Science.gov

Sample records for spatial soil zinc

  1. Implication of zinc excess on soil health.

    PubMed

    Wyszkowska, Jadwiga; Boros-Lajszner, Edyta; Borowik, Agata; Baćmaga, Małgorzata; Kucharski, Jan; Tomkiel, Monika

    2016-01-01

    This study was undertaken to evaluate zinc's influence on the resistance of organotrophic bacteria, actinomyces, fungi, dehydrogenases, catalase and urease. The experiment was conducted in a greenhouse of the University of Warmia and Mazury (UWM) in Olsztyn, Poland. Plastic pots were filled with 3 kg of sandy loam with pHKCl - 7.0 each. The experimental variables were: zinc applied to soil at six doses: 100, 300, 600, 1,200, 2,400 and 4,800 mg of Zn(2+) kg(-1) in the form of ZnCl2 (zinc chloride), and species of plant: oat (Avena sativa L.) cv. Chwat and white mustard (Sinapis alba) cv. Rota. Soil without the addition of zinc served as the control. During the growing season, soil samples were subjected to microbiological analyses on experimental days 25 and 50 to determine the abundance of organotrophic bacteria, actinomyces and fungi, and the activity of dehydrogenases, catalase and urease, which provided a basis for determining the soil resistance index (RS). The physicochemical properties of soil were determined after harvest. The results of this study indicate that excessive concentrations of zinc have an adverse impact on microbial growth and the activity of soil enzymes. The resistance of organotrophic bacteria, actinomyces, fungi, dehydrogenases, catalase and urease decreased with an increase in the degree of soil contamination with zinc. Dehydrogenases were most sensitive and urease was least sensitive to soil contamination with zinc. Zinc also exerted an adverse influence on the physicochemical properties of soil and plant development. The growth of oat and white mustard plants was almost completely inhibited in response to the highest zinc doses of 2,400 and 4,800 mg Zn(2+) kg(-1).

  2. Implication of zinc excess on soil health.

    PubMed

    Wyszkowska, Jadwiga; Boros-Lajszner, Edyta; Borowik, Agata; Baćmaga, Małgorzata; Kucharski, Jan; Tomkiel, Monika

    2016-01-01

    This study was undertaken to evaluate zinc's influence on the resistance of organotrophic bacteria, actinomyces, fungi, dehydrogenases, catalase and urease. The experiment was conducted in a greenhouse of the University of Warmia and Mazury (UWM) in Olsztyn, Poland. Plastic pots were filled with 3 kg of sandy loam with pHKCl - 7.0 each. The experimental variables were: zinc applied to soil at six doses: 100, 300, 600, 1,200, 2,400 and 4,800 mg of Zn(2+) kg(-1) in the form of ZnCl2 (zinc chloride), and species of plant: oat (Avena sativa L.) cv. Chwat and white mustard (Sinapis alba) cv. Rota. Soil without the addition of zinc served as the control. During the growing season, soil samples were subjected to microbiological analyses on experimental days 25 and 50 to determine the abundance of organotrophic bacteria, actinomyces and fungi, and the activity of dehydrogenases, catalase and urease, which provided a basis for determining the soil resistance index (RS). The physicochemical properties of soil were determined after harvest. The results of this study indicate that excessive concentrations of zinc have an adverse impact on microbial growth and the activity of soil enzymes. The resistance of organotrophic bacteria, actinomyces, fungi, dehydrogenases, catalase and urease decreased with an increase in the degree of soil contamination with zinc. Dehydrogenases were most sensitive and urease was least sensitive to soil contamination with zinc. Zinc also exerted an adverse influence on the physicochemical properties of soil and plant development. The growth of oat and white mustard plants was almost completely inhibited in response to the highest zinc doses of 2,400 and 4,800 mg Zn(2+) kg(-1). PMID:26828860

  3. Directed spatial organization of zinc oxide nanostructures

    DOEpatents

    Hsu, Julia; Liu, Jun

    2009-02-17

    A method for controllably forming zinc oxide nanostructures on a surface via an organic template, which is formed using a stamp prepared from pre-defined relief structures, inking the stamp with a solution comprising self-assembled monolayer (SAM) molecules, contacting the stamp to the surface, such as Ag sputtered on Si, and immersing the surface with the patterned SAM molecules with a zinc-containing solution with pH control to form zinc oxide nanostructures on the bare Ag surface.

  4. Zinc.

    PubMed

    Barceloux, D G

    1999-01-01

    The use of zinc in metal alloys and medicinal lotions dates back before the time of Christ. Currently, most of the commercial production of zinc involves the galvanizing of iron and the manufacture of brass. Some studies support the use of zinc gluconate lozenges to treat the common cold, but there are insufficient data at this time to recommend the routine use of these lozenges. Zinc is an essential co-factor in a variety of cellular processes including DNA synthesis, behavioral responses, reproduction, bone formation, growth, and wound healing. Zinc is a relatively common metal with an average concentration of 50 mg/kg soil and a range of 10-300 mg/kg soil. Meat, seafood, dairy products, nuts, legumes, and whole grains contain relatively high concentrations of zinc. The mobility of zinc in anaerobic environments is poor and therefore severe zinc contamination occurs primarily near points sources of zinc release. The recommended daily allowance for adults is 15 mg zinc. The ingestion of 1-2 g zinc sulfate produces emesis. Zinc compounds can produce irritation and corrosion of the gastrointestinal tract, along with acute renal tubular necrosis and interstitial nephritis. Inhalation of high concentrations of zinc chloride from smoke bombs detonated in closed spaces may cause chemical pneumonitis and adult respiratory distress syndrome. In the occupational setting inhalation of fumes from zinc oxide is the most common cause of metal fume fever (fatigue, chills, fever, myalgias, cough, dyspnea, leukocytosis, thirst, metallic taste, salivation). Zinc compounds are not suspected carcinogens. Treatment of zinc toxicity is supportive. Calcium disodium ethylenediaminetetraacetate (CaNa2EDTA) is the chelator of choice based on case reports that demonstrate normalization of zinc concentrations, but there are few clinical data to confirm the efficacy of this agent. PMID:10382562

  5. Phytotoxicity of zinc and manganese to seedlings grown in soil contaminated by zinc smelting

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Historic emissions from two zinc smelters have damaged the forest on Blue Mountain near Palmerton, Pennsylvania, USA. Seedlings of soybeans and five tree species were grown in a greenhouse in a series of mixtures of smelter-contaminated and reference soils. As little as 10% Palmerton soil mixed wi...

  6. Phytotoxicity of zinc and manganese to seedlings grown in soil contaminated by zinc smelting.

    PubMed

    Beyer, W N; Green, C E; Beyer, M; Chaney, R L

    2013-08-01

    Historic emissions from two zinc smelters have injured the forest on Blue Mountain near Palmerton, Pennsylvania, USA. Seedlings of soybeans and five tree species were grown in a greenhouse in a series of mixtures of smelter-contaminated and reference soils and then phytotoxic thresholds were calculated. As little as 10% Palmerton soil mixed with reference soil killed or greatly stunted seedlings of most species. Zinc was the principal cause of the phytotoxicity to the tree seedlings, although Mn and Cd may also have been phytotoxic in the most contaminated soil mixtures. Calcium deficiency seemed to play a role in the observed phytotoxicity. Exposed soybeans showed symptoms of Mn toxicity. A test of the effect of liming on remediation of the Zn and Mn phytotoxicity caused a striking decrease in Sr-nitrate extractable metals in soils and demonstrated that liming was critical to remediation and restoration.

  7. Phytotoxicity of zinc and manganese to seedlings grown in soil contaminated by zinc smelting

    USGS Publications Warehouse

    Beyer, W.N.; Green, C.E.; Beyer, M.; Chaney, R.L.

    2013-01-01

    Historic emissions from two zinc smelters have injured the forest on Blue Mountain near Palmerton, Pennsylvania, USA. Seedlings of soybeans and five tree species were grown in a greenhouse in a series of mixtures of smelter-contaminated and reference soils and then phytotoxic thresholds were calculated. As little as 10% Palmerton soil mixed with reference soil killed or greatly stunted seedlings of most species. Zinc was the principal cause of the phytotoxicity to the tree seedlings, although Mn and Cd may also have been phytotoxic in the most contaminated soil mixtures. Calcium deficiency seemed to play a role in the observed phytotoxicity. Exposed soybeans showed symptoms of Mn toxicity. A test of the effect of liming on remediation of the Zn and Mn phytotoxicity caused a striking decrease in Sr-nitrate extractable metals in soils and demonstrated that liming was critical to remediation and restoration.

  8. Accumulation and tolerance characteristics of zinc in Agropyron cristatum plants exposed to zinc-contaminated soil.

    PubMed

    Meng, Lin; Guo, Qiang; Mao, Peichun; Tian, Xiaoxia

    2013-09-01

    In phytoremediation, plants are used to stabilize or remove toxins from soil. In this study, a pot experiment was conducted in a greenhouse to evaluate the phytoremediation potential of Agropyron cristatum (Poaceae) grown on Zinc (Zn) contaminated soils. Results indicated that Zn accumulation in both shoots and roots increased with soil Zn concentration, and Zn concentrations in roots were greater than in shoots. A significantly negative correlation was found between translocation factor or bioconcentration factor values and Zn concentrations in soil. Overall, A. cristatum was Zn excluder with an innate capacity to tolerate Zn stress and may have potential for the phytostabilization of sites contaminated with Zn. PMID:23771314

  9. Scaled Spatial Variability of Soil Moisture Fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil moisture spatial variability patterns are identified using measurements across different scales and depths from 18 different experiments. The spatial variability patterns are well represented by negative exponential functions between the mean and the coefficient of variation of soil moisture. R...

  10. Pore-water chemistry explains zinc phytotoxicity in soil.

    PubMed

    Kader, Mohammed; Lamb, Dane T; Correll, Ray; Megharaj, Mallavarapu; Naidu, Ravi

    2015-12-01

    Zinc (Zn) is a widespread soil contaminant arising from a numerous anthropogenic sources. However, adequately predicting toxicity of Zn to ecological receptors remains difficult due to the complexity of soil characteristics. In this study, we examined solid-solution partitioning using pore-water data and toxicity of Zn to cucumber (Cucumis sativus L.) in spiked soils. Pore-water effective concentration (ECx, x=10%, 20% and 50% reduction) values were negatively related to pH, indicating lower Zn pore water concentration were needed to cause phytotoxicity at high pH soils. Total dissolved zinc (Znpw) and free zinc (Zn(2+)) in soil-pore water successfully described 78% and 80.3% of the variation in relative growth (%) in the full dataset. When the complete data set was used (10 soils), the estimated EC50pw was 450 and 79.2 µM for Znpw and Zn(2+), respectively. Total added Zn, soil pore water pH (pHpw) and dissolve organic carbon (DOC) were the best predictors of Znpw and Zn(2+) in pore-water. The EC10 (total loading) values ranged from 179 to 5214 mg/kg, depending on soil type. Only pH measurements in soil were related to ECx total Zn data. The strongest relationship to ECx overall was pHca, although pHw and pHpw were in general related to Zn ECx. Similarly, when a solution-only model was used to predict Zn in shoot, DOC was negatively related to Zn in shoot, indicating a reduction in uptake/ translocation of Zn from solution with increasing DOC.

  11. Effects of zinc-smelter emissions on forest soil microflora.

    PubMed

    Jordan, M J; Lechevalier, M P

    1975-11-01

    Within 2 km of a zinc (Zn) smelter in Palmerton, Pennsylvania, near the Lehigh Water Gap, up to 13.5% Zn by weight has been measured in the O2 horizon of the soil, and up to 8% Zn in the A1 horizon. The total numbers of bacteria, actinomycetes, and fungi (measured by dilution plate counts) were greatly reduced in the most severely Zn-contaminated soils compared with control soils. The reduction of microbial populations may be a partial cause of the decreased rate of litter decomposition at Lehigh Gap. Growth of most bacteria from control sites was reduced by 100 to 200 muM Zn, most actinomycetes by 100 muM Zn, and most fungi by 100 to 1000 muM Zn in thin-Pablum extract agar (TPab). All the tested actinomycetes and non-spore-forming bacteria isolated from Zn-contaminated Lehigh Gap soils were Zn-tolerant, growing normally in media containing 600-2000 muM Zn. Most fungi, regardless of source, were capable of at least 50% of normal growth at 700 muM Zn. Zinc-tolerant bacteria, actinomycetes, and fungi were readily isolated from low-Zn soils, suggesting that selection for Zn tolerance may proceed rapidly. Acidophilic Mortierella species have been selectively eliminated near the smelter, apparently because of elevated soil pH. Peryronellaea glomerata (Corda) Goidanich and Coniothyrium spp. were found only in the high-Zn soils.

  12. Measuring spatial variability in soil characteristics

    DOEpatents

    Hoskinson, Reed L.; Svoboda, John M.; Sawyer, J. Wayne; Hess, John R.; Hess, J. Richard

    2002-01-01

    The present invention provides systems and methods for measuring a load force associated with pulling a farm implement through soil that is used to generate a spatially variable map that represents the spatial variability of the physical characteristics of the soil. An instrumented hitch pin configured to measure a load force is provided that measures the load force generated by a farm implement when the farm implement is connected with a tractor and pulled through or across soil. Each time a load force is measured, a global positioning system identifies the location of the measurement. This data is stored and analyzed to generate a spatially variable map of the soil. This map is representative of the physical characteristics of the soil, which are inferred from the magnitude of the load force.

  13. Roadside soils show low plant available zinc and copper concentrations.

    PubMed

    Morse, Natalie; Walter, M Todd; Osmond, Deanna; Hunt, William

    2016-02-01

    Vehicle combustion and component wear are a major source of metal contamination in the environment, which could be especially concerning where road ditches are actively farmed. The objective of this study was to assess how site variables, namely age, traffic (vehicles day(-1)), and percent carbon (%C) affect metal accumulation in roadside soils. A soil chronosequence was established with sites ranging from 3 to 37 years old and bioavailable, or mobile, concentrations of Zinc (Zn) and Copper (Cu) were measured along major highways in North Carolina using a Mehlich III extraction. Mobile Zn and Cu concentrations were low overall, and when results were scaled via literature values to "total metal", the results were still generally lower than previous roadside studies. This could indicate farming on lands near roads would pose a low plant toxicity risk. Zinc and Cu were not correlated with annual average traffic count, but were positively correlated with lifetime traffic load (the product of site age and traffic count). This study shows an often overlooked variable, site age, should be included when considering roadside pollution accumulation. Zinc and Cu were more strongly associated with %C, than traffic load. Because vehicle combustion is also a carbon source, it is not obvious whether the metals and carbon are simply co-accumulating or whether the soil carbon in roadside soils may facilitate previously overlooked roles in sequestering metals on-site.

  14. Cadmium-zinc interactions in plants and extractable cadmium and zinc fractions in soil

    SciTech Connect

    Abdel-Sabour, M.F.; Mortvedt, J.J.; Kelsoe, J.J.

    1988-06-01

    This study related Cd-Zn concentrations in plants to levels of Cd and Zn in soil recovered by several extractants soon after application of Cd and Zn sources to soil. Cadmium nitrate and ZnSO/sub 4/ or Zn(C/sub 2/H/sub 3/O/sub 2/)/sub 2/ were mixed with a Zn-deficient Crowley silt loam soil, cropped with corn (Zea mays L.), and then cropped with Swiss chard (Beta vulgaris). Applied Cd significantly increased the Cd/Zn ratio in both crops, especially in Swiss chard, which accumulates heavy metals. A previously published sequential-extraction procedure was used to fractionate Cd and Zn in soil after the corn harvest. Results of statistical analyses showed the highest correlation between Cd uptake by each crop and the carbonate and sulfide fractions of Cd in soil. Including other Cd fractions resulted in only slightly higher R/sup 2/ values. Zinc uptake by each crop was best related to the organic fraction of Zn in soil, and including the other Zn fractions did not affect the relationship. These results show that Cd and Zn uptake by corn or Swiss chard was not related to similar chemical fractions of these elements in soil, and that the Cd/Zn ratio in plant tops was significantly affected by both Cd and Zn applications to soil.

  15. Speciation and release kinetics of zinc in contaminated paddy soils.

    PubMed

    Khaokaew, Saengdao; Landrot, Gautier; Chaney, Rufus L; Pandya, Kaumudi; Sparks, Donald L

    2012-04-01

    Zinc is an important nutrient for plants, but it can be toxic at high concentrations. The solubility and speciation of Zn is controlled by many factors, especially soil pH and Eh, which can vary in lowland rice culture. This study determined Zn speciation and release kinetics in Cd-Zn cocontaminated alkaline and acidified paddy soils, under various flooding periods and draining conditions, by employing synchrotron-based techniques and a stirred-flow kinetic method. Results showed almost no change in Zn speciation and release kinetics in the two soils, although the soils were subjected to different flooding periods and draining conditions. The mineral phases in which Zn is immobilized in the soil samples were constrained by linear least squares fitting (LLSF) analyses of bulk X-ray absorption fine structure (XAFS) spectra. Only two main phases were identified by LLSF, i.e., Zn-layered double hydroxides (Zn/Mg-hydrotalcite-like, and ZnAl-LDH) and Zn-phyllosilicates (Zn-kerolite). Under all soil pHs, flooding, and draining conditions, less than 22% of Zn was desorbed from the soil after a two-hour desorption experiment. The information on Zn chemistry obtained in this study will be useful in finding the best strategy to control Cd and Zn bioavailability in the Cd-Zn cocontaminated paddy soils. PMID:22423594

  16. Spatial atomic layer deposition of zinc oxide thin films.

    PubMed

    Illiberi, A; Roozeboom, F; Poodt, P

    2012-01-01

    Zinc oxide thin films have been deposited at high growth rates (up to ~1 nm/s) by spatial atomic layer deposition technique at atmospheric pressure. Water has been used as oxidant for diethylzinc (DEZ) at deposition temperatures between 75 and 250 °C. The electrical, structural (crystallinity and morphology), and optical properties of the films have been analyzed by using Hall, four-point probe, X-ray diffraction, scanning electron microscopy, spectrophotometry, and photoluminescence, respectively. All the films have c-axis (100) preferential orientation, good crystalline quality and high transparency (∼ 85%) in the visible range. By varying the DEZ partial pressure, the electrical properties of ZnO can be controlled, ranging from heavily n-type conductive (with 4 mOhm.cm resistivity for 250 nm thickness) to insulating. Combining the high deposition rates with a precise control of functional properties (i.e., conductivity and transparency) of the films, the industrially scalable spatial ALD technique can become a disruptive manufacturing method for the ZnO-based industry.

  17. Zinc in soils, crops, and meals in the Niger Inland Delta, Mali.

    PubMed

    Gårdestedt, Caroline; Plea, Mama; Nilsson, Gertrud; Jacks, Birgitta; Jacks, Gunnar

    2009-09-01

    Zinc deficiency is a problem in developing countries and not least so in Africa. This concerns both agriculture and human food provision. Zinc deficiency in soils may severely decrease yields, whereas insufficient zinc in food intake primarily affects the immune defense, notably in children. The present investigation concerned zinc availability in soils, crops, and food in the Niger inland delta in Mali. Agricultural soils are largely deficient in plant-available zinc, however, soils in close vicinity to habitation show elevated zinc concentrations. The zinc concentrations in crops are low; in rice, they are about half of reference ranges. Zinc intake assessed from a number of sampled meals was about half the recommended requirement. When zinc concentration is higher phytate was also high, which made the zinc less available. In spite of a recorded sufficient intake of iron, anemia is common and is most likely because of the high phytate concentration in the cereal-dominated diet. Increasing zinc and iron availability would be possible through the use of malting, fermentation, and soaking in food preparation. Finally, in the long run, any trace element deficiency, especially that of zinc in agricultural soils needs to be amended by addition of appropriate amounts in commercial fertilizers. PMID:19860157

  18. Spatial variability of soil hydraulics and remotely sensed soil parameters

    NASA Technical Reports Server (NTRS)

    Lascano, R. J.; Van Bavel, C. H. M.

    1982-01-01

    The development of methods to correctly interpret remotely sensed information about soil moisture and soil temperature requires an understanding of water and energy flow in soil, because the signals originate from the surface, or from a shallow surface layer, but reflect processes in the entire profile. One formidable difficulty in this application of soil physics is the spatial heterogeneity of natural soils. Earlier work has suggested that the heterogeneity of soil hydraulic properties may be described by the frequency distribution of a single scale factor. The sensitivity of hydraulic and energetic processes to the variation of this scale factor is explored with a suitable numerical model. It is believed that such an analysis can help in deciding how accurately and extensively basic physical properties of field soils need to be known in order to interpret thermal or radar waveband signals. It appears that the saturated hydraulic conductivity needs to be known only to its order of magnitude, and that the required accuracy of the soil water retention function is about 0.02 volume fraction. Furthermore, the results may be helpful in deciding how the total scene or view field, as perceived through a sensor, is composed from the actual mosaic of transient soil properties, such as surface temperature or surface soil moisture. However, the latter proposition presupposes a random distribution of permanent properties, a condition that may not be met in many instances, and no solution of the problem is apparent.

  19. Effects of cadium, zinc and lead on soil enzyme activities.

    PubMed

    Yang, Zhi-xin; Liu, Shu-qing; Zheng, Da-wei; Feng, Sheng-dong

    2006-01-01

    Heavy metal (HM) is a major hazard to the soil-plant system. This study investigated the combined effects of cadium (Cd), zinc (Zn) and lead (Pb) on activities of four enzymes in soil, including calatase, urease, invertase and alkalin phosphatase. HM content in tops of canola and four enzymes activities in soil were analyzed at two months after the metal additions to the soil. Pb was not significantly inhibitory than the other heavy metals for the four enzyme activities and was shown to have a protective role on calatase activity in the combined presence of Cd, Zn and Pb; whereas Cd significantly inhibited the four enzyme activities, and Zn only inhibited urease and calatase activities. The inhibiting effect of Cd and Zn on urease and calatase activities can be intensified significantly by the additions of Zn and Cd. There was a negative synergistic inhibitory effect of Cd and Zn on the two enzymes in the presence of Cd, Zn and Pb. The urease activity was inhibited more by the HM combinations than by the metals alone and reduced approximately 20%-40% of urease activity. The intertase and alkaline phosphatase activities significantly decreased only with the increase of Cd concentration in the soil. It was shown that urease was much more sensitive to HM than the other enzymes. There was a obvious negative correlation between the ionic impulsion of HM in soil, the ionic impulsion of HM in canola plants tops and urease activity. It is concluded that the soil urease activity may be a sensitive tool for assessing additive toxic combination effect on soil biochemical parameters.

  20. Zinc Isotopes in the Soil-Plant Interface

    NASA Astrophysics Data System (ADS)

    Arnold, T.; Weiss, D.; Wissuwa, M.; Zhao, F.; Kirk, G.

    2007-12-01

    From the geosphere/biosphere system as a whole down to the organism and cellular level, isotopes have the potential capability to uniquely understand the fluxes of inorganic elements. Zinc is of particular interest as it is one of the trace elements essential for living organisms and most usefully its chemistry is simplified by the possession of only one oxidised state (II). The use of multicollector ICP-MS, together with complete sample digestion and anion exchange chromatography, has allowed the measurement of Zn isotopes to be made precisely (below ±0.1‰ (2 S.D., n=4 typically)) and accurately in the geological and biological matrices studied. Zinc deficiency is the most widespread micronutrient disorder in rice (\\it Oryza \\it sativa) and differences between genotypes render some genotypes more susceptible to deficiency than others. Hence rice was chosen as a model species in our uptake and fractionation studies. A previous hydroponic study in our laboratory showed Zn uptake by tomato, lettuce and rice all produced an enrichment of the light Zn isotopes in plant shoots. A study of vegetation in a watershed, however, revealed a more complex picture, and plant shoots and roots were generally enriched in heavy isotopes relative to the litter and superficial soils. In the results presented here, rice grown under field conditions showed only heavy or insignificant fractionations relative to the soil matrix (in contrast to the hydroponic study). A genotype tolerant to Zn soil deficiency (line 46) and a genotype intolerant to deficiency (IR74) were grown in both zinc fertilised and unfertilised (Zn deficient) plots as part of a larger study. On the zinc fertilised plots, shoot samples of both genotypes showed a negligible difference in δ66ZnIMP-Zn compared to the growth soil. On unfertilised plots (soil δ66ZnIMP- Zn = 0.14 ± 0.10 ‰ (2 S.E., n=3)), however, line 46 rice showed preferential heavy uptake (δ66ZnIMP-Zn = 0.35 ± 0.04 ‰ (2 S.E., n=4)) compared

  1. Zinc deficiency with reduced mastication impairs spatial memory in young adult mice.

    PubMed

    Kida, Kumiko; Tsuji, Tadataka; Tanaka, Susumu; Kogo, Mikihiko

    2015-12-01

    Sufficient oral microelements such as zinc and fully chewing of foods are required to maintain cognitive function despite aging. No knowledge exists about the combination of factors such as zinc deficiency and reduced mastication on learning and memory. Here we show that tooth extraction only in 8-week-old mice did not change the density of glial fibrillary acidic protein-labeled astrocytes in the hippocampus or spatial memory parameters. However, tooth extraction followed by zinc deprivation strongly impaired spatial memory and led to an increase in astrocytic density in the hippocampal CA1 region. The impaired spatial performance in the zinc-deficient only (ZD) mice also coincided well with the increase in the astrocytic density in the hippocampal CA1 region. After switching both zinc-deficient groups to a normal diet with sufficient zinc, spatial memory recovered, and more time was spent in the quadrant with the goal in the probe test in the mice with tooth extraction followed by zinc deprivation (EZD) compared to the ZD mice. Interestingly, we found no differences in astrocytic density in the CA1 region among all groups at 22 weeks of age. Furthermore, the escape latency in a visible probe test at all times was longer in zinc-deficient groups than the others and demonstrated a negative correlation with body weight. No significant differences in escape latency were observed in the visible probe test among the ZD, EZD, and normal-fed control at 4 weeks (CT4w) groups in which body weight was standardized to that of the EZD group, or in the daily reduction in latency between the normal-fed control and CT4w groups. Our data showed that zinc-deficient feeding during a young age impairs spatial memory performance and leads to an increase in astrocytic density in the hippocampal CA1 region and that zinc-sufficient feeding is followed by recovery of the impaired spatial memory along with changes in astrocytic density. The combination of the two factors, zinc deficiency

  2. Accumulation and mobility of zinc in soil amended with different levels of pig-manure compost.

    PubMed

    Asada, Kei; Toyota, Koki; Nishimura, Taku; Ikeda, Jun-Ichi; Hori, Kaneaki

    2010-05-01

    Applying manure compost not only results in zinc accumulation in the soil but also causes an increase in zinc mobility and enhances zinc leaching. In this study, the physical and chemical characteristics of zinc, zinc profiles, and zinc balance were investigated to characterise the fate of zinc in fields where the quality and amount of pig manure compost applied have been known for 13 years. Moreover, we determined zinc fractionation in both 0.1 mol L(-1)HCl-soluble (mobile) and -insoluble (immobile) fractions. Adsorption of zinc in the soil was enhanced with increasing total carbon content following the application of pig manure compost. The 159.6 mg ha(-1) year(-1)manure applied plot (triplicate) exceeded the Japanese regulatory level after only 6 years of applying pig manure compost, whereas the 53.2 mg ha(-1) year(-1) manure applied plot (standard) reached the regulatory level after 13 years. The zinc loads in the plots were 17.0 and 5.6 kg ha(-1) year(-1), respectively. However, 5.9 % and 17.2 % of the zinc loaded in the standard and the triplicate pig manure compost applied plots, respectively, were estimated to be lost from the plough layer. Based on the vertical distribution of mobile and immobile zinc content, a higher rate of applied manure compost caused an increase in the mobile zinc fraction to a depth of 40 cm. Although the adsorption capacity of zinc was enhanced following the application of pig manure compost, a greater amount of mobile zinc could move downward through the manure amended soil than through non manure-amended soil.

  3. Spatial pattern of heavy metals accumulation risk in urban soils of Beijing and its influencing factors.

    PubMed

    Liu, Rui; Wang, Meie; Chen, Weiping; Peng, Chi

    2016-03-01

    Accumulations of heavy metals in urban soils are highly spatial heterogeneity and affected by multiple factors including soil properties, land use and pattern, population and climatic conditions. We studied accumulation risks of Cd, Cu, Pb and Zn in unban soils of Beijing and their influencing based on the regression tree analysis and a GIS-based overlay model. Result shows that Zinc causes the most extensive soil pollution and Cu result in the most acute soil pollution. The soil's organic carbon content and CEC and population growth are the most significant factors affecting heavy metal accumulation. Other influence factors in land use pattern, urban landscape, and wind speed also contributed, but less pronounced. The soils in areas with higher degree of urbanization and surrounded by intense vehicular traffics have higher accumulation risk of Cd, Cu, Pb, and Zn. PMID:26716731

  4. [Transfer characteristics of mercury, lead, cadmium, zinc and cuprum from soil to vegetable around zinc smelting plant].

    PubMed

    Zheng, N; Wang, Qi-Chao; Zheng, Dong-Mei

    2007-06-01

    The transfer characteristics of Hg, Pb, Cd, Zn and Cu from soil to vegetables near zinc smelting plant in Huludao City, China were investigated, and the sources of heavy metals in the soil and vegetable were also analyzed. The results indicate that the Hg, Pb, Cd, Zn and Cu contents of vegetables are 0.013, 5.476, 2.852, 41.16 and 1.515 mg/kg (fresh weight), respectively, and the environment around Huludao Zinc Plant are contaminated seriously. The transfer factors (TF) of heavy metals decrease in the order of Cd > Zn > Cu > Pb > Hg. The transfer factors of heavy metals from soil to leaves are higher than from soil to other tissues. The heavy metals in soil derive from atmosphere, and the parts of Pb in the leaves of vegetable derive from atmosphere. Uptake of gaseous mercury is the predominant pathway by which mercury accumulates in the vegetable.

  5. Zinc

    MedlinePlus

    ... ulcers and promoting weight gain in people with eating disorders such as anorexia nervosa. Some people use zinc ... is abnormal): 25-100 mg zinc. For the eating disorder anorexia nervosa: 100 mg of zinc gluconate daily. ...

  6. Maternal zinc supplementation improves spatial memory in rat pups.

    PubMed

    Piechal, Agnieszka; Blecharz-Klin, Kamilla; Pyrzanowska, Justyna; Widy-Tyszkiewicz, Ewa

    2012-06-01

    A large body of evidence supports an opinion that adequate dietary zinc is essential for prenatal and postnatal brain development. Behavioural effects of maternal supplementation with ZnSO(4) were analysed in rat pups with the Morris water task performance, a hole board and a T-maze. Wistar females during pregnancy and lactation received a drinking water solution of ZnSO(4) at doses of 16 mg/kg (group Zn16) or 32 mg/kg (group Zn32). Behavioural tests were conducted on the 4-week-old male rat pups. Zinc concentration in the serum, hippocampus and prefrontal cortex of offsprings was determined by means of atomic absorption techniques. The Newman-Keuls multiple comparison test revealed an increase of climbing in the Zn16 group in comparison to the control group (Con) and the Zn32 group during the hole board test. ANOVA for repeated measures showed a significant memory improvement in both supplemented groups compared to the control in the probe trial on day 5 of the water maze test. ZnSO(4) treatment significantly elevated zinc levels in the rat serum. Follow-up data on brain content of zinc in the hippocampus revealed significant differences between the groups and in supplemented groups correlated with crossings above the original platform position. These findings suggest that pre- and postnatal zinc supplementation may improve cognitive development in rats.

  7. Dryland soil microbial communities display spatial biogeographic patterns associated with soil depth and soil parent material

    USGS Publications Warehouse

    Steven, Blaire; Gallegos-Graves, La Verne; Belnap, Jayne; Kuske, Cheryl R.

    2013-01-01

    Biological soil crusts (biocrusts) are common to drylands worldwide. We employed replicated, spatially nested sampling and 16S rRNA gene sequencing to describe the soil microbial communities in three soils derived from different parent material (sandstone, shale, and gypsum). For each soil type, two depths (biocrusts, 0–1 cm; below-crust soils, 2–5 cm) and two horizontal spatial scales (15 cm and 5 m) were sampled. In all three soils, Cyanobacteria and Proteobacteria demonstrated significantly higher relative abundance in the biocrusts, while Chloroflexi and Archaea were significantly enriched in the below-crust soils. Biomass and diversity of the communities in biocrusts or below-crust soils did not differ with soil type. However, biocrusts on gypsum soil harbored significantly larger populations of Actinobacteria and Proteobacteria and lower populations of Cyanobacteria. Numerically dominant operational taxonomic units (OTU; 97% sequence identity) in the biocrusts were conserved across the soil types, whereas two dominant OTUs in the below-crust sand and shale soils were not identified in the gypsum soil. The uniformity with which small-scale vertical community differences are maintained across larger horizontal spatial scales and soil types is a feature of dryland ecosystems that should be considered when designing management plans and determining the response of biocrusts to environmental disturbances.

  8. Fate of Zinc Oxide Nanoparticles Coated onto Macronutrient Fertilizers in an Alkaline Calcareous Soil.

    PubMed

    Milani, Narges; Hettiarachchi, Ganga M; Kirby, Jason K; Beak, Douglas G; Stacey, Samuel P; McLaughlin, Mike J

    2015-01-01

    Zinc oxide (ZnO) nanoparticles may provide a more soluble and plant available source of Zn in Zn fertilizers due to their greater reactivity compared to equivalent micron- or millimetre-sized (bulk) particles. However, the effect of soil on solubility, spatial distribution and speciation of ZnO nanoparticles has not yet been investigated. In this study, we examined the diffusion and solid phase speciation of Zn in an alkaline calcareous soil following application of nanoparticulate and bulk ZnO coated fertilizer products (monoammonium phosphate (MAP) and urea) using laboratory-based x-ray techniques and synchrotron-based μ-x-ray fluorescence (μ-XRF) mapping and absorption fine structure spectroscopy (μ-XAFS). Mapping of the soil-fertilizer reaction zones revealed that most of the applied Zn for all treatments remained on the coated fertilizer granule or close to the point of application after five weeks of incubation in soil. Zinc precipitated mainly as scholzite (CaZn2(PO4)2.2H2O) and zinc ammonium phosphate (Zn(NH4)PO4) species at the surface of MAP granules. These reactions reduced dissolution and diffusion of Zn from the MAP granules. Although Zn remained as zincite (ZnO) at the surface of urea granules, limited diffusion of Zn from ZnO-coated urea granules was also observed for both bulk and nanoparticulate ZnO treatments. This might be due to either the high pH of urea granules, which reduced solubility of Zn, or aggregation (due to high ionic strength) of released ZnO nanoparticles around the granule/point of application. The relative proportion of Zn(OH)2 and ZnCO3 species increased for all Zn treatments with increasing distance from coated MAP and urea granules in the calcareous soil. When coated on macronutrient fertilizers, Zn from ZnO nanoparticles (without surface modifiers) was not more mobile or diffusible compared to bulk forms of ZnO. The results also suggest that risk associated with the presence of ZnO NPs in calcareous soils would be the same

  9. Fate of Zinc Oxide Nanoparticles Coated onto Macronutrient Fertilizers in an Alkaline Calcareous Soil.

    PubMed

    Milani, Narges; Hettiarachchi, Ganga M; Kirby, Jason K; Beak, Douglas G; Stacey, Samuel P; McLaughlin, Mike J

    2015-01-01

    Zinc oxide (ZnO) nanoparticles may provide a more soluble and plant available source of Zn in Zn fertilizers due to their greater reactivity compared to equivalent micron- or millimetre-sized (bulk) particles. However, the effect of soil on solubility, spatial distribution and speciation of ZnO nanoparticles has not yet been investigated. In this study, we examined the diffusion and solid phase speciation of Zn in an alkaline calcareous soil following application of nanoparticulate and bulk ZnO coated fertilizer products (monoammonium phosphate (MAP) and urea) using laboratory-based x-ray techniques and synchrotron-based μ-x-ray fluorescence (μ-XRF) mapping and absorption fine structure spectroscopy (μ-XAFS). Mapping of the soil-fertilizer reaction zones revealed that most of the applied Zn for all treatments remained on the coated fertilizer granule or close to the point of application after five weeks of incubation in soil. Zinc precipitated mainly as scholzite (CaZn2(PO4)2.2H2O) and zinc ammonium phosphate (Zn(NH4)PO4) species at the surface of MAP granules. These reactions reduced dissolution and diffusion of Zn from the MAP granules. Although Zn remained as zincite (ZnO) at the surface of urea granules, limited diffusion of Zn from ZnO-coated urea granules was also observed for both bulk and nanoparticulate ZnO treatments. This might be due to either the high pH of urea granules, which reduced solubility of Zn, or aggregation (due to high ionic strength) of released ZnO nanoparticles around the granule/point of application. The relative proportion of Zn(OH)2 and ZnCO3 species increased for all Zn treatments with increasing distance from coated MAP and urea granules in the calcareous soil. When coated on macronutrient fertilizers, Zn from ZnO nanoparticles (without surface modifiers) was not more mobile or diffusible compared to bulk forms of ZnO. The results also suggest that risk associated with the presence of ZnO NPs in calcareous soils would be the same

  10. Fate of Zinc Oxide Nanoparticles Coated onto Macronutrient Fertilizers in an Alkaline Calcareous Soil

    PubMed Central

    Milani, Narges; Hettiarachchi, Ganga M.; Kirby, Jason K.; Beak, Douglas G.; Stacey, Samuel P.; McLaughlin, Mike J.

    2015-01-01

    Zinc oxide (ZnO) nanoparticles may provide a more soluble and plant available source of Zn in Zn fertilizers due to their greater reactivity compared to equivalent micron- or millimetre-sized (bulk) particles. However, the effect of soil on solubility, spatial distribution and speciation of ZnO nanoparticles has not yet been investigated. In this study, we examined the diffusion and solid phase speciation of Zn in an alkaline calcareous soil following application of nanoparticulate and bulk ZnO coated fertilizer products (monoammonium phosphate (MAP) and urea) using laboratory-based x-ray techniques and synchrotron-based μ-x-ray fluorescence (μ–XRF) mapping and absorption fine structure spectroscopy (μ–XAFS). Mapping of the soil-fertilizer reaction zones revealed that most of the applied Zn for all treatments remained on the coated fertilizer granule or close to the point of application after five weeks of incubation in soil. Zinc precipitated mainly as scholzite (CaZn2(PO4)2.2H2O) and zinc ammonium phosphate (Zn(NH4)PO4) species at the surface of MAP granules. These reactions reduced dissolution and diffusion of Zn from the MAP granules. Although Zn remained as zincite (ZnO) at the surface of urea granules, limited diffusion of Zn from ZnO-coated urea granules was also observed for both bulk and nanoparticulate ZnO treatments. This might be due to either the high pH of urea granules, which reduced solubility of Zn, or aggregation (due to high ionic strength) of released ZnO nanoparticles around the granule/point of application. The relative proportion of Zn(OH)2 and ZnCO3 species increased for all Zn treatments with increasing distance from coated MAP and urea granules in the calcareous soil. When coated on macronutrient fertilizers, Zn from ZnO nanoparticles (without surface modifiers) was not more mobile or diffusible compared to bulk forms of ZnO. The results also suggest that risk associated with the presence of ZnO NPs in calcareous soils would be the

  11. Effect of long-term zinc pollution on soil microbial community resistance to repeated contamination.

    PubMed

    Klimek, Beata

    2012-04-01

    The aim of the study was to compare the effects of stress (contamination trials) on the microorganisms in zinc-polluted soil (5,018 mg Zn kg(-1) soil dry weight) and unpolluted soil (141 mg Zn kg(-1) soil dw), measured as soil respiration rate. In the laboratory, soils were subjected to copper contamination (0, 500, 1,500 and 4,500 mg kg(-1) soil dw), and then a bactericide (oxytetracycline) combined with a fungicide (captan) along with glucose (10 mg g(-1) soil dw each) were added. There was a highly significant effect of soil type, copper treatment and oxytetracycline/captan treatment. The initial respiration rate of chronically zinc-polluted soil was higher than that of unpolluted soil, but in the copper treatment it showed a greater decline. Microorganisms in copper-treated soil were more susceptible to oxytetracycline/captan contamination. After the successive soil contamination trials the decline of soil respiration was greater in zinc-polluted soil than in unpolluted soil.

  12. Repeated phytoextraction of four metal-contaminated soils using the cadmium/zinc hyperaccumulator Sedum plumbizincicola.

    PubMed

    Li, Zhu; Wu, Longhua; Hu, Pengjie; Luo, Yongming; Zhang, Hao; Christie, Peter

    2014-06-01

    A cadmium/zinc hyperaccumulator extracted metals from four contaminated soils over three years in a glasshouse experiment. Changes in plant metal uptake and soil total (aqua regia-extractable) and available metals were investigated. Plant Cd concentrations in a high-Cd acid soil and plant Zn concentrations in two acid soils decreased during repeated phytoextraction and were predicted by soil available metal concentrations. However, on repeated phytoextraction, plant Cd concentrations remained constant in lightly Cd-polluted acid soils, as did plant Cd and Zn in alkaline soils, although soil available metal concentrations decreased markedly. After phytoextraction acid soils showed much higher total metal removal efficiencies, indicating possible suitability of phytoextraction for acid soils. However, DGT-testing, which takes soil metal re-supply into consideration, showed substantial removal of available metal and distinct decreases in metal supply capacity in alkaline soils after phytoextraction, suggesting that a strategy based on lowering the bioavailable contaminant might be feasible. PMID:24675367

  13. Zinc distribution and acid-base mobilisation in vineyard soils and sediments.

    PubMed

    Fernández-Calviño, David; Pateiro-Moure, Mirian; Nóvoa-Muñoz, Juan Carlos; Garrido-Rodríguez, Beatriz; Arias-Estévez, Manuel

    2012-01-01

    Nineteen vineyard stands located in steep-slope areas of three wine-growing regions in northwest Spain were selected for this study. In each stand, a representative soil sample (19) and one or two sediment samples (24) were collected. In these samples, the Zn distribution in the solid phase was assessed. Moreover, the effect of pH on the release of zinc was determined using a batch-type experiment. The mean zinc concentration (109 mg kg(-1)) of the samples was lower than the maximum concentrations allowed by the European Union. Moreover, most of the zinc that appeared in vineyard soils was residual zinc, suggesting a tendency for zinc in these soils to be irreversibly bound to soil components, reducing its potential environmental impact. In sediments, the mean total Zn concentration (126 mg kg(-1)) was higher than those in the original soils and in the mobile fractions, which could mean a higher risk of liberation. Zinc release was higher under acidic conditions, in which release depends mainly on labile fractions. Under basic conditions, the release of Zn was lower and depended on Zn bound to crystalline oxyhydroxides.

  14. Contamination and Spatial Variation of Heavy Metals in the Soil-Rice System in Nanxun County, Southeastern China

    PubMed Central

    Zhao, Keli; Fu, Weijun; Ye, Zhengqian; Zhang, Chaosheng

    2015-01-01

    There is an increasing concern about heavy metal contamination in farmland in China and worldwide. In order to reveal the spatial features of heavy metals in the soil-rice system, soil and rice samples were collected from Nanxun, Southeastern China. Compared with the guideline values, elevated concentrations of heavy metals in soils were observed, while heavy metals in rice still remained at a safe level. Heavy metals in soils and rice had moderate to strong spatial dependence (nugget/sill ratios: 13.2% to 49.9%). The spatial distribution of copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn) in soils illustrated that their high concentrations were located in the southeast part. The high concentrations of cadmium (Cd) in soils were observed in the northeast part. The accumulation of all the studied metals is related to the long-term application of agrochemicals and industrial activities. Heavy metals in rice showed different spatial distribution patterns. Cross-correlograms were produced to quantitatively determine the spatial correlation between soil properties and heavy metals composition in rice. The pH and soil organic matter had significant spatial correlations with the concentration of heavy metals in rice. Most of the selected variables had clear spatial correlation ranges for heavy metals in rice, which could be further applied to divide agricultural management zones. PMID:25635917

  15. Zinc movement in sewage-sludge-treated soils as influenced by soil properties, irrigation water quality, and soil moisture level

    USGS Publications Warehouse

    Welch, J.E.; Lund, L.J.

    1989-01-01

    A soil column study was conducted to assess the movement of Zn in sewage-sludge-amended soils. Varables investigated were soil properties, irrigation water quality, and soil moisture level. Bulk samples of the surface layer of six soil series were packed into columns, 10.2 cm in diameter and 110 cm in length. An anaerobically digested municipal sewage sludge was incorporated into the top 20 cm of each column at a rate of 300 mg ha-1. The columns were maintained at moisture levels of saturation and unsaturation and were leached with two waters of different quality. At the termination of leaching, the columns were cut open and the soil was sectioned and analyzed. Zinc movement was evaluated by mass balance accounting and correlation and regression analysis. Zinc movement in the unsaturated columns ranged from 3 to 30 cm, with a mean of 10 cm. The difference in irrigation water quality did not have an effect on Zn movement. Most of the Zn applied to the unsaturated columns remained in the sludge-amended soil layer (96.1 to 99.6%, with a mean of 98.1%). The major portion of Zn leached from the sludge-amended soil layer accumulated in the 0- to 3-cm depth (35.7 to 100%, with a mean of 73.6%). The mean final soil pH values decreased in the order: saturated columns = sludge-amended soil layer > untreated soils > unsaturated columns. Total Zn leached from the sludge-amended soil layer was correlated negatively at P = 0.001 with final pH (r = -0.85). Depth of Zn movement was correlated negatively at P = 0.001 with final pH (r = -0.91). Multiple linear regression analysis showed that the final pH accounted for 72% of the variation in the total amounts of Zn leached from the sludge-amended soil layer of the unsaturated columns and accounted for 82% of the variation in the depth of Zn movement among the unsaturated columns. A significant correlation was not found between Zn and organic carbon in soil solutions, but a negative correlation significant at P = 0.001 was found

  16. Spatial clustering of toxic trace elements in adolescents around the Torreón, Mexico lead-zinc smelter.

    PubMed

    Garcia-Vargas, Gonzalo G; Rothenberg, Stephen J; Silbergeld, Ellen K; Weaver, Virginia; Zamoiski, Rachel; Resnick, Carol; Rubio-Andrade, Marisela; Parsons, Patrick J; Steuerwald, Amy J; Navas-Acién, Ana; Guallar, Eliseo

    2014-11-01

    High blood lead (BPb) levels in children and elevated soil and dust arsenic, cadmium, and lead were previously found in Torreón, northern Mexico, host to the world's fourth largest lead-zinc metal smelter. The objectives of this study were to determine spatial distributions of adolescents with higher BPb and creatinine-corrected urine total arsenic, cadmium, molybdenum, thallium, and uranium around the smelter. Cross-sectional study of 512 male and female subjects 12-15 years of age was conducted. We measured BPb by graphite furnace atomic absorption spectrometry and urine trace elements by inductively coupled plasma-mass spectrometry, with dynamic reaction cell mode for arsenic. We constructed multiple regression models including sociodemographic variables and adjusted for subject residence spatial correlation with spatial lag or error terms. We applied local indicators of spatial association statistics to model residuals to identify hot spots of significant spatial clusters of subjects with higher trace elements. We found spatial clusters of subjects with elevated BPb (range 3.6-14.7 μg/dl) and urine cadmium (0.18-1.14 μg/g creatinine) adjacent to and downwind of the smelter and elevated urine thallium (0.28-0.93 μg/g creatinine) and uranium (0.07-0.13 μg/g creatinine) near ore transport routes, former waste, and industrial discharge sites. The conclusion derived from this study was that spatial clustering of adolescents with high BPb and urine cadmium adjacent to and downwind of the smelter and residual waste pile, areas identified over a decade ago with high lead and cadmium in soil and dust, suggests that past and/or present plant operations continue to present health risks to children in those neighborhoods.

  17. Spatial clustering of toxic trace elements in adolescents around the Torreón, Mexico lead–zinc smelter

    PubMed Central

    Garcia-Vargas, Gonzalo G.; Rothenberg, Stephen J.; Silbergeld, Ellen K.; Weaver, Virginia; Zamoiski, Rachel; Resnick, Carol; Rubio-Andrade, Marisela; Parsons, Patrick J.; Steuerwald, Amy J.; Navas-Acién, Ana; Guallar, Eliseo

    2016-01-01

    High blood lead (BPb) levels in children and elevated soil and dust arsenic, cadmium, and lead were previously found in Torreón, northern Mexico, host to the world’s fourth largest lead–zinc metal smelter. The objectives of this study were to determine spatial distributions of adolescents with higher BPb and creatinine-corrected urine total arsenic, cadmium, molybdenum, thallium, and uranium around the smelter. Cross-sectional study of 512 male and female subjects 12–15 years of age was conducted. We measured BPb by graphite furnace atomic absorption spectrometry and urine trace elements by inductively coupled plasma-mass spectrometry, with dynamic reaction cell mode for arsenic. We constructed multiple regression models including sociodemographic variables and adjusted for subject residence spatial correlation with spatial lag or error terms. We applied local indicators of spatial association statistics to model residuals to identify hot spots of significant spatial clusters of subjects with higher trace elements. We found spatial clusters of subjects with elevated BPb (range 3.6–14.7 µg/dl) and urine cadmium (0.18–1.14 µg/g creatinine) adjacent to and downwind of the smelter and elevated urine thallium (0.28–0.93 µg/g creatinine) and uranium (0.07–0.13 µg/g creatinine) near ore transport routes, former waste, and industrial discharge sites. The conclusion derived from this study was that spatial clustering of adolescents with high BPb and urine cadmium adjacent to and downwind of the smelter and residual waste pile, areas identified over a decade ago with high lead and cadmium in soil and dust, suggests that past and/or present plant operations continue to present health risks to children in those neighborhoods. PMID:24549228

  18. Experimental study and modelling of zinc and lead migration in sandy soils due to stormwater infiltration.

    PubMed

    Marcos, L; Legret, M; Raimbault, G; Le Cloirec, P

    2002-01-01

    Heavy metals emitted by road traffic are contaminants of roadside soils and can potentially migrate through the soils down to groundwater during runoff water infiltration. Stormwater management requires a better understanding of the mechanisms involved in the transport and particularly chemical interactions between heavy metals and the solid matrix. Experiments with open dynamic systems and modelling with a mixing-cells-in-series model have been performed to identify the main reactions which govern the migration of zinc and lead in sandy soils. Binary and ternary exchange experiments have been performed and a numerical modelling was proposed to describe zinc and lead mobility in column experiments.

  19. Height, zinc and soil-transmitted helminth infections in schoolchildren: a study in Cuba and Cambodia.

    PubMed

    de Gier, Brechje; Mpabanzi, Liliane; Vereecken, Kim; van der Werff, Suzanne D; D'Haese, Patrick C; Fiorentino, Marion; Khov, Kuong; Perignon, Marlene; Chamnan, Chhoun; Berger, Jacques; Parker, Megan E; Díaz, Raquel Junco; Núñez, Fidel Angel; Rivero, Lázara Rojas; Gorbea, Mariano Bonet; Doak, Colleen M; Ponce, Maiza Campos; Wieringa, Frank T; Polman, Katja

    2015-04-20

    Soil-transmitted helminth (STH) infections and zinc deficiency are often found in low- and middle-income countries and are both known to affect child growth. However, studies combining data on zinc and STH are lacking. In two studies in schoolchildren in Cuba and Cambodia, we collected data on height, STH infection and zinc concentration in either plasma (Cambodia) or hair (Cuba). We analyzed whether STH and/or zinc were associated with height for age z-scores and whether STH and zinc were associated. In Cuba, STH prevalence was 8.4%; these were mainly Ascaris lumbricoides and Trichuris trichiura infections. In Cambodia, STH prevalence was 16.8%, mostly caused by hookworm. In Cuban children, STH infection had a strong association with height for age (aB-0.438, p = 0.001), while hair zinc was significantly associated with height for age only in STH uninfected children. In Cambodian children, plasma zinc was associated with height for age (aB-0.033, p = 0.029), but STH infection was not. Only in Cambodia, STH infection showed an association with zinc concentration (aB-0.233, p = 0.051). Factors influencing child growth differ between populations and may depend on prevalences of STH species and zinc deficiency. Further research is needed to elucidate these relationships and their underlying mechanisms.

  20. Soil properties affecting toxicity of zinc to soil microbial properties in laboratory-spiked and field-contaminated soils.

    PubMed

    Smolders, Erik; Buekers, Jurgen; Oliver, Ian; McLaughlin, Mike J

    2004-11-01

    The effects of soil properties and zinc (Zn) availability on the toxicity of Zn to soil microbial processes are poorly understood. Three soil microbial processes--potential nitrification rate (PNR), substrate (glucose)-induced respiration (SIR), and a maize residue respiration (MRR)--were measured in 15 European topsoils (pH 3.0-7.5; total Zn 7-191 mg/kg) that were freshly spiked with ZnCl2. The Zn toxicity thresholds of 20 to 50% effective concentrations (EC20s and EC50s) based on total concentrations of Zn in soil varied between 5- and 26-fold among soils, depending on the assay. The Zn toxicity thresholds based on Zn concentrations in soil solution varied at least 10-fold more than corresponding total metal thresholds. Soil pH had no significant effect on soil total Zn toxicity thresholds, whereas significant positive correlations were found between these thresholds and background Zn for the PNR and SIR test (r = 0.74 and 0.71, respectively; log-log correlations). No such trend was found for the MRR test. Soil solution-based thresholds showed highly significant negative correlations with soil pH for all assays that might be explained by competition of H+ for binding sites, as demonstrated for aquatic species. The microbial assays were also applied to soils collected under galvanized pylons (three sites) where concentrations of total Zn were up to 2,100 to 3,700 mg Zn/kg. Correlations between concentrations of total Zn and microbial responses were insignificant at all sites even though spiking reference samples to equivalent concentrations reduced microbial activities up to more than 10-fold. Differences in response between spiked and field soils are partly but not completely attributed to the large differences in concentrations of Zn in soil solution. We conclude that soil pH has no significant effect on Zn toxicity to soil microbial processes in laboratory-spiked soils, and we suggest that community tolerance takes place at both background and elevated Zn

  1. Soil Moisture Spatial Patterns in a Uniform Paulownia Tree Stand

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil moisture spatial patterns have been studied at length in agricultural fields and pasture/rangelands as part of the USDA soil moisture satellite validation program, but recent research has begun to address the distribution of soil beneath a forest canopy. Forests cover a significant portion of ...

  2. Influence of Long-Term Zinc Administration on Spatial Learning and Exploratory Activity in Rats.

    PubMed

    Piechal, Agnieszka; Blecharz-Klin, Kamilla; Pyrzanowska, Justyna; Widy-Tyszkiewicz, Ewa

    2016-08-01

    Animal brain contains a significant amount of zinc, which is a cofactor for more than 300 enzymes. Moreover, it provides the basis for functioning of more than 2000 transcription factors, and it is necessary for memory formation and learning processes in the brain. The aim of this study was to investigate the effect of zinc supplementation on behavior in 3-month-old rats. For this purpose, the Morris water maze paradigm, hole-board, and T-maze were used. Wistar rats received a solution of ZnSO4 in drinking water at the doses of 16 mg/kg (Zn16 group) and 32 mg/kg (Zn32 group). In rats pretreated with the lower dose of zinc, the improvement of the mean escape latency was observed in comparison to the control group and Zn32 group. During memory task, both ZnSO4-supplemented groups showed an increase in crossings over the previous platform position. Furthermore, the exploratory activity in Zn16 group was improved in comparison to Zn32 and control group. In the brains of zinc-supplemented rats, we observed the higher content of zinc, both in the hippocampus and the prefrontal cortex. Hippocampal zinc level correlated positively with the mean annulus crossings of the Zn16 group during the probe trial. These findings show that the long-term administration of ZnS04 can improve learning, spatial memory, and exploratory activity in rats. Graphical Abstract Improvement of spatial learning, memory, and exploratory behavior.

  3. Zinc

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Zinc was recognized as an essential trace metal for humans during the studies of Iranian adolescent dwarfs in the early 1960s. Zinc metal existing as Zn2+ is a strong electron acceptor in biological systems without risks of oxidant damage to cells. Zn2+ functions in the structure of proteins and is ...

  4. The effects of enhanced zinc on spatial memory and plaque formation in transgenic mice

    USGS Publications Warehouse

    Linkous, D.H.; Adlard, P.A.; Wanschura, P.B.; Conko, K.M.; Flinn, J.M.

    2009-01-01

    There is considerable evidence suggesting that metals play a central role in the pathogenesis of Alzheimer's disease. Reports suggest that elevated dietary metals may both precipitate and potentiate an Alzheimer's disease phenotype. Despite this, there remain few studies that have examined the behavioral consequences of elevated dietary metals in wild type and Alzheimer's disease animals. To further investigate this in the current study, two separate transgenic models of AD (Tg2576 and TgCRND8), together with wild type littermates were administered 10 ppm (0.153 mM) Zn. Tg2576 animals were maintained on a zinc-enriched diet both pre- and postnatally until 11 months of age, while TgCRND8 animals were treated for five months following weaning. Behavioral testing, consisting of "Atlantis" and "moving" platform versions of the Morris water maze, were conducted at the end of the study, and tissues were collected for immunohistochemical analysis of amyloid-β burden. Our data demonstrate that the provision of a zinc-enriched diet potentiated Alzheimer-like spatial memory impairments in the transgenic animals and was associated with reduced hippocampal amyloid-β plaque deposits. Zinc-related behavioral deficits were also demonstrated in wild type mice, which were sometimes as great as those present in the transgenic animals. However, zinc-related cognitive impairments in transgenic mice were greater than the summation of zinc effects in the wild type mice and the transgene effects.

  5. Spatial Complexity of Soil Organic Matter Forms at Nanometre Scales

    SciTech Connect

    Lehmann,J.; Solomon, D.; Kinyangi, J.; Dathe, L.; Wirick, S.; Jacobsen, C.

    2008-01-01

    Organic matter in soil has been suggested to be composed of a complex mixture of identifiable biopolymers1 rather than a chemically complex humic material2. Despite the importance of the spatial arrangement of organic matter forms in soil3, its characterization has been hampered by the lack of a method for analysis at fine scales. X-ray spectromicroscopy has enabled the identification of spatial variability of organic matter forms, but was limited to extracted soil particles4 and individual micropores within aggregates5, 6. Here, we use synchrotron-based near-edge X-ray spectromicroscopy7 of thin sections of entire and intact free microaggregates6 to demonstrate that on spatial scales below 50 nm resolution, highly variable yet identifiable organic matter forms, such as plant or microbial biopolymers, can be found in soils at distinct locations of the mineral assemblage. Organic carbon forms detected at this spatial scale had no similarity to organic carbon forms of total soil. In contrast, we find that organic carbon forms of total soil were remarkably similar between soils from several temperate and tropical forests with very distinct vegetation composition and soil mineralogy. Spatial information on soil organic matter forms at the scale provided here could help to identify processes of organic matter cycling in soil, such as carbon stability or sequestration and responses to a changing climate.

  6. In vitro bioavailability of iron from spinach (Spinacea oleracea) cultivated in soil fortified with graded levels of iron and zinc.

    PubMed

    Reddy, N S; Sondge, C V; Khan, T N

    1993-11-01

    A pot-culture experiment was conducted to assess the bioavailability of iron from spinach cultivated in soil fortified with graded levels of iron and zinc (FeSO4 x 7H2(0) and ZnSO4 x 7H2(0), respectively). Applications of varying levels of iron to soil increased the total iron and phosphorus contents and decreased the zinc content (P < 0.05). The effect of applying varying levels of zinc was the opposite of on the minerals in spinach. The ascorbic acid content was remarkably reduced with varying levels of iron and zinc. Higher levels of zinc and lower levels of iron in the soil increased the bioavailability of iron from spinach (P < 0.05). In conclusion, the interactions of 15 ppm zinc with 30 ppm iron significantly enhanced the bioavailability of iron, total iron and zinc contents.

  7. Soil zinc content, groundwater usage, and prostate cancer incidence in South Carolina

    PubMed Central

    Burch, James B.; Hussey, Jim; Temples, Tom; Bolick-Aldrich, Susan; Mosley-Broughton, Catishia; Liu, Yuan; Hebert, James R.

    2010-01-01

    Background Prostate cancer (PrCA) incidence in South Carolina (SC) exceeds the national average, particularly among African Americans (AAs). Though data are limited, low environmental zinc exposures and down-regulation of prostatic zinc transporter proteins among AAs may explain, in part, the racial PrCA disparity. Methods Age-adjusted PrCA rates were calculated by census tract. Demographic data were obtained from the 1990 census. Hazardous waste site locations and soil zinc concentrations were obtained from existing federal and state databases. A geographic information system and Poisson regression were used to test the hypothesis that census tracts with reduced soil zinc concentrations, elevated groundwater use, or more agricultural or hazardous waste sites had elevated PrCA risks. Results Census tracts with high groundwater use and low zinc concentrations had higher PrCA rate ratios (RR: 1.270; 95% confidence interval: 1.079, 1.505). This effect was not more apparent in areas populated primarily by AAs. Conclusion Increased PrCA rates were associated with reduced soil zinc concentrations and elevated groundwater use, although this observation is not likely to contribute to SC’s racial PrCA disparity. Statewide mapping and statistical modeling of relationships between environmental factors, demographics, and cancer incidence can be used to screen hypotheses focusing on novel PrCA risk factors. PMID:18949566

  8. Spatial disaggregation of complex soil map units at regional scale based on soil-landscape relationships

    NASA Astrophysics Data System (ADS)

    Vincent, Sébastien; Lemercier, Blandine; Berthier, Lionel; Walter, Christian

    2015-04-01

    Accurate soil information over large extent is essential to manage agronomical and environmental issues. Where it exists, information on soil is often sparse or available at coarser resolution than required. Typically, the spatial distribution of soil at regional scale is represented as a set of polygons defining soil map units (SMU), each one describing several soil types not spatially delineated, and a semantic database describing these objects. Delineation of soil types within SMU, ie spatial disaggregation of SMU allows improved soil information's accuracy using legacy data. The aim of this study was to predict soil types by spatial disaggregation of SMU through a decision tree approach, considering expert knowledge on soil-landscape relationships embedded in soil databases. The DSMART (Disaggregation and Harmonization of Soil Map Units Through resampled Classification Trees) algorithm developed by Odgers et al. (2014) was used. It requires soil information, environmental covariates, and calibration samples, to build then extrapolate decision trees. To assign a soil type to a particular spatial position, a weighed random allocation approach is applied: each soil type in the SMU is weighted according to its assumed proportion of occurrence in the SMU. Thus soil-landscape relationships are not considered in the current version of DSMART. Expert rules on soil distribution considering the relief, parent material and wetlands location were proposed to drive the procedure of allocation of soil type to sampled positions, in order to integrate the soil-landscape relationships. Semantic information about spatial organization of soil types within SMU and exhaustive landscape descriptors were used. In the eastern part of Brittany (NW France), 171 soil types were described; their relative area in the SMU were estimated, geomorphological and geological contexts were recorded. The model predicted 144 soil types. An external validation was performed by comparing predicted

  9. Effects of Spatial Aggregation of Soil Spatial Information on Watershed Hydrological Modeling

    NASA Astrophysics Data System (ADS)

    Li, R.; Zhu, A.; Song, X.

    2011-12-01

    Impacts of detailed soil spatial information on hydrological modeling across different spatial scales are lack of comprehensive understanding. This paper examines such effects by comparing the simulated runoffs across scales from watershed models based on two different levels of soil spatial information, 10 meter resolution soil data derived from SoLIM and the 1:24 000 scale Soil Survey Geographic (SSURGO) data base. The examination was conducted at three different spatial scales: two at different watershed size levels and one at the model minimum simulation unit level. A fully distributed hydrologic model and a semi-distributed model were used to assess the effects. The study was conducted in a 19.5 square kilometers watershed located in northwest Dane county, Wisconsin. The results showed that differences in simulated runoff at the minimum simulation unit level are large. However, the difference gradually decreases as the spatial scale of simulation units increases. For sub-basins larger than 10 square kilometers in Brewery Creek, simulated stream flows using spatially detailed soil data, SoLIM data, would not vary significantly from those using SSURGO soil data. The unique findings of this study provide an important and unified perspective on the different views reported in the literature concerning how spatial detail of the input soil data affects watershed modeling and offer a potential useful basis for selecting the level of detail of soil spatial information appropriate for watershed modeling at a given model simulation scale.

  10. Characterizing Zinc Speciation in Soils from a Smelter-Affected Boreal Forest Ecosystem.

    PubMed

    Hamilton, Jordan G; Farrell, Richard E; Chen, Ning; Feng, Renfei; Reid, Joel; Peak, Derek

    2016-03-01

    HudBay Minerals, Inc., has mined and/or processed Zn and Cu ore in Flin Flon, MB, Canada, since the 1930s. The boreal forest ecosystem and soil surrounding these facilities have been severely impacted by mixed metal contamination and HSO deposition. Zinc is one of the most prevalent smelter-derived contaminants and has been identified as a key factor that may be limiting revegetation. Metal toxicity is related to both total concentrations and speciation; therefore, X-ray absorption spectroscopy and X-ray fluorescence mapping were used to characterize Zn speciation in soils throughout the most heavily contaminated areas of the landscape. Zinc speciation was linked to two distinct soil types. Group I soils consist of exposed soils in weathered positions of bedrock outcrops with Zn present primarily as franklinite, a (ZnFeO) spinel mineral. Group II soils are stabilized by an invasive metal-tolerant grass species, with Zn found as a mixture of octahedral (Fe oxides) and tetrahedral Mn oxides) adsorption complexes with a franklinite component. Soil erosion influences Zn speciation through the redistribution of Zn and soil particulates from Group I landscape positions to Group II soils. Despite Group II soils having the highest concentrations of CaCl-extractable Zn, they support metal-tolerant plant growth. The metal-tolerant plants are probably preferentially colonizing these areas due to better soil and nutrient conditions as a result of soil deposition from upslope Group I areas. Zinc concentration and speciation appears to not influence the colonization by metal-tolerant grasses, but the overall soil properties and erosion effects prevent the revegetation by native boreal forest species. PMID:27065416

  11. Zinc

    MedlinePlus

    ... deficiency also causes hair loss, diarrhea, eye and skin sores and loss of appetite. Weight loss, problems ... pneumonia and other infections. Zinc also helps the skin stay healthy. Some people who have skin ulcers ...

  12. Input and leaching potential of copper, zinc, and selenium in agricultural soil from swine slurry.

    PubMed

    Comas, Jordi; Domínguez, Carmen; Salas-Vázquez, Dora I; Parera, Juan; Díez, Sergi; Bayona, Josep M

    2014-02-01

    Trace elements, such as copper, zinc, and selenium, used as feed additives were determined in samples of both fresh (N = 14) and anaerobically digested (N = 6) swine slurry collected on medium- to large-size farms in northeast Spain. Considering both fresh and anaerobically digested samples, mean concentrations of zinc (1,500 mg kg(-1) dry mass [dm]) were greater than those of copper (mean 239 mg kg(-1 )dm), and the selenium concentrations detected were even lower (mean 139 μg kg(-1) dm). Zinc concentrations were significantly greater in anaerobically digested samples, whereas no significant differences were found for copper or selenium. In addition, the leaching potential of zinc, copper, and selenium in cropped (lettuce heart) and uncropped experimental units subject to drip irrigation was assessed in a greenhouse experiment. Generally, the addition of swine slurry to soil (1.7 g kg(-1) dm) significantly increased zinc, copper, and selenium concentrations in leachates, which decreased in accordance with the volume of leachate eluted. Under the experimental conditions, the leaching potential of zinc and selenium was more strongly correlated with bulk parameters directly associated with the composition of the pig slurry (dissolved organic carbon, electrical conductivity, and ammonium), whereas copper mobility was more strongly associated with the crop root exudates. Although selenium has been shown to be mobile in soil, the selenium content found in the leachates did not pose any appreciable risk according to current drinking water standards.

  13. Effects of enhanced zinc and copper in drinking water on spatial memory and fear conditioning

    USGS Publications Warehouse

    Chrosniak, L.D.; Smith, L.N.; McDonald, C.G.; Jones, B.F.; Flinn, J.M.

    2006-01-01

    Ingestion of enhanced zinc can cause memory impairments and copper deficiencies. This study examined the effect of zinc supplementation, with and without copper, on two types of memory. Rats raised pre- and post-natally on 10 mg/kg ZnCO3 or ZnSO4 in the drinking water were tested in a fear-conditioning experiment at 11 months of age. Both zinc groups showed a maladaptive retention of fearful memories compared to controls raised on tap water. Rats raised on 10 mg/kg ZnCO3, 10 mg/kg ZnCO3 + 0.25 mg/kg CuCl2, or tap water, were tested for spatial memory ability at 3 months of age. Significant improvements in performance were found in the ZnCO3 + CuCl2 group compared to the ZnCO3 group, suggesting that some of the cognitive deficits associated with zinc supplementation may be remediated by addition of copper. ?? 2005 Elsevier B.V. All rights reserved.

  14. Spatial Variability of Electrical Conductivity in North Mississippi Loamy Soils

    NASA Astrophysics Data System (ADS)

    Twombly, J. E.; Fancher, C. W.; Sleep, M. D.; Aufman, M. S.; Holland, J. V.; Holt, R. M.; Kuszmaul, J. S.

    2004-05-01

    The use of non-contact electrical geophysical methods, such as electromagnetic induction (EM), to characterize and quantify spatial and temporal variations in soil properties is appealing due to low operational costs, rapid measurements, and device mobility. These methods are sensitive to soil electrical conductivity, which can vary with soil moisture, clay content, soil salinity, and the presence of electrically conductive minerals. We conducted a preliminary study to evaluate the controls on EM response in loamy soils present at the University of Mississippi (UM) Soil Moisture Observatory (SMO). The 5 acre SMO is located in a former agricultural field at the UM Biological Field Station, a 740 acre tract of land located 11 miles from the UM campus in Oxford, Mississippi. EM responses were surveyed along two intersecting transects using a Geonics EM38. The apparent electrical conductivity (EC) of the soil was determined in both a vertical and horizontal dipole position, which correspond to deep (~1m) and shallow (~0.5) measurements, respectively. Continuous soil samples were recovered from the transect points and analyzed for soil properties. Except for a weak negative correlation with moisture content, we found little direct correlation between EC and measured soil properties. EC variograms from surveys conducted on different dates consistently show a similar structure. Following a week of rain, three EM 38 surveys were conducted, each a week apart. During this survey period, a nearby meteorological station reported no significant precipitation, and the soils were drying. All EC variograms show similar spatial structures but decreasing amounts of variability consistent with drying and redistribution of soil moisture. These results suggest that soil physical properties, not soil moisture, control the spatial distribution of EC. Temporal variations in the variograms indicate a complex relationship between soil moisture and EC.

  15. Reconciling spatial and temporal soil moisture effects on afternoon rainfall

    PubMed Central

    Guillod, Benoit P.; Orlowsky, Boris; Miralles, Diego G.; Teuling, Adriaan J.; Seneviratne, Sonia I.

    2015-01-01

    Soil moisture impacts on precipitation have been strongly debated. Recent observational evidence of afternoon rain falling preferentially over land parcels that are drier than the surrounding areas (negative spatial effect), contrasts with previous reports of a predominant positive temporal effect. However, whether spatial effects relating to soil moisture heterogeneity translate into similar temporal effects remains unknown. Here we show that afternoon precipitation events tend to occur during wet and heterogeneous soil moisture conditions, while being located over comparatively drier patches. Using remote-sensing data and a common analysis framework, spatial and temporal correlations with opposite signs are shown to coexist within the same region and data set. Positive temporal coupling might enhance precipitation persistence, while negative spatial coupling tends to regionally homogenize land surface conditions. Although the apparent positive temporal coupling does not necessarily imply a causal relationship, these results reconcile the notions of moisture recycling with local, spatially negative feedbacks. PMID:25740589

  16. Correlation analysis as a tool to investigate the bioaccessibility of nickel, vanadium and zinc in Northern Ireland soils.

    PubMed

    Palmer, Sherry; Ofterdinger, Ulrich; McKinley, Jennifer M; Cox, Siobhan; Barsby, Amy

    2013-10-01

    Correlation analyses were conducted on nickel (Ni), vanadium (V) and zinc (Zn) oral bioaccessible fractions (BAFs) and selected geochemistry parameters to identify specific controls exerted over trace element bioaccessibility. BAFs were determined by previous research using the unified BARGE method. Total trace element concentrations and soil geochemical parameters were analysed as part of the Geological Survey of Northern Ireland Tellus Project. Correlation analysis included Ni, V and Zn BAFs against their total concentrations, pH, estimated soil organic carbon (SOC) and a further eight element oxides. BAF data were divided into three separate generic bedrock classifications of basalt, lithic arenite and mudstone prior to analysis, resulting in an increase in average correlation coefficients between BAFs and geochemical parameters. Sulphur trioxide and SOC, spatially correlated with upland peat soils, exhibited significant positive correlations with all BAFs in gastric and gastro-intestinal digestion phases, with such effects being strongest in the lithic arenite bedrock group. Significant negative relationships with bioaccessible Ni, V and Zn and their associated total concentrations were observed for the basalt group. Major element oxides were associated with reduced oral trace element bioaccessibility, with Al2O3 resulting in the highest number of significant negative correlations followed by Fe2O3. spatial mapping showed that metal oxides were present at reduced levels in peat soils. The findings illustrate how specific geology and soil geochemistry exert controls over trace element bioaccessibility, with soil chemical factors having a stronger influence on BAF results than relative geogenic abundance. In general, higher Ni, V and Zn bioaccessibility is expected in peat soil types.

  17. Seasonal and spatial patterns of metals at a restored copper mine site. I. Stream copper and zinc

    USGS Publications Warehouse

    Bambic, D.G.; Alpers, C.N.; Green, P.G.; Fanelli, E.; Silk, W.K.

    2006-01-01

    Seasonal and spatial variations in metal concentrations and pH were found in a stream at a restored copper mine site located near a massive sulfide deposit in the Foothill copper-zinc belt of the Sierra Nevada, California. At the mouth of the stream, copper concentrations increased and pH decreased with increased streamflow after the onset of winter rain and, unexpectedly, reached extreme values 1 or 2 months after peaks in the seasonal hydrographs. In contrast, aqueous zinc and sulfate concentrations were highest during low-flow periods. Spatial variation was assessed in 400 m of reach encompassing an acidic, metal-laden seep. At this seep, pH remained low (2-3) throughout the year, and copper concentrations were highest. In contrast, the zinc concentrations increased with downstream distance. These spatial patterns were caused by immobilization of copper by hydrous ferric oxides in benthic sediments, coupled with increasing downstream supply of zinc from groundwater seepage.

