Sample records for spatial spectral analysis

  1. Fusion and quality analysis for remote sensing images using contourlet transform

    NASA Astrophysics Data System (ADS)

    Choi, Yoonsuk; Sharifahmadian, Ershad; Latifi, Shahram

    2013-05-01

    Recent developments in remote sensing technologies have provided various images with high spatial and spectral resolutions. However, multispectral images have low spatial resolution and panchromatic images have low spectral resolution. Therefore, image fusion techniques are necessary to improve the spatial resolution of spectral images by injecting spatial details of high-resolution panchromatic images. The objective of image fusion is to provide useful information by improving the spatial resolution and the spectral information of the original images. The fusion results can be utilized in various applications, such as military, medical imaging, and remote sensing. This paper addresses two issues in image fusion: i) image fusion method and ii) quality analysis of fusion results. First, a new contourlet-based image fusion method is presented, which is an improvement over the wavelet-based fusion. This fusion method is then applied to a case study to demonstrate its fusion performance. Fusion framework and scheme used in the study are discussed in detail. Second, quality analysis for the fusion results is discussed. We employed various quality metrics in order to analyze the fusion results both spatially and spectrally. Our results indicate that the proposed contourlet-based fusion method performs better than the conventional wavelet-based fusion methods.

  2. Methods for spectral image analysis by exploiting spatial simplicity

    DOEpatents

    Keenan, Michael R.

    2010-05-25

    Several full-spectrum imaging techniques have been introduced in recent years that promise to provide rapid and comprehensive chemical characterization of complex samples. One of the remaining obstacles to adopting these techniques for routine use is the difficulty of reducing the vast quantities of raw spectral data to meaningful chemical information. Multivariate factor analysis techniques, such as Principal Component Analysis and Alternating Least Squares-based Multivariate Curve Resolution, have proven effective for extracting the essential chemical information from high dimensional spectral image data sets into a limited number of components that describe the spectral characteristics and spatial distributions of the chemical species comprising the sample. There are many cases, however, in which those constraints are not effective and where alternative approaches may provide new analytical insights. For many cases of practical importance, imaged samples are "simple" in the sense that they consist of relatively discrete chemical phases. That is, at any given location, only one or a few of the chemical species comprising the entire sample have non-zero concentrations. The methods of spectral image analysis of the present invention exploit this simplicity in the spatial domain to make the resulting factor models more realistic. Therefore, more physically accurate and interpretable spectral and abundance components can be extracted from spectral images that have spatially simple structure.

  3. Methods for spectral image analysis by exploiting spatial simplicity

    DOEpatents

    Keenan, Michael R.

    2010-11-23

    Several full-spectrum imaging techniques have been introduced in recent years that promise to provide rapid and comprehensive chemical characterization of complex samples. One of the remaining obstacles to adopting these techniques for routine use is the difficulty of reducing the vast quantities of raw spectral data to meaningful chemical information. Multivariate factor analysis techniques, such as Principal Component Analysis and Alternating Least Squares-based Multivariate Curve Resolution, have proven effective for extracting the essential chemical information from high dimensional spectral image data sets into a limited number of components that describe the spectral characteristics and spatial distributions of the chemical species comprising the sample. There are many cases, however, in which those constraints are not effective and where alternative approaches may provide new analytical insights. For many cases of practical importance, imaged samples are "simple" in the sense that they consist of relatively discrete chemical phases. That is, at any given location, only one or a few of the chemical species comprising the entire sample have non-zero concentrations. The methods of spectral image analysis of the present invention exploit this simplicity in the spatial domain to make the resulting factor models more realistic. Therefore, more physically accurate and interpretable spectral and abundance components can be extracted from spectral images that have spatially simple structure.

  4. A far-infrared spatial/spectral Fourier interferometry laboratory-based testbed instrument

    NASA Astrophysics Data System (ADS)

    Spencer, Locke D.; Naylor, David A.; Scott, Jeremy P.; Weiler, Vince F.; MacCrimmon, Roderick K.; Sitwell, Geoffrey R. H.; Ade, Peter A. R.

    2016-07-01

    We describe the current status, including preliminary design, characterization efforts, and recent progress, in the development of a spatial/spectral double Fourier laboratory-based interferometer testbed instrument within the Astronomical Instrumentation Group (AIG) laboratories at the University of Lethbridge, Canada (UL). Supported by CRC, CFI, and NSERC grants, this instrument development will provide laboratory demonstration of spatial-spectral interferometry with a concentration of furthering progress in areas including the development of spatial/spectral interferometry observation, data processing, characterization, and analysis techniques in the Far-Infrared (FIR) region of the electromagnetic spectrum.

  5. Evaluating Hyperspectral Imaging of Wetland Vegetation as a Tool for Detecting Estuarine Nutrient Enrichment

    DTIC Science & Technology

    2008-05-01

    the vegetation’s uptake of water column nutrients produces a spectral response; and 3) the spectral and spatial resolutions ...analysis. This allowed us to evaluate these assumptions at the landscape level, by using the high spectral and spatial resolution of the hyperspectral... spatial resolution (2.5 m pixels) HyMap hyperspectral imagery of the entire wetland. After using a hand-held spectrometer to characterize

  6. Satellite image fusion based on principal component analysis and high-pass filtering.

    PubMed

    Metwalli, Mohamed R; Nasr, Ayman H; Allah, Osama S Farag; El-Rabaie, S; Abd El-Samie, Fathi E

    2010-06-01

    This paper presents an integrated method for the fusion of satellite images. Several commercial earth observation satellites carry dual-resolution sensors, which provide high spatial resolution or simply high-resolution (HR) panchromatic (pan) images and low-resolution (LR) multi-spectral (MS) images. Image fusion methods are therefore required to integrate a high-spectral-resolution MS image with a high-spatial-resolution pan image to produce a pan-sharpened image with high spectral and spatial resolutions. Some image fusion methods such as the intensity, hue, and saturation (IHS) method, the principal component analysis (PCA) method, and the Brovey transform (BT) method provide HR MS images, but with low spectral quality. Another family of image fusion methods, such as the high-pass-filtering (HPF) method, operates on the basis of the injection of high frequency components from the HR pan image into the MS image. This family of methods provides less spectral distortion. In this paper, we propose the integration of the PCA method and the HPF method to provide a pan-sharpened MS image with superior spatial resolution and less spectral distortion. The experimental results show that the proposed fusion method retains the spectral characteristics of the MS image and, at the same time, improves the spatial resolution of the pan-sharpened image.

  7. Hyperspectral Image Denoising Using a Nonlocal Spectral Spatial Principal Component Analysis

    NASA Astrophysics Data System (ADS)

    Li, D.; Xu, L.; Peng, J.; Ma, J.

    2018-04-01

    Hyperspectral images (HSIs) denoising is a critical research area in image processing duo to its importance in improving the quality of HSIs, which has a negative impact on object detection and classification and so on. In this paper, we develop a noise reduction method based on principal component analysis (PCA) for hyperspectral imagery, which is dependent on the assumption that the noise can be removed by selecting the leading principal components. The main contribution of paper is to introduce the spectral spatial structure and nonlocal similarity of the HSIs into the PCA denoising model. PCA with spectral spatial structure can exploit spectral correlation and spatial correlation of HSI by using 3D blocks instead of 2D patches. Nonlocal similarity means the similarity between the referenced pixel and other pixels in nonlocal area, where Mahalanobis distance algorithm is used to estimate the spatial spectral similarity by calculating the distance in 3D blocks. The proposed method is tested on both simulated and real hyperspectral images, the results demonstrate that the proposed method is superior to several other popular methods in HSI denoising.

  8. Multispectral scanner system parameter study and analysis software system description, volume 2

    NASA Technical Reports Server (NTRS)

    Landgrebe, D. A. (Principal Investigator); Mobasseri, B. G.; Wiersma, D. J.; Wiswell, E. R.; Mcgillem, C. D.; Anuta, P. E.

    1978-01-01

    The author has identified the following significant results. The integration of the available methods provided the analyst with the unified scanner analysis package (USAP), the flexibility and versatility of which was superior to many previous integrated techniques. The USAP consisted of three main subsystems; (1) a spatial path, (2) a spectral path, and (3) a set of analytic classification accuracy estimators which evaluated the system performance. The spatial path consisted of satellite and/or aircraft data, data correlation analyzer, scanner IFOV, and random noise model. The output of the spatial path was fed into the analytic classification and accuracy predictor. The spectral path consisted of laboratory and/or field spectral data, EXOSYS data retrieval, optimum spectral function calculation, data transformation, and statistics calculation. The output of the spectral path was fended into the stratified posterior performance estimator.

  9. A reconstruction algorithm for three-dimensional object-space data using spatial-spectral multiplexing

    NASA Astrophysics Data System (ADS)

    Wu, Zhejun; Kudenov, Michael W.

    2017-05-01

    This paper presents a reconstruction algorithm for the Spatial-Spectral Multiplexing (SSM) optical system. The goal of this algorithm is to recover the three-dimensional spatial and spectral information of a scene, given that a one-dimensional spectrometer array is used to sample the pupil of the spatial-spectral modulator. The challenge of the reconstruction is that the non-parametric representation of the three-dimensional spatial and spectral object requires a large number of variables, thus leading to an underdetermined linear system that is hard to uniquely recover. We propose to reparameterize the spectrum using B-spline functions to reduce the number of unknown variables. Our reconstruction algorithm then solves the improved linear system via a least- square optimization of such B-spline coefficients with additional spatial smoothness regularization. The ground truth object and the optical model for the measurement matrix are simulated with both spatial and spectral assumptions according to a realistic field of view. In order to test the robustness of the algorithm, we add Poisson noise to the measurement and test on both two-dimensional and three-dimensional spatial and spectral scenes. Our analysis shows that the root mean square error of the recovered results can be achieved within 5.15%.

  10. Joint spatial-spectral hyperspectral image clustering using block-diagonal amplified affinity matrix

    NASA Astrophysics Data System (ADS)

    Fan, Lei; Messinger, David W.

    2018-03-01

    The large number of spectral channels in a hyperspectral image (HSI) produces a fine spectral resolution to differentiate between materials in a scene. However, difficult classes that have similar spectral signatures are often confused while merely exploiting information in the spectral domain. Therefore, in addition to spectral characteristics, the spatial relationships inherent in HSIs should also be considered for incorporation into classifiers. The growing availability of high spectral and spatial resolution of remote sensors provides rich information for image clustering. Besides the discriminating power in the rich spectrum, contextual information can be extracted from the spatial domain, such as the size and the shape of the structure to which one pixel belongs. In recent years, spectral clustering has gained popularity compared to other clustering methods due to the difficulty of accurate statistical modeling of data in high dimensional space. The joint spatial-spectral information could be effectively incorporated into the proximity graph for spectral clustering approach, which provides a better data representation by discovering the inherent lower dimensionality from the input space. We embedded both spectral and spatial information into our proposed local density adaptive affinity matrix, which is able to handle multiscale data by automatically selecting the scale of analysis for every pixel according to its neighborhood of the correlated pixels. Furthermore, we explored the "conductivity method," which aims at amplifying the block diagonal structure of the affinity matrix to further improve the performance of spectral clustering on HSI datasets.

  11. High-angular-resolution stellar imaging with occultations from the Cassini spacecraft - III. Mira

    NASA Astrophysics Data System (ADS)

    Stewart, Paul N.; Tuthill, Peter G.; Nicholson, Philip D.; Hedman, Matthew M.

    2016-04-01

    We present an analysis of spectral and spatial data of Mira obtained by the Cassini spacecraft, which not only observed the star's spectra over a broad range of near-infrared wavelengths, but was also able to obtain high-resolution spatial information by watching the star pass behind Saturn's rings. The observed spectral range of 1-5 microns reveals the stellar atmosphere in the crucial water-bands which are unavailable to terrestrial observers, and the simultaneous spatial sampling allows the origin of spectral features to be located in the stellar environment. Models are fitted to the data, revealing the spectral and spatial structure of molecular layers surrounding the star. High-resolution imagery is recovered revealing the layered and asymmetric nature of the stellar atmosphere. The observational data set is also used to confront the state-of-the-art cool opacity-sampling dynamic extended atmosphere models of Mira variables through a detailed spectral and spatial comparison, revealing in general a good agreement with some specific departures corresponding to particular spectral features.

  12. Spectral Properties and Dynamics of Gold Nanorods Revealed by EMCCD Based Spectral-Phasor Method

    PubMed Central

    Chen, Hongtao; Digman, Michelle A.

    2015-01-01

    Gold nanorods (NRs) with tunable plasmon-resonant absorption in the near-infrared region have considerable advantages over organic fluorophores as imaging agents. However, the luminescence spectral properties of NRs have not been fully explored at the single particle level in bulk due to lack of proper analytic tools. Here we present a global spectral phasor analysis method which allows investigations of NRs' spectra at single particle level with their statistic behavior and spatial information during imaging. The wide phasor distribution obtained by the spectral phasor analysis indicates spectra of NRs are different from particle to particle. NRs with different spectra can be identified graphically in corresponding spatial images with high spectral resolution. Furthermore, spectral behaviors of NRs under different imaging conditions, e.g. different excitation powers and wavelengths, were carefully examined by our laser-scanning multiphoton microscope with spectral imaging capability. Our results prove that the spectral phasor method is an easy and efficient tool in hyper-spectral imaging analysis to unravel subtle changes of the emission spectrum. Moreover, we applied this method to study the spectral dynamics of NRs during direct optical trapping and by optothermal trapping. Interestingly, spectral shifts were observed in both trapping phenomena. PMID:25684346

  13. Impact of JPEG2000 compression on spatial-spectral endmember extraction from hyperspectral data

    NASA Astrophysics Data System (ADS)

    Martín, Gabriel; Ruiz, V. G.; Plaza, Antonio; Ortiz, Juan P.; García, Inmaculada

    2009-08-01

    Hyperspectral image compression has received considerable interest in recent years. However, an important issue that has not been investigated in the past is the impact of lossy compression on spectral mixture analysis applications, which characterize mixed pixels in terms of a suitable combination of spectrally pure spectral substances (called endmembers) weighted by their estimated fractional abundances. In this paper, we specifically investigate the impact of JPEG2000 compression of hyperspectral images on the quality of the endmembers extracted by algorithms that incorporate both the spectral and the spatial information (useful for incorporating contextual information in the spectral endmember search). The two considered algorithms are the automatic morphological endmember extraction (AMEE) and the spatial spectral endmember extraction (SSEE) techniques. Experimental results are conducted using a well-known data set collected by AVIRIS over the Cuprite mining district in Nevada and with detailed ground-truth information available from U. S. Geological Survey. Our experiments reveal some interesting findings that may be useful to specialists applying spatial-spectral endmember extraction algorithms to compressed hyperspectral imagery.

  14. Landsat analysis of tropical forest succession employing a terrain model

    NASA Technical Reports Server (NTRS)

    Barringer, T. H.; Robinson, V. B.; Coiner, J. C.; Bruce, R. C.

    1980-01-01

    Landsat multispectral scanner (MSS) data have yielded a dual classification of rain forest and shadow in an analysis of a semi-deciduous forest on Mindonoro Island, Philippines. Both a spatial terrain model, using a fifth side polynomial trend surface analysis for quantitatively estimating the general spatial variation in the data set, and a spectral terrain model, based on the MSS data, have been set up. A discriminant analysis, using both sets of data, has suggested that shadowing effects may be due primarily to local variations in the spectral regions and can therefore be compensated for through the decomposition of the spatial variation in both elevation and MSS data.

  15. A wavelet and least square filter based spatial-spectral denoising approach of hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Li, Ting; Chen, Xiao-Mei; Chen, Gang; Xue, Bo; Ni, Guo-Qiang

    2009-11-01

    Noise reduction is a crucial step in hyperspectral imagery pre-processing. Based on sensor characteristics, the noise of hyperspectral imagery represents in both spatial and spectral domain. However, most prevailing denosing techniques process the imagery in only one specific domain, which have not utilized multi-domain nature of hyperspectral imagery. In this paper, a new spatial-spectral noise reduction algorithm is proposed, which is based on wavelet analysis and least squares filtering techniques. First, in the spatial domain, a new stationary wavelet shrinking algorithm with improved threshold function is utilized to adjust the noise level band-by-band. This new algorithm uses BayesShrink for threshold estimation, and amends the traditional soft-threshold function by adding shape tuning parameters. Comparing with soft or hard threshold function, the improved one, which is first-order derivable and has a smooth transitional region between noise and signal, could save more details of image edge and weaken Pseudo-Gibbs. Then, in the spectral domain, cubic Savitzky-Golay filter based on least squares method is used to remove spectral noise and artificial noise that may have been introduced in during the spatial denoising. Appropriately selecting the filter window width according to prior knowledge, this algorithm has effective performance in smoothing the spectral curve. The performance of the new algorithm is experimented on a set of Hyperion imageries acquired in 2007. The result shows that the new spatial-spectral denoising algorithm provides more significant signal-to-noise-ratio improvement than traditional spatial or spectral method, while saves the local spectral absorption features better.

  16. The Spectral Image Processing System (SIPS): Software for integrated analysis of AVIRIS data

    NASA Technical Reports Server (NTRS)

    Kruse, F. A.; Lefkoff, A. B.; Boardman, J. W.; Heidebrecht, K. B.; Shapiro, A. T.; Barloon, P. J.; Goetz, A. F. H.

    1992-01-01

    The Spectral Image Processing System (SIPS) is a software package developed by the Center for the Study of Earth from Space (CSES) at the University of Colorado, Boulder, in response to a perceived need to provide integrated tools for analysis of imaging spectrometer data both spectrally and spatially. SIPS was specifically designed to deal with data from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and the High Resolution Imaging Spectrometer (HIRIS), but was tested with other datasets including the Geophysical and Environmental Research Imaging Spectrometer (GERIS), GEOSCAN images, and Landsat TM. SIPS was developed using the 'Interactive Data Language' (IDL). It takes advantage of high speed disk access and fast processors running under the UNIX operating system to provide rapid analysis of entire imaging spectrometer datasets. SIPS allows analysis of single or multiple imaging spectrometer data segments at full spatial and spectral resolution. It also allows visualization and interactive analysis of image cubes derived from quantitative analysis procedures such as absorption band characterization and spectral unmixing. SIPS consists of three modules: SIPS Utilities, SIPS_View, and SIPS Analysis. SIPS version 1.1 is described below.

  17. Wavelet packets for multi- and hyper-spectral imagery

    NASA Astrophysics Data System (ADS)

    Benedetto, J. J.; Czaja, W.; Ehler, M.; Flake, C.; Hirn, M.

    2010-01-01

    State of the art dimension reduction and classification schemes in multi- and hyper-spectral imaging rely primarily on the information contained in the spectral component. To better capture the joint spatial and spectral data distribution we combine the Wavelet Packet Transform with the linear dimension reduction method of Principal Component Analysis. Each spectral band is decomposed by means of the Wavelet Packet Transform and we consider a joint entropy across all the spectral bands as a tool to exploit the spatial information. Dimension reduction is then applied to the Wavelet Packets coefficients. We present examples of this technique for hyper-spectral satellite imaging. We also investigate the role of various shrinkage techniques to model non-linearity in our approach.

  18. Improved classification accuracy of powdery mildew infection levels of wine grapes by spatial-spectral analysis of hyperspectral images.

    PubMed

    Knauer, Uwe; Matros, Andrea; Petrovic, Tijana; Zanker, Timothy; Scott, Eileen S; Seiffert, Udo

    2017-01-01

    Hyperspectral imaging is an emerging means of assessing plant vitality, stress parameters, nutrition status, and diseases. Extraction of target values from the high-dimensional datasets either relies on pixel-wise processing of the full spectral information, appropriate selection of individual bands, or calculation of spectral indices. Limitations of such approaches are reduced classification accuracy, reduced robustness due to spatial variation of the spectral information across the surface of the objects measured as well as a loss of information intrinsic to band selection and use of spectral indices. In this paper we present an improved spatial-spectral segmentation approach for the analysis of hyperspectral imaging data and its application for the prediction of powdery mildew infection levels (disease severity) of intact Chardonnay grape bunches shortly before veraison. Instead of calculating texture features (spatial features) for the huge number of spectral bands independently, dimensionality reduction by means of Linear Discriminant Analysis (LDA) was applied first to derive a few descriptive image bands. Subsequent classification was based on modified Random Forest classifiers and selective extraction of texture parameters from the integral image representation of the image bands generated. Dimensionality reduction, integral images, and the selective feature extraction led to improved classification accuracies of up to [Formula: see text] for detached berries used as a reference sample (training dataset). Our approach was validated by predicting infection levels for a sample of 30 intact bunches. Classification accuracy improved with the number of decision trees of the Random Forest classifier. These results corresponded with qPCR results. An accuracy of 0.87 was achieved in classification of healthy, infected, and severely diseased bunches. However, discrimination between visually healthy and infected bunches proved to be challenging for a few samples, perhaps due to colonized berries or sparse mycelia hidden within the bunch or airborne conidia on the berries that were detected by qPCR. An advanced approach to hyperspectral image classification based on combined spatial and spectral image features, potentially applicable to many available hyperspectral sensor technologies, has been developed and validated to improve the detection of powdery mildew infection levels of Chardonnay grape bunches. The spatial-spectral approach improved especially the detection of light infection levels compared with pixel-wise spectral data analysis. This approach is expected to improve the speed and accuracy of disease detection once the thresholds for fungal biomass detected by hyperspectral imaging are established; it can also facilitate monitoring in plant phenotyping of grapevine and additional crops.

  19. The MIND PALACE: A Multi-Spectral Imaging and Spectroscopy Database for Planetary Science

    NASA Astrophysics Data System (ADS)

    Eshelman, E.; Doloboff, I.; Hara, E. K.; Uckert, K.; Sapers, H. M.; Abbey, W.; Beegle, L. W.; Bhartia, R.

    2017-12-01

    The Multi-Instrument Database (MIND) is the web-based home to a well-characterized set of analytical data collected by a suite of deep-UV fluorescence/Raman instruments built at the Jet Propulsion Laboratory (JPL). Samples derive from a growing body of planetary surface analogs, mineral and microbial standards, meteorites, spacecraft materials, and other astrobiologically relevant materials. In addition to deep-UV spectroscopy, datasets stored in MIND are obtained from a variety of analytical techniques obtained over multiple spatial and spectral scales including electron microscopy, optical microscopy, infrared spectroscopy, X-ray fluorescence, and direct fluorescence imaging. Multivariate statistical analysis techniques, primarily Principal Component Analysis (PCA), are used to guide interpretation of these large multi-analytical spectral datasets. Spatial co-referencing of integrated spectral/visual maps is performed using QGIS (geographic information system software). Georeferencing techniques transform individual instrument data maps into a layered co-registered data cube for analysis across spectral and spatial scales. The body of data in MIND is intended to serve as a permanent, reliable, and expanding database of deep-UV spectroscopy datasets generated by this unique suite of JPL-based instruments on samples of broad planetary science interest.

  20. A hybrid spatial-spectral denoising method for infrared hyperspectral images using 2DPCA

    NASA Astrophysics Data System (ADS)

    Huang, Jun; Ma, Yong; Mei, Xiaoguang; Fan, Fan

    2016-11-01

    The traditional noise reduction methods for 3-D infrared hyperspectral images typically operate independently in either the spatial or spectral domain, and such methods overlook the relationship between the two domains. To address this issue, we propose a hybrid spatial-spectral method in this paper to link both domains. First, principal component analysis and bivariate wavelet shrinkage are performed in the 2-D spatial domain. Second, 2-D principal component analysis transformation is conducted in the 1-D spectral domain to separate the basic components from detail ones. The energy distribution of noise is unaffected by orthogonal transformation; therefore, the signal-to-noise ratio of each component is used as a criterion to determine whether a component should be protected from over-denoising or denoised with certain 1-D denoising methods. This study implements the 1-D wavelet shrinking threshold method based on Stein's unbiased risk estimator, and the quantitative results on publicly available datasets demonstrate that our method can improve denoising performance more effectively than other state-of-the-art methods can.

  1. Spatial resolution of a hard x-ray CCD detector.

    PubMed

    Seely, John F; Pereira, Nino R; Weber, Bruce V; Schumer, Joseph W; Apruzese, John P; Hudson, Lawrence T; Szabo, Csilla I; Boyer, Craig N; Skirlo, Scott

    2010-08-10

    The spatial resolution of an x-ray CCD detector was determined from the widths of the tungsten x-ray lines in the spectrum formed by a crystal spectrometer in the 58 to 70 keV energy range. The detector had 20 microm pixel, 1700 by 1200 pixel format, and a CsI x-ray conversion scintillator. The spectral lines from a megavolt x-ray generator were focused on the spectrometer's Rowland circle by a curved transmission crystal. The line shapes were Lorentzian with an average width after removal of the natural and instrumental line widths of 95 microm (4.75 pixels). A high spatial frequency background, primarily resulting from scattered gamma rays, was removed from the spectral image by Fourier analysis. The spectral lines, having low spatial frequency in the direction perpendicular to the dispersion, were enhanced by partially removing the Lorentzian line shape and by fitting Lorentzian curves to broad unresolved spectral features. This demonstrates the ability to improve the spectral resolution of hard x-ray spectra that are recorded by a CCD detector with well-characterized intrinsic spatial resolution.

  2. [A spatial adaptive algorithm for endmember extraction on multispectral remote sensing image].

    PubMed

    Zhu, Chang-Ming; Luo, Jian-Cheng; Shen, Zhan-Feng; Li, Jun-Li; Hu, Xiao-Dong

    2011-10-01

    Due to the problem that the convex cone analysis (CCA) method can only extract limited endmember in multispectral imagery, this paper proposed a new endmember extraction method by spatial adaptive spectral feature analysis in multispectral remote sensing image based on spatial clustering and imagery slice. Firstly, in order to remove spatial and spectral redundancies, the principal component analysis (PCA) algorithm was used for lowering the dimensions of the multispectral data. Secondly, iterative self-organizing data analysis technology algorithm (ISODATA) was used for image cluster through the similarity of the pixel spectral. And then, through clustering post process and litter clusters combination, we divided the whole image data into several blocks (tiles). Lastly, according to the complexity of image blocks' landscape and the feature of the scatter diagrams analysis, the authors can determine the number of endmembers. Then using hourglass algorithm extracts endmembers. Through the endmember extraction experiment on TM multispectral imagery, the experiment result showed that the method can extract endmember spectra form multispectral imagery effectively. What's more, the method resolved the problem of the amount of endmember limitation and improved accuracy of the endmember extraction. The method has provided a new way for multispectral image endmember extraction.

  3. Analysis of hyperspectral fluorescence images for poultry skin tumor inspection

    NASA Astrophysics Data System (ADS)

    Kong, Seong G.; Chen, Yud-Ren; Kim, Intaek; Kim, Moon S.

    2004-02-01

    We present a hyperspectral fluorescence imaging system with a fuzzy inference scheme for detecting skin tumors on poultry carcasses. Hyperspectral images reveal spatial and spectral information useful for finding pathological lesions or contaminants on agricultural products. Skin tumors are not obvious because the visual signature appears as a shape distortion rather than a discoloration. Fluorescence imaging allows the visualization of poultry skin tumors more easily than reflectance. The hyperspectral image samples obtained for this poultry tumor inspection contain 65 spectral bands of fluorescence in the visible region of the spectrum at wavelengths ranging from 425 to 711 nm. The large amount of hyperspectral image data is compressed by use of a discrete wavelet transform in the spatial domain. Principal-component analysis provides an effective compressed representation of the spectral signal of each pixel in the spectral domain. A small number of significant features are extracted from two major spectral peaks of relative fluorescence intensity that have been identified as meaningful spectral bands for detecting tumors. A fuzzy inference scheme that uses a small number of fuzzy rules and Gaussian membership functions successfully detects skin tumors on poultry carcasses. Spatial-filtering techniques are used to significantly reduce false positives.

  4. Broadband interferometric characterization of divergence and spatial chirp.

    PubMed

    Meier, Amanda K; Iliev, Marin; Squier, Jeff A; Durfee, Charles G

    2015-09-01

    We demonstrate a spectral interferometric method to characterize lateral and angular spatial chirp to optimize intensity localization in spatio-temporally focused ultrafast beams. Interference between two spatially sheared beams in an interferometer will lead to straight fringes if the wavefronts are curved. To produce reference fringes, we delay one arm relative to another in order to measure fringe rotation in the spatially resolved spectral interferogram. With Fourier analysis, we can obtain frequency-resolved divergence. In another arrangement, we spatially flip one beam relative to the other, which allows the frequency-dependent beamlet direction (angular spatial chirp) to be measured. Blocking one beam shows the spatial variation of the beamlet position with frequency (i.e., the lateral spatial chirp).

  5. Spectral compression algorithms for the analysis of very large multivariate images

    DOEpatents

    Keenan, Michael R.

    2007-10-16

    A method for spectrally compressing data sets enables the efficient analysis of very large multivariate images. The spectral compression algorithm uses a factored representation of the data that can be obtained from Principal Components Analysis or other factorization technique. Furthermore, a block algorithm can be used for performing common operations more efficiently. An image analysis can be performed on the factored representation of the data, using only the most significant factors. The spectral compression algorithm can be combined with a spatial compression algorithm to provide further computational efficiencies.

  6. Hyperspectral imaging spectro radiometer improves radiometric accuracy

    NASA Astrophysics Data System (ADS)

    Prel, Florent; Moreau, Louis; Bouchard, Robert; Bullis, Ritchie D.; Roy, Claude; Vallières, Christian; Levesque, Luc

    2013-06-01

    Reliable and accurate infrared characterization is necessary to measure the specific spectral signatures of aircrafts and associated infrared counter-measures protections (i.e. flares). Infrared characterization is essential to improve counter measures efficiency, improve friend-foe identification and reduce the risk of friendly fire. Typical infrared characterization measurement setups include a variety of panchromatic cameras and spectroradiometers. Each instrument brings essential information; cameras measure the spatial distribution of targets and spectroradiometers provide the spectral distribution of the emitted energy. However, the combination of separate instruments brings out possible radiometric errors and uncertainties that can be reduced with Hyperspectral imagers. These instruments combine both spectral and spatial information into the same data. These instruments measure both the spectral and spatial distribution of the energy at the same time ensuring the temporal and spatial cohesion of collected information. This paper presents a quantitative analysis of the main contributors of radiometric uncertainties and shows how a hyperspectral imager can reduce these uncertainties.

  7. Spatially explicit spectral analysis of point clouds and geospatial data

    USGS Publications Warehouse

    Buscombe, Daniel D.

    2015-01-01

    The increasing use of spatially explicit analyses of high-resolution spatially distributed data (imagery and point clouds) for the purposes of characterising spatial heterogeneity in geophysical phenomena necessitates the development of custom analytical and computational tools. In recent years, such analyses have become the basis of, for example, automated texture characterisation and segmentation, roughness and grain size calculation, and feature detection and classification, from a variety of data types. In this work, much use has been made of statistical descriptors of localised spatial variations in amplitude variance (roughness), however the horizontal scale (wavelength) and spacing of roughness elements is rarely considered. This is despite the fact that the ratio of characteristic vertical to horizontal scales is not constant and can yield important information about physical scaling relationships. Spectral analysis is a hitherto under-utilised but powerful means to acquire statistical information about relevant amplitude and wavelength scales, simultaneously and with computational efficiency. Further, quantifying spatially distributed data in the frequency domain lends itself to the development of stochastic models for probing the underlying mechanisms which govern the spatial distribution of geological and geophysical phenomena. The software packagePySESA (Python program for Spatially Explicit Spectral Analysis) has been developed for generic analyses of spatially distributed data in both the spatial and frequency domains. Developed predominantly in Python, it accesses libraries written in Cython and C++ for efficiency. It is open source and modular, therefore readily incorporated into, and combined with, other data analysis tools and frameworks with particular utility for supporting research in the fields of geomorphology, geophysics, hydrography, photogrammetry and remote sensing. The analytical and computational structure of the toolbox is described, and its functionality illustrated with an example of a high-resolution bathymetric point cloud data collected with multibeam echosounder.

  8. Resolution-enhanced Mapping Spectrometer

    NASA Technical Reports Server (NTRS)

    Kumer, J. B.; Aubrun, J. N.; Rosenberg, W. J.; Roche, A. E.

    1993-01-01

    A familiar mapping spectrometer implementation utilizes two dimensional detector arrays with spectral dispersion along one direction and spatial along the other. Spectral images are formed by spatially scanning across the scene (i.e., push-broom scanning). For imaging grating and prism spectrometers, the slit is perpendicular to the spatial scan direction. For spectrometers utilizing linearly variable focal-plane-mounted filters the spatial scan direction is perpendicular to the direction of spectral variation. These spectrometers share the common limitation that the number of spectral resolution elements is given by the number of pixels along the spectral (or dispersive) direction. Resolution enhancement by first passing the light input to the spectrometer through a scanned etalon or Michelson is discussed. Thus, while a detector element is scanned through a spatial resolution element of the scene, it is also temporally sampled. The analysis for all the pixels in the dispersive direction is addressed. Several specific examples are discussed. The alternate use of a Michelson for the same enhancement purpose is also discussed. Suitable for weight constrained deep space missions, hardware systems were developed including actuators, sensor, and electronics such that low-resolution etalons with performance required for implementation would weigh less than one pound.

  9. Auditory spectral versus spatial temporal order judgment: Threshold distribution analysis.

    PubMed

    Fostick, Leah; Babkoff, Harvey

    2017-05-01

    Some researchers suggested that one central mechanism is responsible for temporal order judgments (TOJ), within and across sensory channels. This suggestion is supported by findings of similar TOJ thresholds in same modality and cross-modality TOJ tasks. In the present study, we challenge this idea by analyzing and comparing the threshold distributions of the spectral and spatial TOJ tasks. In spectral TOJ, the tones differ in their frequency ("high" and "low") and are delivered either binaurally or monaurally. In spatial (or dichotic) TOJ, the two tones are identical but are presented asynchronously to the two ears and thus differ with respect to which ear received the first tone and which ear received the second tone ("left"/"left"). Although both tasks are regarded as measures of auditory temporal processing, a review of data published in the literature suggests that they trigger different patterns of response. The aim of the current study was to systematically examine spectral and spatial TOJ threshold distributions across a large number of studies. Data are based on 388 participants in 13 spectral TOJ experiments, and 222 participants in 9 spatial TOJ experiments. None of the spatial TOJ distributions deviated significantly from the Gaussian; while all of the spectral TOJ threshold distributions were skewed to the right, with more than half of the participants accurately judging temporal order at very short interstimulus intervals (ISI). The data do not support the hypothesis that 1 central mechanism is responsible for all temporal order judgments. We suggest that different perceptual strategies are employed when performing spectral TOJ than when performing spatial TOJ. We posit that the spectral TOJ paradigm may provide the opportunity for two-tone masking or temporal integration, which is sensitive to the order of the tones and thus provides perceptual cues that may be used to judge temporal order. This possibility should be considered when interpreting spectral TOJ data, especially in the context of comparing different populations. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  10. An Extended Spectral-Spatial Classification Approach for Hyperspectral Data

    NASA Astrophysics Data System (ADS)

    Akbari, D.

    2017-11-01

    In this paper an extended classification approach for hyperspectral imagery based on both spectral and spatial information is proposed. The spatial information is obtained by an enhanced marker-based minimum spanning forest (MSF) algorithm. Three different methods of dimension reduction are first used to obtain the subspace of hyperspectral data: (1) unsupervised feature extraction methods including principal component analysis (PCA), independent component analysis (ICA), and minimum noise fraction (MNF); (2) supervised feature extraction including decision boundary feature extraction (DBFE), discriminate analysis feature extraction (DAFE), and nonparametric weighted feature extraction (NWFE); (3) genetic algorithm (GA). The spectral features obtained are then fed into the enhanced marker-based MSF classification algorithm. In the enhanced MSF algorithm, the markers are extracted from the classification maps obtained by both SVM and watershed segmentation algorithm. To evaluate the proposed approach, the Pavia University hyperspectral data is tested. Experimental results show that the proposed approach using GA achieves an approximately 8 % overall accuracy higher than the original MSF-based algorithm.

  11. Improved Cloud and Snow Screening in MAIAC Aerosol Retrievals Using Spectral and Spatial Analysis

    NASA Technical Reports Server (NTRS)

    Lyapustin, A.; Wang, Y.; Laszlo, I.; Kokrkin, S.

    2012-01-01

    An improved cloud/snow screening technique in the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm is described. It is implemented as part of MAIAC aerosol retrievals based on analysis of spectral residuals and spatial variability. Comparisons with AERONET aerosol observations and a large-scale MODIS data analysis show strong suppression of aerosol optical thickness outliers due to unresolved clouds and snow. At the same time, the developed filter does not reduce the aerosol retrieval capability at high 1 km resolution in strongly inhomogeneous environments, such as near centers of the active fires. Despite significant improvement, the optical depth outliers in high spatial resolution data are and will remain the problem to be addressed by the application-dependent specialized filtering techniques.

  12. Study of the central part of Mare Moscoviense by combining near-infrared spectrometer, SIR-2 and Hyper Spectral Imager (HySI) data onboard Chandrayaan-1

    NASA Astrophysics Data System (ADS)

    Upendra Bhatt, Megha; Mall, Urs; Bugiolacchi, Roberto; Bhattacharya, Satadru

    2010-05-01

    The impact basins on lunar surface act as a window into the lunar interior and allow investigations of the composition of lower crust and upper mantle. Mare Moscoviense is one of the oldest impact basins on the far side of the Moon. We report on our preliminary analysis conducted in the central region of Mare Moscoviense using the near-infrared spectrometer, SIR-2 data in combination with the Hyperspectral Imager (HySI) data from the Chandrayaan-1 mission. SIR-2 is a compact, monolithic grating type point spectrometer which collected data with high spatial resolution (~200 m) and spectral resolution (6 nm) at wavelengths between 0.93 to 2.41 µm. The Indian HySI instrument mapped the lunar surface in the spectral range of 0.42 to 0.96 µm in 64 contiguous bands with a spectral bandwidth ~20 nm and spatial resolution of 80 m. We will explain the method of combining the response of SIR-2 and HySI to get a complete spectral coverage from 0.42-2.40 µm with high spatial and spectral resolution. We compare average reflectance spectra for spatially, spectrally and compositionally varying areas with the published literature.

  13. Physically motivated correlation formalism in hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Roy, Ankita; Rafert, J. Bruce

    2004-05-01

    Most remote sensing data-sets contain a limiting number of independent spatial and spectral measurements, beyond which no effective increase in information is achieved. This paper presents a Physically Motivated Correlation Formalism (PMCF) ,which places both Spatial and Spectral data on an equivalent mathematical footing in the context of a specific Kernel, such that, optimal combinations of independent data can be selected from the entire Hypercube via the method of "Correlation Moments". We present an experimental and computational analysis of Hyperspectral data sets using the Michigan Tech VFTHSI [Visible Fourier Transform Hyperspectral Imager] based on a Sagnac Interferometer, adjusted to obtain high SNR levels. The captured Signal Interferograms of different targets - aerial snaps of Houghton and lab-based data (white light , He-Ne laser , discharge tube sources) with the provision of customized scan of targets with the same exposures are processed using inverse imaging transformations and filtering techniques to obtain the Spectral profiles and generate Hypercubes to compute Spectral/Spatial/Cross Moments. PMCF answers the question of how optimally the entire hypercube should be sampled and finds how many spatial-spectral pixels are required for a particular target recognition.

  14. Snapshot hyperspectral imaging probe with principal component analysis and confidence ellipse for classification

    NASA Astrophysics Data System (ADS)

    Lim, Hoong-Ta; Murukeshan, Vadakke Matham

    2017-06-01

    Hyperspectral imaging combines imaging and spectroscopy to provide detailed spectral information for each spatial point in the image. This gives a three-dimensional spatial-spatial-spectral datacube with hundreds of spectral images. Probe-based hyperspectral imaging systems have been developed so that they can be used in regions where conventional table-top platforms would find it difficult to access. A fiber bundle, which is made up of specially-arranged optical fibers, has recently been developed and integrated with a spectrograph-based hyperspectral imager. This forms a snapshot hyperspectral imaging probe, which is able to form a datacube using the information from each scan. Compared to the other configurations, which require sequential scanning to form a datacube, the snapshot configuration is preferred in real-time applications where motion artifacts and pixel misregistration can be minimized. Principal component analysis is a dimension-reducing technique that can be applied in hyperspectral imaging to convert the spectral information into uncorrelated variables known as principal components. A confidence ellipse can be used to define the region of each class in the principal component feature space and for classification. This paper demonstrates the use of the snapshot hyperspectral imaging probe to acquire data from samples of different colors. The spectral library of each sample was acquired and then analyzed using principal component analysis. Confidence ellipse was then applied to the principal components of each sample and used as the classification criteria. The results show that the applied analysis can be used to perform classification of the spectral data acquired using the snapshot hyperspectral imaging probe.

  15. The Ring-Barking Experiment: Analysis of Forest Vitality Using Multi-Temporal Hyperspectral Data

    NASA Astrophysics Data System (ADS)

    Reichmuth, Anne; Bachmann, Martin; Heiden, Uta; Pinnel, Nicole; Holzwarth, Stefanie; Muller, Andreas; Henning, Lea; Einzmann, Kathrin; Immitzer, Markus; Seitz, Rudolf

    2016-08-01

    Through new operational optical spaceborne sensors (En- MAP and Sentinel-2) the impact analysis of climate change on forest ecosystems will be fostered. This analysis examines the potential of high spectral, spatial and temporal resolution data for detecting forest vegetation parameters, in particular Chlorophyll and Canopy Water content. The study site is a temperate spruce forest in Germany where in 2013 several trees were Ring-barked for a controlled die-off. During this experiment Ring- barked and Control trees were observed. Twelve airborne hyperspectral HySpex VNIR (Visible/Near Infrared) and SWIR (Shortwave Infrared) data with 1m spatial and 416 bands spectral resolution were acquired during the vegetation periods of 2013 and 2014. Additional laboratory spectral measurements of collected needle samples from Ring-barked and Control trees are available for needle level analysis. Index analysis of the laboratory measurements and image data are presented in this study.

  16. Slitless Solar Spectroscopy

    NASA Technical Reports Server (NTRS)

    Davila, Joseph M.; Jones, Sahela

    2011-01-01

    Spectrographs have traditionally suffered from the inability to obtain line intensities, widths, and Doppler shifts over large spatial regions of the Sun quickly because of the narrow instantaneous field of view. This has limited the spectroscopic analysis of rapidly varying solar features like, flares, CME eruptions, coronal jets, and reconnection regions. Imagers have provided high time resolution images of the full Sun with limited spectral resolution. In this paper we present recent advances in deconvolving spectrally dispersed images obtained through broad slits. We use this new theoretical formulation to examine the effectiveness of various potential observing scenarios, spatial and spectral resolutions, signal to noise ratio, and other instrument characteristics. This information will lay the foundation for a new generation of spectral imagers optimized for slitless spectral operation, while retaining the ability to obtain spectral information in transient solar events.

  17. Performance analysis of improved methodology for incorporation of spatial/spectral variability in synthetic hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Scanlan, Neil W.; Schott, John R.; Brown, Scott D.

    2004-01-01

    Synthetic imagery has traditionally been used to support sensor design by enabling design engineers to pre-evaluate image products during the design and development stages. Increasingly exploitation analysts are looking to synthetic imagery as a way to develop and test exploitation algorithms before image data are available from new sensors. Even when sensors are available, synthetic imagery can significantly aid in algorithm development by providing a wide range of "ground truthed" images with varying illumination, atmospheric, viewing and scene conditions. One limitation of synthetic data is that the background variability is often too bland. It does not exhibit the spatial and spectral variability present in real data. In this work, four fundamentally different texture modeling algorithms will first be implemented as necessary into the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model environment. Two of the models to be tested are variants of a statistical Z-Score selection model, while the remaining two involve a texture synthesis and a spectral end-member fractional abundance map approach, respectively. A detailed comparative performance analysis of each model will then be carried out on several texturally significant regions of the resultant synthetic hyperspectral imagery. The quantitative assessment of each model will utilize a set of three peformance metrics that have been derived from spatial Gray Level Co-Occurrence Matrix (GLCM) analysis, hyperspectral Signal-to-Clutter Ratio (SCR) measures, and a new concept termed the Spectral Co-Occurrence Matrix (SCM) metric which permits the simultaneous measurement of spatial and spectral texture. Previous research efforts on the validation and performance analysis of texture characterization models have been largely qualitative in nature based on conducting visual inspections of synthetic textures in order to judge the degree of similarity to the original sample texture imagery. The quantitative measures used in this study will in combination attempt to determine which texture characterization models best capture the correct statistical and radiometric attributes of the corresponding real image textures in both the spatial and spectral domains. The motivation for this work is to refine our understanding of the complexities of texture phenomena so that an optimal texture characterization model that can accurately account for these complexities can be eventually implemented into a synthetic image generation (SIG) model. Further, conclusions will be drawn regarding which of the candidate texture models are able to achieve realistic levels of spatial and spectral clutter, thereby permitting more effective and robust testing of hyperspectral algorithms in synthetic imagery.

  18. Performance analysis of improved methodology for incorporation of spatial/spectral variability in synthetic hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Scanlan, Neil W.; Schott, John R.; Brown, Scott D.

    2003-12-01

    Synthetic imagery has traditionally been used to support sensor design by enabling design engineers to pre-evaluate image products during the design and development stages. Increasingly exploitation analysts are looking to synthetic imagery as a way to develop and test exploitation algorithms before image data are available from new sensors. Even when sensors are available, synthetic imagery can significantly aid in algorithm development by providing a wide range of "ground truthed" images with varying illumination, atmospheric, viewing and scene conditions. One limitation of synthetic data is that the background variability is often too bland. It does not exhibit the spatial and spectral variability present in real data. In this work, four fundamentally different texture modeling algorithms will first be implemented as necessary into the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model environment. Two of the models to be tested are variants of a statistical Z-Score selection model, while the remaining two involve a texture synthesis and a spectral end-member fractional abundance map approach, respectively. A detailed comparative performance analysis of each model will then be carried out on several texturally significant regions of the resultant synthetic hyperspectral imagery. The quantitative assessment of each model will utilize a set of three peformance metrics that have been derived from spatial Gray Level Co-Occurrence Matrix (GLCM) analysis, hyperspectral Signal-to-Clutter Ratio (SCR) measures, and a new concept termed the Spectral Co-Occurrence Matrix (SCM) metric which permits the simultaneous measurement of spatial and spectral texture. Previous research efforts on the validation and performance analysis of texture characterization models have been largely qualitative in nature based on conducting visual inspections of synthetic textures in order to judge the degree of similarity to the original sample texture imagery. The quantitative measures used in this study will in combination attempt to determine which texture characterization models best capture the correct statistical and radiometric attributes of the corresponding real image textures in both the spatial and spectral domains. The motivation for this work is to refine our understanding of the complexities of texture phenomena so that an optimal texture characterization model that can accurately account for these complexities can be eventually implemented into a synthetic image generation (SIG) model. Further, conclusions will be drawn regarding which of the candidate texture models are able to achieve realistic levels of spatial and spectral clutter, thereby permitting more effective and robust testing of hyperspectral algorithms in synthetic imagery.

  19. Parallel exploitation of a spatial-spectral classification approach for hyperspectral images on RVC-CAL

    NASA Astrophysics Data System (ADS)

    Lazcano, R.; Madroñal, D.; Fabelo, H.; Ortega, S.; Salvador, R.; Callicó, G. M.; Juárez, E.; Sanz, C.

    2017-10-01

    Hyperspectral Imaging (HI) assembles high resolution spectral information from hundreds of narrow bands across the electromagnetic spectrum, thus generating 3D data cubes in which each pixel gathers the spectral information of the reflectance of every spatial pixel. As a result, each image is composed of large volumes of data, which turns its processing into a challenge, as performance requirements have been continuously tightened. For instance, new HI applications demand real-time responses. Hence, parallel processing becomes a necessity to achieve this requirement, so the intrinsic parallelism of the algorithms must be exploited. In this paper, a spatial-spectral classification approach has been implemented using a dataflow language known as RVCCAL. This language represents a system as a set of functional units, and its main advantage is that it simplifies the parallelization process by mapping the different blocks over different processing units. The spatial-spectral classification approach aims at refining the classification results previously obtained by using a K-Nearest Neighbors (KNN) filtering process, in which both the pixel spectral value and the spatial coordinates are considered. To do so, KNN needs two inputs: a one-band representation of the hyperspectral image and the classification results provided by a pixel-wise classifier. Thus, spatial-spectral classification algorithm is divided into three different stages: a Principal Component Analysis (PCA) algorithm for computing the one-band representation of the image, a Support Vector Machine (SVM) classifier, and the KNN-based filtering algorithm. The parallelization of these algorithms shows promising results in terms of computational time, as the mapping of them over different cores presents a speedup of 2.69x when using 3 cores. Consequently, experimental results demonstrate that real-time processing of hyperspectral images is achievable.

  20. Compact full-motion video hyperspectral cameras: development, image processing, and applications

    NASA Astrophysics Data System (ADS)

    Kanaev, A. V.

    2015-10-01

    Emergence of spectral pixel-level color filters has enabled development of hyper-spectral Full Motion Video (FMV) sensors operating in visible (EO) and infrared (IR) wavelengths. The new class of hyper-spectral cameras opens broad possibilities of its utilization for military and industry purposes. Indeed, such cameras are able to classify materials as well as detect and track spectral signatures continuously in real time while simultaneously providing an operator the benefit of enhanced-discrimination-color video. Supporting these extensive capabilities requires significant computational processing of the collected spectral data. In general, two processing streams are envisioned for mosaic array cameras. The first is spectral computation that provides essential spectral content analysis e.g. detection or classification. The second is presentation of the video to an operator that can offer the best display of the content depending on the performed task e.g. providing spatial resolution enhancement or color coding of the spectral analysis. These processing streams can be executed in parallel or they can utilize each other's results. The spectral analysis algorithms have been developed extensively, however demosaicking of more than three equally-sampled spectral bands has been explored scarcely. We present unique approach to demosaicking based on multi-band super-resolution and show the trade-off between spatial resolution and spectral content. Using imagery collected with developed 9-band SWIR camera we demonstrate several of its concepts of operation including detection and tracking. We also compare the demosaicking results to the results of multi-frame super-resolution as well as to the combined multi-frame and multiband processing.

  1. Arrhythmia Mechanism and Scaling Effect on the Spectral Properties of Electroanatomical Maps With Manifold Harmonics.

    PubMed

    Sanroman-Junquera, Margarita; Mora-Jimenez, Inmaculada; Garcia-Alberola, Arcadio; Caamano, Antonio J; Trenor, Beatriz; Rojo-Alvarez, Jose L

    2018-04-01

    Spatial and temporal processing of intracardiac electrograms provides relevant information to support the arrhythmia ablation during electrophysiological studies. Current cardiac navigation systems (CNS) and electrocardiographic imaging (ECGI) build detailed 3-D electroanatomical maps (EAM), which represent the spatial anatomical distribution of bioelectrical features, such as activation time or voltage. We present a principled methodology for spectral analysis of both EAM geometry and bioelectrical feature in CNS or ECGI, including their spectral representation, cutoff frequency, or spatial sampling rate (SSR). Existing manifold harmonic techniques for spectral mesh analysis are adapted to account for a fourth dimension, corresponding to the EAM bioelectrical feature. Appropriate scaling is required to address different magnitudes and units. With our approach, simulated and real EAM showed strong SSR dependence on both the arrhythmia mechanism and the cardiac anatomical shape. For instance, high frequencies increased significantly the SSR because of the "early-meets-late" in flutter EAM, compared with the sinus rhythm. Besides, higher frequency components were obtained for the left atrium (more complex anatomy) than for the right atrium in sinus rhythm. The proposed manifold harmonics methodology opens the field toward new signal processing tools for principled EAM spatiofeature analysis in CNS and ECGI, and to an improved knowledge on arrhythmia mechanisms.

  2. A Skew-t space-varying regression model for the spectral analysis of resting state brain activity.

    PubMed

    Ismail, Salimah; Sun, Wenqi; Nathoo, Farouk S; Babul, Arif; Moiseev, Alexader; Beg, Mirza Faisal; Virji-Babul, Naznin

    2013-08-01

    It is known that in many neurological disorders such as Down syndrome, main brain rhythms shift their frequencies slightly, and characterizing the spatial distribution of these shifts is of interest. This article reports on the development of a Skew-t mixed model for the spatial analysis of resting state brain activity in healthy controls and individuals with Down syndrome. Time series of oscillatory brain activity are recorded using magnetoencephalography, and spectral summaries are examined at multiple sensor locations across the scalp. We focus on the mean frequency of the power spectral density, and use space-varying regression to examine associations with age, gender and Down syndrome across several scalp regions. Spatial smoothing priors are incorporated based on a multivariate Markov random field, and the markedly non-Gaussian nature of the spectral response variable is accommodated by the use of a Skew-t distribution. A range of models representing different assumptions on the association structure and response distribution are examined, and we conduct model selection using the deviance information criterion. (1) Our analysis suggests region-specific differences between healthy controls and individuals with Down syndrome, particularly in the left and right temporal regions, and produces smoothed maps indicating the scalp topography of the estimated differences.

  3. Solar Confocal interferometers for Sub-Picometer-Resolution Spectral Filters

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Pietraszewski, Chris; West, Edward A.; Dines. Terence C.

    2007-01-01

    The confocal Fabry-Perot interferometer allows sub-picometer spectral resolution of Fraunhofer line profiles. Such high spectral resolution is needed to keep pace with the higher spatial resolution of the new set of large-aperture solar telescopes. The line-of-sight spatial resolution derived for line profile inversions would then track the improvements of the transverse spatial scale provided by the larger apertures. In particular, profile inversion allows improved velocity and magnetic field gradients to be determined independent of multiple line analysis using different energy levels and ions. The confocal interferometer's unique properties allow a simultaneous increase in both etendue and spectral power. The higher throughput for the interferometer provides significant decrease in the aperture, which is important in spaceflight considerations. We have constructed and tested two confocal interferometers. A slow-response thermal-controlled interferometer provides a stable system for laboratory investigation, while a piezoelectric interferometer provides a rapid response for solar observations. In this paper we provide design parameters, show construction details, and report on the laboratory test for these interferometers. The field of view versus aperture for confocal interferometers is compared with other types of spectral imaging filters. We propose a multiple etalon system for observing with these units using existing planar interferometers as pre-filters. The radiometry for these tests established that high spectral resolution profiles can be obtained with imaging confocal interferometers. These sub-picometer spectral data of the photosphere in both the visible and near-infrared can provide important height variation information. However, at the diffraction-limited spatial resolution of the telescope, the spectral data is photon starved due to the decreased spectral passband.

  4. Assessment of spectral, misregistration, and spatial uncertainties inherent in the cross-calibration study

    USGS Publications Warehouse

    Chander, G.; Helder, D.L.; Aaron, David; Mishra, N.; Shrestha, A.K.

    2013-01-01

    Cross-calibration of satellite sensors permits the quantitative comparison of measurements obtained from different Earth Observing (EO) systems. Cross-calibration studies usually use simultaneous or near-simultaneous observations from several spaceborne sensors to develop band-by-band relationships through regression analysis. The investigation described in this paper focuses on evaluation of the uncertainties inherent in the cross-calibration process, including contributions due to different spectral responses, spectral resolution, spectral filter shift, geometric misregistrations, and spatial resolutions. The hyperspectral data from the Environmental Satellite SCanning Imaging Absorption SpectroMeter for Atmospheric CartograpHY and the EO-1 Hyperion, along with the relative spectral responses (RSRs) from the Landsat 7 Enhanced Thematic Mapper (TM) Plus and the Terra Moderate Resolution Imaging Spectroradiometer sensors, were used for the spectral uncertainty study. The data from Landsat 5 TM over five representative land cover types (desert, rangeland, grassland, deciduous forest, and coniferous forest) were used for the geometric misregistrations and spatial-resolution study. The spectral resolution uncertainty was found to be within 0.25%, spectral filter shift within 2.5%, geometric misregistrations within 0.35%, and spatial-resolution effects within 0.1% for the Libya 4 site. The one-sigma uncertainties presented in this paper are uncorrelated, and therefore, the uncertainties can be summed orthogonally. Furthermore, an overall total uncertainty was developed. In general, the results suggested that the spectral uncertainty is more dominant compared to other uncertainties presented in this paper. Therefore, the effect of the sensor RSR differences needs to be quantified and compensated to avoid large uncertainties in cross-calibration results.

  5. Relevance of Spectral Cues for Auditory Spatial Processing in the Occipital Cortex of the Blind

    PubMed Central

    Voss, Patrice; Lepore, Franco; Gougoux, Frédéric; Zatorre, Robert J.

    2011-01-01

    We have previously shown that some blind individuals can localize sounds more accurately than their sighted counterparts when one ear is obstructed, and that this ability is strongly associated with occipital cortex activity. Given that spectral cues are important for monaurally localizing sounds when one ear is obstructed, and that blind individuals are more sensitive to small spectral differences, we hypothesized that enhanced use of spectral cues via occipital cortex mechanisms could explain the better performance of blind individuals in monaural localization. Using positron-emission tomography (PET), we scanned blind and sighted persons as they discriminated between sounds originating from a single spatial position, but with different spectral profiles that simulated different spatial positions based on head-related transfer functions. We show here that a sub-group of early blind individuals showing superior monaural sound localization abilities performed significantly better than any other group on this spectral discrimination task. For all groups, performance was best for stimuli simulating peripheral positions, consistent with the notion that spectral cues are more helpful for discriminating peripheral sources. PET results showed that all blind groups showed cerebral blood flow increases in the occipital cortex; but this was also the case in the sighted group. A voxel-wise covariation analysis showed that more occipital recruitment was associated with better performance across all blind subjects but not the sighted. An inter-regional covariation analysis showed that the occipital activity in the blind covaried with that of several frontal and parietal regions known for their role in auditory spatial processing. Overall, these results support the notion that the superior ability of a sub-group of early-blind individuals to localize sounds is mediated by their superior ability to use spectral cues, and that this ability is subserved by cortical processing in the occipital cortex. PMID:21716600

  6. Spatial-spectral preprocessing for endmember extraction on GPU's

    NASA Astrophysics Data System (ADS)

    Jimenez, Luis I.; Plaza, Javier; Plaza, Antonio; Li, Jun

    2016-10-01

    Spectral unmixing is focused in the identification of spectrally pure signatures, called endmembers, and their corresponding abundances in each pixel of a hyperspectral image. Mainly focused on the spectral information contained in the hyperspectral images, endmember extraction techniques have recently included spatial information to achieve more accurate results. Several algorithms have been developed for automatic or semi-automatic identification of endmembers using spatial and spectral information, including the spectral-spatial endmember extraction (SSEE) where, within a preprocessing step in the technique, both sources of information are extracted from the hyperspectral image and equally used for this purpose. Previous works have implemented the SSEE technique in four main steps: 1) local eigenvectors calculation in each sub-region in which the original hyperspectral image is divided; 2) computation of the maxima and minima projection of all eigenvectors over the entire hyperspectral image in order to obtain a candidates pixels set; 3) expansion and averaging of the signatures of the candidate set; 4) ranking based on the spectral angle distance (SAD). The result of this method is a list of candidate signatures from which the endmembers can be extracted using various spectral-based techniques, such as orthogonal subspace projection (OSP), vertex component analysis (VCA) or N-FINDR. Considering the large volume of data and the complexity of the calculations, there is a need for efficient implementations. Latest- generation hardware accelerators such as commodity graphics processing units (GPUs) offer a good chance for improving the computational performance in this context. In this paper, we develop two different implementations of the SSEE algorithm using GPUs. Both are based on the eigenvectors computation within each sub-region of the first step, one using the singular value decomposition (SVD) and another one using principal component analysis (PCA). Based on our experiments with hyperspectral data sets, high computational performance is observed in both cases.

  7. Development and evaluation of a Hadamard transform imaging spectrometer and a Hadamard transform thermal imager

    NASA Technical Reports Server (NTRS)

    Harwit, M.; Swift, R.; Wattson, R.; Decker, J.; Paganetti, R.

    1976-01-01

    A spectrometric imager and a thermal imager, which achieve multiplexing by the use of binary optical encoding masks, were developed. The masks are based on orthogonal, pseudorandom digital codes derived from Hadamard matrices. Spatial and/or spectral data is obtained in the form of a Hadamard transform of the spatial and/or spectral scene; computer algorithms are then used to decode the data and reconstruct images of the original scene. The hardware, algorithms and processing/display facility are described. A number of spatial and spatial/spectral images are presented. The achievement of a signal-to-noise improvement due to the signal multiplexing was also demonstrated. An analysis of the results indicates both the situations for which the multiplex advantage may be gained, and the limitations of the technique. A number of potential applications of the spectrometric imager are discussed.

  8. Spatial variability of the Black Sea surface temperature from high resolution modeling and satellite measurements

    NASA Astrophysics Data System (ADS)

    Mizyuk, Artem; Senderov, Maxim; Korotaev, Gennady

    2016-04-01

    Large number of numerical ocean models were implemented for the Black Sea basin during last two decades. They reproduce rather similar structure of synoptical variability of the circulation. Since 00-s numerical studies of the mesoscale structure are carried out using high performance computing (HPC). With the growing capacity of computing resources it is now possible to reconstruct the Black Sea currents with spatial resolution of several hundreds meters. However, how realistic these results can be? In the proposed study an attempt is made to understand which spatial scales are reproduced by ocean model in the Black Sea. Simulations are made using parallel version of NEMO (Nucleus for European Modelling of the Ocean). A two regional configurations with spatial resolutions 5 km and 2.5 km are described. Comparison of the SST from simulations with two spatial resolutions shows rather qualitative difference of the spatial structures. Results of high resolution simulation are compared also with satellite observations and observation-based products from Copernicus using spatial correlation and spectral analysis. Spatial scales of correlations functions for simulated and observed SST are rather close and differs much from satellite SST reanalysis. Evolution of spectral density for modelled SST and reanalysis showed agreed time periods of small scales intensification. Using of the spectral analysis for satellite measurements is complicated due to gaps. The research leading to this results has received funding from Russian Science Foundation (project № 15-17-20020)

  9. Relationships Among Peripheral and Central Electrophysiological Measures of Spatial and Spectral Selectivity and Speech Perception in Cochlear Implant Users.

    PubMed

    Scheperle, Rachel A; Abbas, Paul J

    2015-01-01

    The ability to perceive speech is related to the listener's ability to differentiate among frequencies (i.e., spectral resolution). Cochlear implant (CI) users exhibit variable speech-perception and spectral-resolution abilities, which can be attributed in part to the extent of electrode interactions at the periphery (i.e., spatial selectivity). However, electrophysiological measures of peripheral spatial selectivity have not been found to correlate with speech perception. The purpose of this study was to evaluate auditory processing at the periphery and cortex using both simple and spectrally complex stimuli to better understand the stages of neural processing underlying speech perception. The hypotheses were that (1) by more completely characterizing peripheral excitation patterns than in previous studies, significant correlations with measures of spectral selectivity and speech perception would be observed, (2) adding information about processing at a level central to the auditory nerve would account for additional variability in speech perception, and (3) responses elicited with spectrally complex stimuli would be more strongly correlated with speech perception than responses elicited with spectrally simple stimuli. Eleven adult CI users participated. Three experimental processor programs (MAPs) were created to vary the likelihood of electrode interactions within each participant. For each MAP, a subset of 7 of 22 intracochlear electrodes was activated: adjacent (MAP 1), every other (MAP 2), or every third (MAP 3). Peripheral spatial selectivity was assessed using the electrically evoked compound action potential (ECAP) to obtain channel-interaction functions for all activated electrodes (13 functions total). Central processing was assessed by eliciting the auditory change complex with both spatial (electrode pairs) and spectral (rippled noise) stimulus changes. Speech-perception measures included vowel discrimination and the Bamford-Kowal-Bench Speech-in-Noise test. Spatial and spectral selectivity and speech perception were expected to be poorest with MAP 1 (closest electrode spacing) and best with MAP 3 (widest electrode spacing). Relationships among the electrophysiological and speech-perception measures were evaluated using mixed-model and simple linear regression analyses. All electrophysiological measures were significantly correlated with each other and with speech scores for the mixed-model analysis, which takes into account multiple measures per person (i.e., experimental MAPs). The ECAP measures were the best predictor. In the simple linear regression analysis on MAP 3 data, only the cortical measures were significantly correlated with speech scores; spectral auditory change complex amplitude was the strongest predictor. The results suggest that both peripheral and central electrophysiological measures of spatial and spectral selectivity provide valuable information about speech perception. Clinically, it is often desirable to optimize performance for individual CI users. These results suggest that ECAP measures may be most useful for within-subject applications when multiple measures are performed to make decisions about processor options. They also suggest that if the goal is to compare performance across individuals based on a single measure, then processing central to the auditory nerve (specifically, cortical measures of discriminability) should be considered.

  10. Implications of sensor design for coral reef detection: Upscaling ground hyperspectral imagery in spatial and spectral scales

    NASA Astrophysics Data System (ADS)

    Caras, Tamir; Hedley, John; Karnieli, Arnon

    2017-12-01

    Remote sensing offers a potential tool for large scale environmental surveying and monitoring. However, remote observations of coral reefs are difficult especially due to the spatial and spectral complexity of the target compared to sensor specifications as well as the environmental implications of the water medium above. The development of sensors is driven by technological advances and the desired products. Currently, spaceborne systems are technologically limited to a choice between high spectral resolution and high spatial resolution, but not both. The current study explores the dilemma of whether future sensor design for marine monitoring should prioritise on improving their spatial or spectral resolution. To address this question, a spatially and spectrally resampled ground-level hyperspectral image was used to test two classification elements: (1) how the tradeoff between spatial and spectral resolutions affects classification; and (2) how a noise reduction by majority filter might improve classification accuracy. The studied reef, in the Gulf of Aqaba (Eilat), Israel, is heterogeneous and complex so the local substrate patches are generally finer than currently available imagery. Therefore, the tested spatial resolution was broadly divided into four scale categories from five millimeters to one meter. Spectral resolution resampling aimed to mimic currently available and forthcoming spaceborne sensors such as (1) Environmental Mapping and Analysis Program (EnMAP) that is characterized by 25 bands of 6.5 nm width; (2) VENμS with 12 narrow bands; and (3) the WorldView series with broadband multispectral resolution. Results suggest that spatial resolution should generally be prioritized for coral reef classification because the finer spatial scale tested (pixel size < 0.1 m) may compensate for some low spectral resolution drawbacks. In this regard, it is shown that the post-classification majority filtering substantially improves the accuracy of all pixel sizes up to the point where the kernel size reaches the average unit size (pixel < 0.25 m). However, careful investigation as to the effect of band distribution and choice could improve the sensor suitability for the marine environment task. This in mind, while the focus in this study was on the technologically limited spaceborne design, aerial sensors may presently provide an opportunity to implement the suggested setup.

  11. EEG resolutions in detecting and decoding finger movements from spectral analysis

    PubMed Central

    Xiao, Ran; Ding, Lei

    2015-01-01

    Mu/beta rhythms are well-studied brain activities that originate from sensorimotor cortices. These rhythms reveal spectral changes in alpha and beta bands induced by movements of different body parts, e.g., hands and limbs, in electroencephalography (EEG) signals. However, less can be revealed in them about movements of different fine body parts that activate adjacent brain regions, such as individual fingers from one hand. Several studies have reported spatial and temporal couplings of rhythmic activities at different frequency bands, suggesting the existence of well-defined spectral structures across multiple frequency bands. In the present study, spectral principal component analysis (PCA) was applied on EEG data, obtained from a finger movement task, to identify cross-frequency spectral structures. Features from identified spectral structures were examined in their spatial patterns, cross-condition pattern changes, detection capability of finger movements from resting, and decoding performance of individual finger movements in comparison to classic mu/beta rhythms. These new features reveal some similar, but more different spatial and spectral patterns as compared with classic mu/beta rhythms. Decoding results further indicate that these new features (91%) can detect finger movements much better than classic mu/beta rhythms (75.6%). More importantly, these new features reveal discriminative information about movements of different fingers (fine body-part movements), which is not available in classic mu/beta rhythms. The capability in decoding fingers (and hand gestures in the future) from EEG will contribute significantly to the development of non-invasive BCI and neuroprosthesis with intuitive and flexible controls. PMID:26388720

  12. 3D tensor-based blind multispectral image decomposition for tumor demarcation

    NASA Astrophysics Data System (ADS)

    Kopriva, Ivica; Peršin, Antun

    2010-03-01

    Blind decomposition of multi-spectral fluorescent image for tumor demarcation is formulated exploiting tensorial structure of the image. First contribution of the paper is identification of the matrix of spectral responses and 3D tensor of spatial distributions of the materials present in the image from Tucker3 or PARAFAC models of 3D image tensor. Second contribution of the paper is clustering based estimation of the number of the materials present in the image as well as matrix of their spectral profiles. 3D tensor of the spatial distributions of the materials is recovered through 3-mode multiplication of the multi-spectral image tensor and inverse of the matrix of spectral profiles. Tensor representation of the multi-spectral image preserves its local spatial structure that is lost, due to vectorization process, when matrix factorization-based decomposition methods (such as non-negative matrix factorization and independent component analysis) are used. Superior performance of the tensor-based image decomposition over matrix factorization-based decompositions is demonstrated on experimental red-green-blue (RGB) image with known ground truth as well as on RGB fluorescent images of the skin tumor (basal cell carcinoma).

  13. Spatial and Temporal Dust Source Variability in Northern China Identified Using Advanced Remote Sensing Analysis

    NASA Technical Reports Server (NTRS)

    Taramelli, A.; Pasqui, M.; Barbour, J.; Kirschbaum, D.; Bottai, L.; Busillo, C.; Calastrini, F.; Guarnieri, F.; Small, C.

    2013-01-01

    The aim of this research is to provide a detailed characterization of spatial patterns and temporal trends in the regional and local dust source areas within the desert of the Alashan Prefecture (Inner Mongolia, China). This problem was approached through multi-scale remote sensing analysis of vegetation changes. The primary requirements for this regional analysis are high spatial and spectral resolution data, accurate spectral calibration and good temporal resolution with a suitable temporal baseline. Landsat analysis and field validation along with the low spatial resolution classifications from MODIS and AVHRR are combined to provide a reliable characterization of the different potential dust-producing sources. The representation of intra-annual and inter-annual Normalized Difference Vegetation Index (NDVI) trend to assess land cover discrimination for mapping potential dust source using MODIS and AVHRR at larger scale is enhanced by Landsat Spectral Mixing Analysis (SMA). The combined methodology is to determine the extent to which Landsat can distinguish important soils types in order to better understand how soil reflectance behaves at seasonal and inter-annual timescales. As a final result mapping soil surface properties using SMA is representative of responses of different land and soil cover previously identified by NDVI trend. The results could be used in dust emission models even if they are not reflecting aggregate formation, soil stability or particle coatings showing to be critical for accurately represent dust source over different regional and local emitting areas.

  14. Novel Multidimensional Cross-Correlation Data Comparison Techniques for Spectroscopic Discernment in a Volumetrically Sensitive, Moderating Type Neutron Spectrometer

    NASA Astrophysics Data System (ADS)

    Hoshor, Cory; Young, Stephan; Rogers, Brent; Currie, James; Oakes, Thomas; Scott, Paul; Miller, William; Caruso, Anthony

    2014-03-01

    A novel application of the Pearson Cross-Correlation to neutron spectral discernment in a moderating type neutron spectrometer is introduced. This cross-correlation analysis will be applied to spectral response data collected through both MCNP simulation and empirical measurement by the volumetrically sensitive spectrometer for comparison in 1, 2, and 3 spatial dimensions. The spectroscopic analysis methods discussed will be demonstrated to discern various common spectral and monoenergetic neutron sources.

  15. Improved tolerance to off-resonance in spectral-spatial EPI of hyperpolarized [1-13 C]pyruvate and metabolites.

    PubMed

    Lau, Justin Y C; Geraghty, Benjamin J; Chen, Albert P; Cunningham, Charles H

    2018-09-01

    For 13 C echo-planar imaging (EPI) with spectral-spatial excitation, main field inhomogeneity can result in reduced flip angle and spatial artifacts. A hybrid time-resolved pulse sequence, multi-echo spectral-spatial EPI, is proposed combining broader spectral-spatial passbands for greater off-resonance tolerance with a multi-echo acquisition to separate signals from potentially co-excited resonances. The performance of the imaging sequence and the reconstruction pipeline were evaluated for 1 H imaging using a series of increasingly dilute 1,4-dioxane solutions and for 13 C imaging using an ethylene glycol phantom. Hyperpolarized [1- 13 C]pyruvate was administered to two healthy rats. Multi-echo data of the rat kidneys were acquired to test realistic cases of off-resonance. Analysis of separated images of water and 1,4-dioxane following multi-echo signal decomposition showed water-to-dioxane 1 H signal ratios that were in agreement with the independent measurements by 1 H spectroscopy for all four concentrations of 1,4-dioxane. The 13 C signal ratio of two co-excited resonances of ethylene glycol was accurately recovered after correction for the spectral profile of the redesigned spectral-spatial pulse. In vivo, successful separation of lactate and pyruvate-hydrate signals was achieved for all except the early time points during which signal variations exceeded the temporal resolution of the multi-echo acquisition. Improved tolerance to off-resonance in the new 13 C data acquisition pipeline was demonstrated in vitro and in vivo. Magn Reson Med 80:925-934, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.

  16. Cyclic additional optical true time delay for microwave beam steering with spectral filtering.

    PubMed

    Cao, Z; Lu, R; Wang, Q; Tessema, N; Jiao, Y; van den Boom, H P A; Tangdiongga, E; Koonen, A M J

    2014-06-15

    Optical true time delay (OTTD) is an attractive way to realize microwave beam steering (MBS) due to its inherent features of broadband, low-loss, and compactness. In this Letter, we propose a novel OTTD approach named cyclic additional optical true time delay (CAO-TTD). It applies additional integer delays of the microwave carrier frequency to achieve spectral filtering but without disturbing the spatial filtering (beam steering). Based on such concept, a broadband MBS scheme for high-capacity wireless communication is proposed, which allows the tuning of both spectral filtering and spatial filtering. The experimental results match well with the theoretical analysis.

  17. Spectral-Spatial Scale Invariant Feature Transform for Hyperspectral Images.

    PubMed

    Al-Khafaji, Suhad Lateef; Jun Zhou; Zia, Ali; Liew, Alan Wee-Chung

    2018-02-01

    Spectral-spatial feature extraction is an important task in hyperspectral image processing. In this paper we propose a novel method to extract distinctive invariant features from hyperspectral images for registration of hyperspectral images with different spectral conditions. Spectral condition means images are captured with different incident lights, viewing angles, or using different hyperspectral cameras. In addition, spectral condition includes images of objects with the same shape but different materials. This method, which is named spectral-spatial scale invariant feature transform (SS-SIFT), explores both spectral and spatial dimensions simultaneously to extract spectral and geometric transformation invariant features. Similar to the classic SIFT algorithm, SS-SIFT consists of keypoint detection and descriptor construction steps. Keypoints are extracted from spectral-spatial scale space and are detected from extrema after 3D difference of Gaussian is applied to the data cube. Two descriptors are proposed for each keypoint by exploring the distribution of spectral-spatial gradient magnitude in its local 3D neighborhood. The effectiveness of the SS-SIFT approach is validated on images collected in different light conditions, different geometric projections, and using two hyperspectral cameras with different spectral wavelength ranges and resolutions. The experimental results show that our method generates robust invariant features for spectral-spatial image matching.

  18. Wavelength Scanning with a Tilting Interference Filter for Glow-Discharge Elemental Imaging.

    PubMed

    Storey, Andrew P; Ray, Steven J; Hoffmann, Volker; Voronov, Maxim; Engelhard, Carsten; Buscher, Wolfgang; Hieftje, Gary M

    2017-06-01

    Glow discharges have long been used for depth profiling and bulk analysis of solid samples. In addition, over the past decade, several methods of obtaining lateral surface elemental distributions have been introduced, each with its own strengths and weaknesses. Challenges for each of these techniques are acceptable optical throughput and added instrumental complexity. Here, these problems are addressed with a tilting-filter instrument. A pulsed glow discharge is coupled to an optical system comprising an adjustable-angle tilting filter, collimating and imaging lenses, and a gated, intensified charge-coupled device (CCD) camera, which together provide surface elemental mapping of solid samples. The tilting-filter spectrometer is instrumentally simpler, produces less image distortion, and achieves higher optical throughput than a monochromator-based instrument, but has a much more limited tunable spectral range and poorer spectral resolution. As a result, the tilting-filter spectrometer is limited to single-element or two-element determinations, and only when the target spectral lines fall within an appropriate spectral range and can be spectrally discerned. Spectral interferences that result from heterogeneous impurities can be flagged and overcome by observing the spatially resolved signal response across the available tunable spectral range. The instrument has been characterized and evaluated for the spatially resolved analysis of glow-discharge emission from selected but representative samples.

  19. Semiclassical spatial correlations in chaotic wave functions.

    PubMed

    Toscano, Fabricio; Lewenkopf, Caio H

    2002-03-01

    We study the spatial autocorrelation of energy eigenfunctions psi(n)(q) corresponding to classically chaotic systems in the semiclassical regime. Our analysis is based on the Weyl-Wigner formalism for the spectral average C(epsilon)(q(+),q(-),E) of psi(n)(q(+))psi(*)(n)(q(-)), defined as the average over eigenstates within an energy window epsilon centered at E. In this framework C(epsilon) is the Fourier transform in the momentum space of the spectral Wigner function W(x,E;epsilon). Our study reveals the chord structure that C(epsilon) inherits from the spectral Wigner function showing the interplay between the size of the spectral average window, and the spatial separation scale. We discuss under which conditions is it possible to define a local system independent regime for C(epsilon). In doing so, we derive an expression that bridges the existing formulas in the literature and find expressions for C(epsilon)(q(+),q(-),E) valid for any separation size /q(+)-q(-)/.

  20. Estimation of sub-pixel water area on Tibet plateau using multiple endmembers spectral mixture spectral analysis from MODIS data

    NASA Astrophysics Data System (ADS)

    Cui, Qian; Shi, Jiancheng; Xu, Yuanliu

    2011-12-01

    Water is the basic needs for human society, and the determining factor of stability of ecosystem as well. There are lots of lakes on Tibet Plateau, which will lead to flood and mudslide when the water expands sharply. At present, water area is extracted from TM or SPOT data for their high spatial resolution; however, their temporal resolution is insufficient. MODIS data have high temporal resolution and broad coverage. So it is valuable resource for detecting the change of water area. Because of its low spatial resolution, mixed-pixels are common. In this paper, four spectral libraries are built using MOD09A1 product, based on that, water body is extracted in sub-pixels utilizing Multiple Endmembers Spectral Mixture Analysis (MESMA) using MODIS daily reflectance data MOD09GA. The unmixed result is comparing with contemporaneous TM data and it is proved that this method has high accuracy.

