10-ms isochrone measured 1.2 +/- 0.7 cm2. The spatial resolution of a good pace map for targeting ventricular tachycardia/ectopy is 1.8 cm2 in the right ventricular outflow tract and therefore is inferior to the spatial resolution of activation mapping as assessed by isochronal activation. In approximately 20% of patients, pace mapping is unreliable in identifying the site of origin, possibly due a deeper site of origin and preferential conduction via fibers connecting the focus to the endocardial surface.

  6. Efficient electromagnetic source imaging with adaptive standardized LORETA/FOCUSS.

    PubMed

    Schimpf, Paul H; Liu, Hesheng; Ramon, Ceon; Haueisen, Jens

    2005-05-01

    Functional brain imaging and source localization based on the scalp's potential field require a solution to an ill-posed inverse problem with many solutions. This makes it necessary to incorporate a priori knowledge in order to select a particular solution. A computational challenge for some subject-specific head models is that many inverse algorithms require a comprehensive sampling of the candidate source space at the desired resolution. In this study, we present an algorithm that can accurately reconstruct details of localized source activity from a sparse sampling of the candidate source space. Forward computations are minimized through an adaptive procedure that increases source resolution as the spatial extent is reduced. With this algorithm, we were able to compute inverses using only 6% to 11% of the full resolution lead-field, with a localization accuracy that was not significantly different than an exhaustive search through a fully-sampled source space. The technique is, therefore, applicable for use with anatomically-realistic, subject-specific forward models for applications with spatially concentrated source activity.

  7. Simulating air quality in the Netherlands with WRF-Chem 3.8.1 at high resolution

    NASA Astrophysics Data System (ADS)

    Hilboll, Andreas; Kuenen, Jeroen; Denier van der Gon, Hugo; Vrekoussis, Mihalis

    2017-04-01

    Air pollution is the single most important environmental hazard for public health. Especially nitrogen dioxide (NO(2)) plays a key role in air quality research, both due to its immediate importance for the production of tropospheric ozone and acid rain, and as a general indicator of fossil fuel burning. To improve the quality and reproducibility of measurements of NO(2) vertical distribution from MAX-DOAS instruments, the CINDI-2 campaign was held in Cabauw (NL) in September 2016, featuring instruments from many of the leading atmospheric research institutions in the world. The measurement site in Cabauw is located in a rather rural region, surrounded by several major pollution centers (Utrecht, Rotterdam, Amsterdam). Since the instruments measure in several azimuthal directions, the measurements are able to provide information about the high spatial and temporal variability in pollutant concentrations, caused by both the spatial heterogeneity of emissions and meteorological conditions. When using air quality models in the analysis of the measured data to identify pollution sources, this mandates high spatial resolution in order to resolve the expected fine spatial structure in NO(2) concentrations. In spite of constant advances in computing power, this remains a challenge, mostly due to the uncertainties and large spatial heterogeneity of emissions and the need to parameterize small-scale processes. In this study, we use the most recent version 3.8.1 of the Weather Research and Forecasting Model with Chemistry (WRF-Chem) to simulate air pollutant concentrations over the Netherlands, to facilitate the analysis of the CINDI-2 NO(2}) measurements. The model setup contains three nested domains with horizontal resolutions of 15, 3, and 1 km. Anthropogenic emissions are taken from the TNO-MACC III inventory and, where available, from the Dutch Pollutant Release and Transfer Register (Emissieregistratie), at a spatial resolution of 7 and 1 km, respectively. We use the Common Reactive Intermediates gas-phase chemical mechanism (CRIv2-R5) with the MOSAIC aerosol module. The high spatial resolution of model and emissions will allow us to resolve the strong spatial gradients in the NO(2) concentrations measured during the CINDI-2 campaign, allowing for an unprecedented level of detail in the analysis of individual pollution sources.

  8. Super-resolution imaging by resonant tunneling in anisotropic acoustic metamaterials.

    PubMed

    Liu, Aiping; Zhou, Xiaoming; Huang, Guoliang; Hu, Gengkai

    2012-10-01

    The resonant tunneling effects that could result in complete transmission of evanescent waves are examined in acoustic metamaterials of anisotropic effective mass. The tunneling conditions are first derived for the metamaterials composed of classical mass-in-mass structures. It is found that the tunneling transmission occurs when the total length of metamaterials is an integral number of half-wavelengths of the periodic Bloch wave. Due to the local resonance of building units of metamaterials, the Bloch waves are spatially modulated within the periodic structures, leading to the resonant tunneling occurring in the low-frequency region. The metamaterial slab lens with anisotropic effective mass is designed by which the physics of resonant tunneling and the features for evanescent field manipulations are examined. The designed lens interacts with evanescent waves in the way of the propagating wavenumber weakly dependent on the spatial frequency of evanescent waves. Full-wave simulations validate the imaging performance of the proposed lens with the spatial resolution beyond the diffraction limit.

  9. Enhanced linear-array photoacoustic beamforming using modified coherence factor.

    PubMed

    Mozaffarzadeh, Moein; Yan, Yan; Mehrmohammadi, Mohammad; Makkiabadi, Bahador

    2018-02-01

    Photoacoustic imaging (PAI) is a promising medical imaging modality providing the spatial resolution of ultrasound imaging and the contrast of optical imaging. For linear-array PAI, a beamformer can be used as the reconstruction algorithm. Delay-and-sum (DAS) is the most prevalent beamforming algorithm in PAI. However, using DAS beamformer leads to low-resolution images as well as high sidelobes due to nondesired contribution of off-axis signals. Coherence factor (CF) is a weighting method in which each pixel of the reconstructed image is weighted, based on the spatial spectrum of the aperture, to mainly improve the contrast. We demonstrate that the numerator of the formula of CF contains a DAS algebra and propose the use of a delay-multiply-and-sum beamformer instead of the available DAS on the numerator. The proposed weighting technique, modified CF (MCF), has been evaluated numerically and experimentally compared to CF. It was shown that MCF leads to lower sidelobes and better detectable targets. The quantitative results of the experiment (using wire targets) show that MCF leads to for about 45% and 40% improvement, in comparison with CF, in the terms of signal-to-noise ratio and full-width-half-maximum, respectively. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  10. The Two-Dimensional Gabor Function Adapted to Natural Image Statistics: A Model of Simple-Cell Receptive Fields and Sparse Structure in Images.

    PubMed

    Loxley, P N

    2017-10-01

    The two-dimensional Gabor function is adapted to natural image statistics, leading to a tractable probabilistic generative model that can be used to model simple cell receptive field profiles, or generate basis functions for sparse coding applications. Learning is found to be most pronounced in three Gabor function parameters representing the size and spatial frequency of the two-dimensional Gabor function and characterized by a nonuniform probability distribution with heavy tails. All three parameters are found to be strongly correlated, resulting in a basis of multiscale Gabor functions with similar aspect ratios and size-dependent spatial frequencies. A key finding is that the distribution of receptive-field sizes is scale invariant over a wide range of values, so there is no characteristic receptive field size selected by natural image statistics. The Gabor function aspect ratio is found to be approximately conserved by the learning rules and is therefore not well determined by natural image statistics. This allows for three distinct solutions: a basis of Gabor functions with sharp orientation resolution at the expense of spatial-frequency resolution, a basis of Gabor functions with sharp spatial-frequency resolution at the expense of orientation resolution, or a basis with unit aspect ratio. Arbitrary mixtures of all three cases are also possible. Two parameters controlling the shape of the marginal distributions in a probabilistic generative model fully account for all three solutions. The best-performing probabilistic generative model for sparse coding applications is found to be a gaussian copula with Pareto marginal probability density functions.

  11. Spatiotemporal comparison of highly-resolved emissions and concentrations of carbon dioxide and criteria pollutants in Salt Lake City, Utah for health and policy applications

    NASA Astrophysics Data System (ADS)

    Mendoza, D. L.; Lin, J. C.; Mitchell, L.; Gurney, K. R.; Patarasuk, R.; Fasoli, B.; Bares, R.; o'Keefe, D.; Song, T.; Huang, J.; Horel, J.; Crosman, E.; Ehleringer, J. R.

    2015-12-01

    This study addresses the need for robust highly-resolved emissions and concentration data required for planning purposes and policy development aimed at managing pollutant sources. Adverse health effects resulting from urban pollution exposure are dependent on proximity to emission sources and atmospheric mixing, necessitating models with high spatial and temporal resolution. As urban emission sources co-emit carbon dioxide (CO2) and criteria pollutants (CAPs), efforts to reduce specific pollutants would synergistically reduce others. We present emissions inventories and modeled concentrations for CO2 and CAPs: carbon monoxide (CO), lead (Pb), nitrogen oxides (NOx), particulate matter (PM2.5 and PM10), and sulfur oxides (SOx) for Salt Lake County, Utah. We compare the resulting concentrations against stationary and mobile measurement data and present a systematic quantification of uncertainties. The emissions inventory for CO2 is based on the Hestia emissions data inventory that resolves emissions at an hourly, building and road link resolution as well as hourly gridded emissions with a 0.002o x 0.002o spatial resolution. Two methods for deriving criteria pollutant emission inventories were compared. One was constructed using methods similar to Hestia but downscales total emissions based on the 2011 National Emissions Inventory (NEI). The other used Emission Modeling Clearinghouse spatial and temporal surrogates to downscale the NEI data from annual and county-level resolution to hourly and 0.002o x 0.002o grid cells. The gridded emissions from both criteria pollutant methods were compared against the Hestia CO2 gridded data to characterize spatial similarities and differences between them. Correlations were calculated at multiple scales of aggregation. The CALPUFF dispersion model was used to transport emissions and estimate air pollutant concentrations at an hourly 0.002o x 0.002o resolution. The resulting concentrations were spatially compared in the same manner as the emissions. Modeled results were compared against stationary measurements and from equipment mounted atop a light rail car in the Salt Lake City area. The comparison between both approaches to emissions estimation and resulting concentrations highlights spatial locations and hours of high variability and uncertainty.

  12. Improving color characteristics of LCD

    NASA Astrophysics Data System (ADS)

    Feng, Xiao-fan; Daly, Scott J.

    2005-01-01

    The drive for larger size, higher spatial resolution, and wider aperture LCD has shown to increase the electrical crosstalk between electrodes in the driver circuit. This crosstalk leads to additivity errors in color LCD. In this paper, the crosstalk effect was analyzed with micrographs captured from an imaging colorimeter. The experimental result reveals the subpixel nature of color crosstalk. A spatial-based subpixel crosstalk correction algorithm was developed to improve the color performance of LCD. Compared to a 3D lookup table approach, the new algorithm is easier to implement and more accurate in performance.

  13. Restoring the spatial resolution of refocus images on 4D light field

    NASA Astrophysics Data System (ADS)

    Lim, JaeGuyn; Park, ByungKwan; Kang, JooYoung; Lee, SeongDeok

    2010-01-01

    This paper presents the method for generating a refocus image with restored spatial resolution on a plenoptic camera, which functions controlling the depth of field after capturing one image unlike a traditional camera. It is generally known that the camera captures 4D light field (angular and spatial information of light) within a limited 2D sensor and results in reducing 2D spatial resolution due to inevitable 2D angular data. That's the reason why a refocus image is composed of a low spatial resolution compared with 2D sensor. However, it has recently been known that angular data contain sub-pixel spatial information such that the spatial resolution of 4D light field can be increased. We exploit the fact for improving the spatial resolution of a refocus image. We have experimentally scrutinized that the spatial information is different according to the depth of objects from a camera. So, from the selection of refocused regions (corresponding depth), we use corresponding pre-estimated sub-pixel spatial information for reconstructing spatial resolution of the regions. Meanwhile other regions maintain out-of-focus. Our experimental results show the effect of this proposed method compared to existing method.

  14. Accounting for spatial correlation errors in the assimilation of GRACE into hydrological models through localization

    NASA Astrophysics Data System (ADS)

    Khaki, M.; Schumacher, M.; Forootan, E.; Kuhn, M.; Awange, J. L.; van Dijk, A. I. J. M.

    2017-10-01

    Assimilation of terrestrial water storage (TWS) information from the Gravity Recovery And Climate Experiment (GRACE) satellite mission can provide significant improvements in hydrological modelling. However, the rather coarse spatial resolution of GRACE TWS and its spatially correlated errors pose considerable challenges for achieving realistic assimilation results. Consequently, successful data assimilation depends on rigorous modelling of the full error covariance matrix of the GRACE TWS estimates, as well as realistic error behavior for hydrological model simulations. In this study, we assess the application of local analysis (LA) to maximize the contribution of GRACE TWS in hydrological data assimilation. For this, we assimilate GRACE TWS into the World-Wide Water Resources Assessment system (W3RA) over the Australian continent while applying LA and accounting for existing spatial correlations using the full error covariance matrix. GRACE TWS data is applied with different spatial resolutions including 1° to 5° grids, as well as basin averages. The ensemble-based sequential filtering technique of the Square Root Analysis (SQRA) is applied to assimilate TWS data into W3RA. For each spatial scale, the performance of the data assimilation is assessed through comparison with independent in-situ ground water and soil moisture observations. Overall, the results demonstrate that LA is able to stabilize the inversion process (within the implementation of the SQRA filter) leading to less errors for all spatial scales considered with an average RMSE improvement of 54% (e.g., 52.23 mm down to 26.80 mm) for all the cases with respect to groundwater in-situ measurements. Validating the assimilated results with groundwater observations indicates that LA leads to 13% better (in terms of RMSE) assimilation results compared to the cases with Gaussian errors assumptions. This highlights the great potential of LA and the use of the full error covariance matrix of GRACE TWS estimates for improved data assimilation results.

  15. High resolution modelling and observation of wind-driven surface currents in a semi-enclosed estuary

    NASA Astrophysics Data System (ADS)

    Nash, S.; Hartnett, M.; McKinstry, A.; Ragnoli, E.; Nagle, D.

    2012-04-01

    Hydrodynamic circulation in estuaries is primarily driven by tides, river inflows and surface winds. While tidal and river data can be quite easily obtained for input to hydrodynamic models, sourcing accurate surface wind data is problematic. Firstly, the wind data used in hydrodynamic models is usually measured on land and can be quite different in magnitude and direction from offshore winds. Secondly, surface winds are spatially-varying but due to a lack of data it is common practice to specify a non-varying wind speed and direction across the full extents of a model domain. These problems can lead to inaccuracies in the surface currents computed by three-dimensional hydrodynamic models. In the present research, a wind forecast model is coupled with a three-dimensional numerical model of Galway Bay, a semi-enclosed estuary on the west coast of Ireland, to investigate the effect of surface wind data resolution on model accuracy. High resolution and low resolution wind fields are specified to the model and the computed surface currents are compared with high resolution surface current measurements obtained from two high frequency SeaSonde-type Coastal Ocean Dynamics Applications Radars (CODAR). The wind forecast models used for the research are Harmonie cy361.3, running on 2.5 and 0.5km spatial grids for the low resolution and high resolution models respectively. The low-resolution model runs over an Irish domain on 540x500 grid points with 60 vertical levels and a 60s timestep and is driven by ECMWF boundary conditions. The nested high-resolution model uses 300x300 grid points on 60 vertical levels and a 12s timestep. EFDC (Environmental Fluid Dynamics Code) is used for the hydrodynamic model. The Galway Bay model has ten vertical layers and is resolved spatially and temporally at 150m and 4 sec respectively. The hydrodynamic model is run for selected hindcast dates when wind fields were highly energetic. Spatially- and temporally-varying wind data is provided by offline coupling with the wind forecast models. Modelled surface currents show good correlation with CODAR observed currents and the resolution of the surface wind data is shown to be important for model accuracy.

  16. High Spatial Resolution Commercial Satellite Imaging Product Characterization

    NASA Technical Reports Server (NTRS)

    Ryan, Robert E.; Pagnutti, Mary; Blonski, Slawomir; Ross, Kenton W.; Stnaley, Thomas

    2005-01-01

    NASA Stennis Space Center's Remote Sensing group has been characterizing privately owned high spatial resolution multispectral imaging systems, such as IKONOS, QuickBird, and OrbView-3. Natural and man made targets were used for spatial resolution, radiometric, and geopositional characterizations. Higher spatial resolution also presents significant adjacency effects for accurate reliable radiometry.

  17. Comparing long-term geomorphic model outcomes with sediment archives highlights the need for high-resolution Holocene land cover reconstructions

    NASA Astrophysics Data System (ADS)

    De Brue, Hanne; Verstraeten, Gert

    2013-04-01

    During the last decade, several global land cover reconstructions have been produced that enable to quantify human impact on the landscape since the introduction of agriculture. Application of these land cover maps in geomorphic models potentially allows to estimate the anthropogenic impact on sediment fluxes and thus to reconstruct changes in landscape morphology through time. However, current land cover reconstructions face some drawbacks. First of all, their low spatial resolution (i.e. 5 arc-minutes at best) questions their use in geomorphic models, as sub-catchment vegetation patterns play an important role in sediment dynamics. Existing global land cover reconstructions also do not differentiate the typology of human impact (cropland, grazing land, disturbed forests), although the susceptibility of different anthropogenic land uses towards erosion varies greatly. Finally, the various land cover reconstructions differ significantly regarding the estimated intensity of human impact for the preindustrial period. In this study, we assessed the performance of a spatially distributed erosion and sediment redistribution model that operates at high resolution (100 m) to the quality and spatial resolution of input land cover maps. This was done through a comparison of two sets of model runs. Firstly, low-resolution land cover (expressed as percentage of non-natural vegetation) maps were resampled to a spatial resolution of 100 m without differentiation of non-natural vegetation types. For the second set of model runs, estimated non-natural vegetation was differentiated in areas of cropland and grassland, and spatially allocated to a high-resolution grid (100 m) using a logistic model that relates contemporary land cover classes to slope, soil characteristics, landforms and distance to rivers. For both land cover maps, different scenarios for the ratio between cropland and grassland were simulated. Analyses were performed for several time periods throughout the Holocene, for the Scheldt River Basin (19,000 km2) in Belgium and northern France. Results indicate that low-resolution land cover information, regardless of the considered cropland/grassland ratio, leads to largely overestimated sediment fluxes when compared to field-based sediment budgets. Allocation of land cover to a higher spatial resolution yields far better results. Variations in model outcomes are related to differences in landscape connectivity between allocated and non-allocated land cover. These results point towards the need for higher-resolution land cover maps that incorporate the patchiness of vegetation at relevant scales regarding geomorphic processes. Also, model results with allocated and non-allocated land cover maps differ greatly for different cropland/grassland ratios. This indicates that there is not only a need for land cover reconstructions at high spatial resolution, but also that differentiation between cropland and grassland is essential for accurate geomorphic modeling. Further improvements in land cover reconstructions are thus needed before reliable quantitative estimates of anthropogenic impact on soil profiles and sediment redistribution can be simulated at continental scales. Detailed historic sediment budgets can provide an important tool not only for validating but also for reconstructing land cover histories.

  18. Automated Verification of Spatial Resolution in Remotely Sensed Imagery

    NASA Technical Reports Server (NTRS)

    Davis, Bruce; Ryan, Robert; Holekamp, Kara; Vaughn, Ronald

    2011-01-01

    Image spatial resolution characteristics can vary widely among sources. In the case of aerial-based imaging systems, the image spatial resolution characteristics can even vary between acquisitions. In these systems, aircraft altitude, speed, and sensor look angle all affect image spatial resolution. Image spatial resolution needs to be verified with estimators that include the ground sample distance (GSD), the modulation transfer function (MTF), and the relative edge response (RER), all of which are key components of image quality, along with signal-to-noise ratio (SNR) and dynamic range. Knowledge of spatial resolution parameters is important to determine if features of interest are distinguishable in imagery or associated products, and to develop image restoration algorithms. An automated Spatial Resolution Verification Tool (SRVT) was developed to rapidly determine the spatial resolution characteristics of remotely sensed aerial and satellite imagery. Most current methods for assessing spatial resolution characteristics of imagery rely on pre-deployed engineered targets and are performed only at selected times within preselected scenes. The SRVT addresses these insufficiencies by finding uniform, high-contrast edges from urban scenes and then using these edges to determine standard estimators of spatial resolution, such as the MTF and the RER. The SRVT was developed using the MATLAB programming language and environment. This automated software algorithm assesses every image in an acquired data set, using edges found within each image, and in many cases eliminating the need for dedicated edge targets. The SRVT automatically identifies high-contrast, uniform edges and calculates the MTF and RER of each image, and when possible, within sections of an image, so that the variation of spatial resolution characteristics across the image can be analyzed. The automated algorithm is capable of quickly verifying the spatial resolution quality of all images within a data set, enabling the appropriate use of those images in a number of applications.

  19. Adaptive zooming in X-ray computed tomography.

    PubMed

    Dabravolski, Andrei; Batenburg, Kees Joost; Sijbers, Jan

    2014-01-01

    In computed tomography (CT), the source-detector system commonly rotates around the object in a circular trajectory. Such a trajectory does not allow to exploit a detector fully when scanning elongated objects. Increase the spatial resolution of the reconstructed image by optimal zooming during scanning. A new approach is proposed, in which the full width of the detector is exploited for every projection angle. This approach is based on the use of prior information about the object's convex hull to move the source as close as possible to the object, while avoiding truncation of the projections. Experiments show that the proposed approach can significantly improve reconstruction quality, producing reconstructions with smaller errors and revealing more details in the object. The proposed approach can lead to more accurate reconstructions and increased spatial resolution in the object compared to the conventional circular trajectory.

  20. Playing the Scales: Regional Transformations and the Differentiation of Rural Space in the Chilean Wine Industry

    ERIC Educational Resources Information Center

    Overton, John; Murray, Warwick E.

    2011-01-01

    Globalization and industrial restructuring transform rural places in complex and often contradictory ways. These involve both quantitative changes, increasing the size and scope of operation to achieve economies of scale, and qualitative shifts, sometimes leading to a shift up the quality/price scale, towards finer spatial resolution and…

  1. Resolution Enhancement of Hyperion Hyperspectral Data using Ikonos Multispectral Data

    DTIC Science & Technology

    2007-09-01

    spatial - resolution hyperspectral image to produce a sharpened product. The result is a product that has the spectral properties of the ...multispectral sensors. In this work, we examine the benefits of combining data from high- spatial - resolution , low- spectral - resolution spectral imaging...sensors with data obtained from high- spectral - resolution , low- spatial - resolution spectral imaging sensors.

  2. Thematic and spatial resolutions affect model-based predictions of tree species distribution.

    PubMed

    Liang, Yu; He, Hong S; Fraser, Jacob S; Wu, ZhiWei

    2013-01-01

    Subjective decisions of thematic and spatial resolutions in characterizing environmental heterogeneity may affect the characterizations of spatial pattern and the simulation of occurrence and rate of ecological processes, and in turn, model-based tree species distribution. Thus, this study quantified the importance of thematic and spatial resolutions, and their interaction in predictions of tree species distribution (quantified by species abundance). We investigated how model-predicted species abundances changed and whether tree species with different ecological traits (e.g., seed dispersal distance, competitive capacity) had different responses to varying thematic and spatial resolutions. We used the LANDIS forest landscape model to predict tree species distribution at the landscape scale and designed a series of scenarios with different thematic (different numbers of land types) and spatial resolutions combinations, and then statistically examined the differences of species abundance among these scenarios. Results showed that both thematic and spatial resolutions affected model-based predictions of species distribution, but thematic resolution had a greater effect. Species ecological traits affected the predictions. For species with moderate dispersal distance and relatively abundant seed sources, predicted abundance increased as thematic resolution increased. However, for species with long seeding distance or high shade tolerance, thematic resolution had an inverse effect on predicted abundance. When seed sources and dispersal distance were not limiting, the predicted species abundance increased with spatial resolution and vice versa. Results from this study may provide insights into the choice of thematic and spatial resolutions for model-based predictions of tree species distribution.

  3. Thematic and Spatial Resolutions Affect Model-Based Predictions of Tree Species Distribution

    PubMed Central

    Liang, Yu; He, Hong S.; Fraser, Jacob S.; Wu, ZhiWei

    2013-01-01

    Subjective decisions of thematic and spatial resolutions in characterizing environmental heterogeneity may affect the characterizations of spatial pattern and the simulation of occurrence and rate of ecological processes, and in turn, model-based tree species distribution. Thus, this study quantified the importance of thematic and spatial resolutions, and their interaction in predictions of tree species distribution (quantified by species abundance). We investigated how model-predicted species abundances changed and whether tree species with different ecological traits (e.g., seed dispersal distance, competitive capacity) had different responses to varying thematic and spatial resolutions. We used the LANDIS forest landscape model to predict tree species distribution at the landscape scale and designed a series of scenarios with different thematic (different numbers of land types) and spatial resolutions combinations, and then statistically examined the differences of species abundance among these scenarios. Results showed that both thematic and spatial resolutions affected model-based predictions of species distribution, but thematic resolution had a greater effect. Species ecological traits affected the predictions. For species with moderate dispersal distance and relatively abundant seed sources, predicted abundance increased as thematic resolution increased. However, for species with long seeding distance or high shade tolerance, thematic resolution had an inverse effect on predicted abundance. When seed sources and dispersal distance were not limiting, the predicted species abundance increased with spatial resolution and vice versa. Results from this study may provide insights into the choice of thematic and spatial resolutions for model-based predictions of tree species distribution. PMID:23861828

  4. Soil Lead Testing at a High Spatial Resolution in an Urban Community Garden: A Case Study in Relic Lead in Terre Haute, Indiana.

    PubMed

    Latimer, Jennifer C; Van Halen, David; Speer, James; Krull, Stephanie; Weaver, Patricia; Pettit, Joseph; Foxx, Heather

    2016-10-01

    Industrial emissions, deteriorating or improperly removed lead paint, and the use of lead additives in fuel have left a substantial burden of heavy metals, such as lead, in urban soils. Much of this lead remains near the surface where it has the potential to impact human health. Exposure to lead, especially in children, can have lasting impacts on neurological development and academic achievement. Urban gardening, in particular, is an activity that could result in increased exposure to soil lead for many unsuspecting gardeners. During the summer of 2012, more than 1,061 surface soil samples were collected from an approximately 1.25 acre urban community garden in Terre Haute, Indiana. Samples were collected to evaluate the spatial distribution of lead across the community garden on the plot level. The results highlight the variability that can be seen within small areas of a former residential property, for example lead concentrations that are low (<200 parts per million [ppm]) within the same 10 x 10 foot garden plot as concentrations that are considered high (>600 ppm). Based on the results of this work, several areas of concern were identified and the community garden was reconfigured to reduce potential lead exposure to gardeners and the local community.

  5. Retrieved Products from Simulated Hyperspectral Observations of a Hurricane

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis; Iredell, Lena; Blaisdell, John

    2015-01-01

    Demonstrate via Observing System Simulation Experiments (OSSEs) the potential utility of flying high spatial resolution AIRS class IR sounders on future LEO and GEO missions.The study simulates and analyzes radiances for 3 sounders with AIRS spectral and radiometric properties on different orbits with different spatial resolutions: 1) Control run 13 kilometers AIRS spatial resolution at nadir on LEO in Aqua orbit; 2) 2 kilometer spatial resolution LEO sounder at nadir ARIES; 3) 5 kilometers spatial resolution sounder on a GEO orbit, radiances simulated every 72 minutes.

  6. Structured illumination 3D microscopy using adaptive lenses and multimode fibers

    NASA Astrophysics Data System (ADS)

    Czarske, Jürgen; Philipp, Katrin; Koukourakis, Nektarios

    2017-06-01

    Microscopic techniques with high spatial and temporal resolution are required for in vivo studying biological cells and tissues. Adaptive lenses exhibit strong potential for fast motion-free axial scanning. However, they also lead to a degradation of the achievable resolution because of aberrations. This hurdle can be overcome by digital optical technologies. We present a novel High-and-Low-frequency (HiLo) 3D-microscope using structured illumination and an adaptive lens. Uniform illumination is used to obtain optical sectioning for the high-frequency (Hi) components of the image, and nonuniform illumination is needed to obtain optical sectioning for the low-frequency (Lo) components of the image. Nonuniform illumination is provided by a multimode fiber. It ensures robustness against optical aberrations of the adaptive lens. The depth-of-field of our microscope can be adjusted a-posteriori by computational optics. It enables to create flexible scans, which compensate for irregular axial measurement positions. The adaptive HiLo 3D-microscope provides an axial scanning range of 1 mm with an axial resolution of about 4 microns and sub-micron lateral resolution over the full scanning range. In result, volumetric measurements with high temporal and spatial resolution are provided. Demonstration measurements of zebrafish embryos with reporter gene-driven fluorescence in the thyroid gland are presented.

  7. Resolution testing and limitations of geodetic and tsunami datasets for finite fault inversions along subduction zones

    NASA Astrophysics Data System (ADS)

    Williamson, A.; Newman, A. V.

    2017-12-01

    Finite fault inversions utilizing multiple datasets have become commonplace for large earthquakes pending data availability. The mixture of geodetic datasets such as Global Navigational Satellite Systems (GNSS) and InSAR, seismic waveforms, and when applicable, tsunami waveforms from Deep-Ocean Assessment and Reporting of Tsunami (DART) gauges, provide slightly different observations that when incorporated together lead to a more robust model of fault slip distribution. The merging of different datasets is of particular importance along subduction zones where direct observations of seafloor deformation over the rupture area are extremely limited. Instead, instrumentation measures related ground motion from tens to hundreds of kilometers away. The distance from the event and dataset type can lead to a variable degree of resolution, affecting the ability to accurately model the spatial distribution of slip. This study analyzes the spatial resolution attained individually from geodetic and tsunami datasets as well as in a combined dataset. We constrain the importance of distance between estimated parameters and observed data and how that varies between land-based and open ocean datasets. Analysis focuses on accurately scaled subduction zone synthetic models as well as analysis of the relationship between slip and data in recent large subduction zone earthquakes. This study shows that seafloor deformation sensitive datasets, like open-ocean tsunami waveforms or seafloor geodetic instrumentation, can provide unique offshore resolution for understanding most large and particularly tsunamigenic megathrust earthquake activity. In most environments, we simply lack the capability to resolve static displacements using land-based geodetic observations.

  8. Detector motion method to increase spatial resolution in photon-counting detectors

    NASA Astrophysics Data System (ADS)

    Lee, Daehee; Park, Kyeongjin; Lim, Kyung Taek; Cho, Gyuseong

    2017-03-01

    Medical imaging requires high spatial resolution of an image to identify fine lesions. Photon-counting detectors in medical imaging have recently been rapidly replacing energy-integrating detectors due to the former`s high spatial resolution, high efficiency and low noise. Spatial resolution in a photon counting image is determined by the pixel size. Therefore, the smaller the pixel size, the higher the spatial resolution that can be obtained in an image. However, detector redesigning is required to reduce pixel size, and an expensive fine process is required to integrate a signal processing unit with reduced pixel size. Furthermore, as the pixel size decreases, charge sharing severely deteriorates spatial resolution. To increase spatial resolution, we propose a detector motion method using a large pixel detector that is less affected by charge sharing. To verify the proposed method, we utilized a UNO-XRI photon-counting detector (1-mm CdTe, Timepix chip) at the maximum X-ray tube voltage of 80 kVp. A similar spatial resolution of a 55- μm-pixel image was achieved by application of the proposed method to a 110- μm-pixel detector with a higher signal-to-noise ratio. The proposed method could be a way to increase spatial resolution without a pixel redesign when pixels severely suffer from charge sharing as pixel size is reduced.

  9. The Effect of Remote Sensor Spatial Resolution in Monitoring U.S. Army Training Maneuver Sites

    DTIC Science & Technology

    1990-12-01

    THE EFFECT OF REMOTE SENSOR SPATIAL RESOLUTION IN MONITORING U.S. ARMY...Multispectral Scanner with 6.5 meter spatial resolution provided the most effective digital data set for enhancing tank trails. However, this Airborne Scanner...primary objective of this research was to determine the capabilities and limitations of remote sensor systems having different spatial resolutions to

  10. Rapid localized deactivation of self-assembled monolayers by propagation-controlled laser-induced plasma and its application to self-patterning of electronics and biosensors

    NASA Astrophysics Data System (ADS)

    Kim, Jongsu; Kwon, Seung-Gab; Back, Seunghyun; Kang, Bongchul

    2018-03-01

    We present a novel laser-induced surface treatment process to rapidly control the spatial wettabilities of various functional solutions with submicron to micron resolutions. Ultrathin hydrophobic self-assembled monolayers (SAMs) that little absorb typical laser lights due to short penetration depth were selectively deactivated by instantaneous interaction with laser-induced metallic plasmas. The spatial region of the deactivated SAM, which corresponds to process resolution, is adjustable by controlling the spatial propagation of the plasma. This method leads to the parallel formation of hydrophilic functional solutions on glass substrates with a minimum resolution on the submicron scale. To show its feasibility in device engineering fields, this method was applied to the cost-effective fabrication of electronics and biosensors. Rapid self-patterning of electronic and biological functional solutions (silver nanoparticle solution and streptavidin protein solution) was successfully realized by selective deactivation of two different SAMs (tridecafluoro-1,1,2,2-tetrahydrooctyltrichlorosilane (FOTS) for electronics and the hetero-hybrid SAM (octadecyltrichlorosilane (OTS)/2-[methoxy(polyethyleneoxy)propyl] trichlorosilane (PEG)) for biosensors). As a result, this method can be exploited for the rapid and low-cost fabrication of various thin film devices such as electronics, biosensors, energy, displays, and photonics.

  11. Spatially resolved Spectroscopy of Europa’s Large-scale Compositional Units at 3-4 μm with Keck NIRSPEC

    NASA Astrophysics Data System (ADS)

    Fischer, P. D.; Brown, M. E.; Trumbo, S. K.; Hand, K. P.

    2017-01-01

    We present spatially resolved spectroscopic observations of Europa’s surface at 3-4 μm obtained with the near-infrared spectrograph and adaptive optics system on the Keck II telescope. These are the highest quality spatially resolved reflectance spectra of Europa’s surface at 3-4 μm. The observations spatially resolve Europa’s large-scale compositional units at a resolution of several hundred kilometers. The spectra show distinct features and geographic variations associated with known compositional units; in particular, large-scale leading hemisphere chaos shows a characteristic longward shift in peak reflectance near 3.7 μm compared to icy regions. These observations complement previous spectra of large-scale chaos, and can aid efforts to identify the endogenous non-ice species.

  12. Selecting a spatial resolution for estimation of per-field green leaf area index

    NASA Technical Reports Server (NTRS)

    Curran, Paul J.; Williamson, H. Dawn

    1988-01-01

    For any application of multispectral scanner (MSS) data, a user is faced with a number of choices concerning the characteristics of the data; one of these is their spatial resolution. A pilot study was undertaken to determine the spatial resolution that would be optimal for the per-field estimation of green leaf area index (GLAI) in grassland. By reference to empirically-derived data from three areas of grassland, the suitable spatial resolution was hypothesized to lie in the lower portion of a 2-18 m range. To estimate per-field GLAI, airborne MSS data were collected at spatial resolutions of 2 m, 5 m and 10 m. The highest accuracies of per-field GLAI estimation were achieved using MSS data with spatial resolutions of 2 m and 5 m.

  13. Forest Classification Accuracy as Influenced by Multispectral Scanner Spatial Resolution. [Sam Houston National Forest, Texas

    NASA Technical Reports Server (NTRS)

    Nalepka, R. F. (Principal Investigator); Sadowski, F. E.; Sarno, J. E.

    1976-01-01

    The author has identified the following significant results. A supervised classification within two separate ground areas of the Sam Houston National Forest was carried out for two sq meters spatial resolution MSS data. Data were progressively coarsened to simulate five additional cases of spatial resolution ranging up to 64 sq meters. Similar processing and analysis of all spatial resolutions enabled evaluations of the effect of spatial resolution on classification accuracy for various levels of detail and the effects on area proportion estimation for very general forest features. For very coarse resolutions, a subset of spectral channels which simulated the proposed thematic mapper channels was used to study classification accuracy.

  14. High Resolution Mesoscale Weather Data Improvement to Spatial Effects for Dose-Rate Contour Plot Predictions

    DTIC Science & Technology

    2007-03-01

    time. This is a very powerful tool in determining fine spatial resolution , as boundary conditions are not only updated at every timestep, but the ...HIGH RESOLUTION MESOSCALE WEATHER DATA IMPROVEMENT TO SPATIAL EFFECTS FOR DOSE-RATE CONTOUR PLOT PREDICTIONS THESIS Christopher P...11 1 HIGH RESOLUTION MESOSCALE WEATHER DATA IMPROVEMENT TO SPATIAL EFFECTS FOR DOSE-RATE CONTOUR PLOT

  15. Large-Scale High-Resolution Cylinder Wake Measurements in a Wind Tunnel using Tomographic PIV with sCMOS Cameras

    NASA Astrophysics Data System (ADS)

    Michaelis, Dirk; Schroeder, Andreas

    2012-11-01

    Tomographic PIV has triggered vivid activity, reflected in a large number of publications, covering both: development of the technique and a wide range of fluid dynamic experiments. Maturing of tomo PIV allows the application in medium to large scale wind tunnels. Limiting factor for wind tunnel application is the small size of the measurement volume, being typically about of 50 × 50 × 15 mm3. Aim of this study is the optimization towards large measurement volumes and high spatial resolution performing cylinder wake measurements in a 1 meter wind tunnel. Main limiting factors for the volume size are the laser power and the camera sensitivity. So, a high power laser with 800 mJ per pulse is used together with low noise sCMOS cameras, mounted in forward scattering direction to gain intensity due to the Mie scattering characteristics. A mirror is used to bounce the light back, to have all cameras in forward scattering. Achievable particle density is growing with number of cameras, so eight cameras are used for a high spatial resolution. Optimizations lead to volume size of 230 × 200 × 52 mm3 = 2392 cm3, more than 60 times larger than previously. 281 × 323 × 68 vectors are calculated with spacing of 0.76 mm. The achieved measurement volume size and spatial resolution is regarded as a major step forward in the application of tomo PIV in wind tunnels. Supported by EU-project: no. 265695.

  16. Ultrafast Microscopy of Energy and Charge Transport

    NASA Astrophysics Data System (ADS)

    Huang, Libai

    The frontier in solar energy research now lies in learning how to integrate functional entities across multiple length scales to create optimal devices. Advancing the field requires transformative experimental tools that probe energy transfer processes from the nano to the meso lengthscales. To address this challenge, we aim to understand multi-scale energy transport across both multiple length and time scales, coupling simultaneous high spatial, structural, and temporal resolution. In my talk, I will focus on our recent progress on visualization of exciton and charge transport in solar energy harvesting materials from the nano to mesoscale employing ultrafast optical nanoscopy. With approaches that combine spatial and temporal resolutions, we have recently revealed a new singlet-mediated triplet transport mechanism in certain singlet fission materials. This work demonstrates a new triplet exciton transport mechanism leading to favorable long-range triplet exciton diffusion on the picosecond and nanosecond timescales for solar cell applications. We have also performed a direct measurement of carrier transport in space and in time by mapping carrier density with simultaneous ultrafast time resolution and 50 nm spatial precision in perovskite thin films using transient absorption microscopy. These results directly visualize long-range carrier transport of 220nm in 2 ns for solution-processed polycrystalline CH3NH3PbI3 thin films. The spatially and temporally resolved measurements reported here underscore the importance of the local morphology and establish an important first step towards discerning the underlying transport properties of perovskite materials.

  17. Impact of the spatial resolution of satellite remote sensing sensors in the quantification of total suspended sediment concentration: A case study in turbid waters of Northern Western Australia.

    PubMed

    Dorji, Passang; Fearns, Peter

    2017-01-01

    The impact of anthropogenic activities on coastal waters is a cause of concern because such activities add to the total suspended sediment (TSS) budget of the coastal waters, which have negative impacts on the coastal ecosystem. Satellite remote sensing provides a powerful tool in monitoring TSS concentration at high spatiotemporal resolution, but coastal managers should be mindful that the satellite-derived TSS concentrations are dependent on the satellite sensor's radiometric properties, atmospheric correction approaches, the spatial resolution and the limitations of specific TSS algorithms. In this study, we investigated the impact of different spatial resolutions of satellite sensor on the quantification of TSS concentration in coastal waters of northern Western Australia. We quantified the TSS product derived from MODerate resolution Imaging Spectroradiometer (MODIS)-Aqua, Landsat-8 Operational Land Image (OLI), and WorldView-2 (WV2) at native spatial resolutions of 250 m, 30 m and 2 m respectively and coarser spatial resolution (resampled up to 5 km) to quantify the impact of spatial resolution on the derived TSS product in different turbidity conditions. The results from the study show that in the waters of high turbidity and high spatial variability, the high spatial resolution WV2 sensor reported TSS concentration as high as 160 mg L-1 while the low spatial resolution MODIS-Aqua reported a maximum TSS concentration of 23.6 mg L-1. Degrading the spatial resolution of each satellite sensor for highly spatially variable turbid waters led to variability in the TSS concentrations of 114.46%, 304.68% and 38.2% for WV2, Landsat-8 OLI and MODIS-Aqua respectively. The implications of this work are particularly relevant in the situation of compliance monitoring where operations may be required to restrict TSS concentrations to a pre-defined limit.

  18. Impact of the spatial resolution of satellite remote sensing sensors in the quantification of total suspended sediment concentration: A case study in turbid waters of Northern Western Australia

    PubMed Central

    Fearns, Peter

    2017-01-01

    The impact of anthropogenic activities on coastal waters is a cause of concern because such activities add to the total suspended sediment (TSS) budget of the coastal waters, which have negative impacts on the coastal ecosystem. Satellite remote sensing provides a powerful tool in monitoring TSS concentration at high spatiotemporal resolution, but coastal managers should be mindful that the satellite-derived TSS concentrations are dependent on the satellite sensor’s radiometric properties, atmospheric correction approaches, the spatial resolution and the limitations of specific TSS algorithms. In this study, we investigated the impact of different spatial resolutions of satellite sensor on the quantification of TSS concentration in coastal waters of northern Western Australia. We quantified the TSS product derived from MODerate resolution Imaging Spectroradiometer (MODIS)-Aqua, Landsat-8 Operational Land Image (OLI), and WorldView-2 (WV2) at native spatial resolutions of 250 m, 30 m and 2 m respectively and coarser spatial resolution (resampled up to 5 km) to quantify the impact of spatial resolution on the derived TSS product in different turbidity conditions. The results from the study show that in the waters of high turbidity and high spatial variability, the high spatial resolution WV2 sensor reported TSS concentration as high as 160 mg L-1 while the low spatial resolution MODIS-Aqua reported a maximum TSS concentration of 23.6 mg L-1. Degrading the spatial resolution of each satellite sensor for highly spatially variable turbid waters led to variability in the TSS concentrations of 114.46%, 304.68% and 38.2% for WV2, Landsat-8 OLI and MODIS-Aqua respectively. The implications of this work are particularly relevant in the situation of compliance monitoring where operations may be required to restrict TSS concentrations to a pre-defined limit. PMID:28380059

  19. Attention Modifies Spatial Resolution According to Task Demands.

    PubMed

    Barbot, Antoine; Carrasco, Marisa

    2017-03-01

    How does visual attention affect spatial resolution? In texture-segmentation tasks, exogenous (involuntary) attention automatically increases resolution at the attended location, which improves performance where resolution is too low (at the periphery) but impairs performance where resolution is already too high (at central locations). Conversely, endogenous (voluntary) attention improves performance at all eccentricities, which suggests a more flexible mechanism. Here, using selective adaptation to spatial frequency, we investigated the mechanism by which endogenous attention benefits performance in resolution tasks. Participants detected a texture target that could appear at several eccentricities. Adapting to high or low spatial frequencies selectively affected performance in a manner consistent with changes in resolution. Moreover, adapting to high, but not low, frequencies mitigated the attentional benefit at central locations where resolution was too high; this shows that attention can improve performance by decreasing resolution. Altogether, our results indicate that endogenous attention benefits performance by modulating the contribution of high-frequency information in order to flexibly adjust spatial resolution according to task demands.

  20. Attention Modifies Spatial Resolution According to Task Demands

    PubMed Central

    Barbot, Antoine; Carrasco, Marisa

    2017-01-01

    How does visual attention affect spatial resolution? In texture-segmentation tasks, exogenous (involuntary) attention automatically increases resolution at the attended location, which improves performance where resolution is too low (at the periphery) but impairs performance where resolution is already too high (at central locations). Conversely, endogenous (voluntary) attention improves performance at all eccentricities, which suggests a more flexible mechanism. Here, using selective adaptation to spatial frequency, we investigated the mechanism by which endogenous attention benefits performance in resolution tasks. Participants detected a texture target that could appear at several eccentricities. Adapting to high or low spatial frequencies selectively affected performance in a manner consistent with changes in resolution. Moreover, adapting to high, but not low, frequencies mitigated the attentional benefit at central locations where resolution was too high; this shows that attention can improve performance by decreasing resolution. Altogether, our results indicate that endogenous attention benefits performance by modulating the contribution of high-frequency information in order to flexibly adjust spatial resolution according to task demands. PMID:28118103

  1. Effects of spatial resolution

    NASA Technical Reports Server (NTRS)

    Abrams, M.

    1982-01-01

    Studies of the effects of spatial resolution on extraction of geologic information are woefully lacking but spatial resolution effects can be examined as they influence two general categories: detection of spatial features per se; and the effects of IFOV on the definition of spectral signatures and on general mapping abilities.

  2. Discrete Variational Approach for Modeling Laser-Plasma Interactions

    NASA Astrophysics Data System (ADS)

    Reyes, J. Paxon; Shadwick, B. A.

    2014-10-01

    The traditional approach for fluid models of laser-plasma interactions begins by approximating fields and derivatives on a grid in space and time, leading to difference equations that are manipulated to create a time-advance algorithm. In contrast, by introducing the spatial discretization at the level of the action, the resulting Euler-Lagrange equations have particular differencing approximations that will exactly satisfy discrete versions of the relevant conservation laws. For example, applying a spatial discretization in the Lagrangian density leads to continuous-time, discrete-space equations and exact energy conservation regardless of the spatial grid resolution. We compare the results of two discrete variational methods using the variational principles from Chen and Sudan and Brizard. Since the fluid system conserves energy and momentum, the relative errors in these conserved quantities are well-motivated physically as figures of merit for a particular method. This work was supported by the U. S. Department of Energy under Contract No. DE-SC0008382 and by the National Science Foundation under Contract No. PHY-1104683.

  3. Spatial, Temporal and Spectral Satellite Image Fusion via Sparse Representation

    NASA Astrophysics Data System (ADS)

    Song, Huihui

    Remote sensing provides good measurements for monitoring and further analyzing the climate change, dynamics of ecosystem, and human activities in global or regional scales. Over the past two decades, the number of launched satellite sensors has been increasing with the development of aerospace technologies and the growing requirements on remote sensing data in a vast amount of application fields. However, a key technological challenge confronting these sensors is that they tradeoff between spatial resolution and other properties, including temporal resolution, spectral resolution, swath width, etc., due to the limitations of hardware technology and budget constraints. To increase the spatial resolution of data with other good properties, one possible cost-effective solution is to explore data integration methods that can fuse multi-resolution data from multiple sensors, thereby enhancing the application capabilities of available remote sensing data. In this thesis, we propose to fuse the spatial resolution with temporal resolution and spectral resolution, respectively, based on sparse representation theory. Taking the study case of Landsat ETM+ (with spatial resolution of 30m and temporal resolution of 16 days) and MODIS (with spatial resolution of 250m ~ 1km and daily temporal resolution) reflectance, we propose two spatial-temporal fusion methods to combine the fine spatial information of Landsat image and the daily temporal resolution of MODIS image. Motivated by that the images from these two sensors are comparable on corresponding bands, we propose to link their spatial information on available Landsat- MODIS image pair (captured on prior date) and then predict the Landsat image from the MODIS counterpart on prediction date. To well-learn the spatial details from the prior images, we use a redundant dictionary to extract the basic representation atoms for both Landsat and MODIS images based on sparse representation. Under the scenario of two prior Landsat-MODIS image pairs, we build the corresponding relationship between the difference images of MODIS and ETM+ by training a low- and high-resolution dictionary pair from the given prior image pairs. In the second scenario, i.e., only one Landsat- MODIS image pair being available, we directly correlate MODIS and ETM+ data through an image degradation model. Then, the fusion stage is achieved by super-resolving the MODIS image combining the high-pass modulation in a two-layer fusion framework. Remarkably, the proposed spatial-temporal fusion methods form a unified framework for blending remote sensing images with phenology change or land-cover-type change. Based on the proposed spatial-temporal fusion models, we propose to monitor the land use/land cover changes in Shenzhen, China. As a fast-growing city, Shenzhen faces the problem of detecting the rapid changes for both rational city planning and sustainable development. However, the cloudy and rainy weather in region Shenzhen located makes the capturing circle of high-quality satellite images longer than their normal revisit periods. Spatial-temporal fusion methods are capable to tackle this problem by improving the spatial resolution of images with coarse spatial resolution but frequent temporal coverage, thereby making the detection of rapid changes possible. On two Landsat-MODIS datasets with annual and monthly changes, respectively, we apply the proposed spatial-temporal fusion methods to the task of multiple change detection. Afterward, we propose a novel spatial and spectral fusion method for satellite multispectral and hyperspectral (or high-spectral) images based on dictionary-pair learning and sparse non-negative matrix factorization. By combining the spectral information from hyperspectral image, which is characterized by low spatial resolution but high spectral resolution and abbreviated as LSHS, and the spatial information from multispectral image, which is featured by high spatial resolution but low spectral resolution and abbreviated as HSLS, this method aims to generate the fused data with both high spatial and high spectral resolutions. Motivated by the observation that each hyperspectral pixel can be represented by a linear combination of a few endmembers, this method first extracts the spectral bases of LSHS and HSLS images by making full use of the rich spectral information in LSHS data. The spectral bases of these two categories data then formulate a dictionary-pair due to their correspondence in representing each pixel spectra of LSHS data and HSLS data, respectively. Subsequently, the LSHS image is spatially unmixed by representing the HSLS image with respect to the corresponding learned dictionary to derive its representation coefficients. Combining the spectral bases of LSHS data and the representation coefficients of HSLS data, we finally derive the fused data characterized by the spectral resolution of LSHS data and the spatial resolution of HSLS data.

  4. Trends in Arctic Sea Ice Leads Detection

    NASA Astrophysics Data System (ADS)

    Ackerman, S. A.; Hoffman, J.; Liu, Y.; Key, J. R.

    2016-12-01

    Sea ice leads (fractures) play a critical role in the exchange of mass and energy between the ocean and atmosphere in the polar regions, particularly in the Arctic. Leads result in warming water and accelerated melting because leads absorb more solar energy than the surrounding ice. In the autumn, winter, and spring leads impact the local atmospheric structure and cloud properties because of the large flux of heat and moisture into the atmosphere. Given the rapid thinning and loss of Arctic sea ice over the last few decades, changes in the distribution of leads can be expected in response. Leads are largely wind driven, so their distributions will also be affected by the changes in atmospheric circulation that have occurred. From a climate perspective, identifying trends in lead characteristics (width, orientation, and spatial distribution) will advance our understanding of both thermodynamic and mechanical processes. This study presents the spatial and temporal distributions of Arctic sea ice leads since 2002 using a new method to detect and characterize sea ice leads with optical (visible, infrared) satellite data from the Moderate Resolution Imaging Spectroradiometer (MODIS). Using reflective and emissive channels, ice concentration is derived in cloud-free regions and used to create a mask of potential leads. An algorithm then uses a combination of image processing techniques to identify and characterizes leads. The results show interannual variability of leads positioning as well as parameters such as area, length, orientation and width.

  5. New Physical Algorithms for Downscaling SMAP Soil Moisture

    NASA Astrophysics Data System (ADS)

    Sadeghi, M.; Ghafari, E.; Babaeian, E.; Davary, K.; Farid, A.; Jones, S. B.; Tuller, M.

    2017-12-01

    The NASA Soil Moisture Active Passive (SMAP) mission provides new means for estimation of surface soil moisture at the global scale. However, for many hydrological and agricultural applications the spatial SMAP resolution is too low. To address this scale issue we fused SMAP data with MODIS observations to generate soil moisture maps at 1-km spatial resolution. In course of this study we have improved several existing empirical algorithms and introduced a new physical approach for downscaling SMAP data. The universal triangle/trapezoid model was applied to relate soil moisture to optical/thermal observations such as NDVI, land surface temperature and surface reflectance. These algorithms were evaluated with in situ data measured at 5-cm depth. Our results demonstrate that downscaling SMAP soil moisture data based on physical indicators of soil moisture derived from the MODIS satellite leads to higher accuracy than that achievable with empirical downscaling algorithms. Keywords: Soil moisture, microwave data, downscaling, MODIS, triangle/trapezoid model.

  6. Siderophile Element Profile Measurements in Iron Meteorites Using Laser Ablation ICP-MS

    NASA Technical Reports Server (NTRS)

    Watson, H. C.; Watson, E. B.; McDonough, W. F.

    2005-01-01

    Understanding the behaviour of siderophile elements during cooling of iron meteorites can lead to insight into the general thermal histories of the meteorites as well as their respective parent bodies. Traditionally trace element analyses in meteorites have been done using techniques that only measure the average concentration in each phase. With these methods, all of the spatial information with respect to the distribution of an element within one phase is lost. Measuring concentration profiles of trace elements in meteorites is now possible, with the advent of high-resolution analytical techniques such as laser ablation, inductively coupled plasma mass spectrometry (LA-ICP-MS) with spatial resolution <20 microns. [e.g. 1,2] and secondary ion mass spectrometry [3]. These profiles can give more insight into both the partitioning and diffusive behavior of siderophile elements in metal systems relevant to iron meteorites, as well as parent body cooling rates.

  7. Results of the spatial resolution simulation for multispectral data (resolution brochures)

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The variable information content of Earth Resource products at different levels of spatial resolution and in different spectral bands is addressed. A low-cost brochure that scientists and laymen could use to visualize the effects of increasing the spatial resolution of multispectral scanner images was produced.

  8. Uncertainty estimates of altimetric Global Mean Sea Level timeseries

    NASA Astrophysics Data System (ADS)

    Scharffenberg, Martin; Hemming, Michael; Stammer, Detlef

    2016-04-01

    An attempt is being presented concerned with providing uncertainty measures for global mean sea level time series. For this purpose sea surface height (SSH) fields, simulated by the high resolution STORM/NCEP model for the period 1993 - 2010, were subsampled along altimeter tracks and processed similar to techniques used by five working groups to estimate GMSL. Results suggest that the spatial and temporal resolution have a substantial impact on GMSL estimates. Major impacts can especially result from the interpolation technique or the treatment of SSH outliers and easily lead to artificial temporal variability in the resulting time series.

  9. Evaluation of Pan-Sharpening Methods for Automatic Shadow Detection in High Resolution Images of Urban Areas

    NASA Astrophysics Data System (ADS)

    de Azevedo, Samara C.; Singh, Ramesh P.; da Silva, Erivaldo A.

    2017-04-01

    Finer spatial resolution of areas with tall objects within urban environment causes intense shadows that lead to wrong information in urban mapping. Due to the shadows, automatic detection of objects (such as buildings, trees, structures, towers) and to estimate the surface coverage from high spatial resolution is difficult. Thus, automatic shadow detection is the first necessary preprocessing step to improve the outcome of many remote sensing applications, particularly for high spatial resolution images. Efforts have been made to explore spatial and spectral information to evaluate such shadows. In this paper, we have used morphological attribute filtering to extract contextual relations in an efficient multilevel approach for high resolution images. The attribute selected for the filtering was the area estimated from shadow spectral feature using the Normalized Saturation-Value Difference Index (NSVDI) derived from pan-sharpening images. In order to assess the quality of fusion products and the influence on shadow detection algorithm, we evaluated three pan-sharpening methods - Intensity-Hue-Saturation (IHS), Principal Components (PC) and Gran-Schmidt (GS) through the image quality measures: Correlation Coefficient (CC), Root Mean Square Error (RMSE), Relative Dimensionless Global Error in Synthesis (ERGAS) and Universal Image Quality Index (UIQI). Experimental results over Worldview II scene from São Paulo city (Brazil) show that GS method provides good correlation with original multispectral bands with no radiometric and contrast distortion. The automatic method using GS method for NSDVI generation clearly provide a clear distinction of shadows and non-shadows pixels with an overall accuracy more than 90%. The experimental results confirm the effectiveness of the proposed approach which could be used for further shadow removal and reliable for object recognition, land-cover mapping, 3D reconstruction, etc. especially in developing countries where land use and land cover are rapidly changing with tall objects within urban areas.

  10. Comparison of one- and two-photon optical beam-induced current imaging

    NASA Astrophysics Data System (ADS)

    Xu, Chris; Denk, Winfried

    1999-08-01

    Optical beam induced current (OBIC) imaging through the backside of integrated circuits was investigated in the wavelength λ region from 1.15 to 1.26 μm. With a subpicosecond excitation source and approximately 1 mW at the sample, the two-photon contribution to the generated photocurrent dominates at λ=1.25 μm but becomes negligible for λ<1.18 μm. One-photon- (1P-) and two-photon- (2P-) OBIC images are very different. In the 1P case a strong contribution by scattered light to the carrier generation leads to an edge enhancement effect that is entirely missing when 2P excitation dominates. 2P-OBIC images often show supply-voltage dependent intensity steps that are much sharper than the optical resolution permits. The advantages of 2P-OBIC lie in the spatial confinement of the free carrier generation, a more relevant contrast mechanism, and the promise of a substantial increase in spatial resolution because of the quadratic intensity dependence and the possibility of using silicon solid immersion lenses, which could eventually provide resolution sufficient for circuits made by deep UV lithography.

  11. A new global anthropogenic heat estimation based on high-resolution nighttime light data

    PubMed Central

    Yang, Wangming; Luan, Yibo; Liu, Xiaolei; Yu, Xiaoyong; Miao, Lijuan; Cui, Xuefeng

    2017-01-01

    Consumption of fossil fuel resources leads to global warming and climate change. Apart from the negative impact of greenhouse gases on the climate, the increasing emission of anthropogenic heat from energy consumption also brings significant impacts on urban ecosystems and the surface energy balance. The objective of this work is to develop a new method of estimating the global anthropogenic heat budget and validate it on the global scale with a high precision and resolution dataset. A statistical algorithm was applied to estimate the annual mean anthropogenic heat (AH-DMSP) from 1992 to 2010 at 1×1 km2 spatial resolution for the entire planet. AH-DMSP was validated for both provincial and city scales, and results indicate that our dataset performs well at both scales. Compared with other global anthropogenic heat datasets, the AH-DMSP has a higher precision and finer spatial distribution. Although there are some limitations, the AH-DMSP could provide reliable, multi-scale anthropogenic heat information, which could be used for further research on regional or global climate change and urban ecosystems. PMID:28829436

  12. Multimodal second harmonic generation and two photon fluorescence imaging of microdomain calcium contraction coupling in single cardiomyocytes

    NASA Astrophysics Data System (ADS)

    Chan, James; Awasthi, Samir; Izu, Leighton; Mao, Ziliang; Jian, Zhong; Landas, Trevor; Lerner, Aaron; Shimkunas, Rafael; Woldeyesus, Rahwa; Bossuyt, Julie; Wood, Brittani; Chen, Yi-Je; Matthews, Dennis; Lieu, Deborah; Chiamvimonvat, Nipavan; Lam, Kit; Chen-Izu, Ye

    2016-11-01

    The objective of this study was to develop a method for simultaneously measuring the calcium and contraction dynamics of single, live cardiomyocytes at high spatial resolutions. Such measurements are important to investigate local calcium release and the mechanical response at the sarcomere level (i.e. the basic unit of contraction), which have important implications in cardiac dysfunction and arrhythmias in conditions such as hypertension, atrial fibrillation, and myocardial infarction. Here, we describe a multimodal second harmonic generation (SHG) and two photon fluorescence (2PF) microscopy technique that is used to simultaneously measure subsarcomere calcium and contraction events at high spatial and temporal resolutions. The method takes advantage of the label-free nature of SHG for imaging the sarcomeres and the high spatial colocalization of the SHG signal and the fluorescence signal excited from calcium indicators. This microscope was used to measure calcium sparks and waves and associated contractions in subcellular microdomains, leading to the generation of subcellular strain. We anticipate this new imaging tool will play an important role in studying mechanical stress-induced heart disease.

  13. Image sharpening for mixed spatial and spectral resolution satellite systems

    NASA Technical Reports Server (NTRS)

    Hallada, W. A.; Cox, S.

    1983-01-01

    Two methods of image sharpening (reconstruction) are compared. The first, a spatial filtering technique, extrapolates edge information from a high spatial resolution panchromatic band at 10 meters and adds it to the low spatial resolution narrow spectral bands. The second method, a color normalizing technique, is based on the ability to separate image hue and brightness components in spectral data. Using both techniques, multispectral images are sharpened from 30, 50, 70, and 90 meter resolutions. Error rates are calculated for the two methods and all sharpened resolutions. The results indicate that the color normalizing method is superior to the spatial filtering technique.

  14. Regional model simulations of New Zealand climate

    NASA Astrophysics Data System (ADS)

    Renwick, James A.; Katzfey, Jack J.; Nguyen, Kim C.; McGregor, John L.

    1998-03-01

    Simulation of New Zealand climate is examined through the use of a regional climate model nested within the output of the Commonwealth Scientific and Industrial Research Organisation nine-level general circulation model (GCM). R21 resolution GCM output is used to drive a regional model run at 125 km grid spacing over the Australasian region. The 125 km run is used in turn to drive a simulation at 50 km resolution over New Zealand. Simulations with a full seasonal cycle are performed for 10 model years. The focus is on the quality of the simulation of present-day climate, but results of a doubled-CO2 run are discussed briefly. Spatial patterns of mean simulated precipitation and surface temperatures improve markedly as horizontal resolution is increased, through the better resolution of the country's orography. However, increased horizontal resolution leads to a positive bias in precipitation. At 50 km resolution, simulated frequency distributions of daily maximum/minimum temperatures are statistically similar to those of observations at many stations, while frequency distributions of daily precipitation appear to be statistically different to those of observations at most stations. Modeled daily precipitation variability at 125 km resolution is considerably less than observed, but is comparable to, or exceeds, observed variability at 50 km resolution. The sensitivity of the simulated climate to changes in the specification of the land surface is discussed briefly. Spatial patterns of the frequency of extreme temperatures and precipitation are generally well modeled. Under a doubling of CO2, the frequency of precipitation extremes changes only slightly at most locations, while air frosts become virtually unknown except at high-elevation sites.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirtley, John R., E-mail: jkirtley@stanford.edu; Rosenberg, Aaron J.; Palmstrom, Johanna C.

    Superconducting QUantum Interference Device (SQUID) microscopy has excellent magnetic field sensitivity, but suffers from modest spatial resolution when compared with other scanning probes. This spatial resolution is determined by both the size of the field sensitive area and the spacing between this area and the sample surface. In this paper we describe scanning SQUID susceptometers that achieve sub-micron spatial resolution while retaining a white noise floor flux sensitivity of ≈2μΦ{sub 0}/Hz{sup 1/2}. This high spatial resolution is accomplished by deep sub-micron feature sizes, well shielded pickup loops fabricated using a planarized process, and a deep etch step that minimizes themore » spacing between the sample surface and the SQUID pickup loop. We describe the design, modeling, fabrication, and testing of these sensors. Although sub-micron spatial resolution has been achieved previously in scanning SQUID sensors, our sensors not only achieve high spatial resolution but also have integrated modulation coils for flux feedback, integrated field coils for susceptibility measurements, and batch processing. They are therefore a generally applicable tool for imaging sample magnetization, currents, and susceptibilities with higher spatial resolution than previous susceptometers.« less

  16. Chromatic and Achromatic Spatial Resolution of Local Field Potentials in Awake Cortex

    PubMed Central

    Jansen, Michael; Li, Xiaobing; Lashgari, Reza; Kremkow, Jens; Bereshpolova, Yulia; Swadlow, Harvey A.; Zaidi, Qasim; Alonso, Jose-Manuel

    2015-01-01

    Local field potentials (LFPs) have become an important measure of neuronal population activity in the brain and could provide robust signals to guide the implant of visual cortical prosthesis in the future. However, it remains unclear whether LFPs can detect weak cortical responses (e.g., cortical responses to equiluminant color) and whether they have enough visual spatial resolution to distinguish different chromatic and achromatic stimulus patterns. By recording from awake behaving macaques in primary visual cortex, here we demonstrate that LFPs respond robustly to pure chromatic stimuli and exhibit ∼2.5 times lower spatial resolution for chromatic than achromatic stimulus patterns, a value that resembles the ratio of achromatic/chromatic resolution measured with psychophysical experiments in humans. We also show that, although the spatial resolution of LFP decays with visual eccentricity as is also the case for single neurons, LFPs have higher spatial resolution and show weaker response suppression to low spatial frequencies than spiking multiunit activity. These results indicate that LFP recordings are an excellent approach to measure spatial resolution from local populations of neurons in visual cortex including those responsive to color. PMID:25416722

  17. Calculation of the spatial resolution in two-photon absorption spectroscopy applied to plasma diagnosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Lechuga, M.; Laser Processing Group, Instituto de Óptica “Daza de Valdés,” CSIC, 28006-Madrid; Fuentes, L. M.

    2014-10-07

    We report a detailed characterization of the spatial resolution provided by two-photon absorption spectroscopy suited for plasma diagnosis via the 1S-2S transition of atomic hydrogen for optogalvanic detection and laser induced fluorescence (LIF). A precise knowledge of the spatial resolution is crucial for a correct interpretation of measurements, if the plasma parameters to be analysed undergo strong spatial variations. The present study is based on a novel approach which provides a reliable and realistic determination of the spatial resolution. Measured irradiance distribution of laser beam waists in the overlap volume, provided by a high resolution UV camera, are employed tomore » resolve coupled rate equations accounting for two-photon excitation, fluorescence decay and ionization. The resulting three-dimensional yield distributions reveal in detail the spatial resolution for optogalvanic and LIF detection and related saturation due to depletion. Two-photon absorption profiles broader than the Fourier transform-limited laser bandwidth are also incorporated in the calculations. The approach allows an accurate analysis of the spatial resolution present in recent and future measurements.« less

  18. Performance simulation of a compact PET insert for simultaneous PET/MR breast imaging

    NASA Astrophysics Data System (ADS)

    Liang, Yicheng; Peng, Hao

    2014-07-01

    We studied performance metrics of a small PET ring designed to be integrated with a breast MRI coil. Its performance was characterized using a Monte Carlo simulation of a system with the best possible design features we believe are technically available, with respect to system geometry, spatial resolution, shielding, and lesion detectability. The results indicate that the proposed system is able to achieve about 6.2% photon detection sensitivity at the center of field-of-view (FOV) (crystal design: 2.2×2.2×20 mm3, height: 3.4 cm). The peak noise equivalent count rate (NECR) is found to be 7886 cps with a time resolution of 250 ps (time window: 500 ps). With the presence of lead shielding, the NECR increases by a factor of 1.7 for high activity concentrations within the breast (>0.9 μCi/mL), while no noticeable benefit is observed in the range of activities currently being used in the clinical setting. In addition, the system is able to achieve spatial resolution of 1.6 mm (2.2×2.2×20 mm3 crystal) and 0.77 mm (1×1×20 mm3 crystal) at the center of FOV, respectively. The incorporation of 10 mm DOI resolution can help mitigate parallax error towards the edge of FOV. For both 2.2 mm and 1 mm crystal designs, the spatial resolution is around 3.2-3.5 mm at 5 cm away from the center. Finally, time-of-flight (TOF) helps in improving image quality, reduces the required number of iteration numbers and the scan time. The TOF effect was studied with 3 different time resolution settings (1 ns, 500 ps and 250 ps). With a TOF of 500 ps time resolution, we expect 3 mm diameter spheres where 5:1 activity concentration ratio will be detectable within 5 min achieving contrast to noise ratio (CNR) above 4.

  19. [An effective method for improving the imaging spatial resolution of terahertz time domain spectroscopy system].