  18. Spatial interpolation quality assessments for soil sensor transect datasets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Near-ground geophysical soil sensors provide extremely valuable information for precision agriculture applications. Indeed, their readings can be used as proxy for many soil parameters. Typically, leave-one-out (loo) cross-validation (CV) of spatial interpolation of sensor data returns overly optimi...

  19. Toxicity to woodlice of zinc and lead oxides added to soil litter

    USGS Publications Warehouse

    Beyer, W.N.; Anderson, A.

    1985-01-01

    Previous studies have shown that high concentrations of metals in soil are associated with reductions in decomposer populations. We have here determined the relation between the concentrations of lead and zinc added as oxides to soil litter and the survival and reproduction of a decomposer population under controlled conditions. Laboratory populations of woodlice (Porcellio scaber Latr) were fed soil litter treated with lead or zinc at concentrations that ranged from 100 to 12,800 ppm. The survival of the adults, the maximum number of young alive, and the average number of young alive, were recorded over 64 weeks. Lead at 12,800 ppm and zinc at 1,600 ppm or more had statistically significant (p < 0.05) negative effects on the populations. These results agree with field observations suggesting that lead and zinc have reduced populations of decomposers in contaminated forest soil litter, and concentrations are similar to those reported to be associated with reductions in natural populations of decomposers. Poisoning of decomposers may disrupt nutrient cycling, reduce the numbers of invertebrates available to other wildlife for food, and contribute to the contamination of food chains.

  20. Efficiency of repeated phytoextraction of cadmium and zinc from an agricultural soil contaminated with sewage sludge.

    PubMed

    Luo, Kai; Ma, Tingting; Liu, Hongyan; Wu, Longhua; Ren, Jing; Nai, Fengjiao; Li, Rui; Chen, Like; Luo, Yongming; Christie, Peter

    2015-01-01

    Long-term application of sewage sludge resulted in soil cadmium (Cd) and zinc (Zn) contamination in a pot experiment conducted to phytoextract Cd/Zn repeatedly using Sedum plumbizincicola and Apium graceolens in monoculture or intercropping mode eight times. Shoot yields and soil physicochemical properties changed markedly with increasing number of remediation crops when the two plant species were intercropped compared with the unplanted control soil and the two monoculture treatments. Changes in soil microbial indices such as average well colour development, soil enzyme activity and soil microbial counts were also significantly affected by the growth of the remediation plants, especially intercropping with S. plumbizincicola and A. graveolens. The higher yields and amounts of Cd taken up indicated that intercropping of the hyperaccumulator and the vegetable species may be suitable for simultaneous agricultural production and soil remediation, with larger crop yields and higher phytoremediation efficiencies than under monoculture conditions.

  1. Efficiency of repeated phytoextraction of cadmium and zinc from an agricultural soil contaminated with sewage sludge.

    PubMed

    Luo, Kai; Ma, Tingting; Liu, Hongyan; Wu, Longhua; Ren, Jing; Nai, Fengjiao; Li, Rui; Chen, Like; Luo, Yongming; Christie, Peter

    2015-01-01

    Long-term application of sewage sludge resulted in soil cadmium (Cd) and zinc (Zn) contamination in a pot experiment conducted to phytoextract Cd/Zn repeatedly using Sedum plumbizincicola and Apium graceolens in monoculture or intercropping mode eight times. Shoot yields and soil physicochemical properties changed markedly with increasing number of remediation crops when the two plant species were intercropped compared with the unplanted control soil and the two monoculture treatments. Changes in soil microbial indices such as average well colour development, soil enzyme activity and soil microbial counts were also significantly affected by the growth of the remediation plants, especially intercropping with S. plumbizincicola and A. graveolens. The higher yields and amounts of Cd taken up indicated that intercropping of the hyperaccumulator and the vegetable species may be suitable for simultaneous agricultural production and soil remediation, with larger crop yields and higher phytoremediation efficiencies than under monoculture conditions. PMID:25747245

  2. Effects of mining-associated lead and zinc soil contamination on native floristic quality

    USGS Publications Warehouse

    Struckhoff, Matthew A.; Stroh, Esther D.; Grabner, Keith W.

    2013-01-01

    We assessed the quality of plant communities across a range of lead (Pb) and zinc (Zn) soil concentrations at a variety of sites associated with Pb mining in southeast Missouri, USA. In a novel application, two standard floristic quality measures, Mean Coefficient of Conservatism (Mean C) and Floristic Quality Index (FQI), were examined in relation to concentrations of Pb and Zn, soil nutrients, and other soil characteristics. Nonmetric Multidimensional Scaling and Regression Tree Analyses identified soil Pb and Zn concentrations as primary explanatory variables for plant community composition and indicated negative relationships between soil metals concentrations and both Mean C and FQI. Univariate regression also demonstrated significant negative relationships between metals concentrations and floristic quality. The negative effects of metals in native soils with otherwise relatively undisturbed conditions indicate that elevated soil metals concentrations adversely affect native floristic quality where no other human disturbance is evident.

  3. Effect of soil and foliar application of zinc on grain zinc and cadmium concentration of wheat genotypes differing in Zn-efficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A two-year field experiment was carried out to investigate the effectiveness of soil and foliar applications of zinc sulfate and soil application of waste rubber ash to increase Zn and decrease cadmium (Cd) concentration in grain of 10 wheat genotypes with different Zn-efficiency. Foliar spray of zi...

  4. Field scale solute transport in spatially variable soils

    SciTech Connect

    Nedunuri, S.; Govindaraju, R.S.

    1994-12-31

    Spatial variability exhibited by many field soils necessitates the use of stochastic methods for prediction of average solute movement. Data from a field experiment were analyzed to characterize the random nature of the velocity and dispersion of solute (potassium bromide) in field scale vertical transport experiments. Solute concentrations were measured at over fifty spatial locations and at six depths within the soil. The analysis indicates that solute velocities at deeper soil layers exhibit a statistically homogeneous behavior. Dispersion was determined from breakthrough curves using a standard nonlinear regression model. These results will be presented, and the implications of modeling average solute behavior will be discussed.

  5. Universal Spatial Correlation Functions for Describing and Reconstructing Soil Microstructure

    PubMed Central

    Skvortsova, Elena B.; Mallants, Dirk

    2015-01-01

    Structural features of porous materials such as soil define the majority of its physical properties, including water infiltration and redistribution, multi-phase flow (e.g. simultaneous water/air flow, or gas exchange between biologically active soil root zone and atmosphere) and solute transport. To characterize soil microstructure, conventional soil science uses such metrics as pore size and pore-size distributions and thin section-derived morphological indicators. However, these descriptors provide only limited amount of information about the complex arrangement of soil structure and have limited capability to reconstruct structural features or predict physical properties. We introduce three different spatial correlation functions as a comprehensive tool to characterize soil microstructure: 1) two-point probability functions, 2) linear functions, and 3) two-point cluster functions. This novel approach was tested on thin-sections (2.21×2.21 cm2) representing eight soils with different pore space configurations. The two-point probability and linear correlation functions were subsequently used as a part of simulated annealing optimization procedures to reconstruct soil structure. Comparison of original and reconstructed images was based on morphological characteristics, cluster correlation functions, total number of pores and pore-size distribution. Results showed excellent agreement for soils with isolated pores, but relatively poor correspondence for soils exhibiting dual-porosity features (i.e. superposition of pores and micro-cracks). Insufficient information content in the correlation function sets used for reconstruction may have contributed to the observed discrepancies. Improved reconstructions may be obtained by adding cluster and other correlation functions into reconstruction sets. Correlation functions and the associated stochastic reconstruction algorithms introduced here are universally applicable in soil science, such as for soil classification

  6. Cadmium, chromium, copper, and zinc in rice and rice field soil from southern Catalonia, Spain

    SciTech Connect

    Schuhmacher, M.; Llobet, J.M. ); Domingo, J.L. Univ. of Barcelona ); Corbella, J. )

    1994-07-01

    Metals are ubiquitous in the modem industrialized environment. Some metals have no beneficial effects in humans. In contrast, other metals such as chromium, copper, zinc, manganese, cobalt or iron are essential for man. However, these essential trace elements can also be dangerous at high levels. Many metals are natural constituents of soils, whereas soils may also be contaminated by a number of elements as the results of less-than-ideal disposal practices from past industrial processes. Vegetables absorb metals from the soil. Thus, soil properties affecting mineral elements availability are the first determinants of the transfer of elements to higher trophic levels in the soil-plant-animal/human system. Rice plants are annual emergent aquatic macrophytes which are economically important as a cereal crop in Spain. Macrophytes may absorb metals through both roots and shoots, while aerial deposition may also be an additional source in emergent species. Cadmium rich soils generally produce cadmium rich foods. On the other hand, in recent decades it has been demonstrated that a number of metals such as chromium, copper and zinc, which play an important role in many fields of modern industry, have a notorious role in various biochemical processes. The beneficial or the toxic effect of an element depends on its concentration in the organism. Although there are many reports in the world on environmental metals, to date no data about the metal contents in Spanish rice have been available. The purpose of this study was to examine the concentrations of cadmium, chromium, copper and zinc in rice from the Delta of Ebro river (Tarragona, Spain). These particular metals were chosen because of current interest in either toxicity or potential deficiency in humans. The metal contents in rice were related to rice variety, locality, and soil type. The dietary intake of cadmium, chromium, copper and zinc from rice was also determined.

  7. Soil pH effects on the interactions between dissolved zinc, non-nano- and nano-ZnO with soil bacterial communities.

    PubMed

    Read, Daniel S; Matzke, Marianne; Gweon, Hyun S; Newbold, Lindsay K; Heggelund, Laura; Ortiz, Maria Diez; Lahive, Elma; Spurgeon, David; Svendsen, Claus

    2016-03-01

    Zinc oxide nanoparticles (ZnO NPs) are used in an array of products and processes, ranging from personal care products to antifouling paints, textiles, food additives, antibacterial agents and environmental remediation processes. Soils are an environment likely to be exposed to manmade nanoparticles due to the practice of applying sewage sludge as a fertiliser or as an organic soil improver. However, understanding on the interactions between soil properties, nanoparticles and the organisms that live within soil is lacking, especially with regards to soil bacterial communities. We studied the effects of nanoparticulate, non-nanoparticulate and ionic zinc (in the form of zinc chloride) on the composition of bacterial communities in soil with a modified pH range (from pH 4.5 to pH 7.2). We observed strong pH-dependent effects on the interaction between bacterial communities and all forms of zinc, with the largest changes in bacterial community composition occurring in soils with low and medium pH levels (pH 4.8 and 5.9). The high pH soil (pH 7.2) was less susceptible to the effects of zinc exposure. At the highest doses of zinc (2500 mg/kg dw soil), both nano and non-nano particulate zinc applications elicited a similar response in the soil bacterial community, and this differed significantly to the ionic zinc salt treatment. The results highlight the importance of considering soil pH in nanotoxicology studies, although further work is needed to determine the exact mechanisms controlling the toxicity and fate and interactions of nanoparticles with soil microbial communities.

  8. Effects of surfactants on low-molecular-weight organic acids to wash soil zinc.

    PubMed

    Chen, Yue; Zhang, Shirong; Xu, Xiaoxun; Yao, Ping; Li, Ting; Wang, Guiyin; Gong, Guoshu; Li, Yun; Deng, Ouping

    2016-03-01

    Soil washing is an effective approach to the removal of heavy metals from contaminated soil. In this study, the effects of the surfactants sodium dodecyl sulfate, Triton X-100, and non-ionic polyacrylamide (NPAM) on oxalic acid, tartaric acid, and citric acid used to remove zinc from contaminated soils were investigated. The Zn removal efficiencies of all washing solutions showed a logarithmic increase with acid concentrations from 0.5 to 10.0 g/L, while they decreased as pH increased from 4 to 9. Increasing the reaction time enhanced the effects of surfactants on Zn removal efficiencies by the acids during washing and significantly (P < 0.05) improved the removal under some mixed cases. Oxalic acid suffered antagonistic effects from the three surfactants and seriously damaged soil nutrients during the removal of soil Zn. Notably, the three surfactants caused synergistic effects on tartaric and citric acid during washing, with NPAM leading to an increase in Zn removal by 5.0 g/L citric acid of 10.60 % (P < 0.05) within 2 h. NPAM also alleviated the loss of cation exchange capacity of washed soils and obviously improved soil nitrogen concentrations. Overall, combining citric acid with NPAM offers a promising approach to the removal of zinc from contaminated soil.

  9. Modelling spatial oscillations in soil borehole bacteria.

    PubMed

    McGuinness, M J; Cribbin, L B; Winstanley, H F; Fowler, A C

    2014-12-21

    Spatial oscillations in groundwater contaminant concentrations can be successfully explained by consideration of a competitive microbial community in conditions of poor nutrient supply, in which the effects of spatial diffusion of the nutrient sources are included. In previous work we showed that the microbial competition itself allowed oscillations to occur, and, in common with other reaction-diffusion systems, the addition of spatial diffusion transforms these temporal oscillations into travelling waves, sometimes chaotic. We therefore suggest that irregular chemical profiles sometimes found in contaminant plume borehole profiles may be a consequence of this competition.

  10. Spatial variability of dielectric properties in field soils

    NASA Astrophysics Data System (ADS)

    Hendrickx, Jan M. H.; Borchers, Brian; Woolslayer, J.; Dekker, Louis W.; Ritsema, Coen; Paton, S.

    2001-10-01

    Most mine detection sensors are affected by soil properties such as water content, temperature, electrical conductivity, and dielectric constant. The most important of these is water content since it directly influences the three other properties. The variability of these properties may be such that either potential landmine signatures are overshadowed or false alarms result. In this paper we present the results of field measurements in the Netherlands, Panama, and New Mexico on spatial variability of soil water content. We also discuss how the variability of soil water content affects the soils electrical conductivity and dielectric constant and the resulting response of a ground penetrating radar system.

  11. Spatial Distribution of Soil Fauna In Long Term No Tillage

    NASA Astrophysics Data System (ADS)

    Corbo, J. Z. F.; Vieira, S. R.; Siqueira, G. M.

    2012-04-01

    The soil is a complex system constituted by living beings, organic and mineral particles, whose components define their physical, chemical and biological properties. Soil fauna plays an important role in soil and may reflect and interfere in its functionality. These organisms' populations may be influenced by management practices, fertilization, liming and porosity, among others. Such changes may reduce the composition and distribution of soil fauna community. Thus, this study aimed to determine the spatial variability of soil fauna in consolidated no-tillage system. The experimental area is located at Instituto Agronômico in Campinas (São Paulo, Brazil). The sampling was conducted in a Rhodic Eutrudox, under no tillage system and 302 points distributed in a 3.2 hectare area in a regular grid of 10.00 m x 10.00 m were sampled. The soil fauna was sampled with "Pitfall Traps" method and traps remained in the area for seven days. Data were analyzed using descriptive statistics to determine the main statistical moments (mean variance, coefficient of variation, standard deviation, skewness and kurtosis). Geostatistical tools were used to determine the spatial variability of the attributes using the experimental semivariogram. For the biodiversity analysis, Shannon and Pielou indexes and richness were calculated for each sample. Geostatistics has proven to be a great tool for mapping the spatial variability of groups from the soil epigeal fauna. The family Formicidae proved to be the most abundant and dominant in the study area. The parameters of descriptive statistics showed that all attributes studied showed lognormal frequency distribution for groups from the epigeal soil fauna. The exponential model was the most suited for the obtained data, for both groups of epigeal soil fauna (Acari, Araneae, Coleoptera, Formicidae and Coleoptera larva), and the other biodiversity indexes. The sampling scheme (10.00 m x 10.00 m) was not sufficient to detect the spatial

  12. Multi-surface modeling to predict free zinc ion concentrations in low-zinc soils.

    PubMed

    Duffner, Andreas; Weng, Liping; Hoffland, Ellis; van der Zee, Sjoerd E A T M

    2014-05-20

    Multi-surface models are widely used to assess the potential ecotoxicological risk in metal-contaminated soils. Their accuracy in predicting metal speciation in soils with low metal levels was not yet tested. Now highly sensitive analytical techniques are available to experimentally validate such models at low concentration levels. The objective of this study was to test the accuracy of a multi-surface model to predict the Zn(2+) concentration and to improve our understanding of Zn bioavailability in low-Zn soils. High-Zn soils were included as controls. Model parameters were determined independently on the basis of earlier peer-reviewed publications. Model output was validated against free Zn(2+) concentrations determined with the soil column Donnan membrane technique in a range of soils varying in potentially available Zn, organic matter, clay silicate, and iron (hydr)oxide contents and pH. Deviations between predicted Zn(2+) concentrations and experimentally determined values over the whole Zn concentration range were less or equal to the experimental standard error, except for one low-Zn soil. The Zn(2+) concentration was mainly controlled by adsorption, where organic matter was predicted to be the dominant soil sorbent. The predicted Zn(2+) concentration depends more sensitively upon changes of the reactive Zn pool (application of 0.6, 1.2, 2.4, and 3.6 mg of Zn kg(-1) of soil) and organic matter content (± 0.2 and 0.4%) than pH changes (± 0.5 and 1 pH unit). PMID:24742258

  13. Multi-surface modeling to predict free zinc ion concentrations in low-zinc soils.

    PubMed

    Duffner, Andreas; Weng, Liping; Hoffland, Ellis; van der Zee, Sjoerd E A T M

    2014-05-20

    Multi-surface models are widely used to assess the potential ecotoxicological risk in metal-contaminated soils. Their accuracy in predicting metal speciation in soils with low metal levels was not yet tested. Now highly sensitive analytical techniques are available to experimentally validate such models at low concentration levels. The objective of this study was to test the accuracy of a multi-surface model to predict the Zn(2+) concentration and to improve our understanding of Zn bioavailability in low-Zn soils. High-Zn soils were included as controls. Model parameters were determined independently on the basis of earlier peer-reviewed publications. Model output was validated against free Zn(2+) concentrations determined with the soil column Donnan membrane technique in a range of soils varying in potentially available Zn, organic matter, clay silicate, and iron (hydr)oxide contents and pH. Deviations between predicted Zn(2+) concentrations and experimentally determined values over the whole Zn concentration range were less or equal to the experimental standard error, except for one low-Zn soil. The Zn(2+) concentration was mainly controlled by adsorption, where organic matter was predicted to be the dominant soil sorbent. The predicted Zn(2+) concentration depends more sensitively upon changes of the reactive Zn pool (application of 0.6, 1.2, 2.4, and 3.6 mg of Zn kg(-1) of soil) and organic matter content (± 0.2 and 0.4%) than pH changes (± 0.5 and 1 pH unit).

  14. Inverse Method for Estimating the Spatial Variability of Soil Particle Size Distribution from Observed Soil Moisture

    SciTech Connect

    Pan, Feifei; Peters-lidard, Christa D.; King, Anthony Wayne

    2010-11-01

    Soil particle size distribution (PSD) (i.e., clay, silt, sand, and rock contents) information is one of critical factors for understanding water cycle since it affects almost all of water cycle processes, e.g., drainage, runoff, soil moisture, evaporation, and evapotranspiration. With information about soil PSD, we can estimate almost all soil hydraulic properties (e.g., saturated soil moisture, field capacity, wilting point, residual soil moisture, saturated hydraulic conductivity, pore-size distribution index, and bubbling capillary pressure) based on published empirical relationships. Therefore, a regional or global soil PSD database is essential for studying water cycle regionally or globally. At the present stage, three soil geographic databases are commonly used, i.e., the Soil Survey Geographic database, the State Soil Geographic database, and the National Soil Geographic database. Those soil data are map unit based and associated with great uncertainty. Ground soil surveys are a way to reduce this uncertainty. However, ground surveys are time consuming and labor intensive. In this study, an inverse method for estimating mean and standard deviation of soil PSD from observed soil moisture is proposed and applied to Throughfall Displacement Experiment sites in Walker Branch Watershed in eastern Tennessee. This method is based on the relationship between spatial mean and standard deviation of soil moisture. The results indicate that the suggested method is feasible and has potential for retrieving soil PSD information globally from remotely sensed soil moisture data.

  15. Soil carbon in savanna landscapes - spatial pattern, uncertainty, and scaling

    NASA Astrophysics Data System (ADS)

    Wu, X. B.; Liu, F.; Bai, E.; Boutton, T. W.; Archer, S.

    2008-12-01

    Woody plant invasion into grasslands and savannas has significant impacts on soil organic carbon (SOC) storage and its spatial heterogeneity. However, our understanding of spatial heterogeneity and uncertainty of SOC and its relationship to spatial patterns of vegetation in savanna landscapes remains limited. This understanding is essential for effective assessment and monitoring of SOC storage, turnover, and vulnerability in savanna landscapes. In this study, we investigated the spatial pattern of SOC and its relationship to that of vegetation patterns in a subtropical savanna in south Texas using spatially-explicit intensive sampling and spatial statistical analysis. We found that the spatial distribution of SOC was closely related to the spatial distribution of woody vegetation, and that there were strong within-patch patterns related to past dynamics of the woody vegetation. Results of conditional stochastic simulations showed significantly greater levels of uncertainty of SOC estimations in larger woody patches than in smaller woody patches and grassland, likely caused by complex canopy structure, root distribution and animal disturbance. Assessment of alternative sampling designs demonstrated the effect of spatial uncertainty on estimation accuracy of SOC storage, and helped generate effective sampling strategies to improve SOC estimation accuracy. This understanding of spatial uncertainty of SOC enabled improved approaches to estimate and monitor soil carbon storage over large landscapes based on remote sensing.

  16. Organic waste amendments effect on zinc fraction of two soils

    SciTech Connect

    Shuman, L.M.

    1999-10-01

    Organic soil amendments can ameliorate metal toxicity to plants by redistributing metals to less available fractions. The objective of this study was to determine the effects of organic amendments on Zn distribution among soil fractions. Two soils were amended with five organic waste materials (some of which contained Zn) or commercial humic acid with and without 400 mg kg{sup {minus}1} Zn, incubated, and fractionated using a sequential extraction technique. Where no Zn was added most of the metals were in the residual fraction. Commercial compost, poultry litter, and industrial sewage sludge increased Zn in the exchangeable (EXC), organic (OM), and manganese oxide (MnOx) fractions due to Zn in the materials. Spent mushroom compost (SMC) redistributed Zn from the EXC fraction to the MnOx fraction for the coarse-textured soil. Where Zn was added, most of the metal was in the EXC and OM fractions. The SMC and humic acid lowered Zn in the EXC fraction and increased Zn in the other fractions. Effects of the organic materials on Zn in soil fractions were more evident for the sandy soil dominated by quartz in the clay than for the finer-textured soil dominated by kaolinite in the clay-size fraction. It was concluded that organic materials high in Zn can increase Zn in the EXC, OM, and MnOx fractions where the soil is not contaminated and others such as SMC and HA can lower the potential availability of Zn in contaminated soils by redistributing it from the EXC to less soluble fractions.

  17. Spatial Pattern Analysis of Heavy Metals in Beijing Agricultural Soils Based on Spatial Autocorrelation Statistics

    PubMed Central

    Huo, Xiao-Ni; Zhang, Wei-Wei; Sun, Dan-Feng; Li, Hong; Zhou, Lian-Di; Li, Bao-Guo

    2011-01-01

    This study explored the spatial pattern of heavy metals in Beijing agricultural soils using Moran’s I statistic of spatial autocorrelation. The global Moran’s I result showed that the spatial dependence of Cr, Ni, Zn, and Hg changed with different spatial weight matrixes, and they had significant and positive global spatial correlations based on distance weight. The spatial dependence of the four metals was scale-dependent on distance, but these scale effects existed within a threshold distance of 13 km, 32 km, 50 km, and 29 km, respectively for Cr, Ni, Zn, and Hg. The maximal spatial positive correlation range was 57 km, 70 km, 57 km, and 55 km for Cr, Ni, Zn, and Hg, respectively and these were not affected by sampling density. Local spatial autocorrelation analysis detected the locations of spatial clusters and spatial outliers and revealed that the pollution of these four metals occurred in significant High-high spatial clusters, Low-high, or even High-low spatial outliers. Thus, three major areas were identified and should be receiving more attention: the first was the northeast region of Beijing, where Cr, Zn, Ni, and Hg had significant increases. The second was the southeast region of Beijing where wastewater irrigation had strongly changed the content of metals, particularly of Cr and Zn, in soils. The third area was the urban fringe around city, where Hg showed a significant increase. PMID:21776217

  18. Spatial variability of soils in a seasonally dry tropical forest

    NASA Astrophysics Data System (ADS)

    Pulla, Sandeep; Riotte, Jean; Suresh, Hebbalalu; Dattaraja, Handanakere; Sukumar, Raman

    2016-04-01

    Soil structures communities of plants and soil organisms in tropical forests. Understanding the controls of soil spatial variability can therefore potentially inform efforts towards forest restoration. We studied the relationship between soils and lithology, topography, vegetation and fire in a seasonally dry tropical forest in southern India. We extensively sampled soil (available nutrients, Al, pH, and moisture), rocks, relief, woody vegetation, and spatial variation in fire burn frequency in a permanent 50-ha plot. Lower elevation soils tended to be less moist and were depleted in several nutrients and clay. The availability of several nutrients was, in turn, linked to whole-rock chemical composition differences since some lithologies were associated with higher elevations, while the others tended to dominate lower elevations. We suggest that local-scale topography in this region has been shaped by the spatial distribution of lithologies, which differ in their susceptibility to weathering. Nitrogen availability was uncorrelated with the presence of trees belonging to Fabaceae, a family associated with N-fixing species. No effect of burning on soil parameters could be discerned at this scale.

  19. Spatial Variation of Soil Type and Soil Moisture in the Regional Atmospheric Modeling System

    SciTech Connect

    Buckley, R.

    2001-06-27

    Soil characteristics (texture and moisture) are typically assumed to be initially constant when performing simulations with the Regional Atmospheric Modeling System (RAMS). Soil texture is spatially homogeneous and time-independent, while soil moisture is often spatially homogeneous initially, but time-dependent. This report discusses the conversion of a global data set of Food and Agriculture Organization (FAO) soil types to RAMS soil texture and the subsequent modifications required in RAMS to ingest this information. Spatial variations in initial soil moisture obtained from the National Center for Environmental Predictions (NCEP) large-scale models are also introduced. Comparisons involving simulations over the southeastern United States for two different time periods, one during warmer, more humid summer conditions, and one during cooler, dryer winter conditions, reveals differences in surface conditions related to increases or decreases in near-surface atmospheric moisture con tent as a result of different soil properties. Three separate simulation types were considered. The base case assumed spatially homogeneous soil texture and initial soil moisture. The second case assumed variable soil texture and constant initial soil moisture, while the third case allowed for both variable soil texture and initial soil moisture. The simulation domain was further divided into four geographically distinct regions. It is concluded there is a more dramatic impact on thermodynamic variables (surface temperature and dewpoint) than on surface winds, and a more pronounced variability in results during the summer period. While no obvious trends in surface winds or dewpoint temperature were found relative to observations covering all regions and times, improvement in surface temperatures in most regions and time periods was generally seen with the incorporation of variable soil texture and initial soil moisture.

  20. A spatially-based modeling framework for assessing the risks of soil-associated metals to bats.

    PubMed

    Hernout, Béatrice V; Somerwill, Kate E; Arnold, Kathryn E; McClean, Colin J; Boxall, Alistair B A

    2013-02-01

    Populations of some species of bats are declining in some regions of Europe. These declines are probably due to a range of pressures, including climate change, urbanization and exposure to toxins such as metals. This paper describes the development, paramaterisation and application of a spatially explicit modeling framework to predict the risks of soil-associated metals (lead, copper, zinc and cadmium) to bat health. Around 5.9% of areas where bats reside were predicted to have lead levels that pose a risk to bat health. For copper, this value was 2.8%, for cadmium it was 0.6% and for zinc 0.5%. Further work is therefore warranted to explore the impacts of soil-associated metals on bat populations in the UK.

  1. Fixation kinetics of chelated and non-chelated zinc in semi-arid alkaline soils: application to zinc management

    NASA Astrophysics Data System (ADS)

    Udeigwe, Theophilus K.; Eichmann, Madeleine; Menkiti, Matthew C.

    2016-07-01

    This study was designed to examine the fixation pattern and kinetics of zinc (Zn) in chelated (ethylenediaminetetraacetic acid, EDTA) and non-chelated mixed micronutrient systems of semi-arid alkaline soils from the Southern High Plains, USA. Soils were characterized for a suite of chemical and physical properties and data obtained from extraction experiments fitted to various kinetic models. About 30 % more plant-available Zn was fixed in the non-chelated system within the first 14 days with only about 18 % difference observed between the two systems by day 90, suggesting that the effectiveness of the chelated compounds tended to decrease over time. The strengths of the relationships of change in available Zn with respect to other micronutrients (copper, iron, and manganese) were higher and more significant in the non-chelated system (average R2 of 0.83), compared to the chelated (average R2 of 0.42). Fixation of plant-available Zn was best described by the power-function model (R2 = 0.94, SE = 0.076) in the non-chelated system, and was poorly described by all the models examined in the chelated system. Reaction rate constants and relationships generated from this study can serve as important tools for micronutrient management and for future micronutrient modeling studies on these soils and other semi-arid regions of the world.

  2. Digital spatial soil and land information for agriculture development

    NASA Astrophysics Data System (ADS)

    Sharma, R. K.; Laghathe, Pankaj; Meena, Ranglal; Barman, Alok Kumar; Das, Satyendra Nath

    2006-12-01

    Natural resource management calls for study of natural system prevailing in the country. In India floods and droughts visit regularly, causing extensive damages of natural wealth including agriculture that are crucial for sustenance of economic growth. The Indian Sub-continent drained by many major rivers and their tributaries where watershed, the hydrological unit forms a natural system that allows management and development of land resources following natural harmony. Acquisition of various kinds and levels of soil and land characteristics using both conventional and remote sensing techniques and subsequent development of digital spatial data base are essential to evolve strategy for planning watershed development programmes, their monitoring and impact evaluation. The multi-temporal capability of remote sensing sensors helps to update the existing data base which are of dynamic in nature. The paper outlines the concept of spatial data base development, generation using remote sensing techniques, designing of data structure, standardization and integration with watershed layers and various non spatial attribute data for various applications covering watershed development planning, alternate land use planning, soil and water conservation, diversified agriculture practices, generation of soil health card, soil and land reclamation, etc. The soil and land characteristics are vital to derive various interpretative groupings or master table that helps to generate the desired level of information of various clients using the GIS platform. The digital spatial data base on soils and watersheds generated by All India Soil and Land Use Survey will act as a sub-server of the main GIS based Web Server being hoisted by the planning commission for application of spatial data for planning purposes under G2G domain. It will facilitate e-governance for natural resource management using modern technology.

  3. Spatial Distribution of Fungal Communities in an Arable Soil.

    PubMed

    Moll, Julia; Hoppe, Björn; König, Stephan; Wubet, Tesfaye; Buscot, François; Krüger, Dirk

    2016-01-01

    Fungi are prominent drivers of ecological processes in soils, so that fungal communities across different soil ecosystems have been well investigated. However, for arable soils taxonomically resolved fine-scale studies including vertical itemization of fungal communities are still missing. Here, we combined a cloning/Sanger sequencing approach of the ITS/LSU region as marker for general fungi and of the partial SSU region for arbuscular mycorrhizal fungi (AMF) to characterize the microbiome in different maize soil habitats. Four compartments were analyzed over two annual cycles 2009 and 2010: a) ploughed soil in 0-10 cm, b) rooted soil in 40-50 cm, c) root-free soil in 60-70 cm soil depth and d) maize roots. Ascomycota was the most dominant phylum across all compartments. Fungal communities including yeasts and AMF differed strongly between compartments. Inter alia, Tetracladium, the overall largest MOTU (molecular operational taxonomic unit), occurred in all compartments, whereas Trichosporon dominated all soil compartments. Sequences belonging to unclassified Helotiales were forming the most abundant MOTUs exclusively present in roots. This study gives new insights on spatial distribution of fungi and helps to link fungal communities to specific ecological properties such as varying resources, which characterize particular niches of the heterogeneous soil environment. PMID:26840453

  4. Spatial Distribution of Fungal Communities in an Arable Soil

    PubMed Central

    Moll, Julia; Hoppe, Björn; König, Stephan; Wubet, Tesfaye; Buscot, François; Krüger, Dirk

    2016-01-01

    Fungi are prominent drivers of ecological processes in soils, so that fungal communities across different soil ecosystems have been well investigated. However, for arable soils taxonomically resolved fine-scale studies including vertical itemization of fungal communities are still missing. Here, we combined a cloning/Sanger sequencing approach of the ITS/LSU region as marker for general fungi and of the partial SSU region for arbuscular mycorrhizal fungi (AMF) to characterize the microbiome in different maize soil habitats. Four compartments were analyzed over two annual cycles 2009 and 2010: a) ploughed soil in 0–10 cm, b) rooted soil in 40–50 cm, c) root-free soil in 60–70 cm soil depth and d) maize roots. Ascomycota was the most dominant phylum across all compartments. Fungal communities including yeasts and AMF differed strongly between compartments. Inter alia, Tetracladium, the overall largest MOTU (molecular operational taxonomic unit), occurred in all compartments, whereas Trichosporon dominated all soil compartments. Sequences belonging to unclassified Helotiales were forming the most abundant MOTUs exclusively present in roots. This study gives new insights on spatial distribution of fungi and helps to link fungal communities to specific ecological properties such as varying resources, which characterize particular niches of the heterogeneous soil environment. PMID:26840453

  5. Spatial Distribution of Fungal Communities in an Arable Soil.

    PubMed

    Moll, Julia; Hoppe, Björn; König, Stephan; Wubet, Tesfaye; Buscot, François; Krüger, Dirk

    2016-01-01

    Fungi are prominent drivers of ecological processes in soils, so that fungal communities across different soil ecosystems have been well investigated. However, for arable soils taxonomically resolved fine-scale studies including vertical itemization of fungal communities are still missing. Here, we combined a cloning/Sanger sequencing approach of the ITS/LSU region as marker for general fungi and of the partial SSU region for arbuscular mycorrhizal fungi (AMF) to characterize the microbiome in different maize soil habitats. Four compartments were analyzed over two annual cycles 2009 and 2010: a) ploughed soil in 0-10 cm, b) rooted soil in 40-50 cm, c) root-free soil in 60-70 cm soil depth and d) maize roots. Ascomycota was the most dominant phylum across all compartments. Fungal communities including yeasts and AMF differed strongly between compartments. Inter alia, Tetracladium, the overall largest MOTU (molecular operational taxonomic unit), occurred in all compartments, whereas Trichosporon dominated all soil compartments. Sequences belonging to unclassified Helotiales were forming the most abundant MOTUs exclusively present in roots. This study gives new insights on spatial distribution of fungi and helps to link fungal communities to specific ecological properties such as varying resources, which characterize particular niches of the heterogeneous soil environment.

  6. Potential risks of copper, zinc, and cadmium pollution due to pig manure application in a soil-rice system under intensive farming: a case study of Nanhu, China.

    PubMed

    Shi, Jiachun; Yu, Xiulin; Zhang, Mingkui; Lu, Shenggao; Wu, Weihong; Wu, Jianjun; Xu, Jianming

    2011-01-01

    Heavy metal (copper [Cu], zinc [Zn], and cadmium [Cd]) pollution of soils from pig manures in soil-rice ( L.) systems under intensive farming was investigated, taking Nanhu, China, as the case study area. Two hundred pig manures and 154 rice straws, brown rice samples, and corresponding surface soil (0-15 cm) samples were collected in paddy fields from 150 farms in 16 major villages within the study area. The mean Cu and Zn concentrations in pig manures consistently exceeded the related standard. About 44 and 60% of soil samples exceed the Chinese Soil Cu and Cd Environmental Quality Standards, respectively. The concentration of Cu, Zn, and Cd in brown rice did not exceed the Chinese Food Hygiene Standard. There was a significant positive correlation between total Cu and Zn contents in soil and application rate of pig manures. Strong correlation was observed between the extractable Cu, Zn, and Cd in soil and the Cu, Zn, and Cd contents in the brown rice. The spatial distribution maps of Cu and Zn concentrations in brown rice, straw, and extractable soil Cu and Zn concentration also showed similar geographical trends. Further analyses on heavy metals loading flux and accumulation rates from pig manure applied suggested that Cu and Cd contents in soil currently have already exceeded the maximum permissible limit, and Zn, if still at current manure application rates, will reach the ceiling concentration limits in 9 yr. This study assists in understanding the risk of heavy metals accumulating from pig manure applications to agricultural soils.

  7. Effect of organic waste amendments on zinc adsorption by two soils

    SciTech Connect

    Shuman, L.M. . Georgia Experiment station)

    1999-03-01

    Two soils (fine and coarse textured) were amended with five organic wastes or humic acid. One adsorption experiment was carried out at 1 mmol L[sup [minus]1] Zn and at pH levels from 4 to 8. A second experiment was at pH 6 and 0 to 4 mmol/L[sup [minus]1] Zn. The greatest variation in Zn adsorption among organic treatments came at pH 6, with a lesser range for the fine textured soil (pH 5--6) and a wider range for the sandy soil (pH 5--7). Adsorption followed a two-site Langmuir model, and maxima were higher for the finer textured soil compared with the sandy soil. Adsorption maxima were not changed by the organic wastes for the fine textured soil, but all were increased over the controls for the sandy soil. Zinc adsorption for poultry litter was lower than the control for the sandy soil. Industrial sewage sludge and humic acid increased Zn adsorption more than did commercial compost, spent mushroom compost, and cotton litter. It was concluded that organic materials have more influence on Zn adsorption for sandy soils than for fine textured soils and that most materials will increase Zn adsorption, whereas those with high soluble C can decrease Zn adsorption.

  8. Spatial variability of soil moisture retrieved by SMOS satellite

    NASA Astrophysics Data System (ADS)

    Lukowski, Mateusz; Marczewski, Wojciech; Usowicz, Boguslaw; Rojek, Edyta; Slominski, Jan; Lipiec, Jerzy

    2015-04-01

    Standard statistical methods assume that the analysed variables are independent. Since the majority of the processes observed in the nature are continuous in space and time, this assumption introduces a significant limitation for understanding the examined phenomena. In classical approach, valuable information about the locations of examined observations is completely lost. However, there is a branch of statistics, called geostatistics, which is the study of random variables, but taking into account the space where they occur. A common example of so-called "regionalized variable" is soil moisture. Using in situ methods it is difficult to estimate soil moisture distribution because it is often significantly diversified. Thanks to the geostatistical methods, by employing semivariance analysis, it is possible to get the information about the nature of spatial dependences and their lengths. Since the Soil Moisture and Ocean Salinity mission launch in 2009, the estimation of soil moisture spatial distribution for regional up to continental scale started to be much easier. In this study, the SMOS L2 data for Central and Eastern Europe were examined. The statistical and geostatistical features of moisture distributions of this area were studied for selected natural soil phenomena for 2010-2014 including: freezing, thawing, rainfalls (wetting), drying and drought. Those soil water "states" were recognized employing ground data from the agro-meteorological network of ground-based stations SWEX and SMUDP2 data from SMOS. After pixel regularization, without any upscaling, the geostatistical methods were applied directly on Discrete Global Grid (15-km resolution) in ISEA 4H9 projection, on which SMOS observations are reported. Analysis of spatial distribution of SMOS soil moisture, carried out for each data set, in most cases did not show significant trends. It was therefore assumed that each of the examined distributions of soil moisture in the adopted scale satisfies

  9. Changes in zinc speciation in field soil after contamination with zinc oxide.

    PubMed

    Voegelin, Andreas; Pfister, Sabina; Scheinost, Andreas C; Marcus, Matthew A; Kretzschmar, Ruben

    2005-09-01

    Recent studies on the speciation of Zn in contaminated soils confirmed the formation of Zn-layered double hydroxide (LDH) and Zn-phyllosilicate phases. However, no information on the kinetics of the formation of those phases under field conditions is currently available. In the present study, the transformation of Zn in a field soil artificially contaminated with ZnO containing filter dust from a brass foundry was monitored during 4 years using extended X-ray absorption fine structure (EXAFS) spectroscopy. Soil sections were studied by micro-X-ray fluorescence (micro-XRF) and micro-EXAFS spectroscopy. EXAFS spectra were analyzed by principal component analysis (PCA) and linear combination fitting (LCF). The results show that ZnO dissolved within 9 months and that half of the total Zn reprecipitated. The precipitate was mainly of the Zn-LDH type (>75%). Only a minor fraction (<25%) may be of Zn-phyllosilicate type. The remaining Zn was adsorbed to soil organic and inorganic particles. No significant changes in Zn speciation occurred from 9 to 47 months after the contamination. Thermodynamic calculations show that both Zn-LDH and Zn-phyllosilicate may form in the presence of ZnO but that the formation of Zn-phyllosilicate would be thermodynamically favored. Thus, the dominance of Zn-LDH found by spectroscopy suggests that the formation of the Zn precipitates was not solely controlled bythermodynamics but also contained a kinetic component. The rate-limiting step could be the supply of Al and Si from soil minerals to the Zn-rich solutions around dissolving ZnO grains. PMID:16190219

  10. Spatial distribution of soil lead pollution in Milwaukee County, Wisconsin

    SciTech Connect

    Brinkmann, R.

    1989-01-01

    The spatial distribution of lead pollution in soils of Milwaukee County, Wisconsin, was investigated to find the patterns and extent of health-threatening contamination. Samples were collected within three distinct land-use types: (i) lawns and gardens, (ii) major east-west arterials, and (iii) private properties at site-specific locations. Three-hundred and sixty-four soil samples were collected from lawns and gardens throughout the county; a total of 263 soil samples were collected along College Avenue, Oklahoma Avenue, Greenfield Avenue, Wisconsin Avenue, North Avenue, Capitol Drive, and Brown Deer Road, and a total of 55 soil samples were collected from three private properties. Several distinct patterns emerged from the mapped data. Broadly, soil lead pollution in lawns and gardens was highest in the central city and decreased north, south, and west toward the county lines and suburban fringe. Also, soil lead pollution along major arterials decreased away from busy intersections and was generally eliminated east of 42nd Street. At the three locations of intense sampling for site-specific examination, soil lead was concentrated within one meter of painted structures. Peripheral to the one meter zone, background levels of lead were found except in the central city where elevated soil lead levels were found in lawns. Health-threatening lead levels (>500 ppm) were found in soils collected using all three approaches: 24% of 11 soils collected from lawns and gardens; 43% of soils collected from major east-west arterials; and 27% of the soils collected from all three intensely examined properties. The sources of lead pollution in soil were more clearly suggested in intense sampling within small private properties. Lead-based paint caused contamination within one meter of painted structures and airborne lead from automobile exhaust outside that zone.

  11. Effects of pig manure containing copper and zinc on microbial community assessed via phospholipids in soils.

    PubMed

    Zhang, Yan; Luo, Wei; Jia, Junmei; Kong, Peiru; Tong, Xiaojuan; Lu, Yonglong; Xie, Liqiong; Ma, Fulong; Giesy, John P

    2014-08-01

    Pig manure (PM) is widely used as an organic fertilizer to increase yields of crops. Excessive application of compost containing relatively great concentrations of copper (Cu) and zinc (Zn) can change soil quality. To clarify the effects of different rates of application and to determine the optimal rate of fertilization, PM containing 1,115 mg Cu kg(-1), dry mass (dm) and 1,497 mg Zn kg(-1), dm was applied to alkaline soil at rates of 0, 11, 22, 44, 88, and 222 g PM kg(-1), dm. Phospholipid fatty acids (PLFAs) were used to assess soil microbial community composition. Application of PM resulted in greater concentrations of total nitrogen (TN), NH4 (+)-N, NO3 (-)-N, total carbon (TC), soil organic matter (SOM) but lesser pH values. Soils with application rates of 88-222 g PM kg(-1), dm had concentrations of total and EDTA-extractable Cu and Zn significantly greater than those in soil without PM, and concentrations of T-Cu and T-Zn in these amended soils exceeded maximum limits set by standards in china. Except in the soil with a rate of 11 g PM kg(-1), dm, total bacterial and fungal PLFAs were directly proportional to rate of application of PM. Biomasses of bacteria and fungi were significantly greater in soils with application rates of 44-222 g PM kg(-1), dm than in the soil without PM. SOM, TC and EDTA-Zn had the most direct influence on soil microbial communities. To improve fertility of soils and maintain quality of soil, rate of application should be 22-44 g PM kg(-1) dm, soil containing Cu and Zn. PMID:24791911

  12. Assessment of Fluoride Concentration of Soil and Vegetables in Vicinity of Zinc Smelter, Debari, Udaipur, Rajasthan

    PubMed Central

    Bhat, Nagesh; Asawa, Kailash; Tak, Mridula; Shinde, Kushal; Singh, Anukriti; Gandhi, Neha; Gupta, Vivek Vardhan

    2015-01-01

    Background As of late, natural contamination has stimulated as a reaction of mechanical and other human exercises. In India, with the expanding industrialization, numerous unsafe substances are utilized or are discharged amid generation as cleans, exhaust, vapours and gasses. These substances at last are blended in the earth and causes health hazards. Objective To determine concentration of fluoride in soils and vegetables grown in the vicinity of Zinc Smelter, Debari, Udaipur, Rajasthan. Materials and Methods Samples of vegetables and soil were collected from areas situated at 0, 1, 2, 5, and 10 km distance from the zinc smelter, Debari. Three samples of vegetables (i.e. Cabbage, Onion and Tomato) and 3 samples of soil {one sample from the upper layer of soil (i.e. 0 to 20 cm) and one from the deep layer (i.e. 20 – 40 cm)} at each distance were collected. The soil and vegetable samples were sealed in clean polythene bags and transported to the laboratory for analysis. One sample each of water and fertilizer from each distance were also collected. Results The mean fluoride concentration in the vegetables grown varied between 0.36 ± 0.69 to 0.71 ± 0.90 ppm. The fluoride concentration in fertilizer and water sample from various distances was found to be in the range of 1.4 – 1.5 ppm and 1.8 – 1.9 ppm respectively. Conclusion The fluoride content of soil and vegetables was found to be higher in places near to the zinc smelter. PMID:26557620

  13. Electrical Resistivity Imaging to Quantify Spatial Soil Heterogeneity

    NASA Astrophysics Data System (ADS)

    Guber, A. K.; Hadzick, Z. L.; Garzio, A.; Pachepsky, Y. A.; Hill, R. L.; Rowland, R. A.; Golovko, L. A.

    2008-12-01

    Electrical resistivity (ER) sounding is increasingly being used as non-invasive technique to reveal and map soil heterogeneity. The objective of this work was to evaluate effects of soil properties on the electric resistivity and to observe these effects in spatial context in coarse-textured soil. The studied soil had the sandy loam texture. The 20x20-m study plot was located at the ARS Beltsville OPE3 site. Relationship between ER, bulk density, and soil water contents was first studied in disturbed 80-cm3 soil samples taken at 10 depths with 20 cm increment. Soil water contents were brought to 6 predefined levels in each sample and were in the range from air dry to 0.27g g-1. Soil bulk density varied in the range from 1.28 to 1.45 g cm-3. The ER in soil samples decreased as the gravimetric water content increased. The ER decrease became more pronounced as bulk density decreased. Next, soil samples were taken at field water contents from 10 depths at 12 locations. Particle size distributions, pH, water content and ER were measured in each sample. Bulk density values in part of the soil profiles below 80 cm ranged from 1.5 to 1.8 g cm- 3 and no dependence between ER and water content could be established in this soil layer where the lowest values of ER were recorded. The increased conductivity of the soil solid phase could be a possible reason for that since soil in this part of the profile had pH values two or more units less than in the upper part. The lowest sand contents corresponded to highest ER values in this soil layer. Finally, the vertical electrical sounding (LandMapper ERM-02) was used to infer spatial distribution of soil resistivity along a 9-m transect for different dates when soil was dry and when it was relatively uniformly wetted with long low- intensity rain. The Wenner-Shlumberger array with 31-electrodes spaced 30-cm apart was used. Soil temperature and water content with multisensor capacitance probes (SENTEC) were monitored at 10 depths down

  14. Spatial Prediction of Soil Classes by Using Soil Weathering Parameters Derived from vis-NIR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ramirez-Lopez, Leonardo; Alexandre Dematte, Jose

    2010-05-01

    There is consensus in the scientific community about the great need of spatial soil information. Conventional mapping methods are time consuming and involve high costs. Digital soil mapping has emerged as an area in which the soil mapping is optimized by the application of mathematical and statistical approaches, as well as the application of expert knowledge in pedology. In this sense, the objective of the study was to develop a methodology for the spatial prediction of soil classes by using soil spectroscopy methodologies related with fieldwork, spectral data from satellite image and terrain attributes in simultaneous. The studied area is located in São Paulo State, and comprised an area of 473 ha, which was covered by a regular grid (100 x 100 m). In each grid node was collected soil samples at two depths (layers A and B). There were extracted 206 samples from transect sections and submitted to soil analysis (clay, Al2O3, Fe2O3, SiO2 TiO2, and weathering index). The first analog soil class map (ASC-N) contains only soil information regarding from orders to subgroups of the USDA Soil Taxonomy System. The second (ASC-H) map contains some additional information related to some soil attributes like color, ferric levels and base sum. For the elaboration of the digital soil maps the data was divided into three groups: i) Predicted soil attributes of the layer B (related to the soil weathering) which were obtained by using a local soil spectral library; ii) Spectral bands data extracted from a Landsat image; and iii) Terrain parameters. This information was summarized by a principal component analysis (PCA) in each group. Digital soil maps were generated by supervised classification using a maximum likelihood method. The trainee information for this classification was extracted from five toposequences based on the analog soil class maps. The spectral models of weathering soil attributes shown a high predictive performance with low error (R2 0.71 to 0.90). The spatial

  15. Spatial distribution of soil organic carbon stocks in France

    NASA Astrophysics Data System (ADS)

    Martin, M. P.; Wattenbach, M.; Smith, P.; Meersmans, J.; Jolivet, C.; Boulonne, L.; Arrouays, D.

    2010-11-01

    Soil organic carbon plays a major role in the global carbon budget, and can act as a source or a sink of atmospheric carbon, whereby it can influence the course of climate change. Changes in soil organic soil stocks (SOCS) are now taken into account in international negotiations regarding climate change. Consequently, developing sampling schemes and models for estimating the spatial distribution of SOCS is a priority. The French soil monitoring network has been established on a 16 km × 16 km grid and the first sampling campaign has recently been completed, providing circa 2200 measurements of stocks of soil organic carbon, obtained through an in situ composite sampling, uniformly distributed over the French territory. We calibrated a boosted regression tree model on the observed stocks, modelling SOCS as a function of other variables such as climatic parameters, vegetation net primary productivity, soil properties and land use. The calibrated model was evaluated through cross-validation and eventually used for estimating SOCS for the whole of metropolitan France. Two other models were calibrated on forest and agricultural soils separately, in order to assess more precisely the influence of pedo-climatic variables on soil organic carbon for such soils. The boosted regression tree model showed good predictive ability, and enabled quantification of relationships between SOCS and pedo-climatic variables (plus their interactions) over the French territory. These relationship strongly depended on the land use, and more specifically differed between forest soils and cultivated soil. The total estimate of SOCS in France was 3.260 ± 0.872 PgC for the first 30 cm. It was compared to another estimate, based on the previously published European soil organic carbon and bulk density maps, of 5.303 PgC. We demonstrate that the present estimate might better represent the actual SOCS distributions of France, and consequently that the previously published approach at the European

  16. Effect of compost and manure amendments on zinc soil speciation, plant content, and translocation in an artificially contaminated soil.

    PubMed

    Al Chami, Ziad; Cavoski, Ivana; Mondelli, Donato; Miano, Teodoro

    2013-07-01

    The addition of organic matter in soil can modify the bioavailability of heavy metals. A greenhouse pot experiment was carried out using an edible plant species Eruca vesicaria L. Cavalieri grown on an artificially contaminated soil with Zn (665 mg kg(-1)). In this study, the effect of compost at 20 t ha(-1) (C20) and at 60 t ha(-1) (C60), manure at 10 t ha(-1) (M10) and at 30 t ha(-1) (M30), and chemical fertilizers (NPK) on Zn fate in a soil-plant system was evaluated. At the end of the experiment, the main growth parameters and Zn content in plants were determined. In addition, Zn speciation in the soil was assessed using the original Community Bureau of Reference sequential extraction and diethylene triamine pentaacetic acid extraction. Zinc, though an essential element for plant growth, caused toxicity effects in plants grown on control and manure treatments, while in the compost treatments, plants showed no visual toxicity symptoms. The concentrations of Zn in roots were similar for all treatments, while significant differences were observed for shoots. In fact, in the compost treatments, plants showed the lowest Zn concentration in shoots. Zinc speciation seems not to be affected by the applied treatments. Indeed, Zn plant content and translocation to shoots seems to be affected. Compost amendments significantly reduced Zn content and translocation in comparison to other treatments.

  17. Effect of compost and manure amendments on zinc soil speciation, plant content, and translocation in an artificially contaminated soil.

    PubMed

    Al Chami, Ziad; Cavoski, Ivana; Mondelli, Donato; Miano, Teodoro

    2013-07-01

    The addition of organic matter in soil can modify the bioavailability of heavy metals. A greenhouse pot experiment was carried out using an edible plant species Eruca vesicaria L. Cavalieri grown on an artificially contaminated soil with Zn (665 mg kg(-1)). In this study, the effect of compost at 20 t ha(-1) (C20) and at 60 t ha(-1) (C60), manure at 10 t ha(-1) (M10) and at 30 t ha(-1) (M30), and chemical fertilizers (NPK) on Zn fate in a soil-plant system was evaluated. At the end of the experiment, the main growth parameters and Zn content in plants were determined. In addition, Zn speciation in the soil was assessed using the original Community Bureau of Reference sequential extraction and diethylene triamine pentaacetic acid extraction. Zinc, though an essential element for plant growth, caused toxicity effects in plants grown on control and manure treatments, while in the compost treatments, plants showed no visual toxicity symptoms. The concentrations of Zn in roots were similar for all treatments, while significant differences were observed for shoots. In fact, in the compost treatments, plants showed the lowest Zn concentration in shoots. Zinc speciation seems not to be affected by the applied treatments. Indeed, Zn plant content and translocation to shoots seems to be affected. Compost amendments significantly reduced Zn content and translocation in comparison to other treatments. PMID:23292226

  18. Variability of Soil Temperature: A Spatial and Temporal Analysis.

    ERIC Educational Resources Information Center

    Walsh, Stephen J.; And Others

    1991-01-01

    Discusses an analysis of the relationship of soil temperatures at 3 depths to various climatic variables along a 200-kilometer transect in west-central Oklahoma. Reports that temperature readings increased from east to west. Concludes that temperature variations were explained by a combination of spatial, temporal, and biophysical factors. (SG)

  19. Spatial patterns of soil organic carbon stocks in Estonian arable soils

    NASA Astrophysics Data System (ADS)

    Suuster, Elsa; Astover, Alar; Kõlli, Raimo; Roostalu, Hugo; Reintam, Endla; Penu, Priit

    2010-05-01

    Soil organic carbon (SOC) determines ecosystem functions, influencing soil fertility, soil physical, chemical and biological properties and crop productivity. Therefore the spatial pattern of SOC stocks and its appropriate management is important at various scales. Due to climate change and the contribution of carbon store in the soils, the national estimates of soil carbon stocks should be determined. Estonian soils have been well studied and mapped at a scale 1:10,000. Previous studies have estimated SOC stocks based on combinations of large groups of Estonian soils and the mean values of the soil profile database, but were not embedded into the geo-referenced databases. These studies have estimated SOC stocks of Estonian arable soils 122.3 Tg. Despite of available soil maps and databases, this information is still very poorly used for spatial soil modelling. The aim of current study is to assess and model spatial pattern of SOC stocks of arable soils on a pilot area Tartu County (area 3089 sq km). Estonian digital soil map and soil monitoring databases are providing a good opportunity to assess SOC stocks at various scales. The qualitative nature of the initial data from a soil map prohibits any straightforward use in modelling. Thus we have used several databases to construct models and linkages between soil properties that can be integrated into soil map. First step was to reorganize the soil map database (44,046 mapping units) so it can be used as an input to modelling. Arable areas were distinguished by a field layer of Agricultural Registers and Information Board, which provides precise information of current land use as it is the basis of paying CAP subsidies. The estimates of SOC content were found by using the arable land evaluation database of Tartu from the Estonian Land Board (comprising 950 sq km and 31,226 fields), where each soil type was assessed separately and average SOC content grouped by texture was derived. SOC content of epipedon varies in

  20. Zinc Speciation in Proximity to Phosphate Application Points in a Lead/Zinc Smelter–Contaminated Soil

    SciTech Connect

    Baker, Lucas R.; Pierzynski, Gary M.; Hettiarachchi, Ganga M.; Scheckel, Kirk G.; Newville, Matthew

    2012-01-01

    The use of P to immobilize Pb in contaminated soils has been well documented. However, the influence of P on Zn speciation in soils has not been extensively examined, and these two metals often occur as co-contaminants. We hypothesized that additions of P to a Pb/Zn-contaminated soil would induce Zn phosphate mineral formation and fluid P sources would be more effective than granular P amendments. A combination of different synchrotron-based techniques, namely, spatially resolved micro-X-ray fluorescence (μ-XRF), micro-extended X-ray absorption fine structure spectroscopy (μ-EXAFS), and micro-X-ray diffraction (μ-XRD), were used to speciate Zn at two incubation times in the proximity of application points (0 to 4 mm) for fluid and granular P amendments in a Pb/Zn smelter-contaminated soil. Phosphate rock (PR), triple super phosphate (TSP), monoammonium phosphate (MAP), and fluid ammonium polyphosphate induced Zn phosphate formation. Ammonium polyphosphate was more effective at greater distances (up to 3.7 mm) from the point of P application. Phosphoric acid increased the presence of soluble Zn species because of increased acidity. Soluble Zn has implications with respect to Zn bioavailability, which may negatively impact vegetation and other sensitive organisms. Although additions of P immobilize Pb, this practice needs close monitoring due to potential increases in Zn solubility in a Pb/Zn smelter-contaminated soil.

  1. Cadmium and zinc in soil solution extracts following the application of phosphate fertilizers.

    PubMed

    Lambert, Raphaël; Grant, Cynthia; Sauvé, Sébastien

    2007-06-01

    This study investigated the solubility of cadmium and zinc in soils after the application of phosphate fertilizers containing those two metals. The solubility of cadmium and zinc was assessed by measuring their concentration in soil water extracts. Three monoammonium phosphate fertilizers containing various amounts of metals were applied on cultivated fields for 3 years at three different rates. In order to investigate the effects of long-term applications of fertilizers on the solubility of Cd and Zn, a similar design was used to apply contaminated fertilizers to soils in a laboratory experiment using a single fertilizer addition equivalent to 15 years of application. Phosphate fertilizers increased the concentration of Cd in soil extracts compared to control in 87% and 80% of the treatments in field and laboratory experiments respectively. Both increasing the rate of application and using fertilizer containing more Cd lead to higher Cd concentrations in extracts for the field and the laboratory experiments. The addition of the equivalent of 15 years of fertilizer application in the laboratory results in higher Cd concentration in extracts compared to the field experiment. For Zn, the fertilizer treatments enhanced the metal solution concentration in 83% of field treatments, but no significant correlations could be found between Zn inputs and its concentration in solution. In the laboratory, fertilizer additions increase the Zn concentrations in 53% of the treatments and decrease it in most of the other treatments. The decrease in Zn concentrations in the laboratory trial is attributed to the higher phosphate concentrations in the soil solution; which is presumed to have contributed to the precipitation of Zn-phosphates. For both trials, the metal concentrations in soil extracts cannot be related to the Zn concentration in the fertilizer or the rate of application. The high Zn to Cd ratio is presumably responsible for the Cd increase in the soil extracts due to

  2. Spatial assessment of soil contamination by heavy metals from informal electronic waste recycling in Agbogbloshie, Ghana

    PubMed Central

    Greve, Klaus; Atiemo, Sampson M.

    2016-01-01

    Objectives This study examined the spatial distribution and the extent of soil contamination by heavy metals resulting from primitive, unconventional informal electronic waste recycling in the Agbogbloshie e-waste processing site (AEPS) in Ghana. Methods A total of 132 samples were collected at 100 m intervals, with a handheld global position system used in taking the location data of the soil sample points. Observing all procedural and quality assurance measures, the samples were analyzed for barium (Ba), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb), and zinc (Zn), using X-ray fluorescence. Using environmental risk indices of contamination factor and degree of contamination (Cdeg), we analyzed the individual contribution of each heavy metal contamination and the overall Cdeg. We further used geostatistical techniques of spatial autocorrelation and variability to examine spatial distribution and extent of heavy metal contamination. Results Results from soil analysis showed that heavy metal concentrations were significantly higher than the Canadian Environmental Protection Agency and Dutch environmental standards. In an increasing order, Pb>Cd>Hg>Cu>Zn>Cr>Co>Ba>Ni contributed significantly to the overall Cdeg. Contamination was highest in the main working areas of burning and dismantling sites, indicating the influence of recycling activities. Geostatistical analysis also revealed that heavy metal contamination spreads beyond the main working areas to residential, recreational, farming, and commercial areas. Conclusions Our results show that the studied heavy metals are ubiquitous within AEPS and the significantly high concentration of these metals reflect the contamination factor and Cdeg, indicating soil contamination in AEPS with the nine heavy metals studied. PMID:26987962

  3. Spatial correlation of soil moisture in small catchments and its relationship to dominant spatial hydrological processes

    NASA Astrophysics Data System (ADS)

    Western, Andrew W.; Zhou, Sen-Lin; Grayson, Rodger B.; McMahon, Thomas A.; Blöschl, Günter; Wilson, David J.

    2004-01-01

    The geostatistical properties of soil moisture patterns from five different sites in Australia (Tarrawarra and Point Nepean) and New Zealand (three sites from the Mahurangi River Basin—Carran's, Clayden's and Satellite Station) are analysed here. The soil moisture data were collected using time domain reflectometry and consistent methods for all sites, thereby allowing comparisons to be drawn between sites without the complication of methodological differences. The sites have contrasting climatic and soils characteristics. Soil moisture in the top 30 cm of the soil profile was measured using time domain reflectometry on 6-8 occasions at each site. The variance and correlation structure of the patterns was analysed. Typical correlation scales lie between 30 and 60 m. We found that there was a seasonal evolution in the spatial soil moisture variance that was related to changes in the spatial mean moisture content at all sites. At the Australian sites there was also a seasonal evolution in the correlation length related to changes in the spatial mean moisture, but not at the New Zealand sites. The seasonal evolution of the correlation length in the Australian catchments is likely to be associated with a seasonal change in the processes controlling the soil moisture pattern. The more humid climate at the New Zealand sites leads to more consistent spatial controls over the year. Similarities between the correlation structure of the moisture and topographic indices representing lateral flow and topographically modulated evaporative forcing were found at Tarrawarra, Carran's and Clayden's. At Point Nepean the correlation structure of the soil moisture pattern is controlled by a larger (than the topography) scale variation in soils, properties and at Satellite Station a smaller scale source of variability is apparent in the data (although there were also topographical effects apparent, associated with valley features). The results demonstrate that the processes

  4. Controls of Soil Spatial Variability in a Dry Tropical Forest.

    PubMed

    Pulla, Sandeep; Riotte, Jean; Suresh, H S; Dattaraja, H S; Sukumar, Raman

    2016-01-01

    We examined the roles of lithology, topography, vegetation and fire in generating local-scale (<1 km2) soil spatial variability in a seasonally dry tropical forest (SDTF) in southern India. For this, we mapped soil (available nutrients, Al, total C, pH, moisture and texture in the top 10 cm), rock outcrops, topography, all native woody plants ≥1 cm diameter at breast height (DBH), and spatial variation in fire frequency (times burnt during the 17 years preceding soil sampling) in a permanent 50-ha plot. Unlike classic catenas, lower elevation soils had lesser moisture, plant-available Ca, Cu, Mn, Mg, Zn, B, clay and total C. The distribution of plant-available Ca, Cu, Mn and Mg appeared to largely be determined by the whole-rock chemical composition differences between amphibolites and hornblende-biotite gneisses. Amphibolites were associated with summit positions, while gneisses dominated lower elevations, an observation that concurs with other studies in the region which suggest that hillslope-scale topography has been shaped by differential weathering of lithologies. Neither NO3(-)-N nor NH4(+)-N was explained by the basal area of trees belonging to Fabaceae, a family associated with N-fixing species, and no long-term effects of fire on soil parameters were detected. Local-scale lithological variation is an important first-order control over soil variability at the hillslope scale in this SDTF, by both direct influence on nutrient stocks and indirect influence via control of local relief. PMID:27100088

  5. Geostatistical independent simulation of spatially correlated soil variables

    NASA Astrophysics Data System (ADS)

    Boluwade, Alaba; Madramootoo, Chandra A.

    2015-12-01

    The selection of best management practices to reduce soil and water pollution often requires estimation of soil properties. It is important to find an efficient and robust technique to simulate spatially correlated soils parameters. Co-kriging and co-simulation are techniques that can be used. These methods are limited in terms of computer simulation due to the problem of solving large co-kriging systems and difficulties in fitting a valid model of coregionalization. The order of complexity increases as the number of covariables increases. This paper presents a technique for the conditional simulation of a non-Gaussian vector random field on point support scale. The technique is termed Independent Component Analysis (ICA). The basic principle underlining ICA is the determination of a linear representation of non-Gaussian data so that the components are considered statistically independent. With such representation, it would be easy and more computationally efficient to develop direct variograms for the components. The process is presented in two stages. The first stage involves the ICA decomposition. The second stage involves sequential Gaussian simulation of the generated components (which are derived from the first stage). This technique was applied for spatially correlated extractable cations such as magnesium (Mg) and iron (Fe) in a Canadian watershed. This paper has a strong application in stochastic quantification of uncertainties of soil attributes in soil remediation and soil rehabilitation.

  6. Controls of Soil Spatial Variability in a Dry Tropical Forest.

    PubMed

    Pulla, Sandeep; Riotte, Jean; Suresh, H S; Dattaraja, H S; Sukumar, Raman

    2016-01-01

    We examined the roles of lithology, topography, vegetation and fire in generating local-scale (<1 km2) soil spatial variability in a seasonally dry tropical forest (SDTF) in southern India. For this, we mapped soil (available nutrients, Al, total C, pH, moisture and texture in the top 10 cm), rock outcrops, topography, all native woody plants ≥1 cm diameter at breast height (DBH), and spatial variation in fire frequency (times burnt during the 17 years preceding soil sampling) in a permanent 50-ha plot. Unlike classic catenas, lower elevation soils had lesser moisture, plant-available Ca, Cu, Mn, Mg, Zn, B, clay and total C. The distribution of plant-available Ca, Cu, Mn and Mg appeared to largely be determined by the whole-rock chemical composition differences between amphibolites and hornblende-biotite gneisses. Amphibolites were associated with summit positions, while gneisses dominated lower elevations, an observation that concurs with other studies in the region which suggest that hillslope-scale topography has been shaped by differential weathering of lithologies. Neither NO3(-)-N nor NH4(+)-N was explained by the basal area of trees belonging to Fabaceae, a family associated with N-fixing species, and no long-term effects of fire on soil parameters were detected. Local-scale lithological variation is an important first-order control over soil variability at the hillslope scale in this SDTF, by both direct influence on nutrient stocks and indirect influence via control of local relief.

  7. Linking Spatial and Temporal Patterns of Soil Moisture with Upland Soil Iron Reduction

    NASA Astrophysics Data System (ADS)

    Hodges, C. A.; Markewitz, D.; Thompson, A.

    2015-12-01

    Iron minerals play important roles in governing soil nutrient availability and carbon dynamics. Periods of intermittent anoxia (low-oxygen) in upland soils can drive microbial reduction and dissolution of iron minerals. However, quantifying ecosystem-scale iron reduction in upland soils is challenging. The key condition necessary for soil iron reduction is water saturation of soil micropores, even if the entire soil profile is not flooded. We assessed soil moisture and texture across three first-order watersheds at the Calhoun Critical Zone Observatory in South Carolina, USA over one year using electromagnetic induction (EMI). From these point measurements, we have created monthly maps of interpolated soil moisture. From the EMI data, we found that locations that remain relatively wet or dry throughout the year are not related to hill-slope position but to differences in soil texture along a catena. Across a gradient of soil moisture and texture (based on soil conductivity from the EMI probe) we installed passive redox sensors and conducted in situ iron reduction experiments. This data will be presented and the relationships between iron reduction, the spatial distribution of soil moisture/clay content, and the significance of these data with respect to soil carbon cycling will be discussed.

  8. Green manure addition to soil increases grain zinc concentration in bread wheat.

    PubMed

    Aghili, Forough; Gamper, Hannes A; Eikenberg, Jost; Khoshgoftarmanesh, Amir H; Afyuni, Majid; Schulin, Rainer; Jansa, Jan; Frossard, Emmanuel

    2014-01-01

    Zinc (Zn) deficiency is a major problem for many people living on wheat-based diets. Here, we explored whether addition of green manure of red clover and sunflower to a calcareous soil or inoculating a non-indigenous arbuscular mycorrhizal fungal (AMF) strain may increase grain Zn concentration in bread wheat. For this purpose we performed a multifactorial pot experiment, in which the effects of two green manures (red clover, sunflower), ZnSO4 application, soil γ-irradiation (elimination of naturally occurring AMF), and AMF inoculation were tested. Both green manures were labeled with 65Zn radiotracer to record the Zn recoveries in the aboveground plant biomass. Application of ZnSO4 fertilizer increased grain Zn concentration from 20 to 39 mg Zn kg-1 and sole addition of green manure of sunflower to soil raised grain Zn concentration to 31 mg Zn kg-1. Adding the two together to soil increased grain Zn concentration even further to 54 mg Zn kg-1. Mixing green manure of sunflower to soil mobilized additional 48 µg Zn (kg soil)-1 for transfer to the aboveground plant biomass, compared to the total of 132 µg Zn (kg soil)-1 taken up from plain soil when neither green manure nor ZnSO4 were applied. Green manure amendments to soil also raised the DTPA-extractable Zn in soil. Inoculating a non-indigenous AMF did not increase plant Zn uptake. The study thus showed that organic matter amendments to soil can contribute to a better utilization of naturally stocked soil micronutrients, and thereby reduce any need for major external inputs.

  9. Green manure addition to soil increases grain zinc concentration in bread wheat.

    PubMed

    Aghili, Forough; Gamper, Hannes A; Eikenberg, Jost; Khoshgoftarmanesh, Amir H; Afyuni, Majid; Schulin, Rainer; Jansa, Jan; Frossard, Emmanuel

    2014-01-01

    Zinc (Zn) deficiency is a major problem for many people living on wheat-based diets. Here, we explored whether addition of green manure of red clover and sunflower to a calcareous soil or inoculating a non-indigenous arbuscular mycorrhizal fungal (AMF) strain may increase grain Zn concentration in bread wheat. For this purpose we performed a multifactorial pot experiment, in which the effects of two green manures (red clover, sunflower), ZnSO4 application, soil γ-irradiation (elimination of naturally occurring AMF), and AMF inoculation were tested. Both green manures were labeled with 65Zn radiotracer to record the Zn recoveries in the aboveground plant biomass. Application of ZnSO4 fertilizer increased grain Zn concentration from 20 to 39 mg Zn kg-1 and sole addition of green manure of sunflower to soil raised grain Zn concentration to 31 mg Zn kg-1. Adding the two together to soil increased grain Zn concentration even further to 54 mg Zn kg-1. Mixing green manure of sunflower to soil mobilized additional 48 µg Zn (kg soil)-1 for transfer to the aboveground plant biomass, compared to the total of 132 µg Zn (kg soil)-1 taken up from plain soil when neither green manure nor ZnSO4 were applied. Green manure amendments to soil also raised the DTPA-extractable Zn in soil. Inoculating a non-indigenous AMF did not increase plant Zn uptake. The study thus showed that organic matter amendments to soil can contribute to a better utilization of naturally stocked soil micronutrients, and thereby reduce any need for major external inputs. PMID:24999738

  10. Spatial variability of the dehydrogenase activity in forest soils

    NASA Astrophysics Data System (ADS)

    Błońska, Ewa; Lasota, Jarosław

    2014-05-01

    The aim of this study was to assess the spatial variability of the dehydrogenase activity (DH) in forest soils using geostatistics. We have studied variability soil dehydrogenase and their relationship with variability of some physic-chemical properties. Two study areas (A and B) were set up in southern Poland in the Zlotoryja Forest District. Study areas were covered by different types of vegetation (A- broadleaf forest with beech, ash and sycamore), B- coniferous forest with Norway spruce). The soils were classified as Dystric Cambisols (WRB 2006). The samples for laboratory testing were collected from 49 places on each areas. 15 cm of surface horizon of soil were taken (with previously removed litter). Dehydrogenase activity was marked with Lenhard's method according to the Casida procedure. Soil pH, nitrogen (N) and soil organic carbon (C) content (by LECO CNS 2000 carbon analyzer) was marked. C/N ratio was calculated. Particle size composition was determined using laser diffraction. Statistical analysis were performed using STATISTICA 10 software. Geostatistical analysis and mapping were done by application of GS 9+ (Gamma Design) and Surfer 11 (Golden Software). The activity of DH ranged between 5,02 and 71,20 mg TPP• kg-1 •24 h-1 on the A area and between 0,94 and 16,47 mg TPP• kg-1 •24 h-1. Differences in spatial variability of the analised features were noted. The variability of dehydrogenase activity on the A study area was described by an exponential model, whereas on the B study area the spatial correlation has not been noted. The relationship of dehydrogenase activity with the remaining parameters of soil was noted only in the case of A study area. The variability of organic carbon content on the A and B study areas were described by an exponential model. The variability of nitrogen content on both areas were described by an spherical model.

  11. Selective Inducible Nitric Oxide Synthase Inhibitor Reversed Zinc Chloride-Induced Spatial Memory Impairment via Increasing Cholinergic Marker Expression.