  1. Marker-Based Hierarchical Segmentation and Classification Approach for Hyperspectral Imagery

    NASA Technical Reports Server (NTRS)

    Tarabalka, Yuliya; Tilton, James C.; Benediktsson, Jon Atli; Chanussot, Jocelyn

    2011-01-01

    The Hierarchical SEGmentation (HSEG) algorithm, which is a combination of hierarchical step-wise optimization and spectral clustering, has given good performances for hyperspectral image analysis. This technique produces at its output a hierarchical set of image segmentations. The automated selection of a single segmentation level is often necessary. We propose and investigate the use of automatically selected markers for this purpose. In this paper, a novel Marker-based HSEG (M-HSEG) method for spectral-spatial classification of hyperspectral images is proposed. First, pixelwise classification is performed and the most reliably classified pixels are selected as markers, with the corresponding class labels. Then, a novel constrained marker-based HSEG algorithm is applied, resulting in a spectral-spatial classification map. The experimental results show that the proposed approach yields accurate segmentation and classification maps, and thus is attractive for hyperspectral image analysis.

  2. Global analysis of microscopic fluorescence lifetime images using spectral segmentation and a digital micromirror spatial illuminator.

    PubMed

    Bednarkiewicz, Artur; Whelan, Maurice P

    2008-01-01

    Fluorescence lifetime imaging (FLIM) is very demanding from a technical and computational perspective, and the output is usually a compromise between acquisition/processing time and data accuracy and precision. We present a new approach to acquisition, analysis, and reconstruction of microscopic FLIM images by employing a digital micromirror device (DMD) as a spatial illuminator. In the first step, the whole field fluorescence image is collected by a color charge-coupled device (CCD) camera. Further qualitative spectral analysis and sample segmentation are performed to spatially distinguish between spectrally different regions on the sample. Next, the fluorescence of the sample is excited segment by segment, and fluorescence lifetimes are acquired with a photon counting technique. FLIM image reconstruction is performed by either raster scanning the sample or by directly accessing specific regions of interest. The unique features of the DMD illuminator allow the rapid on-line measurement of global good initial parameters (GIP), which are supplied to the first iteration of the fitting algorithm. As a consequence, a decrease of the computation time required to obtain a satisfactory quality-of-fit is achieved without compromising the accuracy and precision of the lifetime measurements.

  3. Using experimental design and spatial analyses to improve the precision of NDVI estimates in upland cotton field trials

    USDA-ARS?s Scientific Manuscript database

    Controlling for spatial variability is important in high-throughput phenotyping studies that enable large numbers of genotypes to be evaluated across time and space. In the current study, we compared the efficacy of different experimental designs and spatial models in the analysis of canopy spectral...

  4. An Improved Variational Method for Hyperspectral Image Pansharpening with the Constraint of Spectral Difference Minimization

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Chen, Q.; Shen, Y.; Chen, Q.; Liu, X.

    2017-09-01

    Variational pansharpening can enhance the spatial resolution of a hyperspectral (HS) image using a high-resolution panchromatic (PAN) image. However, this technology may lead to spectral distortion that obviously affect the accuracy of data analysis. In this article, we propose an improved variational method for HS image pansharpening with the constraint of spectral difference minimization. We extend the energy function of the classic variational pansharpening method by adding a new spectral fidelity term. This fidelity term is designed following the definition of spectral angle mapper, which means that for every pixel, the spectral difference value of any two bands in the HS image is in equal proportion to that of the two corresponding bands in the pansharpened image. Gradient descent method is adopted to find the optimal solution of the modified energy function, and the pansharpened image can be reconstructed. Experimental results demonstrate that the constraint of spectral difference minimization is able to preserve the original spectral information well in HS images, and reduce the spectral distortion effectively. Compared to original variational method, our method performs better in both visual and quantitative evaluation, and achieves a good trade-off between spatial and spectral information.

  5. Fourier transform infrared spectroscopy microscopic imaging classification based on spatial-spectral features

    NASA Astrophysics Data System (ADS)

    Liu, Lian; Yang, Xiukun; Zhong, Mingliang; Liu, Yao; Jing, Xiaojun; Yang, Qin

    2018-04-01

    The discrete fractional Brownian incremental random (DFBIR) field is used to describe the irregular, random, and highly complex shapes of natural objects such as coastlines and biological tissues, for which traditional Euclidean geometry cannot be used. In this paper, an anisotropic variable window (AVW) directional operator based on the DFBIR field model is proposed for extracting spatial characteristics of Fourier transform infrared spectroscopy (FTIR) microscopic imaging. Probabilistic principal component analysis first extracts spectral features, and then the spatial features of the proposed AVW directional operator are combined with the former to construct a spatial-spectral structure, which increases feature-related information and helps a support vector machine classifier to obtain more efficient distribution-related information. Compared to Haralick’s grey-level co-occurrence matrix, Gabor filters, and local binary patterns (e.g. uniform LBPs, rotation-invariant LBPs, uniform rotation-invariant LBPs), experiments on three FTIR spectroscopy microscopic imaging datasets show that the proposed AVW directional operator is more advantageous in terms of classification accuracy, particularly for low-dimensional spaces of spatial characteristics.

  6. Relationships Among Peripheral and Central Electrophysiological Measures of Spatial and Spectral Selectivity and Speech Perception in Cochlear Implant Users

    PubMed Central

    Scheperle, Rachel A.; Abbas, Paul J.

    2014-01-01

    Objectives The ability to perceive speech is related to the listener’s ability to differentiate among frequencies (i.e., spectral resolution). Cochlear implant (CI) users exhibit variable speech-perception and spectral-resolution abilities, which can be attributed in part to the extent of electrode interactions at the periphery (i.e., spatial selectivity). However, electrophysiological measures of peripheral spatial selectivity have not been found to correlate with speech perception. The purpose of this study was to evaluate auditory processing at the periphery and cortex using both simple and spectrally complex stimuli to better understand the stages of neural processing underlying speech perception. The hypotheses were that (1) by more completely characterizing peripheral excitation patterns than in previous studies, significant correlations with measures of spectral selectivity and speech perception would be observed, (2) adding information about processing at a level central to the auditory nerve would account for additional variability in speech perception, and (3) responses elicited with spectrally complex stimuli would be more strongly correlated with speech perception than responses elicited with spectrally simple stimuli. Design Eleven adult CI users participated. Three experimental processor programs (MAPs) were created to vary the likelihood of electrode interactions within each participant. For each MAP, a subset of 7 of 22 intracochlear electrodes was activated: adjacent (MAP 1), every-other (MAP 2), or every third (MAP 3). Peripheral spatial selectivity was assessed using the electrically evoked compound action potential (ECAP) to obtain channel-interaction functions for all activated electrodes (13 functions total). Central processing was assessed by eliciting the auditory change complex (ACC) with both spatial (electrode pairs) and spectral (rippled noise) stimulus changes. Speech-perception measures included vowel-discrimination and the Bamford-Kowal-Bench Sentence-in-Noise (BKB-SIN) test. Spatial and spectral selectivity and speech perception were expected to be poorest with MAP 1 (closest electrode spacing) and best with MAP 3 (widest electrode spacing). Relationships among the electrophysiological and speech-perception measures were evaluated using mixed-model and simple linear regression analyses. Results All electrophysiological measures were significantly correlated with each other and with speech perception for the mixed-model analysis, which takes into account multiple measures per person (i.e. experimental MAPs). The ECAP measures were the best predictor of speech perception. In the simple linear regression analysis on MAP 3 data, only the cortical measures were significantly correlated with speech; spectral ACC amplitude was the strongest predictor. Conclusions The results suggest that both peripheral and central electrophysiological measures of spatial and spectral selectivity provide valuable information about speech perception. Clinically, it is often desirable to optimize performance for individual CI users. These results suggest that ECAP measures may be the most useful for within-subject applications, when multiple measures are performed to make decisions about processor options. They also suggest that if the goal is to compare performance across individuals based on single measure, then processing central to the auditory nerve (specifically, cortical measures of discriminability) should be considered. PMID:25658746

  7. Evaluation techniques and metrics for assessment of pan+MSI fusion (pansharpening)

    NASA Astrophysics Data System (ADS)

    Mercovich, Ryan A.

    2015-05-01

    Fusion of broadband panchromatic data with narrow band multispectral data - pansharpening - is a common and often studied problem in remote sensing. Many methods exist to produce data fusion results with the best possible spatial and spectral characteristics, and a number have been commercially implemented. This study examines the output products of 4 commercial implementations with regard to their relative strengths and weaknesses for a set of defined image characteristics and analyst use-cases. Image characteristics used are spatial detail, spatial quality, spectral integrity, and composite color quality (hue and saturation), and analyst use-cases included a variety of object detection and identification tasks. The imagery comes courtesy of the RIT SHARE 2012 collect. Two approaches are used to evaluate the pansharpening methods, analyst evaluation or qualitative measure and image quality metrics or quantitative measures. Visual analyst evaluation results are compared with metric results to determine which metrics best measure the defined image characteristics and product use-cases and to support future rigorous characterization the metrics' correlation with the analyst results. Because pansharpening represents a trade between adding spatial information from the panchromatic image, and retaining spectral information from the MSI channels, the metrics examined are grouped into spatial improvement metrics and spectral preservation metrics. A single metric to quantify the quality of a pansharpening method would necessarily be a combination of weighted spatial and spectral metrics based on the importance of various spatial and spectral characteristics for the primary task of interest. Appropriate metrics and weights for such a combined metric are proposed here, based on the conducted analyst evaluation. Additionally, during this work, a metric was developed specifically focused on assessment of spatial structure improvement relative to a reference image and independent of scene content. Using analysis of Fourier transform images, a measure of high-frequency content is computed in small sub-segments of the image. The average increase in high-frequency content across the image is used as the metric, where averaging across sub-segments combats the scene dependent nature of typical image sharpness techniques. This metric had an improved range of scores, better representing difference in the test set than other common spatial structure metrics.

  8. Simulation of multispectral multisource for device of consumer and medicine products analysis

    NASA Astrophysics Data System (ADS)

    Korolev, Timofey K.; Peretyagin, Vladimir S.

    2017-06-01

    One of the results of intensive development of led technology was the creation of a multi-component, managed devices and illumination/irradiation used in various fields of production (e.g., food industry analysis, food quality). The use of LEDs has become possible due to their structure determining spatial, energy, electrical, thermal and other characteristics. However, the development of the devices for illumination/irradiation require closer attention in the case if you want to provide precise illumination to the area of analysis, located at a specified distance from the radiation source. The present work is devoted to the development and modelling of a specialized source of radiation intended for solving problems of analysis of food products, medicines and water for suitability in drinking. In this work, we provided a mathematical model of spatial and spectral distribution of irridation from the source of infrared radiation ring structure. When you create this kind of source, you address factors such spectral component, the power settings, the spatial and energy components of the diodes.

  9. Feasibility study of a novel miniaturized spectral imaging system architecture in UAV surveillance

    NASA Astrophysics Data System (ADS)

    Liu, Shuyang; Zhou, Tao; Jia, Xiaodong; Cui, Hushan; Huang, Chengjun

    2016-01-01

    The spectral imaging technology is able to analysis the spectral and spatial geometric character of the target at the same time. To break through the limitation brought by the size, weight and cost of the traditional spectral imaging instrument, a miniaturized novel spectral imaging based on CMOS processing has been introduced in the market. This technology has enabled the possibility of applying spectral imaging in the UAV platform. In this paper, the relevant technology and the related possible applications have been presented to implement a quick, flexible and more detailed remote sensing system.

  10. Resolution Enhancement of Hyperion Hyperspectral Data using Ikonos Multispectral Data

    DTIC Science & Technology

    2007-09-01

    spatial - resolution hyperspectral image to produce a sharpened product. The result is a product that has the spectral properties of the ...multispectral sensors. In this work, we examine the benefits of combining data from high- spatial - resolution , low- spectral - resolution spectral imaging...sensors with data obtained from high- spectral - resolution , low- spatial - resolution spectral imaging sensors.

  11. Dynamics of fractional condensation of a substance on a probe for spectral analysis

    NASA Astrophysics Data System (ADS)

    Zakharov, Yu. A.; Kokorina, O. B.; Lysogorskiĭ, Yu. V.; Sevastianov, A. A.

    2008-11-01

    The fractional separation of trace metals on a cold tungsten probe from salt matrix vapor, which interferes with the spectral analysis, is studied. The spatial structure of the vapor flows of sodium chloride, potassium sulfate, and indium atoms is visualized at characteristic wavelengths as they interact with the probe. The vapor flow rate and the probe orientation were varied. It is found that the smoke of the matrix does not prevent the deposition of the metal on the probe because of spatial separation of these fractions and that the detrimental effect of thermal gas expansion and other factors is eliminated. The sensitivity of the atomic absorption analysis of indium impurities in these salts is increased by an order of magnitude.

  12. Spatial Variations of Spectral Properties of (21) Lutetia as Observed by OSIRIS/Rosetta

    NASA Astrophysics Data System (ADS)

    Leyrat, Cedric; Sierks, H.; Barbieri, C.; Barucci, A.; Da Deppo, V.; De Leon, J.; Fulchignoni, M.; Fornasier, S.; Groussin, O.; Hviid, S. F.; Jorda, L.; Keller, H. U.; La Forgia, F.; Lara, L.; Lazzarin, M.; Magrin, S.; Marchi, S.; Thomas, N.; Schroder, S. E.; OSIRIS Team

    2010-10-01

    On July 10, 2010, the Rosetta ESA/NASA spacecraft successfully flew by the asteroid (21) Lutetia, which becomes the largest asteroid observed by a space probe. The closest approach occurred at 15H45 UTC at a relative speed of 15km/s and a relative distance of 3160 km. The Narrow Angle Camera (NAC) and the Wide Angle Camera (WAC) of the OSIRIS instrument onboard Rosetta acquired images at different phase angles ranging from almost zero to more than 150 degrees. The best spatial resolution (60 m/pixel) allowed to reveal a very complex topography with several features and different crater's surface densities. Spectrophotometric analysis of the data could suggest spatial variations of the albedo and spectral properties at the surface of the asteroid, at least in the northern hemisphere. Numerous sets of data have been obtained at different wavelengths from 270nm to 980nm. We will first present a color-color analysis of data in order to locate landscapes where surface variegation is present. We will also present a more accurate study of spectral properties using the shape model and different statistical methods. Possible variations of the surface spectral properties with the slope of the ground and the gravity field orientation will be discussed as well.

  13. Spatial compression algorithm for the analysis of very large multivariate images

    DOEpatents

    Keenan, Michael R [Albuquerque, NM

    2008-07-15

    A method for spatially compressing data sets enables the efficient analysis of very large multivariate images. The spatial compression algorithms use a wavelet transformation to map an image into a compressed image containing a smaller number of pixels that retain the original image's information content. Image analysis can then be performed on a compressed data matrix consisting of a reduced number of significant wavelet coefficients. Furthermore, a block algorithm can be used for performing common operations more efficiently. The spatial compression algorithms can be combined with spectral compression algorithms to provide further computational efficiencies.

  14. Spatial and spectral imaging of point-spread functions using a spatial light modulator

    NASA Astrophysics Data System (ADS)

    Munagavalasa, Sravan; Schroeder, Bryce; Hua, Xuanwen; Jia, Shu

    2017-12-01

    We develop a point-spread function (PSF) engineering approach to imaging the spatial and spectral information of molecular emissions using a spatial light modulator (SLM). We show that a dispersive grating pattern imposed upon the emission reveals spectral information. We also propose a deconvolution model that allows the decoupling of the spectral and 3D spatial information in engineered PSFs. The work is readily applicable to single-molecule measurements and fluorescent microscopy.

  15. A spatio-spectral polarization analysis of 1 µm-pumped bulk supercontinuum in a cubic crystal (YAG)

    NASA Astrophysics Data System (ADS)

    Choudhuri, Aradhana; Chatterjee, Gourab; Zheng, Jiaan; Hartl, Ingmar; Ruehl, Axel; Dwayne Miller, R. J.

    2018-06-01

    We present the first systematic study of the spatio-spectral polarization properties of a supercontinuum generated in a cubic crystal, yttrium-aluminum garnet (YAG), including a full spectral analysis of the white light core and surrounding ring structure. We observe no depolarization of the supercontinuum, and no spatial dependence of polarization ratios for any wavelength. We discuss the discrepancy of YAG's polarization behavior in the context of well-established results in literature reporting self-induced depolarization in other cubic crystals.

  16. An explorative chemometric approach applied to hyperspectral images for the study of illuminated manuscripts

    NASA Astrophysics Data System (ADS)

    Catelli, Emilio; Randeberg, Lise Lyngsnes; Alsberg, Bjørn Kåre; Gebremariam, Kidane Fanta; Bracci, Silvano

    2017-04-01

    Hyperspectral imaging (HSI) is a fast non-invasive imaging technology recently applied in the field of art conservation. With the help of chemometrics, important information about the spectral properties and spatial distribution of pigments can be extracted from HSI data. With the intent of expanding the applications of chemometrics to the interpretation of hyperspectral images of historical documents, and, at the same time, to study the colorants and their spatial distribution on ancient illuminated manuscripts, an explorative chemometric approach is here presented. The method makes use of chemometric tools for spectral de-noising (minimum noise fraction (MNF)) and image analysis (multivariate image analysis (MIA) and iterative key set factor analysis (IKSFA)/spectral angle mapper (SAM)) which have given an efficient separation, classification and mapping of colorants from visible-near-infrared (VNIR) hyperspectral images of an ancient illuminated fragment. The identification of colorants was achieved by extracting and interpreting the VNIR spectra as well as by using a portable X-ray fluorescence (XRF) spectrometer.

  17. An advanced scanning method for space-borne hyper-spectral imaging system

    NASA Astrophysics Data System (ADS)

    Wang, Yue-ming; Lang, Jun-Wei; Wang, Jian-Yu; Jiang, Zi-Qing

    2011-08-01

    Space-borne hyper-spectral imagery is an important means for the studies and applications of earth science. High cost efficiency could be acquired by optimized system design. In this paper, an advanced scanning method is proposed, which contributes to implement both high temporal and spatial resolution imaging system. Revisit frequency and effective working time of space-borne hyper-spectral imagers could be greatly improved by adopting two-axis scanning system if spatial resolution and radiometric accuracy are not harshly demanded. In order to avoid the quality degradation caused by image rotation, an idea of two-axis rotation has been presented based on the analysis and simulation of two-dimensional scanning motion path and features. Further improvement of the imagers' detection ability under the conditions of small solar altitude angle and low surface reflectance can be realized by the Ground Motion Compensation on pitch axis. The structure and control performance are also described. An intelligent integration technology of two-dimensional scanning and image motion compensation is elaborated in this paper. With this technology, sun-synchronous hyper-spectral imagers are able to pay quick visit to hot spots, acquiring both high spatial and temporal resolution hyper-spectral images, which enables rapid response of emergencies. The result has reference value for developing operational space-borne hyper-spectral imagers.

  18. Preliminary Geologic/spectral Analysis of LANDSAT-4 Thematic Mapper Data, Wind River/bighorn Basin Area, Wyoming

    NASA Technical Reports Server (NTRS)

    Lang, H. R.; Conel, J. E.; Paylor, E. D.

    1984-01-01

    A LIDQA evaluation for geologic applications of a LANDSAT TM scene covering the Wind River/Bighorn Basin area, Wyoming, is examined. This involves a quantitative assessment of data quality including spatial and spectral characteristics. Analysis is concentrated on the 6 visible, near infrared, and short wavelength infrared bands. Preliminary analysis demonstrates that: (1) principal component images derived from the correlation matrix provide the most useful geologic information. To extract surface spectral reflectance, the TM radiance data must be calibrated. Scatterplots demonstrate that TM data can be calibrated and sensor response is essentially linear. Low instrumental offset and gain settings result in spectral data that do not utilize the full dynamic range of the TM system.

  19. Application and evaluation of ISVR method in QuickBird image fusion

    NASA Astrophysics Data System (ADS)

    Cheng, Bo; Song, Xiaolu

    2014-05-01

    QuickBird satellite images are widely used in many fields, and applications have put forward high requirements for the integration of the spatial information and spectral information of the imagery. A fusion method for high resolution remote sensing images based on ISVR is identified in this study. The core principle of ISVS is taking the advantage of radicalization targeting to remove the effect of different gain and error of satellites' sensors. Transformed from DN to radiance, the multi-spectral image's energy is used to simulate the panchromatic band. The linear regression analysis is carried through the simulation process to find a new synthetically panchromatic image, which is highly linearly correlated to the original panchromatic image. In order to evaluate, test and compare the algorithm results, this paper used ISVR and other two different fusion methods to give a comparative study of the spatial information and spectral information, taking the average gradient and the correlation coefficient as an indicator. Experiments showed that this method could significantly improve the quality of fused image, especially in preserving spectral information, to maximize the spectral information of original multispectral images, while maintaining abundant spatial information.

  20. Spatial and temporal skin blood volume and saturation estimation using a multispectral snapshot imaging camera

    NASA Astrophysics Data System (ADS)

    Ewerlöf, Maria; Larsson, Marcus; Salerud, E. Göran

    2017-02-01

    Hyperspectral imaging (HSI) can estimate the spatial distribution of skin blood oxygenation, using visible to near-infrared light. HSI oximeters often use a liquid-crystal tunable filter, an acousto-optic tunable filter or mechanically adjustable filter wheels, which has too long response/switching times to monitor tissue hemodynamics. This work aims to evaluate a multispectral snapshot imaging system to estimate skin blood volume and oxygen saturation with high temporal and spatial resolution. We use a snapshot imager, the xiSpec camera (MQ022HG-IM-SM4X4-VIS, XIMEA), having 16 wavelength-specific Fabry-Perot filters overlaid on the custom CMOS-chip. The spectral distribution of the bands is however substantially overlapping, which needs to be taken into account for an accurate analysis. An inverse Monte Carlo analysis is performed using a two-layered skin tissue model, defined by epidermal thickness, haemoglobin concentration and oxygen saturation, melanin concentration and spectrally dependent reduced-scattering coefficient, all parameters relevant for human skin. The analysis takes into account the spectral detector response of the xiSpec camera. At each spatial location in the field-of-view, we compare the simulated output to the detected diffusively backscattered spectra to find the best fit. The imager is evaluated for spatial and temporal variations during arterial and venous occlusion protocols applied to the forearm. Estimated blood volume changes and oxygenation maps at 512x272 pixels show values that are comparable to reference measurements performed in contact with the skin tissue. We conclude that the snapshot xiSpec camera, paired with an inverse Monte Carlo algorithm, permits us to use this sensor for spatial and temporal measurement of varying physiological parameters, such as skin tissue blood volume and oxygenation.

  1. MR-guided dynamic PET reconstruction with the kernel method and spectral temporal basis functions

    NASA Astrophysics Data System (ADS)

    Novosad, Philip; Reader, Andrew J.

    2016-06-01

    Recent advances in dynamic positron emission tomography (PET) reconstruction have demonstrated that it is possible to achieve markedly improved end-point kinetic parameter maps by incorporating a temporal model of the radiotracer directly into the reconstruction algorithm. In this work we have developed a highly constrained, fully dynamic PET reconstruction algorithm incorporating both spectral analysis temporal basis functions and spatial basis functions derived from the kernel method applied to a co-registered T1-weighted magnetic resonance (MR) image. The dynamic PET image is modelled as a linear combination of spatial and temporal basis functions, and a maximum likelihood estimate for the coefficients can be found using the expectation-maximization (EM) algorithm. Following reconstruction, kinetic fitting using any temporal model of interest can be applied. Based on a BrainWeb T1-weighted MR phantom, we performed a realistic dynamic [18F]FDG simulation study with two noise levels, and investigated the quantitative performance of the proposed reconstruction algorithm, comparing it with reconstructions incorporating either spectral analysis temporal basis functions alone or kernel spatial basis functions alone, as well as with conventional frame-independent reconstruction. Compared to the other reconstruction algorithms, the proposed algorithm achieved superior performance, offering a decrease in spatially averaged pixel-level root-mean-square-error on post-reconstruction kinetic parametric maps in the grey/white matter, as well as in the tumours when they were present on the co-registered MR image. When the tumours were not visible in the MR image, reconstruction with the proposed algorithm performed similarly to reconstruction with spectral temporal basis functions and was superior to both conventional frame-independent reconstruction and frame-independent reconstruction with kernel spatial basis functions. Furthermore, we demonstrate that a joint spectral/kernel model can also be used for effective post-reconstruction denoising, through the use of an EM-like image-space algorithm. Finally, we applied the proposed algorithm to reconstruction of real high-resolution dynamic [11C]SCH23390 data, showing promising results.

  2. MR-guided dynamic PET reconstruction with the kernel method and spectral temporal basis functions.

    PubMed

    Novosad, Philip; Reader, Andrew J

    2016-06-21

    Recent advances in dynamic positron emission tomography (PET) reconstruction have demonstrated that it is possible to achieve markedly improved end-point kinetic parameter maps by incorporating a temporal model of the radiotracer directly into the reconstruction algorithm. In this work we have developed a highly constrained, fully dynamic PET reconstruction algorithm incorporating both spectral analysis temporal basis functions and spatial basis functions derived from the kernel method applied to a co-registered T1-weighted magnetic resonance (MR) image. The dynamic PET image is modelled as a linear combination of spatial and temporal basis functions, and a maximum likelihood estimate for the coefficients can be found using the expectation-maximization (EM) algorithm. Following reconstruction, kinetic fitting using any temporal model of interest can be applied. Based on a BrainWeb T1-weighted MR phantom, we performed a realistic dynamic [(18)F]FDG simulation study with two noise levels, and investigated the quantitative performance of the proposed reconstruction algorithm, comparing it with reconstructions incorporating either spectral analysis temporal basis functions alone or kernel spatial basis functions alone, as well as with conventional frame-independent reconstruction. Compared to the other reconstruction algorithms, the proposed algorithm achieved superior performance, offering a decrease in spatially averaged pixel-level root-mean-square-error on post-reconstruction kinetic parametric maps in the grey/white matter, as well as in the tumours when they were present on the co-registered MR image. When the tumours were not visible in the MR image, reconstruction with the proposed algorithm performed similarly to reconstruction with spectral temporal basis functions and was superior to both conventional frame-independent reconstruction and frame-independent reconstruction with kernel spatial basis functions. Furthermore, we demonstrate that a joint spectral/kernel model can also be used for effective post-reconstruction denoising, through the use of an EM-like image-space algorithm. Finally, we applied the proposed algorithm to reconstruction of real high-resolution dynamic [(11)C]SCH23390 data, showing promising results.

  3. Information content exploitation of imaging spectrometer's images for lossless compression

    NASA Astrophysics Data System (ADS)

    Wang, Jianyu; Zhu, Zhenyu; Lin, Kan

    1996-11-01

    Imaging spectrometer, such as MAIS produces a tremendous volume of image data with up to 5.12 Mbps raw data rate, which needs urgently a real-time, efficient and reversible compression implementation. Between the lossy scheme with high compression ratio and the lossless scheme with high fidelity, we must make our choice based on the particular information content analysis of each imaging spectrometer's image data. In this paper, we present a careful analysis of information-preserving compression of imaging spectrometer MAIS with an entropy and autocorrelation study on the hyperspectral images. First, the statistical information in an actual MAIS image, captured in Marble Bar Australia, is measured with its entropy, conditional entropy, mutual information and autocorrelation coefficients on both spatial dimensions and spectral dimension. With these careful analyses, it is shown that there is high redundancy existing in the spatial dimensions, but the correlation in spectral dimension of the raw images is smaller than expected. The main reason of the nonstationarity on spectral dimension is attributed to the instruments's discrepancy on detector's response and channel's amplification in different spectral bands. To restore its natural correlation, we preprocess the signal in advance. There are two methods to accomplish this requirement: onboard radiation calibration and normalization. A better result can be achieved by the former one. After preprocessing, the spectral correlation increases so high that it contributes much redundancy in addition to spatial correlation. At last, an on-board hardware implementation for the lossless compression is presented with an ideal result.

  4. A Modified Relative Spectral Mixture Analysis to Extract the Fractions of Major Land Cover Components

    NASA Astrophysics Data System (ADS)

    Jia, S.

    2015-12-01

    As an effective method of extracting land cover fractions based on spectral endmembers, spectral mixture analysis (SMA) has been applied using remotely sensed imagery in different spatial, temporal, and spectral resolutions. A number of studies focused on arid/semiarid ecosystem have used SMA to obtain the land cover fractions of GV, NPV/litter, and bare soil (BS) using MODIS reflectance products to understand ecosystem phenology, track vegetation dynamics, and evaluate the impact of major disturbances. However, several challenges remain in the application of SMA in studying ecosystem phenology, including obtaining high quality endmembers and increasing computational efficiency when considering to long time series that cover a broad spatial extent. Okin (2007) proposes a variation of SMA, named as relative spectra mixture analysis (RSMA) to address the latter challenge by calculating the relative change of fraction of GV, NPV/litter, and BS compared with a baseline date. This approach assumes that the baseline image contains the spectral information of the bare soil that can be used as an endmember for spectral mixture analysis though it is mixed with the spectral reflectance of other non-soil land cover types. Using the baseline image, one can obtain the change of fractions of GV, NPV/litter, BS, and snow compared with the baseline image. However, RSMA results depend on the selection of baseline date and the fractional components during this date. In this study, we modified the strategy of implementing RSMA by introducing a step of obtaining a soil map as the baseline image using multiple-endmember SMA (MESMA) before applying RSMA. The fractions of land cover components from this modified RSMA are also validated using the field observations from two study area in semiarid savanna and grassland of Queensland, Australia.

  5. A hyperspectral image projector for hyperspectral imagers

    NASA Astrophysics Data System (ADS)

    Rice, Joseph P.; Brown, Steven W.; Neira, Jorge E.; Bousquet, Robert R.

    2007-04-01

    We have developed and demonstrated a Hyperspectral Image Projector (HIP) intended for system-level validation testing of hyperspectral imagers, including the instrument and any associated spectral unmixing algorithms. HIP, based on the same digital micromirror arrays used in commercial digital light processing (DLP*) displays, is capable of projecting any combination of many different arbitrarily programmable basis spectra into each image pixel at up to video frame rates. We use a scheme whereby one micromirror array is used to produce light having the spectra of endmembers (i.e. vegetation, water, minerals, etc.), and a second micromirror array, optically in series with the first, projects any combination of these arbitrarily-programmable spectra into the pixels of a 1024 x 768 element spatial image, thereby producing temporally-integrated images having spectrally mixed pixels. HIP goes beyond conventional DLP projectors in that each spatial pixel can have an arbitrary spectrum, not just arbitrary color. As such, the resulting spectral and spatial content of the projected image can simulate realistic scenes that a hyperspectral imager will measure during its use. Also, the spectral radiance of the projected scenes can be measured with a calibrated spectroradiometer, such that the spectral radiance projected into each pixel of the hyperspectral imager can be accurately known. Use of such projected scenes in a controlled laboratory setting would alleviate expensive field testing of instruments, allow better separation of environmental effects from instrument effects, and enable system-level performance testing and validation of hyperspectral imagers as used with analysis algorithms. For example, known mixtures of relevant endmember spectra could be projected into arbitrary spatial pixels in a hyperspectral imager, enabling tests of how well a full system, consisting of the instrument + calibration + analysis algorithm, performs in unmixing (i.e. de-convolving) the spectra in all pixels. We discuss here the performance of a visible prototype HIP. The technology is readily extendable to the ultraviolet and infrared spectral ranges, and the scenes can be static or dynamic.

  6. Data Field Modeling and Spectral-Spatial Feature Fusion for Hyperspectral Data Classification.

    PubMed

    Liu, Da; Li, Jianxun

    2016-12-16

    Classification is a significant subject in hyperspectral remote sensing image processing. This study proposes a spectral-spatial feature fusion algorithm for the classification of hyperspectral images (HSI). Unlike existing spectral-spatial classification methods, the influences and interactions of the surroundings on each measured pixel were taken into consideration in this paper. Data field theory was employed as the mathematical realization of the field theory concept in physics, and both the spectral and spatial domains of HSI were considered as data fields. Therefore, the inherent dependency of interacting pixels was modeled. Using data field modeling, spatial and spectral features were transformed into a unified radiation form and further fused into a new feature by using a linear model. In contrast to the current spectral-spatial classification methods, which usually simply stack spectral and spatial features together, the proposed method builds the inner connection between the spectral and spatial features, and explores the hidden information that contributed to classification. Therefore, new information is included for classification. The final classification result was obtained using a random forest (RF) classifier. The proposed method was tested with the University of Pavia and Indian Pines, two well-known standard hyperspectral datasets. The experimental results demonstrate that the proposed method has higher classification accuracies than those obtained by the traditional approaches.

  7. Guided filter and principal component analysis hybrid method for hyperspectral pansharpening

    NASA Astrophysics Data System (ADS)

    Qu, Jiahui; Li, Yunsong; Dong, Wenqian

    2018-01-01

    Hyperspectral (HS) pansharpening aims to generate a fused HS image with high spectral and spatial resolution through integrating an HS image with a panchromatic (PAN) image. A guided filter (GF) and principal component analysis (PCA) hybrid HS pansharpening method is proposed. First, the HS image is interpolated and the PCA transformation is performed on the interpolated HS image. The first principal component (PC1) channel concentrates on the spatial information of the HS image. Different from the traditional PCA method, the proposed method sharpens the PAN image and utilizes the GF to obtain the spatial information difference between the HS image and the enhanced PAN image. Then, in order to reduce spectral and spatial distortion, an appropriate tradeoff parameter is defined and the spatial information difference is injected into the PC1 channel through multiplying by this tradeoff parameter. Once the new PC1 channel is obtained, the fused image is finally generated by the inverse PCA transformation. Experiments performed on both synthetic and real datasets show that the proposed method outperforms other several state-of-the-art HS pansharpening methods in both subjective and objective evaluations.

  8. Analysis of spatial and temporal spectra of liquid film surface in annular gas-liquid flow

    NASA Astrophysics Data System (ADS)

    Alekseenko, Sergey; Cherdantsev, Andrey; Heinz, Oksana; Kharlamov, Sergey; Markovich, Dmitriy

    2013-09-01

    Wavy structure of liquid film in annular gas-liquid flow without liquid entrainment consists of fast long-living primary waves and slow short-living secondary waves. In present paper, results of spectral analysis of this wavy structure are presented. Application of high-speed LIF technique allowed us to perform such analysis in both spatial and temporal domains. Power spectra in both domains are characterized by one-humped shape with long exponential tail. Influence of gas velocity, liquid Reynolds number, liquid viscosity and pipe diameter on frequency of the waves is investigated. When gravity effect is much lesser than the shear stress, similarity of power spectra at different gas velocities is observed. Using combination of spectral analysis and identification of characteristic lines of primary waves, frequency of generation of secondary waves by primary waves is measured.

  9. Towards real-time non contact spatial resolved oxygenation monitoring using a multi spectral filter array camera in various light conditions

    NASA Astrophysics Data System (ADS)

    Bauer, Jacob R.; van Beekum, Karlijn; Klaessens, John; Noordmans, Herke Jan; Boer, Christa; Hardeberg, Jon Y.; Verdaasdonk, Rudolf M.

    2018-02-01

    Non contact spatial resolved oxygenation measurements remain an open challenge in the biomedical field and non contact patient monitoring. Although point measurements are the clinical standard till this day, regional differences in the oxygenation will improve the quality and safety of care. Recent developments in spectral imaging resulted in spectral filter array cameras (SFA). These provide the means to acquire spatial spectral videos in real-time and allow a spatial approach to spectroscopy. In this study, the performance of a 25 channel near infrared SFA camera was studied to obtain spatial oxygenation maps of hands during an occlusion of the left upper arm in 7 healthy volunteers. For comparison a clinical oxygenation monitoring system, INVOS, was used as a reference. In case of the NIRS SFA camera, oxygenation curves were derived from 2-3 wavelength bands with a custom made fast analysis software using a basic algorithm. Dynamic oxygenation changes were determined with the NIR SFA camera and INVOS system at different regional locations of the occluded versus non-occluded hands and showed to be in good agreement. To increase the signal to noise ratio, algorithm and image acquisition were optimised. The measurement were robust to different illumination conditions with NIR light sources. This study shows that imaging of relative oxygenation changes over larger body areas is potentially possible in real time.

  10. Advances in Spectral-Spatial Classification of Hyperspectral Images

    NASA Technical Reports Server (NTRS)

    Fauvel, Mathieu; Tarabalka, Yuliya; Benediktsson, Jon Atli; Chanussot, Jocelyn; Tilton, James C.

    2012-01-01

    Recent advances in spectral-spatial classification of hyperspectral images are presented in this paper. Several techniques are investigated for combining both spatial and spectral information. Spatial information is extracted at the object (set of pixels) level rather than at the conventional pixel level. Mathematical morphology is first used to derive the morphological profile of the image, which includes characteristics about the size, orientation and contrast of the spatial structures present in the image. Then the morphological neighborhood is defined and used to derive additional features for classification. Classification is performed with support vector machines using the available spectral information and the extracted spatial information. Spatial post-processing is next investigated to build more homogeneous and spatially consistent thematic maps. To that end, three presegmentation techniques are applied to define regions that are used to regularize the preliminary pixel-wise thematic map. Finally, a multiple classifier system is defined to produce relevant markers that are exploited to segment the hyperspectral image with the minimum spanning forest algorithm. Experimental results conducted on three real hyperspectral images with different spatial and spectral resolutions and corresponding to various contexts are presented. They highlight the importance of spectral-spatial strategies for the accurate classification of hyperspectral images and validate the proposed methods.

  11. Hyperspectral Image Classification via Multitask Joint Sparse Representation and Stepwise MRF Optimization.

    PubMed

    Yuan, Yuan; Lin, Jianzhe; Wang, Qi

    2016-12-01

    Hyperspectral image (HSI) classification is a crucial issue in remote sensing. Accurate classification benefits a large number of applications such as land use analysis and marine resource utilization. But high data correlation brings difficulty to reliable classification, especially for HSI with abundant spectral information. Furthermore, the traditional methods often fail to well consider the spatial coherency of HSI that also limits the classification performance. To address these inherent obstacles, a novel spectral-spatial classification scheme is proposed in this paper. The proposed method mainly focuses on multitask joint sparse representation (MJSR) and a stepwise Markov random filed framework, which are claimed to be two main contributions in this procedure. First, the MJSR not only reduces the spectral redundancy, but also retains necessary correlation in spectral field during classification. Second, the stepwise optimization further explores the spatial correlation that significantly enhances the classification accuracy and robustness. As far as several universal quality evaluation indexes are concerned, the experimental results on Indian Pines and Pavia University demonstrate the superiority of our method compared with the state-of-the-art competitors.

  12. Quantitative methods and detection techniques in hyperspectral imaging involving medical and other applications

    NASA Astrophysics Data System (ADS)

    Roy, Ankita

    2007-12-01

    This research using Hyperspectral imaging involves recognizing targets through spatial and spectral matching and spectral un-mixing of data ranging from remote sensing to medical imaging kernels for clinical studies based on Hyperspectral data-sets generated using the VFTHSI [Visible Fourier Transform Hyperspectral Imager], whose high resolution Si detector makes the analysis achievable. The research may be broadly classified into (I) A Physically Motivated Correlation Formalism (PMCF), which places both spatial and spectral data on an equivalent mathematical footing in the context of a specific Kernel and (II) An application in RF plasma specie detection during carbon nanotube growing process. (III) Hyperspectral analysis for assessing density and distribution of retinopathies like age related macular degeneration (ARMD) and error estimation enabling the early recognition of ARMD, which is treated as an ill-conditioned inverse imaging problem. The broad statistical scopes of this research are two fold-target recognition problems and spectral unmixing problems. All processes involve experimental and computational analysis of Hyperspectral data sets is presented, which is based on the principle of a Sagnac Interferometer, calibrated to obtain high SNR levels. PMCF computes spectral/spatial/cross moments and answers the question of how optimally the entire hypercube should be sampled and finds how many spatial-spectral pixels are required precisely for a particular target recognition. Spectral analysis of RF plasma radicals, typically Methane plasma and Argon plasma using VFTHSI has enabled better process monitoring during growth of vertically aligned multi-walled carbon nanotubes by instant registration of the chemical composition or density changes temporally, which is key since a significant correlation can be found between plasma state and structural properties. A vital focus of this dissertation is towards medical Hyperspectral imaging applied to retinopathies like age related macular degeneration targets taken with a Fundus imager, which is akin to the VFTHSI. Detection of the constituent components in the diseased hyper-pigmentation area is also computed. The target or reflectance matrix is treated as a highly ill-conditioned spectral un-mixing problem, to which methodologies like inverse techniques, principal component analysis (PCA) and receiver operating curves (ROC) for precise spectral recognition of infected area. The region containing ARMD was easily distinguishable from the spectral mesh plots over the entire band-pass area. Once the location was detected the PMCF coefficients were calculated by cross correlating a target of normal oxygenated retina with the deoxygenated one. The ROCs generated using PMCF shows 30% higher detection probability with improved accuracy than ROCs based on Spectral Angle Mapper (SAM). By spectral unmixing methods, the important endmembers/carotenoids of the MD pigment were found to be Xanthophyl and lutein, while beta-carotene which showed a negative correlation in the unconstrained inverse problem is a supplement given to ARMD patients to prevent the disease and does not occur in the eye. Literature also shows degeneration of meso-zeaxanthin. Ophthalmologists may assert the presence of ARMD and commence the diagnosis process if the Xanthophyl pigment have degenerated 89.9%, while the lutein has decayed almost 80%, as found deduced computationally. This piece of current research takes it to the next level of precise investigation in the continuing process of improved clinical findings by correlating the microanatomy of the diseased fovea and shows promise of an early detection of this disease.

  13. Test Section Turbulence in the AEDC/VKF Supersonic/Hypersonic Wind Tunnels

    DTIC Science & Technology

    1981-07-01

    8 4.3 Ins t rumen ta t ion ....................................................... 18...Pressure Fluctuation Spectral Content in AEDC Tunnels A and B (Based on FY79 Pitot Probe), Af = 200 Hz...intensity, spatial distribution, and spectral content , has become increasingly important in the analysis of test data. The sector- supported model in the

  14. Learning Low-Rank Decomposition for Pan-Sharpening With Spatial-Spectral Offsets.

    PubMed

    Yang, Shuyuan; Zhang, Kai; Wang, Min

    2017-08-25

    Finding accurate injection components is the key issue in pan-sharpening methods. In this paper, a low-rank pan-sharpening (LRP) model is developed from a new perspective of offset learning. Two offsets are defined to represent the spatial and spectral differences between low-resolution multispectral and high-resolution multispectral (HRMS) images, respectively. In order to reduce spatial and spectral distortions, spatial equalization and spectral proportion constraints are designed and cast on the offsets, to develop a spatial and spectral constrained stable low-rank decomposition algorithm via augmented Lagrange multiplier. By fine modeling and heuristic learning, our method can simultaneously reduce spatial and spectral distortions in the fused HRMS images. Moreover, our method can efficiently deal with noises and outliers in source images, for exploring low-rank and sparse characteristics of data. Extensive experiments are taken on several image data sets, and the results demonstrate the efficiency of the proposed LRP.

  15. Silicon oxide nanoparticles doped PQ-PMMA for volume holographic imaging filters.

    PubMed

    Luo, Yuan; Russo, Juan M; Kostuk, Raymond K; Barbastathis, George

    2010-04-15

    Holographic imaging filters are required to have high Bragg selectivity, namely, narrow angular and spectral bandwidth, to obtain spatial-spectral information within a three-dimensional object. In this Letter, we present the design of holographic imaging filters formed using silicon oxide nanoparticles (nano-SiO(2)) in phenanthrenquinone-poly(methyl methacrylate) (PQ-PMMA) polymer recording material. This combination offers greater Bragg selectivity and increases the diffraction efficiency of holographic filters. The holographic filters with optimized ratio of nano-SiO(2) in PQ-PMMA can significantly improve the performance of Bragg selectivity and diffraction efficiency by 53% and 16%, respectively. We present experimental results and data analysis demonstrating this technique in use for holographic spatial-spectral imaging filters.

  16. Edge-Preserving Image Smoothing Constraint in Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) of Hyperspectral Data.

    PubMed

    Hugelier, Siewert; Vitale, Raffaele; Ruckebusch, Cyril

    2018-03-01

    This article explores smoothing with edge-preserving properties as a spatial constraint for the resolution of hyperspectral images with multivariate curve resolution-alternating least squares (MCR-ALS). For each constrained component image (distribution map), irrelevant spatial details and noise are smoothed applying an L 1 - or L 0 -norm penalized least squares regression, highlighting in this way big changes in intensity of adjacent pixels. The feasibility of the constraint is demonstrated on three different case studies, in which the objects under investigation are spatially clearly defined, but have significant spectral overlap. This spectral overlap is detrimental for obtaining a good resolution and additional spatial information should be provided. The final results show that the spatial constraint enables better image (map) abstraction, artifact removal, and better interpretation of the results obtained, compared to a classical MCR-ALS analysis of hyperspectral images.

  17. Spatial-temporal-spectral EEG patterns of BOLD functional network connectivity dynamics

    NASA Astrophysics Data System (ADS)

    Lamoš, Martin; Mareček, Radek; Slavíček, Tomáš; Mikl, Michal; Rektor, Ivan; Jan, Jiří

    2018-06-01

    Objective. Growing interest in the examination of large-scale brain network functional connectivity dynamics is accompanied by an effort to find the electrophysiological correlates. The commonly used constraints applied to spatial and spectral domains during electroencephalogram (EEG) data analysis may leave part of the neural activity unrecognized. We propose an approach that blindly reveals multimodal EEG spectral patterns that are related to the dynamics of the BOLD functional network connectivity. Approach. The blind decomposition of EEG spectrogram by parallel factor analysis has been shown to be a useful technique for uncovering patterns of neural activity. The simultaneously acquired BOLD fMRI data were decomposed by independent component analysis. Dynamic functional connectivity was computed on the component’s time series using a sliding window correlation, and between-network connectivity states were then defined based on the values of the correlation coefficients. ANOVA tests were performed to assess the relationships between the dynamics of between-network connectivity states and the fluctuations of EEG spectral patterns. Main results. We found three patterns related to the dynamics of between-network connectivity states. The first pattern has dominant peaks in the alpha, beta, and gamma bands and is related to the dynamics between the auditory, sensorimotor, and attentional networks. The second pattern, with dominant peaks in the theta and low alpha bands, is related to the visual and default mode network. The third pattern, also with peaks in the theta and low alpha bands, is related to the auditory and frontal network. Significance. Our previous findings revealed a relationship between EEG spectral pattern fluctuations and the hemodynamics of large-scale brain networks. In this study, we suggest that the relationship also exists at the level of functional connectivity dynamics among large-scale brain networks when no standard spatial and spectral constraints are applied on the EEG data.

  18. Determination of awareness in patients with severe brain injury using EEG power spectral analysis

    PubMed Central

    Goldfine, Andrew M.; Victor, Jonathan D.; Conte, Mary M.; Bardin, Jonathan C.; Schiff, Nicholas D.

    2011-01-01

    Objective To determine whether EEG spectral analysis could be used to demonstrate awareness in patients with severe brain injury. Methods We recorded EEG from healthy controls and three patients with severe brain injury, ranging from minimally conscious state (MCS) to locked-in-state (LIS), while they were asked to imagine motor and spatial navigation tasks. We assessed EEG spectral differences from 4 to 24 Hz with univariate comparisons (individual frequencies) and multivariate comparisons (patterns across the frequency range). Results In controls, EEG spectral power differed at multiple frequency bands and channels during performance of both tasks compared to a resting baseline. As patterns of signal change were inconsistent between controls, we defined a positive response in patient subjects as consistent spectral changes across task performances. One patient in MCS and one in LIS showed evidence of motor imagery task performance, though with patterns of spectral change different from the controls. Conclusion EEG power spectral analysis demonstrates evidence for performance of mental imagery tasks in healthy controls and patients with severe brain injury. Significance EEG power spectral analysis can be used as a flexible bedside tool to demonstrate awareness in brain-injured patients who are otherwise unable to communicate. PMID:21514214

  19. Reliable Quantitative Mineral Abundances of the Martian Surface using THEMIS

    NASA Astrophysics Data System (ADS)

    Smith, R. J.; Huang, J.; Ryan, A. J.; Christensen, P. R.

    2013-12-01

    The following presents a proof of concept that given quality data, Thermal Emission Imaging System (THEMIS) data can be used to derive reliable quantitative mineral abundances of the Martian surface using a limited mineral library. The THEMIS instrument aboard the Mars Odyssey spacecraft is a multispectral thermal infrared imager with a spatial resolution of 100 m/pixel. The relatively high spatial resolution along with global coverage makes THEMIS datasets powerful tools for comprehensive fine scale petrologic analyses. However, the spectral resolution of THEMIS is limited to 8 surface sensitive bands between 6.8 and 14.0 μm with an average bandwidth of ~ 1 μm, which complicates atmosphere-surface separation and spectral analysis. This study utilizes the atmospheric correction methods of both Bandfield et al. [2004] and Ryan et al. [2013] joined with the iterative linear deconvolution technique pioneered by Huang et al. [in review] in order to derive fine-scale quantitative mineral abundances of the Martian surface. In general, it can be assumed that surface emissivity combines in a linear fashion in the thermal infrared (TIR) wavelengths such that the emitted energy is proportional to the areal percentage of the minerals present. TIR spectra are unmixed using a set of linear equations involving an endmember library of lab measured mineral spectra. The number of endmembers allowed in a spectral library are restricted to a quantity of n-1 (where n = the number of spectral bands of an instrument), preserving one band for blackbody. Spectral analysis of THEMIS data is thus allowed only seven endmembers. This study attempts to prove that this limitation does not prohibit the derivation of meaningful spectral analyses from THEMIS data. Our study selects THEMIS stamps from a region of Mars that is well characterized in the TIR by the higher spectral resolution, lower spatial resolution Thermal Emission Spectrometer (TES) instrument (143 bands at 10 cm-1 sampling and 3x5 km pixel). Multiple atmospheric corrections are performed for one image using the methods of Bandfield et al. [2004] and Ryan et al. [2013]. 7x7 pixel areas were selected, averaged, and compared using each atmospherically corrected image to ensure consistency. Corrections that provided reliable data were then used for spectral analyses. Linear deconvolution is performed using an iterative spectral analysis method [Huang et al. in review] that takes an endmember spectral library, and creates mineral combinations based on prescribed mineral group selections. The script then performs a spectral mixture analysis on each surface spectrum using all possible mineral combinations, and reports the best modeled fit to the measured spectrum. Here we present initial results from Syrtis Planum where multiple atmospherically corrected THEMIS images were deconvolved to produce similar spectral analysis results, within the detection limit of the instrument. THEMIS mineral abundances are comparable to TES-derived abundances. References: Bandfield, JL et al. [2004], JGR 109, E10008 Huang, J et al., JGR, in review Ryan, AJ et al. [2013], AGU Fall Meeting

  20. Hyper-Spectral Image Analysis With Partially Latent Regression and Spatial Markov Dependencies

    NASA Astrophysics Data System (ADS)

    Deleforge, Antoine; Forbes, Florence; Ba, Sileye; Horaud, Radu

    2015-09-01

    Hyper-spectral data can be analyzed to recover physical properties at large planetary scales. This involves resolving inverse problems which can be addressed within machine learning, with the advantage that, once a relationship between physical parameters and spectra has been established in a data-driven fashion, the learned relationship can be used to estimate physical parameters for new hyper-spectral observations. Within this framework, we propose a spatially-constrained and partially-latent regression method which maps high-dimensional inputs (hyper-spectral images) onto low-dimensional responses (physical parameters such as the local chemical composition of the soil). The proposed regression model comprises two key features. Firstly, it combines a Gaussian mixture of locally-linear mappings (GLLiM) with a partially-latent response model. While the former makes high-dimensional regression tractable, the latter enables to deal with physical parameters that cannot be observed or, more generally, with data contaminated by experimental artifacts that cannot be explained with noise models. Secondly, spatial constraints are introduced in the model through a Markov random field (MRF) prior which provides a spatial structure to the Gaussian-mixture hidden variables. Experiments conducted on a database composed of remotely sensed observations collected from the Mars planet by the Mars Express orbiter demonstrate the effectiveness of the proposed model.

  1. Dimensionality-varied deep convolutional neural network for spectral-spatial classification of hyperspectral data

    NASA Astrophysics Data System (ADS)

    Qu, Haicheng; Liang, Xuejian; Liang, Shichao; Liu, Wanjun

    2018-01-01

    Many methods of hyperspectral image classification have been proposed recently, and the convolutional neural network (CNN) achieves outstanding performance. However, spectral-spatial classification of CNN requires an excessively large model, tremendous computations, and complex network, and CNN is generally unable to use the noisy bands caused by water-vapor absorption. A dimensionality-varied CNN (DV-CNN) is proposed to address these issues. There are four stages in DV-CNN and the dimensionalities of spectral-spatial feature maps vary with the stages. DV-CNN can reduce the computation and simplify the structure of the network. All feature maps are processed by more kernels in higher stages to extract more precise features. DV-CNN also improves the classification accuracy and enhances the robustness to water-vapor absorption bands. The experiments are performed on data sets of Indian Pines and Pavia University scene. The classification performance of DV-CNN is compared with state-of-the-art methods, which contain the variations of CNN, traditional, and other deep learning methods. The experiment of performance analysis about DV-CNN itself is also carried out. The experimental results demonstrate that DV-CNN outperforms state-of-the-art methods for spectral-spatial classification and it is also robust to water-vapor absorption bands. Moreover, reasonable parameters selection is effective to improve classification accuracy.

  2. The challenge of estimating the SWOT signal and error spectra over the Ocean and its applications to CalVal and state estimation problems

    NASA Astrophysics Data System (ADS)

    Ubelmann, C.; Gerald, D.

    2016-12-01

    The SWOT data validation will be a first challenge after launch, as the nature of the measurement, in particular the two-dimensionality at short spatial scales, is new in altimetry. If the comparison with independent observations may be locally possible, a validation of the full signal and error spectrum will be challenging. However, some recent analyses in simulations have shown the possibility to separate the geophysical signals from the spatially coherent instrumental errors in the spectral space, through cross-spectral analysis. These results suggest that rapidly after launch, the instrument error canl be spectrally separated providing some validations and insights on the Ocean energy spectrum, as well as optimal calibrations. Beyond CalVal, such spectral computations will be also essential for producing high-level Ocean estimates (two and three dimensional Ocean state reconstructions).

  3. Spectral Analysis of Breast Cancer on Tissue Microarrays: Seeing Beyond Morphology

    DTIC Science & Technology

    2005-04-01

    Harvey N., Szymanski J.J., Bloch J.J., Mitchell M. investigation of image feature extraction by a genetic algorithm. Proc. SPIE 1999;3812:24-31. 11...automated feature extraction using multiple data sources. Proc. SPIE 2003;5099:190-200. 15 4 Spectral-Spatial Analysis of Urine Cytology Angeletti et al...Appendix Contents: 1. Harvey, N.R., Levenson, R.M., Rimm, D.L. (2003) Investigation of Automated Feature Extraction Techniques for Applications in

  4. Multimodal hyperspectral optical microscopy

    DOE PAGES

    Novikova, Irina V.; Smallwood, Chuck R.; Gong, Yu; ...

    2017-09-02

    We describe a unique and convenient approach to multimodal hyperspectral optical microscopy, herein achieved by coupling a portable and transferable hyperspectral imager to various optical microscopes. The experimental and data analysis schemes involved in recording spectrally and spatially resolved fluorescence, dark field, and optical absorption micrographs are illustrated through prototypical measurements targeting selected model systems. Namely, hyperspectral fluorescence micrographs of isolated fluorescent beads are employed to ensure spectral calibration of our detector and to gauge the attainable spatial resolution of our measurements; the recorded images are diffraction-limited. Moreover, spatially over-sampled absorption spectroscopy of a single lipid (18:1 Liss Rhod PE)more » layer reveals that optical densities on the order of 10-3 may be resolved by spatially averaging the recorded optical signatures. We also briefly illustrate two applications of our setup in the general areas of plasmonics and cell biology. Most notably, we deploy hyperspectral optical absorption microscopy to identify and image algal pigments within a single live Tisochrysis lutea cell. Overall, this work paves the way for multimodal multidimensional spectral imaging measurements spanning the realms of several scientific disciples.« less

  5. Multimodal hyperspectral optical microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novikova, Irina V.; Smallwood, Chuck R.; Gong, Yu

    We describe a unique and convenient approach to multimodal hyperspectral optical microscopy, herein achieved by coupling a portable and transferable hyperspectral imager to various optical microscopes. The experimental and data analysis schemes involved in recording spectrally and spatially resolved fluorescence, dark field, and optical absorption micrographs are illustrated through prototypical measurements targeting selected model systems. Namely, hyperspectral fluorescence micrographs of isolated fluorescent beads are employed to ensure spectral calibration of our detector and to gauge the attainable spatial resolution of our measurements; the recorded images are diffraction-limited. Moreover, spatially over-sampled absorption spectroscopy of a single lipid (18:1 Liss Rhod PE)more » layer reveals that optical densities on the order of 10-3 may be resolved by spatially averaging the recorded optical signatures. We also briefly illustrate two applications of our setup in the general areas of plasmonics and cell biology. Most notably, we deploy hyperspectral optical absorption microscopy to identify and image algal pigments within a single live Tisochrysis lutea cell. Overall, this work paves the way for multimodal multidimensional spectral imaging measurements spanning the realms of several scientific disciples.« less

  6. Hyperspectral and multispectral data fusion based on linear-quadratic nonnegative matrix factorization

    NASA Astrophysics Data System (ADS)

    Benhalouche, Fatima Zohra; Karoui, Moussa Sofiane; Deville, Yannick; Ouamri, Abdelaziz

    2017-04-01

    This paper proposes three multisharpening approaches to enhance the spatial resolution of urban hyperspectral remote sensing images. These approaches, related to linear-quadratic spectral unmixing techniques, use a linear-quadratic nonnegative matrix factorization (NMF) multiplicative algorithm. These methods begin by unmixing the observable high-spectral/low-spatial resolution hyperspectral and high-spatial/low-spectral resolution multispectral images. The obtained high-spectral/high-spatial resolution features are then recombined, according to the linear-quadratic mixing model, to obtain an unobservable multisharpened high-spectral/high-spatial resolution hyperspectral image. In the first designed approach, hyperspectral and multispectral variables are independently optimized, once they have been coherently initialized. These variables are alternately updated in the second designed approach. In the third approach, the considered hyperspectral and multispectral variables are jointly updated. Experiments, using synthetic and real data, are conducted to assess the efficiency, in spatial and spectral domains, of the designed approaches and of linear NMF-based approaches from the literature. Experimental results show that the designed methods globally yield very satisfactory spectral and spatial fidelities for the multisharpened hyperspectral data. They also prove that these methods significantly outperform the used literature approaches.

  7. Quantitative Doppler Analysis Using Conventional Color Flow Imaging Acquisitions.

    PubMed

    Karabiyik, Yucel; Ekroll, Ingvild Kinn; Eik-Nes, Sturla H; Lovstakken, Lasse

    2018-05-01

    Interleaved acquisitions used in conventional triplex mode result in a tradeoff between the frame rate and the quality of velocity estimates. On the other hand, workflow becomes inefficient when the user has to switch between different modes, and measurement variability is increased. This paper investigates the use of power spectral Capon estimator in quantitative Doppler analysis using data acquired with conventional color flow imaging (CFI) schemes. To preserve the number of samples used for velocity estimation, only spatial averaging was utilized, and clutter rejection was performed after spectral estimation. The resulting velocity spectra were evaluated in terms of spectral width using a recently proposed spectral envelope estimator. The spectral envelopes were also used for Doppler index calculations using in vivo and string phantom acquisitions. In vivo results demonstrated that the Capon estimator can provide spectral estimates with sufficient quality for quantitative analysis using packet-based CFI acquisitions. The calculated Doppler indices were similar to the values calculated using spectrograms estimated on a commercial ultrasound scanner.

  8. Application of Fourier analysis to multispectral/spatial recognition

    NASA Technical Reports Server (NTRS)

    Hornung, R. J.; Smith, J. A.

    1973-01-01

    One approach for investigating spectral response from materials is to consider spatial features of the response. This might be accomplished by considering the Fourier spectrum of the spatial response. The Fourier Transform may be used in a one-dimensional to multidimensional analysis of more than one channel of data. The two-dimensional transform represents the Fraunhofer diffraction pattern of the image in optics and has certain invariant features. Physically the diffraction pattern contains spatial features which are possibly unique to a given configuration or classification type. Different sampling strategies may be used to either enhance geometrical differences or extract additional features.

  9. A hyperspectral imagery anomaly detection algorithm based on local three-dimensional orthogonal subspace projection

    NASA Astrophysics Data System (ADS)

    Zhang, Xing; Wen, Gongjian

    2015-10-01

    Anomaly detection (AD) becomes increasingly important in hyperspectral imagery analysis with many practical applications. Local orthogonal subspace projection (LOSP) detector is a popular anomaly detector which exploits local endmembers/eigenvectors around the pixel under test (PUT) to construct background subspace. However, this subspace only takes advantage of the spectral information, but the spatial correlat ion of the background clutter is neglected, which leads to the anomaly detection result sensitive to the accuracy of the estimated subspace. In this paper, a local three dimensional orthogonal subspace projection (3D-LOSP) algorithm is proposed. Firstly, under the jointly use of both spectral and spatial information, three directional background subspaces are created along the image height direction, the image width direction and the spectral direction, respectively. Then, the three corresponding orthogonal subspaces are calculated. After that, each vector along three direction of the local cube is projected onto the corresponding orthogonal subspace. Finally, a composite score is given through the three direction operators. In 3D-LOSP, the anomalies are redefined as the target not only spectrally different to the background, but also spatially distinct. Thanks to the addition of the spatial information, the robustness of the anomaly detection result has been improved greatly by the proposed 3D-LOSP algorithm. It is noteworthy that the proposed algorithm is an expansion of LOSP and this ideology can inspire many other spectral-based anomaly detection methods. Experiments with real hyperspectral images have proved the stability of the detection result.

  10. A new approach for SSVEP detection using PARAFAC and canonical correlation analysis.

    PubMed

    Tello, Richard; Pouryazdian, Saeed; Ferreira, Andre; Beheshti, Soosan; Krishnan, Sridhar; Bastos, Teodiano

    2015-01-01

    This paper presents a new way for automatic detection of SSVEPs through correlation analysis between tensor models. 3-way EEG tensor of channel × frequency × time is decomposed into constituting factor matrices using PARAFAC model. PARAFAC analysis of EEG tensor enables us to decompose multichannel EEG into constituting temporal, spectral and spatial signatures. SSVEPs characterized with localized spectral and spatial signatures are then detected exploiting a correlation analysis between extracted signatures of the EEG tensor and the corresponding simulated signatures of all target SSVEP signals. The SSVEP that has the highest correlation is selected as the intended target. Two flickers blinking at 8 and 13 Hz were used as visual stimuli and the detection was performed based on data packets of 1 second without overlapping. Five subjects participated in the experiments and the highest classification rate of 83.34% was achieved, leading to the Information Transfer Rate (ITR) of 21.01 bits/min.

  11. Mapping plastic greenhouse with medium spatial resolution satellite data: Development of a new spectral index

    NASA Astrophysics Data System (ADS)

    Yang, Dedi; Chen, Jin; Zhou, Yuan; Chen, Xiang; Chen, Xuehong; Cao, Xin

    2017-06-01

    Plastic greenhouses (PGs) are an important agriculture development technique to protect and control the growing environment for food crops. The extensive use of PGs can change the agriculture landscape and affects the local environment. Accurately mapping and estimating the coverage of PGs is a necessity to the strategic planning of modern agriculture. Unfortunately, PG mapping over large areas is methodologically challenging, as the medium spatial resolution satellite imagery (such as Landsat data) used for analysis lacks spatial details and spectral variations. To fill the gap, the paper proposes a new plastic greenhouse index (PGI) based on the spectral, sensitivity, and separability analysis of PGs using medium spatial resolution images. In the context of the Landsat Enhanced Thematic Mapper Plus (ETM+) imagery, the paper examines the effectiveness and capability of the proposed PGI. The results indicate that PGs in Landsat ETM+ image can be successfully detected by the PGI if the PG fraction is greater than 12% in a mixed pixel. A kappa coefficient of 0.83 and overall accuracy of 91.2% were achieved when applying the proposed PGI in the case of Weifang District, Shandong, China. These results show that the proposed index can be applied to identifying transparent PGs in atmospheric corrected Landsat image and has the potential for the digital mapping of plastic greenhouse coverage over a large area.

  12. Characterization of spatial and spectral resolution of a rotating prism chromotomographic hyperspectral imager

    NASA Astrophysics Data System (ADS)

    Bostick, Randall L.; Perram, Glen P.; Tuttle, Ronald

    2009-05-01

    The Air Force Institute of Technology (AFIT) has built a rotating prism chromotomographic hyperspectral imager (CTI) with the goal of extending the technology to exploit spatially extended sources with quickly varying (> 10 Hz) phenomenology, such as bomb detonations and muzzle flashes. This technology collects successive frames of 2-D data dispersed at different angles multiplexing spatial and spectral information which can then be used to reconstruct any arbitrary spectral plane(s). In this paper, the design of the AFIT instrument is described and then tested against a spectral target with near point source spatial characteristics to measure spectral and spatial resolution. It will be shown that, in theory, the spectral and spatial resolution in the 3-D spectral image cube is the nearly the same as a simple prism spectrograph with the same design. However, error in the knowledge of the prism linear dispersion at the detector array as a function of wavelength and projection angle will degrade resolution without further corrections. With minimal correction for error and use of a simple shift-and-add reconstruction algorithm, the CTI is able to produce a spatial resolution of about 2 mm in the object plane (234 μrad IFOV) and is limited by chromatic aberration. A spectral resolution of less than 1nm at shorter wavelengths is shown, limited primarily by prism dispersion.

  13. Endogenous synchronous fluorescence spectroscopy (SFS) of basal cell carcinoma-initial study

    NASA Astrophysics Data System (ADS)

    Borisova, E.; Zhelyazkova, Al.; Keremedchiev, M.; Penkov, N.; Semyachkina-Glushkovskaya, O.; Avramov, L.

    2016-01-01

    The human skin is a complex, multilayered and inhomogeneous organ with spatially varying optical properties. Analysis of cutaneous fluorescence spectra could be a very complicated task; therefore researchers apply complex mathematical tools for data evaluation, or try to find some specific approaches, that would simplify the spectral analysis. Synchronous fluorescence spectroscopy (SFS) allows improving the spectral resolution, which could be useful for the biological tissue fluorescence characterization and could increase the tumour detection diagnostic accuracy.

  14. The spatial structure of magnetospheric plasma disturbance estimated by using magnetic data obtained by SWARM satellites.

    NASA Astrophysics Data System (ADS)

    Yokoyama, Y.; Iyemori, T.; Aoyama, T.

    2017-12-01

    Field-aligned currents with various spatial scales flow into and out from high-latitude ionosphere. The magnetic fluctuations observed by LEO satellites along their orbits having period longer than a few seconds can be regarded as the manifestations of spatial structure of field aligned currents.This has been confirmed by using the initial orbital characteristics of 3 SWARM-satellites. From spectral analysis, we evaluated the spectral indices of these magnetic fluctuations and investigated their dependence on regions, such as magnetic latitude and MLT and so on. We found that the spectral indices take quite different values between the regions lower than the equatorward boundary of the auroral oval (around 63 degrees' in magnetic latitude) and the regions higher than that. On the other hands, we could not find the clear MLT dependence. In general, the FACs are believed to be generated in the magnetiospheric plasma sheet and boundary layer, and they flow along the field lines conserving their currents.The theory of FAC generation [e.g., Hasegawa and Sato ,1978] indicates that the FACs are strongly connected with magnetospheric plasma disturbances. Although the spectral indices above are these of spatial structures of the FACs over the ionosphere, by using the theoretical equation of FAC generation, we evaluate the spectral indices of magnetospheric plasma disturbance in FAC's generation regions. Furthermore, by projecting the area of fluctuations on the equatorial plane of magnetosphere (i.e. plasma sheet), we can estimate the spatial structure of magnetospheric plasma disturbance. In this presentation, we focus on the characteristics of disturbance in midnight region and discuss the relations to the substorm.

  15. Spectral degree of polarization uniformity for polarization-sensitive OCT

    NASA Astrophysics Data System (ADS)

    Baumann, Bernhard; Zotter, Stefan; Pircher, Michael; Götzinger, Erich; Rauscher, Sabine; Glösmann, Martin; Lammer, Jan; Schmidt-Erfurth, Ursula; Gröger, Marion; Hitzenberger, Christoph K.

    2015-12-01

    Depolarization of light can be measured by polarization-sensitive optical coherence tomography (PS-OCT) and has been used to improve tissue discrimination as well as segmentation of pigmented structures. Most approaches to depolarization assessment for PS-OCT - such as the degree of polarization uniformity (DOPU) - rely on measuring the uniformity of polarization states using spatial evaluation kernels. In this article, we present a different approach which exploits the spectral dimension. We introduce the spectral DOPU for the pixelwise analysis of polarization state variations between sub-bands of the broadband light source spectrum. Alongside a comparison with conventional spatial and temporal DOPU algorithms, we demonstrate imaging in the healthy human retina, and apply the technique for contrasting hard exudates in diabetic retinopathy and investigating the pigment epithelium of the rat iris.

  16. Documentation of procedures for textural/spatial pattern recognition techniques

    NASA Technical Reports Server (NTRS)

    Haralick, R. M.; Bryant, W. F.

    1976-01-01

    A C-130 aircraft was flown over the Sam Houston National Forest on March 21, 1973 at 10,000 feet altitude to collect multispectral scanner (MSS) data. Existing textural and spatial automatic processing techniques were used to classify the MSS imagery into specified timber categories. Several classification experiments were performed on this data using features selected from the spectral bands and a textural transform band. The results indicate that (1) spatial post-processing a classified image can cut the classification error to 1/2 or 1/3 of its initial value, (2) spatial post-processing the classified image using combined spectral and textural features produces a resulting image with less error than post-processing a classified image using only spectral features and (3) classification without spatial post processing using the combined spectral textural features tends to produce about the same error rate as a classification without spatial post processing using only spectral features.

  17. A review of potential image fusion methods for remote sensing-based irrigation management: Part II

    USDA-ARS?s Scientific Manuscript database

    Satellite-based sensors provide data at either greater spectral and coarser spatial resolutions, or lower spectral and finer spatial resolutions due to complementary spectral and spatial characteristics of optical sensor systems. In order to overcome this limitation, image fusion has been suggested ...

  18. Collaborative classification of hyperspectral and visible images with convolutional neural network

    NASA Astrophysics Data System (ADS)

    Zhang, Mengmeng; Li, Wei; Du, Qian

    2017-10-01

    Recent advances in remote sensing technology have made multisensor data available for the same area, and it is well-known that remote sensing data processing and analysis often benefit from multisource data fusion. Specifically, low spatial resolution of hyperspectral imagery (HSI) degrades the quality of the subsequent classification task while using visible (VIS) images with high spatial resolution enables high-fidelity spatial analysis. A collaborative classification framework is proposed to fuse HSI and VIS images for finer classification. First, the convolutional neural network model is employed to extract deep spectral features for HSI classification. Second, effective binarized statistical image features are learned as contextual basis vectors for the high-resolution VIS image, followed by a classifier. The proposed approach employs diversified data in a decision fusion, leading to an integration of the rich spectral information, spatial information, and statistical representation information. In particular, the proposed approach eliminates the potential problems of the curse of dimensionality and excessive computation time. The experiments evaluated on two standard data sets demonstrate better classification performance offered by this framework.

  19. Competition for spectral irradiance between epilimnetic optically active dissolved and suspended matter and phytoplankton in the metalimnion. Consequences for limnology and chemistry.

    PubMed

    Bracchini, Luca; Dattilo, Arduino Massimo; Falcucci, Margherita; Hull, Vincent; Tognazzi, Antonio; Rossi, Claudio; Loiselle, Steven Arthur

    2011-06-01

    In deep lakes, water column stratification isolates the surface water from the deeper bottom layers, creating a three dimensional differentiation of the chemical, physical, biological and optical characteristics of the waters. Chromophoric dissolved organic matter (CDOM) and total suspended solids (TSS) play an important role in the attenuation of ultraviolet and photosynthetically active radiation. In the present analysis of spectral irradiance, we show that the wavelength composition of the metalimnetic visible irradiance was influenced by epilimnetic spatial distribution of CDOM. We found a low occurrence of blue-green photons in the metalimnion where epilimnetic concentrations of CDOM are high. In this field study, the spatial variation of the spectral irradiance in the metalimnion correlates with the observed metalimnetic concentrations of chlorophyll a as well as chlorophyll a : chlorophyll b/c ratios. Dissolved oxygen, pH, and nutrients trends suggest that chlorophyll a concentrations were representative of the phytoplankton biomass and primary production. Thus, metalimnetic changes of spectral irradiance may have a direct impact on primary production and an indirect effect on the spatial trends of pH, dissolved oxygen, and inorganic nutrients in the metalimnion.

  20. Contribution of LANDSAT-4 thematic mapper data to geologic exploration

    NASA Technical Reports Server (NTRS)

    Everett, J. R.; Dykstra, J. D.; Sheffield, C. A.

    1983-01-01

    The increased number of carefully selected narrow spectral bands and the increased spatial resolution of thematic mapper data over previously available satellite data contribute greatly to geologic exploration, both by providing spectral information that permits lithologic differentiation and recognition of alteration and spatial information that reveals structure. As vegetation and soil cover increase, the value of spectral components of TM data decreases relative to the value of the spatial component of the data. However, even in vegetated areas, the greater spectral breadth and discrimination of TM data permits improved recognition and mapping of spatial elements of the terrain. As our understanding of the spectral manifestations of the responses of soils and vegetation to unusual chemical environments increases, the value of spectral components of TM data to exploration will greatly improve in covered areas.

  1. A Comparison of Spatial and Spectral Image Resolution for Mapping Invasive Plants in Coastal California

    NASA Astrophysics Data System (ADS)

    Underwood, Emma C.; Ustin, Susan L.; Ramirez, Carlos M.

    2007-01-01

    We explored the potential of detecting three target invasive species: iceplant ( Carpobrotus edulis), jubata grass ( Cortaderia jubata), and blue gum ( Eucalyptus globulus) at Vandenberg Air Force Base, California. We compared the accuracy of mapping six communities (intact coastal scrub, iceplant invaded coastal scrub, iceplant invaded chaparral, jubata grass invaded chaparral, blue gum invaded chaparral, and intact chaparral) using four images with different combinations of spatial and spectral resolution: hyperspectral AVIRIS imagery (174 wavebands, 4 m spatial resolution), spatially degraded AVIRIS (174 bands, 30 m), spectrally degraded AVIRIS (6 bands, 4 m), and both spatially and spectrally degraded AVIRIS (6 bands, 30 m, i.e., simulated Landsat ETM data). Overall success rates for classifying the six classes was 75% (kappa 0.7) using full resolution AVIRIS, 58% (kappa 0.5) for the spatially degraded AVIRIS, 42% (kappa 0.3) for the spectrally degraded AVIRIS, and 37% (kappa 0.3) for the spatially and spectrally degraded AVIRIS. A true Landsat ETM image was also classified to illustrate that the results from the simulated ETM data were representative, which provided an accuracy of 50% (kappa 0.4). Mapping accuracies using different resolution images are evaluated in the context of community heterogeneity (species richness, diversity, and percent species cover). Findings illustrate that higher mapping accuracies are achieved with images possessing high spectral resolution, thus capturing information across the visible and reflected infrared solar spectrum. Understanding the tradeoffs in spectral and spatial resolution can assist land managers in deciding the most appropriate imagery with respect to target invasives and community characteristics.

  2. Analysis of multispectral and hyperspectral longwave infrared (LWIR) data for geologic mapping

    NASA Astrophysics Data System (ADS)

    Kruse, Fred A.; McDowell, Meryl

    2015-05-01

    Multispectral MODIS/ASTER Airborne Simulator (MASTER) data and Hyperspectral Thermal Emission Spectrometer (HyTES) data covering the 8 - 12 μm spectral range (longwave infrared or LWIR) were analyzed for an area near Mountain Pass, California. Decorrelation stretched images were initially used to highlight spectral differences between geologic materials. Both datasets were atmospherically corrected using the ISAC method, and the Normalized Emissivity approach was used to separate temperature and emissivity. The MASTER data had 10 LWIR spectral bands and approximately 35-meter spatial resolution and covered a larger area than the HyTES data, which were collected with 256 narrow (approximately 17nm-wide) spectral bands at approximately 2.3-meter spatial resolution. Spectra for key spatially-coherent, spectrally-determined geologic units for overlap areas were overlain and visually compared to determine similarities and differences. Endmember spectra were extracted from both datasets using n-dimensional scatterplotting and compared to emissivity spectral libraries for identification. Endmember distributions and abundances were then mapped using Mixture-Tuned Matched Filtering (MTMF), a partial unmixing approach. Multispectral results demonstrate separation of silica-rich vs non-silicate materials, with distinct mapping of carbonate areas and general correspondence to the regional geology. Hyperspectral results illustrate refined mapping of silicates with distinction between similar units based on the position, character, and shape of high resolution emission minima near 9 μm. Calcite and dolomite were separated, identified, and mapped using HyTES based on a shift of the main carbonate emissivity minimum from approximately 11.3 to 11.2 μm respectively. Both datasets demonstrate the utility of LWIR spectral remote sensing for geologic mapping.