    PubMed

    Zhang, Zeng-yan; Ji, Te; Zhu, Zhi-yong; Zhao, Hong-wei; Chen, Min; Xiao, Ti-qiao; Guo, Zhi

    2015-01-01

    Terahertz radiation is an electromagnetic radiation in the range between millimeter waves and far infrared. Due to its low energy and non-ionizing characters, THz pulse imaging emerges as a novel tool in many fields, such as material, chemical, biological medicine, and food safety. Limited spatial resolution is a significant restricting factor of terahertz imaging technology. Near field imaging method was proposed to improve the spatial resolution of terahertz system. Submillimeter scale's spauial resolution can be achieved if the income source size is smaller than the wawelength of the incoming source and the source is very close to the sample. But many changes were needed to the traditional terahertz time domain spectroscopy system, and it's very complex to analyze sample's physical parameters through the terahertz signal. A method of inserting a pinhole upstream to the sample was first proposed in this article to improve the spatial resolution of traditional terahertz time domain spectroscopy system. The measured spatial resolution of terahertz time domain spectroscopy system by knife edge method can achieve spatial resolution curves. The moving stage distance between 10 % and 90 Yo of the maximum signals respectively was defined as the, spatial resolution of the system. Imaging spatial resolution of traditional terahertz time domain spectroscopy system was improved dramatically after inserted a pinhole with diameter 0. 5 mm, 2 mm upstream to the sample. Experimental results show that the spatial resolution has been improved from 1. 276 mm to 0. 774 mm, with the increment about 39 %. Though this simple method, the spatial resolution of traditional terahertz time domain spectroscopy system was increased from millimeter scale to submillimeter scale. A pinhole with diameter 1 mm on a polyethylene plate was taken as sample, to terahertz imaging study. The traditional terahertz time domain spectroscopy system and pinhole inserted terahertz time domain spectroscopy system were applied in the imaging experiment respectively. The relative THz-power loss imaging of samples were use in this article. This method generally delivers the best signal to noise ratio in loss images, dispersion effects are cancelled. Terahertz imaging results show that the sample's boundary was more distinct after inserting the pinhole in front of, sample. The results also conform that inserting pinhole in front of sample can improve the imaging spatial resolution effectively. The theoretical analyses of the method which improve the spatial resolution by inserting a pinhole in front of sample were given in this article. The analyses also indicate that the smaller the pinhole size, the longer spatial coherence length of the system, the better spatial resolution of the system. At the same time the terahertz signal will be reduced accordingly. All the experimental results and theoretical analyses indicate that the method of inserting a pinhole in front of sample can improve the spatial resolution of traditional terahertz time domain spectroscopy system effectively, and it will further expand the application of terahertz imaging technology.

  20. Spatial representation of organic carbon and active-layer thickness of high latitude soils in CMIP5 earth system models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Umakant; Drewniak, Beth; Jastrow, Julie D.

    Soil properties such as soil organic carbon (SOC) stocks and active-layer thickness are used in earth system models (F.SMs) to predict anthropogenic and climatic impacts on soil carbon dynamics, future changes in atmospheric greenhouse gas concentrations, and associated climate changes in the permafrost regions. Accurate representation of spatial and vertical distribution of these soil properties in ESMs is a prerequisite for redudng existing uncertainty in predicting carbon-climate feedbacks. We compared the spatial representation of SOC stocks and active-layer thicknesses predicted by the coupled Modellntercomparison Project Phase 5 { CMIP5) ESMs with those predicted from geospatial predictions, based on observation datamore » for the state of Alaska, USA. For the geospatial modeling. we used soil profile observations {585 for SOC stocks and 153 for active-layer thickness) and environmental variables (climate, topography, land cover, and surficial geology types) and generated fine-resolution (50-m spatial resolution) predictions of SOC stocks (to 1-m depth) and active-layer thickness across Alaska. We found large inter-quartile range (2.5-5.5 m) in predicted active-layer thickness of CMIP5 modeled results and small inter-quartile range (11.5-22 kg m-2) in predicted SOC stocks. The spatial coefficient of variability of active-layer thickness and SOC stocks were lower in CMIP5 predictions compared to our geospatial estimates when gridded at similar spatial resolutions (24.7 compared to 30% and 29 compared to 38%, respectively). However, prediction errors. when calculated for independent validation sites, were several times larger in ESM predictions compared to geospatial predictions. Primaly factors leading to observed differences were ( 1) lack of spatial heterogeneity in ESM predictions, (2) differences in assumptions concerning environmental controls, and (3) the absence of pedogenic processes in ESM model structures. Our results suggest that efforts to incorporate these factors in F.SMs should reduce current uncertainties associated with ESM predictions of carbon-climate feedbacks.« less

  1. High-resolution NMR in magnetic fields with unknown spatiotemporal variations.

    PubMed

    Pelupessy, Philippe; Rennella, Enrico; Bodenhausen, Geoffrey

    2009-06-26

    Nuclear magnetic resonance (NMR) experiments are usually carried out in homogeneous magnetic fields. In many cases, however, high-resolution spectra are virtually impossible to obtain because of the inherent heterogeneity of the samples or living organisms under investigation, as well as the poor homogeneity of the magnets (particularly when bulky samples must be placed outside their bores). Unstable power supplies and vibrations arising from cooling can lead to field fluctuations in time as well as space. We show how high-resolution NMR spectra can be obtained in inhomogeneous fields with unknown spatiotemporal variations. Our method, based on coherence transfer between spins, can accommodate spatial inhomogeneities of at least 11 gauss per centimeter and temporal fluctuations slower than 2 hertz.

  2. Effects of Cloud Horizontal Inhomogeneity and Drizzle on Remote Sensing of Cloud Droplet Effective Radius: Case Studies Based on Large-eddy Simulations

    NASA Technical Reports Server (NTRS)

    Zhang, Zhibo; Ackerman, Andrew S.; Feingold, Graham; Platnick, Steven; Pincus, Robert; Xue, Huiwen

    2012-01-01

    This study investigates effects of drizzle and cloud horizontal inhomogeneity on cloud effective radius (re) retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS). In order to identify the relative importance of various factors, we developed a MODIS cloud property retrieval simulator based on the combination of large-eddy simulations (LES) and radiative transfer computations. The case studies based on synthetic LES cloud fields indicate that at high spatial resolution (100 m) 3-D radiative transfer effects, such as illumination and shadowing, can induce significant differences between retrievals ofre based on reflectance at 2.1 m (re,2.1) and 3.7 m (re,3.7). It is also found that 3-D effects tend to have stronger impact onre,2.1 than re,3.7, leading to positive difference between the two (re,3.72.1) from illumination and negative re,3.72.1from shadowing. The cancellation of opposing 3-D effects leads to overall reasonable agreement betweenre,2.1 and re,3.7 at high spatial resolution as far as domain averages are concerned. At resolutions similar to MODIS, however, re,2.1 is systematically larger than re,3.7when averaged over the LES domain, with the difference exhibiting a threshold-like dependence on bothre,2.1and an index of the sub-pixel variability in reflectance (H), consistent with MODIS observations. In the LES cases studied, drizzle does not strongly impact reretrievals at either wavelength. It is also found that opposing 3-D radiative transfer effects partly cancel each other when cloud reflectance is aggregated from high spatial resolution to MODIS resolution, resulting in a weaker net impact of 3-D radiative effects onre retrievals. The large difference at MODIS resolution between re,3.7 and re,2.1 for highly inhomogeneous pixels with H 0.4 can be largely attributed to what we refer to as the plane-parallelrebias, which is attributable to the impact of sub-pixel level horizontal variability of cloud optical thickness onre retrievals and is greater for re,2.1 than re,3.7. These results suggest that there are substantial uncertainties attributable to 3-D radiative effects and plane-parallelre bias in the MODIS re,2.1retrievals for pixels with strong sub-pixel scale variability, and theH index can be used to identify these uncertainties.

  3. Development of a novel depth of interaction PET detector using highly multiplexed G-APD cross-strip encoding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolb, A., E-mail: armin.kolb@med.uni-tuebingen.de; Parl, C.; Liu, C. C.

    Purpose: The aim of this study was to develop a prototype PET detector module for a combined small animal positron emission tomography and magnetic resonance imaging (PET/MRI) system. The most important factor for small animal imaging applications is the detection sensitivity of the PET camera, which can be optimized by utilizing longer scintillation crystals. At the same time, small animal PET systems must yield a high spatial resolution. The measured object is very close to the PET detector because the bore diameter of a high field animal MR scanner is limited. When used in combination with long scintillation crystals, thesemore » small-bore PET systems generate parallax errors that ultimately lead to a decreased spatial resolution. Thus, we developed a depth of interaction (DoI) encoding PET detector module that has a uniform spatial resolution across the whole field of view (FOV), high detection sensitivity, compactness, and insensitivity to magnetic fields. Methods: The approach was based on Geiger mode avalanche photodiode (G-APD) detectors with cross-strip encoding. The number of readout channels was reduced by a factor of 36 for the chosen block elements. Two 12 × 2 G-APD strip arrays (25μm cells) were placed perpendicular on each face of a 12 × 12 lutetium oxyorthosilicate crystal block with a crystal size of 1.55 × 1.55 × 20 mm. The strip arrays were multiplexed into two channels and used to calculate the x, y coordinates for each array and the deposited energy. The DoI was measured in step sizes of 1.8 mm by a collimated {sup 18}F source. The coincident resolved time (CRT) was analyzed at all DoI positions by acquiring the waveform for each event and applying a digital leading edge discriminator. Results: All 144 crystals were well resolved in the crystal flood map. The average full width half maximum (FWHM) energy resolution of the detector was 12.8% ± 1.5% with a FWHM CRT of 1.14 ± 0.02 ns. The average FWHM DoI resolution over 12 crystals was 2.90 ± 0.15 mm. Conclusions: The novel DoI PET detector, which is based on strip G-APD arrays, yielded a DoI resolution of 2.9 mm and excellent timing and energy resolution. Its high multiplexing factor reduces the number of electronic channels. Thus, this cross-strip approach enables low-cost, high-performance PET detectors for dedicated small animal PET and PET/MRI and potentially clinical PET/MRI systems.« less

  4. Fiber-optic dosimeters for radiation therapy

    NASA Astrophysics Data System (ADS)

    Li, Enbang; Archer, James

    2017-10-01

    According to the figures provided by the World Health Organization, cancer is a leading cause of death worldwide, accounting for 8.8 million deaths in 2015. Radiation therapy, which uses x-rays to destroy or injure cancer cells, has become one of the most important modalities to treat the primary cancer or advanced cancer. The newly developed microbeam radiation therapy (MRT), which uses highly collimated, quasi-parallel arrays of x-ray microbeams (typically 50 μm wide and separated by 400 μm) produced by synchrotron sources, represents a new paradigm in radiotherapy and has shown great promise in pre-clinical studies on different animal models. Measurements of the absorbed dose distribution of microbeams are vitally important for clinical acceptance of MRT and for developing quality assurance systems for MRT, hence are a challenging and important task for radiation dosimetry. On the other hand, during the traditional LINAC based radiotherapy and breast cancer brachytherapy, skin dose measurements and treatment planning also require a high spatial resolution, tissue equivalent, on-line dosimeter that is both economical and highly reliable. Such a dosimeter currently does not exist and remains a challenge in the development of radiation dosimetry. High resolution, water equivalent, optical and passive x-ray dosimeters have been developed and constructed by using plastic scintillators and optical fibers. The dosimeters have peak edge-on spatial resolutions ranging from 50 to 500 microns in one dimension, with a 10 micron resolution dosimeter under development. The developed fiber-optic dosimeters have been test with both LINAC and synchrotron x-ray beams. This work demonstrates that water-equivalent and high spatial resolution radiation detection can be achieved with scintillators and optical fiber systems. Among other advantages, the developed fiber-optic probes are also passive, energy independent, and radiation hard.

  5. Additional studies of forest classification accuracy as influenced by multispectral scanner spatial resolution

    NASA Technical Reports Server (NTRS)

    Sadowski, F. E.; Sarno, J. E.

    1976-01-01

    First, an analysis of forest feature signatures was used to help explain the large variation in classification accuracy that can occur among individual forest features for any one case of spatial resolution and the inconsistent changes in classification accuracy that were demonstrated among features as spatial resolution was degraded. Second, the classification rejection threshold was varied in an effort to reduce the large proportion of unclassified resolution elements that previously appeared in the processing of coarse resolution data when a constant rejection threshold was used for all cases of spatial resolution. For the signature analysis, two-channel ellipse plots showing the feature signature distributions for several cases of spatial resolution indicated that the capability of signatures to correctly identify their respective features is dependent on the amount of statistical overlap among signatures. Reductions in signature variance that occur in data of degraded spatial resolution may not necessarily decrease the amount of statistical overlap among signatures having large variance and small mean separations. Features classified by such signatures may thus continue to have similar amounts of misclassified elements in coarser resolution data, and thus, not necessarily improve in classification accuracy.

  6. Handling Different Spatial Resolutions in Image Fusion by Multivariate Curve Resolution-Alternating Least Squares for Incomplete Image Multisets.

    PubMed

    Piqueras, Sara; Bedia, Carmen; Beleites, Claudia; Krafft, Christoph; Popp, Jürgen; Maeder, Marcel; Tauler, Romà; de Juan, Anna

    2018-06-05

    Data fusion of different imaging techniques allows a comprehensive description of chemical and biological systems. Yet, joining images acquired with different spectroscopic platforms is complex because of the different sample orientation and image spatial resolution. Whereas matching sample orientation is often solved by performing suitable affine transformations of rotation, translation, and scaling among images, the main difficulty in image fusion is preserving the spatial detail of the highest spatial resolution image during multitechnique image analysis. In this work, a special variant of the unmixing algorithm Multivariate Curve Resolution Alternating Least Squares (MCR-ALS) for incomplete multisets is proposed to provide a solution for this kind of problem. This algorithm allows analyzing simultaneously images collected with different spectroscopic platforms without losing spatial resolution and ensuring spatial coherence among the images treated. The incomplete multiset structure concatenates images of the two platforms at the lowest spatial resolution with the image acquired with the highest spatial resolution. As a result, the constituents of the sample analyzed are defined by a single set of distribution maps, common to all platforms used and with the highest spatial resolution, and their related extended spectral signatures, covering the signals provided by each of the fused techniques. We demonstrate the potential of the new variant of MCR-ALS for multitechnique analysis on three case studies: (i) a model example of MIR and Raman images of pharmaceutical mixture, (ii) FT-IR and Raman images of palatine tonsil tissue, and (iii) mass spectrometry and Raman images of bean tissue.

  7. SPATIALLY RESOLVED SPECTROSCOPY OF EUROPA’S LARGE-SCALE COMPOSITIONAL UNITS AT 3–4 μ m WITH KECK NIRSPEC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, P. D.; Brown, M. E.; Trumbo, S. K.

    2017-01-01

    We present spatially resolved spectroscopic observations of Europa’s surface at 3–4 μ m obtained with the near-infrared spectrograph and adaptive optics system on the Keck II telescope. These are the highest quality spatially resolved reflectance spectra of Europa’s surface at 3–4 μ m. The observations spatially resolve Europa’s large-scale compositional units at a resolution of several hundred kilometers. The spectra show distinct features and geographic variations associated with known compositional units; in particular, large-scale leading hemisphere chaos shows a characteristic longward shift in peak reflectance near 3.7 μ m compared to icy regions. These observations complement previous spectra of large-scalemore » chaos, and can aid efforts to identify the endogenous non-ice species.« less

  8. Source-space ICA for MEG source imaging.

    PubMed

    Jonmohamadi, Yaqub; Jones, Richard D

    2016-02-01

    One of the most widely used approaches in electroencephalography/magnetoencephalography (MEG) source imaging is application of an inverse technique (such as dipole modelling or sLORETA) on the component extracted by independent component analysis (ICA) (sensor-space ICA + inverse technique). The advantage of this approach over an inverse technique alone is that it can identify and localize multiple concurrent sources. Among inverse techniques, the minimum-variance beamformers offer a high spatial resolution. However, in order to have both high spatial resolution of beamformer and be able to take on multiple concurrent sources, sensor-space ICA + beamformer is not an ideal combination. We propose source-space ICA for MEG as a powerful alternative approach which can provide the high spatial resolution of the beamformer and handle multiple concurrent sources. The concept of source-space ICA for MEG is to apply the beamformer first and then singular value decomposition + ICA. In this paper we have compared source-space ICA with sensor-space ICA both in simulation and real MEG. The simulations included two challenging scenarios of correlated/concurrent cluster sources. Source-space ICA provided superior performance in spatial reconstruction of source maps, even though both techniques performed equally from a temporal perspective. Real MEG from two healthy subjects with visual stimuli were also used to compare performance of sensor-space ICA and source-space ICA. We have also proposed a new variant of minimum-variance beamformer called weight-normalized linearly-constrained minimum-variance with orthonormal lead-field. As sensor-space ICA-based source reconstruction is popular in EEG and MEG imaging, and given that source-space ICA has superior spatial performance, it is expected that source-space ICA will supersede its predecessor in many applications.

  9. Effect of Downscaled Forcings and Soil Texture Properties on Hyperresolution Hydrologic Simulations in a Regional Basin in Northwest Mexico

    NASA Astrophysics Data System (ADS)

    Ko, A.; Mascaro, G.; Vivoni, E. R.

    2017-12-01

    Hyper-resolution (< 1 km) hydrological modeling is expected to support a range of studies related to the terrestrial water cycle. A critical need for increasing the utility of hyper-resolution modeling is the availability of meteorological forcings and land surface characteristics at high spatial resolution. Unfortunately, in many areas these datasets are only available at coarse (> 10 km) scales. In this study, we address some of the challenges by applying a parallel version of the Triangulated Irregular Network (TIN)-based Real Time Integrated Basin Simulator (tRIBS) to the Rio Sonora Basin (RSB) in northwest Mexico. The RSB is a large, semiarid watershed ( 21,000 km2) characterized by complex topography and a strong seasonality in vegetation conditions, due to the North American monsoon. We conducted simulations at an average spatial resolution of 88 m over a decadal (2004-2013) period using spatially-distributed forcings from remotely-sensed and reanalysis products. Meteorological forcings were derived from the North American Land Data Assimilation System (NLDAS) at the original resolution of 12 km and were downscaled at 1 km with techniques accounting for terrain effects. Two grids of soil properties were created from different sources, including: (i) CONABIO (Comisión Nacional para el Conocimiento y Uso de la Biodiversidad) at 6 km resolution; and (ii) ISRIC (International Soil Reference Information Centre) at 250 m. Time-varying vegetation parameters were derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) composite products. The model was first calibrated and validated through distributed soil moisture data from a network of 20 soil moisture stations during the monsoon season. Next, hydrologic simulations were conducted with five different combinations of coarse and downscaled forcings and soil properties. Outputs in the different configurations were then compared with independent observations of soil moisture, and with estimates of land surface temperature (1 km, daily) and evapotranspiration (1 km, monthly) from MODIS. This study is expected to support the community involved in hyper-resolution hydrologic modeling by identifying the crucial factors that, if available at higher resolution, lead to the largest improvement of the simulation prognostic capability.

  10. Assessing the Resolution Adaptability of the Zhang-McFarlane Cumulus Parameterization With Spatial and Temporal Averaging: RESOLUTION ADAPTABILITY OF ZM SCHEME

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yun, Yuxing; Fan, Jiwen; Xiao, Heng

    Realistic modeling of cumulus convection at fine model resolutions (a few to a few tens of km) is problematic since it requires the cumulus scheme to adapt to higher resolution than they were originally designed for (~100 km). To solve this problem, we implement the spatial averaging method proposed in Xiao et al. (2015) and also propose a temporal averaging method for the large-scale convective available potential energy (CAPE) tendency in the Zhang-McFarlane (ZM) cumulus parameterization. The resolution adaptability of the original ZM scheme, the scheme with spatial averaging, and the scheme with both spatial and temporal averaging at 4-32more » km resolution is assessed using the Weather Research and Forecasting (WRF) model, by comparing with Cloud Resolving Model (CRM) results. We find that the original ZM scheme has very poor resolution adaptability, with sub-grid convective transport and precipitation increasing significantly as the resolution increases. The spatial averaging method improves the resolution adaptability of the ZM scheme and better conserves the total transport of moist static energy and total precipitation. With the temporal averaging method, the resolution adaptability of the scheme is further improved, with sub-grid convective precipitation becoming smaller than resolved precipitation for resolution higher than 8 km, which is consistent with the results from the CRM simulation. Both the spatial distribution and time series of precipitation are improved with the spatial and temporal averaging methods. The results may be helpful for developing resolution adaptability for other cumulus parameterizations that are based on quasi-equilibrium assumption.« less

  11. Achieving high spatial resolution using a microchannel plate detector with an economic and scalable approach

    NASA Astrophysics Data System (ADS)

    Wiggins, B. B.; deSouza, Z. O.; Vadas, J.; Alexander, A.; Hudan, S.; deSouza, R. T.

    2017-11-01

    A second generation position-sensitive microchannel plate detector using the induced signal approach has been realized. This detector is presently capable of measuring the incident position of electrons, photons, or ions. To assess the spatial resolution, the masked detector was illuminated by electrons. The initial, measured spatial resolution of 276 μm FWHM was improved by requiring a minimum signal amplitude on the anode and by employing digital signal processing techniques. The resulting measured spatial resolution of 119 μm FWHM corresponds to an intrinsic resolution of 98 μm FWHM when the effect of the finite slit width is de-convoluted. This measurement is a substantial improvement from the last reported spatial resolution of 466 μm FWHM using the induced signal approach. To understand the factors that limit the measured resolution, the performance of the detector is simulated.

  12. Statistical model based iterative reconstruction (MBIR) in clinical CT systems. Part II. Experimental assessment of spatial resolution performance.

    PubMed

    Li, Ke; Garrett, John; Ge, Yongshuai; Chen, Guang-Hong

    2014-07-01

    Statistical model based iterative reconstruction (MBIR) methods have been introduced to clinical CT systems and are being used in some clinical diagnostic applications. The purpose of this paper is to experimentally assess the unique spatial resolution characteristics of this nonlinear reconstruction method and identify its potential impact on the detectabilities and the associated radiation dose levels for specific imaging tasks. The thoracic section of a pediatric phantom was repeatedly scanned 50 or 100 times using a 64-slice clinical CT scanner at four different dose levels [CTDIvol =4, 8, 12, 16 (mGy)]. Both filtered backprojection (FBP) and MBIR (Veo(®), GE Healthcare, Waukesha, WI) were used for image reconstruction and results were compared with one another. Eight test objects in the phantom with contrast levels ranging from 13 to 1710 HU were used to assess spatial resolution. The axial spatial resolution was quantified with the point spread function (PSF), while the z resolution was quantified with the slice sensitivity profile. Both were measured locally on the test objects and in the image domain. The dependence of spatial resolution on contrast and dose levels was studied. The study also features a systematic investigation of the potential trade-off between spatial resolution and locally defined noise and their joint impact on the overall image quality, which was quantified by the image domain-based channelized Hotelling observer (CHO) detectability index d'. (1) The axial spatial resolution of MBIR depends on both radiation dose level and image contrast level, whereas it is supposedly independent of these two factors in FBP. The axial spatial resolution of MBIR always improved with an increasing radiation dose level and/or contrast level. (2) The axial spatial resolution of MBIR became equivalent to that of FBP at some transitional contrast level, above which MBIR demonstrated superior spatial resolution than FBP (and vice versa); the value of this transitional contrast highly depended on the dose level. (3) The PSFs of MBIR could be approximated as Gaussian functions with reasonably good accuracy. (4) Thez resolution of MBIR showed similar contrast and dose dependence. (5) Noise standard deviation assessed on the edges of objects demonstrated a trade-off with spatial resolution in MBIR. (5) When both spatial resolution and image noise were considered using the CHO analysis, MBIR led to significant improvement in the overall CT image quality for both high and low contrast detection tasks at both standard and low dose levels. Due to the intrinsic nonlinearity of the MBIR method, many well-known CT spatial resolution and noise properties have been modified. In particular, dose dependence and contrast dependence have been introduced to the spatial resolution of CT images by MBIR. The method has also introduced some novel noise-resolution trade-off not seen in traditional CT images. While the benefits of MBIR regarding the overall image quality, as demonstrated in this work, are significant, the optimal use of this method in clinical practice demands a thorough understanding of its unique physical characteristics.

  13. Combined Use of Satellite Observations with Urban Surface Characteristics to Estimate PM Concentrations by Employing Mixed-Effects Models

    NASA Astrophysics Data System (ADS)

    Beloconi, Anton; Benas, Nikolaos; Chrysoulakis, Nektarios; Kamarianakis, Yiannis

    2015-11-01

    Linear mixed effects models were developed for the estimation of the average daily Particulate Matter (PM) concentration spatial distribution over the area of Greater London (UK). Both fine (PM2.5) and coarse (PM10) concentrations were predicted for the 2002- 2012 time period, based on satellite data. The latter included Aerosol Optical Thickness (AOT) at 3×3 km spatial resolution, as well as the Surface Relative Humidity, Surface Temperature and K-Index derived from MODIS (Moderate Resolution Imaging Spectroradiometer) sensor. For a meaningful interpretation of the association among these variables, all data were homogenized with regard to spatial support and geographic projection, thus addressing the change of support problem and leading to a valid statistical inference. To this end, spatial (2D) and spatio- temporal (3D) kriging techniques were applied to in-situ particulate matter concentrations and the leave-one- station-out cross-validation was performed on a daily level to gauge the quality of the predictions. Satellite- derived covariates displayed clear seasonal patterns; in order to work with data which is stationary in mean, for each covariate, deviations from its estimated annual profiles were computed using nonlinear least squares and nonlinear absolute deviations. High-resolution land- cover and morphology static datasets were additionally incorporated in the analysis in order to catch the effects of nearby emission sources and sequestration sites. For pairwise comparisons of the particulate matter concentration means at distinct land-cover classes, the pairwise comparisons method for unequal sample sizes, known as Tukey's method, was performed. The use of satellite-derived products allowed better assessment of space-time interactions of PM, since these daily spatial measurements were able to capture differences in PM concentrations between grid cells, while the use of high- resolution land-cover and morphology static datasets allowed accounting for local industrial, domestic and traffic related air pollution. The developed methods are expected to fully exploit ESA's new Sentinel-3 observations to estimate spatial distributions of both PM10 and PM2.5 concentrations in arbitrary cities.

  14. Elevational species shifts in a warmer climate are overestimated when based on weather station data.

    PubMed

    Scherrer, Daniel; Schmid, Samuel; Körner, Christian

    2011-07-01

    Strong topographic variation interacting with low stature alpine vegetation creates a multitude of micro-habitats poorly represented by common 2 m above the ground meteorological measurements (weather station data). However, the extent to which the actual habitat temperatures in alpine landscapes deviate from meteorological data at different spatial scales has rarely been quantified. In this study, we assessed thermal surface and soil conditions across topographically rich alpine landscapes by thermal imagery and miniature data loggers from regional (2-km(2)) to plot (1-m(2)) scale. The data were used to quantify the effects of spatial sampling resolution on current micro-habitat distributions and habitat loss due to climate warming scenarios. Soil temperatures showed substantial variation among slopes (2-3 K) dependent on slope exposure, within slopes (3-4 K) due to micro-topography and within 1-m(2) plots (1 K) as a result of plant cover effects. A reduction of spatial sampling resolution from 1 × 1 m to 100 × 100 m leads to an underestimation of current habitat diversity by 25% and predicts a six-times higher habitat loss in a 2-K warming scenario. Our results demonstrate that weather station data are unable to reflect the complex thermal patterns of aerodynamically decoupled alpine vegetation at the investigated scales. Thus, the use of interpolated weather station data to describe alpine life conditions without considering the micro-topographically induced thermal mosaic might lead to misinterpretation and inaccurate prediction.

  15. Maximizing the Biochemical Resolving Power of Fluorescence Microscopy

    PubMed Central

    Esposito, Alessandro; Popleteeva, Marina; Venkitaraman, Ashok R.

    2013-01-01

    Most recent advances in fluorescence microscopy have focused on achieving spatial resolutions below the diffraction limit. However, the inherent capability of fluorescence microscopy to non-invasively resolve different biochemical or physical environments in biological samples has not yet been formally described, because an adequate and general theoretical framework is lacking. Here, we develop a mathematical characterization of the biochemical resolution in fluorescence detection with Fisher information analysis. To improve the precision and the resolution of quantitative imaging methods, we demonstrate strategies for the optimization of fluorescence lifetime, fluorescence anisotropy and hyperspectral detection, as well as different multi-dimensional techniques. We describe optimized imaging protocols, provide optimization algorithms and describe precision and resolving power in biochemical imaging thanks to the analysis of the general properties of Fisher information in fluorescence detection. These strategies enable the optimal use of the information content available within the limited photon-budget typically available in fluorescence microscopy. This theoretical foundation leads to a generalized strategy for the optimization of multi-dimensional optical detection, and demonstrates how the parallel detection of all properties of fluorescence can maximize the biochemical resolving power of fluorescence microscopy, an approach we term Hyper Dimensional Imaging Microscopy (HDIM). Our work provides a theoretical framework for the description of the biochemical resolution in fluorescence microscopy, irrespective of spatial resolution, and for the development of a new class of microscopes that exploit multi-parametric detection systems. PMID:24204821

  16. Toward seamless high-resolution flash flood forecasting over Europe based on radar nowcasting and NWP: An evaluation with case studies

    NASA Astrophysics Data System (ADS)

    Park, Shinju; Berenguer, Marc; Sempere-Torres, Daniel; Baugh, Calum; Smith, Paul

    2017-04-01

    Flash floods induced by heavy rain are one of the hazardous natural events that significantly affect human lives. Because flash floods are characterized by their rapid onset, forecasting flash flood to lead an effective response requires accurate rainfall predictions with high spatial and temporal resolution and adequate representation of the hydrologic and hydraulic processes within a catchment that determine rainfall-runoff accumulations. We present extreme flash flood cases which occurred throughout Europe in 2015-2016 that were identified and forecasted by two real-time approaches: 1) the European Rainfall-Induced Hazard Assessment System (ERICHA) and 2) the European Runoff Index based on Climatology (ERIC). ERICHA is based on the nowcasts of accumulated precipitation generated from the pan-European radar composites produced by the EUMETNET project OPERA. It has the advantage of high-resolution precipitation inputs and rapidly updated forecasts (every 15 minutes), but limited forecast lead time (up to 8 hours). ERIC, on the other hand, provides 5-day forecasts based on the COSMO-LEPS NWP simulations updated 2 times a day but is only produced at a 7 km resolution. We compare the products from both systems and focus on showing the advantages, limitations and complementarities of ERICHA and ERIC for seamless high-resolution flash flood forecasting.

  17. Simultaneously driven linear and nonlinear spatial encoding fields in MRI.

    PubMed

    Gallichan, Daniel; Cocosco, Chris A; Dewdney, Andrew; Schultz, Gerrit; Welz, Anna; Hennig, Jürgen; Zaitsev, Maxim

    2011-03-01

    Spatial encoding in MRI is conventionally achieved by the application of switchable linear encoding fields. The general concept of the recently introduced PatLoc (Parallel Imaging Technique using Localized Gradients) encoding is to use nonlinear fields to achieve spatial encoding. Relaxing the requirement that the encoding fields must be linear may lead to improved gradient performance or reduced peripheral nerve stimulation. In this work, a custom-built insert coil capable of generating two independent quadratic encoding fields was driven with high-performance amplifiers within a clinical MR system. In combination with the three linear encoding fields, the combined hardware is capable of independently manipulating five spatial encoding fields. With the linear z-gradient used for slice-selection, there remain four separate channels to encode a 2D-image. To compare trajectories of such multidimensional encoding, the concept of a local k-space is developed. Through simulations, reconstructions using six gradient-encoding strategies were compared, including Cartesian encoding separately or simultaneously on both PatLoc and linear gradients as well as two versions of a radial-based in/out trajectory. Corresponding experiments confirmed that such multidimensional encoding is practically achievable and demonstrated that the new radial-based trajectory offers the PatLoc property of variable spatial resolution while maintaining finite resolution across the entire field-of-view. Copyright © 2010 Wiley-Liss, Inc.

  18. Chromatic and Achromatic Spatial Resolution of Local Field Potentials in Awake Cortex.

    PubMed

    Jansen, Michael; Li, Xiaobing; Lashgari, Reza; Kremkow, Jens; Bereshpolova, Yulia; Swadlow, Harvey A; Zaidi, Qasim; Alonso, Jose-Manuel

    2015-10-01

    Local field potentials (LFPs) have become an important measure of neuronal population activity in the brain and could provide robust signals to guide the implant of visual cortical prosthesis in the future. However, it remains unclear whether LFPs can detect weak cortical responses (e.g., cortical responses to equiluminant color) and whether they have enough visual spatial resolution to distinguish different chromatic and achromatic stimulus patterns. By recording from awake behaving macaques in primary visual cortex, here we demonstrate that LFPs respond robustly to pure chromatic stimuli and exhibit ∼2.5 times lower spatial resolution for chromatic than achromatic stimulus patterns, a value that resembles the ratio of achromatic/chromatic resolution measured with psychophysical experiments in humans. We also show that, although the spatial resolution of LFP decays with visual eccentricity as is also the case for single neurons, LFPs have higher spatial resolution and show weaker response suppression to low spatial frequencies than spiking multiunit activity. These results indicate that LFP recordings are an excellent approach to measure spatial resolution from local populations of neurons in visual cortex including those responsive to color. © The Author 2014. Published by Oxford University Press.

  19. The spatial resolution of silicon-based electron detectors in beta-autoradiography.

    PubMed

    Cabello, Jorge; Wells, Kevin

    2010-03-21

    Thin tissue autoradiography is an imaging modality where ex-vivo tissue sections are placed in direct contact with autoradiographic film. These tissue sections contain a radiolabelled ligand bound to a specific biomolecule under study. This radioligand emits beta - or beta+ particles ionizing silver halide crystals in the film. High spatial resolution autoradiograms are obtained using low energy radioisotopes, such as (3)H where an intrinsic 0.1-1 microm spatial resolution can be achieved. Several digital alternatives have been presented over the past few years to replace conventional film but their spatial resolution has yet to equal film, although silicon-based imaging technologies have demonstrated higher sensitivity compared to conventional film. It will be shown in this work how pixel size is a critical parameter for achieving high spatial resolution for low energy uncollimated beta imaging. In this work we also examine the confounding factors impeding silicon-based technologies with respect to spatial resolution. The study considers charge diffusion in silicon and detector noise, and this is applied to a range of radioisotopes typically used in autoradiography. Finally an optimal detector geometry to obtain the best possible spatial resolution for a specific technology and a specific radioisotope is suggested.

  20. High Spatial Resolution Europa Coverage by the Galileo Near Infrared Mapping Spectrometer (NIMS)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The NIMS instrument on the Galileo spacecraft, which is being used to map the mineral and ice properties over the surfaces of the Jovian moons, produces global spectral images at modest spatial resolution and high resolution spectral images for small selected regions on the satellites. This map illustrates the high resolution coverage of Europa obtained by NIMS through the April 1997 G7 orbit.

    The areas covered are displayed on a Voyager-derived map. A good sampling of the dark trailing-side material (180 to 360 degrees) has been obtained, with less coverage of Europa's leading side.

    The false-color composites use red, green and blue to represent the infrared brightnesses at 0.7, 1.51 and 1.82 microns respectively. Considerable variations are evident and are related to the composition and sizes of the surface grains.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scaduto, DA; Hu, Y-H; Zhao, W

    Purpose: Spatial resolution in digital breast tomosynthesis (DBT) is affected by inherent/binned detector resolution, oblique entry of x-rays, and focal spot size/motion; the limited angular range further limits spatial resolution in the depth-direction. While DBT is being widely adopted clinically, imaging performance metrics and quality control protocols have not been standardized. AAPM Task Group 245 on Tomosynthesis Quality Control has been formed to address this deficiency. Methods: Methods of measuring spatial resolution are evaluated using two prototype quality control phantoms for DBT. Spatial resolution in the detector plane is measured in projection and reconstruction domains using edge-spread function (ESF), point-spreadmore » function (PSF) and modulation transfer function (MTF). Spatial resolution in the depth-direction and effective slice thickness are measured in the reconstruction domain using slice sensitivity profile (SSP) and artifact spread function (ASF). An oversampled PSF in the depth-direction is measured using a 50 µm angulated tungsten wire, from which the MTF is computed. Object-dependent PSF is derived and compared with ASF. Sensitivity of these measurements to phantom positioning, imaging conditions and reconstruction algorithms is evaluated. Results are compared from systems of varying acquisition geometry (9–25 projections over 15–60°). Dependence of measurements on feature size is investigated. Results: Measurements of spatial resolution using PSF and LSF are shown to depend on feature size; depth-direction spatial resolution measurements are shown to similarly depend on feature size for ASF, though deconvolution with an object function removes feature size-dependence. A slanted wire may be used to measure oversampled PSFs, from which MTFs may be computed for both in-plane and depth-direction resolution. Conclusion: Spatial resolution measured using PSF is object-independent with sufficiently small object; MTF is object-independent. Depth-direction spatial resolution may be measured directly using MTF or indirectly using ASF or SSP as surrogate measurements. While MTF is object-independent, it is invalid for nonlinear reconstructions.« less

  2. 10-year spatial and temporal trends of PM2.5 concentrations in the southeastern US estimated using high-resolution satellite data

    PubMed Central

    Hu, X.; Waller, L. A.; Lyapustin, A.; Wang, Y.; Liu, Y.

    2017-01-01

    Long-term PM2.5 exposure has been associated with various adverse health outcomes. However, most ground monitors are located in urban areas, leading to a potentially biased representation of true regional PM2.5 levels. To facilitate epidemiological studies, accurate estimates of the spatiotemporally continuous distribution of PM2.5 concentrations are important. Satellite-retrieved aerosol optical depth (AOD) has been increasingly used for PM2.5 concentration estimation due to its comprehensive spatial coverage. Nevertheless, previous studies indicated that an inherent disadvantage of many AOD products is their coarse spatial resolution. For instance, the available spatial resolutions of the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Multiangle Imaging SpectroRadiometer (MISR) AOD products are 10 and 17.6 km, respectively. In this paper, a new AOD product with 1 km spatial resolution retrieved by the multi-angle implementation of atmospheric correction (MAIAC) algorithm based on MODIS measurements was used. A two-stage model was developed to account for both spatial and temporal variability in the PM2.5–AOD relationship by incorporating the MAIAC AOD, meteorological fields, and land use variables as predictors. Our study area is in the southeastern US centered at the Atlanta metro area, and data from 2001 to 2010 were collected from various sources. The model was fitted annually, and we obtained model fitting R2 ranging from 0.71 to 0.85, mean prediction error (MPE) from 1.73 to 2.50 μg m−3, and root mean squared prediction error (RMSPE) from 2.75 to 4.10 μg m−3. In addition, we found cross-validation R2 ranging from 0.62 to 0.78, MPE from 2.00 to 3.01 μgm−3, and RMSPE from 3.12 to 5.00 μgm−3, indicating a good agreement between the estimated and observed values. Spatial trends showed that high PM2.5 levels occurred in urban areas and along major highways, while low concentrations appeared in rural or mountainous areas. Our time-series analysis showed that, for the 10-year study period, the PM2.5 levels in the southeastern US have decreased by ∼20 %. The annual decrease has been relatively steady from 2001 to 2007 and from 2008 to 2010 while a significant drop occurred between 2007 and 2008. An observed increase in PM2.5 levels in year 2005 is attributed to elevated sulfate concentrations in the study area in warm months of 2005. PMID:28966656

  3. Spatial and temporal remote sensing data fusion for vegetation monitoring

    USDA-ARS?s Scientific Manuscript database

    The suite of available remote sensing instruments varies widely in terms of sensor characteristics, spatial resolution and acquisition frequency. For example, the Moderate-resolution Imaging Spectroradiometer (MODIS) provides daily global observations at 250m to 1km spatial resolution. While imagery...

  4. Development of a large-area Multigap RPC with adequate spatial resolution for muon tomography

    NASA Astrophysics Data System (ADS)

    Wang, J.; Wang, Y.; Wang, X.; Zeng, M.; Xie, B.; Han, D.; Lyu, P.; Wang, F.; Li, Y.

    2016-11-01

    We study the performance of a large-area 2-D Multigap Resistive Plate Chamber (MRPC) designed for muon tomography with high spatial resolution. An efficiency up to 98% and a spatial resolution of around 270 μ m are obtained in cosmic ray and X-ray tests. The performance of the MRPC is also investigated for two working gases: standard gas and pure Freon. The result shows that the MRPC working in pure Freon can provide higher efficiency and better spatial resolution.

  5. Effects of electrode size and spacing on sensory modalities in the phantom thumb perception area for the forearm amputees.

    PubMed

    Li, P; Chai, G H; Zhu, K H; Lan, N; Sui, X H

    2015-01-01

    Tactile sensory feedback plays a key role in accomplishing the dexterous manipulation of prosthetic hands for the amputees, and the non-invasive transcutaneous electrical nerve stimulation (TENS) of the phantom finger perception (PFP) area would be an effective way to realize sensory feedback clinically. In order to realize the high-spatial-resolution tactile sensory feedback in the PFP region, we investigated the effects of electrode size and spacing on the tactile sensations for potentially optimizing the surface electrode array configuration. Six forearm-amputated subjects were recruited in the psychophysical studies. With the diameter of the circular electrode increasing from 3 mm to 12 mm, the threshold current intensity was enhanced correspondingly under different sensory modalities. The smaller electrode could potentially lead to high sensation spatial resolution. Whereas, the smaller the electrode, the less the number of sensory modalities. For an Φ-3 mm electrode, it is even hard for the subject to perceive any perception modalities under normal stimulating current. In addition, the two-electrode discrimination distance (TEDD) in the phantom thumb perception area decreased with electrode size decreasing in two directions of parallel or perpendicular to the forearm. No significant difference of TEDD existed along the two directions. Studies in this paper would guide the configuration optimization of the TENS electrode array for potential high spatial-resolution sensory feedback.

  6. Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum.

    PubMed

    Yasuma, Fumihito; Mitsunaga, Tomoo; Iso, Daisuke; Nayar, Shree K

    2010-09-01

    We propose the concept of a generalized assorted pixel (GAP) camera, which enables the user to capture a single image of a scene and, after the fact, control the tradeoff between spatial resolution, dynamic range and spectral detail. The GAP camera uses a complex array (or mosaic) of color filters. A major problem with using such an array is that the captured image is severely under-sampled for at least some of the filter types. This leads to reconstructed images with strong aliasing. We make four contributions in this paper: 1) we present a comprehensive optimization method to arrive at the spatial and spectral layout of the color filter array of a GAP camera. 2) We develop a novel algorithm for reconstructing the under-sampled channels of the image while minimizing aliasing artifacts. 3) We demonstrate how the user can capture a single image and then control the tradeoff of spatial resolution to generate a variety of images, including monochrome, high dynamic range (HDR) monochrome, RGB, HDR RGB, and multispectral images. 4) Finally, the performance of our GAP camera has been verified using extensive simulations that use multispectral images of real world scenes. A large database of these multispectral images has been made available at http://www1.cs.columbia.edu/CAVE/projects/gap_camera/ for use by the research community.

  7. A Combined Infrared and Microwave Technique for Studying the Diurnal Variation of Rainfall over Amazonia

    NASA Technical Reports Server (NTRS)

    Negri, Andrew J.; Anagnostou, Emmanouil; Adler, Robert F.

    1999-01-01

    Over 10 years of continuous data from the Special Sensor microwave Imager (SSM/I) aboard a series of Defense Department satellites has made it possible to construct regional rainfall climatologies at high spatial resolution. Using the Goddard Profiling Algorithm (GPROF), monthly estimates of precipitation were made over the region of northern Brazil, including the Amazon Basin, for 1987 to 1998. GPROF is a physical approach to passive microwave precipitation retrieval, which uses the Goddard Cumulus Ensemble (cloud) model to establish prior probability densities of precipitation structures. Precipitation fields from GPROF were stratified into morning and evening satellite overpasses, and accumulated at monthly intervals at 0.5 degree spatial resolution. Important diurnal effects were noted in the analysis, the most pronounced being a land/sea breeze circulation along the northern coast of Brazil and a mountain/valley circulation along the Andes. There were also indications of morning rainfall maxima along the major rivers, and evening maxima between the rivers. The addition of simultaneous geosynchronous infrared (IR) data leads to the current technique, which takes advantage of the 30 minute sampling and 4 km spatial resolution of the infrared channel and the better physics of the microwave retrieval. The resultant IR method is subsequently used to derive the diurnal variability of rainfall over the Amazon basin, and further, to investigate the relative contribution from its convective and stratiform components.

  8. Advantages of cortical surface reconstruction using submillimeter 7 T MEMPRAGE.

    PubMed

    Zaretskaya, Natalia; Fischl, Bruce; Reuter, Martin; Renvall, Ville; Polimeni, Jonathan R

    2018-01-15

    Recent advances in MR technology have enabled increased spatial resolution for routine functional and anatomical imaging, which has created demand for software tools that are able to process these data. The availability of high-resolution data also raises the question of whether higher resolution leads to substantial gains in accuracy of quantitative morphometric neuroimaging procedures, in particular the cortical surface reconstruction and cortical thickness estimation. In this study we adapted the FreeSurfer cortical surface reconstruction pipeline to process structural data at native submillimeter resolution. We then quantified the differences in surface placement between meshes generated from (0.75 mm) 3 isotropic resolution data acquired in 39 volunteers and the same data downsampled to the conventional 1 mm 3 voxel size. We find that when processed at native resolution, cortex is estimated to be thinner in most areas, but thicker around the Cingulate and the Calcarine sulci as well as in the posterior bank of the Central sulcus. Thickness differences are driven by two kinds of effects. First, the gray-white surface is found closer to the white matter, especially in cortical areas with high myelin content, and thus low contrast, such as the Calcarine and the Central sulci, causing local increases in thickness estimates. Second, the gray-CSF surface is placed more interiorly, especially in the deep sulci, contributing to local decreases in thickness estimates. We suggest that both effects are due to reduced partial volume effects at higher spatial resolution. Submillimeter voxel sizes can therefore provide improved accuracy for measuring cortical thickness. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Multipurpose spectral imager.

    PubMed

    Sigernes, F; Lorentzen, D A; Heia, K; Svenøe, T

    2000-06-20

    A small spectral imaging system is presented that images static or moving objects simultaneously as a function of wavelength. The main physical principle is outlined and demonstrated. The instrument is capable of resolving both spectral and spatial information from targets throughout the entire visible region. The spectral domain has a bandpass of 12 A. One can achieve the spatial domain by rotating the system's front mirror with a high-resolution stepper motor. The spatial resolution range from millimeters to several meters depends mainly on the front optics used and whether the target is fixed (static) or movable relative to the instrument. Different applications and examples are explored, including outdoor landscapes, industrial fish-related targets, and ground-level objects observed in the more traditional way from an airborne carrier (remote sensing). Through the examples, we found that the instrument correctly classifies whether a shrimp is peeled and whether it can disclose the spectral and spatial microcharacteristics of targets such as a fish nematode (parasite). In the macroregime, we were able to distinguish a marine vessel from the surrounding sea and sky. A study of the directional spectral albedo from clouds, mountains, snow cover, and vegetation has also been included. With the airborne experiment, the imager successfully classified snow cover, leads, and new and rafted ice, as seen from 10.000 ft (3.048 m).

  10. Estimation of Orbital Neutron Detector Spatial Resolution by Systematic Shifting of Differential Topographic Masks

    NASA Technical Reports Server (NTRS)

    McClanahan, T. P.; Mitrofanov, I. G.; Boynton, W. V.; Chin, G.; Livengood, T.; Starr, R. D.; Evans, L. G.; Mazarico, E.; Smith, D. E.

    2012-01-01

    We present a method and preliminary results related to determining the spatial resolution of orbital neutron detectors using epithermal maps and differential topographic masks. Our technique is similar to coded aperture imaging methods for optimizing photonic signals in telescopes [I]. In that approach photon masks with known spatial patterns in a telescope aperature are used to systematically restrict incoming photons which minimizes interference and enhances photon signal to noise. Three orbital neutron detector systems with different stated spatial resolutions are evaluated. The differing spatial resolutions arise due different orbital altitudes and the use of neutron collimation techniques. 1) The uncollimated Lunar Prospector Neutron Spectrometer (LPNS) system has spatial resolution of 45km FWHM from approx. 30km altitude mission phase [2]. The Lunar Rennaissance Orbiter (LRO) Lunar Exploration Neutron Detector (LEND) with two detectors at 50km altitude evaluated here: 2) the collimated 10km FWHM spatial resolution detector CSETN and 3) LEND's collimated Sensor for Epithermal Neutrons (SETN). Thus providing two orbital altitudes to study factors of: uncollimated vs collimated and two average altitudes for their effect on fields-of-view.

  11. Some effects of finite spatial resolution on skin friction measurements in turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Westphal, Russell V.

    1988-01-01

    The effects of finite spatial resolution often cause serious errors in measurements in turbulent boundary layers, with particularly large effects for measurements of fluctuating skin friction and velocities within the sublayer. However, classical analyses of finite spatial resolution effects have generally not accounted for the substantial inhomogeneity and anisotropy of near-wall turbulence. The present study has made use of results from recent computational simulations of wall-bounded turbulent flows to examine spatial resolution effects for measurements made at a wall using both single-sensor probes and those employing two sensing volumes in a V shape. Results are presented to show the effects of finite spatial resolution on a variety of quantitites deduced from the skin friction field.

  12. Experimental investigation of leak detection using mobile distributed monitoring system

    NASA Astrophysics Data System (ADS)

    Chen, Jiang; Zheng, Junli; Xiong, Feng; Ge, Qi; Yan, Qixiang; Cheng, Fei

    2018-01-01

    The leak detection of rockfill dams is currently hindered by spatial and temporal randomness and wide monitoring range. The spatial resolution of fiber Bragg grating (FBG) temperature sensing technology is related to the distance between measuring points. As a result, the number of measuring points should be increased to ensure that the precise location of the leak is detected. However, this leads to a higher monitoring cost. Consequently, it is difficult to promote and apply this technology to effectively monitor rockfill dam leakage. In this paper, a practical mobile distributed monitoring system with dual-tubes is used by combining the FBG sensing system and hydrothermal cycling system. This dual-tube structure is composed of an outer polyethylene of raised temperature resistance heating pipe, an inner polytetrafluoroethylene tube, and a FBG sensor string, among which, the FBG sensor string can be dragged freely in the internal tube to change the position of the measuring points and improve the spatial resolution. In order to test the effectiveness of the system, the large-scale model test of concentrated leakage in 13 working conditions is carried out by identifying the location, quantity, and leakage rate of leakage passage. Based on Newton’s law of cooling, the leakage state is identified using the seepage identification index ζ v that was confirmed according to the cooling curve. Results suggested that the monitoring system shows high sensitivity and can improve the spatial resolution with limited measuring points, and thus better locate the leakage area. In addition, the seepage identification index ζ v correlated well with the leakage rate qualitatively.

  13. Characterization and modelling of the spatially- and spectrally-varying point-spread function in hyperspectral imaging systems for computational correction of axial optical aberrations

    NASA Astrophysics Data System (ADS)

    Špiclin, Žiga; Bürmen, Miran; Pernuš, Franjo; Likar, Boštjan

    2012-03-01

    Spatial resolution of hyperspectral imaging systems can vary significantly due to axial optical aberrations that originate from wavelength-induced index-of-refraction variations of the imaging optics. For systems that have a broad spectral range, the spatial resolution will vary significantly both with respect to the acquisition wavelength and with respect to the spatial position within each spectral image. Variations of the spatial resolution can be effectively characterized as part of the calibration procedure by a local image-based estimation of the pointspread function (PSF) of the hyperspectral imaging system. The estimated PSF can then be used in the image deconvolution methods to improve the spatial resolution of the spectral images. We estimated the PSFs from the spectral images of a line grid geometric caliber. From individual line segments of the line grid, the PSF was obtained by a non-parametric estimation procedure that used an orthogonal series representation of the PSF. By using the non-parametric estimation procedure, the PSFs were estimated at different spatial positions and at different wavelengths. The variations of the spatial resolution were characterized by the radius and the fullwidth half-maximum of each PSF and by the modulation transfer function, computed from images of USAF1951 resolution target. The estimation and characterization of the PSFs and the image deconvolution based spatial resolution enhancement were tested on images obtained by a hyperspectral imaging system with an acousto-optic tunable filter in the visible spectral range. The results demonstrate that the spatial resolution of the acquired spectral images can be significantly improved using the estimated PSFs and image deconvolution methods.

  14. Evaluating the Value of High Spatial Resolution in National Capacity Expansion Models using ReEDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan, Venkat; Cole, Wesley

    2016-11-14

    Power sector capacity expansion models (CEMs) have a broad range of spatial resolutions. This paper uses the Regional Energy Deployment System (ReEDS) model, a long-term national scale electric sector CEM, to evaluate the value of high spatial resolution for CEMs. ReEDS models the United States with 134 load balancing areas (BAs) and captures the variability in existing generation parameters, future technology costs, performance, and resource availability using very high spatial resolution data, especially for wind and solar modeled at 356 resource regions. In this paper we perform planning studies at three different spatial resolutions--native resolution (134 BAs), state-level, and NERCmore » region level--and evaluate how results change under different levels of spatial aggregation in terms of renewable capacity deployment and location, associated transmission builds, and system costs. The results are used to ascertain the value of high geographically resolved models in terms of their impact on relative competitiveness among renewable energy resources.« less

  15. Experimental evaluation and basis function optimization of the spatially variant image-space PSF on the Ingenuity PET/MR scanner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotasidis, Fotis A., E-mail: Fotis.Kotasidis@unige.ch; Zaidi, Habib; Geneva Neuroscience Centre, Geneva University, CH-1205 Geneva

    2014-06-15

    Purpose: The Ingenuity time-of-flight (TF) PET/MR is a recently developed hybrid scanner combining the molecular imaging capabilities of PET with the excellent soft tissue contrast of MRI. It is becoming common practice to characterize the system's point spread function (PSF) and understand its variation under spatial transformations to guide clinical studies and potentially use it within resolution recovery image reconstruction algorithms. Furthermore, due to the system's utilization of overlapping and spherical symmetric Kaiser-Bessel basis functions during image reconstruction, its image space PSF and reconstructed spatial resolution could be affected by the selection of the basis function parameters. Hence, a detailedmore » investigation into the multidimensional basis function parameter space is needed to evaluate the impact of these parameters on spatial resolution. Methods: Using an array of 12 × 7 printed point sources, along with a custom made phantom, and with the MR magnet on, the system's spatially variant image-based PSF was characterized in detail. Moreover, basis function parameters were systematically varied during reconstruction (list-mode TF OSEM) to evaluate their impact on the reconstructed resolution and the image space PSF. Following the spatial resolution optimization, phantom, and clinical studies were subsequently reconstructed using representative basis function parameters. Results: Based on the analysis and under standard basis function parameters, the axial and tangential components of the PSF were found to be almost invariant under spatial transformations (∼4 mm) while the radial component varied modestly from 4 to 6.7 mm. Using a systematic investigation into the basis function parameter space, the spatial resolution was found to degrade for basis functions with a large radius and small shape parameter. However, it was found that optimizing the spatial resolution in the reconstructed PET images, while having a good basis function superposition and keeping the image representation error to a minimum, is feasible, with the parameter combination range depending upon the scanner's intrinsic resolution characteristics. Conclusions: Using the printed point source array as a MR compatible methodology for experimentally measuring the scanner's PSF, the system's spatially variant resolution properties were successfully evaluated in image space. Overall the PET subsystem exhibits excellent resolution characteristics mainly due to the fact that the raw data are not under-sampled/rebinned, enabling the spatial resolution to be dictated by the scanner's intrinsic resolution and the image reconstruction parameters. Due to the impact of these parameters on the resolution properties of the reconstructed images, the image space PSF varies both under spatial transformations and due to basis function parameter selection. Nonetheless, for a range of basis function parameters, the image space PSF remains unaffected, with the range depending on the scanner's intrinsic resolution properties.« less

  16. An evaluation of spatial resolution of a prototype proton CT scanner.

    PubMed

    Plautz, Tia E; Bashkirov, V; Giacometti, V; Hurley, R F; Johnson, R P; Piersimoni, P; Sadrozinski, H F-W; Schulte, R W; Zatserklyaniy, A

    2016-12-01

    To evaluate the spatial resolution of proton CT using both a prototype proton CT scanner and Monte Carlo simulations. A custom cylindrical edge phantom containing twelve tissue-equivalent inserts with four different compositions at varying radial displacements from the axis of rotation was developed for measuring the modulation transfer function (MTF) of a prototype proton CT scanner. Two scans of the phantom, centered on the axis of rotation, were obtained with a 200 MeV, low-intensity proton beam: one scan with steps of 4°, and one scan with the phantom continuously rotating. In addition, Monte Carlo simulations of the phantom scan were performed using scanners idealized to various degrees. The data were reconstructed using an iterative projection method with added total variation superiorization based on individual proton histories. Edge spread functions in the radial and azimuthal directions were obtained using the oversampling technique. These were then used to obtain the modulation transfer functions. The spatial resolution was defined by the 10% value of the modulation transfer function (MTF 10% ) in units of line pairs per centimeter (lp/cm). Data from the simulations were used to better understand the contributions of multiple Coulomb scattering in the phantom and the scanner hardware, as well as the effect of discretization of proton location. The radial spatial resolution of the prototype proton CT scanner depends on the total path length, W, of the proton in the phantom, whereas the azimuthal spatial resolution depends both on W and the position, u - , at which the most-likely path uncertainty is evaluated along the path. For protons contributing to radial spatial resolution, W varies with the radial position of the edge, whereas for protons contributing to azimuthal spatial resolution, W is approximately constant. For a pixel size of 0.625 mm, the radial spatial resolution of the image reconstructed from the fully idealized simulation data ranged between 6.31 ± 0.36 lp/cm for W = 197 mm i.e., close to the center of the phantom, and 13.79 ± 0.36 lp/cm for W = 97 mm, near the periphery of the phantom. The azimuthal spatial resolution ranged from 6.99 ± 0.23 lp/cm at u - = 75 mm (near the center) to 11.20 ± 0.26 lp/cm at u - = 20 mm (near the periphery). Multiple Coulomb scattering limits the radial spatial resolution for path lengths greater than approximately 130 mm, and the azimuthal spatial resolution for positions of evaluation greater than approximately 40 mm for W = 199 mm. The radial spatial resolution of the image reconstructed from data from the 4° stepped experimental scan ranged from 5.11 ± 0.61 lp/cm for W = 197 mm to 8.58 ± 0.50 lp/cm for W = 97 mm. In the azimuthal direction, the spatial resolution ranged from 5.37 ± 0.40 lp/cm at u - = 75 mm to 7.27 ± 0.39 lp/cm at u - = 20 mm. The continuous scan achieved the same spatial resolution as that of the stepped scan. Multiple Coulomb scattering in the phantom is the limiting physical factor of the achievable spatial resolution of proton CT; additional loss of spatial resolution in the prototype system is associated with scattering in the proton tracking system and inadequacies of the proton path estimate used in the iterative reconstruction algorithm. Improvement in spatial resolution may be achievable by improving the most likely path estimate by incorporating information about high and low density materials, and by minimizing multiple Coulomb scattering in the proton tracking system.

  17. An evaluation of spatial resolution of a prototype proton CT scanner

    PubMed Central

    Plautz, Tia E.; Bashkirov, V.; Giacometti, V.; Hurley, R. F.; Piersimoni, P.; Sadrozinski, H. F.-W.; Schulte, R. W.; Zatserklyaniy, A.

    2016-01-01

    Purpose: To evaluate the spatial resolution of proton CT using both a prototype proton CT scanner and Monte Carlo simulations. Methods: A custom cylindrical edge phantom containing twelve tissue-equivalent inserts with four different compositions at varying radial displacements from the axis of rotation was developed for measuring the modulation transfer function (MTF) of a prototype proton CT scanner. Two scans of the phantom, centered on the axis of rotation, were obtained with a 200 MeV, low-intensity proton beam: one scan with steps of 4°, and one scan with the phantom continuously rotating. In addition, Monte Carlo simulations of the phantom scan were performed using scanners idealized to various degrees. The data were reconstructed using an iterative projection method with added total variation superiorization based on individual proton histories. Edge spread functions in the radial and azimuthal directions were obtained using the oversampling technique. These were then used to obtain the modulation transfer functions. The spatial resolution was defined by the 10% value of the modulation transfer function (MTF10%) in units of line pairs per centimeter (lp/cm). Data from the simulations were used to better understand the contributions of multiple Coulomb scattering in the phantom and the scanner hardware, as well as the effect of discretization of proton location. Results: The radial spatial resolution of the prototype proton CT scanner depends on the total path length, W, of the proton in the phantom, whereas the azimuthal spatial resolution depends both on W and the position, u−, at which the most-likely path uncertainty is evaluated along the path. For protons contributing to radial spatial resolution, W varies with the radial position of the edge, whereas for protons contributing to azimuthal spatial resolution, W is approximately constant. For a pixel size of 0.625 mm, the radial spatial resolution of the image reconstructed from the fully idealized simulation data ranged between 6.31 ± 0.36 lp/cm for W = 197 mm i.e., close to the center of the phantom, and 13.79 ± 0.36 lp/cm for W = 97 mm, near the periphery of the phantom. The azimuthal spatial resolution ranged from 6.99 ± 0.23 lp/cm at u− = 75 mm (near the center) to 11.20 ± 0.26 lp/cm at u− = 20 mm (near the periphery). Multiple Coulomb scattering limits the radial spatial resolution for path lengths greater than approximately 130 mm, and the azimuthal spatial resolution for positions of evaluation greater than approximately 40 mm for W = 199 mm. The radial spatial resolution of the image reconstructed from data from the 4° stepped experimental scan ranged from 5.11 ± 0.61 lp/cm for W = 197 mm to 8.58 ± 0.50 lp/cm for W = 97 mm. In the azimuthal direction, the spatial resolution ranged from 5.37 ± 0.40 lp/cm at u− = 75 mm to 7.27 ± 0.39 lp/cm at u− = 20 mm. The continuous scan achieved the same spatial resolution as that of the stepped scan. Conclusions: Multiple Coulomb scattering in the phantom is the limiting physical factor of the achievable spatial resolution of proton CT; additional loss of spatial resolution in the prototype system is associated with scattering in the proton tracking system and inadequacies of the proton path estimate used in the iterative reconstruction algorithm. Improvement in spatial resolution may be achievable by improving the most likely path estimate by incorporating information about high and low density materials, and by minimizing multiple Coulomb scattering in the proton tracking system. PMID:27908179

  18. GPS Tomography: Water Vapour Monitoring for Germany

    NASA Astrophysics Data System (ADS)

    Bender, Michael; Dick, Galina; Wickert, Jens; Raabe, Armin

    2010-05-01

    Ground based GPS atmosphere sounding provides numerous atmospheric quantities with a high temporal resolution for all weather conditions. The spatial resolution of the GPS observations is mainly given by the number of GNSS satellites and GPS ground stations. The latter could considerably be increased in the last few years leading to more reliable and better resolved GPS products. New techniques such as the GPS water vapour tomography gain increased significance as data from large and dense GPS networks become available. The GPS tomography has the potential to provide spatially resolved fields of different quantities operationally, i. e. the humidity or wet refractivity as required for meteorological applications or the refraction index which is important for several space based observations or for precise positioning. The number of German GPS stations operationally processed by the GFZ in Potsdam was recently enlarged to more than 300. About 28000 IWV observations and more than 1.4 millions of slant total delay data are now available per day with a temporal resolution of 15 min and 2.5 min, respectively. The extended network leads not only to a higher spatial resolution of the tomographically reconstructed 3D fields but also to a much higher stability of the inversion process and with that to an increased quality of the results. Under these improved conditions the GPS tomography can operate continuously over several days or weeks without applying too tight constraints. Time series of tomographically reconstructed humidity fields will be shown and different initialisation strategies will be discussed: Initialisation with a simple exponential profile, with a 3D humidity field extrapolated from synoptic observations and with the result of the preceeding reconstruction. The results are compared to tomographic reconstructions initialised with COSMO-DE analyses and to the corresponding model fields. The inversion can be further stabilised by making use of independent adequately weighted observations, such as synoptic observations or IWV data. The impact of such observations on the quality of the tomographic reconstruction will be discussed together with different alternatives for weighting different types of observations.

  19. A DOI Detector With Crystal Scatter Identification Capability for High Sensitivity and High Spatial Resolution PET Imaging.

    PubMed

    Gu, Z; Prout, D L; Silverman, R W; Herman, H; Dooraghi, A; Chatziioannou, A F

    2015-06-01

    A new phoswich detector is being developed at the Crump Institute, aiming to provide improvements in sensitivity, and spatial resolution for PET. The detector configuration is comprised of two layers of pixelated scintillator crystal arrays, a glass light guide and a light detector. The annihilation photon entrance (top) layer is a 48 × 48 array of 1.01 × 1.01 × 7 mm 3 LYSO crystals. The bottom layer is a 32 × 32 array of 1.55 × 1.55 × 9 mm 3 BGO crystals. A tapered, multiple-element glass lightguide is used to couple the exit end of the BGO crystal array (52 × 52 mm 2 ) to the photosensitive area of the Position Sensitive Photomultiplier Tube (46 × 46 mm 2 ), allowing the creation of flat panel detectors without gaps between the detector modules. Both simulations and measurements were performed to evaluate the characteristics and benefits of the proposed design. The GATE Monte Carlo simulation indicated that the total fraction of the cross layer crystal scatter (CLCS) events in singles detection mode for this detector geometry is 13.2%. The large majority of these CLCS events (10.1% out of 13.2%) deposit most of their energy in a scintillator layer other than the layer of first interaction. Identification of those CLCS events for rejection or correction may lead to improvements in data quality and imaging performance. Physical measurements with the prototype detector showed that the LYSO, BGO and CLCS events were successfully identified using the delayed charge integration (DCI) technique, with more than 95% of the LYSO and BGO crystal elements clearly resolved. The measured peak-to-valley ratios (PVR) in the flood histograms were 3.5 for LYSO and 2.0 for BGO. For LYSO, the energy resolution ranged from 9.7% to 37.0% full width at half maximum (FWHM), with a mean of 13.4 ± 4.8%. For BGO the energy resolution ranged from 16.0% to 33.9% FWHM, with a mean of 18.6 ± 3.2%. In conclusion, these results demonstrate that the proposed detector is feasible and can potentially lead to a high spatial resolution, high sensitivity and DOI PET system.

  20. A DOI Detector With Crystal Scatter Identification Capability for High Sensitivity and High Spatial Resolution PET Imaging

    PubMed Central

    Gu, Z.; Prout, D. L.; Silverman, R. W.; Herman, H.; Dooraghi, A.; Chatziioannou, A. F.

    2015-01-01

    A new phoswich detector is being developed at the Crump Institute, aiming to provide improvements in sensitivity, and spatial resolution for PET. The detector configuration is comprised of two layers of pixelated scintillator crystal arrays, a glass light guide and a light detector. The annihilation photon entrance (top) layer is a 48 × 48 array of 1.01 × 1.01 × 7 mm3 LYSO crystals. The bottom layer is a 32 × 32 array of 1.55 × 1.55 × 9 mm3 BGO crystals. A tapered, multiple-element glass lightguide is used to couple the exit end of the BGO crystal array (52 × 52 mm2) to the photosensitive area of the Position Sensitive Photomultiplier Tube (46 × 46 mm2), allowing the creation of flat panel detectors without gaps between the detector modules. Both simulations and measurements were performed to evaluate the characteristics and benefits of the proposed design. The GATE Monte Carlo simulation indicated that the total fraction of the cross layer crystal scatter (CLCS) events in singles detection mode for this detector geometry is 13.2%. The large majority of these CLCS events (10.1% out of 13.2%) deposit most of their energy in a scintillator layer other than the layer of first interaction. Identification of those CLCS events for rejection or correction may lead to improvements in data quality and imaging performance. Physical measurements with the prototype detector showed that the LYSO, BGO and CLCS events were successfully identified using the delayed charge integration (DCI) technique, with more than 95% of the LYSO and BGO crystal elements clearly resolved. The measured peak-to-valley ratios (PVR) in the flood histograms were 3.5 for LYSO and 2.0 for BGO. For LYSO, the energy resolution ranged from 9.7% to 37.0% full width at half maximum (FWHM), with a mean of 13.4 ± 4.8%. For BGO the energy resolution ranged from 16.0% to 33.9% FWHM, with a mean of 18.6 ± 3.2%. In conclusion, these results demonstrate that the proposed detector is feasible and can potentially lead to a high spatial resolution, high sensitivity and DOI PET system. PMID:26478600

  1. A DOI Detector With Crystal Scatter Identification Capability for High Sensitivity and High Spatial Resolution PET Imaging

    NASA Astrophysics Data System (ADS)

    Gu, Z.; Prout, D. L.; Silverman, R. W.; Herman, H.; Dooraghi, A.; Chatziioannou, A. F.