    PubMed

    Tabrizian, Kaveh; Azami, Kian; Belaran, Maryam; Soodi, Maliheh; Abdi, Khosrou; Fanoudi, Sahar; Sanati, Mehdi; Mottaghi Dastjerdi, Negar; Soltany Rezaee-Rad, Mohammad; Sharifzadeh, Mohammad

    2016-10-01

    Zinc, an essential micronutrient and biochemical element of the human body, plays structural, catalytic, and regulatory roles in numerous physiological functions. In the current study, the effects of a pretraining oral administration of zinc chloride (10, 25, and 50 mg/kg) for 14 consecutive days and post-training bilateral intra-hippocampal infusion of 1400W as a selective inducible nitric oxide synthase (iNOS) inhibitor (10, 50, and 100 μM/side), alone and in combination, on the spatial memory retention in Morris water maze (MWM) were investigated. Animals were trained for 4 days and tested 48 h after completion of training. Also, the molecular effects of these compounds on the expression of choline acetyltransferase (ChAT), as a cholinergic marker in the CA1 region of the hippocampus and medial septal area (MSA), were evaluated. Behavioral and molecular findings of this study showed that a 2-week oral administration of zinc chloride (50 mg/kg) impaired spatial memory retention in MWM and decreased ChAT expression. Immunohistochemical analysis of post-training bilateral intra-hippocampal infusion of 1400W revealed a significant increase in ChAT immunoreactivity. Furthermore, post-training bilateral intra-hippocampal infusion of 1400W into the CA1 region of the hippocampus reversed zinc chloride-induced spatial memory impairment in MWM and significantly increased ChAT expression in comparison with zinc chloride-treated animals. Taken together, these results emphasize the role of selective iNOS inhibitors in reversing zinc chloride-induced spatial memory deficits via modulation of cholinergic marker expression.

  12. Functional stability of microbial communities in contaminated soils near a zinc smelter (Budel, the Netherlands).

    PubMed

    Tobor-Kapłon, Maria A; Bloem, J; Römkens, P F A M; de Ruiter, P C

    2006-03-01

    Environmental pollution causes adverse effects on many levels of ecosystem organization; it might affect the use efficiency of available resources which will make the system more sensitive to subsequent stress. Alternatively the development of community tolerance may make the system more resistant to additional stresses. In this study we investigate the functional stability, measured in the terms of resistance and resilience, of microbial populations inhabiting contaminated soils near a zinc smelter. With functional stability we mean that we look at processes rather than at population dynamics. We measure changes in respiration and bacterial growth rate in response to addition of stress (lead, salt) or disturbance (heat). We used soils that differ in the level of pollution with zinc and cadmium originating from an adjacent smelter. Our results showed, with regard to respiration, that the most polluted soils have the lowest stability to salt (stress) and heat (disturbance). This confirms the hypothesis that more stressed systems have less energy to cope with additional stress or disturbance. However, bacterial growth rates were affected in a different way than respiration. There was no difference between the soils in resistance and resilience to addition of lead. In case of salt treatment, the least polluted soils showed highest stability. In contrast, the least polluted soils were the least stable to increased temperature, which supports the hypothesis that more stressed soils are more stable to additional stress/disturbance due to properties they gained when exposed to the first stress (pollution by the smelter). Thus, the responses of microbial processes to stress, their nature and size, depend on the kinds of stress factors, especially whether a subsequent stress is similar to the first stress, in terms of the mechanism with which the organisms deal with the stress.

  13. Integrated micro-biochemical approach for phytoremediation of cadmium and zinc contaminated soils.

    PubMed

    Mani, Dinesh; Kumar, Chitranjan; Patel, Niraj Kumar

    2015-01-01

    The integrated potential of oilcake manure (OM), elemental sulphur (S(0)), Glomus fasciculatum and Pseudomonas putida by growing Helianthus annuus L for phytoremediation of cadmium and zinc contaminated soils was investigated under pot experiment. The integrated treatment (2.5 g kg(-1) OM, 0.8 g kg(-1) S(0) and co-inoculation with G. fasciculatum and P. putida promoted the dry biomass of the plant. The treatment was feasible for enhanced cadmium accumulation up to 6.56 and 5.25 mg kg(-1) and zinc accumulation up to 45.46 and 32.56 mg kg(-1) in root and shoot, respectively, which caused maximum remediation efficiency (0.73 percent and 0.25 percent) and bioaccumulation factor (2.39 and 0.83) for Cd and Zn, respectively showing feasible uptake (in mg kg(-1) dry biomass) of Cd (5.55) and Zn (35.51) at the contaminated site. Thus, authors conclude to integrate oilcake manure, S(0) and microbial co-inoculation for enhanced clean-up of cadmium and zinc-contaminated soils. PMID:25450919

  14. Effect of the physicochemical parameters of soils on the biological availability of natural and radioactive zinc

    NASA Astrophysics Data System (ADS)

    Anisimov, V. S.; Kochetkov, I. V.; Dikarev, D. V.; Anisimova, L. N.; Korneev, Yu. N.; Frigidova, L. M.

    2016-08-01

    The relationship between the main physicochemical properties of soils and the accumulation of natural Zn and 65Zn radionuclide has been studied, and the capacity of soils to limit the mobility of the element in the soil-plant system has been assessed. The contribution of each of the selected soil state parameters to the accumulation of zinc by barley has been determined, and the soil state parameters have been ranked. It has been found that the largest contributions to the variation of the resulting parameter (65Zn accumulation coefficient, K a) are made by mobile Fe (25%), free carbonates (21%), and acid-soluble Zn (18%). The largest contributions to the Znac K a are made by free carbonates (13%) and mobile Fe (8%). The contributions of physical clay and organic carbon in soils and qualitative composition of humic substances are almost similar (4% for each). No differences in the inactivating capacity of different soils (soddy-podzolic soils, gray forest soils, and chernozems) for 65Zn are observed. This is related to the fact that the transfer of 65Zn to plants is statistically significantly controlled by the contents of free carbonates, mobile iron, and potentially plantavailable forms of stable natural Zn (carrier of 65Zn) rather than the quantitative and qualitative composition of organic matter and the degree of dispersion of mineral particles. The analysis of the Znac K a/65Zn K a ratios has shown that the share of plant-available Zn in the acid-soluble form of the metal (1 M HCl) is 0.61 on the average for the studied soils, and its share in the total Zn content in the soils is only 0.14.

  15. Temporal Changes in the Spatial Variability of Soil Nutrients

    SciTech Connect

    R. L. Hoskinson; J. R. Hess; R. S. Alessi

    1999-07-01

    This paper reports the temporal changes in the spatial variability of soil nutrient concentrations across a field during the growing season, over a four-year period. This study is part of the Site-Specific Technologies for Agriculture (SST4Ag) precision farming research project at the INEEL. Uniform fertilization did not produce a uniform increase in fertility. During the growing season, several of the nutrients and micronutrients showed increases in concentration although no additional fertilization had occurred. Potato plant uptake did not explain all of these changes. Some soil micronutrient concentrations increased above levels considered detrimental to potatoes, but the plants did not show the effects in reduced yield. All the nutrients measured changed between the last sampling in the fall and the first sampling the next spring prior to fertilization. The soil microbial community may play a major role in the temporal changes in the spatial variability of soil nutrient concentrations. These temporal changes suggest potential impact when determining fertilizer recommendations, and when evaluating the results of spatially varying fertilizer application.

  16. Spatial distribution of soil organic carbon stocks in France

    NASA Astrophysics Data System (ADS)

    Martin, M. P.; Wattenbach, M.; Smith, P.; Meersmans, J.; Jolivet, C.; Boulonne, L.; Arrouays, D.

    2011-05-01

    Soil organic carbon plays a major role in the global carbon budget, and can act as a source or a sink of atmospheric carbon, thereby possibly influencing the course of climate change. Changes in soil organic carbon (SOC) stocks are now taken into account in international negotiations regarding climate change. Consequently, developing sampling schemes and models for estimating the spatial distribution of SOC stocks is a priority. The French soil monitoring network has been established on a 16 km × 16 km grid and the first sampling campaign has recently been completed, providing around 2200 measurements of stocks of soil organic carbon, obtained through an in situ composite sampling, uniformly distributed over the French territory. We calibrated a boosted regression tree model on the observed stocks, modelling SOC stocks as a function of other variables such as climatic parameters, vegetation net primary productivity, soil properties and land use. The calibrated model was evaluated through cross-validation and eventually used for estimating SOC stocks for mainland France. Two other models were calibrated on forest and agricultural soils separately, in order to assess more precisely the influence of pedo-climatic variables on SOC for such soils. The boosted regression tree model showed good predictive ability, and enabled quantification of relationships between SOC stocks and pedo-climatic variables (plus their interactions) over the French territory. These relationships strongly depended on the land use, and more specifically, differed between forest soils and cultivated soil. The total estimate of SOC stocks in France was 3.260 ± 0.872 PgC for the first 30 cm. It was compared to another estimate, based on the previously published European soil organic carbon and bulk density maps, of 5.303 PgC. We demonstrate that the present estimate might better represent the actual SOC stock distributions of France, and consequently that the previously published approach at the

  17. Intelligent estimation of spatially distributed soil physical properties

    USGS Publications Warehouse

    Iwashita, F.; Friedel, M.J.; Ribeiro, G.F.; Fraser, Stephen J.

    2012-01-01

    Spatial analysis of soil samples is often times not possible when measurements are limited in number or clustered. To obviate potential problems, we propose a new approach based on the self-organizing map (SOM) technique. This approach exploits underlying nonlinear relation of the steady-state geomorphic concave-convex nature of hillslopes (from hilltop to bottom of the valley) to spatially limited soil textural data. The topographic features are extracted from Shuttle Radar Topographic Mission elevation data; whereas soil textural (clay, silt, and sand) and hydraulic data were collected in 29 spatially random locations (50 to 75. cm depth). In contrast to traditional principal component analysis, the SOM identifies relations among relief features, such as, slope, horizontal curvature and vertical curvature. Stochastic cross-validation indicates that the SOM is unbiased and provides a way to measure the magnitude of prediction uncertainty for all variables. The SOM cross-component plots of the soil texture reveals higher clay proportions at concave areas with convergent hydrological flux and lower proportions for convex areas with divergent flux. The sand ratio has an opposite pattern with higher values near the ridge and lower values near the valley. Silt has a trend similar to sand, although less pronounced. The relation between soil texture and concave-convex hillslope features reveals that subsurface weathering and transport is an important process that changed from loss-to-gain at the rectilinear hillslope point. These results illustrate that the SOM can be used to capture and predict nonlinear hillslope relations among relief, soil texture, and hydraulic conductivity data. ?? 2011 Elsevier B.V.

  18. In situ spatial patterns of soil bacterial populations, mapped at multiple scales, in an arable soil.

    PubMed

    Nunan, N; Wu, K; Young, I M; Crawford, J W; Ritz, K

    2002-11-01

    Very little is known about the spatial organization of soil microbes across scales that are relevant both to microbial function and to field-based processes. The spatial distributions of microbes and microbially mediated activity have a high intrinsic variability. This can present problems when trying to quantify the effects of disturbance, management practices, or climate change on soil microbial systems and attendant function. A spatial sampling regime was implemented in an arable field. Cores of undisturbed soil were sampled from a 3 x 3 x 0.9 m volume of soil (topsoil and subsoil) and a biological thin section, in which the in situ distribution of bacteria could be quantified, prepared from each core. Geostatistical analysis was used to quantify the nature of spatial structure from micrometers to meters and spatial point pattern analysis to test for deviations from complete spatial randomness of mapped bacteria. Spatial structure in the topsoil was only found at the microscale (micrometers), whereas evidence for nested scales of spatial structure was found in the subsoil (at the microscale, and at the centimeter to meter scale). Geostatistical ranges of spatial structure at the micro scale were greater in the topsoil and tended to decrease with depth in the subsoil. Evidence for spatial aggregation in bacteria was stronger in the topsoil and also decreased with depth in the subsoil, though extremely high degrees of aggregation were found at very short distances in the deep subsoil. The data suggest that factors that regulate the distribution of bacteria in the subsoil operate at two scales, in contrast to one scale in the topsoil, and that bacterial patches are larger and more prevalent in the topsoil.

  19. Immobilisation of lead and zinc in contaminated soil using compost derived from industrial eggshell.

    PubMed

    Soares, Micaela A R; Quina, Margarida J; Quinta-Ferreira, Rosa M

    2015-12-01

    This study aims to evaluate the capacity of a compost obtained by co-composting of industrial eggshell (CES) to immobilise lead (Pb) and zinc (Zn) in an acidic soil contaminated by mining activities. Mature compost without eggshell (CWES) and natural eggshell (ES) were also tested as soil amendments for comparison purposes. Three different application rates were used for each material, ensuring the same quantity in terms of neutralizing capacity. Incubation experiments were conducted under controlled conditions and CO2 emissions monitored for 94 days. The environmental availability of Pb and Zn in the amended soil was assessed and bioassays were performed at the end of the incubation period. When eggshells were present, the CES compost raised the soil pH to values higher than 6 and reduced the soil mobile fraction for both Pb and Zn, in more than 95%. Soil toxicity towards Vibrio fischeri was also suppressed and environmental risk decreased to "low level". However, the immobilisation in the acid insoluble soil component was significantly achieved only for Zn. In addition, regarding soil carbon dynamics the CO2-C emissions were enhanced, mainly in the case of the highest rate of amendment. Both first order-E and parallel first order models may adequately describe the kinetic data of CO2-C cumulative release. Without eggshells, the CWES compost revealed limited effect on heavy metals immobilisation, likely due to its small capacity to correct soil acidity, at lower application rates. Using solely eggshells, the ES waste had similar outcomes when compared with CES, but at the higher application rate, CO2 emissions were enhanced with the eggshell compost due to the contribution of biotic carbon present therein. Therefore, this study points out that CES is an effective liming material and may be used for in situ remediation of contaminated soil with Pb and Zn.

  20. Immobilisation of lead and zinc in contaminated soil using compost derived from industrial eggshell.

    PubMed

    Soares, Micaela A R; Quina, Margarida J; Quinta-Ferreira, Rosa M

    2015-12-01

    This study aims to evaluate the capacity of a compost obtained by co-composting of industrial eggshell (CES) to immobilise lead (Pb) and zinc (Zn) in an acidic soil contaminated by mining activities. Mature compost without eggshell (CWES) and natural eggshell (ES) were also tested as soil amendments for comparison purposes. Three different application rates were used for each material, ensuring the same quantity in terms of neutralizing capacity. Incubation experiments were conducted under controlled conditions and CO2 emissions monitored for 94 days. The environmental availability of Pb and Zn in the amended soil was assessed and bioassays were performed at the end of the incubation period. When eggshells were present, the CES compost raised the soil pH to values higher than 6 and reduced the soil mobile fraction for both Pb and Zn, in more than 95%. Soil toxicity towards Vibrio fischeri was also suppressed and environmental risk decreased to "low level". However, the immobilisation in the acid insoluble soil component was significantly achieved only for Zn. In addition, regarding soil carbon dynamics the CO2-C emissions were enhanced, mainly in the case of the highest rate of amendment. Both first order-E and parallel first order models may adequately describe the kinetic data of CO2-C cumulative release. Without eggshells, the CWES compost revealed limited effect on heavy metals immobilisation, likely due to its small capacity to correct soil acidity, at lower application rates. Using solely eggshells, the ES waste had similar outcomes when compared with CES, but at the higher application rate, CO2 emissions were enhanced with the eggshell compost due to the contribution of biotic carbon present therein. Therefore, this study points out that CES is an effective liming material and may be used for in situ remediation of contaminated soil with Pb and Zn. PMID:26363261

  1. Natural Genetic Variation of Seed Micronutrients of Arabidopsis thaliana Grown in Zinc-Deficient and Zinc-Amended Soil

    PubMed Central

    Chen, Xiaochao; Yuan, Lixing; Ludewig, Uwe

    2016-01-01

    The quality of edible seeds for human and animal nutrition is crucially dependent on high zinc (Zn) and iron (Fe) seed concentrations. The micronutrient bioavailability is strongly reduced by seed phytate that forms complexes with seed cations. Superior genotypes with increased seed Zn concentrations had been identified, but low micronutrient seed levels often prevail when the plants are grown in Zn-deficient soils, which are globally widespread and correlate with human Zn-deficiency. Here, seed Zn concentrations of Arabidopsis accessions grown in Zn-deficient and Zn-amended conditions were measured together with seed Fe and manganese (Mn), in a panel of 108 accessions. By applying genome-wide association, de novo candidate genes potentially involved in the seed micronutrient accumulation were identified. However, a candidate inositol 1,3,4-trisphosphate 5/6-kinase 3 gene (ITPK3), located close to a significant nucleotide polymorphism associated with relative Zn seed concentrations, was dispensable for seed micronutrients accumulation in Col-0. Loss of this gene in itpk3-1 did neither affect phytate seed levels, nor seed Zn, Fe, and Mn. It is concluded that large natural variance of micronutrient seed levels is identified in the population and several accessions maintain high seed Zn despite growth in Zn-deficient conditions. PMID:27507976

  2. Natural Genetic Variation of Seed Micronutrients of Arabidopsis thaliana Grown in Zinc-Deficient and Zinc-Amended Soil.

    PubMed

    Chen, Xiaochao; Yuan, Lixing; Ludewig, Uwe

    2016-01-01

    The quality of edible seeds for human and animal nutrition is crucially dependent on high zinc (Zn) and iron (Fe) seed concentrations. The micronutrient bioavailability is strongly reduced by seed phytate that forms complexes with seed cations. Superior genotypes with increased seed Zn concentrations had been identified, but low micronutrient seed levels often prevail when the plants are grown in Zn-deficient soils, which are globally widespread and correlate with human Zn-deficiency. Here, seed Zn concentrations of Arabidopsis accessions grown in Zn-deficient and Zn-amended conditions were measured together with seed Fe and manganese (Mn), in a panel of 108 accessions. By applying genome-wide association, de novo candidate genes potentially involved in the seed micronutrient accumulation were identified. However, a candidate inositol 1,3,4-trisphosphate 5/6-kinase 3 gene (ITPK3), located close to a significant nucleotide polymorphism associated with relative Zn seed concentrations, was dispensable for seed micronutrients accumulation in Col-0. Loss of this gene in itpk3-1 did neither affect phytate seed levels, nor seed Zn, Fe, and Mn. It is concluded that large natural variance of micronutrient seed levels is identified in the population and several accessions maintain high seed Zn despite growth in Zn-deficient conditions. PMID:27507976

  3. Seasonal and spatial patterns of metals at a restored copper mine site. I. Stream copper and zinc.

    PubMed

    Bambic, Dustin G; Alpers, Charles N; Green, Peter G; Fanelli, Eileen; Silk, Wendy K

    2006-12-01

    Seasonal and spatial variations in metal concentrations and pH were found in a stream at a restored copper mine site located near a massive sulfide deposit in the Foothill copper-zinc belt of the Sierra Nevada, California. At the mouth of the stream, copper concentrations increased and pH decreased with increased streamflow after the onset of winter rain and, unexpectedly, reached extreme values 1 or 2 months after peaks in the seasonal hydrographs. In contrast, aqueous zinc and sulfate concentrations were highest during low-flow periods. Spatial variation was assessed in 400 m of reach encompassing an acidic, metal-laden seep. At this seep, pH remained low (2-3) throughout the year, and copper concentrations were highest. In contrast, the zinc concentrations increased with downstream distance. These spatial patterns were caused by immobilization of copper by hydrous ferric oxides in benthic sediments, coupled with increasing downstream supply of zinc from groundwater seepage. PMID:16678951

  4. Spatial Pattern of Biological Soil Crust with Fractal Geometry

    NASA Astrophysics Data System (ADS)

    Ospina, Abelardo; Florentino, Adriana; Tarquis, Ana M.

    2015-04-01

    Soil surface characteristics are subjected to changes driven by several interactions between water, air, biotic and abiotic components. One of the examples of such interactions is provided through biological soil crusts (BSC) in arid and semi-arid environments. BSC are communities composed of cyanobacteria, fungi, mosses, lichens, algae and liverworts covering the soil surface and play an important role in ecosystem functioning. The characteristics and formation of these BSC influence the soil hydrological balance, control the mass of eroded sediment, increase stability of soil surface, and influence plant productivity through the modification of nitrogen and carbon cycle. This study focus on characterize the spatial arrangements of the BSC based on image analysis and fractal concepts. To this end, RGB images of different types of biological soil crust where taken, each image corresponding to an area of 3.6 cm2 with a resolution of 1024x1024 pixels. For each image and channel, mass dimension and entropy were calculated. Preliminary results indicate that fractal methods are useful to describe changes associated to different types of BSC. Further research is necessary to apply these methodologies to several situations.

  5. Development of a simulated earthworm gut for determining bioaccessible arsenic, copper, and zinc from soil.

    PubMed

    Ma, Wai K; Smith, Ben A; Stephenson, Gladys L; Siciliano, Steven D

    2009-07-01

    Soil physicochemical characteristics and contamination levels alter the bioavailability of metals to terrestrial invertebrates. Current laboratory-derived benchmark concentrations used to estimate risk do not take into account site-specific conditions, such as contaminant sequestration, and site-specific risk assessment requires a battery of time-consuming and costly toxicity tests. The development of an in vitro simulator for earthworm bioaccessibility would significantly shorten analytical time and enable site managers to focus on areas of greatest concern. The simulated earthworm gut (SEG) was developed to measure the bioaccessibility of metals in soil to earthworms by mimicking the gastrointestinal fluid composition of earthworms. Three formulations of the SEG (enzymes, microbial culture, enzymes and microbial culture) were developed and used to digest field soils from a former industrial site with varying physicochemical characteristics and contamination levels. Formulations containing enzymes released between two to 10 times more arsenic, copper, and zinc from contaminated soils compared with control and 0.01 M CaCl2 extractions. Metal concentrations in extracts from SEG formulation with microbial culture alone were not different from values for chemical extractions. The mechanism for greater bioaccessible metal concentrations from enzyme-treated soils is uncertain, but it is postulated that enzymatic digestion of soil organic matter might release sequestered metal. The relevance of these SEG results will need validation through further comparison and correlation with bioaccumulation tests, alternative chemical extraction tests, and a battery of chronic toxicity tests with invertebrates and plants.

  6. Uptake of cadmium, zinc, lead, and copper by earthworms near a zinc-smelting complex: influence of soil pH and organic matter

    SciTech Connect

    Ma, W.; Edelman, T.; van Beersum, I.; Jans, T.

    1983-04-01

    Soil samples were taken from 31 sites near Eindhoven, The Netherlands, mainly along transects of 1 to 15 km from the nearest zinc smelter. Earthworms (Lumbricus rubellus) were taken from the upper 20 cm soil layer and analyzed from accumulation of Cd, Zn, Pb and Cu by atomic absorption spectrophotometry. Cd, Zn, and Pb appeared to be more strongly accumulated by L. rubellus when present in soil with a low pH value. Cu was the only exception in this regard; its uptake by L. rubellus was not significantly influenced by soil pH. The organic matter content of the soil played a significant role only in the worm uptake of Pb. Soil Pb content, soil pH, and soil organic matter content together accounted for almost 70% of the variance in worm Pb content. The results indicate that L. rubellus accumulates Pb more strongly in soil with a low pH and low organic matter content than in soil with higher values of these parameters. The demonstrated influence of pH and organic matter content on element concentration in earthworms emphasizes the importance of soil factors in governing the entrance of toxic metal elements into the food web. (JMT)

  7. Spatial and temporal variability of soil temperature, moisture and surface soil properties

    NASA Technical Reports Server (NTRS)

    Hajek, B. F.; Dane, J. H.

    1993-01-01

    The overall objectives of this research were to: (l) Relate in-situ measured soil-water content and temperature profiles to remotely sensed surface soil-water and temperature conditions; to model simultaneous heat and water movement for spatially and temporally changing soil conditions; (2) Determine the spatial and temporal variability of surface soil properties affecting emissivity, reflectance, and material and energy flux across the soil surface. This will include physical, chemical, and mineralogical characteristics of primary soil components and aggregate systems; and (3) Develop surface soil classes of naturally occurring and distributed soil property assemblages and group classes to be tested with respect to water content, emissivity and reflectivity. This document is a report of studies conducted during the period funded by NASA grants. The project was designed to be conducted over a five year period. Since funding was discontinued after three years, some of the research started was not completed. Additional publications are planned whenever funding can be obtained to finalize data analysis for both the arid and humid locations.

  8. [Fractal theory and its application in the analysis of soil spatial variability: a review].

    PubMed

    Zhang, Fa-Sheng; Liu, Zuo-Xin

    2011-05-01

    Soil has spatial variability in its attributes. The analysis of soil spatial variability is of significance for soil management. This paper summarized the fractal theory and its application in spatial analysis of soil variability, with the focus on the utilization of moment method in calculating the fractal dimension of soil attributes, the multi-fractal analysis of soil spatial variability, and the scaling up of soil attributes based on multi-fractal parameters. The studies on the application of fractal theory and multi-fractal method in the analysis of soil spatial variability were also reviewed. Fractal theory could be an important tool in quantifying the spatial variability and scaling up of soil attributes.

  9. Elevated lead and zinc contents in remote alpine soils of the Swiss National Park.

    PubMed

    Nowack, B; Obrecht, J M; Schluep, M; Schulin, R; Hansmann, W; Köppel, V

    2001-01-01

    Weathering of bedrock and pedogenic processes can result in elevated heavy metal concentrations in the soil. Small-scale variations in bedrock composition can therefore cause local variations in the metal content of the soil. Such a case was found in the remote alpine area of the Swiss National Park. Soil profiles were sampled at an altitude of about 2,400 m, representing soils developed above different bedrocks. The concentration of lead in the profiles was found to be strongly dependent on the metal content in the bedrock underlying the soil and was strongly enriched in the top 10 cm. The dolomitic bedrock in the study area contains elevated lead concentrations compared with other dolomites. Dissolution of dolomite and accumulation of weathering residues during soil formation resulted in high lead concentrations throughout the soil profile. The enrichment of lead in the topsoil, however, is largely attributed to atmospheric input. The isotopic signature of the lead clearly indicates that it is mainly of natural origin and that atmospheric deposition of anthropogenic lead contributed to about 20 to 40% to the lead concentration in the topsoil on the bedrock with elevated lead concentrations. In the soils on bedrock with normal lead concentrations, the anthropogenic contribution is estimated to be about 75%. Also, zinc was very strongly enriched in the topsoil. This enrichment was closely correlated with the organic matter distribution in the profiles, suggesting that recycling through plant uptake and litter deposition was a dominant process in the long-term retention of this metal in the soil.

  10. Subgrid spatial variability of soil hydraulic functions for hydrological modelling

    NASA Astrophysics Data System (ADS)

    Kreye, Phillip; Meon, Günter

    2016-07-01

    State-of-the-art hydrological applications require a process-based, spatially distributed hydrological model. Runoff characteristics are demanded to be well reproduced by the model. Despite that, the model should be able to describe the processes at a subcatchment scale in a physically credible way. The objective of this study is to present a robust procedure to generate various sets of parameterisations of soil hydraulic functions for the description of soil heterogeneity on a subgrid scale. Relations between Rosetta-generated values of saturated hydraulic conductivity (Ks) and van Genuchten's parameters of soil hydraulic functions were statistically analysed. An universal function that is valid for the complete bandwidth of Ks values could not be found. After concentrating on natural texture classes, strong correlations were identified for all parameters. The obtained regression results were used to parameterise sets of hydraulic functions for each soil class. The methodology presented in this study is applicable on a wide range of spatial scales and does not need input data from field studies. The developments were implemented into a hydrological modelling system.

  11. Development of an Objective High Spatial Resolution Soil Moisture Index

    NASA Astrophysics Data System (ADS)

    Zavodsky, B.; Case, J.; White, K.; Bell, J. R.

    2015-12-01

    Drought detection, analysis, and mitigation has become a key challenge for a diverse set of decision makers, including but not limited to operational weather forecasters, climatologists, agricultural interests, and water resource management. One tool that is heavily used is the United States Drought Monitor (USDM), which is derived from a complex blend of objective data and subjective analysis on a state-by-state basis using a variety of modeled and observed precipitation, soil moisture, hydrologic, and vegetation and crop health data. The NASA Short-term Prediction Research and Transition (SPoRT) Center currently runs a real-time configuration of the Noah land surface model (LSM) within the NASA Land Information System (LIS) framework. The LIS-Noah is run at 3-km resolution for local numerical weather prediction (NWP) and situational awareness applications at select NOAA/National Weather Service (NWS) forecast offices over the Continental U.S. (CONUS). To enhance the practicality of the LIS-Noah output for drought monitoring and assessing flood potential, a 30+-year soil moisture climatology has been developed in an attempt to place near real-time soil moisture values in historical context at county- and/or watershed-scale resolutions. This LIS-Noah soil moisture climatology and accompanying anomalies is intended to complement the current suite of operational products, such as the North American Land Data Assimilation System phase 2 (NLDAS-2), which are generated on a coarser-resolution grid that may not capture localized, yet important soil moisture features. Daily soil moisture histograms are used to identify the real-time soil moisture percentiles at each grid point according to the county or watershed in which the grid point resides. Spatial plots are then produced that map the percentiles as proxies to the different USDM categories. This presentation will highlight recent developments of this gridded, objective soil moisture index, comparison to subjective

  12. Controls of Soil Spatial Variability in a Dry Tropical Forest

    PubMed Central

    Pulla, Sandeep; Riotte, Jean; Suresh, H. S.; Dattaraja, H. S.; Sukumar, Raman

    2016-01-01

    We examined the roles of lithology, topography, vegetation and fire in generating local-scale (<1 km2) soil spatial variability in a seasonally dry tropical forest (SDTF) in southern India. For this, we mapped soil (available nutrients, Al, total C, pH, moisture and texture in the top 10cm), rock outcrops, topography, all native woody plants ≥1 cm diameter at breast height (DBH), and spatial variation in fire frequency (times burnt during the 17 years preceding soil sampling) in a permanent 50-ha plot. Unlike classic catenas, lower elevation soils had lesser moisture, plant-available Ca, Cu, Mn, Mg, Zn, B, clay and total C. The distribution of plant-available Ca, Cu, Mn and Mg appeared to largely be determined by the whole-rock chemical composition differences between amphibolites and hornblende-biotite gneisses. Amphibolites were associated with summit positions, while gneisses dominated lower elevations, an observation that concurs with other studies in the region which suggest that hillslope-scale topography has been shaped by differential weathering of lithologies. Neither NO3−-N nor NH4+-N was explained by the basal area of trees belonging to Fabaceae, a family associated with N-fixing species, and no long-term effects of fire on soil parameters were detected. Local-scale lithological variation is an important first-order control over soil variability at the hillslope scale in this SDTF, by both direct influence on nutrient stocks and indirect influence via control of local relief. PMID:27100088

  13. Spatial Variations of Soil Microbial Activities in Saline Groundwater-Irrigated Soil Ecosystem

    NASA Astrophysics Data System (ADS)

    Chen, Li-Juan; Feng, Qi; Li, Chang-Sheng; Song, You-Xi; Liu, Wei; Si, Jian-Hua; Zhang, Bao-Gui

    2016-05-01

    Spatial variations of soil microbial activities and its relationship with environmental factors are very important for estimating regional soil ecosystem function. Based on field samplings in a typical saline groundwater-irrigated region, spatial variations of soil microbial metabolic activities were investigated. Combined with groundwater quality analysis, the relationship between microbial activities and water salinity was also studied. The results demonstrated that moderate spatial heterogeneity of soil microbial activities presented under the total dissolved solids (TDS) of groundwater ranging from 0.23 to 12.24 g L-1. Groundwater salinity and microbial activities had almost opposite distribution characteristics: slight saline water was mainly distributed in west Baqu and south Quanshan, while severe saline and briny water were dominant in east Baqu and west Huqu; however, total AWCD was higher in the east-center and southwest of Baqu and east Huqu, while it was lower in east Baqu and northwest Huqu. The results of correlation analyses demonstrated that high-salinity groundwater irrigation had significantly adverse effects on soil microbial activities. Major ions Ca2+, Mg2+, Cl_, and SO4 2- in groundwater decisively influenced the results. Three carbon sources, carbohydrates, amines, and phenols, which had minor utilization rates in all irrigation districts, were extremely significantly affected by high-salinity groundwater irrigation. The results presented here offer an approach for diagnosing regional soil ecosystem function changes under saline water irrigation.

  14. Promoting effect of foliage sprayed zinc sulfate on accumulation of sugar and phenolics in berries of Vitis vinifera cv. Merlot growing on zinc deficient soil.

    PubMed

    Song, Chang-Zheng; Liu, Mei-Ying; Meng, Jiang-Fei; Chi, Ming; Xi, Zhu-Mei; Zhang, Zhen-Wen

    2015-02-02

    The effect of foliage sprayed zinc sulfate on berry development of Vitis vinifera cv. Merlot growing on arid zone Zn-deficient soils was investigated over two consecutive seasons, 2013 and 2014. Initial zinc concentration in soil and vines, photosynthesis at three berry developmental stages, berry weight, content of total soluble solids, titratable acidity, phenolics and expression of phenolics biosynthetic pathway genes throughout the stages were measured. Foliage sprayed zinc sulfate showed promoting effects on photosynthesis and berry development of vines and the promotion mainly occurred from veraison to maturation. Zn treatments enhanced the accumulation of total soluble solids, total phenols, flavonoids, flavanols, tannins and anthocyanins in berry skin, decreasing the concentration of titratable acidity. Furthermore, foliage sprayed zinc sulfate could significantly influence the expression of phenolics biosynthetic pathway genes throughout berry development, and the results of expression analysis supported the promotion of Zn treatments on phenolics accumulation. This research is the first comprehensive and detailed study about the effect of foliage sprayed Zn fertilizer on grape berry development, phenolics accumulation and gene expression in berry skin, providing a basis for improving the quality of grape and wine in Zn-deficient areas.

  15. Promoting effect of foliage sprayed zinc sulfate on accumulation of sugar and phenolics in berries of Vitis vinifera cv. Merlot growing on zinc deficient soil.

    PubMed

    Song, Chang-Zheng; Liu, Mei-Ying; Meng, Jiang-Fei; Chi, Ming; Xi, Zhu-Mei; Zhang, Zhen-Wen

    2015-01-01

    The effect of foliage sprayed zinc sulfate on berry development of Vitis vinifera cv. Merlot growing on arid zone Zn-deficient soils was investigated over two consecutive seasons, 2013 and 2014. Initial zinc concentration in soil and vines, photosynthesis at three berry developmental stages, berry weight, content of total soluble solids, titratable acidity, phenolics and expression of phenolics biosynthetic pathway genes throughout the stages were measured. Foliage sprayed zinc sulfate showed promoting effects on photosynthesis and berry development of vines and the promotion mainly occurred from veraison to maturation. Zn treatments enhanced the accumulation of total soluble solids, total phenols, flavonoids, flavanols, tannins and anthocyanins in berry skin, decreasing the concentration of titratable acidity. Furthermore, foliage sprayed zinc sulfate could significantly influence the expression of phenolics biosynthetic pathway genes throughout berry development, and the results of expression analysis supported the promotion of Zn treatments on phenolics accumulation. This research is the first comprehensive and detailed study about the effect of foliage sprayed Zn fertilizer on grape berry development, phenolics accumulation and gene expression in berry skin, providing a basis for improving the quality of grape and wine in Zn-deficient areas. PMID:25648596

  16. Spatial Variation in Anaerobic Microbial Communities in Wetland Margin Soils

    NASA Astrophysics Data System (ADS)

    Rich, H.; Kannenberg, S.; Ludwig, S.; Nelson, L. C.; Spawn, S.; Porterfield, J.; Schade, J. D.

    2012-12-01

    Climate change is predicted to increase the severity and frequency of precipitation and drought events, which may result in substantial temporal variation in the size of wetlands. Wetlands are the world's largest natural emitter of methane, a greenhouse gas that is 20 times more effective at trapping heat than carbon dioxide. Changes in the dynamics of wetland size may lead to changes in the extent and timing of inundation of soils in ephemeral margins, which is likely to influence microbes that rely on anoxic conditions. The impact on process rates may depend on the structure of the community of microbes present in the soil, however, the link between microbial structure and patterns in process rates in soils is not well understood. Our goal was to use molecular techniques to compare microorganism communities in two wetlands that differ in the extent and duration of inundation of marginal soils to assess how these communities may change with changes in climate, and the potential consequences for methane production. This will allow us to examine how community composition changes with soil conditions such as moisture content, frequency of drought and abundance of available carbon. The main focus of this project was to determine the presence or absence of acetoclastic (AC) and hydrogenotrophic (HT) methanogens. AC methanogens use acetate as their main substrate, while HT methanogens use Hydrogen and Carbon dioxide. The relative proportion of these pathways depends on soil conditions, such as competition with other anaerobic microbes and the amount of labile carbon, and spatial patterns in the presence of each can give insight into the soil conditions of a wetland site. We sampled soil from three different wetland ponds of varying permanence in the St Olaf Natural Lands in Northfield, Minnesota, and extracted DNA from these soil samples with a MoBio PowerSoil DNA Isolation Kit. With PCR and seven different primer sets, we tested the extracted DNA for the presence of

  17. An evaluation of the spatial resolution of soil moisture information

    NASA Technical Reports Server (NTRS)

    Hardy, K. R.; Cohen, S. H.; Rogers, L. K.; Burke, H. H. K.; Leupold, R. C.; Smallwood, M. D.

    1981-01-01

    Rainfall-amount patterns in the central regions of the U.S. were assessed. The spatial scales of surface features and their corresponding microwave responses in the mid western U.S. were investigated. The usefulness for U.S. government agencies of soil moisture information at scales of 10 km and 1 km. was ascertained. From an investigation of 494 storms, it was found that the rainfall resulting from the passage of most types of storms produces patterns which can be resolved on a 10 km scale. The land features causing the greatest problem in the sensing of soil moisture over large agricultural areas with a radiometer are bodies of water. Over the mid-western portions of the U.S., water occupies less than 2% of the total area, the consequently, the water bodies will not have a significant impact on the mapping of soil moisture. Over most of the areas, measurements at a 10-km resolution would adequately define the distribution of soil moisture. Crop yield models and hydrological models would give improved results if soil moisture information at scales of 10 km was available.

  18. Does zinc in livestock wastewater reduce nitrous oxide (N2O) emissions from mangrove soils?

    PubMed

    Chen, Guang C; Tam, Nora F Y; Ye, Yong

    2014-11-15

    Zinc (Zn) affects nitrogen cycling but the effect of Zn in wastewater on the emission of nitrous oxide (N2O) from the soil has not been reported. This study compared N2O emissions from mangrove soil receiving livestock wastewater containing various Zn(2+) concentrations and evaluated how long the effects of Zn would last in these soil-wastewater microcosms. Significant increases in N2O flux were observed soon after the discharge of wastewater with a low Zn content. On the other hand, the flux was reduced significantly in the wastewater with high Zn levels but such inhibitory effect was not observed after tidal flushing. Continuous monitoring of the N2O fluxes also confirmed that the inhibitory effect of Zn was confined within a few hours and the fluxes recovered in 6-9 h after the wastewater was completely drained away. These results indicated that the inhibitory effect of Zn on N2O fluxes occurred immediately after wastewater discharge and disappeared gradually. In the surface soil, nitrate levels increased with the addition of wastewater but there was no significant accumulation of NH4(+)-N, irrespective of the Zn content in the wastewater. The study also showed that nitrification potential and immediate N2O emissions were inhibited by high Zn levels in the soil, but the total oxidation of ammonium to nitrate was not affected.

  19. Does zinc in livestock wastewater reduce nitrous oxide (N2O) emissions from mangrove soils?

    PubMed

    Chen, Guang C; Tam, Nora F Y; Ye, Yong

    2014-11-15

    Zinc (Zn) affects nitrogen cycling but the effect of Zn in wastewater on the emission of nitrous oxide (N2O) from the soil has not been reported. This study compared N2O emissions from mangrove soil receiving livestock wastewater containing various Zn(2+) concentrations and evaluated how long the effects of Zn would last in these soil-wastewater microcosms. Significant increases in N2O flux were observed soon after the discharge of wastewater with a low Zn content. On the other hand, the flux was reduced significantly in the wastewater with high Zn levels but such inhibitory effect was not observed after tidal flushing. Continuous monitoring of the N2O fluxes also confirmed that the inhibitory effect of Zn was confined within a few hours and the fluxes recovered in 6-9 h after the wastewater was completely drained away. These results indicated that the inhibitory effect of Zn on N2O fluxes occurred immediately after wastewater discharge and disappeared gradually. In the surface soil, nitrate levels increased with the addition of wastewater but there was no significant accumulation of NH4(+)-N, irrespective of the Zn content in the wastewater. The study also showed that nitrification potential and immediate N2O emissions were inhibited by high Zn levels in the soil, but the total oxidation of ammonium to nitrate was not affected. PMID:25171729

  20. Estimating Regional Changes in Soil Carbon with High Spatial Resolution

    SciTech Connect

    West, Tristram O.; Brandt, Craig C; Marland, Gregg; De La Torre Ugarte, Daniel G; Larson, James; Hellwinckel, Chad M; Wilson, Bradly; Tyler, Donald G; Nelson, Richard G

    2008-01-01

    To manage lands locally for carbon sequestration and for emissions reductions it is useful to have a system that can monitor and predict changes in soil carbon and greenhouse gas emissions with high spatial resolution. We are developing a carbon accounting framework that can estimate carbon dynamics and net emissions associated with changes in land management. One component of this framework integrates field measurements, inventory data, and remote sensing products to estimate changes in soil carbon and to estimate where these changes are likely to occur at a sub-county (30m x 30m) resolution. We applied this framework component to a mid-western region of the US that consists of 679 counties approximately centered around Iowa. We estimate the 1990 baseline soil carbon to a maximum depth of 3m for this region to be 4,117 Tg C. Cumulative soil carbon accumulation of 70.3 Tg C is estimated for this region between 1991-2000, of which 33.8 Tg C is due to changes in tillage intensity. Without accounting for soil carbon loss following changes to more intensive tillage practices, our estimate increases to 45.0 Tg C. This difference indicates that on-site permanence of soil carbon associated with a change to less intensive tillage practices is approximately 75% if no additional economic incentives are provided for soil carbon sequestration practices. This carbon accounting framework offers a method to integrate inventory and remote sensing data on an annual basis and to transparently account for alternating annual trends in land management and associated carbon stocks and fluxes.

  1. [Evaluation and source analysis of the mercury pollution in soils and vegetables around a large-scale zinc smelting plant].

    PubMed

    Liu, Fang; Wang, Shu-Xiao; Wu, Qing-Ru; Lin, Hai

    2013-02-01

    The farming soil and vegetable samples around a large-scale zinc smelter were collected for mercury content analyses, and the single pollution index method with relevant regulations was used to evaluate the pollution status of sampled soils and vegetables. The results indicated that the surface soil and vegetables were polluted with mercury to different extent. Of the soil samples, 78% exceeded the national standard. The mercury concentration in the most severely contaminated area was 29 times higher than the background concentration, reaching the severe pollution degree. The mercury concentration in all vegetable samples exceeded the standard of non-pollution vegetables. Mercury concentration, in the most severely polluted vegetables were 64.5 times of the standard, and averagely the mercury concentration in the vegetable samples was 25.4 times of the standard. For 85% of the vegetable samples, the mercury concentration, of leaves were significantly higher than that of roots, which implies that the mercury in leaves mainly came from the atmosphere. The mercury concentrations in vegetable roots were significantly correlated with that in soils, indicating the mercury in roots was mainly from soil. The mercury emissions from the zinc smelter have obvious impacts on the surrounding soils and vegetables. Key words:zinc smelting; mercury pollution; soil; vegetable; mercury content

  2. Spatial distribution of soil moisture in precision farming using integrated soil scanning and field telemetry data

    NASA Astrophysics Data System (ADS)

    Kalopesas, Charalampos; Galanis, George; Kalopesa, Eleni; Katsogiannos, Fotis; Kalafatis, Panagiotis; Bilas, George; Patakas, Aggelos; Zalidis, George

    2015-04-01

    Mapping the spatial variation of soil moisture content is a vital parameter for precision agriculture techniques. The aim of this study was to examine the correlation of soil moisture and conductivity (EC) data obtained through scanning techniques with field telemetry data and to spatially separate the field into discrete irrigation management zones. Using the Veris MSP3 model, geo-referenced data for electrical conductivity and organic matter preliminary maps were produced in a pilot kiwifruit field in Chrysoupoli, Kavala. Data from 15 stratified sampling points was used in order to produce the corresponding soil maps. Fusion of the Veris produced maps (OM, pH, ECa) resulted on the delineation of the field into three zones of specific management interest. An appropriate pedotransfer function was used in order to estimate a capacity soil indicator, the saturated volumetric water content (θs) for each zone, while the relationship between ECs and ECa was established for each zone. Validation of the uniformity of the three management zones was achieved by measuring specific electrical conductivity (ECs) along a transect in each zone and corresponding semivariograms for ECs within each zone. Near real-time data produced by a telemetric network consisting of soil moisture and electrical conductivity sensors, were used in order to integrate the temporal component of the specific management zones, enabling the calculation of time specific volumetric water contents on a 10 minute interval, an intensity soil indicator necessary to be incorporated to differentiate spatially the irrigation strategies for each zone. This study emphasizes the benefits yielded by fusing near real time telemetric data with soil scanning data and spatial interpolation techniques, enhancing the precision and validity of the desired results. Furthermore the use of telemetric data in combination with modern database management and geospatial software leads to timely produced operational results

  3. Soil factors controlling the toxicity of copper and zinc to microbial processes in Australian soils.

    PubMed

    Broos, Kris; Warne, Michael St J; Heemsbergen, Diane A; Stevens, Daryl; Barnes, Mary B; Correll, Raymond L; McLaughlin, Mike J

    2007-04-01

    Abstract-Two soil microbial processes, substrate-induced nitrification (SIN) and substrate-induced respiration (SIR), were measured in the topsoils of 12 Australian field trials that were amended separately with increasing concentrations of ZnSO4 or CuSO4. The median effect concentration (EC50) values for Zn and Cu based on total metal concentrations varied between 107 and 8,298 mg kg(-1) for Zn and 108 and 2,155 mg kg(-1) Cu among soils. The differences in both Zn and Cu toxicity across the 12 soils were not explained by either the soil solution metal concentrations or CaCl2-extractable metal concentrations, because the variation in the EC50 values was larger than those using total concentrations. Toxicity of Zn and Cu decreased with increasing soil pH for SIN. For Cu, also increasing cation exchange capacity (CEC) and percent clay decreased the toxicity towards SIN. In contrast to SIN, soil pH had no significant effect on toxicity values of SIR. Significant relationships were found between the EC50 values for SIR and background Zn and CEC for Zn, and percent clay and log CEC for Cu. Relationships such as those developed in this study will permit Australian environmental regulation to move from single-value national soil quality guidelines to soil-specific quality guidelines and permit soil-specific risk assessments to be undertaken.

  4. Influence of soil type on the mobility and bioavailability of chelated zinc.

    PubMed

    Alvarez, Jose M

    2007-05-01

    The objective of this study was to compare the distribution, mobility, and relative effectiveness of Zn from Zn-amino acids (Zn-AA) and Zn-DTPA-HEDTA-EDTA (Zn-CH) (DTPA, diethylenetriaminepentaacetate; HEDTA, N-2-hydroxyethyl-ethylenedinitrilotriacetate; and EDTA, ethylenedinitrilotetraacetate) sources by applying different Zn levels to weakly acidic and neutral soils in laboratory (incubation and soil column studies) and greenhouse conditions. The experiments were carried out for 60 days in incubation and column experiments and for 45 days in a greenhouse experiment. The zinc soil behavior was evaluated by DTPA-TEA and Mehlich-3 extractions and sequential speciation. The incubation experiment showed that the highest concentrations of available Zn in weakly acidic soil occurred with Zn-AA treatments, whereas in the neutral soil Zn-CH treatments produced the highest quantities of available Zn. The column experiment showed that in neutral soil, with slow to moderate permeability in the Ap and Bt horizons, only Zn-CH significantly increased the mobility of Zn through the column with respect to the control and the Zn-AA source: 31% of the Zn applied as synthetic chelate was leached from the column. The greenhouse experiment showed that, at different rates of Zn application, the Zn carriers increased Zn uptake by maize (Zea mays L.). The use of applied Zn by maize, or Zn utilization, was greatest when the Zn treatments were Zn-CH (3.3%) at 20 mg kg-1 and Zn-CH (4.9%) at 10 mg kg-1, in weakly acidic and neutral soils, respectively.

  5. Spatial variability of soil parameters - subsoils as heterogenic environments

    NASA Astrophysics Data System (ADS)

    Heinze, Stefanie; John, Stephan; Kirfel, Kristina; Mikutta, Robert; Niebuhr, Jana; Preusser, Sebastian; Marschner, Bernd

    2014-05-01

    Subsoils are known to store a high amount of organic carbon (40-60% of the total C-pool). 14C-dating detected that in subsoils organic matter (OM) age increased with increasing depth and reaches several 1000 years. The high age of subsoil OM might be caused by a complex structure, by limited access of OM for microbial decomposition or a limited input of fresh organic material. The latter, mostly reaches the subsoil through special pathways, like root channels, bioturbation processes or preferential flow pathways where dissolved organic carbon will be transported. The spatially concentrated input of OM supposed that the heterogeneity of physical, chemical, and biological soil parameters is higher in subsoils than in top soils. Within the DFG-FOR 1806 we investigated the heterogeneity of soil parameters in soil profiles (top and subsoil) of a podzolic Cambisol in a 95 years old beech forest in Lower Saxony, Germany. Three transects were established with a vertical and horizontal dimension of 2.00m and 3.15m, respectively. 64 soil samples were taken out of a grid in 10, 35, 60, 85, 110, 135, 160 and 185m depth with increasing horizontal distance to a main tree. To analyze the variability and relationship of soil properties in the soil profiles, analysis of soil physical (e.g. texture), chemical (e.g. organic C, dissolved organic C, total N, pH), and biological (e.g. enzyme activities, microbial biomass C) parameters were conducted within the research group. The results showed a very strong decline of organic C from 1.15% (10cm) to 0.12% (60cm). The differences of SOC were not pronounced with increasing distance to the main tree. Also total nitrogen decreased between 10 and 60cm strongly from 0.05 to 0.005%. The pH showed a slight increase between 10 and 35cm from 3.51 up to 4.27. For microbial biomass measures the same stratification was detected but the variance within biological parameters were higher in the subsoil than in the topsoil. Enzyme activities showed a

  6. Spatial variability of soil properties and soil erodibility in the Alqueva reservoir watershed

    NASA Astrophysics Data System (ADS)

    Ferreira, V.; Panagopoulos, T.; Andrade, R.; Guerrero, C.; Loures, L.

    2015-04-01

    The aim of this work is to investigate how the spatial variability of soil properties and soil erodibility (K factor) were affected by the changes in land use allowed by irrigation with water from a reservoir in a semiarid area. To this end, three areas representative of different land uses (agroforestry grassland, lucerne crop and olive orchard) were studied within a 900 ha farm. The interrelationships between variables were analyzed by multivariate techniques and extrapolated using geostatistics. The results confirmed differences between land uses for all properties analyzed, which was explained mainly by the existence of diverse management practices (tillage, fertilization and irrigation), vegetation cover and local soil characteristics. Soil organic matter, clay and nitrogen content decreased significantly, while the K factor increased with intensive cultivation. The HJ-Biplot methodology was used to represent the variation of soil erodibility properties grouped in land uses. Native grassland was the least correlated with the other land uses. The K factor demonstrated high correlation mainly with very fine sand and silt. The maps produced with geostatistics were crucial to understand the current spatial variability in the Alqueva region. Facing the intensification of land-use conversion, a sustainable management is needed to introduce protective measures to control soil erosion.

  7. Spatial variability of soil properties and soil erodibility in the Alqueva dam watershed, Portugal

    NASA Astrophysics Data System (ADS)

    Ferreira, V.; Panagopoulos, T.; Andrade, R.; Guerrero, C.; Loures, L.

    2015-01-01

    The aim of this work is to investigate how the spatial variability of soil properties and soil erodibility (K factor) were affected by the changes in land use allowed by irrigation with water from a reservoir in a semiarid area. To this, three areas representative of different land uses (agroforestry grassland, Lucerne crop and olive orchard) were studied within a 900 ha farm. The interrelationships between variables were analyzed by multivariate techniques and extrapolated using geostatistics. The results confirmed differences between land uses for all properties analyzed, which was explained mainly by the existence of diverse management practices (tillage, fertilization and irrigation), vegetation cover and local soil characteristics. Soil organic matter, clay and nitrogen content decreased significantly, while K factor increased with intensive cultivation. The HJ-biplot methodology was used to represent the variation of soil erodibility properties grouped in land uses. Native grassland was the least correlated with the other land uses. K factor demonstrated high correlation mainly with very fine sand and silt. The maps produced with geostatistics were crucial to understand the current spatial variability in the Alqueva region. Facing the intensification of land-use conversion, a sustainable management is needed to introduce protective measures to control soil erosion.

  8. Soil nutrients influence spatial distributions of tropical trees species

    USGS Publications Warehouse

    John, R.; Dalling, J.W.; Harms, K.E.; Yavitt, J.B.; Stallard, R.F.; Mirabello, M.; Hubbell, S.P.; Valencia, R.; Navarrete, H.; Vallejo, M.; Foster, R.B.

    2007-01-01

    The importance of niche vs. neutral assembly mechanisms in structuring tropical tree communities remains an important unsettled question in community ecology [Bell G (2005) Ecology 86:1757-1770]. There is ample evidence that species distributions are determined by soils and habitat factors at landscape (0.5 million individual trees of 1,400 species and 10 essential plant nutrients, we used Monte Carlo simulations of species distributions to test plant-soil associations against null expectations based on dispersal assembly. We found that the spatial distributions of 36-51% of tree species at these sites show strong associations to soil nutrient distributions. Neutral dispersal assembly cannot account for these plant-soil associations or the observed niche breadths of these species. These results indicate that belowground resource availability plays an important role in the assembly of tropical tree communities at local scales and provide the basis for future investigations on the mechanisms of resource competition among tropical tree species. ?? 2007 by The National Academy of Sciences of the USA.

  9. Assessing the Impact of Copper and Zinc Oxide Nanoparticles on Soil: A Field Study

    PubMed Central

    Collins, Daniel; Luxton, Todd; Kumar, Niraj; Shah, Shreya; Walker, Virginia K.; Shah, Vishal

    2012-01-01

    It is not known if the annual production of tonnes of industrial nanoparticles (NPs) has the potential to impact terrestrial microbial communities, which are so necessary for ecosystem functioning. Here, we have examined the consequences of adding zero valent copper and zinc oxide NPs to soil in pots that were then maintained under field conditions. The fate of these NPs, as well as changes in the microbial communities, was monitored over 162 days. Both NP types traveled through the soil matrix, albeit at differential rates, with Cu NPs retained in the soil matrix at a higher rate compared to ZnO NPs. Leaching of Cu and Zn ions from the parent NPs was also observed as a function of time. Analysis of microbial communities using culture-dependent and independent methods clearly indicated that Cu and ZnO NPs altered the microbial community structure. In particular, two orders of organisms found in rhizosphere, Flavobacteriales and Sphingomonadales, appeared to be particularly susceptible to the presence of NPs. Together, the migration of NPs through soil matrix and the ability of these potential pollutants to influence the composition of microbial community in this field study, cannot help but raise some environmental concerns. PMID:22905159

  10. National monitoring study in Denmark finds increased and critical levels of copper and zinc in arable soils fertilized with pig slurry.

    PubMed

    Jensen, John; Larsen, Martin Mørk; Bak, Jesper

    2016-07-01

    The increasing consumption of copper and zinc in modern farming is linked to their documented benefit as growth promoting agents and usefulness for controlling diarrhoea. Copper and zinc are inert and non-degradable in the slurry and the environment and thereby introducing new challenges and concern. Therefore, a follow-up to pervious national soil monitoring programs on heavy metals was initiated in 2014 with special focus on the historical trends in soil concentrations of copper and zinc in Danish arable soils. Hereby it is possible to analyse trends for a 28 year period. Data shows that: 1) Amendment of soils with pig slurry has led to a significant increase in soil concentrations of copper and zinc, especially in the latest monitoring period from 1998 to 2014; 2) Predicted no-effect concentrations for soil dwelling species published by the European Union is exceeded for zinc in 45% of all soil samples, with the highest proportion on sandy soils; 3) The current use of zinc and copper in pig production may lead to leaching of metals, especially zinc, from fields fertilized with pig slurry in concentrations that may pose a risk to aquatic species.

  11. [Factors influencing the spatial variability in soil respiration under different land use regimes].

    PubMed

    Chen, Shu-Tao; Liu, Qiao-Hui; Hu, Zheng-Hua; Liu, Yan; Ren, Jing-Quan; Xie, Wei

    2013-03-01

    In order to investigate the factors influencing the spatial variability in soil respiration under different land use regimes, field experiments were performed. Soil respiration and relevant environment, vegetation and soil factors were measured. The spatial variability in soil respiration and the relationship between soil respiration and these measured factors were investigated. Results indicated that land use regimes had significant effects on soil respiration. Soil respiration varied significantly (P < 0.001) among different land use regimes. Soil respiration rates ranged from 1.82 to 7.46 micromol x (m2 x s)(-1), with a difference of 5.62 micromol x (m2 x s)(-1) between the highest and lowest respiration rates. Soil organic carbon was a key factor controlling the spatial variability in soil respiration. In all, ecosystems studied, the relationship between soil respiration and soil organic carbon content can be described by a power function. Soil respiration increased with the increase of soil organic carbon. In forest ecosystem, the relationship between soil respiration and diameter at breast height (DBH) of trees can be explained by a natural logarithmic function. A model composed of soil organic carbon (C, %), available phosphorous (AP, g x kg(-1)) and diameter at breast height (DBH, cm) explained 92.8% spatial variability in soil respiration for forest ecosystems. PMID:23745410

  12. Unique Temporal and Spatial Biomolecular Emission Profile on Individual Zinc Oxide Nanorods

    PubMed Central

    Singh, Manpreet; Song, Sheng; Hahm, Jong-in

    2013-01-01

    Zinc oxide nanorods (ZnO NRs) have emerged in recent years as extremely useful, optical signal-enhancing platforms in DNA and protein detection. Although the use of ZnO NRs in biodetection has been demonstrated so far in systems involving many ZnO NRs per detection element, their future applications will likely take place in a miniaturized setting while exploiting single ZnO NRs in a low-volume, high-throughput bioanalysis. In this paper, we investigate temporal and spatial characteristics of biomolecular fluorescence on individual ZnO NR systems. Quantitative and qualitative examinations of biomolecular intensity and photostability are carried out as a function of two important criteria, time and position along the long axis (length) of NRs. Photostability profiles are also measured with respect to the position on NRs and compared to those characteristics of biomolecules on polymeric control platforms. Unlike uniformly distributed signal observed on the control platforms, both fluorescence intensity and photostability are position-dependent on individual ZnO NRs. We have identified a unique phenomenon of highly localized, fluorescence intensification on the nanorod ends (FINE) of well-characterized, individual ZnO nanostructures. When compared to the polymeric controls, biomolecular fluorescence intensity and photostability are determined to be higher on individual ZnO NRs regardless of the position on NRs. We have also carried out finite-difference time-domain simulations whose results agree well with the observed FINE. The outcomes of our investigation will offer a much needed basis for signal interpretation for biodetection devices and platforms consisting of single ZnO NRs and, at the same time, contribute significantly to provide insight in understanding biomolecular fluorescence observed from ZnO NR ensemble-based systems. PMID:24193145

  13. [Research advances in iron and zinc transfer from soil to plant in intercropping systems].

    PubMed

    Xia, Hai-yong; Xue, Yan-fang; Meng, Wei-wei; Yu, Li-min; Liu, Ling-yan; Zhang, Zheng

    2015-04-01

    Intercropping facilitates the efficient utilization of land, light, water and nutrients. It is, therefore, important to increase the biodiversity of farmland and to develop sustainable ecological agriculture in both theory and practice. Intercropping helps improve the mobilization and uptake of soil iron (Fe) and zinc (Zn) and corresponding nutritional status in the plants, thus achieving grain micronutrient biofortification. In this review, phenomena of the improvement of Fe and Zn nutrition in dicotyledonous plants as affected by intercropping with gramineous plants (e.g. maize/peanut intercropping) were summarized. Moreover, the possible mechanisms in relation to interspecific rhizosphere molecular and physiological processes, as well as the changes in interspecific root morphology and distribution and microorganisms in the rhizosphere were elucidated. The accumulation, transfer and distribution of Fe and Zn in the plants in intercropping systems were also reviewed. The possible affecting factors on nutrients of Fe and Zn were analyzed. Based on the present advances in the mobilization and acquisition of soil Fe and Zn, and their accumulation and distribution in plants as well as the related management and environment influence factors, some new research questions were pointed out. Quantitative analysis, dynamic and systemic researches and field studies on Fe and Zn transfer from soil to plant in intercropping systems should be strengthened in the future. PMID:26259472

  14. Geostatistical study of spatial correlations of lead and zinc concentration in urban reservoir. Study case Czerniakowskie Lake, Warsaw, Poland

    NASA Astrophysics Data System (ADS)

    Fabijańczyk, Piotr; Zawadzki, Jarosław; Wojtkowska, Małgorzata

    2016-07-01

    The article presents detailed geostatistical analysis of spatial distribution of lead and zinc concentration in water, suspension and bottom sediments of large, urban lake exposed to intensive anthropogenic pressure within a large city. Systematic chemical measurements were performed at eleven cross-sections located along Czerniakowskie Lake, the largest lake in Warsaw, the capital of Poland. During the summer, the lake is used as a public bathing area, therefore, to better evaluate human impacts, field measurements were carried out in high-use seasons. It was found that the spatial distributions of aqueous lead and zinc differ during the summer and autumn. In summer several Pb and Zn hot-spots were observed, while during autumn spatial distributions of Pb and Zn were rather homogenous throughout the entire lake. Large seasonal differences in spatial distributions of Pb and Zn were found in bottom sediments. Autumn concentrations of both heavy metals were ten times higher in comparison with summer values. Clear cross-correlations of Pb and Zn concentrations in water, suspension and bottom sediments suggest that both Pb and Zn came to Czerniakowskie Lake from the same source.

  15. Uncoupling the complexity of forest soil variation: influence of terrain attributes, spectral indices, and spatial variability

    EPA Science Inventory

    Growing concern over climate and management induced changes to soil nutrient status has prompted interest in understanding the spatial distribution of forest soil properties. Recent advancements in remotely sensed geospatial technologies are providing an increasing array of data...

  16. Concentrations, spatial distribution, and risk assessment of soil heavy metals in a Zn-Pb mine district in southern China.

    PubMed

    Qi, Jianying; Zhang, Hailong; Li, Xiangping; Lu, Jian; Zhang, Gaosheng

    2016-07-01

    China is one of the largest producers and consumers of lead and zinc in the world. Lead and zinc mining and smelting can release hazardous heavy metals such as Cd, Pb, Zn, and As into soils, exerting health risks to human by chronic exposure. The concentrations of Cd, Zn, Pb, and As in soil samples collected from a Pb-Zn mining area with exploitation history of 60 years were investigated. Health risks of the heavy metals in soil were evaluated using US Environmental Protection Agency (US EPA) recommended method. A geo-statistical technique (Kriging) was used for the interpolation of heavy metals pollution and Hazard Index (HI). The results indicated that the long-term Pb/Zn mining activities caused the serious pollution in the local soil. The concentrations of Cd, As, Pb, and Zn in topsoil were 40.3 ± 6.3, 103.7 ± 37.3, 3518.4 ± 896.1, and 10,413 ± 2973.2 mg/kg dry weight, respectively. The spatial distribution of the four metals possessed similar patterns, with higher concentrations around Aayiken (AYK), Maseka (MSK), and Kuangshan (KS) area and more rapidly dropped concentrations at upwind direction than those at downwind direction. The main pollutions of Cd and Zn were found in the upper 60 cm, the Pb was found in the upper 40 cm, and the As was in the upper 20 cm. The mobility of metals in soil profile of study area was classed as Cd > Zn ≫ Pb > As. Results indicated that there was a higher health risk (child higher than adult) in the study area. Pb contributed to the highest Hazard Quotient (57.0 ~ 73.9 %) for the Hazard Index. PMID:27315126

  17. Concentrations, spatial distribution, and risk assessment of soil heavy metals in a Zn-Pb mine district in southern China.

    PubMed

    Qi, Jianying; Zhang, Hailong; Li, Xiangping; Lu, Jian; Zhang, Gaosheng

    2016-07-01

    China is one of the largest producers and consumers of lead and zinc in the world. Lead and zinc mining and smelting can release hazardous heavy metals such as Cd, Pb, Zn, and As into soils, exerting health risks to human by chronic exposure. The concentrations of Cd, Zn, Pb, and As in soil samples collected from a Pb-Zn mining area with exploitation history of 60 years were investigated. Health risks of the heavy metals in soil were evaluated using US Environmental Protection Agency (US EPA) recommended method. A geo-statistical technique (Kriging) was used for the interpolation of heavy metals pollution and Hazard Index (HI). The results indicated that the long-term Pb/Zn mining activities caused the serious pollution in the local soil. The concentrations of Cd, As, Pb, and Zn in topsoil were 40.3 ± 6.3, 103.7 ± 37.3, 3518.4 ± 896.1, and 10,413 ± 2973.2 mg/kg dry weight, respectively. The spatial distribution of the four metals possessed similar patterns, with higher concentrations around Aayiken (AYK), Maseka (MSK), and Kuangshan (KS) area and more rapidly dropped concentrations at upwind direction than those at downwind direction. The main pollutions of Cd and Zn were found in the upper 60 cm, the Pb was found in the upper 40 cm, and the As was in the upper 20 cm. The mobility of metals in soil profile of study area was classed as Cd > Zn ≫ Pb > As. Results indicated that there was a higher health risk (child higher than adult) in the study area. Pb contributed to the highest Hazard Quotient (57.0 ~ 73.9 %) for the Hazard Index.

  18. Horizontal and Vertical Distributions of Metals in Soils in Southeastern PA: Impact of 20th Century Zinc Smelting Operations

    NASA Astrophysics Data System (ADS)

    Sahagian, D. L.; Peters, S. C.; Yasko, G.; Blake, J.; Smith, K.; Lofaro, J.; Burrows, J. E.

    2009-12-01

    The region surrounding Palmerton, PA has been affected by airfall of metals from the NJ Zinc Co. smelter along the Lehigh River just north of the Kittatinny Ridge. The deposition of zinc, cadmium, lead, and arsenic, led to the destruction of a forest ecosystem in the immediate vicinity and metals contamination in the town and surrounding area. Although the smelter was closed in the 1980's, concerns linger over whether the soil still remains contaminated with elevated levels of metals. This study has been directed to determining the validity of these concerns. The present concentration and distribution of metals in the soil is the result of the initial (20th century) concentration and the processes of leaching, erosion, and biological uptake and dispersal that have proceeded since the smelter was shut down. At the site of the smelter, analyses of samples from shallow soil pits had zinc concentrations up to 25,500 mg/kg, lead concentrations to 380 mg/kg, and cadmium up to 25 mg/kg. We analyzed soil samples from 52 locations in the region. Zinc, the most obvious metal from the zinc smelter, does not exceed residential concentration standards anywhere in the surrounding "far field" region, but is a maximum in the vicinity of the smelter falling to background within 20 km. Lead follows the same decay curve with distance, but exceeds residential standards in the West Plant (the smelter) itself and the immediate surroundings. Cadmium follows the same decay curve. Concentrations decay with distance from the smelter, but are found in contrasting concentrations in the O, A and B soil horizons. The regional average metal concentrations for all metals analyzed are higher in the O and A horizons than in the underlying B horizon. Zinc is focused in the O-horizon, suggesting that plants have taken up the zinc and concentrated it in leaf litter. Lead is also focused in the O-horizon, but this is more likely due to its lack of mobility downward through the soil. Arsenic

  19. Spatial variability in the soil water content of a Mediterranean agroforestry system with high soil heterogeneity

    NASA Astrophysics Data System (ADS)

    Molina, Antonio Jaime; Llorens, Pilar; Aranda, Xavier; Savé, Robert; Biel, Carmen

    2013-04-01

    Variability of soil water content is known to increase with the size of spatial domain in which measurements are taken. At field scale, heterogeneity in soil, vegetation, topography, water input volume and management affects, among other factors, hydrologic plot behaviour under different mean soil water contents. The present work studies how the spatial variability of soil water content (SWC) is affected by soil type (texture, percentage of stones and the combination of them) in a timber-orientated plantation of cherry tree (Prunus avium) under Mediterranean climatic conditions. The experimental design is a randomized block one with 3 blocks * 4 treatments, based on two factors: irrigation (6 plots irrigated versus 6 plots not irrigated) and soil management (6 plots tillaged versus 6 plots not tillaged). SWC is continuously measured at 25, 50 and 100 cm depth with FDR sensors, located at two positions in each treatment: under tree influence and 2.5 m apart. This study presents the results of the monitoring during 2012 of the 24 sensors located at the 25 cm depth. In each of the measurement point, texture and percentage of stones were measured. Sandy-loam, sandy-clay-loam and loam textures were found together with a percentage of stones ranging from 20 to 70 %. The results indicated that the relationship between the daily mean SWC and its standard deviation, a common procedure used to study spatial variability, changed with texture, percentage of stones and the estimation of field capacity from the combination of both. Temporal stability analysis of SWC showed a clear pattern related to field capacity, with the measurement points of the sandy-loam texture and the high percentage of stones showing the maximun negative diference with the global mean. The high range in the mean relative difference observed (± 75 %), could indicate that the studied plot may be considered as a good field-laboratory to extrapolate results at higher spatial scales. Furthermore, the

  20. Analysis of field-scale spatial correlations and variations of soil nutrients using geostatistics.

    PubMed

    Liu, Ruimin; Xu, Fei; Yu, Wenwen; Shi, Jianhan; Zhang, Peipei; Shen, Zhenyao

    2016-02-01

    Spatial correlations and soil nutrient variations are important for soil nutrient management. They help to reduce the negative impacts of agricultural nonpoint source pollution. Based on the sampled available nitrogen (AN), available phosphorus (AP), and available potassium (AK), soil nutrient data from 2010, the spatial correlation, was analyzed, and the probabilities of the nutrient's abundance or deficiency were discussed. This paper presents a statistical approach to spatial analysis, the spatial correlation analysis (SCA), which was originally developed for describing heterogeneity in the presence of correlated variation and based on ordinary kriging (OK) results. Indicator kriging (IK) was used to assess the susceptibility of excess of soil nutrients based on crop needs. The kriged results showed there was a distinct spatial variability in the concentration of all three soil nutrients. High concentrations of these three soil nutrients were found near Anzhou. As the distance from the center of town increased, the concentration of the soil nutrients gradually decreased. Spatially, the relationship between AN and AP was negative, and the relationship between AP and AK was not clear. The IK results showed that there were few areas with a risk of AN and AP overabundance. However, almost the entire study region was at risk of AK overabundance. Based on the soil nutrient distribution results, it is clear that the spatial variability of the soil nutrients differed throughout the study region. This spatial soil nutrient variability might be caused by different fertilizer types and different fertilizing practices.

  1. Correlates of biological soil crust abundance across a continuum of spatial scales: Support for a hierarchical conceptual model

    USGS Publications Warehouse

    Bowker, M.A.; Belnap, J.; Davidson, D.W.; Goldstein, H.

    2006-01-01

    1. Desertification negatively impacts a large proportion of the global human population and > 30% of the terrestrial land surface. Better methods are needed to detect areas that are at risk of desertification and to ameliorate desertified areas. Biological soil crusts are an important soil lichen-moss-microbial community that can be used toward these goals, as (i) bioindicators of desertification damage and (ii) promoters of soil stability and fertility. 2. We identified environmental factors that correlate with soil crust occurrence on the landscape and might be manipulated to assist recovery of soil crusts in degraded areas. We conducted three studies on the Colorado Plateau, USA, to investigate the hypotheses that soil fertility [particularly phosphorus (P), manganese (Mn) and zinc (Zn)] and/or moisture limit soil crust lichens and mosses at four spatial scales. 3. In support of the soil fertility hypothesis, we found that lichen-moss crusts were positively correlated with several nutrients [Mn, Zn, potassium (K) and magnesium (Mg) were most consistent] at three of four spatial scales ranging from 3.5 cm2 in area to c. 800 km2. In contrast, P was negatively correlated with lichen-moss crusts at three scales. 4. Community composition varied with micro-aspect on ridges in the soil crust. Three micro-aspects [north-north-west (NNW), east-north-east (ENE) and TOP] supported greater lichen and moss cover than the warmer, windward and more xeric micro-aspects [west-south-west (WSW) and south-south-east (SSE)]. This pattern was poorly related to soil fertility; rather, it was consistent with the moisture limitation hypothesis. 5. Synthesis and application. Use of crusts as desertification bioindicators requires knowledge of a site's potential for crust cover in the absence of desertification. We present a multi-scale model of crust potential as a function of site properties. Future quantitative studies can use this model to guide sampling efforts. Also, our results

  2. PREDICTING THE BIOAVAILABILITY OF COPPER AND ZINC IN SOILS: MODELING THE PARTITIONING OF POTENTIALLY BIOAVAILABLE COPPER AND ZINC FROM SOIL SOLID TO SOIL SOLUTION

    EPA Science Inventory

    This research produced statistically based, semi-mechanistic models describing partitioning of Cu and Zn in 40 soils from the US, Canada, the UK, the Netherlands, and Chile with widely varying characteristics. Two different types of models were constructed, partitioning models ...

  3. Adsorption edge study about cadmium, copper, nickel and zinc adsorption by variable charge soils

    NASA Astrophysics Data System (ADS)

    Casagrande, J. C.; Mouta, E. R.; Soares, M. R.

    2009-04-01

    The improper discharge of industrial and urban residues and the inadvertent use of fertilizers and pesticides can result in soil and water pollution and improve the potential of trace metals to enter in the human food chain. Adsorption reactions occur at the solid/liquid interface and are the most important mechanisms for controlling the activity of metal ions in soil solution. In a complex system with amphoteric behavior, the comprehension of the mobility, availability and fate of pollutants in the soil system is crucial for the prediction of the environmental consequences and for development of prevention/remediation strategies. A comparative study of cadmium (Cd), copper (Cu), nickel (Ni) and zinc (Zn) adsorption by highly weathered soils was carried out. Surface (0-0.2m) and subsoil (B horizon) samples were taken from a Rhodic Kandiudalf (RH), an Anionic "Xanthic" Acrudox (XA) and an Anionic "Rhodic" Acrudox (RA), located in brazilian humid tropical area. As the pH and the ionic strength are important environmental factors influencing the solution chemistry of heavy metals in variable charge systems, adsorption envelopes, in a batch adsorption experiment, were elaborated by reacting, for 24 h, soil samples with individual 0.01, 0.1 and 1.0 mol L-1 Ca(NO3)2 aqueous solutions containing nitrate salts of the adsorptive heavy metal (Cd, Cu, Ni and Zn) at the initial concentration of 5 mg L-1, with an increasing pH value from 3.0 to 8.0. pH50-100%, the difference between the pH of 100 and 50 percent metal adsorption was determined. A sharp increase of adsorption density (adsorption edge) was observed within a very narrow pH range, usually less than two pH units. Commonly, the relative affinity of a soil for a metal cation increases with the tendency of the cation to form inner-sphere surface complexes. This may be caused by differences in extent of hydrolysis of Cu ions and in affinity of adsorption sites for Cu. In general, subsurface samples showed low pH50

  4. General relationships between abiotic soil properties and soil biota across spatial scales and different land-use types.