  3. MO-F-CAMPUS-I-04: Characterization of Fan Beam Coded Aperture Coherent Scatter Spectral Imaging Methods for Differentiation of Normal and Neoplastic Breast Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, R; Albanese, K; Lakshmanan, M

    Purpose: This study intends to characterize the spectral and spatial resolution limits of various fan beam geometries for differentiation of normal and neoplastic breast structures via coded aperture coherent scatter spectral imaging techniques. In previous studies, pencil beam raster scanning methods using coherent scatter computed tomography and selected volume tomography have yielded excellent results for tumor discrimination. However, these methods don’t readily conform to clinical constraints; primarily prolonged scan times and excessive dose to the patient. Here, we refine a fan beam coded aperture coherent scatter imaging system to characterize the tradeoffs between dose, scan time and image quality formore » breast tumor discrimination. Methods: An X-ray tube (125kVp, 400mAs) illuminated the sample with collimated fan beams of varying widths (3mm to 25mm). Scatter data was collected via two linear-array energy-sensitive detectors oriented parallel and perpendicular to the beam plane. An iterative reconstruction algorithm yields images of the sample’s spatial distribution and respective spectral data for each location. To model in-vivo tumor analysis, surgically resected breast tumor samples were used in conjunction with lard, which has a form factor comparable to adipose (fat). Results: Quantitative analysis with current setup geometry indicated optimal performance for beams up to 10mm wide, with wider beams producing poorer spatial resolution. Scan time for a fixed volume was reduced by a factor of 6 when scanned with a 10mm fan beam compared to a 1.5mm pencil beam. Conclusion: The study demonstrates the utility of fan beam coherent scatter spectral imaging for differentiation of normal and neoplastic breast tissues has successfully reduced dose and scan times whilst sufficiently preserving spectral and spatial resolution. Future work to alter the coded aperture and detector geometries could potentially allow the use of even wider fans, thereby making coded aperture coherent scatter imaging a clinically viable method for breast cancer detection. United States Department of Homeland Security; Duke University Medical Center - Department of Radiology; Carl E Ravin Advanced Imaging Laboratories; Duke University Medical Physics Graduate Program.« less

  4. Using 2D correlation analysis to enhance spectral information available from highly spatially resolved AFM-IR spectra

    NASA Astrophysics Data System (ADS)

    Marcott, Curtis; Lo, Michael; Hu, Qichi; Kjoller, Kevin; Boskey, Adele; Noda, Isao

    2014-07-01

    The recent combination of atomic force microscopy and infrared spectroscopy (AFM-IR) has led to the ability to obtain IR spectra with nanoscale spatial resolution, nearly two orders-of-magnitude better than conventional Fourier transform infrared (FT-IR) microspectroscopy. This advanced methodology can lead to significantly sharper spectral features than are typically seen in conventional IR spectra of inhomogeneous materials, where a wider range of molecular environments are coaveraged by the larger sample cross section being probed. In this work, two-dimensional (2D) correlation analysis is used to examine position sensitive spectral variations in datasets of closely spaced AFM-IR spectra. This analysis can reveal new key insights, providing a better understanding of the new spectral information that was previously hidden under broader overlapped spectral features. Two examples of the utility of this new approach are presented. Two-dimensional correlation analysis of a set of AFM-IR spectra were collected at 200-nm increments along a line through a nucleation site generated by remelting a small spot on a thin film of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). There are two different crystalline carbonyl band components near 1720 cm-1 that sequentially disappear before a band at 1740 cm-1 due to more disordered material appears. In the second example, 2D correlation analysis of a series of AFM-IR spectra spaced every 1 μm of a thin cross section of a bone sample measured outward from an osteon center of bone growth. There are many changes in the amide I and phosphate band contours, suggesting changes in the bone structure are occurring as the bone matures.

  5. Monitoring tropical vegetation succession with LANDSAT data

    NASA Technical Reports Server (NTRS)

    Robinson, V. B. (Principal Investigator)

    1983-01-01

    The shadowing problem, which is endemic to the use of LANDSAT in tropical areas, and the ability to model changes over space and through time are problems to be addressed when monitoring tropical vegetation succession. Application of a trend surface analysis model to major land cover classes in a mountainous region of the Phillipines shows that the spatial modeling of radiance values can provide a useful approach to tropical rain forest succession monitoring. Results indicate shadowing effects may be due primarily to local variations in the spectral responses. These variations can be compensated for through the decomposition of the spatial variation in both elevation and MSS data. Using the model to estimate both elevation and spectral terrain surface as a posteriori inputs in the classification process leads to improved classification accuracy for vegetation of cover of this type. Spatial patterns depicted by the MSS data reflect the measurement of responses to spatial processes acting at several scales.

  6. Collimating slicer for optical integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    Laurent, Florence; Hénault, François

    2016-07-01

    Integral Field Spectroscopy (IFS) is a technique that gives simultaneously the spectrum of each spatial sampling element of a given field. It is a powerful tool which rearranges the data cube represented by two spatial dimensions defining the field and the spectral decomposition (x, y, λ) in a detector plane. In IFS, the "spatial" unit reorganizes the field, the "spectral" unit is being composed of a classical spectrograph. For the spatial unit, three main techniques - microlens array, microlens array associated with fibres and image slicer - are used in astronomical instrumentations. The development of a Collimating Slicer is to propose a new type of optical integral field spectroscopy which should be more compact. The main idea is to combine the image slicer with the collimator of the spectrograph mixing the "spatial" and "spectral" units. The traditional combination of slicer, pupil and slit elements and spectrograph collimator is replaced by a new one composed of a slicer and spectrograph collimator only. After testing few configurations, this new system looks very promising for low resolution spectrographs. In this paper, the state of art of integral field spectroscopy using image slicers will be described. The new system based onto the development of a Collimating Slicer for optical integral field spectroscopy will be depicted. First system analysis results and future improvements will be discussed.

  7. A spatially adaptive spectral re-ordering technique for lossless coding of hyper-spectral images

    NASA Technical Reports Server (NTRS)

    Memon, Nasir D.; Galatsanos, Nikolas

    1995-01-01

    In this paper, we propose a new approach, applicable to lossless compression of hyper-spectral images, that alleviates some limitations of linear prediction as applied to this problem. According to this approach, an adaptive re-ordering of the spectral components of each pixel is performed prior to prediction and encoding. This re-ordering adaptively exploits, on a pixel-by pixel basis, the presence of inter-band correlations for prediction. Furthermore, the proposed approach takes advantage of spatial correlations, and does not introduce any coding overhead to transmit the order of the spectral bands. This is accomplished by using the assumption that two spatially adjacent pixels are expected to have similar spectral relationships. We thus have a simple technique to exploit spectral and spatial correlations in hyper-spectral data sets, leading to compression performance improvements as compared to our previously reported techniques for lossless compression. We also look at some simple error modeling techniques for further exploiting any structure that remains in the prediction residuals prior to entropy coding.

  8. Comparison of existing digital image analysis systems for the analysis of Thematic Mapper data

    NASA Technical Reports Server (NTRS)

    Likens, W. C.; Wrigley, R. C.

    1984-01-01

    Most existing image analysis systems were designed with the Landsat Multi-Spectral Scanner in mind, leaving open the question of whether or not these systems could adequately process Thematic Mapper data. In this report, both hardware and software systems have been evaluated for compatibility with TM data. Lack of spectral analysis capability was not found to be a problem, though techniques for spatial filtering and texture varied. Computer processing speed and data storage of currently existing mini-computer based systems may be less than adequate. Upgrading to more powerful hardware may be required for many TM applications.

  9. Demonstration of Airborne Wide Area Assessment Technologies at Pueblo Precision Bombing Ranges, Colorado. Hyperspectral Imaging, Version 2.0

    DTIC Science & Technology

    2007-09-27

    the spatial and spectral resolution ...variety of geological and vegetation mapping efforts, the Hymap sensor offered the best available combination of spectral and spatial resolution , signal... The limitations of the technology currently relate to spatial and spectral resolution and geo- correction accuracy. Secondly, HSI datasets

  10. Study of Spectral/Radiometric Characteristics of the Thematic Mapper for Land Use Applications

    NASA Technical Reports Server (NTRS)

    Malila, W. A. (Principal Investigator); Metzler, M. D. (Principal Investigator)

    1985-01-01

    An investigation conducted in support of the LANDSAT 4/5 Image Data Quality Analysis (LIDQA) Program is discussed. Results of engineering analyses of radiometric, spatial, spectral, and geometric properties of the Thematic Mapper systems are summarized; major emphasis is placed on the radiometric analysis. Details of the analyses are presented in appendices, which contain three of the eight technical papers produced during this investigation; these three, together, describe the major activities and results of the investigation.

  11. Optimal attributes for the object based detection of giant reed in riparian habitats: A comparative study between Airborne High Spatial Resolution and WorldView-2 imagery

    NASA Astrophysics Data System (ADS)

    Fernandes, Maria Rosário; Aguiar, Francisca C.; Silva, João M. N.; Ferreira, Maria Teresa; Pereira, José M. C.

    2014-10-01

    Giant reed is an aggressive invasive plant of riparian ecosystems in many sub-tropical and warm-temperate regions, including Mediterranean Europe. In this study we tested a set of geometric, spectral and textural attributes in an object based image analysis (OBIA) approach to map giant reed invasions in riparian habitats. Bagging Classification and Regression Tree were used to select the optimal attributes and to build the classification rules sets. Mapping accuracy was performed using landscape metrics and the Kappa coefficient to compare the topographical and geometric similarity between the giant reed patches obtained with the OBIA map and with a validation map derived from on-screen digitizing. The methodology was applied in two high spatial resolution images: an airborne multispectral imagery and the newly WorldView-2 imagery. A temporal coverage of the airborne multispectral images was radiometrically calibrated with the IR-Mad transformation and used to assess the influence of the phenological variability of the invader. We found that optimal attributes for giant reed OBIA detection are a combination of spectral, geometric and textural information, with different scoring selection depending on the spectral and spatial characteristics of the imagery. WorldView-2 showed higher mapping accuracy (Kappa coefficient of 77%) and spectral attributes, including the newly yellow band, were preferentially selected, although a tendency to overestimate the total invaded area, due to the low spatial resolution (2 m of pixel size vs. 50 cm) was observed. When airborne images were used, geometric attributes were primarily selected and a higher spatial detail of the invasive patches was obtained, due to the higher spatial resolution. However, in highly heterogeneous landscapes, the low spectral resolution of the airborne images (4 bands instead of the 8 of WorldView-2) reduces the capability to detect giant reed patches. Giant reed displays peculiar spectral and geometric traits, at leaf, canopy and stand level, which makes the OBIA approach a very suitable technique for management purposes.

  12. A periodic spatio-spectral filter for event-related potentials.

    PubMed

    Ghaderi, Foad; Kim, Su Kyoung; Kirchner, Elsa Andrea

    2016-12-01

    With respect to single trial detection of event-related potentials (ERPs), spatial and spectral filters are two of the most commonly used pre-processing techniques for signal enhancement. Spatial filters reduce the dimensionality of the data while suppressing the noise contribution and spectral filters attenuate frequency components that most likely belong to noise subspace. However, the frequency spectrum of ERPs overlap with that of the ongoing electroencephalogram (EEG) and different types of artifacts. Therefore, proper selection of the spectral filter cutoffs is not a trivial task. In this research work, we developed a supervised method to estimate the spatial and finite impulse response (FIR) spectral filters, simultaneously. We evaluated the performance of the method on offline single trial classification of ERPs in datasets recorded during an oddball paradigm. The proposed spatio-spectral filter improved the overall single-trial classification performance by almost 9% on average compared with the case that no spatial filters were used. We also analyzed the effects of different spectral filter lengths and the number of retained channels after spatial filtering. Copyright © 2016. Published by Elsevier Ltd.

  13. A new multi-spectral feature level image fusion method for human interpretation

    NASA Astrophysics Data System (ADS)

    Leviner, Marom; Maltz, Masha

    2009-03-01

    Various different methods to perform multi-spectral image fusion have been suggested, mostly on the pixel level. However, the jury is still out on the benefits of a fused image compared to its source images. We present here a new multi-spectral image fusion method, multi-spectral segmentation fusion (MSSF), which uses a feature level processing paradigm. To test our method, we compared human observer performance in a three-task experiment using MSSF against two established methods: averaging and principle components analysis (PCA), and against its two source bands, visible and infrared. The three tasks that we studied were: (1) simple target detection, (2) spatial orientation, and (3) camouflaged target detection. MSSF proved superior to the other fusion methods in all three tests; MSSF also outperformed the source images in the spatial orientation and camouflaged target detection tasks. Based on these findings, current speculation about the circumstances in which multi-spectral image fusion in general and specific fusion methods in particular would be superior to using the original image sources can be further addressed.

  14. Classification of Hyperspectral Data Based on Guided Filtering and Random Forest

    NASA Astrophysics Data System (ADS)

    Ma, H.; Feng, W.; Cao, X.; Wang, L.

    2017-09-01

    Hyperspectral images usually consist of more than one hundred spectral bands, which have potentials to provide rich spatial and spectral information. However, the application of hyperspectral data is still challengeable due to "the curse of dimensionality". In this context, many techniques, which aim to make full use of both the spatial and spectral information, are investigated. In order to preserve the geometrical information, meanwhile, with less spectral bands, we propose a novel method, which combines principal components analysis (PCA), guided image filtering and the random forest classifier (RF). In detail, PCA is firstly employed to reduce the dimension of spectral bands. Secondly, the guided image filtering technique is introduced to smooth land object, meanwhile preserving the edge of objects. Finally, the features are fed into RF classifier. To illustrate the effectiveness of the method, we carry out experiments over the popular Indian Pines data set, which is collected by Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor. By comparing the proposed method with the method of only using PCA or guided image filter, we find that effect of the proposed method is better.

  15. Analysis of X-ray Spectra of High-Z Elements obtained on Nike with high spectral and spatial resolution

    NASA Astrophysics Data System (ADS)

    Aglitskiy, Yefim; Weaver, J. L.; Karasik, M.; Serlin, V.; Obenschain, S. P.; Ralchenko, Yu.

    2014-10-01

    The spectra of multi-charged ions of Hf, Ta, W, Pt, Au and Bi have been studied on Nike krypton-fluoride laser facility with the help of two kinds of X-ray spectrometers. First, survey instrument covering a spectral range from 0.5 to 19.5 angstroms which allows simultaneous observation of both M- and N- spectra of above mentioned elements with high spectral resolution. Second, an imaging spectrometer with interchangeable spherically bent Quartz crystals that added higher efficiency, higher spectral resolution and high spatial resolution to the qualities of the former one. Multiple spectral lines with X-ray energies as high as 4 keV that belong to the isoelectronic sequences of Fe, Co, Ni, Cu and Zn were identified with the help of NOMAD package developed by Dr. Yu. Ralchenko and colleagues. In our continuous effort to support DOE-NNSA's inertial fusion program, this campaign covered a wide range of plasma conditions that result in production of relatively energetic X-rays. Work supported by the US DOE/NNSA.

  16. [Research of Identify Spatial Object Using Spectrum Analysis Technique].

    PubMed

    Song, Wei; Feng, Shi-qi; Shi, Jing; Xu, Rong; Wang, Gong-chang; Li, Bin-yu; Liu, Yu; Li, Shuang; Cao Rui; Cai, Hong-xing; Zhang, Xi-he; Tan, Yong

    2015-06-01

    The high precision scattering spectrum of spatial fragment with the minimum brightness of 4.2 and the resolution of 0.5 nm has been observed using spectrum detection technology on the ground. The obvious differences for different types of objects are obtained by the normalizing and discrete rate analysis of the spectral data. Each of normalized multi-frame scattering spectral line shape for rocket debris is identical. However, that is different for lapsed satellites. The discrete rate of the single frame spectrum of normalized space debris for rocket debris ranges from 0.978% to 3.067%, and the difference of oscillation and average value is small. The discrete rate for lapsed satellites ranges from 3.118 4% to 19.472 7%, and the difference of oscillation and average value relatively large. The reason is that the composition of rocket debris is single, while that of the lapsed satellites is complex. Therefore, the spectrum detection technology on the ground can be used to the classification of the spatial fragment.

  17. Characterization and modelling of the spatially- and spectrally-varying point-spread function in hyperspectral imaging systems for computational correction of axial optical aberrations

    NASA Astrophysics Data System (ADS)

    Špiclin, Žiga; Bürmen, Miran; Pernuš, Franjo; Likar, Boštjan

    2012-03-01

    Spatial resolution of hyperspectral imaging systems can vary significantly due to axial optical aberrations that originate from wavelength-induced index-of-refraction variations of the imaging optics. For systems that have a broad spectral range, the spatial resolution will vary significantly both with respect to the acquisition wavelength and with respect to the spatial position within each spectral image. Variations of the spatial resolution can be effectively characterized as part of the calibration procedure by a local image-based estimation of the pointspread function (PSF) of the hyperspectral imaging system. The estimated PSF can then be used in the image deconvolution methods to improve the spatial resolution of the spectral images. We estimated the PSFs from the spectral images of a line grid geometric caliber. From individual line segments of the line grid, the PSF was obtained by a non-parametric estimation procedure that used an orthogonal series representation of the PSF. By using the non-parametric estimation procedure, the PSFs were estimated at different spatial positions and at different wavelengths. The variations of the spatial resolution were characterized by the radius and the fullwidth half-maximum of each PSF and by the modulation transfer function, computed from images of USAF1951 resolution target. The estimation and characterization of the PSFs and the image deconvolution based spatial resolution enhancement were tested on images obtained by a hyperspectral imaging system with an acousto-optic tunable filter in the visible spectral range. The results demonstrate that the spatial resolution of the acquired spectral images can be significantly improved using the estimated PSFs and image deconvolution methods.

  18. Benchmark Shock Tube Experiments for Radiative Heating Relevant to Earth Re-Entry

    NASA Technical Reports Server (NTRS)

    Brandis, A. M.; Cruden, B. A.

    2017-01-01

    Detailed spectrally and spatially resolved radiance has been measured in the Electric Arc Shock Tube (EAST) facility for conditions relevant to high speed entry into a variety of atmospheres, including Earth, Venus, Titan, Mars and the Outer Planets. The tests that measured radiation relevant for Earth re-entry are the focus of this work and are taken from campaigns 47, 50, 52 and 57. These tests covered conditions from 8 km/s to 15.5 km/s at initial pressures ranging from 0.05 Torr to 1 Torr, of which shots at 0.1 and 0.2 Torr are analyzed in this paper. These conditions cover a range of points of interest for potential fight missions, including return from Low Earth Orbit, the Moon and Mars. The large volume of testing available from EAST is useful for statistical analysis of radiation data, but is problematic for identifying representative experiments for performing detailed analysis. Therefore, the intent of this paper is to select a subset of benchmark test data that can be considered for further detailed study. These benchmark shots are intended to provide more accessible data sets for future code validation studies and facility-to-facility comparisons. The shots that have been selected as benchmark data are the ones in closest agreement to a line of best fit through all of the EAST results, whilst also showing the best experimental characteristics, such as test time and convergence to equilibrium. The EAST data are presented in different formats for analysis. These data include the spectral radiance at equilibrium, the spatial dependence of radiance over defined wavelength ranges and the mean non-equilibrium spectral radiance (so-called 'spectral non-equilibrium metric'). All the information needed to simulate each experimental trace, including free-stream conditions, shock time of arrival (i.e. x-t) relation, and the spectral and spatial resolution functions, are provided.

  19. Snapshot hyperspectral fovea vision system (HyperVideo)

    NASA Astrophysics Data System (ADS)

    Kriesel, Jason; Scriven, Gordon; Gat, Nahum; Nagaraj, Sheela; Willson, Paul; Swaminathan, V.

    2012-06-01

    The development and demonstration of a new snapshot hyperspectral sensor is described. The system is a significant extension of the four dimensional imaging spectrometer (4DIS) concept, which resolves all four dimensions of hyperspectral imaging data (2D spatial, spectral, and temporal) in real-time. The new sensor, dubbed "4×4DIS" uses a single fiber optic reformatter that feeds into four separate, miniature visible to near-infrared (VNIR) imaging spectrometers, providing significantly better spatial resolution than previous systems. Full data cubes are captured in each frame period without scanning, i.e., "HyperVideo". The current system operates up to 30 Hz (i.e., 30 cubes/s), has 300 spectral bands from 400 to 1100 nm (~2.4 nm resolution), and a spatial resolution of 44×40 pixels. An additional 1.4 Megapixel video camera provides scene context and effectively sharpens the spatial resolution of the hyperspectral data. Essentially, the 4×4DIS provides a 2D spatially resolved grid of 44×40 = 1760 separate spectral measurements every 33 ms, which is overlaid on the detailed spatial information provided by the context camera. The system can use a wide range of off-the-shelf lenses and can either be operated so that the fields of view match, or in a "spectral fovea" mode, in which the 4×4DIS system uses narrow field of view optics, and is cued by a wider field of view context camera. Unlike other hyperspectral snapshot schemes, which require intensive computations to deconvolve the data (e.g., Computed Tomographic Imaging Spectrometer), the 4×4DIS requires only a linear remapping, enabling real-time display and analysis. The system concept has a range of applications including biomedical imaging, missile defense, infrared counter measure (IRCM) threat characterization, and ground based remote sensing.

  20. [Preparation and spectral analysis of a new type of blue light-emitting material delta-Alq3].

    PubMed

    Wang, Hua; Hao, Yu-ying; Gao, Zhi-xiang; Zhou, He-feng; Xu, Bing-she

    2006-10-01

    In the present article, delta-Alq3, a new type of blue light-emitting material, was synthesized and investigated by IR spectra, XRD spectra, UV-Vis absorption spectra, photoluminescence (PL) spectra, and electroluminescence (EL) spectra. The relationship between molecular spatial structure and spectral characteristics was studied by the spectral analysis of delta-Alq3 and alpha-Alq3. Results show that a new phase of Alq3 (delta-Alq3) can be obtained by vacuum heating alpha-Alq3, and the molecular spatial structure of alpha-Alq3 changes during the vacuum heating. The molecular spatial structure of delta-Alq3 lacks symmetry compared to alpha-Alq3. This transformation can reduce the electron cloud density on phenoxide of Alq3 and weaken the intermolecular conjugated interaction between adjacent Alq3 molecules. Hence, the pi--pi* electron transition absorption peak of delta-Alq3 shifts toward short wavelength in UV-Vis absorption spectra, and the maximum emission peak of delta-Alq3 (lamda max = 480 nm) blue-shifts by 35 nm compared with that of alpha-Alq3 (lamda max = 515 nm) in PL spectra. The maximum emission peaks of delta-Alq3 and alpha-Alq3 are all at 520 nm in EL spectra.

  1. Statistical analysis and machine learning algorithms for optical biopsy

    NASA Astrophysics Data System (ADS)

    Wu, Binlin; Liu, Cheng-hui; Boydston-White, Susie; Beckman, Hugh; Sriramoju, Vidyasagar; Sordillo, Laura; Zhang, Chunyuan; Zhang, Lin; Shi, Lingyan; Smith, Jason; Bailin, Jacob; Alfano, Robert R.

    2018-02-01

    Analyzing spectral or imaging data collected with various optical biopsy methods is often times difficult due to the complexity of the biological basis. Robust methods that can utilize the spectral or imaging data and detect the characteristic spectral or spatial signatures for different types of tissue is challenging but highly desired. In this study, we used various machine learning algorithms to analyze a spectral dataset acquired from human skin normal and cancerous tissue samples using resonance Raman spectroscopy with 532nm excitation. The algorithms including principal component analysis, nonnegative matrix factorization, and autoencoder artificial neural network are used to reduce dimension of the dataset and detect features. A support vector machine with a linear kernel is used to classify the normal tissue and cancerous tissue samples. The efficacies of the methods are compared.

  2. Study of hyperspectral characteristics of different types of flares and smoke candles

    NASA Astrophysics Data System (ADS)

    Farley, Vincent; Chamberland, Martin; Lagueux, Philippe; Kastek, Mariusz; Piatkowski, Tadeusz; Dulski, Rafal

    2012-06-01

    Modern infrared camouflage and countermeasure technologies used in the context of military operations have evolved rapidly over the last decade. Indeed, some infrared seekers and decoy/flares tend to have spectral sensitivity tailored to closely match the emission signatures of military vehicles (such as aircrafts, tanks) and reject other sources. Similarly, some candles (or smoke bombs) are developed to generate large area screens with very high absorption in the infrared. The Military University of Technology has conducted an intensive field campaign where various types of flares and smoke candles were deployed in different conditions and measured. The high spectral, spatial and temporal resolution acquisition of these thermodynamic events was recorded with the Telops Hyper-Cam. The Hyper-Cam enables simultaneous acquisition of spatial and spectral information at high resolutions in both domains. The ability to study combustion systems with high resolution, co-registered imagery and spectral data is made possible. This paper presents the test campaign concept and definition and the analysis of the recorded measurements.

  3. SOSPEX, an interactive tool to explore SOFIA spectral cubes

    NASA Astrophysics Data System (ADS)

    Fadda, Dario; Chambers, Edward T.

    2018-01-01

    We present SOSPEX (SOFIA SPectral EXplorer), an interactive tool to visualize and analyze spectral cubes obtained with the FIFI-LS and GREAT instruments onboard the SOFIA Infrared Observatory. This software package is written in Python 3 and it is available either through Github or Anaconda.Through this GUI it is possible to explore directly the spectral cubes produced by the SOFIA pipeline and archived in the SOFIA Science Archive. Spectral cubes are visualized showing their spatial and spectral dimensions in two different windows. By selecting a part of the spectrum, the flux from the corresponding slice of the cube is visualized in the spatial window. On the other hand, it is possible to define apertures on the spatial window to show the corresponding spectral energy distribution in the spectral window.Flux isocontours can be overlapped to external images in the spatial window while line names, atmospheric transmission, or external spectra can be overplotted on the spectral window. Atmospheric models with specific parameters can be retrieved, compared to the spectra and applied to the uncorrected FIFI-LS cubes in the cases where the standard values give unsatisfactory results. Subcubes can be selected and saved as FITS files by cropping or cutting the original cubes. Lines and continuum can be fitted in the spectral window saving the results in Jyson files which can be reloaded later. Finally, in the case of spatially extended observations, it is possible to compute spectral momenta as a function of the position to obtain velocity dispersion maps or velocity diagrams.

  4. Thermodynamics of photons on fractals.

    PubMed

    Akkermans, Eric; Dunne, Gerald V; Teplyaev, Alexander

    2010-12-03

    A thermodynamical treatment of a massless scalar field (a photon) confined to a fractal spatial manifold leads to an equation of state relating pressure to internal energy, PV(s) = U/d(s), where d(s) is the spectral dimension and V(s) defines the "spectral volume." For regular manifolds, V(s) coincides with the usual geometric spatial volume, but on a fractal this is not necessarily the case. This is further evidence that on a fractal, momentum space can have a different dimension than position space. Our analysis also provides a natural definition of the vacuum (Casimir) energy of a fractal. We suggest ways that these unusual properties might be probed experimentally.

  5. Three-dimensional spectral-spatial EPR imaging of free radicals in the heart: a technique for imaging tissue metabolism and oxygenation.

    PubMed Central

    Kuppusamy, P; Chzhan, M; Vij, K; Shteynbuk, M; Lefer, D J; Giannella, E; Zweier, J L

    1994-01-01

    It has been hypothesized that free radical metabolism and oxygenation in living organs and tissues such as the heart may vary over the spatially defined tissue structure. In an effort to study these spatially defined differences, we have developed electron paramagnetic resonance imaging instrumentation enabling the performance of three-dimensional spectral-spatial images of free radicals infused into the heart and large vessels. Using this instrumentation, high-quality three-dimensional spectral-spatial images of isolated perfused rat hearts and rabbit aortas are obtained. In the isolated aorta, it is shown that spatially and spectrally accurate images of the vessel lumen and wall could be obtained in this living vascular tissue. In the isolated rat heart, imaging experiments were performed to determine the kinetics of radical clearance at different spatial locations within the heart during myocardial ischemia. The kinetic data show the existence of regional and transmural differences in myocardial free radical clearance. It is further demonstrated that EPR imaging can be used to noninvasively measure spatially localized oxygen concentrations in the heart. Thus, the technique of spectral-spatial EPR imaging is shown to be a powerful tool in providing spatial information regarding the free radical distribution, metabolism, and tissue oxygenation in living biological organs and tissues. Images PMID:8159757

  6. Advances in Spectral-Spatial Classification of Hyperspectral Images

    NASA Technical Reports Server (NTRS)

    Fauvel, Mathieu; Tarabalka, Yuliya; Benediktsson, Jon Atli; Chanussot, Jocelyn; Tilton, James C.

    2012-01-01

    Recent advances in spectral-spatial classification of hyperspectral images are presented in this paper. Several techniques are investigated for combining both spatial and spectral information. Spatial information is extracted at the object (set of pixels) level rather than at the conventional pixel level. Mathematical morphology is first used to derive the morphological profile of the image, which includes characteristics about the size, orientation, and contrast of the spatial structures present in the image. Then, the morphological neighborhood is defined and used to derive additional features for classification. Classification is performed with support vector machines (SVMs) using the available spectral information and the extracted spatial information. Spatial postprocessing is next investigated to build more homogeneous and spatially consistent thematic maps. To that end, three presegmentation techniques are applied to define regions that are used to regularize the preliminary pixel-wise thematic map. Finally, a multiple-classifier (MC) system is defined to produce relevant markers that are exploited to segment the hyperspectral image with the minimum spanning forest algorithm. Experimental results conducted on three real hyperspectral images with different spatial and spectral resolutions and corresponding to various contexts are presented. They highlight the importance of spectral–spatial strategies for the accurate classification of hyperspectral images and validate the proposed methods.

  7. Application of Spectral Analysis Techniques in the Intercomparison of Aerosol Data. Part II: Using Maximum Covariance Analysis to Effectively Compare Spatiotemporal Variability of Satellite and AERONET Measured Aerosol Optical Depth

    NASA Technical Reports Server (NTRS)

    Li, Jing; Carlson, Barbara E.; Lacis, Andrew A.

    2014-01-01

    Moderate Resolution Imaging SpectroRadiometer (MODIS) and Multi-angle Imaging Spectroradiomater (MISR) provide regular aerosol observations with global coverage. It is essential to examine the coherency between space- and ground-measured aerosol parameters in representing aerosol spatial and temporal variability, especially in the climate forcing and model validation context. In this paper, we introduce Maximum Covariance Analysis (MCA), also known as Singular Value Decomposition analysis as an effective way to compare correlated aerosol spatial and temporal patterns between satellite measurements and AERONET data. This technique not only successfully extracts the variability of major aerosol regimes but also allows the simultaneous examination of the aerosol variability both spatially and temporally. More importantly, it well accommodates the sparsely distributed AERONET data, for which other spectral decomposition methods, such as Principal Component Analysis, do not yield satisfactory results. The comparison shows overall good agreement between MODIS/MISR and AERONET AOD variability. The correlations between the first three modes of MCA results for both MODIS/AERONET and MISR/ AERONET are above 0.8 for the full data set and above 0.75 for the AOD anomaly data. The correlations between MODIS and MISR modes are also quite high (greater than 0.9). We also examine the extent of spatial agreement between satellite and AERONET AOD data at the selected stations. Some sites with disagreements in the MCA results, such as Kanpur, also have low spatial coherency. This should be associated partly with high AOD spatial variability and partly with uncertainties in satellite retrievals due to the seasonally varying aerosol types and surface properties.

  8. Micromega/IR: Design and status of a near-infrared spectral microscope for in situ analysis of Mars samples

    NASA Astrophysics Data System (ADS)

    Leroi, Vaitua; Bibring, Jean-Pierre; Berthe, Michel

    2009-07-01

    MicrOmega is an ultra miniaturized spectral microscope for in situ analysis of samples. It is composed of 2 microscopes; one with a spatial sampling less or equal to 4 μm, working in 4 colors in the visible range: MicrOmega/VIS, and a NIR hyperspectral microscope working in the spectral range 0.9-4 μm with a spatial sampling of 20 μm per pixel: MicrOmega/IR (described in this paper). MicrOmega/IR illuminates and images samples a few mm in size and acquires the NIR spectrum of each resolved pixel in up to 320 contiguous spectral channels. The goal of this instrument is to analyze in situ the composition of collected samples at almost their grain size scale, in a non-destructive way. With the chosen spectral range and resolution, a wide variety of constituents can be identified: minerals, such as pyroxene and olivine, ferric oxides, hydrated phyllosilicates, sulfates and carbonates and ices and organics. The composition of the various phases within a given sample is a critical record of its formation and evolution. Coupled to the mapping information, it provides unique clues to describe the history of the parent body (planet, satellite and small body). In particular, the capability to identify hydrated grains and to characterize their adjacent phases has a huge potential in the search for possible bio-relics.

  9. CRISM/HiRISE Correlative Spectroscopy

    NASA Astrophysics Data System (ADS)

    Seelos, F. P.; Murchie, S. L.; McGovern, A.; Milazzo, M. P.; Herkenhoff, K. E.

    2011-12-01

    The Mars Reconnaissance Orbiter (MRO) Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) and High Resolution Imaging Science Experiment (HiRISE) are complementary investigations with high spectral resolution and broad wavelength coverage (CRISM ~20 m/pxl; ~400 - 4000 nm, 6.55 nm sampling) and high spatial resolution with broadband color capability (HiRISE ~25 cm/pxl; ~500, 700, 900 nm band centers, ~200-300 nm FWHM). Over the course of the MRO mission it has become apparent that spectral variations in the IR detected by CRISM (~1000 nm - 4000 nm) sometimes correlate spatially with visible and near infrared 3-band color variations observed by HiRISE. We have developed a data processing procedure that establishes a numerical mapping between HiRISE color and CRISM VNIR and IR spectral data and provides a statistical evaluation of the uncertainty in the mapping, with the objective of extrapolating CRISM-inferred mineralogy to the HiRISE spatial scale. The MRO mission profile, spacecraft capabilities, and science planning process emphasize coordinated observations - the simultaneous observation of a common target by multiple instruments. The commonalities of CRISM/HiRISE coordinated observations present a unique opportunity for tandem data analysis. Recent advances in the systematic processing of CRISM hyperspectral targeted observations account for gimbal-induced photometric variations and transform the data to a synthetic nadir acquisition geometry. The CRISM VNIR (~400 nm - 1000 nm) data can then be convolved to the HiRISE Infrared, Red, and Blue/Green (IRB) response functions to generate a compatible CRISM IRB product. Statistical evaluation of the CRISM/HiRISE spatial overlap region establishes a quantitative link between the data sets. IRB spectral similarity mapping for each HiRISE color spatial pixel with respect to the CRISM IRB product allows a given HiRISE pixel to be populated with information derived from the coordinated CRISM observation, including correlative VNIR or IR spectral data, spectral summary parameters, or browse products. To properly characterize the quality and fidelity of the IRB correlation, a series of ancillary information bands that record the numerical behavior of the procedure are also generated. Prototype CRISM/HiRISE correlative data products have been generated for a small number of coordinated observation pairs. The resulting products have the potential to support integrated spectral and morphological mapping at sub-meter spatial scales. Such data products would be invaluable for strategic and tactical science operations on landed missions, and would allow observations from a landed platform to be evaluated in a CRISM-based spectral and mineralogical context.

  10. Proper orthogonal decomposition-based spectral higher-order stochastic estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baars, Woutijn J., E-mail: wbaars@unimelb.edu.au; Tinney, Charles E.

    A unique routine, capable of identifying both linear and higher-order coherence in multiple-input/output systems, is presented. The technique combines two well-established methods: Proper Orthogonal Decomposition (POD) and Higher-Order Spectra Analysis. The latter of these is based on known methods for characterizing nonlinear systems by way of Volterra series. In that, both linear and higher-order kernels are formed to quantify the spectral (nonlinear) transfer of energy between the system's input and output. This reduces essentially to spectral Linear Stochastic Estimation when only first-order terms are considered, and is therefore presented in the context of stochastic estimation as spectral Higher-Order Stochastic Estimationmore » (HOSE). The trade-off to seeking higher-order transfer kernels is that the increased complexity restricts the analysis to single-input/output systems. Low-dimensional (POD-based) analysis techniques are inserted to alleviate this void as POD coefficients represent the dynamics of the spatial structures (modes) of a multi-degree-of-freedom system. The mathematical framework behind this POD-based HOSE method is first described. The method is then tested in the context of jet aeroacoustics by modeling acoustically efficient large-scale instabilities as combinations of wave packets. The growth, saturation, and decay of these spatially convecting wave packets are shown to couple both linearly and nonlinearly in the near-field to produce waveforms that propagate acoustically to the far-field for different frequency combinations.« less

  11. Nonparametric Bayesian models for a spatial covariance.

    PubMed

    Reich, Brian J; Fuentes, Montserrat

    2012-01-01

    A crucial step in the analysis of spatial data is to estimate the spatial correlation function that determines the relationship between a spatial process at two locations. The standard approach to selecting the appropriate correlation function is to use prior knowledge or exploratory analysis, such as a variogram analysis, to select the correct parametric correlation function. Rather that selecting a particular parametric correlation function, we treat the covariance function as an unknown function to be estimated from the data. We propose a flexible prior for the correlation function to provide robustness to the choice of correlation function. We specify the prior for the correlation function using spectral methods and the Dirichlet process prior, which is a common prior for an unknown distribution function. Our model does not require Gaussian data or spatial locations on a regular grid. The approach is demonstrated using a simulation study as well as an analysis of California air pollution data.

  12. High-resolution CASSINI-VIMS mosaics of Titan and the icy Saturnian satellites

    USGS Publications Warehouse

    Jaumann, R.; Stephan, K.; Brown, R.H.; Buratti, B.J.; Clark, R.N.; McCord, T.B.; Coradini, A.; Capaccioni, F.; Filacchione, G.; Cerroni, P.; Baines, K.H.; Bellucci, G.; Bibring, J.-P.; Combes, M.; Cruikshank, D.P.; Drossart, P.; Formisano, V.; Langevin, Y.; Matson, D.L.; Nelson, R.M.; Nicholson, P.D.; Sicardy, B.; Sotin, Christophe; Soderbloom, L.A.; Griffith, C.; Matz, K.-D.; Roatsch, Th.; Scholten, F.; Porco, C.C.

    2006-01-01

    The Visual Infrared Mapping Spectrometer (VIMS) onboard the CASSINI spacecraft obtained new spectral data of the icy satellites of Saturn after its arrival at Saturn in June 2004. VIMS operates in a spectral range from 0.35 to 5.2 ??m, generating image cubes in which each pixel represents a spectrum consisting of 352 contiguous wavebands. As an imaging spectrometer VIMS combines the characteristics of both a spectrometer and an imaging instrument. This makes it possible to analyze the spectrum of each pixel separately and to map the spectral characteristics spatially, which is important to study the relationships between spectral information and geological and geomorphologic surface features. The spatial analysis of the spectral data requires the determination of the exact geographic position of each pixel on the specific surface and that all 352 spectral elements of each pixel show the same region of the target. We developed a method to reproject each pixel geometrically and to convert the spectral data into map projected image cubes. This method can also be applied to mosaic different VIMS observations. Based on these mosaics, maps of the spectral properties for each Saturnian satellite can be derived and attributed to geographic positions as well as to geological and geomorphologic surface features. These map-projected mosaics are the basis for all further investigations. ?? 2006 Elsevier Ltd. All rights reserved.

  13. Hyperspectral imaging with wavelet transform for classification of colon tissue biopsy samples

    NASA Astrophysics Data System (ADS)

    Masood, Khalid

    2008-08-01

    Automatic classification of medical images is a part of our computerised medical imaging programme to support the pathologists in their diagnosis. Hyperspectral data has found its applications in medical imagery. Its usage is increasing significantly in biopsy analysis of medical images. In this paper, we present a histopathological analysis for the classification of colon biopsy samples into benign and malignant classes. The proposed study is based on comparison between 3D spectral/spatial analysis and 2D spatial analysis. Wavelet textural features in the wavelet domain are used in both these approaches for classification of colon biopsy samples. Experimental results indicate that the incorporation of wavelet textural features using a support vector machine, in 2D spatial analysis, achieve best classification accuracy.

  14. Design of a multi-spectral imager built using the compressive sensing single-pixel camera architecture

    NASA Astrophysics Data System (ADS)

    McMackin, Lenore; Herman, Matthew A.; Weston, Tyler

    2016-02-01

    We present the design of a multi-spectral imager built using the architecture of the single-pixel camera. The architecture is enabled by the novel sampling theory of compressive sensing implemented optically using the Texas Instruments DLP™ micro-mirror array. The array not only implements spatial modulation necessary for compressive imaging but also provides unique diffractive spectral features that result in a multi-spectral, high-spatial resolution imager design. The new camera design provides multi-spectral imagery in a wavelength range that extends from the visible to the shortwave infrared without reduction in spatial resolution. In addition to the compressive imaging spectrometer design, we present a diffractive model of the architecture that allows us to predict a variety of detailed functional spatial and spectral design features. We present modeling results, architectural design and experimental results that prove the concept.

  15. Cloud cover analysis with Arctic Advanced Very High Resolution Radiometer data. II - Classification with spectral and textural measures

    NASA Technical Reports Server (NTRS)

    Key, J.

    1990-01-01

    The spectral and textural characteristics of polar clouds and surfaces for a 7-day summer series of AVHRR data in two Arctic locations are examined, and the results used in the development of a cloud classification procedure for polar satellite data. Since spatial coherence and texture sensitivity tests indicate that a joint spectral-textural analysis based on the same cell size is inappropriate, cloud detection with AVHRR data and surface identification with passive microwave data are first done on the pixel level as described by Key and Barry (1989). Next, cloud patterns within 250-sq-km regions are described, then the spectral and local textural characteristics of cloud patterns in the image are determined and each cloud pixel is classified by statistical methods. Results indicate that both spectral and textural features can be utilized in the classification of cloudy pixels, although spectral features are most useful for the discrimination between cloud classes.

  16. [Estimation of Hunan forest carbon density based on spectral mixture analysis of MODIS data].

    PubMed

    Yan, En-ping; Lin, Hui; Wang, Guang-xing; Chen, Zhen-xiong

    2015-11-01

    With the fast development of remote sensing technology, combining forest inventory sample plot data and remotely sensed images has become a widely used method to map forest carbon density. However, the existence of mixed pixels often impedes the improvement of forest carbon density mapping, especially when low spatial resolution images such as MODIS are used. In this study, MODIS images and national forest inventory sample plot data were used to conduct the study of estimation for forest carbon density. Linear spectral mixture analysis with and without constraint, and nonlinear spectral mixture analysis were compared to derive the fractions of different land use and land cover (LULC) types. Then sequential Gaussian co-simulation algorithm with and without the fraction images from spectral mixture analyses were employed to estimate forest carbon density of Hunan Province. Results showed that 1) Linear spectral mixture analysis with constraint, leading to a mean RMSE of 0.002, more accurately estimated the fractions of LULC types than linear spectral and nonlinear spectral mixture analyses; 2) Integrating spectral mixture analysis model and sequential Gaussian co-simulation algorithm increased the estimation accuracy of forest carbon density to 81.5% from 74.1%, and decreased the RMSE to 5.18 from 7.26; and 3) The mean value of forest carbon density for the province was 30.06 t · hm(-2), ranging from 0.00 to 67.35 t · hm(-2). This implied that the spectral mixture analysis provided a great potential to increase the estimation accuracy of forest carbon density on regional and global level.

  17. Estimating regional evapotranspiration from remotely sensed data by surface energy balance models

    NASA Technical Reports Server (NTRS)

    Asrar, Ghassem; Kanemasu, Edward; Myneni, R. B.; Lapitan, R. L.; Harris, T. R.; Killeen, J. M.; Cooper, D. I.; Hwang, C.

    1987-01-01

    Spatial and temporal variations of surface radiative temperatures of the burned and unburned areas of the Konza tallgrass prairie were studied. The role of management practices, topographic conditions and the uncertainties associated with in situ or airborne surface temperature measurements were assessed. Evaluation of diurnal and seasonal spectral characteristics of the burned and unburned areas of the prairie was also made. This was accomplished based on the analysis of measured spectral reflectance of the grass canopies under field conditions, and modelling their spectral behavior using a one dimensional radiative transfer model.

  18. Land cover mapping at Alkali Flat and Lake Lucero, White Sands, New Mexico, USA using multi-temporal and multi-spectral remote sensing data

    NASA Astrophysics Data System (ADS)

    Ghrefat, Habes A.; Goodell, Philip C.

    2011-08-01

    The goal of this research is to map land cover patterns and to detect changes that occurred at Alkali Flat and Lake Lucero, White Sands using multispectral Landsat 7 Enhanced Thematic Mapper Plus (ETM+), Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Advanced Land Imager (ALI), and hyperspectral Hyperion and Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data. The other objectives of this study were: (1) to evaluate the information dimensionality limits of Landsat 7 ETM+, ASTER, ALI, Hyperion, and AVIRIS data with respect to signal-to-noise and spectral resolution, (2) to determine the spatial distribution and fractional abundances of land cover endmembers, and (3) to check ground correspondence with satellite data. A better understanding of the spatial and spectral resolution of these sensors, optimum spectral bands and their information contents, appropriate image processing methods, spectral signatures of land cover classes, and atmospheric effects are needed to our ability to detect and map minerals from space. Image spectra were validated using samples collected from various localities across Alkali Flat and Lake Lucero. These samples were measured in the laboratory using VNIR-SWIR (0.4-2.5 μm) spectra and X-ray Diffraction (XRD) method. Dry gypsum deposits, wet gypsum deposits, standing water, green vegetation, and clastic alluvial sediments dominated by mixtures of ferric iron (ferricrete) and calcite were identified in the study area using Minimum Noise Fraction (MNF), Pixel Purity Index (PPI), and n-D Visualization. The results of MNF confirm that AVIRIS and Hyperion data have higher information dimensionality thresholds exceeding the number of available bands of Landsat 7 ETM+, ASTER, and ALI data. ASTER and ALI data can be a reasonable alternative to AVIRIS and Hyperion data for the purpose of monitoring land cover, hydrology and sedimentation in the basin. The spectral unmixing analysis and dimensionality eigen analysis between the various datasets helped to uncover the most optimum spatial-spectral-temporal and radiometric-resolution sensor characteristics for remote sensing based on monitoring of seasonal land cover, surface water, groundwater, and alluvial sediment input changes within the basin. The results demonstrated good agreement between ground truth data and XRD analysis of samples, and the results of Matched Filtering (MF) mapping method.

  19. Parallel Computing for the Computed-Tomography Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon

    2008-01-01

    This software computes the tomographic reconstruction of spatial-spectral data from raw detector images of the Computed-Tomography Imaging Spectrometer (CTIS), which enables transient-level, multi-spectral imaging by capturing spatial and spectral information in a single snapshot.

  20. Evaluation of Algorithms for Compressing Hyperspectral Data

    NASA Technical Reports Server (NTRS)

    Cook, Sid; Harsanyi, Joseph; Faber, Vance

    2003-01-01

    With EO-1 Hyperion in orbit NASA is showing their continued commitment to hyperspectral imaging (HSI). As HSI sensor technology continues to mature, the ever-increasing amounts of sensor data generated will result in a need for more cost effective communication and data handling systems. Lockheed Martin, with considerable experience in spacecraft design and developing special purpose onboard processors, has teamed with Applied Signal & Image Technology (ASIT), who has an extensive heritage in HSI spectral compression and Mapping Science (MSI) for JPEG 2000 spatial compression expertise, to develop a real-time and intelligent onboard processing (OBP) system to reduce HSI sensor downlink requirements. Our goal is to reduce the downlink requirement by a factor > 100, while retaining the necessary spectral and spatial fidelity of the sensor data needed to satisfy the many science, military, and intelligence goals of these systems. Our compression algorithms leverage commercial-off-the-shelf (COTS) spectral and spatial exploitation algorithms. We are currently in the process of evaluating these compression algorithms using statistical analysis and NASA scientists. We are also developing special purpose processors for executing these algorithms onboard a spacecraft.

  1. The continuum spectral characteristics of gamma-ray bursts observed by BATSE

    NASA Technical Reports Server (NTRS)

    Pendleton, Geoffrey N.; Paciesas, William S.; Briggs, Michael S.; Mallozzi, Robert S.; Koshut, Tom M.; Fishman, Gerald J.; Meegan, Charles A.; Wilson, Robert B.; Harmon, Alan B.; Kouveliotou, Chryssa

    1994-01-01

    Distributions of the continuum spectral characteristics of 260 bursts in the first Burst And Transient Source Experiement (BATSE) catalog are presented. The data are derived from flux calculated from BATSE Large Area Detector (LAD) four-channel discriminator data. The data are converted from counts to protons using a direct spectral inversion technique to remove the effects of atmospheric scattering and the energy dependence of the detector angular response. Although there are intriguing clusters of bursts in the spectral hardness ratio distributions, no evidence for the presence of distinct burst classes based in spectral hardness ratios alone is found. All subsets of bursts selected for their spectral characteristics in this analysis exhibit spatial distributions consistent with isotropy. The spectral diversity of the burst population appears to be caused largely by the highly variable nature of the burst production mechanisms themselves.

  2. Q-3D: Imaging Spectroscopy of Quasar Hosts with JWST Analyzed with a Powerful New PSF Decomposition and Spectral Analysis Package

    NASA Astrophysics Data System (ADS)

    Wylezalek, Dominika; Veilleux, Sylvain; Zakamska, Nadia; Barrera-Ballesteros, J.; Luetzgendorf, N.; Nesvadba, N.; Rupke, D.; Sun, A.

    2017-11-01

    In the last few years, optical and near-IR IFU observations from the ground have revolutionized extragalactic astronomy. The unprecedented infrared sensitivity, spatial resolution, and spectral coverage of the JWST IFUs will ensure high demand from the community. For a wide range of extragalactic phenomena (e.g. quasars, starbursts, supernovae, gamma ray bursts, tidal disruption events) and beyond (e.g. nebulae, debris disks around bright stars), PSF contamination will be an issue when studying the underlying extended emission. We propose to provide the community with a PSF decomposition and spectral analysis package for high dynamic range JWST IFU observations allowing the user to create science-ready maps of relevant spectral features. Luminous quasars, with their bright central source (quasar) and extended emission (host galaxy), are excellent test cases for this software. Quasars are also of high scientific interest in their own right as they are widely considered to be the main driver in regulating massive galaxy growth. JWST will revolutionize our understanding of black hole-galaxy co-evolution by allowing us to probe the stellar, gas, and dust components of nearby and distant galaxies, spatially and spectrally. We propose to use the IFU capabilities of NIRSpec and MIRI to study the impact of three carefully selected luminous quasars on their hosts. Our program will provide (1) a scientific dataset of broad interest that will serve as a pathfinder for JWST science investigations in IFU mode and (2) a powerful new data analysis tool that will enable frontier science for a wide swath of astrophysical research.

  3. Geomorphology

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The study of geomorphology and terrain analysis using TM and MSS data are discussed. The spatial and spectral characteristics of a variety of landforms are also investigated. An outline of possible experiments and a summary of data requirements are included.

  4. Integrating machine learning techniques and high-resolution imagery to generate GIS-ready information for urban water consumption studies

    NASA Astrophysics Data System (ADS)

    Wolf, Nils; Hof, Angela

    2012-10-01

    Urban sprawl driven by shifts in tourism development produces new suburban landscapes of water consumption on Mediterranean coasts. Golf courses, ornamental, 'Atlantic' gardens and swimming pools are the most striking artefacts of this transformation, threatening the local water supply systems and exacerbating water scarcity. In the face of climate change, urban landscape irrigation is becoming increasingly important from a resource management point of view. This paper adopts urban remote sensing towards a targeted mapping approach using machine learning techniques and highresolution satellite imagery (WorldView-2) to generate GIS-ready information for urban water consumption studies. Swimming pools, vegetation and - as a subgroup of vegetation - turf grass are extracted as important determinants of water consumption. For image analysis, the complex nature of urban environments suggests spatial-spectral classification, i.e. the complementary use of the spectral signature and spatial descriptors. Multiscale image segmentation provides means to extract the spatial descriptors - namely object feature layers - which can be concatenated at pixel level to the spectral signature. This study assesses the value of object features using different machine learning techniques and amounts of labeled information for learning. The results indicate the benefit of the spatial-spectral approach if combined with appropriate classifiers like tree-based ensembles or support vector machines, which can handle high dimensionality. Finally, a Random Forest classifier was chosen to deliver the classified input data for the estimation of evaporative water loss and net landscape irrigation requirements.

  5. Characterizing riverbed sediment using high-frequency acoustics 2: scattering signatures of Colorado River bed sediment in Marble and Grand Canyons

    USGS Publications Warehouse

    Buscombe, Daniel D.; Grams, Paul E.; Kaplinski, Matt A.

    2014-01-01

    In this, the second of a pair of papers on the statistical signatures of riverbed sediment in high-frequency acoustic backscatter, spatially explicit maps of the stochastic geometries (length- and amplitude-scales) of backscatter are related to patches of riverbed surfaces composed of known sediment types, as determined by geo-referenced underwater video observations. Statistics of backscatter magnitudes alone are found to be poor discriminators between sediment types. However, the variance of the power spectrum, and the intercept and slope from a power-law spectral form (termed the spectral strength and exponent, respectively) successfully discriminate between sediment types. A decision-tree approach was able to classify spatially heterogeneous patches of homogeneous sands, gravels (and sand-gravel mixtures), and cobbles/boulders with 95, 88, and 91% accuracy, respectively. Application to sites outside the calibration, and surveys made at calibration sites at different times, were plausible based on observations from underwater video. Analysis of decision trees built with different training data sets suggested that the spectral exponent was consistently the most important variable in the classification. In the absence of theory concerning how spatially variable sediment surfaces scatter high-frequency sound, the primary advantage of this data-driven approach to classify bed sediment over alternatives is that spectral methods have well understood properties and make no assumptions about the distributional form of the fluctuating component of backscatter over small spatial scales.

  6. Classification of river water pollution using Hyperion data

    NASA Astrophysics Data System (ADS)

    Kar, Soumyashree; Rathore, V. S.; Champati ray, P. K.; Sharma, Richa; Swain, S. K.

    2016-06-01

    A novel attempt is made to use hyperspectral remote sensing to identify the spatial variability of metal pollutants present in river water. It was also attempted to classify the hyperspectral image - Earth Observation-1 (EO-1) Hyperion data of an 8 km stretch of the river Yamuna, near Allahabad city in India depending on its chemical composition. For validating image analysis results, a total of 10 water samples were collected and chemically analyzed using Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES). Two different spectral libraries from field and image data were generated for the 10 sample locations. Advanced per-pixel supervised classifications such as Spectral Angle Mapper (SAM), SAM target finder using BandMax and Support Vector Machine (SVM) were carried out along with the unsupervised clustering procedure - Iterative Self-Organizing Data Analysis Technique (ISODATA). The results were compared and assessed with respect to ground data. Analytical Spectral Devices (ASD), Inc. spectroradiometer, FieldSpec 4 was used to generate the spectra of the water samples which were compiled into a spectral library and used for Spectral Absorption Depth (SAD) analysis. The spectral depth pattern of image and field spectral libraries was found to be highly correlated (correlation coefficient, R2 = 0.99) which validated the image analysis results with respect to the ground data. Further, we carried out a multivariate regression analysis to assess the varying concentrations of metal ions present in water based on the spectral depth of the corresponding absorption feature. Spectral Absorption Depth (SAD) analysis along with metal analysis of field data revealed the order in which the metals affected the river pollution, which was in conformity with the findings of Central Pollution Control Board (CPCB). Therefore, it is concluded that hyperspectral imaging provides opportunity that can be used for satellite based remote monitoring of water quality from space.

  7. Automatic classification of spectral units in the Aristarchus plateau

    NASA Astrophysics Data System (ADS)

    Erard, S.; Le Mouelic, S.; Langevin, Y.

    1999-09-01

    A reduction scheme has been recently proposed for the NIR images of Clementine (Le Mouelic et al, JGR 1999). This reduction has been used to build an integrated UVvis-NIR image cube of the Aristarchus region, from which compositional and maturity variations can be studied (Pinet et al, LPSC 1999). We will present an analysis of this image cube, providing a classification in spectral types and spectral units. The image cube is processed with Gmode analysis using three different data sets: Normalized spectra provide a classification based mainly on spectral slope variations (ie. maturity and volcanic glasses). This analysis discriminates between craters plus ejecta, mare basalts, and DMD. Olivine-rich areas and Aristarchus central peak are also recognized. Continuum-removed spectra provide a classification more related to compositional variations, which correctly identifies olivine and pyroxenes-rich areas (in Aristarchus, Krieger, Schiaparelli\\ldots). A third analysis uses spectral parameters related to maturity and Fe composition (reflectance, 1 mu m band depth, and spectral slope) rather than intensities. It provides the most spatially consistent picture, but fails in detecting Vallis Schroeteri and DMDs. A supplementary unit, younger and rich in pyroxene, is found on Aristarchus south rim. In conclusion, Gmode analysis can discriminate between different spectral types already identified with more classic methods (PCA, linear mixing\\ldots). No previous assumption is made on the data structure, such as endmembers number and nature, or linear relationship between input variables. The variability of the spectral types is intrinsically accounted for, so that the level of analysis is always restricted to meaningful limits. A complete classification should integrate several analyses based on different sets of parameters. Gmode is therefore a powerful light toll to perform first look analysis of spectral imaging data. This research has been partly founded by the French Programme National de Planetologie.

  8. Improving 3D Wavelet-Based Compression of Hyperspectral Images

    NASA Technical Reports Server (NTRS)

    Klimesh, Matthew; Kiely, Aaron; Xie, Hua; Aranki, Nazeeh

    2009-01-01

    Two methods of increasing the effectiveness of three-dimensional (3D) wavelet-based compression of hyperspectral images have been developed. (As used here, images signifies both images and digital data representing images.) The methods are oriented toward reducing or eliminating detrimental effects of a phenomenon, referred to as spectral ringing, that is described below. In 3D wavelet-based compression, an image is represented by a multiresolution wavelet decomposition consisting of several subbands obtained by applying wavelet transforms in the two spatial dimensions corresponding to the two spatial coordinate axes of the image plane, and by applying wavelet transforms in the spectral dimension. Spectral ringing is named after the more familiar spatial ringing (spurious spatial oscillations) that can be seen parallel to and near edges in ordinary images reconstructed from compressed data. These ringing phenomena are attributable to effects of quantization. In hyperspectral data, the individual spectral bands play the role of edges, causing spurious oscillations to occur in the spectral dimension. In the absence of such corrective measures as the present two methods, spectral ringing can manifest itself as systematic biases in some reconstructed spectral bands and can reduce the effectiveness of compression of spatially-low-pass subbands. One of the two methods is denoted mean subtraction. The basic idea of this method is to subtract mean values from spatial planes of spatially low-pass subbands prior to encoding, because (a) such spatial planes often have mean values that are far from zero and (b) zero-mean data are better suited for compression by methods that are effective for subbands of two-dimensional (2D) images. In this method, after the 3D wavelet decomposition is performed, mean values are computed for and subtracted from each spatial plane of each spatially-low-pass subband. The resulting data are converted to sign-magnitude form and compressed in a manner similar to that of a baseline hyperspectral- image-compression method. The mean values are encoded in the compressed bit stream and added back to the data at the appropriate decompression step. The overhead incurred by encoding the mean values only a few bits per spectral band is negligible with respect to the huge size of a typical hyperspectral data set. The other method is denoted modified decomposition. This method is so named because it involves a modified version of a commonly used multiresolution wavelet decomposition, known in the art as the 3D Mallat decomposition, in which (a) the first of multiple stages of a 3D wavelet transform is applied to the entire dataset and (b) subsequent stages are applied only to the horizontally-, vertically-, and spectrally-low-pass subband from the preceding stage. In the modified decomposition, in stages after the first, not only is the spatially-low-pass, spectrally-low-pass subband further decomposed, but also spatially-low-pass, spectrally-high-pass subbands are further decomposed spatially. Either method can be used alone to improve the quality of a reconstructed image (see figure). Alternatively, the two methods can be combined by first performing modified decomposition, then subtracting the mean values from spatial planes of spatially-low-pass subbands.

  9. Next generation miniature simultaneous multi-hyperspectral imaging systems

    NASA Astrophysics Data System (ADS)

    Hinnrichs, Michele; Gupta, Neelam

    2014-03-01

    The concept for a hyperspectral imaging system using a Fabry-Perot tunable filter (FPTF) array that is fabricated using "miniature optical electrical mechanical system" (MOEMS) technology. [1] Using an array of FPTF as an approach to hyperspectral imaging relaxes wavelength tuning requirements considerably because of the reduced portion of the spectrum that is covered by each element in the array. In this paper, Pacific Advanced Technology and ARL present the results of a concept design and performed analysis of a MOEMS based tunable Fabry-Perot array (FPTF) to perform simultaneous multispectral and hyperspectral imaging with relatively high spatial resolution. The concept design was developed with support of an Army SBIR Phase I program The Fabry-Perot tunable MOEMS filter array was combined with a miniature optics array and a focal plane array of 1024 x 1024 pixels to produce 16 colors every frame of the camera. Each color image has a spatial resolution of 256 x 256 pixels with an IFOV of 1.7 mrads and FOV of 25 degrees. The spectral images are collected simultaneously allowing high resolution spectral-spatial-temporal information in each frame of the camera, thus enabling the implementation of spectral-temporal-spatial algorithms in real-time to provide high sensitivity for the detection of weak signals in a high clutter background environment with low sensitivity to camera motion. The challenge in the design was the independent actuation of each Fabry Perot element in the array allowing for individual tuning. An additional challenge was the need to maximize the fill factor to improve the spatial coverage with minimal dead space. This paper will only address the concept design and analysis of the Fabry-Perot tunable filter array. A previous paper presented at SPIE DSS in 2012 explained the design of the optical array.

  10. Hyperspectral imaging to investigate the distribution of organic matter and iron down the soil profile

    NASA Astrophysics Data System (ADS)

    Hobley, Eleanor; Kriegs, Stefanie; Steffens, Markus

    2017-04-01

    Obtaining reliable and accurate data regarding the spatial distribution of different soil components is difficult due to issues related with sampling scale and resolution on the one hand and laboratory analysis on the other. When investigating the chemical composition of soil, studies frequently limit themselves to two dimensional characterisations, e.g. spatial variability near the surface or depth distribution down the profile, but rarely combine both approaches due to limitations to sampling and analytical capacities. Furthermore, when assessing depth distributions, samples are taken according to horizon or depth increments, resulting in a mixed sample across the sampling depth. Whilst this facilitates mean content estimation per depth increment and therefore reduces analytical costs, the sample information content with regards to heterogeneity within the profile is lost. Hyperspectral imaging can overcome these sampling limitations, yielding high resolution spectral data of down the soil profile, greatly enhancing the information content of the samples. This can then be used to augment horizontal spatial characterisation of a site, yielding three dimensional information into the distribution of spectral characteristics across a site and down the profile. Soil spectral characteristics are associated with specific chemical components of soil, such as soil organic matter or iron contents. By correlating the content of these soil components with their spectral behaviour, high resolution multi-dimensional analysis of soil chemical composition can be obtained. Here we present a hyperspectral approach to the characterisation of soil organic matter and iron down different soil profiles, outlining advantages and issues associated with the methodology.

  11. Brillouin Scattering Spectrum Analysis Based on Auto-Regressive Spectral Estimation

    NASA Astrophysics Data System (ADS)

    Huang, Mengyun; Li, Wei; Liu, Zhangyun; Cheng, Linghao; Guan, Bai-Ou

    2018-06-01

    Auto-regressive (AR) spectral estimation technology is proposed to analyze the Brillouin scattering spectrum in Brillouin optical time-domain refelectometry. It shows that AR based method can reliably estimate the Brillouin frequency shift with an accuracy much better than fast Fourier transform (FFT) based methods provided the data length is not too short. It enables about 3 times improvement over FFT at a moderate spatial resolution.

  12. Canopy reflectance modelling of semiarid vegetation

    NASA Technical Reports Server (NTRS)

    Franklin, Janet

    1994-01-01

    Three different types of remote sensing algorithms for estimating vegetation amount and other land surface biophysical parameters were tested for semiarid environments. These included statistical linear models, the Li-Strahler geometric-optical canopy model, and linear spectral mixture analysis. The two study areas were the National Science Foundation's Jornada Long Term Ecological Research site near Las Cruces, NM, in the northern Chihuahuan desert, and the HAPEX-Sahel site near Niamey, Niger, in West Africa, comprising semiarid rangeland and subtropical crop land. The statistical approach (simple and multiple regression) resulted in high correlations between SPOT satellite spectral reflectance and shrub and grass cover, although these correlations varied with the spatial scale of aggregation of the measurements. The Li-Strahler model produced estimated of shrub size and density for both study sites with large standard errors. In the Jornada, the estimates were accurate enough to be useful for characterizing structural differences among three shrub strata. In Niger, the range of shrub cover and size in short-fallow shrublands is so low that the necessity of spatially distributed estimation of shrub size and density is questionable. Spectral mixture analysis of multiscale, multitemporal, multispectral radiometer data and imagery for Niger showed a positive relationship between fractions of spectral endmembers and surface parameters of interest including soil cover, vegetation cover, and leaf area index.

  13. Evolution of miniature detectors and focal plane arrays for infrared sensors

    NASA Astrophysics Data System (ADS)

    Watts, Louis A.

    1993-06-01

    Sensors that are sensitive in the infrared spectral region have been under continuous development since the WW2 era. A quest for the military advantage of 'seeing in the dark' has pushed thermal imaging technology toward high spatial and temporal resolution for night vision equipment, fire control, search track, and seeker 'homing' guidance sensing devices. Similarly, scientific applications have pushed spectral resolution for chemical analysis, remote sensing of earth resources, and astronomical exploration applications. As a result of these developments, focal plane arrays (FPA) are now available with sufficient sensitivity for both high spatial and narrow bandwidth spectral resolution imaging over large fields of view. Such devices combined with emerging opto-electronic developments in integrated FPA data processing techniques can yield miniature sensors capable of imaging reflected sunlight in the near IR and emitted thermal energy in the Mid-wave (MWIR) and longwave (LWIR) IR spectral regions. Robotic space sensors equipped with advanced versions of these FPA's will provide high resolution 'pictures' of their surroundings, perform remote analysis of solid, liquid, and gas matter, or selectively look for 'signatures' of specific objects. Evolutionary trends and projections of future low power micro detector FPA developments for day/night operation or use in adverse viewing conditions are presented in the following test.

  14. Evolution of miniature detectors and focal plane arrays for infrared sensors

    NASA Technical Reports Server (NTRS)

    Watts, Louis A.

    1993-01-01

    Sensors that are sensitive in the infrared spectral region have been under continuous development since the WW2 era. A quest for the military advantage of 'seeing in the dark' has pushed thermal imaging technology toward high spatial and temporal resolution for night vision equipment, fire control, search track, and seeker 'homing' guidance sensing devices. Similarly, scientific applications have pushed spectral resolution for chemical analysis, remote sensing of earth resources, and astronomical exploration applications. As a result of these developments, focal plane arrays (FPA) are now available with sufficient sensitivity for both high spatial and narrow bandwidth spectral resolution imaging over large fields of view. Such devices combined with emerging opto-electronic developments in integrated FPA data processing techniques can yield miniature sensors capable of imaging reflected sunlight in the near IR and emitted thermal energy in the Mid-wave (MWIR) and longwave (LWIR) IR spectral regions. Robotic space sensors equipped with advanced versions of these FPA's will provide high resolution 'pictures' of their surroundings, perform remote analysis of solid, liquid, and gas matter, or selectively look for 'signatures' of specific objects. Evolutionary trends and projections of future low power micro detector FPA developments for day/night operation or use in adverse viewing conditions are presented in the following test.

  15. Characterization of LANDSAT-4 TM and MSS Image Quality for Interpretation of Agricultural and Forest Resources

    NASA Technical Reports Server (NTRS)

    Degloria, S. D.; Colwell, R. N.

    1984-01-01

    Systematic analysis of both image and numeric data shows that the overall spectral, spatial, and radiometric quality of the TM data are excellent. Spectral variations in fallow fields are due to the vaiability in soil moisture and surface roughness resulting from the various stages of field preparation for small grains production. Spectrally, the addition of the first TM short wave infrared band (Band 5) significantly enhanced ability to discriminate different crop types. Bands 1, 5, and 6 contain saturated pixels due to high albedo effects, low moisture conditions, and high radiant temperatures of granite and dry, bare soil on south facing slopes, respectively. Spatially, the two fold decrease in interpixel distance and four fold decrease in area per pixel between the TM and MSS allow for improved discrimination of small fields, boundary conditions, road and stream networks in rough terrain, and small forest clearings resulting from various forest management practices.

  16. Joint Estimation of the Epoch of Reionization Power Spectrum and Foregrounds

    NASA Astrophysics Data System (ADS)

    Sims, Peter; Pober, Jonathan

    2018-01-01

    Bright astrophysical foregrounds present a significant impediment to the detection of redshifted 21-cm emission from the Epoch of Reionization on large spatial scales. In this talk I present a framework for the joint modeling of the power spectral contamination by astrophysical foregrounds and the power spectrum of the Epoch of Reionization. I show how informative priors on the power spectral contamination by astrophysical foregrounds at high redshifts, where emission from both the Epoch of Reionization and its foregrounds is present in the data, can be obtained through analysis of foreground-only emission at lower redshifts. Finally, I demonstrate how, by using such informative foreground priors, joint modeling can be employed to mitigate bias in estimates of the power spectrum of the Epoch of Reionization signal and, in particular, to enable recovery of more robust power spectral estimates on large spatial scales.

  17. Chandra/ACIS Observations of the 30 Doradus Star-Forming Complex

    NASA Astrophysics Data System (ADS)

    Townsley, Leisa; Broos, Patrick; Feigelson, Eric; Burrows, David; Chu, You-Hua; Garmire, Gordon; Griffiths, Richard; Maeda, Yoshitomo; Pavlov, George; Tsuboi, Yohko

    2002-04-01

    30 Doradus is the archetype giant extragalactic H II region, a massive star-forming complex in the Large Magellanic Cloud. We examine high-spatial-resolution X-ray images and spectra of the essential parts of 30 Doradus, obtained with the Advanced CCD Imaging Spectrometer (ACIS) aboard the Chandra X-ray Observatory. The central cluster of young high-mass stars, R136, is resolved at the arcsecond level, allowing spectral analysis of bright constituents; other OB/Wolf-Rayet binaries and multiple systems (e.g. R139, R140) are also detected. Spatially-resolved spectra are presented for N157B, the composite SNR containing a 16-msec pulsar. The spectrally soft superbubble structures seen by ROSAT are dramatically imaged by Chandra; we explore the spectral differences they exhibit. Taken together, the components of 30 Doradus give us an excellent microscopic view of high-energy phenomena seen on larger scales in more distant galaxies as starbursts and galactic winds.

  18. The spectral signature of cloud spatial structure in shortwave irradiance

    PubMed Central

    Song, Shi; Schmidt, K. Sebastian; Pilewskie, Peter; King, Michael D.; Heidinger, Andrew K.; Walther, Andi; Iwabuchi, Hironobu; Wind, Gala; Coddington, Odele M.

    2017-01-01

    In this paper, we used cloud imagery from a NASA field experiment in conjunction with three-dimensional radiative transfer calculations to show that cloud spatial structure manifests itself as a spectral signature in shortwave irradiance fields – specifically in transmittance and net horizontal photon transport in the visible and near-ultraviolet wavelength range. We found a robust correlation between the magnitude of net horizontal photon transport (H) and its spectral dependence (slope), which is scale-invariant and holds for the entire pixel population of a domain. This was surprising at first given the large degree of spatial inhomogeneity. We prove that the underlying physical mechanism for this phenomenon is molecular scattering in conjunction with cloud spatial structure. On this basis, we developed a simple parameterization through a single parameter ε, which quantifies the characteristic spectral signature of spatial inhomogeneities. In the case we studied, neglecting net horizontal photon transport leads to a local transmittance bias of ±12–19 %, even at the relatively coarse spatial resolution of 20 km. Since three-dimensional effects depend on the spatial context of a given pixel in a nontrivial way, the spectral dimension of this problem may emerge as the starting point for future bias corrections. PMID:28824698

  19. The spectral signature of cloud spatial structure in shortwave irradiance.

    PubMed

    Song, Shi; Schmidt, K Sebastian; Pilewskie, Peter; King, Michael D; Heidinger, Andrew K; Walther, Andi; Iwabuchi, Hironobu; Wind, Gala; Coddington, Odele M

    2016-11-08

    In this paper, we used cloud imagery from a NASA field experiment in conjunction with three-dimensional radiative transfer calculations to show that cloud spatial structure manifests itself as a spectral signature in shortwave irradiance fields - specifically in transmittance and net horizontal photon transport in the visible and near-ultraviolet wavelength range. We found a robust correlation between the magnitude of net horizontal photon transport ( H ) and its spectral dependence (slope), which is scale-invariant and holds for the entire pixel population of a domain. This was surprising at first given the large degree of spatial inhomogeneity. We prove that the underlying physical mechanism for this phenomenon is molecular scattering in conjunction with cloud spatial structure. On this basis, we developed a simple parameterization through a single parameter ε , which quantifies the characteristic spectral signature of spatial inhomogeneities. In the case we studied, neglecting net horizontal photon transport leads to a local transmittance bias of ±12-19 %, even at the relatively coarse spatial resolution of 20 km. Since three-dimensional effects depend on the spatial context of a given pixel in a nontrivial way, the spectral dimension of this problem may emerge as the starting point for future bias corrections.

  20. Hyperspectral imagery super-resolution by compressive sensing inspired dictionary learning and spatial-spectral regularization.

    PubMed

    Huang, Wei; Xiao, Liang; Liu, Hongyi; Wei, Zhihui

    2015-01-19

    Due to the instrumental and imaging optics limitations, it is difficult to acquire high spatial resolution hyperspectral imagery (HSI). Super-resolution (SR) imagery aims at inferring high quality images of a given scene from degraded versions of the same scene. This paper proposes a novel hyperspectral imagery super-resolution (HSI-SR) method via dictionary learning and spatial-spectral regularization. The main contributions of this paper are twofold. First, inspired by the compressive sensing (CS) framework, for learning the high resolution dictionary, we encourage stronger sparsity on image patches and promote smaller coherence between the learned dictionary and sensing matrix. Thus, a sparsity and incoherence restricted dictionary learning method is proposed to achieve higher efficiency sparse representation. Second, a variational regularization model combing a spatial sparsity regularization term and a new local spectral similarity preserving term is proposed to integrate the spectral and spatial-contextual information of the HSI. Experimental results show that the proposed method can effectively recover spatial information and better preserve spectral information. The high spatial resolution HSI reconstructed by the proposed method outperforms reconstructed results by other well-known methods in terms of both objective measurements and visual evaluation.

  1. Assessing the biophysical naturalness of grassland in eastern North Dakota with hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Zhou, Qiang

    Over the past two decades, non-native species within grassland communities have quickly developed due to human migration and commerce. Invasive species like Smooth Brome grass (Bromus inermis) and Kentucky Blue Grass (Poa pratensis), seriously threaten conservation of native grasslands. This study aims to discriminate between native grasslands and planted hayfields and conservation areas dominated by introduced grasses using hyperspectral imagery. Hyperspectral imageries from the Hyperion sensor on EO-1 were acquired in late spring and late summer on 2009 and 2010. Field spectra for widely distributed species as well as smooth brome grass and Kentucky blue grass were collected from the study sites throughout the growing season. Imagery was processed with an unmixing algorithm to estimate fractional cover of green and dry vegetation and bare soil. As the spectrum is significantly different through growing season, spectral libraries for the most common species are then built for both the early growing season and late growing season. After testing multiple methods, the Adaptive Coherence Estimator (ACE) was used for spectral matching analysis between the imagery and spectral libraries. Due in part to spectral similarity among key species, the results of spectral matching analysis were not definitive. Additional indexes, "Level of Dominance" and "Band variance", were calculated to measure the predominance of spectral signatures in any area. A Texture co-occurrence analysis was also performed on both "Level of Dominance" and "Band variance" indexes to extract spatial characteristics. The results suggest that compared with disturbed area, native prairie tend to have generally lower "Level of Dominance" and "Band variance" as well as lower spatial dissimilarity. A final decision tree model was created to predict presence of native or introduced grassland. The model was more effective for identification of Mixed Native Grassland than for grassland dominated by a single species. The discrimination of native and introduced grassland was limited by the similarity of spectral signatures between forb-dominated native grasslands and brome-grass stands. However, saline native grasslands were distinguishable from brome grass.

  2. Spatial, Temporal and Spectral Satellite Image Fusion via Sparse Representation

    NASA Astrophysics Data System (ADS)

    Song, Huihui

    Remote sensing provides good measurements for monitoring and further analyzing the climate change, dynamics of ecosystem, and human activities in global or regional scales. Over the past two decades, the number of launched satellite sensors has been increasing with the development of aerospace technologies and the growing requirements on remote sensing data in a vast amount of application fields. However, a key technological challenge confronting these sensors is that they tradeoff between spatial resolution and other properties, including temporal resolution, spectral resolution, swath width, etc., due to the limitations of hardware technology and budget constraints. To increase the spatial resolution of data with other good properties, one possible cost-effective solution is to explore data integration methods that can fuse multi-resolution data from multiple sensors, thereby enhancing the application capabilities of available remote sensing data. In this thesis, we propose to fuse the spatial resolution with temporal resolution and spectral resolution, respectively, based on sparse representation theory. Taking the study case of Landsat ETM+ (with spatial resolution of 30m and temporal resolution of 16 days) and MODIS (with spatial resolution of 250m ~ 1km and daily temporal resolution) reflectance, we propose two spatial-temporal fusion methods to combine the fine spatial information of Landsat image and the daily temporal resolution of MODIS image. Motivated by that the images from these two sensors are comparable on corresponding bands, we propose to link their spatial information on available Landsat- MODIS image pair (captured on prior date) and then predict the Landsat image from the MODIS counterpart on prediction date. To well-learn the spatial details from the prior images, we use a redundant dictionary to extract the basic representation atoms for both Landsat and MODIS images based on sparse representation. Under the scenario of two prior Landsat-MODIS image pairs, we build the corresponding relationship between the difference images of MODIS and ETM+ by training a low- and high-resolution dictionary pair from the given prior image pairs. In the second scenario, i.e., only one Landsat- MODIS image pair being available, we directly correlate MODIS and ETM+ data through an image degradation model. Then, the fusion stage is achieved by super-resolving the MODIS image combining the high-pass modulation in a two-layer fusion framework. Remarkably, the proposed spatial-temporal fusion methods form a unified framework for blending remote sensing images with phenology change or land-cover-type change. Based on the proposed spatial-temporal fusion models, we propose to monitor the land use/land cover changes in Shenzhen, China. As a fast-growing city, Shenzhen faces the problem of detecting the rapid changes for both rational city planning and sustainable development. However, the cloudy and rainy weather in region Shenzhen located makes the capturing circle of high-quality satellite images longer than their normal revisit periods. Spatial-temporal fusion methods are capable to tackle this problem by improving the spatial resolution of images with coarse spatial resolution but frequent temporal coverage, thereby making the detection of rapid changes possible. On two Landsat-MODIS datasets with annual and monthly changes, respectively, we apply the proposed spatial-temporal fusion methods to the task of multiple change detection. Afterward, we propose a novel spatial and spectral fusion method for satellite multispectral and hyperspectral (or high-spectral) images based on dictionary-pair learning and sparse non-negative matrix factorization. By combining the spectral information from hyperspectral image, which is characterized by low spatial resolution but high spectral resolution and abbreviated as LSHS, and the spatial information from multispectral image, which is featured by high spatial resolution but low spectral resolution and abbreviated as HSLS, this method aims to generate the fused data with both high spatial and high spectral resolutions. Motivated by the observation that each hyperspectral pixel can be represented by a linear combination of a few endmembers, this method first extracts the spectral bases of LSHS and HSLS images by making full use of the rich spectral information in LSHS data. The spectral bases of these two categories data then formulate a dictionary-pair due to their correspondence in representing each pixel spectra of LSHS data and HSLS data, respectively. Subsequently, the LSHS image is spatially unmixed by representing the HSLS image with respect to the corresponding learned dictionary to derive its representation coefficients. Combining the spectral bases of LSHS data and the representation coefficients of HSLS data, we finally derive the fused data characterized by the spectral resolution of LSHS data and the spatial resolution of HSLS data.