    2015-06-01

    A new phoswich detector is being developed at the Crump Institute, aiming to provide improvements in sensitivity, and spatial resolution for PET. The detector configuration is comprised of two layers of pixelated scintillator crystal arrays, a glass lightguide and a light detector. The annihilation photon entrance (top) layer is a 48×48 array of 1.01 × 1.01 × 7 mm3 LYSO crystals. The bottom layer is a 32 × 32 array of 1.55 × 1.55 × 9 mm3 BGO crystals. A tapered, multiple-element glass lightguide is used to couple the exit end of the BGO crystal array (52 × 52 mm2) to the photosensitive area of the Position Sensitive Photomultiplier Tube (46 × 46 mm2), allowing the creation of flat panel detectors without gaps between the detector modules. Both simulations and measurements were performed to evaluate the characteristics and benefits of the proposed design. The GATE Monte Carlo simulation indicated that the total fraction of the cross layer crystal scatter (CLCS) events in singles detection mode for this detector geometry is 13.2%. The large majority of these CLCS events (10.1% out of 13.2%) deposit most of their energy in a scintillator layer other than the layer of first interaction. Identification of those CLCS events for rejection or correction may lead to improvements in data quality and imaging performance. Physical measurements with the prototype detector showed that the LYSO, BGO and CLCS events were successfully identified using the delayed charge integration (DCI) technique, with more than 95% of the LYSO and BGO crystal elements clearly resolved. The measured peak-to-valley ratios (PVR) in the flood histograms were 3.5 for LYSO and 2.0 for BGO. For LYSO, the energy resolution ranged from 9.7% to 37.0% full width at half maximum (FWHM), with a mean of 13.4 ± 4.8%. For BGO the energy resolution ranged from 16.0% to 33.9% FWHM, with a mean of 18.6 ± 3.2%. In conclusion, these results demonstrate that the proposed detector is feasible and can potentially lead to a high spatial resolution, high sensitivity and DOI PET system.

  2. Observational breakthroughs lead the way to improved hydrological predictions

    NASA Astrophysics Data System (ADS)

    Lettenmaier, Dennis P.

    2017-04-01

    New data sources are revolutionizing the hydrological sciences. The capabilities of hydrological models have advanced greatly over the last several decades, but until recently model capabilities have outstripped the spatial resolution and accuracy of model forcings (atmospheric variables at the land surface) and the hydrologic state variables (e.g., soil moisture; snow water equivalent) that the models predict. This has begun to change, as shown in two examples here: soil moisture and drought evolution over Africa as predicted by a hydrology model forced with satellite-derived precipitation, and observations of snow water equivalent at very high resolution over a river basin in California's Sierra Nevada.

  3. Preliminary validation of WRF model in two Arctic fjords, Hornsund and Porsanger

    NASA Astrophysics Data System (ADS)

    Aniskiewicz, Paulina; Stramska, Małgorzata

    2017-04-01

    Our research is focused on development of efficient modeling system for arctic fjords. This tool should include high-resolution meteorological data derived using downscaling approach. In this presentation we have focused on modeling, with high spatial resolution, of the meteorological conditions in two Arctic fjords: Hornsund (H), located in the western part of Svalbard archipelago and Porsanger (P) located in the coastal waters of the Barents Sea. The atmospheric downscaling is based on The Weather Research and Forecasting Model (WRF, www.wrf-model.org) with polar stereographic projection. We have created two parent domains with grid point distances of about 3.2 km (P) and 3.0 km (H) and with nested domains (almost 5 times higher resolution than parent domains). We tested what is the impact of the spatial resolution of the model on derived meteorological quantities. For both fjords the input topography data resolution is 30 sec. To validate the results we have used meteorological data from the Norwegian Meteorological Institute for stations Lakselv (L) and Honningsvåg (Ho) located in the inner and outer parts of the Porsanger fjord as well as from station in the outer part of the Hornsund fjord. We have estimated coefficients of determination (r2), statistical errors (St) and systematic errors (Sy) between measured and modelled air temperature and wind speed at each station. This approach will allow us to create high resolution spatially variable meteorological fields that will serve as forcing for numerical models of the fjords. We will investigate the role of different meteorological quantities (e. g. wind, solar insolation, precipitation) on hydrohraphic processes in fjords. The project has been financed from the funds of the Leading National Research Centre (KNOW) received by the Centre for Polar Studies for the period 2014-2018. This work was also funded by the Norway Grants (NCBR contract No. 201985, project NORDFLUX). Partial support comes from the Institute of Oceanology (IO PAN).

  4. Spatial and temporal trends of mercury and other metals in landlocked char from lakes in the Canadian Arctic archipelago.

    PubMed

    Muir, Derek; Wang, Xiaowa; Bright, Doug; Lockhart, Lyle; Köck, Günter

    2005-12-01

    Spatial and temporal trends of mercury (Hg) and 22 other elements were examined in landlocked Arctic char (Salvelinus alpinus) from six lakes in the Canadian Arctic (Char, Resolute and North Lakes, and Amituk Lake on Cornwallis Island, Sapphire Lake on Devon Island and Boomerang Lake on Somerset Island). The objectives of the study were to compare recent concentrations of Hg and other metals in char with older data from Amituk, Resolute and Char Lakes, in order to examine temporal trends as well as to investigate factors influencing spatial trends in contaminant levels such as lake characteristics, trophic position, size and age of the fish. Geometric mean Hg concentrations in dorsal muscle ranged from 0.147 microg/g wet weight (ww) in Resolute Lake to 1.52 microg/g ww in Amituk Lake for samples collected over the period 1999-2003. Char from Amituk Lake also had significantly higher selenium (Se). Mercury in char from Resolute Lake was strongly correlated with fish length, weight, and age, as well as with thallium, lead and Se. In 5 of 6 lakes, Hg concentrations were correlated with stable nitrogen isotope ratios (delta15N) and larger char were feeding at a higher trophic level presumably due to feeding on smaller char. Weight adjusted mean Hg concentrations in char from Amituk Lake, and unadjusted geometric means in Char Lake and Resolute Lakes, did not show any statistically significant increase from the early 1990s to 2003. However, small sample sizes from 1999-2003 for fish <1000 g limited the power of this comparison in Char and Amituk Lakes. In Resolute Lake char, manganese, strontium and zinc showed consistent decreases from 1997 or 1999 to 2003 while nickel generally increased over the 6 year period. Differences in char trophic level inferred from delta15N values best explained the higher concentrations of Hg in Amituk Lake compared to the other lakes.

  5. Effects of vegetation heterogeneity and surface topography on spatial scaling of net primary productivity

    NASA Astrophysics Data System (ADS)

    Chen, J. M.; Chen, X.; Ju, W.

    2013-03-01

    Due to the heterogeneous nature of the land surface, spatial scaling is an inevitable issue in the development of land models coupled with low-resolution Earth system models (ESMs) for predicting land-atmosphere interactions and carbon-climate feedbacks. In this study, a simple spatial scaling algorithm is developed to correct errors in net primary productivity (NPP) estimates made at a coarse spatial resolution based on sub-pixel information of vegetation heterogeneity and surface topography. An eco-hydrological model BEPS-TerrainLab, which considers both vegetation and topographical effects on the vertical and lateral water flows and the carbon cycle, is used to simulate NPP at 30 m and 1 km resolutions for a 5700 km2 watershed with an elevation range from 518 m to 3767 m in the Qinling Mountain, Shaanxi Province, China. Assuming that the NPP simulated at 30 m resolution represents the reality and that at 1 km resolution is subject to errors due to sub-pixel heterogeneity, a spatial scaling index (SSI) is developed to correct the coarse resolution NPP values pixel by pixel. The agreement between the NPP values at these two resolutions is improved considerably from R2 = 0.782 to R2 = 0.884 after the correction. The mean bias error (MBE) in NPP modeled at the 1 km resolution is reduced from 14.8 g C m-2 yr-1 to 4.8 g C m-2 yr-1 in comparison with NPP modeled at 30 m resolution, where the mean NPP is 668 g C m-2 yr-1. The range of spatial variations of NPP at 30 m resolution is larger than that at 1 km resolution. Land cover fraction is the most important vegetation factor to be considered in NPP spatial scaling, and slope is the most important topographical factor for NPP spatial scaling especially in mountainous areas, because of its influence on the lateral water redistribution, affecting water table, soil moisture and plant growth. Other factors including leaf area index (LAI), elevation and aspect have small and additive effects on improving the spatial scaling between these two resolutions.

  6. Effects of vegetation heterogeneity and surface topography on spatial scaling of net primary productivity

    NASA Astrophysics Data System (ADS)

    Chen, J. M.; Chen, X.; Ju, W.

    2013-07-01

    Due to the heterogeneous nature of the land surface, spatial scaling is an inevitable issue in the development of land models coupled with low-resolution Earth system models (ESMs) for predicting land-atmosphere interactions and carbon-climate feedbacks. In this study, a simple spatial scaling algorithm is developed to correct errors in net primary productivity (NPP) estimates made at a coarse spatial resolution based on sub-pixel information of vegetation heterogeneity and surface topography. An eco-hydrological model BEPS-TerrainLab, which considers both vegetation and topographical effects on the vertical and lateral water flows and the carbon cycle, is used to simulate NPP at 30 m and 1 km resolutions for a 5700 km2 watershed with an elevation range from 518 m to 3767 m in the Qinling Mountain, Shanxi Province, China. Assuming that the NPP simulated at 30 m resolution represents the reality and that at 1 km resolution is subject to errors due to sub-pixel heterogeneity, a spatial scaling index (SSI) is developed to correct the coarse resolution NPP values pixel by pixel. The agreement between the NPP values at these two resolutions is improved considerably from R2 = 0.782 to R2 = 0.884 after the correction. The mean bias error (MBE) in NPP modelled at the 1 km resolution is reduced from 14.8 g C m-2 yr-1 to 4.8 g C m-2 yr-1 in comparison with NPP modelled at 30 m resolution, where the mean NPP is 668 g C m-2 yr-1. The range of spatial variations of NPP at 30 m resolution is larger than that at 1 km resolution. Land cover fraction is the most important vegetation factor to be considered in NPP spatial scaling, and slope is the most important topographical factor for NPP spatial scaling especially in mountainous areas, because of its influence on the lateral water redistribution, affecting water table, soil moisture and plant growth. Other factors including leaf area index (LAI) and elevation have small and additive effects on improving the spatial scaling between these two resolutions.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ke; Chen, Guang-Hong, E-mail: gchen7@wisc.edu; Garrett, John

    Purpose: Statistical model based iterative reconstruction (MBIR) methods have been introduced to clinical CT systems and are being used in some clinical diagnostic applications. The purpose of this paper is to experimentally assess the unique spatial resolution characteristics of this nonlinear reconstruction method and identify its potential impact on the detectabilities and the associated radiation dose levels for specific imaging tasks. Methods: The thoracic section of a pediatric phantom was repeatedly scanned 50 or 100 times using a 64-slice clinical CT scanner at four different dose levels [CTDI{sub vol} =4, 8, 12, 16 (mGy)]. Both filtered backprojection (FBP) and MBIRmore » (Veo{sup ®}, GE Healthcare, Waukesha, WI) were used for image reconstruction and results were compared with one another. Eight test objects in the phantom with contrast levels ranging from 13 to 1710 HU were used to assess spatial resolution. The axial spatial resolution was quantified with the point spread function (PSF), while the z resolution was quantified with the slice sensitivity profile. Both were measured locally on the test objects and in the image domain. The dependence of spatial resolution on contrast and dose levels was studied. The study also features a systematic investigation of the potential trade-off between spatial resolution and locally defined noise and their joint impact on the overall image quality, which was quantified by the image domain-based channelized Hotelling observer (CHO) detectability index d′. Results: (1) The axial spatial resolution of MBIR depends on both radiation dose level and image contrast level, whereas it is supposedly independent of these two factors in FBP. The axial spatial resolution of MBIR always improved with an increasing radiation dose level and/or contrast level. (2) The axial spatial resolution of MBIR became equivalent to that of FBP at some transitional contrast level, above which MBIR demonstrated superior spatial resolution than FBP (and vice versa); the value of this transitional contrast highly depended on the dose level. (3) The PSFs of MBIR could be approximated as Gaussian functions with reasonably good accuracy. (4) Thez resolution of MBIR showed similar contrast and dose dependence. (5) Noise standard deviation assessed on the edges of objects demonstrated a trade-off with spatial resolution in MBIR. (5) When both spatial resolution and image noise were considered using the CHO analysis, MBIR led to significant improvement in the overall CT image quality for both high and low contrast detection tasks at both standard and low dose levels. Conclusions: Due to the intrinsic nonlinearity of the MBIR method, many well-known CT spatial resolution and noise properties have been modified. In particular, dose dependence and contrast dependence have been introduced to the spatial resolution of CT images by MBIR. The method has also introduced some novel noise-resolution trade-off not seen in traditional CT images. While the benefits of MBIR regarding the overall image quality, as demonstrated in this work, are significant, the optimal use of this method in clinical practice demands a thorough understanding of its unique physical characteristics.« less

  8. High-resolution scanning precession electron diffraction: Alignment and spatial resolution.

    PubMed

    Barnard, Jonathan S; Johnstone, Duncan N; Midgley, Paul A

    2017-03-01

    Methods are presented for aligning the pivot point of a precessing electron probe in the scanning transmission electron microscope (STEM) and for assessing the spatial resolution in scanning precession electron diffraction (SPED) experiments. The alignment procedure is performed entirely in diffraction mode, minimising probe wander within the bright-field (BF) convergent beam electron diffraction (CBED) disk and is used to obtain high spatial resolution SPED maps. Through analysis of the power spectra of virtual bright-field images extracted from the SPED data, the precession-induced blur was measured as a function of precession angle. At low precession angles, SPED spatial resolution was limited by electronic noise in the scan coils; whereas at high precession angles SPED spatial resolution was limited by tilt-induced two-fold astigmatism caused by the positive spherical aberration of the probe-forming lens. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Effect of Electric Field Gradient on Sub-nanometer Spatial Resolution of Tip-enhanced Raman Spectroscopy

    PubMed Central

    Meng, Lingyan; Yang, Zhilin; Chen, Jianing; Sun, Mengtao

    2015-01-01

    Tip-enhanced Raman spectroscopy (TERS) with sub-nanometer spatial resolution has been recently demonstrated experimentally. However, the physical mechanism underlying is still under discussion. Here we theoretically investigate the electric field gradient of a coupled tip-substrate system. Our calculations suggest that the ultra-high spatial resolution of TERS can be partially attributed to the electric field gradient effect owning to its tighter spatial confinement and sensitivity to the infrared (IR)-active of molecules. Particularly, in the case of TERS of flat-lying H2TBPP molecules,we find the electric field gradient enhancement is the dominating factor for the high spatial resolution, which qualitatively coincides with previous experimental report. Our theoretical study offers a new paradigm for understanding the mechanisms of the ultra-high spatial resolution demonstrated in tip-enhanced spectroscopy which is of importance but neglected. PMID:25784161

  10. Development of a spatio-temporal disaggregation method (DisNDVI) for generating a time series of fine resolution NDVI images

    NASA Astrophysics Data System (ADS)

    Bindhu, V. M.; Narasimhan, B.

    2015-03-01

    Normalized Difference Vegetation Index (NDVI), a key parameter in understanding the vegetation dynamics, has high spatial and temporal variability. However, continuous monitoring of NDVI is not feasible at fine spatial resolution (<60 m) owing to the long revisit time needed by the satellites to acquire the fine spatial resolution data. Further, the study attains significance in the case of humid tropical regions of the earth, where the prevailing atmospheric conditions restrict availability of fine resolution cloud free images at a high temporal frequency. As an alternative to the lack of high resolution images, the current study demonstrates a novel disaggregation method (DisNDVI) which integrates the spatial information from a single fine resolution image and temporal information in terms of crop phenology from time series of coarse resolution images to generate estimates of NDVI at fine spatial and temporal resolution. The phenological variation of the pixels captured at the coarser scale provides the basis for relating the temporal variability of the pixel with the NDVI available at fine resolution. The proposed methodology was tested over a 30 km × 25 km spatially heterogeneous study area located in the south of Tamil Nadu, India. The robustness of the algorithm was assessed by an independent comparison of the disaggregated NDVI and observed NDVI obtained from concurrent Landsat ETM+ imagery. The results showed good spatial agreement across the study area dominated with agriculture and forest pixels, with a root mean square error of 0.05. The validation done at the coarser scale showed that disaggregated NDVI spatially averaged to 240 m compared well with concurrent MODIS NDVI at 240 m (R2 > 0.8). The validation results demonstrate the effectiveness of DisNDVI in improving the spatial and temporal resolution of NDVI images for utility in fine scale hydrological applications such as crop growth monitoring and estimation of evapotranspiration.

  11. How Attention Affects Spatial Resolution

    PubMed Central

    Carrasco, Marisa; Barbot, Antoine

    2015-01-01

    We summarize and discuss a series of psychophysical studies on the effects of spatial covert attention on spatial resolution, our ability to discriminate fine patterns. Heightened resolution is beneficial in most, but not all, visual tasks. We show how endogenous attention (voluntary, goal driven) and exogenous attention (involuntary, stimulus driven) affect performance on a variety of tasks mediated by spatial resolution, such as visual search, crowding, acuity, and texture segmentation. Exogenous attention is an automatic mechanism that increases resolution regardless of whether it helps or hinders performance. In contrast, endogenous attention flexibly adjusts resolution to optimize performance according to task demands. We illustrate how psychophysical studies can reveal the underlying mechanisms of these effects and allow us to draw linking hypotheses with known neurophysiological effects of attention. PMID:25948640

  12. Super-resolution optical microscopy for studying membrane structure and dynamics.

    PubMed

    Sezgin, Erdinc

    2017-07-12

    Investigation of cell membrane structure and dynamics requires high spatial and temporal resolution. The spatial resolution of conventional light microscopy is limited due to the diffraction of light. However, recent developments in microscopy enabled us to access the nano-scale regime spatially, thus to elucidate the nanoscopic structures in the cellular membranes. In this review, we will explain the resolution limit, address the working principles of the most commonly used super-resolution microscopy techniques and summarise their recent applications in the biomembrane field.

  13. Membrane reference electrode

    DOEpatents

    Redey, L.; Bloom, I.D.

    1988-01-21

    A reference electrode utilizes a small thin, flat membrane of a highly conductive glass placed on a small diameter insulator tube having a reference material inside in contact with an internal voltage lead. When the sensor is placed in a non-aqueous ionic electrolytic solution, the concentration difference across the glass membrane generates a low voltage signal in precise relationship to the concentration of the species to be measured, with high spatial resolution. 2 figs.

  14. NRL SSD Research Achievements: 20002010. Volume 5

    DTIC Science & Technology

    2015-10-30

    monochromatic spectral images of the solar corona at unprecedented spatial and spectral resolution, allowing the physical properties of the corona to be...launch, is a tremendous astrophysical mission that is opening up the gamma ray sky. NRL SSD has played leading roles in the development of GLAST...experimentation program to study the atmospheres of the Sun and the Earth, the physics and properties of high-energy space environments, and solar

  15. The impact of physical navigation on spatial organization for sensemaking.

    PubMed

    Andrews, Christopher; North, Chris

    2013-12-01

    Spatial organization has been proposed as a compelling approach to externalizing the sensemaking process. However, there are two ways in which space can be provided to the user: by creating a physical workspace that the user can interact with directly, such as can be provided by a large, high-resolution display, or through the use of a virtual workspace that the user navigates using virtual navigation techniques such as zoom and pan. In this study we explicitly examined the use of spatial sensemaking techniques within these two environments. The results demonstrate that these two approaches to providing sensemaking space are not equivalent, and that the greater embodiment afforded by the physical workspace changes how the space is perceived and used, leading to increased externalization of the sensemaking process.

  16. Combining energy and Laplacian regularization to accurately retrieve the depth of brain activity of diffuse optical tomographic data

    NASA Astrophysics Data System (ADS)

    Chiarelli, Antonio M.; Maclin, Edward L.; Low, Kathy A.; Mathewson, Kyle E.; Fabiani, Monica; Gratton, Gabriele

    2016-03-01

    Diffuse optical tomography (DOT) provides data about brain function using surface recordings. Despite recent advancements, an unbiased method for estimating the depth of absorption changes and for providing an accurate three-dimensional (3-D) reconstruction remains elusive. DOT involves solving an ill-posed inverse problem, requiring additional criteria for finding unique solutions. The most commonly used criterion is energy minimization (energy constraint). However, as measurements are taken from only one side of the medium (the scalp) and sensitivity is greater at shallow depths, the energy constraint leads to solutions that tend to be small and superficial. To correct for this bias, we combine the energy constraint with another criterion, minimization of spatial derivatives (Laplacian constraint, also used in low resolution electromagnetic tomography, LORETA). Used in isolation, the Laplacian constraint leads to solutions that tend to be large and deep. Using simulated, phantom, and actual brain activation data, we show that combining these two criteria results in accurate (error <2 mm) absorption depth estimates, while maintaining a two-point spatial resolution of <24 mm up to a depth of 30 mm. This indicates that accurate 3-D reconstruction of brain activity up to 30 mm from the scalp can be obtained with DOT.

  17. Hyper-resolution hydrological modeling: Completeness of Formulation, Appropriateness of Descritization, and Physical LImits of Predictability

    NASA Astrophysics Data System (ADS)

    Ogden, F. L.

    2017-12-01

    HIgh performance computing and the widespread availabilities of geospatial physiographic and forcing datasets have enabled consideration of flood impact predictions with longer lead times and more detailed spatial descriptions. We are now considering multi-hour flash flood forecast lead times at the subdivision level in so-called hydroblind regions away from the National Hydrography network. However, the computational demands of such models are high, necessitating a nested simulation approach. Research on hyper-resolution hydrologic modeling over the past three decades have illustrated some fundamental limits on predictability that are simultaneously related to runoff generation mechanism(s), antecedent conditions, rates and total amounts of precipitation, discretization of the model domain, and complexity or completeness of the model formulation. This latter point is an acknowledgement that in some ways hydrologic understanding in key areas related to land use, land cover, tillage practices, seasonality, and biological effects has some glaring deficiencies. This presentation represents a review of what is known related to the interacting effects of precipitation amount, model spatial discretization, antecedent conditions, physiographic characteristics and model formulation completeness for runoff predictions. These interactions define a region in multidimensional forcing, parameter and process space where there are in some cases clear limits on predictability, and in other cases diminished uncertainty.

  18. Linking models and data on vegetation structure

    NASA Astrophysics Data System (ADS)

    Hurtt, G. C.; Fisk, J.; Thomas, R. Q.; Dubayah, R.; Moorcroft, P. R.; Shugart, H. H.

    2010-06-01

    For more than a century, scientists have recognized the importance of vegetation structure in understanding forest dynamics. Now future satellite missions such as Deformation, Ecosystem Structure, and Dynamics of Ice (DESDynI) hold the potential to provide unprecedented global data on vegetation structure needed to reduce uncertainties in terrestrial carbon dynamics. Here, we briefly review the uses of data on vegetation structure in ecosystem models, develop and analyze theoretical models to quantify model-data requirements, and describe recent progress using a mechanistic modeling approach utilizing a formal scaling method and data on vegetation structure to improve model predictions. Generally, both limited sampling and coarse resolution averaging lead to model initialization error, which in turn is propagated in subsequent model prediction uncertainty and error. In cases with representative sampling, sufficient resolution, and linear dynamics, errors in initialization tend to compensate at larger spatial scales. However, with inadequate sampling, overly coarse resolution data or models, and nonlinear dynamics, errors in initialization lead to prediction error. A robust model-data framework will require both models and data on vegetation structure sufficient to resolve important environmental gradients and tree-level heterogeneity in forest structure globally.

  19. Comparison of alternative spatial resolutions in the application of a spatially distributed biogeochemical model over complex terrain

    USGS Publications Warehouse

    Turner, D.P.; Dodson, R.; Marks, D.

    1996-01-01

    Spatially distributed biogeochemical models may be applied over grids at a range of spatial resolutions, however, evaluation of potential errors and loss of information at relatively coarse resolutions is rare. In this study, a georeferenced database at the 1-km spatial resolution was developed to initialize and drive a process-based model (Forest-BGC) of water and carbon balance over a gridded 54976 km2 area covering two river basins in mountainous western Oregon. Corresponding data sets were also prepared at 10-km and 50-km spatial resolutions using commonly employed aggregation schemes. Estimates were made at each grid cell for climate variables including daily solar radiation, air temperature, humidity, and precipitation. The topographic structure, water holding capacity, vegetation type and leaf area index were likewise estimated for initial conditions. The daily time series for the climatic drivers was developed from interpolations of meteorological station data for the water year 1990 (1 October 1989-30 September 1990). Model outputs at the 1-km resolution showed good agreement with observed patterns in runoff and productivity. The ranges for model inputs at the 10-km and 50-km resolutions tended to contract because of the smoothed topography. Estimates for mean evapotranspiration and runoff were relatively insensitive to changing the spatial resolution of the grid whereas estimates of mean annual net primary production varied by 11%. The designation of a vegetation type and leaf area at the 50-km resolution often subsumed significant heterogeneity in vegetation, and this factor accounted for much of the difference in the mean values for the carbon flux variables. Although area wide means for model outputs were generally similar across resolutions, difference maps often revealed large areas of disagreement. Relatively high spatial resolution analyses of biogeochemical cycling are desirable from several perspectives and may be particularly important in the study of the potential impacts of climate change.

  20. The fusion of satellite and UAV data: simulation of high spatial resolution band

    NASA Astrophysics Data System (ADS)

    Jenerowicz, Agnieszka; Siok, Katarzyna; Woroszkiewicz, Malgorzata; Orych, Agata

    2017-10-01

    Remote sensing techniques used in the precision agriculture and farming that apply imagery data obtained with sensors mounted on UAV platforms became more popular in the last few years due to the availability of low- cost UAV platforms and low- cost sensors. Data obtained from low altitudes with low- cost sensors can be characterised by high spatial and radiometric resolution but quite low spectral resolution, therefore the application of imagery data obtained with such technology is quite limited and can be used only for the basic land cover classification. To enrich the spectral resolution of imagery data acquired with low- cost sensors from low altitudes, the authors proposed the fusion of RGB data obtained with UAV platform with multispectral satellite imagery. The fusion is based on the pansharpening process, that aims to integrate the spatial details of the high-resolution panchromatic image with the spectral information of lower resolution multispectral or hyperspectral imagery to obtain multispectral or hyperspectral images with high spatial resolution. The key of pansharpening is to properly estimate the missing spatial details of multispectral images while preserving their spectral properties. In the research, the authors presented the fusion of RGB images (with high spatial resolution) obtained with sensors mounted on low- cost UAV platforms and multispectral satellite imagery with satellite sensors, i.e. Landsat 8 OLI. To perform the fusion of UAV data with satellite imagery, the simulation of the panchromatic bands from RGB data based on the spectral channels linear combination, was conducted. Next, for simulated bands and multispectral satellite images, the Gram-Schmidt pansharpening method was applied. As a result of the fusion, the authors obtained several multispectral images with very high spatial resolution and then analysed the spatial and spectral accuracies of processed images.

  1. Large-watershed flood simulation and forecasting based on different-resolution distributed hydrological model

    NASA Astrophysics Data System (ADS)

    Li, J.

    2017-12-01

    Large-watershed flood simulation and forecasting is very important for a distributed hydrological model in the application. There are some challenges including the model's spatial resolution effect, model performance and accuracy and so on. To cope with the challenge of the model's spatial resolution effect, different model resolution including 1000m*1000m, 600m*600m, 500m*500m, 400m*400m, 200m*200m were used to build the distributed hydrological model—Liuxihe model respectively. The purpose is to find which one is the best resolution for Liuxihe model in Large-watershed flood simulation and forecasting. This study sets up a physically based distributed hydrological model for flood forecasting of the Liujiang River basin in south China. Terrain data digital elevation model (DEM), soil type and land use type are downloaded from the website freely. The model parameters are optimized by using an improved Particle Swarm Optimization(PSO) algorithm; And parameter optimization could reduce the parameter uncertainty that exists for physically deriving model parameters. The different model resolution (200m*200m—1000m*1000m ) are proposed for modeling the Liujiang River basin flood with the Liuxihe model in this study. The best model's spatial resolution effect for flood simulation and forecasting is 200m*200m.And with the model's spatial resolution reduction, the model performance and accuracy also become worse and worse. When the model resolution is 1000m*1000m, the flood simulation and forecasting result is the worst, also the river channel divided based on this resolution is differs from the actual one. To keep the model with an acceptable performance, minimum model spatial resolution is needed. The suggested threshold model spatial resolution for modeling the Liujiang River basin flood is a 500m*500m grid cell, but the model spatial resolution with a 200m*200m grid cell is recommended in this study to keep the model at a best performance.

  2. Analysis of the impact of spatial resolution on land/water classifications using high-resolution aerial imagery

    USGS Publications Warehouse

    Enwright, Nicholas M.; Jones, William R.; Garber, Adrienne L.; Keller, Matthew J.

    2014-01-01

    Long-term monitoring efforts often use remote sensing to track trends in habitat or landscape conditions over time. To most appropriately compare observations over time, long-term monitoring efforts strive for consistency in methods. Thus, advances and changes in technology over time can present a challenge. For instance, modern camera technology has led to an increasing availability of very high-resolution imagery (i.e. submetre and metre) and a shift from analogue to digital photography. While numerous studies have shown that image resolution can impact the accuracy of classifications, most of these studies have focused on the impacts of comparing spatial resolution changes greater than 2 m. Thus, a knowledge gap exists on the impacts of minor changes in spatial resolution (i.e. submetre to about 1.5 m) in very high-resolution aerial imagery (i.e. 2 m resolution or less). This study compared the impact of spatial resolution on land/water classifications of an area dominated by coastal marsh vegetation in Louisiana, USA, using 1:12,000 scale colour-infrared analogue aerial photography (AAP) scanned at four different dot-per-inch resolutions simulating ground sample distances (GSDs) of 0.33, 0.54, 1, and 2 m. Analysis of the impact of spatial resolution on land/water classifications was conducted by exploring various spatial aspects of the classifications including density of waterbodies and frequency distributions in waterbody sizes. This study found that a small-magnitude change (1–1.5 m) in spatial resolution had little to no impact on the amount of water classified (i.e. percentage mapped was less than 1.5%), but had a significant impact on the mapping of very small waterbodies (i.e. waterbodies ≤ 250 m2). These findings should interest those using temporal image classifications derived from very high-resolution aerial photography as a component of long-term monitoring programs.

  3. Polymeric spatial resolution test patterns for mass spectrometry imaging using nano-thermal analysis with atomic force microscopy

    DOE PAGES

    Tai, Tamin; Kertesz, Vilmos; Lin, Ming -Wei; ...

    2017-05-11

    As the spatial resolution of mass spectrometry imaging technologies has begun to reach into the nanometer regime, finding readily available or easily made resolution reference materials has become particularly challenging for molecular imaging purposes. This study describes the fabrication, characterization and use of vertical line array polymeric spatial resolution test patterns for nano-thermal analysis/atomic force microscopy/mass spectrometry chemical imaging.

  4. Polymeric spatial resolution test patterns for mass spectrometry imaging using nano-thermal analysis with atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tai, Tamin; Kertesz, Vilmos; Lin, Ming -Wei

    As the spatial resolution of mass spectrometry imaging technologies has begun to reach into the nanometer regime, finding readily available or easily made resolution reference materials has become particularly challenging for molecular imaging purposes. This study describes the fabrication, characterization and use of vertical line array polymeric spatial resolution test patterns for nano-thermal analysis/atomic force microscopy/mass spectrometry chemical imaging.

  5. High density event-related potential data acquisition in cognitive neuroscience.

    PubMed

    Slotnick, Scott D

    2010-04-16

    Functional magnetic resonance imaging (fMRI) is currently the standard method of evaluating brain function in the field of Cognitive Neuroscience, in part because fMRI data acquisition and analysis techniques are readily available. Because fMRI has excellent spatial resolution but poor temporal resolution, this method can only be used to identify the spatial location of brain activity associated with a given cognitive process (and reveals virtually nothing about the time course of brain activity). By contrast, event-related potential (ERP) recording, a method that is used much less frequently than fMRI, has excellent temporal resolution and thus can track rapid temporal modulations in neural activity. Unfortunately, ERPs are under utilized in Cognitive Neuroscience because data acquisition techniques are not readily available and low density ERP recording has poor spatial resolution. In an effort to foster the increased use of ERPs in Cognitive Neuroscience, the present article details key techniques involved in high density ERP data acquisition. Critically, high density ERPs offer the promise of excellent temporal resolution and good spatial resolution (or excellent spatial resolution if coupled with fMRI), which is necessary to capture the spatial-temporal dynamics of human brain function.

  6. Hyperspectral imagery super-resolution by compressive sensing inspired dictionary learning and spatial-spectral regularization.

    PubMed

    Huang, Wei; Xiao, Liang; Liu, Hongyi; Wei, Zhihui

    2015-01-19

    Due to the instrumental and imaging optics limitations, it is difficult to acquire high spatial resolution hyperspectral imagery (HSI). Super-resolution (SR) imagery aims at inferring high quality images of a given scene from degraded versions of the same scene. This paper proposes a novel hyperspectral imagery super-resolution (HSI-SR) method via dictionary learning and spatial-spectral regularization. The main contributions of this paper are twofold. First, inspired by the compressive sensing (CS) framework, for learning the high resolution dictionary, we encourage stronger sparsity on image patches and promote smaller coherence between the learned dictionary and sensing matrix. Thus, a sparsity and incoherence restricted dictionary learning method is proposed to achieve higher efficiency sparse representation. Second, a variational regularization model combing a spatial sparsity regularization term and a new local spectral similarity preserving term is proposed to integrate the spectral and spatial-contextual information of the HSI. Experimental results show that the proposed method can effectively recover spatial information and better preserve spectral information. The high spatial resolution HSI reconstructed by the proposed method outperforms reconstructed results by other well-known methods in terms of both objective measurements and visual evaluation.

  7. Advances in Low-Temperature Tungsten Spectroscopy Capability to Quantify DIII-D Divertor Erosion

    DOE PAGES

    Abrams, Tyler; Thomas, Daniel M.; Unterberg, Ezekial A.; ...

    2018-01-05

    Recent emphasis of tungsten (W) plasma-materialsinteractions (PMI) experiments on DIII-D has made it essential to enhance the W I and W II measurement capabilities of its spectroscopy diagnostic suite to acquire W sourcing measurements with high temporal, spatial, and wavelength resolution. To this end, four new viewing chords for the Multichordal Divertor Spectrometer (MDS) and diverter filterscope systems were installed, leading to a 7x increase in blue light sensitivity. W I and low-Z impurity line identifications were performed in the 3995-4030 Å region, placing wavelengths within 0.1 Å of the NIST values. A novel method was also developed for themore » DIII-D high temporal resolution filterscopes to distinguish between W I light and background contamination, important due to the relatively weak intensity of this line, using two different bandpass filters width different widths but the same center wavelength. Lastly, fast imaging of the W I 4008.75 Å spectral line with a PCO Pixelfly VGA 200/205 camera allowed for discrimination between ELMy and intra-ELM W I emission profiles with very high (~1 mm) spatial resolution.« less

  8. High-spatial-resolution sub-surface imaging using a laser-based acoustic microscopy technique.

    PubMed

    Balogun, Oluwaseyi; Cole, Garrett D; Huber, Robert; Chinn, Diane; Murray, Todd W; Spicer, James B

    2011-01-01

    Scanning acoustic microscopy techniques operating at frequencies in the gigahertz range are suitable for the elastic characterization and interior imaging of solid media with micrometer-scale spatial resolution. Acoustic wave propagation at these frequencies is strongly limited by energy losses, particularly from attenuation in the coupling media used to transmit ultrasound to a specimen, leading to a decrease in the depth in a specimen that can be interrogated. In this work, a laser-based acoustic microscopy technique is presented that uses a pulsed laser source for the generation of broadband acoustic waves and an optical interferometer for detection. The use of a 900-ps microchip pulsed laser facilitates the generation of acoustic waves with frequencies extending up to 1 GHz which allows for the resolution of micrometer-scale features in a specimen. Furthermore, the combination of optical generation and detection approaches eliminates the use of an ultrasonic coupling medium, and allows for elastic characterization and interior imaging at penetration depths on the order of several hundred micrometers. Experimental results illustrating the use of the laser-based acoustic microscopy technique for imaging micrometer-scale subsurface geometrical features in a 70-μm-thick single-crystal silicon wafer with a (100) orientation are presented.

  9. Advances in Low-Temperature Tungsten Spectroscopy Capability to Quantify DIII-D Divertor Erosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abrams, Tyler; Thomas, Daniel M.; Unterberg, Ezekial A.

    Recent emphasis of tungsten (W) plasma-materialsinteractions (PMI) experiments on DIII-D has made it essential to enhance the W I and W II measurement capabilities of its spectroscopy diagnostic suite to acquire W sourcing measurements with high temporal, spatial, and wavelength resolution. To this end, four new viewing chords for the Multichordal Divertor Spectrometer (MDS) and diverter filterscope systems were installed, leading to a 7x increase in blue light sensitivity. W I and low-Z impurity line identifications were performed in the 3995-4030 Å region, placing wavelengths within 0.1 Å of the NIST values. A novel method was also developed for themore » DIII-D high temporal resolution filterscopes to distinguish between W I light and background contamination, important due to the relatively weak intensity of this line, using two different bandpass filters width different widths but the same center wavelength. Lastly, fast imaging of the W I 4008.75 Å spectral line with a PCO Pixelfly VGA 200/205 camera allowed for discrimination between ELMy and intra-ELM W I emission profiles with very high (~1 mm) spatial resolution.« less

  10. Enhancing resolution and contrast in second-harmonic generation microscopy using an advanced maximum likelihood estimation restoration method

    NASA Astrophysics Data System (ADS)

    Sivaguru, Mayandi; Kabir, Mohammad M.; Gartia, Manas Ranjan; Biggs, David S. C.; Sivaguru, Barghav S.; Sivaguru, Vignesh A.; Berent, Zachary T.; Wagoner Johnson, Amy J.; Fried, Glenn A.; Liu, Gang Logan; Sadayappan, Sakthivel; Toussaint, Kimani C.

    2017-02-01

    Second-harmonic generation (SHG) microscopy is a label-free imaging technique to study collagenous materials in extracellular matrix environment with high resolution and contrast. However, like many other microscopy techniques, the actual spatial resolution achievable by SHG microscopy is reduced by out-of-focus blur and optical aberrations that degrade particularly the amplitude of the detectable higher spatial frequencies. Being a two-photon scattering process, it is challenging to define a point spread function (PSF) for the SHG imaging modality. As a result, in comparison with other two-photon imaging systems like two-photon fluorescence, it is difficult to apply any PSF-engineering techniques to enhance the experimental spatial resolution closer to the diffraction limit. Here, we present a method to improve the spatial resolution in SHG microscopy using an advanced maximum likelihood estimation (AdvMLE) algorithm to recover the otherwise degraded higher spatial frequencies in an SHG image. Through adaptation and iteration, the AdvMLE algorithm calculates an improved PSF for an SHG image and enhances the spatial resolution by decreasing the full-width-at-halfmaximum (FWHM) by 20%. Similar results are consistently observed for biological tissues with varying SHG sources, such as gold nanoparticles and collagen in porcine feet tendons. By obtaining an experimental transverse spatial resolution of 400 nm, we show that the AdvMLE algorithm brings the practical spatial resolution closer to the theoretical diffraction limit. Our approach is suitable for adaptation in micro-nano CT and MRI imaging, which has the potential to impact diagnosis and treatment of human diseases.

  11. Demonstration of Airborne Wide Area Assessment Technologies at Pueblo Precision Bombing Ranges, Colorado. Hyperspectral Imaging, Version 2.0

    DTIC Science & Technology

    2007-09-27

    the spatial and spectral resolution ...variety of geological and vegetation mapping efforts, the Hymap sensor offered the best available combination of spectral and spatial resolution , signal... The limitations of the technology currently relate to spatial and spectral resolution and geo- correction accuracy. Secondly, HSI datasets

  12. The effect of spatial resolution upon cloud optical property retrievals. I - Optical thickness

    NASA Technical Reports Server (NTRS)

    Feind, Rand E.; Christopher, Sundar A.; Welch, Ronald M.

    1992-01-01

    High spectral and spatial resolution Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) imagery is used to study the effects of spatial resolution upon fair weather cumulus cloud optical thickness retrievals. As a preprocessing step, a variation of the Gao and Goetz three-band ratio technique is used to discriminate clouds from the background. The combination of the elimination of cloud shadow pixels and using the first derivative of the histogram allows for accurate cloud edge discrimination. The data are progressively degraded from 20 m to 960 m spatial resolution. The results show that retrieved cloud area increases with decreasing spatial resolution. The results also show that there is a monotonic decrease in retrieved cloud optical thickness with decreasing spatial resolution. It is also demonstrated that the use of a single, monospectral reflectance threshold is inadequate for identifying cloud pixels in fair weather cumulus scenes and presumably in any inhomogeneous cloud field. Cloud edges have a distribution of reflectance thresholds. The incorrect identification of cloud edges significantly impacts the accurate retrieval of cloud optical thickness values.

  13. Spatial resolution of a spherical x-ray crystal spectrometer at various magnifications

    DOE PAGES

    Gao, Lan; Hill, K. W.; Bitter, M.; ...

    2016-08-23

    Here, a high spatial resolution of a few μm is often required for probing small-scale high-energy-density plasmas using high resolution x-ray imaging spectroscopy. This resolution can be achieved by adjusting system magnification to overcome the inherent limitation of the detector pixel size. Laboratory experiments on investigating the relation between spatial resolution and system magnification for a spherical crystal spectrometer are presented. Tungsten Lβ 2 rays from a tungsten-target micro-focus x-ray tube were diffracted by a Ge 440 crystal, which was spherically bent to a radius of 223 mm, and imaged onto an x-ray CCD with 13-μm pixel size. The source-to-crystalmore » (p) and crystal-to-detector (q) distances were varied to produce spatial magnifications ( M = q/p) ranging from 2 to 10. The inferred instrumental spatial width reduces with increasing system magnification M. However, the experimental measurement at each M is larger than the theoretical value of pixel size divided by M. Future work will focus on investigating possible broadening mechanisms that limit the spatial resolution.« less

  14. Emotional cues enhance the attentional effects on spatial and temporal resolution.

    PubMed

    Bocanegra, Bruno R; Zeelenberg, René

    2011-12-01

    In the present study, we demonstrated that the emotional significance of a spatial cue enhances the effect of covert attention on spatial and temporal resolution (i.e., our ability to discriminate small spatial details and fast temporal flicker). Our results indicated that fearful face cues, as compared with neutral face cues, enhanced the attentional benefits in spatial resolution but also enhanced the attentional deficits in temporal resolution. Furthermore, we observed that the overall magnitudes of individuals' attentional effects correlated strongly with the magnitude of the emotion × attention interaction effect. Combined, these findings provide strong support for the idea that emotion enhances the strength of a cue's attentional response.

  15. HESS Opinions: The need for process-based evaluation of large-domain hyper-resolution models

    NASA Astrophysics Data System (ADS)

    Melsen, Lieke A.; Teuling, Adriaan J.; Torfs, Paul J. J. F.; Uijlenhoet, Remko; Mizukami, Naoki; Clark, Martyn P.

    2016-03-01

    A meta-analysis on 192 peer-reviewed articles reporting on applications of the variable infiltration capacity (VIC) model in a distributed way reveals that the spatial resolution at which the model is applied has increased over the years, while the calibration and validation time interval has remained unchanged. We argue that the calibration and validation time interval should keep pace with the increase in spatial resolution in order to resolve the processes that are relevant at the applied spatial resolution. We identified six time concepts in hydrological models, which all impact the model results and conclusions. Process-based model evaluation is particularly relevant when models are applied at hyper-resolution, where stakeholders expect credible results both at a high spatial and temporal resolution.

  16. HESS Opinions: The need for process-based evaluation of large-domain hyper-resolution models

    NASA Astrophysics Data System (ADS)

    Melsen, L. A.; Teuling, A. J.; Torfs, P. J. J. F.; Uijlenhoet, R.; Mizukami, N.; Clark, M. P.

    2015-12-01

    A meta-analysis on 192 peer-reviewed articles reporting applications of the Variable Infiltration Capacity (VIC) model in a distributed way reveals that the spatial resolution at which the model is applied has increased over the years, while the calibration and validation time interval has remained unchanged. We argue that the calibration and validation time interval should keep pace with the increase in spatial resolution in order to resolve the processes that are relevant at the applied spatial resolution. We identified six time concepts in hydrological models, which all impact the model results and conclusions. Process-based model evaluation is particularly relevant when models are applied at hyper-resolution, where stakeholders expect credible results both at a high spatial and temporal resolution.

  17. Effect of spatial resolution on remote sensing estimation of total evaporation in the uMngeni catchment, South Africa

    NASA Astrophysics Data System (ADS)

    Shoko, Cletah; Clark, David; Mengistu, Michael; Dube, Timothy; Bulcock, Hartley

    2015-01-01

    This study evaluated the effect of two readily available multispectral sensors: the newly launched 30 m spatial resolution Landsat 8 and the long-serving 1000 m moderate resolution imaging spectroradiometer (MODIS) datasets in the spatial representation of total evaporation in the heterogeneous uMngeni catchment, South Africa, using the surface energy balance system model. The results showed that sensor spatial resolution plays a critical role in the accurate estimation of energy fluxes and total evaporation across a heterogeneous catchment. Landsat 8 estimates showed better spatial representation of the biophysical parameters and total evaporation for different land cover types, due to the relatively higher spatial resolution compared to the coarse spatial resolution MODIS sensor. Moreover, MODIS failed to capture the spatial variations of total evaporation estimates across the catchment. Analysis of variance (ANOVA) results showed that MODIS-based total evaporation estimates did not show any significant differences across different land cover types (one-way ANOVA; F1.924=1.412, p=0.186). However, Landsat 8 images yielded significantly different estimates between different land cover types (one-way ANOVA; F1.993=5.185, p<0.001). The validation results showed that Landsat 8 estimates were more comparable to eddy covariance (EC) measurements than the MODIS-based total evaporation estimates. EC measurement on May 23, 2013, was 3.8 mm/day, whereas the Landsat 8 estimate on the same day was 3.6 mm/day, with MODIS showing significantly lower estimates of 2.3 mm/day. The findings of this study underscore the importance of spatial resolution in estimating spatial variations of total evaporation at the catchment scale, thus, they provide critical information on the relevance of the readily available remote sensing products in water resources management in data-scarce environments.

  18. Spatial resolution limits for the isotropic-3D PET detector X’tal cube

    NASA Astrophysics Data System (ADS)

    Yoshida, Eiji; Tashima, Hideaki; Hirano, Yoshiyuki; Inadama, Naoko; Nishikido, Fumihiko; Murayama, Hideo; Yamaya, Taiga

    2013-11-01

    Positron emission tomography (PET) has become a popular imaging method in metabolism, neuroscience, and molecular imaging. For dedicated human brain and small animal PET scanners, high spatial resolution is needed to visualize small objects. To improve the spatial resolution, we are developing the X’tal cube, which is our new PET detector to achieve isotropic 3D positioning detectability. We have shown that the X’tal cube can achieve 1 mm3 uniform crystal identification performance with the Anger-type calculation even at the block edges. We plan to develop the X’tal cube with even smaller 3D grids for sub-millimeter crystal identification. In this work, we investigate spatial resolution of a PET scanner based on the X’tal cube using Monte Carlo simulations for predicting resolution performance in smaller 3D grids. For spatial resolution evaluation, a point source emitting 511 keV photons was simulated by GATE for all physical processes involved in emission and interaction of positrons. We simulated two types of animal PET scanners. The first PET scanner had a detector ring 14.6 cm in diameter composed of 18 detectors. The second PET scanner had a detector ring 7.8 cm in diameter composed of 12 detectors. After the GATE simulations, we converted the interacting 3D position information to digitalized positions for realistic segmented crystals. We simulated several X’tal cubes with cubic crystals from (0.5 mm)3 to (2 mm)3 in size. Also, for evaluating the effect of DOI resolution, we simulated several X’tal cubes with crystal thickness from (0.5 mm)3 to (9 mm)3. We showed that sub-millimeter spatial resolution was possible using cubic crystals smaller than (1.0 mm)3 even with the assumed physical processes. Also, the weighted average spatial resolutions of both PET scanners with (0.5 mm)3 cubic crystals were 0.53 mm (14.6 cm ring diameter) and 0.48 mm (7.8 cm ring diameter). For the 7.8 cm ring diameter, spatial resolution with 0.5×0.5×1.0 mm3 crystals was improved 39% relative to the (1 mm)3 cubic crystals. On the other hand, spatial resolution with (0.5 mm)3 cubic crystals was improved 47% relative to the (1 mm)3 cubic crystals. The X’tal cube promises better spatial resolution for the 3D crystal block with isotropic resolution.

  19. Textile Concentric Ring Electrodes for ECG Recording Based on Screen-Printing Technology

    PubMed Central

    Ye-Lin, Yiyao; Garcia-Casado, Javier

    2018-01-01

    Among many of the electrode designs used in electrocardiography (ECG), concentric ring electrodes (CREs) are one of the most promising due to their enhanced spatial resolution. Their development has undergone a great push due to their use in recent years; however, they are not yet widely used in clinical practice. CRE implementation in textiles will lead to a low cost, flexible, comfortable, and robust electrode capable of detecting high spatial resolution ECG signals. A textile CRE set has been designed and developed using screen-printing technology. This is a mature technology in the textile industry and, therefore, does not require heavy investments. Inks employed as conductive elements have been silver and a conducting polymer (poly (3,4-ethylenedioxythiophene) polystyrene sulfonate; PEDOT:PSS). Conducting polymers have biocompatibility advantages, they can be used with flexible substrates, and they are available for several printing technologies. CREs implemented with both inks have been compared by analyzing their electric features and their performance in detecting ECG signals. The results reveal that silver CREs present a higher average thickness and slightly lower skin-electrode impedance than PEDOT:PSS CREs. As for ECG recordings with subjects at rest, both CREs allowed the uptake of bipolar concentric ECG signals (BC-ECG) with signal-to-noise ratios similar to that of conventional ECG recordings. Regarding the saturation and alterations of ECGs captured with textile CREs caused by intentional subject movements, silver CREs presented a more stable response (fewer saturations and alterations) than those of PEDOT:PSS. Moreover, BC-ECG signals provided higher spatial resolution compared to conventional ECG. This improved spatial resolution was manifested in the identification of P1 and P2 waves of atrial activity in most of the BC-ECG signals. It can be concluded that textile silver CREs are more suitable than those of PEDOT:PSS for obtaining BC-ECG records. These developed textile electrodes bring the use of CREs closer to the clinical environment. PMID:29361722

  20. Textile Concentric Ring Electrodes for ECG Recording Based on Screen-Printing Technology.

    PubMed

    Lidón-Roger, José Vicente; Prats-Boluda, Gema; Ye-Lin, Yiyao; Garcia-Casado, Javier; Garcia-Breijo, Eduardo

    2018-01-21

    Among many of the electrode designs used in electrocardiography (ECG), concentric ring electrodes (CREs) are one of the most promising due to their enhanced spatial resolution. Their development has undergone a great push due to their use in recent years; however, they are not yet widely used in clinical practice. CRE implementation in textiles will lead to a low cost, flexible, comfortable, and robust electrode capable of detecting high spatial resolution ECG signals. A textile CRE set has been designed and developed using screen-printing technology. This is a mature technology in the textile industry and, therefore, does not require heavy investments. Inks employed as conductive elements have been silver and a conducting polymer (poly (3,4-ethylenedioxythiophene) polystyrene sulfonate; PEDOT:PSS). Conducting polymers have biocompatibility advantages, they can be used with flexible substrates, and they are available for several printing technologies. CREs implemented with both inks have been compared by analyzing their electric features and their performance in detecting ECG signals. The results reveal that silver CREs present a higher average thickness and slightly lower skin-electrode impedance than PEDOT:PSS CREs. As for ECG recordings with subjects at rest, both CREs allowed the uptake of bipolar concentric ECG signals (BC-ECG) with signal-to-noise ratios similar to that of conventional ECG recordings. Regarding the saturation and alterations of ECGs captured with textile CREs caused by intentional subject movements, silver CREs presented a more stable response (fewer saturations and alterations) than those of PEDOT:PSS. Moreover, BC-ECG signals provided higher spatial resolution compared to conventional ECG. This improved spatial resolution was manifested in the identification of P1 and P2 waves of atrial activity in most of the BC-ECG signals. It can be concluded that textile silver CREs are more suitable than those of PEDOT:PSS for obtaining BC-ECG records. These developed textile electrodes bring the use of CREs closer to the clinical environment.

  1. A novel TOF-PET MRI detector for diagnosis and follow up of the prostate cancer

    NASA Astrophysics Data System (ADS)

    Garibaldi, F.; Beging, S.; Canese, R.; Carpinelli, G.; Clinthorne, N.; Colilli, S.; Cosentino, L.; Finocchiaro, P.; Giuliani, F.; Gricia, M.; Lucentini, M.; Majewski, S.; Monno, E.; Musico, P.; Santavenere, F.; Tödter, J.; Wegener, H.; Ziemons, K.

    2017-09-01

    Prostate cancer is the most common disease in men and the second leading cause of death from cancer. Generic large imaging instruments used in cancer diagnosis have sensitivity, spatial resolution, and contrast which are inadequate for the task of imaging details of a small organ such as the prostate. In addition, multimodality imaging can play a significant role in merging anatomical and functional details coming from simultaneous PET and MRI. Indeed, multiparametric PET/MRI was demonstrated to improve diagnosis, but it suffers from too many false positives. In order to address the above limits of the current techniques, we have proposed, built and tested, thanks to the TOPEM project funded by Italian National Institute of Nuclear Phisics, a prototype of an endorectal PET-TOF/MRI probe. In the applied magnification PET geometry, performance is dominated by a high-resolution detector placed closer to the source. The expected spatial resolution in the selected geometry is about 1.5mm FWHM and efficiency of a factor 2 with respect to what was obtained with the conventional PET scanner. In our experimental studies, we have obtained a timing resolution of ˜ 320 ps FWHM and at the same time a Depth of Interaction (DOI) resolution of under 1mm. Tests also showed that mutual adverse PET-MR effects are minimal. In addition, the matching endorectal RF coil was designed, built and tested. In the next planned studies, we expect that benefiting from the further progress in scintillator crystal surface treatment, in SiPM technology and associated electronics would allow us to significantly improve TOF resolution.

  2. Black Holes Masses in Seyfert Galaxies

    NASA Technical Reports Server (NTRS)

    Macchetto, F. D.

    2004-01-01

    There is increasing evidence for the existence of supermassive black holes at the centers of all galaxies, and much work is being devoted to understand the process that lead to their formation, the duty cycle for the active phase of these black holes and the relevant fueling mechanisms. Seyfert galaxies determined by HST high spatial resolution observations of the kinematics of the central regions. The study of the gas kinematics provides a unique tool to probe the gravitational potential of the nuclear regions of Seyfert galaxies down to a limit radius of a few parsecs. This is particularly important to detect and measure the mass associated with any central massive black hole. We have obtained high spatial resolution spectra of a number of Seyfert galaxies, with the STIS G430M and G750M gratings, and we have been able to separate the emission line components associated with different velocity systems. We have derived two-dimensional velocity fields and determined the mass of the central black hole with good precision for each of the galaxies.

  3. Phase-detected Brillouin optical correlation-domain reflectometry

    NASA Astrophysics Data System (ADS)

    Mizuno, Yosuke; Hayashi, Neisei; Fukuda, Hideyuki; Nakamura, Kentaro

    2018-05-01

    Optical fiber sensing techniques based on Brillouin scattering have been extensively studied for structural health monitoring owing to their capability of distributed strain and temperature measurement. Although a higher signal-to-noise ratio (leading to high spatial resolution and high-speed measurement) is generally obtained for two-end-access systems, they reduce the degree of freedom in embedding the sensors into structures, and render the measurement no longer feasible when extremely high loss or breakage occurs at a point of the sensing fiber. To overcome these drawbacks, a one-end-access sensing technique called Brillouin optical correlation-domain reflectometry (BOCDR) has been developed. BOCDR has a high spatial resolution and cost efficiency, but its conventional configuration suffered from relatively low-speed operation. In this paper, we review the recently developed high-speed configurations of BOCDR, including phase-detected BOCDR, with which we demonstrate real-time distributed measurement by tracking a propagating mechanical wave. We also demonstrate breakage detection with a wide strain dynamic range.

  4. Unraveling submicron-scale mechanical heterogeneity by three-dimensional X-ray microdiffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Runguang; Xie, Qingge; Wang, Yan-Dong

    Shear banding is a ubiquitous phenomenon of severe plastic deformation, and damage accumulation in shear bands often results in the catastrophic failure of a material. Despite extensive studies, the microscopic mechanisms of strain localization and deformation damage in shear bands remain elusive due to their spatial-temporal complexities embedded in bulk materials. Here we conducted synchrotron-based X-ray microdiffraction (μXRD) experiments to map out the 3D lattice strain field with a submicron resolution around fatigue shear bands in a stainless steel. Both in situ and postmortem μXRD results revealed large lattice strain gradients at intersections of the primary and secondary shear bands.more » Such strain gradients resulted in severe mechanical heterogeneities across the fatigue shear bands, leading to reduced fatigue limits in the high-cycle regime. The ability to spatially quantify the localized strain gradients with submicron resolution through μXRD opens opportunities for understanding the microscopic mechanisms of damage and failure in bulk materials.« less

  5. Phase-detected Brillouin optical correlation-domain reflectometry

    NASA Astrophysics Data System (ADS)

    Mizuno, Yosuke; Hayashi, Neisei; Fukuda, Hideyuki; Nakamura, Kentaro

    2018-06-01

    Optical fiber sensing techniques based on Brillouin scattering have been extensively studied for structural health monitoring owing to their capability of distributed strain and temperature measurement. Although a higher signal-to-noise ratio (leading to high spatial resolution and high-speed measurement) is generally obtained for two-end-access systems, they reduce the degree of freedom in embedding the sensors into structures, and render the measurement no longer feasible when extremely high loss or breakage occurs at a point of the sensing fiber. To overcome these drawbacks, a one-end-access sensing technique called Brillouin optical correlation-domain reflectometry (BOCDR) has been developed. BOCDR has a high spatial resolution and cost efficiency, but its conventional configuration suffered from relatively low-speed operation. In this paper, we review the recently developed high-speed configurations of BOCDR, including phase-detected BOCDR, with which we demonstrate real-time distributed measurement by tracking a propagating mechanical wave. We also demonstrate breakage detection with a wide strain dynamic range.

  6. Unraveling submicron-scale mechanical heterogeneity by three-dimensional X-ray microdiffraction

    DOE PAGES

    Li, Runguang; Xie, Qingge; Wang, Yan-Dong; ...

    2017-12-28

    Shear banding is a ubiquitous phenomenon of severe plastic deformation, and damage accumulation in shear bands often results in the catastrophic failure of a material. Despite extensive studies, the microscopic mechanisms of strain localization and deformation damage in shear bands remain elusive due to their spatial-temporal complexities embedded in bulk materials. Here we conducted synchrotron-based X-ray microdiffraction (μXRD) experiments to map out the 3D lattice strain field with a submicron resolution around fatigue shear bands in a stainless steel. Both in situ and postmortem μXRD results revealed large lattice strain gradients at intersections of the primary and secondary shear bands.more » Such strain gradients resulted in severe mechanical heterogeneities across the fatigue shear bands, leading to reduced fatigue limits in the high-cycle regime. The ability to spatially quantify the localized strain gradients with submicron resolution through μXRD opens opportunities for understanding the microscopic mechanisms of damage and failure in bulk materials.« less

  7. Anatomical and metabolic small-animal whole-body imaging using ring-shaped confocal photoacoustic computed tomography

    NASA Astrophysics Data System (ADS)

    Xia, Jun; Chatni, Muhammad; Maslov, Konstantin; Wang, Lihong V.

    2013-03-01

    Due to the wide use of animals for human disease studies, small animal whole-body imaging plays an increasingly important role in biomedical research. Currently, none of the existing imaging modalities can provide both anatomical and glucose metabolic information, leading to higher costs of building dual-modality systems. Even with image coregistration, the spatial resolution of the metabolic imaging modality is not improved. We present a ring-shaped confocal photoacoustic computed tomography (RC-PACT) system that can provide both assessments in a single modality. Utilizing the novel design of confocal full-ring light delivery and ultrasound transducer array detection, RC-PACT provides full-view cross-sectional imaging with high spatial resolution. Scanning along the orthogonal direction provides three-dimensional imaging. While the mouse anatomy was imaged with endogenous hemoglobin contrast, the glucose metabolism was imaged with a near-infrared dye-labeled 2-deoxyglucose. Through mouse tumor models, we demonstrate that RC-PACT may be a paradigm shifting imaging method for preclinical research.

  8. Resolution dependence of cross-tropopause ozone transport over east Asia

    NASA Astrophysics Data System (ADS)

    Büker, M. L.; Hitchman, Matthew H.; Tripoli, Gregory J.; Pierce, R. B.; Browell, E. V.; Avery, M. A.

    2005-02-01

    Detailed analysis of mesoscale transport of ozone across the tropopause over east Asia during the spring of 2001 is conducted using regional simulations with the University of Wisconsin Nonhydrostatic Modeling System (UWNMS), in situ flight data, and a new two-scale approach to diagnosing this ozone flux. From late February to early April, synoptic activity regularly deformed the tropopause, leading to observations of ozone-rich (concentration exceeding 80 ppbv) stratospheric intrusions and filaments at tropospheric altitudes. Since model resolution is generally not sufficient to capture detailed small-scale mixing processes, an upper bound on the flux is proposed by assuming that there exists a dynamical division by spatial scale, above which the wind conservatively advects large-scale structures, while below it the wind leads to irreversible transport through nonconservative random strain. A formulation for this diagnosis is given and applied to ozone flux across the dynamical tropopause. Simulations were chosen to correspond with DC-8 flight 15 on 26-27 March over east Asia during the Transport and Chemical Evolution Over the Pacific (TRACE-P) campaign. Local and domain-averaged flux values using this method agree with other numerical and observational studies in similar synoptic environments. Sensitivity to numerical resolution, prescribed divisional spatial scale, and potential vorticity (PV) level is investigated. Divergent residual flow in regions of high ozone, and PV gradients tended to maximize flux magnitudes. We estimated the domain-integrated flow of ozone out of the lowermost stratosphere to be about 0.127 Tg/day. Spectral analysis of the wind field lends support for utilization of this dynamical division in this methodology.

  9. High Resolution Habitat Suitability Modelling For Restricted-Range Hawaiian Alpine Arthropod Species

    NASA Astrophysics Data System (ADS)

    Stephenson, N. M.

    2016-12-01

    Mapping potentially suitable habitat is critical for effective species conservation and management but can be challenging in areas exhibiting complex heterogeneity. An approach that combines non-intrusive spatial data collection techniques and field data can lead to a better understanding of landscapes and species distributions. Nysius wekiuicola, commonly known as the wēkiu bug, is the most studied arthropod species endemic to the Maunakea summit in Hawai`i, yet details about its geographic distribution and habitat use remain poorly understood. To predict the geographic distribution of N. wekiuicola, MaxEnt habitat suitability models were generated from a diverse set of input variables, including fifteen years of species occurrence data, high resolution digital elevation models, surface mineralogy maps derived from hyperspectral remote sensing, and climate data. Model results indicate that elevation (78.2 percent), and the presence of nanocrystalline hematite surface minerals (13.7 percent) had the highest influence, with lesser contributions from aspect, slope, and other surface mineral classes. Climatic variables were not included in the final analysis due to auto-correlation and coarse spatial resolution. Biotic factors relating to predation and competition also likely dictate wēkiu bug capture patterns and influence our results. The wēkiu bug range and habitat suitability models generated as a result of this study will be directly incorporated into management and restoration goals for the summit region and can also be adapted for other arthropod species present, leading to a more holistic understanding of metacommunity dynamics. Key words: Microhabitat, Structure from Motion, Lidar, MaxEnt, Habitat Suitability

  10. The 1 km resolution global data set: needs of the International Geosphere Biosphere Programme

    USGS Publications Warehouse

    Townshend, J.R.G.; Justice, C.O.; Skole, D.; Malingreau, J.-P.; Cihlar, J.; Teillet, P.; Sadowski, F.; Ruttenberg, S.

    1994-01-01

    Examination of the scientific priorities for the International Geosphere Biosphere Programme (IGBP) reveals a requirement for global land data sets in several of its Core Projects. These data sets need to be at several space and time scales. Requirements are demonstrated for the regular acquisition of data at spatial resolutions of 1 km and finer and at high temporal frequencies. Global daily data at a resolution of approximately 1 km are sensed by the Advanced Very High Resolution Radiometer (AVHRR), but they have not been available in a single archive. It is proposed, that a global data set of the land surface is created from remotely sensed data from the AVHRR to support a number of IGBP's projects. This data set should have a spatial resolution of 1 km and should be generated at least once every 10 days for the entire globe. The minimum length of record should be a year, and ideally a system should be put in place which leads to the continuous acquisition of 1 km data to provide a base line data set prior to the Earth Observing System (EOS) towards the end of the decade. Because of the high cloud cover in many parts of the world, it is necessary to plan for the collection of data from every orbit. Substantial effort will be required in the preprocessing of the data set involving radiometric calibration, atmospheric correction, geometric correction and temporal compositing, to make it suitable for the extraction of information.

  11. A wide field-of-view imaging DOAS instrument for continuous trace gas mapping from aircraft

    NASA Astrophysics Data System (ADS)

    Schönhardt, A.; Altube, P.; Gerilowski, K.; Krautwurst, S.; Hartmann, J.; Meier, A. C.; Richter, A.; Burrows, J. P.

    2014-04-01

    For the purpose of trace gas measurements and pollution mapping, the Airborne imaging DOAS instrument for Measurements of Atmospheric Pollution (AirMAP) has been developed, characterised and successfully operated from aircraft. From the observations with the AirMAP instrument nitrogen dioxide (NO2) columns were retrieved. A major benefit of the pushbroom imaging instrument is the spatially continuous, gap-free measurement sequence independent of flight altitude, a valuable characteristic for mapping purposes. This is made possible by the use of a frame-transfer detector. With a wide-angle entrance objective, a broad field-of-view across track of around 48° is achieved, leading to a swath width of about the same size as the flight altitude. The use of fibre coupled light intake optics with sorted light fibres allows flexible positioning within the aircraft and retains the very good imaging capabilities. The measurements yield ground spatial resolutions below 100 m. From a maximum of 35 individual viewing directions (lines of sight, LOS) represented by 35 single fibres, the number of viewing directions is adapted to each situation by averaging according to signal-to-noise or spatial resolution requirements. Exploitation of all the viewing directions yields observations at 30 m spatial resolution, making the instrument a suitable tool for mapping trace gas point sources and small scale variability. For accurate spatial mapping the position and aircraft attitude are taken into account using the Attitude and Heading Reference System of the aircraft. A first demonstration mission using AirMAP was undertaken. In June 2011, AirMAP has been operated on the AWI Polar-5 aircraft in the framework of the AIRMETH2011 campaign. During a flight above a medium sized coal-fired power plant in North-West Germany, AirMAP clearly detects the emission plume downwind from the exhaust stack, with NO2 vertical columns around 2 × 1016 molecules cm-2 in the plume center. The emission estimates are consistent with reports in the pollutant transfer register. Strong spatial gradients and variability in NO2 amounts across and along flight direction are observed, and small-scale enhancements of NO2 above a motorway are detected. The present study reports on the experimental setup and characteristics of AirMAP, and the first measurements at high spatial resolution and wide spatial coverage are presented which meet the requirements for NO2 mapping to observe and account for the intrinsic variability of tropospheric NO2.

  12. Evaluating the Impact of Spatial Resolution of Landsat Predictors on the Accuracy of Biomass Models for Large-area Estimation Across the Eastern USA

    NASA Astrophysics Data System (ADS)

    Deo, R. K.; Domke, G. M.; Russell, M.; Woodall, C. W.

    2017-12-01

    Landsat data have been widely used to support strategic forest inventory and management decisions despite the limited success of passive optical remote sensing for accurate estimation of aboveground biomass (AGB). The archive of publicly available Landsat data, available at 30-m spatial resolutions since 1984, has been a valuable resource for cost-effective large-area estimation of AGB to inform national requirements such as for the US national greenhouse gas inventory (NGHGI). In addition, other optical satellite data such as MODIS imagery of wider spatial coverage and higher temporal resolution are enriching the domain of spatial predictors for regional scale mapping of AGB. Because NGHGIs require national scale AGB information and there are tradeoffs in the prediction accuracy versus operational efficiency of Landsat, this study evaluated the impact of various resolutions of Landsat predictors on the accuracy of regional AGB models across three different sites in the eastern USA: Maine, Pennsylvania-New Jersey, and South Carolina. We used recent national forest inventory (NFI) data with numerous Landsat-derived predictors at ten different spatial resolutions ranging from 30 to 1000 m to understand the optimal spatial resolution of the optical data for enhanced spatial inventory of AGB for NGHGI reporting. Ten generic spatial models at different spatial resolutions were developed for all sites and large-area estimates were evaluated (i) at the county-level against the independent designed-based estimates via the US NFI Evalidator tool and (ii) within a large number of strips ( 1 km wide) predicted via LiDAR metrics at a high spatial resolution. The county-level estimates by the Evalidator and Landsat models were statistically equivalent and produced coefficients of determination (R2) above 0.85 that varied with sites and resolution of predictors. The mean and standard deviation of county-level estimates followed increasing and decreasing trends, respectively, with models of decreasing resolutions. The Landsat-based total AGB estimates within the strips against the total AGB obtained using LiDAR metrics did not differ significantly and were within ±15 Mg/ha for each of the sites. We conclude that the optical satellite data at resolutions up to 1000 m provide acceptable accuracy for the US' NGHGI.