    PubMed

    Birkhofer, Klaus; Schöning, Ingo; Alt, Fabian; Herold, Nadine; Klarner, Bernhard; Maraun, Mark; Marhan, Sven; Oelmann, Yvonne; Wubet, Tesfaye; Yurkov, Andrey; Begerow, Dominik; Berner, Doreen; Buscot, François; Daniel, Rolf; Diekötter, Tim; Ehnes, Roswitha B; Erdmann, Georgia; Fischer, Christiane; Foesel, Bärbel; Groh, Janine; Gutknecht, Jessica; Kandeler, Ellen; Lang, Christa; Lohaus, Gertrud; Meyer, Annabel; Nacke, Heiko; Näther, Astrid; Overmann, Jörg; Polle, Andrea; Pollierer, Melanie M; Scheu, Stefan; Schloter, Michael; Schulze, Ernst-Detlef; Schulze, Waltraud; Weinert, Jan; Weisser, Wolfgang W; Wolters, Volkmar; Schrumpf, Marion

    2012-01-01

    Very few principles have been unraveled that explain the relationship between soil properties and soil biota across large spatial scales and different land-use types. Here, we seek these general relationships using data from 52 differently managed grassland and forest soils in three study regions spanning a latitudinal gradient in Germany. We hypothesize that, after extraction of variation that is explained by location and land-use type, soil properties still explain significant proportions of variation in the abundance and diversity of soil biota. If the relationships between predictors and soil organisms were analyzed individually for each predictor group, soil properties explained the highest amount of variation in soil biota abundance and diversity, followed by land-use type and sampling location. After extraction of variation that originated from location or land-use, abiotic soil properties explained significant amounts of variation in fungal, meso- and macrofauna, but not in yeast or bacterial biomass or diversity. Nitrate or nitrogen concentration and fungal biomass were positively related, but nitrate concentration was negatively related to the abundances of Collembola and mites and to the myriapod species richness across a range of forest and grassland soils. The species richness of earthworms was positively correlated with clay content of soils independent of sample location and land-use type. Our study indicates that after accounting for heterogeneity resulting from large scale differences among sampling locations and land-use types, soil properties still explain significant proportions of variation in fungal and soil fauna abundance or diversity. However, soil biota was also related to processes that act at larger spatial scales and bacteria or soil yeasts only showed weak relationships to soil properties. We therefore argue that more general relationships between soil properties and soil biota can only be derived from future studies that consider

  5. General Relationships between Abiotic Soil Properties and Soil Biota across Spatial Scales and Different Land-Use Types

    PubMed Central

    Birkhofer, Klaus; Schöning, Ingo; Alt, Fabian; Herold, Nadine; Klarner, Bernhard; Maraun, Mark; Marhan, Sven; Oelmann, Yvonne; Wubet, Tesfaye; Yurkov, Andrey; Begerow, Dominik; Berner, Doreen; Buscot, François; Daniel, Rolf; Diekötter, Tim; Ehnes, Roswitha B.; Erdmann, Georgia; Fischer, Christiane; Foesel, Bärbel; Groh, Janine; Gutknecht, Jessica; Kandeler, Ellen; Lang, Christa; Lohaus, Gertrud; Meyer, Annabel; Nacke, Heiko; Näther, Astrid; Overmann, Jörg; Polle, Andrea; Pollierer, Melanie M.; Scheu, Stefan; Schloter, Michael; Schulze, Ernst-Detlef; Schulze, Waltraud; Weinert, Jan; Weisser, Wolfgang W.; Wolters, Volkmar; Schrumpf, Marion

    2012-01-01

    Very few principles have been unraveled that explain the relationship between soil properties and soil biota across large spatial scales and different land-use types. Here, we seek these general relationships using data from 52 differently managed grassland and forest soils in three study regions spanning a latitudinal gradient in Germany. We hypothesize that, after extraction of variation that is explained by location and land-use type, soil properties still explain significant proportions of variation in the abundance and diversity of soil biota. If the relationships between predictors and soil organisms were analyzed individually for each predictor group, soil properties explained the highest amount of variation in soil biota abundance and diversity, followed by land-use type and sampling location. After extraction of variation that originated from location or land-use, abiotic soil properties explained significant amounts of variation in fungal, meso- and macrofauna, but not in yeast or bacterial biomass or diversity. Nitrate or nitrogen concentration and fungal biomass were positively related, but nitrate concentration was negatively related to the abundances of Collembola and mites and to the myriapod species richness across a range of forest and grassland soils. The species richness of earthworms was positively correlated with clay content of soils independent of sample location and land-use type. Our study indicates that after accounting for heterogeneity resulting from large scale differences among sampling locations and land-use types, soil properties still explain significant proportions of variation in fungal and soil fauna abundance or diversity. However, soil biota was also related to processes that act at larger spatial scales and bacteria or soil yeasts only showed weak relationships to soil properties. We therefore argue that more general relationships between soil properties and soil biota can only be derived from future studies that consider

  6. Quantifying the heterogeneity of soil compaction, physical soil properties and soil moisture across multiple spatial scales

    NASA Astrophysics Data System (ADS)

    Coates, Victoria; Pattison, Ian; Sander, Graham

    2016-04-01

    England's rural landscape is dominated by pastoral agriculture, with 40% of land cover classified as either improved or semi-natural grassland according to the Land Cover Map 2007. Since the Second World War the intensification of agriculture has resulted in greater levels of soil compaction, associated with higher stocking densities in fields. Locally compaction has led to loss of soil storage and an increased in levels of ponding in fields. At the catchment scale soil compaction has been hypothesised to contribute to increased flood risk. Previous research (Pattison, 2011) on a 40km2 catchment (Dacre Beck, Lake District, UK) has shown that when soil characteristics are homogeneously parameterised in a hydrological model, downstream peak discharges can be 65% higher for a heavy compacted soil than for a lightly compacted soil. However, at the catchment scale there is likely to be a significant amount of variability in compaction levels within and between fields, due to multiple controlling factors. This research focusses in on one specific type of land use (permanent pasture with cattle grazing) and areas of activity within the field (feeding area, field gate, tree shelter, open field area). The aim was to determine if the soil characteristics and soil compaction levels are homogeneous in the four areas of the field. Also, to determine if these levels stayed the same over the course of the year, or if there were differences at the end of the dry (October) and wet (April) periods. Field experiments were conducted in the River Skell catchment, in Yorkshire, UK, which has an area of 120km2. The dynamic cone penetrometer was used to determine the structural properties of the soil, soil samples were collected to assess the bulk density, organic matter content and permeability in the laboratory and the Hydrosense II was used to determine the soil moisture content in the topsoil. Penetration results show that the tree shelter is the most compacted and the open field area

  7. Spatial variability of available soil microelements in an ecological functional zone of Beijing.

    PubMed

    Ye, Huichun; Shen, Chongyang; Huang, Yuanfang; Huang, Wenjiang; Zhang, Shiwen; Jia, Xiaohong

    2015-02-01

    Understanding the spatial variability of soil microelements and its influencing factors is of importance for a number of applications such as scientifically formulated fertilizer and environmental protection. This study used descriptive statistics and geostatistics to investigate the spatial variability of available soil Fe, Mn, Cu, and Zn contents in agricultural topsoil (0-20 cm) in an ecological functional zone located at Yanqing County, Beijing, China. Kriging method was applied to map the spatial patterns of available soil Fe, Mn, Cu, and Zn contents. Results showed that the available soil Cu had a widest spatial correlation distance (e.g., 9.6 km), which for available soil Fe, Mn, and Zn were only 1.29, 2.58, and 0.99 km, respectively. The values of C 0/sill for available soil Fe and Zn were 0.12 and 0.11, respectively, demonstrating that the spatial heterogeneity was mainly due to structural factors. The available soil Mn and Cu had the larger values of C 0/sill (i.e., 0.50 and 0.44 for Mn and Cu, respectively), which showed a medium spatial correlation. Mapping of the spatial patterns of the four microelements showed that the decrease trend of available soil Fe and Mn were from northeast to southwest across the study area. The highest amount of available soil Cu was distributed in the middle of the study area surrounding urban region which presented as a "single island". The highest amount of available soil Zn was mainly distributed in the north and south of the study area. One-way analysis of variance for the influencing factors showed that the lithology of parental materials, soil organic matter, and pH were important factors affecting spatial variability of the available microelements. The topography only had a significant influence on the spatial variability of available soil Fe and Mn contents, parental materials, and the land use types had little influence on the spatial variability.

  8. Validation of Sensor-Directed Spatial Simulated Annealing Soil Sampling Strategy.

    PubMed

    Scudiero, Elia; Lesch, Scott M; Corwin, Dennis L

    2016-07-01

    Soil spatial variability has a profound influence on most agronomic and environmental processes at field and landscape scales, including site-specific management, vadose zone hydrology and transport, and soil quality. Mobile sensors are a practical means of mapping spatial variability because their measurements serve as a proxy for many soil properties, provided a sensor-soil calibration is conducted. A viable means of calibrating sensor measurements over soil properties is through linear regression modeling of sensor and target property data. In the present study, two sensor-directed, model-based, sampling scheme delineation methods were compared to validate recent applications of soil apparent electrical conductivity (EC)-directed spatial simulated annealing against the more established EC-directed response surface sampling design (RSSD) approach. A 6.8-ha study area near San Jacinto, CA, was surveyed for EC, and 30 soil sampling locations per sampling strategy were selected. Spatial simulated annealing and RSSD were compared for sensor calibration to a target soil property (i.e., salinity) and for evenness of spatial coverage of the study area, which is beneficial for mapping nontarget soil properties (i.e., those not correlated with EC). The results indicate that the linear modeling EC-salinity calibrations obtained from the two sampling schemes provided salinity maps characterized by similar errors. The maps of nontarget soil properties show similar errors across sampling strategies. The Spatial Simulated Annealing methodology is, therefore, validated, and its use in agronomic and environmental soil science applications is justified. PMID:27380070

  9. [Study on spatial variability of soil salinity based on spectral indices and EM38 readings].

    PubMed

    Wu, Ya-kun; Yang, Jin-song; Li, Xiao-ming

    2009-04-01

    Taking Feng-qiu County as a case of soil salinization widely existing in the semiarid region, the spatial variability of soil salinity was investigated by using remote sensing and EM (electromagnetic induction) technologies in the present study. Descriptive statistics was applied to soil salinity data interpreted from EM38 measurements using field sampling method. Spectral indices (soil index and plant index) were derived from 25-resolution Landsat TM image taken in April 2005, and proved to be significantly correlated with soil salinity interpreted by EM38 readings. Regression models were further established between the interpreted soil electrical conductivity and spectral indices (soil index and plant index), and'spatial distribution patterns across the study area were finally mapped based on the above regression models. Results indicated that soil salinity at each soil layer is from 0.259 to 0.572 and exhibits the moderate spatial variability owing to compound impact of intrinsic and extrinsic factors. Spatial distribution maps of soil salinity were obtained with the application of plant index, soil index and EM38 measurements. It was shown that soil salinization, mainly located in the north and south of the study area, exhibited obvious trend effect. Salinity at surface soil was the greatest and showed the trend of a decrease at subsoil layer and then an increase at deep layer in the whole soil profile. The accuracy of the predictions was tested using 40 soil sampled points. The root mean square error (RMSE) of calibration for soil salinity in each layer was 0.094, 0.052, 0.071 and 0.067 ds x m(-1) respectively, showing that the precision is ideal. The change trends of RMSE were the same as soil salinity in soil profile. The trends indicated that soil salinity had effect on the salinity prediction by spectral indices, and showed better accuracy at low soil salinity.

  10. Cadmium and zinc interactions and their transfer in soil-crop system under actual field conditions.

    PubMed

    Nan, Zhongren; Li, Jijun; Zhang, Jianming; Cheng, Guodong

    2002-02-21

    The transfer of Cd and Zn from calcareous soils nearby a non-ferrous mining and smelting bases to the spring wheat (Triticum aestivum L.) and corn (Zea mays L.) tissues and the interactions between the two metals concerned were investigated under actual field conditions. Samples of soils and entire crops were randomly collected during harvest time in 1998 in the Baiyin region. The soil metal contents showed that the furrows had been polluted (mean values: 3.16 mg kg(-1) for Cd; 146.78 mg kg(-1) for Zn) and the significant spatial variation of the soil contamination existed here (ranges, Cd: 0.14-19.3 mg kg(-1); Zn: 43.5-565.0 mg kg(-1)). The translocation ratios of the two metals from soil to crop parts in the region studied were relatively lower and the order of the element transfer in different plant tissues was root > stem > grain. The transfer ratio of element Cd was lower than that of element Zn. Cd and Zn uptake by the crop structures could be best described by four models (P < 0.01): linear; exponential; quadratic; and cubic. Apart from a linear relationship between the element Cd in the corn grains and soils, models were generally non-lincar. An analysis of Cd-Zn interaction mechanism led to the conclusion that the effects of the two metals were synergistic to each other under field conditions, in which increasing Cd and Zn contents in soils could increase the accumulations of Zn or Cd in the two crops.

  11. [Reserves and spatial distribution characteristics of soil organic carbon in Guangdong Province].

    PubMed

    Gan, Haihua; Wu, Shunhui; Fan, Xiudan

    2003-09-01

    Soil organic carbon is the main part of terrestrial carbon reservoir and important part of soil fertility. The spatial distribution and reserves of soil organic carbon are very important for studying soil carbon cycle. According to the data from the second soil survey, soil organic carbon reserves was estimated and its spatial distribution was analysed by using GIS technique. The results showed that the total amount of soil organic carbon is about 17.52 x 10(8) t. The carbon density of laterite, lateritic red soil and red soil in Guangdong Province is 8.83, 10.31, 9.15 kg.m-2, respectively; lower than the mean carbon density of China. The carbon density of yellow soil and rice soil is 12.08, 12.17 kg.m-2, respectively; higher than the mean carbon density of China. Soil carbon density is about 10.44 kg.m-2 in Guangdong. The spatial distribution characteristic of soil organic carbon density in Guangdong is that the carbon density in south Guangdong Province is higher than that in north Guangdong Province, in that soil organic carbon density in north and middle Guangdong Province is 5-10 kg.m-2 and in east Guangdong Province is 10-15 kg.m-2. Soil organic carbon density mostly vary among 5-15 kg.m-2. PMID:14733007

  12. [Reserves and spatial distribution characteristics of soil organic carbon in Guangdong Province].

    PubMed

    Gan, Haihua; Wu, Shunhui; Fan, Xiudan

    2003-09-01

    Soil organic carbon is the main part of terrestrial carbon reservoir and important part of soil fertility. The spatial distribution and reserves of soil organic carbon are very important for studying soil carbon cycle. According to the data from the second soil survey, soil organic carbon reserves was estimated and its spatial distribution was analysed by using GIS technique. The results showed that the total amount of soil organic carbon is about 17.52 x 10(8) t. The carbon density of laterite, lateritic red soil and red soil in Guangdong Province is 8.83, 10.31, 9.15 kg.m-2, respectively; lower than the mean carbon density of China. The carbon density of yellow soil and rice soil is 12.08, 12.17 kg.m-2, respectively; higher than the mean carbon density of China. Soil carbon density is about 10.44 kg.m-2 in Guangdong. The spatial distribution characteristic of soil organic carbon density in Guangdong is that the carbon density in south Guangdong Province is higher than that in north Guangdong Province, in that soil organic carbon density in north and middle Guangdong Province is 5-10 kg.m-2 and in east Guangdong Province is 10-15 kg.m-2. Soil organic carbon density mostly vary among 5-15 kg.m-2.

  13. Effects of Spatial Variability of Soil Properties on the Triggering of Rainfall-Induced Shallow Landslides

    NASA Astrophysics Data System (ADS)

    Fan, Linfeng; Lehmann, Peter; Or, Dani

    2015-04-01

    Naturally-occurring spatial variations in soil properties (e.g., soil depth, moisture, and texture) affect key hydrological processes and potentially the mechanical response of soil to hydromechanical loading (relative to the commonly-assumed uniform soil mantle). We quantified the effects of soil spatial variability on the triggering of rainfall-induced shallow landslides at the hillslope- and catchment-scales, using a physically-based landslide triggering model that considers interacting soil columns with mechanical strength thresholds (represented by the Fiber Bundle Model). The spatial variations in soil properties are represented as Gaussian random distributions and the level of variation is characterized by the coefficient of variation and correlation lengths of soil properties (i.e., soil depth, soil texture and initial water content in this study). The impacts of these spatial variations on landslide triggering characteristics were measured by comparing the times to triggering and landslide volumes for heterogeneous soil properties and homogeneous cases. Results at hillslope scale indicate that for spatial variations of an individual property (without cross correlation), the increasing of coefficient of variation introduces weak spots where mechanical damage is accelerated and leads to earlier onset of landslide triggering and smaller volumes. Increasing spatial correlation length of soil texture and initial water content also induces early landslide triggering and small released volumes due to the transition of failure mode from brittle to ductile failure. In contrast, increasing spatial correlation length of soil depth "reduces" local steepness and postpones landslide triggering. Cross-correlated soil properties generally promote landslide initiation, but depending on the internal structure of spatial distribution of each soil property, landslide triggering may be reduced. The effects of cross-correlation between initial water content and soil texture

  14. Effect of soil hydraulic properties on the relationship between the spatial mean and variability of soil moisture

    NASA Astrophysics Data System (ADS)

    Martínez García, Gonzalo; Pachepsky, Yakov A.; Vereecken, Harry

    2014-08-01

    Knowledge of spatial mean soil moisture and its variability over time is needed in many environmental applications. We analyzed dependencies of soil moisture variability on average soil moisture contents in soils with and without root water uptake using ensembles of non-stationary water flow simulations by varying soil hydraulic properties under different climatic conditions. We focused on the dry end of the soil moisture range and found that the magnitude of soil moisture variability was controlled by the interplay of soil hydraulic properties and climate. The average moisture at which the maximum variability occurred depended on soil hydraulic properties and vegetation. A positive linear relationship was observed between mean soil moisture and its standard deviation and was controlled by the parameter defining the shape of soil water retention curves and the spatial variability of saturated hydraulic conductivity. The influence of other controls, such as variable weather patterns, topography or lateral flow processes needs to be studied further to see if such relationship persists and could be used for the inference of soil hydraulic properties from the spatiotemporal variation in soil moisture.

  15. Associations between soil carbon and ecological landscape drivers at escalating spatial scales in Florida, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The spatial distribution of soil carbon (C) is controlled by ecological landscape processes that evolve over a range of spatial scales. Soil C patterns derive from a number of interacting ecological processes, some of which more dominant than others, depending on the landscape conditions. The spatia...

  16. Spatial heterogeneity of forest soil carbon and nitrogen controls nitrogen transformations and trace gas production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Small-scale spatial heterogeneity of soil nitrogen (N) and carbon (C) pools and net transformation processes in forested ecosystems are not well understood. Two forests in central Oregon (Black Butte and Santiam Pass) were used to test the hypothesis that spatial distribution of soil nutrients cont...

  17. Spatial Distribution of Surface Soil Moisture in a Small Forested Catchment

    EPA Science Inventory

    Predicting the spatial distribution of soil moisture is an important hydrological question. We measured the spatial distribution of surface soil moisture (upper 6 cm) using an Amplitude Domain Reflectometry sensor at the plot scale (2 × 2 m) and small catchment scale (0.84 ha) in...

  18. Simulating maize yield and biomass with spatial variability of soil field capacity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spatial variability in field soil water and other properties is a challenge for system modelers who use only representative values for model inputs, rather than their distributions. In this study, we compared simulation results from a calibrated model with spatial variability of soil field capacity ...

  19. Estimating soil organic carbon stocks and spatial patterns with statistical and GIS-based methods.

    PubMed

    Zhi, Junjun; Jing, Changwei; Lin, Shengpan; Zhang, Cao; Liu, Qiankun; DeGloria, Stephen D; Wu, Jiaping

    2014-01-01

    Accurately quantifying soil organic carbon (SOC) is considered fundamental to studying soil quality, modeling the global carbon cycle, and assessing global climate change. This study evaluated the uncertainties caused by up-scaling of soil properties from the county scale to the provincial scale and from lower-level classification of Soil Species to Soil Group, using four methods: the mean, median, Soil Profile Statistics (SPS), and pedological professional knowledge based (PKB) methods. For the SPS method, SOC stock is calculated at the county scale by multiplying the mean SOC density value of each soil type in a county by its corresponding area. For the mean or median method, SOC density value of each soil type is calculated using provincial arithmetic mean or median. For the PKB method, SOC density value of each soil type is calculated at the county scale considering soil parent materials and spatial locations of all soil profiles. A newly constructed 1∶50,000 soil survey geographic database of Zhejiang Province, China, was used for evaluation. Results indicated that with soil classification levels up-scaling from Soil Species to Soil Group, the variation of estimated SOC stocks among different soil classification levels was obviously lower than that among different methods. The difference in the estimated SOC stocks among the four methods was lowest at the Soil Species level. The differences in SOC stocks among the mean, median, and PKB methods for different Soil Groups resulted from the differences in the procedure of aggregating soil profile properties to represent the attributes of one soil type. Compared with the other three estimation methods (i.e., the SPS, mean and median methods), the PKB method holds significant promise for characterizing spatial differences in SOC distribution because spatial locations of all soil profiles are considered during the aggregation procedure.

  20. Uptake and distribution of soil applied zinc by citrus trees-addressing fertilizer use efficiency with 68Zn labeling.

    PubMed

    Hippler, Franz Walter Rieger; Boaretto, Rodrigo Marcelli; Quaggio, José Antônio; Boaretto, Antonio Enedi; Abreu-Junior, Cassio Hamilton; Mattos, Dirceu

    2015-01-01

    The zinc (Zn) supply increases the fruit yield of Citrus trees that are grown, especially in the highly weathered soils of the tropics due to the inherently low nutrient availability in the soil solution. Leaf sprays containing micronutrients are commonly applied to orchards, even though the nutrient supply via soil could be of practical value. This study aimed to evaluate the effect of Zn fertilizers that are applied to the soil surface on absorption and partitioning of the nutrient by citrus trees. A greenhouse experiment was conducted with one-year-old sweet orange trees. The plants were grown in soils with different textures (18.1 or 64.4% clay) that received 1.8 g Zn per plant, in the form of either ZnO or ZnSO4 enriched with the stable isotope 68Zn. Zinc fertilization increased the availability of the nutrient in the soil and the content in the orange trees. Greater responses were obtained when ZnSO4 was applied to the sandy loam soil due to its lower specific metal adsorption compared to that of the clay soil. The trunk and branches accumulated the most fertilizer-derived Zn (Zndff) and thus represent the major reserve organ for this nutrient in the plant. The trees recovered up to 4% of the applied Zndff. Despite this relative low recovery, the Zn requirement of the trees was met with the selected treatment based on the total leaf nutrient content and increased Cu/Zn-SOD activity in the leaves. We conclude that the efficiency of Zn fertilizers depends on the fertilizer source and the soil texture, which must be taken into account by guidelines for fruit crop fertilization via soil, in substitution or complementation of traditional foliar sprays. PMID:25751056

  1. Uptake and Distribution of Soil Applied Zinc by Citrus Trees—Addressing Fertilizer Use Efficiency with 68Zn Labeling

    PubMed Central

    Hippler, Franz Walter Rieger; Boaretto, Rodrigo Marcelli; Quaggio, José Antônio; Boaretto, Antonio Enedi; Abreu-Junior, Cassio Hamilton; Mattos, Dirceu

    2015-01-01

    The zinc (Zn) supply increases the fruit yield of Citrus trees that are grown, especially in the highly weathered soils of the tropics due to the inherently low nutrient availability in the soil solution. Leaf sprays containing micronutrients are commonly applied to orchards, even though the nutrient supply via soil could be of practical value. This study aimed to evaluate the effect of Zn fertilizers that are applied to the soil surface on absorption and partitioning of the nutrient by citrus trees. A greenhouse experiment was conducted with one-year-old sweet orange trees. The plants were grown in soils with different textures (18.1 or 64.4% clay) that received 1.8 g Zn per plant, in the form of either ZnO or ZnSO4 enriched with the stable isotope 68Zn. Zinc fertilization increased the availability of the nutrient in the soil and the content in the orange trees. Greater responses were obtained when ZnSO4 was applied to the sandy loam soil due to its lower specific metal adsorption compared to that of the clay soil. The trunk and branches accumulated the most fertilizer-derived Zn (Zndff) and thus represent the major reserve organ for this nutrient in the plant. The trees recovered up to 4% of the applied Zndff. Despite this relative low recovery, the Zn requirement of the trees was met with the selected treatment based on the total leaf nutrient content and increased Cu/Zn-SOD activity in the leaves. We conclude that the efficiency of Zn fertilizers depends on the fertilizer source and the soil texture, which must be taken into account by guidelines for fruit crop fertilization via soil, in substitution or complementation of traditional foliar sprays. PMID:25751056

  2. Uptake and distribution of soil applied zinc by citrus trees-addressing fertilizer use efficiency with 68Zn labeling.

    PubMed

    Hippler, Franz Walter Rieger; Boaretto, Rodrigo Marcelli; Quaggio, José Antônio; Boaretto, Antonio Enedi; Abreu-Junior, Cassio Hamilton; Mattos, Dirceu

    2015-01-01

    The zinc (Zn) supply increases the fruit yield of Citrus trees that are grown, especially in the highly weathered soils of the tropics due to the inherently low nutrient availability in the soil solution. Leaf sprays containing micronutrients are commonly applied to orchards, even though the nutrient supply via soil could be of practical value. This study aimed to evaluate the effect of Zn fertilizers that are applied to the soil surface on absorption and partitioning of the nutrient by citrus trees. A greenhouse experiment was conducted with one-year-old sweet orange trees. The plants were grown in soils with different textures (18.1 or 64.4% clay) that received 1.8 g Zn per plant, in the form of either ZnO or ZnSO4 enriched with the stable isotope 68Zn. Zinc fertilization increased the availability of the nutrient in the soil and the content in the orange trees. Greater responses were obtained when ZnSO4 was applied to the sandy loam soil due to its lower specific metal adsorption compared to that of the clay soil. The trunk and branches accumulated the most fertilizer-derived Zn (Zndff) and thus represent the major reserve organ for this nutrient in the plant. The trees recovered up to 4% of the applied Zndff. Despite this relative low recovery, the Zn requirement of the trees was met with the selected treatment based on the total leaf nutrient content and increased Cu/Zn-SOD activity in the leaves. We conclude that the efficiency of Zn fertilizers depends on the fertilizer source and the soil texture, which must be taken into account by guidelines for fruit crop fertilization via soil, in substitution or complementation of traditional foliar sprays.

  3. [Effects and mechanism of alkaline wastes application and zinc fertilizer addition on Cd bioavailability in contaminated soil].

    PubMed

    Liu, Zhao-Bing; Ji, Xiong-Hui; Tian, Fa-Xiang; Peng, Hua; Wu, Jia-Mei; Shi, Li-Hong

    2011-04-01

    The effects of paper mill sludge, red mud and zinc fertilizer addition on remediation of acid cadmium contaminated paddy soil were studied in a pot experiment, and their beneficial effects were verified in a field experiment, by using lime as comparison. The pot experiment results showed that a single application (2 g x kg(-1)) of lime, paper mill sludge or red mud increased soil pH significantly. Compared with no applying alkaline substances, the soil exchangeable Ca content was increased by 33.1%-76.0% at 7 days after applying alkaline substances and 31.0%-78.3% at 30 days after rice transplanting, respectively. The soil available Cd content was significantly decreased by 38.4%-45.0% at 7 days after the three alkaline substances applications, and was decreased by 37.4%-52.9% and 33.2%-38.7% at 30 days and 60 days after rice transplanting, respectively. The Cd content in rice root and brown rice was decreased by 24.0%-48.5% and 26.3%-44.7%, respectively. With equal applications of lime, paper mill sludge and red mud, the effects on increase of soil pH and decrease in Cd accumulation by rice was lime > red mud > paper mill sludge. Compared with a single application (2 g x kg(-1)) of paper mill sludge or red mud, Cd accumulation decreased significantly following the application of zinc fertilizer (0.2 g x kg(-1)) field experimental results were similar to the pot experiment that Cd accumulation apparently declined in the first and second crops (late rice and autumn rape) following the application of paper mill sludge, red mud and addition of zinc fertilizer. The Cd content in brown rice and rape seeds was decreased by 27.1-65.1% and 16.4%-41.6%, respectively, compared with no alkaline substances application. The Cd content in brown rice reached the National Hygienic Standard for Grains (GB 2715-2005). Therefore, combined application of paper mill sludge or red mud with zinc fertilizer was a feasible method to remediate acid cadmium contaminated paddy soil. Rice

  4. Effects of nickel, zinc, and lead-contaminated soil on burrowing rate and coelomocytes of the earthworm, Allolobophora chlorotica.

    PubMed

    Podolak, Agnieszka; Piotrowska, Elzbieta; Klimek, Malgorzata; Klimek, Beata Anna; Kruk, Jerzy; Plytycz, Barbara

    2011-01-01

    We have shown previously that stubby worms Allolobophora chlorotica are sensitive to environmental stress, including metal-polluted soil. In order to discern the mechanisms of this sensitivity, adult (clitellate) Al. chlorotica were exposed in the laboratory to soil samples soaked with water (control) or Ni (1 and 2 mg/kg), Zn (1.25 and 2.5 g/kg) or Pb (5 and 10 g/kg) chlorides. Worms avoided contact with metal contaminants by prolonging burrowing time in metal-soaked samples, especially in the case of lead. Higher concentrations of the investigated metals were lethal for worms. During a 3 week exposure to lower metal concentrations, nickel and lead readily accumulated in the bodies of worms while zinc was efficiently regulated. However, body weights and numbers of non-invasively retrieved free coelomocytes (consisting of amoebocytes and riboflavin-loaded eleocytes) were significantly lower only in zinc-exposed worms. We assume that zinc regulation in worm bodies is more energy-demanding than nickel or lead bioaccumulation, thus this might be responsible for inhibition of the body gain and diminution of immunocompetent cells in zinc-exposed earthworms. Alternatively, missing free coelomocytes may actually be involved in Zn trafficking and removal through nephridia and/or in the formation of multicellular brown bodies, since metal can unbalance host/bacteria relationships. PMID:22195460

  5. Spatial and temporal variation in results of purple urchin (Strongylocentrotus purpuratus) toxicity tests with zinc

    SciTech Connect

    Phillips, B.M.; Anderson, B.S.; Hunt, J.W.

    1998-03-01

    Purple urchins (Strongylocentrotus purpuratus) were maintained in year-round spawning condition in the laboratory for use in fertilization and larval development experiments designed to assess temporal variability in response to zinc. Results of these tests were compared to those from tests using gametes obtained from a field-collected population. Fertilization and larval development tests were also conducted comparing field-collected purple urchins from three geographically distinct groups on the West Coast of the United States. Fertilization tests conducted to assess temporal variability produced variable median effects concentrations (EC50s) ranging from 4.1 to >100 {micro}g/L zinc. Larval development tests did not demonstrate significant differences in response to zinc between geographically distinct purple urchin populations. Fertilization test variability was examined in terms of sperm concentration and sperm collection method during two seasons. Reduced variability was found with dry sperm collection in tests conducted in March 1995 but increased again in tests conducted in June 1995, regardless of sperm collection method. Increased variability in response to zinc may be caused by seasonal temperature effects.

  6. Soil microbial community variation correlates most strongly with plant species identity, followed by soil chemistry, spatial location and plant genus

    PubMed Central

    Burns, Jean H.; Anacker, Brian L.; Strauss, Sharon Y.; Burke, David J.

    2015-01-01

    Soil ecologists have debated the relative importance of dispersal limitation and ecological factors in determining the structure of soil microbial communities. Recent evidence suggests that ‘everything is not everywhere’, and that microbial communities are influenced by both dispersal limitation and ecological factors. However, we still do not understand the relative explanatory power of spatial and ecological factors, including plant species identity and even plant relatedness, for different fractions of the soil microbial community (i.e. bacterial and fungal communities). To ask whether factors such as plant species, soil chemistry, spatial location and plant relatedness influence rhizosphere community composition, we examined field-collected rhizosphere soil of seven congener pairs that occur at Bodega Bay Marine Reserve, CA, USA. We characterized differences in bacterial and fungal communities using terminal-restriction fragment length polymorphism. Plant species identity was the single best statistical predictor of both bacterial and fungal community composition in the root zone. Soil microbial community structure was also correlated with soil chemistry. The third best predictor of bacterial and fungal communities was spatial location, confirming that everything is not everywhere. Variation in microbial community composition was also related to combinations of spatial location, soil chemistry and plant relatedness, suggesting that these factors do not act independently. Plant relatedness explained less of the variation than plant species, soil chemistry, or spatial location. Despite some congeners occupying different habitats and being spatially distant, rhizosphere fungal communities of plant congeners were more similar than expected by chance. Bacterial communities from the same samples were only weakly similar between plant congeners. Thus, plant relatedness might influence soil fungal, more than soil bacterial, community composition. PMID:25818073

  7. Zinc, cadmium and manganese uptake by soybean from two zinc- and cadmium-amended Coastal Plain soils

    SciTech Connect

    White, M.C.; Chaney, R.L.

    1980-03-01

    Two Coastal Plain soils were used to evaluate the effects of organic matter and Fe and Mn hydrous oxides on Zn phytotoxicity, and on Zn, Cd, and Mn uptake by soybean seedlings. Fertilized Pocomoke sl and Sassafras sl were limed to pH 5.5 and 6.3 with CaCO/sub 3/ when adding Zn (six levens between 1.3 and 196 mg/kg at pH 5.5; seven levels between 1.3 and 524 mg/kg at pH 6.3). Cadmium was added at 1% of the added Zn. Beeson soybean (Glycine max L. Merr.) was grown 4 weeks, and the trifoliolate leaves evaluated for dry weight yield and for their Zn, Cd, and Mn concentrations. The higher organic matter Pocomoke soil was more effective than the Sassafras soil in reducing metal uptake, and Zn phytoxicity. Foliar Zn levels associated with yield reduction of soybean grown on Pocomoke differed with soil pH. Cadmium uptake was significantly lower on the Pocomoke soil. Foliar Mn increased to reported phytotoxic levels (> 500 mg/kg) with increased added Zn only on the Sassafras soil at pH 6.3. DTPA-extractable Zn and Cd were linear functions of added Zn and Cd for both soils; 0.01M CaCl/sub 2/-extractable Zn and Cd were curvilinear (increasing slope) functions for the Sassafras and linear for the Pocomoke soil. Thus, soil type can strongly influence Zn, Cd, and Mn uptake as well as Zn phytotoxicity to soybean. Soil organic matter appears to be more important than hydrous oxides of Fe and Mn in moderating the effects of excessive soil Zn and limiting Zn and Cd uptake. Induced metal toxicities (Mn) may depend on many factors, and should be considered an integral part of any characterization of specific metal phytotoxicities (e.g. Zn).

  8. Improving Estimations of Spatial Distribution of Soil Respiration Using the Bayesian Maximum Entropy Algorithm and Soil Temperature as Auxiliary Data

    PubMed Central

    Hu, Junguo; Zhou, Jian; Zhou, Guomo; Luo, Yiqi; Xu, Xiaojun; Li, Pingheng; Liang, Junyi

    2016-01-01

    Soil respiration inherently shows strong spatial variability. It is difficult to obtain an accurate characterization of soil respiration with an insufficient number of monitoring points. However, it is expensive and cumbersome to deploy many sensors. To solve this problem, we proposed employing the Bayesian Maximum Entropy (BME) algorithm, using soil temperature as auxiliary information, to study the spatial distribution of soil respiration. The BME algorithm used the soft data (auxiliary information) effectively to improve the estimation accuracy of the spatiotemporal distribution of soil respiration. Based on the functional relationship between soil temperature and soil respiration, the BME algorithm satisfactorily integrated soil temperature data into said spatial distribution. As a means of comparison, we also applied the Ordinary Kriging (OK) and Co-Kriging (Co-OK) methods. The results indicated that the root mean squared errors (RMSEs) and absolute values of bias for both Day 1 and Day 2 were the lowest for the BME method, thus demonstrating its higher estimation accuracy. Further, we compared the performance of the BME algorithm coupled with auxiliary information, namely soil temperature data, and the OK method without auxiliary information in the same study area for 9, 21, and 37 sampled points. The results showed that the RMSEs for the BME algorithm (0.972 and 1.193) were less than those for the OK method (1.146 and 1.539) when the number of sampled points was 9 and 37, respectively. This indicates that the former method using auxiliary information could reduce the required number of sampling points for studying spatial distribution of soil respiration. Thus, the BME algorithm, coupled with soil temperature data, can not only improve the accuracy of soil respiration spatial interpolation but can also reduce the number of sampling points. PMID:26807579

  9. Improving Estimations of Spatial Distribution of Soil Respiration Using the Bayesian Maximum Entropy Algorithm and Soil Temperature as Auxiliary Data.

    PubMed

    Hu, Junguo; Zhou, Jian; Zhou, Guomo; Luo, Yiqi; Xu, Xiaojun; Li, Pingheng; Liang, Junyi

    2016-01-01

    Soil respiration inherently shows strong spatial variability. It is difficult to obtain an accurate characterization of soil respiration with an insufficient number of monitoring points. However, it is expensive and cumbersome to deploy many sensors. To solve this problem, we proposed employing the Bayesian Maximum Entropy (BME) algorithm, using soil temperature as auxiliary information, to study the spatial distribution of soil respiration. The BME algorithm used the soft data (auxiliary information) effectively to improve the estimation accuracy of the spatiotemporal distribution of soil respiration. Based on the functional relationship between soil temperature and soil respiration, the BME algorithm satisfactorily integrated soil temperature data into said spatial distribution. As a means of comparison, we also applied the Ordinary Kriging (OK) and Co-Kriging (Co-OK) methods. The results indicated that the root mean squared errors (RMSEs) and absolute values of bias for both Day 1 and Day 2 were the lowest for the BME method, thus demonstrating its higher estimation accuracy. Further, we compared the performance of the BME algorithm coupled with auxiliary information, namely soil temperature data, and the OK method without auxiliary information in the same study area for 9, 21, and 37 sampled points. The results showed that the RMSEs for the BME algorithm (0.972 and 1.193) were less than those for the OK method (1.146 and 1.539) when the number of sampled points was 9 and 37, respectively. This indicates that the former method using auxiliary information could reduce the required number of sampling points for studying spatial distribution of soil respiration. Thus, the BME algorithm, coupled with soil temperature data, can not only improve the accuracy of soil respiration spatial interpolation but can also reduce the number of sampling points. PMID:26807579

  10. Soil Tillage Management Affects Maize Grain Yield by Regulating Spatial Distribution Coordination of Roots, Soil Moisture and Nitrogen Status

    PubMed Central

    Wang, Xinbing; Zhou, Baoyuan; Sun, Xuefang; Yue, Yang; Ma, Wei; Zhao, Ming

    2015-01-01

    The spatial distribution of the root system through the soil profile has an impact on moisture and nutrient uptake by plants, affecting growth and productivity. The spatial distribution of the roots, soil moisture, and fertility are affected by tillage practices. The combination of high soil density and the presence of a soil plow pan typically impede the growth of maize (Zea mays L.).We investigated the spatial distribution coordination of the root system, soil moisture, and N status in response to different soil tillage treatments (NT: no-tillage, RT: rotary-tillage, SS: subsoiling) and the subsequent impact on maize yield, and identify yield-increasing mechanisms and optimal soil tillage management practices. Field experiments were conducted on the Huang-Huai-Hai plain in China during 2011 and 2012. The SS and RT treatments significantly reduced soil bulk density in the top 0–20 cm layer of the soil profile, while SS significantly decreased soil bulk density in the 20–30 cm layer. Soil moisture in the 20–50 cm profile layer was significantly higher for the SS treatment compared to the RT and NT treatment. In the 0-20 cm topsoil layer, the NT treatment had higher soil moisture than the SS and RT treatments. Root length density of the SS treatment was significantly greater than density of the RT and NT treatments, as soil depth increased. Soil moisture was reduced in the soil profile where root concentration was high. SS had greater soil moisture depletion and a more concentration root system than RT and NT in deep soil. Our results suggest that the SS treatment improved the spatial distribution of root density, soil moisture and N states, thereby promoting the absorption of soil moisture and reducing N leaching via the root system in the 20–50 cm layer of the profile. Within the context of the SS treatment, a root architecture densely distributed deep into the soil profile, played a pivotal role in plants’ ability to access nutrients and water. An

  11. Soil Tillage Management Affects Maize Grain Yield by Regulating Spatial Distribution Coordination of Roots, Soil Moisture and Nitrogen Status.

    PubMed

    Wang, Xinbing; Zhou, Baoyuan; Sun, Xuefang; Yue, Yang; Ma, Wei; Zhao, Ming

    2015-01-01

    The spatial distribution of the root system through the soil profile has an impact on moisture and nutrient uptake by plants, affecting growth and productivity. The spatial distribution of the roots, soil moisture, and fertility are affected by tillage practices. The combination of high soil density and the presence of a soil plow pan typically impede the growth of maize (Zea mays L.).We investigated the spatial distribution coordination of the root system, soil moisture, and N status in response to different soil tillage treatments (NT: no-tillage, RT: rotary-tillage, SS: subsoiling) and the subsequent impact on maize yield, and identify yield-increasing mechanisms and optimal soil tillage management practices. Field experiments were conducted on the Huang-Huai-Hai plain in China during 2011 and 2012. The SS and RT treatments significantly reduced soil bulk density in the top 0-20 cm layer of the soil profile, while SS significantly decreased soil bulk density in the 20-30 cm layer. Soil moisture in the 20-50 cm profile layer was significantly higher for the SS treatment compared to the RT and NT treatment. In the 0-20 cm topsoil layer, the NT treatment had higher soil moisture than the SS and RT treatments. Root length density of the SS treatment was significantly greater than density of the RT and NT treatments, as soil depth increased. Soil moisture was reduced in the soil profile where root concentration was high. SS had greater soil moisture depletion and a more concentration root system than RT and NT in deep soil. Our results suggest that the SS treatment improved the spatial distribution of root density, soil moisture and N states, thereby promoting the absorption of soil moisture and reducing N leaching via the root system in the 20-50 cm layer of the profile. Within the context of the SS treatment, a root architecture densely distributed deep into the soil profile, played a pivotal role in plants' ability to access nutrients and water. An optimal

  12. Soil Tillage Management Affects Maize Grain Yield by Regulating Spatial Distribution Coordination of Roots, Soil Moisture and Nitrogen Status.

    PubMed

    Wang, Xinbing; Zhou, Baoyuan; Sun, Xuefang; Yue, Yang; Ma, Wei; Zhao, Ming

    2015-01-01

    The spatial distribution of the root system through the soil profile has an impact on moisture and nutrient uptake by plants, affecting growth and productivity. The spatial distribution of the roots, soil moisture, and fertility are affected by tillage practices. The combination of high soil density and the presence of a soil plow pan typically impede the growth of maize (Zea mays L.).We investigated the spatial distribution coordination of the root system, soil moisture, and N status in response to different soil tillage treatments (NT: no-tillage, RT: rotary-tillage, SS: subsoiling) and the subsequent impact on maize yield, and identify yield-increasing mechanisms and optimal soil tillage management practices. Field experiments were conducted on the Huang-Huai-Hai plain in China during 2011 and 2012. The SS and RT treatments significantly reduced soil bulk density in the top 0-20 cm layer of the soil profile, while SS significantly decreased soil bulk density in the 20-30 cm layer. Soil moisture in the 20-50 cm profile layer was significantly higher for the SS treatment compared to the RT and NT treatment. In the 0-20 cm topsoil layer, the NT treatment had higher soil moisture than the SS and RT treatments. Root length density of the SS treatment was significantly greater than density of the RT and NT treatments, as soil depth increased. Soil moisture was reduced in the soil profile where root concentration was high. SS had greater soil moisture depletion and a more concentration root system than RT and NT in deep soil. Our results suggest that the SS treatment improved the spatial distribution of root density, soil moisture and N states, thereby promoting the absorption of soil moisture and reducing N leaching via the root system in the 20-50 cm layer of the profile. Within the context of the SS treatment, a root architecture densely distributed deep into the soil profile, played a pivotal role in plants' ability to access nutrients and water. An optimal

  13. Nano silver and nano zinc-oxide in surface waters - exposure estimation for Europe at high spatial and temporal resolution.

    PubMed

    Dumont, Egon; Johnson, Andrew C; Keller, Virginie D J; Williams, Richard J

    2015-01-01

    Nano silver and nano zinc-oxide monthly concentrations in surface waters across Europe were modeled at ~6 x 9 km spatial resolution. Nano-particle loadings from households to rivers were simulated considering household connectivity to sewerage, sewage treatment efficiency, the spatial distribution of sewage treatment plants, and their associated populations. These loadings were used to model temporally varying nano-particle concentrations in rivers, lakes and wetlands by considering dilution, downstream transport, water evaporation, water abstraction, and nano-particle sedimentation. Temporal variability in concentrations caused by weather variation was simulated using monthly weather data for a representative 31-year period. Modeled concentrations represent current levels of nano-particle production.Two scenarios were modeled. In the most likely scenario, half the river stretches had long-term average concentrations exceeding 0.002 ng L(-1) nano silver and 1.5 ng L(-1) nano zinc oxide. In 10% of the river stretches, these concentrations exceeded 0.18 ng L(-1) and 150 ng L(-1), respectively. Predicted concentrations were usually highest in July. PMID:25463731

  14. Nano silver and nano zinc-oxide in surface waters - exposure estimation for Europe at high spatial and temporal resolution.

    PubMed

    Dumont, Egon; Johnson, Andrew C; Keller, Virginie D J; Williams, Richard J

    2015-01-01

    Nano silver and nano zinc-oxide monthly concentrations in surface waters across Europe were modeled at ~6 x 9 km spatial resolution. Nano-particle loadings from households to rivers were simulated considering household connectivity to sewerage, sewage treatment efficiency, the spatial distribution of sewage treatment plants, and their associated populations. These loadings were used to model temporally varying nano-particle concentrations in rivers, lakes and wetlands by considering dilution, downstream transport, water evaporation, water abstraction, and nano-particle sedimentation. Temporal variability in concentrations caused by weather variation was simulated using monthly weather data for a representative 31-year period. Modeled concentrations represent current levels of nano-particle production.Two scenarios were modeled. In the most likely scenario, half the river stretches had long-term average concentrations exceeding 0.002 ng L(-1) nano silver and 1.5 ng L(-1) nano zinc oxide. In 10% of the river stretches, these concentrations exceeded 0.18 ng L(-1) and 150 ng L(-1), respectively. Predicted concentrations were usually highest in July.

  15. Zinc Speciation in Proximity to Phosphate Application Points in a Lead/Zinc Smelter-Contaminated Soil

    EPA Science Inventory

    The use of P to immobilize Pb in contaminated soils has been well documented. However, the influence of P on Zn speciation in soils has not been extensively examined, and these two metals often occur as co-contaminants. We hypothesized that additions of P to a Pb/Zn-contaminate...

  16. Application of spatial pedotransfer functions to understand soil modulation of vegetation response to climate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A fundamental knowledge gap in understanding land-atmosphere interactions is accurate, high resolution spatial representation of soil physical and hydraulic properties. We present a novel approach to predict hydraulic soil parameters by combining digital soil mapping techniques with pedotransfer fun...

  17. [Study on three-dimension spatial variability of regional soil salinity based on spectral indices].

    PubMed

    Liu, Guang-Ming; Wu, Ya-Kun; Yang, Jin-Song; Yu, Shi-Peng

    2013-10-01

    In order to illustrate the three-dimension spatial variability of soil salinity in central China flood area of the Yellow river, integrated soil sampling data and remote sensing data, spectral indices and inverse distance weighting (IDW) method were applied to the estimation and simulation of three-dimension spatial distribution of soil salinity. The study was carried out in typical central China flood area of the Yellow river in Fengqiu County, Henan Province, China. The electrical conductivity of the saturation extract (EC1: 5) of 505 soil samples collected at 101 points was measured. The results indicated that the coefficient of variation of soil salinity at each soil layer is from 0.218 to 0.324 and exhibited the moderate spatial variability. The average of soil electrical conductivity is from 0.121 to 0.154 ds x m(-1). The 2 820 three-dimension spatial scattered data for soil electrical conductivity were taken at soil salinity mapping interpreted by spectral indices and soil electrical conductivity. Three-dimension IDW interpolation showed that a large area of high soil salinity mainly located in the region of Tianran canal and the along of the Yellow river. The shape of the soil salinity profile was downward flowed, revealing soil salinity increasing with depth in whole soil profile and soil salinity accumulated in the subsoil. The accuracy of the predictions was tested using 20 soil sampled points. The root mean square error (RMSE) of calibration for three-dimension distribution of soil salinity showed that the IDW method based on spectral indices was ideal. The research results can provide theoretical foundations to the management and utilization of salt-affected land in China flood area, especially in the Yellow river zone.

  18. Distribution and fractionation of cadmium, copper, lead, nickel, and zinc in a calcareous sandy soil receiving municipal solid waste.

    PubMed

    Jalali, Mohsen; Arfania, Hamed

    2011-02-01

    This study was conducted to evaluate the degree of mobility and fractionation of cadmium (Cd), copper (Cu), lead (Pb), nickel (Ni), and zinc (Zn) after the addition of municipal solid sewage sludge (MSS) in a sandy calcareous soil. Treatments were (1) soil application of MSS, (2) soil application of enriched municipal solid waste compost (EMSS), and (3) control soil. The MSS application represented a dose of 200 Mg dry weight per hectare. Soil columns were incubated at room temperature for 15 days and irrigated daily with deionized water to make a total of 505 mm. At the end of leaching experiments, soil samples from each column were divided into 14 layers, each being 1 cm down to 10 and 2.5 cm below that and analyzed for diethylenetriaminepentaacetic acid (DTPA)-extractable Cd, Cu, Pb, Ni, and Zn. The fractionation of the heavy metals in the top five layers of the surface soil samples was investigated by the sequential extraction method. All soil layers of the columns receiving MSS and EMSS had significantly higher concentrations of DTPA-extractable heavy metals than control soil. The maximum concentration of heavy metals in treated soil was in the surface layer and declined significantly with depth. Sequential extraction results showed that in the treated soil, a major proportion of Cd, Pb, and Ni was associated with organic matter (OM) and exchangeable (EXCH) fractions, and a major proportion of Cu and Zn was associated with residual (RES) and OM fractions. Based on relative percent, Pb, Cd, and Ni in the EXCH fraction was higher than Cu and Zn in soil leached with MSS and EMSS, suggesting that application of this MSS to a sandy calcareous soil, at the loading rate used here, may pose a risk in terms of groundwater contamination with Pb, Cd, and Ni.

  19. Modeling spatial variation in microbial degradation of pesticides in soil.

    PubMed

    Ghafoor, Abdul; Moeys, Julien; Stenström, John; Tranter, Grant; Jarvis, Nicholas J

    2011-08-01

    Currently, no general guidance is available on suitable approaches for dealing with spatial variation in the first-order pesticide degradation rate constant k even though it is a very sensitive parameter and often highly variable at the field, catchment, and regional scales. Supported by some mechanistic reasoning, we propose a simple general modeling approach to predict k from the sorption constant, which reflects bioavailability, and easily measurable surrogate variables for microbial biomass/activity (organic carbon and clay contents). The soil depth was also explicitly included as an additional predictor variable. This approach was tested in a meta-analysis of available literature data using bootstrapped partial least-squares regression. It explained 73% of the variation in k for the 19 pesticide-study combinations (n = 212) in the database. When 4 of the 19 pesticide-study combinations were excluded (n = 169), the approach explained 80% of the variation in the degradation rate constant. We conclude that the approach shows promise as an effective way to account for the effects of bioavailability and microbial activity on microbial pesticide degradation in large-scale model applications. PMID:21682283

  20. Copper and zinc uptake by rice and accumulation in soil amended with municipal solid waste compost

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, P.; Chakraborty, A.; Chakrabarti, K.; Tripathy, S.; Powell, M. A.

    2006-04-01

    Effect of addition of municipal solid waste compost (MSWC) on two metals viz. copper (Cu) and zinc (Zn) contents of submerged rice paddies were studied. Experiments were conducted during the three consecutive wet seasons from 1997 to 1999 on rice grown under submergence, at the Experimental Farm of Calcutta University, India. A sequential extraction method was used to determine the metal (Cu and Zn) fractions in MSWC and cow dung manure (CDM). Both metals were significantly bound to the organic matter and Fe and Mn oxides in MSWC and CDM. Metal content in rice straw was higher than in rice grain. Metal bound with Fe and Mn oxides in MSWC and CDM best correlated with straw and grain metal followed by exchangeable and water soluble fractions. Carbonate, organic matter bound and residual fractions in MSWC and CDM did not significantly correlate with rice straw and grain metal. The MSWC would be a valuable resource for agriculture if it can be used safely, but long-term field experiments with MSWC are needed to assess by regular monitoring of the metal loads and accumulation in soil and plants.

  1. Application of sequential extraction analysis to electrokinetic remediation of cadmium, nickel and zinc from contaminated soils.

    PubMed

    Giannis, Apostolos; Pentari, Despina; Wang, Jing-Yuan; Gidarakos, Evangelos

    2010-12-15

    An enhanced electrokinetic process for the removal of cadmium (Cd), nickel (Ni) and zinc (Zn) from contaminated soils was performed. The efficiency of the chelate agents nitrilotriacetic acid (NTA), diethylenetriaminepentaacetic acid (DTPA) and diaminocycloexanetetraacetic acid (DCyTA) was examined under constant potential gradient (1.23 V/cm). The results showed that chelates were effective in desorbing metals at a high pH, with metal-chelate anion complexes migrating towards the anode. At low pH, metals existing as dissolved cations migrated towards the cathode. In such conflicting directions, the metals accumulated in the middle of the cell. Speciation of the metals during the electrokinetic experiments was performed to provide an understanding of the distribution of the Cd, Ni and Zn. The results of sequential extraction analysis revealed that the forms of the metals could be altered from one fraction to another due to the variation of physico-chemical conditions throughout the cell, such as pH, redox potential and the chemistry of the electrolyte solution during the electrokinetic treatment. It was found that binding forms of metals were changed from the difficult type to easier extraction type. PMID:20833468

  2. Spatial Patterns and Risk Assessment of Heavy Metals in Soils in a Resource-Exhausted City, Northeast China

    PubMed Central

    Chen, Hongwei; An, Jing; Wei, Shuhe; Gu, Jian

    2015-01-01

    Northeast China is an intensive area of resource-exhausted city, which is facing the challenges of industry conversion and sustainable development. In order to evaluate the soil environmental quality influenced by mining activities over decades, the concentration and spatial distribution of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and Zinc (Zn) in surface soils (0-20cm) of a typical resource-exhausted city were investigated by analyzing 306 soil samples. The results showed that the average concentrations in the samples were 6.17 mg/kg for As, 0.19 mg/kg for Cd, 51.08 mg/kg for Cr, 23.27 mg/kg for Cu, 31.15 mg/kg for Ni, 22.17 mg/kg for Pb, and 54.21 mg/kg for Zn. Metals distribution maps produced by using the inverse distance weighted interpolation method and results revealed that all investigated metals showed distinct geographical patterns, and the concentrations were higher in urban and industrial areas than in farmland. Pearson correlation and principal component analysis showed that there were significant positive correlations (p<0.05) between all of the metals, and As, Cd, Cr, Mn, Ni, Pb, and Zn were closely associated with the first principal component (PC1), which explained 39.81% of the total variance. Cu and As were mainly associated with the second component (PC2). Based on the calculated Nemerow pollution index, percentage for slightly polluted (1

    soils were reached 57.33%, while 42.65% topsoil samples are moderate polluted (2soil environmental function areas were classified and proper soil environmental management policy was proposed to decrease the environmental risks in the process of industrial city transformation. PMID:26413806

  3. Spatial Patterns and Risk Assessment of Heavy Metals in Soils in a Resource-Exhausted City, Northeast China.

    PubMed

    Chen, Hongwei; An, Jing; Wei, Shuhe; Gu, Jian

    2015-01-01

    Northeast China is an intensive area of resource-exhausted city, which is facing the challenges of industry conversion and sustainable development. In order to evaluate the soil environmental quality influenced by mining activities over decades, the concentration and spatial distribution of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and Zinc (Zn) in surface soils (0-20cm) of a typical resource-exhausted city were investigated by analyzing 306 soil samples. The results showed that the average concentrations in the samples were 6.17 mg/kg for As, 0.19 mg/kg for Cd, 51.08 mg/kg for Cr, 23.27 mg/kg for Cu, 31.15 mg/kg for Ni, 22.17 mg/kg for Pb, and 54.21 mg/kg for Zn. Metals distribution maps produced by using the inverse distance weighted interpolation method and results revealed that all investigated metals showed distinct geographical patterns, and the concentrations were higher in urban and industrial areas than in farmland. Pearson correlation and principal component analysis showed that there were significant positive correlations (p<0.05) between all of the metals, and As, Cd, Cr, Mn, Ni, Pb, and Zn were closely associated with the first principal component (PC1), which explained 39.81% of the total variance. Cu and As were mainly associated with the second component (PC2). Based on the calculated Nemerow pollution index, percentage for slightly polluted (1

    soils were reached 57.33%, while 42.65% topsoil samples are moderate polluted (2soil environmental function areas were classified and proper soil environmental management policy was proposed to decrease the environmental risks in the process of industrial city transformation.

  4. Spatial Patterns and Risk Assessment of Heavy Metals in Soils in a Resource-Exhausted City, Northeast China.

    PubMed

    Chen, Hongwei; An, Jing; Wei, Shuhe; Gu, Jian

    2015-01-01

    Northeast China is an intensive area of resource-exhausted city, which is facing the challenges of industry conversion and sustainable development. In order to evaluate the soil environmental quality influenced by mining activities over decades, the concentration and spatial distribution of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and Zinc (Zn) in surface soils (0-20cm) of a typical resource-exhausted city were investigated by analyzing 306 soil samples. The results showed that the average concentrations in the samples were 6.17 mg/kg for As, 0.19 mg/kg for Cd, 51.08 mg/kg for Cr, 23.27 mg/kg for Cu, 31.15 mg/kg for Ni, 22.17 mg/kg for Pb, and 54.21 mg/kg for Zn. Metals distribution maps produced by using the inverse distance weighted interpolation method and results revealed that all investigated metals showed distinct geographical patterns, and the concentrations were higher in urban and industrial areas than in farmland. Pearson correlation and principal component analysis showed that there were significant positive correlations (p<0.05) between all of the metals, and As, Cd, Cr, Mn, Ni, Pb, and Zn were closely associated with the first principal component (PC1), which explained 39.81% of the total variance. Cu and As were mainly associated with the second component (PC2). Based on the calculated Nemerow pollution index, percentage for slightly polluted (1

    soils were reached 57.33%, while 42.65% topsoil samples are moderate polluted (2soil environmental function areas were classified and proper soil environmental management policy was proposed to decrease the environmental risks in the process of industrial city transformation. PMID:26413806

  5. Analysis of Pollution Hazard Intensity: A Spatial Epidemiology Case Study of Soil Pb Contamination

    PubMed Central

    Ha, Hoehun; Rogerson, Peter A.; Olson, James R.; Han, Daikwon; Bian, Ling; Shao, Wanyun

    2016-01-01

    Heavy industrialization has resulted in the contamination of soil by metals from anthropogenic sources in Anniston, Alabama. This situation calls for increased public awareness of the soil contamination issue and better knowledge of the main factors contributing to the potential sources contaminating residential soil. The purpose of this spatial epidemiology research is to describe the effects of physical factors on the concentration of lead (Pb) in soil in Anniston AL, and to determine the socioeconomic and demographic characteristics of those residing in areas with higher soil contamination. Spatial regression models are used to account for spatial dependencies using these explanatory variables. After accounting for covariates and multicollinearity, results of the analysis indicate that lead concentration in soils varies markedly in the vicinity of a specific foundry (Foundry A), and that proximity to railroads explained a significant amount of spatial variation in soil lead concentration. Moreover, elevated soil lead levels were identified as a concern in industrial sites, neighborhoods with a high density of old housing, a high percentage of African American population, and a low percent of occupied housing units. The use of spatial modelling allows for better identification of significant factors that are correlated with soil lead concentrations. PMID:27649221

  6. Analysis of Pollution Hazard Intensity: A Spatial Epidemiology Case Study of Soil Pb Contamination.

    PubMed

    Ha, Hoehun; Rogerson, Peter A; Olson, James R; Han, Daikwon; Bian, Ling; Shao, Wanyun

    2016-09-14

    Heavy industrialization has resulted in the contamination of soil by metals from anthropogenic sources in Anniston, Alabama. This situation calls for increased public awareness of the soil contamination issue and better knowledge of the main factors contributing to the potential sources contaminating residential soil. The purpose of this spatial epidemiology research is to describe the effects of physical factors on the concentration of lead (Pb) in soil in Anniston AL, and to determine the socioeconomic and demographic characteristics of those residing in areas with higher soil contamination. Spatial regression models are used to account for spatial dependencies using these explanatory variables. After accounting for covariates and multicollinearity, results of the analysis indicate that lead concentration in soils varies markedly in the vicinity of a specific foundry (Foundry A), and that proximity to railroads explained a significant amount of spatial variation in soil lead concentration. Moreover, elevated soil lead levels were identified as a concern in industrial sites, neighborhoods with a high density of old housing, a high percentage of African American population, and a low percent of occupied housing units. The use of spatial modelling allows for better identification of significant factors that are correlated with soil lead concentrations.

  7. Analysis of Pollution Hazard Intensity: A Spatial Epidemiology Case Study of Soil Pb Contamination.

    PubMed

    Ha, Hoehun; Rogerson, Peter A; Olson, James R; Han, Daikwon; Bian, Ling; Shao, Wanyun

    2016-01-01

    Heavy industrialization has resulted in the contamination of soil by metals from anthropogenic sources in Anniston, Alabama. This situation calls for increased public awareness of the soil contamination issue and better knowledge of the main factors contributing to the potential sources contaminating residential soil. The purpose of this spatial epidemiology research is to describe the effects of physical factors on the concentration of lead (Pb) in soil in Anniston AL, and to determine the socioeconomic and demographic characteristics of those residing in areas with higher soil contamination. Spatial regression models are used to account for spatial dependencies using these explanatory variables. After accounting for covariates and multicollinearity, results of the analysis indicate that lead concentration in soils varies markedly in the vicinity of a specific foundry (Foundry A), and that proximity to railroads explained a significant amount of spatial variation in soil lead concentration. Moreover, elevated soil lead levels were identified as a concern in industrial sites, neighborhoods with a high density of old housing, a high percentage of African American population, and a low percent of occupied housing units. The use of spatial modelling allows for better identification of significant factors that are correlated with soil lead concentrations. PMID:27649221

  8. Enzyme activity as an indicator of soil-rehabilitation processes at a zinc and lead ore mining and processing area.

    PubMed

    Ciarkowska, Krystyna; Sołek-Podwika, Katarzyna; Wieczorek, Jerzy

    2014-01-01

    The activities of soil enzymes in relation to the changes occurring in the soil on a degraded area in southern Poland after zinc and lead mining were analyzed. An evaluation of the usefulness of urease and invertase activities for estimating the progress of the rehabilitation processes in degraded soil was performed. The data show that the soil samples differed significantly in organic carbon (0.68-104.0 g kg(-1)) and total nitrogen (0.03-8.64 g kg(-1)) content in their surface horizons. All of the soil samples (apart from one covered with forest) had very high total concentrations of zinc (4050-10,884 mg kg(-1)), lead (959-6661 mg kg(-1)) and cadmium (24.4-174.3 mg kg(-1)) in their surface horizons, and similar concentrations in their deeper horizons. Nevertheless, the amounts of the soluble forms of the above-mentioned heavy metals were quite low and they accounted for only a small percentage of the total concentrations: 1.4% for Zn, 0.01% for Pb and 2.6% for Cd. Urease activities were ranked as follows: soil from flotation settler (0.88-1.78 μg N-NH4(+) 2h(-1) g(-1))<soil from old slag heaps (1.77-2.51 μg N-NH4(+) 2h(-1) g(-1))<soil undisturbed by mining activity (2.14-5.73 μg N-NH4(+) 2h(-1) g(-1)). Invertase activities were similar in soil that was undisturbed by mining and in soil from old slag heaps, ranging from 20.5 to 77.1mg of the inverted sugar, but they were much lower in soil from the flotation settler (0.12-6.95 mg of the inverted sugar). The results demonstrated that heavy pollution with Zn, Pb and Cd slightly decreased the activities of urease and invertase. It is thought that it resulted from the enzyme reactions occurring in slightly acidic or alkaline soil conditions. Under such conditions, heavy metals occur mainly in insoluble forms. The activities of these enzymes are strongly dependent on the content and decomposition of organic matter in the soil.

  9. [Study of spatial interpolation of soil Cd contents in sewage irrigated area based on soil spectral information assistance].

    PubMed

    Chen, Tao; Chang, Qing-Rui; Liu, Jing

    2013-08-01

    To acquire the accuracy distribution information of soil heavy metal, improving interpolation precision is very important for agricultural safety production and soil environment protection. In the present study, the spatial variation and Cokriging interpolation of soil Cd was studied in a sewage irrigation area. Fifty two soil samples were collected to measure the contents of soil total Cd (TCd), available Cd (ACd), pH, organic matter (OM), iron oxide (Fe2 O3) and soil reflection spectrum. Through correlation analysis, it was found that TCd and ACd had a significant correlation with soil first-order differential spectrum (-0.585** at 759 nm and -0.551** at 719 nm, respectively), which were much higher than the correlation coefficients between soil Cd contents and other environmental variables (pH, OM and Fe2O3). The spatial patterns of soil Cd were predicted by Cokriging which used soil first-order differential spectrum as covariate. Compared with the Kriging, the root-mean-square error decreased by 8.22% for TCd and 20.09% for ACd, respectively; the correlation coefficients between the predicted values and measured values increased by 27.45% for TCd and by 53.13% for ACd, respectively. Meanwhile, the prediction accuracy improved by Cokriging with soil spectrum as covariate was still higher than by Cokriging with soil environment variables (OM and Fe2O3). Therefore, it was found that Cokriging was a more accurate interpolation method which could provide more precise distribution information of soil heavy metal. At the same time, soil reflection spectrum was shown to be more economic, time-saving and easier to acquire than these usual environment variables, which indicated that soil spectrum information is more suited as a covariate used in Cokriging.

  10. Spatial heterogeneity of plant-soil feedback affects root interactions and interspecific competition.

    PubMed

    Hendriks, Marloes; Ravenek, Janneke M; Smit-Tiekstra, Annemiek E; van der Paauw, Jan Willem; de Caluwe, Hannie; van der Putten, Wim H; de Kroon, Hans; Mommer, Liesje

    2015-08-01

    Plant-soil feedback is receiving increasing interest as a factor influencing plant competition and species coexistence in grasslands. However, we do not know how spatial distribution of plant-soil feedback affects plant below-ground interactions. We investigated the way in which spatial heterogeneity of soil biota affects competitive interactions in grassland plant species. We performed a pairwise competition experiment combined with heterogeneous distribution of soil biota using four grassland plant species and their soil biota. Patches were applied as quadrants of 'own' and 'foreign' soils from all plant species in all pairwise combinations. To evaluate interspecific root responses, species-specific root biomass was quantified using real-time PCR. All plant species suffered negative soil feedback, but strength was species-specific, reflected by a decrease in root growth in own compared with foreign soil. Reduction in root growth in own patches by the superior plant competitor provided opportunities for inferior competitors to increase root biomass in these patches. These patterns did not cascade into above-ground effects during our experiment. We show that root distributions can be determined by spatial heterogeneity of soil biota, affecting plant below-ground competitive interactions. Thus, spatial heterogeneity of soil biota may contribute to plant species coexistence in species-rich grasslands. PMID:25871977

  11. Spatial heterogeneity of plant-soil feedback affects root interactions and interspecific competition.

    PubMed

    Hendriks, Marloes; Ravenek, Janneke M; Smit-Tiekstra, Annemiek E; van der Paauw, Jan Willem; de Caluwe, Hannie; van der Putten, Wim H; de Kroon, Hans; Mommer, Liesje

    2015-08-01

    Plant-soil feedback is receiving increasing interest as a factor influencing plant competition and species coexistence in grasslands. However, we do not know how spatial distribution of plant-soil feedback affects plant below-ground interactions. We investigated the way in which spatial heterogeneity of soil biota affects competitive interactions in grassland plant species. We performed a pairwise competition experiment combined with heterogeneous distribution of soil biota using four grassland plant species and their soil biota. Patches were applied as quadrants of 'own' and 'foreign' soils from all plant species in all pairwise combinations. To evaluate interspecific root responses, species-specific root biomass was quantified using real-time PCR. All plant species suffered negative soil feedback, but strength was species-specific, reflected by a decrease in root growth in own compared with foreign soil. Reduction in root growth in own patches by the superior plant competitor provided opportunities for inferior competitors to increase root biomass in these patches. These patterns did not cascade into above-ground effects during our experiment. We show that root distributions can be determined by spatial heterogeneity of soil biota, affecting plant below-ground competitive interactions. Thus, spatial heterogeneity of soil biota may contribute to plant species coexistence in species-rich grasslands.

  12. Spatial distributions and potential risk analysis of total soil selenium in Guangdong Province, China.

    PubMed

    Zhang, H H; Wu, Z F; Yang, C L; Xia, B; Xu, D R; Yuan, H X

    2008-01-01

    A total of 260 soil profiles were examined to investigate the spatial distribution of total soil selenium (Se) in Guangdong province, China. In the investigated area, the soil Se concentrations follow an approximately lognormal distribution. The soil Se geometric mean concentration of 0.23 mg kg(-1) is higher than that of Chinese soils; however, Se concentration varies over the study area. The baseline concentration of 0.13 to 0.41 mg kg(-1) indicates that the soil Se concentration is mostly in the range of deficiency to medium level for surface soils in Guangdong province. In A-, B-, and C-horizon, soil Se spatial distribution is correlated with the nature of the parent material, with high Se concentration mainly located in limestone and sandshale areas and low Se concentration associated with purple shale and granite areas. The spatial distribution pattern of soil Se concentrations suggests that potential Se deficiency may be an issue for human health in this province. Moreover, due to soil degradation and erosion, calculated soil Se exported into surrounding waters could reach approximately 23,000 kg yr(-1) in the study area.

  13. Spatial characterization of soil properties and influence in soil formation in oak-grassland of Sierra Morena, S Spain

    NASA Astrophysics Data System (ADS)

    Román-Sánchez, Andrea; Cáceres, Francisco; Pédèches, Remi; Giráldez Cervera, Juan Vicente; Vanwalleghem, Tom

    2016-04-01

    The Mediterranean oak-grassland ecosystem is very important for the rural economy and for the biodiversity of south-western European countries like Spain and Portugal. Nevertheless these ecosystems are not well characterized especially their soils. In this report soil carbon has been evaluated and related to other properties. The principal factors controlling the structure, productivity and evolution of forest ecosystems are bedrock, climate, relief, vegetation and time. Soil carbon has an important influence in the soil and ecosystem structures. The purpose of this study is to determine the relationship between relief, soil properties, spatial distribution of soil carbon and their influence in soil formation and geomorphology. This work is part of another study which aims to elucidate the processes involved in the soil formation and to examine their behaviour on long-term with a modelling. In our study area, located in oak-grassland of Sierra Morena, in Cordoba, S Spain, have been studied 67 points at 6 depths in 262 hectares in order to determine carbon content varying between 0-6%, soil properties such as soil depth between 0-4 m, horizon depth and the rocks amount in surface. The relationship between the soil carbon, soil properties and the relief characteristic like slope, aspect, curvature can shed light the processes that affect the mechanisms of bedrock weathering and their interrelationship with geomorphological processes.

  14. Analysis of Large Scale Spatial Variability of Soil Moisture Using a Geostatistical Method

    PubMed Central

    Lakhankar, Tarendra; Jones, Andrew S.; Combs, Cynthia L.; Sengupta, Manajit; Vonder Haar, Thomas H.; Khanbilvardi, Reza

    2010-01-01

    Spatial and temporal soil moisture dynamics are critically needed to improve the parameterization for hydrological and meteorological modeling processes. This study evaluates the statistical spatial structure of large-scale observed and simulated estimates of soil moisture under pre- and post-precipitation event conditions. This large scale variability is a crucial in calibration and validation of large-scale satellite based data assimilation systems. Spatial analysis using geostatistical approaches was used to validate modeled soil moisture by the Agriculture Meteorological (AGRMET) model using in situ measurements of soil moisture from a state-wide environmental monitoring network (Oklahoma Mesonet). The results show that AGRMET data produces larger spatial decorrelation compared to in situ based soil moisture data. The precipitation storms drive the soil moisture spatial structures at large scale, found smaller decorrelation length after precipitation. This study also evaluates the geostatistical approach for mitigation for quality control issues within in situ soil moisture network to estimates at soil moisture at unsampled stations. PMID:22315576

  15. Influence of pH on the toxic effects of zinc, cadmium, and pentachlorophenol on pure cultures of soil microorganisms

    SciTech Connect

    Beelen, P. van; Fleuren-Kemilae, A.K.

    1997-02-01

    In this study the effect of acidification of soil pore water on the uptake and toxicity of cationic and anionic pollutants was measured in an experimental model system. The influence of pH on the toxic effects of zinc, cadmium, and pentachlorophenol was studied in buffered suspensions of pure cultures of soil microorganisms. In this system the speciation of the toxicant, the pH, and the biomass are defined, constant, and thus easier to study than in a system with the solid soil matrix and pore water. The mineralization of [{sup 14}C]acetate to {sup 14}CO{sub 2} was used to measure the toxic effects of pollutants on a fungus (Aspergillus niger CBS 121.49), an actinomycete (Streptomyces lividans 66), two Gram-negative Pseudomonas putida strains (MT-2 and DSM 50026), and a gram-positive strain (Rhodococcus erythropolis A177). Large differences in sensitivity were observed between the species. For pentachlorophenol the highest EC50 was 81 mg/L for Pseudomonas putida at pH 8, whereas the lowest was 0.13 mg/L for Aspergillus niger at pH 6. Aspergillus niger was not sensitive to 1,000 mg Zn/L, whereas Pseudomonas putida at pH 7.8 showed the lowest EC50, 0.14 mg Zn/L. When pH was increased, pentachlorophenol became less toxic and showed less sorption to the biomass, whereas zinc and cadmium became more toxic and showed more sorption to the biomass. The results indicate that higher pore-water concentrations due to acidification of zinc- and cadmium-polluted soils may not be accompanied by increased toxic effects on microorganisms because of the relatively low toxicity of these metals in pore water at low pH.