  3. Water resources by orbital remote sensing: Examples of applications

    NASA Technical Reports Server (NTRS)

    Martini, P. R. (Principal Investigator)

    1984-01-01

    Selected applications of orbital remote sensing to water resources undertaken by INPE are described. General specifications of Earth application satellites and technical characteristics of LANDSAT 1, 2, 3, and 4 subsystems are described. Spatial, temporal and spectral image attributes of water as well as methods of image analysis for applications to water resources are discussed. Selected examples are referred to flood monitoring, analysis of water suspended sediments, spatial distribution of pollutants, inventory of surface water bodies and mapping of alluvial aquifers.

  4. Detecting Weak Spectral Lines in Interferometric Data through Matched Filtering

    NASA Astrophysics Data System (ADS)

    Loomis, Ryan A.; Öberg, Karin I.; Andrews, Sean M.; Walsh, Catherine; Czekala, Ian; Huang, Jane; Rosenfeld, Katherine A.

    2018-04-01

    Modern radio interferometers enable observations of spectral lines with unprecedented spatial resolution and sensitivity. In spite of these technical advances, many lines of interest are still at best weakly detected and therefore necessitate detection and analysis techniques specialized for the low signal-to-noise ratio (S/N) regime. Matched filters can leverage knowledge of the source structure and kinematics to increase sensitivity of spectral line observations. Application of the filter in the native Fourier domain improves S/N while simultaneously avoiding the computational cost and ambiguities associated with imaging, making matched filtering a fast and robust method for weak spectral line detection. We demonstrate how an approximate matched filter can be constructed from a previously observed line or from a model of the source, and we show how this filter can be used to robustly infer a detection significance for weak spectral lines. When applied to ALMA Cycle 2 observations of CH3OH in the protoplanetary disk around TW Hya, the technique yields a ≈53% S/N boost over aperture-based spectral extraction methods, and we show that an even higher boost will be achieved for observations at higher spatial resolution. A Python-based open-source implementation of this technique is available under the MIT license at http://github.com/AstroChem/VISIBLE.

  5. Fast backprojection-based reconstruction of spectral-spatial EPR images from projections with the constant sweep of a magnetic field.

    PubMed

    Komarov, Denis A; Hirata, Hiroshi

    2017-08-01

    In this paper, we introduce a procedure for the reconstruction of spectral-spatial EPR images using projections acquired with the constant sweep of a magnetic field. The application of a constant field-sweep and a predetermined data sampling rate simplifies the requirements for EPR imaging instrumentation and facilitates the backprojection-based reconstruction of spectral-spatial images. The proposed approach was applied to the reconstruction of a four-dimensional numerical phantom and to actual spectral-spatial EPR measurements. Image reconstruction using projections with a constant field-sweep was three times faster than the conventional approach with the application of a pseudo-angle and a scan range that depends on the applied field gradient. Spectral-spatial EPR imaging with a constant field-sweep for data acquisition only slightly reduces the signal-to-noise ratio or functional resolution of the resultant images and can be applied together with any common backprojection-based reconstruction algorithm. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Improving spectral resolution in spatial encoding dimension of single-scan nuclear magnetic resonance 2D spin echo correlated spectroscopy

    NASA Astrophysics Data System (ADS)

    Lin, Liangjie; Wei, Zhiliang; Yang, Jian; Lin, Yanqin; Chen, Zhong

    2014-11-01

    The spatial encoding technique can be used to accelerate the acquisition of multi-dimensional nuclear magnetic resonance spectra. However, with this technique, we have to make trade-offs between the spectral width and the resolution in the spatial encoding dimension (F1 dimension), resulting in the difficulty of covering large spectral widths while preserving acceptable resolutions for spatial encoding spectra. In this study, a selective shifting method is proposed to overcome the aforementioned drawback. This method is capable of narrowing spectral widths and improving spectral resolutions in spatial encoding dimensions by selectively shifting certain peaks in spectra of the ultrafast version of spin echo correlated spectroscopy (UFSECSY). This method can also serve as a powerful tool to obtain high-resolution correlated spectra in inhomogeneous magnetic fields for its resistance to any inhomogeneity in the F1 dimension inherited from UFSECSY. Theoretical derivations and experiments have been carried out to demonstrate performances of the proposed method. Results show that the spectral width in spatial encoding dimension can be reduced by shortening distances between cross peaks and axial peaks with the proposed method and the expected resolution improvement can be achieved. Finally, the shifting-absent spectrum can be recovered readily by post-processing.

  7. Spatial Quality Evaluation of Resampled Unmanned Aerial Vehicle-Imagery for Weed Mapping.

    PubMed

    Borra-Serrano, Irene; Peña, José Manuel; Torres-Sánchez, Jorge; Mesas-Carrascosa, Francisco Javier; López-Granados, Francisca

    2015-08-12

    Unmanned aerial vehicles (UAVs) combined with different spectral range sensors are an emerging technology for providing early weed maps for optimizing herbicide applications. Considering that weeds, at very early phenological stages, are similar spectrally and in appearance, three major components are relevant: spatial resolution, type of sensor and classification algorithm. Resampling is a technique to create a new version of an image with a different width and/or height in pixels, and it has been used in satellite imagery with different spatial and temporal resolutions. In this paper, the efficiency of resampled-images (RS-images) created from real UAV-images (UAV-images; the UAVs were equipped with two types of sensors, i.e., visible and visible plus near-infrared spectra) captured at different altitudes is examined to test the quality of the RS-image output. The performance of the object-based-image-analysis (OBIA) implemented for the early weed mapping using different weed thresholds was also evaluated. Our results showed that resampling accurately extracted the spectral values from high spatial resolution UAV-images at an altitude of 30 m and the RS-image data at altitudes of 60 and 100 m, was able to provide accurate weed cover and herbicide application maps compared with UAV-images from real flights.

  8. Spatial Quality Evaluation of Resampled Unmanned Aerial Vehicle-Imagery for Weed Mapping

    PubMed Central

    Borra-Serrano, Irene; Peña, José Manuel; Torres-Sánchez, Jorge; Mesas-Carrascosa, Francisco Javier; López-Granados, Francisca

    2015-01-01

    Unmanned aerial vehicles (UAVs) combined with different spectral range sensors are an emerging technology for providing early weed maps for optimizing herbicide applications. Considering that weeds, at very early phenological stages, are similar spectrally and in appearance, three major components are relevant: spatial resolution, type of sensor and classification algorithm. Resampling is a technique to create a new version of an image with a different width and/or height in pixels, and it has been used in satellite imagery with different spatial and temporal resolutions. In this paper, the efficiency of resampled-images (RS-images) created from real UAV-images (UAV-images; the UAVs were equipped with two types of sensors, i.e., visible and visible plus near-infrared spectra) captured at different altitudes is examined to test the quality of the RS-image output. The performance of the object-based-image-analysis (OBIA) implemented for the early weed mapping using different weed thresholds was also evaluated. Our results showed that resampling accurately extracted the spectral values from high spatial resolution UAV-images at an altitude of 30 m and the RS-image data at altitudes of 60 and 100 m, was able to provide accurate weed cover and herbicide application maps compared with UAV-images from real flights. PMID:26274960

  9. Proton Energy Optimization and Spatial Distribution Analysis from a Thickness Study Using Liquid Crystal Targets

    NASA Astrophysics Data System (ADS)

    Willis, Christopher; Poole, Patrick; Schumacher, Douglas; Freeman, Richard; van Woerkom, Linn

    2016-10-01

    Laser-accelerated ions from thin targets have been widely studied for applications including secondary radiation sources and cancer therapy, with recent studies trending towards thinner targets which can provide improved ion energies and yields. Here we discuss results from an experiment on the Scarlet laser at OSU using variable thickness liquid crystal targets. On this experiment, the spatial and spectral distributions of accelerated ions were measured along target normal and laser axes at varying thicknesses from 150nm to 2000nm at a laser intensity of 1 ×1020W /cm2 . Maximum ion energy was observed for targets in the 600 - 800nm thickness range, with proton energies reaching 24MeV . The ions were further characterized using radiochromic film, revealing an unusual spatial distribution on many laser shots. Here, the peak ion yield falls in an annular ring surrounding the target normal, with an increasing divergence angle as a function of ion energy. Details of these spatial and spectral ion distributions will be presented, including spectral deconvolution of the RCF data, revealing additional trends in the accelerated ion distributions. Supported by the DARPA PULSE program through a Grant from AMRDEC, and by the NNSA under contract DE-NA0001976.

  10. Sub-pixel mapping of hyperspectral imagery using super-resolution

    NASA Astrophysics Data System (ADS)

    Sharma, Shreya; Sharma, Shakti; Buddhiraju, Krishna M.

    2016-04-01

    With the development of remote sensing technologies, it has become possible to obtain an overview of landscape elements which helps in studying the changes on earth's surface due to climate, geological, geomorphological and human activities. Remote sensing measures the electromagnetic radiations from the earth's surface and match the spectral similarity between the observed signature and the known standard signatures of the various targets. However, problem lies when image classification techniques assume pixels to be pure. In hyperspectral imagery, images have high spectral resolution but poor spatial resolution. Therefore, the spectra obtained is often contaminated due to the presence of mixed pixels and causes misclassification. To utilise this high spectral information, spatial resolution has to be enhanced. Many factors make the spatial resolution one of the most expensive and hardest to improve in imaging systems. To solve this problem, post-processing of hyperspectral images is done to retrieve more information from the already acquired images. The algorithm to enhance spatial resolution of the images by dividing them into sub-pixels is known as super-resolution and several researches have been done in this domain.In this paper, we propose a new method for super-resolution based on ant colony optimization and review the popular methods of sub-pixel mapping of hyperspectral images along with their comparative analysis.

  11. SPECIAL ISSUE ON OPTICAL PROCESSING OF INFORMATION: Optical information processing with transformation of the spatial coherence of light

    NASA Astrophysics Data System (ADS)

    Bykovskii, Yurii A.; Markilov, A. A.; Rodin, V. G.; Starikov, S. N.

    1995-10-01

    A description is given of systems with spatially incoherent illumination, intended for spectral and correlation analysis, and for the recording of Fourier holograms. These systems make use of transformation of the degree of the spatial coherence of light. The results are given of the processing of images and signals, including those transmitted by a bundle of fibre-optic waveguides both as monochromatic light and as quasimonochromatic radiation from a cathode-ray tube. The feasibility of spatial frequency filtering and of correlation analysis of images with a bipolar impulse response is considered for systems with spatially incoherent illumination where these tasks are performed by double transformation of the spatial coherence of light. A description is given of experimental systems and the results of image processing are reported.

  12. Mapping and modeling the urban landscape in Bangkok, Thailand: Physical-spectral-spatial relations of population-environmental interactions

    NASA Astrophysics Data System (ADS)

    Shao, Yang

    This research focuses on the application of remote sensing, geographic information systems, statistical modeling, and spatial analysis to examine the dynamics of urban land cover, urban structure, and population-environment interactions in Bangkok, Thailand, with an emphasis on rural-to-urban migration from rural Nang Rong District, Northeast Thailand to the primate city of Bangkok. The dissertation consists of four main sections: (1) development of remote sensing image classification and change-detection methods for characterizing imperviousness for Bangkok, Thailand from 1993-2002; (2) development of 3-D urban mapping methods, using high spatial resolution IKONOS satellite images, to assess high-rises and other urban structures; (3) assessment of urban spatial structure from 2-D and 3-D perspectives; and (4) an analysis of the spatial clustering of migrants from Nang Rong District in Bangkok and the neighborhood environments of migrants' locations. Techniques are developed to improve the accuracy of the neural network classification approach for the analysis of remote sensing data, with an emphasis on the spectral unmixing problem. The 3-D building heights are derived using the shadow information on the high-resolution IKONOS image. The results from the 2-D and 3-D mapping are further examined to assess urban structure and urban feature identification. This research contributes to image processing of remotely-sensed images and urban studies. The rural-urban migration process and migrants' settlement patterns are examined using spatial statistics, GIS, and remote sensing perspectives. The results show that migrants' spatial clustering in urban space is associated with the source village and a number of socio-demographic variables. In addition, the migrants' neighborhood environments in urban setting are modeled using a set of geographic and socio-demographic variables, and the results are scale-dependent.

  13. Spectral-spatial classification of hyperspectral data with mutual information based segmented stacked autoencoder approach

    NASA Astrophysics Data System (ADS)

    Paul, Subir; Nagesh Kumar, D.

    2018-04-01

    Hyperspectral (HS) data comprises of continuous spectral responses of hundreds of narrow spectral bands with very fine spectral resolution or bandwidth, which offer feature identification and classification with high accuracy. In the present study, Mutual Information (MI) based Segmented Stacked Autoencoder (S-SAE) approach for spectral-spatial classification of the HS data is proposed to reduce the complexity and computational time compared to Stacked Autoencoder (SAE) based feature extraction. A non-parametric dependency measure (MI) based spectral segmentation is proposed instead of linear and parametric dependency measure to take care of both linear and nonlinear inter-band dependency for spectral segmentation of the HS bands. Then morphological profiles are created corresponding to segmented spectral features to assimilate the spatial information in the spectral-spatial classification approach. Two non-parametric classifiers, Support Vector Machine (SVM) with Gaussian kernel and Random Forest (RF) are used for classification of the three most popularly used HS datasets. Results of the numerical experiments carried out in this study have shown that SVM with a Gaussian kernel is providing better results for the Pavia University and Botswana datasets whereas RF is performing better for Indian Pines dataset. The experiments performed with the proposed methodology provide encouraging results compared to numerous existing approaches.

  14. Spatial-spectral blood cell classification with microscopic hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Ran, Qiong; Chang, Lan; Li, Wei; Xu, Xiaofeng

    2017-10-01

    Microscopic hyperspectral images provide a new way for blood cell examination. The hyperspectral imagery can greatly facilitate the classification of different blood cells. In this paper, the microscopic hyperspectral images are acquired by connecting the microscope and the hyperspectral imager, and then tested for blood cell classification. For combined use of the spectral and spatial information provided by hyperspectral images, a spatial-spectral classification method is improved from the classical extreme learning machine (ELM) by integrating spatial context into the image classification task with Markov random field (MRF) model. Comparisons are done among ELM, ELM-MRF, support vector machines(SVM) and SVMMRF methods. Results show the spatial-spectral classification methods(ELM-MRF, SVM-MRF) perform better than pixel-based methods(ELM, SVM), and the proposed ELM-MRF has higher precision and show more accurate location of cells.

  15. Passive Standoff Super Resolution Imaging using Spatial-Spectral Multiplexing

    DTIC Science & Technology

    2017-08-14

    94 5.0 Four -Dimensional Object-Space Data Reconstruction Using Spatial...103 5.3 Four -dimensional scene reconstruction using SSM...transitioning to systems based on spectrally resolved longitudinal spatial coherence interferometry. This document also includes research related to four

  16. Estimating the spatial distribution of field-applied mushroom compost in the Brandywine-Christina River Basin using multispectral remote sensing

    NASA Astrophysics Data System (ADS)

    Moxey, Kelsey A.

    The world's greatest concentration of mushroom farms is settled within the Brandywine-Christina River Basin in Chester County in southeastern Pennsylvania. This industry produces a nutrient-rich byproduct known as spent mushroom compost, which has been traditionally applied to local farm fields as an organic fertilizer and soil amendment. While mushroom compost has beneficial properties, the possible over-application to farm fields could potentially degrade stream water quality. The goal of this study was to estimate the spatial extent and intensity of field-applied mushroom compost. We applied a remote sensing approach using Landsat multispectral imagery. We utilized the soil line technique, using the red and near-infrared bands, to estimate differences in soil wetness as a result of increased soil organic matter content from mushroom compost. We validated soil wetness estimates by examining the spectral response of references sites. We performed a second independent validation analysis using expert knowledge from agricultural extension agents. Our results showed that the soil line based wetness index worked well. The spectral validation illustrated that compost changes the spectral response of soil because of changes in wetness. The independent expert validation analysis produced a strong significant correlation between our remotely-sensed wetness estimates and the empirical ratings of compost application intensities. Overall, the methodology produced realistic spatial distributions of field-applied compost application intensities across the study area. These spatial distributions will be used for follow-up studies to assess the effect of spent mushroom compost on stream water quality.

  17. Fast algorithm for spectral mixture analysis of imaging spectrometer data

    NASA Astrophysics Data System (ADS)

    Schouten, Theo E.; Klein Gebbinck, Maurice S.; Liu, Z. K.; Chen, Shaowei

    1996-12-01

    Imaging spectrometers acquire images in many narrow spectral bands but have limited spatial resolution. Spectral mixture analysis (SMA) is used to determine the fractions of the ground cover categories (the end-members) present in each pixel. In this paper a new iterative SMA method is presented and tested using a 30 band MAIS image. The time needed for each iteration is independent of the number of bands, thus the method can be used for spectrometers with a large number of bands. Further a new method, based on K-means clustering, for obtaining endmembers from image data is described and compared with existing methods. Using the developed methods the available MAIS image was analyzed using 2 to 6 endmembers.

  18. The High Resolution Chandra X-Ray Spectrum of 3C273

    NASA Technical Reports Server (NTRS)

    Fruscione, Antonella; Lavoie, Anthony (Technical Monitor)

    2000-01-01

    The bright quasar 3C273 was observed by Chandra in January 2000 for 120 ksec as a calibration target. It was observed with all detector- plus-grating combinations (ACIS+HETG, ACIS+LETG, and HRC+LETG) yielding an X-ray spectrum across the entire 0.1-10 keV band with unprecedented spectral resolution. At about 10 arcsec from the nucleus, an X-ray jet is also clearly visible and resolved in the Oth order images. While the jet is much fainter than the nuclear source, the Chandra spatial resolution allows, for the first time, spectral analysis of both components separately. We will present detailed spectral analysis with particular emphasis on possible absorption features and comparison with simultaneous BeppoSAX data.

  19. The continuum spectral characteristics of gamma ray bursts observed by BATSE

    NASA Technical Reports Server (NTRS)

    Pendleton, Geoffrey N.; Paciesas, William S.; Briggs, Michael S.; Mallozzi, Robert S.; Koshut, Tom M.; Fishman, Gerald J.; Meegan, Charles A.; Wilson, Robert B.; Harmon, Alan B.; Kouveliotou, Chryssa

    1994-01-01

    Distributions of the continuum spectral characteristics of 260 bursts in the first Burst and Transient Source Experiment (BATSE) catalog are presented. The data are derived from flux ratios calculated from the BATSE Large Area Detector (LAD) four channel discriminator data. The data are converted from counts to photons using a direct spectral inversion technique to remove the effects of atmospheric scattering and the energy dependence of the detector angular response. Although there are intriguing clusterings of bursts in the spectral hardness ratio distributions, no evidence for the presence of distinct burst classes based on spectral hardness ratios alone is found. All subsets of bursts selected for their spectral characteristics in this analysis exhibit spatial distributions consistent with isotropy. The spectral diversity of the burst population appears to be caused largely by the highly variable nature of the burst production mechanisms themselves.

  20. Image sharpening for mixed spatial and spectral resolution satellite systems

    NASA Technical Reports Server (NTRS)

    Hallada, W. A.; Cox, S.

    1983-01-01

    Two methods of image sharpening (reconstruction) are compared. The first, a spatial filtering technique, extrapolates edge information from a high spatial resolution panchromatic band at 10 meters and adds it to the low spatial resolution narrow spectral bands. The second method, a color normalizing technique, is based on the ability to separate image hue and brightness components in spectral data. Using both techniques, multispectral images are sharpened from 30, 50, 70, and 90 meter resolutions. Error rates are calculated for the two methods and all sharpened resolutions. The results indicate that the color normalizing method is superior to the spatial filtering technique.

  1. Use of Raman microscopy and band-target entropy minimization analysis to identify dyes in a commercial stamp. Implications for authentication and counterfeit detection.

    PubMed

    Widjaja, Effendi; Garland, Marc

    2008-02-01

    Raman microscopy was used in mapping mode to collect more than 1000 spectra in a 100 microm x 100 microm area from a commercial stamp. Band-target entropy minimization (BTEM) was then employed to unmix the mixture spectra in order to extract the pure component spectra of the samples. Three pure component spectral patterns with good signal-to-noise ratios were recovered, and their spatial distributions were determined. The three pure component spectral patterns were then identified as copper phthalocyanine blue, calcite-like material, and yellow organic dye material by comparison to known spectral libraries. The present investigation, consisting of (1) advanced curve resolution (blind-source separation) followed by (2) spectral data base matching, readily suggests extensions to authenticity and counterfeit studies of other types of commercial objects. The presence or absence of specific observable components form the basis for assessment. The present spectral analysis (BTEM) is applicable to highly overlapping spectral information. Since a priori information such as the number of components present and spectral libraries are not needed in BTEM, and since minor signals arising from trace components can be reconstructed, this analysis offers a robust approach to a wide variety of material problems involving authenticity and counterfeit issues.

  2. Multi-Resolution Analysis of MODIS and ASTER Satellite Data for Water Classification

    DTIC Science & Technology

    2006-09-01

    spectral bands, but also with different pixel resolutions . The overall goal... the total water surface. Due to the constraint that high spatial resolution satellite images are low temporal resolution , one needs a reliable method...at 15 m resolution , were processed. We used MODIS reflectance data from MOD02 Level 1B data. Even the spatial resolution of the 1240 nm

  3. The CarbonSat candidate mission for imaging greenhouse gases from space: concepts and system requirements

    NASA Astrophysics Data System (ADS)

    Sierk, B.; Caron, J.; Bézy, J.-L.; Löscher, A.; Meijer, Y.; Jurado, P.

    2017-11-01

    CarbonSat is a candidate mission for ESA's Earth Explorer program, currently undergoing industrial feasibility studies. The primary mission objective is the identification and quantification of regional and local sources and sinks of carbon dioxide (CO2) and methane (CH4). The mission also aims at discriminating natural and anthropogenic fluxes. The space-borne instrument will quantify the spatial distribution of CO2 and CH4 by measuring dry air column-averaged mixing ratios with high precision and accuracy (0.5 ppm for CO2 and 5 ppb for CH4). These products are inferred from spectrally resolved measurements of Earth reflectance in three spectral bands in the Near Infrared (747-773 nm) and Short Wave Infrared (1590-1675 nm and 1925-2095 nm), at high and medium spectral resolution (0.1nm, 0.3 nm, and 0.55 nm). Three spatially co-aligned push-broom imaging spectrometers with a swath width <180 km will acquire observations at a spatial resolution of 2 x 3 km2 , reaching global coverage every 12 days above 40 degrees latitude (30 days at the equator). The targeted product accuracy translates into stringent radiometric, spectral and geometric requirements for the instrument. Because of the high sensitivity of the product retrieval to spurious spectral features of the instrument, special emphasis is placed on constraining relative spectral radiometric errors from polarisation sensitivity, diffuser speckles and stray light. A new requirement formulation targets to simultaneously constrain both the amplitude and the correlation of spectral features with the absorption structures of the targeted gases. The requirement performance analysis of the so-called effective spectral radiometric accuracy (ESRA) establishes a traceable link between instrumental artifacts and the impact on the level-2 products (column-averaged mixing ratios). This paper presents the derivation of system requirements from the demanding mission objectives and report preliminary results of the feasibility studies.

  4. Hyperspectral retinal imaging with a spectrally tunable light source

    NASA Astrophysics Data System (ADS)

    Francis, Robert P.; Zuzak, Karel J.; Ufret-Vincenty, Rafael

    2011-03-01

    Hyperspectral retinal imaging can measure oxygenation and identify areas of ischemia in human patients, but the devices used by current researchers are inflexible in spatial and spectral resolution. We have developed a flexible research prototype consisting of a DLP®-based spectrally tunable light source coupled to a fundus camera to quickly explore the effects of spatial resolution, spectral resolution, and spectral range on hyperspectral imaging of the retina. The goal of this prototype is to (1) identify spectral and spatial regions of interest for early diagnosis of diseases such as glaucoma, age-related macular degeneration (AMD), and diabetic retinopathy (DR); and (2) define required specifications for commercial products. In this paper, we describe the challenges and advantages of using a spectrally tunable light source for hyperspectral retinal imaging, present clinical results of initial imaging sessions, and describe how this research can be leveraged into specifying a commercial product.

  5. Simultaneous Spectral-Spatial Feature Selection and Extraction for Hyperspectral Images.

    PubMed

    Zhang, Lefei; Zhang, Qian; Du, Bo; Huang, Xin; Tang, Yuan Yan; Tao, Dacheng

    2018-01-01

    In hyperspectral remote sensing data mining, it is important to take into account of both spectral and spatial information, such as the spectral signature, texture feature, and morphological property, to improve the performances, e.g., the image classification accuracy. In a feature representation point of view, a nature approach to handle this situation is to concatenate the spectral and spatial features into a single but high dimensional vector and then apply a certain dimension reduction technique directly on that concatenated vector before feed it into the subsequent classifier. However, multiple features from various domains definitely have different physical meanings and statistical properties, and thus such concatenation has not efficiently explore the complementary properties among different features, which should benefit for boost the feature discriminability. Furthermore, it is also difficult to interpret the transformed results of the concatenated vector. Consequently, finding a physically meaningful consensus low dimensional feature representation of original multiple features is still a challenging task. In order to address these issues, we propose a novel feature learning framework, i.e., the simultaneous spectral-spatial feature selection and extraction algorithm, for hyperspectral images spectral-spatial feature representation and classification. Specifically, the proposed method learns a latent low dimensional subspace by projecting the spectral-spatial feature into a common feature space, where the complementary information has been effectively exploited, and simultaneously, only the most significant original features have been transformed. Encouraging experimental results on three public available hyperspectral remote sensing datasets confirm that our proposed method is effective and efficient.

  6. Can Satellite Remote Sensing be Applied in Geological Mapping in Tropics?

    NASA Astrophysics Data System (ADS)

    Magiera, Janusz

    2018-03-01

    Remote sensing (RS) techniques are based on spectral data registered by RS scanners as energy reflected from the Earth's surface or emitted by it. In "geological" RS the reflectance (or emittence) should come from rock or sediment. The problem in tropical and subtropical areas is a dense vegetation. Spectral response from the rocks and sediments is gathered only from the gaps among the trees and shrubs. Images of high resolution are appreciated here, therefore. New generation of satellites and scanners (Digital Globe WV2, WV3 and WV4) yield imagery of spatial resolution of 2 m and up to 16 spectral bands (WV3). Images acquired by Landsat (TM, ETM+, OLI) and Sentinel 2 have good spectral resolution too (6-12 bands in visible and infrared) and, despite lower spatial resolution (10-60 m of pixel size) are useful in extracting lithological information too. Lithological RS map may reveal good precision (down to a single rock or outcrop of a meter size). Supplemented with the analysis of Digital Elevation Model and high resolution ortophotomaps (Google Maps, Bing etc.) allows for quick and cheap mapping of unsurveyed areas.

  7. Mapping Geological Units on Mars by Analyzing the Spectral Properties of the Surface from the Mars-Express High Resolution Stereo Camera (HRSC)

    NASA Astrophysics Data System (ADS)

    Combe, J.; Adams, J. B.; McCord, T. B.

    2006-12-01

    Geological units at the surface of Mars can be investigated through the analysis of spatial changes of both its composition and its superficial structural properties. The color images provided by the High Resolution Stereo Camera (HRSC) are a multispectral dataset with an unprecedented high spatial resolution. We focused this study on the western chasmas of Valles Marineris with the neighboring plateau. Using the four-wavelength spectra of HRSC, the two types of surface color units (bright red and dark bluish material) plus a shade/shadow component can explain most of the variations [1]. An objective is to provide maps of the relative abundances that are independent of shade [2]. The spectral shape of the shade spectrum is calculated from the data. Then, Spectral Mixture Analysis of the two main materials and shade is performed. The shade gives us indications about variations in the surface roughness in the context of the mixtures of spectral/mineralogical materials. For mapping the different geological units at the surface at high spatial resolution, a correspondence between the color and the mineralogy is needed, aided by direct and more precise identifications of the composition of Mars. The joint analysis of HRSC and results from the OMEGA imaging spectrometer makes the most of their respective abilities [1]. Ferric oxides are present in bright red materials both in the chasmas and on the plateau [1] and they are often mixed with dark materials identified as basalts containing pyroxenes [4]. In Valles Marineris, salt deposits (bright) have been reported by using OMEGA [3], along with ferric oxides [4, 5] that appear relatively dark. The detailed spatial distribution of these materials is a key to understand the geology. Examples will be presented. [1] McCord T. B., et al. 2006, JGR, submitted. [2] Adams J. B. And Gillespie A. R., 2006, Cambridge University Press, 362 pp. [3] Le Mouelic S. et al., 2006, LPSC #1409. [4] Gendrin et al. (2005), LPSC #1858. [5] Gendrin A. et al., 2005, Science, 307, 1587-1591. [6] Le Deit et al., 2006, LPSC #2115.

  8. Evaluation of AMOEBA: a spectral-spatial classification method

    USGS Publications Warehouse

    Jenson, Susan K.; Loveland, Thomas R.; Bryant, J.

    1982-01-01

    Muitispectral remotely sensed images have been treated as arbitrary multivariate spectral data for purposes of clustering and classifying. However, the spatial properties of image data can also be exploited. AMOEBA is a clustering and classification method that is based on a spatially derived model for image data. In an evaluation test, Landsat data were classified with both AMOEBA and a widely used spectral classifier. The test showed that irrigated crop types can be classified as accurately with the AMOEBA method as with the generally used spectral method ISOCLS; the AMOEBA method, however, requires less computer time.

  9. NASA Fundamental Remote Sensing Science Research Program

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The NASA Fundamental Remote Sensing Research Program is described. The program provides a dynamic scientific base which is continually broadened and from which future applied research and development can draw support. In particular, the overall objectives and current studies of the scene radiation and atmospheric effect characterization (SRAEC) project are reviewed. The SRAEC research can be generically structured into four types of activities including observation of phenomena, empirical characterization, analytical modeling, and scene radiation analysis and synthesis. The first three activities are the means by which the goal of scene radiation analysis and synthesis is achieved, and thus are considered priority activities during the early phases of the current project. Scene radiation analysis refers to the extraction of information describing the biogeophysical attributes of the scene from the spectral, spatial, and temporal radiance characteristics of the scene including the atmosphere. Scene radiation synthesis is the generation of realistic spectral, spatial, and temporal radiance values for a scene with a given set of biogeophysical attributes and atmospheric conditions.

  10. Persistence of uranium emission in laser-produced plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaHaye, N. L.; Harilal, S. S., E-mail: hari@purdue.edu; Diwakar, P. K.

    2014-04-28

    Detection of uranium and other nuclear materials is of the utmost importance for nuclear safeguards and security. Optical emission spectroscopy of laser-ablated U plasmas has been presented as a stand-off, portable analytical method that can yield accurate qualitative and quantitative elemental analysis of a variety of samples. In this study, optimal laser ablation and ambient conditions are explored, as well as the spatio-temporal evolution of the plasma for spectral analysis of excited U species in a glass matrix. Various Ar pressures were explored to investigate the role that plasma collisional effects and confinement have on spectral line emission enhancement andmore » persistence. The plasma-ambient gas interaction was also investigated using spatially resolved spectra and optical time-of-flight measurements. The results indicate that ambient conditions play a very important role in spectral emission intensity as well as the persistence of excited neutral U emission lines, influencing the appropriate spectral acquisition conditions.« less

  11. The Rhythm of Fairall 9. I. Observing the Spectral Variability With XMM-Newton and NuSTAR

    NASA Technical Reports Server (NTRS)

    Lohfink, A. M.; Reynolds, S. C.; Pinto, C.; Alston, W.; Boggs, S. E.; Christensen, F. E.; Craig, W. W.; Fabian, A.C; Hailey, C. J.; Harrison, F. A.; hide

    2016-01-01

    We present a multi-epoch X-ray spectral analysis of the Seyfert 1 galaxy Fairall 9. Our analysis shows that Fairall 9 displays unique spectral variability in that its ratio residuals to a simple absorbed power law in the 0.510 keV band remain constant with time in spite of large variations in flux. This behavior implies an unchanging source geometry and the same emission processes continuously at work at the timescale probed. With the constraints from NuSTAR on the broad-band spectral shape, it is clear that the soft excess in this source is a superposition of two different processes, one being blurred ionized reflection in the innermost parts of the accretion disk, and the other a continuum component such as a spatially distinct Comptonizing region. Alternatively, a more complex primary Comptonization component together with blurred ionized reflection could be responsible.

  12. Assessing the performance of multiple spectral-spatial features of a hyperspectral image for classification of urban land cover classes using support vector machines and artificial neural network

    NASA Astrophysics Data System (ADS)

    Pullanagari, Reddy; Kereszturi, Gábor; Yule, Ian J.; Ghamisi, Pedram

    2017-04-01

    Accurate and spatially detailed mapping of complex urban environments is essential for land managers. Classifying high spectral and spatial resolution hyperspectral images is a challenging task because of its data abundance and computational complexity. Approaches with a combination of spectral and spatial information in a single classification framework have attracted special attention because of their potential to improve the classification accuracy. We extracted multiple features from spectral and spatial domains of hyperspectral images and evaluated them with two supervised classification algorithms; support vector machines (SVM) and an artificial neural network. The spatial features considered are produced by a gray level co-occurrence matrix and extended multiattribute profiles. All of these features were stacked, and the most informative features were selected using a genetic algorithm-based SVM. After selecting the most informative features, the classification model was integrated with a segmentation map derived using a hidden Markov random field. We tested the proposed method on a real application of a hyperspectral image acquired from AisaFENIX and on widely used hyperspectral images. From the results, it can be concluded that the proposed framework significantly improves the results with different spectral and spatial resolutions over different instrumentation.

  13. Unmixing-Based Denoising as a Pre-Processing Step for Coral Reef Analysis

    NASA Astrophysics Data System (ADS)

    Cerra, D.; Traganos, D.; Gege, P.; Reinartz, P.

    2017-05-01

    Coral reefs, among the world's most biodiverse and productive submerged habitats, have faced several mass bleaching events due to climate change during the past 35 years. In the course of this century, global warming and ocean acidification are expected to cause corals to become increasingly rare on reef systems. This will result in a sharp decrease in the biodiversity of reef communities and carbonate reef structures. Coral reefs may be mapped, characterized and monitored through remote sensing. Hyperspectral images in particular excel in being used in coral monitoring, being characterized by very rich spectral information, which results in a strong discrimination power to characterize a target of interest, and separate healthy corals from bleached ones. Being submerged habitats, coral reef systems are difficult to analyse in airborne or satellite images, as relevant information is conveyed in bands in the blue range which exhibit lower signal-to-noise ratio (SNR) with respect to other spectral ranges; furthermore, water is absorbing most of the incident solar radiation, further decreasing the SNR. Derivative features, which are important in coral analysis, result greatly affected by the resulting noise present in relevant spectral bands, justifying the need of new denoising techniques able to keep local spatial and spectral features. In this paper, Unmixing-based Denoising (UBD) is used to enable analysis of a hyperspectral image acquired over a coral reef system in the Red Sea based on derivative features. UBD reconstructs pixelwise a dataset with reduced noise effects, by forcing each spectrum to a linear combination of other reference spectra, exploiting the high dimensionality of hyperspectral datasets. Results show clear enhancements with respect to traditional denoising methods based on spatial and spectral smoothing, facilitating the coral detection task.

  14. Analysis of spatial distribution of land cover maps accuracy

    NASA Astrophysics Data System (ADS)

    Khatami, R.; Mountrakis, G.; Stehman, S. V.

    2017-12-01

    Land cover maps have become one of the most important products of remote sensing science. However, classification errors will exist in any classified map and affect the reliability of subsequent map usage. Moreover, classification accuracy often varies over different regions of a classified map. These variations of accuracy will affect the reliability of subsequent analyses of different regions based on the classified maps. The traditional approach of map accuracy assessment based on an error matrix does not capture the spatial variation in classification accuracy. Here, per-pixel accuracy prediction methods are proposed based on interpolating accuracy values from a test sample to produce wall-to-wall accuracy maps. Different accuracy prediction methods were developed based on four factors: predictive domain (spatial versus spectral), interpolation function (constant, linear, Gaussian, and logistic), incorporation of class information (interpolating each class separately versus grouping them together), and sample size. Incorporation of spectral domain as explanatory feature spaces of classification accuracy interpolation was done for the first time in this research. Performance of the prediction methods was evaluated using 26 test blocks, with 10 km × 10 km dimensions, dispersed throughout the United States. The performance of the predictions was evaluated using the area under the curve (AUC) of the receiver operating characteristic. Relative to existing accuracy prediction methods, our proposed methods resulted in improvements of AUC of 0.15 or greater. Evaluation of the four factors comprising the accuracy prediction methods demonstrated that: i) interpolations should be done separately for each class instead of grouping all classes together; ii) if an all-classes approach is used, the spectral domain will result in substantially greater AUC than the spatial domain; iii) for the smaller sample size and per-class predictions, the spectral and spatial domain yielded similar AUC; iv) for the larger sample size (i.e., very dense spatial sample) and per-class predictions, the spatial domain yielded larger AUC; v) increasing the sample size improved accuracy predictions with a greater benefit accruing to the spatial domain; and vi) the function used for interpolation had the smallest effect on AUC.

  15. An approach to estimate spatial distribution of analyte within cells using spectrally-resolved fluorescence microscopy.

    PubMed

    Sharma, Dharmendar Kumar; Irfanullah, Mir; Basu, Santanu Kumar; Madhu, Sheri; De, Suman; Jadhav, Sameer; Ravikanth, Mangalampalli; Chowdhury, Arindam

    2017-01-18

    While fluorescence microscopy has become an essential tool amongst chemists and biologists for the detection of various analyte within cellular environments, non-uniform spatial distribution of sensors within cells often restricts extraction of reliable information on relative abundance of analytes in different subcellular regions. As an alternative to existing sensing methodologies such as ratiometric or FRET imaging, where relative proportion of analyte with respect to the sensor can be obtained within cells, we propose a methodology using spectrally-resolved fluorescence microscopy, via which both the relative abundance of sensor as well as their relative proportion with respect to the analyte can be simultaneously extracted for local subcellular regions. This method is exemplified using a BODIPY sensor, capable of detecting mercury ions within cellular environments, characterized by spectral blue-shift and concurrent enhancement of emission intensity. Spectral emission envelopes collected from sub-microscopic regions allowed us to compare the shift in transition energies as well as integrated emission intensities within various intracellular regions. Construction of a 2D scatter plot using spectral shifts and emission intensities, which depend on the relative amount of analyte with respect to sensor and the approximate local amounts of the probe, respectively, enabled qualitative extraction of relative abundance of analyte in various local regions within a single cell as well as amongst different cells. Although the comparisons remain semi-quantitative, this approach involving analysis of multiple spectral parameters opens up an alternative way to extract spatial distribution of analyte in heterogeneous systems. The proposed method would be especially relevant for fluorescent probes that undergo relatively nominal shift in transition energies compared to their emission bandwidths, which often restricts their usage for quantitative ratiometric imaging in cellular media due to strong cross-talk between energetically separated detection channels.

  16. An approach to estimate spatial distribution of analyte within cells using spectrally-resolved fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Sharma, Dharmendar Kumar; Irfanullah, Mir; Basu, Santanu Kumar; Madhu, Sheri; De, Suman; Jadhav, Sameer; Ravikanth, Mangalampalli; Chowdhury, Arindam

    2017-03-01

    While fluorescence microscopy has become an essential tool amongst chemists and biologists for the detection of various analyte within cellular environments, non-uniform spatial distribution of sensors within cells often restricts extraction of reliable information on relative abundance of analytes in different subcellular regions. As an alternative to existing sensing methodologies such as ratiometric or FRET imaging, where relative proportion of analyte with respect to the sensor can be obtained within cells, we propose a methodology using spectrally-resolved fluorescence microscopy, via which both the relative abundance of sensor as well as their relative proportion with respect to the analyte can be simultaneously extracted for local subcellular regions. This method is exemplified using a BODIPY sensor, capable of detecting mercury ions within cellular environments, characterized by spectral blue-shift and concurrent enhancement of emission intensity. Spectral emission envelopes collected from sub-microscopic regions allowed us to compare the shift in transition energies as well as integrated emission intensities within various intracellular regions. Construction of a 2D scatter plot using spectral shifts and emission intensities, which depend on the relative amount of analyte with respect to sensor and the approximate local amounts of the probe, respectively, enabled qualitative extraction of relative abundance of analyte in various local regions within a single cell as well as amongst different cells. Although the comparisons remain semi-quantitative, this approach involving analysis of multiple spectral parameters opens up an alternative way to extract spatial distribution of analyte in heterogeneous systems. The proposed method would be especially relevant for fluorescent probes that undergo relatively nominal shift in transition energies compared to their emission bandwidths, which often restricts their usage for quantitative ratiometric imaging in cellular media due to strong cross-talk between energetically separated detection channels. Dedicated to Professor Kankan Bhattacharyya.

  17. Finite grid instability and spectral fidelity of the electrostatic Particle-In-Cell algorithm

    DOE PAGES

    Huang, C. -K.; Zeng, Y.; Wang, Y.; ...

    2016-10-01

    The origin of the Finite Grid Instability (FGI) is studied by resolving the dynamics in the 1D electrostatic Particle-In-Cell (PIC) model in the spectral domain at the single particle level and at the collective motion level. The spectral fidelity of the PIC model is contrasted with the underlying physical system or the gridless model. The systematic spectral phase and amplitude errors from the charge deposition and field interpolation are quantified for common particle shapes used in the PIC models. Lastly, it is shown through such analysis and in simulations that the lack of spectral fidelity relative to the physical systemmore » due to the existence of aliased spatial modes is the major cause of the FGI in the PIC model.« less

  18. Finite grid instability and spectral fidelity of the electrostatic Particle-In-Cell algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, C. -K.; Zeng, Y.; Wang, Y.

    The origin of the Finite Grid Instability (FGI) is studied by resolving the dynamics in the 1D electrostatic Particle-In-Cell (PIC) model in the spectral domain at the single particle level and at the collective motion level. The spectral fidelity of the PIC model is contrasted with the underlying physical system or the gridless model. The systematic spectral phase and amplitude errors from the charge deposition and field interpolation are quantified for common particle shapes used in the PIC models. Lastly, it is shown through such analysis and in simulations that the lack of spectral fidelity relative to the physical systemmore » due to the existence of aliased spatial modes is the major cause of the FGI in the PIC model.« less

  19. a Novel Deep Convolutional Neural Network for Spectral-Spatial Classification of Hyperspectral Data

    NASA Astrophysics Data System (ADS)

    Li, N.; Wang, C.; Zhao, H.; Gong, X.; Wang, D.

    2018-04-01

    Spatial and spectral information are obtained simultaneously by hyperspectral remote sensing. Joint extraction of these information of hyperspectral image is one of most import methods for hyperspectral image classification. In this paper, a novel deep convolutional neural network (CNN) is proposed, which extracts spectral-spatial information of hyperspectral images correctly. The proposed model not only learns sufficient knowledge from the limited number of samples, but also has powerful generalization ability. The proposed framework based on three-dimensional convolution can extract spectral-spatial features of labeled samples effectively. Though CNN has shown its robustness to distortion, it cannot extract features of different scales through the traditional pooling layer that only have one size of pooling window. Hence, spatial pyramid pooling (SPP) is introduced into three-dimensional local convolutional filters for hyperspectral classification. Experimental results with a widely used hyperspectral remote sensing dataset show that the proposed model provides competitive performance.

  20. Multiple Spectral-Spatial Classification Approach for Hyperspectral Data

    NASA Technical Reports Server (NTRS)

    Tarabalka, Yuliya; Benediktsson, Jon Atli; Chanussot, Jocelyn; Tilton, James C.

    2010-01-01

    A .new multiple classifier approach for spectral-spatial classification of hyperspectral images is proposed. Several classifiers are used independently to classify an image. For every pixel, if all the classifiers have assigned this pixel to the same class, the pixel is kept as a marker, i.e., a seed of the spatial region, with the corresponding class label. We propose to use spectral-spatial classifiers at the preliminary step of the marker selection procedure, each of them combining the results of a pixel-wise classification and a segmentation map. Different segmentation methods based on dissimilar principles lead to different classification results. Furthermore, a minimum spanning forest is built, where each tree is rooted on a classification -driven marker and forms a region in the spectral -spatial classification: map. Experimental results are presented for two hyperspectral airborne images. The proposed method significantly improves classification accuracies, when compared to previously proposed classification techniques.

  1. Spectral and Polarization Sensitivity of the Dipteran Visual System

    PubMed Central

    McCann, Gilbert D.; Arnett, David W.

    1972-01-01

    Spectral and polarization sensitivity measurements were made at several levels (retina, first and third optic ganglion, cervical connective, behavior) of the dipteran visual nervous system. At all levels, it was possible to reveal contributions from the retinular cell subsystem cells 1 to 6 or the retinular cell subsystem cells 7 and 8 or both. Only retinular cells 1 to 6 were directly studied, and all possessed the same spectral sensitivity characterized by two approximately equal sensitivity peaks at 350 and 480 nm. All units of both the sustaining and on-off variety in the first optic ganglion exhibited the same spectral sensitivity as that of retinular cells 1 to 6. It was possible to demonstrate for motion detection and optomotor responses two different spectral sensitivities depending upon the spatial wavelength of the stimulus. For long spatial wavelengths, the spectral sensitivity agreed with retinular cells 1 to 6; however, the spectral sensitivity at short spatial wavelengths was characterized by a single peak at 465 nm reflecting contributions from the (7, 8) subsystem. Although the two subsystems exhibited different spectral sensitivities, the difference was small and no indication of color discrimination mechanisms was observed. Although all retinular cells 1 to 6 exhibited a preferred polarization plane, sustaining and on-off units did not. Likewise, motion detection and optomotor responses were insensitive to the polarization plane for long spatial wavelength stimuli; however, sensitivity to select polarization planes was observed for short spatial wavelengths. PMID:5027759

  2. Mapping minerals, amorphous materials, environmental materials, vegetation, water, ice and snow, and other materials: The USGS tricorder algorithm

    NASA Technical Reports Server (NTRS)

    Clark, Roger N.; Swayze, Gregg A.

    1995-01-01

    One of the challenges of Imaging Spectroscopy is the identification, mapping and abundance determination of materials, whether mineral, vegetable, or liquid, given enough spectral range, spectral resolution, signal to noise, and spatial resolution. Many materials show diagnostic absorption features in the visual and near infrared region (0.4 to 2.5 micrometers) of the spectrum. This region is covered by the modern imaging spectrometers such as AVIRIS. The challenge is to identify the materials from absorption bands in their spectra, and determine what specific analyses must be done to derive particular parameters of interest, ranging from simply identifying its presence to deriving its abundance, or determining specific chemistry of the material. Recently, a new analysis algorithm was developed that uses a digital spectral library of known materials and a fast, modified-least-squares method of determining if a single spectral feature for a given material is present. Clark et al. made another advance in the mapping algorithm: simultaneously mapping multiple minerals using multiple spectral features. This was done by a modified-least-squares fit of spectral features, from data in a digital spectral library, to corresponding spectral features in the image data. This version has now been superseded by a more comprehensive spectral analysis system called Tricorder.

  3. Analysis of skin tissues spatial fluorescence distribution by the Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Y Churmakov, D.; Meglinski, I. V.; Piletsky, S. A.; Greenhalgh, D. A.

    2003-07-01

    A novel Monte Carlo technique of simulation of spatial fluorescence distribution within the human skin is presented. The computational model of skin takes into account the spatial distribution of fluorophores, which would arise due to the structure of collagen fibres, compared to the epidermis and stratum corneum where the distribution of fluorophores is assumed to be homogeneous. The results of simulation suggest that distribution of auto-fluorescence is significantly suppressed in the near-infrared spectral region, whereas the spatial distribution of fluorescence sources within a sensor layer embedded in the epidermis is localized at an `effective' depth.

  4. Spatial-spectral characterization of focused spatially chirped broadband laser beams.

    PubMed

    Greco, Michael J; Block, Erica; Meier, Amanda K; Beaman, Alex; Cooper, Samuel; Iliev, Marin; Squier, Jeff A; Durfee, Charles G

    2015-11-20

    Proper alignment is critical to obtain the desired performance from focused spatially chirped beams, for example in simultaneous spatial and temporal focusing (SSTF). We present a simple technique for inspecting the beam paths and focusing conditions for the spectral components of a broadband beam. We spectrally resolve the light transmitted past a knife edge as it was scanned across the beam at several axial positions. The measurement yields information about spot size, M2, and the propagation paths of different frequency components. We also present calculations to illustrate the effects of defocus aberration on SSTF beams.

  5. Efficient single-pixel multispectral imaging via non-mechanical spatio-spectral modulation.

    PubMed

    Li, Ziwei; Suo, Jinli; Hu, Xuemei; Deng, Chao; Fan, Jingtao; Dai, Qionghai

    2017-01-27

    Combining spectral imaging with compressive sensing (CS) enables efficient data acquisition by fully utilizing the intrinsic redundancies in natural images. Current compressive multispectral imagers, which are mostly based on array sensors (e.g, CCD or CMOS), suffer from limited spectral range and relatively low photon efficiency. To address these issues, this paper reports a multispectral imaging scheme with a single-pixel detector. Inspired by the spatial resolution redundancy of current spatial light modulators (SLMs) relative to the target reconstruction, we design an all-optical spectral splitting device to spatially split the light emitted from the object into several counterparts with different spectrums. Separated spectral channels are spatially modulated simultaneously with individual codes by an SLM. This no-moving-part modulation ensures a stable and fast system, and the spatial multiplexing ensures an efficient acquisition. A proof-of-concept setup is built and validated for 8-channel multispectral imaging within 420~720 nm wavelength range on both macro and micro objects, showing a potential for efficient multispectral imager in macroscopic and biomedical applications.

  6. Future VIIRS enhancements for the integrated polar-orbiting environmental satellite system

    NASA Astrophysics Data System (ADS)

    Puschell, Jeffery J.; Silny, John; Cook, Lacy; Kim, Eugene

    2010-08-01

    The Visible/Infrared Imager Radiometer Suite (VIIRS) is the next-generation imaging spectroradiometer for the future operational polar-orbiting environmental satellite system. A successful Flight Unit 1 has been delivered and integrated onto the NPP spacecraft. The flexible VIIRS architecture can be adapted and enhanced to respond to a wide range of requirements and to incorporate new technology as it becomes available. This paper reports on recent design studies to evaluate building a MW-VLWIR dispersive hyperspectral module with active cooling into the existing VIIRS architecture. Performance of a two-grating VIIRS hyperspectral module was studied across a broad trade space defined primarily by spatial sampling, spectral range, spectral sampling interval, along-track field of view and integration time. The hyperspectral module studied here provides contiguous coverage across 3.9 - 15.5 μm with a spectral sampling interval of 10 nm or better, thereby extending VIIRS spectral range to the shortwave side of the 15.5 μm CO2 band and encompassing the 6.7 μm H2O band. Spatial sampling occurs at VIIRS I-band (~0.4 km at nadir) spatial resolution with aggregation to M-band (~0.8 km) and larger pixel sizes to improve sensitivity. Radiometric sensitivity (NEdT) at a spatial resolution of ~4 km is ~0.1 K or better for a 250 K scene across a wavelength range of 4.5 μm to 15.5 μm. The large number of high spectral and spatial resolution FOVs in this instrument improves chances for retrievals of information on the physical state and composition of the atmosphere all the way to the surface in cloudy regions relative to current systems. Spectral aggregation of spatial resolution measurements to MODIS and VIIRS multispectral bands would continue legacy measurements with better sensitivity in nearly all bands. Additional work is needed to optimize spatial sampling, spectral range and spectral sampling approaches for the hyperspectral module and to further refine this powerful imager concept.

  7. Spectral Mixture Analysis to map burned areas in Brazil's deforestation arc from 1992 to 2011

    NASA Astrophysics Data System (ADS)

    Antunes Daldegan, G.; Ribeiro, F.; Roberts, D. A.

    2017-12-01

    The two most extensive biomes in South America, the Amazon and the Cerrado, are subject to several fire events every dry season. Both are known for their ecological and environmental importance. However, due to the intensive human occupation over the last four decades, they have been facing high deforestation rates. The Cerrado biome is adapted to fire and is considered a fire-dependent landscape. In contrast, the Amazon as a tropical moist broadleaf forest does not display similar characteristics and is classified as a fire-sensitive landscape. Nonetheless, studies have shown that forest areas that have already been burned become more prone to experience recurrent burns. Remote sensing has been extensively used by a large number of researchers studying fire occurrence at a global scale, as well as in both landscapes aforementioned. Digital image processing aiming to map fire activity has been applied to a number of imagery from sensors of various spatial, temporal, and spectral resolutions. More specifically, several studies have used Landsat data to map fire scars in the Amazon forest and in the Cerrado. An advantage of using Landsat data is the potential to map fire scars at a finer spatial resolution, when compared to products derived from imagery of sensors featuring better temporal resolution but coarser spatial resolution, such as MODIS (Moderate Resolution Imaging Spectrometer) and GOES (Geostationary Operational Environmental Satellite). This study aimed to map burned areas present in the Amazon-Cerrado transition zone by applying Spectral Mixture Analysis on Landsat imagery for a period of 20 years (1992-2011). The study area is a subset of this ecotone, centered at the State of Mato Grosso. By taking advantage of the Landsat 5TM and Landsat 7ETM+ imagery collections available in Google Earth Engine platform and applying Spectral Mixture Analysis (SMA) techniques over them permitted to model fire scar fractions and delimitate burned areas. Overlaying yearly burned areas allowed to identify areas with high fire recurrence.

  8. Horizontal Temperature Variability in the Stratosphere: Global Variations Inferred from CRISTA Data

    NASA Technical Reports Server (NTRS)

    Eidmann, G.; Offermann, D.; Jarisch, M.; Preusse, P.; Eckermann, S. D.; Schmidlin, F. J.

    2001-01-01

    In two separate orbital campaigns (November, 1994 and August, 1997), the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) instrument acquired global stratospheric data of high accuracy and high spatial resolution. The standard limb-scanned CRISTA measurements resolved atmospheric spatial structures with vertical dimensions greater than or equal to 1.5 - 2 km and horizontal dimensions is greater than or equal to 100 - 200 km. A fluctuation analysis of horizontal temperature distributions derived from these data is presented. This method is somewhat complementary to conventional power-spectral analysis techniques.

  9. Use of feature extraction techniques for the texture and context information in ERTS imagery: Spectral and textural processing of ERTS imagery. [classification of Kansas land use

    NASA Technical Reports Server (NTRS)

    Haralick, R. H. (Principal Investigator); Bosley, R. J.

    1974-01-01

    The author has identified the following significant results. A procedure was developed to extract cross-band textural features from ERTS MSS imagery. Evolving from a single image texture extraction procedure which uses spatial dependence matrices to measure relative co-occurrence of nearest neighbor grey tones, the cross-band texture procedure uses the distribution of neighboring grey tone N-tuple differences to measure the spatial interrelationships, or co-occurrences, of the grey tone N-tuples present in a texture pattern. In both procedures, texture is characterized in such a way as to be invariant under linear grey tone transformations. However, the cross-band procedure complements the single image procedure by extracting texture information and spectral information contained in ERTS multi-images. Classification experiments show that when used alone, without spectral processing, the cross-band texture procedure extracts more information than the single image texture analysis. Results show an improvement in average correct classification from 86.2% to 88.8% for ERTS image no. 1021-16333 with the cross-band texture procedure. However, when used together with spectral features, the single image texture plus spectral features perform better than the cross-band texture plus spectral features, with an average correct classification of 93.8% and 91.6%, respectively.

  10. DoE Phase II SBIR: Spectrally-Assisted Vehicle Tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villeneuve, Pierre V.

    2013-02-28

    The goal of this Phase II SBIR is to develop a prototype software package to demonstrate spectrally-aided vehicle tracking performance. The primary application is to demonstrate improved target vehicle tracking performance in complex environments where traditional spatial tracker systems may show reduced performance. Example scenarios in Figure 1 include a) the target vehicle obscured by a large structure for an extended period of time, or b), the target engaging in extreme maneuvers amongst other civilian vehicles. The target information derived from spatial processing is unable to differentiate between the green versus the red vehicle. Spectral signature exploitation enables comparison ofmore » new candidate targets with existing track signatures. The ambiguity in this confusing scenario is resolved by folding spectral analysis results into each target nomination and association processes. Figure 3 shows a number of example spectral signatures from a variety of natural and man-made materials. The work performed over the two-year effort was divided into three general areas: algorithm refinement, software prototype development, and prototype performance demonstration. The tasks performed under this Phase II to accomplish the program goals were as follows: 1. Acquire relevant vehicle target datasets to support prototype. 2. Refine algorithms for target spectral feature exploitation. 3. Implement a prototype multi-hypothesis target tracking software package. 4. Demonstrate and quantify tracking performance using relevant data.« less

  11. The fusion of satellite and UAV data: simulation of high spatial resolution band

    NASA Astrophysics Data System (ADS)

    Jenerowicz, Agnieszka; Siok, Katarzyna; Woroszkiewicz, Malgorzata; Orych, Agata

    2017-10-01

    Remote sensing techniques used in the precision agriculture and farming that apply imagery data obtained with sensors mounted on UAV platforms became more popular in the last few years due to the availability of low- cost UAV platforms and low- cost sensors. Data obtained from low altitudes with low- cost sensors can be characterised by high spatial and radiometric resolution but quite low spectral resolution, therefore the application of imagery data obtained with such technology is quite limited and can be used only for the basic land cover classification. To enrich the spectral resolution of imagery data acquired with low- cost sensors from low altitudes, the authors proposed the fusion of RGB data obtained with UAV platform with multispectral satellite imagery. The fusion is based on the pansharpening process, that aims to integrate the spatial details of the high-resolution panchromatic image with the spectral information of lower resolution multispectral or hyperspectral imagery to obtain multispectral or hyperspectral images with high spatial resolution. The key of pansharpening is to properly estimate the missing spatial details of multispectral images while preserving their spectral properties. In the research, the authors presented the fusion of RGB images (with high spatial resolution) obtained with sensors mounted on low- cost UAV platforms and multispectral satellite imagery with satellite sensors, i.e. Landsat 8 OLI. To perform the fusion of UAV data with satellite imagery, the simulation of the panchromatic bands from RGB data based on the spectral channels linear combination, was conducted. Next, for simulated bands and multispectral satellite images, the Gram-Schmidt pansharpening method was applied. As a result of the fusion, the authors obtained several multispectral images with very high spatial resolution and then analysed the spatial and spectral accuracies of processed images.

  12. Spectral-spatial hyperspectral image classification using super-pixel-based spatial pyramid representation

    NASA Astrophysics Data System (ADS)

    Fan, Jiayuan; Tan, Hui Li; Toomik, Maria; Lu, Shijian

    2016-10-01

    Spatial pyramid matching has demonstrated its power for image recognition task by pooling features from spatially increasingly fine sub-regions. Motivated by the concept of feature pooling at multiple pyramid levels, we propose a novel spectral-spatial hyperspectral image classification approach using superpixel-based spatial pyramid representation. This technique first generates multiple superpixel maps by decreasing the superpixel number gradually along with the increased spatial regions for labelled samples. By using every superpixel map, sparse representation of pixels within every spatial region is then computed through local max pooling. Finally, features learned from training samples are aggregated and trained by a support vector machine (SVM) classifier. The proposed spectral-spatial hyperspectral image classification technique has been evaluated on two public hyperspectral datasets, including the Indian Pines image containing 16 different agricultural scene categories with a 20m resolution acquired by AVIRIS and the University of Pavia image containing 9 land-use categories with a 1.3m spatial resolution acquired by the ROSIS-03 sensor. Experimental results show significantly improved performance compared with the state-of-the-art works. The major contributions of this proposed technique include (1) a new spectral-spatial classification approach to generate feature representation for hyperspectral image, (2) a complementary yet effective feature pooling approach, i.e. the superpixel-based spatial pyramid representation that is used for the spatial correlation study, (3) evaluation on two public hyperspectral image datasets with superior image classification performance.

  13. Land Cover Classification in a Complex Urban-Rural Landscape with Quickbird Imagery

    PubMed Central

    Moran, Emilio Federico.

    2010-01-01

    High spatial resolution images have been increasingly used for urban land use/cover classification, but the high spectral variation within the same land cover, the spectral confusion among different land covers, and the shadow problem often lead to poor classification performance based on the traditional per-pixel spectral-based classification methods. This paper explores approaches to improve urban land cover classification with Quickbird imagery. Traditional per-pixel spectral-based supervised classification, incorporation of textural images and multispectral images, spectral-spatial classifier, and segmentation-based classification are examined in a relatively new developing urban landscape, Lucas do Rio Verde in Mato Grosso State, Brazil. This research shows that use of spatial information during the image classification procedure, either through the integrated use of textural and spectral images or through the use of segmentation-based classification method, can significantly improve land cover classification performance. PMID:21643433

  14. Solar Confocal Interferometers for Sub-Picometer-Resolution Spectral Filters

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Pietraszewski, Chris; West, Edward A.; Dines, Terence C.

    2006-01-01

    The confocal Fabry-Perot interferometer allows sub-picometer spectral resolution of Fraunhofer line profiles. Such high spectral resolution is needed to keep pace with the higher spatial resolution of the new set of large-aperture solar telescopes. The line-of-sight spatial resolution derived for line profile inversions would then track the improvements of the transverse spatial scale provided by the larger apertures. The confocal interferometer's unique properties allow a simultaneous increase in both etendue and spectral power. Methods: We have constructed and tested two confocal interferometers. Conclusions: In this paper we compare the confocal interferometer with other spectral imaging filters, provide initial design parameters, show construction details for two designs, and report on the laboratory test results for these interferometers, and propose a multiple etalon system for future testing of these units and to obtain sub-picometer spectral resolution information on the photosphere in both the visible and near-infrared.

  15. Analysis of background irradiation in thermal IR hyper-spectral imaging systems

    NASA Astrophysics Data System (ADS)

    Xu, Weiming; Yuan, Liyin; Lin, Ying; He, Zhiping; Shu, Rong; Wang, Jianyu

    2010-04-01

    Our group designed a thermal IR hyper-spectral imaging system in this paper mounted in a vacuum encapsulated cavity with temperature controlling equipments. The spectral resolution is 80 nm; the spatial resolution is 1.0 mrad; the spectral channels are 32. By comparing and verifying the theoretical simulated calculation and experimental results for this system, we obtained the precise relationship between the temperature and background irradiation of optical and mechanical structures, and found the most significant components in the optic path for improving imaging quality that should be traded especially, also we had a conclusion that it should cool the imaging optics and structures to about 100K if we need utilize the full dynamic range and capture high quality of imagery.

  16. Preliminary spectral and geologic analysis of Landsat-4 Thematic Mapper data, Wind River Basin area, Wyoming

    NASA Technical Reports Server (NTRS)

    Conel, J. E.; Lang, H. R.; Paylor, E. D.; Alley, R. E.

    1985-01-01

    A Landsat-4 Thematic Mapper (TM) image of the Wind River Basin area in Wyoming is currently under analysis for stratigraphic and structural mapping and for assessment of spectral and spatial characteristics using visible, near infrared, and short wavelength infrared bands. To estimate the equivalent Lambertian surface reflectance, TM radiance data were calibrated to remove atmospheric and instrumental effects. Reflectance measurements for homogeneous natural and cultural targets were acquired about one year after data acquisition. Calibration data obtained during the analysis were used to calculate new gains and offsets to improve scanner response for earth science applications. It is shown that the principal component images calculated from the TM data were the result of linear transformations of ground reflectance. In images prepared from this transform, the separation of spectral classes was independent of systematic atmospheric and instrumental factors. Several examples of the processed images are provided.

  17. Spatial-scanning hyperspectral imaging probe for bio-imaging applications

    NASA Astrophysics Data System (ADS)

    Lim, Hoong-Ta; Murukeshan, Vadakke Matham

    2016-03-01

    The three common methods to perform hyperspectral imaging are the spatial-scanning, spectral-scanning, and snapshot methods. However, only the spectral-scanning and snapshot methods have been configured to a hyperspectral imaging probe as of today. This paper presents a spatial-scanning (pushbroom) hyperspectral imaging probe, which is realized by integrating a pushbroom hyperspectral imager with an imaging probe. The proposed hyperspectral imaging probe can also function as an endoscopic probe by integrating a custom fabricated image fiber bundle unit. The imaging probe is configured by incorporating a gradient-index lens at the end face of an image fiber bundle that consists of about 50 000 individual fiberlets. The necessary simulations, methodology, and detailed instrumentation aspects that are carried out are explained followed by assessing the developed probe's performance. Resolution test targets such as United States Air Force chart as well as bio-samples such as chicken breast tissue with blood clot are used as test samples for resolution analysis and for performance validation. This system is built on a pushbroom hyperspectral imaging system with a video camera and has the advantage of acquiring information from a large number of spectral bands with selectable region of interest. The advantages of this spatial-scanning hyperspectral imaging probe can be extended to test samples or tissues residing in regions that are difficult to access with potential diagnostic bio-imaging applications.

  18. Improvements in Virtual Sensors: Using Spatial Information to Estimate Remote Sensing Spectra

    NASA Technical Reports Server (NTRS)

    Oza, Nikunj C.; Srivastava, Ashok N.; Stroeve, Julienne

    2005-01-01

    Various instruments are used to create images of the Earth and other objects in the universe in a diverse set of wavelength bands with the aim of understanding natural phenomena. Sometimes these instruments are built in a phased approach, with additional measurement capabilities added in later phases. In other cases, technology may mature to the point that the instrument offers new measurement capabilities that were not planned in the original design of the instrument. In still other cases, high resolution spectral measurements may be too costly to perform on a large sample and therefore lower resolution spectral instruments are used to take the majority of measurements. Many applied science questions that are relevant to the earth science remote sensing community require analysis of enormous amounts of data that were generated by instruments with disparate measurement capabilities. In past work [1], we addressed this problem using Virtual Sensors: a method that uses models trained on spectrally rich (high spectral resolution) data to "fill in" unmeasured spectral channels in spectrally poor (low spectral resolution) data. We demonstrated this method by using models trained on the high spectral resolution Terra MODIS instrument to estimate what the equivalent of the MODIS 1.6 micron channel would be for the NOAA AVHRR2 instrument. The scientific motivation for the simulation of the 1.6 micron channel is to improve the ability of the AVHRR2 sensor to detect clouds over snow and ice. This work contains preliminary experiments demonstrating that the use of spatial information can improve our ability to estimate these spectra.

  19. Providing a Spatial Context for Crop Insurance in Ethiopia: Multiscale Comparisons of Vegetation Metrics in Tigray

    NASA Astrophysics Data System (ADS)

    Mann, B. F.; Small, C.

    2014-12-01

    Weather-based index insurance projects are rapidly expanding across the developing world. Many of these projects use satellite-based observations to detect extreme weather events, which inform and trigger payouts to smallholder farmers. While most index insurance programs use precipitation measurements to determine payouts, the use of remotely sensed observations of vegetation is currently being explored. In order to use vegetation indices as a basis for payouts, it is necessary to establish a consistent relationship between the vegetation index and the health and abundance of agriculture on the ground. The accuracy with which remotely sensed vegetation indices can detect changes in agriculture depends on both the spatial scale of the agriculture and the spatial resolution of the sensor. This study analyzes the relationship between meter and decameter scale vegetation fraction estimates derived from linear spectral mixture models with a more commonly used vegetation index (NDVI, EVI) at hectometer spatial scales. In addition, the analysis incorporates land cover/land use field observations collected in Tigray Ethiopia in July 2013. . It also tests the flexibility and utility of a standardized spectral mixture model in which land cover is represented as continuous fields of rock and soil substrate (S), vegetation (V) and dark surfaces (D; water, shadow). This analysis found strong linear relationships with vegetation metrics at 1.6-meter, 30-meter and 250-meter resolutions across spectrally diverse subsets of Tigray, Ethiopia and significantly correlated relationships using the Spearman's rho statistic. The observed linear scaling has positive implications for future use of moderate resolution vegetation indices in similar landscapes; especially index insurance projects that are scaling up across the developing world using remotely-sensed environmental information.

  20. Sharpening Ejecta Patterns: Investigating Spectral Fidelity After Controlled Intensity-Hue-Saturation Image Fusion of LROC Images of Fresh Craters

    NASA Astrophysics Data System (ADS)

    Awumah, A.; Mahanti, P.; Robinson, M. S.

    2017-12-01

    Image fusion is often used in Earth-based remote sensing applications to merge spatial details from a high-resolution panchromatic (Pan) image with the color information from a lower-resolution multi-spectral (MS) image, resulting in a high-resolution multi-spectral image (HRMS). Previously, the performance of six well-known image fusion methods were compared using Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) and Wide Angle Camera (WAC) images (1). Results showed the Intensity-Hue-Saturation (IHS) method provided the best spatial performance, but deteriorated the spectral content. In general, there was a trade-off between spatial enhancement and spectral fidelity from the fusion process; the more spatial details from the Pan fused with the MS image, the more spectrally distorted the final HRMS. In this work, we control the amount of spatial details fused (from the LROC NAC images to WAC images) using a controlled IHS method (2), to investigate the spatial variation in spectral distortion on fresh crater ejecta. In the controlled IHS method (2), the percentage of the Pan component merged with the MS is varied. The percent of spatial detail from the Pan used is determined by a variable whose value may be varied between 1 (no Pan utilized) to infinity (entire Pan utilized). An HRMS color composite image (red=415nm, green=321/415nm, blue=321/360nm (3)) was used to assess performance (via visual inspection and metric-based evaluations) at each tested value of the control parameter (1 to 10—after which spectral distortion saturates—in 0.01 increments) within three regions: crater interiors, ejecta blankets, and the background material surrounding the craters. Increasing the control parameter introduced increased spatial sharpness and spectral distortion in all regions, but to varying degrees. Crater interiors suffered the most color distortion, while ejecta experienced less color distortion. The controlled IHS method is therefore desirable for resolution-enhancement of fresh crater ejecta; larger values of the control parameter may be used to sharpen MS images of ejecta patterns but with less impact to color distortion than in the uncontrolled IHS fusion process. References: (1) Prasun et. al (2016) ISPRS. (2) Choi, Myungjin (2006) IEEE. (3) Denevi et. al (2014) JGR.

  1. Chandra/ACIS Spectra of the 30 Doradus Star Forming Region

    NASA Astrophysics Data System (ADS)

    Townsley, L.; Broos, P.; Feigelson, E.; Burrows, D.; Chu, Y.-H.; Garmire, G.; Griffiths, R.; Maeda, Y.; Tsuboi, Y.

    2000-12-01

    We present the first high-spatial-resolution X-ray spectra of constituents of the 30 Doradus star-forming region in the Large Magellanic Cloud, obtained with the Advanced CCD Imaging Spectrometer (ACIS) aboard the Chandra X-ray Observatory. Our continuing efforts to remove the spectral effects of CCD charge transfer inefficiency (CTI) due to radiation damage are described. The central cluster of young high-mass stars, R136, is resolved at the arcsecond level by ACIS, allowing spectral analysis of several constituents. Other Wolf-Rayet stars and multiple systems (e.g. R139, R140) are also detected. Spatially-resolved spectra are presented for N157B, the plerion SNR recently shown by X-ray observations to contain a 16-msec pulsar (Marshall et al., ApJ 499, L179). The spectrally soft superbubble structures seen by ROSAT are visible in the Chandra image; a composite spectrum, improved with CTI correction, is presented. Support for this effort was provided by NASA contract NAS8-38252 to Gordon Garmire, the ACIS Principal Investigator.

  2. A method based on IHS cylindrical transform model for quality assessment of image fusion

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaokun; Jia, Yonghong

    2005-10-01

    Image fusion technique has been widely applied to remote sensing image analysis and processing, and methods for quality assessment of image fusion in remote sensing have also become the research issues at home and abroad. Traditional assessment methods combine calculation of quantitative indexes and visual interpretation to compare fused images quantificationally and qualitatively. However, in the existing assessment methods, there are two defects: on one hand, most imdexes lack the theoretic support to compare different fusion methods. On the hand, there is not a uniform preference for most of the quantitative assessment indexes when they are applied to estimate the fusion effects. That is, the spatial resolution and spectral feature could not be analyzed synchronously by these indexes and there is not a general method to unify the spatial and spectral feature assessment. So in this paper, on the basis of the approximate general model of four traditional fusion methods, including Intensity Hue Saturation(IHS) triangle transform fusion, High Pass Filter(HPF) fusion, Principal Component Analysis(PCA) fusion, Wavelet Transform(WT) fusion, a correlation coefficient assessment method based on IHS cylindrical transform is proposed. By experiments, this method can not only get the evaluation results of spatial and spectral features on the basis of uniform preference, but also can acquire the comparison between fusion image sources and fused images, and acquire differences among fusion methods. Compared with the traditional assessment methods, the new methods is more intuitionistic, and in accord with subjective estimation.

  3. "Relative CIR": an image enhancement and visualization technique

    USGS Publications Warehouse

    Fleming, Michael D.

    1993-01-01

    Many techniques exist to spectrally and spatially enhance digital multispectral scanner data. One technique enhances an image while keeping the colors as they would appear in a color-infrared (CIR) image. This "relative CIR" technique generates an image that is both spectrally and spatially enhanced, while displaying a maximum range of colors. The technique enables an interpreter to visualize either spectral or land cover classes by their relative CIR characteristics. A relative CIR image is generated by developed spectral statistics for each class in the classifications and then, using a nonparametric approach for spectral enhancement, the means of the classes for each band are ranked. A 3 by 3 pixel smoothing filter is applied to the classification for spatial enhancement and the classes are mapped to the representative rank for each band. Practical applications of the technique include displaying an image classification product as a CIR image that was not derived directly from a spectral image, visualizing how a land cover classification would look as a CIR image, and displaying a spectral classification or intermediate product that will be used to label spectral classes.

  4. A spectral-knowledge-based approach for urban land-cover discrimination

    NASA Technical Reports Server (NTRS)

    Wharton, Stephen W.

    1987-01-01

    A prototype expert system was developed to demonstrate the feasibility of classifying multispectral remotely sensed data on the basis of spectral knowledge. The spectral expert was developed and tested with Thematic Mapper Simulator (TMS) data having eight spectral bands and a spatial resolution of 5 m. A knowledge base was developed that describes the target categories in terms of characteristic spectral relationships. The knowledge base was developed under the following assumptions: the data are calibrated to ground reflectance, the area is well illuminated, the pixels are dominated by a single category, and the target categories can be recognized without the use of spatial knowledge. Classification decisions are made on the basis of convergent evidence as derived from applying the spectral rules to a multiple spatial resolution representation of the image. The spectral expert achieved an accuracy of 80-percent correct or higher in recognizing 11 spectral categories in TMS data for the washington, DC, area. Classification performance can be expected to decrease for data that do not satisfy the above assumptions as illustrated by the 63-percent accuracy for 30-m resolution Thematic Mapper data.

  5. Comparison of lithological mapping results from airborne hyperspectral VNIR-SWIR, LWIR and combined data

    NASA Astrophysics Data System (ADS)

    Feng, Jilu; Rogge, Derek; Rivard, Benoit

    2018-02-01

    This study investigates using the Airborne Hyperspectral Imaging Systems (AISA) visible and short-wave infrared (SWIR) and Spatially Enhanced Broadband Array Spectrograph System (SEBASS) longwave infrared (LWIR) (2 and 4 m spatial resolution, respectively) imagery independently and in combination to produce detailed lithologic maps in a subarctic region (Cape Smith Belt, Nunavik, Canada) where regionally metamorphosed lower greenschist mafic, ultramafic and sedimentary rocks are exposed in the presence of lichen coatings. We make use of continuous wavelet analysis (CWA) to improve the radiometric quality of the imagery through the minimization of random noise and the enhancement of spectral features, the minimization of residual errors in the ISAC radiometric correction and target temperature estimation in the case of the LWIR data, the minimization of line to line residual calibration effects that lead to inconsistencies in data mosaics, and the reduction in variability of the spectral continuum introduced by variable illumination and topography. The use of CWA also provides a platform to directly combine the wavelet scale spectral profiles of the SWIR and LWIR after applying a scalar correction factor to the LWIR such that the dynamic range of two data sets have equal weight. This is possible using CWA as the datasets are normalized to a zero mean allowing spectra from different spectral regions to be adjoined. Lithologic maps are generated using an iterative spectral unmixing approach with image spectral endmembers extracted from the SWIR and LWIR imagery based on locations defined from previous work of the study area and field mapping information. Unmixing results of the independent SWIR and LWIR data, and the combined data show clear benefits to using the CWA combined imagery. The analysis showed SWIR and LWIR imagery highlight similar regions and spatial distributions for the three ultramafic units (dunite, peridotite, pyroxenite). However, significant differences are observed for quartz-rich sediments, with the SWIR overestimating the distribution of these rocks whereas the LWIR provided more consistent results compared with existing maps. Both SWIR and LWIR imagery were impacted by the pervasive lichen coatings on the mafic rocks (basalts and gabbros), although the SWIR provided better results than the LWIR. Limitations observed for the independent data sets were removed using the combined spectral data resulting in all geologically meaningful units mapped correctly in comparison with existing geological maps.

  6. Polarizing beam splitter based on the anisotropic spectral reflectivity characteristic of form-birefringent multilayer gratings.