  13. Spatial resolution limitation of liquid crystal spatial light modulator

    NASA Astrophysics Data System (ADS)

    Wang, Xinghua; Wang, Bin; McManamon, Paul F., III; Pouch, John J.; Miranda, Felix A.; Anderson, James E.; Bos, Philip J.

    2004-10-01

    The effect of fringing electric fields in a liquid crystal (LC) Optical Phased Array (OPA), also referred to as a spatial light modulator (SLM), is a governing factor that determines the diffraction efficiency (DE) of the LC OPA for high resolution spatial phase modulation. In this article, the fringing field effect in a high resolution LC OPA is studied by accurate modeling the DE of the LC blazed gratings by LC director simulation and Finite Difference Time Domain (FDTD) simulation. Influence factors that contribute significantly to the DE are discussed. Such results provide fundamental understanding for high resolution LC devices.

  14. Impacts of spatial resolution and representation of flow connectivity on large-scale simulation of floods

    NASA Astrophysics Data System (ADS)

    Mateo, Cherry May R.; Yamazaki, Dai; Kim, Hyungjun; Champathong, Adisorn; Vaze, Jai; Oki, Taikan

    2017-10-01

    Global-scale river models (GRMs) are core tools for providing consistent estimates of global flood hazard, especially in data-scarce regions. Due to former limitations in computational power and input datasets, most GRMs have been developed to use simplified representations of flow physics and run at coarse spatial resolutions. With increasing computational power and improved datasets, the application of GRMs to finer resolutions is becoming a reality. To support development in this direction, the suitability of GRMs for application to finer resolutions needs to be assessed. This study investigates the impacts of spatial resolution and flow connectivity representation on the predictive capability of a GRM, CaMa-Flood, in simulating the 2011 extreme flood in Thailand. Analyses show that when single downstream connectivity (SDC) is assumed, simulation results deteriorate with finer spatial resolution; Nash-Sutcliffe efficiency coefficients decreased by more than 50 % between simulation results at 10 km resolution and 1 km resolution. When multiple downstream connectivity (MDC) is represented, simulation results slightly improve with finer spatial resolution. The SDC simulations result in excessive backflows on very flat floodplains due to the restrictive flow directions at finer resolutions. MDC channels attenuated these effects by maintaining flow connectivity and flow capacity between floodplains in varying spatial resolutions. While a regional-scale flood was chosen as a test case, these findings should be universal and may have significant impacts on large- to global-scale simulations, especially in regions where mega deltas exist.These results demonstrate that a GRM can be used for higher resolution simulations of large-scale floods, provided that MDC in rivers and floodplains is adequately represented in the model structure.

  15. A technique for enhancing and matching the resolution of microwave measurements from the SSM/I instrument

    NASA Technical Reports Server (NTRS)

    Robinson, Wayne D.; Kummerrow, Christian; Olson, William S.

    1992-01-01

    A correction technique is presented for matching the resolution of all the frequencies of the satelliteborne Special Sensor Microwave/Imager (SSM/I) to the about-25-km spatial resolution of the 37-GHz channel. This entails, on the one hand, the enhancement of the spatial resolution of the 19- and 22-GHz channels, and on the other, the degrading of that of the 85-GHz channel. The Backus and Gilbert (1970) approach is found to yield sufficient spatial resolution to render such a correction worthwhile.

  16. High spatial resolution distributed optical fiber dynamic strain sensor with enhanced frequency and strain resolution.

    PubMed

    Masoudi, Ali; Newson, Trevor P

    2017-01-15

    A distributed optical fiber dynamic strain sensor with high spatial and frequency resolution is demonstrated. The sensor, which uses the ϕ-OTDR interrogation technique, exhibited a higher sensitivity thanks to an improved optical arrangement and a new signal processing procedure. The proposed sensing system is capable of fully quantifying multiple dynamic perturbations along a 5 km long sensing fiber with a frequency and spatial resolution of 5 Hz and 50 cm, respectively. The strain resolution of the sensor was measured to be 40 nε.

  17. Time‐of‐flight secondary ion mass spectrometry imaging of biological samples with delayed extraction for high mass and high spatial resolutions

    PubMed Central

    Vanbellingen, Quentin P.; Elie, Nicolas; Eller, Michael J.; Della‐Negra, Serge; Touboul, David

    2015-01-01

    Rationale In Time‐of‐Flight Secondary Ion Mass Spectrometry (TOF‐SIMS), pulsed and focused primary ion beams enable mass spectrometry imaging, a method which is particularly useful to map various small molecules such as lipids at the surface of biological samples. When using TOF‐SIMS instruments, the focusing modes of the primary ion beam delivered by liquid metal ion guns can provide either a mass resolution of several thousand or a sub‐µm lateral resolution, but the combination of both is generally not possible. Methods With a TOF‐SIMS setup, a delayed extraction applied to secondary ions has been studied extensively on rat cerebellum sections in order to compensate for the effect of long primary ion bunches. Results The use of a delayed extraction has been proven to be an efficient solution leading to unique features, i.e. a mass resolution up to 10000 at m/z 385.4 combined with a lateral resolution of about 400 nm. Simulations of ion trajectories confirm the experimental determination of optimal delayed extraction and allow understanding of the behavior of ions as a function of their mass‐to‐charge ratio. Conclusions Although the use of a delayed extraction has been well known for many years and is very popular in MALDI, it is much less used in TOF‐SIMS. Its full characterization now enables secondary ion images to be recorded in a single run with a submicron spatial resolution and with a mass resolution of several thousand. This improvement is very useful when analyzing lipids on tissue sections, or rare, precious, or very small size samples. © 2015 The Authors. Rapid Communications in Mass Spectrometry published by John Wiley & Sons Ltd. PMID:26395603

  18. Study of satellite retrieved aerosol optical depth spatial resolution effect on particulate matter concentration prediction

    NASA Astrophysics Data System (ADS)

    Strandgren, J.; Mei, L.; Vountas, M.; Burrows, J. P.; Lyapustin, A.; Wang, Y.

    2014-10-01

    The Aerosol Optical Depth (AOD) spatial resolution effect is investigated for the linear correlation between satellite retrieved AOD and ground level particulate matter concentrations (PM2.5). The Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm was developed for the Moderate Resolution Imaging Spectroradiometer (MODIS) for obtaining AOD with a high spatial resolution of 1 km and provides a good dataset for the study of the AOD spatial resolution effect on the particulate matter concentration prediction. 946 Environmental Protection Agency (EPA) ground monitoring stations across the contiguous US have been used to investigate the linear correlation between AOD and PM2.5 using AOD at different spatial resolutions (1, 3 and 10 km) and for different spatial scales (urban scale, meso-scale and continental scale). The main conclusions are: (1) for both urban, meso- and continental scale the correlation between PM2.5 and AOD increased significantly with increasing spatial resolution of the AOD, (2) the correlation between AOD and PM2.5 decreased significantly as the scale of study region increased for the eastern part of the US while vice versa for the western part of the US, (3) the correlation between PM2.5 and AOD is much more stable and better over the eastern part of the US compared to western part due to the surface characteristics and atmospheric conditions like the fine mode fraction.

  19. Employing temporal self-similarity across the entire time domain in computed tomography reconstruction

    PubMed Central

    Kazantsev, D.; Van Eyndhoven, G.; Lionheart, W. R. B.; Withers, P. J.; Dobson, K. J.; McDonald, S. A.; Atwood, R.; Lee, P. D.

    2015-01-01

    There are many cases where one needs to limit the X-ray dose, or the number of projections, or both, for high frame rate (fast) imaging. Normally, it improves temporal resolution but reduces the spatial resolution of the reconstructed data. Fortunately, the redundancy of information in the temporal domain can be employed to improve spatial resolution. In this paper, we propose a novel regularizer for iterative reconstruction of time-lapse computed tomography. The non-local penalty term is driven by the available prior information and employs all available temporal data to improve the spatial resolution of each individual time frame. A high-resolution prior image from the same or a different imaging modality is used to enhance edges which remain stationary throughout the acquisition time while dynamic features tend to be regularized spatially. Effective computational performance together with robust improvement in spatial and temporal resolution makes the proposed method a competitive tool to state-of-the-art techniques. PMID:25939621

  20. Low-cost, high-resolution scanning laser ophthalmoscope for the clinical environment

    NASA Astrophysics Data System (ADS)

    Soliz, P.; Larichev, A.; Zamora, G.; Murillo, S.; Barriga, E. S.

    2010-02-01

    Researchers have sought to gain greater insight into the mechanisms of the retina and the optic disc at high spatial resolutions that would enable the visualization of small structures such as photoreceptors and nerve fiber bundles. The sources of retinal image quality degradation are aberrations within the human eye, which limit the achievable resolution and the contrast of small image details. To overcome these fundamental limitations, researchers have been applying adaptive optics (AO) techniques to correct for the aberrations. Today, deformable mirror based adaptive optics devices have been developed to overcome the limitations of standard fundus cameras, but at prices that are typically unaffordable for most clinics. In this paper we demonstrate a clinically viable fundus camera with auto-focus and astigmatism correction that is easy to use and has improved resolution. We have shown that removal of low-order aberrations results in significantly better resolution and quality images. Additionally, through the application of image restoration and super-resolution techniques, the images present considerably improved quality. The improvements lead to enhanced visualization of retinal structures associated with pathology.

  1. Spatial patterns of native freshwater mussels in the Upper Mississippi River

    USGS Publications Warehouse

    Ries, Patricia R.; DeJager, Nathan R.; Zigler, Steven J.; Newton, Teresa

    2016-01-01

    Multiple physical and biological factors structure freshwater mussel communities in large rivers, and their distributions have been described as clumped or patchy. However, few surveys of mussel populations have been conducted over areas large enough and at resolutions fine enough to quantify spatial patterns in their distribution. We used global and local indicators of spatial autocorrelation (i.e., Moran’s I) to quantify spatial patterns of adult and juvenile (≤5 y of age) freshwater mussels across multiple scales based on survey data from 4 reaches (navigation pools 3, 5, 6, and 18) of the Upper Mississippi River, USA. Native mussel densities were sampled at a resolution of ∼300 m and across distances ranging from 21 to 37 km, making these some of the most spatially extensive surveys conducted in a large river. Patch density and the degree and scale of patchiness varied by river reach, age group, and the scale of analysis. In all 4 pools, some patches of adults overlapped patches of juveniles, suggesting spatial and temporal persistence of adequate habitat. In pools 3 and 5, patches of juveniles were found where there were few adults, suggesting recent emergence of positive structuring mechanisms. Last, in pools 3, 5, and 6, some patches of adults were found where there were few juveniles, suggesting that negative structuring mechanisms may have replaced positive ones, leading to a lack of localized recruitment. Our results suggest that: 1) the detection of patches of freshwater mussels requires a multiscaled approach, 2) insights into the spatial and temporal dynamics of structuring mechanisms can be gained by conducting independent analyses of adults and juveniles, and 3) maps of patch distributions can be used to guide restoration and management actions and identify areas where mussels are most likely to influence ecosystem function.

  2. Satellite image fusion based on principal component analysis and high-pass filtering.

    PubMed

    Metwalli, Mohamed R; Nasr, Ayman H; Allah, Osama S Farag; El-Rabaie, S; Abd El-Samie, Fathi E

    2010-06-01

    This paper presents an integrated method for the fusion of satellite images. Several commercial earth observation satellites carry dual-resolution sensors, which provide high spatial resolution or simply high-resolution (HR) panchromatic (pan) images and low-resolution (LR) multi-spectral (MS) images. Image fusion methods are therefore required to integrate a high-spectral-resolution MS image with a high-spatial-resolution pan image to produce a pan-sharpened image with high spectral and spatial resolutions. Some image fusion methods such as the intensity, hue, and saturation (IHS) method, the principal component analysis (PCA) method, and the Brovey transform (BT) method provide HR MS images, but with low spectral quality. Another family of image fusion methods, such as the high-pass-filtering (HPF) method, operates on the basis of the injection of high frequency components from the HR pan image into the MS image. This family of methods provides less spectral distortion. In this paper, we propose the integration of the PCA method and the HPF method to provide a pan-sharpened MS image with superior spatial resolution and less spectral distortion. The experimental results show that the proposed fusion method retains the spectral characteristics of the MS image and, at the same time, improves the spatial resolution of the pan-sharpened image.

  3. High-Spatial and High-Mass Resolution Imaging of Surface Metabolites of Arabidopsis thaliana by Laser Desorption-Ionization Mass Spectrometry Using Colloidal Silver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jun, Ji Hyun; Song, Zhihong; Liu, Zhenjiu

    High-spatial resolution and high-mass resolution techniques are developed and adopted for the mass spectrometric imaging of epicuticular lipids on the surface of Arabidopsis thaliana. Single cell level spatial resolution of {approx}12 {micro}m was achieved by reducing the laser beam size by using an optical fiber with 25 {micro}m core diameter in a vacuum matrix-assisted laser desorption ionization-linear ion trap (vMALDI-LTQ) mass spectrometer and improved matrix application using an oscillating capillary nebulizer. Fine chemical images of a whole flower were visualized in this high spatial resolution showing substructure of an anther and single pollen grains at the stigma and anthers. Themore » LTQ-Orbitrap with a MALDI ion source was adopted to achieve MS imaging in high mass resolution. Specifically, isobaric silver ion adducts of C29 alkane (m/z 515.3741) and C28 aldehyde (m/z 515.3377), indistinguishable in low-resolution LTQ, can now be clearly distinguished and their chemical images could be separately constructed. In the application to roots, the high spatial resolution allowed molecular MS imaging of secondary roots and the high mass resolution allowed direct identification of lipid metabolites on root surfaces.« less

  4. Applications of high resolution rainfall radar data to quantify water temperature dynamics in urban catchments

    NASA Astrophysics Data System (ADS)

    Croghan, Danny; Van Loon, Anne; Bradley, Chris; Sadler, Jon; Hannnah, David

    2017-04-01

    Studies relating rainfall events to river water quality are frequently hindered by the lack of high resolution rainfall data. Local studies are particularly vulnerable due to the spatial variability of precipitation, whilst studies in urban environments require precipitation data at high spatial and temporal resolutions. The use of point-source data makes identifying causal effects of storms on water quality problematic and can lead to erroneous interpretations. High spatial and temporal resolution rainfall radar data offers great potential to address these issues. Here we use rainfall radar data with a 1km spatial resolution and 5 minute temporal resolution sourced from the UK Met Office Nimrod system to study the effects of storm events on water temperature (WTemp) in Birmingham, UK. 28 WTemp loggers were placed over 3 catchments on a rural-urban land use gradient to identify trends in WTemp during extreme events within urban environments. Using GIS, the catchment associated with each logger was estimated, and 5 min. rainfall totals and intensities were produced for each sub-catchment. Comparisons of rainfall radar data to meteorological stations in the same grid cell revealed the high accuracy of rainfall radar data in our catchments (<5% difference for studied months). The rainfall radar data revealed substantial differences in rainfall quantity between the three adjacent catchments. The most urban catchment generally received more rainfall, with this effect greatest in the highest intensity storms, suggesting the possibility of urban heat island effects on precipitation dynamics within the catchment. Rainfall radar data provided more accurate sub-catchment rainfall totals allowing better modelled estimates of storm flow, whilst spatial fluctuations in both discharge and WTemp can be simply related to precipitation intensity. Storm flow inputs for each sub-catchment were estimated and linked to changes in WTemp. WTemp showed substantial fluctuations (>1 °C) over short durations (<30 minutes) during storm events in urbanised sub-catchments, however WTemp recovery times were more prolonged. Use of the rainfall radar data allowed increased accuracy in estimates of storm flow timings and rainfall quantities at each sub-catchment, from which the impact of storm flow on WTemp could be quantified. We are currently using the radar data to derive thresholds for rainfall amount and intensity at which these storm deviations occur for each logger, from which the relative effects of land use and other catchment characteristics in each sub-catchment can be assessed. Our use of the rainfall radar data calls into question the validity of using station based data for small scale studies, particularly in urban areas, with high variation apparent in rainfall intensity both spatially and temporally. Variation was particularly high within the heavily urbanised catchment. For water quality studies, high resolution rainfall radar can be implemented to increase the reliability of interpretations of the response of water quality variables to storm water inputs in urban catchments.

  5. Synchrotron X-ray microbeam dosimetry with a 20 micrometre resolution scintillator fibre-optic dosimeter.

    PubMed

    Archer, James; Li, Enbang; Petasecca, Marco; Stevenson, Andrew; Livingstone, Jayde; Dipuglia, Andrew; Davis, Jeremy; Rosenfeld, Anatoly; Lerch, Michael

    2018-05-01

    Cancer is one of the leading causes of death worldwide. External beam radiation therapy is one of the most important modalities for the treatment of cancers. Synchrotron microbeam radiation therapy (MRT) is a novel pre-clinical therapy that uses highly spatially fractionated X-ray beams to target tumours, allowing doses much higher than conventional radiotherapies to be delivered. A dosimeter with a high spatial resolution is required to provide the appropriate quality assurance for MRT. This work presents a plastic scintillator fibre optic dosimeter with a one-dimensional spatial resolution of 20 µm, an improvement on the dosimeter with a resolution of 50 µm that was demonstrated in previous work. The ability of this probe to resolve microbeams of width 50 µm has been demonstrated. The major limitations of this method were identified, most notably the low-light signal resulting from the small sensitive volume, which made valley dose measurements very challenging. A titanium-based reflective paint was used as a coating on the probe to improve the light collection, but a possible effect of the high-Z material on the probes water-equivalence has been identified. The effect of the reflective paint was a 28.5 ± 4.6% increase in the total light collected; it did not affect the shape of the depth-dose profile, nor did it explain an over-response observed when used to probe at low depths, when compared with an ionization chamber. With improvements to the data acquisition, this probe design has the potential to provide a water-equivalent, inexpensive dosimetry tool for MRT.

  6. Synergetic Use of Sentinel-1 and Sentinel-2 Data for Soil Moisture Mapping at 100 m Resolution.

    PubMed

    Gao, Qi; Zribi, Mehrez; Escorihuela, Maria Jose; Baghdadi, Nicolas

    2017-08-26

    The recent deployment of ESA's Sentinel operational satellites has established a new paradigm for remote sensing applications. In this context, Sentinel-1 radar images have made it possible to retrieve surface soil moisture with a high spatial and temporal resolution. This paper presents two methodologies for the retrieval of soil moisture from remotely-sensed SAR images, with a spatial resolution of 100 m. These algorithms are based on the interpretation of Sentinel-1 data recorded in the VV polarization, which is combined with Sentinel-2 optical data for the analysis of vegetation effects over a site in Urgell (Catalunya, Spain). The first algorithm has already been applied to observations in West Africa by Zribi et al., 2008, using low spatial resolution ERS scatterometer data, and is based on change detection approach. In the present study, this approach is applied to Sentinel-1 data and optimizes the inversion process by taking advantage of the high repeat frequency of the Sentinel observations. The second algorithm relies on a new method, based on the difference between backscattered Sentinel-1 radar signals observed on two consecutive days, expressed as a function of NDVI optical index. Both methods are applied to almost 1.5 years of satellite data (July 2015-November 2016), and are validated using field data acquired at a study site. This leads to an RMS error in volumetric moisture of approximately 0.087 m³/m³ and 0.059 m³/m³ for the first and second methods, respectively. No site calibrations are needed with these techniques, and they can be applied to any vegetation-covered area for which time series of SAR data have been recorded.

  7. Synergetic Use of Sentinel-1 and Sentinel-2 Data for Soil Moisture Mapping at 100 m Resolution

    PubMed Central

    Gao, Qi; Zribi, Mehrez

    2017-01-01

    The recent deployment of ESA’s Sentinel operational satellites has established a new paradigm for remote sensing applications. In this context, Sentinel-1 radar images have made it possible to retrieve surface soil moisture with a high spatial and temporal resolution. This paper presents two methodologies for the retrieval of soil moisture from remotely-sensed SAR images, with a spatial resolution of 100 m. These algorithms are based on the interpretation of Sentinel-1 data recorded in the VV polarization, which is combined with Sentinel-2 optical data for the analysis of vegetation effects over a site in Urgell (Catalunya, Spain). The first algorithm has already been applied to observations in West Africa by Zribi et al., 2008, using low spatial resolution ERS scatterometer data, and is based on change detection approach. In the present study, this approach is applied to Sentinel-1 data and optimizes the inversion process by taking advantage of the high repeat frequency of the Sentinel observations. The second algorithm relies on a new method, based on the difference between backscattered Sentinel-1 radar signals observed on two consecutive days, expressed as a function of NDVI optical index. Both methods are applied to almost 1.5 years of satellite data (July 2015–November 2016), and are validated using field data acquired at a study site. This leads to an RMS error in volumetric moisture of approximately 0.087 m3/m3 and 0.059 m3/m3 for the first and second methods, respectively. No site calibrations are needed with these techniques, and they can be applied to any vegetation-covered area for which time series of SAR data have been recorded. PMID:28846601

  8. Oblong-Shaped-Focused Transducers for Intravascular Ultrasound Imaging.

    PubMed

    Lee, Junsu; Jang, Jihun; Chang, Jin Ho

    2017-03-01

    In intravascular ultrasound (IVUS) imaging, a transducer is inserted into a blood vessel and rotated to obtain image data. For this purpose, the transducer aperture is typically less than 0.5 mm in diameter, which causes natural focusing to occur in the imaging depth ranging from 1 to 5 mm. Due to the small aperture, however, it is not viable to conduct geometric focusing in order to enhance the spatial resolution of IVUS images. Furthermore, this hampers narrowing the slice thickness of a cross-sectional scan plane in the imaging depth, which leads to lowering spatial and contrast resolutions of IVUS images. To solve this problem, we propose an oblong-shaped-focused transducer for IVUS imaging. Unlike the conventional IVUS transducers with either a circular or a square flat aperture, the proposed transducer has an oblong aperture of which long side is positioned along a blood vessel. This unique configuration makes it possible to conduct geometric focusing at a desired depth in the elevation direction. In this study, furthermore, it is demonstrated that a spherically shaped aperture in both lateral and elevation directions also improves lateral resolution, compared to the conventional flat aperture. To ascertain this, the conventional and the proposed IVUS transducers were designed and fabricated to evaluate and to compare their imaging performances through wire phantom and tissue-mimicking phantom experiments. For the proposed 50-MHz IVUS transducer, a PZT piece of 0.5 × 1.0 mm 2 was spherically shaped for elevation focus at 3 mm by using the conventional press-focusing technique whereas the conventional one has a flat aperture of 0.5 × 0.5 mm 2 . The experimental results demonstrated that the proposed IVUS transducer is capable of improving spatial and contrast resolutions of IVUS images.

  9. Geomorphology of Impact Features on Tethys Using High Resolution Mosaics

    DTIC Science & Technology

    2017-03-01

    Space Exploration, Arizona State University, Tempe, AZ 85282 NIA 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM...8217 coorbital moons are very likely to impact Tethys. The distribution, impact velocities, and impact angles of the debris are spatially-variable. In...particular, high-velocity debris (>5 km/s) with low impact angles are highly clustered along the equator in Tethys’ leading hemisphere. Slower impacts

  10. The spatial resolution of a rotating gamma camera tomographic facility.

    PubMed

    Webb, S; Flower, M A; Ott, R J; Leach, M O; Inamdar, R

    1983-12-01

    An important feature determining the spatial resolution in transverse sections reconstructed by convolution and back-projection is the frequency filter corresponding to the convolution kernel. Equations have been derived giving the theoretical spatial resolution, for a perfect detector and noise-free data, using four filter functions. Experiments have shown that physical constraints will always limit the resolution that can be achieved with a given system. The experiments indicate that the region of the frequency spectrum between KN/2 and KN where KN is the Nyquist frequency does not contribute significantly to resolution. In order to investigate the physical effect of these filter functions, the spatial resolution of reconstructed images obtained with a GE 400T rotating gamma camera has been measured. The results obtained serve as an aid to choosing appropriate reconstruction filters for use with a rotating gamma camera system.

  11. A high time and spatial resolution MRPC designed for muon tomography

    NASA Astrophysics Data System (ADS)

    Shi, L.; Wang, Y.; Huang, X.; Wang, X.; Zhu, W.; Li, Y.; Cheng, J.

    2014-12-01

    A prototype of cosmic muon scattering tomography system has been set up in Tsinghua University in Beijing. Multi-gap Resistive Plate Chamber (MRPC) is used in the system to get the muon tracks. Compared with other detectors, MRPC can not only provide the track but also the Time of Flight (ToF) between two detectors which can estimate the energy of particles. To get a more accurate track and higher efficiency of the tomography system, a new type of high time and two-dimensional spatial resolution MRPC has been developed. A series of experiments have been done to measure the efficiency, time resolution and spatial resolution. The results show that the efficiency can reach 95% and its time resolution is around 65 ps. The cluster size is around 4 and the spatial resolution can reach 200 μ m.

  12. Toward continuous 4D microgravity monitoring of volcanoes

    USGS Publications Warehouse

    Williams-Jones, G.; Rymer, H.; Mauri, G.; Gottsmann, J.; Poland, M.; Carbone, D.

    2008-01-01

    Four-dimensional or time-lapse microgravity monitoring has been used effectively on volcanoes for decades to characterize the changes in subsurface volcanic systems. With measurements typically lasting from a few days to weeks and then repeated a year later, the spatial resolution of theses studies is often at the expense of temporal resolution and vice versa. Continuous gravity studies with one to two instruments operating for a short period of time (weeks to months) have shown enticing evidence of very rapid changes in the volcanic plumbing system (minutes to hours) and in one case precursory signals leading to eruptive activity were detected. The need for true multi-instrument networks is clear if we are to have both the temporal and spatial reso-lution needed for effective volcano monitoring. However, the high cost of these instruments is currently limiting the implementation of continuous microgravity networks. An interim approach to consider is the development of a collaborative network of researchers able to bring multiple instruments together at key volcanoes to investigate multitemporal physical changes in a few type volcanoes. However, to truly move forward, it is imperative that new low-cost instruments are developed to increase the number of instruments available at a single site. Only in this way can both the temporal and spatial integrity of monitoring be maintained. Integration of these instruments into a multiparameter network of continuously recording sensors is essential for effective volcano monitoring and hazard mitigation. ?? 2008 Society of Exploration Geophysicists. All rights reserved.

  13. Experimental evidence of dynamic re-organization of evolving landscapes under changing climatic forcing

    NASA Astrophysics Data System (ADS)

    Singh, Arvind; Tejedor, Alejandro; Zaliapin, Ilya; Reinhardt, Liam; Foufoula-Georgiou, Efi

    2015-04-01

    The aim of this study is to better understand the dynamic re-organization of an evolving landscape under a scenario of changing climatic forcing for improving our knowledge of geomorphic transport laws under transient conditions and developing predictive models of landscape response to external perturbations. Real landscape observations for long-term analysis are limited and to this end a high resolution controlled laboratory experiment was conducted at the St. Anthony Falls laboratory at the University of Minnesota. Elevation data were collected at temporal resolution of 5 mins and spatial resolution of 0.5 mm as the landscape approached steady state (constant uplift and precipitation rate) and in the transient state (under the same uplift and 5x precipitation). The results reveal rapid topographic re-organization under a five-fold precipitation increase with the fluvial regime expanding into the previously debris dominated regime, accelerated erosion happening at hillslope scales, and rivers shifting from an erosion-limited to a transport-limited regime. From a connectivity and clustering analysis of the erosional and depositional events, we demonstrate the strikingly different spatial patterns of landscape evolution under steady-state (SS) and transient-state (TS), even when the time under SS is "stretched" compared to that under TS such as to match the total volume and PDF of erosional and depositional amounts. We quantify the spatial coupling of hillslopes and channels and demonstrate that hillslopes lead and channels follow in re-organizing the whole landscape under such an amplified precipitation regime.

  14. A Phenology-based Method For Identifying the Planting Fraction of Winter Wheat Using Moderate-resolution Satellite Data

    NASA Astrophysics Data System (ADS)

    Dong, J.; Liu, W.; Han, W.; Lei, T.; Xia, J.; Yuan, W.

    2017-12-01

    Winter wheat is a staple food crop for most of the world's population, and the area and spatial distribution of winter wheat are key elements in estimating crop production and ensuring food security. However, winter wheat planting areas contain substantial spatial heterogeneity with mixed pixels for coarse- and moderate-resolution satellite data, leading to significant errors in crop acreage estimation. This study has developed a phenology-based approach using moderate-resolution satellite data to estimate sub-pixel planting fractions of winter wheat. Based on unmanned aerial vehicle (UAV) observations, the unique characteristics of winter wheat with high vegetation index values at the heading stage (May) and low values at the harvest stage (June) were investigated. The differences in vegetation index between heading and harvest stages increased with the planting fraction of winter wheat, and therefore the planting fractions were estimated by comparing the NDVI differences of a given pixel with those of predetermined pure winter wheat and non-winter wheat pixels. This approach was evaluated using aerial images and agricultural statistical data in an intensive agricultural region, Shandong Province in North China. The method explained 60% and 85% of the spatial variation in county- and municipal-level statistical data, respectively. More importantly, the predetermined pure winter wheat and non-winter wheat pixels can be automatically identified using MODIS data according to their NDVI differences, which strengthens the potential to use this method at regional and global scales without any field observations as references.

  15. Estimation of Global 1km-grid Terrestrial Carbon Exchange Part I: Developing Inputs and Modelling

    NASA Astrophysics Data System (ADS)

    Sasai, T.; Murakami, K.; Kato, S.; Matsunaga, T.; Saigusa, N.; Hiraki, K.

    2015-12-01

    Global terrestrial carbon cycle largely depends on a spatial pattern in land cover type, which is heterogeneously-distributed over regional and global scales. However, most studies, which aimed at the estimation of carbon exchanges between ecosystem and atmosphere, remained within several tens of kilometers grid spatial resolution, and the results have not been enough to understand the detailed pattern of carbon exchanges based on ecological community. Improving the sophistication of spatial resolution is obviously necessary to enhance the accuracy of carbon exchanges. Moreover, the improvement may contribute to global warming awareness, policy makers and other social activities. In this study, we show global terrestrial carbon exchanges (net ecosystem production, net primary production, and gross primary production) with 1km-grid resolution. As methodology for computing the exchanges, we 1) developed a global 1km-grid climate and satellite dataset based on the approach in Setoyama and Sasai (2013); 2) used the satellite-driven biosphere model (Biosphere model integrating Eco-physiological And Mechanistic approaches using Satellite data: BEAMS) (Sasai et al., 2005, 2007, 2011); 3) simulated the carbon exchanges by using the new dataset and BEAMS by the use of a supercomputer that includes 1280 CPU and 320 GPGPU cores (GOSAT RCF of NIES). As a result, we could develop a global uniform system for realistically estimating terrestrial carbon exchange, and evaluate net ecosystem production in each community level; leading to obtain highly detailed understanding of terrestrial carbon exchanges.

  16. 150-μm Spatial Resolution Using Photon-Counting Detector Computed Tomography Technology: Technical Performance and First Patient Images.

    PubMed

    Leng, Shuai; Rajendran, Kishore; Gong, Hao; Zhou, Wei; Halaweish, Ahmed F; Henning, Andre; Kappler, Steffen; Baer, Matthias; Fletcher, Joel G; McCollough, Cynthia H

    2018-05-28

    The aims of this study were to quantitatively assess two new scan modes on a photon-counting detector computed tomography system, each designed to maximize spatial resolution, and to qualitatively demonstrate potential clinical impact using patient data. This Health Insurance Portability Act-compliant study was approved by our institutional review board. Two high-spatial-resolution scan modes (Sharp and UHR) were evaluated using phantoms to quantify spatial resolution and image noise, and results were compared with the standard mode (Macro). Patients were scanned using a conventional energy-integrating detector scanner and the photon-counting detector scanner using the same radiation dose. In first patient images, anatomic details were qualitatively evaluated to demonstrate potential clinical impact. Sharp and UHR modes had a 69% and 87% improvement in in-plane spatial resolution, respectively, compared with Macro mode (10% modulation-translation-function values of 16.05, 17.69, and 9.48 lp/cm, respectively). The cutoff spatial frequency of the UHR mode (32.4 lp/cm) corresponded to a limiting spatial resolution of 150 μm. The full-width-at-half-maximum values of the section sensitivity profiles were 0.41, 0.44, and 0.67 mm for the thinnest image thickness for each mode (0.25, 0.25, and 0.5 mm, respectively). At the same in-plane spatial resolution, Sharp and UHR images had up to 15% lower noise than Macro images. Patient images acquired in Sharp mode demonstrated better delineation of fine anatomic structures compared with Macro mode images. Phantom studies demonstrated superior resolution and noise properties for the Sharp and UHR modes relative to the standard Macro mode and patient images demonstrated the potential benefit of these scan modes for clinical practice.

  17. The Analytical Limits of Modeling Short Diffusion Timescales

    NASA Astrophysics Data System (ADS)

    Bradshaw, R. W.; Kent, A. J.

    2016-12-01

    Chemical and isotopic zoning in minerals is widely used to constrain the timescales of magmatic processes such as magma mixing and crystal residence, etc. via diffusion modeling. Forward modeling of diffusion relies on fitting diffusion profiles to measured compositional gradients. However, an individual measurement is essentially an average composition for a segment of the gradient defined by the spatial resolution of the analysis. Thus there is the potential for the analytical spatial resolution to limit the timescales that can be determined for an element of given diffusivity, particularly where the scale of the gradient approaches that of the measurement. Here we use a probabilistic modeling approach to investigate the effect of analytical spatial resolution on estimated timescales from diffusion modeling. Our method investigates how accurately the age of a synthetic diffusion profile can be obtained by modeling an "unknown" profile derived from discrete sampling of the synthetic compositional gradient at a given spatial resolution. We also include the effects of analytical uncertainty and the position of measurements relative to the diffusion gradient. We apply this method to the spatial resolutions of common microanalytical techniques (LA-ICP-MS, SIMS, EMP, NanoSIMS). Our results confirm that for a given diffusivity, higher spatial resolution gives access to shorter timescales, and that each analytical spacing has a minimum timescale, below which it overestimates the timescale. For example, for Ba diffusion in plagioclase at 750 °C timescales are accurate (within 20%) above 10, 100, 2,600, and 71,000 years at 0.3, 1, 5, and 25 mm spatial resolution, respectively. For Sr diffusion in plagioclase at 750 °C, timescales are accurate above 0.02, 0.2, 4, and 120 years at the same spatial resolutions. Our results highlight the importance of selecting appropriate analytical techniques to estimate accurate diffusion-based timescales.

  18. Region-of-interest image reconstruction in circular cone-beam microCT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Seungryong; Bian, Junguo; Pelizzari, Charles A.

    2007-12-15

    Cone-beam microcomputed tomography (microCT) is one of the most popular choices for small animal imaging which is becoming an important tool for studying animal models with transplanted diseases. Region-of-interest (ROI) imaging techniques in CT, which can reconstruct an ROI image from the projection data set of the ROI, can be used not only for reducing imaging-radiation exposure to the subject and scatters to the detector but also for potentially increasing spatial resolution of the reconstructed images. Increasing spatial resolution in microCT images can facilitate improved accuracy in many assessment tasks. A method proposed previously for increasing CT image spatial resolutionmore » entails the exploitation of the geometric magnification in cone-beam CT. Due to finite detector size, however, this method can lead to data truncation for a large geometric magnification. The Feldkamp-Davis-Kress (FDK) algorithm yields images with artifacts when truncated data are used, whereas the recently developed backprojection filtration (BPF) algorithm is capable of reconstructing ROI images without truncation artifacts from truncated cone-beam data. We apply the BPF algorithm to reconstructing ROI images from truncated data of three different objects acquired by our circular cone-beam microCT system. Reconstructed images by use of the FDK and BPF algorithms from both truncated and nontruncated cone-beam data are compared. The results of the experimental studies demonstrate that, from certain truncated data, the BPF algorithm can reconstruct ROI images with quality comparable to that reconstructed from nontruncated data. In contrast, the FDK algorithm yields ROI images with truncation artifacts. Therefore, an implication of the studies is that, when truncated data are acquired with a configuration of a large geometric magnification, the BPF algorithm can be used for effective enhancement of the spatial resolution of a ROI image.« less

  19. Drone based estimation of actual evapotranspiration over different forest types

    NASA Astrophysics Data System (ADS)

    Marzahn, Philip; Gampe, David; Castro, Saulo; Vega-Araya, Mauricio; Sanchez-Azofeifa, Arturo; Ludwig, Ralf

    2017-04-01

    Actual evapotranspiration (Eta) plays an important role in surface-atmosphere interactions. Traditionally, Eta is measured by means of lysimeters, eddy-covariance systems or fiber optics, providing estimates which are spatially restricted to a footprint from a few square meters up to several hectares . In the past, several methods have been developed to derive Eta by means of multi-spectral remote sensing data using thermal and VIS/NIR satellite imagery of the land surface. As such approaches do have their justification on coarser scales, they do not provide Eta information on the fine resolution plant level over large areas which is mandatory for the detection of water stress or tree mortality. In this study, we present a comparison of a drone based assessment of Eta with eddy-covariance measurements over two different forest types - a deciduous forest in Alberta, Canada and a tropical dry forest in Costa Rica. Drone based estimates of Eta were calculated applying the Triangle-Method proposed by Jiang and Islam (1999). The Triangle-Method estimates actual evapotranspiration (Eta) by means of the Normalized Difference Vegetation Index (NDVI) and land surface temperature (LST) provided by two camera systems (MicaSense RedEdge, FLIR TAU2 640) flown simultaneously on an octocopter. . Results indicate a high transferability of the original approach from Jiang and Islam (1999) developed for coarse to medium resolution satellite imagery tothe high resolution drone data, leading to a deviation in Eta estimates of 10% compared to the eddy-covariance measurements. In addition, the spatial footprint of the eddy-covariance measurement can be detected with this approach, by showing the spatial heterogeneities of Eta due to the spatial distribution of different trees and understory vegetation.

  20. Spatial and Angular Resolution Enhancement of Light Fields Using Convolutional Neural Networks

    NASA Astrophysics Data System (ADS)

    Gul, M. Shahzeb Khan; Gunturk, Bahadir K.

    2018-05-01

    Light field imaging extends the traditional photography by capturing both spatial and angular distribution of light, which enables new capabilities, including post-capture refocusing, post-capture aperture control, and depth estimation from a single shot. Micro-lens array (MLA) based light field cameras offer a cost-effective approach to capture light field. A major drawback of MLA based light field cameras is low spatial resolution, which is due to the fact that a single image sensor is shared to capture both spatial and angular information. In this paper, we present a learning based light field enhancement approach. Both spatial and angular resolution of captured light field is enhanced using convolutional neural networks. The proposed method is tested with real light field data captured with a Lytro light field camera, clearly demonstrating spatial and angular resolution improvement.

  1. Spatial and Angular Resolution Enhancement of Light Fields Using Convolutional Neural Networks.

    PubMed

    Gul, M Shahzeb Khan; Gunturk, Bahadir K

    2018-05-01

    Light field imaging extends the traditional photography by capturing both spatial and angular distribution of light, which enables new capabilities, including post-capture refocusing, post-capture aperture control, and depth estimation from a single shot. Micro-lens array (MLA) based light field cameras offer a cost-effective approach to capture light field. A major drawback of MLA based light field cameras is low spatial resolution, which is due to the fact that a single image sensor is shared to capture both spatial and angular information. In this paper, we present a learning based light field enhancement approach. Both spatial and angular resolution of captured light field is enhanced using convolutional neural networks. The proposed method is tested with real light field data captured with a Lytro light field camera, clearly demonstrating spatial and angular resolution improvement.

  2. Multi-Resolution Analysis of MODIS and ASTER Satellite Data for Water Classification

    DTIC Science & Technology

    2006-09-01

    spectral bands, but also with different pixel resolutions . The overall goal... the total water surface. Due to the constraint that high spatial resolution satellite images are low temporal resolution , one needs a reliable method...at 15 m resolution , were processed. We used MODIS reflectance data from MOD02 Level 1B data. Even the spatial resolution of the 1240 nm

  3. Definition of the Spatial Resolution of X-Ray Microanalysis in Thin Foils

    NASA Technical Reports Server (NTRS)

    Williams, D. B.; Michael, J. R.; Goldstein, J. I.; Romig, A. D., Jr.

    1992-01-01

    The spatial resolution of X-ray microanalysis in thin foils is defined in terms of the incident electron beam diameter and the average beam broadening. The beam diameter is defined as the full width tenth maximum of a Gaussian intensity distribution. The spatial resolution is calculated by a convolution of the beam diameter and the average beam broadening. This definition of the spatial resolution can be related simply to experimental measurements of composition profiles across interphase interfaces. Monte Carlo calculations using a high-speed parallel supercomputer show good agreement with this definition of the spatial resolution and calculations based on this definition. The agreement is good over a range of specimen thicknesses and atomic number, but is poor when excessive beam tailing distorts the assumed Gaussian electron intensity distributions. Beam tailing occurs in low-Z materials because of fast secondary electrons and in high-Z materials because of plural scattering.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan, Venkat; Cole, Wesley

    Power sector capacity expansion models (CEMs) have a broad range of spatial resolutions. This paper uses the Regional Energy Deployment System (ReEDS) model, a long-term national scale electric sector CEM, to evaluate the value of high spatial resolution for CEMs. ReEDS models the United States with 134 load balancing areas (BAs) and captures the variability in existing generation parameters, future technology costs, performance, and resource availability using very high spatial resolution data, especially for wind and solar modeled at 356 resource regions. In this paper we perform planning studies at three different spatial resolutions--native resolution (134 BAs), state-level, and NERCmore » region level--and evaluate how results change under different levels of spatial aggregation in terms of renewable capacity deployment and location, associated transmission builds, and system costs. The results are used to ascertain the value of high geographically resolved models in terms of their impact on relative competitiveness among renewable energy resources.« less

  5. Easy way to determine quantitative spatial resolution distribution for a general inverse problem

    NASA Astrophysics Data System (ADS)

    An, M.; Feng, M.

    2013-12-01

    The spatial resolution computation of a solution was nontrivial and more difficult than solving an inverse problem. Most geophysical studies, except for tomographic studies, almost uniformly neglect the calculation of a practical spatial resolution. In seismic tomography studies, a qualitative resolution length can be indicatively given via visual inspection of the restoration of a synthetic structure (e.g., checkerboard tests). An effective strategy for obtaining quantitative resolution length is to calculate Backus-Gilbert resolution kernels (also referred to as a resolution matrix) by matrix operation. However, not all resolution matrices can provide resolution length information, and the computation of resolution matrix is often a difficult problem for very large inverse problems. A new class of resolution matrices, called the statistical resolution matrices (An, 2012, GJI), can be directly determined via a simple one-parameter nonlinear inversion performed based on limited pairs of random synthetic models and their inverse solutions. The total procedure were restricted to forward/inversion processes used in the real inverse problem and were independent of the degree of inverse skill used in the solution inversion. Spatial resolution lengths can be directly given during the inversion. Tests on 1D/2D/3D model inversion demonstrated that this simple method can be at least valid for a general linear inverse problem.

  6. A downscaled 1 km dataset of daily Greenland ice sheet surface mass balance components (1958-2014)

    NASA Astrophysics Data System (ADS)

    Noel, B.; Van De Berg, W. J.; Fettweis, X.; Machguth, H.; Howat, I. M.; van den Broeke, M. R.

    2015-12-01

    The current spatial resolution in regional climate models (RCMs), typically around 5 to 20 km, remains too coarse to accurately reproduce the spatial variability in surface mass balance (SMB) components over the narrow ablation zones, marginal outlet glaciers and neighbouring ice caps of the Greenland ice sheet (GrIS). In these topographically rough terrains, the SMB components are highly dependent on local variations in topography. However, the relatively low-resolution elevation and ice mask prescribed in RCMs contribute to significantly underestimate melt and runoff in these regions due to unresolved valley glaciers and fjords. Therefore, near-km resolution topography is essential to better capture SMB variability in these spatially restricted regions. We present a 1 km resolution dataset of daily GrIS SMB covering the period 1958-2014, which is statistically downscaled from data of the polar regional climate model RACMO2.3 at 11 km, using an elevation dependence. The dataset includes all individual SMB components projected on the elevation and ice mask from the GIMP DEM, down-sampled to 1 km. Daily runoff and sublimation are interpolated to the 1 km topography using a local regression to elevation valid for each day specifically; daily precipitation is bi-linearly downscaled without elevation corrections. The daily SMB dataset is then reconstructed by summing downscaled precipitation, sublimation and runoff. High-resolution elevation and ice mask allow for properly resolving the narrow ablation zones and valley glaciers at the GrIS margins, leading to significant increase in runoff estimate. In these regions, and especially over narrow glaciers tongues, the downscaled products improve on the original RACMO2.3 outputs by better representing local SMB patterns through a gradual ablation increase towards the GrIS margins. We discuss the impact of downscaling on the SMB components in a case study for a spatially restricted region, where large elevation discrepancies are observed between both resolutions. Owing to generally enhanced runoff in the GrIS ablation zone, the evaluation of daily downscaled SMB against ablation measurements, collected at in-situ measuring sites derived from a newly compiled ablation dataset, shows a better agreement with observations relative to native RACMO2.3 SMB at 11 km.

  7. Towards breaking the spatial resolution barriers: An optical flow and super-resolution approach for sea ice motion estimation

    NASA Astrophysics Data System (ADS)

    Petrou, Zisis I.; Xian, Yang; Tian, YingLi

    2018-04-01

    Estimation of sea ice motion at fine scales is important for a number of regional and local level applications, including modeling of sea ice distribution, ocean-atmosphere and climate dynamics, as well as safe navigation and sea operations. In this study, we propose an optical flow and super-resolution approach to accurately estimate motion from remote sensing images at a higher spatial resolution than the original data. First, an external example learning-based super-resolution method is applied on the original images to generate higher resolution versions. Then, an optical flow approach is applied on the higher resolution images, identifying sparse correspondences and interpolating them to extract a dense motion vector field with continuous values and subpixel accuracies. Our proposed approach is successfully evaluated on passive microwave, optical, and Synthetic Aperture Radar data, proving appropriate for multi-sensor applications and different spatial resolutions. The approach estimates motion with similar or higher accuracy than the original data, while increasing the spatial resolution of up to eight times. In addition, the adopted optical flow component outperforms a state-of-the-art pattern matching method. Overall, the proposed approach results in accurate motion vectors with unprecedented spatial resolutions of up to 1.5 km for passive microwave data covering the entire Arctic and 20 m for radar data, and proves promising for numerous scientific and operational applications.

  8. Use of UAS remote sensing data to estimate crop ET at high spatial resolution

    USDA-ARS?s Scientific Manuscript database

    Estimation of the spatial distribution of evapotranspiration (ET) based on remotely sensed imagery has become useful for managing water in irrigated agricultural at various spatial scales. However, data acquired by conventional satellites (Landsat, ASTER, etc.) lack the spatial resolution to capture...

  9. Sub-millimetre DOI detector based on monolithic LYSO and digital SiPM for a dedicated small-animal PET system.

    PubMed

    Marcinkowski, Radosław; Mollet, Pieter; Van Holen, Roel; Vandenberghe, Stefaan

    2016-03-07

    The mouse model is widely used in a vast range of biomedical and preclinical studies. Thanks to the ability to detect and quantify biological processes at the molecular level in vivo, PET has become a well-established tool in these investigations. However, the need to visualize and quantify radiopharmaceuticals in anatomic structures of millimetre or less requires good spatial resolution and sensitivity from small-animal PET imaging systems.In previous work we have presented a proof-of-concept of a dedicated high-resolution small-animal PET scanner based on thin monolithic scintillator crystals and Digital Photon Counter photosensor. The combination of thin monolithic crystals and MLE positioning algorithm resulted in an excellent spatial resolution of 0.7 mm uniform in the entire field of view (FOV). However, the limitation of the scanner was its low sensitivity due to small thickness of the lutetium-yttrium oxyorthosilicate (LYSO) crystals (2 mm).Here we present an improved detector design for a small-animal PET system that simultaneously achieves higher sensitivity and sustains a sub-millimetre spatial resolution. The proposed detector consists of a 5 mm thick monolithic LYSO crystal optically coupled to a Digital Photon Counter. Mean nearest neighbour (MNN) positioning combined with depth of interaction (DOI) decoding was employed to achieve sub-millimetre spatial resolution. To evaluate detector performance the intrinsic spatial resolution, energy resolution and coincidence resolving time (CRT) were measured. The average intrinsic spatial resolution of the detector was 0.60 mm full-width-at-half-maximum (FWHM). A DOI resolution of 1.66 mm was achieved. The energy resolution was 23% FWHM at 511 keV and CRT of 529 ps were measured. The improved detector design overcomes the sensitivity limitation of the previous design by increasing the nominal sensitivity of the detector block and retains an excellent intrinsic spatial resolution.

  10. The robustness of T2 value as a trabecular structural index at multiple spatial resolutions of 7 Tesla MRI.

    PubMed

    Lee, D K; Song, Y K; Park, B W; Cho, H P; Yeom, J S; Cho, G; Cho, H

    2018-04-15

    To evaluate the robustness of MR transverse relaxation times of trabecular bone from spin-echo and gradient-echo acquisitions at multiple spatial resolutions of 7 T. The effects of MRI resolutions to T 2 and T2* of trabecular bone were numerically evaluated by Monte Carlo simulations. T 2 , T2*, and trabecular structural indices from multislice multi-echo and UTE acquisitions were measured in defatted human distal femoral condyles on a 7 T scanner. Reference structural indices were extracted from high-resolution microcomputed tomography images. For bovine knee trabecular samples with intact bone marrow, T 2 and T2* were measured by degrading spatial resolutions on a 7 T system. In the defatted trabecular experiment, both T 2 and T2* values showed strong ( |r| > 0.80) correlations with trabecular spacing and number, at a high spatial resolution of 125 µm 3 . The correlations for MR image-segmentation-derived structural indices were significantly degraded ( |r| < 0.50) at spatial resolutions of 250 and 500 µm 3 . The correlations for T2* rapidly dropped ( |r| < 0.50) at a spatial resolution of 500 µm 3 , whereas those for T 2 remained consistently high ( |r| > 0.85). In the bovine trabecular experiments with intact marrow, low-resolution (approximately 1 mm 3 , 2 minutes) T 2 values did not shorten ( |r| > 0.95 with respect to approximately 0.4 mm 3 , 11 minutes) and maintained consistent correlations ( |r| > 0.70) with respect to trabecular spacing (turbo spin echo, 22.5 minutes). T 2 measurements of trabeculae at 7 T are robust with degrading spatial resolution and may be preferable in assessing trabecular spacing index with reduced scan time, when high-resolution 3D micro-MRI is difficult to obtain. © 2018 International Society for Magnetic Resonance in Medicine.

  11. On the assessment of spatial resolution of PET systems with iterative image reconstruction

    NASA Astrophysics Data System (ADS)

    Gong, Kuang; Cherry, Simon R.; Qi, Jinyi

    2016-03-01

    Spatial resolution is an important metric for performance characterization in PET systems. Measuring spatial resolution is straightforward with a linear reconstruction algorithm, such as filtered backprojection, and can be performed by reconstructing a point source scan and calculating the full-width-at-half-maximum (FWHM) along the principal directions. With the widespread adoption of iterative reconstruction methods, it is desirable to quantify the spatial resolution using an iterative reconstruction algorithm. However, the task can be difficult because the reconstruction algorithms are nonlinear and the non-negativity constraint can artificially enhance the apparent spatial resolution if a point source image is reconstructed without any background. Thus, it was recommended that a background should be added to the point source data before reconstruction for resolution measurement. However, there has been no detailed study on the effect of the point source contrast on the measured spatial resolution. Here we use point source scans from a preclinical PET scanner to investigate the relationship between measured spatial resolution and the point source contrast. We also evaluate whether the reconstruction of an isolated point source is predictive of the ability of the system to resolve two adjacent point sources. Our results indicate that when the point source contrast is below a certain threshold, the measured FWHM remains stable. Once the contrast is above the threshold, the measured FWHM monotonically decreases with increasing point source contrast. In addition, the measured FWHM also monotonically decreases with iteration number for maximum likelihood estimate. Therefore, when measuring system resolution with an iterative reconstruction algorithm, we recommend using a low-contrast point source and a fixed number of iterations.

  12. Ultra high spatial and temporal resolution breast imaging at 7T.

    PubMed

    van de Bank, B L; Voogt, I J; Italiaander, M; Stehouwer, B L; Boer, V O; Luijten, P R; Klomp, D W J

    2013-04-01

    There is a need to obtain higher specificity in the detection of breast lesions using MRI. To address this need, Dynamic Contrast-Enhanced (DCE) MRI has been combined with other structural and functional MRI techniques. Unfortunately, owing to time constraints structural images at ultra-high spatial resolution can generally not be obtained during contrast uptake, whereas the relatively low spatial resolution of functional imaging (e.g. diffusion and perfusion) limits the detection of small lesions. To be able to increase spatial as well as temporal resolution simultaneously, the sensitivity of MR detection needs to increase as well as the ability to effectively accelerate the acquisition. The required gain in signal-to-noise ratio (SNR) can be obtained at 7T, whereas acceleration can be obtained with high-density receiver coil arrays. In this case, morphological imaging can be merged with DCE-MRI, and other functional techniques can be obtained at higher spatial resolution, and with less distortion [e.g. Diffusion Weighted Imaging (DWI)]. To test the feasibility of this concept, we developed a unilateral breast coil for 7T. It comprises a volume optimized dual-channel transmit coil combined with a 30-channel receive array coil. The high density of small coil elements enabled efficient acceleration in any direction to acquire ultra high spatial resolution MRI of close to 0.6 mm isotropic detail within a temporal resolution of 69 s, high spatial resolution MRI of 1.5 mm isotropic within an ultra high temporal resolution of 6.7 s and low distortion DWI at 7T, all validated in phantoms, healthy volunteers and a patient with a lesion in the right breast classified as Breast Imaging Reporting and Data System (BI-RADS) IV. Copyright © 2012 John Wiley & Sons, Ltd.

  13. High Efficiency Multi-shot Interleaved Spiral-In/Out Acquisition for High Resolution BOLD fMRI

    PubMed Central

    Jung, Youngkyoo; Samsonov, Alexey A.; Liu, Thomas T.; Buracas, Giedrius T.

    2012-01-01

    Growing demand for high spatial resolution BOLD functional MRI faces a challenge of the spatial resolution vs. coverage or temporal resolution tradeoff, which can be addressed by methods that afford increased acquisition efficiency. Spiral acquisition trajectories have been shown to be superior to currently prevalent echo-planar imaging in terms of acquisition efficiency, and high spatial resolution can be achieved by employing multiple-shot spiral acquisition. The interleaved spiral in-out trajectory is preferred over spiral-in due to increased BOLD signal CNR and higher acquisition efficiency than that of spiral-out or non-interleaved spiral in/out trajectories (1), but to date applicability of the multi-shot interleaved spiral in-out for high spatial resolution imaging has not been studied. Herein we propose multi-shot interleaved spiral in-out acquisition and investigate its applicability for high spatial resolution BOLD fMRI. Images reconstructed from interleaved spiral-in and -out trajectories possess artifacts caused by differences in T2* decay, off-resonance and k-space errors associated with the two trajectories. We analyze the associated errors and demonstrate that application of conjugate phase reconstruction and spectral filtering can substantially mitigate these image artifacts. After applying these processing steps, the multishot interleaved spiral in-out pulse sequence yields high BOLD CNR images at in-plane resolution below 1x1 mm while preserving acceptable temporal resolution (4 s) and brain coverage (15 slices of 2 mm thickness). Moreover, this method yields sufficient BOLD CNR at 1.5 mm isotropic resolution for detection of activation in hippocampus associated with cognitive tasks (Stern memory task). The multi-shot interleaved spiral in-out acquisition is a promising technique for high spatial resolution BOLD fMRI applications. PMID:23023395

  14. 10 Yr Spatial and Temporal Trends of PM2.5 Concentrations in the Southeastern US Estimated Using High-resolution Satellite Data

    NASA Technical Reports Server (NTRS)

    Hu, X.; Waller, L. A.; Lyapustin, A.; Wang, Y.; Liu, Y.

    2013-01-01

    Long-term PM2.5 exposure has been reported to be associated with various adverse health outcomes. However, most ground monitors are located in urban areas, leading to a potentially biased representation of the true regional PM2.5 levels. To facilitate epidemiological studies, accurate estimates of spatiotemporally continuous distribution of PM2.5 concentrations are essential. Satellite-retrieved aerosol optical depth (AOD) has been widely used for PM2.5 concentration estimation due to its comprehensive spatial coverage. Nevertheless, an inherent disadvantage of current AOD products is their coarse spatial resolutions. For instance, the spatial resolutions of the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Multiangle Imaging SpectroRadiometer (MISR) are 10 km and 17.6 km, respectively. In this paper, a new AOD product with 1 km spatial resolution retrieved by the multi-angle implementation of atmospheric correction (MAIAC) algorithm was used. A two-stage model was developed to account for both spatial and temporal variability in the PM2.5-AOD relationship by incorporating the MAIAC AOD, meteorological fields, and land use variables as predictors. Our study area is in the southeastern US, centered at the Atlanta Metro area, and data from 2001 to 2010 were collected from various sources. The model was fitted for each year individually, and we obtained model fitting R2 ranging from 0.71 to 0.85, MPE from 1.73 to 2.50 g m3, and RMSPE from 2.75 to 4.10 g m3. In addition, we found cross validation R2 ranging from 0.62 to 0.78, MPE from 2.00 to 3.01 g m3, and RMSPE from 3.12 to 5.00 g m3, indicating a good agreement between the estimated and observed values. Spatial trends show that high PM2.5 levels occurred in urban areas and along major highways, while low concentrations appeared in rural or mountainous areas. A time series analysis was conducted to examine temporal trends of PM2.5 concentrations in the study area from 2001 to 2010. The results showed that the PM2.5 levels in the study area followed a generally declining trend from 2001 to 2010 and decreased about 20 during the period. However, there was an exception of an increase in year 2005, which is attributed to elevated sulfate concentrations in the study area in warm months of 2005. An investigation of the impact of wild and prescribed fires on PM2.5 levels in 2007 suggests a positive relationship between them.

  15. Fast and compact internal scanning CMOS-based hyperspectral camera: the Snapscan

    NASA Astrophysics Data System (ADS)

    Pichette, Julien; Charle, Wouter; Lambrechts, Andy

    2017-02-01

    Imec has developed a process for the monolithic integration of optical filters on top of CMOS image sensors, leading to compact, cost-efficient and faster hyperspectral cameras. Linescan cameras are typically used in remote sensing or for conveyor belt applications. Translation of the target is not always possible for large objects or in many medical applications. Therefore, we introduce a novel camera, the Snapscan (patent pending), exploiting internal movement of a linescan sensor enabling fast and convenient acquisition of high-resolution hyperspectral cubes (up to 2048x3652x150 in spectral range 475-925 nm). The Snapscan combines the spectral and spatial resolutions of a linescan system with the convenience of a snapshot camera.

  16. Variability in Spatially and Temporally Resolved Emissions and Hydrocarbon Source Fingerprints for Oil and Gas Sources in Shale Gas Production Regions.

    PubMed

    Allen, David T; Cardoso-Saldaña, Felipe J; Kimura, Yosuke

    2017-10-17

    A gridded inventory for emissions of methane, ethane, propane, and butanes from oil and gas sources in the Barnett Shale production region has been developed. This inventory extends previous spatially resolved inventories of emissions by characterizing the overall variability in emission magnitudes and the composition of emissions at an hourly time resolution. The inventory is divided into continuous and intermittent emission sources. Sources are defined as continuous if hourly averaged emissions are greater than zero in every hour; otherwise, they are classified as intermittent. In the Barnett Shale, intermittent sources accounted for 14-30% of the mean emissions for methane and 10-34% for ethane, leading to spatial and temporal variability in the location of hourly emissions. The combined variability due to intermittent sources and variability in emission factors can lead to wide confidence intervals in the magnitude and composition of time and location-specific emission inventories; therefore, including temporal and spatial variability in emission inventories is important when reconciling inventories and observations. Comparisons of individual aircraft measurement flights conducted in the Barnett Shale region versus the estimated emission rates for each flight from the emission inventory indicate agreement within the expected variability of the emission inventory for all flights for methane and for all but one flight for ethane.

  17. The influence of spatial resolution and smoothing on the detectability of resting-state and task fMRI.

    PubMed

    Molloy, Erin K; Meyerand, Mary E; Birn, Rasmus M

    2014-02-01

    Functional MRI blood oxygen level-dependent (BOLD) signal changes can be subtle, motivating the use of imaging parameters and processing strategies that maximize the temporal signal-to-noise ratio (tSNR) and thus the detection power of neuronal activity-induced fluctuations. Previous studies have shown that acquiring data at higher spatial resolutions results in greater percent BOLD signal changes, and furthermore that spatially smoothing higher resolution fMRI data improves tSNR beyond that of data originally acquired at a lower resolution. However, higher resolution images come at the cost of increased acquisition time, and the number of image volumes also influences detectability. The goal of our study is to determine how the detection power of neuronally induced BOLD fluctuations acquired at higher spatial resolutions and then spatially smoothed compares to data acquired at the lower resolutions with the same imaging duration. The number of time points acquired during a given amount of imaging time is a practical consideration given the limited ability of certain populations to lie still in the MRI scanner. We compare acquisitions at three different in-plane spatial resolutions (3.50×3.50mm(2), 2.33×2.33mm(2), 1.75×1.75mm(2)) in terms of their tSNR, contrast-to-noise ratio, and the power to detect both task-related activation and resting-state functional connectivity. The impact of SENSE acceleration, which speeds up acquisition time increasing the number of images collected, is also evaluated. Our results show that after spatially smoothing the data to the same intrinsic resolution, lower resolution acquisitions have a slightly higher detection power of task-activation in some, but not all, brain areas. There were no significant differences in functional connectivity as a function of resolution after smoothing. Similarly, the reduced tSNR of fMRI data acquired with a SENSE factor of 2 is offset by the greater number of images acquired, resulting in few significant differences in detection power of either functional activation or connectivity after spatial smoothing. © 2013.

  18. Mapping Chinese tallow with color-infrared photography

    USGS Publications Warehouse

    Ramsey, Elijah W.; Nelson, G.A.; Sapkota, S.K.; Seeger, E.B.; Martella, K.D.

    2002-01-01

    Airborne color-infrared photography (CIR) (1:12,000 scale) was used to map localized occurrences of the widespread and aggressive Chinese tallow (Sapium sebiferum), an invasive species. Photography was collected during senescence when Chinese tallow's bright red leaves presented a high spectral contrast within the native bottomland hardwood and upland forests and marsh land-cover types. Mapped occurrences were conservative because not all senescing tallow leaves are bright red simultaneously. To simulate low spectral but high spatial resolution satellite/airborne image and digital video data, the CIR photography was transformed into raster images at spatial resolutions approximating 0.5 in and 1.0 m. The image data were then spectrally classified for the occurrence of bright red leaves associated with senescing Chinese tallow. Classification accuracies were greater than 95 percent at both spatial resolutions. There was no significant difference in either forest in the detection of tallow or inclusion of non-tallow trees associated with the two spatial resolutions. In marshes, slightly more tallow occurrences were mapped with the lower spatial resolution, but there were also more misclassifications of native land covers as tallow. Combining all land covers, there was no difference at detecting tallow occurrences (equal omission errors) between the two resolutions, but the higher spatial resolution was associated with less inclusion of non-tallow land covers as tallow (lower commission error). Overall, these results confirm that high spatial (???1 m) but low spectral resolution remote sensing data can be used for mapping Chinese tallow trees in dominant environments found in coastal and adjacent upland landscapes.

  19. A Comparison of Spatial and Spectral Image Resolution for Mapping Invasive Plants in Coastal California

    NASA Astrophysics Data System (ADS)

    Underwood, Emma C.; Ustin, Susan L.; Ramirez, Carlos M.

    2007-01-01

    We explored the potential of detecting three target invasive species: iceplant ( Carpobrotus edulis), jubata grass ( Cortaderia jubata), and blue gum ( Eucalyptus globulus) at Vandenberg Air Force Base, California. We compared the accuracy of mapping six communities (intact coastal scrub, iceplant invaded coastal scrub, iceplant invaded chaparral, jubata grass invaded chaparral, blue gum invaded chaparral, and intact chaparral) using four images with different combinations of spatial and spectral resolution: hyperspectral AVIRIS imagery (174 wavebands, 4 m spatial resolution), spatially degraded AVIRIS (174 bands, 30 m), spectrally degraded AVIRIS (6 bands, 4 m), and both spatially and spectrally degraded AVIRIS (6 bands, 30 m, i.e., simulated Landsat ETM data). Overall success rates for classifying the six classes was 75% (kappa 0.7) using full resolution AVIRIS, 58% (kappa 0.5) for the spatially degraded AVIRIS, 42% (kappa 0.3) for the spectrally degraded AVIRIS, and 37% (kappa 0.3) for the spatially and spectrally degraded AVIRIS. A true Landsat ETM image was also classified to illustrate that the results from the simulated ETM data were representative, which provided an accuracy of 50% (kappa 0.4). Mapping accuracies using different resolution images are evaluated in the context of community heterogeneity (species richness, diversity, and percent species cover). Findings illustrate that higher mapping accuracies are achieved with images possessing high spectral resolution, thus capturing information across the visible and reflected infrared solar spectrum. Understanding the tradeoffs in spectral and spatial resolution can assist land managers in deciding the most appropriate imagery with respect to target invasives and community characteristics.

  20. Error Estimation in an Optimal Interpolation Scheme for High Spatial and Temporal Resolution SST Analyses

    NASA Technical Reports Server (NTRS)

    Rigney, Matt; Jedlovec, Gary; LaFontaine, Frank; Shafer, Jaclyn

    2010-01-01

    Heat and moisture exchange between ocean surface and atmosphere plays an integral role in short-term, regional NWP. Current SST products lack both spatial and temporal resolution to accurately capture small-scale features that affect heat and moisture flux. NASA satellite is used to produce high spatial and temporal resolution SST analysis using an OI technique.

  1. Instrumentation in molecular imaging.

    PubMed

    Wells, R Glenn

    2016-12-01

    In vivo molecular imaging is a challenging task and no single type of imaging system provides an ideal solution. Nuclear medicine techniques like SPECT and PET provide excellent sensitivity but have poor spatial resolution. Optical imaging has excellent sensitivity and spatial resolution, but light photons interact strongly with tissues and so only small animals and targets near the surface can be accurately visualized. CT and MRI have exquisite spatial resolution, but greatly reduced sensitivity. To overcome the limitations of individual modalities, molecular imaging systems often combine individual cameras together, for example, merging nuclear medicine cameras with CT or MRI to allow the visualization of molecular processes with both high sensitivity and high spatial resolution.

  2. Microdome-gooved Gd(2)O(2)S:Tb scintillator for flexible and high resolution digital radiography.

    PubMed

    Jung, Phill Gu; Lee, Chi Hoon; Bae, Kong Myeong; Lee, Jae Min; Lee, Sang Min; Lim, Chang Hwy; Yun, Seungman; Kim, Ho Kyung; Ko, Jong Soo

    2010-07-05

    A flexible microdome-grooved Gd(2)O(2)S:Tb scintillator is simulated, fabricated, and characterized for digital radiography applications. According to Monte Carlo simulation results, the dome-grooved structure has a high spatial resolution, which is verified by X-ray image performance of the scintillator. The proposed scintillator has lower X-ray sensitivity than a nonstructured scintillator but almost two times higher spatial resolution at high spatial frequency. Through evaluation of the X-ray performance of the fabricated scintillators, we confirm that the microdome-grooved scintillator can be applied to next-generation flexible digital radiography systems requiring high spatial resolution.