  16. [Spatial heterogeneity of soil organic matter and its response to disturbance in karst peak cluster depressions].

    PubMed

    Ouyang, Zi-Wen; Peng, Wan-Xia; Song, Tong-Qing; Zeng, Fu-Ping; Wang, Ke-Lin; Guan, Xin; Wu, Hai-Yong

    2009-06-01

    By using geostatistic methods, this paper studied the spatial variation and distribution of soil organic matter as well as its ecological processes and related mechanisms in four typical disturbed areas (cropland, man-made forest, secondary forest, and primary forest) of karst peak cluster depressions in northwest Guangxi of China. Eighty soil samples (0-20 cm) were collected from an aligned grid of 10 m x 10 m for the analysis of soil organic matter. The soil organic matter content increased significantly (P < 0.05) with the decrease of disturbance and the vegetation succession from crop to man-made forest to secondary forest to primary forest. Soil organic matter content had good spatial autocorrelation in all of the four typical disturbed areas, but its spatial heterogeneity differed. Gaussian model fitted best to the semivariance functions of soil organic matter content in the study areas except secondary forest area where exponential model fitted well. In cropland area, the spatial autocorrelation of soil organic matter was at medium level, with the C0/(C0 + C) being 26.5%; while in the other three areas, the spatial autocorrelation was at high level, with the C0/(C0 + C) being 9.0%-22.6%. The range and scale of the spatial autocorrelation of soil organic matter in cropland and man-made forest areas were larger than those in the other two areas, possibly due to the strong human disturbance and the homogeneity of low energy. The range of the spatial autocorrelation of soil organic matter in primary forest area was large due to the high vegetation coverage, while that in secondary forest area was the lowest due to the diverse vegetation communities and their uneven distribution. The low fractal value (D) of semivariance functions of soil organic matter in man-made forest and primary forest areas suggested that a strong spatial dependence existed, while the high D in cropland and secondary forest areas suggested a great random variance of spatial distribution of

  17. Temporal changes of spatial soil moisture patterns: controlling factors explained with a multidisciplinary approach

    NASA Astrophysics Data System (ADS)

    Martini, Edoardo; Wollschläger, Ute; Kögler, Simon; Behrens, Thorsten; Dietrich, Peter; Reinstorf, Frido; Schmidt, Karsten; Weiler, Markus; Werban, Ulrike; Zacharias, Steffen

    2016-04-01

    Characterizing the spatial patterns of soil moisture is critical for hydrological and meteorological models, as soil moisture is a key variable that controls matter and energy fluxes and soil-vegetation-atmosphere exchange processes. Deriving detailed process understanding at the hillslope scale is not trivial, because of the temporal variability of local soil moisture dynamics. Nevertheless, it remains a challenge to provide adequate information on the temporal variability of soil moisture and its controlling factors. Recent advances in wireless sensor technology allow monitoring of soil moisture dynamics with high temporal resolution at varying scales. In addition, mobile geophysical methods such as electromagnetic induction (EMI) have been widely used for mapping soil water content at the field scale with high spatial resolution, as being related to soil apparent electrical conductivity (ECa). The objective of this study was to characterize the spatial and temporal pattern of soil moisture at the hillslope scale and to infer the controlling hydrological processes, integrating well established and innovative sensing techniques, as well as new statistical methods. We combined soil hydrological and pedological expertise with geophysical measurements and methods from digital soil mapping for designing a wireless soil moisture monitoring network. For a hillslope site within the Schäfertal catchment (Central Germany), soil water dynamics were observed during 14 months, and soil ECa was mapped on seven occasions whithin this period of time using an EM38-DD device. Using the Spearman rank correlation coefficient, we described the temporal persistence of a dry and a wet characteristic state of soil moisture as well as the switching mechanisms, inferring the local properties that control the observed spatial patterns and the hydrological processes driving the transitions. Based on this, we evaluated the use of EMI for mapping the spatial pattern of soil moisture under

  18. Linking spatial patterns of soil redistribution traced with 137Cs and soil nutrients in a Mediterranean mountain agroecosystem (NE Spain)

    NASA Astrophysics Data System (ADS)

    Quijano, Laura; Gaspar, Leticia; Navas, Ana

    2016-04-01

    Mediterranean mountain agroecosystems are prone to soil loss mainly due to the accelerated erosion as a consequence of human induced changes from agriculture and grazing practices over the last centuries and the climatic conditions (i.e. irregular and scarce precipitations and drought periods). Soil erosion leads to soil degradation inducing the loss of soil functions. The progressive decline of soil functions thereof soil quality is associated to a decrease of soil productivity and can threat the sustainability of cultivated soils. The use of fallout 137Cs as a soil movement tracer provides useful data to identify areas where loss and gain of 137Cs occurs and that of soil. This study aims to address soil movement and soil nutrient dynamics closely related to the status of soil degradation. A rain-fed cereal field (1.6 ha) representative of Mediterranean mountain agricultural landscapes (42°25'41''N 1°13'8''W) was selected to examine the effects of soil redistribution processes on the spatial variability of soil organic carbon (SOC) and nitrogen (SON) and their relationships with soil properties and topographic characteristics. From the hydrological point of view, the field is isolated due to the effect of landscape features and man-made structures. Climate is continental Mediterranean with an average annual rainfall of 500 mm and soils are Calcisols. The reference inventories of 137Cs and soil nutrients were established from 21 soil samples collected in nearby undisturbed areas under typical Mediterranean vegetation cover. A total of 156 bulk soil samples (30-50 cm depth) and 156 topsoil samples (5 cm) were collected on a 10 m grid. 137Cs and soil nutrients loss and gain areas were identified by comparing the reference inventories with the values of inventories at the sampling points. A new approach to characterize and measure active (ACF) and stable (SCF) carbon fraction contents by using a dry combustion method based on the oxidation temperature of carbon

  19. A study on zinc distribution in calcareous soils for cowpea (Vigna Unguiculata L.) and barely ( Hordeum Vulgare L.)

    NASA Astrophysics Data System (ADS)

    Boroomand, Naser; Maleki, Mohammad Reza

    2010-05-01

    Compared to other cereals, such as wheat and barley cultivars which have low sensitivity to Zn deficiency, cowpea is sensitive to zinc (Zn) deficiency, however it extensively grows even in soils with deficient in Zn. A 8-week greenhouse experiment was conducted to study the response of cowpea and barely to Zn in calcareous soils with different DTPA- Zn. The soil samples were taken from soil surface up to 0.3 m in which their DTPA- Zn ranged from 0.5 to 3.5 mg kg-1. Shoot dry matter, concentration and uptake of Zn were found to be significantly correlated with soil DTPA- Zn in cowpea and barely. Critical deficiency level of Zn in cowpea was 1.3 mg kg-1 in soil and 28.5 mg kg-1 in shoot dry matter, however, to barely symptoms of Zn deficiency was not observed and concentration of Zn was higher than the critical level reported in literatures. Organic carbon (OC), calcium carbonate equivalent (CCE), pH and field capacity soil moisture content(FC) were significantly correlated with plant responses to Zn which were the most influenced characteristics to Zn uptake by plants.

  20. Directional reflectance factors for monitoring spatial changes in soil surface structure and soil organic matter erosion in agricultural systems

    NASA Astrophysics Data System (ADS)

    Croft, H.; Anderson, K.

    2012-04-01

    Soils can experience rapid structural degradation in response to land cover changes, resulting in reduced soil productivity, increased erodibility and a loss of soil organic matter (SOM). The breakdown of soil aggregates through slaking and raindrop impact is linked to organic matter turnover, with subsequently eroded material often displaying proportionally more SOM. A reduction in aggregate stability is reflected in a decline in soil surface roughness (SSR), indicating that a soil structural change can be used to highlight soil vulnerability to SOM loss through mineralisation or erosion. Accurate, spatially-continuous measurements of SSR are therefore needed at a variety of spatial and temporal scales to understand the spatial nature of SOM erosion and deposition. Remotely-sensed data can provide a cost-effective means of monitoring changes in soil surface condition over broad spatial extents. Previous work has demonstrated the ability of directional reflectance factors to monitor soil crusting within a controlled laboratory experiment, due to changes in the levels of self-shadowing effects by soil aggregates. However, further research is needed to test this approach in situ, where other soil variables may affect measured reflectance factors and to investigate the use of directional reflectance factors for monitoring soil erosion processes. This experiment assesses the potential of using directional reflectance factors to monitor changes in SSR, aggregate stability and soil organic carbon (SOC) content for two agricultural conditions. Five soil plots representing tilled and seedbed soils were subjected to different durations of natural rainfall, producing a range of different levels of SSR. Directional reflectance factors were measured concomitantly with sampling for soil structural and biochemical tests at each soil plot. Soil samples were taken to measure aggregate stability (wet sieving), SOC (loss on ignition) and soil moisture (gravimetric method). SSM

  1. Spatial variability of the properties of marsh soils and their impact on vegetation

    NASA Astrophysics Data System (ADS)

    Sidorova, V. A.; Svyatova, E. N.; Tseits, M. A.

    2015-03-01

    Spatial variability of the properties of soils and the character of vegetation was studied on seacoasts of the Velikii Island in the Kandalaksha Bay of the White Sea. It was found that the chemical and physicochemical properties of marsh soils (Tidalic Fluvisols) are largely dictated by the distance from the sea and elevation of the sampling point above sea level. The spatial distribution of the soil properties is described by a quadratic trend surface. With an increase in the distance from the sea, the concentration of ions in the soil solution decreases, and the organic carbon content and soil acidity become higher. The spatial dependence of the degree of variability in the soil properties is moderate. Regular changes in the soil properties along the sea-land gradient are accompanied by the presence of specific spatial patterns related to the system of temporary water streams, huge boulders, and beached heaps of sea algae and wood debris. The cluster analysis made it possible to distinguish between five soil classes corresponding to the following plant communities: barren surface (no permanent vegetation), clayey-sandy littoral with sparse halophytes, marsh with large rhizomatous grasses, and grass-forb-bunchberry vegetation of forest margins. The subdivision into classes is especially distinct with respect to the concentration of chloride ions. The following groups of factors affect the distribution of vegetation: the composition of the soil solution, the height above sea level, the pH of water suspensions, and the humus content.

  2. Contamination of the O2 soil horizon by zinc smelting and its effect on woodlouse survival

    USGS Publications Warehouse

    Beyer, W.N.; Miller, G.W.; Cromartie, E.J.

    1984-01-01

    Samples of litter from the 02 horizon of Dekalb soil (loamyskeletal, mixed, mesic Typic Dystrochrept) were collected from 18 ridgetop sites on a transect that ran by two Zn smelters in Palmerton, Pa. Metal concentrations increased by regular gradations from a minimum at a site 105 km west of the smelters (67 mg/kg Zn, 0.85 mg/kg Cd, 150 mg/kg Pb, 11 mg/kg Cu) to a maximum 1.2 km east of the smelters (35,000 mg/kg Zn, 1300 mg/kg Cd, 3200 mg/kg Pb, 280 mg/kg Cu), and then decreased until they reached an eastern minimum at the easternmost site, 19 km from the smelters. An increase in the P concentrations near the smelters showed that the emissions were disrupting nutrient flow through the ecosystem. An increase in the pH near the smelters was attributed to the high concentrations of Zn. The log of the distance of the sites from the smelters was significantly correlated (r = - 0.80, p < 0.05) with the mortality of woodlice (Porcellio scaber Latreille} fed samples of the litter during an 8-week test. There was substantial mortality of woodlice observed even in the 02 litter collected 19 km east of the smelters. Zinc, cadmium, lead, copper, and sulfur were experimentally added, alone or in combination, to 02 litter collected far from any known source of metal emissions. The highest concentration of Zn added (20,000 mg/kg) was toxic enough to account for the mortality observed in the earlier test. A lower concentration of Zn (5000 mg/kg) as well as the concentration of Cd (500 mg/kg) tested also significantly (p < 0.05) increased the mortality of woodlice.

  3. Aspects of spatial and temporal aggregation in estimating regional carbon dioxide fluxes from temperate forest soils

    NASA Technical Reports Server (NTRS)

    Kicklighter, David W.; Melillo, Jerry M.; Peterjohn, William T.; Rastetter, Edward B.; Mcguire, A. David; Steudler, Paul A.; Aber, John D.

    1994-01-01

    We examine the influence of aggregation errors on developing estimates of regional soil-CO2 flux from temperate forests. We find daily soil-CO2 fluxes to be more sensitive to changes in soil temperatures (Q(sub 10) = 3.08) than air temperatures (Q(sub 10) = 1.99). The direct use of mean monthly air temperatures with a daily flux model underestimates regional fluxes by approximately 4%. Temporal aggregation error varies with spatial resolution. Overall, our calibrated modeling approach reduces spatial aggregation error by 9.3% and temporal aggregation error by 15.5%. After minimizing spatial and temporal aggregation errors, mature temperate forest soils are estimated to contribute 12.9 Pg C/yr to the atmosphere as carbon dioxide. Georeferenced model estimates agree well with annual soil-CO2 fluxes measured during chamber studies in mature temperate forest stands around the globe.

  4. Cadmium, lead, and zinc mobility and plant uptake in a mine soil amended with sugarcane straw biochar.

    PubMed

    Puga, A P; Abreu, C A; Melo, L C A; Paz-Ferreiro, J; Beesley, L

    2015-11-01

    Accumulation of heavy metals in unconsolidated soils can prove toxic to proximal environments, if measures are not taken to stabilize soils. One way to minimize the toxicity of metals in soils is the use of materials capable of immobilizing these contaminants by sorption. Biochar (BC) can retain large amounts of heavy metals due to, among other characteristics, its large surface area. In the current experiment, sugarcane-straw-derived biochar, produced at 700 °C, was applied to a heavy-metal-contaminated mine soil at 1.5, 3.0, and 5.0% (w/w). Jack bean and Mucuna aterrima were grown in pots containing a mine contaminated soil and soil mixed with BC. Pore water was sampled to assess the effects of biochar on zinc solubility, while soils were analyzed by DTPA extraction to confirm available metal concentrations. The application of BC decreased the available concentrations of Cd, Pb, and Zn in the mine contaminated soil leading to a consistent reduction in the concentration of Zn in the pore water. Amendment with BC reduced plant uptake of Cd, Pb, and Zn with the jack bean uptaking higher amounts of Cd and Pb than M. aterrima. This study indicates that biochar application during mine soil remediation could reduce plant concentrations of heavy metals. Coupled with this, symptoms of heavy metal toxicity were absent only in plants growing in pots amended with biochar. The reduction in metal bioavailability and other modifications to the substrate induced by the application of biochar may be beneficial to the establishment of a green cover on top of mine soil to aid remediation and reduce risks.

  5. Influence of soil pH on the toxicity of zinc oxide nanoparticles to the terrestrial isopod Porcellionides pruinosus.

    PubMed

    Tourinho, Paula S; van Gestel, Cornelis A M; Lofts, Stephen; Soares, Amadeu M V M; Loureiro, Susana

    2013-12-01

    The effects of soil pH on the toxicity of ZnO nanoparticles (NPs) to the terrestrial isopod Porcellionides pruinosus were evaluated. Isopods were exposed to a natural soil amended with CaCO3 to reach 3 different pH(CaCl2) levels (4.5, 6.2, and 7.3) and to standard LUFA 2.2 soil (pH 5.5) spiked with ZnO NPs (30 nm), non-nano ZnO (200 nm), and ionic Zn as ZnCl₂. Toxicity was expressed based on total Zn concentration in soil, as well as total Zn and free Zn²⁺ ion concentrations in porewater. Compared with ZnO-spiked soils, the ZnCl₂-spiked soils had lower pH and higher porewater Ca²⁺ and Zn levels. Isopod survival did not differ between Zn forms and soils, but survival was higher for isopods exposed to ZnO NPs at pH 4.5. Median effect concentrations (EC50s) for biomass change showed similar trends for all Zn forms in all soils, with higher values at intermediate pH. Median lethal concentration (LC50) and EC50 values based on porewater Zn or free Zn ion concentrations were much lower for ZnO than for ionic zinc. Zn body concentrations increased in a dose-related manner, but no effect of soil pH was found. It is suggested not only that dissolved or free Zn in porewater contributed to uptake and toxicity, but also that oral uptake (i.e., ingestion of soil particles) could be an important additional route of exposure.

  6. Cadmium, lead, and zinc mobility and plant uptake in a mine soil amended with sugarcane straw biochar.

    PubMed

    Puga, A P; Abreu, C A; Melo, L C A; Paz-Ferreiro, J; Beesley, L

    2015-11-01

    Accumulation of heavy metals in unconsolidated soils can prove toxic to proximal environments, if measures are not taken to stabilize soils. One way to minimize the toxicity of metals in soils is the use of materials capable of immobilizing these contaminants by sorption. Biochar (BC) can retain large amounts of heavy metals due to, among other characteristics, its large surface area. In the current experiment, sugarcane-straw-derived biochar, produced at 700 °C, was applied to a heavy-metal-contaminated mine soil at 1.5, 3.0, and 5.0% (w/w). Jack bean and Mucuna aterrima were grown in pots containing a mine contaminated soil and soil mixed with BC. Pore water was sampled to assess the effects of biochar on zinc solubility, while soils were analyzed by DTPA extraction to confirm available metal concentrations. The application of BC decreased the available concentrations of Cd, Pb, and Zn in the mine contaminated soil leading to a consistent reduction in the concentration of Zn in the pore water. Amendment with BC reduced plant uptake of Cd, Pb, and Zn with the jack bean uptaking higher amounts of Cd and Pb than M. aterrima. This study indicates that biochar application during mine soil remediation could reduce plant concentrations of heavy metals. Coupled with this, symptoms of heavy metal toxicity were absent only in plants growing in pots amended with biochar. The reduction in metal bioavailability and other modifications to the substrate induced by the application of biochar may be beneficial to the establishment of a green cover on top of mine soil to aid remediation and reduce risks. PMID:26146374

  7. Spatial variation of corn canopy temperature as dependent upon soil texture and crop rooting characteristics

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.

    1983-01-01

    A soil plant atmosphere model for corn (Zea mays L.) together with the scaling theory for soil hydraulic heterogeneity are used to study the sensitivity of spatial variation of canopy temperature to field averaged soil texture and crop rooting characteristics. The soil plant atmosphere model explicitly solves a continuity equation for water flux resulting from root water uptake, changes in plant water storage and transpirational flux. Dynamical equations for root zone soil water potential and the plant water storage models the progressive drying of soil, and day time dehydration and night time hydration of the crop. The statistic of scaling parameter which describes the spatial variation of soil hydraulic conductivity and matric potential is assumed to be independent of soil texture class. The field averaged soil hydraulic characteristics are chosen to be representative of loamy sand and clay loam soils. Two rooting characteristics are chosen, one shallow and the other deep rooted. The simulation shows that the range of canopy temperatures in the clayey soil is less than 1K, but for the sandy soil the range is about 2.5 and 5.0 K, respectively, for the shallow and deep rooted crops.

  8. Spatial and temporal variability of microbes in selected soils at the Nevada Test Site

    SciTech Connect

    Angerer, J.P.; Winkel, V.K.; Ostler, W.K.; Hall, P.F.

    1993-12-31

    Large areas encompassing almost 800 hectares on the Nevada Test Site, Nellis Air Force Range and the Tonopah Test Range are contaminated with plutonium. Decontamination of plutonium from these sites may involve removal of plants and almost 370,000 cubic meters of soil. The soil may be subjected to a series of processes to remove plutonium. After decontamination, the soils will be returned to the site and revegetated. There is a paucity of information on the spatial and temporal distribution of microbes in soils of the Mojave and Great Basin Deserts. Therefore, this study was initiated to determine the biomass and diversity of microbes in soils prior to decontamination. Soils were collected to a depth of 10 cm along each of five randomly located 30-m transects at each of four sites. To ascertain spatial differences, soils were collected from beneath major shrubs and from associated interspaces. Soils were collected every three to four months to determine temporal (seasonal) differences in microbial parameters. Soils from beneath shrubs generally had greater active fungi and bacteria, and greater non-amended respiration than soils from interspaces. Temporal variability also was found; total and active fungi, and non-amended respiration were correlated with soil moisture at the time of sampling. Information from this study will aid in determining the effects of plutonium decontamination on soil microorganisms, and what measures, if any, will be required to restore microbial populations during revegetation of these sites.

  9. Spatial and Temporal Variations in Electrical Conductivity in North Mississippi Loamy Soils

    NASA Astrophysics Data System (ADS)

    Aufman, M. S.; Holt, R. M.

    2005-05-01

    The use of electromagnetic induction (EM) to characterize and quantify spatial and temporal variations in soil properties is appealing due to low operational costs, rapid measurements, and device mobility. EM methods are sensitive to soil electrical conductivity, which can vary with soil moisture, clay content, soil salinity, and the presence of electrically conductive minerals. We are evaluating the controls on EM response in loamy soils present at the University of Mississippi (UM) Soil Moisture Observatory (SMO). The 5 acre SMO is located in a former agricultural field at the UM Field Station, a 740 acre tract of land located 11 miles from the UM campus in Oxford, Mississippi. EM responses were surveyed along transects and randomly chosen locations using a Geonics EM38. The apparent electrical conductivity (EC) of the soil was determined in both a vertical and horizontal dipole position, which correspond to deep (~1m) and shallow (~0.5) measurements, respectively. We find that EC is primarily controlled by soil physical and chemical properties under moderately dry conditions. Under wetter conditions, EC shows good correlation with soil moisture content. EC variograms show similar spatial structures at different times. However, EC variability increases under wet conditions. These results imply that pore surface conduction dominates under dry conditions, while pore water conduction becomes more important under wet conditions. Variogram similarity suggests that spatial variations in EC are strongly influenced by spatial variations in soil properties regardless of soil moisture conditions. These relationships may allow the development of a predictive model for soil moisture based on EC measurements in North Mississippi loamy soils.

  10. Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants--A soil microcosm experiment.

    PubMed

    Wang, Fayuan; Liu, Xueqin; Shi, Zhaoyong; Tong, Ruijian; Adams, Catharine A; Shi, Xiaojun

    2016-03-01

    ZnO nanoparticles (NPs) are considered an emerging contaminant when in high concentration, and their effects on crops and soil microorganisms pose new concerns and challenges. Arbuscular mycorrhizal (AM) fungi (AMF) form mutualistic symbioses with most vascular plants, and putatively contribute to reducing nanotoxicity in plants. Here, we studied the interactions between ZnO NPs and maize plants inoculated with or without AMF in ZnO NPs-spiked soil. ZnO NPs had no significant adverse effects at 400 mg/kg, but inhibited both maize growth and AM colonization at concentrations at and above 800 mg/kg. Sufficient addition of ZnO NPs decreased plant mineral nutrient acquisition, photosynthetic pigment concentrations, and root activity. Furthermore, ZnO NPs caused Zn concentrations in plants to increase in a dose-dependent pattern. As the ZnO NPs dose increased, we also found a positive correlation with soil diethylenetriaminepentaacetic acid (DTPA)-extractable Zn. However, AM inoculation significantly alleviated the negative effects induced by ZnO NPs: inoculated-plants experienced increased growth, nutrient uptake, photosynthetic pigment content, and SOD activity in leaves. Mycorrhizal plants also exhibited decreased ROS accumulation, Zn concentrations and bioconcentration factor (BCF), and lower soil DTPA-extractable Zn concentrations at high ZnO NPs doses. Our results demonstrate that, at high contamination levels, ZnO NPs cause toxicity to AM symbiosis, but AMF help alleviate ZnO NPs-induced phytotoxicity by decreasing Zn bioavailability and accumulation, Zn partitioning to shoots, and ROS production, and by increasing mineral nutrients and antioxidant capacity. AMF may play beneficial roles in alleviating the negative effects and environmental risks posed by ZnO NPs in agroecosystems. PMID:26761602

  11. Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants--A soil microcosm experiment.

    PubMed

    Wang, Fayuan; Liu, Xueqin; Shi, Zhaoyong; Tong, Ruijian; Adams, Catharine A; Shi, Xiaojun

    2016-03-01

    ZnO nanoparticles (NPs) are considered an emerging contaminant when in high concentration, and their effects on crops and soil microorganisms pose new concerns and challenges. Arbuscular mycorrhizal (AM) fungi (AMF) form mutualistic symbioses with most vascular plants, and putatively contribute to reducing nanotoxicity in plants. Here, we studied the interactions between ZnO NPs and maize plants inoculated with or without AMF in ZnO NPs-spiked soil. ZnO NPs had no significant adverse effects at 400 mg/kg, but inhibited both maize growth and AM colonization at concentrations at and above 800 mg/kg. Sufficient addition of ZnO NPs decreased plant mineral nutrient acquisition, photosynthetic pigment concentrations, and root activity. Furthermore, ZnO NPs caused Zn concentrations in plants to increase in a dose-dependent pattern. As the ZnO NPs dose increased, we also found a positive correlation with soil diethylenetriaminepentaacetic acid (DTPA)-extractable Zn. However, AM inoculation significantly alleviated the negative effects induced by ZnO NPs: inoculated-plants experienced increased growth, nutrient uptake, photosynthetic pigment content, and SOD activity in leaves. Mycorrhizal plants also exhibited decreased ROS accumulation, Zn concentrations and bioconcentration factor (BCF), and lower soil DTPA-extractable Zn concentrations at high ZnO NPs doses. Our results demonstrate that, at high contamination levels, ZnO NPs cause toxicity to AM symbiosis, but AMF help alleviate ZnO NPs-induced phytotoxicity by decreasing Zn bioavailability and accumulation, Zn partitioning to shoots, and ROS production, and by increasing mineral nutrients and antioxidant capacity. AMF may play beneficial roles in alleviating the negative effects and environmental risks posed by ZnO NPs in agroecosystems.

  12. Spatial and temporal distribution of cyanobacterial soil crusts in the Kalahari: Implications for soil surface properties

    NASA Astrophysics Data System (ADS)

    Thomas, A. D.; Dougill, A. J.

    2007-03-01

    Localised patterns of erosion and deposition in vegetated semi-arid rangelands have been shown to influence ecological change and biogeochemical cycles. In the flat, vegetated Kalahari rangelands of Southern Africa the factors regulating erodibility of the fine sand soils and the erosivity of wind regimes require further investigation. This paper reports on the spatial and temporal patterns of cyanobacterial soil crust cover from ten sites at five sampling locations in the semi-arid Kalahari and discusses the likely impact on factors regulating surface erodibility and erosivity. Cyanobacterial soil crust cover on Kalahari Sand varied between 11% and 95% of the ground surface and was higher than previously reported. Cover was inversely related to grazing with the lowest crust cover found close to boreholes and the highest in the Game Reserve and Wildlife Management Zone. In grazed areas, crusts form under the protective canopies of the thorny shrub Acacia mellifera. Fenced plot data showed that crusts recover quickly from disturbance, with a near complete surface crust cover forming within 15 months of disturbance. Crust development is restricted by burial by wind blown sediment and by raindrop impact. Crusts had significantly greater organic matter and total nitrogen compared to unconsolidated surfaces. Crusts also significantly increased the compressive strength of the surface (and thus decreased erodibility) and changed the surface roughness. Establishing exactly how these changes affect aeolian erosion requires further process-based studies. The proportion of shear velocity acting on the surface in this complex mixed bush-grass-crust environment will be the key to understanding how crusts affect erodibility.

  13. Geomorphic controls of soil spatial complexity in a primeval mountain forest in the Czech Republic

    NASA Astrophysics Data System (ADS)

    Daněk, Pavel; Šamonil, Pavel; Phillips, Jonathan D.

    2016-11-01

    Soil diversity and complexity is influenced by a variety of factors, and much recent research has been focused on interpreting or modeling complexity based on soil-topography relationships, and effects of biogeomorphic processes. We aimed to (i) describe local soil diversity in one of the oldest forest reserves in Europe, (ii) employ existing graph theory concepts in pedocomplexity calculation and extend them by a novel approach based on hypothesis testing and an index measuring graph sequentiality (the extent to which soils have gradual vs. abrupt variations in underlying soil factors), and (iii) reveal the main sources of pedocomplexity, with a particular focus on geomorphic controls. A total of 954 soil profiles were described and classified to soil taxonomic units (STU) within a 46 ha area. We analyzed soil diversity using the Shannon index, and soil complexity using a novel graph theory approach. Pairwise tests of observed adjacencies, spectral radius and a newly proposed sequentiality index were used to describe and quantify the complexity of the spatial pattern of STUs. This was then decomposed into the contributions of three soil factor sequences (SFS), (i) degree of weathering and leaching processes, (ii) hydromorphology, and (iii) proportion of rock fragments. Six Reference Soil Groups and 37 second-level soil units were found. A significant portion of pedocomplexity occurred at distances shorter than the 22 m spacing of neighbouring soil profiles. The spectral radius (an index of complexity) of the pattern of soil spatial adjacency was 14.73, to which the individual SFS accounted for values of 2.0, 8.0 and 3.5, respectively. Significant sequentiality was found for degree of weathering and hydromorphology. Exceptional overall pedocomplexity was particularly caused by enormous spatial variability of soil wetness, representing a crucial soil factor sequence in the primeval forest. Moreover, the soil wetness gradient was partly spatially correlated with the

  14. Small Scale Spatial Variability of Soil Properties and Nutrients in a Ferralsol under Corn

    NASA Astrophysics Data System (ADS)

    Alves, M. C.; Vidal Vázquez, E.; Pereira de Almeida, V.; Paz-Ferreiro, J.

    2012-04-01

    Spatial variability of soil attributes, both in natural and agricultural landscapes can be rather large. This heterogeneity results from interactions between pedogenetic processes and soil formation factors. In cultivated soils much variability can also occur as a result of land use and management effect, i.e. agricultural systems and practices. Therefore, the main objectives of this work were to investigate the statistical and geostatistical variability of selected properties in a soil cultivated with corn. The experimental work was carried out in Ilha Solteira, São Paulostate, Brazil and the soil was classified as an Oxisol (SSA), i.e. "Latossolo Vermelho" according to the Brazilian Soil Classification System. Eighty-four soil samples were collected at each of two different depths (0-10 and 10-20 cm) from the one-hectare plot studied. Sampling included a combination of grid and nesting schemes in order to allow description of the spatial variability at different scales. Soil texture fractions (sand, silt clay), organic matter content and pH (CaCl2) were determined using standard methods. Moreover, exchangeable bases (Ca, Mg, K), cation exchange capacity (CEC) and P were determined after exchange resin extraction. In the two depths studied, extractable P, K and Mg contents were found to be highly variable (C.V. > 30%), organic matter content and CEC showed a medium variability (C.V. ≈ 15-30%) and base percent saturation and pH exhibited a low variation (< 15%). Experimental semivariograms were computed and modeled and used to map the spatial variability of the study properties. Semivariograms provided a description of the pattern of spatial variability and some insight into possible process affecting the spatial distribution of the assessed soil properties. Sensitivity of nutrient spatial requirements to between field variability was discussed on the basis of the results obtained. In addition, the usefulness of kriging maps to improve and optimize productivity

  15. Application of spatial Markov chains to the analysis of the temporal-spatial evolution of soil erosion.

    PubMed

    Liu, Ruimin; Men, Cong; Wang, Xiujuan; Xu, Fei; Yu, Wenwen

    2016-01-01

    Soil and water conservation in the Three Gorges Reservoir Area of China is important, and soil erosion is a significant issue. In the present study, spatial Markov chains were applied to explore the impacts of the regional context on soil erosion in the Xiangxi River watershed, and Thematic Mapper remote sensing data from 1999 and 2007 were employed. The results indicated that the observed changes in soil erosion were closely related to the soil erosion levels of the surrounding areas. When neighboring regions were not considered, the probability that moderate erosion transformed into slight and severe erosion was 0.8330 and 0.0049, respectively. However, when neighboring regions that displayed intensive erosion were considered, the probabilities were 0.2454 and 0.7513, respectively. Moreover, the different levels of soil erosion in neighboring regions played different roles in soil erosion. If the erosion levels in the neighboring region were lower, the probability of a high erosion class transferring to a lower level was relatively high. In contrast, if erosion levels in the neighboring region were higher, the probability was lower. The results of the present study provide important information for the planning and implementation of soil conservation measures in the study area. PMID:27642824

  16. Application of spatial Markov chains to the analysis of the temporal-spatial evolution of soil erosion.

    PubMed

    Liu, Ruimin; Men, Cong; Wang, Xiujuan; Xu, Fei; Yu, Wenwen

    2016-01-01

    Soil and water conservation in the Three Gorges Reservoir Area of China is important, and soil erosion is a significant issue. In the present study, spatial Markov chains were applied to explore the impacts of the regional context on soil erosion in the Xiangxi River watershed, and Thematic Mapper remote sensing data from 1999 and 2007 were employed. The results indicated that the observed changes in soil erosion were closely related to the soil erosion levels of the surrounding areas. When neighboring regions were not considered, the probability that moderate erosion transformed into slight and severe erosion was 0.8330 and 0.0049, respectively. However, when neighboring regions that displayed intensive erosion were considered, the probabilities were 0.2454 and 0.7513, respectively. Moreover, the different levels of soil erosion in neighboring regions played different roles in soil erosion. If the erosion levels in the neighboring region were lower, the probability of a high erosion class transferring to a lower level was relatively high. In contrast, if erosion levels in the neighboring region were higher, the probability was lower. The results of the present study provide important information for the planning and implementation of soil conservation measures in the study area.

  17. From soil to brain: zinc deficiency increases the neurotoxicity of Lathyrus sativus and may affect the susceptibility for the motorneurone disease neurolathyrism.

    PubMed

    Lambein, F; Haque, R; Khan, J K; Kebede, N; Kuo, Y H

    1994-04-01

    Zinc deficiency and oversupply of iron to the roots of grass pea (Lathyrus sativus) induce increases in the content of the neurotoxin beta-L-ODAP (3-oxalyl-L-2,3-diaminopropanoic acid) in the ripe seeds. The transport of zinc to the shoots is enhanced by the addition of beta-L-ODAP. The neurotoxin of L. sativus is proposed to function as a carrier molecule for zinc ions. Soils, depleted in micronutrients from flooding by monsoon rains (Indian subcontinent) or otherwise poor in available zinc and with high iron content (Ethiopian vertisols), may be responsible for higher incidence of human lathyrism, one of the oldest neurotoxic diseases known to man. A role for brain zinc deficiency in the susceptibility for lathyrism is postulated. PMID:8053001

  18. Spatial variability of soil nutrient in paddy plantation: Sites FELCRA Seberang Perak

    NASA Astrophysics Data System (ADS)

    Kamarudin, H.; Adnan, N. A.; Mispan, M. R.; Athirah. A, A.

    2016-06-01

    The conventional methods currently used for rice cultivation in Malaysia are unable to give maximum yield although the yield production of paddy is increasing. This is due to the conversional method being unable to include soil properties as one of their parameters in agriculture management. Soil properties vary spatially in farm scale due to differences in topography, parent material, vegetation or land management and soil characteristics; also plantation productivity varies significantly over small spatial scales. Knowledge of spatial variability in soil fertility is important for site specific nutrient management. Analysis of spatial variability of soil nutrient of nitrogen (N), phosphorus (P) and potassium (K) were conducted in this study with the aid of GIS (i.e ArcGIS) and statistical softwares. In this study different temporal and depths of soil nutrient were extracted on the field and further analysis of N,P,K content were analysed in the chemical laboratory and using spatially technique in GIS sofware. The result indicated that for the Seberang Perak site of 58 hactares area, N and K are met minimum requirements nutrient content as outlines by the MARDI for paddy cultivation. However, P indicated poor condition in the study area; therefore the soil needs further attention and treatment.

  19. The occurrence, sources and spatial characteristics of soil salt and assessment of soil salinization risk in Yanqi basin, northwest China.

    PubMed

    Zhaoyong, Zhang; Abuduwaili, Jilili; Yimit, Hamid

    2014-01-01

    In order to evaluate the soil salinization risk of the oases in arid land of northwest China, we chose a typical oasis-the Yanqi basin as the research area. Then, we collected soil samples from the area and made comprehensive assessment for soil salinization risk in this area. The result showed that: (1) In all soil samples, high variation was found for the amount of Ca2+ and K+, while the other soil salt properties had moderate levels of variation. (2) The land use types and the soil parent material had a significant influence on the amount of salt ions within the soil. (3) Principle component (PC) analysis determined that all the salt ion values, potential of hydrogen (pHs) and ECs fell into four PCs. Among them, PC1 (C1-, Na+, SO4(2-), EC, and pH) and PC2 (Ca2+, K+, Mg2+and total amount of salts) are considered to be mainly influenced by artificial sources, while PC3 and PC4 (CO3(-) and HCO3(2-)) are mainly influenced by natural sources. (4) From a geo-statistical point of view, it was ascertained that the pH and soil salt ions, such as Ca2+, Mg2+ and HCO3(-), had a strong spatial dependency. Meanwhile, Na+ and Cl- had only a weak spatial dependency in the soil. (5) Soil salinization indicators suggested that the entire area had a low risk of soil salinization, where the risk was mainly due to anthropogenic activities and climate variation. This study can be considered an early warning of soil salinization and alkalization in the Yanqi basin. It can also provide a reference for environmental protection policies and rational utilization of land resources in the arid region of Xinjiang, northwest China, as well as for other oases of arid regions in the world.

  20. The occurrence, sources and spatial characteristics of soil salt and assessment of soil salinization risk in Yanqi basin, northwest China.

    PubMed

    Zhaoyong, Zhang; Abuduwaili, Jilili; Yimit, Hamid

    2014-01-01

    In order to evaluate the soil salinization risk of the oases in arid land of northwest China, we chose a typical oasis-the Yanqi basin as the research area. Then, we collected soil samples from the area and made comprehensive assessment for soil salinization risk in this area. The result showed that: (1) In all soil samples, high variation was found for the amount of Ca2+ and K+, while the other soil salt properties had moderate levels of variation. (2) The land use types and the soil parent material had a significant influence on the amount of salt ions within the soil. (3) Principle component (PC) analysis determined that all the salt ion values, potential of hydrogen (pHs) and ECs fell into four PCs. Among them, PC1 (C1-, Na+, SO4(2-), EC, and pH) and PC2 (Ca2+, K+, Mg2+and total amount of salts) are considered to be mainly influenced by artificial sources, while PC3 and PC4 (CO3(-) and HCO3(2-)) are mainly influenced by natural sources. (4) From a geo-statistical point of view, it was ascertained that the pH and soil salt ions, such as Ca2+, Mg2+ and HCO3(-), had a strong spatial dependency. Meanwhile, Na+ and Cl- had only a weak spatial dependency in the soil. (5) Soil salinization indicators suggested that the entire area had a low risk of soil salinization, where the risk was mainly due to anthropogenic activities and climate variation. This study can be considered an early warning of soil salinization and alkalization in the Yanqi basin. It can also provide a reference for environmental protection policies and rational utilization of land resources in the arid region of Xinjiang, northwest China, as well as for other oases of arid regions in the world. PMID:25211240

  1. The Occurrence, Sources and Spatial Characteristics of Soil Salt and Assessment of Soil Salinization Risk in Yanqi Basin, Northwest China

    PubMed Central

    Zhaoyong, Zhang; Abuduwaili, Jilili; Yimit, Hamid

    2014-01-01

    In order to evaluate the soil salinization risk of the oases in arid land of northwest China, we chose a typical oasis-the Yanqi basin as the research area. Then, we collected soil samples from the area and made comprehensive assessment for soil salinization risk in this area. The result showed that: (1) In all soil samples, high variation was found for the amount of Ca2+ and K+, while the other soil salt properties had moderate levels of variation. (2) The land use types and the soil parent material had a significant influence on the amount of salt ions within the soil. (3) Principle component (PC) analysis determined that all the salt ion values, potential of hydrogen (pHs) and ECs fell into four PCs. Among them, PC1 (C1-, Na+, SO42-, EC, and pH) and PC2 (Ca2+, K+, Mg2+and total amount of salts) are considered to be mainly influenced by artificial sources, while PC3 and PC4 (CO3- and HCO32-) are mainly influenced by natural sources. (4) From a geo-statistical point of view, it was ascertained that the pH and soil salt ions, such as Ca2+, Mg2+ and HCO3-, had a strong spatial dependency. Meanwhile, Na+ and Cl- had only a weak spatial dependency in the soil. (5) Soil salinization indicators suggested that the entire area had a low risk of soil salinization, where the risk was mainly due to anthropogenic activities and climate variation. This study can be considered an early warning of soil salinization and alkalization in the Yanqi basin. It can also provide a reference for environmental protection policies and rational utilization of land resources in the arid region of Xinjiang, northwest China, as well as for other oases of arid regions in the world. PMID:25211240

  2. Comparative toxicity of a zinc salt, zinc powder and zinc oxide to Eisenia fetida, Enchytraeus albidus and Folsomia candida.

    PubMed

    Lock, Koen; Janssen, Colin R

    2003-12-01

    The pore water zinc concentration and the calcium chloride extracted zinc fraction are higher in the soils spiked with a zinc salt (ZnCl2) compared to soils spiked with zinc oxide or zinc powder. Based on total zinc concentrations in the soil, the acute toxicity of zinc salt to the compost worm Eisenia fetida, the potworm Enchytraeus albidus and the springtail Folsomia candida was lower compared to zinc oxide and zinc powder. However, when expressed on the basis of pore water concentrations or calcium chloride extracted fractions, acute toxicity was higher for zinc salt, which indicated that dermal uptake via the pore water is not the only route of uptake. Chronic toxicity of zinc salt, zinc oxide and zinc powder was similar when based on total concentrations in the soil which again indicates that the pore water route of uptake is not the only route of exposure but that oral uptake is also important.

  3. Spatial distribution of livestock concentration areas and soil nutrients in pastures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Livestock congregate at feeders, shades, or other sites in pastures, which severely disturbs soil and vegetation leading to erosion and nutrient runoff. Our objective was to determine the extent and spatial distribution of soil nutrients in livestock concentration areas in pastures. We georeferenced...

  4. Spatial distribution of livestock concentration areas and soil nutrients in pastures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Livestock frequently congregate at feeders, shades, or other sites on pastures, which severely disturbs soil and vegetation leading to erosion and nutrient runoff. Our objective was to determine the extent and spatial distribution of soil nutrients in livestock concentration areas on pastures and qu...

  5. Pulling back the soil spatial variability caused by long-term cultivation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-term intensive tillage has resulted in high spatial variability in soils throughout the Prairie Pothole Region. Crop yields in these eroded landscapes vary with soil properties. A 6-year study was conducted to determine the feasibility of rehabilitating eroded land by moving topsoil from areas ...

  6. [Spatial heterogeneity of soil organic carbon and nutrients in low mountain area of Changbai Mountains].

    PubMed

    Liu, Ling; Wang, Hai-Yan; Dai, Wei; Yang, Xiao-Iuan; Li, Xu

    2014-09-01

    Soil samples were collected in Jincang Forest Farm, Wangqing Forestry Bureau to study spatial distribution of soil organic carbon (SOC) and nutrients. Geostatistics was used to predict their spatial distribution in the study area, and the prediction results were interpolated using regression-kriging and ordinary kriging. Multiple linear regression was used to study the relationship between SOC and spatial factors. The results showed the SOC density (SOCD) at 0-60 cm was (16.14 ± 4.58) kg · m(-2). Soil organic carbon decreased significantly with the soil depth. With the increasing soil depth, total N, total P, total K, available P and readily available K concentrations decreased. Stepwise regression analysis showed that SOC had good correlation with elevation and cosine of aspect, with the determination coefficient of 0.34 and 0.39, respectively (P < 0.01). Soil organic carbon at 0-20 cm and 0-60 cm soil layers conformed to Gaussian model and exponential model. Compared with ordinary kriging, the prediction accuracy was improved by 18%-58% using regression-kriging. Regression-kriging interpolation was also applied to study spatial heterogeneity of soil total N.

  7. Spatial Downscaling of Remotely Sensed Soil Moisture Using Support Vector Machine in Northeast Asia

    NASA Astrophysics Data System (ADS)

    Choi, M.; Moon, H.; Kim, D.

    2014-12-01

    Recent advances in remote sensing of soil moisture have broadened the understanding of spatiotemporal behavior of soil moisture and contributed to major improvements in the associated research fields. However, large spatial coverage and short timescale notwithstanding, low spatial resolution of passive microwave soil moisture data has been frequently treated as major research problem in many studies, which suggested statistical or deterministic downscaling method as a solution to obtain targeted spatial resolutions. This study suggests a methodology to downscale 10 km and 25 km daily L3 volumetric soil moisture datasets from Advanced Microwave Scanning Radiometer 2 (AMSR2) in 2013 in Northeast Asia using Support Vector Machine (SVM). In the presented methodology, hydrometeorological variables observed from satellite remote sensing which have physically significant relationship with soil moisture are chosen as predictor variables to estimate soil moisture in finer resolution. Separate downscaling algorithms optimized for seasonal conditions are applied to achieve more accurate results of downscaled soil moisture. A comparative analysis between in-situ and downscaled soil moisture is also conducted for quantitatively assessing its accuracy. Further application can be carried out in hydrological modeling or prediction of extreme weather phenomena in fine spatial resolution based on the results of this study.

  8. A SOIL SPATIAL DATA FRAMEWORK FOR ENVIRONMENTAL MODELING IN THE CONTIGUOUS US

    EPA Science Inventory

    A suite of soil and related data-layers have been developed for environmental assessments of the effects of tropospheric ozone exposure and nitrogen deposition on forests, and global change (soil C pools and landuse impacts, water balance modeling). These spatial data depict s...

  9. Total fluoride in Guangdong soil profiles, China: spatial distribution and vertical variation.

    PubMed

    Zhu, L; Zhang, H H; Xia, B; Xu, D R

    2007-04-01

    A total of 260 soil profiles were reported to investigate the fluoride distribution and vertical variation in Guangdong province. The soil fluoride contents followed an approximately lognormal distribution. Although the soil fluoride geometric mean concentration of 407 mg/kg is lower than that of China, its content varied from 87 to 2860 mg/kg. An upper baseline concentration of 688 mg/kg was estimated for surface soils. In A-, B-, and C-horizon soil fluoride spatial distribution presented similar patterns that high fluoride concentration mainly located in limestone, purple shale, and sandshale areas, indicated that soil fluoride spatial distribution was primarily dependent on the regional bedrock properties rather than anthropogenic inputs. From A- to C- horizon soil fluoride geometric mean concentration had an increasing tendency of 407, 448, and 465 mg/kg. This vertical variation was the result of the intensive eluviation under the subtropical hydrothermal condition, and had closely related with soil properties, such as lower organic matters and clay content variations. Moreover, the soil degradation and erosion was also an important pathway of soil fluoride movement, as a result the soil fluoride exported into surface and groundwaters would reach about 4.1x10(4) t year-1 in the study area.

  10. Soil Spatial Information and Production of Thematic Maps for the Northern Emirates, UAE

    NASA Astrophysics Data System (ADS)

    Abdelfattah, M. A.; Pain, C. F.

    2012-04-01

    Soil spatial data is an integral part of any effective agricultural research or advisory program. It provides information needed for planning and decision making processes. In many parts of the world, including the Northern Emirates of the United Arab Emirates, there is an ever increasing demand for digital soil and thematic maps of different scales. However, the existing data are either not available or not exhaustive and precise enough for use within a number of environmental applications. The reason for the lack of the spatial information is that conventional soil survey methods are relatively slow and very expensive. The present study highlights the generation of soil spatial information of the Northern Emirates and its use in the production of thematic maps through soil survey. The Soil Survey of the Northern Emirates was conducted between June 2010 and March 2012, and covered an area of about 400,000 ha. The objective was to prepare a soil map at 1:50,000 scale with associated data and information in a spatial and point database, the United Arab Emirates Soil Information System (UAESIS). Among other outputs, the survey information was used in an evaluation of the land for various uses to provide information that will help land use planning. The United States Department of Agriculture Soil Classification System (USDA Soil Taxonomy) has been used to classify the soils of the study area. Several land evaluations of both agricultural and non-agricultural land uses have been undertaken for the 1:50,000 scale map data and are presented in this study. These evaluations serve as base information for future land use planning and land management decision making. Irrigated agriculture suitability was evaluated using concepts developed by the Food and Agriculture Organization of the United Nations. Each soil map unit was allocated one of five ratings ranging from S1 (highly suitable) to N2 (permanently unsuitable), and an irrigated agriculture suitability map was

  11. Decrease in zinc adsorption onto soil in the presence of EPS-rich and EPS-poor Pseudomonas aureofaciens.

    PubMed

    Drozdova, O Yu; Pokrovsky, O S; Lapitskiy, S A; Shirokova, L S; González, A G; Demin, V V

    2014-12-01

    The adsorption of Zn onto the humic and illuvial horizons of the podzol soil in the presence of soil bacteria was studied using a batch-reactor technique as a function of the pH (from 2 to 9) and the Zn concentration in solution (from 0.076mM to 0.760mM). Exopolysaccharides-forming aerobic heterotrophs Pseudomonas aureofaciens were added at 0.1 and 1.0gwetL(-1) concentrations to two different soil horizons, and Zn adsorption was monitored as a function of the pH and the dissolved-Zn concentration. The pH-dependent adsorption edge demonstrated more efficient Zn adsorption by the humic horizon than the mineral horizon at otherwise similar soil concentrations. The Zn adsorption onto the EPS-poor strain was on slightly lower than that onto EPS-rich bacteria. Similar differences in the adsorption capacities between the soil and bacteria were also detected by "langmuirian" constant-pH experiments conducted in soil-Zn and bacteria-Zn binary systems. The addition of 0.1gwetL(-1)P. aureofaciens to a soil-bacteria system (4gdryL(-1)soil) resulted in statistically significant decrease in the adsorption yield, which was detectable from both the pH-dependent adsorption edge and the constant-pH isotherm experiments. Increasing the amount of added bacteria to 1gwetL(-1) further decreased the overall adsorption in the full range of the pH. This decrease was maximal for the EPS-rich bacteria and minimal for the EPS-poor bacteria (a factor of 2.8 and 2.2 at pH=6.9, respectively). These observations in binary and ternary systems were further rationalized by linear-programming modeling of surface equilibria that revealed the systematic differences in the number of binding sites and the surface-adsorption constant of zinc onto the two soil horizons with and without bacteria. The main finding of this work is that the adsorption of Zn onto the humic soil-bacteria system is lower than that in pure, bacteria-free soil systems. This difference is statistically significant (p<0.05). As such

  12. Spatial variability of soil carbon in forested and cultivated sites: implications for change detection.

    PubMed

    Conant, Richard T; Smith, Gordon R; Paustian, Keith

    2003-01-01

    The potential to sequester atmospheric carbon in agricultural and forest soils to offset greenhouse gas emissions has generated interest in measuring changes in soil carbon resulting from changes in land management. However, inherent spatial variability of soil carbon limits the precision of measurement of changes in soil carbon and hence, the ability to detect changes. We analyzed variability of soil carbon by intensively sampling sites under different land management as a step toward developing efficient soil sampling designs. Sites were tilled cropland and a mixed deciduous forest in Tennessee, and old-growth and second-growth coniferous forest in western Washington, USA. Six soil cores within each of three microplots were taken as an initial sample and an additional six cores were taken to simulate resampling. Soil C variability was greater in Washington than in Tennessee, and greater in less disturbed than in more disturbed sites. Using this protocol, our data suggest that differences on the order of 2.0 Mg C ha(-1) could be detected by collection and analysis of cores from at least five (tilled) or two (forest) microplots in Tennessee. More spatial variability in the forested sites in Washington increased the minimum detectable difference, but these systems, consisting of low C content sandy soil with irregularly distributed pockets of organic C in buried logs, are likely to rank among the most spatially heterogeneous of systems. Our results clearly indicate that consistent intramicroplot differences at all sites will enable detection of much more modest changes if the same microplots are resampled.

  13. Spatial variability of specific surface area of arable soils in Poland

    NASA Astrophysics Data System (ADS)

    Sokolowski, S.; Sokolowska, Z.; Usowicz, B.

    2012-04-01

    Evaluation of soil spatial variability is an important issue in agrophysics and in environmental research. Knowledge of spatial variability of physico-chemical properties enables a better understanding of several processes that take place in soils. In particular, it is well known that mineralogical, organic, as well as particle-size compositions of soils vary in a wide range. Specific surface area of soils is one of the most significant characteristics of soils. It can be not only related to the type of soil, mainly to the content of clay, but also largely determines several physical and chemical properties of soils and is often used as a controlling factor in numerous biological processes. Knowledge of the specific surface area is necessary in calculating certain basic soil characteristics, such as the dielectric permeability of soil, water retention curve, water transport in the soil, cation exchange capacity and pesticide adsorption. The aim of the present study is two-fold. First, we carry out recognition of soil total specific surface area patterns in the territory of Poland and perform the investigation of features of its spatial variability. Next, semivariograms and fractal analysis are used to characterize and compare the spatial variability of soil specific surface area in two soil horizons (A and B). Specific surface area of about 1000 samples was determined by analyzing water vapor adsorption isotherms via the BET method. The collected data of the values of specific surface area of mineral soil representatives for the territory of Poland were then used to describe its spatial variability by employing geostatistical techniques and fractal theory. Using the data calculated for some selected points within the entire territory and along selected directions, the values of semivariance were determined. The slope of the regression line of the log-log plot of semi-variance versus the distance was used to estimate the fractal dimension, D. Specific surface area

  14. Grazing intensity and spatial heterogeneity in bare soil in a grazing-resistant grassland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spatial patterns in rangeland vegetation serve as indicators of rangeland condition and are an important component of wildlife habitat. We illustrate the use of very-large-scale aerial photography (VLSA) to quantify spatial patterns in bare soil of the northeastern Colorado shortgrass steppe. Using ...

  15. [Spatial Variability and Distribution Pattern of Soil Organic Matter in a Mollisol Watershed of China].

    PubMed

    Gao, Feng-jie; Ma, Quan-lai; Han, Wen-wen; Shan, Pei-ming; Zhou, Jun; Zhang, Shao-liang; Zhang, Zhi-min; Wang, Hong-yan

    2016-05-15

    Spatial variability of soil organic matter and its distribution pattern are the hot issues of soil scientific research. Selecting Haigouhe watershed as the study area, this paper mainly focused on the spatial variability, distribution pattern and its impact factors of SOM in the surface soil by classical statistics, Geo-statistics and "3S" technology. The results showed that: compared with the other black soil areas, the SOM content in Haigouhe watershed was a little lower, there was a spatial autocorrelation, and a moderate variability. Random factors, such as human activities, cultivation measures and so on, had little impact on the spatial variation, while the structural factors had a dominant function, and there was a remarkable spatial anisotropy of SOM. The SOM content reduced gradually from east to west with the familiar changes of height, so the co-kriging interpolation, selecting elevation as the co-variate, was employed to improve the accuracy. The spatial variability of SOM and its distribution pattern in Haigouhe watershed were greatly affected by topography and land use but weakly influenced by traffic, villages and other social factors. The surrounding environment of the samples would increase the uncertainty of spatial variability and interpolation of SOM and it cannot be ignored in future studies. In summary, it was a significant scientific research to analyze the spatial variability, distribution pattern of SOM and its main impact factors in a mollisol hilly watershed of China. PMID:27506048

  16. [Spatial Variability and Distribution Pattern of Soil Organic Matter in a Mollisol Watershed of China].

    PubMed

    Gao, Feng-jie; Ma, Quan-lai; Han, Wen-wen; Shan, Pei-ming; Zhou, Jun; Zhang, Shao-liang; Zhang, Zhi-min; Wang, Hong-yan

    2016-05-15

    Spatial variability of soil organic matter and its distribution pattern are the hot issues of soil scientific research. Selecting Haigouhe watershed as the study area, this paper mainly focused on the spatial variability, distribution pattern and its impact factors of SOM in the surface soil by classical statistics, Geo-statistics and "3S" technology. The results showed that: compared with the other black soil areas, the SOM content in Haigouhe watershed was a little lower, there was a spatial autocorrelation, and a moderate variability. Random factors, such as human activities, cultivation measures and so on, had little impact on the spatial variation, while the structural factors had a dominant function, and there was a remarkable spatial anisotropy of SOM. The SOM content reduced gradually from east to west with the familiar changes of height, so the co-kriging interpolation, selecting elevation as the co-variate, was employed to improve the accuracy. The spatial variability of SOM and its distribution pattern in Haigouhe watershed were greatly affected by topography and land use but weakly influenced by traffic, villages and other social factors. The surrounding environment of the samples would increase the uncertainty of spatial variability and interpolation of SOM and it cannot be ignored in future studies. In summary, it was a significant scientific research to analyze the spatial variability, distribution pattern of SOM and its main impact factors in a mollisol hilly watershed of China.

  17. Spatial variation in soil-borne disease dynamics of a temperate tree, Prunus serotina

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil-borne pathogens (SBPs) are posited to maintain forest diversity; however, their in situ impact and spatial variation is largely unknown. We examined spatial patterns of pathogenic activity in deciduous forest using a common garden experiment, a natural experiment around replicated trees, and d...

  18. Plant-soil feedbacks and the partial recovery of soil spatial patterns on abandoned well pads in a sagebrush shrubland.

    PubMed

    Minnick, Tamera J; Alward, Richard D

    2015-01-01

    Shrub-dominated arid and semiarid ecosystems are characterized by spatail patterns in vegetation and bare ground (e.g., resource islands). Modern oil and gas well pad construction entails complete removal of vegetation and upper soil layers, followed by replacement of soils and attempts at revegetation; historically, many pads were merely abandoned. Feedbacks between soil and vegetation are required for the recovery of ecosystem functions in these catastrophically disturbed systems. We measured soil organic carbon (SOC), employing a spatially explicit sampling protocol, on two sites in undisturbed big sagebrush communities and a chronosequence of eight recovering well pads. Sites in undisturbed communities exhibited significant spatial autocorrelation of SOC at the plot level that was absent from all of the well pad sites. Incorporating shrub presence as a covariate revealed three additional cases of SOC spatial autocorrelation on well pads. These results, along with SOC patterns between and- under plants, suggest resource island development. These findings support the hypothesis that species identity as well as functional group need to be taken into account in restoration. Restoration of ecosystem functions, including those associated with resistance and resilience to disturbance, may be enhanced when characteristic soil heterogeneity and vegetation spatial patterns recover.

  19. Plant-soil feedbacks and the partial recovery of soil spatial patterns on abandoned well pads in a sagebrush shrubland.

    PubMed

    Minnick, Tamera J; Alward, Richard D

    2015-01-01

    Shrub-dominated arid and semiarid ecosystems are characterized by spatail patterns in vegetation and bare ground (e.g., resource islands). Modern oil and gas well pad construction entails complete removal of vegetation and upper soil layers, followed by replacement of soils and attempts at revegetation; historically, many pads were merely abandoned. Feedbacks between soil and vegetation are required for the recovery of ecosystem functions in these catastrophically disturbed systems. We measured soil organic carbon (SOC), employing a spatially explicit sampling protocol, on two sites in undisturbed big sagebrush communities and a chronosequence of eight recovering well pads. Sites in undisturbed communities exhibited significant spatial autocorrelation of SOC at the plot level that was absent from all of the well pad sites. Incorporating shrub presence as a covariate revealed three additional cases of SOC spatial autocorrelation on well pads. These results, along with SOC patterns between and- under plants, suggest resource island development. These findings support the hypothesis that species identity as well as functional group need to be taken into account in restoration. Restoration of ecosystem functions, including those associated with resistance and resilience to disturbance, may be enhanced when characteristic soil heterogeneity and vegetation spatial patterns recover. PMID:26255353

  20. Characterising soil surface condition and carbon vulnerability using spatial statistics and directional reflectance

    NASA Astrophysics Data System (ADS)

    Croft, H.; Anderson, K.

    2008-12-01

    Soils can experience rapid structural degradation in response to land cover changes, resulting in reduced soil productivity, increased erodibility and a loss of Soil Organic Matter (SOM). The breakdown of soil aggregates through slaking and raindrop impact is linked to soil organic matter turnover, with subsequently eroded material often displaying proportionally more SOM. A reduction in aggregate stability is reflected in a decline in soil surface roughness, indicating that a physical soil structural change can be used to highlight soil vulnerability to SOM loss through mineralisation or erosion. Remotely sensed data can provide a cost- effective means of monitoring changes in soil surface condition over broad spatial extents. Growing recognition of the importance of the directional reflectance domain has highlighted their potential application for monitoring changes in soil surface roughness, associated with the breakdown of macro-aggregates and therefore SOM release. This is particularly relevant for soil condition monitoring because during soil structural degradation, changes in the self-shadowing effects of soil aggregates has a measurable effect on directional reflectance factors measured by proximal remote sensing devices. Field and laboratory data are therefore required for an empirical understanding of soil directional reflectance, underpinning subsequent model development. This experiment details the use of hyperspectral multiple view angle, proximal reflectance data (400-2500 nm) for describing changes in soil surface structure. Five different soil crusting states were produced, simulating a progressive decline in soil surface structure using artificial rainfall. Each stage was characterised using a close-range laser scanning device with a 2 mm spatial sampling methodology. Data were analysed within a geostatistical framework, where variogram analysis quantitatively confirmed the change in soil surface structure during crusting (sill variance = 0

  1. Effects of detailed soil spatial information on watershed modeling across different model scales

    NASA Astrophysics Data System (ADS)

    Quinn, Trevor; Zhu, A.-Xing; Burt, James E.

    2005-12-01

    Hydro-ecological modelers often use spatial variation of soil information derived from conventional soil surveys in simulation of hydro-ecological processes over watersheds at mesoscale (10-100 km 2). Conventional soil surveys are not designed to provide the same level of spatial detail as terrain and vegetation inputs derived from digital terrain analysis and remote sensing techniques. Soil property layers derived from conventional soil surveys are often incompatible with detailed terrain and remotely sensed data due to their difference in scales. The objective of this research is to examine the effect of scale incompatibility between soil information and the detailed digital terrain data and remotely sensed information by comparing simulations of watershed processes based on the conventional soil map and those simulations based on detailed soil information across different simulation scales. The detailed soil spatial information was derived using a GIS (geographical information system), expert knowledge, and fuzzy logic based predictive mapping approach (Soil Land Inference Model, SoLIM). The Regional Hydro-Ecological Simulation System (RHESSys) is used to simulate two watershed processes: net photosynthesis and stream flow. The difference between simulation based on the conventional soil map and that based on the detailed predictive soil map at a given simulation scale is perceived to be the effect of scale incompatibility between conventional soil data and the rest of the (more detailed) data layers at that scale. Two modeling approaches were taken in this study: the lumped parameter approach and the distributed parameter approach. The results over two small watersheds indicate that the effect does not necessarily always increase or decrease as the simulation scale becomes finer or coarser. For a given watershed there seems to be a fixed scale at which the effect is consistently low for the simulated processes with both the lumped parameter approach and the

  2. Anthropogenic transformation of city parks soils: spatial and time peculiarities.

    NASA Astrophysics Data System (ADS)

    Poputnikov, Vadim; Prokofieva, Tatiana

    2010-05-01

    Despite of quasi-natural status of urban parks, these territories often have a complicated history of local landuse. Urban park territories can accumulate maximum volume of information about the ways and peculiarities of soil anthropogenic transformation due to the absence of large-scale ground works and sealing of territories. As an objects of research 2 Moscow historical forest parks - "Pokrovskoe-Streshnevo" and "Tushinskiy" were chosen. From the one hand, these parks are characterizing by sufficiently square, which are representative by abundance of areas with different land use type. On the other hand, these areas have distinction both in soil forming factors and anthropogenic activities history. For the description of anthropogenic soil cover transformation the set of landuse types schemes were created. By these schemes were characterized a more than 250 years period. A range of soil pits were described on the different land use types territories. Different physical-chemical (pH, cation exchange capacity, amount of total organic carbon and nutrient element (P2O5 & K2O), amount of carbonates, and total amount of Cd, Pb, Zn, Cu, Mn & Ni), physical (particle size composition, bulk density and penetration resistance) properties were measured. The micromorphological (in thin sections) properties were described. Using scanning electron microscopy and energy-dispersive X-ray spectroscopy, the main morphological and chemical properties of black carbon particles were disclosed in every surface horizons type. Using above-mentioned methods, we described following types of anthropogenic-transformed horizons - "postagricultural" horizons of abandoned tillage field soils, "urbic" horizons of settlements area soils, "technogenic" horizons of soils of constructed or reclaimed territories and different intergrade horizons. The presence of different type horizons with various properties marks existence of fixed land use for different periods. The whole way of anthropogenic

  3. Spatial distribution of the trace elements zinc, strontium and lead in human bone tissue.

    PubMed

    Pemmer, B; Roschger, A; Wastl, A; Hofstaetter, J G; Wobrauschek, P; Simon, R; Thaler, H W; Roschger, P; Klaushofer, K; Streli, C

    2013-11-01

    Trace elements are chemical elements in minute quantities, which are known to accumulate in the bone. Cortical and trabecular bones consist of bone structural units (BSUs) such as osteons and bone packets of different mineral content and are separated by cement lines. Previous studies investigating trace elements in bone lacked resolution and therefore very little is known about the local concentration of zinc (Zn), strontium (Sr) and lead (Pb) in BSUs of human bone. We used synchrotron radiation induced micro X-ray fluorescence analysis (SR μ-XRF) in combination with quantitative backscattered electron imaging (qBEI) to determine the distribution and accumulation of Zn, Sr, and Pb in human bone tissue. Fourteen human bone samples (10 femoral necks and 4 femoral heads) from individuals with osteoporotic femoral neck fractures as well as from healthy individuals were analyzed. Fluorescence intensity maps were matched with BE images and correlated with calcium (Ca) content. We found that Zn and Pb had significantly increased levels in the cement lines of all samples compared to the surrounding mineralized bone matrix. Pb and Sr levels were found to be correlated with the degree of mineralization. Interestingly, Zn intensities had no correlation with Ca levels. We have shown for the first time that there is a differential accumulation of the trace elements Zn, Pb and Sr in BSUs of human bone indicating different mechanisms of accumulation. PMID:23932972

  4. Seasonal and event dynamics of spatial soil moisture patterns at the small catchment scale

    NASA Astrophysics Data System (ADS)

    Rosenbaum, U.; Bogena, H. R.; Herbst, M.; Huisman, J. A.; Peterson, T. J.; Weuthen, A.; Western, A. W.; Vereecken, H.

    2012-10-01

    Our understanding of short- and long-term dynamics of spatial soil moisture patterns is limited due to measurement constraints. Using new highly detailed data, this research aims to examine seasonal and event-scale spatial soil moisture dynamics in the topsoil and subsoil of the small spruce-covered Wüstebach catchment, Germany. To accomplish this, univariate and geo-statistical analyses were performed for a 1 year long 4-D data set obtained with the wireless sensor network SoilNet. We found large variations in spatial soil moisture patterns in the topsoil, mostly related to meteorological forcing. In the subsoil, temporal dynamics were diminished due to soil water redistribution processes and root water uptake. Topsoil range generally increased with decreasing soil moisture. The relationship between the spatial standard deviation of the topsoil soil moisture (SDθ) and mean water content θ¯ showed a convex shape, as has often been found in humid temperate climate conditions. Observed scatter in topsoil SDθθ¯ was explained by seasonal and event-scale SDθθ¯ dynamics, possibly involving hysteresis at both time scales. Clockwise hysteretic SDθθ¯ dynamics at the event scale were generated under moderate soil moisture conditions only for intense precipitation that rapidly wetted the topsoil and increased soil moisture variability controlled by spruce throughfall patterns. This hysteretic effect increased with increasing precipitation, reduced root water uptake, and high groundwater level. Intense precipitation on dry topsoil abruptly increased SDθ but only marginally increased mean soil moisture. This was due to different soil rewetting behavior in drier upslope areas (hydrophobicity and preferential flow caused minor topsoil recharge) compared with the moderately wet valley bottom (topsoil water storage), which led to a more spatially organized pattern. This study showed that spatial soil moisture patterns monitored by a wireless sensor network varied with

  5. An exploration of spatial risk assessment for soil protection: estimating risk and establishing priority areas for soil protection.

    PubMed

    Kibblewhite, M G; Bellamy, P H; Brewer, T R; Graves, A R; Dawson, C A; Rickson, R J; Truckell, I; Stuart, J

    2014-03-01

    Methods for the spatial estimation of risk of harm to soil by erosion by water and wind and by soil organic matter decline are explored. Rates of harm are estimated for combinations of soil type and land cover (as a proxy for hazard frequency) and used to estimate risk of soil erosion and loss of soil organic carbon (SOC) for 1 km(2)pixels. Scenarios are proposed for defining the acceptability of risk of harm to soil: the most precautionary one corresponds to no net harm after natural regeneration of soil (i.e. a 1 in 20 chance of exceeding an erosion rate of <1 tha(-1)y(-1) and SOC content decline of 0 kg t(-1)y(-1) for mineral soils and a carbon stock decline of 0 tha(-1)y(-1) for organic soils). Areas at higher and lower than possible acceptable risk are mapped. The veracity of boundaries is compromised if areas of unacceptable risk are mapped to administrative boundaries. Errors in monitoring change in risk of harm to soil and inadequate information on risk reduction measures' efficacy, at landscape scales, make it impossible to use or monitor quantitative targets for risk reduction adequately. The consequences for priority area definition of expressing varying acceptable risk of harm to soil as a varying probability of exceeding a fixed level of harm, or, a varying level of harm being exceeded with a fixed probability, are discussed. Soil data and predictive models for rates of harm to soil would need considerable development and validation to implement a priority area approach robustly. PMID:24412915

  6. An exploration of spatial risk assessment for soil protection: estimating risk and establishing priority areas for soil protection.

    PubMed

    Kibblewhite, M G; Bellamy, P H; Brewer, T R; Graves, A R; Dawson, C A; Rickson, R J; Truckell, I; Stuart, J

    2014-03-01

    Methods for the spatial estimation of risk of harm to soil by erosion by water and wind and by soil organic matter decline are explored. Rates of harm are estimated for combinations of soil type and land cover (as a proxy for hazard frequency) and used to estimate risk of soil erosion and loss of soil organic carbon (SOC) for 1 km(2)pixels. Scenarios are proposed for defining the acceptability of risk of harm to soil: the most precautionary one corresponds to no net harm after natural regeneration of soil (i.e. a 1 in 20 chance of exceeding an erosion rate of <1 tha(-1)y(-1) and SOC content decline of 0 kg t(-1)y(-1) for mineral soils and a carbon stock decline of 0 tha(-1)y(-1) for organic soils). Areas at higher and lower than possible acceptable risk are mapped. The veracity of boundaries is compromised if areas of unacceptable risk are mapped to administrative boundaries. Errors in monitoring change in risk of harm to soil and inadequate information on risk reduction measures' efficacy, at landscape scales, make it impossible to use or monitor quantitative targets for risk reduction adequately. The consequences for priority area definition of expressing varying acceptable risk of harm to soil as a varying probability of exceeding a fixed level of harm, or, a varying level of harm being exceeded with a fixed probability, are discussed. Soil data and predictive models for rates of harm to soil would need considerable development and validation to implement a priority area approach robustly.

  7. Characterizing Temporal and Spatial Trends in Soil Geochemistry on Polder 32, Southwest Bangladesh

    NASA Astrophysics Data System (ADS)

    Ayers, J. C.; Fry, D. C.

    2015-12-01

    Soil samples were collected during three field campaigns to determine seasonal and spatial trends of soil salinity, soil acidity and arsenic concentrations on Polder 32 in coastal Bangladesh. Many farmers on Polder 32 use a crop rotation of rice cultivation in the wet season and shrimp farming in the dry season, and studies have shown that this rotation can increase soil salinity and acidity. Soil samples were collected in May 2013, October 2013 and May 2014 from rice paddies and shrimp ponds on the polder, from adjacent tidal channels, and from the Sunderbans mangrove forest to the SE of the polder, and analyzed for both geochemical and physical parameters and then subjected to statistical tests and mapped using geographic information system software to find correlations. Results support the belief that soil salinity, acidity and arsenic concentration exhibit spatial variation, and soil salinity and acidity show seasonal variation with salinity elevated in the dry season (May) and acidity elevated in the wet season (October). Results suggest that Hydrous Ferric Oxyhydroxides (HFOs) are present in October and sulfides are present in May, so that reducing conditions that lead to reduction of HFOs and precipitation of sulfides must occur between October and May. Rice grown in paddies should be unaffected by salt concentrations in the wet season, while arsenic concentrations in soil may be high enough to cause unsafe As levels in produced rice. No evidence of soil acidification was found, most likely due to the presence of soil carbonate.

  8. Release of zinc and cadmium from sludge amended soil as influenced by varying levels of moisture and temperature.

    PubMed

    Golui, Debasis; Datta, S P; Rattan, R K; Dwivedi, B S; Meena, M C; Bandyopadhayay, K K

    2015-07-01

    Limited information is available related to the effect of moisture and temperature on release of metals from sludge treated soils. In an incubation experiment, effect of ten levels of sludge (0, 1.12, 2.24, 4.48, 8.96, 17.9, 35.8, 71.6, 142, 285 g kg(-1)), two levels of moisture (field capacity and 2.5 cm standing water) and two levels of temperature (20 and 35 degrees C) on the release of zinc and cadmium was evaluated in acid and alkaline soils. The results indicated that application of sludge was more effective in enhancing EDTA extractable Zn and Cd in acid soil than in alkaline soil. On an average, maximum increase in release of EDTA extractable Zn and Cd were 32.0 and 5.2 fold in sludge treated soil over control. There was decrease in EDTA extractable Zn and Cd by 37.7% and 25.4%, respectively under submergence as compared to that under field capacity. On an average, the amount of EDTA extractable Zn and Cd increased by 22.6% and 43.6%, respectively at 35 degrees C than that at 20 degrees C.