    PubMed

    Tyan, R C; Sun, P C; Scherer, A; Fainman, Y

    1996-05-15

    We introduce a novel polarizing beam splitter that uses the anisotropic spectral reflectivity (ASR) characteristic of a high-spatial-frequency multilayer binary grating. Such ASR effects allow us to design an optical element that is transparent for TM polarization and reflective for TE polarization. For normally incident light our element acts as a polarization-selective mirror. The properties of this polarizing beam splitter are investigated with rigorous coupled-wave analysis. The design results show that an ASR polarizing beam splitter can provide a high polarization extinction ratio for optical waves from a wide range of incident angles and a broad optical spectral bandwidth.

  7. Scintillation index and performance analysis of wireless optical links over non-Kolmogorov weak turbulence based on generalized atmospheric spectral model.

    PubMed

    Cang, Ji; Liu, Xu

    2011-09-26

    Based on the generalized spectral model for non-Kolmogorov atmospheric turbulence, analytic expressions of the scintillation index (SI) are derived for plane, spherical optical waves and a partially coherent Gaussian beam propagating through non-Kolmogorov turbulence horizontally in the weak fluctuation regime. The new expressions relate the SI to the finite turbulence inner and outer scales, spatial coherence of the source and spectral power-law and then used to analyze the effects of atmospheric condition and link length on the performance of wireless optical communication links. © 2011 Optical Society of America

  8. Spatial Modulation Improves Performance in CTIS

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory H.; Wilson, Daniel W.; Johnson, William R.

    2009-01-01

    Suitably formulated spatial modulation of a scene imaged by a computed-tomography imaging spectrometer (CTIS) has been found to be useful as a means of improving the imaging performance of the CTIS. As used here, "spatial modulation" signifies the imposition of additional, artificial structure on a scene from within the CTIS optics. The basic principles of a CTIS were described in "Improvements in Computed- Tomography Imaging Spectrometry" (NPO-20561) NASA Tech Briefs, Vol. 24, No. 12 (December 2000), page 38 and "All-Reflective Computed-Tomography Imaging Spectrometers" (NPO-20836), NASA Tech Briefs, Vol. 26, No. 11 (November 2002), page 7a. To recapitulate: A CTIS offers capabilities for imaging a scene with spatial, spectral, and temporal resolution. The spectral disperser in a CTIS is a two-dimensional diffraction grating. It is positioned between two relay lenses (or on one of two relay mirrors) in a video imaging system. If the disperser were removed, the system would produce ordinary images of the scene in its field of view. In the presence of the grating, the image on the focal plane of the system contains both spectral and spatial information because the multiple diffraction orders of the grating give rise to multiple, spectrally dispersed images of the scene. By use of algorithms adapted from computed tomography, the image on the focal plane can be processed into an image cube a three-dimensional collection of data on the image intensity as a function of the two spatial dimensions (x and y) in the scene and of wavelength (lambda). Thus, both spectrally and spatially resolved information on the scene at a given instant of time can be obtained, without scanning, from a single snapshot; this is what makes the CTIS such a potentially powerful tool for spatially, spectrally, and temporally resolved imaging. A CTIS performs poorly in imaging some types of scenes in particular, scenes that contain little spatial or spectral variation. The computed spectra of such scenes tend to approximate correct values to within acceptably small errors near the edges of the field of view but to be poor approximations away from the edges. The additional structure imposed on a scene according to the present method enables the CTIS algorithms to reconstruct acceptable approximations of the spectral data throughout the scene.

  9. Mars Surface Compositional Units and Some Geological Implications from the Mars Express High Resolution Stereo Camera (HRSC)

    NASA Astrophysics Data System (ADS)

    McCord, T. B.; Combe, J.-P.; Hayne, P. O.

    We are investigating the composition of the Martian surface partly by mapping the small spatial variations of water ice and salt minerals using the spectral images provided by the High Resolution Stereo Camera (HRSC). In order to identify the main mineral components, high spectral resolution data from the Observatoire pour la Mineralogie, l'Eau, les Glaces et l'Activite (OMEGA) imaging spectrometer are used. The join analysis of these two dataset makes the most of their respective abilities and, because of that, it requires a close agreement of their calibration [1]. The first part of this work is a comparison of HRSC and OMEGA measurements, exploration of atmosphere effects and checks of calibration. Then, an attempt to detect and map quantitatively at high spatial resolution (1) water ice both at the poles and in equatorial regions and (2) salts minerals is performed by exploring the spectral types evidenced in HRSC color data. For a given region, these two materials do or could represent additional endmember compositional units detectable with HRSC in addition to the basic units so far: 1) dark rock (basalt) and 2) red rock (iron oxide-rich material) [1]. Both materials also have been reported detected by OMEGA, but at much lower spatial resolution than HRSC. An ice mapping of the north polar regions is performed with OMEGA data by using a spectral index calibrated to ice fraction by using a set of linear combinations of various categories of materials with ice. In addition, a linear spectral unmixing model is used on HRSC data. Both ice fraction maps produce similar quantitative results, allowing us to interpret HRSC data at their full spatial resolution. Low-latitude sites are also explored where past but recent glacial activities have been reported as possible evidence of current water-ice. This includes looking for fresh frost and changes with time. The salt detection with HRSC firstly focused on the Candor Chasma area, where salt have been reported by using OMEGA [2]. The present work extends the analysis to other regions in order to constrain better the general geology and climate of Mars. References: [1] McCord T. B., et al. (2006). The Mars Express High Resolution Stereo Camera spectrophotometric data: Characteristics and science analysis, JGR, submitted. [2] Gendrin, A., N. Mangold, J-P. Bibring, Y. Langevin, B. Gondet, F. Poulet, G. Bonello, C. Quantin, J. Mustard, R. Arvidson, S. LeMouelic (2005), Sulfates in Martian layered terrains: The OMEGA/Mars Express View, Science, 307, 1587-1591

  10. An Active Learning Framework for Hyperspectral Image Classification Using Hierarchical Segmentation

    NASA Technical Reports Server (NTRS)

    Zhang, Zhou; Pasolli, Edoardo; Crawford, Melba M.; Tilton, James C.

    2015-01-01

    Augmenting spectral data with spatial information for image classification has recently gained significant attention, as classification accuracy can often be improved by extracting spatial information from neighboring pixels. In this paper, we propose a new framework in which active learning (AL) and hierarchical segmentation (HSeg) are combined for spectral-spatial classification of hyperspectral images. The spatial information is extracted from a best segmentation obtained by pruning the HSeg tree using a new supervised strategy. The best segmentation is updated at each iteration of the AL process, thus taking advantage of informative labeled samples provided by the user. The proposed strategy incorporates spatial information in two ways: 1) concatenating the extracted spatial features and the original spectral features into a stacked vector and 2) extending the training set using a self-learning-based semi-supervised learning (SSL) approach. Finally, the two strategies are combined within an AL framework. The proposed framework is validated with two benchmark hyperspectral datasets. Higher classification accuracies are obtained by the proposed framework with respect to five other state-of-the-art spectral-spatial classification approaches. Moreover, the effectiveness of the proposed pruning strategy is also demonstrated relative to the approaches based on a fixed segmentation.

  11. Forest Classification Accuracy as Influenced by Multispectral Scanner Spatial Resolution. [Sam Houston National Forest, Texas

    NASA Technical Reports Server (NTRS)

    Nalepka, R. F. (Principal Investigator); Sadowski, F. E.; Sarno, J. E.

    1976-01-01

    The author has identified the following significant results. A supervised classification within two separate ground areas of the Sam Houston National Forest was carried out for two sq meters spatial resolution MSS data. Data were progressively coarsened to simulate five additional cases of spatial resolution ranging up to 64 sq meters. Similar processing and analysis of all spatial resolutions enabled evaluations of the effect of spatial resolution on classification accuracy for various levels of detail and the effects on area proportion estimation for very general forest features. For very coarse resolutions, a subset of spectral channels which simulated the proposed thematic mapper channels was used to study classification accuracy.

  12. Ultrabroadband infrared nanospectroscopic imaging

    PubMed Central

    Bechtel, Hans A.; Muller, Eric A.; Olmon, Robert L.; Martin, Michael C.; Raschke, Markus B.

    2014-01-01

    Characterizing and ultimately controlling the heterogeneity underlying biomolecular functions, quantum behavior of complex matter, photonic materials, or catalysis requires large-scale spectroscopic imaging with simultaneous specificity to structure, phase, and chemical composition at nanometer spatial resolution. However, as with any ultrahigh spatial resolution microscopy technique, the associated demand for an increase in both spatial and spectral bandwidth often leads to a decrease in desired sensitivity. We overcome this limitation in infrared vibrational scattering-scanning probe near-field optical microscopy using synchrotron midinfrared radiation. Tip-enhanced localized light–matter interaction is induced by low-noise, broadband, and spatially coherent synchrotron light of high spectral irradiance, and the near-field signal is sensitively detected using heterodyne interferometric amplification. We achieve sub-40-nm spatially resolved, molecular, and phonon vibrational spectroscopic imaging, with rapid spectral acquisition, spanning the full midinfrared (700–5,000 cm−1) with few cm−1 spectral resolution. We demonstrate the performance of synchrotron infrared nanospectroscopy on semiconductor, biomineral, and protein nanostructures, providing vibrational chemical imaging with subzeptomole sensitivity. PMID:24803431

  13. Shift-variant linear system modeling for multispectral scanners

    NASA Astrophysics Data System (ADS)

    Amini, Abolfazl M.; Ioup, George E.; Ioup, Juliette W.

    1995-07-01

    Multispectral scanner data are affected both by the spatial impulse response of the sensor and the spectral response of each channel. To achieve a realistic representation for the output data for a given scene spectral input, both of these effects must be incorporated into a forward model. Each channel can have a different spatial response and each has its characteristic spectral response. A forward model is built which includes the shift invariant spatial broadening of the input for the channels and the shift variant spectral response across channels. The model is applied to the calibrated airborne multispectral scanner as well as the airborne terrestrial applications sensor developed at NASA Stennis Space Center.

  14. Monitoring of Antarctic moss ecosystems using a high spatial resolution imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Malenovsky, Zbynek; Lucieer, Arko; Robinson, Sharon; Harwin, Stephen; Turner, Darren; Veness, Tony

    2013-04-01

    The most abundant photosynthetically active plants growing along the rocky Antarctic shore are mosses of three species: Schistidium antarctici, Ceratodon purpureus, and Bryum pseudotriquetrum. Even though mosses are well adapted to the extreme climate conditions, their existence in Antarctica depends strongly on availability of liquid water from snowmelt during the short summer season. Recent changes in temperature, wind speed and stratospheric ozone are stimulating faster evaporation, which in turn influences moss growing rate, health state and abundance. This makes them an ideal bio-indicator of the Antarctic climate change. Very short growing season, lasting only about three months, requires a time efficient, easily deployable and spatially resolved method for monitoring the Antarctic moss beds. Ground and/or low-altitude airborne imaging spectroscopy (called also hyperspectral remote sensing) offers a fast and spatially explicit approach to investigate an actual spatial extent and physiological state of moss turfs. A dataset of ground-based spectral images was acquired with a mini-Hyperspec imaging spectrometer (Headwall Inc., the USA) during the Antarctic summer 2012 in the surroundings of the Australian Antarctic station Casey (Windmill Islands). The collection of high spatial resolution spectral images, with pixels about 2 cm in size containing from 162 up to 324 narrow spectral bands of wavelengths between 399 and 998 nm, was accompanied with point moss reflectance measurements recorded with the ASD HandHeld-2 spectroradiometer (Analytical Spectral Devices Inc., the USA). The first spectral analysis indicates significant differences in red-edge and near-infrared reflectance of differently watered moss patches. Contrary to high plants, where the Normalized Difference Vegetation Index (NDVI) represents an estimate of green biomass, NDVI of mosses indicates mainly the actual water content. Similarly to high plants, reflectance of visible wavelengths is controlled by the composition and content of various foliar pigments (chlorophylls, xanthophylls, etc.). Additionally, the high spectral resolution reflectance together with the narrow bandwidth allows retrieving the steady state chlorophyll fluorescence, which indicates the actual moss photosynthetic activity. A first airborne imaging spectroscopy acquisition with the mini-Hyperspec sensor on-board a low-flying remote-controlled multi-rotor helicopter (known as micro Unmanned Aerial Systems - UAS) will be performed during the summer 2013. The aim of the UAS observations is to generate high spatial resolution maps of actual physiological state of several moss beds located within the Australian Antarctic Territory. The regular airborne monitoring is expected to reveal spatio-temporal changes in the Antarctic moss ecosystems, indicating the impact of the global climate change in Antarctica.

  15. Design framework for a spectral mask for a plenoptic camera

    NASA Astrophysics Data System (ADS)

    Berkner, Kathrin; Shroff, Sapna A.

    2012-01-01

    Plenoptic cameras are designed to capture different combinations of light rays from a scene, sampling its lightfield. Such camera designs capturing directional ray information enable applications such as digital refocusing, rotation, or depth estimation. Only few address capturing spectral information of the scene. It has been demonstrated that by modifying a plenoptic camera with a filter array containing different spectral filters inserted in the pupil plane of the main lens, sampling of the spectral dimension of the plenoptic function is performed. As a result, the plenoptic camera is turned into a single-snapshot multispectral imaging system that trades-off spatial with spectral information captured with a single sensor. Little work has been performed so far on analyzing diffraction effects and aberrations of the optical system on the performance of the spectral imager. In this paper we demonstrate simulation of a spectrally-coded plenoptic camera optical system via wave propagation analysis, evaluate quality of the spectral measurements captured at the detector plane, and demonstrate opportunities for optimization of the spectral mask for a few sample applications.

  16. Exploring the potential of hyper-spectral imaging for the biogeochemical analysis of varved lake sediments

    NASA Astrophysics Data System (ADS)

    Butz, Christoph; Grosjean, Martin; Enters, Dirk; Tylmann, Wojciech

    2014-05-01

    Varved lake sediments have successfully been used to make inferences about past environmental and climate conditions from annual to multi-millennial scales. Among other proxies, concentrations of sedimentary photopigments have been used for temperature reconstructions. However, obtaining well calibrated annually resolved records from sediments still remains challenging. Most laboratory methods used to analyse lake sediments require physical subsampling and are destructive in the process. Hence, temporal resolution and number of data are limited by the amount of material available in the core. Furthermore, for very low sediment accumulation rates annual subsampling is often very difficult or even impossible. To address these problems we explore hyper-spectral imaging as a new method to analyse lake sediments based on their reflectance spectra in the visible and near infrared spectrum. In contrast to other fast and non-destructive methods like X-ray fluorescence, VIS/NIR reflectance spectrometry distinguishes between biogeochemical substances rather than single elements. Rein (2003) has shown that VIS-RS can be used to detect relative concentrations of sedimentary photopigments (e.g. chlorins, carotenoids) and clay minerals. This study presents an advanced approach using a hyper-spectral camera and remote sensing techniques to infer climate proxy data from reflectance spectra of varved lake sediments. Hyper-spectral imaging allows analysing an entire sediment core in a single measurement, producing a spectral dataset with very high spatial (30x30µm/pixel) and spectral resolutions (~1nm) and a higher spectral range (400-1000nm) compared to previously used spectrophotometers. This allows the analysis of data time series at sub-varve scales or spatial mapping of sedimentary substances (e.g. chlorophyll-a and diagenetic products) at very high resolution. The method is demonstrated on varved lake sediments from northern Poland showing the change of the relative concentrations of chlorin pigments within individual varve years. In a next step absolute concentrations of chlorins derived from HPLC measurements have been calibrated to the spectral data using a linear regression model. This results in a very high-resolution dataset of absolute sedimentary pigment concentrations. In a second example µXRF measurements are used to validate a spectral index for clay mineral detection.

  17. Exploiting spectral content for image segmentation in GPR data

    NASA Astrophysics Data System (ADS)

    Wang, Patrick K.; Morton, Kenneth D., Jr.; Collins, Leslie M.; Torrione, Peter A.

    2011-06-01

    Ground-penetrating radar (GPR) sensors provide an effective means for detecting changes in the sub-surface electrical properties of soils, such as changes indicative of landmines or other buried threats. However, most GPR-based pre-screening algorithms only localize target responses along the surface of the earth, and do not provide information regarding an object's position in depth. As a result, feature extraction algorithms are forced to process data from entire cubes of data around pre-screener alarms, which can reduce feature fidelity and hamper performance. In this work, spectral analysis is investigated as a method for locating subsurface anomalies in GPR data. In particular, a 2-D spatial/frequency decomposition is applied to pre-screener flagged GPR B-scans. Analysis of these spatial/frequency regions suggests that aspects (e.g. moments, maxima, mode) of the frequency distribution of GPR energy can be indicative of the presence of target responses. After translating a GPR image to a function of the spatial/frequency distributions at each pixel, several image segmentation approaches can be applied to perform segmentation in this new transformed feature space. To illustrate the efficacy of the approach, a performance comparison between feature processing with and without the image segmentation algorithm is provided.

  18. Predicting Gilthead Sea Bream (Sparus aurata) Freshness by a Novel Combined Technique of 3D Imaging and SW-NIR Spectral Analysis.

    PubMed

    Ivorra, Eugenio; Verdu, Samuel; Sánchez, Antonio J; Grau, Raúl; Barat, José M

    2016-10-19

    A technique that combines the spatial resolution of a 3D structured-light (SL) imaging system with the spectral analysis of a hyperspectral short-wave near infrared system was developed for freshness predictions of gilthead sea bream on the first storage days (Days 0-6). This novel approach allows the hyperspectral analysis of very specific fish areas, which provides more information for freshness estimations. The SL system obtains a 3D reconstruction of fish, and an automatic method locates gilthead's pupils and irises. Once these regions are positioned, the hyperspectral camera acquires spectral information and a multivariate statistical study is done. The best region is the pupil with an R² of 0.92 and an RMSE of 0.651 for predictions. We conclude that the combination of 3D technology with the hyperspectral analysis offers plenty of potential and is a very promising technique to non destructively predict gilthead freshness.

  19. Predicting Gilthead Sea Bream (Sparus aurata) Freshness by a Novel Combined Technique of 3D Imaging and SW-NIR Spectral Analysis

    PubMed Central

    Ivorra, Eugenio; Verdu, Samuel; Sánchez, Antonio J.; Grau, Raúl; Barat, José M.

    2016-01-01

    A technique that combines the spatial resolution of a 3D structured-light (SL) imaging system with the spectral analysis of a hyperspectral short-wave near infrared system was developed for freshness predictions of gilthead sea bream on the first storage days (Days 0–6). This novel approach allows the hyperspectral analysis of very specific fish areas, which provides more information for freshness estimations. The SL system obtains a 3D reconstruction of fish, and an automatic method locates gilthead’s pupils and irises. Once these regions are positioned, the hyperspectral camera acquires spectral information and a multivariate statistical study is done. The best region is the pupil with an R2 of 0.92 and an RMSE of 0.651 for predictions. We conclude that the combination of 3D technology with the hyperspectral analysis offers plenty of potential and is a very promising technique to non destructively predict gilthead freshness. PMID:27775556

  20. Extended-range high-resolution dynamical downscaling over a continental-scale spatial domain with atmospheric and surface nudging

    NASA Astrophysics Data System (ADS)

    Husain, S. Z.; Separovic, L.; Yu, W.; Fernig, D.

    2014-12-01

    Extended-range high-resolution mesoscale simulations with limited-area atmospheric models when applied to downscale regional analysis fields over large spatial domains can provide valuable information for many applications including the weather-dependent renewable energy industry. Long-term simulations over a continental-scale spatial domain, however, require mechanisms to control the large-scale deviations in the high-resolution simulated fields from the coarse-resolution driving fields. As enforcement of the lateral boundary conditions is insufficient to restrict such deviations, large scales in the simulated high-resolution meteorological fields are therefore spectrally nudged toward the driving fields. Different spectral nudging approaches, including the appropriate nudging length scales as well as the vertical profiles and temporal relaxations for nudging, have been investigated to propose an optimal nudging strategy. Impacts of time-varying nudging and generation of hourly analysis estimates are explored to circumvent problems arising from the coarse temporal resolution of the regional analysis fields. Although controlling the evolution of the atmospheric large scales generally improves the outputs of high-resolution mesoscale simulations within the surface layer, the prognostically evolving surface fields can nevertheless deviate from their expected values leading to significant inaccuracies in the predicted surface layer meteorology. A forcing strategy based on grid nudging of the different surface fields, including surface temperature, soil moisture, and snow conditions, toward their expected values obtained from a high-resolution offline surface scheme is therefore proposed to limit any considerable deviation. Finally, wind speed and temperature at wind turbine hub height predicted by different spectrally nudged extended-range simulations are compared against observations to demonstrate possible improvements achievable using higher spatiotemporal resolution.

  1. Comparative analysis of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), and Hyperspectral Thermal Emission Spectrometer (HyTES) longwave infrared (LWIR) hyperspectral data for geologic mapping

    NASA Astrophysics Data System (ADS)

    Kruse, Fred A.

    2015-05-01

    Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and spatially coincident Hyperspectral Thermal Emission Spectrometer (HyTES) data were used to map geology and alteration for a site in northern Death Valley, California and Nevada, USA. AVIRIS, with 224 bands at 10 nm spectral resolution over the range 0.4 - 2.5 μm at 3-meter spatial resolution were converted to reflectance using an atmospheric model. HyTES data with 256 bands at approximately 17 nm spectral resolution covering the 8 - 12 μm range at 4-meter spatial resolution were converted to emissivity using a longwave infrared (LWIR) radiative transfer atmospheric compensation model and a normalized temperature-emissivity separation approach. Key spectral endmembers were separately extracted for each wavelength region and identified, and the predominant material at each pixel was mapped for each range using Mixture-Tuned-Matched Filtering (MTMF), a partial unmixing approach. AVIRIS mapped iron oxides, clays, mica, and silicification (hydrothermal alteration); and the difference between calcite and dolomite. HyTES separated and mapped several igneous phases (not possible using AVIRIS), silicification, and validated separation of calcite from dolomite. Comparison of the material maps from the different modes, however, reveals complex overlap, indicating that multiple materials/processes exist in many areas. Combined and integrated analyses were performed to compare individual results and more completely characterize occurrences of multiple materials. Three approaches were used 1) integrated full-range analysis, 2) combined multimode classification, and 3) directed combined analysis in geologic context. Results illustrate that together, these two datasets provide an improved picture of the distribution of geologic units and subsequent alteration.

  2. Decoding magnetoencephalographic rhythmic activity using spectrospatial information.

    PubMed

    Kauppi, Jukka-Pekka; Parkkonen, Lauri; Hari, Riitta; Hyvärinen, Aapo

    2013-12-01

    We propose a new data-driven decoding method called Spectral Linear Discriminant Analysis (Spectral LDA) for the analysis of magnetoencephalography (MEG). The method allows investigation of changes in rhythmic neural activity as a result of different stimuli and tasks. The introduced classification model only assumes that each "brain state" can be characterized as a combination of neural sources, each of which shows rhythmic activity at one or several frequency bands. Furthermore, the model allows the oscillation frequencies to be different for each such state. We present decoding results from 9 subjects in a four-category classification problem defined by an experiment involving randomly alternating epochs of auditory, visual and tactile stimuli interspersed with rest periods. The performance of Spectral LDA was very competitive compared with four alternative classifiers based on different assumptions concerning the organization of rhythmic brain activity. In addition, the spectral and spatial patterns extracted automatically on the basis of trained classifiers showed that Spectral LDA offers a novel and interesting way of analyzing spectrospatial oscillatory neural activity across the brain. All the presented classification methods and visualization tools are freely available as a Matlab toolbox. © 2013.

  3. Detecting Unknown Artificial Urban Surface Materials Based on Spectral Dissimilarity Analysis.

    PubMed

    Jilge, Marianne; Heiden, Uta; Habermeyer, Martin; Mende, André; Juergens, Carsten

    2017-08-08

    High resolution imaging spectroscopy data have been recognised as a valuable data resource for augmenting detailed material inventories that serve as input for various urban applications. Image-specific urban spectral libraries are successfully used in urban imaging spectroscopy studies. However, the regional- and sensor-specific transferability of such libraries is limited due to the wide range of different surface materials. With the developed methodology, incomplete urban spectral libraries can be utilised by assuming that unknown surface material spectra are dissimilar to the known spectra in a basic spectral library (BSL). The similarity measure SID-SCA (Spectral Information Divergence-Spectral Correlation Angle) is applied to detect image-specific unknown urban surfaces while avoiding spectral mixtures. These detected unknown materials are categorised into distinct and identifiable material classes based on their spectral and spatial metrics. Experimental results demonstrate a successful redetection of material classes that had been previously erased in order to simulate an incomplete BSL. Additionally, completely new materials e.g., solar panels were identified in the data. It is further shown that the level of incompleteness of the BSL and the defined dissimilarity threshold are decisive for the detection of unknown material classes and the degree of spectral intra-class variability. A detailed accuracy assessment of the pre-classification results, aiming to separate natural and artificial materials, demonstrates spectral confusions between spectrally similar materials utilizing SID-SCA. However, most spectral confusions occur between natural or artificial materials which are not affecting the overall aim. The dissimilarity analysis overcomes the limitations of working with incomplete urban spectral libraries and enables the generation of image-specific training databases.

  4. Detecting Unknown Artificial Urban Surface Materials Based on Spectral Dissimilarity Analysis

    PubMed Central

    Jilge, Marianne; Heiden, Uta; Habermeyer, Martin; Mende, André; Juergens, Carsten

    2017-01-01

    High resolution imaging spectroscopy data have been recognised as a valuable data resource for augmenting detailed material inventories that serve as input for various urban applications. Image-specific urban spectral libraries are successfully used in urban imaging spectroscopy studies. However, the regional- and sensor-specific transferability of such libraries is limited due to the wide range of different surface materials. With the developed methodology, incomplete urban spectral libraries can be utilised by assuming that unknown surface material spectra are dissimilar to the known spectra in a basic spectral library (BSL). The similarity measure SID-SCA (Spectral Information Divergence-Spectral Correlation Angle) is applied to detect image-specific unknown urban surfaces while avoiding spectral mixtures. These detected unknown materials are categorised into distinct and identifiable material classes based on their spectral and spatial metrics. Experimental results demonstrate a successful redetection of material classes that had been previously erased in order to simulate an incomplete BSL. Additionally, completely new materials e.g., solar panels were identified in the data. It is further shown that the level of incompleteness of the BSL and the defined dissimilarity threshold are decisive for the detection of unknown material classes and the degree of spectral intra-class variability. A detailed accuracy assessment of the pre-classification results, aiming to separate natural and artificial materials, demonstrates spectral confusions between spectrally similar materials utilizing SID-SCA. However, most spectral confusions occur between natural or artificial materials which are not affecting the overall aim. The dissimilarity analysis overcomes the limitations of working with incomplete urban spectral libraries and enables the generation of image-specific training databases. PMID:28786947

  5. Fizeau Fourier transform imaging spectroscopy: missing data reconstruction.

    PubMed

    Thurman, Samuel T; Fienup, James R

    2008-04-28

    Fizeau Fourier transform imaging spectroscopy yields both spatial and spectral information about an object. Spectral information, however, is not obtained for a finite area of low spatial frequencies. A nonlinear reconstruction algorithm based on a gray-world approximation is presented. Reconstruction results from simulated data agree well with ideal Michelson interferometer-based spectral imagery. This result implies that segmented-aperture telescopes and multiple telescope arrays designed for conventional imaging can be used to gather useful spectral data through Fizeau FTIS without the need for additional hardware.

  6. Spectral imaging of histological and cytological specimens

    NASA Astrophysics Data System (ADS)

    Rothmann, Chana; Malik, Zvi

    1999-05-01

    Evaluation of cell morphology by bright field microscopy is the pillar of histopathological diagnosis. The need for quantitative and objective parameters for diagnosis has given rise to the development of morphometric methods. The development of spectral imaging for biological and medical applications introduced both fields to large amounts of information extracted from a single image. Spectroscopic analysis is based on the ability of a stained histological specimen to absorb, reflect, or emit photons in ways characteristic to its interactions with specific dyes. Spectral information obtained from a histological specimen is stored in a cube whose appellate signifies the two spatial dimensions of a flat sample (x and y) and the third dimension, the spectrum, representing the light intensity for every wavelength. The spectral information stored in the cube can be further processed by morphometric analysis and quantitative procedures. Such a procedure is spectral-similarity mapping (SSM), which enables the demarcation of areas occupied by the same type of material. SSM constructs new images of the specimen, revealing areas with similar stain-macromolecule characteristics and enhancing subcellular features. Spectral imaging combined with SSM reveals nuclear organization through the differentiation stages as well as in apoptotic and necrotic conditions and identifies specifically the nucleoli domains.

  7. On the utilization of novel spectral laser scanning for three-dimensional classification of vegetation elements.

    PubMed

    Li, Zhan; Schaefer, Michael; Strahler, Alan; Schaaf, Crystal; Jupp, David

    2018-04-06

    The Dual-Wavelength Echidna Lidar (DWEL), a full waveform terrestrial laser scanner (TLS), has been used to scan a variety of forested and agricultural environments. From these scanning campaigns, we summarize the benefits and challenges given by DWEL's novel coaxial dual-wavelength scanning technology, particularly for the three-dimensional (3D) classification of vegetation elements. Simultaneous scanning at both 1064 nm and 1548 nm by DWEL instruments provides a new spectral dimension to TLS data that joins the 3D spatial dimension of lidar as an information source. Our point cloud classification algorithm explores the utilization of both spectral and spatial attributes of individual points from DWEL scans and highlights the strengths and weaknesses of each attribute domain. The spectral and spatial attributes for vegetation element classification each perform better in different parts of vegetation (canopy interior, fine branches, coarse trunks, etc.) and under different vegetation conditions (dead or live, leaf-on or leaf-off, water content, etc.). These environmental characteristics of vegetation, convolved with the lidar instrument specifications and lidar data quality, result in the actual capabilities of spectral and spatial attributes to classify vegetation elements in 3D space. The spectral and spatial information domains thus complement each other in the classification process. The joint use of both not only enhances the classification accuracy but also reduces its variance across the multiple vegetation types we have examined, highlighting the value of the DWEL as a new source of 3D spectral information. Wider deployment of the DWEL instruments is in practice currently held back by challenges in instrument development and the demands of data processing required by coaxial dual- or multi-wavelength scanning. But the simultaneous 3D acquisition of both spectral and spatial features, offered by new multispectral scanning instruments such as the DWEL, opens doors to study biophysical and biochemical properties of forested and agricultural ecosystems at more detailed scales.

  8. Toward optimal spatial and spectral quality in widefield infrared spectromicroscopy of IR labelled single cells.

    PubMed

    Mattson, Eric C; Unger, Miriam; Clède, Sylvain; Lambert, François; Policar, Clotilde; Imtiaz, Asher; D'Souza, Roshan; Hirschmugl, Carol J

    2013-10-07

    Advancements in widefield infrared spectromicroscopy have recently been demonstrated following the commissioning of IRENI (InfraRed ENvironmental Imaging), a Fourier Transform infrared (FTIR) chemical imaging beamline at the Synchrotron Radiation Center. The present study demonstrates the effects of magnification, spatial oversampling, spectral pre-processing and deconvolution, focusing on the intracellular detection and distribution of an exogenous metal tris-carbonyl derivative 1 in a single MDA-MB-231 breast cancer cell. We demonstrate here that spatial oversampling for synchrotron-based infrared imaging is critical to obtain accurate diffraction-limited images at all wavelengths simultaneously. Resolution criteria and results from raw and deconvoluted images for two Schwarzschild objectives (36×, NA 0.5 and 74×, NA 0.65) are compared to each other and to prior reports for raster-scanned, confocal microscopes. The resolution of the imaging data can be improved by deconvolving the instrumental broadening that is determined with the measured PSFs, which is implemented with GPU programming architecture for fast hyperspectral processing. High definition, rapidly acquired, FTIR chemical images of respective spectral signatures of the cell 1 and shows that 1 is localized next to the phosphate- and Amide-rich regions, in agreement with previous infrared and luminescence studies. The infrared image contrast, localization and definition are improved after applying proven spectral pre-processing (principal component analysis based noise reduction and RMie scattering correction algorithms) to individual pixel spectra in the hyperspectral cube.

  9. Evaluation of SLAR and thematic mapper MSS data for forest cover mapping using computer-aided analysis techniques

    NASA Technical Reports Server (NTRS)

    Hoffer, R. M. (Principal Investigator)

    1980-01-01

    Several possibilities were considered for defining the data set in which the same test areas could be used for each of the four different spatial resolutions being evaluated. The LARSYS CLUSTER was used to sort the vectors into spectral classes to reduce the within-spectral class variability in an effort to develop training statistics. A data quality test was written to determine the basic signal to noise characteristics within the data set being used. Because preliminary analysis of the LANDSAT MSS data revealed the presence of high cirrus clouds, other data sets are being sought.

  10. Separation of spatial-temporal patterns ('climatic modes') by combined analysis of really measured and generated numerically vector time series

    NASA Astrophysics Data System (ADS)

    Feigin, A. M.; Mukhin, D.; Volodin, E. M.; Gavrilov, A.; Loskutov, E. M.

    2013-12-01

    The new method of decomposition of the Earth's climate system into well separated spatial-temporal patterns ('climatic modes') is discussed. The method is based on: (i) generalization of the MSSA (Multichannel Singular Spectral Analysis) [1] for expanding vector (space-distributed) time series in basis of spatial-temporal empirical orthogonal functions (STEOF), which makes allowance delayed correlations of the processes recorded in spatially separated points; (ii) expanding both real SST data, and longer by several times SST data generated numerically, in STEOF basis; (iii) use of the numerically produced STEOF basis for exclusion of 'too slow' (and thus not represented correctly) processes from real data. The application of the method allows by means of vector time series generated numerically by the INM RAS Coupled Climate Model [2] to separate from real SST anomalies data [3] two climatic modes possessing by noticeably different time scales: 3-5 and 9-11 years. Relations of separated modes to ENSO and PDO are investigated. Possible applications of spatial-temporal climatic patterns concept to prognosis of climate system evolution is discussed. 1. Ghil, M., R. M. Allen, M. D. Dettinger, K. Ide, D. Kondrashov, et al. (2002) "Advanced spectral methods for climatic time series", Rev. Geophys. 40(1), 3.1-3.41. 2. http://83.149.207.89/GCM_DATA_PLOTTING/GCM_INM_DATA_XY_en.htm 3. http://iridl.ldeo.columbia.edu/SOURCES/.KAPLAN/.EXTENDED/.v2/.ssta/

  11. Factor analysis as a tool for spectral line component separation 21cm emission in the direction of L1780

    NASA Technical Reports Server (NTRS)

    Toth, L. V.; Mattila, K.; Haikala, L.; Balazs, L. G.

    1992-01-01

    The spectra of the 21cm HI radiation from the direction of L1780, a small high-galactic latitude dark/molecular cloud, were analyzed by multivariate methods. Factor analysis was performed on HI (21cm) spectra in order to separate the different components responsible for the spectral features. The rotated, orthogonal factors explain the spectra as a sum of radiation from the background (an extended HI emission layer), and from the L1780 dark cloud. The coefficients of the cloud-indicator factors were used to locate the HI 'halo' of the molecular cloud. Our statistically derived 'background' and 'cloud' spectral profiles, as well as the spatial distribution of the HI halo emission distribution were compared to the results of a previous study which used conventional methods analyzing nearly the same data set.

  12. A Year at the Moon on Chandrayaan-1: Moon Mineralogy Mapper Data in a Global Perspective

    NASA Astrophysics Data System (ADS)

    Boardman, J. W.; Pieters, C. M.; Clark, R. N.; Combe, J.; Green, R. O.; Isaacson, P.; Lundeen, S.; Malaret, E.; McCord, T. B.; Nettles, J. W.; Petro, N. E.; Staid, M.; Varanasi, P.

    2009-12-01

    The Moon Mineralogy Mapper, M3, a high-fidelity high-resolution imaging spectrometer on Chandrayaan-1 has completed two of its four scheduled optical periods during its maiden year in lunar orbit, collecting over 4.6 billion spectra covering most of the lunar surface. These imaging periods (November 2008-February 2009 and April 2009-August 2009) correspond to times of equatorial solar zenith angle less than sixty degrees, relative to the Chandrayaan-1 orbit. The vast majority of the data collected in these first two optical periods are in Global Mode (85 binned spectral bands from 460 to 2976 nanometers with a 2-by-2 binned angular pixel size of 1.4 milliradians). Full-resolution Target Mode data (259 spectral bands and 0.7 milliradian pixels) will be the focus of the remaining two collection periods. Chandrayaan-1 operated initially in a 100-kilometer polar orbit, yielding 70 meter Target pixels and 140 meter Global pixels. The orbit was raised on May 20, 2009, during Optical Period 2, to a nominal 200 kilometer altitude, effectively doubling the pixel spatial sizes. While the high spatial and spectral resolutions of the data allow detailed examination of specific local areas on the Moon, they can also reveal remarkable features when combined, processed and viewed in a global context. Using preliminary calibration and selenolocation, we have explored the spectral and spatial properties of the Moon as a whole as revealed by M3. The data display striking new diversity and information related to surface mineralogy, distribution of volatiles, thermal processes and photometry. Large volumes of complex imaging spectrometry data are, by their nature, simultaneously information-rich and challenging to process. For an initial assessment of the gross information content of the data set we performed a Principal Components analysis on the entire suite of Global Mode imagery. More than a dozen linearly independent spectral dimensions are present, even at the global scale. An animation of a Grand Tour Projection, sweeping a three-dimensional red/green/blue image visualization window through the M3 hyperdimensional spectral space, confirms both spatially and spectrally that the M3 data will revolutionize our understanding of our nearest celestial neighbor.

  13. Wheat signature modeling and analysis for improved training statistics

    NASA Technical Reports Server (NTRS)

    Nalepka, R. F. (Principal Investigator); Malila, W. A.; Cicone, R. C.; Gleason, J. M.

    1976-01-01

    The author has identified the following significant results. The spectral, spatial, and temporal characteristics of wheat and other signatures in LANDSAT multispectral scanner data were examined through empirical analysis and simulation. Irrigation patterns varied widely within Kansas; 88 percent of wheat acreage in Finney was irrigated and 24 percent in Morton, as opposed to less than 3 percent for western 2/3's of the State. The irrigation practice was definitely correlated with the observed spectral response; wheat variety differences produced observable spectral differences due to leaf coloration and different dates of maturation. Between-field differences were generally greater than within-field differences, and boundary pixels produced spectral features distinct from those within field centers. Multiclass boundary pixels contributed much of the observed bias in proportion estimates. The variability between signatures obtained by different draws of training data decreased as the sample size became larger; also, the resulting signatures became more robust and the particular decision threshold value became less important.

  14. A Marker-Based Approach for the Automated Selection of a Single Segmentation from a Hierarchical Set of Image Segmentations

    NASA Technical Reports Server (NTRS)

    Tarabalka, Y.; Tilton, J. C.; Benediktsson, J. A.; Chanussot, J.

    2012-01-01

    The Hierarchical SEGmentation (HSEG) algorithm, which combines region object finding with region object clustering, has given good performances for multi- and hyperspectral image analysis. This technique produces at its output a hierarchical set of image segmentations. The automated selection of a single segmentation level is often necessary. We propose and investigate the use of automatically selected markers for this purpose. In this paper, a novel Marker-based HSEG (M-HSEG) method for spectral-spatial classification of hyperspectral images is proposed. Two classification-based approaches for automatic marker selection are adapted and compared for this purpose. Then, a novel constrained marker-based HSEG algorithm is applied, resulting in a spectral-spatial classification map. Three different implementations of the M-HSEG method are proposed and their performances in terms of classification accuracies are compared. The experimental results, presented for three hyperspectral airborne images, demonstrate that the proposed approach yields accurate segmentation and classification maps, and thus is attractive for remote sensing image analysis.

  15. Automated processing for proton spectroscopic imaging using water reference deconvolution.

    PubMed

    Maudsley, A A; Wu, Z; Meyerhoff, D J; Weiner, M W

    1994-06-01

    Automated formation of MR spectroscopic images (MRSI) is necessary before routine application of these methods is possible for in vivo studies; however, this task is complicated by the presence of spatially dependent instrumental distortions and the complex nature of the MR spectrum. A data processing method is presented for completely automated formation of in vivo proton spectroscopic images, and applied for analysis of human brain metabolites. This procedure uses the water reference deconvolution method (G. A. Morris, J. Magn. Reson. 80, 547(1988)) to correct for line shape distortions caused by instrumental and sample characteristics, followed by parametric spectral analysis. Results for automated image formation were found to compare favorably with operator dependent spectral integration methods. While the water reference deconvolution processing was found to provide good correction of spatially dependent resonance frequency shifts, it was found to be susceptible to errors for correction of line shape distortions. These occur due to differences between the water reference and the metabolite distributions.

  16. Mapping asphalt pavement aging and condition using multiple endmember spectral mixture analysis in Beijing, China

    NASA Astrophysics Data System (ADS)

    Pan, Yifan; Zhang, Xianfeng; Tian, Jie; Jin, Xu; Luo, Lun; Yang, Ke

    2017-01-01

    Asphalt road reflectance spectra change as pavement ages. This provides the possibility for remote sensing to be used to monitor a change in asphalt pavement conditions. However, the relatively narrow geometry of roads and the relatively coarse spatial resolution of remotely sensed imagery result in mixtures between pavement and adjacent landcovers (e.g., vegetation, buildings, and soil), increasing uncertainties in spectral analysis. To overcome this problem, multiple endmember spectral mixture analysis (MESMA) was used to map the asphalt pavement condition using Worldview-2 satellite imagery in this study. Based on extensive field investigation and in situ measurements, aged asphalt pavements were categorized into four stages-preliminarily aged, moderately aged, heavily aged, and distressed. The spectral characteristics in the first three stages were further analyzed, and a MESMA unmixing analysis was conducted to map these three kinds of pavement conditions from the Worldview-2 image. The results showed that the road pavement conditions could be detected well and mapped with an overall accuracy of 81.71% and Kappa coefficient of 0.77. Finally, a quantitative assessment of the pavement conditions for each road segment in this study area was conducted to inform road maintenance management.

  17. Spatial variability of oceanic phycoerythrin spectral types derived from airborne laser-induced fluorescence emissions

    NASA Astrophysics Data System (ADS)

    Hoge, Frank E.; Wright, C. Wayne; Kana, Todd M.; Swift, Robert N.; Yungel, James K.

    1998-07-01

    We report spatial variability of oceanic phycoerythrin spectral types detected by means of a blue spectral shift in airborne laser-induced fluorescence emission. The blue shift of the phycoerythrobilin fluorescence is known from laboratory studies to be induced by phycourobilin chromophore substitution at phycoerythrobilin chromophore sites in some strains of phycoerythrin-containing marine cyanobacteria. The airborne 532-nm laser-induced phycoerythrin fluorescence of the upper oceanic volume showed distinct segregation of cyanobacterial chromophore types in a flight transect from coastal water to the Sargasso Sea in the western North Atlantic. High phycourobilin levels were restricted to the oceanic (oligotrophic) end of the flight transect, in agreement with historical ship findings. These remotely observed phycoerythrin spectral fluorescence shifts have the potential to permit rapid, wide-area studies of the spatial variability of spectrally distinct cyanobacteria, especially across interfacial regions of coastal and oceanic water masses. Airborne laser-induced phytoplankton spectral fluorescence observations also further the development of satellite algorithms for passive detection of phytoplankton pigments. Optical modifications to the NASA Airborne Oceanographic Lidar are briefly described that permitted observation of the fluorescence spectral shifts.

  18. Forest cover type analysis of New England forests using innovative WorldView-2 imagery

    NASA Astrophysics Data System (ADS)

    Kovacs, Jenna M.

    For many years, remote sensing has been used to generate land cover type maps to create a visual representation of what is occurring on the ground. One significant use of remote sensing is the identification of forest cover types. New England forests are notorious for their especially complex forest structure and as a result have been, and continue to be, a challenge when classifying forest cover types. To most accurately depict forest cover types occurring on the ground, it is essential to utilize image data that have a suitable combination of both spectral and spatial resolution. The WorldView-2 (WV2) commercial satellite, launched in 2009, is the first of its kind, having both high spectral and spatial resolutions. WV2 records eight bands of multispectral imagery, four more than the usual high spatial resolution sensors, and has a pixel size of 1.85 meters at the nadir. These additional bands have the potential to improve classification detail and classification accuracy of forest cover type maps. For this reason, WV2 imagery was utilized on its own, and in combination with Landsat 5 TM (LS5) multispectral imagery, to evaluate whether these image data could more accurately classify forest cover types. In keeping with recent developments in image analysis, an Object-Based Image Analysis (OBIA) approach was used to segment images of Pawtuckaway State Park and nearby private lands, an area representative of the typical complex forest structure found in the New England region. A Classification and Regression Tree (CART) analysis was then used to classify image segments at two levels of classification detail. Accuracies for each forest cover type map produced were generated using traditional and area-based error matrices, and additional standard accuracy measures (i.e., KAPPA) were generated. The results from this study show that there is value in analyzing imagery with both high spectral and spatial resolutions, and that WV2's new and innovative bands can be useful for the classification of complex forest structures.

  19. Recent Experiments Conducted with the Wide-Field Imaging Interferometry Testbed (WIIT)

    NASA Technical Reports Server (NTRS)

    Leisawitz, David T.; Juanola-Parramon, Roser; Bolcar, Matthew; Iacchetta, Alexander S.; Maher, Stephen F.; Rinehart, Stephen A.

    2016-01-01

    The Wide-field Imaging Interferometry Testbed (WIIT) was developed at NASA's Goddard Space Flight Center to demonstrate and explore the practical limitations inherent in wide field-of-view double Fourier (spatio-spectral) interferometry. The testbed delivers high-quality interferometric data and is capable of observing spatially and spectrally complex hyperspectral test scenes. Although WIIT operates at visible wavelengths, by design the data are representative of those from a space-based far-infrared observatory. We used WIIT to observe a calibrated, independently characterized test scene of modest spatial and spectral complexity, and an astronomically realistic test scene of much greater spatial and spectral complexity. This paper describes the experimental setup, summarizes the performance of the testbed, and presents representative data.

  20. A “Skylight” Simulator for HWIL Simulation of Hyperspectral Remote Sensing

    PubMed Central

    Zhao, Huijie; Cui, Bolun; Li, Xudong; Zhang, Chao; Zhang, Xinyang

    2017-01-01

    Even though digital simulation technology has been widely used in the last two decades, hardware-in-the-loop (HWIL) simulation is still an indispensable method for spectral uncertainty research of ground targets. However, previous facilities mainly focus on the simulation of panchromatic imaging. Therefore, neither the spectral nor the spatial performance is enough for hyperspectral simulation. To improve the accuracy of illumination simulation, a new dome-like skylight simulator is designed and developed to fit the spatial distribution and spectral characteristics of a real skylight for the wavelength from 350 nm to 2500 nm. The simulator’s performance was tested using a spectroradiometer with different accessories. The spatial uniformity is greater than 0.91. The spectral mismatch decreases to 1/243 of the spectral mismatch of the Imagery Simulation Facility (ISF). The spatial distribution of radiance can be adjusted, and the accuracy of the adjustment is greater than 0.895. The ability of the skylight simulator is also demonstrated by comparing radiometric quantities measured in the skylight simulator with those in a real skylight in Beijing. PMID:29211004

  1. A "Skylight" Simulator for HWIL Simulation of Hyperspectral Remote Sensing.

    PubMed

    Zhao, Huijie; Cui, Bolun; Jia, Guorui; Li, Xudong; Zhang, Chao; Zhang, Xinyang

    2017-12-06

    Even though digital simulation technology has been widely used in the last two decades, hardware-in-the-loop (HWIL) simulation is still an indispensable method for spectral uncertainty research of ground targets. However, previous facilities mainly focus on the simulation of panchromatic imaging. Therefore, neither the spectral nor the spatial performance is enough for hyperspectral simulation. To improve the accuracy of illumination simulation, a new dome-like skylight simulator is designed and developed to fit the spatial distribution and spectral characteristics of a real skylight for the wavelength from 350 nm to 2500 nm. The simulator's performance was tested using a spectroradiometer with different accessories. The spatial uniformity is greater than 0.91. The spectral mismatch decreases to 1/243 of the spectral mismatch of the Imagery Simulation Facility (ISF). The spatial distribution of radiance can be adjusted, and the accuracy of the adjustment is greater than 0.895. The ability of the skylight simulator is also demonstrated by comparing radiometric quantities measured in the skylight simulator with those in a real skylight in Beijing.

  2. Miniature spectrometer and multispectral imager as a potential diagnostic aid in dermatology

    NASA Astrophysics Data System (ADS)

    Zeng, Haishan; MacAulay, Calum E.; McLean, David I.; Lui, Harvey; Palcic, Branko

    1995-04-01

    A miniature spectrometer system has been constructed for both reflectance and autofluorescence spectral measurements of skin. The system is based on PC plug-in spectrometer, therefore, it is miniature and easy to operate. The spectrometer has been used clinically to collect spectral data from various skin lesions including skin cancer. To date, 48 patients with a total of 71 diseased skin sites have been measured. Analysis of these preliminary data suggests that unique spectral characteristics exist for certain types of skin lesions, i.e. seborrheic keratosis, psoriasis, etc.. These spectral characteristics will help the differential diagnosis in Dermatology practice. In conjunction with the spectral point measurements, we are building and testing a multispectral imaging system to measure the spatial distribution of skin reflectance and autofluorescence. Preliminary results indicate that a cutaneous squamous cell carcinoma has a weak autofluorescence signal at the edge of the lesion, but a higher autofluorescence signal in the central area.

  3. Very high spatial resolution two-dimensional solar spectroscopy with video CCDs

    NASA Technical Reports Server (NTRS)

    Johanneson, A.; Bida, T.; Lites, B.; Scharmer, G. B.

    1992-01-01

    We have developed techniques for recording and reducing spectra of solar fine structure with complete coverage of two-dimensional areas at very high spatial resolution and with a minimum of seeing-induced distortions. These new techniques permit one, for the first time, to place the quantitative measures of atmospheric structure that are afforded only by detailed spectral measurements into their proper context. The techniques comprise the simultaneous acquisition of digital spectra and slit-jaw images at video rates as the solar scene sweeps rapidly by the spectrograph slit. During data processing the slit-jaw images are used to monitor rigid and differential image motion during the scan, allowing measured spectrum properties to be remapped spatially. The resulting quality of maps of measured properties from the spectra is close to that of the best filtergrams. We present the techniques and show maps from scans over pores and small sunspots obtained at a resolution approaching 1/3 arcsec in the spectral region of the magnetically sensitive Fe I lines at 630.15 and 630.25 nm. The maps shown are of continuum intensity and calibrated Doppler velocity. More extensive spectral inversion of these spectra to yield the strength of the magnetic field and other parameters is now underway, and the results of that analysis will be presented in a following paper.

  4. Pan-sharpening algorithm to remove thin cloud via mask dodging and nonsampled shift-invariant shearlet transform

    NASA Astrophysics Data System (ADS)

    Shi, Cheng; Liu, Fang; Li, Ling-Ling; Hao, Hong-Xia

    2014-01-01

    The goal of pan-sharpening is to get an image with higher spatial resolution and better spectral information. However, the resolution of the pan-sharpened image is seriously affected by the thin clouds. For a single image, filtering algorithms are widely used to remove clouds. These kinds of methods can remove clouds effectively, but the detail lost in the cloud removal image is also serious. To solve this problem, a pan-sharpening algorithm to remove thin cloud via mask dodging and nonsampled shift-invariant shearlet transform (NSST) is proposed. For the low-resolution multispectral (LR MS) and high-resolution panchromatic images with thin clouds, a mask dodging method is used to remove clouds. For the cloud removal LR MS image, an adaptive principal component analysis transform is proposed to balance the spectral information and spatial resolution in the pan-sharpened image. Since the clouds removal process causes the detail loss problem, a weight matrix is designed to enhance the details of the cloud regions in the pan-sharpening process, but noncloud regions remain unchanged. And the details of the image are obtained by NSST. Experimental results over visible and evaluation metrics demonstrate that the proposed method can keep better spectral information and spatial resolution, especially for the images with thin clouds.

  5. Portable, stand-off spectral imaging camera for detection of effluents and residues

    NASA Astrophysics Data System (ADS)

    Goldstein, Neil; St. Peter, Benjamin; Grot, Jonathan; Kogan, Michael; Fox, Marsha; Vujkovic-Cvijin, Pajo; Penny, Ryan; Cline, Jason

    2015-06-01

    A new, compact and portable spectral imaging camera, employing a MEMs-based encoded imaging approach, has been built and demonstrated for detection of hazardous contaminants including gaseous effluents and solid-liquid residues on surfaces. The camera is called the Thermal infrared Reconfigurable Analysis Camera for Effluents and Residues (TRACER). TRACER operates in the long wave infrared and has the potential to detect a wide variety of materials with characteristic spectral signatures in that region. The 30 lb. camera is tripod mounted and battery powered. A touch screen control panel provides a simple user interface for most operations. The MEMS spatial light modulator is a Texas Instruments Digital Microarray Array with custom electronics and firmware control. Simultaneous 1D-spatial and 1Dspectral dimensions are collected, with the second spatial dimension obtained by scanning the internal spectrometer slit. The sensor can be configured to collect data in several modes including full hyperspectral imagery using Hadamard multiplexing, panchromatic thermal imagery, and chemical-specific contrast imagery, switched with simple user commands. Matched filters and other analog filters can be generated internally on-the-fly and applied in hardware, substantially reducing detection time and improving SNR over HSI software processing, while reducing storage requirements. Results of preliminary instrument evaluation and measurements of flame exhaust are presented.

  6. Evaluating the utility of the medium-spatial resolution Landsat 8 multispectral sensor in quantifying aboveground biomass in uMgeni catchment, South Africa

    NASA Astrophysics Data System (ADS)

    Dube, Timothy; Mutanga, Onisimo

    2015-03-01

    Aboveground biomass estimation is critical in understanding forest contribution to regional carbon cycles. Despite the successful application of high spatial and spectral resolution sensors in aboveground biomass (AGB) estimation, there are challenges related to high acquisition costs, small area coverage, multicollinearity and limited availability. These challenges hamper the successful regional scale AGB quantification. The aim of this study was to assess the utility of the newly-launched medium-resolution multispectral Landsat 8 Operational Land Imager (OLI) dataset with a large swath width, in quantifying AGB in a forest plantation. We applied different sets of spectral analysis (test I: spectral bands; test II: spectral vegetation indices and test III: spectral bands + spectral vegetation indices) in testing the utility of Landsat 8 OLI using two non-parametric algorithms: stochastic gradient boosting and the random forest ensembles. The results of the study show that the medium-resolution multispectral Landsat 8 OLI dataset provides better AGB estimates for Eucalyptus dunii, Eucalyptus grandis and Pinus taeda especially when using the extracted spectral information together with the derived spectral vegetation indices. We also noted that incorporating the optimal subset of the most important selected medium-resolution multispectral Landsat 8 OLI bands improved AGB accuracies. We compared medium-resolution multispectral Landsat 8 OLI AGB estimates with Landsat 7 ETM + estimates and the latter yielded lower estimation accuracies. Overall, this study demonstrates the invaluable potential and strength of applying the relatively affordable and readily available newly-launched medium-resolution Landsat 8 OLI dataset, with a large swath width (185-km) in precisely estimating AGB. This strength of the Landsat OLI dataset is crucial especially in sub-Saharan Africa where high-resolution remote sensing data availability remains a challenge.

  7. Classification of visible and infrared hyperspectral images based on image segmentation and edge-preserving filtering

    NASA Astrophysics Data System (ADS)

    Cui, Binge; Ma, Xiudan; Xie, Xiaoyun; Ren, Guangbo; Ma, Yi

    2017-03-01

    The classification of hyperspectral images with a few labeled samples is a major challenge which is difficult to meet unless some spatial characteristics can be exploited. In this study, we proposed a novel spectral-spatial hyperspectral image classification method that exploited spatial autocorrelation of hyperspectral images. First, image segmentation is performed on the hyperspectral image to assign each pixel to a homogeneous region. Second, the visible and infrared bands of hyperspectral image are partitioned into multiple subsets of adjacent bands, and each subset is merged into one band. Recursive edge-preserving filtering is performed on each merged band which utilizes the spectral information of neighborhood pixels. Third, the resulting spectral and spatial feature band set is classified using the SVM classifier. Finally, bilateral filtering is performed to remove "salt-and-pepper" noise in the classification result. To preserve the spatial structure of hyperspectral image, edge-preserving filtering is applied independently before and after the classification process. Experimental results on different hyperspectral images prove that the proposed spectral-spatial classification approach is robust and offers more classification accuracy than state-of-the-art methods when the number of labeled samples is small.

  8. HINODE/EIS SPECTROSCOPIC VALIDATION OF VERY HOT PLASMA IMAGED WITH THE SOLAR DYNAMICS OBSERVATORY IN NON-FLARING ACTIVE REGION CORES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Testa, Paola; Reale, Fabio, E-mail: ptesta@cfa.harvard.edu

    2012-05-01

    We use coronal imaging observations with the Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA), and Hinode/Extreme-ultraviolet Imaging Spectrometer (EIS) spectral data to explore the potential of narrowband EUV imaging data for diagnosing the presence of hot (T {approx}> 5 MK) coronal plasma in active regions. We analyze observations of two active regions (AR 11281, AR 11289) with simultaneous AIA imaging and EIS spectral data, including the Ca XVII line (at 192.8 A), which is one of the few lines in the EIS spectral bands sensitive to hot coronal plasma even outside flares. After careful co-alignment of the imaging and spectral data,more » we compare the morphology in a three-color image combining the 171, 335, and 94 A AIA spectral bands, with the image obtained for Ca XVII emission from the analysis of EIS spectra. We find that in the selected active regions the Ca XVII emission is strong only in very limited areas, showing striking similarities with the features bright in the 94 A (and 335 A) AIA channels and weak in the 171 A band. We conclude that AIA imaging observations of the solar corona can be used to track hot plasma (6-8 MK), and so to study its spatial variability and temporal evolution at high spatial and temporal resolution.« less

  9. Group Independent Component Analysis (gICA) and Current Source Density (CSD) in the study of EEG in ADHD adults.

    PubMed

    Ponomarev, Valery A; Mueller, Andreas; Candrian, Gian; Grin-Yatsenko, Vera A; Kropotov, Juri D

    2014-01-01

    To investigate the performance of the spectral analysis of resting EEG, Current Source Density (CSD) and group independent components (gIC) in diagnosing ADHD adults. Power spectra of resting EEG, CSD and gIC (19 channels, linked ears reference, eyes open/closed) from 96 ADHD and 376 healthy adults were compared between eyes open and eyes closed conditions, and between groups of subjects. Pattern of differences in gIC and CSD spectral power between conditions was approximately similar, whereas it was more widely spatially distributed for EEG. Size effect (Cohen's d) of differences in gIC and CSD spectral power between groups of subjects was considerably greater than in the case of EEG. Significant reduction of gIC and CSD spectral power depending on conditions was found in ADHD patients. Reducing power in a wide frequency range in the fronto-central areas is a common phenomenon regardless of whether the eyes were open or closed. Spectral power of local EEG activity isolated by gICA or CSD in the fronto-central areas may be a suitable marker for discrimination of ADHD and healthy adults. Spectral analysis of gIC and CSD provides better sensitivity to discriminate ADHD and healthy adults. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  10. PlanetServer: Innovative approaches for the online analysis of hyperspectral satellite data from Mars

    NASA Astrophysics Data System (ADS)

    Oosthoek, J. H. P.; Flahaut, J.; Rossi, A. P.; Baumann, P.; Misev, D.; Campalani, P.; Unnithan, V.

    2014-06-01

    PlanetServer is a WebGIS system, currently under development, enabling the online analysis of Compact Reconnaissance Imaging Spectrometer (CRISM) hyperspectral data from Mars. It is part of the EarthServer project which builds infrastructure for online access and analysis of huge Earth Science datasets. Core functionality consists of the rasdaman Array Database Management System (DBMS) for storage, and the Open Geospatial Consortium (OGC) Web Coverage Processing Service (WCPS) for data querying. Various WCPS queries have been designed to access spatial and spectral subsets of the CRISM data. The client WebGIS, consisting mainly of the OpenLayers javascript library, uses these queries to enable online spatial and spectral analysis. Currently the PlanetServer demonstration consists of two CRISM Full Resolution Target (FRT) observations, surrounding the NASA Curiosity rover landing site. A detailed analysis of one of these observations is performed in the Case Study section. The current PlanetServer functionality is described step by step, and is tested by focusing on detecting mineralogical evidence described in earlier Gale crater studies. Both the PlanetServer methodology and its possible use for mineralogical studies will be further discussed. Future work includes batch ingestion of CRISM data and further development of the WebGIS and analysis tools.

  11. 3D Spatial and Spectral Fusion of Terrestrial Hyperspectral Imagery and Lidar for Hyperspectral Image Shadow Restoration Applied to a Geologic Outcrop

    NASA Astrophysics Data System (ADS)

    Hartzell, P. J.; Glennie, C. L.; Hauser, D. L.; Okyay, U.; Khan, S.; Finnegan, D. C.

    2016-12-01

    Recent advances in remote sensing technology have expanded the acquisition and fusion of active lidar and passive hyperspectral imagery (HSI) from an exclusively airborne technique to terrestrial modalities. This enables high resolution 3D spatial and spectral quantification of vertical geologic structures for applications such as virtual 3D rock outcrop models for hydrocarbon reservoir analog analysis and mineral quantification in open pit mining environments. In contrast to airborne observation geometry, the vertical surfaces observed by horizontal-viewing terrestrial HSI sensors are prone to extensive topography-induced solar shadowing, which leads to reduced pixel classification accuracy or outright removal of shadowed pixels from analysis tasks. Using a precisely calibrated and registered offset cylindrical linear array camera model, we demonstrate the use of 3D lidar data for sub-pixel HSI shadow detection and the restoration of the shadowed pixel spectra via empirical methods that utilize illuminated and shadowed pixels of similar material composition. We further introduce a new HSI shadow restoration technique that leverages collocated backscattered lidar intensity, which is resistant to solar conditions, obtained by projecting the 3D lidar points through the HSI camera model into HSI pixel space. Using ratios derived from the overlapping lidar laser and HSI wavelengths, restored shadow pixel spectra are approximated using a simple scale factor. Simulations of multiple lidar wavelengths, i.e., multi-spectral lidar, indicate the potential for robust HSI spectral restoration that is independent of the complexity and costs associated with rigorous radiometric transfer models, which have yet to be developed for horizontal-viewing terrestrial HSI sensors. The spectral restoration performance is quantified through HSI pixel classification consistency between full sun and partial sun exposures of a single geologic outcrop.

  12. Let your fingers do the walking: A simple spectral signature model for "remote" fossil prospecting.

    PubMed

    Conroy, Glenn C; Emerson, Charles W; Anemone, Robert L; Townsend, K E Beth

    2012-07-01

    Even with the most meticulous planning, and utilizing the most experienced fossil-hunters, fossil prospecting in remote and/or extensive areas can be time-consuming, expensive, logistically challenging, and often hit or miss. While nothing can predict or guarantee with 100% assurance that fossils will be found in any particular location, any procedures or techniques that might increase the odds of success would be a major benefit to the field. Here we describe, and test, one such technique that we feel has great potential for increasing the probability of finding fossiliferous sediments - a relatively simple spectral signature model using the spatial analysis and image classification functions of ArcGIS(®)10 that creates interactive thematic land cover maps that can be used for "remote" fossil prospecting. Our test case is the extensive Eocene sediments of the Uinta Basin, Utah - a fossil prospecting area encompassing ∼1200 square kilometers. Using Landsat 7 ETM+ satellite imagery, we "trained" the spatial analysis and image classification algorithms using the spectral signatures of known fossil localities discovered in the Uinta Basin prior to 2005 and then created interactive probability models highlighting other regions in the Basin having a high probability of containing fossiliferous sediments based on their spectral signatures. A fortuitous "post-hoc" validation of our model presented itself. Our model identified several paleontological "hotspots", regions that, while not producing any fossil localities prior to 2005, had high probabilities of being fossiliferous based on the similarities of their spectral signatures to those of previously known fossil localities. Subsequent fieldwork found fossils in all the regions predicted by the model. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Image quality measures to assess hyperspectral compression techniques

    NASA Astrophysics Data System (ADS)

    Lurie, Joan B.; Evans, Bruce W.; Ringer, Brian; Yeates, Mathew

    1994-12-01

    The term 'multispectral' is used to describe imagery with anywhere from three to about 20 bands of data. The images acquired by Landsat and similar earth sensing satellites including the French Spot platform are typical examples of multispectral data sets. Applications range from crop observation and yield estimation, to forestry, to sensing of the environment. The wave bands typically range from the visible to thermal infrared and are fractions of a micron wide. They may or may not be contiguous. Thus each pixel will have several spectral intensities associated with it but detailed spectra are not obtained. The term 'hyperspectral' is typically used for spectral data encompassing hundreds of samples of a spectrum. Hyperspectral, electro-optical sensors typically operate in the visible and near infrared bands. Their characteristic property is the ability to resolve a large number (typically hundreds) of contiguous spectral bands, thus producing a detailed profile of the electromagnetic spectrum. Like multispectral sensors, recently developed hyperspectral sensors are often also imaging sensors, measuring spectral over a two dimensional spatial array of picture elements of pixels. The resulting data is thus inherently three dimensional - an array of samples in which two dimensions correspond to spatial position and the third to wavelength. The data sets, commonly referred to as image cubes or datacubes (although technically they are often rectangular solids), are very rich in information but quickly become unwieldy in size, generating formidable torrents of data. Both spaceborne and airborne hyperspectral cameras exist and are in use today. The data is unique in its ability to provide high spatial and spectral resolution simultaneously, and shows great promise in both military and civilian applications. A data analysis system has been built at TRW under a series of Internal Research and Development projects. This development has been prompted by the business opportunities, by the series of instruments built here and by the availability of data from other instruments. The products of the processing system has been used to process data produced by TRW sensors and other instruments. Figure 1 provides an overview of the TRW hyperspectral collection, data handling and exploitation capability. The Analysis and Exploitation functions deal with the digitized image cubes. The analysis system was designed to handle various types of data but the emphasis was on the data acquired by the TRW instruments.

  14. EPR oximetry in three spatial dimensions using sparse spin distribution

    NASA Astrophysics Data System (ADS)

    Som, Subhojit; Potter, Lee C.; Ahmad, Rizwan; Vikram, Deepti S.; Kuppusamy, Periannan

    2008-08-01

    A method is presented to use continuous wave electron paramagnetic resonance imaging for rapid measurement of oxygen partial pressure in three spatial dimensions. A particulate paramagnetic probe is employed to create a sparse distribution of spins in a volume of interest. Information encoding location and spectral linewidth is collected by varying the spatial orientation and strength of an applied magnetic gradient field. Data processing exploits the spatial sparseness of spins to detect voxels with nonzero spin and to estimate the spectral linewidth for those voxels. The parsimonious representation of spin locations and linewidths permits an order of magnitude reduction in data acquisition time, compared to four-dimensional tomographic reconstruction using traditional spectral-spatial imaging. The proposed oximetry method is experimentally demonstrated for a lithium octa- n-butoxy naphthalocyanine (LiNc-BuO) probe using an L-band EPR spectrometer.

  15. Superpixel-Augmented Endmember Detection for Hyperspectral Images

    NASA Technical Reports Server (NTRS)

    Thompson, David R.; Castano, Rebecca; Gilmore, Martha

    2011-01-01

    Superpixels are homogeneous image regions comprised of several contiguous pixels. They are produced by shattering the image into contiguous, homogeneous regions that each cover between 20 and 100 image pixels. The segmentation aims for a many-to-one mapping from superpixels to image features; each image feature could contain several superpixels, but each superpixel occupies no more than one image feature. This conservative segmentation is relatively easy to automate in a robust fashion. Superpixel processing is related to the more general idea of improving hyperspectral analysis through spatial constraints, which can recognize subtle features at or below the level of noise by exploiting the fact that their spectral signatures are found in neighboring pixels. Recent work has explored spatial constraints for endmember extraction, showing significant advantages over techniques that ignore pixels relative positions. Methods such as AMEE (automated morphological endmember extraction) express spatial influence using fixed isometric relationships a local square window or Euclidean distance in pixel coordinates. In other words, two pixels covariances are based on their spatial proximity, but are independent of their absolute location in the scene. These isometric spatial constraints are most appropriate when spectral variation is smooth and constant over the image. Superpixels are simple to implement, efficient to compute, and are empirically effective. They can be used as a preprocessing step with any desired endmember extraction technique. Superpixels also have a solid theoretical basis in the hyperspectral linear mixing model, making them a principled approach for improving endmember extraction. Unlike existing approaches, superpixels can accommodate non-isometric covariance between image pixels (characteristic of discrete image features separated by step discontinuities). These kinds of image features are common in natural scenes. Analysts can substitute superpixels for image pixels during endmember analysis that leverages the spatial contiguity of scene features to enhance subtle spectral features. Superpixels define populations of image pixels that are independent samples from each image feature, permitting robust estimation of spectral properties, and reducing measurement noise in proportion to the area of the superpixel. This permits improved endmember extraction, and enables automated search for novel and constituent minerals in very noisy, hyperspatial images. This innovation begins with a graph-based segmentation based on the work of Felzenszwalb et al., but then expands their approach to the hyperspectral image domain with a Euclidean distance metric. Then, the mean spectrum of each segment is computed, and the resulting data cloud is used as input into sequential maximum angle convex cone (SMACC) endmember extraction.

  16. Urban Image Classification: Per-Pixel Classifiers, Sub-Pixel Analysis, Object-Based Image Analysis, and Geospatial Methods. 10; Chapter

    NASA Technical Reports Server (NTRS)

    Myint, Soe W.; Mesev, Victor; Quattrochi, Dale; Wentz, Elizabeth A.

    2013-01-01

    Remote sensing methods used to generate base maps to analyze the urban environment rely predominantly on digital sensor data from space-borne platforms. This is due in part from new sources of high spatial resolution data covering the globe, a variety of multispectral and multitemporal sources, sophisticated statistical and geospatial methods, and compatibility with GIS data sources and methods. The goal of this chapter is to review the four groups of classification methods for digital sensor data from space-borne platforms; per-pixel, sub-pixel, object-based (spatial-based), and geospatial methods. Per-pixel methods are widely used methods that classify pixels into distinct categories based solely on the spectral and ancillary information within that pixel. They are used for simple calculations of environmental indices (e.g., NDVI) to sophisticated expert systems to assign urban land covers. Researchers recognize however, that even with the smallest pixel size the spectral information within a pixel is really a combination of multiple urban surfaces. Sub-pixel classification methods therefore aim to statistically quantify the mixture of surfaces to improve overall classification accuracy. While within pixel variations exist, there is also significant evidence that groups of nearby pixels have similar spectral information and therefore belong to the same classification category. Object-oriented methods have emerged that group pixels prior to classification based on spectral similarity and spatial proximity. Classification accuracy using object-based methods show significant success and promise for numerous urban 3 applications. Like the object-oriented methods that recognize the importance of spatial proximity, geospatial methods for urban mapping also utilize neighboring pixels in the classification process. The primary difference though is that geostatistical methods (e.g., spatial autocorrelation methods) are utilized during both the pre- and post-classification steps. Within this chapter, each of the four approaches is described in terms of scale and accuracy classifying urban land use and urban land cover; and for its range of urban applications. We demonstrate the overview of four main classification groups in Figure 1 while Table 1 details the approaches with respect to classification requirements and procedures (e.g., reflectance conversion, steps before training sample selection, training samples, spatial approaches commonly used, classifiers, primary inputs for classification, output structures, number of output layers, and accuracy assessment). The chapter concludes with a brief summary of the methods reviewed and the challenges that remain in developing new classification methods for improving the efficiency and accuracy of mapping urban areas.

  17. Detection of the power lines in UAV remote sensed images using spectral-spatial methods.

    PubMed

    Bhola, Rishav; Krishna, Nandigam Hari; Ramesh, K N; Senthilnath, J; Anand, Gautham

    2018-01-15

    In this paper, detection of the power lines on images acquired by Unmanned Aerial Vehicle (UAV) based remote sensing is carried out using spectral-spatial methods. Spectral clustering was performed using Kmeans and Expectation Maximization (EM) algorithm to classify the pixels into the power lines and non-power lines. The spectral clustering methods used in this study are parametric in nature, to automate the number of clusters Davies-Bouldin index (DBI) is used. The UAV remote sensed image is clustered into the number of clusters determined by DBI. The k clustered image is merged into 2 clusters (power lines and non-power lines). Further, spatial segmentation was performed using morphological and geometric operations, to eliminate the non-power line regions. In this study, UAV images acquired at different altitudes and angles were analyzed to validate the robustness of the proposed method. It was observed that the EM with spatial segmentation (EM-Seg) performed better than the Kmeans with spatial segmentation (Kmeans-Seg) on most of the UAV images. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Comparison of three different methods to merge multiresolution and multispectral data: Landsat TM and SPOT panchromatic

    USGS Publications Warehouse

    Chavez, P.S.; Sides, S.C.; Anderson, J.A.

    1991-01-01

    The merging of multisensor image data is becoming a widely used procedure because of the complementary nature of various data sets. Ideally, the method used to merge data sets with high-spatial and high-spectral resolution should not distort the spectral characteristics of the high-spectral resolution data. This paper compares the results of three different methods used to merge the information contents of the Landsat Thematic Mapper (TM) and Satellite Pour l'Observation de la Terre (SPOT) panchromatic data. The comparison is based on spectral characteristics and is made using statistical, visual, and graphical analyses of the results. The three methods used to merge the information contents of the Landsat TM and SPOT panchromatic data were the Hue-Intensity-Saturation (HIS), Principal Component Analysis (PCA), and High-Pass Filter (HPF) procedures. The HIS method distorted the spectral characteristics of the data the most. The HPF method distorted the spectral characteristics the least; the distortions were minimal and difficult to detect. -Authors

  19. The spatial sensitivity of the spectral diversity-biodiversity relationship: an experimental test in a prairie grassland.

    PubMed

    Wang, Ran; Gamon, John A; Cavender-Bares, Jeannine; Townsend, Philip A; Zygielbaum, Arthur I

    2018-03-01

    Remote sensing has been used to detect plant biodiversity in a range of ecosystems based on the varying spectral properties of different species or functional groups. However, the most appropriate spatial resolution necessary to detect diversity remains unclear. At coarse resolution, differences among spectral patterns may be too weak to detect. In contrast, at fine resolution, redundant information may be introduced. To explore the effect of spatial resolution, we studied the scale dependence of spectral diversity in a prairie ecosystem experiment at Cedar Creek Ecosystem Science Reserve, Minnesota, USA. Our study involved a scaling exercise comparing synthetic pixels resampled from high-resolution images within manipulated diversity treatments. Hyperspectral data were collected using several instruments on both ground and airborne platforms. We used the coefficient of variation (CV) of spectral reflectance in space as the indicator of spectral diversity and then compared CV at different scales ranging from 1 mm 2 to 1 m 2 to conventional biodiversity metrics, including species richness, Shannon's index, Simpson's index, phylogenetic species variation, and phylogenetic species evenness. In this study, higher species richness plots generally had higher CV. CV showed higher correlations with Shannon's index and Simpson's index than did species richness alone, indicating evenness contributed to the spectral diversity. Correlations with species richness and Simpson's index were generally higher than with phylogenetic species variation and evenness measured at comparable spatial scales, indicating weaker relationships between spectral diversity and phylogenetic diversity metrics than with species diversity metrics. High resolution imaging spectrometer data (1 mm 2 pixels) showed the highest sensitivity to diversity level. With decreasing spatial resolution, the difference in CV between diversity levels decreased and greatly reduced the optical detectability of biodiversity. The optimal pixel size for distinguishing α diversity in these prairie plots appeared to be around 1 mm to 10 cm, a spatial scale similar to the size of an individual herbaceous plant. These results indicate a strong scale-dependence of the spectral diversity-biodiversity relationships, with spectral diversity best able to detect a combination of species richness and evenness, and more weakly detecting phylogenetic diversity. These findings can be used to guide airborne studies of biodiversity and develop more effective large-scale biodiversity sampling methods. ©2018 The Authors Ecological Applications published by Wiley Periodicals, Inc. on behalf of Ecological Society of America.

  20. Determination of tailored filter sets to create rayfiles including spatial and angular resolved spectral information.

    PubMed

    Rotscholl, Ingo; Trampert, Klaus; Krüger, Udo; Perner, Martin; Schmidt, Franz; Neumann, Cornelius

    2015-11-16

    To simulate and optimize optical designs regarding perceived color and homogeneity in commercial ray tracing software, realistic light source models are needed. Spectral rayfiles provide angular and spatial varying spectral information. We propose a spectral reconstruction method with a minimum of time consuming goniophotometric near field measurements with optical filters for the purpose of creating spectral rayfiles. Our discussion focuses on the selection of the ideal optical filter combination for any arbitrary spectrum out of a given filter set by considering measurement uncertainties with Monte Carlo simulations. We minimize the simulation time by a preselection of all filter combinations, which bases on factorial design.

  1. Evaluation of illumination system uniformity for wide-field biomedical hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Sawyer, Travis W.; Siri Luthman, A.; E Bohndiek, Sarah

    2017-04-01

    Hyperspectral imaging (HSI) systems collect both spatial (morphological) and spectral (chemical) information from a sample. HSI can provide sensitive analysis for biological and medical applications, for example, simultaneously measuring reflectance and fluorescence properties of a tissue, which together with structural information could improve early cancer detection and tumour characterisation. Illumination uniformity is a critical pre-condition for quantitative data extraction from an HSI system. Non-uniformity can cause glare, specular reflection and unwanted shading, which negatively impact statistical analysis procedures used to extract abundance of different chemical species. Here, we model and evaluate several illumination systems frequently used in wide-field biomedical imaging to test their potential for HSI. We use the software LightTools and FRED. The analysed systems include: a fibre ring light; a light emitting diode (LED) ring; and a diffuse scattering dome. Each system is characterised for spectral, spatial, and angular uniformity, as well as transfer efficiency. Furthermore, an approach to measure uniformity using the Kullback-Leibler divergence (KLD) is introduced. The KLD is generalisable to arbitrary illumination shapes, making it an attractive approach for characterising illumination distributions. Although the systems are quite comparable in their spatial and spectral uniformity, the most uniform angular distribution is achieved using a diffuse scattering dome, yielding a contrast of 0.503 and average deviation of 0.303 over a ±60° field of view with a 3.9% model error in the angular domain. Our results suggest that conventional illumination sources can be applied in HSI, but in the case of low light levels, bespoke illumination sources may offer improved performance.