  3. Raman spectroscopy-based detection of chemical contaminants in food powders

    NASA Astrophysics Data System (ADS)

    Chao, Kuanglin; Dhakal, Sagar; Qin, Jianwei; Kim, Moon; Bae, Abigail

    2016-05-01

    Raman spectroscopy technique has proven to be a reliable method for qualitative detection of chemical contaminants in food ingredients and products. For quantitative imaging-based detection, each contaminant particle in a food sample must be detected and it is important to determine the necessary spatial resolution needed to effectively detect the contaminant particles. This study examined the effective spatial resolution required for detection of maleic acid in tapioca starch and benzoyl peroxide in wheat flour. Each chemical contaminant was mixed into its corresponding food powder at a concentration of 1% (w/w). Raman spectral images were collected for each sample, leveled across a 45 mm x 45 mm area, using different spatial resolutions. Based on analysis of these images, a spatial resolution of 0.5mm was selected as effective spatial resolution for detection of maleic acid in starch and benzoyl peroxide in flour. An experiment was then conducted using the 0.5mm spatial resolution to demonstrate Raman imaging-based quantitative detection of these contaminants for samples prepared at 0.1%, 0.3%, and 0.5% (w/w) concentrations. The results showed a linear correlation between the detected numbers of contaminant pixels and the actual concentrations of contaminant.

  4. Fusion and quality analysis for remote sensing images using contourlet transform

    NASA Astrophysics Data System (ADS)

    Choi, Yoonsuk; Sharifahmadian, Ershad; Latifi, Shahram

    2013-05-01

    Recent developments in remote sensing technologies have provided various images with high spatial and spectral resolutions. However, multispectral images have low spatial resolution and panchromatic images have low spectral resolution. Therefore, image fusion techniques are necessary to improve the spatial resolution of spectral images by injecting spatial details of high-resolution panchromatic images. The objective of image fusion is to provide useful information by improving the spatial resolution and the spectral information of the original images. The fusion results can be utilized in various applications, such as military, medical imaging, and remote sensing. This paper addresses two issues in image fusion: i) image fusion method and ii) quality analysis of fusion results. First, a new contourlet-based image fusion method is presented, which is an improvement over the wavelet-based fusion. This fusion method is then applied to a case study to demonstrate its fusion performance. Fusion framework and scheme used in the study are discussed in detail. Second, quality analysis for the fusion results is discussed. We employed various quality metrics in order to analyze the fusion results both spatially and spectrally. Our results indicate that the proposed contourlet-based fusion method performs better than the conventional wavelet-based fusion methods.

  5. Impaired temporal, not just spatial, resolution in amblyopia.

    PubMed

    Spang, Karoline; Fahle, Manfred

    2009-11-01

    In amblyopia, neuronal deficits deteriorate spatial vision including visual acuity, possibly because of a lack of use-dependent fine-tuning of afferents to the visual cortex during infancy; but temporal processing may deteriorate as well. Temporal, rather than spatial, resolution was investigated in patients with amblyopia by means of a task based on time-defined figure-ground segregation. Patients had to indicate the quadrant of the visual field where a purely time-defined square appeared. The results showed a clear decrease in temporal resolution of patients' amblyopic eyes compared with the dominant eyes in this task. The extent of this decrease in figure-ground segregation based on time of motion onset only loosely correlated with the decrease in spatial resolution and spanned a smaller range than did the spatial loss. Control experiments with artificially induced blur in normal observers confirmed that the decrease in temporal resolution was not simply due to the acuity loss. Amblyopia not only decreases spatial resolution, but also temporal factors such as time-based figure-ground segregation, even at high stimulus contrasts. This finding suggests that the realm of neuronal processes that may be disturbed in amblyopia is larger than originally thought.

  6. Propagation of terahertz pulses in random media.

    PubMed

    Pearce, Jeremy; Jian, Zhongping; Mittleman, Daniel M

    2004-02-15

    We describe measurements of single-cycle terahertz pulse propagation in a random medium. The unique capabilities of terahertz time-domain spectroscopy permit the characterization of a multiply scattered field with unprecedented spatial and temporal resolution. With these results, we can develop a framework for understanding the statistics of broadband laser speckle. Also, the ability to extract information on the phase of the field opens up new possibilities for characterizing multiply scattered waves. We illustrate this with a simple example, which involves computing a time-windowed temporal correlation between fields measured at different spatial locations. This enables the identification of individual scattering events, and could lead to a new method for imaging in random media.

  7. A Resolution of the Paradox of Enrichment

    NASA Astrophysics Data System (ADS)

    Feng, Z. C.; Li, Y. Charles

    2015-06-01

    The paradox of enrichment was observed by Rosenzweig [1971] in a class of predator-prey models. Two of the parameters in the models are crucial for the paradox. These two parameters are the prey's carrying capacity and prey's half-saturation for predation. Intuitively, increasing the carrying capacity due to enrichment of the prey's environment should lead to a more stable predator-prey system. Analytically, it turns out that increasing the carrying capacity always leads to an unstable predator-prey system that is susceptible to extinction from environmental random perturbations. This is the so-called paradox of enrichment. Our resolution here rests upon a closer investigation on a dimensionless number H formed from the carrying capacity and the prey's half-saturation. By recasting the models into dimensionless forms, the models are in fact governed by a few dimensionless numbers including H. The effects of the two parameters: carrying capacity and half-saturation are incorporated into the number H. In fact, increasing the carrying capacity is equivalent (i.e. has the same effect on H) to decreasing the half-saturation which implies more aggressive predation. Since there is no paradox between more aggressive predation and instability of the predator-prey system, the paradox of enrichment is resolved. The so-called instability of the predator-prey system is characterized by the existence of a stable limit cycle in the phase plane, which gets closer and closer to the predator axis and prey axis. Due to random environmental perturbations, this can lead to extinction. We also further explore spatially dependent models for which the phase space is infinite-dimensional. The spatially independent limit cycle which is generated by a Hopf bifurcation from an unstable steady state, is linearly stable in the infinite-dimensional phase space. Numerical simulations indicate that the basin of attraction of the limit cycle is riddled. This shows that spatial perturbations can sometimes (neither always nor never) remove the paradox of enrichment near the limit cycle!

  8. High spatial resolution compressed sensing (HSPARSE) functional MRI.

    PubMed

    Fang, Zhongnan; Van Le, Nguyen; Choy, ManKin; Lee, Jin Hyung

    2016-08-01

    To propose a novel compressed sensing (CS) high spatial resolution functional MRI (fMRI) method and demonstrate the advantages and limitations of using CS for high spatial resolution fMRI. A randomly undersampled variable density spiral trajectory enabling an acceleration factor of 5.3 was designed with a balanced steady state free precession sequence to achieve high spatial resolution data acquisition. A modified k-t SPARSE method was then implemented and applied with a strategy to optimize regularization parameters for consistent, high quality CS reconstruction. The proposed method improves spatial resolution by six-fold with 12 to 47% contrast-to-noise ratio (CNR), 33 to 117% F-value improvement and maintains the same temporal resolution. It also achieves high sensitivity of 69 to 99% compared the original ground-truth, small false positive rate of less than 0.05 and low hemodynamic response function distortion across a wide range of CNRs. The proposed method is robust to physiological noise and enables detection of layer-specific activities in vivo, which cannot be resolved using the highest spatial resolution Nyquist acquisition. The proposed method enables high spatial resolution fMRI that can resolve layer-specific brain activity and demonstrates the significant improvement that CS can bring to high spatial resolution fMRI. Magn Reson Med 76:440-455, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  9. Soft X-ray radiation damage in EM-CCDs used for Resonant Inelastic X-ray Scattering

    NASA Astrophysics Data System (ADS)

    Gopinath, D.; Soman, M.; Holland, A.; Keelan, J.; Hall, D.; Holland, K.; Colebrook, D.

    2018-02-01

    Advancement in synchrotron and free electron laser facilities means that X-ray beams with higher intensity than ever before are being created. The high brilliance of the X-ray beam, as well as the ability to use a range of X-ray energies, means that they can be used in a wide range of applications. One such application is Resonant Inelastic X-ray Scattering (RIXS). RIXS uses the intense and tuneable X-ray beams in order to investigate the electronic structure of materials. The photons are focused onto a sample material and the scattered X-ray beam is diffracted off a high resolution grating to disperse the X-ray energies onto a position sensitive detector. Whilst several factors affect the total system energy resolution, the performance of RIXS experiments can be limited by the spatial resolution of the detector used. Electron-Multiplying CCDs (EM-CCDs) at high gain in combination with centroiding of the photon charge cloud across several detector pixels can lead to sub-pixel spatial resolution of 2-3 μm. X-ray radiation can cause damage to CCDs through ionisation damage resulting in increases in dark current and/or a shift in flat band voltage. Understanding the effect of radiation damage on EM-CCDs is important in order to predict lifetime as well as the change in performance over time. Two CCD-97s were taken to PTB at BESSY II and irradiated with large doses of soft X-rays in order to probe the front and back surfaces of the device. The dark current was shown to decay over time with two different exponential components to it. This paper will discuss the use of EM-CCDs for readout of RIXS spectrometers, and limitations on spatial resolution, together with any limitations on instrument use which may arise from X-ray-induced radiation damage.

  10. Sludge accumulation and distribution impact the hydraulic performance in waste stabilisation ponds.

    PubMed

    Coggins, Liah X; Ghisalberti, Marco; Ghadouani, Anas

    2017-03-01

    Waste stabilisation ponds (WSPs) are used worldwide for wastewater treatment, and throughout their operation require periodic sludge surveys. Sludge accumulation in WSPs can impact performance by reducing the effective volume of the pond, and altering the pond hydraulics and wastewater treatment efficiency. Traditionally, sludge heights, and thus sludge volume, have been measured using low-resolution and labour intensive methods such as 'sludge judge' and the 'white towel test'. A sonar device, a readily available technology, fitted to a remotely operated vehicle (ROV) was shown to improve the spatial resolution and accuracy of sludge height measurements, as well as reduce labour and safety requirements. Coupled with a dedicated software package, the profiling of several WSPs has shown that the ROV with autonomous sonar device is capable of providing sludge bathymetry with greatly increased spatial resolution in a greatly reduced profiling time, leading to a better understanding of the role played by sludge accumulation in hydraulic performance of WSPs. The high-resolution bathymetry collected was used to support a much more detailed hydrodynamic assessment of systems with low, medium and high accumulations of sludge. The results of the modelling show that hydraulic performance is not only influenced by the sludge accumulation, but also that the spatial distribution of sludge plays a critical role in reducing the treatment capacity of these systems. In a range of ponds modelled, the reduction in residence time ranged from 33% in a pond with a uniform sludge distribution to a reduction of up to 60% in a pond with highly channelized flow. The combination of high-resolution measurement of sludge accumulation and hydrodynamic modelling will help in the development of frameworks for wastewater sludge management, including the development of more reliable computer models, and could potentially have wider application in the monitoring of other small to medium water bodies, such as channels, recreational water bodies, and commercial ports. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. VIIRS Data and Data Access at the NASA National Snow and Ice Data Center Distributed Active Archive Center

    NASA Astrophysics Data System (ADS)

    Moth, P.; Johnston, T.; Fowler, D. K.

    2017-12-01

    Working collaboratively, NASA and NOAA are producing data from the Visible Infrared Imaging Radiometer Suite (VIIRS). The National Snow and Ice Data Center (NSIDC), a NASA Distributed Active Archive Center (DAAC), is distributing VIIRS snow cover, ice surface temperature, and sea ice cover products. Data is available in .nc and HDF5 formats with a temporal coverage of 1 January 2012 and onward. VIIRS, NOAA's latest radiometer, was launched aboard the Suomi National Polar-orbiting Partnership (SNPP) satellite on October 28, 2011. The instrument comprises 22 bands; five for high-resolution imagery, 16 at moderate resolution, and one panchromatic day/night band. VIIRS is a whiskbroom scanning radiometer that covers the spectrum between 0.412 μm and 12.01 μm and acquires spatial resolutions at nadir of 750 m, 375 m, and 750 m, respectively. One distinct advantage of VIIRS is to ensure continuity that will lead to the development of snow and sea ice climate data records with data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on the NASA Earth Observing System (EOS) Aqua and Terra satellites. Combined with the Advanced Very-High-resolution Radiometer (AVHRR), the AVHRR-MODIS-VIIRS timeline will start in the early 1980s and span at least four decades-and perhaps beyond-enabling researchers to produce and gain valuable insight from long, high-quality Earth System Data Records (ESDRs). Several options are available to view and download VIIRS data: Direct download from NSIDC via HTTPS. Using NASA Earthdata Search, users can explore and download VIIRS data with temporal and/or spatial filters, re-format, re-project, and subset by spatial extent and parameter. API access is also available for all these options; Using NASA Worldview, users can view Global Imagery Browse Services (GIBS) from VIIRS data; Users can join a VIIRS subscription list to have new VIIRS data automatically ftp'd or staged on a local server as it is archived at NSIDC.

  12. Electric crosstalk impairs spatial resolution of multi-electrode arrays in retinal implants

    NASA Astrophysics Data System (ADS)

    Wilke, R. G. H.; Khalili Moghadam, G.; Lovell, N. H.; Suaning, G. J.; Dokos, S.

    2011-08-01

    Active multi-electrode arrays are used in vision prostheses, including optic nerve cuffs and cortical and retinal implants for stimulation of neural tissue. For retinal implants, arrays with up to 1500 electrodes are used in clinical trials. The ability to convey information with high spatial resolution is critical for these applications. To assess the extent to which spatial resolution is impaired by electric crosstalk, finite-element simulation of electric field distribution in a simplified passive tissue model of the retina is performed. The effects of electrode size, electrode spacing, distance to target cells, and electrode return configuration (monopolar, tripolar, hexagonal) on spatial resolution is investigated in the form of a mathematical model of electric field distribution. Results show that spatial resolution is impaired with increased distance from the electrode array to the target cells. This effect can be partly compensated by non-monopolar electrode configurations and larger electrode diameters, albeit at the expense of lower pixel densities due to larger covering areas by each stimulation electrode. In applications where multi-electrode arrays can be brought into close proximity to target cells, as presumably with epiretinal implants, smaller electrodes in monopolar configuration can provide the highest spatial resolution. However, if the implantation site is further from the target cells, as is the case in suprachoroidal approaches, hexagonally guarded electrode return configurations can convey higher spatial resolution. This paper was originally submitted for the special issue containing contributions from the Sixth Biennial Research Congress of The Eye and the Chip.

  13. Interannual rainfall variability over China in the MetUM GA6 and GC2 configurations

    NASA Astrophysics Data System (ADS)

    Stephan, Claudia Christine; Klingaman, Nicholas P.; Vidale, Pier Luigi; Turner, Andrew G.; Demory, Marie-Estelle; Guo, Liang

    2018-05-01

    Six climate simulations of the Met Office Unified Model Global Atmosphere 6.0 and Global Coupled 2.0 configurations are evaluated against observations and reanalysis data for their ability to simulate the mean state and year-to-year variability of precipitation over China. To analyse the sensitivity to air-sea coupling and horizontal resolution, atmosphere-only and coupled integrations at atmospheric horizontal resolutions of N96, N216 and N512 (corresponding to ˜ 200, 90 and 40 km in the zonal direction at the equator, respectively) are analysed. The mean and interannual variance of seasonal precipitation are too high in all simulations over China but improve with finer resolution and coupling. Empirical orthogonal teleconnection (EOT) analysis is applied to simulated and observed precipitation to identify spatial patterns of temporally coherent interannual variability in seasonal precipitation. To connect these patterns to large-scale atmospheric and coupled air-sea processes, atmospheric and oceanic fields are regressed onto the corresponding seasonal mean time series. All simulations reproduce the observed leading pattern of interannual rainfall variability in winter, spring and autumn; the leading pattern in summer is present in all but one simulation. However, only in two simulations are the four leading patterns associated with the observed physical mechanisms. Coupled simulations capture more observed patterns of variability and associate more of them with the correct physical mechanism, compared to atmosphere-only simulations at the same resolution. However, finer resolution does not improve the fidelity of these patterns or their associated mechanisms. This shows that evaluating climate models by only geographical distribution of mean precipitation and its interannual variance is insufficient. The EOT analysis adds knowledge about coherent variability and associated mechanisms.

  14. The influence of multispectral scanner spatial resolution on forest feature classification

    NASA Technical Reports Server (NTRS)

    Sadowski, F. G.; Malila, W. A.; Sarno, J. E.; Nalepka, R. F.

    1977-01-01

    Inappropriate spatial resolution and corresponding data processing techniques may be major causes for non-optimal forest classification results frequently achieved from multispectral scanner (MSS) data. Procedures and results of empirical investigations are studied to determine the influence of MSS spatial resolution on the classification of forest features into levels of detail or hierarchies of information that might be appropriate for nationwide forest surveys and detailed in-place inventories. Two somewhat different, but related studies are presented. The first consisted of establishing classification accuracies for several hierarchies of features as spatial resolution was progressively coarsened from (2 meters) squared to (64 meters) squared. The second investigated the capabilities for specialized processing techniques to improve upon the results of conventional processing procedures for both coarse and fine resolution data.

  15. Definition of SMOS Level 3 Land Products for the Villafranca del Castillo Data Processing Centre (CP34)

    NASA Astrophysics Data System (ADS)

    Lopez-Baeza, E.; Monsoriu Torres, A.; Font, J.; Alonso, O.

    2009-04-01

    The ESA SMOS (Soil Moisture and Ocean Salinity) Mission is planned to be launched in July 2009. The satellite will measure soil moisture over the continents and surface salinity of the oceans at resolutions that are sufficient for climatological-type studies. This paper describes the procedure to be used at the Spanish SMOS Level 3 and 4 Data Processing Centre (CP34) to generate Soil Moisture and other Land Surface Product maps from SMOS Level 2 data. This procedure can be used to map Soil Moisture, Vegetation Water Content and Soil Dielectric Constant data into different pre-defined spatial grids with fixed temporal frequency. The L3 standard Land Surface Products to be generated at CP34 are: Soil Moisture products: maximum spatial resolution with no spatial averaging, temporal averaging of 3 days, daily generation maximum spatial resolution with no spatial averaging, temporal averaging of 10 days, generation frequency of once every 10 days. b': maximum spatial resolution with no spatial averaging, temporal averaging of monthly decades (1st to 10th of the month, 11th to 20th of the month, 21st to last day of the month), generation frequency of once every decade monthly average, temporal averaging from L3 decade averages, monthly generation Seasonal average, temporal averaging from L3 monthly averages, seasonally generation yearly average, temporal averaging from L3 monthly averages, yearly generation Vegetation Water Content products: maximum spatial resolution with no spatial averaging, temporal averaging of 10 days, generation frequency of once every 10 days. a': maximum spatial resolution with no spatial averaging, temporal averaging of monthly decades (1st to 10th of the month, 11th to 20th of the month, 21st to last day of the month) using simple averaging method over the L2 products in ISEA grid, generation frequency of once every decade monthly average, temporal averaging from L3 decade averages, monthly generation seasonal average, temporal averaging from L3 monthly averages, seasonally generation yearly average, temporal averaging from L3 monthly averages, yearly generation Dielectric Constant products: (the dielectric constant products are delivered together with soil moisture products, with the same averaging periods and generation frequency): maximum spatial resolution with no spatial averaging, temporal averaging of 3 days, daily generation maximum spatial resolution with no spatial averaging, temporal averaging of 10 days, generation frequency of once every 10 days. b': maximum spatial resolution with no spatial averaging, temporal averaging of monthly decades (1st to 10th of the month, 11th to 20th of the month, 21st to last day of the month), generation frequency of once every decade monthly average, temporal averaging from L3 decade averages, monthly generation seasonal average, temporal averaging from L3 monthly averages, seasonally generation yearly average, temporal averaging from L3 monthly averages, yearly generation.

  16. Simultaneous multiview capture and fusion improves spatial resolution in wide-field and light-sheet microscopy

    PubMed Central

    Wu, Yicong; Chandris, Panagiotis; Winter, Peter W.; Kim, Edward Y.; Jaumouillé, Valentin; Kumar, Abhishek; Guo, Min; Leung, Jacqueline M.; Smith, Corey; Rey-Suarez, Ivan; Liu, Huafeng; Waterman, Clare M.; Ramamurthi, Kumaran S.; La Riviere, Patrick J.; Shroff, Hari

    2016-01-01

    Most fluorescence microscopes are inefficient, collecting only a small fraction of the emitted light at any instant. Besides wasting valuable signal, this inefficiency also reduces spatial resolution and causes imaging volumes to exhibit significant resolution anisotropy. We describe microscopic and computational techniques that address these problems by simultaneously capturing and subsequently fusing and deconvolving multiple specimen views. Unlike previous methods that serially capture multiple views, our approach improves spatial resolution without introducing any additional illumination dose or compromising temporal resolution relative to conventional imaging. When applying our methods to single-view wide-field or dual-view light-sheet microscopy, we achieve a twofold improvement in volumetric resolution (~235 nm × 235 nm × 340 nm) as demonstrated on a variety of samples including microtubules in Toxoplasma gondii, SpoVM in sporulating Bacillus subtilis, and multiple protein distributions and organelles in eukaryotic cells. In every case, spatial resolution is improved with no drawback by harnessing previously unused fluorescence. PMID:27761486

  17. The Effect of Spatial and Temporal Resolution of Cine Phase Contrast MRI on Wall Shear Stress and Oscillatory Shear Index Assessment

    PubMed Central

    Gijsen, Frank J.; Marquering, Henk; van Ooij, Pim; vanBavel, Ed; Wentzel, Jolanda J.; Nederveen, Aart J.

    2016-01-01

    Introduction Wall shear stress (WSS) and oscillatory shear index (OSI) are associated with atherosclerotic disease. Both parameters are derived from blood velocities, which can be measured with phase-contrast MRI (PC-MRI). Limitations in spatiotemporal resolution of PC-MRI are known to affect these measurements. Our aim was to investigate the effect of spatiotemporal resolution using a carotid artery phantom. Methods A carotid artery phantom was connected to a flow set-up supplying pulsatile flow. MRI measurement planes were placed at the common carotid artery (CCA) and internal carotid artery (ICA). Two-dimensional PC-MRI measurements were performed with thirty different spatiotemporal resolution settings. The MRI flow measurement was validated with ultrasound probe measurements. Mean flow, peak flow, flow waveform, WSS and OSI were compared for these spatiotemporal resolutions using regression analysis. The slopes of the regression lines were reported in %/mm and %/100ms. The distribution of low and high WSS and OSI was compared between different spatiotemporal resolutions. Results The mean PC-MRI CCA flow (2.5±0.2mL/s) agreed with the ultrasound probe measurements (2.7±0.02mL/s). Mean flow (mL/s) depended only on spatial resolution (CCA:-13%/mm, ICA:-49%/mm). Peak flow (mL/s) depended on both spatial (CCA:-13%/mm, ICA:-17%/mm) and temporal resolution (CCA:-19%/100ms, ICA:-24%/100ms). Mean WSS (Pa) was in inverse relationship only with spatial resolution (CCA:-19%/mm, ICA:-33%/mm). OSI was dependent on spatial resolution for CCA (-26%/mm) and temporal resolution for ICA (-16%/100ms). The regions of low and high WSS and OSI matched for most of the spatiotemporal resolutions (CCA:30/30, ICA:28/30 cases for WSS; CCA:23/30, ICA:29/30 cases for OSI). Conclusion We show that both mean flow and mean WSS are independent of temporal resolution. Peak flow and OSI are dependent on both spatial and temporal resolution. However, the magnitude of mean and peak flow, WSS and OSI, and the spatial distribution of OSI and WSS did not exhibit a strong dependency on spatiotemporal resolution. PMID:27669568

  18. Hyperspectral and multispectral data fusion based on linear-quadratic nonnegative matrix factorization

    NASA Astrophysics Data System (ADS)

    Benhalouche, Fatima Zohra; Karoui, Moussa Sofiane; Deville, Yannick; Ouamri, Abdelaziz

    2017-04-01

    This paper proposes three multisharpening approaches to enhance the spatial resolution of urban hyperspectral remote sensing images. These approaches, related to linear-quadratic spectral unmixing techniques, use a linear-quadratic nonnegative matrix factorization (NMF) multiplicative algorithm. These methods begin by unmixing the observable high-spectral/low-spatial resolution hyperspectral and high-spatial/low-spectral resolution multispectral images. The obtained high-spectral/high-spatial resolution features are then recombined, according to the linear-quadratic mixing model, to obtain an unobservable multisharpened high-spectral/high-spatial resolution hyperspectral image. In the first designed approach, hyperspectral and multispectral variables are independently optimized, once they have been coherently initialized. These variables are alternately updated in the second designed approach. In the third approach, the considered hyperspectral and multispectral variables are jointly updated. Experiments, using synthetic and real data, are conducted to assess the efficiency, in spatial and spectral domains, of the designed approaches and of linear NMF-based approaches from the literature. Experimental results show that the designed methods globally yield very satisfactory spectral and spatial fidelities for the multisharpened hyperspectral data. They also prove that these methods significantly outperform the used literature approaches.

  19. The effects of digital elevation model resolution on the calculation and predictions of topographic wetness indices.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drover, Damion, Ryan

    2011-12-01

    One of the largest exports in the Southeast U.S. is forest products. Interest in biofuels using forest biomass has increased recently, leading to more research into better forest management BMPs. The USDA Forest Service, along with the Oak Ridge National Laboratory, University of Georgia and Oregon State University are researching the impacts of intensive forest management for biofuels on water quality and quantity at the Savannah River Site in South Carolina. Surface runoff of saturated areas, transporting excess nutrients and contaminants, is a potential water quality issue under investigation. Detailed maps of variable source areas and soil characteristics would thereforemore » be helpful prior to treatment. The availability of remotely sensed and computed digital elevation models (DEMs) and spatial analysis tools make it easy to calculate terrain attributes. These terrain attributes can be used in models to predict saturated areas or other attributes in the landscape. With laser altimetry, an area can be flown to produce very high resolution data, and the resulting data can be resampled into any resolution of DEM desired. Additionally, there exist many maps that are in various resolutions of DEM, such as those acquired from the U.S. Geological Survey. Problems arise when using maps derived from different resolution DEMs. For example, saturated areas can be under or overestimated depending on the resolution used. The purpose of this study was to examine the effects of DEM resolution on the calculation of topographic wetness indices used to predict variable source areas of saturation, and to find the best resolutions to produce prediction maps of soil attributes like nitrogen, carbon, bulk density and soil texture for low-relief, humid-temperate forested hillslopes. Topographic wetness indices were calculated based on the derived terrain attributes, slope and specific catchment area, from five different DEM resolutions. The DEMs were resampled from LiDAR, which is a laser altimetry remote sensing method, obtained from the USDA Forest Service at Savannah River Site. The specific DEM resolutions were chosen because they are common grid cell sizes (10m, 30m, and 50m) used in mapping for management applications and in research. The finer resolutions (2m and 5m) were chosen for the purpose of determining how finer resolutions performed compared with coarser resolutions at predicting wetness and related soil attributes. The wetness indices were compared across DEMs and with each other in terms of quantile and distribution differences, then in terms of how well they each correlated with measured soil attributes. Spatial and non-spatial analyses were performed, and predictions using regression and geostatistics were examined for efficacy relative to each DEM resolution. Trends in the raw data and analysis results were also revealed.« less

  20. Anthropogenic heat flux: advisable spatial resolutions when input data are scarce

    NASA Astrophysics Data System (ADS)

    Gabey, A. M.; Grimmond, C. S. B.; Capel-Timms, I.

    2018-02-01

    Anthropogenic heat flux (QF) may be significant in cities, especially under low solar irradiance and at night. It is of interest to many practitioners including meteorologists, city planners and climatologists. QF estimates at fine temporal and spatial resolution can be derived from models that use varying amounts of empirical data. This study compares simple and detailed models in a European megacity (London) at 500 m spatial resolution. The simple model (LQF) uses spatially resolved population data and national energy statistics. The detailed model (GQF) additionally uses local energy, road network and workday population data. The Fractions Skill Score (FSS) and bias are used to rate the skill with which the simple model reproduces the spatial patterns and magnitudes of QF, and its sub-components, from the detailed model. LQF skill was consistently good across 90% of the city, away from the centre and major roads. The remaining 10% contained elevated emissions and "hot spots" representing 30-40% of the total city-wide energy. This structure was lost because it requires workday population, spatially resolved building energy consumption and/or road network data. Daily total building and traffic energy consumption estimates from national data were within ± 40% of local values. Progressively coarser spatial resolutions to 5 km improved skill for total QF, but important features (hot spots, transport network) were lost at all resolutions when residential population controlled spatial variations. The results demonstrate that simple QF models should be applied with conservative spatial resolution in cities that, like London, exhibit time-varying energy use patterns.

  1. Generating High-Temporal and Spatial Resolution TIR Image Data

    NASA Astrophysics Data System (ADS)

    Herrero-Huerta, M.; Lagüela, S.; Alfieri, S. M.; Menenti, M.

    2017-09-01

    Remote sensing imagery to monitor global biophysical dynamics requires the availability of thermal infrared data at high temporal and spatial resolution because of the rapid development of crops during the growing season and the fragmentation of most agricultural landscapes. Conversely, no single sensor meets these combined requirements. Data fusion approaches offer an alternative to exploit observations from multiple sensors, providing data sets with better properties. A novel spatio-temporal data fusion model based on constrained algorithms denoted as multisensor multiresolution technique (MMT) was developed and applied to generate TIR synthetic image data at both temporal and spatial high resolution. Firstly, an adaptive radiance model is applied based on spectral unmixing analysis of . TIR radiance data at TOA (top of atmosphere) collected by MODIS daily 1-km and Landsat - TIRS 16-day sampled at 30-m resolution are used to generate synthetic daily radiance images at TOA at 30-m spatial resolution. The next step consists of unmixing the 30 m (now lower resolution) images using the information about their pixel land-cover composition from co-registered images at higher spatial resolution. In our case study, TIR synthesized data were unmixed to the Sentinel 2 MSI with 10 m resolution. The constrained unmixing preserves all the available radiometric information of the 30 m images and involves the optimization of the number of land-cover classes and the size of the moving window for spatial unmixing. Results are still being evaluated, with particular attention for the quality of the data streams required to apply our approach.

  2. Spatial Scale Gap Filling Using an Unmanned Aerial System: A Statistical Downscaling Method for Applications in Precision Agriculture.

    PubMed

    Hassan-Esfahani, Leila; Ebtehaj, Ardeshir M; Torres-Rua, Alfonso; McKee, Mac

    2017-09-14

    Applications of satellite-borne observations in precision agriculture (PA) are often limited due to the coarse spatial resolution of satellite imagery. This paper uses high-resolution airborne observations to increase the spatial resolution of satellite data for related applications in PA. A new variational downscaling scheme is presented that uses coincident aerial imagery products from "AggieAir", an unmanned aerial system, to increase the spatial resolution of Landsat satellite data. This approach is primarily tested for downscaling individual band Landsat images that can be used to derive normalized difference vegetation index (NDVI) and surface soil moisture (SSM). Quantitative and qualitative results demonstrate promising capabilities of the downscaling approach enabling effective increase of the spatial resolution of Landsat imageries by orders of 2 to 4. Specifically, the downscaling scheme retrieved the missing high-resolution feature of the imageries and reduced the root mean squared error by 15, 11, and 10 percent in visual, near infrared, and thermal infrared bands, respectively. This metric is reduced by 9% in the derived NDVI and remains negligibly for the soil moisture products.

  3. Spatial Scale Gap Filling Using an Unmanned Aerial System: A Statistical Downscaling Method for Applications in Precision Agriculture

    PubMed Central

    Hassan-Esfahani, Leila; Ebtehaj, Ardeshir M.; McKee, Mac

    2017-01-01

    Applications of satellite-borne observations in precision agriculture (PA) are often limited due to the coarse spatial resolution of satellite imagery. This paper uses high-resolution airborne observations to increase the spatial resolution of satellite data for related applications in PA. A new variational downscaling scheme is presented that uses coincident aerial imagery products from “AggieAir”, an unmanned aerial system, to increase the spatial resolution of Landsat satellite data. This approach is primarily tested for downscaling individual band Landsat images that can be used to derive normalized difference vegetation index (NDVI) and surface soil moisture (SSM). Quantitative and qualitative results demonstrate promising capabilities of the downscaling approach enabling effective increase of the spatial resolution of Landsat imageries by orders of 2 to 4. Specifically, the downscaling scheme retrieved the missing high-resolution feature of the imageries and reduced the root mean squared error by 15, 11, and 10 percent in visual, near infrared, and thermal infrared bands, respectively. This metric is reduced by 9% in the derived NDVI and remains negligibly for the soil moisture products. PMID:28906428

  4. Calibration of Fuji BAS-SR type imaging plate as high spatial resolution x-ray radiography recorder

    NASA Astrophysics Data System (ADS)

    Yan, Ji; Zheng, Jianhua; Zhang, Xing; Chen, Li; Wei, Minxi

    2017-05-01

    Image Plates as x-ray recorder have advantages including reusable, high dynamic range, large active area, and so on. In this work, Fuji BAS-SR type image plate combined with BAS-5000 scanner is calibrated. The fade rates of Image Plates has been measured using x-ray diffractometric in different room temperature; the spectral response of Image Plates has been measured using 241Am radioactive sealed source and fitting with linear model; the spatial resolution of Image Plates has been measured using micro-focus x-ray tube. The results show that Image Plates has an exponent decade curve and double absorption edge response curve. The spatial resolution of Image Plates with 25μ/50μ scanner resolution is 6.5lp/mm, 11.9lp/mm respectively and gold grid radiography is collected with 80lp/mm spatial resolution using SR-type Image Plates. BAS-SR type Image Plates can do high spatial resolution and quantitative radiographic works. It can be widely used in High energy density physics (HEDP), inertial confinement fusion (ICF) and laboratory astronomy physics.

  5. Simulations of the temporal and spatial resolution for a compact time-resolved electron diffractometer

    NASA Astrophysics Data System (ADS)

    Robinson, Matthew S.; Lane, Paul D.; Wann, Derek A.

    2016-02-01

    A novel compact electron gun for use in time-resolved gas electron diffraction experiments has recently been designed and commissioned. In this paper we present and discuss the extensive simulations that were performed to underpin the design in terms of the spatial and temporal qualities of the pulsed electron beam created by the ionisation of a gold photocathode using a femtosecond laser. The response of the electron pulses to a solenoid lens used to focus the electron beam has also been studied. The simulated results show that focussing the electron beam affects the overall spatial and temporal resolution of the experiment in a variety of ways, and that factors that improve the resolution of one parameter can often have a negative effect on the other. A balance must, therefore, be achieved between spatial and temporal resolution. The optimal experimental time resolution for the apparatus is predicted to be 416 fs for studies of gas-phase species, while the predicted spatial resolution of better than 2 nm-1 compares well with traditional time-averaged electron diffraction set-ups.

  6. Coherent optical adaptive technique improves the spatial resolution of STED microscopy in thick samples

    PubMed Central

    Yan, Wei; Yang, Yanlong; Tan, Yu; Chen, Xun; Li, Yang; Qu, Junle; Ye, Tong

    2018-01-01

    Stimulated emission depletion microscopy (STED) is one of far-field optical microscopy techniques that can provide sub-diffraction spatial resolution. The spatial resolution of the STED microscopy is determined by the specially engineered beam profile of the depletion beam and its power. However, the beam profile of the depletion beam may be distorted due to aberrations of optical systems and inhomogeneity of specimens’ optical properties, resulting in a compromised spatial resolution. The situation gets deteriorated when thick samples are imaged. In the worst case, the sever distortion of the depletion beam profile may cause complete loss of the super resolution effect no matter how much depletion power is applied to specimens. Previously several adaptive optics approaches have been explored to compensate aberrations of systems and specimens. However, it is hard to correct the complicated high-order optical aberrations of specimens. In this report, we demonstrate that the complicated distorted wavefront from a thick phantom sample can be measured by using the coherent optical adaptive technique (COAT). The full correction can effectively maintain and improve the spatial resolution in imaging thick samples. PMID:29400356

  7. Estimating Gross Primary Production in Cropland with High Spatial and Temporal Scale Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Lin, S.; Li, J.; Liu, Q.

    2018-04-01

    Satellite remote sensing data provide spatially continuous and temporally repetitive observations of land surfaces, and they have become increasingly important for monitoring large region of vegetation photosynthetic dynamic. But remote sensing data have their limitation on spatial and temporal scale, for example, higher spatial resolution data as Landsat data have 30-m spatial resolution but 16 days revisit period, while high temporal scale data such as geostationary data have 30-minute imaging period, which has lower spatial resolution (> 1 km). The objective of this study is to investigate whether combining high spatial and temporal resolution remote sensing data can improve the gross primary production (GPP) estimation accuracy in cropland. For this analysis we used three years (from 2010 to 2012) Landsat based NDVI data, MOD13 vegetation index product and Geostationary Operational Environmental Satellite (GOES) geostationary data as input parameters to estimate GPP in a small region cropland of Nebraska, US. Then we validated the remote sensing based GPP with the in-situ measurement carbon flux data. Results showed that: 1) the overall correlation between GOES visible band and in-situ measurement photosynthesis active radiation (PAR) is about 50 % (R2 = 0.52) and the European Center for Medium-Range Weather Forecasts ERA-Interim reanalysis data can explain 64 % of PAR variance (R2 = 0.64); 2) estimating GPP with Landsat 30-m spatial resolution data and ERA daily meteorology data has the highest accuracy(R2 = 0.85, RMSE < 3 gC/m2/day), which has better performance than using MODIS 1-km NDVI/EVI product import; 3) using daily meteorology data as input for GPP estimation in high spatial resolution data would have higher relevance than 8-day and 16-day input. Generally speaking, using the high spatial resolution and high frequency satellite based remote sensing data can improve GPP estimation accuracy in cropland.

  8. Evaluating the influence of spatial resolution of Landsat predictors on the accuracy of biomass models for large-area estimation across the eastern USA

    NASA Astrophysics Data System (ADS)

    Deo, Ram K.; Domke, Grant M.; Russell, Matthew B.; Woodall, Christopher W.; Andersen, Hans-Erik

    2018-05-01

    Aboveground biomass (AGB) estimates for regional-scale forest planning have become cost-effective with the free access to satellite data from sensors such as Landsat and MODIS. However, the accuracy of AGB predictions based on passive optical data depends on spatial resolution and spatial extent of target area as fine resolution (small pixels) data are associated with smaller coverage and longer repeat cycles compared to coarse resolution data. This study evaluated various spatial resolutions of Landsat-derived predictors on the accuracy of regional AGB models at three different sites in the eastern USA: Maine, Pennsylvania-New Jersey, and South Carolina. We combined national forest inventory data with Landsat-derived predictors at spatial resolutions ranging from 30–1000 m to understand the optimal spatial resolution of optical data for large-area (regional) AGB estimation. Ten generic models were developed using the data collected in 2014, 2015 and 2016, and the predictions were evaluated (i) at the county-level against the estimates of the USFS Forest Inventory and Analysis Program which relied on EVALIDator tool and national forest inventory data from the 2009–2013 cycle and (ii) within a large number of strips (~1 km wide) predicted via LiDAR metrics at 30 m spatial resolution. The county-level estimates by the EVALIDator and Landsat models were highly related (R 2 > 0.66), although the R 2 varied significantly across sites and resolution of predictors. The mean and standard deviation of county-level estimates followed increasing and decreasing trends, respectively, with models of coarser resolution. The Landsat-based total AGB estimates were larger than the LiDAR-based total estimates within the strips, however the mean of AGB predictions by LiDAR were mostly within one-standard deviations of the mean predictions obtained from the Landsat-based model at any of the resolutions. We conclude that satellite data at resolutions up to 1000 m provide acceptable accuracy for continental scale analysis of AGB.

  9. The spectral signature of cloud spatial structure in shortwave irradiance

    PubMed Central

    Song, Shi; Schmidt, K. Sebastian; Pilewskie, Peter; King, Michael D.; Heidinger, Andrew K.; Walther, Andi; Iwabuchi, Hironobu; Wind, Gala; Coddington, Odele M.

    2017-01-01

    In this paper, we used cloud imagery from a NASA field experiment in conjunction with three-dimensional radiative transfer calculations to show that cloud spatial structure manifests itself as a spectral signature in shortwave irradiance fields – specifically in transmittance and net horizontal photon transport in the visible and near-ultraviolet wavelength range. We found a robust correlation between the magnitude of net horizontal photon transport (H) and its spectral dependence (slope), which is scale-invariant and holds for the entire pixel population of a domain. This was surprising at first given the large degree of spatial inhomogeneity. We prove that the underlying physical mechanism for this phenomenon is molecular scattering in conjunction with cloud spatial structure. On this basis, we developed a simple parameterization through a single parameter ε, which quantifies the characteristic spectral signature of spatial inhomogeneities. In the case we studied, neglecting net horizontal photon transport leads to a local transmittance bias of ±12–19 %, even at the relatively coarse spatial resolution of 20 km. Since three-dimensional effects depend on the spatial context of a given pixel in a nontrivial way, the spectral dimension of this problem may emerge as the starting point for future bias corrections. PMID:28824698

  10. The spectral signature of cloud spatial structure in shortwave irradiance.

    PubMed

    Song, Shi; Schmidt, K Sebastian; Pilewskie, Peter; King, Michael D; Heidinger, Andrew K; Walther, Andi; Iwabuchi, Hironobu; Wind, Gala; Coddington, Odele M

    2016-11-08

    In this paper, we used cloud imagery from a NASA field experiment in conjunction with three-dimensional radiative transfer calculations to show that cloud spatial structure manifests itself as a spectral signature in shortwave irradiance fields - specifically in transmittance and net horizontal photon transport in the visible and near-ultraviolet wavelength range. We found a robust correlation between the magnitude of net horizontal photon transport ( H ) and its spectral dependence (slope), which is scale-invariant and holds for the entire pixel population of a domain. This was surprising at first given the large degree of spatial inhomogeneity. We prove that the underlying physical mechanism for this phenomenon is molecular scattering in conjunction with cloud spatial structure. On this basis, we developed a simple parameterization through a single parameter ε , which quantifies the characteristic spectral signature of spatial inhomogeneities. In the case we studied, neglecting net horizontal photon transport leads to a local transmittance bias of ±12-19 %, even at the relatively coarse spatial resolution of 20 km. Since three-dimensional effects depend on the spatial context of a given pixel in a nontrivial way, the spectral dimension of this problem may emerge as the starting point for future bias corrections.

  11. Fabrication and characterization of a 0.5-mm lutetium oxyorthosilicate detector array for high-resolution PET applications.

    PubMed

    Stickel, Jennifer R; Qi, Jinyi; Cherry, Simon R

    2007-01-01

    With the increasing use of in vivo imaging in mouse models of disease, there are many interesting applications that demand imaging of organs and tissues with submillimeter resolution. Though there are other contributing factors, the spatial resolution in small-animal PET is still largely determined by the detector pixel dimensions. In this work, a pair of lutetium oxyorthosilicate (LSO) arrays with 0.5-mm pixels was coupled to multichannel photomultiplier tubes and evaluated for use as high-resolution PET detectors. Flood histograms demonstrated that most crystals were clearly identifiable. Energy resolution varied from 22% to 38%. The coincidence timing resolution was 1.42-ns full width at half maximum (FWHM). The intrinsic spatial resolution was 0.68-mm FWHM as measured with a 30-gauge needle filled with (18)F. The improvement in spatial resolution in a tomographic setting is demonstrated using images of a line source phantom reconstructed with filtered backprojection and compared with images obtained from 2 dedicated small-animal PET scanners. Finally, a projection image of the mouse foot is shown to demonstrate the application of these 0.5-mm LSO detectors to a biologic task. A pair of highly pixelated LSO detections has been constructed and characterized for use as high-spatial-resolution PET detectors. It appears that small-animal PET systems capable of a FWHM spatial resolution of 600 microm or less are feasible and should be pursued.

  12. Characterization of spatial and spectral resolution of a rotating prism chromotomographic hyperspectral imager

    NASA Astrophysics Data System (ADS)

    Bostick, Randall L.; Perram, Glen P.; Tuttle, Ronald

    2009-05-01

    The Air Force Institute of Technology (AFIT) has built a rotating prism chromotomographic hyperspectral imager (CTI) with the goal of extending the technology to exploit spatially extended sources with quickly varying (> 10 Hz) phenomenology, such as bomb detonations and muzzle flashes. This technology collects successive frames of 2-D data dispersed at different angles multiplexing spatial and spectral information which can then be used to reconstruct any arbitrary spectral plane(s). In this paper, the design of the AFIT instrument is described and then tested against a spectral target with near point source spatial characteristics to measure spectral and spatial resolution. It will be shown that, in theory, the spectral and spatial resolution in the 3-D spectral image cube is the nearly the same as a simple prism spectrograph with the same design. However, error in the knowledge of the prism linear dispersion at the detector array as a function of wavelength and projection angle will degrade resolution without further corrections. With minimal correction for error and use of a simple shift-and-add reconstruction algorithm, the CTI is able to produce a spatial resolution of about 2 mm in the object plane (234 μrad IFOV) and is limited by chromatic aberration. A spectral resolution of less than 1nm at shorter wavelengths is shown, limited primarily by prism dispersion.

  13. Evaluating an image-fusion algorithm with synthetic-image-generation tools

    NASA Astrophysics Data System (ADS)

    Gross, Harry N.; Schott, John R.

    1996-06-01

    An algorithm that combines spectral mixing and nonlinear optimization is used to fuse multiresolution images. Image fusion merges images of different spatial and spectral resolutions to create a high spatial resolution multispectral combination. High spectral resolution allows identification of materials in the scene, while high spatial resolution locates those materials. In this algorithm, conventional spectral mixing estimates the percentage of each material (called endmembers) within each low resolution pixel. Three spectral mixing models are compared; unconstrained, partially constrained, and fully constrained. In the partially constrained application, the endmember fractions are required to sum to one. In the fully constrained application, all fractions are additionally required to lie between zero and one. While negative fractions seem inappropriate, they can arise from random spectral realizations of the materials. In the second part of the algorithm, the low resolution fractions are used as inputs to a constrained nonlinear optimization that calculates the endmember fractions for the high resolution pixels. The constraints mirror the low resolution constraints and maintain consistency with the low resolution fraction results. The algorithm can use one or more higher resolution sharpening images to locate the endmembers to high spatial accuracy. The algorithm was evaluated with synthetic image generation (SIG) tools. A SIG developed image can be used to control the various error sources that are likely to impair the algorithm performance. These error sources include atmospheric effects, mismodeled spectral endmembers, and variability in topography and illumination. By controlling the introduction of these errors, the robustness of the algorithm can be studied and improved upon. The motivation for this research is to take advantage of the next generation of multi/hyperspectral sensors. Although the hyperspectral images will be of modest to low resolution, fusing them with high resolution sharpening images will produce a higher spatial resolution land cover or material map.

  14. Current LWIR HSI Remote Sensing Activities at Defence R&D Canada - Valcartier

    DTIC Science & Technology

    2009-10-01

    measures the IR radiation from a target scene which is optically combined onto a single detector out-of-phase with the IR radiation from a corresponding...Hyper-Cam-LW. The MODDIFS project involves the development of a leading edge infrared ( IR ) hyperspectral sensor optimized for the standoff detection...essentially offer the optical subtraction capability of the CATSI system but at high-spatial resolution using an MCT focal plane array of 8484

  15. Hydrographic processing considerations in the “Big Data” age: An overview of technology trends in ocean and coastal surveys

    NASA Astrophysics Data System (ADS)

    Holland, M.; Hoggarth, A.; Nicholson, J.

    2016-04-01

    The quantity of information generated by survey sensors for ocean and coastal zone mapping has reached the “Big Data” age. This is influenced by the number of survey sensors available to conduct a survey, high data resolution, commercial availability, as well as an increased use of autonomous platforms. The number of users of sophisticated survey information is also growing with the increase in data volume. This is leading to a greater demand and broader use of the processed results, which includes marine archeology, disaster response, and many other applications. Data processing and exchange techniques are evolving to ensure this increased accuracy in acquired data meets the user demand, and leads to an improved understanding of the ocean environment. This includes the use of automated processing, models that maintain the best possible representation of varying resolution data to reduce duplication, as well as data plug-ins and interoperability standards. Through the adoption of interoperable standards, data can be exchanged between stakeholders and used many times in any GIS to support an even wider range of activities. The growing importance of Marine Spatial Data Infrastructure (MSDI) is also contributing to the increased access of marine information to support sustainable use of ocean and coastal environments. This paper offers an industry perspective on trends in hydrographic surveying and processing, and the increased use of marine spatial data.

  16. High Spatial Resolution Thermal Satellite Technologies

    NASA Technical Reports Server (NTRS)

    Ryan, Robert

    2003-01-01

    This document in the form of viewslides, reviews various low-cost alternatives to high spatial resolution thermal satellite technologies. There exists no follow-on to Landsat 7 or ASTER high spatial resolution thermal systems. This document reviews the results of the investigation in to the use of new technologies to create a low-cost useful alternative. Three suggested technologies are examined. 1. Conventional microbolometer pushbroom modes offers potential for low cost Landsat Data Continuity Mission (LDCM) thermal or ASTER capability with at least 60-120 ground sampling distance (GSD). 2. Backscanning could produce MultiSpectral Thermal Imager performance without cooled detectors. 3. Cooled detector could produce hyperspectral thermal class system or extremely high spatial resolution class instrument.

  17. Micro axial tomography: A miniaturized, versatile stage device to overcome resolution anisotropy in fluorescence light microscopy

    NASA Astrophysics Data System (ADS)

    Staier, Florian; Eipel, Heinz; Matula, Petr; Evsikov, Alexei V.; Kozubek, Michal; Cremer, Christoph; Hausmann, Michael

    2011-09-01

    With the development of novel fluorescence techniques, high resolution light microscopy has become a challenging technique for investigations of the three-dimensional (3D) micro-cosmos in cells and sub-cellular components. So far, all fluorescence microscopes applied for 3D imaging in biosciences show a spatially anisotropic point spread function resulting in an anisotropic optical resolution or point localization precision. To overcome this shortcoming, micro axial tomography was suggested which allows object tilting on the microscopic stage and leads to an improvement in localization precision and spatial resolution. Here, we present a miniaturized device which can be implemented in a motor driven microscope stage. The footprint of this device corresponds to a standard microscope slide. A special glass fiber can manually be adjusted in the object space of the microscope lens. A stepwise fiber rotation can be controlled by a miniaturized stepping motor incorporated into the device. By means of a special mounting device, test particles were fixed onto glass fibers, optically localized with high precision, and automatically rotated to obtain views from different perspective angles under which distances of corresponding pairs of objects were determined. From these angle dependent distance values, the real 3D distance was calculated with a precision in the ten nanometer range (corresponding here to an optical resolution of 10-30 nm) using standard microscopic equipment. As a proof of concept, the spindle apparatus of a mature mouse oocyte was imaged during metaphase II meiotic arrest under different perspectives. Only very few images registered under different rotation angles are sufficient for full 3D reconstruction. The results indicate the principal advantage of the micro axial tomography approach for many microscopic setups therein and also those of improved resolutions as obtained by high precision localization determination.

  18. Novel 16-channel receive coil array for accelerated upper airway MRI at 3 Tesla.

    PubMed

    Kim, Yoon-Chul; Hayes, Cecil E; Narayanan, Shrikanth S; Nayak, Krishna S

    2011-06-01

    Upper airway MRI can provide a noninvasive assessment of speech and swallowing disorders and sleep apnea. Recent work has demonstrated the value of high-resolution three-dimensional imaging and dynamic two-dimensional imaging and the importance of further improvements in spatio-temporal resolution. The purpose of the study was to describe a novel 16-channel 3 Tesla receive coil that is highly sensitive to the human upper airway and investigate the performance of accelerated upper airway MRI with the coil. In three-dimensional imaging of the upper airway during static posture, 6-fold acceleration is demonstrated using parallel imaging, potentially leading to capturing a whole three-dimensional vocal tract with 1.25 mm isotropic resolution within 9 sec of sustained sound production. Midsagittal spiral parallel imaging of vocal tract dynamics during natural speech production is demonstrated with 2 × 2 mm(2) in-plane spatial and 84 ms temporal resolution. Copyright © 2010 Wiley-Liss, Inc.

  19. Resolution Properties Of A Computed Radiographic System

    NASA Astrophysics Data System (ADS)

    Fujita, Hiroshi; Morishita, Junji; Ueda, Katsuhiko; Tsai, Du Y.; Ohtsuka, Akiyoshi; Fujikawa, Tsuyoshi

    1989-05-01

    The analysis of spatial-resolution properties in terms of the modulation transfer function (MTF) has been presented in a computed radiographic (CR) system (FCR-101) with the photostimulable-phosphor plate (imaging plate, IP). The newly devised method of determining the presampling MTF which includes the x-ray detector (IP) unsharpness and the unsharpness of the sampling aperture is described in which an image of a slightly-angulated lead slit relative to a horizontal or vertical direction is employed. The IP MTFs as an analog MTF in the system, the presampling MTFs for different types of IPs, different sampling distances, different versions of IPs, simultaneous multisection tomography and magnification radiography, and the laser-printer MTFs as display MTF are measured and shown. The effective sampling aperture MTFs calculated indicate that the noticeable degradation of resolution occurs at the stage of image data sampling. The usefulness of the magnification technique for mammography and bone radiography is demonstrated. It is shown that both of the digital MTF and the overall MTF are difficult to use for general purpose due to the aliasing artifacts. The effect of glare on the contrast is also characterized by lead-disk method. The glare fraction is found to be approximately 6.5%.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Lan; Hill, K. W.; Bitter, M.

    Here, a high spatial resolution of a few μm is often required for probing small-scale high-energy-density plasmas using high resolution x-ray imaging spectroscopy. This resolution can be achieved by adjusting system magnification to overcome the inherent limitation of the detector pixel size. Laboratory experiments on investigating the relation between spatial resolution and system magnification for a spherical crystal spectrometer are presented. Tungsten Lβ 2 rays from a tungsten-target micro-focus x-ray tube were diffracted by a Ge 440 crystal, which was spherically bent to a radius of 223 mm, and imaged onto an x-ray CCD with 13-μm pixel size. The source-to-crystalmore » (p) and crystal-to-detector (q) distances were varied to produce spatial magnifications ( M = q/p) ranging from 2 to 10. The inferred instrumental spatial width reduces with increasing system magnification M. However, the experimental measurement at each M is larger than the theoretical value of pixel size divided by M. Future work will focus on investigating possible broadening mechanisms that limit the spatial resolution.« less

  1. Scaling field data to calibrate and validate moderate spatial resolution remote sensing models

    USGS Publications Warehouse

    Baccini, A.; Friedl, M.A.; Woodcock, C.E.; Zhu, Z.

    2007-01-01

    Validation and calibration are essential components of nearly all remote sensing-based studies. In both cases, ground measurements are collected and then related to the remote sensing observations or model results. In many situations, and particularly in studies that use moderate resolution remote sensing, a mismatch exists between the sensor's field of view and the scale at which in situ measurements are collected. The use of in situ measurements for model calibration and validation, therefore, requires a robust and defensible method to spatially aggregate ground measurements to the scale at which the remotely sensed data are acquired. This paper examines this challenge and specifically considers two different approaches for aggregating field measurements to match the spatial resolution of moderate spatial resolution remote sensing data: (a) landscape stratification; and (b) averaging of fine spatial resolution maps. The results show that an empirically estimated stratification based on a regression tree method provides a statistically defensible and operational basis for performing this type of procedure. 

  2. A parametric approach for simultaneous bias correction and high-resolution downscaling of climate model rainfall

    NASA Astrophysics Data System (ADS)

    Mamalakis, Antonios; Langousis, Andreas; Deidda, Roberto; Marrocu, Marino

    2017-03-01

    Distribution mapping has been identified as the most efficient approach to bias-correct climate model rainfall, while reproducing its statistics at spatial and temporal resolutions suitable to run hydrologic models. Yet its implementation based on empirical distributions derived from control samples (referred to as nonparametric distribution mapping) makes the method's performance sensitive to sample length variations, the presence of outliers, the spatial resolution of climate model results, and may lead to biases, especially in extreme rainfall estimation. To address these shortcomings, we propose a methodology for simultaneous bias correction and high-resolution downscaling of climate model rainfall products that uses: (a) a two-component theoretical distribution model (i.e., a generalized Pareto (GP) model for rainfall intensities above a specified threshold u*, and an exponential model for lower rainrates), and (b) proper interpolation of the corresponding distribution parameters on a user-defined high-resolution grid, using kriging for uncertain data. We assess the performance of the suggested parametric approach relative to the nonparametric one, using daily raingauge measurements from a dense network in the island of Sardinia (Italy), and rainfall data from four GCM/RCM model chains of the ENSEMBLES project. The obtained results shed light on the competitive advantages of the parametric approach, which is proved more accurate and considerably less sensitive to the characteristics of the calibration period, independent of the GCM/RCM combination used. This is especially the case for extreme rainfall estimation, where the GP assumption allows for more accurate and robust estimates, also beyond the range of the available data.

  3. High resolution decadal precipitation predictions over the continental United States for impacts assessment

    NASA Astrophysics Data System (ADS)

    Salvi, Kaustubh; Villarini, Gabriele; Vecchi, Gabriel A.

    2017-10-01

    Unprecedented alterations in precipitation characteristics over the last century and especially in the last two decades have posed serious socio-economic problems to society in terms of hydro-meteorological extremes, in particular flooding and droughts. The origin of these alterations has its roots in changing climatic conditions; however, its threatening implications can only be dealt with through meticulous planning that is based on realistic and skillful decadal precipitation predictions (DPPs). Skillful DPPs represent a very challenging prospect because of the complexities associated with precipitation predictions. Because of the limited skill and coarse spatial resolution, the DPPs provided by General Circulation Models (GCMs) fail to be directly applicable for impact assessment. Here, we focus on nine GCMs and quantify the seasonally and regionally averaged skill in DPPs over the continental United States. We address the problems pertaining to the limited skill and resolution by applying linear and kernel regression-based statistical downscaling approaches. For both the approaches, statistical relationships established over the calibration period (1961-1990) are applied to the retrospective and near future decadal predictions by GCMs to obtain DPPs at ∼4 km resolution. The skill is quantified across different metrics that evaluate potential skill, biases, long-term statistical properties, and uncertainty. Both the statistical approaches show improvements with respect to the raw GCM data, particularly in terms of the long-term statistical properties and uncertainty, irrespective of lead time. The outcome of the study is monthly DPPs from nine GCMs with 4-km spatial resolution, which can be used as a key input for impacts assessments.

  4. Evaluating Hyperspectral Imaging of Wetland Vegetation as a Tool for Detecting Estuarine Nutrient Enrichment

    DTIC Science & Technology

    2008-05-01

    the vegetation’s uptake of water column nutrients produces a spectral response; and 3) the spectral and spatial resolutions ...analysis. This allowed us to evaluate these assumptions at the landscape level, by using the high spectral and spatial resolution of the hyperspectral... spatial resolution (2.5 m pixels) HyMap hyperspectral imagery of the entire wetland. After using a hand-held spectrometer to characterize

  5. Atmospheric Correction Prototype Algorithm for High Spatial Resolution Multispectral Earth Observing Imaging Systems

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary

    2006-01-01

    This viewgraph presentation reviews the creation of a prototype algorithm for atmospheric correction using high spatial resolution earth observing imaging systems. The objective of the work was to evaluate accuracy of a prototype algorithm that uses satellite-derived atmospheric products to generate scene reflectance maps for high spatial resolution (HSR) systems. This presentation focused on preliminary results of only the satellite-based atmospheric correction algorithm.

  6. Preliminary frequency-domain analysis for the reconstructed spatial resolution of muon tomography

    NASA Astrophysics Data System (ADS)

    Yu, B.; Zhao, Z.; Wang, X.; Wang, Y.; Wu, D.; Zeng, Z.; Zeng, M.; Yi, H.; Luo, Z.; Yue, X.; Cheng, J.

    2014-11-01

    Muon tomography is an advanced technology to non-destructively detect high atomic number materials. It exploits the multiple Coulomb scattering information of muon to reconstruct the scattering density image of the traversed object. Because of the statistics of muon scattering, the measurement error of system and the data incompleteness, the reconstruction is always accompanied with a certain level of interference, which will influence the reconstructed spatial resolution. While statistical noises can be reduced by extending the measuring time, system parameters determine the ultimate spatial resolution that one system can reach. In this paper, an effective frequency-domain model is proposed to analyze the reconstructed spatial resolution of muon tomography. The proposed method modifies the resolution analysis in conventional computed tomography (CT) to fit the different imaging mechanism in muon scattering tomography. The measured scattering information is described in frequency domain, then a relationship between the measurements and the original image is proposed in Fourier domain, which is named as "Muon Central Slice Theorem". Furthermore, a preliminary analytical expression of the ultimate reconstructed spatial is derived, and the simulations are performed for validation. While the method is able to predict the ultimate spatial resolution of a given system, it can also be utilized for the optimization of system design and construction.

  7. Improving spectral resolution in spatial encoding dimension of single-scan nuclear magnetic resonance 2D spin echo correlated spectroscopy

    NASA Astrophysics Data System (ADS)

    Lin, Liangjie; Wei, Zhiliang; Yang, Jian; Lin, Yanqin; Chen, Zhong

    2014-11-01

    The spatial encoding technique can be used to accelerate the acquisition of multi-dimensional nuclear magnetic resonance spectra. However, with this technique, we have to make trade-offs between the spectral width and the resolution in the spatial encoding dimension (F1 dimension), resulting in the difficulty of covering large spectral widths while preserving acceptable resolutions for spatial encoding spectra. In this study, a selective shifting method is proposed to overcome the aforementioned drawback. This method is capable of narrowing spectral widths and improving spectral resolutions in spatial encoding dimensions by selectively shifting certain peaks in spectra of the ultrafast version of spin echo correlated spectroscopy (UFSECSY). This method can also serve as a powerful tool to obtain high-resolution correlated spectra in inhomogeneous magnetic fields for its resistance to any inhomogeneity in the F1 dimension inherited from UFSECSY. Theoretical derivations and experiments have been carried out to demonstrate performances of the proposed method. Results show that the spectral width in spatial encoding dimension can be reduced by shortening distances between cross peaks and axial peaks with the proposed method and the expected resolution improvement can be achieved. Finally, the shifting-absent spectrum can be recovered readily by post-processing.

  8. Comparison of spatio-temporal resolution of different flow measurement techniques for marine renewable energy applications

    NASA Astrophysics Data System (ADS)

    Lyon, Vincent; Wosnik, Martin

    2013-11-01

    Marine hydrokinetic (MHK) energy conversion devices are subject to a wide range of turbulent scales, either due to upstream bathymetry, obstacles and waves, or from wakes of upstream devices in array configurations. The commonly used, robust Acoustic Doppler Current Profilers (ADCP) are well suited for long term flow measurements in the marine environment, but are limited to low sampling rates due to their operational principle. The resulting temporal and spatial resolution is insufficient to measure all turbulence scales of interest to the device, e.g., ``blade-scale turbulence.'' The present study systematically characterizes the spatial and temporal resolution of ADCP, Acoustic Doppler Velocimetry (ADV), and Particle Image Velocimetry (PIV). Measurements were conducted in a large cross section tow tank (3.7m × 2.4m) for several benchmark cases, including low and high turbulence intensity uniform flow as well as in the wake of a cylinder, to quantitatively investigate the flow scales which each of the instruments can resolve. The purpose of the study is to supply data for mathematical modeling to improve predictions from ADCP measurements, which can help lead to higher-fidelity energy resource assessment and more accurate device evaluation, including wake measurements. Supported by NSF-CBET grant 1150797.

  9. Evaluation of position-estimation methods applied to CZT-based photon-counting detectors for dedicated breast CT

    PubMed Central

    Makeev, Andrey; Clajus, Martin; Snyder, Scott; Wang, Xiaolang; Glick, Stephen J.

    2015-01-01

    Abstract. Semiconductor photon-counting detectors based on high atomic number, high density materials [cadmium zinc telluride (CZT)/cadmium telluride (CdTe)] for x-ray computed tomography (CT) provide advantages over conventional energy-integrating detectors, including reduced electronic and Swank noise, wider dynamic range, capability of spectral CT, and improved signal-to-noise ratio. Certain CT applications require high spatial resolution. In breast CT, for example, visualization of microcalcifications and assessment of tumor microvasculature after contrast enhancement require resolution on the order of 100  μm. A straightforward approach to increasing spatial resolution of pixellated CZT-based radiation detectors by merely decreasing the pixel size leads to two problems: (1) fabricating circuitry with small pixels becomes costly and (2) inter-pixel charge spreading can obviate any improvement in spatial resolution. We have used computer simulations to investigate position estimation algorithms that utilize charge sharing to achieve subpixel position resolution. To study these algorithms, we model a simple detector geometry with a 5×5 array of 200  μm pixels, and use a conditional probability function to model charge transport in CZT. We used COMSOL finite element method software to map the distribution of charge pulses and the Monte Carlo package PENELOPE for simulating fluorescent radiation. Performance of two x-ray interaction position estimation algorithms was evaluated: the method of maximum-likelihood estimation and a fast, practical algorithm that can be implemented in a readout application-specific integrated circuit and allows for identification of a quadrant of the pixel in which the interaction occurred. Both methods demonstrate good subpixel resolution; however, their actual efficiency is limited by the presence of fluorescent K-escape photons. Current experimental breast CT systems typically use detectors with a pixel size of 194  μm, with 2×2 binning during the acquisition giving an effective pixel size of 388  μm. Thus, it would be expected that the position estimate accuracy reported in this study would improve detection and visualization of microcalcifications as compared to that with conventional detectors. PMID:26158095

  10. Evaluation of position-estimation methods applied to CZT-based photon-counting detectors for dedicated breast CT.

    PubMed

    Makeev, Andrey; Clajus, Martin; Snyder, Scott; Wang, Xiaolang; Glick, Stephen J

    2015-04-01

    Semiconductor photon-counting detectors based on high atomic number, high density materials [cadmium zinc telluride (CZT)/cadmium telluride (CdTe)] for x-ray computed tomography (CT) provide advantages over conventional energy-integrating detectors, including reduced electronic and Swank noise, wider dynamic range, capability of spectral CT, and improved signal-to-noise ratio. Certain CT applications require high spatial resolution. In breast CT, for example, visualization of microcalcifications and assessment of tumor microvasculature after contrast enhancement require resolution on the order of [Formula: see text]. A straightforward approach to increasing spatial resolution of pixellated CZT-based radiation detectors by merely decreasing the pixel size leads to two problems: (1) fabricating circuitry with small pixels becomes costly and (2) inter-pixel charge spreading can obviate any improvement in spatial resolution. We have used computer simulations to investigate position estimation algorithms that utilize charge sharing to achieve subpixel position resolution. To study these algorithms, we model a simple detector geometry with a [Formula: see text] array of [Formula: see text] pixels, and use a conditional probability function to model charge transport in CZT. We used COMSOL finite element method software to map the distribution of charge pulses and the Monte Carlo package PENELOPE for simulating fluorescent radiation. Performance of two x-ray interaction position estimation algorithms was evaluated: the method of maximum-likelihood estimation and a fast, practical algorithm that can be implemented in a readout application-specific integrated circuit and allows for identification of a quadrant of the pixel in which the interaction occurred. Both methods demonstrate good subpixel resolution; however, their actual efficiency is limited by the presence of fluorescent [Formula: see text]-escape photons. Current experimental breast CT systems typically use detectors with a pixel size of [Formula: see text], with [Formula: see text] binning during the acquisition giving an effective pixel size of [Formula: see text]. Thus, it would be expected that the position estimate accuracy reported in this study would improve detection and visualization of microcalcifications as compared to that with conventional detectors.

  11. Refining surface net radiation estimates in arid and semi-arid climates of Iran

    NASA Astrophysics Data System (ADS)

    Golkar, Foroogh; Rossow, William B.; Sabziparvar, Ali Akbar

    2018-06-01

    Although the downwelling fluxes exhibit space-time scales of dependency on characteristic of atmospheric variations, especially clouds, the upward fluxes and, hence the net radiation, depends on the variation of surface properties, particularly surface skin temperature and albedo. Evapotranspiration at the land surface depends on the properties of that surface and is determined primarily by the net surface radiation, mostly absorbed solar radiation. Thus, relatively high spatial resolution net radiation data are needed for evapotranspiration studies. Moreover, in more arid environments, the diurnal variations of surface (air and skin) temperature can be large so relatively high (sub-daily) time resolution net radiation is also needed. There are a variety of radiation and surface property products available but they differ in accuracy, space-time resolution and information content. This situation motivated the current study to evaluate multiple sources of information to obtain the best net radiation estimate with the highest space-time resolution from ISCCP FD dataset. This study investigates the accuracy of the ISCCP FD and AIRS surface air and skin temperatures, as well as the ISCCP FD and MODIS surface albedos and aerosol optical depths as the leading source of uncertainty in ISCCP FD dataset. The surface air temperatures, 10-cm soil temperatures and surface solar insolation from a number of surface sites are used to judge the best combinations of data products, especially on clear days. The corresponding surface skin temperatures in ISCCP FD, although they are known to be biased somewhat high, disagreed more with AIRS measurements because of the mismatch of spatial resolutions. The effect of spatial resolution on the comparisons was confirmed using the even higher resolution MODIS surface skin temperature values. The agreement of ISCCP FD surface solar insolation with surface measurements is good (within 2.4-9.1%), but the use of MODIS aerosol optical depths as an alternative was checked and found to not improve the agreement. The MODIS surface albedos differed from the ISCCP FD values by no more than 0.02-0.07, but because these differences are mostly at longer wavelengths, they did not change the net solar radiation very much. Therefore to obtain the best estimate of surface net radiation with the best combination of spatial and temporal resolution, we developed a method to adjust the ISCCP FD surface longwave fluxes using the AIRS surface air and skin temperatures to obtain the higher spatial resolution of the latter (45 km), while retaining the 3-h time intervals of the former. Overall, the refinements reduced the ISCCP FD longwave flux magnitudes by about 25.5-42.1 W/m2 RMS (maximum difference -27.5 W/m2 for incoming longwave radiation and -59 W/m2 for outgoing longwave radiation) with the largest differences occurring at 9:00 and 12:00 UTC near local noon. Combining the ISCCP FD net shortwave radiation data and the AIRS-modified net longwave radiation data changed the total net radiation for summertime by 4.64 to 61.5 W/m2 and for wintertime by 1.06 to 41.88 W/m2 (about 11.1-39.2% of the daily mean).