  9. Using Soil Apparent Electrical Conductivity to Optimize Sampling of Soil Penetration Resistance and to Improve the Estimations of Spatial Patterns of Soil Compaction

    PubMed Central

    Siqueira, Glécio Machado; Dafonte, Jorge Dafonte; Bueno Lema, Javier; Valcárcel Armesto, Montserrat; Silva, Ênio Farias França e

    2014-01-01

    This study presents a combined application of an EM38DD for assessing soil apparent electrical conductivity (ECa) and a dual-sensor vertical penetrometer Veris-3000 for measuring soil electrical conductivity (ECveris) and soil resistance to penetration (PR). The measurements were made at a 6 ha field cropped with forage maize under no-tillage after sowing and located in Northwestern Spain. The objective was to use data from ECa for improving the estimation of soil PR. First, data of ECa were used to determine the optimized sampling scheme of the soil PR in 40 points. Then, correlation analysis showed a significant negative relationship between soil PR and ECa, ranging from −0.36 to −0.70 for the studied soil layers. The spatial dependence of soil PR was best described by spherical models in most soil layers. However, below 0.50 m the spatial pattern of soil PR showed pure nugget effect, which could be due to the limited number of PR data used in these layers as the values of this parameter often were above the range measured by our equipment (5.5 MPa). The use of ECa as secondary variable slightly improved the estimation of PR by universal cokriging, when compared with kriging. PMID:25610899

  10. Using soil apparent electrical conductivity to optimize sampling of soil penetration resistance and to improve the estimations of spatial patterns of soil compaction.

    PubMed

    Machado Siqueira, Glécio; Dafonte Dafonte, Jorge; Bueno Lema, Javier; Valcárcel Armesto, Montserrat; França e Silva, Ênio Farias

    2014-01-01

    This study presents a combined application of an EM38DD for assessing soil apparent electrical conductivity (ECa) and a dual-sensor vertical penetrometer Veris-3000 for measuring soil electrical conductivity (ECveris) and soil resistance to penetration (PR). The measurements were made at a 6 ha field cropped with forage maize under no-tillage after sowing and located in Northwestern Spain. The objective was to use data from ECa for improving the estimation of soil PR. First, data of ECa were used to determine the optimized sampling scheme of the soil PR in 40 points. Then, correlation analysis showed a significant negative relationship between soil PR and ECa, ranging from -0.36 to -0.70 for the studied soil layers. The spatial dependence of soil PR was best described by spherical models in most soil layers. However, below 0.50 m the spatial pattern of soil PR showed pure nugget effect, which could be due to the limited number of PR data used in these layers as the values of this parameter often were above the range measured by our equipment (5.5 MPa). The use of ECa as secondary variable slightly improved the estimation of PR by universal cokriging, when compared with kriging.

  11. Quantification of spatial distribution and spread of bacteria in soil at microscale

    NASA Astrophysics Data System (ADS)

    Juyal, Archana; Eickhorst, Thilo; Falconer, Ruth; Baveye, Philippe; Otten, Wilfred

    2015-04-01

    Soil bacteria play an essential role in functioning of ecosystems and maintaining of biogeochemical cycles. Soil is a complex heterogeneous environment comprising of highly variable and dynamic micro-habitats that have significant impacts on the growth and activity of resident microbiota including bacteria and fungi. Bacteria occupy a very small portion of available pore space in soil which demonstrates that their spatial arrangement in soil has a huge impact on the contact to their target and on the way they interact to carry out their functions. Due to limitation of techniques, there is scant information on spatial distribution of indigenous or introduced bacteria at microhabitat scale. There is a need to understand the interaction between soil structure and microorganisms including fungi for ecosystem-level processes such as carbon sequestration and improving the predictive models for soil management. In this work, a combination of techniques was used including X-ray CT to characterize the soil structure and in-situ detection via fluorescence microscopy to visualize and quantify bacteria in soil thin sections. Pseudomonas fluorescens bacteria were introduced in sterilized soil of aggregate size 1-2 mm and packed at bulk-densities 1.3 g cm-3 and 1.5 g cm-3. A subset of samples was fixed with paraformaldehyde and subsequently impregnated with resin. DAPI and fluorescence in situ hybridization (FISH) were used to visualize bacteria in thin sections of soil cores by epifluorescence microscopy to enumerate spatial distribution of bacteria in soil. The pore geometry of soil was quantified after X-ray microtomography scanning. The distribution of bacteria introduced locally reduced significantly (P

  12. Levels of cadmium and zinc in soil and plants following the toxic spill from a pyrite mine, Aznalcollar, Spain.

    PubMed

    Pain, Deborah J; Meharg, Andrew; Sinclair, Gillian; Powell, Nicola; Finnie, Jill; Williams, Robert; Hilton, Geoff

    2003-02-01

    On 25 April 1998, a breach of the tailings dam of the Los Frailes pyrite mine in southwestern Spain resulted in the release of 6 million m3 of acidic water and toxic sludge high in heavy metals. Contaminated material extended 40 km downstream, affecting agricultural land and parts of the wildlife-rich Doñana Natural and National Parks, including the Entremuros, a very important area for birds. We report on the concentrations, distributions and bioavailability of zinc and cadmium in soil and vegetation from the Entremuros in November 1998 and October 1999, following 2 'cleanup' operations. Levels of Zn and Cd in soil increased significantly over this period, although this was not reflected consistently in metal concentrations in emergent macrophytes. We recommend monitoring of further cleanup attempts in order to develop means of minimizing potential impacts to wildlife in the area.

  13. The assessment of soil availability and wheat grain status of zinc and iron in Serbia: Implications for human nutrition.

    PubMed

    Nikolic, Miroslav; Nikolic, Nina; Kostic, Ljiljana; Pavlovic, Jelena; Bosnic, Predrag; Stevic, Nenad; Savic, Jasna; Hristov, Nikola

    2016-05-15

    The deficiency of zinc (Zn) and iron (Fe) is a global issue causing not only considerable yield losses of food crops but also serious health problems. We have analysed Zn and Fe concentrations in the grains of two bread wheat cultivars along native gradient of micronutrient availability throughout Serbia. Although only 13% of the soil samples were Zn deficient and none was Fe deficient, the levels of these micronutrients in grain were rather low (median values of 21 mg kg(-1) for Zn and 36 mg kg(-1) for Fe), and even less adequate in white flour. Moreover, excessive P fertilization of calcareous soils in the major wheat growing areas strongly correlated with lower grain concentration of Zn. Our results imply that a latent Zn deficiency in wheat grain poses a high risk for grain quality relevant to human health in Serbia, where wheat bread is a staple food. PMID:26925726

  14. Different tree species affect soil respiration spatial distribution in a subtropical forest of southern Taiwan

    NASA Astrophysics Data System (ADS)

    Chiang, Po-Neng; Yu, Jui-Chu; Wang, Ya-nan; Lai, Yen-Jen

    2014-05-01

    Global forests contain 69% of total carbon stored in forest soil and litter. But the carbon storage ability and release rate of warming gases of forest soil also affect global climate change. Soil carbon cycling processes are paid much attention by ecological scientists and policy makers because of the possibility of carbon being stored in soil via land use management. Soil respiration contributed large part of terrestrial carbon flux, but the relationship of soil respiration and climate change was still obscurity. Most of soil respiration researches focus on template and tropical area, little was known that in subtropical area. Afforestation is one of solutions to mitigate CO2 increase and to sequestrate CO2 in tree and soil. Therefore, the objective of this study is to clarify the relationship of tree species and soil respiration distribution in subtropical broad-leaves plantation in southern Taiwan. The research site located on southern Taiwan was sugarcane farm before 2002. The sugarcane was removed and fourteen broadleaved tree species were planted in 2002-2005. Sixteen plots (250m*250m) were set on 1 km2 area, each plot contained 4 subplots (170m2). The forest biomass (i.e. tree height, DBH) understory biomass, litter, and soil C were measured and analyzed at 2011 to 2012. Soil respiration measurement was sampled in each subplot in each month. The soil belongs to Entisol with over 60% of sandstone. The soil pH is 5.5 with low base cations because of high sand percentage. Soil carbon storage showed significantly negative relationship with soil bulk density (p<0.001) in research site. The differences of distribution of live tree C pool among 16 plots were affected by growth characteristic of tree species. Data showed that the accumulation amount of litterfall was highest in December to February and lowest in June. Different tree species planted in 16 plots, resulting in high spatial variation of litterfall amount. It also affected total amount of litterfall

  15. [Application of spatially explicit landscape model in soil loss study in Huzhong area].

    PubMed

    Xu, Chonggang; Hu, Yuanman; Chang, Yu; Li, Xiuzhen; Bu, Renchang; He, Hongshi; Leng, Wenfang

    2004-10-01

    Universal Soil Loss Equation (USLE) has been widely used to estimate the average annual soil loss. In most of the previous work on soil loss evaluation on forestland, cover management factor was calculated from the static forest landscape. The advent of spatially explicit forest landscape model in the last decade, which explicitly simulates the forest succession dynamics under natural and anthropogenic disturbances (fire, wind, harvest and so on) on heterogeneous landscape, makes it possible to take into consideration the change of forest cover, and to dynamically simulate the soil loss in different year (e.g. 10 years and 20 years after current year). In this study, we linked a spatially explicit landscape model (LANDIS) with USLE to simulate the soil loss dynamics under two scenarios: fire and no harvest, fire and harvest. We also simulated the soil loss with no fire and no harvest as a control. The results showed that soil loss varied periodically with simulation year, and the amplitude of change was the lowest under the control scenario and the highest under the fire and no harvest scenario. The effect of harvest on soil loss could not be easily identified on the map; however, the cumulative effect of harvest on soil loss was larger than that of fire. Decreasing the harvest area and the percent of bare soil increased by harvest could significantly reduce soil loss, but had no significant effects on the dynamic of soil loss. Although harvest increased the annual soil loss, it tended to decrease the variability of soil loss between different simulation years.

  16. [Spatial pattern of soil fertility in Bashan tea garden: a prediction based on environmental auxiliary variables].

    PubMed

    Qin, Le-feng; Yang, Chao; Lin, Fen-fang; Yang, Ning; Zheng, Xin-yu; Xu, Hong-wei; Wang, Ke

    2010-12-01

    Taking topographic factors and NDVI as auxiliary variables, and by using regression-kriging method, the spatial variation pattern of soil fertility in Bashan tea garden in the hilly area of Fuyang City was explored. The spatial variability of the soil fertility was mainly attributed to the structural factors such as relative elevation and flat/vertical curvature. The lower the relative elevation, the worse the soil fertility was. The overall soil fertility level was relatively high, and the area with lower soil fertility only accounted for 5% of the total. By using regression-kriging method with relative elevation as auxiliary variable, the prediction accuracy of soil fertility was obviously higher than that by using ordinary kriging method, with the mean error and root mean square error being 0. 028 and 0. 108, respectively. It was suggested that the prediction method used in this paper could fully reflect the effects of environmental variables on soil fertility , improve the prediction accuracy about the spatial pattern of soil fertility, and provide scientific basis for the precise management of tea garden.

  17. Soil organic carbon stocks in Alaska estimated with spatial and pedon data

    USGS Publications Warehouse

    Bliss, N.B.; Maursetter, J.

    2010-01-01

    Temperatures in high-latitude ecosystems are increasing faster than the average rate of global warming, which may lead to a positive feedback for climate change by increasing the respiration rates of soil organic C. If a positive feedback is confirmed, soil C will represent a source of greenhouse gases that is not currently considered in international protocols to regulate C emissions. We present new estimates of the stocks of soil organic C in Alaska, calculated by linking spatial and field data developed by the USDA NRCS. The spatial data are from the State Soil Geographic database (STATSGO), and the field and laboratory data are from the National Soil Characterization Database, also known as the pedon database. The new estimates range from 32 to 53 Pg of soil organic C for Alaska, formed by linking the spatial and field data using the attributes of Soil Taxonomy. For modelers, we recommend an estimation method based on taxonomic subgroups with interpolation fot missing areas, which yields an estimate of 48 Pg. This is a substantial increase over a magnitude of 13 Pg estimated from only the STATSGO data as originally distributed in 1994, but the increase reflects different estimation methods and is not a measure of the change in C on the landscape. Pedon samples were collected between 1952 and 2002, so the results do not represent a single point in time. The linked databases provide an improved basis for modeling the impacts of climare change on net ecosystem exchange. ?? Soil Science Society of America. All rights reserved.

  18. Spatial relationships among soil biota in a contaminated grassland ecosystem at Aberdeen Proving Ground, Maryland

    SciTech Connect

    Kuperman, R.; Williams, G.; Parmelee, R.

    1995-12-31

    Spatial relationships among soil nematodes and soil microorganisms were investigated in a grassland ecosystem contaminated with heavy metals in the US Army`s Aberdeen Proving Ground. The study quantified fungal and bacterial biomass, the abundance of soil protozoa, and nematodes. Geostatistical techniques were used to determine spatial distributions of these parameters and to evaluate various cross-correlations. The cross-correlations among soil biota numbers were analyzed using two methods: a cross general relative semi-variogram and an interactive graphical data representation using geostatistically estimated data distributions. Both the visualization technique and the cross general relative semi-variogram and an interactive graphical data representation using geostatistically estimated data distributions. Both the visualization technique and the cross general relative semi-variogram showed a negative correlation between the abundance of fungivore nematodes and fungal biomass, the abundance of bacterivore nematodes and bacterial biomass, the abundance of omnivore/predator nematodes and numbers of protozoa, and between numbers of protozoa and both fungal and bacterial biomass. The negative cross-correlation between soil biota and metal concentrations showed that soil fungi were particularly sensitive to heavy metal concentrations and can be used for quantitative ecological risk assessment of metal-contaminated soils. This study found that geostatistics are a useful tool for describing and analyzing spatial relationships among components of food webs in the soil community.

  19. Vegetation-induced spatial variability of soil redox properties in wetlands

    NASA Astrophysics Data System (ADS)

    Szalai, Zoltán; Jakab, Gergely; Kiss, Klaudia; Ringer, Marianna; Balázs, Réka; Zacháry, Dóra; Horváth Szabó, Kata; Perényi, Katalin

    2016-04-01

    Vegetation induced land patches may result spatial pattern of on soil Eh and pH. These spatial pattern are mainly emerged by differences of aeration and exudation of assimilates. Present paper focuses on vertical extent and temporal dynamics of these patterns in wetlands. Two study sites were selected: 1. a plain wetland on calcareous sandy parent material (Ceglédbercel, Danube-Tisza Interfluve, Hungary); 2. headwater wetland with calcareous loamy parent material (Bátaapáti, Hungary). Two vegetation patches were studied in site 1: sedgy (dominated by Carex riparia) and reedy (dominated by Phragmites australis). Three patches were studied in site2: sedgy1 (dominated by C vulpina), sedgy 2 (C. riparia); nettle-horsetail (Urtica dioica and Equisetum arvense). Boundaries between patches were studied separately. Soil redox, pH and temperature studied by automated remote controlled instruments. Three digital sensors (Ponsell) were installed in each locations: 20cm and 40cm sensors represent the solum and 100 cm sensor monitors the subsoil). Groundwater wells were installed near to triplets for soil water sampling. Soil Eh, pH and temperature values were recorded in each 10 minutes. Soil water sampling for iron and DOC were carried out during saturated periods. Spatial pattern of soil Eh is clearly caused by vegetation. We measured significant differences between Eh values of the studied patches in the solum. We did not find this kinds horizontal differences in the subsoil. Boundaries of the patches usually had more reductive soil environment than the core areas. We have found temporal dynamics of the spatial redox pattern. Differences were not so well expressed during wintertime. These spatial patterns had influence on the DOC and iron content of porewater, as well. Highest temporal dynamics of soil redox properties and porewater iron could be found in the boundaries. These observations refer to importance patchiness of vegetation on soil chemical properties in

  20. [Spatial Heterogeneity of Soil Respiration in a Larch Plantation of North China at Different Sampling Scales].

    PubMed

    Yan, Jun-xia; Liang, Ya-nan; Li, Hong-jian; Li, Jun-jian

    2015-12-01

    Based on observations of soil respiration rate (Rs) and both biotic and abiotic factors in Pangquangou Nature Reserve at three sampling scales (4, 2, and 1 m), we studied the spatial heterogeneity of Rs and the factors, and analyzed impacts of soil temperature at the 5, 10 and 15 cm depth (T5, T10, T15), soil moisture over the depth of 0-10 cm (Ws), and soil total nitrogen (N), soil total organic carbon (C), ratio of carbon and nitrogen (C/N), soil total sulfur (S), litter fall mass (Lw) and litter fall moisture (Lm) on the spatial heterogeneity of Rs, respectively. We also calculated the minimum sampling number of all the factors at different confidence levels and under the responding estimation accuracy. The results showed that: (1) the spatial heterogeneity of C/N at 4 m sampling scale, Ws at 2 m sampling scale and T10, T15 at 1 m sampling scale had low variability, while the spatial variation of Rs and other related factors had medium variability. Coefficients of variation of Rs, C/N and S decreased with the increase of the sampling scales, but those of N, C, Ws, T₅, T₁₀, T₁₅, Lw and Lm showed contrary trend; (2) the spatial autocorrelation of Rs, Ws, T₅, T₁₀, T₁₅, Lw and Lm decreased with the decrease of sampling scales but the spatial autocorrelation of C, N, C/N increased with the decrease of sampling scales, and the spatial autocorrelation of S decreased with the decrease of the sampling scales at initial stage and then increased; (3) the key factors that influenced the spatial heterogeneity of soil respiration were different at different sampling scales. Soil temperature was the key factor influencing the spatial heterogeneity of Rs at a larger scale. However, at a smaller scale, the spatial heterogeneity of Rs was influenced by C, Lw and Lm; (4) the minimum sampling number for soil respiration measurement and its influencing factors reduced greatly with the decrease of confidence level and responding estimation accuracy. The sampling

  1. [Spatial Heterogeneity of Soil Respiration in a Larch Plantation of North China at Different Sampling Scales].

    PubMed

    Yan, Jun-xia; Liang, Ya-nan; Li, Hong-jian; Li, Jun-jian

    2015-12-01

    Based on observations of soil respiration rate (Rs) and both biotic and abiotic factors in Pangquangou Nature Reserve at three sampling scales (4, 2, and 1 m), we studied the spatial heterogeneity of Rs and the factors, and analyzed impacts of soil temperature at the 5, 10 and 15 cm depth (T5, T10, T15), soil moisture over the depth of 0-10 cm (Ws), and soil total nitrogen (N), soil total organic carbon (C), ratio of carbon and nitrogen (C/N), soil total sulfur (S), litter fall mass (Lw) and litter fall moisture (Lm) on the spatial heterogeneity of Rs, respectively. We also calculated the minimum sampling number of all the factors at different confidence levels and under the responding estimation accuracy. The results showed that: (1) the spatial heterogeneity of C/N at 4 m sampling scale, Ws at 2 m sampling scale and T10, T15 at 1 m sampling scale had low variability, while the spatial variation of Rs and other related factors had medium variability. Coefficients of variation of Rs, C/N and S decreased with the increase of the sampling scales, but those of N, C, Ws, T₅, T₁₀, T₁₅, Lw and Lm showed contrary trend; (2) the spatial autocorrelation of Rs, Ws, T₅, T₁₀, T₁₅, Lw and Lm decreased with the decrease of sampling scales but the spatial autocorrelation of C, N, C/N increased with the decrease of sampling scales, and the spatial autocorrelation of S decreased with the decrease of the sampling scales at initial stage and then increased; (3) the key factors that influenced the spatial heterogeneity of soil respiration were different at different sampling scales. Soil temperature was the key factor influencing the spatial heterogeneity of Rs at a larger scale. However, at a smaller scale, the spatial heterogeneity of Rs was influenced by C, Lw and Lm; (4) the minimum sampling number for soil respiration measurement and its influencing factors reduced greatly with the decrease of confidence level and responding estimation accuracy. The sampling

  2. Spatial and Seasonal Variability of Extreme Soil Temperature in Croatia

    NASA Astrophysics Data System (ADS)

    Sviličić, Petra; Vučetić, Višnja

    2015-04-01

    In terms of taking the temperature of the Earth in Croatia, first measurements began in 1898 in Križevci, but systematic measurements of soil temperature started in 1951. Today, the measurements are performed at 55 meteorological stations. The process of setting up, calibration, measurement, input, control and data processing is done entirely within the Meteorological and Hydrological Service. Due to the lack of funds, but also as a consequence of the Homeland War, network density in some areas is very rare, leading to aggravating circumstances during analysis. Also, certain temperature series are incomplete or are interrupted and therefore the number of long-term temperature series is very small. This particularly presents problems in coastal area, which is geographically diversified and is very difficult to do a thorough analysis of the area. Using mercury angle geothermometer daily at 7, 14 and 21 h CET, thermal state of soil is measured at 2, 5, 10, 20, 30, 50 and 100 cm depth. Thermometers are placed on the bare ground within the meteorological circle and facing north to reduce the direct impact of solar radiation. Lack of term measurements is noticed in the analysis of extreme soil temperatures, which are not real extreme values, but derived from three observational times. On the basis of fifty year series (1961-2010) at 23 stations, the analysis of trends of the surface maximal and minimal soil temperature, as well as the appearance of freezing is presented. Trends were determined by Sen's slope estimator, and statistical significance on 5% level was determined using the Mann-Kendall test. It was observed that the variability of the surface maximal soil temperature on an annual and seasonal level is much higher than those for surface minimal soil temperature. Trends in the recent period show a statistically significant increase in the maximal soil temperature in the eastern and the coastal regions, especially in the spring and summer season. Also, the

  3. Soil spatial variability and symbiotic nitrogen fixation by legumes

    SciTech Connect

    Reichardt, K. )

    1990-09-01

    The isotope dilution method for the estimation of N{sub 2} fixation by legumes is analyzed, comparing the application of {sup 15}N-enriched fertilizer with {sup 15}N-labeled soil. Soil variability of other dynamic processes in the soil are discussed in light of the distribution of the {sup 15}N label in the system. Field data were collected along six transects, 45 m long, with 30 plots (replicates) each. The legume (Vicia faba L.) was used as a fixing crop, barley (Hordeum vulgare L.) and oil radish (Raphinus sativus L.) as nonfixing standard crops. Isotope methods were also compared with the yield difference method. Results show that isotope methods were very sensitive to the distribution of the label in the soil and that dynamic processes involving N can significantly affect this distribution over a whole field. Best results were obtained with {sup 15}N-labeled soil. The particular site used, having been farmed for more than 20 years with {sup 15}N trials, showed a homogeneous residual {sup 15}N label that made it possible to estimate N{sub 2} fixation without the application of extra label. Estimates of N{sub 2} fixation with the isotope method were well correlated with the yield difference method when fertilizer use efficiency of the fixing and nonfixing crops were similar. Results also indicate that a good reference crop for one method might not be the best for the other method, and one reason for this is the variability of soil parameters and of dynamic processes occurring in the soil.

  4. ECa-Directed Soil Sampling for Characterizing Spatial Variability: Monitoring Management- Induced Change

    NASA Astrophysics Data System (ADS)

    Corwin, D. L.

    2006-05-01

    Characterizing spatial variability is an important consideration of any landscape-scale soil-related problem. Geospatial measurements of apparent soil electrical conductivity (ECa) are useful for characterizing spatial variability by directing soil sampling. The objective of this presentation is to discuss equipment, protocols, sampling designs, and a case study of an ECa survey to characterize spatial variability. Specifically, a preliminary spatio-temporal study of management-induced changes to soil quality will be demonstrated for a drainage water reuse study site. The spatio-temporal study used electromagnetic induction ECa data and a response surface sampling design to select 40 sites that reflected the spatial variability of soil properties (i.e., salinity, Na levels, Mo, and B) impacting the intended agricultural use of a saline-sodic field in California's San Joaquin Valley. Soil samples were collected in August 1999 and April 2002. Data from 1999 indicate the presence of high salinity, which increased with depth, high sodium adsorption ratio (SAR), which also increased with depth, and moderate to high B and Mo, which showed no specific trends with depth. The application of drainage water for 32 months resulted in leaching of B from the top 0.3 of soil, leaching of salinity from the top 0.6 m of soil, and leaching of Na and Mo from the top 1.2 m of soil. The leaching fraction over the time period from 1999-2002 was estimated to be 0.10. The level of salinity in the reused drainage water (i.e., 3-5 dS/m) allowed infiltration and leaching to occur even though high sodium and high expanding-lattice clay levels posed potential water flow problems. The leaching of salinity, Na, Mo, and B has resulted in increased forage yield and improved quality of those yields. Preliminary spatio-temporal analyses indicate at least short-term feasibility of drainage water reuse from the perspective of soil quality when the goal is forage production for grazing livestock. The

  5. Copper and zinc fractionation in apple orchard soil in the village of Bukevje (Croatia) using the revised four-step BCR extraction procedure.

    PubMed

    Medunić, Gordana; Juranović Cindrić, Iva; Lovrenčić Mikelić, Ivanka; Tomašić, Nenad; Balen, Dražen; Oreščanin, Višnja; Kampić, Štefica; Ivković, Ivana

    2013-12-01

    The aim of this study was to establish the fractionation of copper and zinc in a small apple orchard using the revised (four-step) Bureau Communautaire de Référence (BCR) sequential extraction procedure and assess their potential mobility in soil. Soil samples were collected at the depth of 10 cm to 25 cm, sixteen from the orchard and five control samples from a meadow located some 200 m away from the orchard. As the distribution of trace-element concentrations in the control samples was normal, they were used for comparison as background levels. We also determined soil mineralogical composition, carbonate content, soil pH, cation exchange capacity, and soil organic matter. The extraction yields of Cu and Zn from the control soil were lower than from the orchard soil (25% vs. 34% and 47% vs. 52%, respectively), which pointed to natural processes behind metal bonding in the control soil and greater influence of man-made activities in the orchard soil. Compared to control, the orchard soil had significantly higher concentrations of total Cu (P=0.0009), possibly due to the application of Cu-based fungicides. This assumption was further supported by greater speciation variability of Cu than of zinc, which points to different origins of the two, Cu from pesticides and Zn from the parent bedrock. Copper levels significantly better (P=0.01) correlated with the oxidisable fraction of the orchard soil than of control soil. Residual and organically bound copper and zinc constituted the most important fractions in the studied soils. However, the use of Cu-based fungicides in the apple orchard did not impose environmental and health risk from Cu exposure.

  6. Spatial variability of soil carbon stock in the Urucu river basin, Central Amazon-Brazil.

    PubMed

    Ceddia, Marcos Bacis; Villela, André Luis Oliveira; Pinheiro, Érika Flávia Machado; Wendroth, Ole

    2015-09-01

    The Amazon Forest plays a major role in C sequestration and release. However, few regional estimates of soil organic carbon (SOC) stock in this ecoregion exist. One of the barriers to improve SOC estimates is the lack of recent soil data at high spatial resolution, which hampers the application of new methods for mapping SOC stock. The aims of this work were: (i) to quantify SOC stock under undisturbed vegetation for the 0-30 and the 0-100 cm under Amazon Forest; (ii) to correlate the SOC stock with soil mapping units and relief attributes and (iii) to evaluate three geostatistical techniques to generate maps of SOC stock (ordinary, isotopic and heterotopic cokriging). The study site is located in the Central region of Amazon State, Brazil. The soil survey covered the study site that has an area of 80 km(2) and resulted in a 1:10,000 soil map. It consisted of 315 field observations (96 complete soil profiles and 219 boreholes). SOC stock was calculated by summing C stocks by horizon, determined as a product of BD, SOC and the horizon thickness. For each one of the 315 soil observations, relief attributes were derived from a topographic map to understand SOC dynamics. The SOC stocks across 30 and 100 cm soil depth were 3.28 and 7.32 kg C m(-2), respectively, which is, 34 and 16%, lower than other studies. The SOC stock is higher in soils developed in relief forms exhibiting well-drained soils, which are covered by Upland Dense Tropical Rainforest. Only SOC stock in the upper 100 cm exhibited spatial dependence allowing the generation of spatial variability maps based on spatial (co)-regionalization. The CTI was inversely correlated with SOC stock and was the only auxiliary variable feasible to be used in cokriging interpolation. The heterotopic cokriging presented the best performance for mapping SOC stock.

  7. Influence of the zinc hyperaccumulator Thlaspi caerulescens J. & C. Presl. and the nonmetal accumulator Trifolium pratense L. on soil microbial populations.

    PubMed

    Delorme, T A; Gagliardi, J V; Angle, J S; Chaney, R L

    2001-08-01

    Metal hyperaccumulator plants like Thlaspi caerulescens J. & C. Presl. are used for phytoremediation of contaminated soils. Since little is known about the rhizosphere of hyperaccumulators, the influence of T. caerulescens was compared with the effects of Trifolium pratense L. on soil microbes. High- and low-metal soils were collected near a zinc smelter in Palmerton, Penn. Soil pH was adjusted to 5.8 and 6.8 by the addition of Ca(OH)2. Liming increased bacterial populations and decreased metal toxicity to levels allowing growth of both plants. The effects of the plants on total (culturable) bacteria, total fungi, as well as cadmium- and zinc-resistant populations were assessed in nonrhizosphere and rhizosphere soil. Both plants increased microbial populations in rhizosphere soil compared with nonrhizosphere soil. Microbial populations were higher in soils planted with T. pratense, but higher ratios of metal-resistant bacteria were found in the presence of T. caerulescens. We hypothesize that T. caerutescens acidifies its rhizosphere. Soil acidification in the rhizosphere of T. caerulescens would affect metal uptake by increasing available metals around the roots and consequently, increase the selection for metal-resistant bacteria. Soil acidification may be part of the hyperaccumulation process enhancing metal uptake from soil.

  8. Spatial Variability of Soil Properties and Their Effect on Methane Generation, Oxidation, and Emission from Soils Covering Landfills

    NASA Astrophysics Data System (ADS)

    Imhoff, P. T.; Mei, C.; Yazdani, R.; Han, B.; Mostafid, M.

    2013-12-01

    Soils covering landfills mitigate gas emissions from degrading refuse, particularly emissions of methane, a potent greenhouse gas. To enhance the oxidative capacity of these soils, materials with high organic matter are proposed for landfill covers, e.g., compost and aged greenwaste. We report field tests of these materials in pilot-scale test cells. While moisture conditions and gas transport were initially uniform, after one year significant spatial variability of gas flow developed that was associated with spatially variable dry bulk density and volumetric water content. For a test cell with organic matter content of 38%, a single-domain porous medium model was adequate for describing water retention and continuum modeling was capable of describing spatially variable gas flow and methane oxidation. A second test cell with organic matter of 61% was best described as a dual-domain porous medium, and continuum modeling was inadequate for describing spatially variable gas flow. Here, the dual-domain medium resulted in significant subgrid scale variability in moisture conditions that affected gas transport and methane oxidation. The results from these field tests suggest that proposed one-dimensional models of gas transport and methane oxidation in landfill cover soils may be inadequate for soils composed of high organic matter that require dual-domain models for water retention.

  9. Redistribution of fractions of zinc, cadmium, nickel, copper, and lead in contaminated calcareous soils treated with EDTA.

    PubMed

    Jalali, Mohsen; Khanlari, Zahra V

    2007-11-01

    Effect of ethylene diamine tetraacetic acid (EDTA) on the fractionation of zinc (Zn), cadmium (Cd), nickel (Ni), copper (Cu), and lead (Pb) in contaminated calcareous soils was investigated. Soil samples containing variable levels of contamination, from 105.9 to 5803 mg/kg Zn, from 2.2 to 1361 mg/kg Cd, from 31 to 64.0 mg/kg Ni, from 24 to 84 mg/kg Cu, and from 109 to 24,850 mg/kg Pb, were subjected to EDTA treatment at different dosages of 0, 1.0, and 2.0 g/kg. Metals in the incubated soils were fractionated after 5 months by a sequential extraction procedure, in which the metal fractions were experimentally defined as exchangeable (EXCH), carbonate (CARB), Mn oxide (MNO), Fe oxide (FEO), organic matter (OM), and residual (RES) fractions. In contaminated soils without EDTA addition, Zn, Ni, Cu, and Pb were predominately present in the RES fraction, up to 60.0%, 32.3%, 41.1%, and 36.8%, respectively. In general, with the EDTA addition, the EXCH and CARB fractions of these metals increased dramatically while the OM fraction decreased. The Zn, Ni, Cu, and Pb were distributed mostly in RES, OM, FEO, and CARB fractions in contaminated soils, but Cd was found predominately in the CARB, MNO, and RES fractions. The OM fraction decreased with increasing amounts of EDTA. In the contaminated soils, EDTA removed some Pb, Zn, Cu, and Ni from MNO, FEO, and OM fractions and redistributed them into CARB and EXCH fractions. Based on the relative percent in the EXCH and CARB fractions, the order of solubility was Cd > Pb > Ni > Cu > Zn for contaminated soils, before adding of EDTA, and after adding of EDTA, the order of solubility was Pb > Cd > Zn > Ni > Cu. The risk of groundwater contamination will increase after applying EDTA and it needed to be used very carefully.

  10. Spatial and temporal variability of soil moisture on the field with and without plants*

    NASA Astrophysics Data System (ADS)

    Usowicz, B.; Marczewski, W.; Usowicz, J. B.

    2012-04-01

    Spatial and temporal variability of the natural environment is its inherent and unavoidable feature. Every element of the environment is characterized by its own variability. One of the kinds of variability in the natural environment is the variability of the soil environment. To acquire better and deeper knowledge and understanding of the temporal and spatial variability of the physical, chemical and biological features of the soil environment, we should determine the causes that induce a given variability. Relatively stable features of soil include its texture and mineral composition; examples of those variables in time are the soil pH or organic matter content; an example of a feature with strong dynamics is the soil temperature and moisture content. The aim of this study was to identify the variability of soil moisture on the field with and without plants using geostatistical methods. The soil moisture measurements were taken on the object with plant canopy and without plants (as reference). The measurements of soil moisture and meteorological components were taken within the period of April-July. The TDR moisture sensors covered 5 cm soil layers and were installed in the plots in the soil layers of 0-0.05, 0.05-0.1, 0.1-0.15, 0.2-0.25, 0.3-0.35, 0.4-0.45, 0.5-0.55, 0.8-0.85 m. Measurements of soil moisture were taken once a day, in the afternoon hours. For the determination of reciprocal correlation, precipitation data and data from soil moisture measurements with the TDR meter were used. Calculations of reciprocal correlation of precipitation and soil moisture at various depths were made for three objects - spring barley, rye, and bare soil, at the level of significance of p<0.05. No significant reciprocal correlation was found between the precipitation and soil moisture in the soil profile for any of the objects studied. Although the correlation analysis indicates a lack of correlation between the variables under consideration, observation of the soil

  11. Fast and simple procedure for fractionation of zinc in soil using an ultrasound probe and FAAS detection. Validation of the analytical method and evaluation of the uncertainty budget.

    PubMed

    Leśniewska, Barbara; Kisielewska, Katarzyna; Wiater, Józefa; Godlewska-Żyłkiewicz, Beata

    2016-01-01

    A new fast method for determination of mobile zinc fractions in soil is proposed in this work. The three-stage modified BCR procedure used for fractionation of zinc in soil was accelerated by using ultrasounds. The working parameters of an ultrasound probe, a power and a time of sonication, were optimized in order to acquire the content of analyte in soil extracts obtained by ultrasound-assisted sequential extraction (USE) consistent with that obtained by conventional modified Community Bureau of Reference (BCR) procedure. The content of zinc in extracts was determined by flame atomic absorption spectrometry. The developed USE procedure allowed for shortening the total extraction time from 48 h to 27 min in comparison to conventional modified BCR procedure. The method was fully validated, and the uncertainty budget was evaluated. The trueness and reproducibility of the developed method was confirmed by analysis of certified reference material of lake sediment BCR-701. The applicability of the procedure for fast, low costs and reliable determination of mobile zinc fraction in soil, which may be useful for assessing of anthropogenic impacts on natural resources and environmental monitoring purposes, was proved by analysis of different types of soil collected from Podlaskie Province (Poland). PMID:26666658

  12. Fast and simple procedure for fractionation of zinc in soil using an ultrasound probe and FAAS detection. Validation of the analytical method and evaluation of the uncertainty budget.

    PubMed

    Leśniewska, Barbara; Kisielewska, Katarzyna; Wiater, Józefa; Godlewska-Żyłkiewicz, Beata

    2016-01-01

    A new fast method for determination of mobile zinc fractions in soil is proposed in this work. The three-stage modified BCR procedure used for fractionation of zinc in soil was accelerated by using ultrasounds. The working parameters of an ultrasound probe, a power and a time of sonication, were optimized in order to acquire the content of analyte in soil extracts obtained by ultrasound-assisted sequential extraction (USE) consistent with that obtained by conventional modified Community Bureau of Reference (BCR) procedure. The content of zinc in extracts was determined by flame atomic absorption spectrometry. The developed USE procedure allowed for shortening the total extraction time from 48 h to 27 min in comparison to conventional modified BCR procedure. The method was fully validated, and the uncertainty budget was evaluated. The trueness and reproducibility of the developed method was confirmed by analysis of certified reference material of lake sediment BCR-701. The applicability of the procedure for fast, low costs and reliable determination of mobile zinc fraction in soil, which may be useful for assessing of anthropogenic impacts on natural resources and environmental monitoring purposes, was proved by analysis of different types of soil collected from Podlaskie Province (Poland).

  13. Mapping spatial variability of soil salinity in a coastal paddy field based on electromagnetic sensors.

    PubMed

    Guo, Yan; Huang, Jingyi; Shi, Zhou; Li, Hongyi

    2015-01-01

    In coastal China, there is an urgent need to increase land area for agricultural production and urban development, where there is a rapid growing population. One solution is land reclamation from coastal tidelands, but soil salinization is problematic. As such, it is very important to characterize and map the within-field variability of soil salinity in space and time. Conventional methods are often time-consuming, expensive, labor-intensive, and unpractical. Fortunately, proximal sensing has become an important technology in characterizing within-field spatial variability. In this study, we employed the EM38 to study spatial variability of soil salinity in a coastal paddy field. Significant correlation relationship between ECa and EC1:5 (i.e. r >0.9) allowed us to use EM38 data to characterize the spatial variability of soil salinity. Geostatistical methods were used to determine the horizontal spatio-temporal variability of soil salinity over three consecutive years. The study found that the distribution of salinity was heterogeneous and the leaching of salts was more significant in the edges of the study field. By inverting the EM38 data using a Quasi-3D inversion algorithm, the vertical spatio-temporal variability of soil salinity was determined and the leaching of salts over time was easily identified. The methodology of this study can be used as guidance for researchers interested in understanding soil salinity development as well as land managers aiming for effective soil salinity monitoring and management practices. In order to better characterize the variations in soil salinity to a deeper soil profile, the deeper mode of EM38 (i.e., EM38v) as well as other EMI instruments (e.g. DUALEM-421) can be incorporated to conduct Quasi-3D inversions for deeper soil profiles.

  14. Mapping spatial variability of soil salinity in a coastal paddy field based on electromagnetic sensors.

    PubMed

    Guo, Yan; Huang, Jingyi; Shi, Zhou; Li, Hongyi

    2015-01-01

    In coastal China, there is an urgent need to increase land area for agricultural production and urban development, where there is a rapid growing population. One solution is land reclamation from coastal tidelands, but soil salinization is problematic. As such, it is very important to characterize and map the within-field variability of soil salinity in space and time. Conventional methods are often time-consuming, expensive, labor-intensive, and unpractical. Fortunately, proximal sensing has become an important technology in characterizing within-field spatial variability. In this study, we employed the EM38 to study spatial variability of soil salinity in a coastal paddy field. Significant correlation relationship between ECa and EC1:5 (i.e. r >0.9) allowed us to use EM38 data to characterize the spatial variability of soil salinity. Geostatistical methods were used to determine the horizontal spatio-temporal variability of soil salinity over three consecutive years. The study found that the distribution of salinity was heterogeneous and the leaching of salts was more significant in the edges of the study field. By inverting the EM38 data using a Quasi-3D inversion algorithm, the vertical spatio-temporal variability of soil salinity was determined and the leaching of salts over time was easily identified. The methodology of this study can be used as guidance for researchers interested in understanding soil salinity development as well as land managers aiming for effective soil salinity monitoring and management practices. In order to better characterize the variations in soil salinity to a deeper soil profile, the deeper mode of EM38 (i.e., EM38v) as well as other EMI instruments (e.g. DUALEM-421) can be incorporated to conduct Quasi-3D inversions for deeper soil profiles. PMID:26020969

  15. Spatial patterns and controls of soil chemical weathering rates along a transient hillslope

    USGS Publications Warehouse

    Yoo, K.; Mudd, S.M.; Sanderman, J.; Amundson, Ronald; Blum, A.

    2009-01-01

    Hillslopes have been intensively studied by both geomorphologists and soil scientists. Whereas geomorphologists have focused on the physical soil production and transport on hillslopes, soil scientists have been concerned with the topographic variation of soil geochemical properties. We combined these differing approaches and quantified soil chemical weathering rates along a grass covered hillslope in Coastal California. The hillslope is comprised of both erosional and depositional sections. In the upper eroding section, soil production is balanced by physical erosion and chemical weathering. The hillslope then transitions to a depositional slope where soil accumulates due to a historical reduction of channel incision at the hillslope's base. Measurements of hillslope morphology and soil thickness were combined with the elemental composition of the soil and saprolite, and interpreted through a process-based model that accounts for both chemical weathering and sediment transport. Chemical weathering of the minerals as they moved downslope via sediment transport imparted spatial variation in the geochemical properties of the soil. Inverse modeling of the field and laboratory data revealed that the long-term soil chemical weathering rates peak at 5 g m- 2 yr- 1 at the downslope end of the eroding section and decrease to 1.5 g m- 2 yr- 1 within the depositional section. In the eroding section, soil chemical weathering rates appear to be primarily controlled by the rate of mineral supply via colluvial input from upslope. In the depositional slope, geochemical equilibrium between soil water and minerals appeared to limit the chemical weathering rate. Soil chemical weathering was responsible for removing 6% of the soil production in the eroding section and 5% of colluvial influx in the depositional slope. These were among the lowest weathering rates reported for actively eroding watersheds, which was attributed to the parent material with low amount of weatherable

  16. Spatial Variability of VOCl Fluxes From Forest Soil

    NASA Astrophysics Data System (ADS)

    Svensson, T.; Black, A. T.; Fulton, T.; Molodovskaya, M. S.; Nesic, Z.; Pickering, L.; Pilz, J.; Oberg, G.

    2011-12-01

    Naturally formed volatile chlorinated organic compounds (VOCl) are involved in various atmospheric processes such as ozone depletion. These compounds are present in several environmental compartments and some of them are of ecotoxicological concern. Over the past few years, a small but growing literature has focused on the emission of VOCls from terrestrial environments and there are indications that the emissions vary between ecosystems and that spatial and temporal patterns exist. Due to methodological challenges, the studies have hitherto been based on rather few measurements; subsequently estimates of both the magnitude and the variability of the fluxes are quite uncertain. To enable collection of larger sample sets, which would allow reliable surveying of spatial variability, we developed a portable chamber system. The system consists of a non-steady-state chamber (area 0.20 m2, volume 56.9L), a close-looped air-circulation unit with a diaphragm pump, and a VOCl sampling unit with carbon-based adsorbent tubes for later analysis in the laboratory by gas chromatography (GC7890, Agilent Technologies, USA) with micro-ECD detection (Agilent Technologies, USA), a thermal desorption system (TDSA2, Gerstel Inc., USA) and cryocooled inlet system (CIS4, Gerstel Inc., USA). We are using the portable system to investigate the spatial variability of chloroform fluxes at different scales and at various forested sites in south-west British Columbia, Canada. Our pilot observations strongly indicate that the flux from adjacent chambers (0.5-2 m between locations), may vary ten times or more, and that small-scale variability often overrides any larger scale patterns, or differences between sites. In addition, 'hot' and 'cold' measurement locations were not consistent spatially, indicating non-consistent spatial patterns in time. The study highlights that we need to better understand small-scale spatial heterogeneity of VOCl fluxes to interpret larger scale temporal and spatial

  17. Temporal and Spatial Variation of Soil Bacteria Richness, Composition, and Function in a Neotropical Rainforest

    PubMed Central

    Kivlin, Stephanie N; Hawkes, Christine V

    2016-01-01

    The high diversity of tree species has traditionally been considered an important controller of belowground processes in tropical rainforests. However, soil water availability and resources are also primary regulators of soil bacteria in many ecosystems. Separating the effects of these biotic and abiotic factors in the tropics is challenging because of their high spatial and temporal heterogeneity. To determine the drivers of tropical soil bacteria, we examined tree species effects using experimental tree monocultures and secondary forests at La Selva Biological Station in Costa Rica. A randomized block design captured spatial variation and we sampled at four dates across two years to assess temporal variation. We measured bacteria richness, phylogenetic diversity, community composition, biomass, and functional potential. All bacteria parameters varied significantly across dates. In addition, bacteria richness and phylogenetic diversity were affected by the interaction of vegetation type and date, whereas bacteria community composition was affected by the interaction of vegetation type and block. Shifts in bacteria community richness and composition were unrelated to shifts in enzyme function, suggesting physiological overlap among taxa. Based on the observed temporal and spatial heterogeneity, our understanding of tropical soil bacteria will benefit from additional work to determine the optimal temporal and spatial scales for sampling. Understanding spatial and temporal variation will facilitate prediction of how tropical soil microbes will respond to future environmental change. PMID:27391450

  18. Temporal and Spatial Variation of Soil Bacteria Richness, Composition, and Function in a Neotropical Rainforest.

    PubMed

    Kivlin, Stephanie N; Hawkes, Christine V

    2016-01-01

    The high diversity of tree species has traditionally been considered an important controller of belowground processes in tropical rainforests. However, soil water availability and resources are also primary regulators of soil bacteria in many ecosystems. Separating the effects of these biotic and abiotic factors in the tropics is challenging because of their high spatial and temporal heterogeneity. To determine the drivers of tropical soil bacteria, we examined tree species effects using experimental tree monocultures and secondary forests at La Selva Biological Station in Costa Rica. A randomized block design captured spatial variation and we sampled at four dates across two years to assess temporal variation. We measured bacteria richness, phylogenetic diversity, community composition, biomass, and functional potential. All bacteria parameters varied significantly across dates. In addition, bacteria richness and phylogenetic diversity were affected by the interaction of vegetation type and date, whereas bacteria community composition was affected by the interaction of vegetation type and block. Shifts in bacteria community richness and composition were unrelated to shifts in enzyme function, suggesting physiological overlap among taxa. Based on the observed temporal and spatial heterogeneity, our understanding of tropical soil bacteria will benefit from additional work to determine the optimal temporal and spatial scales for sampling. Understanding spatial and temporal variation will facilitate prediction of how tropical soil microbes will respond to future environmental change. PMID:27391450

  19. [Spatial variation characteristics of surface soil water content, bulk density and saturated hydraulic conductivity on Karst slopes].

    PubMed

    Zhang, Chuan; Chen, Hong-Song; Zhang, Wei; Nie, Yun-Peng; Ye, Ying-Ying; Wang, Ke-Lin

    2014-06-01

    Surface soil water-physical properties play a decisive role in the dynamics of deep soil water. Knowledge of their spatial variation is helpful in understanding the processes of rainfall infiltration and runoff generation, which will contribute to the reasonable utilization of soil water resources in mountainous areas. Based on a grid sampling scheme (10 m x 10 m) and geostatistical methods, this paper aimed to study the spatial variability of surface (0-10 cm) soil water content, soil bulk density and saturated hydraulic conductivity on a typical shrub slope (90 m x 120 m, projected length) in Karst area of northwest Guangxi, southwest China. The results showed that the surface soil water content, bulk density and saturated hydraulic conductivity had different spatial dependence and spatial structure. Sample variogram of the soil water content was fitted well by Gaussian models with the nugget effect, while soil bulk density and saturated hydraulic conductivity were fitted well by exponential models with the nugget effect. Variability of soil water content showed strong spatial dependence, while the soil bulk density and saturated hydraulic conductivity showed moderate spatial dependence. The spatial ranges of the soil water content and saturated hydraulic conductivity were small, while that of the soil bulk density was much bigger. In general, the soil water content increased with the increase of altitude while it was opposite for the soil bulk densi- ty. However, the soil saturated hydraulic conductivity had a random distribution of large amounts of small patches, showing high spatial heterogeneity. Soil water content negatively (P < 0.01) correlated with the bulk density and saturated hydraulic conductivity, while there was no significant correlation between the soil bulk density and saturated hydraulic conductivity.

  20. Temporal and spatial variability of soil biological activity at European scale

    NASA Astrophysics Data System (ADS)

    Mallast, Janine; Rühlmann, Jörg

    2015-04-01

    The CATCH-C project aims to identify and improve the farm-compatibility of Soil Management Practices including to promote productivity, climate change mitigation and soil quality. The focus of this work concentrates on turnover conditions for soil organic matter (SOM). SOM is fundamental for the maintenance of quality and functions of soils while SOM storage is attributed a great importance in terms of climate change mitigation. The turnover conditions depend on soil biological activity characterized by climate and soil properties. Soil biological activity was investigated using two model concepts: a) Re_clim parameter within the ICBM (Introductory Carbon Balance Model) (Andrén & Kätterer 1997) states a climatic factor summarizing soil water storage and soil temperature and its influence on soil biological activity. b) BAT (biological active time) approach derived from model CANDY (CArbon and Nitrogen Dynamic) (Franko & Oelschlägel 1995) expresses the variation of soil moisture, soil temperature and soil aeration as a time scale and an indicator of biological activity for soil organic matter (SOM) turnover. During an earlier stage both model concepts, Re_clim and BAT, were applied based on a monthly data to assess spatial variability of turnover conditions across Europe. This hampers the investigation of temporal variability (e.g. intra-annual). The improved stage integrates daily data of more than 350 weather stations across Europe presented by Klein Tank et al. (2002). All time series data (temperature, precipitation and potential evapotranspiration and soil texture derived from the European Soil Database (JRC 2006)), are used to calculate soil biological activity in the arable layer. The resulting BAT and Re_clim values were spatio-temporal investigated. While "temporal" refers to a long-term trend analysis, "spatial" includes the investigation of soil biological activity variability per environmental zone (ENZ, Metzger et al. 2005 representing similar

  1. Unraveling the Spatial Complexity of Soil Hydraulic Properties in Semiarid Ecosystems

    NASA Astrophysics Data System (ADS)

    Levi, M. R.; Rasmussen, C.; Schaap, M. G.

    2011-12-01

    Soils serve as the living filter that controls cycling of energy, water, carbon, and nutrients. Land surface models that estimate soil-vegetation-atmosphere transfers require soil hydraulic property information to produce accurate results. Accurate datasets of hydraulic soil properties are of utmost concern for modeling soil-water dynamics in semiarid ecosystems because of the tight coupling of soil-water availability, storage and distribution, and primary productivity in water-limited ecosystems. Furthermore, soil properties in semiarid ecosystems exhibit tremendous spatial variability that is not captured well in existing soil datasets. Thus, a fundamental knowledge gap in understanding land-atmosphere interactions is accurate, high resolution representation of soil physical and hydraulic properties. Remote sensing techniques can bridge the gap between site-specific soil properties and landscape variability, thereby improving predictions of soil attributes. The overall objective of this research was to predict soil physical and hydraulic properties important for modeling semiarid ecosystem soil-water dynamics using digital soil mapping techniques that couple remotely sensed data, high resolution digital elevation models (DEM's) and spatial modeling with the aim of producing improved soil datasets for modeling land-atmosphere interactions. Surface reflectance (Landsat data pan sharpened to 15-m resolution) and 5-m resolution IFSAR derived elevation data were coupled with a data reduction technique that used an iterative principal component analysis (PCA) and factor loading determination to facilitate selection of the key auxiliary data layers for describing landscape soil variability. A conditioned Latin hypercube sampling design was used to optimize sampling and identify 53 sampling locations that best represent the distribution of auxiliary data layers determined by iterative PCA for a 6,070 ha landscape. Soils were sampled by genetic horizon to 30 cm depth and

  2. Spatial variability of soil potassium in sugarcane areas subjected to the application of vinasse.

    PubMed

    De Carvalho, Laércio A; Meurer, Ismael; Da Silva Junior, Carlos A; Santos, Cristiane F B; Libardi, Paulo L

    2014-12-01

    When deposited on land the vinasse can promote improvement in fertility, however, often fertilizer application occurs in areas considered homogeneous, without taking into account the variability of the soil. The objective of this study was to evaluate the effect of vinasse application on potassium content in two classes of soils cultivated with sugarcane, and characterize the spatial variability of soil using geostatistical techniques. In the 2010 and 2011 crop year, soil samples were collected from an experimental grid at 0-0.2 and 0.2-0.4 m depth in three soils cultivated with sugarcane, totaling 90 samplings in each grid, for the determination of pH, calcium (Ca), magnesium (Mg), potassium (K), phosphorus (P), aluminum (Al) and potential acidity (H + Al). The data have been submitted to analysis of descriptive statistics and the K attribute was subjected to geostatistical analysis. The coefficient of variation indicated medium and high variability of K for the three soils. The results showed that the spatial dependence of K increased in depth to FRce and decreased to PHlv, indicating that the attribute could have followed the pattern of distribution of clay in depth. The investigation of the spatial variability of K on the surface and subsurface soils provided the definition of management zones with different levels of fertility, which can be organized into sub-areas for a more efficient management of the resources and the environment. PMID:25590735

  3. Impact of Spatial Soil and Climate Input Data Aggregation on Regional Yield Simulations

    PubMed Central

    Hoffmann, Holger; Zhao, Gang; Asseng, Senthold; Bindi, Marco; Biernath, Christian; Constantin, Julie; Coucheney, Elsa; Dechow, Rene; Doro, Luca; Eckersten, Henrik; Gaiser, Thomas; Grosz, Balázs; Heinlein, Florian; Kassie, Belay T.; Kersebaum, Kurt-Christian; Klein, Christian; Kuhnert, Matthias; Lewan, Elisabet; Moriondo, Marco; Nendel, Claas; Priesack, Eckart; Raynal, Helene; Roggero, Pier P.; Rötter, Reimund P.; Siebert, Stefan; Specka, Xenia; Tao, Fulu; Teixeira, Edmar; Trombi, Giacomo; Wallach, Daniel; Weihermüller, Lutz; Yeluripati, Jagadeesh; Ewert, Frank

    2016-01-01

    We show the error in water-limited yields simulated by crop models which is associated with spatially aggregated soil and climate input data. Crop simulations at large scales (regional, national, continental) frequently use input data of low resolution. Therefore, climate and soil data are often generated via averaging and sampling by area majority. This may bias simulated yields at large scales, varying largely across models. Thus, we evaluated the error associated with spatially aggregated soil and climate data for 14 crop models. Yields of winter wheat and silage maize were simulated under water-limited production conditions. We calculated this error from crop yields simulated at spatial resolutions from 1 to 100 km for the state of North Rhine-Westphalia, Germany. Most models showed yields biased by <15% when aggregating only soil data. The relative mean absolute error (rMAE) of most models using aggregated soil data was in the range or larger than the inter-annual or inter-model variability in yields. This error increased further when both climate and soil data were aggregated. Distinct error patterns indicate that the rMAE may be estimated from few soil variables. Illustrating the range of these aggregation effects across models, this study is a first step towards an ex-ante assessment of aggregation errors in large-scale simulations. PMID:27055028

  4. Impact of Spatial Soil and Climate Input Data Aggregation on Regional Yield Simulations.

    PubMed

    Hoffmann, Holger; Zhao, Gang; Asseng, Senthold; Bindi, Marco; Biernath, Christian; Constantin, Julie; Coucheney, Elsa; Dechow, Rene; Doro, Luca; Eckersten, Henrik; Gaiser, Thomas; Grosz, Balázs; Heinlein, Florian; Kassie, Belay T; Kersebaum, Kurt-Christian; Klein, Christian; Kuhnert, Matthias; Lewan, Elisabet; Moriondo, Marco; Nendel, Claas; Priesack, Eckart; Raynal, Helene; Roggero, Pier P; Rötter, Reimund P; Siebert, Stefan; Specka, Xenia; Tao, Fulu; Teixeira, Edmar; Trombi, Giacomo; Wallach, Daniel; Weihermüller, Lutz; Yeluripati, Jagadeesh; Ewert, Frank

    2016-01-01

    We show the error in water-limited yields simulated by crop models which is associated with spatially aggregated soil and climate input data. Crop simulations at large scales (regional, national, continental) frequently use input data of low resolution. Therefore, climate and soil data are often generated via averaging and sampling by area majority. This may bias simulated yields at large scales, varying largely across models. Thus, we evaluated the error associated with spatially aggregated soil and climate data for 14 crop models. Yields of winter wheat and silage maize were simulated under water-limited production conditions. We calculated this error from crop yields simulated at spatial resolutions from 1 to 100 km for the state of North Rhine-Westphalia, Germany. Most models showed yields biased by <15% when aggregating only soil data. The relative mean absolute error (rMAE) of most models using aggregated soil data was in the range or larger than the inter-annual or inter-model variability in yields. This error increased further when both climate and soil data were aggregated. Distinct error patterns indicate that the rMAE may be estimated from few soil variables. Illustrating the range of these aggregation effects across models, this study is a first step towards an ex-ante assessment of aggregation errors in large-scale simulations.

  5. Spatial Variation of Arsenic in Soil, Irrigation Water, and Plant Parts: A Microlevel Study

    PubMed Central

    Kabir, M. S.; Salam, M. A.; Paul, D. N. R.; Hossain, M. I.; Rahman, N. M. F.; Aziz, Abdullah

    2016-01-01

    Arsenic pollution became a great problem in the recent past in different countries including Bangladesh. The microlevel studies were conducted to see the spatial variation of arsenic in soils and plant parts contaminated through ground water irrigation. The study was performed in shallow tube well command areas in Sadar Upazila (subdistrict), Faridpur, Bangladesh, where both soil and irrigation water arsenic are high. Semivariogram models were computed to determine the spatial dependency of soil, water, grain, straw, and husk arsenic (As). An arsenic concentration surface was created spatially to describe the distribution of arsenic in soil, water, grain, straw, and husk. Command area map was digitized using Arcview GIS from the “mouza” map. Both arsenic contaminated irrigation water and the soils were responsible for accumulation of arsenic in rice straw, husk, and grain. The accumulation of arsenic was higher in water followed by soil, straw, husk, and grain. Arsenic concentration varied widely within command areas. The extent and propensity of arsenic concentration were higher in areas where high concentration of arsenic existed in groundwater and soils. Spherical model was a relatively better and appropriate model. Kriging method appeared to be more suitable in creating interpolated surface. The average arsenic content in grain was 0.08–0.45 mg/kg while in groundwater arsenic level it ranged from 138.0 to 191.3 ppb. PMID:27747271

  6. Impact of Spatial Soil and Climate Input Data Aggregation on Regional Yield Simulations.

    PubMed

    Hoffmann, Holger; Zhao, Gang; Asseng, Senthold; Bindi, Marco; Biernath, Christian; Constantin, Julie; Coucheney, Elsa; Dechow, Rene; Doro, Luca; Eckersten, Henrik; Gaiser, Thomas; Grosz, Balázs; Heinlein, Florian; Kassie, Belay T; Kersebaum, Kurt-Christian; Klein, Christian; Kuhnert, Matthias; Lewan, Elisabet; Moriondo, Marco; Nendel, Claas; Priesack, Eckart; Raynal, Helene; Roggero, Pier P; Rötter, Reimund P; Siebert, Stefan; Specka, Xenia; Tao, Fulu; Teixeira, Edmar; Trombi, Giacomo; Wallach, Daniel; Weihermüller, Lutz; Yeluripati, Jagadeesh; Ewert, Frank

    2016-01-01

    We show the error in water-limited yields simulated by crop models which is associated with spatially aggregated soil and climate input data. Crop simulations at large scales (regional, national, continental) frequently use input data of low resolution. Therefore, climate and soil data are often generated via averaging and sampling by area majority. This may bias simulated yields at large scales, varying largely across models. Thus, we evaluated the error associated with spatially aggregated soil and climate data for 14 crop models. Yields of winter wheat and silage maize were simulated under water-limited production conditions. We calculated this error from crop yields simulated at spatial resolutions from 1 to 100 km for the state of North Rhine-Westphalia, Germany. Most models showed yields biased by <15% when aggregating only soil data. The relative mean absolute error (rMAE) of most models using aggregated soil data was in the range or larger than the inter-annual or inter-model variability in yields. This error increased further when both climate and soil data were aggregated. Distinct error patterns indicate that the rMAE may be estimated from few soil variables. Illustrating the range of these aggregation effects across models, this study is a first step towards an ex-ante assessment of aggregation errors in large-scale simulations. PMID:27055028

  7. Mapping Spatial Moisture Content of Unsaturated Agricultural Soils with Ground-Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Shamir, O.; Goldshleger, N.; Basson, U.; Reshef, M.

    2016-06-01

    Soil subsurface moisture content, especially in the root zone, is important for evaluation the influence of soil moisture to agricultural crops. Conservative monitoring by point-measurement methods is time-consuming and expensive. In this paper we represent an active remote-sensing tool for subsurface spatial imaging and analysis of electromagnetic physical properties, mostly water content, by ground-penetrating radar (GPR) reflection. Combined with laboratory methods, this technique enables real-time and highly accurate evaluations of soils' physical qualities in the field. To calculate subsurface moisture content, a model based on the soil texture, porosity, saturation, organic matter and effective electrical conductivity is required. We developed an innovative method that make it possible measures spatial subsurface moisture content up to a depth of 1.5 m in agricultural soils and applied it to two different unsaturated soil types from agricultural fields in Israel: loess soil type (Calcic haploxeralf), common in rural areas of southern Israel with about 30% clay, 30% silt and 40% sand, and hamra soil type (Typic rhodoxeralf), common in rural areas of central Israel with about 10% clay, 5% silt and 85% sand. Combined field and laboratory measurements and model development gave efficient determinations of spatial moisture content in these fields. The environmentally friendly GPR system enabled non-destructive testing. The developed method for measuring moisture content in the laboratory enabled highly accurate interpretation and physical computing. Spatial soil moisture content to 1.5 m depth was determined with 1-5% accuracy, making our method useful for the design of irrigation plans for different interfaces.

  8. Spatial and temporal variability of soil penetration resistance transecting sugarbeet rows and inter-rows in tillage systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil compaction has detrimental consequences on soil quality and plant root growth. Soil compaction is a variable property due to tillage in both space and time. A field study was conducted near Sidney, MT, USA, in 2007 to evaluate spatial and temporal variations of soil penetration resistance (PR...

  9. Long-term field phytoextraction of zinc/cadmium contaminated soil by Sedum plumbizincicola under different agronomic strategies.

    PubMed

    Deng, Lin; Li, Zhu; Wang, Jie; Liu, Hongyan; Li, Na; Wu, Longhua; Hu, Pengjie; Luo, Yongming; Christie, Peter

    2016-01-01

    In two long-term field experiments the zinc (Zn)/cadmium (Cd) hyperaccumulator Sedum plumbizincicola (S. plumbizincicola) was examined to optimize the phytoextraction of metal contaminated soil by two agronomic strategies of intercropping with maize (Zea mays) and plant densities. Soil total Zn and Cd concentrations decreased markedly after long-term phytoextraction. But shoot biomass and Cd and Zn concentrations showed no significant difference with increasing remediation time. In the intercropping experiment the phytoremediation efficiency in the treatment "S. plumbizincicola intercropped with maize" was higher than in S. plumbizincicola monocropping, and Cd concentrations of corn were below the maximum national limit. In the plant density experiment the phytoremediation efficiency increased with increasing plant density and 440,000 plants ha(-1) gave the maximum rate. These results indicated that S. plumbizincicola at an appropriate planting density and intercropped with maize can achieve high remediation efficiency to contaminated soil without affecting the cereal crop productivity. This cropping system combines adequate agricultural production with soil heavy metal phytoextraction. PMID:26445166

  10. Inhibitory effect of high soil pH on growth and mineral metabolism of rice and its reversal by zinc.

    PubMed

    Singh, H P; Singh, T N

    2005-10-01

    Increasing soil pH retarded growth, tillers and bio-mass production of rice cultivar Sarjoo-52. Application of 10 to 15 kgZn ha(-1) increased the bio-mass by 33 to 41% at pH 8.5 and 27 to 32% at pH 10.3. Panicle length, rachis branches, total spikelets, filled grains, grain size were all adversely affected to the tune of 19, 23, 40, 74 and 21%, respectively by higher soil alkalinity at pH 10.3. Alkalinity resulted in 19, 31 and 65% spikelet sterility which reduced to 3, 21 and 55% at pH 8.5, 9.5 and 10.3, respectively by Zn applied @ 15 kg ha(-1). Grain yield reduced to 50% at pH 10.3 but Zn in general, raised the yield levels by 1.6 to 2.3, times. The chlorophyll decreased by 36 to 50% whereas carbonic anhydrase activities decreased only by 13% due to increase in soil sodicity and alkalinity. Further, increase in pH caused significant decrease in Zn, Ca, Mg, P and K concentrations but phenomenal rise in Na content Zinc application, apart from increasing tissue Zn content, elevated Ca :Na and K :Na ratio resulting in improved growth and yield of rice under soil sodicity and alkalinity. PMID:16459555

  11. [Spatial distribution pattern of soil nitrogen in Huanghuadianzi watershed and related affecting factors].

    PubMed

    Li, Long; Yao, Yun-feng; Qin, Fu-cang; Gao, Yu-han; Zhang, Mei-li

    2015-05-01

    This research was conducted in Huanghuadianzi watershed in Aohan, Chifeng, Inner Mongolia. Geostatistic was used to study the spatial distribution of soil nitrogen and their affecting factors. The results showed that the soil nitrogen contents in all layers distributed as an island shape, and the high value areas were mainly distributed in the northwest of the watershed as an obvious fertile island shape, while the low value areas were mainly distributed in the south of the watershed. Nitrogen was mainly concentrated in the surface soil, and its content decreased with the increase of soil depth. The soil nitrogen content at first increased then decreased with the altitude, decreased with the slope, and showed the order of shady slope>semi-shady slope>semi-sunny slope> sunny slope in different aspects. The average soil nitrogen contents in different land use types ranked as cropland >woodland > grassland.

  12. Toward Soil Spatial Information Systems (SSIS) for global modeling and ecosystem management

    NASA Technical Reports Server (NTRS)

    Baumgardner, Marion F.

    1995-01-01

    The general objective is to conduct research to contribute toward the realization of a world soils and terrain (SOTER) database, which can stand alone or be incorporated into a more complete and comprehensive natural resources digital information system. The following specific objectives are focussed on: (1) to conduct research related to (a) translation and correlation of different soil classification systems to the SOTER database legend and (b) the inferfacing of disparate data sets in support of the SOTER Project; (2) to examine the potential use of AVHRR (Advanced Very High Resolution Radiometer) data for delineating meaningful soils and terrain boundaries for small scale soil survey (range of scale: 1:250,000 to 1:1,000,000) and terrestrial ecosystem assessment and monitoring; and (3) to determine the potential use of high dimensional spectral data (220 reflectance bands with 10 m spatial resolution) for delineating meaningful soils boundaries and conditions for the purpose of detailed soil survey and land management.

  13. Effects of nanoparticle zinc oxide on spatial cognition and synaptic plasticity in mice with depressive-like behaviors

    PubMed Central

    2012-01-01

    Background Nanomaterials, as a new kind of materials, have been greatly applied in different fields due to their special properties. With the industrialization of nanostructured materials and increasing public exposure, the biosafety and potential influences on central nervous system (CNS) have received more attention. Nanosized zinc oxide (nanoZnO) was suggested to up-regulate neuronal excitability and to induce glutamate release in vitro. Therefore, we hypothesized nanoparticles of nanoZnO may lead to changes in balance of neurotransmitter or neuronal excitability of CNS. This study was to investigate if there were effects of nanoZnO on animal model of depression. Methods Male Swiss mice were given lipopolysaccharides (LPS, 100 μg/kg, 100 μg/ml, every other day, 8 times, i.p.) from weaning to induce depressive-like behaviors. NanoZnO (5.6 mg/kg, 5.6 mg/ml, every other day, 8 times, i.p.) was given as the interaction. The mouse model was characterized using the methods of open field test, tail suspension test and forced swim test. Furthermore, the spatial memory was evaluated using Morris water maze (MWM) and the synaptic plasticity was assessed by measuring the long-term potentiation (LTP) in the perforant pathway (PP) to dentate gyrus (DG) in vivo. Results Results indicated that model mice showed disrupted spatial memory and LTP after LPS injections and the behavioral and electrophysiological improvements after nanoZnO treatment. Conclusion Data suggested that nanoZnO may play some roles in CNS of mental disorders, which could provide some useful direction on the new drug exploring and clinical researches. PMID:22300475

  14. Alterations in fear response and spatial memory in pre- and post-natal zinc supplemented rats: remediation by copper.

    PubMed

    Railey, Angela M; Micheli, Teresa L; Wanschura, Patricia B; Flinn, Jane M

    2010-05-11

    The role of zinc in the nervous system is receiving increased attention. At a time when dietary fortification and supplementation have increased the amount of zinc being consumed, little work has been done on the effects of enhanced zinc on behavior. Both zinc and copper are essential trace minerals that are acquired from the diet; under normal conditions the body protects against zinc overload, but at excessive dosages, copper deficiency has been seen. In order to examine the effect of enhanced metal administration on learning and memory, Sprague Dawley rats were given water supplemented with 10ppm Zn, 10ppm Zn+0.25ppm Cu, or normal lab water, during pre- and post-natal development. Fear conditioning tests at 4months showed significantly higher freezing rates during contextual retention and extinction and cued extinction for rats drinking water supplemented with zinc, suggesting increased anxiety compared to controls raised on lab water. During the MWM task at 9months, zinc-enhanced rats had significantly longer latencies to reach the platform compared to controls. The addition of copper to the zinc supplemented water brought freezing and latency levels closer to that of controls. These data demonstrate the importance of maintaining appropriate intake of both metals simultaneously, and show that long-term supplementation with zinc may cause alterations in memory.

  15. Linking spatial patterns of leaf litterfall and soil nutrients in a tropical forest: a neighborhood approach.

    PubMed

    Uriarte, María; Turner, Benjamin L; Thompson, Jill; Zimmerman, Jess K

    2015-10-01

    Leaf litter represents an important link between tree community composition, forest productivity and biomass, and ecosystem processes. In forests, the spatial distribution of trees and species-specific differences in leaf litter production and quality are likely to cause spatial heterogeneity in nutrient returns to the forest floor and, therefore, in the redistribution of soil nutrients. Using mapped trees and leaf litter data for 12 tree species in a subtropical forest with a well-documented history of land use, we: (1) parameterized spatially explicit models of leaf litter biomass and nutrient deposition; (2) assessed variation in leaf litter inputs across forest areas with different land use legacies; and (3) determined the degree to which the quantity and quality of leaf litter inputs and soil physical characteristics are associated with spatial heterogeneity in soil nutrient ratios (C:N and N:P). The models captured the effects of tree size and location on spatial variation in leaf litterfall (R² = 0.31-0.79). For all 12 focal species, most of the leaf litter fell less than 5 m away from the source trees, generating fine- scale spatial heterogeneity in leaf litter inputs. Secondary forest species, which dominate areas in earlier successional stages, had lower leaf litter C:N ratios and produced less litter biomass than old-growth specialists. In contrast, P content and N:P ratios did not vary consistently among successional groups. Interspecific variation in leaf litter quality translated into differences in the quantity and quality (C:N) of total leaf litter biomass inputs and among areas with different land use histories. Spatial variation in leaf litter C:N inputs was the major factor associated with heterogeneity in soil C:N ratios relative to soil physical characteristics. In contrast, spatial variation soil N:P was more strongly associated with spatial variation in topography than heterogeneity in leaf litter inputs. The modeling approach presented here

  16. Effects of in situ Remediation on the Speciation and Bioavailability of Zinc in a Smelter Contaminated Soil

    SciTech Connect

    Nachtegaal,M.; Marcus, M.; Sonke, J.; Vangronsveld, J.; Livi, K.; van Der Lelie, D.; Sparks, D.

    2005-01-01

    We report results from an extensive study on the speciation of zinc (Zn) and its relation to the mobility and bioavailablity of this element in a smelter contaminated soil and an in situ remediated area of this soil 12 yr after the application of cyclonic ash and compost. Emphasis was placed on the role of neoformed precipitates in controlling Zn speciation, mobility and bioavailability under different environmental conditions. Twelve years after remediation, the pH of the treated and non-treated soil differed by only 0.5 pH unit. Using state-of-the-art electron and X-ray microscopies in combination with micro-focused extended X-ray absorption fine structure ({micro}-EXAFS) spectroscopy, no major differences in Zn speciation were found between samples of the treated and non-treated soil. In both soils, 30% to 50% of Zn was present in smelter related minerals (willemite, hemimorphite or gahnite), while 50% to 70% of Zn was incorporated into newly formed Zn precipitates. Contrary to the non-treated soil, the treated soil did not contain gahnite or sphalerite; it is possible that these minerals were dissolved under the higher pH conditions at the time of treatment. Desorption experiments, using a stirred flow technique with a 0.1 mol/L CaCl{sub 2} (pH 6.5) and a HNO{sub 3} (pH 4.0) solution were employed to determine the exchangeable Zn fraction and the Zn fraction which will be mobilized under more extreme weathering conditions, respectively. No significant differences were found in desorption behavior between the treated vs. non-treated soil. Bioavailability tests, using the R. metallidurans AE1433 biosensor showed that {approx}8% of total Zn was bioavailable in both the treated and non-treated soils. It was concluded that the incorporation of Zn into newly formed precipitates in both the treated and non treated soils leads to a significant natural attenuation of the exchangeable/bioavailable Zn fraction at near neutral pH conditions. At lower pHs, conditions not

  17. Assessment of lead, cadmium, and zinc contamination of roadside soils, surface films, and vegetables in Kampala City, Uganda

    SciTech Connect

    Nabulo, Grace . E-mail: sbxgn1@nottingham.ac.uk; Oryem-Origa, Hannington; Diamond, Miriam

    2006-05-15

    The relationship between traffic density and trace metal concentrations in roadside soils, surface films, and a selected vegetable weed, Amaranthus dubius Mart. Ex Thell., was determined in 11 farming sites along major highways around Kampala City in Uganda. Surface soil, atmospherically deposited surface films on windows, and leaves of Amaranthus dubius were sampled at known distances from the roads and analyzed for lead (Pb), zinc (Zn), and cadmium (Cd) using flame atomic absorption spectrophotometry. Atmospherically deposited trace metal particulates were sampled using window glass as an inert, passive collector. Total trace metal concentrations in soils ranged from 30.0{+-}2.3 to 64.6{+-}11.7 mg/kg Pb, 78.4{+-}18.4 to 265.6{+-}63.2 mg/kg Zn, and 0.8{+-}0.13 to 1.40{+-}0.16 mg/kg Cd. Total trace metal levels in soil decreased rapidly with distance from the road. Total Pb decreased with distance up to 30 m from the road, where it reached a background soil concentration of 28 mg/kg dry weight. The study found background values of 50 and 1.4 mg/kg for Zn and Cd in roadside soils, respectively. Similarly, Pb concentration in Amaranthus dubius leaves decreased with increasing distance from the road edge. The dominant pathway for Pb contamination was from atmospheric deposition, which was consistent with Pb concentrations in surface films. The mean Pb concentrations in leaves of roadside crops were higher than those in their respective roots, with the highest leaf-to-root ratio observed in the Brassica oleraceae acephala group. The lowest Pb and Zn concentrations were found in the fruit compared to the leaves of the same crops. Leaves of roadside vegetables were therefore considered a potential source of heavy metal contamination to farmers and consumers in urban areas. It is recommended that leafy vegetables should be grown 30 m from roads in high-traffic, urban areas.