  2. The Spectral Image Processing System (SIPS) - Interactive visualization and analysis of imaging spectrometer data

    NASA Technical Reports Server (NTRS)

    Kruse, F. A.; Lefkoff, A. B.; Boardman, J. W.; Heidebrecht, K. B.; Shapiro, A. T.; Barloon, P. J.; Goetz, A. F. H.

    1993-01-01

    The Center for the Study of Earth from Space (CSES) at the University of Colorado, Boulder, has developed a prototype interactive software system called the Spectral Image Processing System (SIPS) using IDL (the Interactive Data Language) on UNIX-based workstations. SIPS is designed to take advantage of the combination of high spectral resolution and spatial data presentation unique to imaging spectrometers. It streamlines analysis of these data by allowing scientists to rapidly interact with entire datasets. SIPS provides visualization tools for rapid exploratory analysis and numerical tools for quantitative modeling. The user interface is X-Windows-based, user friendly, and provides 'point and click' operation. SIPS is being used for multidisciplinary research concentrating on use of physically based analysis methods to enhance scientific results from imaging spectrometer data. The objective of this continuing effort is to develop operational techniques for quantitative analysis of imaging spectrometer data and to make them available to the scientific community prior to the launch of imaging spectrometer satellite systems such as the Earth Observing System (EOS) High Resolution Imaging Spectrometer (HIRIS).

  3. Laser-induced fluorescence imaging of subsurface tissue structures with a volume holographic spatial-spectral imaging system.

    PubMed

    Luo, Yuan; Gelsinger-Austin, Paul J; Watson, Jonathan M; Barbastathis, George; Barton, Jennifer K; Kostuk, Raymond K

    2008-09-15

    A three-dimensional imaging system incorporating multiplexed holographic gratings to visualize fluorescence tissue structures is presented. Holographic gratings formed in volume recording materials such as a phenanthrenquinone poly(methyl methacrylate) photopolymer have narrowband angular and spectral transmittance filtering properties that enable obtaining spatial-spectral information within an object. We demonstrate this imaging system's ability to obtain multiple depth-resolved fluorescence images simultaneously.

  4. Multipurpose spectral imager.

    PubMed

    Sigernes, F; Lorentzen, D A; Heia, K; Svenøe, T

    2000-06-20

    A small spectral imaging system is presented that images static or moving objects simultaneously as a function of wavelength. The main physical principle is outlined and demonstrated. The instrument is capable of resolving both spectral and spatial information from targets throughout the entire visible region. The spectral domain has a bandpass of 12 A. One can achieve the spatial domain by rotating the system's front mirror with a high-resolution stepper motor. The spatial resolution range from millimeters to several meters depends mainly on the front optics used and whether the target is fixed (static) or movable relative to the instrument. Different applications and examples are explored, including outdoor landscapes, industrial fish-related targets, and ground-level objects observed in the more traditional way from an airborne carrier (remote sensing). Through the examples, we found that the instrument correctly classifies whether a shrimp is peeled and whether it can disclose the spectral and spatial microcharacteristics of targets such as a fish nematode (parasite). In the macroregime, we were able to distinguish a marine vessel from the surrounding sea and sky. A study of the directional spectral albedo from clouds, mountains, snow cover, and vegetation has also been included. With the airborne experiment, the imager successfully classified snow cover, leads, and new and rafted ice, as seen from 10.000 ft (3.048 m).

  5. A comparison of spectral mixture analysis an NDVI for ascertaining ecological variables

    NASA Technical Reports Server (NTRS)

    Wessman, Carol A.; Bateson, C. Ann; Curtiss, Brian; Benning, Tracy L.

    1993-01-01

    In this study, we compare the performance of spectral mixture analysis to the Normalized Difference Vegetation Index (NDVI) in detecting change in a grassland across topographically-induced nutrient gradients and different management schemes. The Konza Prairie Research Natural Area, Kansas, is a relatively homogeneous tallgrass prairie in which change in vegetation productivity occurs with respect to topographic positions in each watershed. The area is the site of long-term studies of the influence of fire and grazing on tallgrass production and was the site of the First ISLSCP (International Satellite Land Surface Climatology Project) Field Experiment (FIFE) from 1987 to 1989. Vegetation indices such as NDVI are commonly used with imagery collected in few (less than 10) spectral bands. However, the use of only two bands (e.g. NDVI) does not adequately account for the complex of signals making up most surface reflectance. Influences from background spectral variation and spatial heterogeneity may confound the direct relationship with biological or biophysical variables. High dimensional multispectral data allows for the application position of techniques such as derivative analysis and spectral curve fitting, thereby increasing the probability of successfully modeling the reflectance from mixed surfaces. The higher number of bands permits unmixing of a greater number of surface components, separating the vegetation signal for further analyses relevant to biological variables.

  6. Hyperspectral Fluorescence and Reflectance Imaging Instrument

    NASA Technical Reports Server (NTRS)

    Ryan, Robert E.; O'Neal, S. Duane; Lanoue, Mark; Russell, Jeffrey

    2008-01-01

    The system is a single hyperspectral imaging instrument that has the unique capability to acquire both fluorescence and reflectance high-spatial-resolution data that is inherently spatially and spectrally registered. Potential uses of this instrument include plant stress monitoring, counterfeit document detection, biomedical imaging, forensic imaging, and general materials identification. Until now, reflectance and fluorescence spectral imaging have been performed by separate instruments. Neither a reflectance spectral image nor a fluorescence spectral image alone yields as much information about a target surface as does a combination of the two modalities. Before this system was developed, to benefit from this combination, analysts needed to perform time-consuming post-processing efforts to co-register the reflective and fluorescence information. With this instrument, the inherent spatial and spectral registration of the reflectance and fluorescence images minimizes the need for this post-processing step. The main challenge for this technology is to detect the fluorescence signal in the presence of a much stronger reflectance signal. To meet this challenge, the instrument modulates artificial light sources from ultraviolet through the visible to the near-infrared part of the spectrum; in this way, both the reflective and fluorescence signals can be measured through differencing processes to optimize fluorescence and reflectance spectra as needed. The main functional components of the instrument are a hyperspectral imager, an illumination system, and an image-plane scanner. The hyperspectral imager is a one-dimensional (line) imaging spectrometer that includes a spectrally dispersive element and a two-dimensional focal plane detector array. The spectral range of the current imaging spectrometer is between 400 to 1,000 nm, and the wavelength resolution is approximately 3 nm. The illumination system consists of narrowband blue, ultraviolet, and other discrete wavelength light-emitting-diode (LED) sources and white-light LED sources designed to produce consistently spatially stable light. White LEDs provide illumination for the measurement of reflectance spectra, while narrowband blue and UV LEDs are used to excite fluorescence. Each spectral type of LED can be turned on or off depending on the specific remote-sensing process being performed. Uniformity of illumination is achieved by using an array of LEDs and/or an integrating sphere or other diffusing surface. The image plane scanner uses a fore optic with a field of view large enough to provide an entire scan line on the image plane. It builds up a two-dimensional image in pushbroom fashion as the target is scanned across the image plane either by moving the object or moving the fore optic. For fluorescence detection, spectral filtering of a narrowband light illumination source is sometimes necessary to minimize the interference of the source spectrum wings with the fluorescence signal. Spectral filtering is achieved with optical interference filters and absorption glasses. This dual spectral imaging capability will enable the optimization of reflective, fluorescence, and fused datasets as well as a cost-effective design for multispectral imaging solutions. This system has been used in plant stress detection studies and in currency analysis.

  7. A Spatial Heterodyne Spectrometer for Laboratory Astrophysics; First Interferogram

    NASA Technical Reports Server (NTRS)

    Lawler, J. E.; Labby, Z. E.; Roesler, F. L.; Harlander, J.

    2006-01-01

    A Spatial Heterodyne Spectrometer with broad spectral coverage across the VUV - UV region and with a high (> 500,000 ) spectral resolving power is being built for laboratory measurements of spectroscopic data including emission branching fractions, improved level energies, and hyperfine/isotopic parameters.

  8. Multiseasonal variables in digital image enhancements for geological applications

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Vitorello, I.; Almeidafilho, R.

    1984-01-01

    Examples of enhanced multiseasonal orbital imagery illustrate the influence of multiseasonal changes in their spatial and spectral attributes, and consequently in their application to structural geology and lithological discrimination. Shadow effects associated with appropriate solar elevation and azimuth effects enhance the spatial attributes but not the spectral. In this case, variations in illumination conditions should be minimized by selecting images with high solar elevation and by the use of techniques that minimize illumination conditions. Multiseasonal imagery should be used in the identification of spectral contrast changes of rock-soil-vegetation associations which can provide evidences of related lithological units and structural features. The extraction of maximum geological information requires, at least, a fall/winter and a spring/summer scene from which spatial, spectral and multiseasonal attributes can be adequately explored.

  9. Enhancing Spatial Resolution of Remotely Sensed Imagery Using Deep Learning

    NASA Astrophysics Data System (ADS)

    Beck, J. M.; Bridges, S.; Collins, C.; Rushing, J.; Graves, S. J.

    2017-12-01

    Researchers at the Information Technology and Systems Center at the University of Alabama in Huntsville are using Deep Learning with Convolutional Neural Networks (CNNs) to develop a method for enhancing the spatial resolutions of moderate resolution (10-60m) multispectral satellite imagery. This enhancement will effectively match the resolutions of imagery from multiple sensors to provide increased global temporal-spatial coverage for a variety of Earth science products. Our research is centered on using Deep Learning for automatically generating transformations for increasing the spatial resolution of remotely sensed images with different spatial, spectral, and temporal resolutions. One of the most important steps in using images from multiple sensors is to transform the different image layers into the same spatial resolution, preferably the highest spatial resolution, without compromising the spectral information. Recent advances in Deep Learning have shown that CNNs can be used to effectively and efficiently upscale or enhance the spatial resolution of multispectral images with the use of an auxiliary data source such as a high spatial resolution panchromatic image. In contrast, we are using both the spatial and spectral details inherent in low spatial resolution multispectral images for image enhancement without the use of a panchromatic image. This presentation will discuss how this technology will benefit many Earth Science applications that use remotely sensed images with moderate spatial resolutions.

  10. Terrain Categorization using LIDAR and Multi-Spectral Data

    DTIC Science & Technology

    2007-01-01

    the same spatial resolution cell will be distinguished. 3. PROCESSING The LIDAR data set used in this study was from a discrete-return...smoothing in the spatial dimension. While it was possible to distinguish different classes of materials using this technique, the spatial resolution was...alone and a combination of the two data-types. Results are compared to significant ground truth information. Keywords: LIDAR, multi- spectral

  11. Effects of decreasing resolution on spectral and spatial information content in an agricultural area. [Pottawatmie study site, Iowa and Nebraska

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The effects of decreasing spatial resolution from 6 1/4 miles square to 50 miles square are described. The effects of increases in cell size is studied on; the mean and variance of spectral data; spatial trends; and vegetative index numbers. Information content changes on cadastral, vegetal, soil, water and physiographic information are summarized.

  12. A New Pansharpening Method Based on Spatial and Spectral Sparsity Priors.

    PubMed

    He, Xiyan; Condat, Laurent; Bioucas-Diaz, Jose; Chanussot, Jocelyn; Xia, Junshi

    2014-06-27

    The development of multisensor systems in recent years has led to great increase in the amount of available remote sensing data. Image fusion techniques aim at inferring high quality images of a given area from degraded versions of the same area obtained by multiple sensors. This paper focuses on pansharpening, which is the inference of a high spatial resolution multispectral image from two degraded versions with complementary spectral and spatial resolution characteristics: a) a low spatial resolution multispectral image; and b) a high spatial resolution panchromatic image. We introduce a new variational model based on spatial and spectral sparsity priors for the fusion. In the spectral domain we encourage low-rank structure, whereas in the spatial domain we promote sparsity on the local differences. Given the fact that both panchromatic and multispectral images are integrations of the underlying continuous spectra using different channel responses, we propose to exploit appropriate regularizations based on both spatial and spectral links between panchromatic and the fused multispectral images. A weighted version of the vector Total Variation (TV) norm of the data matrix is employed to align the spatial information of the fused image with that of the panchromatic image. With regard to spectral information, two different types of regularization are proposed to promote a soft constraint on the linear dependence between the panchromatic and the fused multispectral images. The first one estimates directly the linear coefficients from the observed panchromatic and low resolution multispectral images by Linear Regression (LR) while the second one employs the Principal Component Pursuit (PCP) to obtain a robust recovery of the underlying low-rank structure. We also show that the two regularizers are strongly related. The basic idea of both regularizers is that the fused image should have low-rank and preserve edge locations. We use a variation of the recently proposed Split Augmented Lagrangian Shrinkage (SALSA) algorithm to effectively solve the proposed variational formulations. Experimental results on simulated and real remote sensing images show the effectiveness of the proposed pansharpening method compared to the state-of-the-art.

  13. LANDSAT data for coastal zone management. [New Jersey

    NASA Technical Reports Server (NTRS)

    Mckenzie, S.

    1981-01-01

    The lack of adequate, current data on land and water surface conditions in New Jersey led to the search for better data collections and analysis techniques. Four-channel MSS data of Cape May County and access to the OSER computer interpretation system were provided by NASA. The spectral resolution of the data was tested and a surface cover map was produced by going through the steps of supervised classification. Topics covered include classification; change detection and improvement of spectral and spatial resolution; merging LANDSAT and map data; and potential applications for New Jersey.

  14. FESTR: Finite-Element Spectral Transfer of Radiation spectroscopic modeling and analysis code

    DOE PAGES

    Hakel, Peter

    2016-10-01

    Here we report on the development of a new spectral postprocessor of hydrodynamic simulations of hot, dense plasmas. Based on given time histories of one-, two-, and three-dimensional spatial distributions of materials, and their local temperature and density conditions, spectroscopically-resolved signals are computed. The effects of radiation emission and absorption by the plasma on the emergent spectra are simultaneously taken into account. This program can also be used independently of hydrodynamic calculations to analyze available experimental data with the goal of inferring plasma conditions.

  15. FESTR: Finite-Element Spectral Transfer of Radiation spectroscopic modeling and analysis code

    NASA Astrophysics Data System (ADS)

    Hakel, Peter

    2016-10-01

    We report on the development of a new spectral postprocessor of hydrodynamic simulations of hot, dense plasmas. Based on given time histories of one-, two-, and three-dimensional spatial distributions of materials, and their local temperature and density conditions, spectroscopically-resolved signals are computed. The effects of radiation emission and absorption by the plasma on the emergent spectra are simultaneously taken into account. This program can also be used independently of hydrodynamic calculations to analyze available experimental data with the goal of inferring plasma conditions.

  16. Complementarity of UV and IR differential absorption lidar for global measurements of atmospheric species

    NASA Technical Reports Server (NTRS)

    Megie, G.; Menzies, R. T.

    1980-01-01

    An analysis of the potential capabilities of a spectrally diversified DIAL technique for monitoring atmospheric species is presented assuming operation from an earth-orbiting platform. Emphasis is given to the measurement accuracies and spatial and temporal resolutions required to meet present atmospheric science objectives. The discussion points out advantages of spectral diversity to perform comprehensive studies of the atmosphere; in general it is shown that IR systems have an advantage in lower atmospheric measurements, while UV systems are superior for middle and upper atmospheric measurements.

  17. LANDSAT-D investigations in snow hydrology

    NASA Technical Reports Server (NTRS)

    Dozier, J. (Principal Investigator); Davis, R. E.; Dubayah, R. O.; Frew, J. E.; Li, S.; Marks, D.; Milliff, R. F.; Rousseau, D. D.; Wan, Z. M.

    1985-01-01

    Work undertaken during the contract and its results are described. Many of the results from this investigation are available in journal or conference proceedings literature - published, accepted for publication, or submitted for publication. For these the reference and the abstract are given. Those results that have not yet been submitted separately for publication are described in detail. Accomplishments during the contract period are summarized as follows: (1) analysis of the snow reflectance characteristics of the LANDSAT Thematic Mapper, including spectral suitability, dynamic range, and spectral resolution; (2) development of a variety of atmospheric models for use with LANDSAT Thematic Mapper data. These include a simple but fast two-stream approximation for inhomogeneous atmospheres over irregular surfaces, and a doubling model for calculation of the angular distribution of spectral radiance at any level in an plane-parallel atmosphere; (3) incorporation of digital elevation data into the atmospheric models and into the analysis of the satellite data; and (4) textural analysis of the spatial distribution of snow cover.

  18. Along-track calibration of SWIR push-broom hyperspectral imaging system

    NASA Astrophysics Data System (ADS)

    Jemec, Jurij; Pernuš, Franjo; Likar, Boštjan; Bürmen, Miran

    2016-05-01

    Push-broom hyperspectral imaging systems are increasingly used for various medical, agricultural and military purposes. The acquired images contain spectral information in every pixel of the imaged scene collecting additional information about the imaged scene compared to the classical RGB color imaging. Due to the misalignment and imperfections in the optical components comprising the push-broom hyperspectral imaging system, variable spectral and spatial misalignments and blur are present in the acquired images. To capture these distortions, a spatially and spectrally variant response function must be identified at each spatial and spectral position. In this study, we propose a procedure to characterize the variant response function of Short-Wavelength Infrared (SWIR) push-broom hyperspectral imaging systems in the across-track and along-track direction and remove its effect from the acquired images. A custom laser-machined spatial calibration targets are used for the characterization. The spatial and spectral variability of the response function in the across-track and along-track direction is modeled by a parametrized basis function. Finally, the characterization results are used to restore the distorted hyperspectral images in the across-track and along-track direction by a Richardson-Lucy deconvolution-based algorithm. The proposed calibration method in the across-track and along-track direction is thoroughly evaluated on images of targets with well-defined geometric properties. The results suggest that the proposed procedure is well suited for fast and accurate spatial calibration of push-broom hyperspectral imaging systems.

  19. Evaluating an image-fusion algorithm with synthetic-image-generation tools

    NASA Astrophysics Data System (ADS)

    Gross, Harry N.; Schott, John R.

    1996-06-01

    An algorithm that combines spectral mixing and nonlinear optimization is used to fuse multiresolution images. Image fusion merges images of different spatial and spectral resolutions to create a high spatial resolution multispectral combination. High spectral resolution allows identification of materials in the scene, while high spatial resolution locates those materials. In this algorithm, conventional spectral mixing estimates the percentage of each material (called endmembers) within each low resolution pixel. Three spectral mixing models are compared; unconstrained, partially constrained, and fully constrained. In the partially constrained application, the endmember fractions are required to sum to one. In the fully constrained application, all fractions are additionally required to lie between zero and one. While negative fractions seem inappropriate, they can arise from random spectral realizations of the materials. In the second part of the algorithm, the low resolution fractions are used as inputs to a constrained nonlinear optimization that calculates the endmember fractions for the high resolution pixels. The constraints mirror the low resolution constraints and maintain consistency with the low resolution fraction results. The algorithm can use one or more higher resolution sharpening images to locate the endmembers to high spatial accuracy. The algorithm was evaluated with synthetic image generation (SIG) tools. A SIG developed image can be used to control the various error sources that are likely to impair the algorithm performance. These error sources include atmospheric effects, mismodeled spectral endmembers, and variability in topography and illumination. By controlling the introduction of these errors, the robustness of the algorithm can be studied and improved upon. The motivation for this research is to take advantage of the next generation of multi/hyperspectral sensors. Although the hyperspectral images will be of modest to low resolution, fusing them with high resolution sharpening images will produce a higher spatial resolution land cover or material map.

  20. Hyperspectral remote sensing of wild oyster reefs

    NASA Astrophysics Data System (ADS)

    Le Bris, Anthony; Rosa, Philippe; Lerouxel, Astrid; Cognie, Bruno; Gernez, Pierre; Launeau, Patrick; Robin, Marc; Barillé, Laurent

    2016-04-01

    The invasion of the wild oyster Crassostrea gigas along the western European Atlantic coast has generated changes in the structure and functioning of intertidal ecosystems. Considered as an invasive species and a trophic competitor of the cultivated conspecific oyster, it is now seen as a resource by oyster farmers following recurrent mass summer mortalities of oyster spat since 2008. Spatial distribution maps of wild oyster reefs are required by local authorities to help define management strategies. In this work, visible-near infrared (VNIR) hyperspectral and multispectral remote sensing was investigated to map two contrasted intertidal reef structures: clusters of vertical oysters building three-dimensional dense reefs in muddy areas and oysters growing horizontally creating large flat reefs in rocky areas. A spectral library, collected in situ for various conditions with an ASD spectroradiometer, was used to run Spectral Angle Mapper classifications on airborne data obtained with an HySpex sensor (160 spectral bands) and SPOT satellite HRG multispectral data (3 spectral bands). With HySpex spectral/spatial resolution, horizontal oysters in the rocky area were correctly classified but the detection was less efficient for vertical oysters in muddy areas. Poor results were obtained with the multispectral image and from spatially or spectrally degraded HySpex data, it was clear that the spectral resolution was more important than the spatial resolution. In fact, there was a systematic mud deposition on shells of vertical oyster reefs explaining the misclassification of 30% of pixels recognized as mud or microphytobenthos. Spatial distribution maps of oyster reefs were coupled with in situ biomass measurements to illustrate the interest of a remote sensing product to provide stock estimations of wild oyster reefs to be exploited by oyster producers. This work highlights the interest of developing remote sensing techniques for aquaculture applications in coastal areas.

  1. Cassini atmospheric chemistry mapper. Volume 1. Investigation and technical plan

    NASA Technical Reports Server (NTRS)

    Smith, William Hayden; Baines, Kevin Hays; Drossart, Pierre; Fegley, Bruce; Orton, Glenn; Noll, Keith; Reitsema, Harold; Bjoraker, Gordon L.

    1990-01-01

    The Cassini Atmospheric Chemistry Mapper (ACM) enables a broad range of atmospheric science investigations for Saturn and Titan by providing high spectral and spatial resolution mapping and occultation capabilities at 3 and 5 microns. ACM can directly address the major atmospheric science objectives for Saturn and for Titan, as defined by the Announcement of Opportunity, with pivotal diagnostic measurements not accessible to any other proposed Cassini instrument. ACM determines mixing ratios for atmospheric molecules from spectral line profiles for an important and extensive volume of the atmosphere of Saturn (and Jupiter). Spatial and vertical profiles of disequilibrium species abundances define Saturn's deep atmosphere, its chemistry, and its vertical transport phenomena. ACM spectral maps provide a unique means to interpret atmospheric conditions in the deep (approximately 1000 bar) atmosphere of Saturn. Deep chemistry and vertical transport is inferred from the vertical and horizontal distribution of a series of disequilibrium species. Solar occultations provide a method to bridge the altitude range in Saturn's (and Titan's) atmosphere that is not accessible to radio science, thermal infrared, and UV spectroscopy with temperature measurements to plus or minus 2K from the analysis of molecular line ratios and to attain an high sensitivity for low-abundance chemical species in the very large column densities that may be achieved during occultations for Saturn. For Titan, ACM solar occultations yield very well resolved (1/6 scale height) vertical mixing ratios column abundances for atmospheric molecular constituents. Occultations also provide for detecting abundant species very high in the upper atmosphere, while at greater depths, detecting the isotopes of C and O, constraining the production mechanisms, and/or sources for the above species. ACM measures the vertical and horizontal distribution of aerosols via their opacity at 3 microns and, particularly, at 5 microns. ACM recovers spatially-resolved atmospheric temperatures in Titan's troposphere via 3- and 5-microns spectral transitions. Together, the mixing ratio profiles and the aerosol distributions are utilized to investigate the photochemistry of the stratosphere and consequent formation processes for aerosols. Finally, ring opacities, observed during solar occultations and in reflected sunlight, provide a measurement of the particle size and distribution of ring material. ACM will be the first high spectral resolution mapping spectrometer on an outer planet mission for atmospheric studies while retaining a high resolution spatial mapping capability. ACM, thus, opens an entirely new range of orbital scientific studies of the origin, physio-chemical evolution and structure of the Saturn and Titan atmospheres. ACM provides high angular resolution spectral maps, viewing nadir and near-limb thermal radiation and reflected sunlight; sounds planetary limbs, spatially resolving vertical profiles to several atmospheric scale heights; and measures solar occultations, mapping both atmospheres and rings. ACM's high spectral and spatial resolution mapping capability is achieved with a simplified Fourier Transform spectrometer with a no-moving parts, physically compact design. ACM's simplicity guarantees an inherent stability essential for reliable performance throughout the lengthy Cassini Orbiter mission.

  2. The stellar content of 30 doradus derived from spatially integrated ultraviolet spectra: A test of spectral synthesis models

    NASA Technical Reports Server (NTRS)

    Vacca, William D.; Robert, Carmelle; Leitherer, Claus; Conti, Peter S.

    1995-01-01

    Using the IUE satellite, we have obtained spatially integrated ultraviolet spectra of three areas within the giant H II region 30 Dor in the Large Magellanic Cloud. The spectra correspond to spatial reginswith sizes of 20 sec x 20 sec, 1 min x 1 min, and 3 min x 3 min, all of which are approximately centered on R136. We have performed a spectral synthesis analysis of the spectra of the two larger regions and compared the results with the known stellar content in these regions. The spectral synthesis models are sensitive to the ultraviolet continuum level, the P Cygni profile of the C Iv wavelength 1550 line, the absorption strength of the Si IV wavelength 1400 line, and the emission strength of the He II wavelength 1640 line. The intrinsic continuum levels and the profiles of these stellar wind lines provide constraints on the age and duration of the starburst episode within a region, as well as on the upper curoff mass of the initial mass function. From our analysis we find that the present-day value of the upper cutoff mass in the 1 min x 1 min and 3 min x 3 min regions has a lower limit of approximately 50 solar mass, a result which is in good agreement with several other recent determinations. The age of the starburst episode must be less than approximately 3 Myr, also in agreement with other estimates. Comparison of the observed total numbers of O and W-R stars with those predicted from the various models favors an instantaneous burst of star formation in the regions. However, the differences between the two burst scenarios we investigated (instantaneous and continuous) are small at such a young age, and distinguishing between the two is difficult. We are now confident that these spectral synthesis models can be used to determine the stellar content of more distant star-forming regions.

  3. Archetypal Analysis for Sparse Representation-Based Hyperspectral Sub-Pixel Quantification

    NASA Astrophysics Data System (ADS)

    Drees, L.; Roscher, R.

    2017-05-01

    This paper focuses on the quantification of land cover fractions in an urban area of Berlin, Germany, using simulated hyperspectral EnMAP data with a spatial resolution of 30m×30m. For this, sparse representation is applied, where each pixel with unknown surface characteristics is expressed by a weighted linear combination of elementary spectra with known land cover class. The elementary spectra are determined from image reference data using simplex volume maximization, which is a fast heuristic technique for archetypal analysis. In the experiments, the estimation of class fractions based on the archetypal spectral library is compared to the estimation obtained by a manually designed spectral library by means of reconstruction error, mean absolute error of the fraction estimates, sum of fractions and the number of used elementary spectra. We will show, that a collection of archetypes can be an adequate and efficient alternative to the spectral library with respect to mentioned criteria.

  4. Multi-tissue partial volume quantification in multi-contrast MRI using an optimised spectral unmixing approach.

    PubMed

    Collewet, Guylaine; Moussaoui, Saïd; Deligny, Cécile; Lucas, Tiphaine; Idier, Jérôme

    2018-06-01

    Multi-tissue partial volume estimation in MRI images is investigated with a viewpoint related to spectral unmixing as used in hyperspectral imaging. The main contribution of this paper is twofold. It firstly proposes a theoretical analysis of the statistical optimality conditions of the proportion estimation problem, which in the context of multi-contrast MRI data acquisition allows to appropriately set the imaging sequence parameters. Secondly, an efficient proportion quantification algorithm based on the minimisation of a penalised least-square criterion incorporating a regularity constraint on the spatial distribution of the proportions is proposed. Furthermore, the resulting developments are discussed using empirical simulations. The practical usefulness of the spectral unmixing approach for partial volume quantification in MRI is illustrated through an application to food analysis on the proving of a Danish pastry. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Hyper-spectral imaging: A promising tool for quantitative pigment analysis of varved lake sediments

    NASA Astrophysics Data System (ADS)

    Butz, Christoph; Grosjean, Martin; Tylmann, Wojciech

    2015-04-01

    Varved lake sediments are good archives for past environmental and climate conditions from annual to multi-millennial scales. Among other proxies, concentrations of sedimentary photopigments have been used for temperature reconstructions. However, obtaining well calibrated annually resolved records from sediments still remains challenging. Most laboratory methods used to analyse lake sediments require physical subsampling and are destructive in the process. Hence, temporal resolution and number of data are limited by the amount of material available in the core. Furthermore, for very low sediment accumulation rates annual subsampling is often very difficult or even impossible. To address these problems we explore hyper-spectral imaging as a non-destructive method to analyse lake sediments based on their reflectance spectra in the visible and near infrared spectrum. In contrast to other scanning methods like X-ray fluorescence, VIS/NIR reflectance spectrometry distinguishes between biogeochemical substances rather than single elements. Among others Rein (2003) has shown that VIS-RS can be used to detect relative concentrations of sedimentary photopigments (e.g. chlorins, carotenoids) and clay minerals. In this study hyper-spectral imaging is used to infer ecological proxy data from reflectance spectra of varved lake sediments. Hyper-spectral imaging permits the measurement of an entire sediment core in a single run at high spatial (30x30µm/pixel) and spectral resolutions (~2.8nm) within the visual to near infrared spectrum (400-1000nm). This allows the analysis of data time series and spatial mapping of sedimentary substances (e.g. chlorophylls/bacterio-chlorophylls and diagenetic products) at sub-varve scales. The method is demonstrated on two varved lake sediments from northern Poland showing the distributions of relative concentrations of two types of sedimentary pigments (Chlorophyll-a + derivatives and Bacterio-pheophytin-a) within individual varve years. The relative concentrations from the spectral data set have then been calibrated with absolute concentrations derived by High-Performance-Liquid-Chromatography (HPLC). This results in very high-resolution data sets of absolute sedimentary pigment concentrations suitable for the analysis of seasonal pigment variations.

  6. Feature selection methods for object-based classification of sub-decimeter resolution digital aerial imagery

    USDA-ARS?s Scientific Manuscript database

    Due to the availability of numerous spectral, spatial, and contextual features, the determination of optimal features and class separabilities can be a time consuming process in object-based image analysis (OBIA). While several feature selection methods have been developed to assist OBIA, a robust c...

  7. Understanding the spectral hardenings and radial distribution of Galactic cosmic rays and Fermi diffuse γ rays with spatially-dependent propagation

    NASA Astrophysics Data System (ADS)

    Guo, Yi-Qing; Yuan, Qiang

    2018-03-01

    Recent direct measurements of Galactic cosmic ray spectra by balloon/space-borne detectors reveal spectral hardenings of all major nucleus species at rigidities of a few hundred GV. The all-sky diffuse γ -ray emissions measured by the Fermi Large Area Telescope also show spatial variations of the intensities and spectral indices of cosmic rays. These new observations challenge the traditional simple acceleration and/or propagation scenario of Galactic cosmic rays. In this work, we propose a spatially dependent diffusion scenario to explain all these phenomena. The diffusion coefficient is assumed to be anticorrelated with the source distribution, which is a natural expectation from the charged particle transportation in a turbulent magnetic field. The spatially dependent diffusion model also gives a lower level of anisotropies of cosmic rays, which are consistent with observations by underground muons and air shower experiments. The spectral variations of cosmic rays across the Galaxy can be properly reproduced by this model.

  8. Development of new two-dimensional spectral/spatial code based on dynamic cyclic shift code for OCDMA system

    NASA Astrophysics Data System (ADS)

    Jellali, Nabiha; Najjar, Monia; Ferchichi, Moez; Rezig, Houria

    2017-07-01

    In this paper, a new two-dimensional spectral/spatial codes family, named two dimensional dynamic cyclic shift codes (2D-DCS) is introduced. The 2D-DCS codes are derived from the dynamic cyclic shift code for the spectral and spatial coding. The proposed system can fully eliminate the multiple access interference (MAI) by using the MAI cancellation property. The effect of shot noise, phase-induced intensity noise and thermal noise are used to analyze the code performance. In comparison with existing two dimensional (2D) codes, such as 2D perfect difference (2D-PD), 2D Extended Enhanced Double Weight (2D-Extended-EDW) and 2D hybrid (2D-FCC/MDW) codes, the numerical results show that our proposed codes have the best performance. By keeping the same code length and increasing the spatial code, the performance of our 2D-DCS system is enhanced: it provides higher data rates while using lower transmitted power and a smaller spectral width.

  9. Comparing Different Approaches for Mapping Urban Vegetation Cover from Landsat ETM+ Data: A Case Study on Brussels

    PubMed Central

    Van de Voorde, Tim; Vlaeminck, Jeroen; Canters, Frank

    2008-01-01

    Urban growth and its related environmental problems call for sustainable urban management policies to safeguard the quality of urban environments. Vegetation plays an important part in this as it provides ecological, social, health and economic benefits to a city's inhabitants. Remotely sensed data are of great value to monitor urban green and despite the clear advantages of contemporary high resolution images, the benefits of medium resolution data should not be discarded. The objective of this research was to estimate fractional vegetation cover from a Landsat ETM+ image with sub-pixel classification, and to compare accuracies obtained with multiple stepwise regression analysis, linear spectral unmixing and multi-layer perceptrons (MLP) at the level of meaningful urban spatial entities. Despite the small, but nevertheless statistically significant differences at pixel level between the alternative approaches, the spatial pattern of vegetation cover and estimation errors is clearly distinctive at neighbourhood level. At this spatially aggregated level, a simple regression model appears to attain sufficient accuracy. For mapping at a spatially more detailed level, the MLP seems to be the most appropriate choice. Brightness normalisation only appeared to affect the linear models, especially the linear spectral unmixing. PMID:27879914

  10. A Long-Term Dissipation of the EUV He ii (30.4 nm) Segmentation in Full-Disk Solar Images

    NASA Astrophysics Data System (ADS)

    Didkovsky, Leonid

    2018-06-01

    Some quiet-Sun days observed by the Atmospheric Imaging Assembly (AIA) on-board the Solar Dynamics Observatory (SDO) during the time interval in 2010 - 2017 were used to continue our previous analyses reported by Didkovsky and Gurman ( Solar Phys. 289, 153, 2014a) and Didkovsky, Wieman, and Korogodina ( Solar Phys. 292, 32, 2017). The analysis consists of determining and comparing spatial spectral ratios (spectral densities over some time interval) from spatial (segmentation-cell length) power spectra. The ratios were compared using modeled compatible spatial frequencies for spectra from the Extreme ultraviolet Imaging Telescope (EIT) on-board the Solar and Heliospheric Observatory (SOHO) and from AIA images. With the new AIA data added to the EIT data we analyzed previously, the whole time interval from 1996 to 2017 reported here is approximately the length of two "standard" solar cycles (SC). The spectral ratios of segmentation-cell dimension structures show a significant and steady increase with no detected indication of SC-related returns to the values that characterize the SC minima. This increase in spatial power at high spatial frequencies is interpreted as a dissipation of medium-size EUV network structures to smaller-size structures in the transition region. Each of the latest ratio changes for 2010 through 2017 spectra calculated for a number of consecutive short-term intervals has been converted into monthly mean ratio (MMR) changes. The MMR values demonstrate variable sign and magnitudes, thus confirming the solar nature of the changes. These changes do not follow a "typical" trend of instrumental degradation or a long-term activity profile from the He ii (30.4 nm) irradiance measured by the Extreme ultraviolet Spectrophotometer (ESP) either. The ESP is a channel of the Extreme ultraviolet Variability Experiment (EVE) on-board SDO.

  11. Novel spectral imaging system combining spectroscopy with imaging applications for biology

    NASA Astrophysics Data System (ADS)

    Malik, Zvi; Cabib, Dario; Buckwald, Robert A.; Garini, Yuval; Soenksen, Dirk G.

    1995-02-01

    A novel analytical spectral-imaging system and its results in the examination of biological specimens are presented. The SpectraCube 1000 system measures the transmission, absorbance, or fluorescence spectra of images studied by light microscopy. The system is based on an interferometer combined with a CCD camera, enabling measurement of the interferogram for each pixel constructing the image. Fourier transformation of the interferograms derives pixel by pixel spectra for 170 X 170 pixels of the image. A special `similarity mapping' program has been developed, enabling comparisons of spectral algorithms of all the spatial and spectral information measured by the system in the image. By comparing the spectrum of each pixel in the specimen with a selected reference spectrum (similarity mapping), there is a depiction of the spatial distribution of macromolecules possessing the characteristics of the reference spectrum. The system has been applied to analyses of bone marrow blood cells as well as fluorescent specimens, and has revealed information which could not be unveiled by other techniques. Similarity mapping has enabled visualization of fine details of chromatin packing in the nucleus of cells and other cytoplasmic compartments. Fluorescence analysis by the system has enabled the determination of porphyrin concentrations and distribution in cytoplasmic organelles of living cells.

  12. Compositional diversity and geologic insights of the Aristarchus crater from Moon Mineralogy Mapper data

    USGS Publications Warehouse

    Mustard, J.F.; Pieters, C.M.; Isaacson, P.J.; Head, J.W.; Besse, S.; Clark, R.N.; Klima, R.L.; Petro, N.E.; Staid, M.I.; Sunshine, J.M.; Runyon, C.J.; Tompkins, S.

    2011-01-01

    The Moon Mineralogy Mapper (M3) acquired high spatial and spectral resolution data of the Aristarchus Plateau with 140 m/pixel in 85 spectral bands from 0.43 to 3.0 m. The data were collected as radiance and converted to reflectance using the observational constraints and a solar spectrum scaled to the Moon-Sun distance. Summary spectral parameters for the area of mafic silicate 1 and 2 m bands were calculated from the M3 data and used to map the distribution of key units that were then analyzed in detail with the spectral data. This analysis focuses on five key compositional units in the region. (1) The central peaks are shown to be strongly enriched in feldspar and are likely from the upper plagioclase-rich crust of the Moon. (2) The impact melt is compositionally diverse with clear signatures of feldspathic crust, olivine, and glass. (3) The crater walls and ejecta show a high degree of spatial heterogeneity and evidence for massive breccia blocks. (4) Olivine, strongly concentrated on the rim, wall, and exterior of the southeastern quadrant of the crater, is commonly associated the impact melt. (5) There are at least two types of glass deposits observed: pyroclastic glass and impact glass. Copyright 2011 by the American Geophysical Union.

  13. Dark matter constraints from a joint analysis of dwarf Spheroidal galaxy observations with VERITAS

    DOE PAGES

    Archambault, S.; Archer, A.; Benbow, W.; ...

    2017-04-05

    We present constraints on the annihilation cross section of weakly interacting massive particles dark matter based on the joint statistical analysis of four dwarf galaxies with VERITAS. These results are derived from an optimized photon weighting statistical technique that improves on standard imaging atmospheric Cherenkov telescope (IACT) analyses by utilizing the spectral and spatial properties of individual photon events.

  14. Red Blood Cell Count Automation Using Microscopic Hyperspectral Imaging Technology.

    PubMed

    Li, Qingli; Zhou, Mei; Liu, Hongying; Wang, Yiting; Guo, Fangmin

    2015-12-01

    Red blood cell counts have been proven to be one of the most frequently performed blood tests and are valuable for early diagnosis of some diseases. This paper describes an automated red blood cell counting method based on microscopic hyperspectral imaging technology. Unlike the light microscopy-based red blood count methods, a combined spatial and spectral algorithm is proposed to identify red blood cells by integrating active contour models and automated two-dimensional k-means with spectral angle mapper algorithm. Experimental results show that the proposed algorithm has better performance than spatial based algorithm because the new algorithm can jointly use the spatial and spectral information of blood cells.

  15. Forest tree species clssification based on airborne hyper-spectral imagery

    NASA Astrophysics Data System (ADS)

    Dian, Yuanyong; Li, Zengyuan; Pang, Yong

    2013-10-01

    Forest precision classification products were the basic data for surveying of forest resource, updating forest subplot information, logging and design of forest. However, due to the diversity of stand structure, complexity of the forest growth environment, it's difficult to discriminate forest tree species using multi-spectral image. The airborne hyperspectral images can achieve the high spatial and spectral resolution imagery of forest canopy, so it will good for tree species level classification. The aim of this paper was to test the effective of combining spatial and spectral features in airborne hyper-spectral image classification. The CASI hyper spectral image data were acquired from Liangshui natural reserves area. Firstly, we use the MNF (minimum noise fraction) transform method for to reduce the hyperspectral image dimensionality and highlighting variation. And secondly, we use the grey level co-occurrence matrix (GLCM) to extract the texture features of forest tree canopy from the hyper-spectral image, and thirdly we fused the texture and the spectral features of forest canopy to classify the trees species using support vector machine (SVM) with different kernel functions. The results showed that when using the SVM classifier, MNF and texture-based features combined with linear kernel function can achieve the best overall accuracy which was 85.92%. It was also confirm that combine the spatial and spectral information can improve the accuracy of tree species classification.

  16. GOW2.0: A global wave hindcast of high resolution

    NASA Astrophysics Data System (ADS)

    Menendez, Melisa; Perez, Jorge; Losada, Inigo

    2016-04-01

    The information provided by reconstructions of historical wind generated waves is of paramount importance for a variety of coastal and offshore purposes (e.g. risk assessment, design of costal structures and coastal management). Here, a new global wave hindcast (GOW2.0) is presented. This hindcast is an update of GOW1.0 (Reguero et al. 2012) motivated by the emergence of new settings and atmospheric information from reanalysis during recent years. GOW2.0 is based on version 4.18 of WaveWatch III numerical model (Tolman, 2014). Main features of the model set-up are the analysis and selection of recent source terms concerning wave generation and dissipation (Ardhuin et al. 2010, Zieger et al., 2015) and the implementation of obstruction grids to improve the modeling of wave shadowing effects in line with the approach described in Chawla and Tolman (2007). This has been complemented by a multigrid system and the use of the hourly wind and ice coverage from the Climate Forecast System Reanalysis, CFSR (30km spatial resolution approximately). The multigrid scheme consists of a series of "two-way" nested domains covering the whole ocean basins at a 0.5° spatial resolution and continental shelfs worldwide at a 0.25° spatial resolution. In addition, a technique to reconstruct wave 3D spectra for any grid-point is implemented from spectral partitioning information. A validation analysis of GOW2.0 outcomes has been undertaken considering wave spectral information from surface buoy stations and multi-mission satellite data for a spatial validation. GOW2.0 shows a substantial improvement over its predecessor for all the analyzed variables. In summary, GOW2.0 reconstructs historical wave spectral data and climate information from 1979 to present at hourly resolution providing higher spatial resolution over regions where local generated wind seas, bimodal-spectral behaviour and relevant swell transformations across the continental shelf are important. Ardhuin F, Rogers E, Babanin AV, et al (2010). Semiempirical Dissipation Source Functions for Ocean Waves. Part I: Definition, Calibration, and Validation. J Phys Oceanogr. 2010;40(9):1917-1941. doi:10.1175/2010JPO4324.1. Chawla A, Tolman HL. Obstruction grids for spectral wave models. Ocean Model. 2008;22(1-2):12-25. doi:10.1016/j.ocemod.2008.01.003. Reguero BG, Menendez M, Mendez FJ, Minguez R, Losada IJ (2012). A Global Ocean Wave (GOW) calibrated reanalysis from 1948 onwards. Coastal Engineering, 65, 38-55. Tolman HL (2014). User manual and system documentation of WAVEWATCH III version 4.18. NOAA / NWS / NCEP / MMAB Tech Note. Zieger S, Babanin AV, Rogers WE, Young IR (2015). Observation-based source terms in the third-generation wave model WAVEWATCH. Ocean Modelling, 96, 2-25.

  17. Exploring the relationship between vegetation spectra and eco-geo-environmental conditions in karst region, Southwest China.

    PubMed

    Yue, Yuemin; Wang, Kelin; Zhang, Bing; Chen, Zhengchao; Jiao, Quanjun; Liu, Bo; Chen, Hongsong

    2010-01-01

    Remote sensing of local environmental conditions is not accessible if substrates are covered with vegetation. This study explored the relationship between vegetation spectra and karst eco-geo-environmental conditions. Hyperspectral remote sensing techniques showed that there were significant differences between spectral features of vegetation mainly distributed in karst and non-karst regions, and combination of 1,300- to 2,500-nm reflectance and 400- to 680-nm first-derivative spectra could delineate karst and non-karst vegetation groups. Canonical correspondence analysis (CCA) successfully assessed to what extent the variation of vegetation spectral features can be explained by associated eco-geo-environmental variables, and it was found that soil moisture and calcium carbonate contents had the most significant effects on vegetation spectral features in karst region. Our study indicates that vegetation spectra is tightly linked to eco-geo-environmental conditions and CCA is an effective means of studying the relationship between vegetation spectral features and eco-geo-environmental variables. Employing a combination of spectral and spatial analysis, it is anticipated that hyperspectral imagery can be used in interpreting or mapping eco-geo-environmental conditions covered with vegetation in karst region.

  18. SCOUSE: Semi-automated multi-COmponent Universal Spectral-line fitting Engine

    NASA Astrophysics Data System (ADS)

    Henshaw, J. D.; Longmore, S. N.; Kruijssen, J. M. D.; Davies, B.; Bally, J.; Barnes, A.; Battersby, C.; Burton, M.; Cunningham, M. R.; Dale, J. E.; Ginsburg, A.; Immer, K.; Jones, P. A.; Kendrew, S.; Mills, E. A. C.; Molinari, S.; Moore, T. J. T.; Ott, J.; Pillai, T.; Rathborne, J.; Schilke, P.; Schmiedeke, A.; Testi, L.; Walker, D.; Walsh, A.; Zhang, Q.

    2016-01-01

    The Semi-automated multi-COmponent Universal Spectral-line fitting Engine (SCOUSE) is a spectral line fitting algorithm that fits Gaussian files to spectral line emission. It identifies the spatial area over which to fit the data and generates a grid of spectral averaging areas (SAAs). The spatially averaged spectra are fitted according to user-provided tolerance levels, and the best fit is selected using the Akaike Information Criterion, which weights the chisq of a best-fitting solution according to the number of free-parameters. A more detailed inspection of the spectra can be performed to improve the fit through an iterative process, after which SCOUSE integrates the new solutions into the solution file.

  19. Development of a digital-micromirror-device-based multishot snapshot spectral imaging system.

    PubMed

    Wu, Yuehao; Mirza, Iftekhar O; Arce, Gonzalo R; Prather, Dennis W

    2011-07-15

    We report on the development of a digital-micromirror-device (DMD)-based multishot snapshot spectral imaging (DMD-SSI) system as an alternative to current piezostage-based multishot coded aperture snapshot spectral imager (CASSI) systems. In this system, a DMD is used to implement compressive sensing (CS) measurement patterns for reconstructing the spatial/spectral information of an imaging scene. Based on the CS measurement results, we demonstrated the concurrent reconstruction of 24 spectral images. The DMD-SSI system is versatile in nature as it can be used to implement independent CS measurement patterns in addition to spatially shifted patterns that piezostage-based systems can offer. © 2011 Optical Society of America

  20. A comparison of independent component analysis algorithms and measures to discriminate between EEG and artifact components.

    PubMed

    Dharmaprani, Dhani; Nguyen, Hoang K; Lewis, Trent W; DeLosAngeles, Dylan; Willoughby, John O; Pope, Kenneth J

    2016-08-01

    Independent Component Analysis (ICA) is a powerful statistical tool capable of separating multivariate scalp electrical signals into their additive independent or source components, specifically EEG or electroencephalogram and artifacts. Although ICA is a widely accepted EEG signal processing technique, classification of the recovered independent components (ICs) is still flawed, as current practice still requires subjective human decisions. Here we build on the results from Fitzgibbon et al. [1] to compare three measures and three ICA algorithms. Using EEG data acquired during neuromuscular paralysis, we tested the ability of the measures (spectral slope, peripherality and spatial smoothness) and algorithms (FastICA, Infomax and JADE) to identify components containing EMG. Spatial smoothness showed differentiation between paralysis and pre-paralysis ICs comparable to spectral slope, whereas peripherality showed less differentiation. A combination of the measures showed better differentiation than any measure alone. Furthermore, FastICA provided the best discrimination between muscle-free and muscle-contaminated recordings in the shortest time, suggesting it may be the most suited to EEG applications of the considered algorithms. Spatial smoothness results suggest that a significant number of ICs are mixed, i.e. contain signals from more than one biological source, and so the development of an ICA algorithm that is optimised to produce ICs that are easily classifiable is warranted.

  1. Europa in the Far-UV: Spatial and Spectral Analysis from HST Observations

    NASA Astrophysics Data System (ADS)

    Becker, Tracy M.; Retherford, Kurt D.; Roth, Lorenz; Hendrix, Amanda R.; McGrath, Melissa; Alday, Juan; Saur, Joachim; Molyneux, Philippa M.; Raut, Ujjwal; Teolis, Benjamin

    2017-10-01

    We present a spatial and spectral analysis of Europa using far-UV observations from 1999 - 2015 made by the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope (HST). Disk-integrated observations show that the far-UV spectrum from ~130 nm - 170 nm is blue (increasing albedo with decreasing wavelength) for the studied hemispheres: the leading, trailing, and anti-Jovian hemispheres. At Lyman-alpha (121.6 nm), the albedo of the trailing hemisphere continues the blue trend, but it reddens for the leading hemisphere. At wavelengths shorter than 133.5 nm, the leading hemisphere, which is brighter than the trailing hemisphere at near-UV and visible wavelengths, becomes darker than the trailing hemisphere. We find no evidence of a sharp water-ice absorption edge at 165 nm on any hemisphere of Europa, which is intriguing since such an absorption feature has been observed on most icy moons. This suggests the possibility that radiolytic alteration by Jovian magnetospheric plasma has made the surface more strongly absorbing, masking the absorption edge. We will also present a spatial map of Lyman-alpha across the entire surface of Europa. This map can then be used to distinguish variable H emissions in the atmosphere from surface reflectance, improving our ability to detect potential plumes occurring on the disk of Europa during an observation.

  2. Assessing mine drainage pH from the color and spectral reflectance of chemical precipitates

    USGS Publications Warehouse

    Williams, D.J.; Bigham, J.M.; Cravotta, C.A.; Traina, S.J.; Anderson, J.E.; Lyon, J.G.

    2002-01-01

    The pH of mine impacted waters was estimated from the spectral reflectance of resident sediments composed mostly of chemical precipitates. Mine drainage sediments were collected from sites in the Anthracite Region of eastern Pennsylvania, representing acid to near neutral pH. Sediments occurring in acidic waters contained primarily schwertmannite and goethite while near neutral waters produced ferrihydrite. The minerals comprising the sediments occurring at each pH mode were spectrally separable. Spectral angle difference mapping was used to correlate sediment color with stream water pH (r2=0.76). Band-center and band-depth analysis of spectral absorption features were also used to discriminate ferrihydrite and goethite and/or schwertmannite by analyzing the 4T1??? 6A1 crystal field transition (900-1000 nm). The presence of these minerals accurately predicted stream water pH (r2=0.87) and provided a qualitative estimate of dissolved SO4 concentrations. Spectral analysis results were used to analyze airborne digital multispectral video (DMSV) imagery for several sites in the region. The high spatial resolution of the DMSV sensor allowed for precise mapping of the mine drainage sediments. The results from this study indicate that airborne and space-borne imaging spectrometers may be used to accurately classify streams impacted by acid vs. neutral-to-alkaline mine drainage after appropriate spectral libraries are developed.

  3. Subpixel target detection and enhancement in hyperspectral images

    NASA Astrophysics Data System (ADS)

    Tiwari, K. C.; Arora, M.; Singh, D.

    2011-06-01

    Hyperspectral data due to its higher information content afforded by higher spectral resolution is increasingly being used for various remote sensing applications including information extraction at subpixel level. There is however usually a lack of matching fine spatial resolution data particularly for target detection applications. Thus, there always exists a tradeoff between the spectral and spatial resolutions due to considerations of type of application, its cost and other associated analytical and computational complexities. Typically whenever an object, either manmade, natural or any ground cover class (called target, endmembers, components or class) gets spectrally resolved but not spatially, mixed pixels in the image result. Thus, numerous manmade and/or natural disparate substances may occur inside such mixed pixels giving rise to mixed pixel classification or subpixel target detection problems. Various spectral unmixing models such as Linear Mixture Modeling (LMM) are in vogue to recover components of a mixed pixel. Spectral unmixing outputs both the endmember spectrum and their corresponding abundance fractions inside the pixel. It, however, does not provide spatial distribution of these abundance fractions within a pixel. This limits the applicability of hyperspectral data for subpixel target detection. In this paper, a new inverse Euclidean distance based super-resolution mapping method has been presented that achieves subpixel target detection in hyperspectral images by adjusting spatial distribution of abundance fraction within a pixel. Results obtained at different resolutions indicate that super-resolution mapping may effectively aid subpixel target detection.

  4. Joint Spatial-Spectral Reconstruction and k-t Spirals for Accelerated 2D Spatial/1D Spectral Imaging of 13C Dynamics

    PubMed Central

    Gordon, Jeremy W.; Niles, David J.; Fain, Sean B.; Johnson, Kevin M.

    2014-01-01

    Purpose To develop a novel imaging technique to reduce the number of excitations and required scan time for hyperpolarized 13C imaging. Methods A least-squares based optimization and reconstruction is developed to simultaneously solve for both spatial and spectral encoding. By jointly solving both domains, spectral imaging can potentially be performed with a spatially oversampled single echo spiral acquisition. Digital simulations, phantom experiments, and initial in vivo hyperpolarized [1-13C]pyruvate experiments were performed to assess the performance of the algorithm as compared to a multi-echo approach. Results Simulations and phantom data indicate that accurate single echo imaging is possible when coupled with oversampling factors greater than six (corresponding to a worst case of pyruvate to metabolite ratio < 9%), even in situations of substantial T2* decay and B0 heterogeneity. With lower oversampling rates, two echoes are required for similar accuracy. These results were confirmed with in vivo data experiments, showing accurate single echo spectral imaging with an oversampling factor of 7 and two echo imaging with an oversampling factor of 4. Conclusion The proposed k-t approach increases data acquisition efficiency by reducing the number of echoes required to generate spectroscopic images, thereby allowing accelerated acquisition speed, preserved polarization, and/or improved temporal or spatial resolution. Magn Reson Med PMID:23716402

  5. Landsat Thematic Mapper studies of land cover spatial variability related to hydrology

    NASA Technical Reports Server (NTRS)

    Wharton, S.; Ormsby, J.; Salomonson, V.; Mulligan, P.

    1984-01-01

    Past accomplishments involving remote sensing based land-cover analysis for hydrologic applications are reviewed. Ongoing research in exploiting the increased spatial, radiometric, and spectral capabilities afforded by the TM on Landsats 4 and 5 is considered. Specific studies to compare MSS and TM for urbanizing watersheds, wetlands, and floodplain mapping situations show that only a modest improvement in classification accuracy is achieved via statistical per pixel multispectral classifiers. The limitations of current approaches to multispectral classification are illustrated. The objectives, background, and progress in the development of an alternative analysis approach for defining inputs to urban hydrologic models using TM are discussed.

  6. Robust demarcation of basal cell carcinoma by dependent component analysis-based segmentation of multi-spectral fluorescence images.

    PubMed

    Kopriva, Ivica; Persin, Antun; Puizina-Ivić, Neira; Mirić, Lina

    2010-07-02

    This study was designed to demonstrate robust performance of the novel dependent component analysis (DCA)-based approach to demarcation of the basal cell carcinoma (BCC) through unsupervised decomposition of the red-green-blue (RGB) fluorescent image of the BCC. Robustness to intensity fluctuation is due to the scale invariance property of DCA algorithms, which exploit spectral and spatial diversities between the BCC and the surrounding tissue. Used filtering-based DCA approach represents an extension of the independent component analysis (ICA) and is necessary in order to account for statistical dependence that is induced by spectral similarity between the BCC and surrounding tissue. This generates weak edges what represents a challenge for other segmentation methods as well. By comparative performance analysis with state-of-the-art image segmentation methods such as active contours (level set), K-means clustering, non-negative matrix factorization, ICA and ratio imaging we experimentally demonstrate good performance of DCA-based BCC demarcation in two demanding scenarios where intensity of the fluorescent image has been varied almost two orders of magnitude. Copyright 2010 Elsevier B.V. All rights reserved.

  7. Dimensionality-varied convolutional neural network for spectral-spatial classification of hyperspectral data

    NASA Astrophysics Data System (ADS)

    Liu, Wanjun; Liang, Xuejian; Qu, Haicheng

    2017-11-01

    Hyperspectral image (HSI) classification is one of the most popular topics in remote sensing community. Traditional and deep learning-based classification methods were proposed constantly in recent years. In order to improve the classification accuracy and robustness, a dimensionality-varied convolutional neural network (DVCNN) was proposed in this paper. DVCNN was a novel deep architecture based on convolutional neural network (CNN). The input of DVCNN was a set of 3D patches selected from HSI which contained spectral-spatial joint information. In the following feature extraction process, each patch was transformed into some different 1D vectors by 3D convolution kernels, which were able to extract features from spectral-spatial data. The rest of DVCNN was about the same as general CNN and processed 2D matrix which was constituted by by all 1D data. So that the DVCNN could not only extract more accurate and rich features than CNN, but also fused spectral-spatial information to improve classification accuracy. Moreover, the robustness of network on water-absorption bands was enhanced in the process of spectral-spatial fusion by 3D convolution, and the calculation was simplified by dimensionality varied convolution. Experiments were performed on both Indian Pines and Pavia University scene datasets, and the results showed that the classification accuracy of DVCNN improved by 32.87% on Indian Pines and 19.63% on Pavia University scene than spectral-only CNN. The maximum accuracy improvement of DVCNN achievement was 13.72% compared with other state-of-the-art HSI classification methods, and the robustness of DVCNN on water-absorption bands noise was demonstrated.

  8. Optical network scaling: roles of spectral and spatial aggregation.

    PubMed

    Arık, Sercan Ö; Ho, Keang-Po; Kahn, Joseph M

    2014-12-01

    As the bit rates of routed data streams exceed the throughput of single wavelength-division multiplexing channels, spectral and spatial traffic aggregation become essential for optical network scaling. These aggregation techniques reduce network routing complexity by increasing spectral efficiency to decrease the number of fibers, and by increasing switching granularity to decrease the number of switching components. Spectral aggregation yields a modest decrease in the number of fibers but a substantial decrease in the number of switching components. Spatial aggregation yields a substantial decrease in both the number of fibers and the number of switching components. To quantify routing complexity reduction, we analyze the number of multi-cast and wavelength-selective switches required in a colorless, directionless and contentionless reconfigurable optical add-drop multiplexer architecture. Traffic aggregation has two potential drawbacks: reduced routing power and increased switching component size.

  9. Scaling dimensions in spectroscopy of soil and vegetation

    NASA Astrophysics Data System (ADS)

    Malenovský, Zbyněk; Bartholomeus, Harm M.; Acerbi-Junior, Fausto W.; Schopfer, Jürg T.; Painter, Thomas H.; Epema, Gerrit F.; Bregt, Arnold K.

    2007-05-01

    The paper revises and clarifies definitions of the term scale and scaling conversions for imaging spectroscopy of soil and vegetation. We demonstrate a new four-dimensional scale concept that includes not only spatial but also the spectral, directional and temporal components. Three scaling remote sensing techniques are reviewed: (1) radiative transfer, (2) spectral (un)mixing, and (3) data fusion. Relevant case studies are given in the context of their up- and/or down-scaling abilities over the soil/vegetation surfaces and a multi-source approach is proposed for their integration. Radiative transfer (RT) models are described to show their capacity for spatial, spectral up-scaling, and directional down-scaling within a heterogeneous environment. Spectral information and spectral derivatives, like vegetation indices (e.g. TCARI/OSAVI), can be scaled and even tested by their means. Radiative transfer of an experimental Norway spruce ( Picea abies (L.) Karst.) research plot in the Czech Republic was simulated by the Discrete Anisotropic Radiative Transfer (DART) model to prove relevance of the correct object optical properties scaled up to image data at two different spatial resolutions. Interconnection of the successive modelling levels in vegetation is shown. A future development in measurement and simulation of the leaf directional spectral properties is discussed. We describe linear and/or non-linear spectral mixing techniques and unmixing methods that demonstrate spatial down-scaling. Relevance of proper selection or acquisition of the spectral endmembers using spectral libraries, field measurements, and pure pixels of the hyperspectral image is highlighted. An extensive list of advanced unmixing techniques, a particular example of unmixing a reflective optics system imaging spectrometer (ROSIS) image from Spain, and examples of other mixture applications give insight into the present status of scaling capabilities. Simultaneous spatial and temporal down-scaling by means of a data fusion technique is described. A demonstrative example is given for the moderate resolution imaging spectroradiometer (MODIS) and LANDSAT Thematic Mapper (TM) data from Brazil. Corresponding spectral bands of both sensors were fused via a pyramidal wavelet transform in Fourier space. New spectral and temporal information of the resultant image can be used for thematic classification or qualitative mapping. All three described scaling techniques can be integrated as the relevant methodological steps within a complex multi-source approach. We present this concept of combining numerous optical remote sensing data and methods to generate inputs for ecosystem process models.

  10. Identification of neuronal network properties from the spectral analysis of calcium imaging signals in neuronal cultures.

    PubMed

    Tibau, Elisenda; Valencia, Miguel; Soriano, Jordi

    2013-01-01

    Neuronal networks in vitro are prominent systems to study the development of connections in living neuronal networks and the interplay between connectivity, activity and function. These cultured networks show a rich spontaneous activity that evolves concurrently with the connectivity of the underlying network. In this work we monitor the development of neuronal cultures, and record their activity using calcium fluorescence imaging. We use spectral analysis to characterize global dynamical and structural traits of the neuronal cultures. We first observe that the power spectrum can be used as a signature of the state of the network, for instance when inhibition is active or silent, as well as a measure of the network's connectivity strength. Second, the power spectrum identifies prominent developmental changes in the network such as GABAA switch. And third, the analysis of the spatial distribution of the spectral density, in experiments with a controlled disintegration of the network through CNQX, an AMPA-glutamate receptor antagonist in excitatory neurons, reveals the existence of communities of strongly connected, highly active neurons that display synchronous oscillations. Our work illustrates the interest of spectral analysis for the study of in vitro networks, and its potential use as a network-state indicator, for instance to compare healthy and diseased neuronal networks.

  11. MicrOmega: a VIS/NIR hyperspectral microscope for in situ analysis in space

    NASA Astrophysics Data System (ADS)

    Leroi, V.; Bibring, J. P.; Berthé, M.

    2008-07-01

    MicrOmega is an ultra miniaturized spectral microscope for in situ analysis of samples. It is composed of 2 microscopes: one with a spatial sampling of 5 μm, working in 4 color in the visible range and one NIR hyperspectral microscope in the spectral range 0.9-4 μm with a spatial sampling of 20 μm per pixel (described in this paper). MicrOmega/NIR illuminates and images samples a few mm in size and acquires the NIR spectrum of each resolved pixel in up to 600 contiguous spectral channels. The goal of this instrument is to analyse in situ the composition of collected samples at almost their grain size scale, in a non destructive way. It should be among the first set of instruments who will analyse the sample and enable other complementary analyses to be performed on it. With the spectral range and resolution chosen, a wide variety of constituents can be identified: minerals, such as pyroxene and olivine, ferric oxides, hydrated phyllosilicates, sulfates and carbonates; ices and organics. The composition of the various phases within a given sample is a critical record of its formation and evolution. Coupled to the mapping information, it provides unique clues to describe the history of the parent body. In particular, the capability to identify hydrated grains and to characterize their adjacent phases has a huge potential in the search for potential bio-relics. We will present the major instrumental principles and specifications of MicrOmega/NIR, and its expected performances in particular for the ESA/ExoMars Mission.

  12. Multisensor Analysis of Spectral Dimensionality and Soil Diversity in the Great Central Valley of California.

    PubMed

    Sousa, Daniel; Small, Christopher

    2018-02-14

    Planned hyperspectral satellite missions and the decreased revisit time of multispectral imaging offer the potential for data fusion to leverage both the spectral resolution of hyperspectral sensors and the temporal resolution of multispectral constellations. Hyperspectral imagery can also be used to better understand fundamental properties of multispectral data. In this analysis, we use five flight lines from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) archive with coincident Landsat 8 acquisitions over a spectrally diverse region of California to address the following questions: (1) How much of the spectral dimensionality of hyperspectral data is captured in multispectral data?; (2) Is the characteristic pyramidal structure of the multispectral feature space also present in the low order dimensions of the hyperspectral feature space at comparable spatial scales?; (3) How much variability in rock and soil substrate endmembers (EMs) present in hyperspectral data is captured by multispectral sensors? We find nearly identical partitions of variance, low-order feature space topologies, and EM spectra for hyperspectral and multispectral image composites. The resulting feature spaces and EMs are also very similar to those from previous global multispectral analyses, implying that the fundamental structure of the global feature space is present in our relatively small spatial subset of California. Finally, we find that the multispectral dataset well represents the substrate EM variability present in the study area - despite its inability to resolve narrow band absorptions. We observe a tentative but consistent physical relationship between the gradation of substrate reflectance in the feature space and the gradation of sand versus clay content in the soil classification system.

  13. Multisensor Analysis of Spectral Dimensionality and Soil Diversity in the Great Central Valley of California

    PubMed Central

    Small, Christopher

    2018-01-01

    Planned hyperspectral satellite missions and the decreased revisit time of multispectral imaging offer the potential for data fusion to leverage both the spectral resolution of hyperspectral sensors and the temporal resolution of multispectral constellations. Hyperspectral imagery can also be used to better understand fundamental properties of multispectral data. In this analysis, we use five flight lines from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) archive with coincident Landsat 8 acquisitions over a spectrally diverse region of California to address the following questions: (1) How much of the spectral dimensionality of hyperspectral data is captured in multispectral data?; (2) Is the characteristic pyramidal structure of the multispectral feature space also present in the low order dimensions of the hyperspectral feature space at comparable spatial scales?; (3) How much variability in rock and soil substrate endmembers (EMs) present in hyperspectral data is captured by multispectral sensors? We find nearly identical partitions of variance, low-order feature space topologies, and EM spectra for hyperspectral and multispectral image composites. The resulting feature spaces and EMs are also very similar to those from previous global multispectral analyses, implying that the fundamental structure of the global feature space is present in our relatively small spatial subset of California. Finally, we find that the multispectral dataset well represents the substrate EM variability present in the study area – despite its inability to resolve narrow band absorptions. We observe a tentative but consistent physical relationship between the gradation of substrate reflectance in the feature space and the gradation of sand versus clay content in the soil classification system. PMID:29443900

  14. Calibration of the ROSAT HRI Spectral Response

    NASA Technical Reports Server (NTRS)

    Prestwich, Andrea H.; Silverman, John; McDowell, Jonathan; Callanan, Paul; Snowden, Steve

    2000-01-01

    The ROSAT High Resolution Imager has a limited (2-band) spectral response. This spectral capability can give X-ray hardness ratios on spatial scales of 5 arcseconds. The spectral response of the center of the detector was calibrated before the launch of ROSAT, but the gain decreases with time and also is a function of position on the detector. To complicate matters further, the satellite is 'wobbled', possibly moving a source across several spatial gain states. These difficulties have prevented the spectral response of the ROSAT High Resolution Imager (HRI) from being used for scientific measurements. We have used Bright Earth data and in-flight calibration sources to map the spatial and temporal gain changes, and written software which will allow ROSAT users to generate a calibrated XSPEC (an x ray spectral fitting package) response matrix and hence determine a calibrated hardness ratio. In this report, we describe the calibration procedure and show how to obtain a response matrix. In Section 2 we give an overview of the calibration procedure, in Section 3 we give a summary of HRI spatial and temporal gain variations. Section 4 describes the routines used to determine the gain distribution of a source. In Sections 5 and 6, we describe in detail how, the Bright Earth database and calibration sources are used to derive a corrected response matrix for a given observation. Finally, Section 7 describes how to use the software.

  15. Spectral-spatial classification of hyperspectral imagery with cooperative game

    NASA Astrophysics Data System (ADS)

    Zhao, Ji; Zhong, Yanfei; Jia, Tianyi; Wang, Xinyu; Xu, Yao; Shu, Hong; Zhang, Liangpei

    2018-01-01

    Spectral-spatial classification is known to be an effective way to improve classification performance by integrating spectral information and spatial cues for hyperspectral imagery. In this paper, a game-theoretic spectral-spatial classification algorithm (GTA) using a conditional random field (CRF) model is presented, in which CRF is used to model the image considering the spatial contextual information, and a cooperative game is designed to obtain the labels. The algorithm establishes a one-to-one correspondence between image classification and game theory. The pixels of the image are considered as the players, and the labels are considered as the strategies in a game. Similar to the idea of soft classification, the uncertainty is considered to build the expected energy model in the first step. The local expected energy can be quickly calculated, based on a mixed strategy for the pixels, to establish the foundation for a cooperative game. Coalitions can then be formed by the designed merge rule based on the local expected energy, so that a majority game can be performed to make a coalition decision to obtain the label of each pixel. The experimental results on three hyperspectral data sets demonstrate the effectiveness of the proposed classification algorithm.

  16. Cellular imaging using temporally flickering nanoparticles.

    PubMed

    Ilovitsh, Tali; Danan, Yossef; Meir, Rinat; Meiri, Amihai; Zalevsky, Zeev

    2015-02-04

    Utilizing the surface plasmon resonance effect in gold nanoparticles enables their use as contrast agents in a variety of applications for compound cellular imaging. However, most techniques suffer from poor signal to noise ratio (SNR) statistics due to high shot noise that is associated with low photon count in addition to high background noise. We demonstrate an effective way to improve the SNR, in particular when the inspected signal is indistinguishable in the given noisy environment. We excite the temporal flickering of the scattered light from gold nanoparticle that labels a biological sample. By preforming temporal spectral analysis of the received spatial image and by inspecting the proper spectral component corresponding to the modulation frequency, we separate the signal from the wide spread spectral noise (lock-in amplification).

  17. Spatial and spectral resolution of carbonaceous material from hematite (α-Fe2O3) using multivariate curve resolution-alternating least squares (MCR-ALS) with Raman microspectroscopic mapping: implications for the search for life on Mars.

    PubMed

    Smith, Joseph P; Smith, Frank C; Booksh, Karl S

    2017-08-21

    The search for evidence of extant or past life on Mars is a primary objective of both the upcoming Mars 2020 rover (NASA) and ExoMars 2020 rover (ESA/Roscosmos) missions. This search will involve the detection and identification of organic molecules and/or carbonaceous material within the Martian surface environment. For the first time on a mission to Mars, the scientific payload for each rover will include a Raman spectrometer, an instrument well-suited for this search. Hematite (α-Fe 2 O 3 ) is a widespread mineral on the Martian surface. The 2LO Raman band of hematite and the Raman D-band of carbonaceous material show spectral overlap, leading to the potential misidentification of hematite as carbonaceous material. Here we report the ability to spatially and spectrally differentiate carbonaceous material from hematite using multivariate curve resolution-alternating least squares (MCR-ALS) applied to Raman microspectroscopic mapping under both 532 nm and 785 nm excitation. For this study, a sample comprised of hematite, carbonaceous material, and substrate-adhesive epoxy in spatially distinct domains was constructed. Principal component analysis (PCA) reveals that both 532 nm and 785 nm excitation produce representative three-phase systems of hematite, carbonaceous material, and substrate-adhesive epoxy in the analyzed sample. MCR-ALS with Raman microspectroscopic mapping using both 532 nm and 785 nm excitation was able to resolve hematite, carbonaceous material, and substrate-adhesive epoxy by generating spatially-resolved chemical maps and corresponding Raman spectra of these spatially distinct chemical species. Moreover, MCR-ALS applied to the combinatorial data sets of 532 nm and 785 nm excitation, which contain hematite and carbonaceous material within the same locations, was able to resolve hematite, carbonaceous material, and substrate-adhesive epoxy. Using multivariate analysis with Raman microspectroscopic mapping, 785 nm excitation more effectively resolved hematite, carbonaceous material, and substrate-adhesive epoxy as compared to 532 nm excitation. To our knowledge, this is the first report of multivariate analysis methods, namely MCR-ALS, with Raman microspectroscopic mapping being employed to differentiate carbonaceous material from hematite. We have therefore provided an analytical methodology useful for the search for extant or past life on the surface of Mars.

  18. Spectral Dimensionality and Scale of Urban Radiance

    NASA Technical Reports Server (NTRS)

    Small, Christopher

    2001-01-01

    Characterization of urban radiance and reflectance is important for understanding the effects of solar energy flux on the urban environment as well as for satellite mapping of urban settlement patterns. Spectral mixture analyses of Landsat and Ikonos imagery suggest that the urban radiance field can very often be described with combinations of three or four spectral endmembers. Dimensionality estimates of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) radiance measurements of urban areas reveal the existence of 30 to 60 spectral dimensions. The extent to which broadband imagery collected by operational satellites can represent the higher dimensional mixing space is a function of both the spatial and spectral resolution of the sensor. AVIRIS imagery offers the spatial and spectral resolution necessary to investigate the scale dependence of the spectral dimensionality. Dimensionality estimates derived from Minimum Noise Fraction (MNF) eigenvalue distributions show a distinct scale dependence for AVIRIS radiance measurements of Milpitas, California. Apparent dimensionality diminishes from almost 40 to less than 10 spectral dimensions between scales of 8000 m and 300 m. The 10 to 30 m scale of most features in urban mosaics results in substantial spectral mixing at the 20 m scale of high altitude AVIRIS pixels. Much of the variance at pixel scales is therefore likely to result from actual differences in surface reflectance at pixel scales. Spatial smoothing and spectral subsampling of AVIRIS spectra both result in substantial loss of information and reduction of apparent dimensionality, but the primary spectral endmembers in all cases are analogous to those found in global analyses of Landsat and Ikonos imagery of other urban areas.

  19. Magnetic field amplitude and pitch angle measurements using Spectral MSE on EAST

    NASA Astrophysics Data System (ADS)

    Liao, Ken; Rowan, William; Fu, Jia; Li, Ying-Ying; Lyu, Bo; Marchuk, Oleksandr; Ralchenko, Yuri

    2017-10-01

    We have developed the Spectral Motional Stark Effect technique for measuring magnetic field amplitude and pitch angle on EAST. The experiments were conducted using the tangential co-injection heating beam at A port and Beam Emission Spectroscopy array at D port. A spatial calibration of the observation channels was conducted before the campaign. As a first check, the measured magnetic field amplitude was compared to prediction. Since the toroidal field is dominant, we recovered the expected 1/R shape over the spatial range 1.75

  20. A Spatially Offset Raman Spectroscopy Method for Non-Destructive Detection of Gelatin-Encapsulated Powders

    PubMed Central

    Chao, Kuanglin; Dhakal, Sagar; Qin, Jianwei; Peng, Yankun; Schmidt, Walter F.; Kim, Moon S.; Chan, Diane E.

    2017-01-01

    Non-destructive subsurface detection of encapsulated, coated, or seal-packaged foods and pharmaceuticals can help prevent distribution and consumption of counterfeit or hazardous products. This study used a Spatially Offset Raman Spectroscopy (SORS) method to detect and identify urea, ibuprofen, and acetaminophen powders contained within one or more (up to eight) layers of gelatin capsules to demonstrate subsurface chemical detection and identification. A 785-nm point-scan Raman spectroscopy system was used to acquire spatially offset Raman spectra for an offset range of 0 to 10 mm from the surfaces of 24 encapsulated samples, using a step size of 0.1 mm to obtain 101 spectral measurements per sample. As the offset distance was increased, the spectral contribution from the subsurface powder gradually outweighed that of the surface capsule layers, allowing for detection of the encapsulated powders. Containing mixed contributions from the powder and capsule, the SORS spectra for each sample were resolved into pure component spectra using self-modeling mixture analysis (SMA) and the corresponding components were identified using spectral information divergence values. As demonstrated here for detecting chemicals contained inside thick capsule layers, this SORS measurement technique coupled with SMA has the potential to be a reliable non-destructive method for subsurface inspection and authentication of foods, health supplements, and pharmaceutical products that are prepared or packaged with semi-transparent materials. PMID:28335453

  1. Benchmarking of data fusion algorithms in support of earth observation based Antarctic wildlife monitoring

    NASA Astrophysics Data System (ADS)

    Witharana, Chandi; LaRue, Michelle A.; Lynch, Heather J.

    2016-03-01

    Remote sensing is a rapidly developing tool for mapping the abundance and distribution of Antarctic wildlife. While both panchromatic and multispectral imagery have been used in this context, image fusion techniques have received little attention. We tasked seven widely-used fusion algorithms: Ehlers fusion, hyperspherical color space fusion, high-pass fusion, principal component analysis (PCA) fusion, University of New Brunswick fusion, and wavelet-PCA fusion to resolution enhance a series of single-date QuickBird-2 and Worldview-2 image scenes comprising penguin guano, seals, and vegetation. Fused images were assessed for spectral and spatial fidelity using a variety of quantitative quality indicators and visual inspection methods. Our visual evaluation elected the high-pass fusion algorithm and the University of New Brunswick fusion algorithm as best for manual wildlife detection while the quantitative assessment suggested the Gram-Schmidt fusion algorithm and the University of New Brunswick fusion algorithm as best for automated classification. The hyperspherical color space fusion algorithm exhibited mediocre results in terms of spectral and spatial fidelities. The PCA fusion algorithm showed spatial superiority at the expense of spectral inconsistencies. The Ehlers fusion algorithm and the wavelet-PCA algorithm showed the weakest performances. As remote sensing becomes a more routine method of surveying Antarctic wildlife, these benchmarks will provide guidance for image fusion and pave the way for more standardized products for specific types of wildlife surveys.