  12. MALDI Mass Spectral Imaging of Bile Acids Observed as Deprotonated Molecules and Proton-Bound Dimers from Mouse Liver Sections

    NASA Astrophysics Data System (ADS)

    Rzagalinski, Ignacy; Hainz, Nadine; Meier, Carola; Tschernig, Thomas; Volmer, Dietrich A.

    2018-02-01

    Bile acids (BAs) play two vital roles in living organisms, as they are involved in (1) the secretion of cholesterol from liver, and (2) the lipid digestion/absorption in the intestine. Abnormal bile acid synthesis or secretion can lead to severe liver disorders. Even though there is extensive literature on the mass spectrometric determination of BAs in biofluids and tissue homogenates, there are no reports on the spatial distribution in the biliary network of the liver. Here, we demonstrate the application of high mass resolution/mass accuracy matrix-assisted laser desorption/ionization (MALDI)-Fourier-transform ion cyclotron resonance (FTICR) to MS imaging (MSI) of BAs at high spatial resolutions (pixel size, 25 μm). The results show chemical heterogeneity of the mouse liver sections with a number of branching biliary and blood ducts. In addition to ion signals from deprotonation of the BA molecules, MALDI-MSI generated several further intense signals at larger m/z for the BAs. These signals were spatially co-localized with the deprotonated molecules and easily misinterpreted as additional products of BA biotransformations. In-depth analysis of accurate mass shifts and additional electrospray ionization and MALDI-FTICR experiments, however, confirmed them as proton-bound dimers. Interestingly, dimers of bile acids, but also unusual mixed dimers of different taurine-conjugated bile acids and free taurine, were identified. Since formation of these complexes will negatively influence signal intensities of the desired [M - H]- ions and significantly complicate mass spectral interpretations, two simple broadband techniques were proposed for non-selective dissociation of dimers that lead to increased signals for the deprotonated BAs. [Figure not available: see fulltext.

  13. Towards a consistent framework to oversample multi-sensors, multi-species satellite data into a common grid

    NASA Astrophysics Data System (ADS)

    Sun, K.; Zhu, L.; Gonzalez Abad, G.; Nowlan, C. R.; Miller, C. E.; Huang, G.; Liu, X.; Chance, K.; Yang, K.

    2017-12-01

    It has been well demonstrated that regridding Level 2 products (satellite observations from individual footprints, or pixels) from multiple sensors/species onto regular spatial and temporal grids makes the data more accessible for scientific studies and can even lead to additional discoveries. However, synergizing multiple species retrieved from multiple satellite sensors faces many challenges, including differences in spatial coverage, viewing geometry, and data filtering criteria. These differences will lead to errors and biases if not treated carefully. Operational gridded products are often at 0.25°×0.25° resolution with a global scale, which is too coarse for local heterogeneous emission sources (e.g., urban areas), and at fixed temporal intervals (e.g., daily or monthly). We propose a consistent framework to fully use and properly weight the information of all possible individual satellite observations. A key aspect of this work is an accurate knowledge of the spatial response function (SRF) of the satellite Level 2 pixels. We found that the conventional overlap-area-weighting method (tessellation) is accurate only when the SRF is homogeneous within the parameterized pixel boundary and zero outside the boundary. There will be a tessellation error if the SRF is a smooth distribution, and if this distribution is not properly considered. On the other hand, discretizing the SRF at the destination grid will also induce errors. By balancing these error sources, we found that the SRF should be used in gridding OMI data to 0.2° for fine resolutions. Case studies by merging multiple species and wind data into 0.01° grid will be shown in the presentation.

  14. Discerning the Location and Nature of Coke Deposition from Surface to Bulk of Spent Zeolite Catalysts

    NASA Astrophysics Data System (ADS)

    Devaraj, Arun; Vijayakumar, Murugesan; Bao, Jie; Guo, Mond F.; Derewinski, Miroslaw A.; Xu, Zhijie; Gray, Michel J.; Prodinger, Sebastian; Ramasamy, Karthikeyan K.

    2016-11-01

    The formation of carbonaceous deposits (coke) in zeolite pores during catalysis leads to temporary deactivation of catalyst, necessitating regeneration steps, affecting throughput, and resulting in partial permanent loss of catalytic efficiency. Yet, even to date, the coke molecule distribution is quite challenging to study with high spatial resolution from surface to bulk of the catalyst particles at a single particle level. To address this challenge we investigated the coke molecules in HZSM-5 catalyst after ethanol conversion treatment by a combination of C K-edge X-ray absorption spectroscopy (XAS), 13C Cross polarization-magic angle spinning nuclear magnetic resonance (CP-MAS NMR) spectroscopy, and atom probe tomography (APT). XAS and NMR highlighted the aromatic character of coke molecules. APT permitted the imaging of the spatial distribution of hydrocarbon molecules located within the pores of spent HZSM-5 catalyst from surface to bulk at a single particle level. 27Al NMR results and APT results indicated association of coke molecules with Al enriched regions within the spent HZSM-5 catalyst particles. The experimental results were additionally validated by a level-set-based APT field evaporation model. These results provide a new approach to investigate catalytic deactivation due to hydrocarbon coking or poisoning of zeolites at an unprecedented spatial resolution.

  15. Discerning the Location and Nature of Coke Deposition from Surface to Bulk of Spent Zeolite Catalysts

    PubMed Central

    Devaraj, Arun; Vijayakumar, Murugesan; Bao, Jie; Guo, Mond F.; Derewinski, Miroslaw A.; Xu, Zhijie; Gray, Michel J.; Prodinger, Sebastian; Ramasamy, Karthikeyan K.

    2016-01-01

    The formation of carbonaceous deposits (coke) in zeolite pores during catalysis leads to temporary deactivation of catalyst, necessitating regeneration steps, affecting throughput, and resulting in partial permanent loss of catalytic efficiency. Yet, even to date, the coke molecule distribution is quite challenging to study with high spatial resolution from surface to bulk of the catalyst particles at a single particle level. To address this challenge we investigated the coke molecules in HZSM-5 catalyst after ethanol conversion treatment by a combination of C K-edge X-ray absorption spectroscopy (XAS), 13C Cross polarization-magic angle spinning nuclear magnetic resonance (CP-MAS NMR) spectroscopy, and atom probe tomography (APT). XAS and NMR highlighted the aromatic character of coke molecules. APT permitted the imaging of the spatial distribution of hydrocarbon molecules located within the pores of spent HZSM-5 catalyst from surface to bulk at a single particle level. 27Al NMR results and APT results indicated association of coke molecules with Al enriched regions within the spent HZSM-5 catalyst particles. The experimental results were additionally validated by a level-set–based APT field evaporation model. These results provide a new approach to investigate catalytic deactivation due to hydrocarbon coking or poisoning of zeolites at an unprecedented spatial resolution. PMID:27876869

  16. Opportunistic mobile air pollution monitoring: A case study with city wardens in Antwerp

    NASA Astrophysics Data System (ADS)

    Van den Bossche, Joris; Theunis, Jan; Elen, Bart; Peters, Jan; Botteldooren, Dick; De Baets, Bernard

    2016-09-01

    The goal of this paper is to explore the potential of opportunistic mobile monitoring to map the exposure to air pollution in the urban environment at a high spatial resolution. Opportunistic mobile monitoring makes use of existing mobile infrastructure or people's common daily routines to move measurement devices around. Opportunistic mobile monitoring can also play a crucial role in participatory monitoring campaigns as a typical way to gather data. A case study to measure black carbon was set up in Antwerp, Belgium, with the collaboration of city employees (city wardens). The Antwerp city wardens are outdoors for a large part of the day on surveillance tours by bicycle or on foot, and gathered a total of 393 h of measurements. The data collection is unstructured both in space and time, leading to sampling bias. A temporal adjustment can only partly counteract this bias. Although a high spatial coverage was obtained, there is still a rather large uncertainty on the average concentration levels at a spatial resolution of 50 m due to a limited number of measurements and sampling bias. Despite of this uncertainty, large spatial patterns within the city are clearly captured. This study illustrates the potential of campaigns with unstructured opportunistic mobile monitoring, including participatory monitoring campaigns. The results demonstrate that such an approach can indeed be used to identify broad spatial trends over a wider area, enabling applications including hotspot identification, personal exposure studies, regression mapping, etc. But, they also emphasize the need for repeated measurements and careful processing and interpretation of the data.

  17. Sympathy for the Devil: Detailing the Effects of Planning-Unit Size, Thematic Resolution of Reef Classes, and Socioeconomic Costs on Spatial Priorities for Marine Conservation

    PubMed Central

    Pressey, Robert L.; Weeks, Rebecca; Andréfouët, Serge; Moloney, James

    2016-01-01

    Spatial data characteristics have the potential to influence various aspects of prioritising biodiversity areas for systematic conservation planning. There has been some exploration of the combined effects of size of planning units and level of classification of physical environments on the pattern and extent of priority areas. However, these data characteristics have yet to be explicitly investigated in terms of their interaction with different socioeconomic cost data during the spatial prioritisation process. We quantify the individual and interacting effects of three factors—planning-unit size, thematic resolution of reef classes, and spatial variability of socioeconomic costs—on spatial priorities for marine conservation, in typical marine planning exercises that use reef classification maps as a proxy for biodiversity. We assess these factors by creating 20 unique prioritisation scenarios involving combinations of different levels of each factor. Because output data from these scenarios are analogous to ecological data, we applied ecological statistics to determine spatial similarities between reserve designs. All three factors influenced prioritisations to different extents, with cost variability having the largest influence, followed by planning-unit size and thematic resolution of reef classes. The effect of thematic resolution on spatial design depended on the variability of cost data used. In terms of incidental representation of conservation objectives derived from finer-resolution data, scenarios prioritised with uniform cost outperformed those prioritised with variable cost. Following our analyses, we make recommendations to help maximise the spatial and cost efficiency and potential effectiveness of future marine conservation plans in similar planning scenarios. We recommend that planners: employ the smallest planning-unit size practical; invest in data at the highest possible resolution; and, when planning across regional extents with the intention of incidentally representing fine-resolution features, prioritise the whole region with uniform costs rather than using coarse-resolution data on variable costs. PMID:27829042

  18. Sympathy for the Devil: Detailing the Effects of Planning-Unit Size, Thematic Resolution of Reef Classes, and Socioeconomic Costs on Spatial Priorities for Marine Conservation.

    PubMed

    Cheok, Jessica; Pressey, Robert L; Weeks, Rebecca; Andréfouët, Serge; Moloney, James

    2016-01-01

    Spatial data characteristics have the potential to influence various aspects of prioritising biodiversity areas for systematic conservation planning. There has been some exploration of the combined effects of size of planning units and level of classification of physical environments on the pattern and extent of priority areas. However, these data characteristics have yet to be explicitly investigated in terms of their interaction with different socioeconomic cost data during the spatial prioritisation process. We quantify the individual and interacting effects of three factors-planning-unit size, thematic resolution of reef classes, and spatial variability of socioeconomic costs-on spatial priorities for marine conservation, in typical marine planning exercises that use reef classification maps as a proxy for biodiversity. We assess these factors by creating 20 unique prioritisation scenarios involving combinations of different levels of each factor. Because output data from these scenarios are analogous to ecological data, we applied ecological statistics to determine spatial similarities between reserve designs. All three factors influenced prioritisations to different extents, with cost variability having the largest influence, followed by planning-unit size and thematic resolution of reef classes. The effect of thematic resolution on spatial design depended on the variability of cost data used. In terms of incidental representation of conservation objectives derived from finer-resolution data, scenarios prioritised with uniform cost outperformed those prioritised with variable cost. Following our analyses, we make recommendations to help maximise the spatial and cost efficiency and potential effectiveness of future marine conservation plans in similar planning scenarios. We recommend that planners: employ the smallest planning-unit size practical; invest in data at the highest possible resolution; and, when planning across regional extents with the intention of incidentally representing fine-resolution features, prioritise the whole region with uniform costs rather than using coarse-resolution data on variable costs.

  19. Investigation of spatial resolution improvement by use of a mouth-insert detector in the helmet PET scanner.

    PubMed

    Ahmed, Abdella M; Tashima, Hideaki; Yamaya, Taiga

    2018-03-01

    The dominant factor limiting the intrinsic spatial resolution of a positron emission tomography (PET) system is the size of the crystal elements in the detector. To increase sensitivity and achieve high spatial resolution, it is essential to use advanced depth-of-interaction (DOI) detectors and arrange them close to the subject. The DOI detectors help maintain high spatial resolution by mitigating the parallax error caused by the thickness of the scintillator near the peripheral regions of the field-of-view. As an optimal geometry for a brain PET scanner, with high sensitivity and spatial resolution, we proposed and developed the helmet-chin PET scanner using 54 four-layered DOI detectors consisting of a 16 × 16 × 4 array of GSOZ scintillator crystals with dimensions of 2.8 × 2.8 × 7.5 mm 3 . All the detectors used in the helmet-chin PET scanner had the same spatial resolution. In this study, we conducted a feasibility study of a new add-on detector arrangement for the helmet PET scanner by replacing the chin detector with a segmented crystal cube, having high spatial resolution in all directions, which can be placed inside the mouth. The crystal cube (which we have named the mouth-insert detector) has an array of 20 × 20 × 20 LYSO crystal segments with dimensions of 1 × 1 × 1 mm 3 . Thus, the scanner is formed by the combination of the helmet and mouth-insert detectors, and is referred to as the helmet-mouth-insert PET scanner. The results show that the helmet-mouth-insert PET scanner has comparable sensitivity and improved spatial resolution near the center of the hemisphere, compared to the helmet-chin PET scanner.

  20. Added-values of high spatiotemporal remote sensing data in crop yield estimation

    NASA Astrophysics Data System (ADS)

    Gao, F.; Anderson, M. C.

    2017-12-01

    Timely and accurate estimation of crop yield before harvest is critical for food market and administrative planning. Remote sensing derived parameters have been used for estimating crop yield by using either empirical or crop growth models. The uses of remote sensing vegetation index (VI) in crop yield modeling have been typically evaluated at regional and country scales using coarse spatial resolution (a few hundred to kilo-meters) data or assessed over a small region at field level using moderate resolution spatial resolution data (10-100m). Both data sources have shown great potential in capturing spatial and temporal variability in crop yield. However, the added value of data with both high spatial and temporal resolution data has not been evaluated due to the lack of such data source with routine, global coverage. In recent years, more moderate resolution data have become freely available and data fusion approaches that combine data acquired from different spatial and temporal resolutions have been developed. These make the monitoring crop condition and estimating crop yield at field scale become possible. Here we investigate the added value of the high spatial and temporal VI for describing variability of crop yield. The explanatory ability of crop yield based on high spatial and temporal resolution remote sensing data was evaluated in a rain-fed agricultural area in the U.S. Corn Belt. Results show that the fused Landsat-MODIS (high spatial and temporal) VI explains yield variability better than single data source (Landsat or MODIS alone), with EVI2 performing slightly better than NDVI. The maximum VI describes yield variability better than cumulative VI. Even though VI is effective in explaining yield variability within season, the inter-annual variability is more complex and need additional information (e.g. weather, water use and management). Our findings augment the importance of high spatiotemporal remote sensing data and supports new moderate resolution satellite missions for agricultural applications.

  1. Unmixing AVHRR Imagery to Assess Clearcuts and Forest Regrowth in Oregon

    NASA Technical Reports Server (NTRS)

    Hlavka, Christine A.; Spanner, Michael A.

    1995-01-01

    Advanced Very High Resolution Radiometer imagery provides frequent and low-cost coverage of the earth, but its coarse spatial resolution (approx. 1.1 km by 1.1 km) does not lend itself to standard techniques of automated categorization of land cover classes because the pixels are generally mixed; that is, the extent of the pixel includes several land use/cover classes. Unmixing procedures were developed to extract land use/cover class signatures from mixed pixels, using Landsat Thematic Mapper data as a source for the training set, and to estimate fractions of class coverage within pixels. Application of these unmixing procedures to mapping forest clearcuts and regrowth in Oregon indicated that unmixing is a promising approach for mapping major trends in land cover with AVHRR bands 1 and 2. Including thermal bands by unmixing AVHRR bands 1-4 did not lead to significant improvements in accuracy, but experiments with unmixing these four bands did indicate that use of weighted least squares techniques might lead to improvements in other applications of unmixing.

  2. Spatial and temporal variability of clouds and precipitation over Germany: multiscale simulations across the "gray zone"

    NASA Astrophysics Data System (ADS)

    Barthlott, C.; Hoose, C.

    2015-11-01

    This paper assesses the resolution dependance of clouds and precipitation over Germany by numerical simulations with the COnsortium for Small-scale MOdeling (COSMO) model. Six intensive observation periods of the HOPE (HD(CP)2 Observational Prototype Experiment) measurement campaign conducted in spring 2013 and 1 summer day of the same year are simulated. By means of a series of grid-refinement resolution tests (horizontal grid spacing 2.8, 1 km, 500, and 250 m), the applicability of the COSMO model to represent real weather events in the gray zone, i.e., the scale ranging between the mesoscale limit (no turbulence resolved) and the large-eddy simulation limit (energy-containing turbulence resolved), is tested. To the authors' knowledge, this paper presents the first non-idealized COSMO simulations in the peer-reviewed literature at the 250-500 m scale. It is found that the kinetic energy spectra derived from model output show the expected -5/3 slope, as well as a dependency on model resolution, and that the effective resolution lies between 6 and 7 times the nominal resolution. Although the representation of a number of processes is enhanced with resolution (e.g., boundary-layer thermals, low-level convergence zones, gravity waves), their influence on the temporal evolution of precipitation is rather weak. However, rain intensities vary with resolution, leading to differences in the total rain amount of up to +48 %. Furthermore, the location of rain is similar for the springtime cases with moderate and strong synoptic forcing, whereas significant differences are obtained for the summertime case with air mass convection. Domain-averaged liquid water paths and cloud condensate profiles are used to analyze the temporal and spatial variability of the simulated clouds. Finally, probability density functions of convection-related parameters are analyzed to investigate their dependance on model resolution and their impact on cloud formation and subsequent precipitation.

  3. In-situ tomographic observation of tissue surface during laser ablation

    NASA Astrophysics Data System (ADS)

    Haruna, Masamitsu; Konoshita, Ryuh; Ohmi, Masato; Kunizawa, Naomi; Miyachi, Mayumi

    2001-07-01

    In laser ablation of tissues, tomography of the tissue surface is necessary for measurement of the crater depth and observation of damage of the surrounding tissue. We demonstrate here OCT images of craters made by UV laser ablation of different tissues. The maximum depth of a crater is found among several OCT images, and then the ablation rate is determined. The conventional OCT of the spatial resolution of 15 μm was used in our experiment, but OCT of the resolution of the order of 1 μm is required because the ablation rate is usually a few microns per pulse. Such a high-resolution OCT is also demonstrated in this paper, where the light source is a halogen lamp. Combination of laser ablation and OCT will lead to in situ tomographic observation of tissue surface during laser ablation, which should allow us to develop new laser surgeries.

  4. Analytic TOF PET reconstruction algorithm within DIRECT data partitioning framework

    PubMed Central

    Matej, Samuel; Daube-Witherspoon, Margaret E.; Karp, Joel S.

    2016-01-01

    Iterative reconstruction algorithms are routinely used for clinical practice; however, analytic algorithms are relevant candidates for quantitative research studies due to their linear behavior. While iterative algorithms also benefit from the inclusion of accurate data and noise models the widespread use of TOF scanners with less sensitivity to noise and data imperfections make analytic algorithms even more promising. In our previous work we have developed a novel iterative reconstruction approach (Direct Image Reconstruction for TOF) providing convenient TOF data partitioning framework and leading to very efficient reconstructions. In this work we have expanded DIRECT to include an analytic TOF algorithm with confidence weighting incorporating models of both TOF and spatial resolution kernels. Feasibility studies using simulated and measured data demonstrate that analytic-DIRECT with appropriate resolution and regularization filters is able to provide matched bias vs. variance performance to iterative TOF reconstruction with a matched resolution model. PMID:27032968

  5. Analytic TOF PET reconstruction algorithm within DIRECT data partitioning framework

    NASA Astrophysics Data System (ADS)

    Matej, Samuel; Daube-Witherspoon, Margaret E.; Karp, Joel S.

    2016-05-01

    Iterative reconstruction algorithms are routinely used for clinical practice; however, analytic algorithms are relevant candidates for quantitative research studies due to their linear behavior. While iterative algorithms also benefit from the inclusion of accurate data and noise models the widespread use of time-of-flight (TOF) scanners with less sensitivity to noise and data imperfections make analytic algorithms even more promising. In our previous work we have developed a novel iterative reconstruction approach (DIRECT: direct image reconstruction for TOF) providing convenient TOF data partitioning framework and leading to very efficient reconstructions. In this work we have expanded DIRECT to include an analytic TOF algorithm with confidence weighting incorporating models of both TOF and spatial resolution kernels. Feasibility studies using simulated and measured data demonstrate that analytic-DIRECT with appropriate resolution and regularization filters is able to provide matched bias versus variance performance to iterative TOF reconstruction with a matched resolution model.

  6. Coarse climate change projections for species living in a fine-scaled world.

    PubMed

    Nadeau, Christopher P; Urban, Mark C; Bridle, Jon R

    2017-01-01

    Accurately predicting biological impacts of climate change is necessary to guide policy. However, the resolution of climate data could be affecting the accuracy of climate change impact assessments. Here, we review the spatial and temporal resolution of climate data used in impact assessments and demonstrate that these resolutions are often too coarse relative to biologically relevant scales. We then develop a framework that partitions climate into three important components: trend, variance, and autocorrelation. We apply this framework to map different global climate regimes and identify where coarse climate data is most and least likely to reduce the accuracy of impact assessments. We show that impact assessments for many large mammals and birds use climate data with a spatial resolution similar to the biologically relevant area encompassing population dynamics. Conversely, impact assessments for many small mammals, herpetofauna, and plants use climate data with a spatial resolution that is orders of magnitude larger than the area encompassing population dynamics. Most impact assessments also use climate data with a coarse temporal resolution. We suggest that climate data with a coarse spatial resolution is likely to reduce the accuracy of impact assessments the most in climates with high spatial trend and variance (e.g., much of western North and South America) and the least in climates with low spatial trend and variance (e.g., the Great Plains of the USA). Climate data with a coarse temporal resolution is likely to reduce the accuracy of impact assessments the most in the northern half of the northern hemisphere where temporal climatic variance is high. Our framework provides one way to identify where improving the resolution of climate data will have the largest impact on the accuracy of biological predictions under climate change. © 2016 John Wiley & Sons Ltd.

  7. A Study on the Effects of Spatial Scale on Snow Process in Hyper-Resolution Hydrological Modelling over Mountainous Areas

    NASA Astrophysics Data System (ADS)

    Garousi Nejad, I.; He, S.; Tang, Q.; Ogden, F. L.; Steinke, R. C.; Frazier, N.; Tarboton, D. G.; Ohara, N.; Lin, H.

    2017-12-01

    Spatial scale is one of the main considerations in hydrological modeling of snowmelt in mountainous areas. The size of model elements controls the degree to which variability can be explicitly represented versus what needs to be parameterized using effective properties such as averages or other subgrid variability parameterizations that may degrade the quality of model simulations. For snowmelt modeling terrain parameters such as slope, aspect, vegetation and elevation play an important role in the timing and quantity of snowmelt that serves as an input to hydrologic runoff generation processes. In general, higher resolution enhances the accuracy of the simulation since fine meshes represent and preserve the spatial variability of atmospheric and surface characteristics better than coarse resolution. However, this increases computational cost and there may be a scale beyond which the model response does not improve due to diminishing sensitivity to variability and irreducible uncertainty associated with the spatial interpolation of inputs. This paper examines the influence of spatial resolution on the snowmelt process using simulations of and data from the Animas River watershed, an alpine mountainous area in Colorado, USA, using an unstructured distributed physically based hydrological model developed for a parallel computing environment, ADHydro. Five spatial resolutions (30 m, 100 m, 250 m, 500 m, and 1 km) were used to investigate the variations in hydrologic response. This study demonstrated the importance of choosing the appropriate spatial scale in the implementation of ADHydro to obtain a balance between representing spatial variability and the computational cost. According to the results, variation in the input variables and parameters due to using different spatial resolution resulted in changes in the obtained hydrological variables, especially snowmelt, both at the basin-scale and distributed across the model mesh.

  8. High efficiency multishot interleaved spiral-in/out: acquisition for high-resolution BOLD fMRI.

    PubMed

    Jung, Youngkyoo; Samsonov, Alexey A; Liu, Thomas T; Buracas, Giedrius T

    2013-08-01

    Growing demand for high spatial resolution blood oxygenation level dependent (BOLD) functional magnetic resonance imaging faces a challenge of the spatial resolution versus coverage or temporal resolution tradeoff, which can be addressed by methods that afford increased acquisition efficiency. Spiral acquisition trajectories have been shown to be superior to currently prevalent echo-planar imaging in terms of acquisition efficiency, and high spatial resolution can be achieved by employing multiple-shot spiral acquisition. The interleaved spiral in/out trajectory is preferred over spiral-in due to increased BOLD signal contrast-to-noise ratio (CNR) and higher acquisition efficiency than that of spiral-out or noninterleaved spiral in/out trajectories (Law & Glover. Magn Reson Med 2009; 62:829-834.), but to date applicability of the multishot interleaved spiral in/out for high spatial resolution imaging has not been studied. Herein we propose multishot interleaved spiral in/out acquisition and investigate its applicability for high spatial resolution BOLD functional magnetic resonance imaging. Images reconstructed from interleaved spiral-in and -out trajectories possess artifacts caused by differences in T2 decay, off-resonance, and k-space errors associated with the two trajectories. We analyze the associated errors and demonstrate that application of conjugate phase reconstruction and spectral filtering can substantially mitigate these image artifacts. After applying these processing steps, the multishot interleaved spiral in/out pulse sequence yields high BOLD CNR images at in-plane resolution below 1 × 1 mm while preserving acceptable temporal resolution (4 s) and brain coverage (15 slices of 2 mm thickness). Moreover, this method yields sufficient BOLD CNR at 1.5 mm isotropic resolution for detection of activation in hippocampus associated with cognitive tasks (Stern memory task). The multishot interleaved spiral in/out acquisition is a promising technique for high spatial resolution BOLD functional magnetic resonance imaging applications. © 2012 Wiley Periodicals, Inc.

  9. Phytoplankton plasticity drives large variability in carbon fixation efficiency

    NASA Astrophysics Data System (ADS)

    Ayata, Sakina-Dorothée.; Lévy, Marina; Aumont, Olivier; Resplandy, Laure; Tagliabue, Alessandro; Sciandra, Antoine; Bernard, Olivier

    2014-12-01

    Phytoplankton C:N stoichiometry is highly flexible due to physiological plasticity, which could lead to high variations in carbon fixation efficiency (carbon consumption relative to nitrogen). However, the magnitude, as well as the spatial and temporal scales of variability, remains poorly constrained. We used a high-resolution biogeochemical model resolving various scales from small to high, spatially and temporally, in order to quantify and better understand this variability. We find that phytoplankton C:N ratio is highly variable at all spatial and temporal scales (5-12 molC/molN), from mesoscale to regional scale, and is mainly driven by nitrogen supply. Carbon fixation efficiency varies accordingly at all scales (±30%), with higher values under oligotrophic conditions and lower values under eutrophic conditions. Hence, phytoplankton plasticity may act as a buffer by attenuating carbon sequestration variability. Our results have implications for in situ estimations of C:N ratios and for future predictions under high CO2 world.

  10. Land Cover Classification in a Complex Urban-Rural Landscape with Quickbird Imagery

    PubMed Central

    Moran, Emilio Federico.

    2010-01-01

    High spatial resolution images have been increasingly used for urban land use/cover classification, but the high spectral variation within the same land cover, the spectral confusion among different land covers, and the shadow problem often lead to poor classification performance based on the traditional per-pixel spectral-based classification methods. This paper explores approaches to improve urban land cover classification with Quickbird imagery. Traditional per-pixel spectral-based supervised classification, incorporation of textural images and multispectral images, spectral-spatial classifier, and segmentation-based classification are examined in a relatively new developing urban landscape, Lucas do Rio Verde in Mato Grosso State, Brazil. This research shows that use of spatial information during the image classification procedure, either through the integrated use of textural and spectral images or through the use of segmentation-based classification method, can significantly improve land cover classification performance. PMID:21643433

  11. Scaling effects on spring phenology detections from MODIS data at multiple spatial resolutions over the contiguous United States

    NASA Astrophysics Data System (ADS)

    Peng, Dailiang; Zhang, Xiaoyang; Zhang, Bing; Liu, Liangyun; Liu, Xinjie; Huete, Alfredo R.; Huang, Wenjiang; Wang, Siyuan; Luo, Shezhou; Zhang, Xiao; Zhang, Helin

    2017-10-01

    Land surface phenology (LSP) has been widely retrieved from satellite data at multiple spatial resolutions, but the spatial scaling effects on LSP detection are poorly understood. In this study, we collected enhanced vegetation index (EVI, 250 m) from collection 6 MOD13Q1 product over the contiguous United States (CONUS) in 2007 and 2008, and generated a set of multiple spatial resolution EVI data by resampling 250 m to 2 × 250 m and 3 × 250 m, 4 × 250 m, …, 35 × 250 m. These EVI time series were then used to detect the start of spring season (SOS) at various spatial resolutions. Further the SOS variation across scales was examined at each coarse resolution grid (35 × 250 m ≈ 8 km, refer to as reference grid) and ecoregion. Finally, the SOS scaling effects were associated with landscape fragment, proportion of primary land cover type, and spatial variability of seasonal greenness variation within each reference grid. The results revealed the influences of satellite spatial resolutions on SOS retrievals and the related impact factors. Specifically, SOS significantly varied lineally or logarithmically across scales although the relationship could be either positive or negative. The overall SOS values averaged from spatial resolutions between 250 m and 35 × 250 m at large ecosystem regions were generally similar with a difference less than 5 days, while the SOS values within the reference grid could differ greatly in some local areas. Moreover, the standard deviation of SOS across scales in the reference grid was less than 5 days in more than 70% of area over the CONUS, which was smaller in northeastern than in southern and western regions. The SOS scaling effect was significantly associated with heterogeneity of vegetation properties characterized using land landscape fragment, proportion of primary land cover type, and spatial variability of seasonal greenness variation, but the latter was the most important impact factor.

  12. Visual resolution and contrast sensitivity in two benthic sharks.

    PubMed

    Ryan, Laura A; Hart, Nathan S; Collin, Shaun P; Hemmi, Jan M

    2016-12-15

    Sharks have long been described as having 'poor' vision. They are cone monochromats and anatomical estimates suggest they have low spatial resolution. However, there are no direct behavioural measurements of spatial resolution or contrast sensitivity. This study estimates contrast sensitivity and spatial resolution of two species of benthic sharks, the Port Jackson shark, Heterodontus portusjacksoni, and the brown-banded bamboo shark, Chiloscyllium punctatum, by recording eye movements in response to optokinetic stimuli. Both species tracked moving low spatial frequency gratings with weak but consistent eye movements. Eye movements ceased at 0.38 cycles per degree, even for high contrasts, suggesting low spatial resolution. However, at lower spatial frequencies, eye movements were elicited by low contrast gratings, 1.3% and 2.9% contrast in H portusjacksoni and C. punctatum, respectively. Contrast sensitivity was higher than in other vertebrates with a similar spatial resolving power, which may reflect an adaptation to the relatively low contrast encountered in aquatic environments. Optokinetic gain was consistently low and neither species stabilised the gratings on their retina. To check whether restraining the animals affected their optokinetic responses, we also analysed eye movements in free-swimming C. punctatum We found no eye movements that could compensate for body rotations, suggesting that vision may pass through phases of stabilisation and blur during swimming. As C. punctatum is a sedentary benthic species, gaze stabilisation during swimming may not be essential. Our results suggest that vision in sharks is not 'poor' as previously suggested, but optimised for contrast detection rather than spatial resolution. © 2016. Published by The Company of Biologists Ltd.

  13. Study of spatial resolution of coordinate detectors based on Gas Electron Multipliers

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, V. N.; Maltsev, T. V.; Shekhtman, L. I.

    2017-02-01

    Spatial resolution of GEM-based tracking detectors is determined in the simulation and measured in the experiments. The simulation includes GEANT4 implemented transport of high energy electrons with careful accounting of atomic relaxation processes including emission of fluorescent photons and Auger electrons and custom post-processing with accounting of diffusion, gas amplification fluctuations, distribution of signals on readout electrodes, electronics noise and particular algorithm of final coordinate calculation (center of gravity). The simulation demonstrates that the minimum of spatial resolution of about 10 μm can be achieved with a gas mixture of Ar -CO2 (75-25 %) at a strips pitch from 250 μm to 300 μm. At a larger pitch the resolution quickly degrades reaching 80-100 μm at a pitch of 460-500 μm. Spatial resolution of low-material triple-GEM detectors for the DEUTERON facility at the VEPP-3 storage ring is measured at the extracted beam facility of the VEPP-4 M collider. One-coordinate resolution of the DEUTERON detector is measured with electron beam of 500 MeV, 1 GeV and 3.5 GeV energies. The determined value of spatial resolution varies in the range from approximately 35 μm to 50 μm for orthogonal tracks in the experiments.

  14. Horizontal Residual Mean Circulation: Evaluation of Spatial Correlations in Coarse Resolution Ocean Models

    NASA Astrophysics Data System (ADS)

    Li, Y.; McDougall, T. J.

    2016-02-01

    Coarse resolution ocean models lack knowledge of spatial correlations between variables on scales smaller than the grid scale. Some researchers have shown that these spatial correlations play a role in the poleward heat flux. In order to evaluate the poleward transport induced by the spatial correlations at a fixed horizontal position, an equation is obtained to calculate the approximate transport from velocity gradients. The equation involves two terms that can be added to the quasi-Stokes streamfunction (based on temporal correlations) to incorporate the contribution of spatial correlations. Moreover, these new terms do not need to be parameterized and is ready to be evaluated by using model data directly. In this study, data from a high resolution ocean model have been used to estimate the accuracy of this HRM approach for improving the horizontal property fluxes in coarse-resolution ocean models. A coarse grid is formed by sub-sampling and box-car averaging the fine grid scale. The transport calculated on the coarse grid is then compared to the transport on original high resolution grid scale accumulated over a corresponding number of grid boxes. The preliminary results have shown that the estimate on coarse resolution grids roughly match the corresponding transports on high resolution grids.

  15. Effects of configural processing on the perceptual spatial resolution for face features.

    PubMed

    Namdar, Gal; Avidan, Galia; Ganel, Tzvi

    2015-11-01

    Configural processing governs human perception across various domains, including face perception. An established marker of configural face perception is the face inversion effect, in which performance is typically better for upright compared to inverted faces. In two experiments, we tested whether configural processing could influence basic visual abilities such as perceptual spatial resolution (i.e., the ability to detect spatial visual changes). Face-related perceptual spatial resolution was assessed by measuring the just noticeable difference (JND) to subtle positional changes between specific features in upright and inverted faces. The results revealed robust inversion effect for spatial sensitivity to configural-based changes, such as the distance between the mouth and the nose, or the distance between the eyes and the nose. Critically, spatial resolution for face features within the region of the eyes (e.g., the interocular distance between the eyes) was not affected by inversion, suggesting that the eye region operates as a separate 'gestalt' unit which is relatively immune to manipulations that would normally hamper configural processing. Together these findings suggest that face orientation modulates fundamental psychophysical abilities including spatial resolution. Furthermore, they indicate that classic psychophysical methods can be used as a valid measure of configural face processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Super resolution PLIF demonstrated in turbulent jet flows seeded with I2

    NASA Astrophysics Data System (ADS)

    Xu, Wenjiang; Liu, Ning; Ma, Lin

    2018-05-01

    Planar laser induced fluorescence (PLIF) represents an indispensable tool for flow and flame imaging. However, the PLIF technique suffers from limited spatial resolution or blurring in many situations, which restricts its applicability and capability. This work describes a new method, named SR-PLIF (super-resolution PLIF), to overcome these limitations and enhance the capability of PLIF. The method uses PLIF images captured simultaneously from two (or more) orientations to reconstruct a final PLIF image with resolution enhanced or blurring removed. This paper reports the development of the reconstruction algorithm, and the experimental demonstration of the SR-PLIF method both with controlled samples and with turbulent flows seeded with iodine vapor. Using controlled samples with two cameras, the spatial resolution in the best case was improved from 0.06 mm in the projections to 0.03 mm in the SR image, in terms of the spreading width of a sharp edge. With turbulent flows, an image sharpness measure was developed to quantify the spatial resolution, and SR reconstruction with two cameras can effectively improve the spatial resolution compared to the projections in terms of the sharpness measure.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Pontieu, B.; Martinez-Sykora, J.; McIntosh, S.

    Spectral observations of the solar transition region (TR) and corona show broadening of spectral lines beyond what is expected from thermal and instrumental broadening. The remaining non-thermal broadening is significant (5–30 km s{sup −1}) and correlated with intensity. Here we study spectra of the TR Si iv 1403 Å line obtained at high resolution with the Interface Region Imaging Spectrograph (IRIS). We find that the large improvement in spatial resolution (0.″33) of IRIS compared to previous spectrographs (2″) does not resolve the non-thermal line broadening which, in most regions, remains at pre-IRIS levels of about 20 km s{sup −1}. Thismore » invariance to spatial resolution indicates that the processes behind the broadening occur along the line-of-sight (LOS) and/or on spatial scales (perpendicular to the LOS) smaller than 250 km. Both effects appear to play a role. Comparison with IRIS chromospheric observations shows that, in regions where the LOS is more parallel to the field, magneto-acoustic shocks driven from below impact the TR and can lead to significant non-thermal line broadening. This scenario is supported by MHD simulations. While these do not show enough non-thermal line broadening, they do reproduce the long-known puzzling correlation between non-thermal line broadening and intensity. This correlation is caused by the shocks, but only if non-equilibrium ionization is taken into account. In regions where the LOS is more perpendicular to the field, the prevalence of small-scale twist is likely to play a significant role in explaining the invariance and correlation with intensity. (letters)« less

  18. Three dimensional time reversal optical tomography

    NASA Astrophysics Data System (ADS)

    Wu, Binlin; Cai, W.; Alrubaiee, M.; Xu, M.; Gayen, S. K.

    2011-03-01

    Time reversal optical tomography (TROT) approach is used to detect and locate absorptive targets embedded in a highly scattering turbid medium to assess its potential in breast cancer detection. TROT experimental arrangement uses multi-source probing and multi-detector signal acquisition and Multiple-Signal-Classification (MUSIC) algorithm for target location retrieval. Light transport from multiple sources through the intervening medium with embedded targets to the detectors is represented by a response matrix constructed using experimental data. A TR matrix is formed by multiplying the response matrix by its transpose. The eigenvectors with leading non-zero eigenvalues of the TR matrix correspond to embedded objects. The approach was used to: (a) obtain the location and spatial resolution of an absorptive target as a function of its axial position between the source and detector planes; and (b) study variation in spatial resolution of two targets at the same axial position but different lateral positions. The target(s) were glass sphere(s) of diameter ~9 mm filled with ink (absorber) embedded in a 60 mm-thick slab of Intralipid-20% suspension in water with an absorption coefficient μa ~ 0.003 mm-1 and a transport mean free path lt ~ 1 mm at 790 nm, which emulate the average values of those parameters for human breast tissue. The spatial resolution and accuracy of target location depended on axial position, and target contrast relative to the background. Both the targets could be resolved and located even when they were only 4-mm apart. The TROT approach is fast, accurate, and has the potential to be useful in breast cancer detection and localization.

  19. Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution

    DOE PAGES

    Yan, Hanfei; Nazaretski, Evgeny; Lauer, Kenneth R.; ...

    2016-02-05

    Here, we developed a scanning hard x-ray microscope using a new class of x-ray nano-focusing optic called a multilayer Laue lens and imaged a chromosome with nanoscale spatial resolution. The combination of the hard x-ray's superior penetration power, high sensitivity to elemental composition, high spatial-resolution and quantitative analysis creates a unique tool with capabilities that other microscopy techniques cannot provide. Using this microscope, we simultaneously obtained absorption-, phase-, and fluorescence-contrast images of Pt-stained human chromosome samples. The high spatial-resolution of the microscope and its multi-modality imaging capabilities enabled us to observe the internal ultra-structures of a thick chromosome without sectioningmore » it.« less

  20. Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Hanfei; Nazaretski, Evgeny; Lauer, Kenneth R.

    Here, we developed a scanning hard x-ray microscope using a new class of x-ray nano-focusing optic called a multilayer Laue lens and imaged a chromosome with nanoscale spatial resolution. The combination of the hard x-ray's superior penetration power, high sensitivity to elemental composition, high spatial-resolution and quantitative analysis creates a unique tool with capabilities that other microscopy techniques cannot provide. Using this microscope, we simultaneously obtained absorption-, phase-, and fluorescence-contrast images of Pt-stained human chromosome samples. The high spatial-resolution of the microscope and its multi-modality imaging capabilities enabled us to observe the internal ultra-structures of a thick chromosome without sectioningmore » it.« less

  1. Aptamer-Targeted Magnetic Resonance Imaging Contrast Agents and Their Applications.

    PubMed

    Zhang, Yajie; Zhang, Tingting; Liu, Min; Kuang, Ye; Zu, Guangyue; Zhang, Kunchi; Cao, Yi; Pei, Renjun

    2018-06-01

    Magnetic resonance imaging is a powerful diagnostic technology with high spatial resolution and non-invasion. The contrast agents have significant effect on the resolution of the MR imaging. However, the commercial contrast agents (CAs) usually consist of individual Gd3+ chelated with a low molecular weight acyclic or cyclic ligand, and these small-molecule CAs are usually subjected to nonspecificity, thus leading to rapid renal clearance and modest contrast enhancement for tumor imaging. In recent years, the nanostructured materials conjugated with aptamers were widely used and opened a new door in biomedical imaging due to excellent specificity, non-immunogenicity, easily synthesis and chemical modification of aptamers. This review summarizes all kinds of aptamertargeted MRI CAs and their applications.

  2. Optimization of the launcher ascent trajectory leading to the global optimum without any initialization: the breakthrough of the Hamilton-Jacobi-Bellman approach

    NASA Astrophysics Data System (ADS)

    Bourgeois, E.; Bokanowski, O.; Zidani, H.; Désilles, A.

    2018-06-01

    The resolution of the launcher ascent trajectory problem by the so-called Hamilton-Jacobi-Bellman (HJB) approach, relying on the Dynamic Programming Principle, has been investigated. The method gives a global optimum and does not need any initialization procedure. Despite these advantages, this approach is seldom used because of the dicculties of computing the solution of the HJB equation for high dimension problems. The present study shows that an eccient resolution is found. An illustration of the method is proposed on a heavy class launcher, for a typical GEO (Geostationary Earth Orbit) mission. This study has been performed in the frame of the Centre National d'Etudes Spatiales (CNES) Launchers Research & Technology Program.

  3. Land cover mapping and change detection in urban watersheds using QuickBird high spatial resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Hester, David Barry

    The objective of this research was to develop methods for urban land cover analysis using QuickBird high spatial resolution satellite imagery. Such imagery has emerged as a rich commercially available remote sensing data source and has enjoyed high-profile broadcast news media and Internet applications, but methods of quantitative analysis have not been thoroughly explored. The research described here consists of three studies focused on the use of pan-sharpened 61-cm spatial resolution QuickBird imagery, the spatial resolution of which is the highest of any commercial satellite. In the first study, a per-pixel land cover classification method is developed for use with this imagery. This method utilizes a per-pixel classification approach to generate an accurate six-category high spatial resolution land cover map of a developing suburban area. The primary objective of the second study was to develop an accurate land cover change detection method for use with QuickBird land cover products. This work presents an efficient fuzzy framework for transforming map uncertainty into accurate and meaningful high spatial resolution land cover change analysis. The third study described here is an urban planning application of the high spatial resolution QuickBird-based land cover product developed in the first study. This work both meaningfully connects this exciting new data source to urban watershed management and makes an important empirical contribution to the study of suburban watersheds. Its analysis of residential roads and driveways as well as retail parking lots sheds valuable light on the impact of transportation-related land use on the suburban landscape. Broadly, these studies provide new methods for using state-of-the-art remote sensing data to inform land cover analysis and urban planning. These methods are widely adaptable and produce land cover products that are both meaningful and accurate. As additional high spatial resolution satellites are launched and the cost of high resolution imagery continues to decline, this research makes an important contribution to this exciting era in the science of remote sensing.

  4. The influence of different signal-to-background ratios on spatial resolution and F18-FDG-PET quantification using point spread function and time-of-flight reconstruction.

    PubMed

    Rogasch, Julian Mm; Hofheinz, Frank; Lougovski, Alexandr; Furth, Christian; Ruf, Juri; Großer, Oliver S; Mohnike, Konrad; Hass, Peter; Walke, Mathias; Amthauer, Holger; Steffen, Ingo G

    2014-12-01

    F18-fluorodeoxyglucose positron-emission tomography (FDG-PET) reconstruction algorithms can have substantial influence on quantitative image data used, e.g., for therapy planning or monitoring in oncology. We analyzed radial activity concentration profiles of differently reconstructed FDG-PET images to determine the influence of varying signal-to-background ratios (SBRs) on the respective spatial resolution, activity concentration distribution, and quantification (standardized uptake value [SUV], metabolic tumor volume [MTV]). Measurements were performed on a Siemens Biograph mCT 64 using a cylindrical phantom containing four spheres (diameter, 30 to 70 mm) filled with F18-FDG applying three SBRs (SBR1, 16:1; SBR2, 6:1; SBR3, 2:1). Images were reconstructed employing six algorithms (filtered backprojection [FBP], FBP + time-of-flight analysis [FBP + TOF], 3D-ordered subset expectation maximization [3D-OSEM], 3D-OSEM + TOF, point spread function [PSF], PSF + TOF). Spatial resolution was determined by fitting the convolution of the object geometry with a Gaussian point spread function to radial activity concentration profiles. MTV delineation was performed using fixed thresholds and semiautomatic background-adapted thresholding (ROVER, ABX, Radeberg, Germany). The pairwise Wilcoxon test revealed significantly higher spatial resolutions for PSF + TOF (up to 4.0 mm) compared to PSF, FBP, FBP + TOF, 3D-OSEM, and 3D-OSEM + TOF at all SBRs (each P < 0.05) with the highest differences for SBR1 decreasing to the lowest for SBR3. Edge elevations in radial activity profiles (Gibbs artifacts) were highest for PSF and PSF + TOF declining with decreasing SBR (PSF + TOF largest sphere; SBR1, 6.3%; SBR3, 2.7%). These artifacts induce substantial SUVmax overestimation compared to the reference SUV for PSF algorithms at SBR1 and SBR2 leading to substantial MTV underestimation in threshold-based segmentation. In contrast, both PSF algorithms provided the lowest deviation of SUVmean from reference SUV at SBR1 and SBR2. At high contrast, the PSF algorithms provided the highest spatial resolution and lowest SUVmean deviation from the reference SUV. In contrast, both algorithms showed the highest deviations in SUVmax and threshold-based MTV definition. At low contrast, all investigated reconstruction algorithms performed approximately equally. The use of PSF algorithms for quantitative PET data, e.g., for target volume definition or in serial PET studies, should be performed with caution - especially if comparing SUV of lesions with high and low contrasts.

  5. Integrating Eddy Covariance, Penman-Monteith and METRIC based Evapotranspiration estimates to generate high resolution space-time ET over the Brazos River Basin

    NASA Astrophysics Data System (ADS)

    Mbabazi, D.; Mohanty, B.; Gaur, N.

    2017-12-01

    Evapotranspiration (ET) is an important component of the water and energy balance and accounts for 60 -70% of precipitation losses. However, accurate estimates of ET are difficult to quantify at varying spatial and temporal scales. Eddy covariance methods estimate ET at high temporal resolutions but without capturing the spatial variation in ET within its footprint. On the other hand, remote sensing methods using Landsat imagery provide ET with high spatial resolution but low temporal resolution (16 days). In this study, we used both eddy covariance and remote sensing methods to generate high space-time resolution ET. Daily, monthly and seasonal ET estimates were obtained using the eddy covariance (EC) method, Penman-Monteith (PM) and Mapping Evapotranspiration with Internalized Calibration (METRIC) models to determine cotton and native prairie ET dynamics in the Brazos river basin characterized by varying hydro-climatic and geological gradients. Daily estimates of spatially distributed ET (30 m resolution) were generated using spatial autocorrelation and temporal interpolations between the EC flux variable footprints and METRIC ET for the 2016 and 2017 growing seasons. A comparison of the 2016 and 2017 preliminary daily ET estimates showed similar ET dynamics/trends among the EC, PM and METRIC methods, and 5-20% differences in seasonal ET estimates. This study will improve the spatial estimates of EC ET and temporal resolution of satellite derived ET thus providing better ET data for water use management.

  6. Effects of finite hot-wire spatial resolution on turbulence statistics and velocity spectra in a round turbulent free jet

    NASA Astrophysics Data System (ADS)

    Sadeghi, Hamed; Lavoie, Philippe; Pollard, Andrew

    2018-03-01

    The effect of finite hot-wire spatial resolution on turbulence statistics and velocity spectra in a round turbulent free jet is investigated. To quantify spatial resolution effects, measurements were taken using a nano-scale thermal anemometry probe (NSTAP) and compared to results from conventional hot-wires with sensing lengths of l=0.5 and 1 mm. The NSTAP has a sensing length significantly smaller than the Kolmogorov length scale η for the present experimental conditions, whereas the sensing lengths for the conventional probes are larger than η. The spatial resolution is found to have a significant impact on the dissipation both on and off the jet centreline with the NSTAP results exceeding those obtained from the conventional probes. The resolution effects along the jet centreline are adequately predicted using a Wyngaard-type spectral technique (Wyngaard in J Sci Instr 1(2):1105-1108,1968), but additional attenuation on the measured turbulence quantities are observed off the centreline. The magnitude of this attenuation is a function of both the ratio of wire length to Kolmogorov length scale and the magnitude of the shear. The effect of spatial resolution is noted to have an impact on the power-law decay parameters for the turbulent kinetic energy that is computed. The effect of spatial filtering on the streamwise dissipation energy spectra is also considered. Empirical functions are proposed to estimate the effect of finite resolution, which take into account the mean shear.

  7. Atmospheric Moisture Budget and Spatial Resolution Dependence of Precipitation Extremes in Aquaplanet Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Qing; Leung, Lai-Yung R.; Rauscher, Sara

    This study investigates the resolution dependency of precipitation extremes in an aqua-planet framework. Strong resolution dependency of precipitation extremes is seen over both tropics and extra-tropics, and the magnitude of this dependency also varies with dynamical cores. Moisture budget analyses based on aqua-planet simulations with the Community Atmosphere Model (CAM) using the Model for Prediction Across Scales (MPAS) and High Order Method Modeling Environment (HOMME) dynamical cores but the same physics parameterizations suggest that during precipitation extremes moisture supply for surface precipitation is mainly derived from advective moisture convergence. The resolution dependency of precipitation extremes mainly originates from advective moisturemore » transport in the vertical direction. At most vertical levels over the tropics and in the lower atmosphere over the subtropics, the vertical eddy transport of mean moisture field dominates the contribution to precipitation extremes and its resolution dependency. Over the subtropics, the source of moisture, its associated energy, and the resolution dependency during extremes are dominated by eddy transport of eddies moisture at the mid- and upper-troposphere. With both MPAS and HOMME dynamical cores, the resolution dependency of the vertical advective moisture convergence is mainly explained by dynamical changes (related to vertical velocity or omega), although the vertical gradients of moisture act like averaging kernels to determine the sensitivity of the overall resolution dependency to the changes in omega at different vertical levels. The natural reduction of variability with coarser resolution, represented by areal data averaging (aggregation) effect, largely explains the resolution dependency in omega. The thermodynamic changes, which likely result from non-linear feedback in response to the large dynamical changes, are small compared to the overall changes in dynamics (omega). However, after excluding the data aggregation effect in omega, thermodynamic changes become relatively significant in offsetting the effect of dynamics leading to reduce differences between the simulated and aggregated results. Compared to MPAS, the simulated stronger vertical motion with HOMME also results in larger resolution dependency. Compared to the simulation at fine resolution, the vertical motion during extremes is insufficiently resolved/parameterized at the coarser resolution even after accounting for the natural reduction in variability with coarser resolution, and this is more distinct in the simulation with HOMME. To reduce uncertainties in simulated precipitation extremes, future development in cloud parameterizations must address their sensitivity to spatial resolution as well as dynamical cores.« less

  8. A SPECT Scanner for Rodent Imaging Based on Small-Area Gamma Cameras

    NASA Astrophysics Data System (ADS)

    Lage, Eduardo; Villena, José L.; Tapias, Gustavo; Martinez, Naira P.; Soto-Montenegro, Maria L.; Abella, Mónica; Sisniega, Alejandro; Pino, Francisco; Ros, Domènec; Pavia, Javier; Desco, Manuel; Vaquero, Juan J.

    2010-10-01

    We developed a cost-effective SPECT scanner prototype (rSPECT) for in vivo imaging of rodents based on small-area gamma cameras. Each detector consists of a position-sensitive photomultiplier tube (PS-PMT) coupled to a 30 x 30 Nal(Tl) scintillator array and electronics attached to the PS-PMT sockets for adapting the detector signals to an in-house developed data acquisition system. The detector components are enclosed in a lead-shielded case with a receptacle to insert the collimators. System performance was assessed using 99mTc for a high-resolution parallel-hole collimator, and for a 0.75-mm pinhole collimator with a 60° aperture angle and a 42-mm collimator length. The energy resolution is about 10.7% of the photopeak energy. The overall system sensitivity is about 3 cps/μCi/detector and planar spatial resolution ranges from 2.4 mm at 1 cm source-to-collimator distance to 4.1 mm at 4.5 cm with parallel-hole collimators. With pinhole collimators planar spatial resolution ranges from 1.2 mm at 1 cm source-to-collimator distance to 2.4 mm at 4.5 cm; sensitivity at these distances ranges from 2.8 to 0.5 cps/μCi/detector. Tomographic hot-rod phantom images are presented together with images of bone, myocardium and brain of living rodents to demonstrate the feasibility of preclinical small-animal studies with the rSPECT.

  9. Near-infrared fluorescence imaging with a mobile phone (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ghassemi, Pejhman; Wang, Bohan; Wang, Jianting; Wang, Quanzeng; Chen, Yu; Pfefer, T. Joshua

    2017-03-01

    Mobile phone cameras employ sensors with near-infrared (NIR) sensitivity, yet this capability has not been exploited for biomedical purposes. Removing the IR-blocking filter from a phone-based camera opens the door to a wide range of techniques and applications for inexpensive, point-of-care biophotonic imaging and sensing. This study provides proof of principle for one of these modalities - phone-based NIR fluorescence imaging. An imaging system was assembled using a 780 nm light source along with excitation and emission filters with 800 nm and 825 nm cut-off wavelengths, respectively. Indocyanine green (ICG) was used as an NIR fluorescence contrast agent in an ex vivo rodent model, a resolution test target and a 3D-printed, tissue-simulating vascular phantom. Raw and processed images for red, green and blue pixel channels were analyzed for quantitative evaluation of fundamental performance characteristics including spectral sensitivity, detection linearity and spatial resolution. Mobile phone results were compared with a scientific CCD. The spatial resolution of CCD system was consistently superior to the phone, and green phone camera pixels showed better resolution than blue or green channels. The CCD exhibited similar sensitivity as processed red and blue pixels channels, yet a greater degree of detection linearity. Raw phone pixel data showed lower sensitivity but greater linearity than processed data. Overall, both qualitative and quantitative results provided strong evidence of the potential of phone-based NIR imaging, which may lead to a wide range of applications from cancer detection to glucose sensing.

  10. Spatial resolution versus contrast trade-off enhancement in high-resolution surface plasmon resonance imaging (SPRI) by metal surface nanostructure design.

    PubMed

    Banville, Frederic A; Moreau, Julien; Sarkar, Mitradeep; Besbes, Mondher; Canva, Michael; Charette, Paul G

    2018-04-16

    Surface plasmon resonance imaging (SPRI) is an optical near-field method used for mapping the spatial distribution of chemical/physical perturbations above a metal surface without exogenous labeling. Currently, the majority of SPRI systems are used in microarray biosensing, requiring only modest spatial resolution. There is increasing interest in applying SPRI for label-free near-field imaging of biological cells to study cell/surface interactions. However, the required resolution (sub-µm) greatly exceeds what current systems can deliver. Indeed, the attenuation length of surface plasmon polaritons (SPP) severely limits resolution along one axis, typically to tens of µm. Strategies to date for improving spatial resolution result in a commensurate deterioration in other imaging parameters. Unlike the smooth metal surfaces used in SPRI that support purely propagating surface modes, nanostructured metal surfaces support "hybrid" SPP modes that share attributes from both propagating and localized modes. We show that these hybrid modes are especially well-suited to high-resolution imaging and demonstrate how the nanostructure geometry can be designed to achieve sub-µm resolution while mitigating the imaging parameter trade-off according to an application-specific optimum.

  11. Two-photon imaging of spatially extended neuronal network dynamics with high temporal resolution.

    PubMed

    Lillis, Kyle P; Eng, Alfred; White, John A; Mertz, Jerome

    2008-07-30

    We describe a simple two-photon fluorescence imaging strategy, called targeted path scanning (TPS), to monitor the dynamics of spatially extended neuronal networks with high spatiotemporal resolution. Our strategy combines the advantages of mirror-based scanning, minimized dead time, ease of implementation, and compatibility with high-resolution low-magnification objectives. To demonstrate the performance of TPS, we monitor the calcium dynamics distributed across an entire juvenile rat hippocampus (>1.5mm), at scan rates of 100 Hz, with single cell resolution and single action potential sensitivity. Our strategy for fast, efficient two-photon microscopy over spatially extended regions provides a particularly attractive solution for monitoring neuronal population activity in thick tissue, without sacrificing the signal-to-noise ratio or high spatial resolution associated with standard two-photon microscopy. Finally, we provide the code to make our technique generally available.

  12. High Resolution Tissue Imaging Using the Single-probe Mass Spectrometry under Ambient Conditions

    NASA Astrophysics Data System (ADS)

    Rao, Wei; Pan, Ning; Yang, Zhibo

    2015-06-01

    Ambient mass spectrometry imaging (MSI) is an emerging field with great potential for the detailed spatial analysis of biological samples with minimal pretreatment. We have developed a miniaturized sampling and ionization device, the Single-probe, which uses in-situ surface micro-extraction to achieve high detection sensitivity and spatial resolution during MSI experiments. The Single-probe was coupled to a Thermo LTQ Orbitrap XL mass spectrometer and was able to create high spatial and high mass resolution MS images at 8 ± 2 and 8.5 μm on flat polycarbonate microscope slides and mouse kidney sections, respectively, which are among the highest resolutions available for ambient MSI techniques. Our proof-of-principle experiments indicate that the Single-probe MSI technique has the potential to obtain ambient MS images with very high spatial resolutions with minimal sample preparation, which opens the possibility for subcellular ambient tissue MSI to be performed in the future.

  13. High Speed Computational Ghost Imaging via Spatial Sweeping

    NASA Astrophysics Data System (ADS)

    Wang, Yuwang; Liu, Yang; Suo, Jinli; Situ, Guohai; Qiao, Chang; Dai, Qionghai

    2017-03-01

    Computational ghost imaging (CGI) achieves single-pixel imaging by using a Spatial Light Modulator (SLM) to generate structured illuminations for spatially resolved information encoding. The imaging speed of CGI is limited by the modulation frequency of available SLMs, and sets back its practical applications. This paper proposes to bypass this limitation by trading off SLM’s redundant spatial resolution for multiplication of the modulation frequency. Specifically, a pair of galvanic mirrors sweeping across the high resolution SLM multiply the modulation frequency within the spatial resolution gap between SLM and the final reconstruction. A proof-of-principle setup with two middle end galvanic mirrors achieves ghost imaging as fast as 42 Hz at 80 × 80-pixel resolution, 5 times faster than state-of-the-arts, and holds potential for one magnitude further multiplication by hardware upgrading. Our approach brings a significant improvement in the imaging speed of ghost imaging and pushes ghost imaging towards practical applications.

  14. Edge-Preserving Image Smoothing Constraint in Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) of Hyperspectral Data.

    PubMed

    Hugelier, Siewert; Vitale, Raffaele; Ruckebusch, Cyril

    2018-03-01

    This article explores smoothing with edge-preserving properties as a spatial constraint for the resolution of hyperspectral images with multivariate curve resolution-alternating least squares (MCR-ALS). For each constrained component image (distribution map), irrelevant spatial details and noise are smoothed applying an L 1 - or L 0 -norm penalized least squares regression, highlighting in this way big changes in intensity of adjacent pixels. The feasibility of the constraint is demonstrated on three different case studies, in which the objects under investigation are spatially clearly defined, but have significant spectral overlap. This spectral overlap is detrimental for obtaining a good resolution and additional spatial information should be provided. The final results show that the spatial constraint enables better image (map) abstraction, artifact removal, and better interpretation of the results obtained, compared to a classical MCR-ALS analysis of hyperspectral images.

  15. Time-reversal transcranial ultrasound beam focusing using a k-space method

    PubMed Central

    Jing, Yun; Meral, F. Can; Clement, Greg. T.

    2012-01-01

    This paper proposes the use of a k-space method to obtain the correction for transcranial ultrasound beam focusing. Mirroring past approaches, A synthetic point source at the focal point is numerically excited, and propagated through the skull, using acoustic properties acquired from registered computed tomograpy of the skull being studied. The received data outside the skull contains the correction information and can be phase conjugated (time reversed) and then physically generated to achieve a tight focusing inside the skull, by assuming quasi-plane transmission where shear waves are not present or their contribution can be neglected. Compared with the conventional finite-difference time-domain method for wave propagation simulation, it will be shown that the k-space method is significantly more accurate even for a relatively coarse spatial resolution, leading to a dramatically reduced computation time. Both numerical simulations and experiments conducted on an ex vivo human skull demonstrate that, precise focusing can be realized using the k-space method with a spatial resolution as low as only 2.56 grid points per wavelength, thus allowing treatment planning computation on the order of minutes. PMID:22290477

  16. High-resolution dynamic downscaling of CMIP5 output over the Tropical Andes

    NASA Astrophysics Data System (ADS)

    Reichler, Thomas; Andrade, Marcos; Ohara, Noriaki

    2015-04-01

    Our project is targeted towards making robust predictions of future changes in climate over the tropical part of the South American Andes. This goal is challenging, since tropical lowlands, steep mountains, and snow covered subarctic surfaces meet over relatively short distances, leading to distinct climate regimes within the same domain and pronounced spatial gradients in virtually every climate quantity. We use an innovative approach to solve this problem, including several quadruple nested versions of WRF, a systematic validation strategy to find the version of WRF that best fits our study region, spatial resolutions at the kilometer scale, 20-year-long simulation periods, and bias-corrected output from various CMIP5 simulations that also include the multi-model mean of all CMIP5 models. We show that the simulated changes in climate are consistent with the results from the global climate models and also consistent with two different versions of WRF. We also discuss the expected changes in snow and ice, derived from off-line coupling the regional simulations to a carefully calibrated snow and ice model.

  17. Characterization of single α-tracks by photoresist detection and AFM analysis-focus on biomedical science and technology

    NASA Astrophysics Data System (ADS)

    Falzone, Nadia; Myhra, Sverre; Chakalova, Radka; Hill, Mark A.; Thomson, James; Vallis, Katherine A.

    2013-11-01

    The interactions between energetic ions and biological and/or organic target materials have recently attracted theoretical and experimental attention, due to their implications for detector and device technologies, and for therapeutic applications. Most of the attention has focused on detection of the primary ionization tracks, and their effects, while recoil target atom tracks remain largely unexplored. Detection of tracks by a negative tone photoresist (SU-8), followed by standard development, in combination with analysis by atomic force microscopy, shows that both primary and recoil tracks are revealed as conical spikes, and can be characterized at high spatial resolution. The methodology has the potential to provide detailed information about single impact events, which may lead to more effective and informative detector technologies and advanced therapeutic procedures. In comparison with current characterization methods the advantageous features include: greater spatial resolution by an order of magnitude (20 nm) detection of single primary and associated recoil tracks; increased range of fluence (to 2.5 × 109 cm-2) sensitivity to impacts at grazing angle incidence; and better definition of the lateral interaction volume in target materials.

  18. Remote Sensing Product Verification and Validation at the NASA Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Stanley, Thomas M.

    2005-01-01

    Remote sensing data product verification and validation (V&V) is critical to successful science research and applications development. People who use remote sensing products to make policy, economic, or scientific decisions require confidence in and an understanding of the products' characteristics to make informed decisions about the products' use. NASA data products of coarse to moderate spatial resolution are validated by NASA science teams. NASA's Stennis Space Center (SSC) serves as the science validation team lead for validating commercial data products of moderate to high spatial resolution. At SSC, the Applications Research Toolbox simulates sensors and targets, and the Instrument Validation Laboratory validates critical sensors. The SSC V&V Site consists of radiometric tarps, a network of ground control points, a water surface temperature sensor, an atmospheric measurement system, painted concrete radial target and edge targets, and other instrumentation. NASA's Applied Sciences Directorate participates in the Joint Agency Commercial Imagery Evaluation (JACIE) team formed by NASA, the U.S. Geological Survey, and the National Geospatial-Intelligence Agency to characterize commercial systems and imagery.

  19. A look at motion in the frequency domain

    NASA Technical Reports Server (NTRS)

    Watson, A. B.; Ahumada, A. J., Jr.

    1983-01-01

    A moving image can be specified by a contrast distribution, c(x,y,t), over the dimensions of space x,y, and time t. Alternatively, it can be specified by the distribution C(u,v,w) over spatial frequency u,v and temporal frequency w. The frequency representation of a moving image is shown to have a characteristic form. This permits two useful observations. The first is that the apparent smoothness of time-sampled moving images (apparent motion) can be explained by the filtering action of the human visual system. This leads to the following formula for the required update rate for time-sampled displays. W(c)=W(l)+ru(l) where w(c) is the required update rate in Hz, W(l) is the limit of human temporal resolution in Hz, r is the velocity of the moving image in degrees/sec, and u(l) is the limit of human spatial resolution in cycles/deg. The second observation is that it is possible to construct a linear sensor that responds to images moving in a particular direction. The sensor is derived and its properties are discussed.

  20. Isotopic imaging via nuclear resonance fluorescence with laser-based Thomson radiation

    DOEpatents

    Barty, Christopher P. J. [Hayward, CA; Hartemann, Frederic V [San Ramon, CA; McNabb, Dennis P [Alameda, CA; Pruet, Jason A [Brentwood, CA

    2009-07-21

    The present invention utilizes novel laser-based, high-brightness, high-spatial-resolution, pencil-beam sources of spectrally pure hard x-ray and gamma-ray radiation to induce resonant scattering in specific nuclei, i.e., nuclear resonance fluorescence. By monitoring such fluorescence as a function of beam position, it is possible to image in either two dimensions or three dimensions, the position and concentration of individual isotopes in a specific material configuration. Such methods of the present invention material identification, spatial resolution of material location and ability to locate and identify materials shielded by other materials, such as, for example, behind a lead wall. The foundation of the present invention is the generation of quasimonochromatic high-energy x-ray (100's of keV) and gamma-ray (greater than about 1 MeV) radiation via the collision of intense laser pulses from relativistic electrons. Such a process as utilized herein, i.e., Thomson scattering or inverse-Compton scattering, produces beams having diameters from about 1 micron to about 100 microns of high-energy photons with a bandwidth of .DELTA.E/E of approximately 10E.sup.-3.