  18. Assessment of lead, cadmium, and zinc contamination of roadside soils, surface films, and vegetables in Kampala City, Uganda.

    PubMed

    Nabulo, Grace; Oryem-Origa, Hannington; Diamond, Miriam

    2006-05-01

    The relationship between traffic density and trace metal concentrations in roadside soils, surface films, and a selected vegetable weed, Amaranthus dubius Mart. Ex Thell., was determined in 11 farming sites along major highways around Kampala City in Uganda. Surface soil, atmospherically deposited surface films on windows, and leaves of Amaranthus dubius were sampled at known distances from the roads and analyzed for lead (Pb), zinc (Zn), and cadmium (Cd) using flame atomic absorption spectrophotometry. Atmospherically deposited trace metal particulates were sampled using window glass as an inert, passive collector. Total trace metal concentrations in soils ranged from 30.0+/-2.3 to 64.6+/-11.7 mg/kg Pb, 78.4+/-18.4 to 265.6+/-63.2 mg/kg Zn, and 0.8+/-0.13 to 1.40+/-0.16 mg/kg Cd. Total trace metal levels in soil decreased rapidly with distance from the road. Total Pb decreased with distance up to 30 m from the road, where it reached a background soil concentration of 28 mg/kg dry weight. The study found background values of 50 and 1.4 mg/kg for Zn and Cd in roadside soils, respectively. Similarly, Pb concentration in Amaranthus dubius leaves decreased with increasing distance from the road edge. The dominant pathway for Pb contamination was from atmospheric deposition, which was consistent with Pb concentrations in surface films. The mean Pb concentrations in leaves of roadside crops were higher than those in their respective roots, with the highest leaf-to-root ratio observed in the Brassica oleraceae acephala group. The lowest Pb and Zn concentrations were found in the fruit compared to the leaves of the same crops. Leaves of roadside vegetables were therefore considered a potential source of heavy metal contamination to farmers and consumers in urban areas. It is recommended that leafy vegetables should be grown 30 m from roads in high-traffic, urban areas. PMID:16527265

  19. Impact of root-induced mobilization of zinc on stable Zn isotope variation in the soil-plant system.

    PubMed

    Houben, David; Sonnet, Philippe; Tricot, Guillaume; Mattielli, Nadine; Couder, Eléonore; Opfergelt, Sophie

    2014-07-15

    Stable Zn isotopes are increasingly used to trace the source of metal pollution in the environment and to gain a better understanding of the biogeochemical cycle of Zn. In this work, we investigated the effect of plants on Zn isotope fractionation in the soil-plant system of the surface horizon of two Zn-rich Technosols (pH 6.73-7.51, total Zn concentration = 9470-56600 mg kg(-1)). In a column experiment, the presence of Agrostis capillaris L. significantly increased the mobilization of Zn from soil to leachate, predominantly as a result of root-induced soil acidification. The zinc isotope compositions of plants and leachates indicated that the Zn uptake by A. capillaris did not fractionate Zn isotopes as compared to the leachates. Within the plant, heavier Zn isotopes were preferentially retained in roots (Δ66Znroot - shoot=+0.24 to +0.40 ‰). More importantly, the Zn released in leachates due to root-induced mobilization was isotopically heavier than the Zn released in the absence of plants (Δ66Zn=+0.16 to +0.18 ‰). This indicates that the rhizosphere activity of A. capillaris mobilized Zn from another pool than the one that spontaneously releases Zn upon contact with the percolating solution. Mobilization of Zn by the roots might thus exert a stronger influence on the Zn isotope composition in the soil solution than the Zn uptake by the plant. This study highlights the key role of the rhizosphere activity in Zn release in soil and demonstrates that stable Zn isotopes provide a useful proxy for the detection of Zn mobilization in soil-plant systems.

  20. Compilation of functional soil maps for the support of spatial planning and land management in Hungary

    NASA Astrophysics Data System (ADS)

    Pásztor, László; Laborczi, Annamária; Takács, Katalin; Szatmári, Gábor; Fodor, Nándor; Illés, Gábor; Bakacsi, Zsófia; Szabó, József

    2015-04-01

    The main objective of the DOSoReMI.hu (Digital, Optimized, Soil Related Maps and Information in Hungary) project is to significantly extend the potential, how demands on spatial soil related information could be satisfied in Hungary. Although a great amount of soil information is available due to former mappings and surveys, there are more and more frequently emerging discrepancies between the available and the expected data. The gaps are planned to be filled with optimized DSM products heavily based on legacy soil data. Delineation of Areas with Excellent Productivity in the framework of the National Regional Development Plan or delimitation of Areas with Natural Constraints in Hungary according to the common European biophysical criteria are primary issues in national level spatial planning. Impact assessment of the forecasted climate change and the analysis of the possibilities of the adaptation in the agriculture and forestry can be supported by scenario based land management modelling, whose results can be also incorporated in spatial planning. All these challenges require adequate, preferably timely and spatially detailed knowledge of the soil cover. For the satisfaction of these demands the soil conditions of Hungary have been digitally mapped based on the most detailed, available recent and legacy soil data, applying proper DSM techniques. Various soil related information were mapped in three distinct approaches: (i) basic soil properties determining agri-environmental conditions (e.g.: soil type according to the Hungarian genetic classification, rootable depth, sand, silt and clay content by soil layers, pH, OM and carbonate content for the plough layer); (ii) biophysical criteria of natural handicaps (e.g.: poor drainage, unfavourable texture and stoniness, shallow rooting depth, poor chemical properties and soil moisture balance) defined by common European system and (iii) agro-meteorologically modelled yield values for different crops, meteorological

  1. Spatial heterogeneity of soil organic carbon in a small alpine catchment (Grindelwald, Switzerland)

    NASA Astrophysics Data System (ADS)

    Poppe, U.; Kuhn, N.

    2009-04-01

    Soils represent a major pool in the global carbon cycle. Their behaviour as a carbon reservoir in global climate and environmental issues is far from fully understood. Surface soil organic carbon (SOC) pools and turnover times are particularly sensitive to a range of factors, such as climate, vegetation, topography, soil properties, soil and crop management and other anthropogenic conditions. These factors are important to formulate process-based C cycling models and to evaluate the influence of future land use and climate changes on SOC content. Mountain environments are strongly affected by and highly sensitive to climate change (geomorphology, vegetation), while also experiencing significant land use change. Little attention has so far been given to the spatial heterogeneity of alpine SOC stocks. In mountain environments, relief exerts a strong control on factors which control SOC, e.g. through meso-climatic differences, but surface processes such as mass wasting and water erosion. While the general relationships between environmental variables and SOC are known, there is uncertainty regarding the specific quantitative relationships between SOC and environmental variables. Particularly, the interaction between geomorphic processes, soil thickness and soil carbon storage is not well understood. A priori reasoning suggests that spatial patterns of SOC in mountain areas are closely correlated to the spatial patterns of terrain attributes that influence soil-forming processes. In this study, we examined the relationships between SOC stocks and climate, topography (elevation, slope, curvature,) and land use along an elevation transect from Grindelwald Grund to the ridge of Kleine Scheidegg in the canton of Bern. Soil samples were collected across a range of elevations, slope, curvature, soil texture, vegetation types, and terrain positions. Topographic variables (e.g. elevation, slope, curvature) were extracted from a high resolution digital elevation model. SOC

  2. Spatial and Temporal Variability of Soil Redistribution in a Heterogeneous Shrub Dominated Landscape

    NASA Astrophysics Data System (ADS)

    Van Pelt, R. S.; Zobeck, T. M.

    2015-12-01

    Redistribution of soil by wind results when the erosive force of the wind impacts bare, susceptible soil surfaces. In semi-arid and arid environments, many grasslands with protected surfaces are being replaced by heterogeneous shrub communities with bare, susceptible soil surfaces between the individual shrubs. The development of nutrient islands and the increases of fugitive dust in these areas is indicative of increases of soil redistribution, but few quantitative measurements have been made to date. We fenced three 1 ha areas in an approximately 100 ha coppice dune area of southeast New Mexico dominated by shinnery oak, sand sage, and mesquite and installed a 4 X 4 grid of MWAC sampler masts spaced at 20 m from each other. Weather data were collected at an automated weather station in each of the fenced areas. We found the patterns of soil redistribution to be highly variable in space and time. Differences in vegetation patterns and wind fields were noted among the plots for the same discrete time period that could explain some of the spatial variability. We also noted seasonality of wind fields that accounted for the temporally variable spatial patterns of soil redistribution. We conclude that accurate measurement of soil redistribution patterns in a heterogeneous shrub community requires a very large number of samplers and a long period of study and we believe that net soil loss from an area is limited to fine dust emissions.

  3. The geostatistic-based spatial distribution variations of soil salts under long-term wastewater irrigation.

    PubMed

    Wu, Wenyong; Yin, Shiyang; Liu, Honglu; Niu, Yong; Bao, Zhe

    2014-10-01

    The purpose of this study was to determine and evaluate the spatial changes in soil salinity by using geostatistical methods. The study focused on the suburb area of Beijing, where urban development led to water shortage and accelerated wastewater reuse to farm irrigation for more than 30 years. The data were then processed by GIS using three different interpolation techniques of ordinary kriging (OK), disjunctive kriging (DK), and universal kriging (UK). The normality test and overall trend analysis were applied for each interpolation technique to select the best fitted model for soil parameters. Results showed that OK was suitable for soil sodium adsorption ratio (SAR) and Na(+) interpolation; UK was suitable for soil Cl(-) and pH; DK was suitable for soil Ca(2+). The nugget-to-sill ratio was applied to evaluate the effects of structural and stochastic factors. The maps showed that the areas of non-saline soil and slight salinity soil accounted for 6.39 and 93.61%, respectively. The spatial distribution and accumulation of soil salt were significantly affected by the irrigation probabilities and drainage situation under long-term wastewater irrigation.

  4. The geostatistic-based spatial distribution variations of soil salts under long-term wastewater irrigation.

    PubMed

    Wu, Wenyong; Yin, Shiyang; Liu, Honglu; Niu, Yong; Bao, Zhe

    2014-10-01

    The purpose of this study was to determine and evaluate the spatial changes in soil salinity by using geostatistical methods. The study focused on the suburb area of Beijing, where urban development led to water shortage and accelerated wastewater reuse to farm irrigation for more than 30 years. The data were then processed by GIS using three different interpolation techniques of ordinary kriging (OK), disjunctive kriging (DK), and universal kriging (UK). The normality test and overall trend analysis were applied for each interpolation technique to select the best fitted model for soil parameters. Results showed that OK was suitable for soil sodium adsorption ratio (SAR) and Na(+) interpolation; UK was suitable for soil Cl(-) and pH; DK was suitable for soil Ca(2+). The nugget-to-sill ratio was applied to evaluate the effects of structural and stochastic factors. The maps showed that the areas of non-saline soil and slight salinity soil accounted for 6.39 and 93.61%, respectively. The spatial distribution and accumulation of soil salt were significantly affected by the irrigation probabilities and drainage situation under long-term wastewater irrigation. PMID:25127658

  5. RISK ASSESSMENT AND REMEDIATION OF SOILS CONTAMINATED BY MINING AND SMELTING OF LEAD, ZINC AND CADMIUM

    EPA Science Inventory

    Mining nd smelting of Pb, Zn and Cd ores have caused widespread soil contamination in many countries. In locations with severe soil contamination, and strongly acidic soil or mine waste, ecosystems are devastated. Research has shown that An phytotoxicity, Pb-induced phosphate def...

  6. Spatial Variation in Soil Properties among North American Ecosystems and Guidelines for Sampling Designs

    PubMed Central

    Loescher, Henry; Ayres, Edward; Duffy, Paul; Luo, Hongyan; Brunke, Max

    2014-01-01

    Soils are highly variable at many spatial scales, which makes designing studies to accurately estimate the mean value of soil properties across space challenging. The spatial correlation structure is critical to develop robust sampling strategies (e.g., sample size and sample spacing). Current guidelines for designing studies recommend conducting preliminary investigation(s) to characterize this structure, but are rarely followed and sampling designs are often defined by logistics rather than quantitative considerations. The spatial variability of soils was assessed across ∼1 ha at 60 sites. Sites were chosen to represent key US ecosystems as part of a scaling strategy deployed by the National Ecological Observatory Network. We measured soil temperature (Ts) and water content (SWC) because these properties mediate biological/biogeochemical processes below- and above-ground, and quantified spatial variability using semivariograms to estimate spatial correlation. We developed quantitative guidelines to inform sample size and sample spacing for future soil studies, e.g., 20 samples were sufficient to measure Ts to within 10% of the mean with 90% confidence at every temperate and sub-tropical site during the growing season, whereas an order of magnitude more samples were needed to meet this accuracy at some high-latitude sites. SWC was significantly more variable than Ts at most sites, resulting in at least 10× more SWC samples needed to meet the same accuracy requirement. Previous studies investigated the relationship between the mean and variability (i.e., sill) of SWC across space at individual sites across time and have often (but not always) observed the variance or standard deviation peaking at intermediate values of SWC and decreasing at low and high SWC. Finally, we quantified how far apart samples must be spaced to be statistically independent. Semivariance structures from 10 of the 12-dominant soil orders across the US were estimated, advancing our

  7. Spatial variation in soil properties among North American ecosystems and guidelines for sampling designs.

    PubMed

    Loescher, Henry; Ayres, Edward; Duffy, Paul; Luo, Hongyan; Brunke, Max

    2014-01-01

    Soils are highly variable at many spatial scales, which makes designing studies to accurately estimate the mean value of soil properties across space challenging. The spatial correlation structure is critical to develop robust sampling strategies (e.g., sample size and sample spacing). Current guidelines for designing studies recommend conducting preliminary investigation(s) to characterize this structure, but are rarely followed and sampling designs are often defined by logistics rather than quantitative considerations. The spatial variability of soils was assessed across ∼1 ha at 60 sites. Sites were chosen to represent key US ecosystems as part of a scaling strategy deployed by the National Ecological Observatory Network. We measured soil temperature (Ts) and water content (SWC) because these properties mediate biological/biogeochemical processes below- and above-ground, and quantified spatial variability using semivariograms to estimate spatial correlation. We developed quantitative guidelines to inform sample size and sample spacing for future soil studies, e.g., 20 samples were sufficient to measure Ts to within 10% of the mean with 90% confidence at every temperate and sub-tropical site during the growing season, whereas an order of magnitude more samples were needed to meet this accuracy at some high-latitude sites. SWC was significantly more variable than Ts at most sites, resulting in at least 10× more SWC samples needed to meet the same accuracy requirement. Previous studies investigated the relationship between the mean and variability (i.e., sill) of SWC across space at individual sites across time and have often (but not always) observed the variance or standard deviation peaking at intermediate values of SWC and decreasing at low and high SWC. Finally, we quantified how far apart samples must be spaced to be statistically independent. Semivariance structures from 10 of the 12-dominant soil orders across the US were estimated, advancing our

  8. Multi-year and short-term responses of soil ammonia-oxidizing prokaryotes to zinc bacitracin, monensin, and ivermectin, singly or in combination.

    PubMed

    Magda, Konopka; Hugh A L, Henry; Romain, Marti; Edward, Topp

    2015-03-01

    A field experiment was initiated whereby a series of replicated plots received annual applications of ivermectin, monensin, and zinc bacitracin, either singly or in a mixture. Pharmaceuticals were added at concentrations of 0.1 mg/kg soil or 10 mg/kg soil. The authors collected soil samples in 2013, before and after the fourth annual application of pharmaceuticals. In addition, a 30-d laboratory experiment was undertaken with the same soil and same pharmaceuticals, but at concentrations of 100 mg/kg soil. The impact of the pharmaceuticals on nitrification rates, on the abundance of ammonia-oxidizing bacteria (AOB), and on the abundance of ammonia-oxidizing archaea (AOA) was assessed. None of the pharmaceuticals at 0.1 mg/kg had any effect on nitrification. Referenced to control soil, nitrification was accelerated in soil exposed to 100 mg/kg zinc bacitracin or 10 mg/kg of the pharmaceutical mixture, but none of the treatments inhibited nitrification. Neither AOB abundance nor AOA abundance was affected by the pharmaceuticals at 0.1 mg/kg. At 10 mg/kg, monensin, zinc bacitracin, and a mixture of all 3 pharmaceuticals suppressed the abundance of AOB, and zinc bacitracin and the mixture increased AOA abundance. The decrease in AOB abundance and increase in AOA abundance when exposed to 10 mg/kg soil suggests that AOB are more sensitive to these chemicals and that AOA populations can expand to occupy the partially vacated niche.

  9. Fine scale spatial variability of microbial pesticide degradation in soil: scales, controlling factors, and implications

    PubMed Central

    Dechesne, Arnaud; Badawi, Nora; Aamand, Jens; Smets, Barth F.

    2014-01-01

    Pesticide biodegradation is a soil microbial function of critical importance for modern agriculture and its environmental impact. While it was once assumed that this activity was homogeneously distributed at the field scale, mounting evidence indicates that this is rarely the case. Here, we critically examine the literature on spatial variability of pesticide biodegradation in agricultural soil. We discuss the motivations, methods, and main findings of the primary literature. We found significant diversity in the approaches used to describe and quantify spatial heterogeneity, which complicates inter-studies comparisons. However, it is clear that the presence and activity of pesticide degraders is often highly spatially variable with coefficients of variation often exceeding 50% and frequently displays non-random spatial patterns. A few controlling factors have tentatively been identified across pesticide classes: they include some soil characteristics (pH) and some agricultural management practices (pesticide application, tillage), while other potential controlling factors have more conflicting effects depending on the site or the pesticide. Evidence demonstrating the importance of spatial heterogeneity on the fate of pesticides in soil has been difficult to obtain but modeling and experimental systems that do not include soil's full complexity reveal that this heterogeneity must be considered to improve prediction of pesticide biodegradation rates or of leaching risks. Overall, studying the spatial heterogeneity of pesticide biodegradation is a relatively new field at the interface of agronomy, microbial ecology, and geosciences and a wealth of novel data is being collected from these different disciplinary perspectives. We make suggestions on possible avenues to take full advantage of these investigations for a better understanding and prediction of the fate of pesticides in soil. PMID:25538691

  10. Fine scale spatial variability of microbial pesticide degradation in soil: scales, controlling factors, and implications.

    PubMed

    Dechesne, Arnaud; Badawi, Nora; Aamand, Jens; Smets, Barth F

    2014-01-01

    Pesticide biodegradation is a soil microbial function of critical importance for modern agriculture and its environmental impact. While it was once assumed that this activity was homogeneously distributed at the field scale, mounting evidence indicates that this is rarely the case. Here, we critically examine the literature on spatial variability of pesticide biodegradation in agricultural soil. We discuss the motivations, methods, and main findings of the primary literature. We found significant diversity in the approaches used to describe and quantify spatial heterogeneity, which complicates inter-studies comparisons. However, it is clear that the presence and activity of pesticide degraders is often highly spatially variable with coefficients of variation often exceeding 50% and frequently displays non-random spatial patterns. A few controlling factors have tentatively been identified across pesticide classes: they include some soil characteristics (pH) and some agricultural management practices (pesticide application, tillage), while other potential controlling factors have more conflicting effects depending on the site or the pesticide. Evidence demonstrating the importance of spatial heterogeneity on the fate of pesticides in soil has been difficult to obtain but modeling and experimental systems that do not include soil's full complexity reveal that this heterogeneity must be considered to improve prediction of pesticide biodegradation rates or of leaching risks. Overall, studying the spatial heterogeneity of pesticide biodegradation is a relatively new field at the interface of agronomy, microbial ecology, and geosciences and a wealth of novel data is being collected from these different disciplinary perspectives. We make suggestions on possible avenues to take full advantage of these investigations for a better understanding and prediction of the fate of pesticides in soil.

  11. Zinc: the neglected nutrient.

    PubMed

    Shambaugh, G E

    1989-03-01

    Zinc was first recognized as essential for animals at the University of Illinois School of Agriculture in 1916, when it was found that zinc-deficient baby pigs were runty, developed dermatitis on their legs, and were sterile. Zinc deficiency was first recognized in man by Dr. Ananda Prasad of Detroit 26 years ago when he measured serum and hair zinc levels in young male Egyptian dwarfs who had failed to mature and were small in stature. By simply adding zinc to their regular diet, they grew in height and became sexually mature. It is now recognized that dwarfism in males is frequent around the Mediterranean, where wheat is the staple of life and has been grown for 4,000 years on the same soil, thereby resulting in the depletion of zinc. Professor Robert Henkin first suggested that zinc deficiency might cause hearing-nerve impairment. Assay of the soft tissues of the cochlea and vestibule revealed a zinc level higher than that of any other part of the body. Previously, the eye was considered to have the highest level of zinc of any organ. To diagnose zinc deficiency clinically, we use serum zinc assays made at the Mayo Clinic Trace Element Laboratory. With zinc supplementation in patients who are marginally zinc deficient, there has been improvement in tinnitus and sensorineural hearing loss in about one-third of elderly adults. We believe zinc deficiency is one causation of presbycusis; by recognizing and correcting it, a progressive hearing loss can be arrested.

  12. Zinc: the neglected nutrient.

    PubMed

    Shambaugh, G E

    1989-03-01

    Zinc was first recognized as essential for animals at the University of Illinois School of Agriculture in 1916, when it was found that zinc-deficient baby pigs were runty, developed dermatitis on their legs, and were sterile. Zinc deficiency was first recognized in man by Dr. Ananda Prasad of Detroit 26 years ago when he measured serum and hair zinc levels in young male Egyptian dwarfs who had failed to mature and were small in stature. By simply adding zinc to their regular diet, they grew in height and became sexually mature. It is now recognized that dwarfism in males is frequent around the Mediterranean, where wheat is the staple of life and has been grown for 4,000 years on the same soil, thereby resulting in the depletion of zinc. Professor Robert Henkin first suggested that zinc deficiency might cause hearing-nerve impairment. Assay of the soft tissues of the cochlea and vestibule revealed a zinc level higher than that of any other part of the body. Previously, the eye was considered to have the highest level of zinc of any organ. To diagnose zinc deficiency clinically, we use serum zinc assays made at the Mayo Clinic Trace Element Laboratory. With zinc supplementation in patients who are marginally zinc deficient, there has been improvement in tinnitus and sensorineural hearing loss in about one-third of elderly adults. We believe zinc deficiency is one causation of presbycusis; by recognizing and correcting it, a progressive hearing loss can be arrested. PMID:2786676

  13. Spatial Estimation of Soil Moisture Using Synthetic Aperture Radar in Alaska

    NASA Astrophysics Data System (ADS)

    Meade, N. G.; Hinzman, L. D.; Kane, D. L.

    1999-01-01

    A spatially distributed Model of Arctic Thermal and Hydrologic processes (MATH) has been developed. One of the attributes of this model is the spatial and temporal prediction of soil moisture in the active layer. The spatially distributed output from this model required verification data obtained through remote sensing to assess performance at the watershed scale independently. Therefore, a neural network was trained to predict soil moisture contents near the ground surface. The input to train the neural network is synthetic aperture radar (SAR) pixel value, and field measurements of soil moisture, and vegetation, which were used as a surrogate for surface roughness. Once the network was trained, soil moisture predictions were made based on SAR pixel value and vegetation. These results were then used for comparison with results from the hydrologic model. The quality of neural network input was less than anticipated. Our digital elevation model (DEM) was not of high enough resolution to allow exact co-registration with soil moisture measurements; therefore, the statistical correlations were not as good as hoped. However, the spatial pattern of the SAR derived soil moisture contents compares favorably with the hydrologic MATH model results. Primary surface parameters that effect SAR include topography, surface roughness, vegetation cover and soil texture. Single parameters that are considered to influence SAR include incident angle of the radar, polarization of the radiation, signal strength and returning signal integration, to name a few. These factors influence the reflectance, but if one adequately quantifies the influences of terrain and roughness, it is considered possible to extract information on soil moisture from SAR imagery analysis and in turn use SAR imagery to validate hydrologic models

  14. Modeling spatial and seasonal soil moisture in a semi arid hillslope: The impact of integrating soil surface seal parameters

    NASA Astrophysics Data System (ADS)

    Sela, Shai; Svoray, Tal; Assouline, Shmuel

    2010-05-01

    Modeling hillslope hydrology and the complex and coupled reaction of runoff processes to rainfall, lies in the focus of a growing number of research studies. The ability to characterize and understand the mechanisms underlying the complex hillslope soil moisture patterns, which trigger spatially variable non linear runoff initiation, still remains a current hydrological challenge especially in ungauged catchments. In humid climates, connectivity of transient moisture patches was suggested as a unifying concept for studying thresholds for subsurface flow and redistribution of soil moisture at the hillslope scale. In semiarid areas, however, transient moisture patches control also the differentiation between evaporation and surface runoff and the ability to identify a unifying concept controlling the large variability of soil moisture at the hillslope scale remains an open research gap. At the LTER Lehavim site in the center of Israel (31020' N, 34045' E) a typical hillslope (0.115 km2) was chosen offering different aspects and a classic geomorphologic banding. The annual rainfall is 290 mm, the soils are brown lithosols and arid brown loess and the dominant rock formations are Eocenean limestone and chalk with patches of calcrete. The vegetation is characterised by scattered dwarf shrubs (dominant species Sarcopoterium spinosum) and patches of herbaceous vegetation, mostly annuals, are spread between rocks and dwarf shrubs. An extensive spatial database of soil hydraulic and environmental parameters (e.g. slope, radiation, bulk density) was measured in the field and interpolated to continuous maps using geostatistical techniques and physically based modelling. To explore the effect of soil surface sealing, Mualem and Assouline (1989) equations describing the change in hydraulic parameters resulting from soil seal formation were applied. Two simple indices were developed to describe local evaporation values and contribution of water from rock outcrops to the soil

  15. A preliminary study on mercury contamination to the environment from artisanal zinc smelting using indigenous methods in Hezhang County, Guizhou, China: Part 2. Mercury contaminations to soil and crop.

    PubMed

    Feng, Xinbin; Li, Guanghui; Qiu, Guangle

    2006-09-01

    Artisanal zinc smelting using indigenous method in Hezhang County, Guizhou, China has posed seriously environmental pollution to the local environment. Within less than 150 km2 area in Hezhang, a few metric tons of mercury were released into the atmosphere each year since 1989 due to artisanal zinc smelting, and the surface waters were seriously contaminated with mercury. For the first time, we investigated the mercury contamination to the local soil and crop compartments due to mercury emissions from artisanal zinc smelting activities in this area. Mercury distribution patterns in 5 soil profiles collected in artisanal zinc smelting area showed that the top soils were seriously contaminated with mercury. The soils from agriculture land close to the zinc smelting areas were also contaminated with mercury due to the deposition of mercury species that emitted from artisanal zinc smelting processes. Total mercury concentrations in top soils decrease exponentially with distance from the zinc smelting area. Corn plants that were cultivated in agriculture land close to the zinc smelting area were also contaminated with mercury. Mercury concentration in corn plant tissue increased in the order of grainssoil.

  16. [Temporal-spatial distribution of agricultural diffuse nitrogen pollution and relationship with soil respiration and nitrification].

    PubMed

    Wei, Ouyang; Cai, Guan-Qing; Huang, Hao-Bo; Geng, Xiao-Jun

    2014-06-01

    The soil respiration, nitrification and denitrification processes play an important role on soil nitrogen transformation and diffuse nitrogen loading. These processes are also the chains for soil circle. In this study, the Zhegao watershed located north of Chaohu Lake was selected to explore the interactions of these processes with diffuse nitrogen pollution. The BaPS (Barometric Process Separation) was applied to analyze the soil respiration, nitrification and denitrification processes in farmland and forest. The SWAT (Soil and Water Assessment Tool) simulated the temporal and spatial pattern of diffuse nitrogen loading. As the expanding of farmland and higher level of fertilization, the yearly mean loading of diffuse nitrogen increased sustainably from 1980-1995 to 1996-2012. The monthly loading in 1996-2012 was also higher than that in the period of 1980-1995, which closely related to the precipitation. The statistical analysis indicated that there was a significant difference between two periods. The yearly averaged loading of the whole watershed in 1996-2012 was 10.40 kg x hm(-2), which was 8.10 kg x hm(-2) in 1980-1995. The variance analysis demonstrated that there was also a big difference between the spatial distributions of two periods. The forest soil had much higher soil respiration than the farmland soil. But the farmland had higher nitrification and denitrification rates. The more intensive nitrogen transformation in the farmland contributed to the less diffuse nitrogen loading. As the nitrification rate of farmland was higher than denitrification rate, agricultural diffuse nitrate nitrogen loading would increase and organic nitrogen loading would reduce. The analysis of soil respiration, nitrification and denitrification is helpful for the study of soil nitrogen circle form the aspect of soil biology, which also benefits the control of agricultural diffuse nitrogen pollution.

  17. Spatial variation in soil-borne disease dynamics of a temperate tree, Prunus serotina.

    PubMed

    Reinhart, Kurt O; Clay, Keith

    2009-11-01

    Soil-borne pathogens are posited to maintain forest diversity. However, their in situ impact and spatial variation are largely unknown. We examined spatial patterns of pathogenic activity in a deciduous forest using a common garden experiment and also in a natural experiment around replicated trees, and we quantified Pythium (a soil-borne pathogen) density around individual Prunus serotina trees. In both experiments, P. serotina seedling survival was 52-57% greater in plots treated with a metalaxyl-based fungicide specific to oomycetes (i.e., Pythium) than in untreated plots. Disease dynamics were not density dependent, but pathogenic activity and Pythium density were spatially variable. In the common garden and natural experiments, pathogenic activity of soil inoculum varied among trees, while in the natural experiment disease dynamics were also distance dependent and pathogenic activity decreased away from P. serotina trees. Disease and Pythium density were not always related but displayed considerable spatial variation. We found that Pythium density did not vary with distance away from P. serotina trees but did vary among trees. Understanding the spatial complexity of soil-borne pathogens is critical to accurately characterizing their effects on populations and ultimately on forest diversity. PMID:19967855

  18. Spatial variation in soil-borne disease dynamics of a temperate tree, Prunus serotina.

    PubMed

    Reinhart, Kurt O; Clay, Keith

    2009-11-01

    Soil-borne pathogens are posited to maintain forest diversity. However, their in situ impact and spatial variation are largely unknown. We examined spatial patterns of pathogenic activity in a deciduous forest using a common garden experiment and also in a natural experiment around replicated trees, and we quantified Pythium (a soil-borne pathogen) density around individual Prunus serotina trees. In both experiments, P. serotina seedling survival was 52-57% greater in plots treated with a metalaxyl-based fungicide specific to oomycetes (i.e., Pythium) than in untreated plots. Disease dynamics were not density dependent, but pathogenic activity and Pythium density were spatially variable. In the common garden and natural experiments, pathogenic activity of soil inoculum varied among trees, while in the natural experiment disease dynamics were also distance dependent and pathogenic activity decreased away from P. serotina trees. Disease and Pythium density were not always related but displayed considerable spatial variation. We found that Pythium density did not vary with distance away from P. serotina trees but did vary among trees. Understanding the spatial complexity of soil-borne pathogens is critical to accurately characterizing their effects on populations and ultimately on forest diversity.

  19. Spatial variability of δ18O-PO4 in soils.

    NASA Astrophysics Data System (ADS)

    Granger, Steve; Blackwell, Martin; Tamburini, Federica; Guo, Rongrong; Peukert, Sabine; McGrath, Steve

    2014-05-01

    There is growing interest in the potential for using the δ18OPO4 values of different phosphate sources in the environment to enable identification of sources of phosphate in surface waters. The basis of the study is the belief that different sources of PO4 may have different δ18O values. One of the primary sources of PO4 in runoff from agricultural land is the soil itself. Therefore, in order to account for the PO4 derived from soils in surface waters, it is vital that the degree of spatial variability of its δ18O isotopic values are known, in order that suitable soil sampling approaches can be taken when assessing the soil as a source in future studies. A spatial study of the variability of the δ18OPO4 variability of soils collected from a grazed pasture on the North Wyke Farm Platform was carried out incorporating grid-sampling at a range of spatial scales. Results show that variability across a range of scales is minimal, meaning that, in this case, a relatively small number of samples would be required in order to identify accurately the mean δ18OPO4 value of the soil. This study represents an important contribution towards the methodological development studies required in this field of research in order that the full potential of the δ18OPO4 technique for biological and environmental research can be achieved.

  20. Spatial Distribution and Pattern Persistence of Surface Soil Moisture and Temperature Over Prairie from Remote Sensing

    NASA Technical Reports Server (NTRS)

    Chen, Daoyi; Engman, Edwin T.; Brutsaert, Wilfried

    1997-01-01

    Images remotely sensed aboard aircraft during FIFE, namely, PBMR (microwave) soil moisture and NS001 thermal infrared surface temperature, were mapped on the same coordinate system covering the 20 km x 20 km experimental site. For both kinds of image data, the frequency distributions were close to symmetric, and the area average compared reasonably well with the ground based measurements. For any image on any given day, the correlation between the remotely sensed values and collocated ground based measurements over the area was usually high in the case of NS001 surface temperature but low in the case of PBMR soil moisture. On the other hand, at any given flux station the correlation between the PBMR and gravimetric soil moisture over all available days was usually high. The correlation pixel by pixel between images of PBMR on different days was generally high. The preservation of the spatial patterns of soil moisture was also evaluated by considering the correlation station by station between ground-based soil moisture measurements on different days; no persistence of spatial pattern was apparent during wet periods, but a definite pattern gradually established itself toward the end of each drying episode. The spatial patterns of surface temperature revealed by NS001 were not preserved even within a single day. The cross-correlations among the two kinds of images and the vegetation index NDVI were normally poor. This suggests that different processes of vegetation growth, and of the near-surface soil water and energy budgets.

  1. Influence of Matrix Composition on the Bioaccessibility of Copper, Zinc and Nickel in Urban Residential Dust and Soil

    SciTech Connect

    Rasmussen,P.; Beauchemin, S.; Nugent, M.; Dugandzic, R.; Lanouette, M.; Chenier, M.

    2008-01-01

    This study examines factors affecting oral bioaccessibility of metals in household dust, in particular metal speciation, organic carbon content, and particle size, with the goal of addressing risk assessment information requirements. Investigation of copper (Cu) and zinc (Zn) speciation in two size fractions of dust (< 36 {mu} m and 80-150 {mu} m) using synchrotron X-ray absorption spectroscopy (XAS) indicates that the two metals are bound to different components of the dust: Cu is predominately associated with the organic phase of the dust, while Zn is predominately associated with the mineral fraction. Total and bioaccessible Cu, nickel (Ni), and Zn were determined (on dry weight basis) in the < 150 {mu} m size fraction of a set of archived indoor dust samples (n = 63) and corresponding garden soil samples (n = 66) from the City of Ottawa, Canada. The median bioaccessible Cu content is 66 {mu} g g-1 in dust compared to 5 {mu} g g-1 in soil; the median bioaccessible Ni content is 16 {mu} g g-1 in dust compared to 2 {mu} g g-1 in soil; and the median bioaccessible Zn content is 410 {mu} g g-1 in dust compared to 18 {mu} g g-1 in soil. For the same data set, the median total Cu content is 152 {mu} g g-1 in dust compared to 17 {mu} g g-1 in soil; the median total Ni content is 41 {mu} g g-1 in dust compared to 13 {mu} g g-1 in soil; and the median total Zn content is 626 {mu} g g-1 in dust compared to 84 {mu} g g-1 in soil. Organic carbon is elevated in indoor dust (median 28%) compared to soil (median 5%), and is a key factor controlling metal partitioning and therefore bioaccessibility. The results show that house dust and soil have distinct geochemical signatures and should not be treated as identical media in exposure and risk assessments. Separate measurements of the indoor and outdoor environment are essential to improve the accuracy of residential risk assessments.

  2. Attributing spatial and temporal changes in soil C in the UK to environmental drivers

    NASA Astrophysics Data System (ADS)

    Thomas, Amy; Cosby, Bernard; Quin, Sam; Henrys, Pete; Robinson, David; Emmett, Bridget

    2015-04-01

    The largest terrestrial pool of carbon is found in soils. Understanding how soil C responds to drivers of change (land use and management, atmospheric deposition, climate change) and how these responses are modified by inherent soil properties is crucial if we are to manage soils more sustainably in the future. Here we attempt to attribute spatial and temporal changes in UK soil C to environmental drivers using data from the UK Countryside Survey (CS), a national soil survey across England, Scotland and Wales repeated in 1978, 1998 and 2007. A mixed model approach was used to model soil C concentration (g C kg-1) and density (t C ha-1) and their absolute changes for the time periods 1978-1998, 1998-2007 and 1978-2007 across the CS sites using a variety of explanatory variables: soil (parent material, pH, moisture, Olsen-P, Shannon Diversity Index); atmospheric deposition (nitrogen and sulphur); climate (growing degree days and rain); and land use (aggregate vegetation class). Spatially, prediction of soil C concentration was good; soil moisture, pH, vegetation class and dominant grain size were all significant predictors. Field capacity also appeared to be important; however this data was only collected for a fraction of sites. N% was also strongly related to soil C concentration and density, as would be expected due to coupling of C and N in soil OM pools. Although N may drive soil C through impact on plant productivity, this cannot be separated from correlated C and N losses with OM decomposition, and hence N was not included as a driver for modelling. Predictive power for C density is not as strong as for concentration, which may reflect nonlinear relationships not represented by the modelling approach. Temporally, change in soil C is more difficult to explain, and model predictive power was lower. Change in soil pH was important in explaining change in C concentration and density, along with change in atmospheric deposition; decrease in deposition and

  3. Spatial prediction of soil texture in region Centre (France) from summary data

    NASA Astrophysics Data System (ADS)

    Dobarco, Mercedes Roman; Saby, Nicolas; Paroissien, Jean-Baptiste; Orton, Tom G.

    2015-04-01

    Soil texture is a key controlling factor of important soil functions like water and nutrient holding capacity, retention of pollutants, drainage, soil biodiversity, and C cycling. High resolution soil texture maps enhance our understanding of the spatial distribution of soil properties and provide valuable information for decision making and crop management, environmental protection, and hydrological planning. We predicted the soil texture of agricultural topsoils in the Region Centre (France) combining regression and area-to-point kriging. Soil texture data was collected from the French soil-test database (BDAT), which is populated with soil analysis performed by farmers' demand. To protect the anonymity of the farms the data was treated by commune. In a first step, summary statistics of environmental covariates by commune were used to develop prediction models with Cubist, boosted regression trees, and random forests. In a second step the residuals of each individual observation were summarized by commune and kriged following the method developed by Orton et al. (2012). This approach allowed to include non-linear relationships among covariates and soil texture while accounting for the uncertainty on areal means in the area-to-point kriging step. Independent validation of the models was done using data from the systematic soil monitoring network of French soils. Future work will compare the performance of these models with a non-stationary variance geostatistical model using the most important covariates and summary statistics of texture data. The results will inform on whether the later and statistically more-challenging approach improves significantly texture predictions or whether the more simple area-to-point regression kriging can offer satisfactory results. The application of area-to-point regression kriging at national level using BDAT data has the potential to improve soil texture predictions for agricultural topsoils, especially when combined with

  4. Spatial variability of some soil properties varies in oil palm (Elaeis guineensis Jacq.) plantations of west coastal area of India

    NASA Astrophysics Data System (ADS)

    Behera, Sanjib Kumar; Suresh, Kancherla; Narsimha Rao, Bezawada; Mathur, Ravi Kumar; Shukla, Arvind Kumar; Manorama, Kamireddy; Ramachandrudu, Kummari; Harinarayana, Parasa; Prakash, Chandra

    2016-06-01

    Mapping spatial variability of soil properties is the key to efficient soil resource management for sustainable crop yield. Therefore, the present study was conducted to assess the spatial variability of soil properties such as acidity (pH), salinity (electrical conductivity (EC)), organic carbon, available K, available P, exchangeable Ca2+, exchangeable Mg2+, available S and hot water soluble B in surface (0-20 cm) and subsurface (20-40 cm) soil layers of oil palm plantations in south Goa district of Goa located in west coastal area of India. A total of 128 soil samples were collected from 64 oil palm plantations of Goa located at an approximate interval of 1-2 km and analyzed. Soil was acidic to neutral in reaction. Other soil properties varied widely in both the soil layers. Correlations between soil pH and exchangeable Ca2+, between soil EC and available K, between available P and available S and between exchangeable Ca2+ and exchangeable Mg2+ in both the soil layers were found to be positive and significant (P < 0.01). Geostatistical analysis revealed a varied spatial distribution pattern for the measured soil properties. Best-fit models for measured soil properties were exponential, Gaussian, stable, K-Bessel and spherical with moderate to strong spatial dependency. The results revealed that site-specific fertilizer management options needed to be adopted in the oil palm plantations of the study area owing to variability in soil properties.

  5. In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments.

    PubMed

    Lee, Sang-Hwan; Lee, Jin-Soo; Choi, Youn Jeong; Kim, Jeong-Gyu

    2009-11-01

    Chemical stabilization is an in situ remediation method that uses inexpensive amendments to reduce contaminant availability in polluted soil. We tested the effects of several amendments (limestone, red-mud, and furnace slag) on the extractability of heavy metals, microbial activities, phytoavailability of soil metals (assessed using lettuce, Lactuca sativa L.), and availability of heavy metals in ingested soil to the human gastrointestinal system (assessed using the physiologically based extraction test). The application of soil amendments significantly decreased the amount of soluble and extractable heavy metals in the soil (p<0.05). The decreased extractable metal content of soil was accompanied by increased microbial activity and decreased plant uptake of heavy metals. Soil microbial activities (soil respiration, urease, and dehydrogenase activity) significantly increased in limestone and red-mud-amended soils. Red-mud was the most effective treatment in decreasing heavy-metal concentrations in lettuce. Compared to non-amended control soil, lettuce uptake of Cd, Pb, and Zn was reduced 86%, 58%, and 73%, respectively, by the addition of red-mud.

  6. Earthworms as biological monitors of cadmium, copper, lead and zinc in metalliferous soils.

    PubMed

    Morgan, J E; Morgan, A J

    1988-01-01

    Earthworms (Lumbricus rebellus and Dendrodrilus rubidus) were sampled from one uncontaminated and fifteen metal-contaminated sites. Significant positive correlations were found between the earthworm and 'total' (conc. nitric acid-extractable) soil Cd, Cu, Pb and Zn concentrations (data log1) transformed). The relationships were linear, and the accumulation patterns for both species were similar when a single metal was considered, even though there were species difference in mean metal concentrations. Generally, the earthworm Cd concentration exceeded that of the soil; by contrast, the worm Pb concentration was lower than the soil Pb concentration in all but one (acidic, low soil Ca) site. Our observations suggest that Cu and Zn accumulation may be physiologically regulated by both species. Total-soil Cd explained 82-86% of the variability (V2) in earthworm Cd concentration; 52-58% of worm Pb and worm Zn concentrations were explained by the total-soil concentrations of the respective metals. Total-soil Cu explained only 11-32% of the worm Cu concentration. The effect of soil pH, total Ca concentration, cation-exchange capacity (CEC) and organic carbon on metal accumulation by L. rubellus and D. rubidus was investigated by multiple regression analysis. Soil pH (coupled with CEC) and soil Ca had a major influence on Pb accumulation (V2 of worm Pb increased to 77-83%), and there was some evidence that Cd accumulation may be suppressed in extremely organic soils. The edaphic factors investigated had no effect on Cu or Zn accumulation by earthworms. In the context of biomonitoring, it is proposed that earthworms have a potential in a dual role: (1) as 'quantitative' monitors of total-soil metal concentrations (as shown for Cd); and (2) as estimators of 'ecologically significant' soil metal, integrating the effects of edaphic factors (as shown for Pb). PMID:15092529

  7. Soil Bacteria and Fungi Respond on Different Spatial Scales to Invasion by the Legume Lespedeza cuneata

    PubMed Central

    Yannarell, Anthony C.; Busby, Ryan R.; Denight, Michael L.; Gebhart, Dick L.; Taylor, Steven J.

    2011-01-01

    The spatial scale on which microbial communities respond to plant invasions may provide important clues as to the nature of potential invader–microbe interactions. Lespedeza cuneata (Dum. Cours.) G. Don is an invasive legume that may benefit from associations with mycorrhizal fungi; however, it has also been suggested that the plant is allelopathic and may alter the soil chemistry of invaded sites through secondary metabolites in its root exudates or litter. Thus, L. cuneata invasion may interact with soil microorganisms on a variety of scales. We investigated L. cuneata-related changes to soil bacterial and fungal communities at two spatial scales using multiple sites from across its invaded N. American range. Using whole-community DNA fingerprinting, we characterized microbial community variation at the scale of entire invaded sites and at the scale of individual plants. Based on permutational multivariate analysis of variance, soil bacterial communities in heavily invaded sites were significantly different from those of uninvaded sites, but bacteria did not show any evidence of responding at very local scales around individual plants. In contrast, soil fungi did not change significantly at the scale of entire sites, but there were significant differences between fungal communities of native versus exotic plants within particular sites. The differential scaling of bacterial and fungal responses indicates that L. cuneata interacts differently with soil bacteria and soil fungi, and these microorganisms may play very different roles in the invasion process of this plant. PMID:21687434

  8. Soil Bacteria and Fungi Respond on Different Spatial Scales to Invasion by the Legume Lespedeza cuneata.

    PubMed

    Yannarell, Anthony C; Busby, Ryan R; Denight, Michael L; Gebhart, Dick L; Taylor, Steven J

    2011-01-01

    The spatial scale on which microbial communities respond to plant invasions may provide important clues as to the nature of potential invader-microbe interactions. Lespedeza cuneata (Dum. Cours.) G. Don is an invasive legume that may benefit from associations with mycorrhizal fungi; however, it has also been suggested that the plant is allelopathic and may alter the soil chemistry of invaded sites through secondary metabolites in its root exudates or litter. Thus, L. cuneata invasion may interact with soil microorganisms on a variety of scales. We investigated L. cuneata-related changes to soil bacterial and fungal communities at two spatial scales using multiple sites from across its invaded N. American range. Using whole-community DNA fingerprinting, we characterized microbial community variation at the scale of entire invaded sites and at the scale of individual plants. Based on permutational multivariate analysis of variance, soil bacterial communities in heavily invaded sites were significantly different from those of uninvaded sites, but bacteria did not show any evidence of responding at very local scales around individual plants. In contrast, soil fungi did not change significantly at the scale of entire sites, but there were significant differences between fungal communities of native versus exotic plants within particular sites. The differential scaling of bacterial and fungal responses indicates that L. cuneata interacts differently with soil bacteria and soil fungi, and these microorganisms may play very different roles in the invasion process of this plant. PMID:21687434

  9. Spatial Resolution and Catchment Size Interaction of Soil Hydrological Properties for Hydrological Modeling

    NASA Astrophysics Data System (ADS)

    Libohova, Zamir; Bowling, Laura C.; Owens, Phillip R.; Schoeneberger, Philip; Wysocki, Douglas; Wills, Skye; Lindbo, David

    2016-04-01

    Spatial resolution of soil hydrologic properties is critical for distributed hydrological model streamflow simulations. Soils from US Soil Survey Geographic (SSURGO) Database are mapped at scales varying from 1:12,000 to 65,000. Related to these scales are also soil hydrological properties, which could vary spatially outside of the common SSURGO scale range. The objective of this research was to assess the role of the spatial resolution of soil depth on simulated hydrological response for various watershed sizes using the Distributed Hydrology Soil Vegetation Model (DHSVM). The study site was Hall Creek watershed a 56 km2 in size located in Dubois County in southern Indiana, USA. The watershed size was divided in 55 sub-watersheds varying in size from less than 5 km2 to 56 km2. The grid size spatial resolution of soil hydrological properties varied from 10x10, 30x30 and 90x90m. The simulated streamflow metrics were annual mean, minimum and maximum streamflow, and R-B Flashiness, which measures the variability in streamflow between successive days highlighting the fluctuation of discharge relative to total discharge. The slopes of the regression of simulated stream discharge parameters versus watershed size were used to assess the presence of interaction. In addition, the coefficient of variation was used to assess the variability for the R-B index, annual mean, annual minimum and maximum stream discharge across different model resolutions within each watershed category. The slope for 10x10 and 30x30m spatial resolution for annual mean, and minimum streamflow were not significantly different from zero across all watershed sizes indicating lack of interaction. However, slope for the R-B flashiness was significantly different from zero for the 90x90 m grid size indicating that watershed size change is sensitive at this spatial resolution. The variability of R-B index, annual mean and annual minimum hydrologic metrics decreased with increasing watershed size but

  10. Analyzing existing conventional soil information sources to be incorporated in thematic Spatial Data Infrastructures

    NASA Astrophysics Data System (ADS)

    Pascual-Aguilar, J. A.; Rubio, J. L.; Domínguez, J.; Andreu, V.

    2012-04-01

    New information technologies give the possibility of widespread dissemination of spatial information to different geographical scales from continental to local by means of Spatial Data Infrastructures. Also administrative awareness on the need for open access information services has allowed the citizens access to this spatial information through development of legal documents, such as the INSPIRE Directive of the European Union, adapted by national laws as in the case of Spain. The translation of the general criteria of generic Spatial Data Infrastructures (SDI) to thematic ones is a crucial point for the progress of these instruments as large tool for the dissemination of information. In such case, it must be added to the intrinsic criteria of digital information, such as the harmonization information and the disclosure of metadata, the own environmental information characteristics and the techniques employed in obtaining it. In the case of inventories and mapping of soils, existing information obtained by traditional means, prior to the digital technologies, is considered to be a source of valid information, as well as unique, for the development of thematic SDI. In this work, an evaluation of existing and accessible information that constitutes the basis for building a thematic SDI of soils in Spain is undertaken. This information framework has common features to other European Union states. From a set of more than 1,500 publications corresponding to the national territory of Spain, the study was carried out in those documents (94) found for five autonomous regions of northern Iberian Peninsula (Asturias, Cantabria, Basque Country, Navarra and La Rioja). The analysis was performed taking into account the criteria of soil mapping and inventories. The results obtained show a wide variation in almost all the criteria: geographic representation (projections, scales) and geo-referencing the location of the profiles, map location of profiles integrated with edaphic

  11. Spatial variability of soil moisture regimes at different scales: implications in the context of precision agriculture.

    PubMed

    Voltz, M

    1997-01-01

    Precision agriculture is based on the concept of soil-specific management, which aims to adapt management within a field according to specific site conditions in order to maximize production and minimize environmental damage. This paper examines how the nature and sources of variation in soil moisture regimes affect our ability to simulate soil water behaviour within a field with adequate precision in order to advise optimal soil-specific management. Field examples of variation in soil moisture regimes are described to illustrate the difficulties involved. A discussion identifies three main points. First, it is recognized that the current modelling approaches to soil moisture regimes do not sufficiently account for local heterogeneities in soil and crop characteristics such as soil morphology and rooting patterns. Second, the estimation of within-field variation of soil hydraulic properties is difficult because of large short-range variation of the properties and general lack of observed data; one way to overcome this problem is to seek new measurement techniques or to find easy-to-measure auxiliary variables spatially correlated to the variables of interest. Last, as pollution impacts often become noticeable to society at scales larger than the scale of agricultural management, hydrological modelling can serve for linking both scales and advising agricultural practices that minimize undesirable pollution effects.

  12. Time-dependent changes of zinc speciation in four soils contaminated with zincite or sphalerite.

    PubMed

    Voegelin, Andreas; Jacquat, Olivier; Pfister, Sabina; Barmettler, Kurt; Scheinost, Andreas C; Kretzschmar, Ruben

    2011-01-01

    The long-term speciation of Zn in contaminated soils is strongly influenced by soil pH, clay, and organic matter content as well as Zn loading. In addition, the type of Zn-bearing contaminant entering the soil may influence the subsequent formation of pedogenic Zn species, but systematic studies on such effects are currently lacking. We therefore conducted a soil incubation study in which four soils, ranging from strongly acidic to calcareous, were spiked with 2000 mg/kg Zn using either ZnO (zincite) or ZnS (sphalerite) as the contamination source. The soils were incubated under aerated conditions in moist state for up to four years. The extractability and speciation of Zn were assessed after one, two, and four years using extractions with 0.01 M CaCl(2) and Zn K-edge X-ray absorption fine structure (XAFS) spectroscopy, respectively. After four years, more than 90% of the added ZnO were dissolved in all soils, with the fastest dissolution occurring in the acidic soils. Contamination with ZnO favored the formation of Zn-bearing layered double hydroxides (LDH), even in acidic soils, and to a lesser degree Zn-phyllosilicates and adsorbed Zn species. This was explained by locally elevated pH and high Zn concentrations around dissolving ZnO particles. Except for the calcareous soil, ZnS dissolved more slowly than ZnO, reaching only 26 to 75% of the added ZnS after four years. ZnS dissolved more slowly in the two acidic soils than in the near-neutral and the calcareous soil. Also, the resulting Zn speciation was markedly different between these two pairs of soils: Whereas Zn bound to hydroxy-interlayered clay minerals (HIM) and octahedrally coordinated Zn sorption complexes prevailed in the two acidic soils, Zn speciation in the neutral and the calcareous soil was dominated by Zn-LDH and tetrahedrally coordinated inner-sphere Zn complexes. Our results show that the type of Zn-bearing contaminant phase can have a significant influence on the formation of pedogenic Zn

  13. Evapotranspiration Controls Imposed by Soil Moisture: A Spatial Analysis across the United States

    NASA Astrophysics Data System (ADS)

    Rigden, A. J.; Tuttle, S. E.; Salvucci, G.

    2014-12-01

    We spatially analyze the control over evapotranspiration (ET) imposed by soil moisture across the United States using daily estimates of satellite-derived soil moisture and data-driven ET over a nine-year period (June 2002-June 2011) at 305 locations. The soil moisture data are developed using 0.25-degree resolution satellite observations from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), where the 9-year time series for each 0.25-degree pixel was selected from three potential algorithms (VUA-NASA, U. Montana, & NASA) based on the maximum mutual information between soil moisture and precipitation (Tuttle & Salvucci (2014), Remote Sens Environ, 114: 207-222). The ET data are developed independent of soil moisture using an emergent relationship between the diurnal cycle of the relative humidity profile and ET. The emergent relation is that the vertical variance of the relative humidity profile is less than what would occur for increased or decreased ET rates, suggesting that land-atmosphere feedback processes minimize this variance (Salvucci and Gentine (2013), PNAS, 110(16): 6287-6291). The key advantage of using this approach to estimate ET is that no measurements of surface limiting factors (soil moisture, leaf area, canopy conductance) are required; instead, ET is estimated from meteorological data measured at 305 common weather stations that are approximately uniformly distributed across the United States. The combination of these two independent datasets allows for a unique spatial analysis of the control on ET imposed by the availability of soil moisture. We fit evaporation efficiency curves across the United States at each of the 305 sites during the summertime (May-June-July-August-September). Spatial patterns are visualized by mapping optimal curve fitting coefficients across the Unites States. An analysis of efficiency curves and their spatial patterns will be presented.

  14. Charactering Spatial Variability of Soil Properties Measured on a Transect by Multifractal Analysis

    NASA Astrophysics Data System (ADS)

    Paz González, A.; Valcarcel Armesto, M.; Dafonte Dafonte, J.; Mirás Avalos, J. M.; da Silva Días, R.; Marinho, M. A.; de Abreu, C. A.

    2012-04-01

    Spatial variability of soils in landscapes has been studied in different ways, for example in terms of soil survey reliability, soil development and erosive processes. Due to the advent of site-specific management in the 1990s, there is now an increasing interest in measuring the amount of soil variability within a field. Methods for assessing spatial variability also include use of transect techniques to sample soil sequences. On the other hand, over the past few decades fractal and multifractal models have been applied in the evaluation of the spatial variability of soil attributes. Therefore, the aim of this study was to characterize the spatial variability of general soil properties and extractable nutrients measured along a transect by means of multifractal analysis. The field work was conducted at the experimental farm of CIAM located in Mabegondo, A Coruña, Spain on a gently slope. The soil was loamy textured. Soil samples were taken at 66 points located 0.8 m apart along a transect of 52 m. Samples were analyzed for pH, organic matter content (OM), exchangeable K, Mg and Ca, exchangeable H+Al, and DTPA extractable Fe, Mn, Cu and Zn. In addition, sum of bases (SB), cation exchange capacity (CEC) and percent base saturation (V) were calculated from exchangeable cations. For all the studied statistical moments the logarithm of the normalized measures varied linearly (r2 > 0.87) with the logarithm of the measurement scale, meaning that the distribution of the measure could be considered as a fractal. The scaling properties of the soil properties studied were further characterized to determine if the scaling types was monofractal or multifractal. To this effect selected indices were calculated from the generalized dimension function, Dq. So for a distribution with a monofractal tendency values of the correlation dimension D2 and the entropy dimension, D1, become similar to the capacity dimension, D0, however D0 >D1 > D2 if the distribution has a tendency to

  15. Spatially resolved nanoscale observations of soil carbon multidecadal persistence

    NASA Astrophysics Data System (ADS)

    Lutfalla, S.; Chenu, C.; Bernard, S.; Le Guillou, C.; Barré, P.

    2015-12-01

    Assessing how mineral surfaces, especially at small scale, can protect soil organic carbon (SOC) from biodegradation is crucial. The question we address in this work is whether different mineral species lead to different organo-mineral interactions and stabilize different quantities of SOM and different types of SOC. Here we used the unique opportunity offered by long term bare fallows (BF) to study in situ C dynamics in several fine fractions of a silty loam soil. With no vegetation i.e. no external input of fresh C, the plant-free soil of the Versailles 42 Plots (INRA, France) has been progressively enriched in persistent SOC during the 80 years of BF. Contrasted mineral phases of the clay size fraction were isolated by size fractionation on samples from 5 different dates (0, 10, 22, 52, and 79 years after the beginning of the BF, four field replicates per date). Four fractions were studied: total clays (< 2 μm), and three sub fractions in the clay (fine clay: 0 - 0.05 μm, intermediate clay: 0.05 - 0.2 μm, and coarse clay: 0.2 - 2 μm). X-ray diffraction analyses showed contrasted mineralogies in the fine and intermediate clay (smectite and mixed layered illite/smectite) as opposed to the coarse clay (smectite, illite, kaolinite and mixed layered I/S). We performed CHN elemental analysis and synchrotron based spectroscopy and microscopy (NEXAFS bulk and STXM at the carbon K edge of 280 eV, CLS Saskatoon, Canada) to study the dynamics, the distribution and the chemical speciation of the SOC in these fractions. The quantity of C appears to be stabilized after 50 years of BF, even though the dynamics are different for the three clay fractions. Indeed, coarse and intermediate clays have the same final C content but coarse clays lose more C. Fine clay experiences the highest C losses and displays the highest final C content suggesting that fine clays contained more labile C and more persistent C. In all fractions, C:N ratios are really low (below 8) and are

  16. Decoding implicit information from the soil map of Belgium and implications for spatial modelling and soil classification

    NASA Astrophysics Data System (ADS)

    Dondeyne, Stefaan; Legrain, Xavier; Colinet, Gilles; Van Ranst, Eric; Deckers, Jozef

    2014-05-01

    (Anthrosols) are distinguished for their specific profile development (code "..m"). Obviously, when assessing soil organic carbon content these soil types need particular consideration. Soils in the Campine region with anthropogenic layers only 30 to 40 cm thick, not being Anthrosols, got a specific suffix code ("…3"). Still, as these soils may have a buried Ah horizon of up to 20 cm, their soil organic carbon content can be comparable to those of Anthrosols. The buried Ah horizon is however not explicitly mapped; its presence needs to be inferred from other environmental information. In conclusion, conventional soil maps convey more information than what transpires from just the explicit legend's semantics. Although a challenge, decoding the implicit information should be particularly useful for spatial modeling. The cases also point to the importance of classifying soil characteristics explicitly, wherever possible, and in particularly when soil maps are integrated into geographical information systems.

  17. Using multivariate geostatistics to assess patterns of spatial dependence of apparent soil electrical conductivity and selected soil properties.

    PubMed

    Siqueira, Glécio Machado; Dafonte, Jorge Dafonte; Valcárcel Armesto, Montserrat; França e Silva, Ênio Farias

    2014-01-01

    The apparent soil electrical conductivity (ECa) was continuously recorded in three successive dates using electromagnetic induction in horizontal (ECa-H) and vertical (ECa-V) dipole modes at a 6 ha plot located in Northwestern Spain. One of the ECa data sets was used to devise an optimized sampling scheme consisting of 40 points. Soil was sampled at the 0.0-0.3 m depth, in these 40 points, and analyzed for sand, silt, and clay content; gravimetric water content; and electrical conductivity of saturated soil paste. Coefficients of correlation between ECa and gravimetric soil water content (0.685 for ECa-V and 0.649 for ECa-H) were higher than those between ECa and clay content (ranging from 0.197 to 0.495, when different ECa recording dates were taken into account). Ordinary and universal kriging have been used to assess the patterns of spatial variability of the ECa data sets recorded at successive dates and the analyzed soil properties. Ordinary and universal cokriging methods have improved the estimation of gravimetric soil water content using the data of ECa as secondary variable with respect to the use of ordinary kriging.

  18. Using multivariate geostatistics to assess patterns of spatial dependence of apparent soil electrical conductivity and selected soil properties.

    PubMed

    Siqueira, Glécio Machado; Dafonte, Jorge Dafonte; Valcárcel Armesto, Montserrat; França e Silva, Ênio Farias

    2014-01-01

    The apparent soil electrical conductivity (ECa) was continuously recorded in three successive dates using electromagnetic induction in horizontal (ECa-H) and vertical (ECa-V) dipole modes at a 6 ha plot located in Northwestern Spain. One of the ECa data sets was used to devise an optimized sampling scheme consisting of 40 points. Soil was sampled at the 0.0-0.3 m depth, in these 40 points, and analyzed for sand, silt, and clay content; gravimetric water content; and electrical conductivity of saturated soil paste. Coefficients of correlation between ECa and gravimetric soil water content (0.685 for ECa-V and 0.649 for ECa-H) were higher than those between ECa and clay content (ranging from 0.197 to 0.495, when different ECa recording dates were taken into account). Ordinary and universal kriging have been used to assess the patterns of spatial variability of the ECa data sets recorded at successive dates and the analyzed soil properties. Ordinary and universal cokriging methods have improved the estimation of gravimetric soil water content using the data of ECa as secondary variable with respect to the use of ordinary kriging. PMID:25614893

  19. Using Multivariate Geostatistics to Assess Patterns of Spatial Dependence of Apparent Soil Electrical Conductivity and Selected Soil Properties

    PubMed Central

    Siqueira, Glécio Machado; Dafonte, Jorge Dafonte; Valcárcel Armesto, Montserrat; Silva, Ênio Farias França e

    2014-01-01

    The apparent soil electrical conductivity (ECa) was continuously recorded in three successive dates using electromagnetic induction in horizontal (ECa-H) and vertical (ECa-V) dipole modes at a 6 ha plot located in Northwestern Spain. One of the ECa data sets was used to devise an optimized sampling scheme consisting of 40 points. Soil was sampled at the 0.0–0.3 m depth, in these 40 points, and analyzed for sand, silt, and clay content; gravimetric water content; and electrical conductivity of saturated soil paste. Coefficients of correlation between ECa and gravimetric soil water content (0.685 for ECa-V and 0.649 for ECa-H) were higher than those between ECa and clay content (ranging from 0.197 to 0.495, when different ECa recording dates were taken into account). Ordinary and universal kriging have been used to assess the patterns of spatial variability of the ECa data sets recorded at successive dates and the analyzed soil properties. Ordinary and universal cokriging methods have improved the estimation of gravimetric soil water content using the data of ECa as secondary variable with respect to the use of ordinary kriging. PMID:25614893

  20. [Effects of intercropping Sedum plumbizincicola and Apium graceolens on the soil chemical and microbiological properties under the contamination of zinc and cadmium from sewage sludge application].

    PubMed

    Nai, Feng-Jiao; Wu, Long-Hua; Liu, Hong-Yan; Ren, Jing; Liu, Wu-Xing; Luo, Yong-Ming

    2013-05-01

    Taking the vegetable soil with zinc- and cadmium contamination from a long-term sewage sludge application as the object, a pot experiment was conducted to study the remediation effect of Sedum plumbizincicola and Apium graceolens under continuous monoculture and intercropping. With the remediation time increased, both S. plumbizincicola and A. graceolens under monoculture grew poorly, but S. plumbizincicola under intercropping grew well. Under intercropping, the soil organic matter, total N, extractable N, and total P contents decreased significantly while the soil extractable K content had a significant increase, the counts of soil bacteria and fungi increased by 7.9 and 18.4 times and 3.7 and 4.3 times, respectively, but the soil urease and catalase activities remained unchanged, as compared with those under A. graceolens and S. plumbizincicola monoculture. The BIOLOG ECO micro-plates also showed that the carbon sources utilization level and the functional diversity index of soil microbial communities were higher under intercropping than under monoculture, and the concentrations of soil zinc and cadmium under intercropping decreased by 5.8% and 50.0%, respectively, with the decrements being significantly higher than those under monoculture. It was suggested that soil microbial effect could be one of the important factors affecting plant growth.

  1. Analysis of the Impact of Soil Heterogeneity on the Spatial Variation of Unsaturated Flow

    NASA Astrophysics Data System (ADS)

    Patterson, Matthew; Gimenez, Daniel; Kerry, Ruth; Goovaerts, Pierre

    2016-04-01

    Modelling infiltration into soils with deterministic models requires knowledge of the hydraulic properties of that soil. Informing a model with these properties is complex because of the spatial heterogeneity of hydraulic properties that naturally occurs in all soils . The objective of this work was to analyze the effects that contrasting synthetic heterogeneities have on spatial outflows using a three-dimensional numerical model. An undisturbed soil column of 32 cm diameter and 50 cm height was used in an outflow experiment in the laboratory, where outflow was collected from the bottom of the column in 145 spatially-varied outflow cells and the column was subjected to multiple inflow rates. After the completion of the experiment, 30 sub-cores of 8 cm diameter and 5 cm height were extracted from the column and used to measure hydraulic properties and texture through a combination of pressure plate extractor, automated evaporation method, and a dewpoint potentiometer. The spatial heterogeneity of the soil in the column was represented by a Local Indicator of Spatial Autocorrelation (LISA - Local Moran's I) clustering algorithm, which used both texture and Electrical Resistivity Tomography data to identify significant clusters of points with high (HH) and low (LL) values and values that were not part of a significant cluster (NS). Each cluster was also assigned a numerical index based on LISA. Effective hydraulic properties were assigned to the HH and LL clusters and NS points based on the location of the 30 sub-cores and their average hydraulic properties. Resistivity data were used with omni-directional variograms with ranges of 5 and 15 cm and a nugget of 0.25 to conditionally simulate 50 realizations of 3-D data based on each variogram. The LISA algorithm was then used to detect significant clusters in these data and classify them as HH, LL or NS. Importing the resulting 100 sets of synthetic clusters and their corresponding effective hydraulic properties into

  2. An intercomparison of remotely sensed soil moisture products at various spatial scales over the Iberian penisula

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil moisture (SM) can be retrieved from active microwave (AM)-, passive microwave (PM)- and thermal infrared (TIR)-observations, each having their unique spatial- and temporal-coverage. A limitation of TIR-based SM retrievals is its dependency on cloud-free conditions, while microwave retrievals ar...

  3. Quantification of the effects of spatially varying environmental contaminants into a cost model for soil remediation

    SciTech Connect

    Broos, M.J.; Stein, A.; Aarts, L.; Tooren, C.F. tan

    1999-06-01

    In this study the authors investigated the effects of spatial variability of soil contaminants on cost calculations for soil remediation. Most cost models only provide a single figure, whereas spatial variability is one of the sources to contribute to the uncertainty. A cost model is applied to a study site of 19 ha containing a former gasworks in the Rotterdam harbor. The site was contaminated by heavy metals, PAH and mineral oil. Two sets of environmental thresholds were applied, one for identifying the severeness of contamination and one to decide upon the future use of excavated soil. Three remediation scenarios were compared. Geostatistical simulations were applied, both on individual contaminants and on indicator variables derived from these. As it turns out, spatial uncertainty causes 2--5% uncertainty in the final cost estimates. Another source of uncertainty is the direction of application of the cost model: a least-case approach starts with the lowest threshold value, followed by increasingly higher values, whereas a worst-case approach starts with the highest threshold value followed by decreasing values. Using a worst-case approach yielded cost estimates that were 6--8% higher than cost estimates by a least-case approach. The authors concluded that 8--13% of the uncertainty in cost estimates could be explained by spatial variation of soil contaminants and lithology.

  4. SPATIAL FOREST SOIL PROPERTIES FOR ECOLOGICAL MODELING IN THE WESTERN OREGON CASCADES

    EPA Science Inventory

    The ultimate objective of this work is to provide a spatially distributed database of soil properties to serve as inputs to model ecological processes in western forests at the landscape scale. The Central Western Oregon Cascades are rich in biodiversity and they are a fascinati...

  5. Transfer of cadmium, lead, and zinc from industrially contaminated soil to crop plants: a field study.

    PubMed

    Dudka, S; Piotrowska, M; Terelak, H

    1996-01-01

    The documeneed adverse health effects of soil Cd and Pb have led to public concern over soil contamination with metals. A 4-year field experiment was conducted to study the transfer of Cd, Pb, and Zn from soil contaminated by smelter flue-dust to crop plants grown in a rotation. The soil was amended with Pb?Zn smelter flue-dust (2-66.8 kg per 10 m(2) plot) to simulate the long-term effect that the smelting of non-ferrous metal ore has on arable soils. The treated soil became strongly contaminated with metals (Cd 3.2-106 mg/kg, Pb 146-3452 mg/kg, Zn 465-11 375 mg/kg). Concentrations of Cd, Pb, and Zn in barley grain, barley straw meadow bluegrass, red clover, and potatoes were generally low. The highest metal concentrations were found in potato tubers (intact), meadow bluegrass, and barley straw. The observed reduction in crop yield was probably the result of possible nutrient imbalances rather than of metal (Zn, Cu) phytotoxicities. Zn and Cd uptake by the plants can be described by the saturation (plateau) model (y = ax(b), b < 1). The relationship between Pb in the soil and plants was linear with an extremely low slope (0.0001-0.0003). No excessive dietary intake of Cd is expected when Cd concentrations in barley grain and potato tubers grown on the contaminated soil are not higher than 0.6 and 1.0 mg/kg, respectively. Based on the risk analysis and taking into account the saturation model of the soil-plant metal relationship, it was concluded that, under the conditions of this experiment (neutral soil pH), soil with Cd concentrations of up to 30 mg/kg is still safe for production of these crop plants.

  6. Biotests and biosensors in ecotoxicological risk assessment of field soils polluted with zinc, lead, and cadmium.

    PubMed

    Kahru, Anne; Ivask, Angela; Kasemets, Kaja; Põllumaa, Lee; Kurvet, Imbi; François, Matthieu; Dubourguier, Henri-Charles

    2005-11-01

    The combined chemical and ecotoxicological hazard evaluation study was conducted on 60 smelter-influenced soils containing 1 to 13, 50 to 653, and 100 to 1,198 mg/kg of Cd, Pb, and Zn, respectively. For these soils (liquid-to-soil ratio = 10), water extractability of Zn, Cd, and Pb was less than 0.19% (median values). Acetic acid (0.11 M) extracted 23, 9.7, and 0.7% of Cd, Zn, and Pb, respectively. Although heavy metal concentrations in the studied soils were high, the toxic effects of water extracts were observed only in few samples and in few biotests (algae Selenastrum capricornutum and metal detector assay). For most of the aquatic test organisms (e.g., crustaceans, photobacteria), the bioavailable concentrations of metals in soil-water extracts were either subtoxic, or the adverse effects were compensated by soil nutrients, etc. However, analysis of the soils with recombinant Cd sensor Bacillus subtilis (pTOO24) showed that about 65% of these apparently subtoxic samples contained bioavailable Cd when analyzed in the suspension assay (detection limit 1.5 mg Cd/kg soil), indicating the desorption of Cd induced by direct contact of bacteria with soil particles. The median bioavailable fraction of Cd (1%) was 23-fold lower than the fraction extracted by acetic acid. The Pb-Cd sensor Staphylococcus aureus (pT0024) detected bioavailable Pb only in the suspensions of five of the most lead-polluted soils (>417 mg Pb/kg): the median bioavailability of Pb was 0.42%. Consequently, the hazard assessment relying on total metal levels in soils should be revised by critical comparison with data obtained from bioassays. Development and use of biosensors (excellent tools for mechanistic studies and signaling hazard already at subtoxic level) should be encouraged. PMID:16398136

  7. Integration of GIS, Geostatistics, and 3-D Technology to Assess the Spatial Distribution of Soil Moisture

    NASA Technical Reports Server (NTRS)

    Betts, M.; Tsegaye, T.; Tadesse, W.; Coleman, T. L.; Fahsi, A.

    1998-01-01

    The spatial and temporal distribution of near surface soil moisture is of fundamental importance to many physical, biological, biogeochemical, and hydrological processes. However, knowledge of these space-time dynamics and the processes which control them remains unclear. The integration of geographic information systems (GIS) and geostatistics together promise a simple mechanism to evaluate and display the spatial and temporal distribution of this vital hydrologic and physical variable. Therefore, this research demonstrates the use of geostatistics and GIS to predict and display soil moisture distribution under vegetated and non-vegetated plots. The research was conducted at the Winfred Thomas Agricultural Experiment Station (WTAES), Hazel Green, Alabama. Soil moisture measurement were done on a 10 by 10 m grid from tall fescue grass (GR), alfalfa (AA), bare rough (BR), and bare smooth (BS) plots. Results indicated that variance associated with soil moisture was higher for vegetated plots than non-vegetated plots. The presence of vegetation in general contributed to the spatial variability of soil moisture. Integration of geostatistics and GIS can improve the productivity of farm lands and the precision of farming.

  8. [Spatial interpolation of soil organic matter using regression Kriging and geographically weighted regression Kriging].