  2. A Novel Unsupervised Segmentation Quality Evaluation Method for Remote Sensing Images

    PubMed Central

    Tang, Yunwei; Jing, Linhai; Ding, Haifeng

    2017-01-01

    The segmentation of a high spatial resolution remote sensing image is a critical step in geographic object-based image analysis (GEOBIA). Evaluating the performance of segmentation without ground truth data, i.e., unsupervised evaluation, is important for the comparison of segmentation algorithms and the automatic selection of optimal parameters. This unsupervised strategy currently faces several challenges in practice, such as difficulties in designing effective indicators and limitations of the spectral values in the feature representation. This study proposes a novel unsupervised evaluation method to quantitatively measure the quality of segmentation results to overcome these problems. In this method, multiple spectral and spatial features of images are first extracted simultaneously and then integrated into a feature set to improve the quality of the feature representation of ground objects. The indicators designed for spatial stratified heterogeneity and spatial autocorrelation are included to estimate the properties of the segments in this integrated feature set. These two indicators are then combined into a global assessment metric as the final quality score. The trade-offs of the combined indicators are accounted for using a strategy based on the Mahalanobis distance, which can be exhibited geometrically. The method is tested on two segmentation algorithms and three testing images. The proposed method is compared with two existing unsupervised methods and a supervised method to confirm its capabilities. Through comparison and visual analysis, the results verified the effectiveness of the proposed method and demonstrated the reliability and improvements of this method with respect to other methods. PMID:29064416

  3. Multispectral colour analysis for quantitative evaluation of pseudoisochromatic color deficiency tests

    NASA Astrophysics Data System (ADS)

    Ozolinsh, Maris; Fomins, Sergejs

    2010-11-01

    Multispectral color analysis was used for spectral scanning of Ishihara and Rabkin color deficiency test book images. It was done using tunable liquid-crystal LC filters built in the Nuance II analyzer. Multispectral analysis keeps both, information on spatial content of tests and on spectral content. Images were taken in the range of 420-720nm with a 10nm step. We calculated retina neural activity charts taking into account cone sensitivity functions, and processed charts in order to find the visibility of latent symbols in color deficiency plates using cross-correlation technique. In such way the quantitative measure is found for each of diagnostics plate for three different color deficiency carrier types - protanopes, deutanopes and tritanopes. Multispectral color analysis allows to determine the CIE xyz color coordinates of pseudoisochromatic plate design elements and to perform statistical analysis of these data to compare the color quality of available color deficiency test books.

  4. Integration of multispectral satellite and hyperspectral field data for aquatic macrophyte studies

    NASA Astrophysics Data System (ADS)

    John, C. M.; Kavya, N.

    2014-11-01

    Aquatic macrophytes (AM) can serve as useful indicators of water pollution along the littoral zones. The spectral signatures of various AM were investigated to determine whether species could be discriminated by remote sensing. In this study the spectral readings of different AM communities identified were done using the ASD Fieldspec® Hand Held spectro-radiometer in the wavelength range of 325-1075 nm. The collected specific reflectance spectra were applied to space borne multi-spectral remote sensing data from Worldview-2, acquired on 26th March 2011. The dimensionality reduction of the spectro-radiometric data was done using the technique principal components analysis (PCA). Out of the different PCA axes generated, 93.472 % variance of the spectra was explained by the first axis. The spectral derivative analysis was done to identify the wavelength where the greatest difference in reflectance is shown. The identified wavelengths are 510, 690, 720, 756, 806, 885, 907 and 923 nm. The output of PCA and derivative analysis were applied to Worldview-2 satellite data for spectral subsetting. The unsupervised classification was used to effectively classify the AM species using the different spectral subsets. The accuracy assessment of the results of the unsupervised classification and their comparison were done. The overall accuracy of the result of unsupervised classification using the band combinations Red-Edge, Green, Coastal blue & Red-edge, Yellow, Blue is 100%. The band combinations NIR-1, Green, Coastal blue & NIR-1, Yellow, Blue yielded an accuracy of 82.35 %. The existing vegetation indices and new hyper-spectral indices for the different type of AM communities were computed. Overall, results of this study suggest that high spectral and spatial resolution images provide useful information for natural resource managers especially with regard to the location identification and distribution mapping of macrophyte species and their communities.

  5. Characterizing riverbed sediment using high-frequency acoustics 1: spectral properties of scattering

    USGS Publications Warehouse

    Buscombe, Daniel D.; Grams, Paul E.; Kaplinski, Matt A.

    2014-01-01

    Bed-sediment classification using high-frequency hydro-acoustic instruments is challenging when sediments are spatially heterogeneous, which is often the case in rivers. The use of acoustic backscatter to classify sediments is an attractive alternative to analysis of topography because it is potentially sensitive to grain-scale roughness. Here, a new method is presented which uses high-frequency acoustic backscatter from multibeam sonar to classify heterogeneous riverbed sediments by type (sand, gravel,rock) continuously in space and at small spatial resolution. In this, the first of a pair of papers that examine the scattering signatures from a heterogeneous riverbed, methods are presented to construct spatially explicit maps of spectral properties from geo-referenced point clouds of geometrically and radiometrically corrected echoes. Backscatter power spectra are computed to produce scale and amplitude metrics that collectively characterize the length scales of stochastic measures of riverbed scattering, termed ‘stochastic geometries’. Backscatter aggregated over small spatial scales have spectra that obey a power-law. This apparently self-affine behavior could instead arise from morphological- and grain-scale roughnesses over multiple overlapping scales, or riverbed scattering being transitional between Rayleigh and geometric regimes. Relationships exist between stochastic geometries of backscatter and areas of rough and smooth sediments. However, no one parameter can uniquely characterize a particular substrate, nor definitively separate the relative contributions of roughness and acoustic impedance (hardness). Combinations of spectral quantities do, however, have the potential to delineate riverbed sediment patchiness, in a data-driven approach comparing backscatter with bed-sediment observations (which is the subject of part two of this manuscript).

  6. An instrument for the simultaneous acquisition of size, shape, and spectral fluorescence data from single aerosol particles

    NASA Astrophysics Data System (ADS)

    Hirst, Edwin; Kaye, Paul H.; Foot, Virginia E.; Clark, James M.; Withers, Philip B.

    2004-12-01

    We describe the construction of a bio-aerosol monitor designed to capture and record intrinsic fluorescence spectra from individual aerosol particles carried in a sample airflow and to simultaneously capture data relating to the spatial distribution of elastically scattered light from each particle. The spectral fluorescence data recorded by this PFAS (Particle Fluorescence and Shape) monitor contains information relating to the particle material content and specifically to possible biological fluorophores. The spatial scattering data from PFAS yields information relating to particle size and shape. The combination of these data can provide a means of aiding the discrimination of bio-aerosols from background or interferent aerosol particles which may have similar fluorescence properties but exhibit shapes and/or sizes not normally associated with biological particles. The radiation used both to excite particle fluorescence and generate the necessary spatially scattered light flux is provided by a novel compact UV fiber laser operating at 266nm wavelength. Particles drawn from the ambient environment traverse the laser beam in single file. Intrinsic particle fluorescence in the range 300-570nm is collected via an ellipsoidal concentrator into a concave grating spectrometer, the spectral data being recorded using a 16-anode linear array photomultiplier detector. Simultaneously, the spatial radiation pattern scattered by the particle over 5°-30° scattering angle and 360° of azimuth is recorded using a custom designed 31-pixel radial hybrid photodiode array. Data from up to ~5,000 particles per second may be acquired for analysis, usually performed by artificial neural network classification.

  7. Digital soil classification and elemental mapping using imaging Vis-NIR spectroscopy: How to explicitly quantify stagnic properties of a Luvisol under Norway spruce

    NASA Astrophysics Data System (ADS)

    Kriegs, Stefanie; Buddenbaum, Henning; Rogge, Derek; Steffens, Markus

    2015-04-01

    Laboratory imaging Vis-NIR spectroscopy of soil profiles is a novel technique in soil science that can determine quantity and quality of various chemical soil properties with a hitherto unreached spatial resolution in undisturbed soil profiles. We have applied this technique to soil cores in order to get quantitative proof of redoximorphic processes under two different tree species and to proof tree-soil interactions at microscale. Due to the imaging capabilities of Vis-NIR spectroscopy a spatially explicit understanding of soil processes and properties can be achieved. Spatial heterogeneity of the soil profile can be taken into account. We took six 30 cm long rectangular soil columns of adjacent Luvisols derived from quaternary aeolian sediments (Loess) in a forest soil near Freising/Bavaria using stainless steel boxes (100×100×300 mm). Three profiles were sampled under Norway spruce and three under European beech. A hyperspectral camera (VNIR, 400-1000 nm in 160 spectral bands) with spatial resolution of 63×63 µm² per pixel was used for data acquisition. Reference samples were taken at representative spots and analysed for organic carbon (OC) quantity and quality with a CN elemental analyser and for iron oxides (Fe) content using dithionite extraction followed by ICP-OES measurement. We compared two supervised classification algorithms, Spectral Angle Mapper and Maximum Likelihood, using different sets of training areas and spectral libraries. As established in chemometrics we used multivariate analysis such as partial least-squares regression (PLSR) in addition to multivariate adaptive regression splines (MARS) to correlate chemical data with Vis-NIR spectra. As a result elemental mapping of Fe and OC within the soil core at high spatial resolution has been achieved. The regression model was validated by a new set of reference samples for chemical analysis. Digital soil classification easily visualizes soil properties within the soil profiles. By combining both techniques, detailed soil maps, elemental balances and a deeper understanding of soil forming processes at the microscale become feasible for complete soil profiles.

  8. Hyperspectral laser-induced autofluorescence imaging of dental caries

    NASA Astrophysics Data System (ADS)

    Bürmen, Miran; Fidler, Aleš; Pernuš, Franjo; Likar, Boštjan

    2012-01-01

    Dental caries is a disease characterized by demineralization of enamel crystals leading to the penetration of bacteria into the dentine and pulp. Early detection of enamel demineralization resulting in increased enamel porosity, commonly known as white spots, is a difficult diagnostic task. Laser induced autofluorescence was shown to be a useful method for early detection of demineralization. The existing studies involved either a single point spectroscopic measurements or imaging at a single spectral band. In the case of spectroscopic measurements, very little or no spatial information is acquired and the measured autofluorescence signal strongly depends on the position and orientation of the probe. On the other hand, single-band spectral imaging can be substantially affected by local spectral artefacts. Such effects can significantly interfere with automated methods for detection of early caries lesions. In contrast, hyperspectral imaging effectively combines the spatial information of imaging methods with the spectral information of spectroscopic methods providing excellent basis for development of robust and reliable algorithms for automated classification and analysis of hard dental tissues. In this paper, we employ 405 nm laser excitation of natural caries lesions. The fluorescence signal is acquired by a state-of-the-art hyperspectral imaging system consisting of a high-resolution acousto-optic tunable filter (AOTF) and a highly sensitive Scientific CMOS camera in the spectral range from 550 nm to 800 nm. The results are compared to the contrast obtained by near-infrared hyperspectral imaging technique employed in the existing studies on early detection of dental caries.

  9. Probing plasmons in three dimensions by combining complementary spectroscopies in a scanning transmission electron microscope

    DOE PAGES

    Hachtel, Jordan A.; Marvinney, Claire; Mouti, Anas; ...

    2016-03-02

    The nanoscale optical response of surface plasmons in three-dimensional metallic nanostructures plays an important role in many nanotechnology applications, where precise spatial and spectral characteristics of plasmonic elements control device performance. Electron energy loss spectroscopy (EELS) and cathodoluminescence (CL) within a scanning transmission electron microscope have proven to be valuable tools for studying plasmonics at the nanoscale. Each technique has been used separately, producing three-dimensional reconstructions through tomography, often aided by simulations for complete characterization. Here we demonstrate that the complementary nature of the two techniques, namely that EELS probes beam-induced electronic excitations while CL probes radiative decay, allows usmore » to directly obtain a spatially- and spectrally-resolved picture of the plasmonic characteristics of nanostructures in three dimensions. Furthermore, the approach enables nanoparticle-by-nanoparticle plasmonic analysis in three dimensions to aid in the design of diverse nanoplasmonic applications.« less

  10. LANDSAT applications to wetlands classification in the upper Mississippi River Valley. Ph.D. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Lillesand, T. M.; Werth, L. F. (Principal Investigator)

    1980-01-01

    A 25% improvement in average classification accuracy was realized by processing double-date vs. single-date data. Under the spectrally and spatially complex site conditions characterizing the geographical area used, further improvement in wetland classification accuracy is apparently precluded by the spectral and spatial resolution restrictions of the LANDSAT MSS. Full scene analysis of scanning densitometer data extracted from scale infrared photography failed to permit discrimination of many wetland and nonwetland cover types. When classification of photographic data was limited to wetland areas only, much more detailed and accurate classification could be made. The integration of conventional image interpretation (to simply delineate wetland boundaries) and machine assisted classification (to discriminate among cover types present within the wetland areas) appears to warrant further research to study the feasibility and cost of extending this methodology over a large area using LANDSAT and/or small scale photography.

  11. Simultaneous multi-beam planar array IR (pair) spectroscopy

    DOEpatents

    Elmore, Douglas L.; Rabolt, John F.; Tsao, Mei-Wei

    2005-09-13

    An apparatus and method capable of providing spatially multiplexed IR spectral information simultaneously in real-time for multiple samples or multiple spatial areas of one sample using IR absorption phenomena requires no moving parts or Fourier Transform during operation, and self-compensates for background spectra and degradation of component performance over time. IR spectral information and chemical analysis of the samples is determined by using one or more IR sources, sampling accessories for positioning the samples, optically dispersive elements, a focal plane array (FPA) arranged to detect the dispersed light beams, and a processor and display to control the FPA, and display an IR spectrograph. Fiber-optic coupling can be used to allow remote sensing. Portability, reliability, and ruggedness is enhanced due to the no-moving part construction. Applications include determining time-resolved orientation and characteristics of materials, including polymer monolayers. Orthogonal polarizers may be used to determine certain material characteristics.

  12. Engineering analysis of LANDSAT 1 data for Southeast Asian agriculture

    NASA Technical Reports Server (NTRS)

    Mcnair, A. J.; Heydt, H. L.; Liang, T.; Levine, G. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. LANDSAT spatial resolution was estimated to be adequate, but barely so, for the purpose of detailed assessment of rice or site status. This was due to the spatially fine grain, heterogenous nature of most rice areas. Use of two spectral bands of digital data (MSS 5 and MSS 6 or 7) appeared to be adequate for site recognition and gross site status assessment. Spectral/temporal signatures were found to be more powerful than spectra signatures alone and virtually essential for most analyses of rice growth and rice sites in the Philippine environment. Two band, two date signatures were estimated to be adequate for most purposes, although good results were achieved using one band two- or four-date signatures. A radiometric resolution of 64 levels in each band was found adequate for the analyses of LANDSAT digital data for site recognition and gross site or rice growth assessment.

  13. A comparison of three feature selection methods for object-based classification of sub-decimeter resolution UltraCam-L imagery

    USDA-ARS?s Scientific Manuscript database

    The availability of numerous spectral, spatial, and contextual features with object-based image analysis (OBIA) renders the selection of optimal features a time consuming and subjective process. While several feature election methods have been used in conjunction with OBIA, a robust comparison of th...

  14. Spectral and Spatial Coherent Emission of Thermal Radiation from Metal-Semiconductor Nanostructures

    DTIC Science & Technology

    2012-03-01

    Coupled Wave Analysis (RCWA) numerical technique and Computer Simulation Technology (CST) electromagnetic modeling software, two structures were...Stephanie Gray, IR-VASE and modeling  Dr. Kevin Gross, FTIR  Mr. Richard Johnston, Cleanroom and Photolithography  Ms. Abbey Juhl, Nanoscribe...Appendix B. Supplemental IR-VASE Measurements and Modeling .............................114 Bibliography

  15. Infrared imaging of cotton fiber bundles using a focal plane array detector and a single reflectance accessory

    USDA-ARS?s Scientific Manuscript database

    Infrared imaging is gaining attention as a technique used in the examination of cotton fibers. This type of imaging combines spectral analysis with spatial resolution to create visual images that examine sample composition and distribution. Herein, we report the use of an infrared instrument equippe...

  16. Markov Chain Monte Carlo Joint Analysis of Chandra X-Ray Imaging Spectroscopy and Sunyaev-Zel'dovich Effect Data

    NASA Technical Reports Server (NTRS)

    Bonamente, Massimillano; Joy, Marshall K.; Carlstrom, John E.; Reese, Erik D.; LaRoque, Samuel J.

    2004-01-01

    X-ray and Sunyaev-Zel'dovich effect data can be combined to determine the distance to galaxy clusters. High-resolution X-ray data are now available from Chandra, which provides both spatial and spectral information, and Sunyaev-Zel'dovich effect data were obtained from the BIMA and Owens Valley Radio Observatory (OVRO) arrays. We introduce a Markov Chain Monte Carlo procedure for the joint analysis of X-ray and Sunyaev- Zel'dovich effect data. The advantages of this method are the high computational efficiency and the ability to measure simultaneously the probability distribution of all parameters of interest, such as the spatial and spectral properties of the cluster gas and also for derivative quantities such as the distance to the cluster. We demonstrate this technique by applying it to the Chandra X-ray data and the OVRO radio data for the galaxy cluster A611. Comparisons with traditional likelihood ratio methods reveal the robustness of the method. This method will be used in follow-up paper to determine the distances to a large sample of galaxy cluster.

  17. Fitting and Modeling in the ASC Data Analysis Environment

    NASA Astrophysics Data System (ADS)

    Doe, S.; Siemiginowska, A.; Joye, W.; McDowell, J.

    As part of the AXAF Science Center (ASC) Data Analysis Environment, we will provide to the astronomical community a Fitting Application. We present a design of the application in this paper. Our design goal is to give the user the flexibility to use a variety of optimization techniques (Levenberg-Marquardt, maximum entropy, Monte Carlo, Powell, downhill simplex, CERN-Minuit, and simulated annealing) and fit statistics (chi (2) , Cash, variance, and maximum likelihood); our modular design allows the user easily to add their own optimization techniques and/or fit statistics. We also present a comparison of the optimization techniques to be provided by the Application. The high spatial and spectral resolutions that will be obtained with AXAF instruments require a sophisticated data modeling capability. We will provide not only a suite of astronomical spatial and spectral source models, but also the capability of combining these models into source models of up to four data dimensions (i.e., into source functions f(E,x,y,t)). We will also provide tools to create instrument response models appropriate for each observation.

  18. [Spectrum similarities-based analysis of spatial difference of snow cover for multi-scale satellite data-a case study of MODIS and HJ-1B data].

    PubMed

    Liu, Yan; Li, Yang; Yang, Yun; Jian, Ji

    2014-05-01

    Vegetation and bare soil were collected in the areas of Miyaluo district in northwest of Sichuan province, the Qilian Mountains in Qinghai province and northern areas of Xinjiang during the years of 2007 and 2013. Then these data were converted to spectral reflectance by applying sensor response function of MODIS and HJ-1B respectively within the range of visible light, near-infrared and shortwave infrared. Comprehensive analysis was made on spectral characteristics and reflectivity similarities and differences of different sensors between old and new snowmelt, under the condition of different snow depth and different snow cover. The conclusions can be drawn That is, there exists high consistency of spectral response between new snow and dirty snow for each sensor in the visible wavelength range, also it is true for bare soil and low vegetation. However, low consistency happens to other types of snow; especially snowmelt and frozen snow. The range of NDSI is relatively stable under the condition of different snow depth for full snow cover and the trend of NDSI shows great consistency for different sensors; NDSI threshold method for monitoring snow by using MODIS and HJ-1B data showed very obvious difference in spatial scales, which is a reasonable explanation of the existence of mixed pixels.

  19. Integration of airborne Thematic Mapper Simulator (TMS) data and digitized aerial photography via an ISH transformation. [Intensity Saturation Hue

    NASA Technical Reports Server (NTRS)

    Ambrosia, Vincent G.; Myers, Jeffrey S.; Ekstrand, Robert E.; Fitzgerald, Michael T.

    1991-01-01

    A simple method for enhancing the spatial and spectral resolution of disparate data sets is presented. Two data sets, digitized aerial photography at a nominal spatial resolution 3,7 meters and TMS digital data at 24.6 meters, were coregistered through a bilinear interpolation to solve the problem of blocky pixel groups resulting from rectification expansion. The two data sets were then subjected to intensity-saturation-hue (ISH) transformations in order to 'blend' the high-spatial-resolution (3.7 m) digitized RC-10 photography with the high spectral (12-bands) and lower spatial (24.6 m) resolution TMS digital data. The resultant merged products make it possible to perform large-scale mapping, ease photointerpretation, and can be derived for any of the 12 available TMS spectral bands.

  20. Efficiency of the spectral-spatial classification of hyperspectral imaging data

    NASA Astrophysics Data System (ADS)

    Borzov, S. M.; Potaturkin, O. I.

    2017-01-01

    The efficiency of methods of the spectral-spatial classification of similarly looking types of vegetation on the basis of hyperspectral data of remote sensing of the Earth, which take into account local neighborhoods of analyzed image pixels, is experimentally studied. Algorithms that involve spatial pre-processing of the raw data and post-processing of pixel-based spectral classification maps are considered. Results obtained both for a large-size hyperspectral image and for its test fragment with different methods of training set construction are reported. The classification accuracy in all cases is estimated through comparisons of ground-truth data and classification maps formed by using the compared methods. The reasons for the differences in these estimates are discussed.

  1. The effect of spatial, spectral and radiometric factors on classification accuracy using thematic mapper data

    NASA Technical Reports Server (NTRS)

    Wrigley, R. C.; Acevedo, W.; Alexander, D.; Buis, J.; Card, D.

    1984-01-01

    An experiment of a factorial design was conducted to test the effects on classification accuracy of land cover types due to the improved spatial, spectral and radiometric characteristics of the Thematic Mapper (TM) in comparison to the Multispectral Scanner (MSS). High altitude aircraft scanner data from the Airborne Thematic Mapper instrument was acquired over central California in August, 1983 and used to simulate Thematic Mapper data as well as all combinations of the three characteristics for eight data sets in all. Results for the training sites (field center pixels) showed better classification accuracies for MSS spatial resolution, TM spectral bands and TM radiometry in order of importance.

  2. Fourier mode analysis of slab-geometry transport iterations in spatially periodic media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, E; Zika, M

    1999-04-01

    We describe a Fourier analysis of the diffusion-synthetic acceleration (DSA) and transport-synthetic acceleration (TSA) iteration schemes for a spatially periodic, but otherwise arbitrarily heterogeneous, medium. Both DSA and TSA converge more slowly in a heterogeneous medium than in a homogeneous medium composed of the volume-averaged scattering ratio. In the limit of a homogeneous medium, our heterogeneous analysis contains eigenvalues of multiplicity two at ''resonant'' wave numbers. In the presence of material heterogeneities, error modes corresponding to these resonant wave numbers are ''excited'' more than other error modes. For DSA and TSA, the iteration spectral radius may occur at these resonantmore » wave numbers, in which case the material heterogeneities most strongly affect iterative performance.« less

  3. Non-invasive measurement of frog skin reflectivity in high spatial resolution using a dual hyperspectral approach.

    PubMed

    Pinto, Francisco; Mielewczik, Michael; Liebisch, Frank; Walter, Achim; Greven, Hartmut; Rascher, Uwe

    2013-01-01

    Most spectral data for the amphibian integument are limited to the visible spectrum of light and have been collected using point measurements with low spatial resolution. In the present study a dual camera setup consisting of two push broom hyperspectral imaging systems was employed, which produces reflectance images between 400 and 2500 nm with high spectral and spatial resolution and a high dynamic range. We briefly introduce the system and document the high efficiency of this technique analyzing exemplarily the spectral reflectivity of the integument of three arboreal anuran species (Litoria caerulea, Agalychnis callidryas and Hyla arborea), all of which appear green to the human eye. The imaging setup generates a high number of spectral bands within seconds and allows non-invasive characterization of spectral characteristics with relatively high working distance. Despite the comparatively uniform coloration, spectral reflectivity between 700 and 1100 nm differed markedly among the species. In contrast to H. arborea, L. caerulea and A. callidryas showed reflection in this range. For all three species, reflectivity above 1100 nm is primarily defined by water absorption. Furthermore, the high resolution allowed examining even small structures such as fingers and toes, which in A. callidryas showed an increased reflectivity in the near infrared part of the spectrum. Hyperspectral imaging was found to be a very useful alternative technique combining the spectral resolution of spectrometric measurements with a higher spatial resolution. In addition, we used Digital Infrared/Red-Edge Photography as new simple method to roughly determine the near infrared reflectivity of frog specimens in field, where hyperspectral imaging is typically difficult.

  4. Finding the patterns in complex specimens by improving the acquisition and analysis of x-ray spectromicroscopy data

    NASA Astrophysics Data System (ADS)

    Lerotic, Mirna

    Soft x-ray spectromicroscopy provides spectral data on the chemical speciation of light elements at sub-100 nanometer spatial resolution. The high resolution imaging places a strong demand on the microscope stability and on the reproducibility of the scanned image field, and the volume of data necessitates the need for improved data analysis methods. This dissertation concerns two developments in extending the capability of soft x-ray transmission microscopes to carry out studies of chemical speciation at high spatial resolution. One development involves an improvement in x-ray microscope instrumentation: a new Stony Brook scanning transmission x-ray microscope which incorporates laser interferometer feedback in scanning stage positions. The interferometer is used to control the position between the sample and focusing optics, and thus improve the stability of the system. A second development concerns new analysis methods for the study of chemical speciation of complex specimens, such as those in biological and environmental science studies. When all chemical species in a specimen are known and separately characterized, existing approaches can be used to measure the concentration of each component at each pixel. In other cases (such as often occur in biology or environmental science), where the specimen may be too complicated or provide at least some unknown spectral signatures, other approaches must be used. We describe here an approach that uses principal component analysis (similar to factor analysis) to orthogonalize and noise-filter spectromicroscopy data. We then use cluster analysis (a form of unsupervised pattern matching) to classify pixels according to spectral similarity, to extract representative, cluster-averaged spectra with good signal-to-noise ratio, and to obtain gradations of concentration of these representative spectra at each pixel. The method is illustrated with a simulated data set of organic compounds, and a mixture of lutetium in hematite used to understand colloidal transport properties of radionuclides. Also, we describe here an extension of that work employing an angle distance measure; this measure provides better classification based on spectral signatures alone in specimens with significant thickness variations. The method is illustrated using simulated data, and also to examine sporulation in the bacterium Clostridium sp.

  5. Quality evaluation of pansharpened hyperspectral images generated using multispectral images

    NASA Astrophysics Data System (ADS)

    Matsuoka, Masayuki; Yoshioka, Hiroki

    2012-11-01

    Hyperspectral remote sensing can provide a smooth spectral curve of a target by using a set of higher spectral resolution detectors. The spatial resolution of the hyperspectral images, however, is generally much lower than that of multispectral images due to the lower energy of incident radiation. Pansharpening is an image-fusion technique that generates higher spatial resolution multispectral images by combining lower resolution multispectral images with higher resolution panchromatic images. In this study, higher resolution hyperspectral images were generated by pansharpening of simulated lower hyperspectral and higher multispectral data. Spectral and spatial qualities of pansharpened images, then, were accessed in relation to the spectral bands of multispectral images. Airborne hyperspectral data of AVIRIS was used in this study, and it was pansharpened using six methods. Quantitative evaluations of pansharpened image are achieved using two frequently used indices, ERGAS, and the Q index.

  6. Scalable fabrication of coupled NV center - photonic crystal cavity systems by self-aligned N ion implantation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schröder, T.; Walsh, M.; Zheng, J.

    2017-04-06

    Towards building large-scale integrated photonic systems for quantum information processing, spatial and spectral alignment of single quantum systems to photonic nanocavities is required. In this paper, we demonstrate spatially targeted implantation of nitrogen vacancy (NV) centers into the mode maximum of 2-d diamond photonic crystal cavities with quality factors up to 8000, achieving an average of 1.1 ± 0.2 NVs per cavity. Nearly all NV-cavity systems have significant emission intensity enhancement, reaching a cavity-fed spectrally selective intensity enhancement, F int, of up to 93. Although spatial NV-cavity overlap is nearly guaranteed within about 40 nm, spectral tuning of the NV’smore » zero-phonon-line (ZPL) is still necessary after fabrication. To demonstrate spectral control, we temperature tune a cavity into an NV ZPL, yielding F ZPL int~5 at cryogenic temperatures.« less

  7. High spatial resolution three-dimensional mapping of vegetation spectral dynamics using computer vision

    Treesearch

    Jonathan P. Dandois; Erle C. Ellis

    2013-01-01

    High spatial resolution three-dimensional (3D) measurements of vegetation by remote sensing are advancing ecological research and environmental management. However, substantial economic and logistical costs limit this application, especially for observing phenological dynamics in ecosystem structure and spectral traits. Here we demonstrate a new aerial remote sensing...

  8. Real-time spectral imaging in three spatial dimensions

    NASA Astrophysics Data System (ADS)

    Liu, Wenhai; Psaltis, Demetri; Barbastathis, George

    2002-05-01

    We report what is to our knowledge the first volume-holographic optical imaging instrument with the capability to return three-dimensional spatial as well as spectral information about semitranslucent microscopic objects in a single measurement. The four-dimensional volume-holographic microscope is characterized theoretically and experimentally by use of fluorescent microspheres as objects.

  9. Staring 2-D hadamard transform spectral imager

    DOEpatents

    Gentry, Stephen M [Albuquerque, NM; Wehlburg, Christine M [Albuquerque, NM; Wehlburg, Joseph C [Albuquerque, NM; Smith, Mark W [Albuquerque, NM; Smith, Jody L [Albuquerque, NM

    2006-02-07

    A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.

  10. Evaluating Sentinel-2 for Lakeshore Habitat Mapping Based on Airborne Hyperspectral Data.

    PubMed

    Stratoulias, Dimitris; Balzter, Heiko; Sykioti, Olga; Zlinszky, András; Tóth, Viktor R

    2015-09-11

    Monitoring of lakeshore ecosystems requires fine-scale information to account for the high biodiversity typically encountered in the land-water ecotone. Sentinel-2 is a satellite with high spatial and spectral resolution and improved revisiting frequency and is expected to have significant potential for habitat mapping and classification of complex lakeshore ecosystems. In this context, investigations of the capabilities of Sentinel-2 in regard to the spatial and spectral dimensions are needed to assess its potential and the quality of the expected output. This study presents the first simulation of the high spatial resolution (i.e., 10 m and 20 m) bands of Sentinel-2 for lakeshore mapping, based on the satellite's Spectral Response Function and hyperspectral airborne data collected over Lake Balaton, Hungary in August 2010. A comparison of supervised classifications of the simulated products is presented and the information loss from spectral aggregation and spatial upscaling in the context of lakeshore vegetation classification is discussed. We conclude that Sentinel-2 imagery has a strong potential for monitoring fine-scale habitats, such as reed beds.

  11. Evaluating Sentinel-2 for Lakeshore Habitat Mapping Based on Airborne Hyperspectral Data

    PubMed Central

    Stratoulias, Dimitris; Balzter, Heiko; Sykioti, Olga; Zlinszky, András; Tóth, Viktor R.

    2015-01-01

    Monitoring of lakeshore ecosystems requires fine-scale information to account for the high biodiversity typically encountered in the land-water ecotone. Sentinel-2 is a satellite with high spatial and spectral resolution and improved revisiting frequency and is expected to have significant potential for habitat mapping and classification of complex lakeshore ecosystems. In this context, investigations of the capabilities of Sentinel-2 in regard to the spatial and spectral dimensions are needed to assess its potential and the quality of the expected output. This study presents the first simulation of the high spatial resolution (i.e., 10 m and 20 m) bands of Sentinel-2 for lakeshore mapping, based on the satellite’s Spectral Response Function and hyperspectral airborne data collected over Lake Balaton, Hungary in August 2010. A comparison of supervised classifications of the simulated products is presented and the information loss from spectral aggregation and spatial upscaling in the context of lakeshore vegetation classification is discussed. We conclude that Sentinel-2 imagery has a strong potential for monitoring fine-scale habitats, such as reed beds. PMID:26378538

  12. Spatial Prediction of Soil Classes by Using Soil Weathering Parameters Derived from vis-NIR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ramirez-Lopez, Leonardo; Alexandre Dematte, Jose

    2010-05-01

    There is consensus in the scientific community about the great need of spatial soil information. Conventional mapping methods are time consuming and involve high costs. Digital soil mapping has emerged as an area in which the soil mapping is optimized by the application of mathematical and statistical approaches, as well as the application of expert knowledge in pedology. In this sense, the objective of the study was to develop a methodology for the spatial prediction of soil classes by using soil spectroscopy methodologies related with fieldwork, spectral data from satellite image and terrain attributes in simultaneous. The studied area is located in São Paulo State, and comprised an area of 473 ha, which was covered by a regular grid (100 x 100 m). In each grid node was collected soil samples at two depths (layers A and B). There were extracted 206 samples from transect sections and submitted to soil analysis (clay, Al2O3, Fe2O3, SiO2 TiO2, and weathering index). The first analog soil class map (ASC-N) contains only soil information regarding from orders to subgroups of the USDA Soil Taxonomy System. The second (ASC-H) map contains some additional information related to some soil attributes like color, ferric levels and base sum. For the elaboration of the digital soil maps the data was divided into three groups: i) Predicted soil attributes of the layer B (related to the soil weathering) which were obtained by using a local soil spectral library; ii) Spectral bands data extracted from a Landsat image; and iii) Terrain parameters. This information was summarized by a principal component analysis (PCA) in each group. Digital soil maps were generated by supervised classification using a maximum likelihood method. The trainee information for this classification was extracted from five toposequences based on the analog soil class maps. The spectral models of weathering soil attributes shown a high predictive performance with low error (R2 0.71 to 0.90). The spatial prediction of these attributes also showed a high performance (validations with R2> 0.78). These models allowed to increase spatial resolution of soil weathering information. On the other hand, the comparison between the analog and digital soil maps showed a global accuracy of 69% for the ASC-N map and 62% in the ASC-H map, with kappa indices of 0.52 and 0.45 respectively.

  13. Evaluating visibility of age spot and freckle based on simulated spectral reflectance distribution and facial color image

    NASA Astrophysics Data System (ADS)

    Hirose, Misa; Toyota, Saori; Tsumura, Norimichi

    2018-02-01

    In this research, we evaluate the visibility of age spot and freckle with changing the blood volume based on simulated spectral reflectance distribution and the actual facial color images, and compare these results. First, we generate three types of spatial distribution of age spot and freckle in patch-like images based on the simulated spectral reflectance. The spectral reflectance is simulated using Monte Carlo simulation of light transport in multi-layered tissue. Next, we reconstruct the facial color image with changing the blood volume. We acquire the concentration distribution of melanin, hemoglobin and shading components by applying the independent component analysis on a facial color image. We reproduce images using the obtained melanin and shading concentration and the changed hemoglobin concentration. Finally, we evaluate the visibility of pigmentations using simulated spectral reflectance distribution and facial color images. In the result of simulated spectral reflectance distribution, we found that the visibility became lower as the blood volume increases. However, we can see that a specific blood volume reduces the visibility of the actual pigmentations from the result of the facial color images.

  14. Hyperspectral Image Analysis for Skin Tumor Detection

    NASA Astrophysics Data System (ADS)

    Kong, Seong G.; Park, Lae-Jeong

    This chapter presents hyperspectral imaging of fluorescence for nonin-vasive detection of tumorous tissue on mouse skin. Hyperspectral imaging sensors collect two-dimensional (2D) image data of an object in a number of narrow, adjacent spectral bands. This high-resolution measurement of spectral information reveals a continuous emission spectrum for each image pixel useful for skin tumor detection. The hyperspectral image data used in this study are fluorescence intensities of a mouse sample consisting of 21 spectral bands in the visible spectrum of wavelengths ranging from 440 to 640 nm. Fluorescence signals are measured using a laser excitation source with the center wavelength of 337 nm. An acousto-optic tunable filter is used to capture individual spectral band images at a 10-nm resolution. All spectral band images are spatially registered with the reference band image at 490 nm to obtain exact pixel correspondences by compensating the offsets caused during the image capture procedure. The support vector machines with polynomial kernel functions provide decision boundaries with a maximum separation margin to classify malignant tumor and normal tissue from the observed fluorescence spectral signatures for skin tumor detection.

  15. Some spectral and spatial characteristics of LANDSAT data

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Activities are provided for: (1) developing insight into the way in which the LANDSAT MSS produces multispectral data; (2) promoting understanding of what a "pixel" means in a LANDSAT image and the implications of the term "mixed pixel"; (3) explaining the concept of spectral signatures; (4) deriving a simple signature for a class or feature by analysis: of the four band images; (5) understanding the production of false color composites; (6) appreciating the use of color additive techniques; (7) preparing Diazo images; and (8) making quick visual identifications of major land cover types by their characteristic gray tones or colors in LANDSAT images.

  16. Combining spatial and spectral information to improve crop/weed discrimination algorithms

    NASA Astrophysics Data System (ADS)

    Yan, L.; Jones, G.; Villette, S.; Paoli, J. N.; Gée, C.

    2012-01-01

    Reduction of herbicide spraying is an important key to environmentally and economically improve weed management. To achieve this, remote sensors such as imaging systems are commonly used to detect weed plants. We developed spatial algorithms that detect the crop rows to discriminate crop from weeds. These algorithms have been thoroughly tested and provide robust and accurate results without learning process but their detection is limited to inter-row areas. Crop/Weed discrimination using spectral information is able to detect intra-row weeds but generally needs a prior learning process. We propose a method based on spatial and spectral information to enhance the discrimination and overcome the limitations of both algorithms. The classification from the spatial algorithm is used to build the training set for the spectral discrimination method. With this approach we are able to improve the range of weed detection in the entire field (inter and intra-row). To test the efficiency of these algorithms, a relevant database of virtual images issued from SimAField model has been used and combined to LOPEX93 spectral database. The developed method based is evaluated and compared with the initial method in this paper and shows an important enhancement from 86% of weed detection to more than 95%.

  17. Visible-Infrared Hyperspectral Image Projector

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew

    2013-01-01

    The VisIR HIP generates spatially-spectrally complex scenes. The generated scenes simulate real-world targets viewed by various remote sensing instruments. The VisIR HIP consists of two subsystems: a spectral engine and a spatial engine. The spectral engine generates spectrally complex uniform illumination that spans the wavelength range between 380 nm and 1,600 nm. The spatial engine generates two-dimensional gray-scale scenes. When combined, the two engines are capable of producing two-dimensional scenes with a unique spectrum at each pixel. The VisIR HIP can be used to calibrate any spectrally sensitive remote-sensing instrument. Tests were conducted on the Wide-field Imaging Interferometer Testbed at NASA s Goddard Space Flight Center. The device is a variation of the calibrated hyperspectral image projector developed by the National Institute of Standards and Technology in Gaithersburg, MD. It uses Gooch & Housego Visible and Infrared OL490 Agile Light Sources to generate arbitrary spectra. The two light sources are coupled to a digital light processing (DLP(TradeMark)) digital mirror device (DMD) that serves as the spatial engine. Scenes are displayed on the DMD synchronously with desired spectrum. Scene/spectrum combinations are displayed in rapid succession, over time intervals that are short compared to the integration time of the system under test.

  18. Intermediate scale plasma density irregularities in the polar ionosphere inferred from radio occultation

    NASA Astrophysics Data System (ADS)

    Shume, E. B.; Komjathy, A.; Langley, R. B.; Verkhoglyadova, O. P.; Butala, M.; Mannucci, A. J.

    2014-12-01

    In this research, we report intermediate scale plasma density irregularities in the high-latitude ionosphere inferred from high-resolution radio occultation (RO) measurements in the CASSIOPE (CAScade Smallsat and IOnospheric Polar Explorer) - GPS (Global Positioning System) satellites radio link. The high inclination of the CASSIOPE satellite and high rate of signal receptionby the occultation antenna of the GPS Attitude, Positioning and Profiling (GAP) instrument on the Enhanced Polar Outflow Probe platform on CASSIOPE enable a high temporal and spatial resolution investigation of the dynamics of the polar ionosphere, magnetosphere-ionospherecoupling, solar wind effects, etc. with unprecedented details compared to that possible in the past. We have carried out high spatial resolution analysis in altitude and geomagnetic latitude of scintillation-producing plasma density irregularities in the polar ionosphere. Intermediate scale, scintillation-producing plasma density irregularities, which corresponds to 2 to 40 km spatial scales were inferred by applying multi-scale spectral analysis on the RO phase delay measurements. Using our multi-scale spectral analysis approach and Polar Operational Environmental Satellites (POES) and Defense Meteorological Satellite Program (DMSP) observations, we infer that the irregularity scales and phase scintillations have distinct features in the auroral oval and polar cap regions. In specific terms, we found that large length scales and and more intense phase scintillations are prevalent in the auroral oval compared to the polar cap region. Hence, the irregularity scales and phase scintillation characteristics are a function of the solar wind and the magnetospheric forcing. Multi-scale analysis may become a powerful diagnostic tool for characterizing how the ionosphere is dynamically driven by these factors.

  19. Spectral methods for the spin-2 equation near the cylinder at spatial infinity

    NASA Astrophysics Data System (ADS)

    Macedo, Rodrigo P.; Valiente Kroon, Juan A.

    2018-06-01

    We solve, numerically, the massless spin-2 equations, written in terms of a gauge based on the properties of conformal geodesics, in a neighbourhood of spatial infinity using spectral methods in both space and time. This strategy allows us to compute the solutions to these equations up to the critical sets where null infinity intersects with spatial infinity. Moreover, we use the convergence rates of the numerical solutions to read-off their regularity properties.

  20. A Digital Sensor Simulator of the Pushbroom Offner Hyperspectral Imaging Spectrometer

    PubMed Central

    Tao, Dongxing; Jia, Guorui; Yuan, Yan; Zhao, Huijie

    2014-01-01

    Sensor simulators can be used in forecasting the imaging quality of a new hyperspectral imaging spectrometer, and generating simulated data for the development and validation of the data processing algorithms. This paper presents a novel digital sensor simulator for the pushbroom Offner hyperspectral imaging spectrometer, which is widely used in the hyperspectral remote sensing. Based on the imaging process, the sensor simulator consists of a spatial response module, a spectral response module, and a radiometric response module. In order to enhance the simulation accuracy, spatial interpolation-resampling, which is implemented before the spatial degradation, is developed to compromise the direction error and the extra aliasing effect. Instead of using the spectral response function (SRF), the dispersive imaging characteristics of the Offner convex grating optical system is accurately modeled by its configuration parameters. The non-uniformity characteristics, such as keystone and smile effects, are simulated in the corresponding modules. In this work, the spatial, spectral and radiometric calibration processes are simulated to provide the parameters of modulation transfer function (MTF), SRF and radiometric calibration parameters of the sensor simulator. Some uncertainty factors (the stability, band width of the monochromator for the spectral calibration, and the integrating sphere uncertainty for the radiometric calibration) are considered in the simulation of the calibration process. With the calibration parameters, several experiments were designed to validate the spatial, spectral and radiometric response of the sensor simulator, respectively. The experiment results indicate that the sensor simulator is valid. PMID:25615727

  1. A Spectral Method for Spatial Downscaling

    PubMed Central

    Reich, Brian J.; Chang, Howard H.; Foley, Kristen M.

    2014-01-01

    Summary Complex computer models play a crucial role in air quality research. These models are used to evaluate potential regulatory impacts of emission control strategies and to estimate air quality in areas without monitoring data. For both of these purposes, it is important to calibrate model output with monitoring data to adjust for model biases and improve spatial prediction. In this article, we propose a new spectral method to study and exploit complex relationships between model output and monitoring data. Spectral methods allow us to estimate the relationship between model output and monitoring data separately at different spatial scales, and to use model output for prediction only at the appropriate scales. The proposed method is computationally efficient and can be implemented using standard software. We apply the method to compare Community Multiscale Air Quality (CMAQ) model output with ozone measurements in the United States in July 2005. We find that CMAQ captures large-scale spatial trends, but has low correlation with the monitoring data at small spatial scales. PMID:24965037

  2. Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems

    USGS Publications Warehouse

    Clark, Roger N.; Swayze, Gregg A.; Livo, K. Eric; Kokaly, Raymond F.; Sutley, Steve J.; Dalton, J. Brad; McDougal, Robert R.; Gent, Carol A.

    2003-01-01

    Imaging spectroscopy is a tool that can be used to spectrally identify and spatially map materials based on their specific chemical bonds. Spectroscopic analysis requires significantly more sophistication than has been employed in conventional broadband remote sensing analysis. We describe a new system that is effective at material identification and mapping: a set of algorithms within an expert system decision‐making framework that we call Tetracorder. The expertise in the system has been derived from scientific knowledge of spectral identification. The expert system rules are implemented in a decision tree where multiple algorithms are applied to spectral analysis, additional expert rules and algorithms can be applied based on initial results, and more decisions are made until spectral analysis is complete. Because certain spectral features are indicative of specific chemical bonds in materials, the system can accurately identify and map those materials. In this paper we describe the framework of the decision making process used for spectral identification, describe specific spectral feature analysis algorithms, and give examples of what analyses and types of maps are possible with imaging spectroscopy data. We also present the expert system rules that describe which diagnostic spectral features are used in the decision making process for a set of spectra of minerals and other common materials. We demonstrate the applications of Tetracorder to identify and map surface minerals, to detect sources of acid rock drainage, and to map vegetation species, ice, melting snow, water, and water pollution, all with one set of expert system rules. Mineral mapping can aid in geologic mapping and fault detection and can provide a better understanding of weathering, mineralization, hydrothermal alteration, and other geologic processes. Environmental site assessment, such as mapping source areas of acid mine drainage, has resulted in the acceleration of site cleanup, saving millions of dollars and years in cleanup time. Imaging spectroscopy data and Tetracorder analysis can be used to study both terrestrial and planetary science problems. Imaging spectroscopy can be used to probe planetary systems, including their atmospheres, oceans, and land surfaces.

  3. Laser Doppler velocimeter system simulation for sensing aircraft wake vortices. Part 2: Processing and analysis of LDV data (for runs 1023 and 2023)

    NASA Technical Reports Server (NTRS)

    Meng, J. C. S.; Thomson, J. A. L.

    1975-01-01

    A data analysis program constructed to assess LDV system performance, to validate the simulation model, and to test various vortex location algorithms is presented. Real or simulated Doppler spectra versus range and elevation is used and the spatial distributions of various spectral moments or other spectral characteristics are calculated and displayed. Each of the real or simulated scans can be processed by one of three different procedures: simple frequency or wavenumber filtering, matched filtering, and deconvolution filtering. The final output is displayed as contour plots in an x-y coordinate system, as well as in the form of vortex tracks deduced from the maxima of the processed data. A detailed analysis of run number 1023 and run number 2023 is presented to demonstrate the data analysis procedure. Vortex tracks and system range resolutions are compared with theoretical predictions.

  4. A GIHS-based spectral preservation fusion method for remote sensing images using edge restored spectral modulation

    NASA Astrophysics Data System (ADS)

    Zhou, Xiran; Liu, Jun; Liu, Shuguang; Cao, Lei; Zhou, Qiming; Huang, Huawen

    2014-02-01

    High spatial resolution and spectral fidelity are basic standards for evaluating an image fusion algorithm. Numerous fusion methods for remote sensing images have been developed. Some of these methods are based on the intensity-hue-saturation (IHS) transform and the generalized IHS (GIHS), which may cause serious spectral distortion. Spectral distortion in the GIHS is proven to result from changes in saturation during fusion. Therefore, reducing such changes can achieve high spectral fidelity. A GIHS-based spectral preservation fusion method that can theoretically reduce spectral distortion is proposed in this study. The proposed algorithm consists of two steps. The first step is spectral modulation (SM), which uses the Gaussian function to extract spatial details and conduct SM of multispectral (MS) images. This method yields a desirable visual effect without requiring histogram matching between the panchromatic image and the intensity of the MS image. The second step uses the Gaussian convolution function to restore lost edge details during SM. The proposed method is proven effective and shown to provide better results compared with other GIHS-based methods.

  5. Determination of the complex refractive index segments of turbid sample with multispectral spatially modulated structured light and models approximation

    NASA Astrophysics Data System (ADS)

    Meitav, Omri; Shaul, Oren; Abookasis, David

    2017-09-01

    Spectral data enabling the derivation of a biological tissue sample's complex refractive index (CRI) can provide a range of valuable information in the clinical and research contexts. Specifically, changes in the CRI reflect alterations in tissue morphology and chemical composition, enabling its use as an optical marker during diagnosis and treatment. In the present work, we report a method for estimating the real and imaginary parts of the CRI of a biological sample using Kramers-Kronig (KK) relations in the spatial frequency domain. In this method, phase-shifted sinusoidal patterns at single high spatial frequency are serially projected onto the sample surface at different near-infrared wavelengths while a camera mounted normal to the sample surface acquires the reflected diffuse light. In the offline analysis pipeline, recorded images at each wavelength are converted to spatial phase maps using KK analysis and are then calibrated against phase-models derived from diffusion approximation. The amplitude of the reflected light, together with phase data, is then introduced into Fresnel equations to resolve both real and imaginary segments of the CRI at each wavelength. The technique was validated in tissue-mimicking phantoms with known optical parameters and in mouse models of ischemic injury and heat stress. Experimental data obtained indicate variations in the CRI among brain tissue suffering from injury. CRI fluctuations correlated with alterations in the scattering and absorption coefficients of the injured tissue are demonstrated. This technique for deriving dynamic changes in the CRI of tissue may be further developed as a clinical diagnostic tool and for biomedical research applications. To the best of our knowledge, this is the first report of the estimation of the spectral CRI of a mouse head following injury obtained in the spatial frequency domain.

  6. An analysis of Milwaukee county land use

    NASA Technical Reports Server (NTRS)

    Todd, W. J.; Mausel, P. E.

    1973-01-01

    The identification and classification of urban and suburban phenomena through analysis of remotely-acquired sensor data can provide information of great potential value to many regional analysts. Such classifications, particularly those using spectral data obtained from satellites such as the first Earth Resources Technology Satellite (ERTS-1) orbited by NASA, allow rapid frequent and accurate general land use inventories that are of value in many types of spatial analyses. In this study, Milwaukee County, Wisconsin was classified into several broad land use categories on the basis of computer analysis of four bands of ERTS spectral data (ERTS Frame Number E1017-16093). Categories identified were: (1) road-central business district, (2) grass (green vegetation), (3) suburban, (4) wooded suburb, (5) heavy industry, (6) inner city, and (7) water. Overall, 90 percent accuracy was attained in classification of these urban land use categories.

  7. Discrimination of common Mediterranean plant species using field spectroradiometry

    NASA Astrophysics Data System (ADS)

    Manevski, Kiril; Manakos, Ioannis; Petropoulos, George P.; Kalaitzidis, Chariton

    2011-12-01

    Field spectroradiometry of land surface objects supports remote sensing analysis, facilitates the discrimination of vegetation species, and enhances the mapping efficiency. Especially in the Mediterranean, spectral discrimination of common vegetation types, such as phrygana and maquis species, remains a challenge. Both phrygana and maquis may be used as a direct indicator for grazing management, fire history and severity, and the state of the wider ecosystem equilibrium. This study aims to investigate the capability of field spectroradiometry supporting remote sensing analysis of the land cover of a characteristic Mediterranean area. Five common Mediterranean maquis and phrygana species were examined. Spectra acquisition was performed during an intensive field campaign deployed in spring 2010, supported by a novel platform MUFSPEM@MED (Mobile Unit for Field SPEctral Measurements at the MEDiterranean) for high canopy measurements. Parametric and non-parametric statistical tests have been applied to the continuum-removed reflectance of the species in the visible to shortwave infrared spectral range. Interpretation of the results indicated distinct discrimination between the studied species at specific spectral regions. Statistically significant wavelengths were principally found in both the visible and the near infrared regions of the electromagnetic spectrum. Spectral bands in the shortwave infrared demonstrated significant discrimination features for the examined species adapted to Mediterranean drought. All in all, results confirmed the prospect for a more accurate mapping of the species spatial distribution using remote sensing imagery coupled with in situ spectral information.

  8. A new technique for identification of minerals in hyperspectral images. Application to robust characterization of phyllosilicate deposits at Mawrth Vallis using CRISM images.

    NASA Astrophysics Data System (ADS)

    Parente, M.; Bishop, J. L.

    2008-12-01

    Mapping of Mars by MRO has revealed the presence of numerous small phyllosilicate outcrops. These are typically identified in CRISM images using "summary products" (Pelkey, 2007) that consist of band ratios, depths and spectral slopes around diagnostic wavelengths. The summary products are designed to capture spectral features related to both surface mineralogy and atmospheric gases and aerosols. Such products, as an analysis tool to characterize composition as well as a targeting tool to identify areas of mineralogical interest, have been successful in capturing the known diversity of the Martian surface, and in highlighting locations with strong spectral signatures. Here we present alternative mineral mapping technique that 1) aims to increase the robustness of mineral detections with respect to the specific CRISM artifacts, 2) takes advantage of the spatial context of each pixel and 3) develops new parameters for the discrimination of species in the phyllosilicates family. We include spatial context by evaluating spectral shapes, band depths and spectral slopes for the current pixel based on its spatial neighbors within the same geological unit. Furthermore, the parameters are based on estimates that are more robust to CRISM speckling noise that might alter the parameters and potentially the mineral interpretation. As an effort to distinguish between phyllosilicates species, we are augmenting the suite of existent parameters with a set of mineral parameters that involve the position, number and shapes of diagnostic phyllosilicate absorptions. We are comparing the effectiveness of this new approach to the summary product procedure. The study shows that homogeneous mineral maps and diagnostic spectral identifications are possible as a result of the application of such new parameters. We applied the technique to the discrimination of kaolinite in Mawrth Vallis. The experiments show several small kaolinite outcrops dispersed within the more extensive Al-rich phyllosilicates in regions around the MSL landing sites. Another test was the discrimination of montmorillonite and nontronite in Mawrth Vallis that can be successfully accomplished by band depths summary products near 2.2 and 2.3 μm. The new technique produces improved maps with lower noise levels and lower percentage of false detections.

  9. Improving urban land use and land cover classification from high-spatial-resolution hyperspectral imagery using contextual information

    NASA Astrophysics Data System (ADS)

    Yang, He; Ma, Ben; Du, Qian; Yang, Chenghai

    2010-08-01

    In this paper, we propose approaches to improve the pixel-based support vector machine (SVM) classification for urban land use and land cover (LULC) mapping from airborne hyperspectral imagery with high spatial resolution. Class spatial neighborhood relationship is used to correct the misclassified class pairs, such as roof and trail, road and roof. These classes may be difficult to be separated because they may have similar spectral signatures and their spatial features are not distinct enough to help their discrimination. In addition, misclassification incurred from within-class trivial spectral variation can be corrected by using pixel connectivity information in a local window so that spectrally homogeneous regions can be well preserved. Our experimental results demonstrate the efficiency of the proposed approaches in classification accuracy improvement. The overall performance is competitive to the object-based SVM classification.

  10. Temporal dynamics of spectral bioindicators evidence biological and ecological differences among functional types in a cork oak open woodland

    NASA Astrophysics Data System (ADS)

    Cerasoli, Sofia; Costa e Silva, Filipe; Silva, João M. N.

    2016-06-01

    The application of spectral vegetation indices for the purpose of vegetation monitoring and modeling increased largely in recent years. Nonetheless, the interpretation of biophysical properties of vegetation through their spectral signature is still a challenging task. This is particularly true in Mediterranean oak forest characterized by a high spatial and temporal heterogeneity. In this study, the temporal dynamics of vegetation indices expected to be related with green biomass and photosynthetic efficiency were compared for the canopy of trees, the herbaceous layer, and two shrub species: cistus ( Cistus salviifolius) and ulex ( Ulex airensis). coexisting in a cork oak woodland. All indices were calculated from in situ measurements with a FieldSpec3 spectroradiometer (ASD Inc., Boulder, USA). Large differences emerged in the temporal trends and in the correlation between climate and vegetation indices. The relationship between spectral indices and temperature, radiation, and vapor pressure deficit for cork oak was opposite to that observed for the herbaceous layer and cistus. No correlation was observed between rainfall and vegetation indices in cork oak and ulex, but in the herbaceous layer and in the cistus, significant correlations were found. The analysis of spectral vegetation indices with fraction of absorbed PAR (fPAR) and quantum yield of chlorophyll fluorescence ( ΔF/ Fm') evidenced strongest relationships with the indices Normalized Difference Water Index (NDWI) and Photochemical Reflectance Index (PRI)512, respectively. Our results, while confirms the ability of spectral vegetation indices to represent temporal dynamics of biophysical properties of vegetation, evidence the importance to consider ecosystem composition for a correct ecological interpretation of results when the spatial resolution of observations includes different plant functional types.

  11. Temporal dynamics of spectral bioindicators evidence biological and ecological differences among functional types in a cork oak open woodland.

    PubMed

    Cerasoli, Sofia; Costa E Silva, Filipe; Silva, João M N

    2016-06-01

    The application of spectral vegetation indices for the purpose of vegetation monitoring and modeling increased largely in recent years. Nonetheless, the interpretation of biophysical properties of vegetation through their spectral signature is still a challenging task. This is particularly true in Mediterranean oak forest characterized by a high spatial and temporal heterogeneity. In this study, the temporal dynamics of vegetation indices expected to be related with green biomass and photosynthetic efficiency were compared for the canopy of trees, the herbaceous layer, and two shrub species: cistus (Cistus salviifolius) and ulex (Ulex airensis). coexisting in a cork oak woodland. All indices were calculated from in situ measurements with a FieldSpec3 spectroradiometer (ASD Inc., Boulder, USA). Large differences emerged in the temporal trends and in the correlation between climate and vegetation indices. The relationship between spectral indices and temperature, radiation, and vapor pressure deficit for cork oak was opposite to that observed for the herbaceous layer and cistus. No correlation was observed between rainfall and vegetation indices in cork oak and ulex, but in the herbaceous layer and in the cistus, significant correlations were found. The analysis of spectral vegetation indices with fraction of absorbed PAR (fPAR) and quantum yield of chlorophyll fluorescence (ΔF/Fm') evidenced strongest relationships with the indices Normalized Difference Water Index (NDWI) and Photochemical Reflectance Index (PRI)512, respectively. Our results, while confirms the ability of spectral vegetation indices to represent temporal dynamics of biophysical properties of vegetation, evidence the importance to consider ecosystem composition for a correct ecological interpretation of results when the spatial resolution of observations includes different plant functional types.

  12. Skin condition measurement by using multispectral imaging system (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Jung, Geunho; Kim, Sungchul; Kim, Jae Gwan

    2017-02-01

    There are a number of commercially available low level light therapy (LLLT) devices in a market, and face whitening or wrinkle reduction is one of targets in LLLT. The facial improvement could be known simply by visual observation of face, but it cannot provide either quantitative data or recognize a subtle change. Clinical diagnostic instruments such as mexameter can provide a quantitative data, but it costs too high for home users. Therefore, we designed a low cost multi-spectral imaging device by adding additional LEDs (470nm, 640nm, white LED, 905nm) to a commercial USB microscope which has two LEDs (395nm, 940nm) as light sources. Among various LLLT skin treatments, we focused on getting melanin and wrinkle information. For melanin index measurements, multi-spectral images of nevus were acquired and melanin index values from color image (conventional method) and from multi-spectral images were compared. The results showed that multi-spectral analysis of melanin index can visualize nevus with a different depth and concentration. A cross section of wrinkle on skin resembles a wedge which can be a source of high frequency components when the skin image is Fourier transformed into a spatial frequency domain map. In that case, the entropy value of the spatial frequency map can represent the frequency distribution which is related with the amount and thickness of wrinkle. Entropy values from multi-spectral images can potentially separate the percentage of thin and shallow wrinkle from thick and deep wrinkle. From the results, we found that this low cost multi-spectral imaging system could be beneficial for home users of LLLT by providing the treatment efficacy in a quantitative way.

  13. Experimental power spectral density analysis for mid- to high-spatial frequency surface error control.

    PubMed

    Hoyo, Javier Del; Choi, Heejoo; Burge, James H; Kim, Geon-Hee; Kim, Dae Wook

    2017-06-20

    The control of surface errors as a function of spatial frequency is critical during the fabrication of modern optical systems. A large-scale surface figure error is controlled by a guided removal process, such as computer-controlled optical surfacing. Smaller-scale surface errors are controlled by polishing process parameters. Surface errors of only a few millimeters may degrade the performance of an optical system, causing background noise from scattered light and reducing imaging contrast for large optical systems. Conventionally, the microsurface roughness is often given by the root mean square at a high spatial frequency range, with errors within a 0.5×0.5  mm local surface map with 500×500 pixels. This surface specification is not adequate to fully describe the characteristics for advanced optical systems. The process for controlling and minimizing mid- to high-spatial frequency surface errors with periods of up to ∼2-3  mm was investigated for many optical fabrication conditions using the measured surface power spectral density (PSD) of a finished Zerodur optical surface. Then, the surface PSD was systematically related to various fabrication process parameters, such as the grinding methods, polishing interface materials, and polishing compounds. The retraceable experimental polishing conditions and processes used to produce an optimal optical surface PSD are presented.

  14. [Mapping environmental vulnerability from ETM + data in the Yellow River Mouth Area].

    PubMed

    Wang, Rui-Yan; Yu, Zhen-Wen; Xia, Yan-Ling; Wang, Xiang-Feng; Zhao, Geng-Xing; Jiang, Shu-Qian

    2013-10-01

    The environmental vulnerability retrieval is important to support continuing data. The spatial distribution of regional environmental vulnerability was got through remote sensing retrieval. In view of soil and vegetation, the environmental vulnerability evaluation index system was built, and the environmental vulnerability of sampling points was calculated by the AHP-fuzzy method, then the correlation between the sampling points environmental vulnerability and ETM + spectral reflectance ratio including some kinds of conversion data was analyzed to determine the sensitive spectral parameters. Based on that, models of correlation analysis, traditional regression, BP neural network and support vector regression were taken to explain the quantitative relationship between the spectral reflectance and the environmental vulnerability. With this model, the environmental vulnerability distribution was retrieved in the Yellow River Mouth Area. The results showed that the correlation between the environmental vulnerability and the spring NDVI, the September NDVI and the spring brightness was better than others, so they were selected as the sensitive spectral parameters. The model precision result showed that in addition to the support vector model, the other model reached the significant level. While all the multi-variable regression was better than all one-variable regression, and the model accuracy of BP neural network was the best. This study will serve as a reliable theoretical reference for the large spatial scale environmental vulnerability estimation based on remote sensing data.

  15. Erasing the Variable: Empirical Foreground Discovery for Global 21 cm Spectrum Experiments

    NASA Technical Reports Server (NTRS)

    Switzer, Eric R.; Liu, Adrian

    2014-01-01

    Spectral measurements of the 21 cm monopole background have the promise of revealing the bulk energetic properties and ionization state of our universe from z approx. 6 - 30. Synchrotron foregrounds are orders of magnitude larger than the cosmological signal, and are the principal challenge faced by these experiments. While synchrotron radiation is thought to be spectrally smooth and described by relatively few degrees of freedom, the instrumental response to bright foregrounds may be much more complex. To deal with such complexities, we develop an approach that discovers contaminated spectral modes using spatial fluctuations of the measured data. This approach exploits the fact that foregrounds vary across the sky while the signal does not. The discovered modes are projected out of each line-of-sight of a data cube. An angular weighting then optimizes the cosmological signal amplitude estimate by giving preference to lower-noise regions. Using this method, we show that it is essential for the passband to be stable to at least approx. 10(exp -4). In contrast, the constraints on the spectral smoothness of the absolute calibration are mainly aesthetic if one is able to take advantage of spatial information. To the extent it is understood, controlling polarization to intensity leakage at the approx. 10(exp -2) level will also be essential to rejecting Faraday rotation of the polarized synchrotron emission. Subject headings: dark ages, reionization, first stars - methods: data analysis - methods: statistical

  16. Investigating the galactic Supernova Remnant Kes 78 with XMM-Newton

    NASA Astrophysics Data System (ADS)

    Miceli, M.; Bamba, A.; Orlando, S.; Bocchino, F.

    2016-06-01

    The galactic supernova remnant Kes 78 is associated with a HESS gamma-ray source and its X-ray emission has been recently revealed by Suzaku observations which have found indications for a hard X-ray component in the spectra. We analyzed an XMM-Newton EPIC observation of Kes 78 and studied the spatial distribution of the physical and chemical properties of the X-ray emitting plasma. The EPIC data unveiled a very complex morphology for the soft X-ray emission. We performed image analysis and spatially resolved spectral analysis finding indications for the interaction of the remnant with a local molecular cloud. Finally, we investigated the origin of the hard X-ray emitting component.

  17. Investigating the Galactic supernova remnant Kes 78 with XMM-Newton

    NASA Astrophysics Data System (ADS)

    Miceli, Marco; Bamba, Aya; Orlando, Salvatore; Bocchino, Fabrizio

    2016-06-01

    The galactic supernova remnant Kes 78 is associated with a HESS gamma-ray source and its X-ray emission has been recently revealed by Suzaku observations which have found indications for a hard X-ray component in the spectra. We analyzed an XMM-Newton EPIC observation of Kes 78 and studied the spatial distribution of the physical and chemical properties of the X-ray emitting plasma. The EPIC data unveiled a very complex morphology for the soft X-ray emission. We performed image analysis and spatially resolved spectral analysis finding indications for the interaction of the remnant with a local molecular cloud. Finally, we investigated the origin of the hard X-ray emitting component.

  18. Synthetic Scene Generation of the Stennis V and V Target Range for the Calibration of Remote Sensing Systems

    NASA Technical Reports Server (NTRS)

    Cao, Chang-Yong; Blonski, Slawomir; Ryan, Robert; Gasser, Jerry; Zanoni, Vicki

    1999-01-01

    The verification and validation (V&V) target range developed at Stennis Space Center is a useful test site for the calibration of remote sensing systems. In this paper, we present a simple algorithm for generating synthetic radiance scenes or digital models of this target range. The radiation propagation for the target in the solar reflective and thermal infrared spectral regions is modeled using the atmospheric radiative transfer code MODTRAN 4. The at-sensor, in-band radiance and spectral radiance for a given sensor at a given altitude is predicted. Software is developed to generate scenes with different spatial and spectral resolutions using the simulated at-sensor radiance values. The radiometric accuracy of the simulation is evaluated by comparing simulated with AVIRIS acquired radiance values. The results show that in general there is a good match between AVIRIS sensor measured and MODTRAN predicted radiance values for the target despite the fact that some anomalies exist. Synthetic scenes provide a cost-effective way for in-flight validation of the spatial and radiometric accuracy of the data. Other applications include mission planning, sensor simulation, and trade-off analysis in sensor design.

  19. Spatial Temporal Sowing Pattern of Rapeseed-Mustard Crop in India Using Multi-Date IRS Awifs Data

    NASA Astrophysics Data System (ADS)

    Rajak, D. R.; Patel, H. A.; Chaudhari, K. N.; Patel, N. K.; Panigrahy, S.; Parihar, J. S.

    2011-08-01

    This paper highlights the results on spatial pattern of sowing of rapeseed/mustard in four major states in India using multidate Advanced Wide Field Sensor (AWiFS) data for 2010-11 crop season. Geo-referenced, calibrated AWiFS data acquired during October 2010 to February 2011 were used to generate the Normalised Difference Vegetation Index (NDVI) image sets. Iterative Self-Organizing Data Analysis Technique (ISODATA) based clustering of the multi date NDVI dataset for mustard crop pixels was performed. The clusters were segregated to spectral emergence classes using a spectral profile matching approach with reference to ground truth data. The sowing dates were derived from the spectral emergence data using a lag period based on field observation. Analysis showed the sowing pattern in the study states is spread over around 60 days from mid October to mid December. Three distinct clusters of sowing pattern were observed. The major one (around 40%) is sown between mid October and first week of November. Around 25% area is sown from last week of November to mid December. The other 35% area is sown in between these two periods. Analysis of temperature, a key weather variable influencing the growth of this crop, showed that the crop sowing in northern Rajasthan and Haryana is delayed by about one month to avoid the frost damage during reproductive phase. In the parts of Gujarat, southern parts of Rajasthan and Madhya Pradesh (MP), an early sowing in the second fortnight of October was observed, mainly to avoid higher mean temperatures during the month of March.

  20. Global-scale surface spectral variations on Titan seen from Cassini/VIMS

    USGS Publications Warehouse

    Barnes, J.W.; Brown, R.H.; Soderblom, L.; Buratti, B.J.; Sotin, Christophe; Rodriguez, S.; Le, Mouelic S.; Baines, K.H.; Clark, R.; Nicholson, P.

    2007-01-01

    We present global-scale maps of Titan from the Visual and Infrared Mapping Spectrometer (VIMS) instrument on Cassini. We map at 64 near-infrared wavelengths simultaneously, covering the atmospheric windows at 0.94, 1.08, 1.28, 1.6, 2.0, 2.8, and 5 ??m with a typical resolution of 50 km/pixel or a typical total integration time of 1 s. Our maps have five to ten times the resolution of ground-based maps, better spectral resolution across most windows, coverage in multiple atmospheric windows, and represent the first spatially resolved maps of Titan at 5 ??m. The VIMS maps provide context and surface spectral information in support of other Cassini instruments. We note a strong latitudinal dependence in the spectral character of Titan's surface, and partition the surface into 9 spectral units that we describe in terms of spectral and spatial characteristics. ?? 2006 Elsevier Inc. All rights reserved.

  1. Evaluate error correction ability of magnetorheological finishing by smoothing spectral function

    NASA Astrophysics Data System (ADS)

    Wang, Jia; Fan, Bin; Wan, Yongjian; Shi, Chunyan; Zhuo, Bin

    2014-08-01

    Power Spectral Density (PSD) has been entrenched in optics design and manufacturing as a characterization of mid-high spatial frequency (MHSF) errors. Smoothing Spectral Function (SSF) is a newly proposed parameter that based on PSD to evaluate error correction ability of computer controlled optical surfacing (CCOS) technologies. As a typical deterministic and sub-aperture finishing technology based on CCOS, magnetorheological finishing (MRF) leads to MHSF errors inevitably. SSF is employed to research different spatial frequency error correction ability of MRF process. The surface figures and PSD curves of work-piece machined by MRF are presented. By calculating SSF curve, the correction ability of MRF for different spatial frequency errors will be indicated as a normalized numerical value.

  2. Spatio-temporal analysis of annual rainfall in Crete, Greece

    NASA Astrophysics Data System (ADS)

    Varouchakis, Emmanouil A.; Corzo, Gerald A.; Karatzas, George P.; Kotsopoulou, Anastasia

    2018-03-01

    Analysis of rainfall data from the island of Crete, Greece was performed to identify key hydrological years and return periods as well as to analyze the inter-annual behavior of the rainfall variability during the period 1981-2014. The rainfall spatial distribution was also examined in detail to identify vulnerable areas of the island. Data analysis using statistical tools and spectral analysis were applied to investigate and interpret the temporal course of the available rainfall data set. In addition, spatial analysis techniques were applied and compared to determine the rainfall spatial distribution on the island of Crete. The analysis presented that in contrast to Regional Climate Model estimations, rainfall rates have not decreased, while return periods vary depending on seasonality and geographic location. A small but statistical significant increasing trend was detected in the inter-annual rainfall variations as well as a significant rainfall cycle almost every 8 years. In addition, statistically significant correlation of the island's rainfall variability with the North Atlantic Oscillation is identified for the examined period. On the other hand, regression kriging method combining surface elevation as secondary information improved the estimation of the annual rainfall spatial variability on the island of Crete by 70% compared to ordinary kriging. The rainfall spatial and temporal trends on the island of Crete have variable characteristics that depend on the geographical area and on the hydrological period.

  3. Integrated analysis of remote sensing products from basic geological surveys. [Brazil

    NASA Technical Reports Server (NTRS)

    Dasilvafagundesfilho, E. (Principal Investigator)

    1984-01-01

    Recent advances in remote sensing led to the development of several techniques to obtain image information. These techniques as effective tools in geological maping are analyzed. A strategy for optimizing the images in basic geological surveying is presented. It embraces as integrated analysis of spatial, spectral, and temporal data through photoptic (color additive viewer) and computer processing at different scales, allowing large areas survey in a fast, precise, and low cost manner.

  4. Fundamental remote sensing science research program. Part 1: Status report of the mathematical pattern recognition and image analysis project

    NASA Technical Reports Server (NTRS)

    Heydorn, R. D.

    1984-01-01

    The Mathematical Pattern Recognition and Image Analysis (MPRIA) Project is concerned with basic research problems related to the study of the Earth from remotely sensed measurement of its surface characteristics. The program goal is to better understand how to analyze the digital image that represents the spatial, spectral, and temporal arrangement of these measurements for purposing of making selected inference about the Earth.

  5. Compressive Coded-Aperture Multimodal Imaging Systems

    NASA Astrophysics Data System (ADS)

    Rueda-Chacon, Hoover F.

    Multimodal imaging refers to the framework of capturing images that span different physical domains such as space, spectrum, depth, time, polarization, and others. For instance, spectral images are modeled as 3D cubes with two spatial and one spectral coordinate. Three-dimensional cubes spanning just the space domain, are referred as depth volumes. Imaging cubes varying in time, spectra or depth, are referred as 4D-images. Nature itself spans different physical domains, thus imaging our real world demands capturing information in at least 6 different domains simultaneously, giving turn to 3D-spatial+spectral+polarized dynamic sequences. Conventional imaging devices, however, can capture dynamic sequences with up-to 3 spectral channels, in real-time, by the use of color sensors. Capturing multiple spectral channels require scanning methodologies, which demand long time. In general, to-date multimodal imaging requires a sequence of different imaging sensors, placed in tandem, to simultaneously capture the different physical properties of a scene. Then, different fusion techniques are employed to mix all the individual information into a single image. Therefore, new ways to efficiently capture more than 3 spectral channels of 3D time-varying spatial information, in a single or few sensors, are of high interest. Compressive spectral imaging (CSI) is an imaging framework that seeks to optimally capture spectral imagery (tens of spectral channels of 2D spatial information), using fewer measurements than that required by traditional sensing procedures which follows the Shannon-Nyquist sampling. Instead of capturing direct one-to-one representations of natural scenes, CSI systems acquire linear random projections of the scene and then solve an optimization algorithm to estimate the 3D spatio-spectral data cube by exploiting the theory of compressive sensing (CS). To date, the coding procedure in CSI has been realized through the use of ``block-unblock" coded apertures, commonly implemented as chrome-on-quartz photomasks. These apertures block or permit to pass the entire spectrum from the scene at given spatial locations, thus modulating the spatial characteristics of the scene. In the first part, this thesis aims to expand the framework of CSI by replacing the traditional block-unblock coded apertures by patterned optical filter arrays, referred as ``color" coded apertures. These apertures are formed by tiny pixelated optical filters, which in turn, allow the input image to be modulated not only spatially but spectrally as well, entailing more powerful coding strategies. The proposed colored coded apertures are either synthesized through linear combinations of low-pass, high-pass and band-pass filters, paired with binary pattern ensembles realized by a digital-micromirror-device (DMD), or experimentally realized through thin-film color-patterned filter arrays. The optical forward model of the proposed CSI architectures will be presented along with the design and proof-of-concept implementations, which achieve noticeable improvements in the quality of the reconstructions compared with conventional block-unblock coded aperture-based CSI architectures. On another front, due to the rich information contained in the infrared spectrum as well as the depth domain, this thesis aims to explore multimodal imaging by extending the range sensitivity of current CSI systems to a dual-band visible+near-infrared spectral domain, and also, it proposes, for the first time, a new imaging device that captures simultaneously 4D data cubes (2D spatial+1D spectral+depth imaging) with as few as a single snapshot. Due to the snapshot advantage of this camera, video sequences are possible, thus enabling the joint capture of 5D imagery. It aims to create super-human sensing that will enable the perception of our world in new and exciting ways. With this, we intend to advance in the state of the art in compressive sensing systems to extract depth while accurately capturing spatial and spectral material properties. The applications of such a sensor are self-evident in fields such as computer/robotic vision because they would allow an artificial intelligence to make informed decisions about not only the location of objects within a scene but also their material properties.

  6. Non-Invasive Measurement of Frog Skin Reflectivity in High Spatial Resolution Using a Dual Hyperspectral Approach

    PubMed Central

    Liebisch, Frank; Walter, Achim; Greven, Hartmut; Rascher, Uwe

    2013-01-01

    Background Most spectral data for the amphibian integument are limited to the visible spectrum of light and have been collected using point measurements with low spatial resolution. In the present study a dual camera setup consisting of two push broom hyperspectral imaging systems was employed, which produces reflectance images between 400 and 2500 nm with high spectral and spatial resolution and a high dynamic range. Methodology/Principal Findings We briefly introduce the system and document the high efficiency of this technique analyzing exemplarily the spectral reflectivity of the integument of three arboreal anuran species (Litoria caerulea, Agalychnis callidryas and Hyla arborea), all of which appear green to the human eye. The imaging setup generates a high number of spectral bands within seconds and allows non-invasive characterization of spectral characteristics with relatively high working distance. Despite the comparatively uniform coloration, spectral reflectivity between 700 and 1100 nm differed markedly among the species. In contrast to H. arborea, L. caerulea and A. callidryas showed reflection in this range. For all three species, reflectivity above 1100 nm is primarily defined by water absorption. Furthermore, the high resolution allowed examining even small structures such as fingers and toes, which in A. callidryas showed an increased reflectivity in the near infrared part of the spectrum. Conclusion/Significance Hyperspectral imaging was found to be a very useful alternative technique combining the spectral resolution of spectrometric measurements with a higher spatial resolution. In addition, we used Digital Infrared/Red-Edge Photography as new simple method to roughly determine the near infrared reflectivity of frog specimens in field, where hyperspectral imaging is typically difficult. PMID:24058464

  7. On the Challenge of Observing Pelagic Sargassum in Coastal Oceans: A Multi-sensor Assessment

    NASA Astrophysics Data System (ADS)

    Hu, C.; Feng, L.; Hardy, R.; Hochberg, E. J.

    2016-02-01

    Remote detection of pelagic Sargassum is often hindered by its spectral similarity to other floating materials and by the inadequate spatial resolution. Using measurements from multi-spectral satellite sensors (Moderate Resolution Imaging Spectroradiometer or MODIS), Landsat, WorldView-2 (or WV-2) as well as hyperspectral sensors (Hyperspectral Imager for the Coastal Ocean or HICO, Airborne Visible-InfraRed Imaging Spectrometer or AVIRIS) and airborne digital photos, we analyze and compare their ability (in terms of spectral and spatial resolutions) to detect Sargassum and to differentiate from other floating materials such as Trichodesmium, Syringodium, Ulva, garbage, and emulsified oil. Field measurements suggest that Sargassum has a distinctive reflectance curvature around 630 nm due to its chlorophyll c pigments, which provides a unique spectral signature when combined with the reflectance ratio between brown ( 650 nm) and green ( 555 nm) wavelengths. For a 10-nm resolution sensor on the hyperspectral HyspIRI mission currently being planned by NASA, a stepwise rule to examine several indexes established from 6 bands (centered at 555, 605, 625, 645, 685, 755 nm) is shown to be effective to unambiguously differentiate Sargassum from all other floating materials Numerical simulations using spectral endmembers and noise in the satellite-derived reflectance suggest that spectral discrimination is degraded when a pixel is mixed between Sargassum and water. A minimum of 20-30% Sargassum coverage within a pixel is required to retain such ability, while the partial coverage can be as low as 1-2% when detecting floating materials without spectral discrimination. With its expected signal-to-noise ratios (SNRs 200:1), the hyperspectral HyspIRI mission may provide a compromise between spatial resolution and spatial coverage to improve our capacity to detect, discriminate, and quantify Sargassum.