  1. April 2008 Saharan dust event: Its contribution to PM10 concentrations over the Anatolian Peninsula and relation with synoptic conditions.

    PubMed

    Kabatas, B; Pierce, R B; Unal, A; Rogal, M J; Lenzen, A

    2018-08-15

    An online-coupled regional Weather Research and Forecasting model with chemistry (WRF-Chem) is utilized incorporating 0.1°×0.1° spatial resolution HTAP (Hemispheric Transport of Air Pollution) anthropogenic emissions to investigate the spatial and temporal distribution of a Saharan dust outbreak, which contributed to high levels (>50μg/m 3 ) of daily PM 10 concentrations over Turkey in April 2008. Aerosol optical depth and cloud optical thickness retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor on board of Aqua satellite are used to better analyze the synoptic conditions that generated the dust outbreak in April 2008. A "Sharav" low pressure system, which transports the dust from Saharan source region over Turkey along the cold front, tends to move faster in WRF-Chem simulations than observed. This causes the predicted dust event to arrive earlier than observed leading to an overestimation of surface PM 10 concentrations in WRF-Chem simulation at the beginning of the event. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Investigation of CMOS pixel sensor with 0.18 μm CMOS technology for high-precision tracking detector

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Fu, M.; Zhang, Y.; Yan, W.; Wang, M.

    2017-01-01

    The Circular Electron Positron Collider (CEPC) proposed by the Chinese high energy physics community is aiming to measure Higgs particles and their interactions precisely. The tracking detector including Silicon Inner Tracker (SIT) and Forward Tracking Disks (FTD) has driven stringent requirements on sensor technologies in term of spatial resolution, power consumption and readout speed. CMOS Pixel Sensor (CPS) is a promising candidate to approach these requirements. This paper presents the preliminary studies on the sensor optimization for tracking detector to achieve high collection efficiency while keeping necessary spatial resolution. Detailed studies have been performed on the charge collection using a 0.18 μm CMOS image sensor process. This process allows high resistivity epitaxial layer, leading to a significant improvement on the charge collection and therefore improving the radiation tolerance. Together with the simulation results, the first exploratory prototype has bee designed and fabricated. The prototype includes 9 different pixel arrays, which vary in terms of pixel pitch, diode size and geometry. The total area of the prototype amounts to 2 × 7.88 mm2.

  3. Quantitative DLA-based compressed sensing for T1-weighted acquisitions

    NASA Astrophysics Data System (ADS)

    Svehla, Pavel; Nguyen, Khieu-Van; Li, Jing-Rebecca; Ciobanu, Luisa

    2017-08-01

    High resolution Manganese Enhanced Magnetic Resonance Imaging (MEMRI), which uses manganese as a T1 contrast agent, has great potential for functional imaging of live neuronal tissue at single neuron scale. However, reaching high resolutions often requires long acquisition times which can lead to reduced image quality due to sample deterioration and hardware instability. Compressed Sensing (CS) techniques offer the opportunity to significantly reduce the imaging time. The purpose of this work is to test the feasibility of CS acquisitions based on Diffusion Limited Aggregation (DLA) sampling patterns for high resolution quantitative T1-weighted imaging. Fully encoded and DLA-CS T1-weighted images of Aplysia californica neural tissue were acquired on a 17.2T MRI system. The MR signal corresponding to single, identified neurons was quantified for both versions of the T1 weighted images. For a 50% undersampling, DLA-CS can accurately quantify signal intensities in T1-weighted acquisitions leading to only 1.37% differences when compared to the fully encoded data, with minimal impact on image spatial resolution. In addition, we compared the conventional polynomial undersampling scheme with the DLA and showed that, for the data at hand, the latter performs better. Depending on the image signal to noise ratio, higher undersampling ratios can be used to further reduce the acquisition time in MEMRI based functional studies of living tissues.

  4. NUMERICAL SIMULATIONS OF CORONAL HEATING THROUGH FOOTPOINT BRAIDING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansteen, V.; Pontieu, B. De; Carlsson, M.

    2015-10-01

    Advanced three-dimensional (3D) radiative MHD simulations now reproduce many properties of the outer solar atmosphere. When including a domain from the convection zone into the corona, a hot chromosphere and corona are self-consistently maintained. Here we study two realistic models, with different simulated areas, magnetic field strength and topology, and numerical resolution. These are compared in order to characterize the heating in the 3D-MHD simulations which self-consistently maintains the structure of the atmosphere. We analyze the heating at both large and small scales and find that heating is episodic and highly structured in space, but occurs along loop-shaped structures, andmore » moves along with the magnetic field. On large scales we find that the heating per particle is maximal near the transition region and that widely distributed opposite-polarity field in the photosphere leads to a greater heating scale height in the corona. On smaller scales, heating is concentrated in current sheets, the thicknesses of which are set by the numerical resolution. Some current sheets fragment in time, this process occurring more readily in the higher-resolution model leading to spatially highly intermittent heating. The large-scale heating structures are found to fade in less than about five minutes, while the smaller, local, heating shows timescales of the order of two minutes in one model and one minutes in the other, higher-resolution, model.« less

  5. Preliminary Cost Benefit Assessment of Systems for Detection of Hazardous Weather. Volume I,

    DTIC Science & Technology

    1981-07-01

    not be sufficient for adequate stream flow forecasting , it has important potential for real - time flash flood warning. This was illustrated by the 1977...provide a finer spatial resolution of the gridded data. See Table 9. 42 The results of a demonstration of the real - time capabilities of a radar-man system ...detailed real time measurement capabilities and scope for quantitative forecasting is most likely to provide the degree of lead time required if maximum

  6. Implications of sensor design for coral reef detection: Upscaling ground hyperspectral imagery in spatial and spectral scales

    NASA Astrophysics Data System (ADS)

    Caras, Tamir; Hedley, John; Karnieli, Arnon

    2017-12-01

    Remote sensing offers a potential tool for large scale environmental surveying and monitoring. However, remote observations of coral reefs are difficult especially due to the spatial and spectral complexity of the target compared to sensor specifications as well as the environmental implications of the water medium above. The development of sensors is driven by technological advances and the desired products. Currently, spaceborne systems are technologically limited to a choice between high spectral resolution and high spatial resolution, but not both. The current study explores the dilemma of whether future sensor design for marine monitoring should prioritise on improving their spatial or spectral resolution. To address this question, a spatially and spectrally resampled ground-level hyperspectral image was used to test two classification elements: (1) how the tradeoff between spatial and spectral resolutions affects classification; and (2) how a noise reduction by majority filter might improve classification accuracy. The studied reef, in the Gulf of Aqaba (Eilat), Israel, is heterogeneous and complex so the local substrate patches are generally finer than currently available imagery. Therefore, the tested spatial resolution was broadly divided into four scale categories from five millimeters to one meter. Spectral resolution resampling aimed to mimic currently available and forthcoming spaceborne sensors such as (1) Environmental Mapping and Analysis Program (EnMAP) that is characterized by 25 bands of 6.5 nm width; (2) VENμS with 12 narrow bands; and (3) the WorldView series with broadband multispectral resolution. Results suggest that spatial resolution should generally be prioritized for coral reef classification because the finer spatial scale tested (pixel size < 0.1 m) may compensate for some low spectral resolution drawbacks. In this regard, it is shown that the post-classification majority filtering substantially improves the accuracy of all pixel sizes up to the point where the kernel size reaches the average unit size (pixel < 0.25 m). However, careful investigation as to the effect of band distribution and choice could improve the sensor suitability for the marine environment task. This in mind, while the focus in this study was on the technologically limited spaceborne design, aerial sensors may presently provide an opportunity to implement the suggested setup.

  7. Super-resolution reconstruction of diffusion parameters from diffusion-weighted images with different slice orientations.

    PubMed

    Van Steenkiste, Gwendolyn; Jeurissen, Ben; Veraart, Jelle; den Dekker, Arnold J; Parizel, Paul M; Poot, Dirk H J; Sijbers, Jan

    2016-01-01

    Diffusion MRI is hampered by long acquisition times, low spatial resolution, and a low signal-to-noise ratio. Recently, methods have been proposed to improve the trade-off between spatial resolution, signal-to-noise ratio, and acquisition time of diffusion-weighted images via super-resolution reconstruction (SRR) techniques. However, during the reconstruction, these SRR methods neglect the q-space relation between the different diffusion-weighted images. An SRR method that includes a diffusion model and directly reconstructs high resolution diffusion parameters from a set of low resolution diffusion-weighted images was proposed. Our method allows an arbitrary combination of diffusion gradient directions and slice orientations for the low resolution diffusion-weighted images, optimally samples the q- and k-space, and performs motion correction with b-matrix rotation. Experiments with synthetic data and in vivo human brain data show an increase of spatial resolution of the diffusion parameters, while preserving a high signal-to-noise ratio and low scan time. Moreover, the proposed SRR method outperforms the previous methods in terms of the root-mean-square error. The proposed SRR method substantially increases the spatial resolution of MRI that can be obtained in a clinically feasible scan time. © 2015 Wiley Periodicals, Inc.

  8. Camera system resolution and its influence on digital image correlation

    DOE PAGES

    Reu, Phillip L.; Sweatt, William; Miller, Timothy; ...

    2014-09-21

    Digital image correlation (DIC) uses images from a camera and lens system to make quantitative measurements of the shape, displacement, and strain of test objects. This increasingly popular method has had little research on the influence of the imaging system resolution on the DIC results. This paper investigates the entire imaging system and studies how both the camera and lens resolution influence the DIC results as a function of the system Modulation Transfer Function (MTF). It will show that when making spatial resolution decisions (including speckle size) the resolution limiting component should be considered. A consequence of the loss ofmore » spatial resolution is that the DIC uncertainties will be increased. This is demonstrated using both synthetic and experimental images with varying resolution. The loss of image resolution and DIC accuracy can be compensated for by increasing the subset size, or better, by increasing the speckle size. The speckle-size and spatial resolution are now a function of the lens resolution rather than the more typical assumption of the pixel size. The study will demonstrate the tradeoffs associated with limited lens resolution.« less

  9. Analysis of the variability of extra-tropical cyclones at the regional scale for the coasts of Northern Germany and investigation of their coastal impacts

    NASA Astrophysics Data System (ADS)

    Schaaf, Benjamin; Feser, Frauke

    2015-04-01

    The evaluation of long-term changes in wind speeds is very important for the coastal areas and the protection measures. Therefor the wind variability at the regional scale for the coast of Northern Germany shall be analysed. In order to derive changes in storminess it is essential to analyse long, homogeneous meteorological time series. Wind measurements often suffer from inconsistencies which arise from changes in instrumentation, observation method, or station location. Reanalysis data take into account such inhomogeneities of observation data and convert these measurements into a consistent, gridded data set with the same grid spacing and time intervals. This leads to a smooth, homogeneous data set, but with relatively low resolution (about 210 km for the longest reanalysis data set, the NCEP reanalysis starting in 1948). Therefore a high-resolution regional atmospheric model will be used to bring these reanalyses to a higher resolution, using in addition to a dynamical downscaling approach the spectral nudging technique. This method 'nudges' the large spatial scales of the regional climate model towards the reanalysis, while the smaller spatial scales are left unchanged. It was applied successfully in a number of applications, leading to realistic atmospheric weather descriptions of the past. With the regional climate model COSMO-CLM a very high-resolution data set was calculated for the last 67 years, the period from 1948 until now. The model area is North Germany with the coastal area of the North sea and parts of the Baltic sea. This is one of the first model simulations on climate scale with a very high resolution of 2.8 km, so even small scale effects can be detected. With this hindcast-simulation there are numerous options of evaluation. One can create wind climatologies for regional areas such as for the metropolitan region of Hamburg. Otherwise one can investigate individual storms in a case study. With a filtering and tracking program the course of individual storms can be tracked and compared with observations. Also statistical studies can be done and one can calculate percentiles, return periods and other different extreme value statistic variables. Later, with a further nesting simulation, the resolution can be reduced to 1 km for individual areas of interest to analyse small islands (as Foehr or Amrum) and their effects on the atmospheric flow more closely.

  10. Attenuated total reflection-Fourier transform infrared imaging of large areas using inverted prism crystals and combining imaging and mapping.

    PubMed

    Chan, K L Andrew; Kazarian, Sergei G

    2008-10-01

    Attenuated total reflection-Fourier transform infrared (ATR-FT-IR) imaging is a very useful tool for capturing chemical images of various materials due to the simple sample preparation and the ability to measure wet samples or samples in an aqueous environment. However, the size of the array detector used for image acquisition is often limited and there is usually a trade off between spatial resolution and the field of view (FOV). The combination of mapping and imaging can be used to acquire images with a larger FOV without sacrificing spatial resolution. Previous attempts have demonstrated this using an infrared microscope and a Germanium hemispherical ATR crystal to achieve images of up to 2.5 mm x 2.5 mm but with varying spatial resolution and depth of penetration across the imaged area. In this paper, we demonstrate a combination of mapping and imaging with a different approach using an external optics housing for large ATR accessories and inverted ATR prisms to achieve ATR-FT-IR images with a large FOV and reasonable spatial resolution. The results have shown that a FOV of 10 mm x 14 mm can be obtained with a spatial resolution of approximately 40-60 microm when using an accessory that gives no magnification. A FOV of 1.3 mm x 1.3 mm can be obtained with spatial resolution of approximately 15-20 microm when using a diamond ATR imaging accessory with 4x magnification. No significant change in image quality such as spatial resolution or depth of penetration has been observed across the whole FOV with this method and the measurement time was approximately 15 minutes for an image consisting of 16 image tiles.

  11. Evaluating the effect of remote sensing image spatial resolution on soil exchangeable potassium prediction models in smallholder farm settings.

    PubMed

    Xu, Yiming; Smith, Scot E; Grunwald, Sabine; Abd-Elrahman, Amr; Wani, Suhas P

    2017-09-15

    Major end users of Digital Soil Mapping (DSM) such as policy makers and agricultural extension workers are faced with choosing the appropriate remote sensing data. The objective of this research is to analyze the spatial resolution effects of different remote sensing images on soil prediction models in two smallholder farms in Southern India called Kothapally (Telangana State), and Masuti (Karnataka State), and provide empirical guidelines to choose the appropriate remote sensing images in DSM. Bayesian kriging (BK) was utilized to characterize the spatial pattern of exchangeable potassium (K ex ) in the topsoil (0-15 cm) at different spatial resolutions by incorporating spectral indices from Landsat 8 (30 m), RapidEye (5 m), and WorldView-2/GeoEye-1/Pleiades-1A images (2 m). Some spectral indices such as band reflectances, band ratios, Crust Index and Atmospherically Resistant Vegetation Index from multiple images showed relatively strong correlations with soil K ex in two study areas. The research also suggested that fine spatial resolution WorldView-2/GeoEye-1/Pleiades-1A-based and RapidEye-based soil prediction models would not necessarily have higher prediction performance than coarse spatial resolution Landsat 8-based soil prediction models. The end users of DSM in smallholder farm settings need select the appropriate spectral indices and consider different factors such as the spatial resolution, band width, spectral resolution, temporal frequency, cost, and processing time of different remote sensing images. Overall, remote sensing-based Digital Soil Mapping has potential to be promoted to smallholder farm settings all over the world and help smallholder farmers implement sustainable and field-specific soil nutrient management scheme. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Single trial detection of hand poses in human ECoG using CSP based feature extraction.

    PubMed

    Kapeller, C; Schneider, C; Kamada, K; Ogawa, H; Kunii, N; Ortner, R; Pruckl, R; Guger, C

    2014-01-01

    Decoding brain activity of corresponding highlevel tasks may lead to an independent and intuitively controlled Brain-Computer Interface (BCI). Most of today's BCI research focuses on analyzing the electroencephalogram (EEG) which provides only limited spatial and temporal resolution. Derived electrocorticographic (ECoG) signals allow the investigation of spatially highly focused task-related activation within the high-gamma frequency band, making the discrimination of individual finger movements or complex grasping tasks possible. Common spatial patterns (CSP) are commonly used for BCI systems and provide a powerful tool for feature optimization and dimensionality reduction. This work focused on the discrimination of (i) three complex hand movements, as well as (ii) hand movement and idle state. Two subjects S1 and S2 performed single `open', `peace' and `fist' hand poses in multiple trials. Signals in the high-gamma frequency range between 100 and 500 Hz were spatially filtered based on a CSP algorithm for (i) and (ii). Additionally, a manual feature selection approach was tested for (i). A multi-class linear discriminant analysis (LDA) showed for (i) an error rate of 13.89 % / 7.22 % and 18.42 % / 1.17 % for S1 and S2 using manually / CSP selected features, where for (ii) a two class LDA lead to a classification error of 13.39 % and 2.33 % for S1 and S2, respectively.

  13. Whole-animal imaging with high spatio-temporal resolution

    NASA Astrophysics Data System (ADS)

    Chhetri, Raghav; Amat, Fernando; Wan, Yinan; Höckendorf, Burkhard; Lemon, William C.; Keller, Philipp J.

    2016-03-01

    We developed isotropic multiview (IsoView) light-sheet microscopy in order to image fast cellular dynamics, such as cell movements in an entire developing embryo or neuronal activity throughput an entire brain or nervous system, with high resolution in all dimensions, high imaging speeds, good physical coverage and low photo-damage. To achieve high temporal resolution and high spatial resolution at the same time, IsoView microscopy rapidly images large specimens via simultaneous light-sheet illumination and fluorescence detection along four orthogonal directions. In a post-processing step, these four views are then combined by means of high-throughput multiview deconvolution to yield images with a system resolution of ≤ 450 nm in all three dimensions. Using IsoView microscopy, we performed whole-animal functional imaging of Drosophila embryos and larvae at a spatial resolution of 1.1-2.5 μm and at a temporal resolution of 2 Hz for up to 9 hours. We also performed whole-brain functional imaging in larval zebrafish and multicolor imaging of fast cellular dynamics across entire, gastrulating Drosophila embryos with isotropic, sub-cellular resolution. Compared with conventional (spatially anisotropic) light-sheet microscopy, IsoView microscopy improves spatial resolution at least sevenfold and decreases resolution anisotropy at least threefold. Compared with existing high-resolution light-sheet techniques, such as lattice lightsheet microscopy or diSPIM, IsoView microscopy effectively doubles the penetration depth and provides subsecond temporal resolution for specimens 400-fold larger than could previously be imaged.

  14. The Use of Coarse Resolution Satellite Imagery to Predict Human Puumala Virus Epidemics in Sweden.

    DTIC Science & Technology

    1992-09-11

    the adverse effects on NDVI data quality can occur in both the spatial and temporal dimension. In other words, a specific pixel value recorded in...are compared to the land-oriented systems.22 On the other hand, the very course spatial resolution has the advantage of greatly reducing the volume...necessary on the scale of individual fields, in which case LANDSAT-TM has higher spatial resolution ; and secondly, when specific

  15. Investigation of noise properties in grating-based x-ray phase tomography with reverse projection method

    NASA Astrophysics Data System (ADS)

    Bao, Yuan; Wang, Yan; Gao, Kun; Wang, Zhi-Li; Zhu, Pei-Ping; Wu, Zi-Yu

    2015-10-01

    The relationship between noise variance and spatial resolution in grating-based x-ray phase computed tomography (PCT) imaging is investigated with reverse projection extraction method, and the noise variances of the reconstructed absorption coefficient and refractive index decrement are compared. For the differential phase contrast method, the noise variance in the differential projection images follows the same inverse-square law with spatial resolution as in conventional absorption-based x-ray imaging projections. However, both theoretical analysis and simulations demonstrate that in PCT the noise variance of the reconstructed refractive index decrement scales with spatial resolution follows an inverse linear relationship at fixed slice thickness, while the noise variance of the reconstructed absorption coefficient conforms with the inverse cubic law. The results indicate that, for the same noise variance level, PCT imaging may enable higher spatial resolution than conventional absorption computed tomography (ACT), while ACT benefits more from degraded spatial resolution. This could be a useful guidance in imaging the inner structure of the sample in higher spatial resolution. Project supported by the National Basic Research Program of China (Grant No. 2012CB825800), the Science Fund for Creative Research Groups, the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant Nos. KJCX2-YW-N42 and Y4545320Y2), the National Natural Science Foundation of China (Grant Nos. 11475170, 11205157, 11305173, 11205189, 11375225, 11321503, 11179004, and U1332109).

  16. [Comparison of film-screen combinations in contrast-detail diagram and with interactive image analysis. 3: Trimodal histograms of gray scale distribution in bar groups of lead pattern images].

    PubMed

    Hagemann, G; Eichbaum, G; Stamm, G

    1998-05-01

    The following four screen film combinations were compared: a) a combination of anticrossover film and UV-light emitting screens, b) a combination of blue-light emitting screens and film and c) two conventional green fluorescing screen film combinations. Radiographs of a specially designed plexiglass phantom (0.2 x 0.2 x 0.12 m3) with bar patterns of lead and plaster and of air, respectively were obtained using the following parameters: 12 pulse generator, 0.6 mm focus size, 4.7 mm aluminum prefilter, a grid with 40 lines/cm (12:1) and a focus-detector distance of 1.15 m. Image analysis was performed using an Ibas system and a Zeiss Kontron computer. Display conditions were the following: display distance 0.12 m, a vario film objective 35/70 (Zeiss), a video camera tube with a PbO photocathode, 625 lines (Siemens Heimann), an Ibas image matrix of 512 x 512 pixels with a spatial resolution of ca. 7 cycles/mm, the projected matrix area was 5000 micron 2. Maxima in the histograms of a grouped bar pattern were estimated as mean values from the bar and gap regions ("mean value method"). They were used to calculate signal contrast, standard deviations of the means and scatter fraction. Comparing the histograms with respect to spatial resolution and kV setting a clear advantage of the UVR system becomes obvious. The quantitative analysis yielded a maximum spatial resolution of approx. 3 cycles/mm for the UVR system at 60 kV which decreased to half of this value at 117 kV caused by the increasing influence of scattered radiation. A ranking of screen-film systems with respect to image quality and dose requirement is presented. For its evaluation an interactive image analysis using the mean value method was found to be superior to signal/noise ratio measurements and visual analysis in respect to diagnostic relevance and saving of time.

  17. Simulation of Orographically-Driven Precipitation in Southern California

    NASA Astrophysics Data System (ADS)

    Carpenter, T. M.; Georgakakos, K. P.

    2008-12-01

    The proximity of the Pacific Ocean to the Transverse and Peninsular Mountain Ranges of coastal Southern California may lead to significant, orographically-enhanced precipitation in the region. With abundant moisture, such as evidenced in Pineapple Express events or atmospheric rivers, this precipitation may lead to other hydrologic hazards as flash flooding, landslides or debris flows. Available precipitation observation networks are relatively sparse in the mountainous regions and often do not capture the spatial variation of these events with high resolution. This study aims to simulate the topographically-driven precipitation over Southern California with high spatial resolution using a simplified orographic precipitation model. The model employs potential theory flow to estimate steady state three-dimensional wind fields for given free stream velocity forcing winds, atmospheric moisture advection, and cloud and precipitation microphysics proposed by Kessler (1969). The advantage of this modeling set-up is the computational efficiency as compared to regional mesoscale models such as the MM5. For this application, the Southern California region, comprised of the counties of Santa Barbara, Ventura, Los Angeles, Orange, and San Diego, and portions of San Bernardino and Riverside counties, are modeled at a 3-km resolution. The orographic precipitation model is forced by free stream wind velocities given by the 700mb winds from the NCEP Reanalysis I dataset. Atmospheric moisture initial conditions are defined also by the NCEP Reanalysis I dataset, and updated 4x- daily with the available 6-hourly NCEP Reanalysis forcing. This paper presents a comparison of the simulated precipitation to observations for over a variety of spatial scales and over the historical wet season periods from October 2000 to April 2005. The comparison is made over several performance measurements including (a) the occurrence/non-occurrence of precipitation, (b) overall bias and correlation, (c) bias and correlation for precipitation exceeding given thresholds, and (d) the frequency distributions of non-zero precipitation. The results of simulation performance are compared to reported results of other orographically-driven precipitation and regional mesoscale model studies within the Western U.S.

  18. The Influence of Spatial Resolutions on the Retrieval Accuracy of Sea Surface Wind Speed with Cross-polarized C-band SAR images

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Han, B.; Mansaray, L. R.; Xu, X.; Guo, Q.; Jingfeng, H.

    2017-12-01

    Synthetic aperture radar (SAR) instruments on board satellites are valuable for high-resolution wind field mapping, especially for coastal studies. Since the launch of Sentinel-1A on April 3, 2014, followed by Sentinel-1B on April 25, 2016, large amount of C-band SAR data have been added to a growing accumulation of SAR datasets (ERS-1/2, RADARSAT-1/2, ENVISAT). These new developments are of great significance for a wide range of applications in coastal sea areas, especially for high spatial resolution wind resource assessment, in which the accuracy of retrieved wind fields is extremely crucial. Recently, it is reported that wind speeds can also be retrieved from C-band cross-polarized SAR images, which is an important complement to wind speed retrieval from co-polarization. However, there is no consensus on the optimal resolution for wind speed retrieval from cross-polarized SAR images. This paper presents a comparison strategy for investigating the influence of spatial resolutions on sea surface wind speed retrieval accuracy with cross-polarized SAR images. Firstly, for wind speeds retrieved from VV-polarized images, the optimal geophysical C-band model (CMOD) function was selected among four CMOD functions. Secondly, the most suitable C-band cross-polarized ocean (C-2PO) model was selected between two C-2POs for the VH-polarized image dataset. Then, the VH-wind speeds retrieved by the selected C-2PO were compared with the VV-polarized sea surface wind speeds retrieved using the optimal CMOD, which served as reference, at different spatial resolutions. Results show that the VH-polarized wind speed retrieval accuracy increases rapidly with the decrease in spatial resolutions from 100 m to 1000 m, with a drop in RMSE of 42%. However, the improvement in wind speed retrieval accuracy levels off with spatial resolutions decreasing from 1000 m to 5000 m. This demonstrates that the pixel spacing of 1 km may be the compromising choice for the tradeoff between the spatial resolution and wind speed retrieval accuracy with cross-polarized images obtained from RADASAT-2 fine quad polarization mode. Figs. 1 illustrate the variation of the following statistical parameters: Bias, Corr, R2, RMSE and STD as a function of spatial resolution.

  19. Regional forest land cover characterisation using medium spatial resolution satellite data

    USGS Publications Warehouse

    Huang, Chengquan; Homer, Collin G.; Yang, Limin; Wulder, Michael A.; Franklin, Steven E.

    2003-01-01

    Increasing demands on forest resources require comprehensive, consistent and up-to-date information on those resources at spatial scales appropriate for management decision-making and for scientific analysis. While such information can be derived using coarse spatial resolution satellite data (e.g. Tucker et al. 1984; Zhu and Evans 1994; Cihlar et al. 1996; Cihlar et al., Chapter 12), many regional applications require more spatial and thematic details than can be derived by using coarse resolution imagery. High spatial resolution satellite data such as IKONOS and Quick Bird images (Aplin et al. 1997), though usable for deriving detailed forest information (Culvenor, Chapter 9), are currently not feasible for wall-to-wall regional applications because of extremely high data cost, huge data volume, and lack of contiguous coverage over large areas. Forest studies over large areas have often been accomplished using data acquired by intermediate spatial resolution sensor systems, including the Multi-Spectral Scanner (MSS), Thematic Mapper (TM) and the Enhanced Thematic Mapper Plus (ETM+) of Landsat, the High Resolution Visible (HRV) of the Systeme Pour l'Observation de la Terre (SPOT), and the Linear Image Self-Scanner (LISS) of the Indian Remote Sensing satellite. These sensor systems are more appropriate for regional applications because they can routinely produce spatially contiguous data over large areas at relatively low cost, and can be used to derive a host of forest attributes (e.g. Cohen et al. 1995; Kimes et al. 1999; Cohen et al. 2001; Huang et al. 2001; Sugumaran 2001). Of the above intermediate spatial resolution satellites, Landsat is perhaps the most widely used in various types of land remote sensing applications, in part because it has provided more extensive spatial and temporal coverage of the globe than any other intermediate resolution satellite. Spatially contiguous Landsat data have been developed for many regions of the globe (e.g. Lunetta and Sturdevant 1993; Fuller et al. 1994b; Skole et al. 1997), and a circa 1990 Landsat image data set covering the entire land area of the globe has also been developed recently (Jones and Smith 2001). An acquisition strategy aimed at acquiring at least one cloud free image per year for the entire land area of the globe has been initiated for Landsat-7 (Arvidson et al. 2001). This will probably ensure the continued dominance of Landsat in the near future.

  20. View-sharing PROPELLER with pixel-based optimal blade selection: application on dynamic contrast-enhanced imaging.

    PubMed

    Chuang, Tzu-Chao; Huang, Hsuan-Hung; Chang, Hing-Chiu; Wu, Ming-Ting

    2014-06-01

    To achieve better spatial and temporal resolution of dynamic contrast-enhanced MR imaging, the concept of k-space data sharing, or view sharing, can be implemented for PROPELLER acquisition. As found in other view-sharing methods, the loss of high-resolution dynamics is possible for view-sharing PROPELLER (VS-Prop) due to the temporal smoothing effect. The degradation can be more severe when a narrow blade with less phase encoding steps is chosen in the acquisition for higher frame rate. In this study, an iterative algorithm termed pixel-based optimal blade selection (POBS) is proposed to allow spatially dependent selection of the rotating blades, to generate high-resolution dynamic images with minimal reconstruction artifacts. In the reconstruction of VS-Prop, the central k-space which dominates the image contrast is only provided by the target blade with the peripheral k-space contributed by a minimal number of consecutive rotating blades. To reduce the reconstruction artifacts, the set of neighboring blades exhibiting the closest image contrast with the target blade is picked by POBS algorithm. Numerical simulations and phantom experiments were conducted in this study to investigate the dynamic response and spatial profiles of images generated using our proposed method. In addition, dynamic contrast-enhanced cardiovascular imaging of healthy subjects was performed to demonstrate the feasibility and advantages. The simulation results show that POBS VS-Prop can provide timely dynamic response to rapid signal change, especially for a small region of interest or with the use of narrow blades. The POBS algorithm also demonstrates its capability to capture nonsimultaneous signal changes over the entire FOV. In addition, both phantom and in vivo experiments show that the temporal smoothing effect can be avoided by means of POBS, leading to higher wash-in slope of contrast enhancement after the bolus injection. With the satisfactory reconstruction quality provided by the POBS algorithm, VS-Prop acquisition technique may find useful clinical applications in DCE MR imaging studies where both spatial and temporal resolutions play important roles.

  1. Connotations of pixel-based scale effect in remote sensing and the modified fractal-based analysis method

    NASA Astrophysics Data System (ADS)

    Feng, Guixiang; Ming, Dongping; Wang, Min; Yang, Jianyu

    2017-06-01

    Scale problems are a major source of concern in the field of remote sensing. Since the remote sensing is a complex technology system, there is a lack of enough cognition on the connotation of scale and scale effect in remote sensing. Thus, this paper first introduces the connotations of pixel-based scale and summarizes the general understanding of pixel-based scale effect. Pixel-based scale effect analysis is essentially important for choosing the appropriate remote sensing data and the proper processing parameters. Fractal dimension is a useful measurement to analysis pixel-based scale. However in traditional fractal dimension calculation, the impact of spatial resolution is not considered, which leads that the scale effect change with spatial resolution can't be clearly reflected. Therefore, this paper proposes to use spatial resolution as the modified scale parameter of two fractal methods to further analyze the pixel-based scale effect. To verify the results of two modified methods (MFBM (Modified Windowed Fractal Brownian Motion Based on the Surface Area) and MDBM (Modified Windowed Double Blanket Method)); the existing scale effect analysis method (information entropy method) is used to evaluate. And six sub-regions of building areas and farmland areas were cut out from QuickBird images to be used as the experimental data. The results of the experiment show that both the fractal dimension and information entropy present the same trend with the decrease of spatial resolution, and some inflection points appear at the same feature scales. Further analysis shows that these feature scales (corresponding to the inflection points) are related to the actual sizes of the geo-object, which results in fewer mixed pixels in the image, and these inflection points are significantly indicative of the observed features. Therefore, the experiment results indicate that the modified fractal methods are effective to reflect the pixel-based scale effect existing in remote sensing data and it is helpful to analyze the observation scale from different aspects. This research will ultimately benefit for remote sensing data selection and application.

  2. Spatial Resolution, Grayscale, and Error Diffusion Trade-offs: Impact on Display System Design

    NASA Technical Reports Server (NTRS)

    Gille, Jennifer L. (Principal Investigator)

    1996-01-01

    We examine technology trade-offs related to grayscale resolution, spatial resolution, and error diffusion for tessellated display systems. We present new empirical results from our psychophysical study of these trade-offs and compare them to the predictions of a model of human vision.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan, Venkat; Cole, Wesley

    This poster is based on the paper of the same name, presented at the IEEE Power & Energy Society General Meeting, July18, 2016. Power sector capacity expansion models (CEMs) have a broad range of spatial resolutions. This paper uses the Regional Energy Deployment System (ReEDS) model, a long-term national scale electric sector CEM, to evaluate the value of high spatial resolution for CEMs. ReEDS models the United States with 134 load balancing areas (BAs) and captures the variability in existing generation parameters, future technology costs, performance, and resource availability using very high spatial resolution data, especially for wind and solarmore » modeled at 356 resource regions. In this paper we perform planning studies at three different spatial resolutions - native resolution (134 BAs), state-level, and NERC region level - and evaluate how results change under different levels of spatial aggregation in terms of renewable capacity deployment and location, associated transmission builds, and system costs. The results are used to ascertain the value of high geographically resolved models in terms of their impact on relative competitiveness among renewable energy resources.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Lan, E-mail: lgao@pppl.gov; Hill, K. W.; Bitter, M.

    A high spatial resolution of a few μm is often required for probing small-scale high-energy-density plasmas using high resolution x-ray imaging spectroscopy. This resolution can be achieved by adjusting system magnification to overcome the inherent limitation of the detector pixel size. Laboratory experiments on investigating the relation between spatial resolution and system magnification for a spherical crystal spectrometer are presented. Tungsten Lβ{sub 2} rays from a tungsten-target micro-focus x-ray tube were diffracted by a Ge 440 crystal, which was spherically bent to a radius of 223 mm, and imaged onto an x-ray CCD with 13-μm pixel size. The source-to-crystal (p)more » and crystal-to-detector (q) distances were varied to produce spatial magnifications (M = q/p) ranging from 2 to 10. The inferred instrumental spatial width reduces with increasing system magnification M. However, the experimental measurement at each M is larger than the theoretical value of pixel size divided by M. Future work will focus on investigating possible broadening mechanisms that limit the spatial resolution.« less

  5. Simulation the spatial resolution of an X-ray imager based on zinc oxide nanowires in anodic aluminium oxide membrane by using MCNP and OPTICS Codes

    NASA Astrophysics Data System (ADS)

    Samarin, S. N.; Saramad, S.

    2018-05-01

    The spatial resolution of a detector is a very important parameter for x-ray imaging. A bulk scintillation detector because of spreading of light inside the scintillator does't have a good spatial resolution. The nanowire scintillators because of their wave guiding behavior can prevent the spreading of light and can improve the spatial resolution of traditional scintillation detectors. The zinc oxide (ZnO) scintillator nanowire, with its simple construction by electrochemical deposition in regular hexagonal structure of Aluminum oxide membrane has many advantages. The three dimensional absorption of X-ray energy in ZnO scintillator is simulated by a Monte Carlo transport code (MCNP). The transport, attenuation and scattering of the generated photons are simulated by a general-purpose scintillator light response simulation code (OPTICS). The results are compared with a previous publication which used a simulation code of the passage of particles through matter (Geant4). The results verify that this scintillator nanowire structure has a spatial resolution less than one micrometer.

  6. Effects of spatial resolution and landscape structure on land cover characterization

    NASA Astrophysics Data System (ADS)

    Yang, Wenli

    This dissertation addressed problems in scaling, problems that are among the main challenges in remote sensing. The principal objective of the research was to investigate the effects of changing spatial scale on the representation of land cover. A second objective was to determine the relationship between such effects, characteristics of landscape structure and scaling procedures. Four research issues related to spatial scaling were examined. They included: (1) the upscaling of Normalized Difference Vegetation Index (NDVI); (2) the effects of spatial scale on indices of landscape structure; (3) the representation of land cover databases at different spatial scales; and (4) the relationships between landscape indices and land cover area estimations. The overall bias resulting from non-linearity of NDVI in relation to spatial resolution is generally insignificant as compared to other factors such as influences of aerosols and water vapor. The bias is, however, related to land surface characteristics. Significant errors may be introduced in heterogeneous areas where different land cover types exhibit strong spectral contrast. Spatially upscaled SPOT and TM NDVIs have information content comparable with the AVHRR-derived NDVI. Indices of landscape structure and spatial resolution are generally related, but the exact forms of the relationships are subject to changes in other factors including the basic patch unit constituting a landscape and the proportional area of foreground land cover under consideration. The extent of agreement between spatially aggregated coarse resolution land cover datasets and full resolution datasets changes with the properties of the original datasets, including the pixel size and class definition. There are close relationships between landscape structure and class areas estimated from spatially aggregated land cover databases. The relationships, however, do not permit extension from one area to another. Inversion calibration across different geographic/ecological areas is, therefore, not feasible. Different rules govern the land cover area changes across resolutions when different upscaling methods are used. Special attention should be given to comparison between land cover maps derived using different methods.

  7. A review of potential image fusion methods for remote sensing-based irrigation management: Part II

    USDA-ARS?s Scientific Manuscript database

    Satellite-based sensors provide data at either greater spectral and coarser spatial resolutions, or lower spectral and finer spatial resolutions due to complementary spectral and spatial characteristics of optical sensor systems. In order to overcome this limitation, image fusion has been suggested ...

  8. Hi-Res scan mode in clinical MDCT systems: Experimental assessment of spatial resolution performance

    PubMed Central

    Cruz-Bastida, Juan P.; Gomez-Cardona, Daniel; Li, Ke; Sun, Heyi; Hsieh, Jiang; Szczykutowicz, Timothy P.; Chen, Guang-Hong

    2016-01-01

    Purpose: The introduction of a High-Resolution (Hi-Res) scan mode and another associated option that combines Hi-Res mode with the so-called High Definition (HD) reconstruction kernels (referred to as a Hi-Res/HD mode in this paper) in some multi-detector CT (MDCT) systems offers new opportunities to increase spatial resolution for some clinical applications that demand high spatial resolution. The purpose of this work was to quantify the in-plane spatial resolution along both the radial direction and tangential direction for the Hi-Res and Hi-Res/HD scan modes at different off-center positions. Methods: A technique was introduced and validated to address the signal saturation problem encountered in the attempt to quantify spatial resolution for the Hi-Res and Hi-Res/HD scan modes. Using the proposed method, the modulation transfer functions (MTFs) of a 64-slice MDCT system (Discovery CT750 HD, GE Healthcare) equipped with both Hi-Res and Hi-Res/HD modes were measured using a metal bead at nine different off-centered positions (0–16 cm with a step size of 2 cm); at each position, both conventional scans and Hi-Res scans were performed. For each type of scan and position, 80 repeated acquisitions were performed to reduce noise induced uncertainties in the MTF measurements. A total of 15 reconstruction kernels, including eight conventional kernels and seven HD kernels, were used to reconstruct CT images of the bead. An ex vivo animal study consisting of a bone fracture model was performed to corroborate the MTF results, as the detection of this high-contrast and high frequency task is predominantly determined by spatial resolution. Images of this animal model generated by different scan modes and reconstruction kernels were qualitatively compared with the MTF results. Results: At the centered position, the use of Hi-Res mode resulted in a slight improvement in the MTF; each HD kernel generated higher spatial resolution than its counterpart conventional kernel. However, the MTF along the tangential direction of the scan field of view (SFOV) was significantly degraded at off-centered positions, yet the combined Hi-Res/HD mode reduced this azimuthal MTF degradation. Images of the animal bone fracture model confirmed the improved spatial resolution at the off-centered positions through the use of the Hi-Res mode and HD kernels. Conclusions: The Hi-Res/HD scan improve spatial resolution of MDCT systems at both centered and off-centered positions. PMID:27147351

  9. Hi-Res scan mode in clinical MDCT systems: Experimental assessment of spatial resolution performance.

    PubMed

    Cruz-Bastida, Juan P; Gomez-Cardona, Daniel; Li, Ke; Sun, Heyi; Hsieh, Jiang; Szczykutowicz, Timothy P; Chen, Guang-Hong

    2016-05-01

    The introduction of a High-Resolution (Hi-Res) scan mode and another associated option that combines Hi-Res mode with the so-called High Definition (HD) reconstruction kernels (referred to as a Hi-Res/HD mode in this paper) in some multi-detector CT (MDCT) systems offers new opportunities to increase spatial resolution for some clinical applications that demand high spatial resolution. The purpose of this work was to quantify the in-plane spatial resolution along both the radial direction and tangential direction for the Hi-Res and Hi-Res/HD scan modes at different off-center positions. A technique was introduced and validated to address the signal saturation problem encountered in the attempt to quantify spatial resolution for the Hi-Res and Hi-Res/HD scan modes. Using the proposed method, the modulation transfer functions (MTFs) of a 64-slice MDCT system (Discovery CT750 HD, GE Healthcare) equipped with both Hi-Res and Hi-Res/HD modes were measured using a metal bead at nine different off-centered positions (0-16 cm with a step size of 2 cm); at each position, both conventional scans and Hi-Res scans were performed. For each type of scan and position, 80 repeated acquisitions were performed to reduce noise induced uncertainties in the MTF measurements. A total of 15 reconstruction kernels, including eight conventional kernels and seven HD kernels, were used to reconstruct CT images of the bead. An ex vivo animal study consisting of a bone fracture model was performed to corroborate the MTF results, as the detection of this high-contrast and high frequency task is predominantly determined by spatial resolution. Images of this animal model generated by different scan modes and reconstruction kernels were qualitatively compared with the MTF results. At the centered position, the use of Hi-Res mode resulted in a slight improvement in the MTF; each HD kernel generated higher spatial resolution than its counterpart conventional kernel. However, the MTF along the tangential direction of the scan field of view (SFOV) was significantly degraded at off-centered positions, yet the combined Hi-Res/HD mode reduced this azimuthal MTF degradation. Images of the animal bone fracture model confirmed the improved spatial resolution at the off-centered positions through the use of the Hi-Res mode and HD kernels. The Hi-Res/HD scan improve spatial resolution of MDCT systems at both centered and off-centered positions.

  10. Monte Carlo-based assessment of the trade-off between spatial resolution, field-of-view and scattered radiation in the variable resolution X-ray CT scanner.

    PubMed

    Arabi, Hossein; Kamali Asl, Ali Reza; Ay, Mohammad Reza; Zaidi, Habib

    2015-07-01

    The purpose of this work is to evaluate the impact of optimization of magnification on performance parameters of the variable resolution X-ray (VRX) CT scanner. A realistic model based on an actual VRX CT scanner was implemented in the GATE Monte Carlo simulation platform. To evaluate the influence of system magnification, spatial resolution, field-of-view (FOV) and scatter-to-primary ratio of the scanner were estimated for both fixed and optimum object magnification at each detector rotation angle. Comparison and inference between these performance parameters were performed angle by angle to determine appropriate object position at each opening half angle. Optimization of magnification resulted in a trade-off between spatial resolution and FOV of the scanner at opening half angles of 90°-12°, where the spatial resolution increased up to 50% and the scatter-to-primary ratio decreased from 4.8% to 3.8% at a detector angle of about 90° for the same FOV and X-ray energy spectrum. The disadvantage of magnification optimization at these angles is the significant reduction of the FOV (up to 50%). Moreover, magnification optimization was definitely beneficial for opening half angles below 12° improving the spatial resolution from 7.5 cy/mm to 20 cy/mm. Meanwhile, the FOV increased by more than 50% at these angles. It can be concluded that optimization of magnification is essential for opening half angles below 12°. For opening half angles between 90° and 12°, the VRX CT scanner magnification should be set according to the desired spatial resolution and FOV. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  11. Improvement of range spatial resolution of medical ultrasound imaging by element-domain signal processing

    NASA Astrophysics Data System (ADS)

    Hasegawa, Hideyuki

    2017-07-01

    The range spatial resolution is an important factor determining the image quality in ultrasonic imaging. The range spatial resolution in ultrasonic imaging depends on the ultrasonic pulse length, which is determined by the mechanical response of the piezoelectric element in an ultrasonic probe. To improve the range spatial resolution without replacing the transducer element, in the present study, methods based on maximum likelihood (ML) estimation and multiple signal classification (MUSIC) were proposed. The proposed methods were applied to echo signals received by individual transducer elements in an ultrasonic probe. The basic experimental results showed that the axial half maximum of the echo from a string phantom was improved from 0.21 mm (conventional method) to 0.086 mm (ML) and 0.094 mm (MUSIC).

  12. Influence of high resolution rainfall data on the hydrological response of urban flat catchments

    NASA Astrophysics Data System (ADS)

    Cristiano, Elena; ten Veldhuis, Marie-claire; van de Giesen, Nick

    2016-04-01

    In the last decades, cities have become more and more urbanized and population density in urban areas is increased. At the same time, due to the climate changes, rainfall events present higher intensity and shorter duration than in the past. The increase of imperviousness degree, due to urbanization, combined with short and intense rainfall events, determinates a fast hydrological response of the urban catchment and in some cases it can lead to flooding. Urban runoff processes are sensitive to rainfall spatial and temporal variability and, for this reason, high resolution rainfall data are required as input for the hydrological model. A better knowledge of the hydrological response of system can help to prevent damages caused by flooding. This study aims to evaluate the sensitivity of urban hydrological response to spatial and temporal rainfall variability in urban areas, focusing especially on understanding the hydrological behaviour in lowland areas. In flat systems, during intense rainfall events, the flow in the sewer network can be pressurized and it can change direction, depending on the setting of pumping stations and CSOs (combined sewer overflow). In many cases these systems are also looped and it means that the water can follow different paths, depending on the pipe filling process. For these reasons, hydrological response of flat and looped catchments is particularly complex and it can be difficult characterize and predict it. A new dual polarimetric X-band weather radar, able to measure rainfall with temporal resolution of 1 min and spatial resolution of 100mX100m, was recently installed in the city of Rotterdam (NL). With this instrument, high resolution rainfall data were measured and used, in this work, as input for the hydrodynamic model. High detailed, semi-distributed hydrodynamic models of some districts of Rotterdam were used to investigate the hydrological response of flat catchments to high resolution rainfall data. In particular, the hydrological response of some subcatchments of the district of Kralingen was studied. Rainfall data were combined with level and discharge measurements at the pumping station that connects the sewer system with the waste water treatment plane. Using this data it was possible to study the water balance and to have a better idea of the amount of water that leave the system during a specific rainfall events. Results show that the hydrological response of flat and looped catchments is sensitive to spatial and temporal rainfall variability and it can be strongly influenced by rainfall event characteristics, such as intensity, velocity and intermittency of the storm.

  13. Investigation of spatial resolution and temporal performance of SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout) with integrated electrostatic focusing

    NASA Astrophysics Data System (ADS)

    Scaduto, David A.; Lubinsky, Anthony R.; Rowlands, John A.; Kenmotsu, Hidenori; Nishimoto, Norihito; Nishino, Takeshi; Tanioka, Kenkichi; Zhao, Wei

    2014-03-01

    We have previously proposed SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout), a novel detector concept with potentially superior spatial resolution and low-dose performance compared with existing flat-panel imagers. The detector comprises a scintillator that is optically coupled to an amorphous selenium photoconductor operated with avalanche gain, known as high-gain avalanche rushing photoconductor (HARP). High resolution electron beam readout is achieved using a field emitter array (FEA). This combination of avalanche gain, allowing for very low-dose imaging, and electron emitter readout, providing high spatial resolution, offers potentially superior image quality compared with existing flat-panel imagers, with specific applications to fluoroscopy and breast imaging. Through the present collaboration, a prototype HARP sensor with integrated electrostatic focusing and nano- Spindt FEA readout technology has been fabricated. The integrated electron-optic focusing approach is more suitable for fabricating large-area detectors. We investigate the dependence of spatial resolution on sensor structure and operating conditions, and compare the performance of electrostatic focusing with previous technologies. Our results show a clear dependence of spatial resolution on electrostatic focusing potential, with performance approaching that of the previous design with external mesh-electrode. Further, temporal performance (lag) of the detector is evaluated and the results show that the integrated electrostatic focusing design exhibits comparable or better performance compared with the mesh-electrode design. This study represents the first technical evaluation and characterization of the SAPHIRE concept with integrated electrostatic focusing.

  14. Analysis of the kinestatic charge detection system as a high detective quantum efficiency electronic portal imaging device.

    PubMed

    Samant, Sanjiv S; Gopal, Arun

    2006-09-01

    Megavoltage x-ray imaging suffers from reduced image quality due to low differential x-ray attenuation and large Compton scatter compared with kilovoltage imaging. Notwithstanding this, electronic portal imaging devices (EPIDs) are now widely used in portal verification in radiotherapy as they offer significant advantages over film, including immediate digital imaging and superior contrast range. However video-camera-based EPIDs (VEPIDs) are limited by problems of low light collection efficiency and significant light scatter, leading to reduced contrast and spatial resolution. Indirect and direct detection-based flat-panel EPIDs have been developed to overcome these limitations. While flat-panel image quality has been reported to exceed that achieved with portal film, these systems have detective quantum efficiency (DQE) limited by the thin detection medium and are sensitive to radiation damage to peripheral read-out electronics. An alternative technology for high-quality portal imaging is presented here: kinesatic charge detection (KCD). The KCD is a scanning tri-electrode ion-chamber containing high-pressure noble gas (xenon at 100 atm) used in conjunction with a strip-collimated photon beam. The chamber is scanned across the patient, and an external electric field is used to regulate the cation drift velocity. By matching the scanning velocity with that of the cation (i.e., ion) drift velocity, the cations remain static in the object frame of reference, allowing temporal integration of the signal. The KCD offers several advantages as a portal imaging system. It has a thick detector geometry with an active detection depth of 6.1 cm, compared to the sub-millimeter thickness of the phosphor layer in conventional phosphor screens, leading to an order of magnitude advantage in quantum efficiency (>0.3). The unique principle of and the use of the scanning strip-collimated x-ray beam provide further integration of charges in time, reduced scatter, and a significantly reduced imaging dose, enhancing the imaging signal-to-noise ratio (SNR) and leading to high DQE. While thick detectors usually suffer from reduced spatial resolution, the KCD provides good spatial resolution due to high gas pressure that limits the spread of scattered electrons, and a strip-collimated beam that significantly reduces the inclusion of scatter in the imaging signal. A 10 cm wide small-field-of-view (SFOV) prototype of the KCD is presented with a complete analysis of its imaging performance. Measurements of modulation transfer function (MTF), noise power spectrum (NPS), and DQE were in good agreement with Monte Carlo simulations. Imaging signal loss from recombination within the KCD chamber was measured at different gas pressures, ion drift velocities, and strip-collimation widths. Image quality for the prototype KCD was also observed with anthropomorphic phantom imaging in comparison with various commercial and research portal imaging systems, including VEPID, flat-panel imager, and conventional and high contrast film systems. KCD-based imaging provided very good contrast and good spatial resolution at very low imaging dose (0.1 cGy per image). For the prototype KCD, measurements yielded DQE(0)=0.19 and DQE(1 cy/mm)=0.004.

  15. Using High Spatial Resolution to Improve BOLD fMRI Detection at 3T

    PubMed Central

    Claise, Béatrice; Jean, Betty

    2015-01-01

    For different functional magnetic resonance imaging experiments using blood oxygenation level-dependent (BOLD) contrast, the acquisition of T 2*-weighted scans at a high spatial resolution may be advantageous in terms of time-course signal-to-noise ratio and of BOLD sensitivity when the regions are prone to susceptibility artifacts. In this study, we explore this solution by examining how spatial resolution influences activations elicited when appetizing food pictures are viewed. Twenty subjects were imaged at 3 T with two different voxel volumes, 3.4 μl and 27 μl. Despite the diminution of brain coverage, we found that high-resolution acquisition led to a better detection of activations. Though known to suffer to different degrees from susceptibility artifacts, the activations detected by high spatial resolution were notably consistent with those reported in published activation likelihood estimation meta-analyses, corresponding to taste-responsive regions. Furthermore, these regions were found activated bilaterally, in contrast with previous findings. Both the reduction of partial volume effect, which improves BOLD contrast, and the mitigation of susceptibility artifact, which boosts the signal to noise ratio in certain regions, explained the better detection noted with high resolution. The present study provides further evidences that high spatial resolution is a valuable solution for human BOLD fMRI, especially for studying food-related stimuli. PMID:26550990

  16. Mapping atomic motions with ultrabright electrons: towards fundamental limits in space-time resolution.

    PubMed

    Manz, Stephanie; Casandruc, Albert; Zhang, Dongfang; Zhong, Yinpeng; Loch, Rolf A; Marx, Alexander; Hasegawa, Taisuke; Liu, Lai Chung; Bayesteh, Shima; Delsim-Hashemi, Hossein; Hoffmann, Matthias; Felber, Matthias; Hachmann, Max; Mayet, Frank; Hirscht, Julian; Keskin, Sercan; Hada, Masaki; Epp, Sascha W; Flöttmann, Klaus; Miller, R J Dwayne

    2015-01-01

    The long held objective of directly observing atomic motions during the defining moments of chemistry has been achieved based on ultrabright electron sources that have given rise to a new field of atomically resolved structural dynamics. This class of experiments requires not only simultaneous sub-atomic spatial resolution with temporal resolution on the 100 femtosecond time scale but also has brightness requirements approaching single shot atomic resolution conditions. The brightness condition is in recognition that chemistry leads generally to irreversible changes in structure during the experimental conditions and that the nanoscale thin samples needed for electron structural probes pose upper limits to the available sample or "film" for atomic movies. Even in the case of reversible systems, the degree of excitation and thermal effects require the brightest sources possible for a given space-time resolution to observe the structural changes above background. Further progress in the field, particularly to the study of biological systems and solution reaction chemistry, requires increased brightness and spatial coherence, as well as an ability to tune the electron scattering cross-section to meet sample constraints. The electron bunch density or intensity depends directly on the magnitude of the extraction field for photoemitted electron sources and electron energy distribution in the transverse and longitudinal planes of electron propagation. This work examines the fundamental limits to optimizing these parameters based on relativistic electron sources using re-bunching cavity concepts that are now capable of achieving 10 femtosecond time scale resolution to capture the fastest nuclear motions. This analysis is given for both diffraction and real space imaging of structural dynamics in which there are several orders of magnitude higher space-time resolution with diffraction methods. The first experimental results from the Relativistic Electron Gun for Atomic Exploration (REGAE) are given that show the significantly reduced multiple electron scattering problem in this regime, which opens up micron scale systems, notably solution phase chemistry, to atomically resolved structural dynamics.

  17. Variability of 4D flow parameters when subjected to changes in MRI acquisition parameters using a realistic thoracic aortic phantom.

    PubMed

    Montalba, Cristian; Urbina, Jesus; Sotelo, Julio; Andia, Marcelo E; Tejos, Cristian; Irarrazaval, Pablo; Hurtado, Daniel E; Valverde, Israel; Uribe, Sergio

    2018-04-01

    To assess the variability of peak flow, mean velocity, stroke volume, and wall shear stress measurements derived from 3D cine phase contrast (4D flow) sequences under different conditions of spatial and temporal resolutions. We performed controlled experiments using a thoracic aortic phantom. The phantom was connected to a pulsatile flow pump, which simulated nine physiological conditions. For each condition, 4D flow data were acquired with different spatial and temporal resolutions. The 2D cine phase contrast and 4D flow data with the highest available spatio-temporal resolution were considered as a reference for comparison purposes. When comparing 4D flow acquisitions (spatial and temporal resolution of 2.0 × 2.0 × 2.0 mm 3 and 40 ms, respectively) with 2D phase-contrast flow acquisitions, the underestimation of peak flow, mean velocity, and stroke volume were 10.5, 10 and 5%, respectively. However, the calculated wall shear stress showed an underestimation larger than 70% for the former acquisition, with respect to 4D flow, with spatial and temporal resolution of 1.0 × 1.0 × 1.0 mm 3 and 20 ms, respectively. Peak flow, mean velocity, and stroke volume from 4D flow data are more sensitive to changes of temporal than spatial resolution, as opposed to wall shear stress, which is more sensitive to changes in spatial resolution. Magn Reson Med 79:1882-1892, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  18. Results on the spatial resolution of repetitive transcranial magnetic stimulation for cortical language mapping during object naming in healthy subjects.

    PubMed

    Sollmann, Nico; Hauck, Theresa; Tussis, Lorena; Ille, Sebastian; Maurer, Stefanie; Boeckh-Behrens, Tobias; Ringel, Florian; Meyer, Bernhard; Krieg, Sandro M

    2016-10-24

    The spatial resolution of repetitive navigated transcranial magnetic stimulation (rTMS) for language mapping is largely unknown. Thus, to determine a minimum spatial resolution of rTMS for language mapping, we evaluated the mapping sessions derived from 19 healthy volunteers for cortical hotspots of no-response errors. Then, the distances between hotspots (stimulation points with a high error rate) and adjacent mapping points (stimulation points with low error rates) were evaluated. Mean distance values of 13.8 ± 6.4 mm (from hotspots to ventral points, range 0.7-30.7 mm), 10.8 ± 4.8 mm (from hotspots to dorsal points, range 2.0-26.5 mm), 16.6 ± 4.8 mm (from hotspots to apical points, range 0.9-27.5 mm), and 13.8 ± 4.3 mm (from hotspots to caudal points, range 2.0-24.2 mm) were measured. According to the results, the minimum spatial resolution of rTMS should principally allow for the identification of a particular gyrus, and according to the literature, it is in good accordance with the spatial resolution of direct cortical stimulation (DCS). Since measurement was performed between hotspots and adjacent mapping points and not on a finer-grained basis, we only refer to a minimum spatial resolution. Furthermore, refinement of our results within the scope of a prospective study combining rTMS and DCS for resolution measurement during language mapping should be the next step.

  19. Towards a microchannel-based X-ray detector with two-dimensional spatial and time resolution and high dynamic range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Bernhard W.; Mane, Anil U.; Elam, Jeffrey W.

    X-ray detectors that combine two-dimensional spatial resolution with a high time resolution are needed in numerous applications of synchrotron radiation. Most detectors with this combination of capabilities are based on semiconductor technology and are therefore limited in size. Furthermore, the time resolution is often realised through rapid time-gating of the acquisition, followed by a slower readout. Here, a detector technology is realised based on relatively inexpensive microchannel plates that uses GHz waveform sampling for a millimeter-scale spatial resolution and better than 100 ps time resolution. The technology is capable of continuous streaming of time- and location-tagged events at rates greatermore » than 10 7events per cm 2. Time-gating can be used for improved dynamic range.« less

  20. Combined multi-plane phase retrieval and super-resolution optical fluctuation imaging for 4D cell microscopy

    NASA Astrophysics Data System (ADS)

    Descloux, A.; Grußmayer, K. S.; Bostan, E.; Lukes, T.; Bouwens, A.; Sharipov, A.; Geissbuehler, S.; Mahul-Mellier, A.-L.; Lashuel, H. A.; Leutenegger, M.; Lasser, T.

    2018-03-01

    Super-resolution fluorescence microscopy provides unprecedented insight into cellular and subcellular structures. However, going `beyond the diffraction barrier' comes at a price, since most far-field super-resolution imaging techniques trade temporal for spatial super-resolution. We propose the combination of a novel label-free white light quantitative phase imaging with fluorescence to provide high-speed imaging and spatial super-resolution. The non-iterative phase retrieval relies on the acquisition of single images at each z-location and thus enables straightforward 3D phase imaging using a classical microscope. We realized multi-plane imaging using a customized prism for the simultaneous acquisition of eight planes. This allowed us to not only image live cells in 3D at up to 200 Hz, but also to integrate fluorescence super-resolution optical fluctuation imaging within the same optical instrument. The 4D microscope platform unifies the sensitivity and high temporal resolution of phase imaging with the specificity and high spatial resolution of fluorescence microscopy.

  1. Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution

    PubMed Central

    Bishara, Waheb; Su, Ting-Wei; Coskun, Ahmet F.; Ozcan, Aydogan

    2010-01-01

    We demonstrate lensfree holographic microscopy on a chip to achieve ~0.6 µm spatial resolution corresponding to a numerical aperture of ~0.5 over a large field-of-view of ~24 mm2. By using partially coherent illumination from a large aperture (~50 µm), we acquire lower resolution lensfree in-line holograms of the objects with unit fringe magnification. For each lensfree hologram, the pixel size at the sensor chip limits the spatial resolution of the reconstructed image. To circumvent this limitation, we implement a sub-pixel shifting based super-resolution algorithm to effectively recover much higher resolution digital holograms of the objects, permitting sub-micron spatial resolution to be achieved across the entire sensor chip active area, which is also equivalent to the imaging field-of-view (24 mm2) due to unit magnification. We demonstrate the success of this pixel super-resolution approach by imaging patterned transparent substrates, blood smear samples, as well as Caenoharbditis Elegans. PMID:20588977

  2. Pushing the limits of spatial resolution with the Kuiper Airborne observatory

    NASA Technical Reports Server (NTRS)

    Lester, Daniel

    1994-01-01

    The study of astronomical objects at high spatial resolution in the far-IR is one of the most serious limitations to our work at these wavelengths, which carry information about the luminosity of dusty and obscured sources. At IR wavelengths shorter than 30 microns, ground based telescopes with large apertures at superb sites achieve diffraction-limited performance close to the seeing limit in the optical. At millimeter wavelengths, ground based interferometers achieve resolution that is close to this. The inaccessibility of the far-IR from the ground makes it difficult, however, to achieve complementary resolution in the far-IR. The 1983 IRAS survey, while extraordinarily sensitive, provides us with a sky map at a spatial resolution that is limited by detector size on a spatial scale that is far larger than that available in other wavelengths on the ground. The survey resolution is of order 4 min in the 100 micron bandpass, and 2 min at 60 microns (IRAS Explanatory Supplement, 1988). Information on a scale of 1' is available on some sources from the CPC. Deconvolution and image resolution using this database is one of the subjects of this workshop.

  3. Urban-scale mapping of PM2.5 distribution via data fusion between high-density sensor network and MODIS Aerosol Optical Depth

    NASA Astrophysics Data System (ADS)

    Ba, Yu Tao; xian Liu, Bao; Sun, Feng; Wang, Li hua; Tang, Yu jia; Zhang, Da wei

    2017-04-01

    High-resolution mapping of PM2.5 is the prerequisite for precise analytics and subsequent anti-pollution interventions. Considering the large variances of particulate distribution, urban-scale mapping is challenging either with ground-based fixed stations, with satellites or via models. In this study, a dynamic fusion method between high-density sensor network and MODIS Aerosol Optical Depth (AOD) was introduced. The sensor network was deployed in Beijing ( > 1000 fixed monitors across 16000 km2 area) to provide raw observations with high temporal resolution (sampling interval < 1 hour), high spatial resolution in flat areas ( < 1 km), and low spatial resolution in mountainous areas ( > 5 km). The MODIS AOD was calibrated to provide distribution map with low temporal resolution (daily) and moderate spatial resolution ( = 3 km). By encoding the data quality and defects (e.g. could, reflectance, abnormal), a hybrid interpolation procedure with cross-validation generated PM2.5 distribution with both high temporal and spatial resolution. Several no-pollutant and high-pollution periods were tested to validate the proposed fusion method for capturing the instantaneous patterns of PM2.5 emission.

  4. Selective spatial enhancement: Attentional spotlight size impacts spatial but not temporal perception.

    PubMed

    Goodhew, Stephanie C; Shen, Elizabeth; Edwards, Mark

    2016-08-01

    An important but often neglected aspect of attention is how changes in the attentional spotlight size impact perception. The zoom-lens model predicts that a small ("focal") attentional spotlight enhances all aspects of perception relative to a larger ("diffuse" spotlight). However, based on the physiological properties of the two major classes of visual cells (magnocellular and parvocellular neurons) we predicted trade-offs in spatial and temporal acuity as a function of spotlight size. Contrary to both of these accounts, however, across two experiments we found that attentional spotlight size affected spatial acuity, such that spatial acuity was enhanced for a focal relative to a diffuse spotlight, whereas the same modulations in spotlight size had no impact on temporal acuity. This likely reflects the function of attention: to induce the high spatial resolution of the fovea in periphery, where spatial resolution is poor but temporal resolution is good. It is adaptive, therefore, for the attentional spotlight to enhance spatial acuity, whereas enhancing temporal acuity does not confer the same benefit.

  5. Attentional enhancement of spatial resolution: linking behavioural and neurophysiological evidence

    PubMed Central

    Anton-Erxleben, Katharina; Carrasco, Marisa

    2014-01-01

    Attention allows us to select relevant sensory information for preferential processing. Behaviourally, it improves performance in various visual tasks. One prominent effect of attention is the modulation of performance in tasks that involve the visual system’s spatial resolution. Physiologically, attention modulates neuronal responses and alters the profile and position of receptive fields near the attended location. Here, we develop a hypothesis linking the behavioural and electrophysiological evidence. The proposed framework seeks to explain how these receptive field changes enhance the visual system’s effective spatial resolution and how the same mechanisms may also underlie attentional effects on the representation of spatial information. PMID:23422910

  6. Downscaling soil moisture over regions that include multiple coarse-resolution grid cells

    USDA-ARS?s Scientific Manuscript database

    Many applications require soil moisture estimates over large spatial extents (30-300 km) and at fine-resolutions (10-30 m). Remote-sensing methods can provide soil moisture estimates over very large spatial extents (continental to global) at coarse resolutions (10-40 km), but their output must be d...

  7. Urban cover mapping using digital, high-resolution aerial imagery

    Treesearch

    Soojeong Myeong; David J. Nowak; Paul F. Hopkins; Robert H. Brock

    2003-01-01

    High-spatial resolution digital color-infrared aerial imagery of Syracuse, NY was analyzed to test methods for developing land cover classifications for an urban area. Five cover types were mapped: tree/shrub, grass/herbaceous, bare soil, water and impervious surface. Challenges in high-spatial resolution imagery such as shadow effect and similarity in spectral...

  8. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015.

    PubMed

    Abatzoglou, John T; Dobrowski, Solomon Z; Parks, Sean A; Hegewisch, Katherine C

    2018-01-09

    We present TerraClimate, a dataset of high-spatial resolution (1/24°, ~4-km) monthly climate and climatic water balance for global terrestrial surfaces from 1958-2015. TerraClimate uses climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim dataset, with coarser resolution time varying (i.e., monthly) data from other sources to produce a monthly dataset of precipitation, maximum and minimum temperature, wind speed, vapor pressure, and solar radiation. TerraClimate additionally produces monthly surface water balance datasets using a water balance model that incorporates reference evapotranspiration, precipitation, temperature, and interpolated plant extractable soil water capacity. These data provide important inputs for ecological and hydrological studies at global scales that require high spatial resolution and time varying climate and climatic water balance data. We validated spatiotemporal aspects of TerraClimate using annual temperature, precipitation, and calculated reference evapotranspiration from station data, as well as annual runoff from streamflow gauges. TerraClimate datasets showed noted improvement in overall mean absolute error and increased spatial realism relative to coarser resolution gridded datasets.

  9. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015

    NASA Astrophysics Data System (ADS)

    Abatzoglou, John T.; Dobrowski, Solomon Z.; Parks, Sean A.; Hegewisch, Katherine C.

    2018-01-01

    We present TerraClimate, a dataset of high-spatial resolution (1/24°, ~4-km) monthly climate and climatic water balance for global terrestrial surfaces from 1958-2015. TerraClimate uses climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim dataset, with coarser resolution time varying (i.e., monthly) data from other sources to produce a monthly dataset of precipitation, maximum and minimum temperature, wind speed, vapor pressure, and solar radiation. TerraClimate additionally produces monthly surface water balance datasets using a water balance model that incorporates reference evapotranspiration, precipitation, temperature, and interpolated plant extractable soil water capacity. These data provide important inputs for ecological and hydrological studies at global scales that require high spatial resolution and time varying climate and climatic water balance data. We validated spatiotemporal aspects of TerraClimate using annual temperature, precipitation, and calculated reference evapotranspiration from station data, as well as annual runoff from streamflow gauges. TerraClimate datasets showed noted improvement in overall mean absolute error and increased spatial realism relative to coarser resolution gridded datasets.