    PubMed

    Yang, Shun-hua; Zhang, Hai-tao; Guo, Long; Ren, Yan

    2015-06-01

    Relative elevation and stream power index were selected as auxiliary variables based on correlation analysis for mapping soil organic matter. Geographically weighted regression Kriging (GWRK) and regression Kriging (RK) were used for spatial interpolation of soil organic matter and compared with ordinary Kriging (OK), which acts as a control. The results indicated that soil or- ganic matter was significantly positively correlated with relative elevation whilst it had a significantly negative correlation with stream power index. Semivariance analysis showed that both soil organic matter content and its residuals (including ordinary least square regression residual and GWR resi- dual) had strong spatial autocorrelation. Interpolation accuracies by different methods were esti- mated based on a data set of 98 validation samples. Results showed that the mean error (ME), mean absolute error (MAE) and root mean square error (RMSE) of RK were respectively 39.2%, 17.7% and 20.6% lower than the corresponding values of OK, with a relative-improvement (RI) of 20.63. GWRK showed a similar tendency, having its ME, MAE and RMSE to be respectively 60.6%, 23.7% and 27.6% lower than those of OK, with a RI of 59.79. Therefore, both RK and GWRK significantly improved the accuracy of OK interpolation of soil organic matter due to their in- corporation of auxiliary variables. In addition, GWRK performed obviously better than RK did in this study, and its improved performance should be attributed to the consideration of sample spatial locations. PMID:26572015

  9. Modeling daily soil temperature using data-driven models and spatial distribution

    NASA Astrophysics Data System (ADS)

    Kim, Sungwon; Singh, Vijay P.

    2014-11-01

    The objective of this study is to develop data-driven models, including multilayer perceptron (MLP) and adaptive neuro-fuzzy inference system (ANFIS), for estimating daily soil temperature at Champaign and Springfield stations in Illinois. The best input combinations (one, two, and three inputs) can be identified using MLP. The ANFIS is used to estimate daily soil temperature using the best input combinations (one, two, and three inputs). From the performance evaluation and scatter diagrams of MLP and ANFIS models, MLP 3 produces the best results for both stations at different depths (10 and 20 cm), and ANFIS 3 produces the best results for both stations at two different depths except for Champaign station at the 20 cm depth. Results of MLP are better than those of ANFIS for both stations at different depths. The MLP-based spatial distribution is used to estimate daily soil temperature using the best input combinations (one, two, and three inputs) at different depths below the ground. The MLP-based spatial distribution estimates daily soil temperature with high accuracy, but the results of MLP and ANFIS are better than those of the MLP-based spatial distribution for both stations at different depths. Data-driven models can estimate daily soil temperature successfully in this study.

  10. Aspects of spatial and temporal aggregation in estimating regional carbon dioxide fluxes from temperate forest soils

    SciTech Connect

    Kicklighter, D.W.; Melillo, J.M.; Peterjohn, W.T.; Rastetter, E.B.; McGuire, A.D.; Steudler, P.A.; Aber, J.D.

    1994-01-20

    We examine the influence of aggregation errors on developing estimates of regional soil-CO{sub 2} flux from temperate forests. We find daily soil-CO{sub 2} fluxes to be more sensitive to changes in soil temperatures (Q{sub 10} = 3.08) than air temperatures (Q{sub 10} = 1.99). The direct use of mean monthly air temperatures with a daily flux model underestimates regional fluxes by approximately 4%. Temporal aggregation error varies with spatial resolution. Overall, our calibrated modeling approach reduces spatial aggregation error by 9.3% and temporal aggregation error by 15.5%. After minimizing spatial and temporal aggregation errors, mature temperate forest soils are estimated to contribute 12.9 Pg C yr{sup {minus}1} to the atmosphere as carbon dioxide. Georeferenced model estimates agree well with annual soil-CO{sub 2} fluxes measured during chamber studies in mature temperate forest stands around the globe. 75 refs., 8 figs., 5 tabs.

  11. Soil nitrate reducing processes – drivers, mechanisms for spatial variation, and significance for nitrous oxide production

    PubMed Central

    Giles, Madeline; Morley, Nicholas; Baggs, Elizabeth M.; Daniell, Tim J.

    2012-01-01

    The microbial processes of denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are two important nitrate reducing mechanisms in soil, which are responsible for the loss of nitrate (NO3−) and production of the potent greenhouse gas, nitrous oxide (N2O). A number of factors are known to control these processes, including O2 concentrations and moisture content, N, C, pH, and the size and community structure of nitrate reducing organisms responsible for the processes. There is an increasing understanding associated with many of these controls on flux through the nitrogen cycle in soil systems. However, there remains uncertainty about how the nitrate reducing communities are linked to environmental variables and the flux of products from these processes. The high spatial variability of environmental controls and microbial communities across small sub centimeter areas of soil may prove to be critical in determining why an understanding of the links between biotic and abiotic controls has proved elusive. This spatial effect is often overlooked as a driver of nitrate reducing processes. An increased knowledge of the effects of spatial heterogeneity in soil on nitrate reduction processes will be fundamental in understanding the drivers, location, and potential for N2O production from soils. PMID:23264770

  12. Field evidence of cadmium phytoavailability decreased effectively by rape straw and/or red mud with zinc sulphate in a Cd-contaminated calcareous soil.

    PubMed

    Li, Bo; Yang, Junxing; Wei, Dongpu; Chen, Shibao; Li, Jumei; Ma, Yibing

    2014-01-01

    To reduce Cd phytoavailability in calcareous soils, the effects of soil amendments of red mud, rape straw, and corn straw in combination with zinc fertilization on Cd extractability and phytoavailability to spinach, tomato, Chinese cabbage and radish were investigated in a calcareous soil with added Cd at 1.5 mg kg-1. The results showed that water soluble and exchangeable Cd in soils was significantly decreased by the amendments themselves from 26% to 70%, which resulted in marked decrease by approximately from 34% to 77% in Cd concentration in vegetables. The amendments plus Zn fertilization further decreased the Cd concentration in vegetables. Also cruciferous rape straw was more effective than gramineous corn straw. In all treatments, rape straw plus red mud combined with Zn fertilization was most effective in decreasing Cd phytoavailability in soils, and it is potential to be an efficient and cost-effective measure to ensure food safety for vegetable production in mildly Cd-contaminated calcareous soils.

  13. Spatial Variability Some Physical and Chemical Prpperties Soil surface In Dasht-e-Tabriz Different Landforms

    NASA Astrophysics Data System (ADS)

    Foroughifar, Hamed; Asghar Jafarzadeh, Ali; Torabi, Hosien; Aliasgharzad, Naser; Toomanian, Norair

    2010-05-01

    Spatial distribution of soil properties at the field and watershed scale(region scale) affect yield potential, hydrologic responses , and transport of herbicides and No3 to surface or groundwater.The present study aim was to evaluate some physical and chemical properties spatial variability and frequency distribution within and between landforms of Dash-e-Tabriz in the northwest of Iran.For this evaluation 98 samples from soils surface of layer according to grid sampling design and with 500-1000 meters distance based on soils variability were selected and analysed.Landforms were hill, piedmont plain, plain, river alluvial plain and lowland.The study of soil variables frequency distribution showed that Bd, CEC, Caco3, pH,clay and silt follow normal distribution ,which to study their variation one can use parametric statistical method.Variables such as MWD, N(total), SAR, EC, P(available) and sand showed log-normal distribution,that for their variation study,should first be transformed to a logarithmic scale.The variables frequency distribution increase within landforms,which in lowland, hill, and river alluvial plain they showed normal distribution and only EC in piedmont plain and sand, OC and N(total) in plain had log-normal distributions.The results indicate significantly differences of soil properties distribution among landforms,which clay ,pH, EC ,SAR and MWD, CEC, Bd, N(total), OC, P(available), sand, silt were strongly and moderately spatial dependent respectively and Caco3 had no spatial dependence and it is following nugget model.These results indicate that strong spatial dependence due to the effects of intrinsic factors such as parent material, relief and soil types. Also soil properties variations result from variation in depositional environments and or differences in pedogenic or hydrologic processes for different landform positions,and so it can be affected by the flood irrigation,fertilizeir addition,high watertable level or agriculture practices

  14. Using 137Cs to study spatial patterns of soil erosion and soil organic carbon (SOC) in an agricultural catchment of the typical black soil region, Northeast China.

    PubMed

    Fang, Haiyan; Li, Qiuyan; Sun, Liying; Cai, Qiangguo

    2012-10-01

    Understanding the spatial pattern of soil organic carbon (SOC) is of great importance because of global environmental concerns. Soil erosion and its subsequent redistribution contribute significantly to the redistribution of SOC in agricultural ecosystems. This study investigated the relationships between (137)Cs and SOC over an agricultural landscape, and SOC redistribution was conducted for an agricultural catchment of the black soil region in Northeast China. The spatial patterns of (137)Cs and SOC were greatly affected by the established shelterbelts and the developed ephemeral gullies. (137)Cs were significantly correlated with SOC when (137)Cs were >2000 Bq m(-2), while no relation was observed between them when (137)Cs were <2000 Bq m(-2). Factors other than soil erosion such as vegetative productivity, mineralization of SOC, landscape position and management induced their spatial difference of (137)Cs and SOC. Using (137)Cs technique to directly study SOC dynamics must be cautious in the black soils. The net SOC loss rate across the entire catchment during 1954-2010 was 92.8 kg ha(-1) yr(-1), with around 42% of the eroded SOC being redeposited within the catchment. Such information can help guide shelterbelt establishment or other land management to reduce SOC loss in the agricultural ecosystems.

  15. [A spatial heterogeneity of surface soil moisture content in dry season in Mulun National Natural Reserve in Karst area].

    PubMed

    Song, Tong-qing; Peng, Wan-xia; Zeng, Fu-ping; Ouyang, Zi-wen; Wu, Hai-yong

    2009-01-01

    By the methods of classical statistics and geostatistics, the spatial heterogeneity of surface soil (0-5 cm and 5-10 cm layers) moisture content in dry season in the typical sloping fields and depressions in Mulun National Natural Reserve in Karst area were studied. The results indicated that in study area, the surface soil moisture content in dry season was still higher, and showed a fine semivariogram structure as a whole. The spatial distribution of moisture content in 0-5 cm and 5-10 cm soil layers, both for sloping fields and for depressions, fitted exponential model well. Under the same stand conditions, the moisture content in the two soil layers had the similar spatial structure and distribution pattern; while under different stand conditions, there existed obvious difference in the same soil layer. The spatial pattern of surface soil moisture content in sloping fields was characterized by medium spatial autocorrelation, clear patches with well continuum, relatively slow variation of Moran's I index, while that in depressions was characterized by strong spatial autocorrelation, larger variation of Moran' s I index, and more fragmented patches. Therefore, topography, micro-physiognomy, precipitation, human disturbance, and especially vegetation were the most important factors affecting the spatial pattern of soil moisture content in the Mulun National Natural Reserve, and to preserve primary forest should have favorable effect on the regulation of the spatial heterogeneity of soil moisture content in the Reserve.

  16. The affect of industrial activities on zinc in alluvial Egyptian soil determined using neutron activation analysis.

    PubMed

    Abdel-Sabour, M F; Abdel-Basset, N

    2002-07-01

    Thirty-two surface (0-20 cm) soil samples were collected from different locations in Egypt representing non-polluted, moderately and highly polluted soils. The aim of this study was to evaluate total Zn content in alluvial soils of Nile Delta in Egypt by using the delayed neutron activation analysis technique (DNAA), in the irradiation facilities of the first Egyptian research reactor (ET-RR-1). The gamma-ray spectra were recorded with a hyper pure germanium detection system. The well resolved gamma-ray peak at 1116.0 keV was efficiently used for 65Zn content determination. Zn content in non-polluted soil samples ranged between 74.1 and 103.8 ppm with an average of 98.5 +/- 5.1 ppm. Zn content in moderately polluted soils ranged between 136.0 and 232.5 ppm with an average of 180.1 +/- 32.6 ppm. The highest Zn levels ranging from 240.0 and 733.0 ppm with an average of 410.3 +/- 54.4 ppm, were observed in soil samples collected from, either highly polluted agricultural soils exposed to prolonged irrigation with industrial wastewater or surface soil samples from industrial sites. PMID:12211982

  17. Designation of less favorable areas by the regionalization of soil degradation on various spatial scales

    NASA Astrophysics Data System (ADS)

    Pásztor, L.; Szabó, J.; Bakacsi, Zs.; Laborczi, A.

    2009-04-01

    One of the main objectives of the EU's Common Agricultural Policy is to encourage maintaining agricultural production in less favorable areas (LFA) in order (among others) to sustain agricultural production and use natural resources, in such a way to secure both stable production and income to farmers and to protect the environment. LFA assignment has both ecological and severe economical aspects. Delimitation of LFAs can be carried out by using biophysical diagnostic criteria on low soil productivity and poor climate conditions. Identification of low-productivity areas requires regionalization of soil functions related to food and other biomass production. This process can be carried out in different scales from national to local level, but always requires map-based pedological and further environmental information with appropriate spatial resolution. For the regionalization of less productive areas in national scale a functional approach was used which integrates the knowledge on soil degradation processes in nationwide level. Specific soil threats were classified into ranked categories. Supposing (quasi)uniform distribution of vulnerability measure along these classes, we introduced a "standardized" value as a ratio of the class order to the maximum class order expressed in percentage. For the overall spatial characterization of degradation status, spatial information was integrated in a result map by summarizing the degradation specific "standardized" cell values. This map in one hand has been used for the delineation of soil degradation regions. On the other hand appropriate spatial aggregation of index values on geographical and administrative regions is suitable for their quantitative comparison thus they can be ranked and this feature can be used for the identification of less favorable areas. At the more detailed, county level the Digital Kreybig Soil Information System was used as a tool of the regionalization of soil functions related to soil

  18. CadA of Mesorhizobium metallidurans isolated from a zinc-rich mining soil is a P(IB-2)-type ATPase involved in cadmium and zinc resistance.

    PubMed

    Maynaud, Geraldine; Brunel, Brigitte; Yashiro, Erika; Mergeay, Max; Cleyet-Marel, Jean-Claude; Le Quéré, Antoine

    2014-04-01

    Mesorhizobium metallidurans STM 2683(T) is a nitrogen-fixing bacterium that nodulates Anthyllis vulneraria in mine tailings highly contaminated in zinc, lead and cadmium. To study the mechanisms whereby this bacterium copes with metals, we functionally screened a cosmid genomic library of M. metallidurans for zinc or cadmium tolerance. A cosmid clone harbored a gene encoding P(IB)-type ATPase homologous to CadA that leads to cadmium and zinc resistance in Escherichia coli. The CadA protein structure presents one duplication of the two N-terminal metal binding domains (i.e. a heavy metal-associated domain followed by a histidine-rich domain) which allows specific binding to zinc and cadmium cations. A cadA-deleted strain of M. metallidurans failed to grow at high zinc concentrations (2 mM) and its growth was delayed at lower zinc concentrations. Expression studies using a transcriptional fusion of cadA promoter to gfp showed that cadA is specifically induced in a dose-dependent manner by zinc and cadmium in M. metallidurans in vitro conditions and into A. vulneraria nodules after Zn stress. Metal induction sensitivity was increased in the strain where cadA gene was deleted. This study identified cadA as a first mesorhizobial resistance determinant involved in detoxification of cadmium and zinc and which confers upon M. metallidurans greater capacity for coping with high zinc concentrations. This improves the knowledge of this bacterium for potential use as a symbiotic inoculant of Anthyllis in phytostabilization strategies of metal-rich sites.

  19. Spatial Heterogeneity in Soil Microbes Alters Outcomes of Plant Competition

    PubMed Central

    Abbott, Karen C.; Karst, Justine; Biederman, Lori A.; Borrett, Stuart R.; Hastings, Alan; Walsh, Vonda; Bever, James D.

    2015-01-01

    Plant species vary greatly in their responsiveness to nutritional soil mutualists, such as mycorrhizal fungi and rhizobia, and this responsiveness is associated with a trade-off in allocation to root structures for resource uptake. As a result, the outcome of plant competition can change with the density of mutualists, with microbe-responsive plant species having high competitive ability when mutualists are abundant and non-responsive plants having high competitive ability with low densities of mutualists. When responsive plant species also allow mutualists to grow to greater densities, changes in mutualist density can generate a positive feedback, reinforcing an initial advantage to either plant type. We study a model of mutualist-mediated competition to understand outcomes of plant-plant interactions within a patchy environment. We find that a microbe-responsive plant can exclude a non-responsive plant from some initial conditions, but it must do so across the landscape including in the microbe-free areas where it is a poorer competitor. Otherwise, the non-responsive plant will persist in both mutualist-free and mutualist-rich regions. We apply our general findings to two different biological scenarios: invasion of a non-responsive plant into an established microbe-responsive native population, and successional replacement of non-responders by microbe-responsive species. We find that resistance to invasion is greatest when seed dispersal by the native plant is modest and dispersal by the invader is greater. Nonetheless, a native plant that relies on microbial mutualists for competitive dominance may be particularly vulnerable to invasion because any disturbance that temporarily reduces its density or that of the mutualist creates a window for a non-responsive invader to establish dominance. We further find that the positive feedbacks from associations with beneficial soil microbes create resistance to successional turnover. Our theoretical results constitute an

  20. Spatial heterogeneity in soil microbes alters outcomes of plant competition.

    PubMed

    Abbott, Karen C; Karst, Justine; Biederman, Lori A; Borrett, Stuart R; Hastings, Alan; Walsh, Vonda; Bever, James D

    2015-01-01

    Plant species vary greatly in their responsiveness to nutritional soil mutualists, such as mycorrhizal fungi and rhizobia, and this responsiveness is associated with a trade-off in allocation to root structures for resource uptake. As a result, the outcome of plant competition can change with the density of mutualists, with microbe-responsive plant species having high competitive ability when mutualists are abundant and non-responsive plants having high competitive ability with low densities of mutualists. When responsive plant species also allow mutualists to grow to greater densities, changes in mutualist density can generate a positive feedback, reinforcing an initial advantage to either plant type. We study a model of mutualist-mediated competition to understand outcomes of plant-plant interactions within a patchy environment. We find that a microbe-responsive plant can exclude a non-responsive plant from some initial conditions, but it must do so across the landscape including in the microbe-free areas where it is a poorer competitor. Otherwise, the non-responsive plant will persist in both mutualist-free and mutualist-rich regions. We apply our general findings to two different biological scenarios: invasion of a non-responsive plant into an established microbe-responsive native population, and successional replacement of non-responders by microbe-responsive species. We find that resistance to invasion is greatest when seed dispersal by the native plant is modest and dispersal by the invader is greater. Nonetheless, a native plant that relies on microbial mutualists for competitive dominance may be particularly vulnerable to invasion because any disturbance that temporarily reduces its density or that of the mutualist creates a window for a non-responsive invader to establish dominance. We further find that the positive feedbacks from associations with beneficial soil microbes create resistance to successional turnover. Our theoretical results constitute an

  1. Spatial heterogeneity in soil microbes alters outcomes of plant competition.

    PubMed

    Abbott, Karen C; Karst, Justine; Biederman, Lori A; Borrett, Stuart R; Hastings, Alan; Walsh, Vonda; Bever, James D

    2015-01-01

    Plant species vary greatly in their responsiveness to nutritional soil mutualists, such as mycorrhizal fungi and rhizobia, and this responsiveness is associated with a trade-off in allocation to root structures for resource uptake. As a result, the outcome of plant competition can change with the density of mutualists, with microbe-responsive plant species having high competitive ability when mutualists are abundant and non-responsive plants having high competitive ability with low densities of mutualists. When responsive plant species also allow mutualists to grow to greater densities, changes in mutualist density can generate a positive feedback, reinforcing an initial advantage to either plant type. We study a model of mutualist-mediated competition to understand outcomes of plant-plant interactions within a patchy environment. We find that a microbe-responsive plant can exclude a non-responsive plant from some initial conditions, but it must do so across the landscape including in the microbe-free areas where it is a poorer competitor. Otherwise, the non-responsive plant will persist in both mutualist-free and mutualist-rich regions. We apply our general findings to two different biological scenarios: invasion of a non-responsive plant into an established microbe-responsive native population, and successional replacement of non-responders by microbe-responsive species. We find that resistance to invasion is greatest when seed dispersal by the native plant is modest and dispersal by the invader is greater. Nonetheless, a native plant that relies on microbial mutualists for competitive dominance may be particularly vulnerable to invasion because any disturbance that temporarily reduces its density or that of the mutualist creates a window for a non-responsive invader to establish dominance. We further find that the positive feedbacks from associations with beneficial soil microbes create resistance to successional turnover. Our theoretical results constitute an

  2. An exploratory spatial analysis of soil organic carbon distribution in Canadian eco-regions

    NASA Astrophysics Data System (ADS)

    Tan, S.-Y.; Li, J.

    2014-11-01

    As the largest carbon reservoir in ecosystems, soil accounts for more than twice as much carbon storage as that of vegetation biomass or the atmosphere. This paper examines spatial patterns of soil organic carbon (SOC) in Canadian forest areas at an eco-region scale of analysis. The goal is to explore the relationship of SOC levels with various climatological variables, including temperature and precipitation. The first Canadian forest soil database published in 1997 by the Canada Forest Service was analyzed along with other long-term eco-climatic data (1961 to 1991) including precipitation, air temperature, slope, aspect, elevation, and Normalized Difference Vegetation Index (NDVI) derived from remote sensing imagery. In addition, the existing eco-region framework established by Environment Canada was evaluated for mapping SOC distribution. Exploratory spatial data analysis techniques, including spatial autocorrelation analysis, were employed to examine how forest SOC is spatially distributed in Canada. Correlation analysis and spatial regression modelling were applied to determine the dominant ecological factors influencing SOC patterns at the eco-region level. At the national scale, a spatial error regression model was developed to account for spatial dependency and to estimate SOC patterns based on ecological and ecosystem factors. Based on the significant variables derived from the spatial error model, a predictive SOC map in Canadian forest areas was generated. Although overall SOC distribution is influenced by climatic and topographic variables, distribution patterns are shown to differ significantly between eco-regions. These findings help to validate the eco-region classification framework for SOC zonation mapping in Canada.

  3. Selectivity sequences and sorption capacities of phosphatic clay and humus rich soil towards the heavy metals present in zinc mine tailing.

    PubMed

    Chaturvedi, Pranav Kumar; Seth, Chandra Shekhar; Misra, Virendra

    2007-08-25

    Sorption efficacy of phosphatic clay and humus rich soil alone and on combination were tested towards heavy metals present in zinc mine tailing (Zawar Zinc Mine), Udaipur (India). Characterization of the zinc mine tailing sample indicated the presence of Pb, Cu, Zn and Mn in the concentration of 637, 186, 720 and 577microg(-1), respectively. For sorption efficacy, the zinc mine tailing soil were properly amended with phosphatic clay and humus rich soil separately and in combination and leachability study was performed by batch experiment at different pH range from 3 to 9. The data showed that the percent leachability of heavy metal in non-amended soil was 75-90%. After amendment with phosphatic clay percent leachability of heavy metals became 35-45%. Further, the addition of humus soil to phosphatic clay decreased the percent leachability up to 5-15% at all tested pH. Column leachability experiment was performed to evaluate the rate of leachability. The shape of cumulative curves of Pb, Cu, Zn and Mn showed an increase in its concavity in following order: PbCu>Zn>Mn. Further, Langmuir isotherms applied for the sorption studies indicated that phosphatic clay in the presence of humus soil had high affinity for Pb followed by Cu, Zn and Mn, with sorption capacities (b) 139.94, 97.02, 83.32 and 67.58microgg(-1), respectively. PMID:17303325

  4. Selectivity sequences and sorption capacities of phosphatic clay and humus rich soil towards the heavy metals present in zinc mine tailing.

    PubMed

    Chaturvedi, Pranav Kumar; Seth, Chandra Shekhar; Misra, Virendra

    2007-08-25

    Sorption efficacy of phosphatic clay and humus rich soil alone and on combination were tested towards heavy metals present in zinc mine tailing (Zawar Zinc Mine), Udaipur (India). Characterization of the zinc mine tailing sample indicated the presence of Pb, Cu, Zn and Mn in the concentration of 637, 186, 720 and 577microg(-1), respectively. For sorption efficacy, the zinc mine tailing soil were properly amended with phosphatic clay and humus rich soil separately and in combination and leachability study was performed by batch experiment at different pH range from 3 to 9. The data showed that the percent leachability of heavy metal in non-amended soil was 75-90%. After amendment with phosphatic clay percent leachability of heavy metals became 35-45%. Further, the addition of humus soil to phosphatic clay decreased the percent leachability up to 5-15% at all tested pH. Column leachability experiment was performed to evaluate the rate of leachability. The shape of cumulative curves of Pb, Cu, Zn and Mn showed an increase in its concavity in following order: PbCu>Zn>Mn. Further, Langmuir isotherms applied for the sorption studies indicated that phosphatic clay in the presence of humus soil had high affinity for Pb followed by Cu, Zn and Mn, with sorption capacities (b) 139.94, 97.02, 83.32 and 67.58microgg(-1), respectively.

  5. Spatial assessment of soil salinity in the Harran Plain using multiple kriging techniques.

    PubMed

    Bilgili, Ali V

    2013-01-01

    The Harran Plain is located in the southeastern part of Turkey and has recently been developed for irrigation agriculture. It already faces soil salinity problems causing major yield losses. Management of the problem is hindered by the lack of information on the extent and geography of the salinization problem. A survey was carried out to delineate the spatial distribution of salt-affected areas by randomly selecting 140 locations that were sampled at two depths (0 to 30 and 30 to 60 cm) and analyzed for soil salinity variables: soil electrical conductivity (EC), soluble cations (Ca(2+,) Mg(2+), Na(+), and K(+)), soluble anions (SO (4) (2-) , Cl(-)), exchangeable Na(+) (me 100 g(-1)) and exchangeable sodium percentage. Terrain attributes (slope, topographical wetness index) were extracted from the digital elevation model of the study area. Variogram analyses after log transformation and ordinary kriging (OK) were applied to map spatial patterns of soil salinity variables. Multivariate geostatistical methods-regression kriging (RK) and kriging with external drift (KED)-were used using elevation and soil electrical conductivity data as covariates. Performances of the three estimation methods (OK, RK, and KED) were compared using independent validation samples randomly selected from the main dataset. Soils were categorized into salinity classes using disjunctive kriging (DK) and ArcGIS, and classification accuracy was tested using the kappa statistic. Results showed that soil salinity variables all have skewed distribution and are poorly correlated with terrain indices but have strong correlations among each other. Up to 65 % improvement was obtained in the estimations of soil salinity variables using hybrid methods over OK with the best estimations obtained with RK using EC(0-30) as covariate. DK-ArcGIS successfully classified soil samples into different salinity groups with overall accuracy of 75 % and kappa of 0.55 (p < 0.001).

  6. A spatial application of a vegetation productivity equation for neo-soil reconstruction

    SciTech Connect

    Burley, J.B.

    1999-07-01

    Reclamation specialists are interested in the application of recently developed soil productivity equations for post-mining reclamation planning and design. This paper presents the application of one recently developed soil productivity equation to a surface coal mine site in Mercer County, North Dakota. Geographic information systems (GIS) technology (Map*Factory 1.1) was combined with a soil productivity equation developed by the author to generate a GIS script to calculate a site's pre-mining productivity per 10 meter grid cell and then summed to calculate the grand and the expected average soil productivity for the site, resulting in a pre-mining baseline numerical spatial scores. Several post-mining alternatives were evaluated to study various soil management strategies to restore post-mining soil productivity, including: an abandoned mine landscape treatment, a reconstructed topsoil treatment with graded gentile slopes, and a reconstructed topsoil treatment with soil improvements. The results indicated that the abandoned mine scenario was significantly different than the other three treatments (p{le}0.05), with the reconstructed topsoil treatment with soil amendments generating the greatest estimated productivity.

  7. Understanding spatial heterogeneity in soil carbon and nitrogen cycling in regenerating tropical dry forests

    NASA Astrophysics Data System (ADS)

    Waring, B. G.; Powers, J. S.; Branco, S.; Adams, R.; Schilling, E.

    2015-12-01

    Tropical dry forests (TDFs) currently store significant amounts of carbon in their biomass and soils, but these highly seasonal ecosystems may be uniquely sensitive to altered climates. The ability to quantitatively predict C cycling in TDFs under global change is constrained by tremendous spatial heterogeneity in soil parent material, land-use history, and plant community composition. To explore this variation, we examined soil carbon and nitrogen dynamics in 18 permanent plots spanning orthogonal gradients of stand age and soil fertility. Soil C and N pools, microbial biomass, and microbial extracellular enzyme activities were most variable at small (m2) spatial scales. However, the ratio of organic vs. inorganic N cycling was consistently higher in forest stands dominated by slow-growing, evergreen trees that associate with ectomycorrhizal fungi. Similarly, although bulk litter stocks and turnover rates varied greatly among plots, litter decomposition tended to be slower in ectomycorrhizae-dominated stands. Soil N cycling tended to be more conservative in older plots, although the relationship between stand age and element cycling was weak. Our results emphasize that microscale processes, particularly interactions between mycorrhizal fungi and free-living decomposers, are important controls on ecosystem-scale element cycling.

  8. County-Scale Spatial Distribution of Soil Enzyme Activities and Enzyme Activity Indices in Agricultural Land: Implications for Soil Quality Assessment

    PubMed Central

    Xie, Baoni; Wang, Junxing; He, Wenxiang; Wang, Xudong; Wei, Gehong

    2014-01-01

    Here the spatial distribution of soil enzymatic properties in agricultural land was evaluated on a county-wide (567 km2) scale in Changwu, Shaanxi Province, China. The spatial variations in activities of five hydrolytic enzymes were examined using geostatistical methods. The relationships between soil enzyme activities and other soil properties were evaluated using both an integrated total enzyme activity index (TEI) and the geometric mean of enzyme activities (GME). At the county scale, soil invertase, phosphatase, and catalase activities were moderately spatially correlated, whereas urease and dehydrogenase activities were weakly spatially correlated. Correlation analysis showed that both TEI and GME were better correlated with selected soil physicochemical properties than single enzyme activities. Multivariate regression analysis showed that soil OM content had the strongest positive effect while soil pH had a negative effect on the two enzyme activity indices. In addition, total phosphorous content had a positive effect on TEI and GME in orchard soils, whereas alkali-hydrolyzable nitrogen and available potassium contents, respectively, had negative and positive effects on these two enzyme indices in cropland soils. The results indicate that land use changes strongly affect soil enzyme activities in agricultural land, where TEI provides a sensitive biological indicator for soil quality. PMID:25610908

  9. County-scale spatial distribution of soil enzyme activities and enzyme activity indices in agricultural land: implications for soil quality assessment.

    PubMed

    Tan, Xiangping; Xie, Baoni; Wang, Junxing; He, Wenxiang; Wang, Xudong; Wei, Gehong

    2014-01-01

    Here the spatial distribution of soil enzymatic properties in agricultural land was evaluated on a county-wide (567 km(2)) scale in Changwu, Shaanxi Province, China. The spatial variations in activities of five hydrolytic enzymes were examined using geostatistical methods. The relationships between soil enzyme activities and other soil properties were evaluated using both an integrated total enzyme activity index (TEI) and the geometric mean of enzyme activities (GME). At the county scale, soil invertase, phosphatase, and catalase activities were moderately spatially correlated, whereas urease and dehydrogenase activities were weakly spatially correlated. Correlation analysis showed that both TEI and GME were better correlated with selected soil physicochemical properties than single enzyme activities. Multivariate regression analysis showed that soil OM content had the strongest positive effect while soil pH had a negative effect on the two enzyme activity indices. In addition, total phosphorous content had a positive effect on TEI and GME in orchard soils, whereas alkali-hydrolyzable nitrogen and available potassium contents, respectively, had negative and positive effects on these two enzyme indices in cropland soils. The results indicate that land use changes strongly affect soil enzyme activities in agricultural land, where TEI provides a sensitive biological indicator for soil quality. PMID:25610908

  10. [Responses of Artemisia ordosica population to soil moisture spatial heterogeneity on semi-fixed dune of Mu Us sandy land].

    PubMed

    Lu, Jianguo; Wang, Haitao; He, Xingdong; Gao, Yubao

    2006-08-01

    Spatial heterogeneity affects the functions and processes of ecosystems. By the methods of statistics and geostatistics, this paper approached the relationships between the spatial heterogeneities of Artemisia ordosica and soil moisture on the semi-fixed dune of Mu Us sandy land. The results showed that on plot-scale (80 m x 80 m), the spatial heterogeneity of A. ordosica biomass and density was dependant on that of soil moisture, and in particular, there existed a significant positive correlation between the biomass and the moisture, indicating that on semi-fixed dune, soil moisture played a decisive role in the spatial heterogeneity of plant population. Due to the redistribution of precipitation on sand dune, the outcomes of the interactions between the spatial heterogeneities of soil moisture and A. ordosica population were assumed as patchness of terrain --> patchness of soil moisture distribution --> patchness of A. ordosica population distribution --> patchness of A. ordosica biomass and density.

  11. Spatial uncertainty of 137Cs-derived net (1950s-1990) soil redistribution for Australia

    NASA Astrophysics Data System (ADS)

    Chappell, Adrian; Viscarra Rossel, Raphael A.; Loughran, Robert

    2011-12-01

    The caesium-137 (137Cs) technique has been used successfully in many parts of the world to estimate net (ca. 30-50 years) soil redistribution by wind and water erosion and tillage activities. The point-based technique has hitherto been confined largely to individual fields and hillslopes, particularly in Australia. Its application here to the Australian continent (≈5 km grid) was achieved using geostatistics and nationally coordinated measurements (early 1990s) from ≈200 locations at the ≈1 km scale. A map of the 137Cs reference inventory for Australia has been previously established. Sequential indicator co-simulation of the 137Cs inventory and the Australian Soil Classification was used to estimate net (between mid-1950s and early 1990s) soil redistribution using the Australian Empirical Model. This geostatistical approach showed that nearly five times more soil was lost from cultivated land (-4.29 to +0.17 t ha-1 yr-1) than from uncultivated (-0.91 to +0.05 t ha-1 yr-1) land in Australia. This information on spatial uncertainty is essential for regional soil management to assess the risk to soil conservation. Soil erosion exceeding a tolerable threshold value (e.g., 0.5 t ha-1 yr-1) occurred over 16% of Australia, mainly in cultivated regions (median = -1.26 t ha-1 yr-1). Soil erosion estimates are neglected in carbon balances for greenhouse gas abatement and carbon accounting models. Reliable quantitative data on the recent extent and rates of soil erosion are needed to underpin the selection of effective soil conservation measures, to inform carbon balances and to understand regional soil function for sustainable agricultural systems.

  12. Basal respiration - a proxy to understand spatial variability of soil CO2 emissions in urban regions

    NASA Astrophysics Data System (ADS)

    Vasenev, Viacheslav; Stoorvogel, Jetse; Ananyeva, Nadezhda; Ivashchenko, Kristina; Vizirskaya, Marya; Valentini, Riccardo

    2015-04-01

    Soil respiration (Rs) is an important terrestrial CO2 efflux and received significant attention at different scale levels. However, the sampling density is limited and global Rs databases are biased towards natural ecosystems and towards north America and Europe. This limits our understanding of the spatial variability of Rs. The methodological constraints of direct Rs measurements in the field limit the number of observations. As an alternative approach to approximate the spatial variability of Rs, we used basal respiration (BR) as an indirect measurement. First, the direct Rs and indirect BR measurements were compared at a 10 km2 test area in Moscow city, which included adjacent forests, croplands and urban lawn plots. Rs was monitored by in situ chamber approach with an IR Li-820 gas analyzer at 50 points during the growing season (June-October 2013, 9 time repetitions per point). In the same area, 32 locations were sampled and BR was measured under controlled conditions. Rs was affected by anthropogenic disturbance with the highest values in urban lawns. BR was mainly controlled by soil organic carbon (SOC) with maximum rates in the forested area. Total variability reported by direct observations was 10% higher, than one for BR, although the spatial variability captured by both approaches was similar confirmed by significant correlation between variance coefficients (CV) of the values. This shows that BR is a relevant proxy to analyze the spatial variability of Rs. Subsequently, the sampling area was expanded to the Moscow region for which respiration was mapped using digital soil mapping techniques and BR as a proxy for Rs. Although the absolute levels of respiration remained uncertain, the spatial patterns of BR are likely to correspond well with Rs patterns. Land use largely determined the spatial heterogeneity of soil respiration. Most variation occurred in the urban areas. BR is a relevant and straightforward proxy to understand patterns of Rs especially

  13. Spatial variability of arsenic and chromium in the soil water at a former wood preserving site

    NASA Astrophysics Data System (ADS)

    Hopp, Luisa; Peiffer, Stefan; Durner, Wolfgang

    2006-05-01

    Contamination of industrial sites by wood preservatives such as chromated copper arsenate (CCA) may pose a serious threat to groundwater quality. The objective of this study was to characterise the spatial variability of As and Cr concentrations in the solid phase and in the soil water at a former wood impregnation plant and to reveal the fundamental transport processes. The soil was sampled down to a depth of 2 m. The soil water was extracted in situ from the vadose zone over a period of 10 months at depths of 1 and 1.5 m, using large horizontally installed suction tubes. Groundwater was sampled from a depth of 4.5 m. Results showed that arsenic and chromium had accumulated in the upper region of the profile and exhibited a high spatial variability (As: 21-621 mg kg - 1 ; Cr: 74-2872 mg kg - 1 ). Concentrations in the soil water were high (mean As 167 μg L - 1 ; Cr: 62 μg L - 1 ) and also showed a distinct spatial variability, covering concentration ranges up to three orders of magnitude. The variability was caused by the severe water-repellency of the surface soil, induced by the concurrent application of creosote wood preservatives, which leads to strong preferential flow as evident from a dye experiment. In contrast to soil water concentrations, only low As concentrations (< 12 μg L - 1 ) were detected in the groundwater. High Cr concentrations in the groundwater (approx. 300 μg L - 1 ), however, illustrated the pronounced mobility of chromium. Our study shows that at sites with a heterogeneous flow system in the vadose zone a disparity between flux-averaged and volume-averaged concentrations may occur, and sampling of soil water might not be adequate for assessing groundwater concentrations. In these cases long-term monitoring of the groundwater appears to be the best strategy for a groundwater risk assessment.

  14. Spatial variability of arsenic and chromium in the soil water at a former wood preserving site.

    PubMed

    Hopp, Luisa; Peiffer, Stefan; Durner, Wolfgang

    2006-05-30

    Contamination of industrial sites by wood preservatives such as chromated copper arsenate (CCA) may pose a serious threat to groundwater quality. The objective of this study was to characterise the spatial variability of As and Cr concentrations in the solid phase and in the soil water at a former wood impregnation plant and to reveal the fundamental transport processes. The soil was sampled down to a depth of 2m. The soil water was extracted in situ from the vadose zone over a period of 10 months at depths of 1 and 1.5m, using large horizontally installed suction tubes. Groundwater was sampled from a depth of 4.5m. Results showed that arsenic and chromium had accumulated in the upper region of the profile and exhibited a high spatial variability (As: 21-621 mg kg(-1); Cr: 74-2872 mg kg(-1)). Concentrations in the soil water were high (mean As 167 microg L(-1); Cr: 62 microg L(-1)) and also showed a distinct spatial variability, covering concentration ranges up to three orders of magnitude. The variability was caused by the severe water-repellency of the surface soil, induced by the concurrent application of creosote wood preservatives, which leads to strong preferential flow as evident from a dye experiment. In contrast to soil water concentrations, only low As concentrations (<12 microg L(-1)) were detected in the groundwater. High Cr concentrations in the groundwater (approx. 300 microg L(-1)), however, illustrated the pronounced mobility of chromium. Our study shows that at sites with a heterogeneous flow system in the vadose zone a disparity between flux-averaged and volume-averaged concentrations may occur, and sampling of soil water might not be adequate for assessing groundwater concentrations. In these cases long-term monitoring of the groundwater appears to be the best strategy for a groundwater risk assessment. PMID:16530293

  15. Contrasting spatial patterns and ecological attributes of soil bacterial and archaeal taxa across a landscape.

    PubMed

    Constancias, Florentin; Saby, Nicolas P A; Terrat, Sébastien; Dequiedt, Samuel; Horrigue, Wallid; Nowak, Virginie; Guillemin, Jean-Philippe; Biju-Duval, Luc; Chemidlin Prévost-Bouré, Nicolas; Ranjard, Lionel

    2015-06-01

    Even though recent studies have clarified the influence and hierarchy of environmental filters on bacterial community structure, those constraining bacterial populations variations remain unclear. In consequence, our ability to understand to ecological attributes of soil bacteria and to predict microbial community response to environmental stress is therefore limited. Here, we characterized the bacterial community composition and the various bacterial taxonomic groups constituting the community across an agricultural landscape of 12 km(2) , by using a 215 × 215 m systematic grid representing 278 sites to precisely decipher their spatial distribution and drivers at this scale. The bacterial and Archaeal community composition was characterized by applying 16S rRNA gene pyrosequencing directly to soil DNA from samples. Geostatistics tools were used to reveal the heterogeneous distribution of bacterial composition at this scale. Soil physical parameters and land management explained a significant amount of variation, suggesting that environmental selection is the major process shaping bacterial composition. All taxa systematically displayed also a heterogeneous and particular distribution patterns. Different relative influences of soil characteristics, land use and space were observed, depending on the taxa, implying that selection and spatial processes might be differentially but not exclusively involved for each bacterial phylum. Soil pH was a major factor determining the distribution of most of the bacterial taxa and especially the most important factor explaining the spatial patterns of α-Proteobacteria and Planctomycetes. Soil texture, organic carbon content and quality were more specific to a few number of taxa (e.g., β-Proteobacteria and Chlorobi). Land management also influenced the distribution of bacterial taxa across the landscape and revealed different type of response to cropping intensity (positive, negative, neutral or hump-backed relationships

  16. Heterogeneity of gaseous emissions in soils-spatial vs temporal variability

    NASA Astrophysics Data System (ADS)

    Cardenas, Laura; Chadwick, David; Misselbrook, Tom; Donovan, Neil; Dunn, Rob; Griffith, Bruce; Orr, Robert; Smith, Keith; Rees, Robert M.; Bell, Madeleine; Watson, Catherine; McGeough, Karen; McNeill, Gavin; Williams, John; Cloy, Joanna; Thorman, Rachel; Dhanoa, Dan

    2015-04-01

    Nitrous oxide (N2O) plays a dual role in the atmosphere as a greenhouse gas and via its influence on stratospheric ozone chemistry. The main source of N2O is agricultural soil, with an estimated 96 kt emitted from this source in the UK in 2012 (ca. 83% of the total UK N2O emissions). Microbial transformations such as nitrification, denitrification and chemodenitrification are responsible for these emissions. Soil texture and structure and land management practices (including presence of livestock) -- soil wetness, aeration, temperature and mineral N content -- influence the magnitude of the emissions. Heterogeneity in nutrient distribution and moisture, i.e. hot spots, create spatial variations in the main drivers of these transformations. Studies at laboratory scale are aimed to minimize the variability encountered in the field but although they provide important information on the controlling factors of the soil processes, they are not useful for real quantification. Daily and seasonal variation (temporal) in soil conditions (chemistry, physics and biology) and thus in emissions also occurs. This variability makes it a difficult challenge to quantify emissions and currently makes the soil source the largest contributor to the overall uncertainty of the UK greenhouse gas inventory. Here we present results of a statistical study on the variability of N2O emissions from measurements using the static chamber technique for a variety of N sources. Results from measurements using automated chambers are also presented. Part of the work was funded by the UK government to improve the quantification of this source by measuring emissions from sites with contrasting soil, climate and land management combinations. We also include results from measurements carried out with automated chambers on the UK National Capability Farm Platform in the South West of England. The results show that spatial variability largely contributes to the uncertainty of emissions but temporal

  17. Contrasting spatial patterns and ecological attributes of soil bacterial and archaeal taxa across a landscape

    PubMed Central

    Constancias, Florentin; Saby, Nicolas P A; Terrat, Sébastien; Dequiedt, Samuel; Horrigue, Wallid; Nowak, Virginie; Guillemin, Jean-Philippe; Biju-Duval, Luc; Chemidlin Prévost-Bouré, Nicolas; Ranjard, Lionel

    2015-01-01

    Even though recent studies have clarified the influence and hierarchy of environmental filters on bacterial community structure, those constraining bacterial populations variations remain unclear. In consequence, our ability to understand to ecological attributes of soil bacteria and to predict microbial community response to environmental stress is therefore limited. Here, we characterized the bacterial community composition and the various bacterial taxonomic groups constituting the community across an agricultural landscape of 12 km2, by using a 215 × 215 m systematic grid representing 278 sites to precisely decipher their spatial distribution and drivers at this scale. The bacterial and Archaeal community composition was characterized by applying 16S rRNA gene pyrosequencing directly to soil DNA from samples. Geostatistics tools were used to reveal the heterogeneous distribution of bacterial composition at this scale. Soil physical parameters and land management explained a significant amount of variation, suggesting that environmental selection is the major process shaping bacterial composition. All taxa systematically displayed also a heterogeneous and particular distribution patterns. Different relative influences of soil characteristics, land use and space were observed, depending on the taxa, implying that selection and spatial processes might be differentially but not exclusively involved for each bacterial phylum. Soil pH was a major factor determining the distribution of most of the bacterial taxa and especially the most important factor explaining the spatial patterns of α-Proteobacteria and Planctomycetes. Soil texture, organic carbon content and quality were more specific to a few number of taxa (e.g., β-Proteobacteria and Chlorobi). Land management also influenced the distribution of bacterial taxa across the landscape and revealed different type of response to cropping intensity (positive, negative, neutral or hump-backed relationships

  18. Spatial variability of arsenic and chromium in the soil water at a former wood preserving site.

    PubMed

    Hopp, Luisa; Peiffer, Stefan; Durner, Wolfgang

    2006-05-30

    Contamination of industrial sites by wood preservatives such as chromated copper arsenate (CCA) may pose a serious threat to groundwater quality. The objective of this study was to characterise the spatial variability of As and Cr concentrations in the solid phase and in the soil water at a former wood impregnation plant and to reveal the fundamental transport processes. The soil was sampled down to a depth of 2m. The soil water was extracted in situ from the vadose zone over a period of 10 months at depths of 1 and 1.5m, using large horizontally installed suction tubes. Groundwater was sampled from a depth of 4.5m. Results showed that arsenic and chromium had accumulated in the upper region of the profile and exhibited a high spatial variability (As: 21-621 mg kg(-1); Cr: 74-2872 mg kg(-1)). Concentrations in the soil water were high (mean As 167 microg L(-1); Cr: 62 microg L(-1)) and also showed a distinct spatial variability, covering concentration ranges up to three orders of magnitude. The variability was caused by the severe water-repellency of the surface soil, induced by the concurrent application of creosote wood preservatives, which leads to strong preferential flow as evident from a dye experiment. In contrast to soil water concentrations, only low As concentrations (<12 microg L(-1)) were detected in the groundwater. High Cr concentrations in the groundwater (approx. 300 microg L(-1)), however, illustrated the pronounced mobility of chromium. Our study shows that at sites with a heterogeneous flow system in the vadose zone a disparity between flux-averaged and volume-averaged concentrations may occur, and sampling of soil water might not be adequate for assessing groundwater concentrations. In these cases long-term monitoring of the groundwater appears to be the best strategy for a groundwater risk assessment.

  19. Spatial variation and temporal stability of soil water in a snow-dominated, mountain catchment

    NASA Astrophysics Data System (ADS)

    Grant, Laura; Seyfried, Mark; McNamara, Jim

    2004-12-01

    Soil is a critical intermediary of water flux between precipitation and stream flow. Characterization of soil water content (, m3 m-3) may be especially difficult in mountainous, snow-dominated catchments due to highly variable water inputs, topography, soils and vegetation. However, individual sites exhibit similar seasonal dynamics, suggesting that it may be possible to describe spatial variability in terms of temporally stable relationships. Working in a 0·36 km2 headwater catchment, we: (i) described and the spatial variability of over a 2 year period, (ii) characterized that variability in terms of temporal stability analysis, and (iii) related changes in temporally stable soil water patterns to stream flow generation. Soil water data were collected for 2 years at representative sites and quantified in terms of and water storage to a depth of 75 cm (S75, cm). Both S75 and were normally distributed in space on all measurement dates. Spatial variability was high relative to other studies, reflecting catchment heterogeneity. However, the ranking of S75 values displayed temporal stability for all site locations, seasonally and annually. This stability was attributed to soil texture. Further temporal analysis indicated that estimates of catchment mean and standard deviation of S75 may be characterized with relatively few measurements. Finally, we used temporal linear regression to define catchment soil water conditions related to stream-flow generation. Static, high S75 conditions in late winter and early spring indicate that stream-flow response is highly sensitive to inputs, whereas static, low S75 conditions in late summer and early fall indicate minimum stream-flow sensitivity to water inputs. The fall transition was marked by uniform Sd across the catchment. The late spring transition was marked by nonuniform S75 decreases, with the highest S75 sites decreasing most. Threshold S75 values identifying catchment sensitivity to water input were identified

  20. Modeling spatial patterns in soil arsenic to estimate natural baseline concentrations

    SciTech Connect

    Venteris, Erik R.; Basta, Nicolas T.; Bigham, Jerry M.; Rea, Ron

    2014-05-09

    ABSTRACT Arsenic in soil is an important public health concern. Toxicity guidelines and models based on laboratory studies (i.e., U.S. EPA’s Integrated Risk Information System) should consider natural soil As concentrations to avoid unnecessary remediation burdens on society. We used soil and stream sediment samples from the USGS National Geochemical Survey database to assess the spatial distribution of natural As in a 1.16E+5 km2 area. Samples were collected at 348 soil and 144 stream locations, providing approximately one sample for every 290 km2. Sample sites were selected to minimize the potential influence of anthropogenic inputs. Samples were processed using acid digestion of whole samples (concentrated HCl and ascorbic acid) and concentrations were measured using hydride-generation atomic absorption spectrometry. Soil As ranged from 2.0 to 45.6 mg kg-1. Geostatistical techniques were used to model and map the spatial variability of As. The mean and variance at unsampled locations were estimated using sequential Gaussian simulation. Five areas of elevated concentration (> the median of 10 mg kg-1) were identified and the relationships to geologic parent materials, glacial sedimentation patterns, and soil conditions interpreted. Our results showed As concentrations >10 mg kg-1 were common, and >20 mg kg-1 were not unusual for the central and west central portions of Ohio (USA). In contrast, concentrations <4 mg kg-1 were rare. Measured concentrations typically exceeded the soil As human generic screening levels of 0.39 mg/kg (1); the calculated value that corresponds to a cancer risk level of 1 in 1,000,000 for soil ingestion. Because the As content of Ohio soils is similar to many world soils, the USEPA generic soil screening level of 0.39 mg/kg is of little utility. A more useful and practical approach would be the uses of natural background levels. Regional soil As patterns based on geology and biogeochemistry and not political boundaries should be used

  1. The potentiation of zinc toxicity by soil moisture in a boreal forest ecosystem.

    PubMed

    Owojori, Olugbenga J; Siciliano, Steven D

    2015-03-01

    Northern boreal forests often experience forest dieback as a result of metal ore mining and smelting. The common solution is to lime the soil, which increases pH, reducing metal toxicity and encouraging recovery. In certain situations, however, such as in Flin Flon, Manitoba, Canada, liming has yielded only moderate benefits, with some locations responding well to liming and other locations not at all. In an effort to increase the effectiveness of the ecorestoration strategy, the authors investigated if these differences in liming responsiveness were linked to differences in toxicity. Toxicity of metal-impacted Flin Flon soils on the oribatid mite Oppia nitens and the collembolan Folsomia candida was assessed, with a view toward identifying the metal of concern in the area. The effects of moisture content on metal sorption, uptake, and toxicity to the invertebrates were also investigated. Toxicity tests with the invertebrates were conducted using either Flin Flon soils or artificial soils with moisture content adjusted to 30%, 45%, 60%, or 75% of the maximum water-holding capacity of the soil samples. The Relative to Cd Toxicity Model identified Zn as the metal of concern in the area, and this was confirmed using validation tests with field contaminated soils. Furthermore, increasing the moisture content in soils increased the amount of mobile Zn available for uptake with the ion exchange resin. Survival and reproduction of both invertebrates were reduced under Zn exposure as moisture level increased. Thus, moisture-collecting landforms, which are often also associated with high Zn concentrations at Flin Flon, have, as a result, higher Zn toxicity to the soil ecosystem because of increases in soil moisture.

  2. The potentiation of zinc toxicity by soil moisture in a boreal forest ecosystem.

    PubMed

    Owojori, Olugbenga J; Siciliano, Steven D

    2015-03-01

    Northern boreal forests often experience forest dieback as a result of metal ore mining and smelting. The common solution is to lime the soil, which increases pH, reducing metal toxicity and encouraging recovery. In certain situations, however, such as in Flin Flon, Manitoba, Canada, liming has yielded only moderate benefits, with some locations responding well to liming and other locations not at all. In an effort to increase the effectiveness of the ecorestoration strategy, the authors investigated if these differences in liming responsiveness were linked to differences in toxicity. Toxicity of metal-impacted Flin Flon soils on the oribatid mite Oppia nitens and the collembolan Folsomia candida was assessed, with a view toward identifying the metal of concern in the area. The effects of moisture content on metal sorption, uptake, and toxicity to the invertebrates were also investigated. Toxicity tests with the invertebrates were conducted using either Flin Flon soils or artificial soils with moisture content adjusted to 30%, 45%, 60%, or 75% of the maximum water-holding capacity of the soil samples. The Relative to Cd Toxicity Model identified Zn as the metal of concern in the area, and this was confirmed using validation tests with field contaminated soils. Furthermore, increasing the moisture content in soils increased the amount of mobile Zn available for uptake with the ion exchange resin. Survival and reproduction of both invertebrates were reduced under Zn exposure as moisture level increased. Thus, moisture-collecting landforms, which are often also associated with high Zn concentrations at Flin Flon, have, as a result, higher Zn toxicity to the soil ecosystem because of increases in soil moisture. PMID:25502519

  3. Spatial and Temporal Evaluation of Soil Erosion with RUSLE: A case Study in an Olive Orchard Microcathment in Spain

    EPA Science Inventory

    Soil loss is commonly estimated using the Revised Universal Soil Loss Equation (RUSLE). Since RUSLE is an empirically based soil loss model derived from surveys on plots, the high spatial and temporal variability of erosion in Mediterranean environments and scale effects provo...

  4. Spatial and Temporal Evaluation of Soil Erosion with RUSLE: A Case Study in an Olive Orchard Microcathment in Spain

    EPA Science Inventory

    Soil loss is commonly estimated using the Revised Universal Soil Loss Equation (RUSLE). Since RUSLE is an empirically based soil loss model derived from surveys on plots, the high spatial and temporal variability of erosion in Mediterranean environments and scale effects provoke...

  5. [Spatial heterogeneity of soil organic carbon and total nitrogen in a monsoon evergreen broadleaf forest in Dinghushan, Guangdong, China].

    PubMed

    Zhang, Ya-Ru; Ouyang, Xu; Chu, Guo-Wei; Zhang, Qian-Mei; Liu, Shi-Zhong; Zhang, De-Qiang; Li, Yue-Lin

    2014-01-01

    Geostatistical techniques were used to quantify the spatial heterogeneity of soil organic carbon and total nitrogen of one monsoon evergreen broadleaf forest area in Dinghushan, Guangdong, China. The results demonstrated that a significant spatial autocorrelation existed between soil organic carbon and total nitrogen contents in the Dinghushan monsoon evergreen broadleaf forest, such that 93.6% and 53.7% of their total spatial heterogeneity originated from their spatial autocorrelation. This observation agreed with a traditional statistics analysis showing a significant linear correlation between soil organic carbon and total nitrogen, and also their spatial autocorrelation existed at a landscape level. The best fit from an exponential model showed that soil organic carbon had high degree of spatial heterogeneity at a scale of 17.4 m.

  6. Effects of zinc exposure on earthworms, Lumbricus terrestris, in an artificial soil.

    PubMed

    Lev, Steven M; Matthies, Nick; Snodgrass, Joel W; Casey, Ryan E; Ownby, David R

    2010-06-01

    Earthworms have the potential to act as trophic links for pollutants that accumulate in urban soils. However, many pollutants may act as micronutrients at low concentrations and toxins at higher concentration. When pollutants are also micronutrients, bioaccumulations may initially increase trophic transfer as pollutant concentration increase, but at higher levels toxic effects may limit population size and the potential for trophic transfer. We found support for this model among earthworms exposed to a range of soil Zn levels. Worms showed increasing bioaccumulation of Zn with increasing Zn soil concentrations, but at higher Zn levels worm growth rates decreased. PMID:20431863

  7. Spatial variability of detrended soil plow layer penetrometer resistance transect in a sugarcane field

    NASA Astrophysics Data System (ADS)

    Pérez, Luis D.; Cumbrera, Ramiro; Mato, Juan; Millán, Humberto; Tarquis, Ana M.

    2015-04-01

    Spatial variability of soil properties is relevant for identifying those zones with physical degradation. In this sense, one has to face the problem of identifying the origin and distribution of spatial variability patterns (Brouder et al., 2001; Millán et al., 2012). The objective of the present work was to quantify the spatial structure of soil penetrometer resistance (PR) collected from a transect data consisted of 221 points equidistant. In each sampling, readings were obtained from 0 cm till 70 cm of depth, with an interval of 5 cm (Pérez, 2012). The study was conducted on a Vertisol (Typic Hapludert) dedicated to sugarcane (Saccharum officinarum L.) production during the last sixty years (Pérez et al., 2010). Recently, scaling approach has been applied on the determination of the scaling data properties (Tarquis et al., 2008; Millán et al., 2012; Pérez, 2012). We focus in the Hurst analysis to characterize the data variability for each depth. Previously a detrended analysis was conducted in order to better study de intrinsic variability of the series. The Hurst exponent (H) for each depth was estimated showing a characteristic pattern and differentiating PR evolution in depth. References Brouder, S., Hofmann, B., Reetz, H.F., 2001. Evaluating spatial variability of soil parameters for input management. Better Crops 85, 8-11. Millán, H; AM Tarquís, Luís D. Pérez, Juan Mato, Mario González-Posada, 2012. Spatial variability patterns of some Vertisol properties at a field scale using standardized data. Soil and Tillage Research, 120, 76-84. Pérez, Luís D. 2012. Influencia de la maquinaria agrícola sobre la variabilidad espacial de la compactación del suelo. Aplicación de la metodología geoestadística-fractal. PhD thesis, UPM (In Spanish). Pérez, Luís D., Humberto Millán, Mario González-Posada 2010. Spatial complexity of soil plow layer penetrometer resistance as influenced by sugarcane harvesting: A prefractal approach. Soil and Tillage

  8. Seasonal and event-scale dynamics of spatial soil moisture patterns at the small catchment scale

    NASA Astrophysics Data System (ADS)

    Bogena, H.; Rosenbaum, R.; Herbst, M.; Huisman, J. A.; Peterson, T. J.; Western, A. W.; Vereecken, H.

    2012-04-01

    Due to measurement constraints, our knowledge of short- and long-term dynamics of spatial soil water content (SWC) patterns at the small catchment scale has reached an impasse in recent years. The wireless sensor network technique has the potential to continuously monitor SWC fields with high spatial and temporal resolution and coverage, i.e. to detect seasonal and event-scale changes in SWC patterns. This research aims to examine seasonal and event-scale spatial SWC dynamics in the top- and subsoil throughout the small spruce covered TERENO test site Wüstebach, Germany, using highly detailed four-dimensional data from the wireless sensor network system SoilNet developed at Forschungszentrum Jülich and univariate and geostatistical methods. We found high variation of spatial SWC patterns in the topsoil as response to climate forcing, whereas in the subsoil, temporal dynamics were diminished due to soil water redistribution processes and root water uptake. The relationship between topsoil SWC variability and mean soil water content (STD(MSWC)) showed a 'convex parabolic shape' as it is typical under temperate climate conditions. Observed scattering in topsoil STD(MSWC) in the intermediate SWC state was explained by seasonal and event-scale STD(MSWC) dynamics, possibly involving hysteresis at both time scales. Clockwise hysteretic STD(MSWC) dynamics at the event-scale were generated under moderate SWC conditions after precipitation events that rapidly wet the topsoil and in which SWC variability is mainly controlled by spruce throughfall patterns. This hysteretic effect was increased by larger precipitation magnitude, reduced root water uptake and high groundwater level. Intense precipitation on dry antecedent topsoil abruptly increased STD but only marginal increased SWC. This was due to different soil rewetting behaviour in drier upslope areas (hydrophobicity and preferential flow caused minor topsoil recharge) compared to the moderately wet valley bottom

  9. Spatial dynamics chemical properties in a lowland soil under sugarcane crop

    NASA Astrophysics Data System (ADS)

    Pereira da Silva, Wellington; Duarte Guedes Cabral de Almeida, Ceres; Machado Siqueira, Glécio; Patrícia Prazeres Marques, Karina; Medeiros Bezerra, Joel; Gomes de Almeida, Brivaldo

    2013-04-01

    Lowland soils are very important to sugarcane crop in rainy coastal zone in Northeast of Brazil. This soil is flat, high yield potential and high natural soil fertility. However, soil salinity problems can be occurred due to incorrect management, poor drainage and seasonal flood. The objective of this study was to evaluate spatial variability of chemical soil properties in a Gley soil under sugarcane crop. The study area is located in Rio Formoso city, Pernambuco (Brazil), at latitude 08°38'91"S and longitude 35°16'08"W, 60.45 m above sea level and average annual rainfall of 2100 mm. The region is characterized by rainy tropical, with dry summer, rainy season between May and August and temperatures ranging from 24 to 29°C. Non-deformed soil samples were collected from the surface layer (0-20 cm) in 5 ha, total of 54 samples. The following chemical properties were studied: pH, electrical conductivity (EC), calcium, magnesium, potassium, sodium, aluminum, hydrogen + aluminum, sum of bases, cation exchange capacity (CEC), sodicity (ESP), aluminum saturation, bases saturation and total exchangeable bases. Descriptive statistics and geostatistical techniques were used to spatial modeling and construction of maps. Overall, the data appeared to be normally distributed, with the exception of Ca, Mg, K, Al and aluminum saturation. The highest coefficient of variation was found for percentage of aluminum saturation (113%) and the lowest was for Na (26.03%). The attributes that spatially dependent models were fitted to the Gaussian (pH and Ca), exponential (Mg) and spherical (base saturation and CEC), the other attributes denoted a pure nugget effect. The presence of nugget effect for most of the attributes is due of the high water table fluctuation and recharge that acts directly on the spatial distribution of them. The maps of spatial variability of chemical soil proprieties showed that EC have been influenced by different chemical elements, but sodium was the

  10. Soil moisture spatial and temporal patterns from a wireless sensor network test bed

    NASA Astrophysics Data System (ADS)

    Villalba, G.; Davis, T. W.; Liang, X.

    2014-12-01

    The dynamics of water movement through vegetated porous media is a complex problem with large variabilities over differing temporal and spatial scales. This study examines a multi-year wireless sensor network (WSN) collecting shallow subsurface (10 and 30 cm) soil moisture content and soil water potential. The study site, located at the Audubon Society of Western Pennsylvania's Beechwood Farms Nature Reserve, is one of the longest running WSNs of its kind. Despite the noisy nature of the collected data (e.g., in comparison to traditional data logger methods), the WSN, consisting of over 50 nodes with more than 100 sensors, provides critical information regarding catchment-scale spatiotemporal patterns of soil moisture and soil water potential within a forested hill-sloped region of southwestern Pennsylvania.

  11. Characterization and prediction of spatial variability of unsaturated hydraulic properties in a field soil: Las Cruces, New Mexico

    SciTech Connect

    Yeh, T.C.J.; Greenholtz, D.E.; Nash, M.S.; Wierenga, P.J.

    1991-12-31

    A 91-m transect was set up in an irrigated field near Las Cruces, New Mexico to investigate the spatial variability of unsaturated soil properties. A total of 455 sampling points were monitored along a grid consisting of 91 stations placed 1 m apart by 5 depths per station. Post-irrigation soil water tension and water content measurements were recorded over 45 days at 11 time periods. The instantaneous profile was used to estimate the unsaturated hydraulic conductivity at the 455 sampling points. Fifty soil samples were also taken for analyzing sand, silt, and clay content distributions. The spatial and temporal variability of soil water tension and water content were investigated along with the spatial variability of parameters of an unsaturated hydraulic conductivity model. Results of the analysis show that spatial variation in soil water tension and water content is consistent with the soil texture spatial variability. In addition, the spatial distribution of the estimated parameter value of unsaturated hydraulic conductivity reflects the soil texture distribution. Using the statistics of the estimated hydraulic parameter values, a stochastic soil water tension model was employed to reproduce the variability of observed soil water tension. Although many assumptions were made, the results of the simulation appear promising.

  12. Characterization and prediction of spatial variability of unsaturated hydraulic properties in a field soil: Las Cruces, New Mexico

    SciTech Connect

    Yeh, T.C.J.; Greenholtz, D.E. . Dept. of Hydrology and Water Resources); Nash, M.S. . Dept. of Crop and Soil Sciences); Wierenga, P.J. . Dept. of Soil and Water Science)

    1991-01-01

    A 91-m transect was set up in an irrigated field near Las Cruces, New Mexico to investigate the spatial variability of unsaturated soil properties. A total of 455 sampling points were monitored along a grid consisting of 91 stations placed 1 m apart by 5 depths per station. Post-irrigation soil water tension and water content measurements were recorded over 45 days at 11 time periods. The instantaneous profile was used to estimate the unsaturated hydraulic conductivity at the 455 sampling points. Fifty soil samples were also taken for analyzing sand, silt, and clay content distributions. The spatial and temporal variability of soil water tension and water content were investigated along with the spatial variability of parameters of an unsaturated hydraulic conductivity model. Results of the analysis show that spatial variation in soil water tension and water content is consistent with the soil texture spatial variability. In addition, the spatial distribution of the estimated parameter value of unsaturated hydraulic conductivity reflects the soil texture distribution. Using the statistics of the estimated hydraulic parameter values, a stochastic soil water tension model was employed to reproduce the variability of observed soil water tension. Although many assumptions were made, the results of the simulation appear promising.

  13. Effects of combinations of simulated acid rain and cadmium or zinc on microbial activity in soil.

    PubMed

    Bewley, R J; Stotzky, G

    1983-08-01

    There was little effect on the rate of CO2 evolution from glucose-supplemented soil, adjusted to pH 3.2 with a 2:1 combination of H2SO4 and fuming HNO3, and concomitant additions of 100 or 1000 ppm Cd or of 1000 or 10,000 ppm Zn (as sulfates) were no more inhibitory than in soil untreated with acid. In soil adjusted to pH 2.8, the lag in CO2 evolution was increased by 1 day, and was extended further by the concomitant addition of 10,000 but not 1000 ppm Zn or of 1000 but not 100 ppm Cd. The growth of Aspergillus niger in soil acidified to pH levels of 3.6 to 4.2 was further reduced by the addition of either 100 or 250 ppm Cd or of 1000 ppm Zn.

  14. Competitive adsorption of copper and zinc ions in two natural soils

    NASA Astrophysics Data System (ADS)

    Bianchi Janetti, E.; Riva, M.; Guadagnini, A.; Dror, I.; Berkowitz, B.

    2010-12-01

    We studied the competitive adsorption of Cu and Zn ions in different natural soils. We considered two Israeli soils, Bet Dagan and Yatir, both of which are slightly alkaline but with substantially different adsorption capacities (1.2% and 3.7% organic matter, and 16.2% and 36.9% clay content, respectively). Experiments under batch conditions were performed in single- and double-component systems to obtain adsorption isotherms. The equilibrium adsorption data were collected after 48 h contact time, with a soil-solution ratio of 1:50, initial soil pH=7, by varying the initial ion concentrations in the range 20-200 mg/l for Bet Dagan soil and 20-800 mg/l for Yatir soil. Experimental mono-component adsorption isotherms showed similar nonlinear behavior for Cu and Zn in both Bet Dagan and Yatir soils. The latter had maximum adsorption capacity about 4 times larger than the former. Cu and Zn exhibited almost the same affinity for both types of soils in single-component systems, while in competitive systems Cu adsorption increased significantly as compared to Zn. Experimental data obtained in single-component systems were analyzed with Langmuir, Freundlich and Redlich-Peterson (R-P) models. Measurements of adsorption behavior under double-component conditions were interpreted using different competitive models: unmodified, modified and extended Langmuir, unmodified and modified R-P models, and the Sheindorf-Rebuhn-Sheintuch (SRS) model. The results were examined using formal model quality criteria. These allow discrimination among different models on the basis on their goodness-of-fit to available observations, number of parameters, and quality of the available data and parameter estimates. The analysis suggested that for both soils, single-component data were better represented by Freundlich or R-P models. In double- component systems, the modified R-P model was identified as best in the case of Bet Dagan soil while the SRS model best described the behavior of the Yatir

  15. Prediction of the solubility of zinc, copper, nickel, cadmium, and lead in metal-contaminated soils.

    PubMed

    Zan, Nafiseh Rang; Datta, S P; Rattan, R K; Dwivedi, B S; Meena, M C

    2013-12-01

    Risk assessment of metal-contaminated soil depends on how precisely one can predict the solubility of metals in soils. Responses of plants and soil organisms to metal toxicity are explained by the variation in free metal ion activity in soil pore water. This study was undertaken to predict the free ion activity of Zn, Cu, Ni, Cd, and Pb in metal-contaminated soil as a function of pH, soil organic carbon, and extractable metal content. For this purpose, 21 surface soil samples (0-15 cm) were collected from agricultural lands of various locations receiving sewage sludge and industrial effluents for a long period. One soil sample was also collected from agricultural land which has been under intensive cropping and receiving irrigation through tube well water. Soil samples were varied widely in respect of physicochemical properties including metal content. Total Zn, Cu, Ni, Cd, and Pb in experimental soils were 2,015 ± 3,373, 236 ± 286, 103 ± 192, 29.8 ± 6.04, and 141 ± 270 mg kg(-1), respectively. Free metal ion activity, viz., pZn(2+), pCu(2+), pNi(2+), pCd(2+), and pPb(2+), as estimated by the Baker soil test was 9.37 ± 1.89, 13.1 ± 1.96, 12.8 ± 1.89, 11.9 ± 2.00, and 11.6 ± 1.52, respectively. Free metal ion activity was predicted by pH-dependent Freundlich equation (solubility model) as a function of pH, organic carbon, and extractable metal. Results indicate that solubility model as a function of pH, Walkley-Black carbon (WBC), and ethylenediaminetetraacetic acid (EDTA)-extractable metals could explain the variation in pZn(2+), pCu(2+), pNi(2+), pCd(2+), and pPb(2+) to the extent of 59, 56, 46, 52, and 51%, respectively. Predictability of the solubility model based on pH, KMnO4-oxidizable carbon, and diethylenetriaminepentaacetic acid-extractable or CaCl2-extractable metal was inferior compared to that based on EDTA-extractable metals and WBC.

  16. Leaching and efficiency of six organic zinc fertilizers applied to navy bean crop grown in a weakly acidic soil of Spain.

    PubMed

    Gonzalez, D; Novillo, J; Rico, M I; Alvarez, J M

    2008-05-14

    Zinc contamination of groundwater from fertilizers applied to pulse crops is a potential problem, but the use of different types of organic chelates can minimize the contamination potential while still adequately feeding the crops. The objective of this study was to compare the leaching, distribution in fractions and availability, and relative effectiveness of Zn from six organic Zn fertilizers (zinc-ethylenediaminetetraacetate- N-2-hydroxyethylethylenediaminetriacetate (Zn-EDTA-HEDTA), Zn-HEDTA, zinc- S, S'-ethylenediaminedisuccinate (Zn- S, S-EDDS), zinc-polyhydroxyphenylcarboxylate, Zn-EDTA, and zinc-ethylenediaminedi(2-hydroxy-5-sulfophenylacetate) (Zn-EDDHSA)) applied to a navy bean ( Phaseolus vulgaris, L.) crop cultivated by applying different Zn levels, in a weakly acidic soil under greenhouse conditions. Zinc soil behavior was evaluated by diethylenetriaminepentaacetic acid-triethanolamine (DTPA-TEA), DTPA-ammonium bicarbonate (DTPA-AB), Mehlich-3, and BaCl 2 extractions and sequential fractionation. In all the fertilizer treatments, the percentage of labile Zn that remained in the soil was high with respect to the quantity of Zn applied, with values respectively ranging from 42 to 80% for Zn-EDDHSA and Zn-EDTA sources. A positive correlation with a high level of significance existed between the micronutrient concentration in the navy bean crop (total and soluble) and labile Zn fractions, available Zn, and easily leachable Zn ( r ranged from 0.89 to 0.95, P < 0.0001). The relatively high quantity of total Zn leached by applying Zn-EDTA and Zn-S,S-EDDS sources (11.9 and 6.0%, respectively, for the rate 10 mg of Zn kg(-1) of soil) poses a potential pollution risk for neighboring waters. It would seem recommendable to apply Zn-HEDTA or Zn-EDDHSA sources, even applied at the low rate (5 mg of Zn kg(-1) of soil), because they produced available Zn concentrations in the soil that were above the critical concentration and also produced high Zn concentrations in

  17. Monitoring of soil moisture dynamics and spatial differences in an agricultural catchment

    NASA Astrophysics Data System (ADS)

    Oswald, Sascha; Baroni, Gabriele; Biro, Peter; Schrön, Martin

    2015-04-01

    A novel method to observe changes in soil moisture and other water pools at the land surface is non-invasive cosmic-ray neutron sensing. This approach by its physical principles is placed between in-soil measurements and remote sensing, and retrieves values for an intermediate spatial scale of several hectars, which can be used to quantify stored water at the land surface. It detects variations in the background of neutrons, induced initially from cosmic-rays hitting the atmosphere, and this can be related to interesting quantities at the land surface, such as soil moisture, but to some degree also snow water equivalent and changes in the biomass of vegetation. In a small catchment being used as a long-term landscape observatory of the TERENO initiative we retrieved cosmic-ray neutron measurements for several years, for up to four adjacent sites. The terrain was hilly with some slopes being partly used for agricultural fields, partly grassland. Here, after atmospheric corrections and a calibration procedure soil moisture dynamics could be observed for integral soil depths of several decimeters, clearly responding to precipitation events and offering a comparison to various local and non-local soil moisture measurements there. For winter periods with frost and snow, also the water mass stored in the snow cover can be retrieved. Furthermore, observed spatial differences can be related to vegetation, terrain and soil moisture state. Also, the relation to parameters representing crop biomass and growth will be discussed in respect to the retrieved cosmic-ray neutron signals, which have an influence on the interpretation as soil moisture.

  18. Scaling impacts on environmental controls and spatial heterogeneity of soil organic carbon stocks

    DOE PAGES