  10. Development of Finer Spatial Resolution Optical Properties from MODIS

    DTIC Science & Technology

    2008-02-04

    infrared (SWIR) channels at 1240 nm and 2130 run. The increased resolution spectral Rrs channels are input into bio-optical algorithms (Quasi...processes. Additionally, increased resolution is required for validation of ocean color products in coastal regions due to the shorter spatial scales of...with in situ Rrs data to determine the "best" method in coastal regimes. We demonstrate that finer resolution is required for validation of coastal

  11. Data Descriptor: TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015

    Treesearch

    John T. Abatzoglou; Solomon Z. Dobrowski; Sean A. Parks; Katherine C. Hegewisch

    2018-01-01

    We present TerraClimate, a dataset of high-spatial resolution (1/24°, ~4-km) monthly climate and climatic water balance for global terrestrial surfaces from 1958–2015. TerraClimate uses climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim dataset, with coarser resolution time varying (i.e., monthly) data from...

  12. Magnetoacoustic Imaging of Electrical Conductivity of Biological Tissues at a Spatial Resolution Better than 2 mm

    PubMed Central

    Hu, Gang; He, Bin

    2011-01-01

    Magnetoacoustic tomography with magnetic induction (MAT-MI) is an emerging approach for noninvasively imaging electrical impedance properties of biological tissues. The MAT-MI imaging system measures ultrasound waves generated by the Lorentz force, having been induced by magnetic stimulation, which is related to the electrical conductivity distribution in tissue samples. MAT-MI promises to provide fine spatial resolution for biological tissue imaging as compared to ultrasound resolution. In the present study, we first estimated the imaging spatial resolution by calculating the full width at half maximum (FWHM) of the system point spread function (PSF). The actual spatial resolution of our MAT-MI system was experimentally determined to be 1.51 mm by a parallel-line-source phantom with Rayleigh criterion. Reconstructed images made from tissue-mimicking gel phantoms, as well as animal tissue samples, were consistent with the morphological structures of the samples. The electrical conductivity value of the samples was determined directly by a calibrated four-electrode system. It has been demonstrated that MAT-MI is able to image the electrical impedance properties of biological tissues with better than 2 mm spatial resolution. These results suggest the potential of MAT-MI for application to early detection of small-size diseased tissues (e.g. small breast cancer). PMID:21858111

  13. Sub-pixel mapping of hyperspectral imagery using super-resolution

    NASA Astrophysics Data System (ADS)

    Sharma, Shreya; Sharma, Shakti; Buddhiraju, Krishna M.

    2016-04-01

    With the development of remote sensing technologies, it has become possible to obtain an overview of landscape elements which helps in studying the changes on earth's surface due to climate, geological, geomorphological and human activities. Remote sensing measures the electromagnetic radiations from the earth's surface and match the spectral similarity between the observed signature and the known standard signatures of the various targets. However, problem lies when image classification techniques assume pixels to be pure. In hyperspectral imagery, images have high spectral resolution but poor spatial resolution. Therefore, the spectra obtained is often contaminated due to the presence of mixed pixels and causes misclassification. To utilise this high spectral information, spatial resolution has to be enhanced. Many factors make the spatial resolution one of the most expensive and hardest to improve in imaging systems. To solve this problem, post-processing of hyperspectral images is done to retrieve more information from the already acquired images. The algorithm to enhance spatial resolution of the images by dividing them into sub-pixels is known as super-resolution and several researches have been done in this domain.In this paper, we propose a new method for super-resolution based on ant colony optimization and review the popular methods of sub-pixel mapping of hyperspectral images along with their comparative analysis.

  14. Direct collapse to supermassive black hole seeds: comparing the AMR and SPH approaches.

    PubMed

    Luo, Yang; Nagamine, Kentaro; Shlosman, Isaac

    2016-07-01

    We provide detailed comparison between the adaptive mesh refinement (AMR) code enzo-2.4 and the smoothed particle hydrodynamics (SPH)/ N -body code gadget-3 in the context of isolated or cosmological direct baryonic collapse within dark matter (DM) haloes to form supermassive black holes. Gas flow is examined by following evolution of basic parameters of accretion flows. Both codes show an overall agreement in the general features of the collapse; however, many subtle differences exist. For isolated models, the codes increase their spatial and mass resolutions at different pace, which leads to substantially earlier collapse in SPH than in AMR cases due to higher gravitational resolution in gadget-3. In cosmological runs, the AMR develops a slightly higher baryonic resolution than SPH during halo growth via cold accretion permeated by mergers. Still, both codes agree in the build-up of DM and baryonic structures. However, with the onset of collapse, this difference in mass and spatial resolution is amplified, so evolution of SPH models begins to lag behind. Such a delay can have effect on formation/destruction rate of H 2 due to UV background, and on basic properties of host haloes. Finally, isolated non-cosmological models in spinning haloes, with spin parameter λ ∼ 0.01-0.07, show delayed collapse for greater λ, but pace of this increase is faster for AMR. Within our simulation set-up, gadget-3 requires significantly larger computational resources than enzo-2.4 during collapse, and needs similar resources, during the pre-collapse, cosmological structure formation phase. Yet it benefits from substantially higher gravitational force and hydrodynamic resolutions, except at the end of collapse.

  15. Direct collapse to supermassive black hole seeds: comparing the AMR and SPH approaches

    NASA Astrophysics Data System (ADS)

    Luo, Yang; Nagamine, Kentaro; Shlosman, Isaac

    2016-07-01

    We provide detailed comparison between the adaptive mesh refinement (AMR) code ENZO-2.4 and the smoothed particle hydrodynamics (SPH)/N-body code GADGET-3 in the context of isolated or cosmological direct baryonic collapse within dark matter (DM) haloes to form supermassive black holes. Gas flow is examined by following evolution of basic parameters of accretion flows. Both codes show an overall agreement in the general features of the collapse; however, many subtle differences exist. For isolated models, the codes increase their spatial and mass resolutions at different pace, which leads to substantially earlier collapse in SPH than in AMR cases due to higher gravitational resolution in GADGET-3. In cosmological runs, the AMR develops a slightly higher baryonic resolution than SPH during halo growth via cold accretion permeated by mergers. Still, both codes agree in the build-up of DM and baryonic structures. However, with the onset of collapse, this difference in mass and spatial resolution is amplified, so evolution of SPH models begins to lag behind. Such a delay can have effect on formation/destruction rate of H2 due to UV background, and on basic properties of host haloes. Finally, isolated non-cosmological models in spinning haloes, with spin parameter λ ˜ 0.01-0.07, show delayed collapse for greater λ, but pace of this increase is faster for AMR. Within our simulation set-up, GADGET-3 requires significantly larger computational resources than ENZO-2.4 during collapse, and needs similar resources, during the pre-collapse, cosmological structure formation phase. Yet it benefits from substantially higher gravitational force and hydrodynamic resolutions, except at the end of collapse.

  16. Overlapping MALDI-Mass Spectrometry Imaging for In-Parallel MS and MS/MS Data Acquisition without Sacrificing Spatial Resolution

    NASA Astrophysics Data System (ADS)

    Hansen, Rebecca L.; Lee, Young Jin

    2017-09-01

    Metabolomics experiments require chemical identifications, often through MS/MS analysis. In mass spectrometry imaging (MSI), this necessitates running several serial tissue sections or using a multiplex data acquisition method. We have previously developed a multiplex MSI method to obtain MS and MS/MS data in a single experiment to acquire more chemical information in less data acquisition time. In this method, each raster step is composed of several spiral steps and each spiral step is used for a separate scan event (e.g., MS or MS/MS). One main limitation of this method is the loss of spatial resolution as the number of spiral steps increases, limiting its applicability for high-spatial resolution MSI. In this work, we demonstrate multiplex MS imaging is possible without sacrificing spatial resolution by the use of overlapping spiral steps, instead of spatially separated spiral steps as used in the previous work. Significant amounts of matrix and analytes are still left after multiple spectral acquisitions, especially with nanoparticle matrices, so that high quality MS and MS/MS data can be obtained on virtually the same tissue spot. This method was then applied to visualize metabolites and acquire their MS/MS spectra in maize leaf cross-sections at 10 μm spatial resolution. [Figure not available: see fulltext.

  17. Improving urban land use and land cover classification from high-spatial-resolution hyperspectral imagery using contextual information

    USDA-ARS?s Scientific Manuscript database

    In this paper, we propose approaches to improve the pixel-based support vector machine (SVM) classification for urban land use and land cover (LULC) mapping from airborne hyperspectral imagery with high spatial resolution. Class spatial neighborhood relationship is used to correct the misclassified ...

  18. Stochastic Downscaling of Digital Elevation Models

    NASA Astrophysics Data System (ADS)

    Rasera, Luiz Gustavo; Mariethoz, Gregoire; Lane, Stuart N.

    2016-04-01

    High-resolution digital elevation models (HR-DEMs) are extremely important for the understanding of small-scale geomorphic processes in Alpine environments. In the last decade, remote sensing techniques have experienced a major technological evolution, enabling fast and precise acquisition of HR-DEMs. However, sensors designed to measure elevation data still feature different spatial resolution and coverage capabilities. Terrestrial altimetry allows the acquisition of HR-DEMs with centimeter to millimeter-level precision, but only within small spatial extents and often with dead ground problems. Conversely, satellite radiometric sensors are able to gather elevation measurements over large areas but with limited spatial resolution. In the present study, we propose an algorithm to downscale low-resolution satellite-based DEMs using topographic patterns extracted from HR-DEMs derived for example from ground-based and airborne altimetry. The method consists of a multiple-point geostatistical simulation technique able to generate high-resolution elevation data from low-resolution digital elevation models (LR-DEMs). Initially, two collocated DEMs with different spatial resolutions serve as an input to construct a database of topographic patterns, which is also used to infer the statistical relationships between the two scales. High-resolution elevation patterns are then retrieved from the database to downscale a LR-DEM through a stochastic simulation process. The output of the simulations are multiple equally probable DEMs with higher spatial resolution that also depict the large-scale geomorphic structures present in the original LR-DEM. As these multiple models reflect the uncertainty related to the downscaling, they can be employed to quantify the uncertainty of phenomena that are dependent on fine topography, such as catchment hydrological processes. The proposed methodology is illustrated for a case study in the Swiss Alps. A swissALTI3D HR-DEM (with 5 m resolution) and a SRTM-derived LR-DEM from the Western Alps are used to downscale a SRTM-based LR-DEM from the eastern part of the Alps. The results show that the method is capable of generating multiple high-resolution synthetic DEMs that reproduce the spatial structure and statistics of the original DEM.

  19. UAV remote sening for precision agriculture

    NASA Astrophysics Data System (ADS)

    Vigneau, Nathalie; Chéron, Corentin; Mainfroy, Florent; Faroux, Romain

    2014-05-01

    Airinov offers to farmers, scientists and experimenters (plant breeders, etc.) its technical skills about UAVs, cartography and agronomic remote sensing. The UAV is a 2-m-wingspan flying wing. It can carry away either a RGB camera or a multispectral sensor, which records reflectance in 4 spectral bands. The spectral characteristics of the sensor are modular. Each spectral band is comprised between 400 and 850 nm and the FWHM (Full Width at Half Maximum) is between 10 and 40 nm. The spatial resolution varies according to sensor, flying height and user needs from 15cm/px for multispectral sensor at 150m to 1.5cm/px for RGB camera at 50m. The flight is totally automatic thanks to on-board autopilot, IMU (Inertial Measurement Unit) and GPS. Data processing (unvignetting, mosaicking, correction in reflectance) leads to agronomic variables as LAI (Leaf Area Index) or chlorophyll content for barley, wheat, rape and maize as well as vegetation indices as NDVI (Normalized Difference Vegetation Index). Using these data, Airinov can product advices for farmers as nitrogen preconisation for rape. For scientists, Airinov offers trial plot monitoring by micro-plots vectorisation and numerical data exctraction micro-plot by micro-plot. This can lead to kinetic curve for LAI or NDVI to compare cover establishment for different genotypes for example. Airinov's system is a new way to monitor plots with a lot of data (biophysical or biochemical parameters) at high rate, high spatial resolution and high precision.

  20. Comparison of S-NPP VIIRS land surface temperature with SEVIRI

    NASA Astrophysics Data System (ADS)

    Ermida, Sofia L.; Trigo, Isabel F.; Liu, Yuling; Yu, Yunyue

    2017-04-01

    Land surface temperature (LST) is one of the key parameters in the physics of land surface processes. LST can be globally measured from space by infrared radiometers, with a wide range of spatial and temporal resolutions depending on the sensor design and orbit. The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument is the primary sensor onboard the Suomi National Polar-orbiting Partnership (S-NPP) satellite, which was launched in recent years. VIIRS was designed to improve upon the capabilities of the operational AVHRR and provide observation continuity with MODIS. A Split Window approach has been applied to the VIIRS moderate resolution channels M15 and M16 centered at 10.76 µm and 12.01 µm, respectively. VIIRS has a swath of 3000 km and a spatial resolution of 745m (nadir) up to about 1600 m (limb view), leading to relatively high re-visiting frequency. LST is retrieved for a wide range of viewing angles along the VIIRS path, allowing the study of the variability of LST with viewing geometry for various land cover types. Here we present a comparison of VIRS LST data with data provided by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on-board EUMETSAT's Meteosat Second Generation (MSG). SEVIRI-based LST is available every 15-minute, but at coarser spatial resolution (3-km at nadir) when compared to VIIRS LST. The analysis is performed over 6 areas over the SEVIRI disk characterized by different surface conditions. VIIRS has generally slightly warmer night-time LST compared with SEVIRI, with differences smaller than 2K. Larger differences are found during daytime, with VIIRS presenting overall lower LST values up to 5K. These differences are also analysed taking into account the surface type, view zenith angle (VZA) and topography. As seen in previous comparison studies, high VZA and elevation values are associated to higher discrepancies of the LST products.

  1. Using Low-Cost GNSS Receivers to Investigate the Small-Scale Precipitable Water Vapor Variability in the Atmosphere for Improving High Resolution Rainfall Forecasts

    NASA Astrophysics Data System (ADS)

    Krietemeyer, Andreas; ten Veldhuis, Marie-claire; van de Giesen, Nick

    2017-04-01

    Recent research has shown that assimilation of Precipitable Water Vapor (PWV) measurements into numerical weather predictions models improve the quality of rainfall now- and forecasting. Local PWV fluctuations may be related with water vapor increases in the lower troposphere which lead to deep convection. Prior studies show that about 20 minutes before rain occurs, the amount of water vapor in the atmosphere at 1 km height increases. Monitoring the small-scale temporal and spatial variability of PWV is therefore crucial to improve the weather now- and forecasting for convective storms, that are typically critical for urban stormwater systems. One established technique to obtain PWV measurements in the atmosphere is to exploit signal delays from GNSS satellites to dual-frequency receivers on the ground. Existing dual-frequency receiver networks typically have inter-station distances in the order of tens of kilometers, which is not sufficiently dense to capture the small-scale PWV variations. In this study, we will add low-cost, single-frequency GNSS receivers to an existing dual-frequency receiver network to obtain an inter-station distance of about 1 km in the Rotterdam area (Netherlands). The aim is to investigate the spatial variability of PWV in the atmosphere at this scale. We use the surrounding dual-frequency network (distributed over a radius of approximately 25 km) to apply an ionospheric delay model that accounts for the delay in the ionosphere (50-1000 km altitude) that cannot be eliminated by single-frequency receivers. The results are validated by co-aligning a single-frequency receiver to a dual-frequency receiver. In the next steps, we will investigate how the high temporal and increased spatial resolution network can help to improve high-resolution rainfall forecasts. Their supposed improved forecasting results will be evaluated based on high-resolution rainfall estimates from a polarimetric X-band rainfall radar installed in the city of Rotterdam.

  2. Ecological and sampling constraints on defining landscape fire severity

    USGS Publications Warehouse

    Key, C.H.

    2006-01-01

    Ecological definition and detection of fire severity are influenced by factors of spatial resolution and timing. Resolution determines the aggregation of effects within a sampling unit or pixel (alpha variation), hence limiting the discernible ecological responses, and controlling the spatial patchiness of responses distributed throughout a burn (beta variation). As resolution decreases, alpha variation increases, extracting beta variation and complexity from the spatial model of the whole burn. Seasonal timing impacts the quality of radiometric data in terms of transmittance, sun angle, and potential contrast between responses within burns. Detection sensitivity candegrade toward the end of many fire seasons when low sun angles, vegetation senescence, incomplete burning, hazy conditions, or snow are common. Thus, a need exists to supersede many rapid response applications when remote sensing conditions improve. Lag timing, or timesince fire, notably shapes the ecological character of severity through first-order effects that only emerge with time after fire, including delayed survivorship and mortality. Survivorship diminishes the detected magnitude of severity, as burned vegetation remains viable and resprouts, though at first it may appear completely charred or consumed above ground. Conversely, delayed mortality increases the severity estimate when apparently healthy vegetation is in fact damaged by heat to the extent that it dies over time. Both responses dependon fire behavior and various species-specific adaptations to fire that are unique to the pre-firecomposition of each burned area. Both responses can lead initially to either over- or underestimating severity. Based on such implications, three sampling intervals for short-term burn severity are identified; rapid, initial, and extended assessment, sampled within about two weeks, two months, and depending on the ecotype, from three months to one year after fire, respectively. Spatial and temporal conditions of sampling strategies constrain data quality and ecological information obtained about fire severity. Though commonly overlooked, such considerations determine the objectives and hypotheses that are appropriate for each application, and are especially important when building comparative studies or long-term reference databases on fire severity.

  3. Integration of airborne Thematic Mapper Simulator (TMS) data and digitized aerial photography via an ISH transformation. [Intensity Saturation Hue

    NASA Technical Reports Server (NTRS)

    Ambrosia, Vincent G.; Myers, Jeffrey S.; Ekstrand, Robert E.; Fitzgerald, Michael T.

    1991-01-01

    A simple method for enhancing the spatial and spectral resolution of disparate data sets is presented. Two data sets, digitized aerial photography at a nominal spatial resolution 3,7 meters and TMS digital data at 24.6 meters, were coregistered through a bilinear interpolation to solve the problem of blocky pixel groups resulting from rectification expansion. The two data sets were then subjected to intensity-saturation-hue (ISH) transformations in order to 'blend' the high-spatial-resolution (3.7 m) digitized RC-10 photography with the high spectral (12-bands) and lower spatial (24.6 m) resolution TMS digital data. The resultant merged products make it possible to perform large-scale mapping, ease photointerpretation, and can be derived for any of the 12 available TMS spectral bands.

  4. Resolution Analysis of finite fault inversions: A back-projection approach.

    NASA Astrophysics Data System (ADS)

    Ji, C.; Shao, G.

    2007-12-01

    The resolution of inverted source models of large earthquakes is controlled by frequency contents of "coherent" (or "useful") seismic observations and their spatial distribution. But it is difficult to distinguish whether some features consistent during different inversions are really required by data or a consequence of "prior" information, such as velocity structures, fault geometry, model parameterizations. Here, we investigate the model spatial resolution by first back projecting and stacking the data at the source regions and then analyzing the spatial- temporal variations of the focusing regions, which arbitrarily defined as the regions with 90% of the peak focusing amplitude. Our preliminary results indicated 1) The spatial-temporal resolution at a particularly direction is controlled by the region of directivity parameter [pcos(θ)] within the seismic network, where p is the horizontal slowness from the hypocenter and θ is the difference between the station azimuth and this orientation. Therefore, the network aperture is more important than the number of stations. 2) Simple stacking method is a robust method to capture the asperities but the sizes of focusing regions are usually much larger than what data could resolve. By carefully weighting the data before the stacking could enhance the spatial resolution in a particular direction. 3) The results based on the teleseismic P waves of a local network usually surfers the trade-off between the source's spatial location and its rupture time. The resolution of the 2001 Kunlunshan earthquake and 2006 Kuril island earthquake will be investigated.

  5. Optimizing landslide susceptibility zonation: Effects of DEM spatial resolution and slope unit delineation on logistic regression models

    NASA Astrophysics Data System (ADS)

    Schlögel, R.; Marchesini, I.; Alvioli, M.; Reichenbach, P.; Rossi, M.; Malet, J.-P.

    2018-01-01

    We perform landslide susceptibility zonation with slope units using three digital elevation models (DEMs) of varying spatial resolution of the Ubaye Valley (South French Alps). In so doing, we applied a recently developed algorithm automating slope unit delineation, given a number of parameters, in order to optimize simultaneously the partitioning of the terrain and the performance of a logistic regression susceptibility model. The method allowed us to obtain optimal slope units for each available DEM spatial resolution. For each resolution, we studied the susceptibility model performance by analyzing in detail the relevance of the conditioning variables. The analysis is based on landslide morphology data, considering either the whole landslide or only the source area outline as inputs. The procedure allowed us to select the most useful information, in terms of DEM spatial resolution, thematic variables and landslide inventory, in order to obtain the most reliable slope unit-based landslide susceptibility assessment.

  6. Combined Landsat-8 and Sentinel-2 Burned Area Mapping

    NASA Astrophysics Data System (ADS)

    Huang, H.; Roy, D. P.; Zhang, H.; Boschetti, L.; Yan, L.; Li, Z.

    2017-12-01

    Fire products derived from coarse spatial resolution satellite data have become an important source of information for the multiple user communities involved in fire science and applications. The advent of the MODIS on NASA's Terra and Aqua satellites enabled systematic production of 500m global burned area maps. There is, however, an unequivocal demand for systematically generated higher spatial resolution burned area products, in particular to examine the role of small-fires for various applications. Moderate spatial resolution contemporaneous satellite data from Landsat-8 and the Sentinel-2A and -2B sensors provide the opportunity for detailed spatial mapping of burned areas. Combined, these polar-orbiting systems provide 10m to 30m multi-spectral global coverage more than once every three days. This NASA funded research presents results to prototype a combined Landsat-8 Sentinel-2 burned area product. The Landsat-8 and Sentinel-2 pre-processing, the time-series burned area mapping algorithm, and preliminary results and validation using high spatial resolution commercial satellite data over Africa are presented.

  7. In Situ Molecular Imaging of the Biofilm and Its Matrix.

    PubMed

    Ding, Yuanzhao; Zhou, Yufan; Yao, Juan; Szymanski, Craig; Fredrickson, James; Shi, Liang; Cao, Bin; Zhu, Zihua; Yu, Xiao-Ying

    2016-11-15

    Molecular mapping of live biofilms at submicrometer resolution presents a grand challenge. Here, we present the first chemical mapping results of biofilm extracellular polymeric substance (EPS) in biofilms using correlative imaging between super resolution fluorescence microscopy and liquid time-of-flight secondary ion mass spectrometry (TOF-SIMS). Shewanella oneidensis is used as a model organism. Heavy metal chromate (Cr 2 O 7 2- ) anions consisting of chromium Cr(VI) was used as a model environmental stressor to treat the biofilms. Of particular interest, biologically relevant water clusters have been first observed in the biofilms. Characteristic fragments of biofilm matrix components such as proteins, polysaccharides, and lipids can be spatially imaged. Furthermore, characteristic fatty acids (e.g., palmitic acid), quinolone signal, and riboflavin fragments were found to respond after the biofilm is treated with Cr(VI), leading to biofilm dispersal. Significant changes in water clusters and quorum sensing signals indicative of intercellular communication in the aqueous environment were observed, suggesting that they might result in fatty acid synthesis and inhibition of riboflavin production. The Cr(VI) reduction seems to follow the Mtr pathway leading to Cr(III) formation. Our approach potentially opens a new avenue for mechanistic insight of microbial community processes and communications using in situ imaging mass spectrometry and super resolution optical microscopy.

  8. Downscaling of Seasonal Landsat-8 and MODIS Land Surface Temperature (LST) in Kolkata, India

    NASA Astrophysics Data System (ADS)

    Garg, R. D.; Guha, S.; Mondal, A.; Lakshmi, V.; Kundu, S.

    2017-12-01

    The quality of life of urban people is affected by urban heat environment. The urban heat studies can be carried out using remotely sensed thermal infrared imagery for retrieving Land Surface Temperature (LST). Currently, high spatial resolution (<200 m) thermal images are limited and their temporal resolution is low (e.g., 17 days of Landsat-8). Coarse spatial resolution (1000 m) and high temporal resolution (daily) thermal images of MODIS (Moderate Resolution Imaging Spectroradiometer) are frequently available. The present study is to downscale spatially coarser resolution of the thermal image to fine resolution thermal image using regression based downscaling technique. This method is based on the relationship between (LST) and vegetation indices (e.g., Normalized Difference Vegetation Index or NDVI) over a heterogeneous landscape. The Kolkata metropolitan city, which experiences a tropical wet-and-dry type of climate has been selected for the study. This study applied different seasonal open source satellite images viz., Landsat-8 and Terra MODIS. The Landsat-8 images are aggregated at 960 m resolution and downscaled into 480, 240 120 and 60 m. Optical and thermal resolution of Landsat-8 and MODIS are 30 m and 60 m; 250 m and 1000 m respectively. The homogeneous land cover areas have shown better accuracy than heterogeneous land cover areas. The downscaling method plays a crucial role while the spatial resolution of thermal band renders it unable for advanced study. Key words: Land Surface Temperature (LST), Downscale, MODIS, Landsat, Kolkata

  9. Prevalence of pure versus mixed snow cover pixels across spatial resolutions in alpine environments: implications for binary and fractional remote sensing approaches

    USGS Publications Warehouse

    Selkowitz, David J.; Forster, Richard; Caldwell, Megan K.

    2014-01-01

    Remote sensing of snow-covered area (SCA) can be binary (indicating the presence/absence of snow cover at each pixel) or fractional (indicating the fraction of each pixel covered by snow). Fractional SCA mapping provides more information than binary SCA, but is more difficult to implement and may not be feasible with all types of remote sensing data. The utility of fractional SCA mapping relative to binary SCA mapping varies with the intended application as well as by spatial resolution, temporal resolution and period of interest, and climate. We quantified the frequency of occurrence of partially snow-covered (mixed) pixels at spatial resolutions between 1 m and 500 m over five dates at two study areas in the western U.S., using 0.5 m binary SCA maps derived from high spatial resolution imagery aggregated to fractional SCA at coarser spatial resolutions. In addition, we used in situ monitoring to estimate the frequency of partially snow-covered conditions for the period September 2013–August 2014 at 10 60-m grid cell footprints at two study areas with continental snow climates. Results from the image analysis indicate that at 40 m, slightly above the nominal spatial resolution of Landsat, mixed pixels accounted for 25%–93% of total pixels, while at 500 m, the nominal spatial resolution of MODIS bands used for snow cover mapping, mixed pixels accounted for 67%–100% of total pixels. Mixed pixels occurred more commonly at the continental snow climate site than at the maritime snow climate site. The in situ data indicate that some snow cover was present between 186 and 303 days, and partial snow cover conditions occurred on 10%–98% of days with snow cover. Four sites remained partially snow-free throughout most of the winter and spring, while six sites were entirely snow covered throughout most or all of the winter and spring. Within 60 m grid cells, the late spring/summer transition from snow-covered to snow-free conditions lasted 17–56 days and averaged 37 days. Our results suggest that mixed snow-covered snow-free pixels are common at the spatial resolutions imaged by both the Landsat and MODIS sensors. This highlights the additional information available from fractional SCA products and suggests fractional SCA can provide a major advantage for hydrological and climatological monitoring and modeling, particularly when accurate representation of the spatial distribution of snow cover is critical.

  10. Satellite-Derived Sea Surface Temperature: Workshop-2

    NASA Technical Reports Server (NTRS)

    Njoku, E. G.

    1984-01-01

    Global accuracies and error characteristics of presently orbiting satellite sensors are examined. The workshops are intended to lead to a better understanding of present capabilities for sea surface temperature measurement and to improve measurement concepts for the future. Data from the Advanced Very High Resolution Radiometer AVHRR and Scanning Multichannel Microwave Radiometer is emphasized. Some data from the High Resolution Infrared Sounder HIRS and AVHRR are also examined. Comparisons of satellite data with ship and eXpendable BathyThermograph XBT measurement show standard deviations in the range 0.5 to 1.3 C with biases of less than 0.4 C, depending on the sensor, ocean region, and spatial/temporal averaging. The Sea Surface Temperature SST anomaly maps show good agreement in some cases, but a number of sensor related problems are identified.

  11. The SOLAR-C Mission

    NASA Astrophysics Data System (ADS)

    Suematsu, Y.

    2015-12-01

    The Solar-C is a Japan-led international solar mission planned to be launched in mid2020. It is designed to investigate the magnetic activities of the Sun, focusing on the study in heating and dynamical phenomena of the chromosphere and corona, and also to develop an algorithm for predicting short and long term solar evolution. Since it has been revealed that the different parts of the magnetized solar atmosphere are essentially coupled, the SOLAR-C should tackle the spatial scales and temperature regimes that need to be observed in order to achieve a comprehensive physical understanding of this coupling. The science of Solar-C will greatly advance our understanding of the Sun, of basic physical processes operating throughout the universe. To dramatically improve the situation, SOLAR-C will carry three dedicated instruments; the Solar UV-Vis-IR Telescope (SUVIT), the EUV Spectroscopic Telescope (EUVST) and the High Resolution Coronal Imager (HCI), to jointly observe the entire visible solar atmosphere with essentially the same high spatial resolution (0.1-0.3 arcsec), performing high resolution spectroscopic measurements over all atmospheric regions and spectro-polarimetric measurements from the photosphere through the upper chromosphere. In addition, Solar-C will contribute to our understanding on the influence of the Sun-Earth environments with synergetic wide-field observations from ground-based and other space missions. Some leading science objectives and the mission concept, including designs of the three instruments aboard SOLAR-C will be presented.

  12. Cerebral TOF Angiography at 7T: Impact of B1+ Shimming with a 16-Channel Transceiver Array

    PubMed Central

    Schmitter, Sebastian; Wu, Xiaoping; Adriany, Gregor; Auerbach, Edward J.; Uğurbil, Kâmil; Van de Moortele, Pierre-François

    2014-01-01

    Purpose Time-of-flight (TOF) MR imaging is clinically among the most common cerebral non-contrast enhanced MR angiography techniques allowing for high spatial resolution. As shown by several groups TOF contrast significantly improves at ultra-high field (UHF) of B0=7T, however, spatially varying transmit B1 (B1+) fields at 7T reduce TOF contrast uniformity, typically resulting in sub-optimal contrast and reduced vessel conspicuity in the brain periphery. Methods Using a 16-channel B1+ shimming system we compare different dynamically applied B1+ phase shimming approaches on the RF excitation to improve contrast homogeneity for a (0.5 mm)3 resolution multi-slab TOF acquisition. In addition, B1+ shimming applied on the venous saturation pulse was investigated to improve venous suppression, subcutaneous fat signal reduction and enhanced background suppression originating from MT effect. Results B1+ excitation homogeneity was improved by a factor 2.2 to 2.6 on average depending on the shimming approach, compared to a standard CP-like phase setting, leading to improved vessel conspicuity particularly in the periphery. Stronger saturation, higher fat suppression and improved background suppression were observed when dynamically applying B1+ shimming on the venous saturation pulse. Conclusion B1+ shimming can significantly improve high resolution TOF vascular investigations at UHF, holding strong promise for non contrast-enhanced clinical applications. PMID:23640915

  13. First experiment on retrieval of tropospheric NO2 over polluted areas with 2.4-km spatial resolution basing on satellite spectral measurements

    NASA Astrophysics Data System (ADS)

    Postylyakov, Oleg V.; Borovski, Alexander N.; Makarenkov, Aleksandr A.

    2017-11-01

    Three satellites of the Resurs-P series (№1, №2, №3) aimed for remote sensing of the Earth began to operate in Russia in 2013-2016. Hyperspectral instruments GSA onboard Resurs-P perform routine imaging of the Earth surface in the spectral range of 400-1000 nm with the spectral resolution better than 10 nm and the spatial resolution of 30 m. In a special regime the GSA/Resurs-P may reach higher spectral resolution with the spatial resolution of 120 m and be used for retrieval of the tropospheric NO2 spatial distribution. We developed the first GSA/Resurs-P algorithm for the tropospheric NO2 retrieval and shortly analyze the first results for the most polluted Hebei province of China. The developed GSA/Resurs-P algorithm shows the spatial resolution of about 2.4 km for tropospheric NO2 pollution what significantly exceed resolution of other available now satellite instruments and considered as a target for future geostationary (GEO) missions for monitoring of tropospheric NO2 pollution. Differ to the currently operated low-Earth orbit (LEO) instruments, which may provide global distribution of NO2 every one or two days, GSA performs NO2 measurement on request. The precision of the NO2 measurements with 2.4 km resolution is about 2.5x1015 mol/cm2 (for DSCD) therefore it is recommended to use it for investigation of the tropospheric NO2 in polluted areas. Thus GSA/Resurs-P is the interesting and unique tool for NO2 pollution investigations and testing methods of interpretation of future high-resolution satellite data on pollutions and their emissions.

  14. Single image super-resolution via regularized extreme learning regression for imagery from microgrid polarimeters

    NASA Astrophysics Data System (ADS)

    Sargent, Garrett C.; Ratliff, Bradley M.; Asari, Vijayan K.

    2017-08-01

    The advantage of division of focal plane imaging polarimeters is their ability to obtain temporally synchronized intensity measurements across a scene; however, they sacrifice spatial resolution in doing so due to their spatially modulated arrangement of the pixel-to-pixel polarizers and often result in aliased imagery. Here, we propose a super-resolution method based upon two previously trained extreme learning machines (ELM) that attempt to recover missing high frequency and low frequency content beyond the spatial resolution of the sensor. This method yields a computationally fast and simple way of recovering lost high and low frequency content from demosaicing raw microgrid polarimetric imagery. The proposed method outperforms other state-of-the-art single-image super-resolution algorithms in terms of structural similarity and peak signal-to-noise ratio.

  15. GIEMS-D3: A new long-term, dynamical, high-spatial resolution inundation extent dataset at global scale

    NASA Astrophysics Data System (ADS)

    Aires, Filipe; Miolane, Léo; Prigent, Catherine; Pham Duc, Binh; Papa, Fabrice; Fluet-Chouinard, Etienne; Lehner, Bernhard

    2017-04-01

    The Global Inundation Extent from Multi-Satellites (GIEMS) provides multi-year monthly variations of the global surface water extent at 25kmx25km resolution. It is derived from multiple satellite observations. Its spatial resolution is usually compatible with climate model outputs and with global land surface model grids but is clearly not adequate for local applications that require the characterization of small individual water bodies. There is today a strong demand for high-resolution inundation extent datasets, for a large variety of applications such as water management, regional hydrological modeling, or for the analysis of mosquitos-related diseases. A new procedure is introduced to downscale the GIEMS low spatial resolution inundations to a 3 arc second (90 m) dataset. The methodology is based on topography and hydrography information from the HydroSHEDS database. A new floodability index is adopted and an innovative smoothing procedure is developed to ensure the smooth transition, in the high-resolution maps, between the low-resolution boxes from GIEMS. Topography information is relevant for natural hydrology environments controlled by elevation, but is more limited in human-modified basins. However, the proposed downscaling approach is compatible with forthcoming fusion with other more pertinent satellite information in these difficult regions. The resulting GIEMS-D3 database is the only high spatial resolution inundation database available globally at the monthly time scale over the 1993-2007 period. GIEMS-D3 is assessed by analyzing its spatial and temporal variability, and evaluated by comparisons to other independent satellite observations from visible (Google Earth and Landsat), infrared (MODIS) and active microwave (SAR).

  16. Super-resolution mapping using multi-viewing CHRIS/PROBA data

    NASA Astrophysics Data System (ADS)

    Dwivedi, Manish; Kumar, Vinay

    2016-04-01

    High-spatial resolution Remote Sensing (RS) data provides detailed information which ensures high-definition visual image analysis of earth surface features. These data sets also support improved information extraction capabilities at a fine scale. In order to improve the spatial resolution of coarser resolution RS data, the Super Resolution Reconstruction (SRR) technique has become widely acknowledged which focused on multi-angular image sequences. In this study multi-angle CHRIS/PROBA data of Kutch area is used for SR image reconstruction to enhance the spatial resolution from 18 m to 6m in the hope to obtain a better land cover classification. Various SR approaches like Projection onto Convex Sets (POCS), Robust, Iterative Back Projection (IBP), Non-Uniform Interpolation and Structure-Adaptive Normalized Convolution (SANC) chosen for this study. Subjective assessment through visual interpretation shows substantial improvement in land cover details. Quantitative measures including peak signal to noise ratio and structural similarity are used for the evaluation of the image quality. It was observed that SANC SR technique using Vandewalle algorithm for the low resolution image registration outperformed the other techniques. After that SVM based classifier is used for the classification of SRR and data resampled to 6m spatial resolution using bi-cubic interpolation. A comparative analysis is carried out between classified data of bicubic interpolated and SR derived images of CHRIS/PROBA and SR derived classified data have shown a significant improvement of 10-12% in the overall accuracy. The results demonstrated that SR methods is able to improve spatial detail of multi-angle images as well as the classification accuracy.

  17. Solar Confocal Interferometers for Sub-Picometer-Resolution Spectral Filters

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Pietraszewski, Chris; West, Edward A.; Dines, Terence C.

    2006-01-01

    The confocal Fabry-Perot interferometer allows sub-picometer spectral resolution of Fraunhofer line profiles. Such high spectral resolution is needed to keep pace with the higher spatial resolution of the new set of large-aperture solar telescopes. The line-of-sight spatial resolution derived for line profile inversions would then track the improvements of the transverse spatial scale provided by the larger apertures. The confocal interferometer's unique properties allow a simultaneous increase in both etendue and spectral power. Methods: We have constructed and tested two confocal interferometers. Conclusions: In this paper we compare the confocal interferometer with other spectral imaging filters, provide initial design parameters, show construction details for two designs, and report on the laboratory test results for these interferometers, and propose a multiple etalon system for future testing of these units and to obtain sub-picometer spectral resolution information on the photosphere in both the visible and near-infrared.

  18. Quality evaluation of pansharpened hyperspectral images generated using multispectral images

    NASA Astrophysics Data System (ADS)

    Matsuoka, Masayuki; Yoshioka, Hiroki

    2012-11-01

    Hyperspectral remote sensing can provide a smooth spectral curve of a target by using a set of higher spectral resolution detectors. The spatial resolution of the hyperspectral images, however, is generally much lower than that of multispectral images due to the lower energy of incident radiation. Pansharpening is an image-fusion technique that generates higher spatial resolution multispectral images by combining lower resolution multispectral images with higher resolution panchromatic images. In this study, higher resolution hyperspectral images were generated by pansharpening of simulated lower hyperspectral and higher multispectral data. Spectral and spatial qualities of pansharpened images, then, were accessed in relation to the spectral bands of multispectral images. Airborne hyperspectral data of AVIRIS was used in this study, and it was pansharpened using six methods. Quantitative evaluations of pansharpened image are achieved using two frequently used indices, ERGAS, and the Q index.

  19. A general CFD framework for fault-resilient simulations based on multi-resolution information fusion

    NASA Astrophysics Data System (ADS)

    Lee, Seungjoon; Kevrekidis, Ioannis G.; Karniadakis, George Em

    2017-10-01

    We develop a general CFD framework for multi-resolution simulations to target multiscale problems but also resilience in exascale simulations, where faulty processors may lead to gappy, in space-time, simulated fields. We combine approximation theory and domain decomposition together with statistical learning techniques, e.g. coKriging, to estimate boundary conditions and minimize communications by performing independent parallel runs. To demonstrate this new simulation approach, we consider two benchmark problems. First, we solve the heat equation (a) on a small number of spatial "patches" distributed across the domain, simulated by finite differences at fine resolution and (b) on the entire domain simulated at very low resolution, thus fusing multi-resolution models to obtain the final answer. Second, we simulate the flow in a lid-driven cavity in an analogous fashion, by fusing finite difference solutions obtained with fine and low resolution assuming gappy data sets. We investigate the influence of various parameters for this framework, including the correlation kernel, the size of a buffer employed in estimating boundary conditions, the coarseness of the resolution of auxiliary data, and the communication frequency across different patches in fusing the information at different resolution levels. In addition to its robustness and resilience, the new framework can be employed to generalize previous multiscale approaches involving heterogeneous discretizations or even fundamentally different flow descriptions, e.g. in continuum-atomistic simulations.

  20. In vivo quantification of plant starch reserves at micrometer resolution using X-ray microCT imaging and machine learning.

    PubMed

    Earles, J Mason; Knipfer, Thorsten; Tixier, Aude; Orozco, Jessica; Reyes, Clarissa; Zwieniecki, Maciej A; Brodersen, Craig R; McElrone, Andrew J

    2018-03-08

    Starch is the primary energy storage molecule used by most terrestrial plants to fuel respiration and growth during periods of limited to no photosynthesis, and its depletion can drive plant mortality. Destructive techniques at coarse spatial scales exist to quantify starch, but these techniques face methodological challenges that can lead to uncertainty about the lability of tissue-specific starch pools and their role in plant survival. Here, we demonstrate how X-ray microcomputed tomography (microCT) and a machine learning algorithm can be coupled to quantify plant starch content in vivo, repeatedly and nondestructively over time in grapevine stems (Vitis spp.). Starch content estimated for xylem axial and ray parenchyma cells from microCT images was correlated strongly with enzymatically measured bulk-tissue starch concentration on the same stems. After validating our machine learning algorithm, we then characterized the spatial distribution of starch concentration in living stems at micrometer resolution, and identified starch depletion in live plants under experimental conditions designed to halt photosynthesis and starch production, initiating the drawdown of stored starch pools. Using X-ray microCT technology for in vivo starch monitoring should enable novel research directed at resolving the spatial and temporal patterns of starch accumulation and depletion in woody plant species. No claim to original US Government works New Phytologist © 2018 New Phytologist Trust.

  1. Phase calibration target for quantitative phase imaging with ptychography.

    PubMed

    Godden, T M; Muñiz-Piniella, A; Claverley, J D; Yacoot, A; Humphry, M J

    2016-04-04

    Quantitative phase imaging (QPI) utilizes refractive index and thickness variations that lead to optical phase shifts. This gives contrast to images of transparent objects. In quantitative biology, phase images are used to accurately segment cells and calculate properties such as dry mass, volume and proliferation rate. The fidelity of the measured phase shifts is of critical importance in this field. However to date, there has been no standardized method for characterizing the performance of phase imaging systems. Consequently, there is an increasing need for protocols to test the performance of phase imaging systems using well-defined phase calibration and resolution targets. In this work, we present a candidate for a standardized phase resolution target, and measurement protocol for the determination of the transfer of spatial frequencies, and sensitivity of a phase imaging system. The target has been carefully designed to contain well-defined depth variations over a broadband range of spatial frequencies. In order to demonstrate the utility of the target, we measure quantitative phase images on a ptychographic microscope, and compare the measured optical phase shifts with Atomic Force Microscopy (AFM) topography maps and surface profile measurements from coherence scanning interferometry. The results show that ptychography has fully quantitative nanometer sensitivity in optical path differences over a broadband range of spatial frequencies for feature sizes ranging from micrometers to hundreds of micrometers.

  2. Super DIOS: Future X-ray Spectroscopic Mission to Search for Dark Baryons

    NASA Astrophysics Data System (ADS)

    Yamada, S.; Ohashi, T.; Ishisaki, Y.; Ezoe, Y.; Ichinohe, Y.; Kitazawa, S.; Kosaka, K.; Hayakawa, R.; Nunomura, K.; Mitsuda, K.; Yamasaki, N. Y.; Kikuchi, T.; Hayashi, T.; Muramatsu, H.; Nakashima, Y.; Tawara, Y.; Mitsuishi, I.; Babazaki, Y.; Seki, D.; Otsuka, K.; Ishihara, M.; Osato, K.; Ota, N.; Tomariguchi, M.; Nagai, D.; Lau, E.; Sato, K.

    2018-04-01

    The updated program of the future Japanese X-ray satellite mission Diffuse Intergalactic Oxygen Surveyor (DIOS), called as Super DIOS, is planned to search for dark baryons in the form of warm-hot intergalactic medium (WHIM) with high-resolution X-ray spectroscopy. The mission will detect redshifted emission lines from OVII, OVIII and other ions, leading to an overall understanding of the physical nature and spatial distribution of dark baryons as a function of cosmological timescale. We have started the conceptual design of the satellite and onboard instruments, focusing on the era of 2030s. The major change will be an improved angular resolution of the X-ray telescope. Super DIOS will have a 10-arcsec resolution, which is an improvement by a factor of about 20 over DIOS. With this resolution, most of the contaminating X-ray sources will be separated, and the level of the diffuse X-ray background will be much reduced after subtraction of point sources. This will give us higher sensitivity to map out the WHIM in emission.

  3. Changes in Moisture Flux Over the Tibetan Plateau During 1979-2011: Insights from a High Resolution Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Yanhong; Leung, Lai-Yung R.; Zhang, Yongxin

    2015-05-01

    Net precipitation (precipitation minus evapotranspiration, P-E) changes from a high resolution regional climate simulation and its reanalysis forcing are analyzed over the Tibet Plateau (TP) and compared to the global land data assimilation system (GLDAS) product. The mechanism behind the P-E changes is explored by decomposing the column integrated moisture flux convergence into thermodynamic, dynamic, and transient eddy components. High-resolution climate simulation improves the spatial pattern of P-E changes over the best available global reanalysis. Improvement in simulating precipitation changes at high elevations contributes dominantly to the improved P-E changes. High-resolution climate simulation also facilitates new and substantial findings regardingmore » the role of thermodynamics and transient eddies in P-E changes reflected in observed changes in major river basins fed by runoff from the TP. The analysis revealed the contrasting convergence/divergence changes between the northwestern and southeastern TP and feedback through latent heat release as an important mechanism leading to the mean P-E changes in the TP.« less

  4. Dynamically downscaling predictions for deciduous tree leaf emergence in California under current and future climate.

    PubMed

    Medvigy, David; Kim, Seung Hee; Kim, Jinwon; Kafatos, Menas C

    2016-07-01

    Models that predict the timing of deciduous tree leaf emergence are typically very sensitive to temperature. However, many temperature data products, including those from climate models, have been developed at a very coarse spatial resolution. Such coarse-resolution temperature products can lead to highly biased predictions of leaf emergence. This study investigates how dynamical downscaling of climate models impacts simulations of deciduous tree leaf emergence in California. Models for leaf emergence are forced with temperatures simulated by a general circulation model (GCM) at ~200-km resolution for 1981-2000 and 2031-2050 conditions. GCM simulations are then dynamically downscaled to 32- and 8-km resolution, and leaf emergence is again simulated. For 1981-2000, the regional average leaf emergence date is 30.8 days earlier in 32-km simulations than in ~200-km simulations. Differences between the 32 and 8 km simulations are small and mostly local. The impact of downscaling from 200 to 8 km is ~15 % smaller in 2031-2050 than in 1981-2000, indicating that the impacts of downscaling are unlikely to be stationary.

  5. Resolution-enhanced Mapping Spectrometer

    NASA Technical Reports Server (NTRS)

    Kumer, J. B.; Aubrun, J. N.; Rosenberg, W. J.; Roche, A. E.

    1993-01-01

    A familiar mapping spectrometer implementation utilizes two dimensional detector arrays with spectral dispersion along one direction and spatial along the other. Spectral images are formed by spatially scanning across the scene (i.e., push-broom scanning). For imaging grating and prism spectrometers, the slit is perpendicular to the spatial scan direction. For spectrometers utilizing linearly variable focal-plane-mounted filters the spatial scan direction is perpendicular to the direction of spectral variation. These spectrometers share the common limitation that the number of spectral resolution elements is given by the number of pixels along the spectral (or dispersive) direction. Resolution enhancement by first passing the light input to the spectrometer through a scanned etalon or Michelson is discussed. Thus, while a detector element is scanned through a spatial resolution element of the scene, it is also temporally sampled. The analysis for all the pixels in the dispersive direction is addressed. Several specific examples are discussed. The alternate use of a Michelson for the same enhancement purpose is also discussed. Suitable for weight constrained deep space missions, hardware systems were developed including actuators, sensor, and electronics such that low-resolution etalons with performance required for implementation would weigh less than one pound.

  6. Neutron imaging with lithium indium diselenide: Surface properties, spatial resolution, and computed tomography

    NASA Astrophysics Data System (ADS)

    Lukosi, Eric D.; Herrera, Elan H.; Hamm, Daniel S.; Burger, Arnold; Stowe, Ashley C.

    2017-11-01

    An array of lithium indium diselenide (LISe) scintillators were investigated for application in neutron imaging. The sensors, varying in thickness and surface roughness, were tested using both reflective and anti-reflective mounting to an aluminum window. The spatial resolution of each LISe scintillator was calculated using the knife-edge test and a modulation transfer function analysis. It was found that the anti-reflective backing case yielded higher spatial resolutions by up to a factor of two over the reflective backing case despite a reduction in measured light yield by an average of 1.97. In most cases, the use of an anti-reflective backing resulted in a higher spatial resolution than the 50 μm-thick ZnS(Cu):6 LiF comparison scintillation screen. The effect of surface roughness was not directly correlated to measured light yield or observed spatial resolution, but weighting the reflective backing case by the random surface roughness revealed that a linear relationship exists between the fractional change (RB/ARB) of the two. Finally, the LISe scintillator array was used in neutron computed tomography to investigate the features of halyomorpha halys with the reflective and anti-reflective backing.

  7. On the Importance of Spatial Resolution for Flap Side Edge Noise Prediction

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond E.; Khorrami, Mehdi R.

    2017-01-01

    A spatial resolution study of flap tip flow and the effects on the farfield noise signature for an 18%-scale, semispan Gulfstream aircraft model are presented. The NASA FUN3D unstructured, compressible Navier-Stokes solver was used to perform the highly resolved, time-dependent, detached eddy simulations of the flow field associated with the flap for this high-fidelity aircraft model. Following our previous work on the same model, the latest computations were undertaken to determine the causes of deficiencies observed in our earlier predictions of the steady and unsteady surface pressures and off-surface flow field at the flap tip regions, in particular the outboard tip area, where the presence of a cavity at the side-edge produces very complex flow features and interactions. The present results show gradual improvement in steady loading at the outboard flap edge region with increasing spatial resolution, yielding more accurate fluctuating surface pressures, off-surface flow field, and farfield noise with improved high-frequency content when compared with wind tunnel measurements. The spatial resolution trends observed in the present study demonstrate that the deficiencies reported in our previous computations are mostly caused by inadequate spatial resolution and are not related to the turbulence model.

  8. Effects of satellite image spatial aggregation and resolution on estimates of forest land area

    Treesearch

    M.D. Nelson; R.E. McRoberts; G.R. Holden; M.E. Bauer

    2009-01-01

    Satellite imagery is being used increasingly in association with national forest inventories (NFIs) to produce maps and enhance estimates of forest attributes. We simulated several image spatial resolutions within sparsely and heavily forested study areas to assess resolution effects on estimates of forest land area, independent of other sensor characteristics. We...

  9. Resolution modeling of dispersive imaging spectrometers

    NASA Astrophysics Data System (ADS)

    Silny, John F.

    2017-08-01

    This paper presents best practices for modeling the resolution of dispersive imaging spectrometers. The differences between sampling, width, and resolution are discussed. It is proposed that the spectral imaging community adopt a standard definition for resolution as the full-width at half maximum of the total line spread function. Resolution should be computed for each of the spectral, cross-scan spatial, and along-scan spatial/temporal dimensions separately. A physical optics resolution model is presented that incorporates the effects of slit diffraction and partial coherence, the result of which is a narrower slit image width and reduced radiometric throughput.

  10. MRI-guided brain PET image filtering and partial volume correction

    NASA Astrophysics Data System (ADS)

    Yan, Jianhua; Chu-Shern Lim, Jason; Townsend, David W.

    2015-02-01

    Positron emission tomography (PET) image quantification is a challenging problem due to limited spatial resolution of acquired data and the resulting partial volume effects (PVE), which depend on the size of the structure studied in relation to the spatial resolution and which may lead to over or underestimation of the true tissue tracer concentration. In addition, it is usually necessary to perform image smoothing either during image reconstruction or afterwards to achieve a reasonable signal-to-noise ratio. Typically, an isotropic Gaussian filtering (GF) is used for this purpose. However, the noise suppression is at the cost of deteriorating spatial resolution. As hybrid imaging devices such as PET/MRI have become available, the complementary information derived from high definition morphologic images could be used to improve the quality of PET images. In this study, first of all, we propose an MRI-guided PET filtering method by adapting a recently proposed local linear model and then incorporate PVE into the model to get a new partial volume correction (PVC) method without parcellation of MRI. In addition, both the new filtering and PVC are voxel-wise non-iterative methods. The performance of the proposed methods were investigated with simulated dynamic FDG brain dataset and 18F-FDG brain data of a cervical cancer patient acquired with a simultaneous hybrid PET/MR scanner. The initial simulation results demonstrated that MRI-guided PET image filtering can produce less noisy images than traditional GF and bias and coefficient of variation can be further reduced by MRI-guided PET PVC. Moreover, structures can be much better delineated in MRI-guided PET PVC for real brain data.

  11. Choice of satellite imagery and attribution of changes to disturbance type strongly affects forest carbon balance estimates.

    PubMed

    Mascorro, Vanessa S; Coops, Nicholas C; Kurz, Werner A; Olguín, Marcela

    2015-12-01

    Remote sensing products can provide regular and consistent observations of the Earth´s surface to monitor and understand the condition and change of forest ecosystems and to inform estimates of terrestrial carbon dynamics. Yet, challenges remain to select the appropriate satellite data source for ecosystem carbon monitoring. In this study we examine the impacts of three attributes of four remote sensing products derived from Landsat, Landsat-SPOT, and MODIS satellite imagery on estimates of greenhouse gas emissions and removals: (1) the spatial resolution (30 vs. 250 m), (2) the temporal resolution (annual vs. multi-year observations), and (3) the attribution of forest cover changes to disturbance types using supplementary data. With a spatially-explicit version of the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3), we produced annual estimates of carbon fluxes from 2002 to 2010 over a 3.2 million ha forested region in the Yucatan Peninsula, Mexico. The cumulative carbon balance for the 9-year period differed by 30.7 million MgC (112.5 million Mg CO 2e ) among the four remote sensing products used. The cumulative difference between scenarios with and without attribution of disturbance types was over 5 million Mg C for a single Landsat scene. Uncertainty arising from activity data (rates of land-cover changes) can be reduced by, in order of priority, increasing spatial resolution from 250 to 30 m, obtaining annual observations of forest disturbances, and by attributing land-cover changes by disturbance type. Even missing a single year in the land-cover observations can lead to substantial errors in ecosystems with rapid forest regrowth, such as the Yucatan Peninsula.

  12. POLARIS: A 30-meter probabilistic soil series map of the contiguous United States

    USGS Publications Warehouse

    Chaney, Nathaniel W; Wood, Eric F; McBratney, Alexander B; Hempel, Jonathan W; Nauman, Travis; Brungard, Colby W.; Odgers, Nathan P

    2016-01-01

    A new complete map of soil series probabilities has been produced for the contiguous United States at a 30 m spatial resolution. This innovative database, named POLARIS, is constructed using available high-resolution geospatial environmental data and a state-of-the-art machine learning algorithm (DSMART-HPC) to remap the Soil Survey Geographic (SSURGO) database. This 9 billion grid cell database is possible using available high performance computing resources. POLARIS provides a spatially continuous, internally consistent, quantitative prediction of soil series. It offers potential solutions to the primary weaknesses in SSURGO: 1) unmapped areas are gap-filled using survey data from the surrounding regions, 2) the artificial discontinuities at political boundaries are removed, and 3) the use of high resolution environmental covariate data leads to a spatial disaggregation of the coarse polygons. The geospatial environmental covariates that have the largest role in assembling POLARIS over the contiguous United States (CONUS) are fine-scale (30 m) elevation data and coarse-scale (~ 2 km) estimates of the geographic distribution of uranium, thorium, and potassium. A preliminary validation of POLARIS using the NRCS National Soil Information System (NASIS) database shows variable performance over CONUS. In general, the best performance is obtained at grid cells where DSMART-HPC is most able to reduce the chance of misclassification. The important role of environmental covariates in limiting prediction uncertainty suggests including additional covariates is pivotal to improving POLARIS' accuracy. This database has the potential to improve the modeling of biogeochemical, water, and energy cycles in environmental models; enhance availability of data for precision agriculture; and assist hydrologic monitoring and forecasting to ensure food and water security.

  13. Cirrus Horizontal Heterogeneity Effects on Cloud Optical Properties Retrieved from MODIS VNIR to TIR Channels as a Function of the Spatial Resolution

    NASA Astrophysics Data System (ADS)

    Fauchez, T.; Platnick, S. E.; Sourdeval, O.; Wang, C.; Meyer, K.; Cornet, C.; Szczap, F.

    2017-12-01

    Cirrus are an important part of the Earth radiation budget but an assessment of their role yet remains highly uncertain. Cirrus optical properties such as Cloud Optical Thickness (COT) and ice crystal effective particle size (Re) are often retrieved with a combination of Visible/Near InfraRed (VNIR) and ShortWave-InfraRed (SWIR) reflectance channels. Alternatively, Thermal InfraRed (TIR) techniques, such as the Split Window Technique (SWT), have demonstrated better sensitivity to thin cirrus. However, current satellite operational products for both retrieval methods assume that cloudy pixels are horizontally homogeneous (Plane Parallel and Homogeneous Approximation (PPHA)) and independent (Independent Pixel Approximation (IPA)). The impact of these approximations on cirrus retrievals needs to be understood and, as far as possible, corrected. Horizontal heterogeneity effects can be more easily estimated and corrected in the TIR range because they are mainly dominated by the PPA bias, which primarily depends on the COT subpixel heterogeneity. For solar reflectance channels, in addition to the PPHA bias, the IPA can lead to significant retrieval errors if there is large photon transport between cloudy columns in addition to brightening and shadowing effects that are more difficult to quantify.The effects of cirrus horizontal heterogeneity are here studied on COT and Re retrievals obtained using simulated MODIS reflectances at 0.86 and 2.11 μm and radiances at 8.5, 11.0 and 12.0 μm, for spatial resolutions ranging from 50 m to 10 km. For each spatial resolution, simulated TOA reflectances and radiances are combined for cloud optical property retrievals with a research-level optimal estimation retrieval method (OEM). The impact of horizontal heterogeneity on the retrieved products is assessed for different solar geometries and various combinations of the five channels.

  14. Impact of spatial resolution on cirrus infrared satellite retrievals in the presence of cloud heterogeneity

    NASA Astrophysics Data System (ADS)

    Fauchez, T.; Platnick, S. E.; Meyer, K.; Zhang, Z.; Cornet, C.; Szczap, F.; Dubuisson, P.

    2015-12-01

    Cirrus clouds are an important part of the Earth radiation budget but an accurate assessment of their role remains highly uncertain. Cirrus optical properties such as Cloud Optical Thickness (COT) and ice crystal effective particle size are often retrieved with a combination of Visible/Near InfraRed (VNIR) and ShortWave-InfraRed (SWIR) reflectance channels. Alternatively, Thermal InfraRed (TIR) techniques, such as the Split Window Technique (SWT), have demonstrated better accuracy for thin cirrus effective radius retrievals with small effective radii. However, current global operational algorithms for both retrieval methods assume that cloudy pixels are horizontally homogeneous (Plane Parallel Approximation (PPA)) and independent (Independent Pixel Approximation (IPA)). The impact of these approximations on ice cloud retrievals needs to be understood and, as far as possible, corrected. Horizontal heterogeneity effects in the TIR spectrum are mainly dominated by the PPA bias that primarily depends on the COT subpixel heterogeneity; for solar reflectance channels, in addition to the PPA bias, the IPA can lead to significant retrieval errors due to a significant photon horizontal transport between cloudy columns, as well as brightening and shadowing effects that are more difficult to quantify. Furthermore TIR retrievals techniques have demonstrated better retrieval accuracy for thin cirrus having small effective radii over solar reflectance techniques. The TIR range is thus particularly relevant in order to characterize, as accurately as possible, thin cirrus clouds. Heterogeneity effects in the TIR are evaluated as a function of spatial resolution in order to estimate the optimal spatial resolution for TIR retrieval applications. These investigations are performed using a cirrus 3D cloud generator (3DCloud), a 3D radiative transfer code (3DMCPOL), and two retrieval algorithms, namely the operational MODIS retrieval algorithm (MOD06) and a research-level SWT algorithm.

  15. High-resolution infrared thermography for capturing wildland fire behaviour - RxCADRE 2012

    Treesearch

    Joseph J. O’Brien; E. Louise Loudermilk; Benjamin Hornsby; Andrew T. Hudak; Benjamin C. Bright; Matthew B. Dickinson; J. Kevin Hiers; Casey Teske; Roger D. Ottmar

    2016-01-01

    Wildland fire radiant energy emission is one of the only measurements of combustion that can be made at wide spatial extents and high temporal and spatial resolutions. Furthermore, spatially and temporally explicit measurements are critical for making inferences about fire effects and useful for examining patterns of fire spread. In this study we describe our...

  16. CERES Search and Subset Tool

    Atmospheric Science Data Center

    2016-06-24

    ... data granules using a high resolution spatial metadata database and directly accessing the archived data granules. Subset results are ... data granules using a high resolution spatial metadata database and directly accessing the archived data granules. Subset results are ...

  17. Optimization of the spatial resolution for the GE discovery PET/CT 710 by using NEMA NU 2-2007 standards

    NASA Astrophysics Data System (ADS)

    Yoon, Hyun Jin; Jeong, Young Jin; Son, Hye Joo; Kang, Do-Young; Hyun, Kyung-Yae; Lee, Min-Kyung

    2015-01-01

    The spatial resolution in positron emission tomography (PET) is fundamentally limited by the geometry of the detector element, the positron's recombination range with electrons, the acollinearity of the positron, the crystal decoding error, the penetration into the detector ring, and the reconstruction algorithms. In this paper, optimized parameters are suggested to produce high-resolution PET images by using an iterative reconstruction algorithm. A phantom with three point sources structured with three capillary tubes was prepared with an axial extension of less than 1 mm and was filled with 18F-fluorodeoxyglucose (18F-FDG) with concentrations above 200 MBq/cc. The performance measures of all the PET images were acquired according to the National Electrical Manufacturers Association (NEMA) NU 2-2007 standards procedures. The parameters for the iterative reconstruction were adjusted around the values recommended by General Electric GE, and the optimized values of the spatial resolution and the full width at half maximum (FWHM) or the full width at tenth of maximum (FWTM) values were found for the best PET resolution. The axial and the transverse spatial resolutions, according to the filtered back-projection (FBP) at 1 cm off-axis, were 4.81 and 4.48 mm, respectively. The axial and the transaxial spatial resolutions at 10 cm off-axis were 5.63 mm and 5.08 mm, respectively, and the trans-axial resolution at 10 cm was evaluated as the average of the radial and the tangential measurements. The recommended optimized parameters of the spatial resolution according to the NEMA phantom for the number of subsets, the number of iterations, and the Gaussian post-filter are 12, 3, and 3 mm for the iterative reconstruction VUE Point HD without the SharpIR algorithm (HD), and 12, 12, and 5.2 mm with SharpIR (HD.S), respectively, according to the Advantage Workstation Volume Share 5 (AW4.6). The performance measurements for the GE Discovery PET/CT 710 using the NEMA NU 2-2007 standards from our results will be helpful in the quantitative analysis of PET scanner images. The spatial resolution was modified more by using an improved algorithm such as HD.S, than by using HD and FBP. The use of the optimized parameters for iterative reconstructions is strongly recommended for qualitative images from the GE Discovery PET/CT 710 scanner.

  18. Analysis of axial spatial resolution in a variable resolution x-ray cone beam CT (VRX-CBCT) system

    NASA Astrophysics Data System (ADS)

    Dahi, Bahram; Keyes, Gary S.; Rendon, David A.; DiBianca, Frank A.

    2008-03-01

    The Variable Resolution X-ray (VRX) technique has been successfully used in a Cone-Beam CT (CBCT) system to increase the spatial resolution of CT images in the transverse plane. This was achieved by tilting the Flat Panel Detector (FPD) to smaller vrx y angles in a VRX Cone Beam CT (VRX-CBCT) system. In this paper, the effect on the axial spatial resolution of CT images created by the VRX-CBCT system is examined at different vrx x angles, where vrx x is the tilting angle of the FPD about its x-axis. An amorphous silicon FPD with a CsI scintillator is coupled with a micro-focus x-ray tube to form a CBCT. The FPD is installed on a rotating frame that allows rotation of up to 90° about x and y axes of the FPD. There is no rotation about the z-axis (i.e. normal to the imaging surface). Tilting the FPD about its x-axis (i.e. decreasing the vrx x angle) reduces both the width of the line-spread function and the sampling distance by a factor of sin vrx x, thereby increasing the theoretical detector pre-sampling spatial resolution proportionately. This results in thinner CT slices that in turn help increase the axial spatial resolution of the CT images. An in-house phantom is used to measure the MTF of the reconstructed CT images at different vrx x angles.

  19. Initial phantom study comparing image quality in computed tomography using adaptive statistical iterative reconstruction and new adaptive statistical iterative reconstruction v.

    PubMed

    Lim, Kyungjae; Kwon, Heejin; Cho, Jinhan; Oh, Jongyoung; Yoon, Seongkuk; Kang, Myungjin; Ha, Dongho; Lee, Jinhwa; Kang, Eunju

    2015-01-01

    The purpose of this study was to assess the image quality of a novel advanced iterative reconstruction (IR) method called as "adaptive statistical IR V" (ASIR-V) by comparing the image noise, contrast-to-noise ratio (CNR), and spatial resolution from those of filtered back projection (FBP) and adaptive statistical IR (ASIR) on computed tomography (CT) phantom image. We performed CT scans at 5 different tube currents (50, 70, 100, 150, and 200 mA) using 3 types of CT phantoms. Scanned images were subsequently reconstructed in 7 different scan settings, such as FBP, and 3 levels of ASIR and ASIR-V (30%, 50%, and 70%). The image noise was measured in the first study using body phantom. The CNR was measured in the second study using contrast phantom and the spatial resolutions were measured in the third study using a high-resolution phantom. We compared the image noise, CNR, and spatial resolution among the 7 reconstructed image scan settings to determine whether noise reduction, high CNR, and high spatial resolution could be achieved at ASIR-V. At quantitative analysis of the first and second studies, it showed that the images reconstructed using ASIR-V had reduced image noise and improved CNR compared with those of FBP and ASIR (P < 0.001). At qualitative analysis of the third study, it also showed that the images reconstructed using ASIR-V had significantly improved spatial resolution than those of FBP and ASIR (P < 0.001). Our phantom studies showed that ASIR-V provides a significant reduction in image noise and a significant improvement in CNR as well as spatial resolution. Therefore, this technique has the potential to reduce the radiation dose further without compromising image quality.

  20. The influence of spatial resolution on human health risk co-benefit estimates for global climate policy assessments.

    PubMed

    Shih, Hsiu-Ching; Crawford-Brown, Douglas; Ma, Hwong-wen

    2015-03-15

    Assessment of the ability of climate policies to produce desired improvements in public health through co-benefits of air pollution reduction can consume resources in both time and research funds. These resources increase significantly as the spatial resolution of models increases. In addition, the level of spatial detail available in macroeconomic models at the heart of climate policy assessments is much lower than that available in traditional human health risk modeling. It is therefore important to determine whether increasing spatial resolution considerably affects risk-based decisions; which kinds of decisions might be affected; and under what conditions they will be affected. Human health risk co-benefits from carbon emissions reductions that bring about concurrent reductions in Particulate Matter (PM10) emissions is therefore examined here at four levels of spatial resolution (Uniform Nation, Uniform Region, Uniform County/city, Health Risk Assessment) in a case study of Taiwan as one of the geographic regions of a global macroeceonomic model, with results that are representative of small, industrialized nations within that global model. A metric of human health risk mortality (YOLL, years of life lost in life expectancy) is compared under assessments ranging from a "uniform simulation" in which there is no spatial resolution of changes in ambient air concentration under a policy to a "highly spatially resolved simulation" (called here Health Risk Assessment). PM10 is chosen in this study as the indicator of air pollution for which risks are assessed due to its significance as a co-benefit of carbon emissions reductions within climate mitigation policy. For the policy examined, the four estimates of mortality in the entirety of Taiwan are 747 YOLL, 834 YOLL, 984 YOLL and 916 YOLL, under Uniform Taiwan, Uniform Region, Uniform County and Health Risk Assessment respectively; or differences of 18%, 9%, 7% if the HRA methodology is taken as the baseline. While these differences are small compared to uncertainties in health risk assessment more generally, the ranks of different regions and of emissions categories as the focus of regulatory efforts estimated at these four levels of spatial resolution are quite different. The results suggest that issues of risk equity within a nation might be missed by the lower levels of spatial resolution, suggesting that low resolution models are suited to calculating national cost-benefit ratios but not as suited to assessing co-benefits of climate policies reflecting intersubject variability in risk, or in identifying sub-national regions and emissions sectors on which to focus attention (although even here, the errors introduced by low spatial resolution are generally less than 40%). Copyright © 2014 Elsevier Ltd. All rights reserved.

Top