  8. Experimental assessment and analysis of super-resolution in fluorescence microscopy based on multiple-point spread function fitting of spectrally demultiplexed images

    NASA Astrophysics Data System (ADS)

    Nishimura, Takahiro; Kimura, Hitoshi; Ogura, Yusuke; Tanida, Jun

    2018-06-01

    This paper presents an experimental assessment and analysis of super-resolution microscopy based on multiple-point spread function fitting of spectrally demultiplexed images using a designed DNA structure as a test target. For the purpose, a DNA structure was designed to have binding sites at a certain interval that is smaller than the diffraction limit. The structure was labeled with several types of quantum dots (QDs) to acquire their spatial information as spectrally encoded images. The obtained images are analyzed with a point spread function multifitting algorithm to determine the QD locations that indicate the binding site positions. The experimental results show that the labeled locations can be observed beyond the diffraction-limited resolution using three-colored fluorescence images that were obtained with a confocal fluorescence microscope. Numerical simulations show that labeling with eight types of QDs enables the positions aligned at 27.2-nm pitches on the DNA structure to be resolved with high accuracy.

  9. In situ SERS spectroelectrochemical analysis of antioxidants deposited on copper substrates: What is the effect of applied potential on sorption behavior?

    NASA Astrophysics Data System (ADS)

    Dendisova-Vyskovska, Marcela; Broncova, Gabriela; Clupek, Martin; Prokopec, Vadym; Matejka, Pavel

    2012-12-01

    The detection of p-coumaric acid and ferulic acid using a combined in situ electrochemical and surface-enhanced Raman scattering spectroscopic technique in specially made electrode cell is described. New in situ spectroelectrochemical cell was designed as the three-electrode arrangement connected via positioning device to fiber-optic probe of Raman spectrometer Dimension P2 (excitation wavelength 785 nm). In situ SERS spectra of p-coumaric acid and ferulic acid were recorded at varying applied negative potentials to copper substrates. The spectral intensities and shapes of bands as well as spatial orientation of molecules on the surface depend significantly on varying values of the applied electrode potential. The change of electrode potential influences analyte adsorption/desorption behavior on the surface of copper substrates, affecting the reversibility of the whole process and overall spectral enhancement level. Principal component analysis is used to distinguish several stages of spectral variations on potential changes.

  10. Raman spectroscopy identifies radiation response in human non-small cell lung cancer xenografts

    NASA Astrophysics Data System (ADS)

    Harder, Samantha J.; Isabelle, Martin; Devorkin, Lindsay; Smazynski, Julian; Beckham, Wayne; Brolo, Alexandre G.; Lum, Julian J.; Jirasek, Andrew

    2016-02-01

    External beam radiation therapy is a standard form of treatment for numerous cancers. Despite this, there are no approved methods to account for patient specific radiation sensitivity. In this report, Raman spectroscopy (RS) was used to identify radiation-induced biochemical changes in human non-small cell lung cancer xenografts. Chemometric analysis revealed unique radiation-related Raman signatures that were specific to nucleic acid, lipid, protein and carbohydrate spectral features. Among these changes was a dramatic shift in the accumulation of glycogen spectral bands for doses of 5 or 15 Gy when compared to unirradiated tumours. When spatial mapping was applied in this analysis there was considerable variability as we found substantial intra- and inter-tumour heterogeneity in the distribution of glycogen and other RS spectral features. Collectively, these data provide unique insight into the biochemical response of tumours, irradiated in vivo, and demonstrate the utility of RS for detecting distinct radiobiological responses in human tumour xenografts.

  11. ENVIRONMENTAL APPLICATIONS OF SPECTRAL IMAGING

    EPA Science Inventory

    The utility of remote sensing using spectral imaging is just being realized through the investigation to a wide variety of environmental issues. Improved spectral and spatial resolution is very important to the detection of effects once regarded as unobservable. A current researc...

  12. Mapping Chinese tallow with color-infrared photography

    USGS Publications Warehouse

    Ramsey, Elijah W.; Nelson, G.A.; Sapkota, S.K.; Seeger, E.B.; Martella, K.D.

    2002-01-01

    Airborne color-infrared photography (CIR) (1:12,000 scale) was used to map localized occurrences of the widespread and aggressive Chinese tallow (Sapium sebiferum), an invasive species. Photography was collected during senescence when Chinese tallow's bright red leaves presented a high spectral contrast within the native bottomland hardwood and upland forests and marsh land-cover types. Mapped occurrences were conservative because not all senescing tallow leaves are bright red simultaneously. To simulate low spectral but high spatial resolution satellite/airborne image and digital video data, the CIR photography was transformed into raster images at spatial resolutions approximating 0.5 in and 1.0 m. The image data were then spectrally classified for the occurrence of bright red leaves associated with senescing Chinese tallow. Classification accuracies were greater than 95 percent at both spatial resolutions. There was no significant difference in either forest in the detection of tallow or inclusion of non-tallow trees associated with the two spatial resolutions. In marshes, slightly more tallow occurrences were mapped with the lower spatial resolution, but there were also more misclassifications of native land covers as tallow. Combining all land covers, there was no difference at detecting tallow occurrences (equal omission errors) between the two resolutions, but the higher spatial resolution was associated with less inclusion of non-tallow land covers as tallow (lower commission error). Overall, these results confirm that high spatial (???1 m) but low spectral resolution remote sensing data can be used for mapping Chinese tallow trees in dominant environments found in coastal and adjacent upland landscapes.

  13. A global estimate of the Earth's magnetic crustal thickness

    NASA Astrophysics Data System (ADS)

    Vervelidou, Foteini; Thébault, Erwan

    2014-05-01

    The Earth's lithosphere is considered to be magnetic only down to the Curie isotherm. Therefore the Curie isotherm can, in principle, be estimated by analysis of magnetic data. Here, we propose such an analysis in the spectral domain by means of a newly introduced regional spatial power spectrum. This spectrum is based on the Revised Spherical Cap Harmonic Analysis (R-SCHA) formalism (Thébault et al., 2006). We briefly discuss its properties and its relationship with the Spherical Harmonic spatial power spectrum. This relationship allows us to adapt any theoretical expression of the lithospheric field power spectrum expressed in Spherical Harmonic degrees to the regional formulation. We compared previously published statistical expressions (Jackson, 1994 ; Voorhies et al., 2002) to the recent lithospheric field models derived from the CHAMP and airborne measurements and we finally developed a new statistical form for the power spectrum of the Earth's magnetic lithosphere that we think provides more consistent results. This expression depends on the mean magnetization, the mean crustal thickness and a power law value that describes the amount of spatial correlation of the sources. In this study, we make a combine use of the R-SCHA surface power spectrum and this statistical form. We conduct a series of regional spectral analyses for the entire Earth. For each region, we estimate the R-SCHA surface power spectrum of the NGDC-720 Spherical Harmonic model (Maus, 2010). We then fit each of these observational spectra to the statistical expression of the power spectrum of the Earth's lithosphere. By doing so, we estimate the large wavelengths of the magnetic crustal thickness on a global scale that are not accessible directly from the magnetic measurements due to the masking core field. We then discuss these results and compare them to the results we obtained by conducting a similar spectral analysis, but this time in the cartesian coordinates, by means of a published statistical expression (Maus et al., 1997). We also compare our results to crustal thickness global maps derived by means of additional geophysical data (Purucker et al., 2002).

  14. Autoregressive modeling for the spectral analysis of oceanographic data

    NASA Technical Reports Server (NTRS)

    Gangopadhyay, Avijit; Cornillon, Peter; Jackson, Leland B.

    1989-01-01

    Over the last decade there has been a dramatic increase in the number and volume of data sets useful for oceanographic studies. Many of these data sets consist of long temporal or spatial series derived from satellites and large-scale oceanographic experiments. These data sets are, however, often 'gappy' in space, irregular in time, and always of finite length. The conventional Fourier transform (FT) approach to the spectral analysis is thus often inapplicable, or where applicable, it provides questionable results. Here, through comparative analysis with the FT for different oceanographic data sets, the possibilities offered by autoregressive (AR) modeling to perform spectral analysis of gappy, finite-length series, are discussed. The applications demonstrate that as the length of the time series becomes shorter, the resolving power of the AR approach as compared with that of the FT improves. For the longest data sets examined here, 98 points, the AR method performed only slightly better than the FT, but for the very short ones, 17 points, the AR method showed a dramatic improvement over the FT. The application of the AR method to a gappy time series, although a secondary concern of this manuscript, further underlines the value of this approach.

  15. Multispectral Snapshot Imagers Onboard Small Satellite Formations for Multi-Angular Remote Sensing

    NASA Technical Reports Server (NTRS)

    Nag, Sreeja; Hewagama, Tilak; Georgiev, Georgi; Pasquale, Bert; Aslam, Shahid; Gatebe, Charles K.

    2017-01-01

    Multispectral snapshot imagers are capable of producing 2D spatial images with a single exposure at selected, numerous wavelengths using the same camera, therefore operate differently from push broom or whiskbroom imagers. They are payloads of choice in multi-angular, multi-spectral imaging missions that use small satellites flying in controlled formation, to retrieve Earth science measurements dependent on the targets Bidirectional Reflectance-Distribution Function (BRDF). Narrow fields of view are needed to capture images with moderate spatial resolution. This paper quantifies the dependencies of the imagers optical system, spectral elements and camera on the requirements of the formation mission and their impact on performance metrics such as spectral range, swath and signal to noise ratio (SNR). All variables and metrics have been generated from a comprehensive, payload design tool. The baseline optical parameters selected (diameter 7 cm, focal length 10.5 cm, pixel size 20 micron, field of view 1.15 deg) and snapshot imaging technologies are available. The spectral components shortlisted were waveguide spectrometers, acousto-optic tunable filters (AOTF), electronically actuated Fabry-Perot interferometers, and integral field spectrographs. Qualitative evaluation favored AOTFs because of their low weight, small size, and flight heritage. Quantitative analysis showed that waveguide spectrometers perform better in terms of achievable swath (10-90 km) and SNR (greater than 20) for 86 wavebands, but the data volume generated will need very high bandwidth communication to downlink. AOTFs meet the external data volume caps well as the minimum spectral (wavebands) and radiometric (SNR) requirements, therefore are found to be currently feasible in spite of lower swath and SNR.

  16. The Eagle Nebula: a spectral template for star forming regions

    NASA Astrophysics Data System (ADS)

    Flagey, Nicolas; Boulanger, Francois; Carey, Sean; Compiegne, Mathieu; Dwek, Eli; Habart, Emilie; Indebetouw, Remy; Montmerle, Thierry; Noriega-Crespo, Alberto

    2008-03-01

    IRAC and MIPS have revealed spectacular images of massive star forming regions in the Galaxy. These vivid illustrations of the interaction between the stars, through their winds and radiation, and their environment, made of gas and dust, still needs to be explained. The large scale picture of layered shells of gas components, is affected by the small scale interaction of stars with the clumpy medium that surrounds them. To understand spatial variations of physical conditions and dust properties on small scales, spectroscopic imaging observations are required on a nearby object. The iconic Eagle Nebula (M16) is one of the nearest and most observed star forming region of our Galaxy and as such, is a well suited template to obtain this missing data set. We thus propose a complete spectral map of the Eagle Nebula (M16) with the IRS/Long Low module (15-38 microns) and MIPS/SED mode (55-95 microns). Analysis of the dust emission, spectral features and continuum, and of the H2 and fine-structure gas lines within our models will provide us with constraints on the physical conditions (gas ionization state, pressure, radiation field) and dust properties (temperature, size distribution) at each position within the nebula. Only such a spatially and spectrally complete map will allow us to characterize small scale structure and dust evolution within the global context and understand the impact of small scale structure on the evolution of dusty star forming regions. This project takes advantage of the unique ability of IRS at obtaining sensitive spectral maps covering large areas.

  17. Snow fraction products evaluation with Landsat-8/OLI data and its spatial scale effects over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Jiang, L.

    2016-12-01

    Snow cover is one of important elements in the water supply of large populations, especially in those downstream from mountainous watershed. The cryosphere process in the Tibetan Plateau is paid much attention due to rapid change of snow amount and cover extent. Snow mapping from MODIS has been increased attention in the study of climate change and hydrology. But the lack of intensive validation of different snow mapping methods especially at Tibetan Plateau hinders its application. In this work, we examined three MODIS snow products, including standard MODIS fractional snow product (MOD10A1) (Kaufman et al., 2002; Salomonson & Appel, 2004, 2006), two other fractional snow product, MODSCAG (Painter et al., 2009) and MOD_MESMA (Shi, 2012). Both these two methods are based on spectral mixture analysis. The difference between MODISCAG and MOD_MESMA was the endmember selection. For MODSCAG product, snow spectral endmembers of varying grain size was obtained both from a radiative transfer model and spectra of vegetation, rock and soil collected in the field and laboratory. MOD_MESMA was obtained from automated endmember extraction method using linear spectral mixture analysis. Its endmembers are selected in each image to enhance the computational efficiency of MESMA (Multiple Endmember Spectral Analysis). Landsat-8 Operatinal Land Imager (OLI) data from 2013-2015 was used to evaluate the performance of these three snow fraction products in Tibetan Plateau. The effect of land cover types including forest, grass and bare soil was analyzed to evaluate three products. In addition, the effects of relatively flat surface in internal plateau and high mountain areas of Himalaya were also evaluated on the impact of these snow fraction products. From our comparison, MODSCAG and MOD10A1 overestimated snow cover, while MOD_MESMA underestimated snow cover. And RMSE of MOD_MESMA at each land cover type including forest, grass and mountain area decreased with the spatial resolution increasing from 500m, 1km, 2km to 5km. The RMSE of MODSCAG and MOD10A1 is very similar. In Himalaya area, these two RMSEs of MODSCAG and MOD10A1 increased with the spatial resolution increasing from 500m to 5km. For forest, grass and bare soil, RMSE decreased from 500m to 1km, then increased from 1km to 2km.

  18. Tracking brain states under general anesthesia by using global coherence analysis.

    PubMed

    Cimenser, Aylin; Purdon, Patrick L; Pierce, Eric T; Walsh, John L; Salazar-Gomez, Andres F; Harrell, Priscilla G; Tavares-Stoeckel, Casie; Habeeb, Kathleen; Brown, Emery N

    2011-05-24

    Time and frequency domain analyses of scalp EEG recordings are widely used to track changes in brain states under general anesthesia. Although these analyses have suggested that different spatial patterns are associated with changes in the state of general anesthesia, the extent to which these patterns are spatially coordinated has not been systematically characterized. Global coherence, the ratio of the largest eigenvalue to the sum of the eigenvalues of the cross-spectral matrix at a given frequency and time, has been used to analyze the spatiotemporal dynamics of multivariate time-series. Using 64-lead EEG recorded from human subjects receiving computer-controlled infusions of the anesthetic propofol, we used surface Laplacian referencing combined with spectral and global coherence analyses to track the spatiotemporal dynamics of the brain's anesthetic state. During unconsciousness the spectrograms in the frontal leads showed increasing α (8-12 Hz) and δ power (0-4 Hz) and in the occipital leads δ power greater than α power. The global coherence detected strong coordinated α activity in the occipital leads in the awake state that shifted to the frontal leads during unconsciousness. It revealed a lack of coordinated δ activity during both the awake and unconscious states. Although strong frontal power during general anesthesia-induced unconsciousness--termed anteriorization--is well known, its possible association with strong α range global coherence suggests highly coordinated spatial activity. Our findings suggest that combined spectral and global coherence analyses may offer a new approach to tracking brain states under general anesthesia.

  19. A spatial length scale analysis of turbulent temperature and velocity fluctuations within and above an orchard canopy

    USGS Publications Warehouse

    Wang, Y.S.; Miller, D.R.; Anderson, D.E.; Cionco, R.M.; Lin, J.D.

    1992-01-01

    Turbulent flow within and above an almond orchard was measured with three-dimensional wind sensors and fine-wire thermocouple sensors arranged in a horizontal array. The data showed organized turbulent structures as indicated by coherent asymmetric ramp patterns in the time series traces across the sensor array. Space-time correlation analysis indicated that velocity and temperature fluctuations were significantly correlated over a transverse distance more than 4m. Integral length scales of velocity and temperature fluctuations were substantially greater in unstable conditions than those in stable conditions. The coherence spectral analysis indicated that Davenport's geometric similarity hypothesis was satisfied in the lower frequency region. From the geometric similarity hypothesis, the spatial extents of large ramp structures were also estimated with the coherence functions.

  20. Spectrally-encoded color imaging

    PubMed Central

    Kang, DongKyun; Yelin, Dvir; Bouma, Brett E.; Tearney, Guillermo J.

    2010-01-01

    Spectrally-encoded endoscopy (SEE) is a technique for ultraminiature endoscopy that encodes each spatial location on the sample with a different wavelength. One limitation of previous incarnations of SEE is that it inherently creates monochromatic images, since the spectral bandwidth is expended in the spatial encoding process. Here we present a spectrally-encoded imaging system that has color imaging capability. The new imaging system utilizes three distinct red, green, and blue spectral bands that are configured to illuminate the grating at different incident angles. By careful selection of the incident angles, the three spectral bands can be made to overlap on the sample. To demonstrate the method, a bench-top system was built, comprising a 2400-lpmm grating illuminated by three 525-μm-diameter beams with three different spectral bands. Each spectral band had a bandwidth of 75 nm, producing 189 resolvable points. A resolution target, color phantoms, and excised swine small intestine were imaged to validate the system's performance. The color SEE system showed qualitatively and quantitatively similar color imaging performance to that of a conventional digital camera. PMID:19688002

  1. Calibration of the ROSAT HRI Spectral Response

    NASA Technical Reports Server (NTRS)

    Prestwich, Andrea

    1998-01-01

    The ROSAT High Resolution Imager has a limited (2-band) spectral response. This spectral capability can give X-ray hardness ratios on spatial scales of 5 arcseconds. The spectral response of the center of the detector was calibrated before the launch of ROSAT, but the gain decreases-with time and also is a function of position on the detector. To complicate matters further, the satellite is "wobbled", possibly moving a source across several spatial gain states. These difficulties have prevented the spectral response of the ROSAT HRI from being used for scientific measurements. We have used Bright Earth data and in-flight calibration sources to map the spatial and temporal gain changes, and written software which will allow ROSAT users to generate a calibrated XSPEC response matrix and hence determine a calibrated hardness ratio. In this report, we describe the calibration procedure and show how to obtain a response matrix. In Section 2 we give an overview of the calibration procedure, in Section 3 we give a summary of HRI spatial and temporal gain variations. Section 4 describes the routines used to determine the gain distribution of a source. In Sections 5 and 6, we describe in detail how the Bright Earth database and calibration sources are used to derive a corrected response matrix for a given observation. Finally, Section 7 describes how to use the software.

  2. Basis-neutral Hilbert-space analyzers

    PubMed Central

    Martin, Lane; Mardani, Davood; Kondakci, H. Esat; Larson, Walker D.; Shabahang, Soroush; Jahromi, Ali K.; Malhotra, Tanya; Vamivakas, A. Nick; Atia, George K.; Abouraddy, Ayman F.

    2017-01-01

    Interferometry is one of the central organizing principles of optics. Key to interferometry is the concept of optical delay, which facilitates spectral analysis in terms of time-harmonics. In contrast, when analyzing a beam in a Hilbert space spanned by spatial modes – a critical task for spatial-mode multiplexing and quantum communication – basis-specific principles are invoked that are altogether distinct from that of ‘delay’. Here, we extend the traditional concept of temporal delay to the spatial domain, thereby enabling the analysis of a beam in an arbitrary spatial-mode basis – exemplified using Hermite-Gaussian and radial Laguerre-Gaussian modes. Such generalized delays correspond to optical implementations of fractional transforms; for example, the fractional Hankel transform is the generalized delay associated with the space of Laguerre-Gaussian modes, and an interferometer incorporating such a ‘delay’ obtains modal weights in the associated Hilbert space. By implementing an inherently stable, reconfigurable spatial-light-modulator-based polarization-interferometer, we have constructed a ‘Hilbert-space analyzer’ capable of projecting optical beams onto any modal basis. PMID:28344331

  3. Comparing spatial tuning curves, spectral ripple resolution, and speech perception in cochlear implant users.

    PubMed

    Anderson, Elizabeth S; Nelson, David A; Kreft, Heather; Nelson, Peggy B; Oxenham, Andrew J

    2011-07-01

    Spectral ripple discrimination thresholds were measured in 15 cochlear-implant users with broadband (350-5600 Hz) and octave-band noise stimuli. The results were compared with spatial tuning curve (STC) bandwidths previously obtained from the same subjects. Spatial tuning curve bandwidths did not correlate significantly with broadband spectral ripple discrimination thresholds but did correlate significantly with ripple discrimination thresholds when the rippled noise was confined to an octave-wide passband, centered on the STC's probe electrode frequency allocation. Ripple discrimination thresholds were also measured for octave-band stimuli in four contiguous octaves, with center frequencies from 500 Hz to 4000 Hz. Substantial variations in thresholds with center frequency were found in individuals, but no general trends of increasing or decreasing resolution from apex to base were observed in the pooled data. Neither ripple nor STC measures correlated consistently with speech measures in noise and quiet in the sample of subjects in this study. Overall, the results suggest that spectral ripple discrimination measures provide a reasonable measure of spectral resolution that correlates well with more direct, but more time-consuming, measures of spectral resolution, but that such measures do not always provide a clear and robust predictor of performance in speech perception tasks. © 2011 Acoustical Society of America

  4. Comparing spatial tuning curves, spectral ripple resolution, and speech perception in cochlear implant users

    PubMed Central

    Anderson, Elizabeth S.; Nelson, David A.; Kreft, Heather; Nelson, Peggy B.; Oxenham, Andrew J.

    2011-01-01

    Spectral ripple discrimination thresholds were measured in 15 cochlear-implant users with broadband (350–5600 Hz) and octave-band noise stimuli. The results were compared with spatial tuning curve (STC) bandwidths previously obtained from the same subjects. Spatial tuning curve bandwidths did not correlate significantly with broadband spectral ripple discrimination thresholds but did correlate significantly with ripple discrimination thresholds when the rippled noise was confined to an octave-wide passband, centered on the STC’s probe electrode frequency allocation. Ripple discrimination thresholds were also measured for octave-band stimuli in four contiguous octaves, with center frequencies from 500 Hz to 4000 Hz. Substantial variations in thresholds with center frequency were found in individuals, but no general trends of increasing or decreasing resolution from apex to base were observed in the pooled data. Neither ripple nor STC measures correlated consistently with speech measures in noise and quiet in the sample of subjects in this study. Overall, the results suggest that spectral ripple discrimination measures provide a reasonable measure of spectral resolution that correlates well with more direct, but more time-consuming, measures of spectral resolution, but that such measures do not always provide a clear and robust predictor of performance in speech perception tasks. PMID:21786905

  5. Spectroscopic remote sensing of the distribution and persistence of oil from the Deepwater Horizon spill in Barataria Bay marshes

    USGS Publications Warehouse

    Kokaly, Raymond F.; Couvillion, Brady; Holloway, JoAnn M.; Roberts, Dar A.; Ustin, Susan L.; Peterson, Seth H.; Khanna, Shruti; Piazza, Sarai C.

    2013-01-01

    We applied a spectroscopic analysis to Airborne Visible/InfraRed Imaging Spectrometer (AVIRIS) data collected from low and medium altitudes during and after the Deepwater Horizon oil spill to delineate the distribution of oil-damaged canopies in the marshes of Barataria Bay, Louisiana. Spectral feature analysis compared the AVIRIS data to reference spectra of oiled marsh by using absorption features centered near 1.7 and 2.3 μm, which arise from CH bonds in oil. AVIRIS-derived maps of oiled shorelines from the individual dates of July 31, September 14, and October 4, 2010, were 89.3%, 89.8%, and 90.6% accurate, respectively. A composite map at 3.5 m grid spacing, accumulated from the three dates, was 93.4% accurate in detecting oiled shorelines. The composite map had 100% accuracy for detecting damaged plant canopy in oiled areas that extended more than 1.2 m into the marsh. Spatial resampling of the AVIRIS data to 30 m reduced the accuracy to 73.6% overall. However, detection accuracy remained high for oiled canopies that extended more than 4 m into the marsh (23 of 28 field reference points with oil were detected). Spectral resampling of the 3.5 m AVIRIS data to Landsat Enhanced Thematic Mapper (ETM) spectral response greatly reduced the detection of oil spectral signatures. With spatial resampling of simulated Landsat ETM data to 30 m, oil signatures were not detected. Overall, ~ 40 km of coastline, marsh comprised mainly of Spartina alterniflora and Juncus roemerianus, were found to be oiled in narrow zones at the shorelines. Zones of oiled canopies reached on average 11 m into the marsh, with a maximum reach of 21 m. The field and airborne data showed that, in many areas, weathered oil persisted in the marsh from the first field survey, July 10, to the latest airborne survey, October 4, 2010. The results demonstrate the applicability of high spatial resolution imaging spectrometer data to identifying contaminants in the environment for use in evaluating ecosystem disturbance and response.

  6. Gamma-Ray Imager With High Spatial And Spectral Resolution

    NASA Technical Reports Server (NTRS)

    Callas, John L.; Varnell, Larry S.; Wheaton, William A.; Mahoney, William A.

    1996-01-01

    Gamma-ray instrument developed to enable both two-dimensional imaging at relatively high spatial resolution and spectroscopy at fractional-photon-energy resolution of about 10 to the negative 3rd power in photon-energy range from 10 keV to greater than 10 MeV. In its spectroscopic aspect, instrument enables identification of both narrow and weak gamma-ray spectral peaks.

  7. Data Rods: High Speed, Time-Series Analysis of Massive Cryospheric Data Sets Using Object-Oriented Database Methods

    NASA Astrophysics Data System (ADS)

    Liang, Y.; Gallaher, D. W.; Grant, G.; Lv, Q.

    2011-12-01

    Change over time, is the central driver of climate change detection. The goal is to diagnose the underlying causes, and make projections into the future. In an effort to optimize this process we have developed the Data Rod model, an object-oriented approach that provides the ability to query grid cell changes and their relationships to neighboring grid cells through time. The time series data is organized in time-centric structures called "data rods." A single data rod can be pictured as the multi-spectral data history at one grid cell: a vertical column of data through time. This resolves the long-standing problem of managing time-series data and opens new possibilities for temporal data analysis. This structure enables rapid time- centric analysis at any grid cell across multiple sensors and satellite platforms. Collections of data rods can be spatially and temporally filtered, statistically analyzed, and aggregated for use with pattern matching algorithms. Likewise, individual image pixels can be extracted to generate multi-spectral imagery at any spatial and temporal location. The Data Rods project has created a series of prototype databases to store and analyze massive datasets containing multi-modality remote sensing data. Using object-oriented technology, this method overcomes the operational limitations of traditional relational databases. To demonstrate the speed and efficiency of time-centric analysis using the Data Rods model, we have developed a sea ice detection algorithm. This application determines the concentration of sea ice in a small spatial region across a long temporal window. If performed using traditional analytical techniques, this task would typically require extensive data downloads and spatial filtering. Using Data Rods databases, the exact spatio-temporal data set is immediately available No extraneous data is downloaded, and all selected data querying occurs transparently on the server side. Moreover, fundamental statistical calculations such as running averages are easily implemented against the time-centric columns of data.

  8. Spectral and spatial shaping of Smith-Purcell radiation

    NASA Astrophysics Data System (ADS)

    Remez, Roei; Shapira, Niv; Roques-Carmes, Charles; Tirole, Romain; Yang, Yi; Lereah, Yossi; Soljačić, Marin; Kaminer, Ido; Arie, Ady

    2017-12-01

    The Smith-Purcell effect, observed when an electron beam passes in the vicinity of a periodic structure, is a promising platform for the generation of electromagnetic radiation in previously unreachable spectral ranges. However, most of the studies of this radiation were performed on simple periodic gratings, whose radiation spectrum exhibits a single peak and its higher harmonics predicted by a well-established dispersion relation. Here, we propose a method to shape the spatial and spectral far-field distribution of the radiation using complex periodic and aperiodic gratings. We show, theoretically and experimentally, that engineering multiple peak spectra with controlled widths located at desired wavelengths is achievable using Smith-Purcell radiation. Our method opens the way to free-electron-driven sources with tailored angular and spectral responses, and gives rise to focusing functionality for spectral ranges where lenses are unavailable or inefficient.

  9. Analysis for signal-to-noise ratio of hyper-spectral imaging FTIR interferometer

    NASA Astrophysics Data System (ADS)

    Li, Xun-niu; Zheng, Wei-jian; Lei, Zheng-gang; Wang, Hai-yang; Fu, Yan-peng

    2013-08-01

    Signal-to-noise Ratio of hyper-spectral imaging FTIR interferometer system plays a decisive role on the performance of the instrument. It is necessary to analyze them in the development process. Based on the simplified target/background model, the energy transfer model of the LWIR hyper-spectral imaging interferometer has been discussed. The noise equivalent spectral radiance (NESR) and its influencing factors of the interferometer system was analyzed, and the signal-to-noise(SNR) was calculated by using the properties of NESR and incident radiance. In a typical application environment, using standard atmospheric model of USA(1976 COESA) as a background, and set a reasonable target/background temperature difference, and take Michelson spatial modulation Fourier Transform interferometer as an example, the paper had calculated the NESR and the SNR of the interferometer system which using the commercially LWIR cooled FPA and UFPA detector. The system noise sources of the instrument were also analyzed in the paper. The results of those analyses can be used to optimize and pre-estimate the performance of the interferometer system, and analysis the applicable conditions of use different detectors. It has important guiding significance for the LWIR interferometer spectrometer design.

  10. Wide field of view spectroscopy using solid Fabry-Perot interferometers

    NASA Astrophysics Data System (ADS)

    Nikoleyczik, Jonathan; Kutyrev, Alexander; Moseley, Harvey; Veilleux, Sylvain

    2016-08-01

    We present a high resolution spectrometer consisting of dual solid Fabry-Perot Interferometers (FPI). Each FPI is made of a single piece of L-BBH2 glass which has a high index of refraction n 2.07. Each is then coated with partially reflective mirrors to achieve a spectral resolution of R 30,000. Running the FPIs in tandem reduces the overlapping orders and allows for a much wider free spectral range and higher contrast. Tuning of the FPIs is achieved by adjusting the temperature and thus changing the FPI gap and the refractive index of the material. The spectrometer then moves spatially in order to get spectral information at every point in the field of view. We select spectral lines for further analysis and create maps of the line depths across the field. Using this technique we are able to measure the fluorescence of chlorophyll in plants and observe zodiacal light. In the chlorophyll analysis we are able to detect chlorophyll fluorescence using the line depth in a plant using the sky as a reference solar spectrum. This instrument has possible applications in either a cubesat or aerial observations to measure bulk plant activity over large areas.

  11. Aspiring to Spectral Ignorance in Earth Observation

    NASA Astrophysics Data System (ADS)

    Oliver, S. A.

    2016-12-01

    Enabling robust, defensible and integrated decision making in the Era of Big Earth Data requires the fusion of data from multiple and diverse sensor platforms and networks. While the application of standardised global grid systems provides a common spatial analytics framework that facilitates the computationally efficient and statistically valid integration and analysis of these various data sources across multiple scales, there remains the challenge of sensor equivalency; particularly when combining data from different earth observation satellite sensors (e.g. combining Landsat and Sentinel-2 observations). To realise the vision of a sensor ignorant analytics platform for earth observation we require automation of spectral matching across the available sensors. Ultimately, the aim is to remove the requirement for the user to possess any sensor knowledge in order to undertake analysis. This paper introduces the concept of spectral equivalence and proposes a methodology through which equivalent bands may be sourced from a set of potential target sensors through application of equivalence metrics and thresholds. A number of parameters can be used to determine whether a pair of spectra are equivalent for the purposes of analysis. A baseline set of thresholds for these parameters and how to apply them systematically to enable relation of spectral bands amongst numerous different sensors is proposed. The base unit for comparison in this work is the relative spectral response. From this input, determination of a what may constitute equivalence can be related by a user, based on their own conceptualisation of equivalence.

  12. A spectral-structural bag-of-features scene classifier for very high spatial resolution remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Zhao, Bei; Zhong, Yanfei; Zhang, Liangpei

    2016-06-01

    Land-use classification of very high spatial resolution remote sensing (VHSR) imagery is one of the most challenging tasks in the field of remote sensing image processing. However, the land-use classification is hard to be addressed by the land-cover classification techniques, due to the complexity of the land-use scenes. Scene classification is considered to be one of the expected ways to address the land-use classification issue. The commonly used scene classification methods of VHSR imagery are all derived from the computer vision community that mainly deal with terrestrial image recognition. Differing from terrestrial images, VHSR images are taken by looking down with airborne and spaceborne sensors, which leads to the distinct light conditions and spatial configuration of land cover in VHSR imagery. Considering the distinct characteristics, two questions should be answered: (1) Which type or combination of information is suitable for the VHSR imagery scene classification? (2) Which scene classification algorithm is best for VHSR imagery? In this paper, an efficient spectral-structural bag-of-features scene classifier (SSBFC) is proposed to combine the spectral and structural information of VHSR imagery. SSBFC utilizes the first- and second-order statistics (the mean and standard deviation values, MeanStd) as the statistical spectral descriptor for the spectral information of the VHSR imagery, and uses dense scale-invariant feature transform (SIFT) as the structural feature descriptor. From the experimental results, the spectral information works better than the structural information, while the combination of the spectral and structural information is better than any single type of information. Taking the characteristic of the spatial configuration into consideration, SSBFC uses the whole image scene as the scope of the pooling operator, instead of the scope generated by a spatial pyramid (SP) commonly used in terrestrial image classification. The experimental results show that the whole image as the scope of the pooling operator performs better than the scope generated by SP. In addition, SSBFC codes and pools the spectral and structural features separately to avoid mutual interruption between the spectral and structural features. The coding vectors of spectral and structural features are then concatenated into a final coding vector. Finally, SSBFC classifies the final coding vector by support vector machine (SVM) with a histogram intersection kernel (HIK). Compared with the latest scene classification methods, the experimental results with three VHSR datasets demonstrate that the proposed SSBFC performs better than the other classification methods for VHSR image scenes.

  13. Effects of Fine-Scale Landscape Variability on Satellite-Derived Land Surface Temperature Products Over Sparse Vegetation Canopies

    NASA Astrophysics Data System (ADS)

    Powell, R. L.; Goulden, M.; Peterson, S.; Roberts, D. A.; Still, C. J.

    2015-12-01

    Temperature is a primary environmental control on biological systems and processes at a range of spatial and temporal scales, from controlling biochemical processes such as photosynthesis to influencing continental-scale species distribution. The Landsat satellite series provides a long record (since the mid-1980s) of relatively high spatial resolution thermal infrared (TIR) imagery, from which we derive land surface temperature (LST) grids. Here, we investigate fine spatial resolution factors that influence Landsat-derived LST over a spectrally and spatially heterogeneous landscape. We focus on paired sites (inside/outside a 1994 fire scar) within a pinyon-juniper scrubland in Southern California. The sites have nearly identical micro-meteorology and vegetation species composition, but distinctly different vegetation abundance and structure. The tower at the unburned site includes a number of in-situ imaging tools to quantify vegetation properties, including a thermal camera on a pan-tilt mount, allowing hourly characterization of landscape component temperatures (e.g., sunlit canopy, bare soil, leaf litter). We use these in-situ measurements to assess the impact of fine-scale landscape heterogeneity on estimates of LST, including sensitivity to (i) the relative abundance of component materials, (ii) directional effects due to solar and viewing geometry, (iii) duration of sunlit exposure for each compositional type, and (iv) air temperature. To scale these properties to Landsat spatial resolution (~100-m), we characterize the sub-pixel composition of landscape components (in addition to shade) by applying spectral mixture analysis (SMA) to the Landsat Operational Land Imager (OLI) spectral bands and test the sensitivity of the relationships established with the in-situ data at this coarser scale. The effects of vegetation abundance and cover height versus other controls on satellite-derived estimates of LST will be assessed by comparing estimates at the burned vs. unburned sites across multiple seasons (~30 dates).

  14. hyperspectral characterization of tissue simulating phantoms using a supercontinuum laser in a spatial frequency domain imaging instrument

    NASA Astrophysics Data System (ADS)

    Torabzadeh, Mohammad; Stockton, Patrick; Kennedy, Gordon T.; Saager, Rolf B.; Durkin, Anthony J.; Bartels, Randy A.; Tromberg, Bruce J.

    2018-02-01

    Hyperspectral Imaging (HSI) is a growing field in tissue optics due to its ability to collect continuous spectral features of a sample without a contact probe. Spatial Frequency Domain Imaging (SFDI) is a non-contact wide-field spectral imaging technique that is used to quantitatively characterize tissue structure and chromophore concentration. In this study, we designed a Hyperspectral SFDI (H-SFDI) instrument which integrated a supercontinuum laser source to a wavelength tuning optical configuration and a sCMOS camera to extract spatial (Field of View: 2cm×2cm) and broadband spectral features (580nm-950nm). A preliminary experiment was also performed to integrate the hyperspectral projection unit to a compressed single pixel camera and Light Labeling (LiLa) technique.

  15. Superpixel-based spectral classification for the detection of head and neck cancer with hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Chung, Hyunkoo; Lu, Guolan; Tian, Zhiqiang; Wang, Dongsheng; Chen, Zhuo Georgia; Fei, Baowei

    2016-03-01

    Hyperspectral imaging (HSI) is an emerging imaging modality for medical applications. HSI acquires two dimensional images at various wavelengths. The combination of both spectral and spatial information provides quantitative information for cancer detection and diagnosis. This paper proposes using superpixels, principal component analysis (PCA), and support vector machine (SVM) to distinguish regions of tumor from healthy tissue. The classification method uses 2 principal components decomposed from hyperspectral images and obtains an average sensitivity of 93% and an average specificity of 85% for 11 mice. The hyperspectral imaging technology and classification method can have various applications in cancer research and management.

  16. Control of the amplifications of large-band amplitude-modulated pulses in an Nd-glass amplifier chain

    NASA Astrophysics Data System (ADS)

    Videau, Laurent; Bar, Emmanuel; Rouyer, Claude; Gouedard, Claude; Garnier, Josselin C.; Migus, Arnold

    1999-07-01

    We study nonlinear effects in amplification of partially coherent pulses in a high power laser chain. We compare statistical models with experimental results for temporal and spatial effects. First we show the interplay between self-phase modulation which broadens spectrum bandwidth and gain narrowing which reduces output spectrum. Theoretical results are presented for spectral broadening and energy limitation in case of time-incoherent pulses. In a second part, we introduce spatial incoherence with a multimode optical fiber which provides a smoothed beam. We show with experimental result that spatial filter pinholes are responsible for additive energy losses in the amplification. We develop a statistical model which takes into account the deformation of the focused beam as a function of B integral. We estimate the energy transmission of the spatial filter pinholes and compare this model with experimental data. We find a good agreement between theory and experiments. As a conclusion, we present an analogy between temporal and spatial effects with spectral broadening and spectral filter. Finally, we propose some solutions to control energy limitations in smoothed pulses amplification.

  17. The synergy between complex channel-specific FIR filter and spatial filter for single-trial EEG classification.

    PubMed

    Yu, Ke; Wang, Yue; Shen, Kaiquan; Li, Xiaoping

    2013-01-01

    The common spatial pattern analysis (CSP), a frequently utilized feature extraction method in brain-computer-interface applications, is believed to be time-invariant and sensitive to noises, mainly due to an inherent shortcoming of purely relying on spatial filtering. Therefore, temporal/spectral filtering which can be very effective to counteract the unfavorable influence of noises is usually used as a supplement. This work integrates the CSP spatial filters with complex channel-specific finite impulse response (FIR) filters in a natural and intuitive manner. Each hybrid spatial-FIR filter is of high-order, data-driven and is unique to its corresponding channel. They are derived by introducing multiple time delays and regularization into conventional CSP. The general framework of the method follows that of CSP but performs better, as proven in single-trial classification tasks like event-related potential detection and motor imagery.

  18. HydroClimATe: hydrologic and climatic analysis toolkit

    USGS Publications Warehouse

    Dickinson, Jesse; Hanson, Randall T.; Predmore, Steven K.

    2014-01-01

    The potential consequences of climate variability and climate change have been identified as major issues for the sustainability and availability of the worldwide water resources. Unlike global climate change, climate variability represents deviations from the long-term state of the climate over periods of a few years to several decades. Currently, rich hydrologic time-series data are available, but the combination of data preparation and statistical methods developed by the U.S. Geological Survey as part of the Groundwater Resources Program is relatively unavailable to hydrologists and engineers who could benefit from estimates of climate variability and its effects on periodic recharge and water-resource availability. This report documents HydroClimATe, a computer program for assessing the relations between variable climatic and hydrologic time-series data. HydroClimATe was developed for a Windows operating system. The software includes statistical tools for (1) time-series preprocessing, (2) spectral analysis, (3) spatial and temporal analysis, (4) correlation analysis, and (5) projections. The time-series preprocessing tools include spline fitting, standardization using a normal or gamma distribution, and transformation by a cumulative departure. The spectral analysis tools include discrete Fourier transform, maximum entropy method, and singular spectrum analysis. The spatial and temporal analysis tool is empirical orthogonal function analysis. The correlation analysis tools are linear regression and lag correlation. The projection tools include autoregressive time-series modeling and generation of many realizations. These tools are demonstrated in four examples that use stream-flow discharge data, groundwater-level records, gridded time series of precipitation data, and the Multivariate ENSO Index.

  19. Mapping invasive Fallopia japonica by combined spectral, spatial, and temporal analysis of digital orthophotos

    NASA Astrophysics Data System (ADS)

    Dorigo, Wouter; Lucieer, Arko; Podobnikar, Tomaž; Čarni, Andraž

    2012-10-01

    Japanese knotweed (Fallopia japonica) is listed among 100 of the World's worst invasive alien species and poses an increasing threat to ecosystems and agriculture in Northern America, Europe, and Oceania. This study proposes a remote sensing method to detect local occurrences of F. japonica from low-cost digital orthophotos taken in early spring and summer by concurrently exploring its temporal, spectral, and spatial characteristics. Temporal characteristics of the species are quantified by a band ratio calculated from the green and red spectral channels of both images. The normalized difference vegetation index was used to capture the high near-infrared (NIR) reflectance of F. japonica in summer while the characteristic texture of F. japonica is quantified by calculating gray level co-occurrence matrix (GLCM) measures. After establishing the optimum kernel size to quantify texture, the different input features (spectral, spatial, and texture) were stacked and used as input to the random forest (RF) classifier. The proposed method was tested for a built-up and semi-natural area in Slovenia. The spectral, spatial, and temporal provided an equally important contribution for differentiating F. japonica from other land cover types. The combination of all signatures resulted in a producer accuracy of 90.3% and a user accuracy of 98.1% for F. japonica when validation was based on independent regions of interest. A producer accuracy of 61.4% was obtained for F. japonica when comparing the classification result with all occurrences of F. japonica identified during a field validation campaign. This is an encouraging result given the very small patches in which the species usually occur and the high degree of intermingling with other plants. All hot spots were identified and even likely infestations of F. japonica that had remained undiscovered during the field campaign were detected. The probability images resulting from the RF classifier can be used to reduce the relatively large number of false alarms and may assist in targeted eradication measures. Classification skill only slightly reduced when NIR information was not considered, which is an important recognition with regard to transferability of the method to the most basic type of digital color orthophotos. The possibility to use orthophotos, which at most municipalities are commonly available and easily accessible, facilitates an immediate implementation of the approach in situations where intervention is urgent.

  20. The Influence of Endmember Selection Method in Extracting Impervious Surface from Airborne Hyperspectral Imagery

    NASA Astrophysics Data System (ADS)

    Wang, J.; Feng, B.

    2016-12-01

    Impervious surface area (ISA) has long been studied as an important input into moisture flux models. In general, ISA impedes groundwater recharge, increases stormflow/flood frequency, and alters in-stream and riparian habitats. Urban area is recognized as one of the richest ISA environment. Urban ISA mapping assists flood prevention and urban planning. Hyperspectral imagery (HI), for its ability to detect subtle spectral signature, becomes an ideal candidate in urban ISA mapping. To map ISA from HI involves endmember (EM) selection. The high degree of spatial and spectral heterogeneity of urban environment puts great difficulty in this task: a compromise point is needed between the automatic degree and the good representativeness of the method. The study tested one manual and two semi-automatic EM selection strategies. The manual and the first semi-automatic methods have been widely used in EM selection. The second semi-automatic EM selection method is rather new and has been only proposed for moderate spatial resolution satellite. The manual method visually selected the EM candidates from eight landcover types in the original image. The first semi-automatic method chose the EM candidates using a threshold over the pixel purity index (PPI) map. The second semi-automatic method used the triangle shape of the HI scatter plot in the n-Dimension visualizer to identify the V-I-S (vegetation-impervious surface-soil) EM candidates: the pixels locate at the triangle points. The initial EM candidates from the three methods were further refined by three indexes (EM average RMSE, minimum average spectral angle, and count based EM selection) and generated three spectral libraries, which were used to classify the test image. Spectral angle mapper was applied. The accuracy reports for the classification results were generated. The overall accuracy are 85% for the manual method, 81% for the PPI method, and 87% for the V-I-S method. The V-I-S EM selection method performs best in this study. This fact proves the value of V-I-S EM selection method in not only moderate spatial resolution satellite image but also the more and more accessible high spatial resolution airborne image. This semi-automatic EM selection method can be adopted into a wide range of remote sensing images and provide ISA map for hydrology analysis.

  1. [Non-invasive, spatially resolved determination of tissue properties of the crystalline lens with regard to rheology, refractive index, density and protein concentration by using Brillouin spectroscopy].

    PubMed

    Reiss, S; Stachs, O; Guthoff, R; Stolz, H

    2011-12-01

    The confocal Brillouin spectroscopy is an innovative measurement method that allows the non-invasive determination of the rheological properties of materials. Its application in ophthalmology can offer the possibility to determine in-vivo the deformation properties of sections of transparent biological tissue such as the cornea or eye lens with spatial resolution. This seems to be a promising approach concerning current presbyopia research. Due to the spatially resolved detection of the viscoelastic lens properties, a better understanding of the natural aging process of the lens and the influences of different lens opacities on the stiffness is expected. From the obtained spectral data the relative protein levels, the relative refractive index profile and the relative density profile within the lens tissue can be derived in addition. A measurement set-up for confocal Brillouin microscopy based on spectral analysis of spontaneous Brillouin scattering signals by using a high-resolution dispersive device is presented. First in-vitro test results on animal and human lenses are presented and evaluated concerning their rheological significance. These data are compared with known research results. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Basic research planning in mathematical pattern recognition and image analysis

    NASA Technical Reports Server (NTRS)

    Bryant, J.; Guseman, L. F., Jr.

    1981-01-01

    Fundamental problems encountered while attempting to develop automated techniques for applications of remote sensing are discussed under the following categories: (1) geometric and radiometric preprocessing; (2) spatial, spectral, temporal, syntactic, and ancillary digital image representation; (3) image partitioning, proportion estimation, and error models in object scene interference; (4) parallel processing and image data structures; and (5) continuing studies in polarization; computer architectures and parallel processing; and the applicability of "expert systems" to interactive analysis.

  3. Performance comparisons on spatial lattice algorithm and direct matrix inverse method with application to adaptive arrays processing

    NASA Technical Reports Server (NTRS)

    An, S. H.; Yao, K.

    1986-01-01

    Lattice algorithm has been employed in numerous adaptive filtering applications such as speech analysis/synthesis, noise canceling, spectral analysis, and channel equalization. In this paper the application to adaptive-array processing is discussed. The advantages are fast convergence rate as well as computational accuracy independent of the noise and interference conditions. The results produced by this technique are compared to those obtained by the direct matrix inverse method.

  4. Ocean Color Measurements from Landsat-8 OLI using SeaDAS

    NASA Technical Reports Server (NTRS)

    Franz, Bryan Alden; Bailey, Sean W.; Kuring, Norman; Werdell, P. Jeremy

    2014-01-01

    The Operational Land Imager (OLI) is a multi-spectral radiometer hosted on the recently launched Landsat-8 satellite. OLI includes a suite of relatively narrow spectral bands at 30-meter spatial resolution in the visible to shortwave infrared that make it a potential tool for ocean color radiometry: measurement of the reflected spectral radiance upwelling from beneath the ocean surface that carries information on the biogeochemical constituents of the upper ocean euphotic zone. To evaluate the potential of OLI to measure ocean color, processing support was implemented in SeaDAS, which is an open-source software package distributed by NASA for processing, analysis, and display of ocean remote sensing measurements from a variety of satellite-based multi-spectral radiometers. Here we describe the implementation of OLI processing capabilities within SeaDAS, including support for various methods of atmospheric correction to remove the effects of atmospheric scattering and absorption and retrieve the spectral remote-sensing reflectance (Rrs; sr exp 1). The quality of the retrieved Rrs imagery will be assessed, as will the derived water column constituents such as the concentration of the phytoplankton pigment chlorophyll a.

  5. System design of the CRISM (compact reconnaissance imaging spectrometer for Mars) hyperspectral imager

    NASA Astrophysics Data System (ADS)

    Silverglate, Peter R.; Fort, Dennis E.

    2004-01-01

    CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) is a hyperspectral imager that will be launched on the MRO (Mars Reconnaissance Orbiter) in August 2005. The MRO will circle Mars in a polar orbit at a nominal altitude of 325 km. The CRISM spectral range spans the ultraviolet (UV) to the mid-wave infrared (MWIR), 400 nm to 4050 nm. The instrument utilizes a Ritchey-Chretien telescope with a 2.06º field of view (FOV) to focus light on the entrance slit of a dual spectrometer. Within the spectrometer light is split by a dichroic into VNIR (visible-near infrared) (λ <= 1.05 μm) and IR (infrared) (λ >= 1.05 μm) beams. Each beam is directed into a separate modified Offner spectrometer that focuses a spectrally dispersed image of the slit onto a two dimensional focal plane (FP). The IR FP is a 640 x 480 HgCdTe area array; the VNIR FP is a 640 x 480 silicon photodiode area array. The spectral image is contiguously sampled with a 6.55 nm spectral spacing and an instantaneous field of view of 60 μradians. The orbital motion of the MRO pushbroom scans the spectrometer slit across the Martian surface, allowing the planet to be mapped in 558 spectral bands. There are four major mapping modes: A quick initial multi-spectral mapping of a major portion of the Martian surface in 59 selected spectral bands at a spatial resolution of 600 μradians (10:1 binning); an extended multi-spectral mapping of the entire Martian surface in 59 selected spectral bands at a spatial resolution of 300 μradians (5:1 binning); a high resolution Target Mode, performing hyperspectral mapping of selected targets of interest at full spatial and spectral resolution; and an atmospheric Emission Phase Function (EPF) mode for atmospheric study and correction at full spectral resolution at a spatial resolution of 300 μradians (5:1 binning). The instrument is gimbaled to allow scanning over +/-60° for the EPF and Target modes. The scanning also permits orbital motion compensation, enabling longer integration times and consequently higher signal-to-noise ratios for selected areas on the Martian surface in Target Mode.

  6. System design of the CRISM (compact reconnaissance imaging spectrometer for Mars) hyperspectral imager

    NASA Astrophysics Data System (ADS)

    Silverglate, Peter R.; Fort, Dennis E.

    2003-12-01

    CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) is a hyperspectral imager that will be launched on the MRO (Mars Reconnaissance Orbiter) in August 2005. The MRO will circle Mars in a polar orbit at a nominal altitude of 325 km. The CRISM spectral range spans the ultraviolet (UV) to the mid-wave infrared (MWIR), 400 nm to 4050 nm. The instrument utilizes a Ritchey-Chretien telescope with a 2.06º field of view (FOV) to focus light on the entrance slit of a dual spectrometer. Within the spectrometer light is split by a dichroic into VNIR (visible-near infrared) (λ <= 1.05 μm) and IR (infrared) (λ >= 1.05 μm) beams. Each beam is directed into a separate modified Offner spectrometer that focuses a spectrally dispersed image of the slit onto a two dimensional focal plane (FP). The IR FP is a 640 x 480 HgCdTe area array; the VNIR FP is a 640 x 480 silicon photodiode area array. The spectral image is contiguously sampled with a 6.55 nm spectral spacing and an instantaneous field of view of 60 μradians. The orbital motion of the MRO pushbroom scans the spectrometer slit across the Martian surface, allowing the planet to be mapped in 558 spectral bands. There are four major mapping modes: A quick initial multi-spectral mapping of a major portion of the Martian surface in 59 selected spectral bands at a spatial resolution of 600 μradians (10:1 binning); an extended multi-spectral mapping of the entire Martian surface in 59 selected spectral bands at a spatial resolution of 300 μradians (5:1 binning); a high resolution Target Mode, performing hyperspectral mapping of selected targets of interest at full spatial and spectral resolution; and an atmospheric Emission Phase Function (EPF) mode for atmospheric study and correction at full spectral resolution at a spatial resolution of 300 μradians (5:1 binning). The instrument is gimbaled to allow scanning over +/-60° for the EPF and Target modes. The scanning also permits orbital motion compensation, enabling longer integration times and consequently higher signal-to-noise ratios for selected areas on the Martian surface in Target Mode.

  7. Spatial and Temporal Evolution of Earthquake Dynamics: Case Study of the Mw 8.3 Illapel Earthquake, Chile

    NASA Astrophysics Data System (ADS)

    Yin, Jiuxun; Denolle, Marine A.; Yao, Huajian

    2018-01-01

    We develop a methodology that combines compressive sensing backprojection (CS-BP) and source spectral analysis of teleseismic P waves to provide metrics relevant to earthquake dynamics of large events. We improve the CS-BP method by an autoadaptive source grid refinement as well as a reference source adjustment technique to gain better spatial and temporal resolution of the locations of the radiated bursts. We also use a two-step source spectral analysis based on (i) simple theoretical Green's functions that include depth phases and water reverberations and on (ii) empirical P wave Green's functions. Furthermore, we propose a source spectrogram methodology that provides the temporal evolution of dynamic parameters such as radiated energy and falloff rates. Bridging backprojection and spectrogram analysis provides a spatial and temporal evolution of these dynamic source parameters. We apply our technique to the recent 2015 Mw 8.3 megathrust Illapel earthquake (Chile). The results from both techniques are consistent and reveal a depth-varying seismic radiation that is also found in other megathrust earthquakes. The low-frequency content of the seismic radiation is located in the shallow part of the megathrust, propagating unilaterally from the hypocenter toward the trench while most of the high-frequency content comes from the downdip part of the fault. Interpretation of multiple rupture stages in the radiation is also supported by the temporal variations of radiated energy and falloff rates. Finally, we discuss the possible mechanisms, either from prestress, fault geometry, and/or frictional properties to explain our observables. Our methodology is an attempt to bridge kinematic observations with earthquake dynamics.

  8. Silk: Optical Properties over 12.6 Octaves THz-IR-Visible-UV Range

    PubMed Central

    Balčytis, Armandas; Ryu, Meguya; Wang, Xuewen; Novelli, Fabio; Seniutinas, Gediminas; Du, Shan; Wang, Xungai; Li, Jingliang; Davis, Jeffrey; Appadoo, Dominique; Morikawa, Junko; Juodkazis, Saulius

    2017-01-01

    Domestic (Bombyx mori) and wild (Antheraea pernyi) silk fibers were characterised over a wide spectral range from THz 8 cm−1 (λ= 1.25 mm, f= 0.24 THz) to deep-UV 50×103 cm−1 (λ= 200 nm, f= 1500 THz) wavelengths or over a 12.6 octave frequency range. Spectral features at β-sheet, α-coil and amorphous fibroin were analysed at different spectral ranges. Single fiber cross sections at mid-IR were used to determine spatial distribution of different silk constituents and revealed an α-coil rich core and more broadly spread β-sheets in natural silk fibers obtained from wild Antheraea pernyi moths. Low energy T-ray bands at 243 and 229 cm−1 were observed in crystalline fibers of domestic and wild silk fibers, respectively, and showed no spectral shift down to 78 K temperature. A distinct 20±4 cm−1 band was observed in the crystalline Antheraea pernyi silk fibers. Systematic analysis and assignment of the observed spectral bands is presented. Water solubility and biodegradability of silk, required for bio-medical and sensor applications, are directly inferred from specific spectral bands. PMID:28772716

  9. Rapid microscopy measurement of very large spectral images.

    PubMed

    Lindner, Moshe; Shotan, Zav; Garini, Yuval

    2016-05-02

    The spectral content of a sample provides important information that cannot be detected by the human eye or by using an ordinary RGB camera. The spectrum is typically a fingerprint of the chemical compound, its environmental conditions, phase and geometry. Thus measuring the spectrum at each point of a sample is important for a large range of applications from art preservation through forensics to pathological analysis of a tissue section. To date, however, there is no system that can measure the spectral image of a large sample in a reasonable time. Here we present a novel method for scanning very large spectral images of microscopy samples even if they cannot be viewed in a single field of view of the camera. The system is based on capturing information while the sample is being scanned continuously 'on the fly'. Spectral separation implements Fourier spectroscopy by using an interferometer mounted along the optical axis. High spectral resolution of ~5 nm at 500 nm could be achieved with a diffraction-limited spatial resolution. The acquisition time is fairly high and takes 6-8 minutes for a sample size of 10mm x 10mm measured under a bright-field microscope using a 20X magnification.

  10. Random laser illumination: an ideal source for biomedical polarization imaging?

    NASA Astrophysics Data System (ADS)

    Carvalho, Mariana T.; Lotay, Amrit S.; Kenny, Fiona M.; Girkin, John M.; Gomes, Anderson S. L.

    2016-03-01

    Imaging applications increasingly require light sources with high spectral density (power over spectral bandwidth. This has led in many cases to the replacement of conventional thermal light sources with bright light-emitting diodes (LEDs), lasers and superluminescent diodes. Although lasers and superluminescent diodes appear to be ideal light sources due to their narrow bandwidth and power, however, in the case of full-field imaging, their spatial coherence leads to coherent artefacts, such as speckle, that corrupt the image. LEDs, in contrast, have lower spatial coherence and thus seem the natural choice, but they have low spectral density. Random Lasers are an unconventional type of laser that can be engineered to provide low spatial coherence with high spectral density. These characteristics makes them potential sources for biological imaging applications where specific absorption and reflection are the characteristics required for state of the art imaging. In this work, a Random Laser (RL) is used to demonstrate speckle-free full-field imaging for polarization-dependent imaging in an epi-illumination configuration. We compare LED and RL illumination analysing the resulting images demonstrating that the RL illumination produces an imaging system with higher performance (image quality and spectral density) than that provided by LEDs.

  11. Compressive hyperspectral and multispectral imaging fusion

    NASA Astrophysics Data System (ADS)

    Espitia, Óscar; Castillo, Sergio; Arguello, Henry

    2016-05-01

    Image fusion is a valuable framework which combines two or more images of the same scene from one or multiple sensors, allowing to improve the resolution of the images and increase the interpretable content. In remote sensing a common fusion problem consists of merging hyperspectral (HS) and multispectral (MS) images that involve large amount of redundant data, which ignores the highly correlated structure of the datacube along the spatial and spectral dimensions. Compressive HS and MS systems compress the spectral data in the acquisition step allowing to reduce the data redundancy by using different sampling patterns. This work presents a compressed HS and MS image fusion approach, which uses a high dimensional joint sparse model. The joint sparse model is formulated by combining HS and MS compressive acquisition models. The high spectral and spatial resolution image is reconstructed by using sparse optimization algorithms. Different fusion spectral image scenarios are used to explore the performance of the proposed scheme. Several simulations with synthetic and real datacubes show promising results as the reliable reconstruction of a high spectral and spatial resolution image can be achieved by using as few as just the 50% of the datacube.

  12. Determination of Cluster Distances from Chandra Imaging Spectroscopy and Sunyaev-Zeldovich Effect Measurements. I; Analysis Methods and Initial Results

    NASA Technical Reports Server (NTRS)

    Bonamente, Massimiliano; Joy, Marshall K.; Carlstrom, John E.; LaRoque, Samuel J.

    2004-01-01

    X-ray and Sunyaev-Zeldovich Effect data ca,n be combined to determine the distance to galaxy clusters. High-resolution X-ray data are now available from the Chandra Observatory, which provides both spatial and spectral information, and interferometric radio measurements of the Sunyam-Zeldovich Effect are available from the BIMA and 0VR.O arrays. We introduce a Monte Carlo Markov chain procedure for the joint analysis of X-ray and Sunyaev-Zeldovich Effect data. The advantages of this method are the high computational efficiency and the ability to measure the full probability distribution of all parameters of interest, such as the spatial and spectral properties of the cluster gas and the cluster distance. We apply this technique to the Chandra X-ray data and the OVRO radio data for the galaxy cluster Abell 611. Comparisons with traditional likelihood-ratio methods reveal the robustness of the method. This method will be used in a follow-up paper to determine the distance of a large sample of galaxy clusters for which high-resolution Chandra X-ray and BIMA/OVRO radio data are available.

  13. Mapping urban impervious surface using object-based image analysis with WorldView-3 satellite imagery

    NASA Astrophysics Data System (ADS)

    Iabchoon, Sanwit; Wongsai, Sangdao; Chankon, Kanoksuk

    2017-10-01

    Land use and land cover (LULC) data are important to monitor and assess environmental change. LULC classification using satellite images is a method widely used on a global and local scale. Especially, urban areas that have various LULC types are important components of the urban landscape and ecosystem. This study aims to classify urban LULC using WorldView-3 (WV-3) very high-spatial resolution satellite imagery and the object-based image analysis method. A decision rules set was applied to classify the WV-3 images in Kathu subdistrict, Phuket province, Thailand. The main steps were as follows: (1) the image was ortho-rectified with ground control points and using the digital elevation model, (2) multiscale image segmentation was applied to divide the image pixel level into image object level, (3) development of the decision ruleset for LULC classification using spectral bands, spectral indices, spatial and contextual information, and (4) accuracy assessment was computed using testing data, which sampled by statistical random sampling. The results show that seven LULC classes (water, vegetation, open space, road, residential, building, and bare soil) were successfully classified with overall classification accuracy of 94.14% and a kappa coefficient of 92.91%.

  14. Inverse analysis of non-uniform temperature distributions using multispectral pyrometry

    NASA Astrophysics Data System (ADS)

    Fu, Tairan; Duan, Minghao; Tian, Jibin; Shi, Congling

    2016-05-01

    Optical diagnostics can be used to obtain sub-pixel temperature information in remote sensing. A multispectral pyrometry method was developed using multiple spectral radiation intensities to deduce the temperature area distribution in the measurement region. The method transforms a spot multispectral pyrometer with a fixed field of view into a pyrometer with enhanced spatial resolution that can give sub-pixel temperature information from a "one pixel" measurement region. A temperature area fraction function was defined to represent the spatial temperature distribution in the measurement region. The method is illustrated by simulations of a multispectral pyrometer with a spectral range of 8.0-13.0 μm measuring a non-isothermal region with a temperature range of 500-800 K in the spot pyrometer field of view. The inverse algorithm for the sub-pixel temperature distribution (temperature area fractions) in the "one pixel" verifies this multispectral pyrometry method. The results show that an improved Levenberg-Marquardt algorithm is effective for this ill-posed inverse problem with relative errors in the temperature area fractions of (-3%, 3%) for most of the temperatures. The analysis provides a valuable reference for the use of spot multispectral pyrometers for sub-pixel temperature distributions in remote sensing measurements.

  15. Convergence of Spectral Discretizations of the Vlasov--Poisson System

    DOE PAGES

    Manzini, G.; Funaro, D.; Delzanno, G. L.

    2017-09-26

    Here we prove the convergence of a spectral discretization of the Vlasov-Poisson system. The velocity term of the Vlasov equation is discretized using either Hermite functions on the infinite domain or Legendre polynomials on a bounded domain. The spatial term of the Vlasov and Poisson equations is discretized using periodic Fourier expansions. Boundary conditions are treated in weak form through a penalty type term that can be applied also in the Hermite case. As a matter of fact, stability properties of the approximated scheme descend from this added term. The convergence analysis is carried out in detail for the 1D-1Vmore » case, but results can be generalized to multidimensional domains, obtained as Cartesian product, in both space and velocity. The error estimates show the spectral convergence under suitable regularity assumptions on the exact solution.« less

  16. [Analysis of Cr in soil by LIBS based on conical spatial confinement of plasma].

    PubMed

    Lin, Yong-Zeng; Yao, Ming-Yin; Chen, Tian-Bing; Li, Wen-Bing; Zheng, Mei-Lan; Xu, Xue-Hong; Tu, Jian-Ping; Liu, Mu-Hua

    2013-11-01

    The present study is to improve the sensitivity of detection and reduce the limit of detection in detecting heavy metal of soil by laser induced breakdown spectroscopy (LIBS). The Cr element of national standard soil was regarded as the research object. In the experiment, a conical cavity with small diameter end of 20 mm and large diameter end of 45 mm respectively was installed below the focusing lens near the experiment sample to mainly confine the signal transmitted by plasma and to some extent to confine the plasma itself in the LIBS setup. In detecting Cr I 425.44 nm, the beast delay time gained from experiment is 1.3 micros, and the relative standard deviation is below 10%. Compared with the setup of non-spatial confinement, the spectral intensity of Cr in the soil sample was enhanced more than 7%. Calibration curve was established in the Cr concentration range from 60 to 400 microg x g(-1). Under the condition of spatial confinement, the liner regression coefficient and the limit of detection were 0.997 71 and 18.85 microg x g(-1) respectively, however, the regression coefficient and the limit of detection were 0.991 22 and 36.99 microg x g(-1) without spatial confinement. So, this shows that conical spatial confinement can/improve the sensitivity of detection and enhance the spectral intensity. And it is a good auxiliary function in detecting Cr in the soil by laser induced breakdown spectroscopy.

  17. Non-destructive terahertz imaging of illicit drugs using spectral fingerprints

    NASA Astrophysics Data System (ADS)

    Kawase, Kodo; Ogawa, Yuichi; Watanabe, Yuuki; Inoue, Hiroyuki

    2003-10-01

    The absence of non-destructive inspection techniques for illicit drugs hidden in mail envelopes has resulted in such drugs being smuggled across international borders freely. We have developed a novel basic technology for terahertz imaging, which allows detection and identification of drugs concealed in envelopes, by introducing the component spatial pattern analysis. The spatial distributions of the targets are obtained from terahertz multispectral transillumination images, using absorption spectra measured with a tunable terahertz-wave source. The samples we used were methamphetamine and MDMA, two of the most widely consumed illegal drugs in Japan, and aspirin as a reference.

  18. Direct numerical simulations of a reacting turbulent mixing layer by a pseudospectral-spectral element method

    NASA Technical Reports Server (NTRS)

    Mcmurtry, Patrick A.; Givi, Peyman

    1992-01-01

    An account is given of the implementation of the spectral-element technique for simulating a chemically reacting, spatially developing turbulent mixing layer. Attention is given to experimental and numerical studies that have investigated the development, evolution, and mixing characteristics of shear flows. A mathematical formulation is presented of the physical configuration of the spatially developing reacting mixing layer, in conjunction with a detailed representation of the spectral-element method's application to the numerical simulation of mixing layers. Results from 2D and 3D calculations of chemically reacting mixing layers are given.

  19. Snapshot Imaging Spectrometry in the Visible and Long Wave Infrared

    NASA Astrophysics Data System (ADS)

    Maione, Bryan David

    Imaging spectrometry is an optical technique in which the spectral content of an object is measured at each location in space. The main advantage of this modality is that it enables characterization beyond what is possible with a conventional camera, since spectral information is generally related to the chemical composition of the object. Due to this, imaging spectrometers are often capable of detecting targets that are either morphologically inconsistent, or even under resolved. A specific class of imaging spectrometer, known as a snapshot system, seeks to measure all spatial and spectral information simultaneously, thereby rectifying artifacts associated with scanning designs, and enabling the measurement of temporally dynamic scenes. Snapshot designs are the focus of this dissertation. Three designs for snapshot imaging spectrometers are developed, each providing novel contributions to the field of imaging spectrometry. In chapter 2, the first spatially heterodyned snapshot imaging spectrometer is modeled and experimentally validated. Spatial heterodyning is a technique commonly implemented in non-imaging Fourier transform spectrometry. For Fourier transform imaging spectrometers, spatial heterodyning improves the spectral resolution trade space. Additionally, in this chapter a unique neural network based spectral calibration is developed and determined to be an improvement beyond Fourier and linear operator based techniques. Leveraging spatial heterodyning as developed in chapter 2, in chapter 3, a high spectral resolution snapshot Fourier transform imaging spectrometer, based on a Savart plate interferometer, is developed and experimentally validated. The sensor presented in this chapter is the highest spectral resolution sensor in its class. High spectral resolution enables the sensor to discriminate narrowly spaced spectral lines. The capabilities of neural networks in imaging spectrometry are further explored in this chapter. Neural networks are used to perform single target detection on raw instrument data, thereby eliminating the need for an explicit spectral calibration step. As an extension of the results in chapter 2, neural networks are once again demonstrated to be an improvement when compared to linear operator based detection. In chapter 4 a non-interferometric design is developed for the long wave infrared (wavelengths spanning 8-12 microns). The imaging spectrometer developed in this chapter is a multi-aperture filtered microbolometer. Since the detector is uncooled, the presented design is ultra-compact and low power. Additionally, cost effective polymer absorption filters are used in lieu of interference filters. Since, each measurement of the system is spectrally multiplexed, an SNR advantage is realized. A theoretical model for the filtered design is developed, and the performance of the sensor for detecting liquid contaminants is investigated. Similar to past chapters, neural networks are used and achieve false detection rates of less than 1%. Lastly, this dissertation is concluded with a discussion on future work and potential impact of these devices.

  20. Urban land use monitoring from computer-implemented processing of airborne multispectral data

    NASA Technical Reports Server (NTRS)

    Todd, W. J.; Mausel, P. W.; Baumgardner, M. F.

    1976-01-01

    Machine processing techniques were applied to multispectral data obtained from airborne scanners at an elevation of 600 meters over central Indianapolis in August, 1972. Computer analysis of these spectral data indicate that roads (two types), roof tops (three types), dense grass (two types), sparse grass (two types), trees, bare soil, and water (two types) can be accurately identified. Using computers, it is possible to determine land uses from analysis of type, size, shape, and spatial associations of earth surface images identified from multispectral data. Land use data developed through machine processing techniques can be programmed to monitor land use changes, simulate land use conditions, and provide impact statistics that are required to analyze stresses placed on spatial systems.

  1. Reconstructing Spectral Scenes Using Statistical Estimation to Enhance Space Situational Awareness

    DTIC Science & Technology

    2006-12-01

    simultane- ously spatially and spectrally deblur the images collected from ASIS. The algorithms are based on proven estimation theories and do not...collected with any system using a filtering technology known as Electronic Tunable Filters (ETFs). Previous methods to deblur spectral images collected...spectrally deblurring then the previously investigated methods. This algorithm expands on a method used for increasing the spectral resolution in gamma-ray

  2. Hyperspectral imaging of the human iris

    NASA Astrophysics Data System (ADS)

    Di Cecilia, Luca; Marazzi, Francesco; Rovati, Luigi

    2017-07-01

    We describe an optical system and a method for measuring the human iris spectral reflectance in vivo by hyperspectral imaging analysis. It is important to monitor age-related changes in the reflectance properties of the iris as they are a prognostic factor for several eye pathologies. In this paper, we report the outcomes of our most recent research, resulting from the improvement of our imaging system. In particular, a custom tunable light source was developed: the images are now acquired in the spectral range 440 - 900 nm. With this system, we are able to obtain a spectral resolution of 20nm, while each image of 2048 x 1536 pixels has a spatial resolution of 10.7 μm. The results suggest that the instrument could be exploited for measuring iris pigmentation changes over time. These measurements could provide new diagnostic capabilities in ophthalmology. Further studies are required to determine the measurements' repeatability and to develop a spectral library for results evaluation and to detect differences among subsequent screenings of the same subject.

  3. Evaluating the effect of remote sensing image spatial resolution on soil exchangeable potassium prediction models in smallholder farm settings.

    PubMed

    Xu, Yiming; Smith, Scot E; Grunwald, Sabine; Abd-Elrahman, Amr; Wani, Suhas P

    2017-09-15

    Major end users of Digital Soil Mapping (DSM) such as policy makers and agricultural extension workers are faced with choosing the appropriate remote sensing data. The objective of this research is to analyze the spatial resolution effects of different remote sensing images on soil prediction models in two smallholder farms in Southern India called Kothapally (Telangana State), and Masuti (Karnataka State), and provide empirical guidelines to choose the appropriate remote sensing images in DSM. Bayesian kriging (BK) was utilized to characterize the spatial pattern of exchangeable potassium (K ex ) in the topsoil (0-15 cm) at different spatial resolutions by incorporating spectral indices from Landsat 8 (30 m), RapidEye (5 m), and WorldView-2/GeoEye-1/Pleiades-1A images (2 m). Some spectral indices such as band reflectances, band ratios, Crust Index and Atmospherically Resistant Vegetation Index from multiple images showed relatively strong correlations with soil K ex in two study areas. The research also suggested that fine spatial resolution WorldView-2/GeoEye-1/Pleiades-1A-based and RapidEye-based soil prediction models would not necessarily have higher prediction performance than coarse spatial resolution Landsat 8-based soil prediction models. The end users of DSM in smallholder farm settings need select the appropriate spectral indices and consider different factors such as the spatial resolution, band width, spectral resolution, temporal frequency, cost, and processing time of different remote sensing images. Overall, remote sensing-based Digital Soil Mapping has potential to be promoted to smallholder farm settings all over the world and help smallholder farmers implement sustainable and field-specific soil nutrient management scheme. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Chandra Interactive Analysis of Observations (CIAO)

    NASA Technical Reports Server (NTRS)

    Dobrzycki, Adam

    2000-01-01

    The Chandra (formerly AXAF) telescope, launched on July 23, 1999, provides X-rays data with unprecedented spatial and spectral resolution. As part of the Chandra scientific support, the Chandra X-ray Observatory Center provides a new data analysis system, CIAO ("Chandra Interactive Analysis of Observations"). We will present the main components of the system: "First Look" analysis; SHERPA: a multi-dimensional, multi-mission modeling and fitting application; Chandra Imaging and Plotting System; Detect package-source detection algorithms; and DM package generic data manipulation tools, We will set up a demonstration of the portable version of the system and show examples of Chandra Data Analysis.

  5. Optimisation and evaluation of hyperspectral imaging system using machine learning algorithm

    NASA Astrophysics Data System (ADS)

    Suthar, Gajendra; Huang, Jung Y.; Chidangil, Santhosh

    2017-10-01

    Hyperspectral imaging (HSI), also called imaging spectrometer, originated from remote sensing. Hyperspectral imaging is an emerging imaging modality for medical applications, especially in disease diagnosis and image-guided surgery. HSI acquires a three-dimensional dataset called hypercube, with two spatial dimensions and one spectral dimension. Spatially resolved spectral imaging obtained by HSI provides diagnostic information about the objects physiology, morphology, and composition. The present work involves testing and evaluating the performance of the hyperspectral imaging system. The methodology involved manually taking reflectance of the object in many images or scan of the object. The object used for the evaluation of the system was cabbage and tomato. The data is further converted to the required format and the analysis is done using machine learning algorithm. The machine learning algorithms applied were able to distinguish between the object present in the hypercube obtain by the scan. It was concluded from the results that system was working as expected. This was observed by the different spectra obtained by using the machine-learning algorithm.

  6. Resolution verification targets for airborne and spaceborne imaging systems at the Stennis Space Center

    NASA Astrophysics Data System (ADS)

    McKellip, Rodney; Yuan, Ding; Graham, William; Holland, Donald E.; Stone, David; Walser, William E.; Mao, Chengye

    1997-06-01

    The number of available spaceborne and airborne systems will dramatically increase over the next few years. A common systematic approach toward verification of these systems will become important for comparing the systems' operational performance. The Commercial Remote Sensing Program at the John C. Stennis Space Center (SSC) in Mississippi has developed design requirements for a remote sensing verification target range to provide a means to evaluate spatial, spectral, and radiometric performance of optical digital remote sensing systems. The verification target range consists of spatial, spectral, and radiometric targets painted on a 150- by 150-meter concrete pad located at SSC. The design criteria for this target range are based upon work over a smaller, prototypical target range at SSC during 1996. This paper outlines the purpose and design of the verification target range based upon an understanding of the systems to be evaluated as well as data analysis results from the prototypical target range.

  7. Search for Extended Sources in the Galactic Plane Using Six Years of Fermi -Large Area Telescope Pass 8 Data above 10 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, M.; Buehler, R.; Ajello, M.

    The spatial extension of a γ -ray source is an essential ingredient to determine its spectral properties, as well as its potential multiwavelength counterpart. The capability to spatially resolve γ -ray sources is greatly improved by the newly delivered Fermi -Large Area Telescope (LAT) Pass 8 event-level analysis, which provides a greater acceptance and an improved point-spread function, two crucial factors for the detection of extended sources. Here, we present a complete search for extended sources located within 7° from the Galactic plane, using 6 yr of Fermi -LAT data above 10 GeV. We find 46 extended sources and providemore » their morphological and spectral characteristics. This constitutes the first catalog of hard Fermi -LAT extended sources, named the Fermi Galactic Extended Source Catalog, which allows a thorough study of the properties of the Galactic plane in the sub-TeV domain.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naughton, M.J.; Bourke, W.; Browning, G.L.

    The convergence of spectral model numerical solutions of the global shallow-water equations is examined as a function of the time step and the spectral truncation. The contributions to the errors due to the spatial and temporal discretizations are separately identified and compared. Numerical convergence experiments are performed with the inviscid equations from smooth (Rossby-Haurwitz wave) and observed (R45 atmospheric analysis) initial conditions, and also with the diffusive shallow-water equations. Results are compared with the forced inviscid shallow-water equations case studied by Browning et al. Reduction of the time discretization error by the removal of fast waves from the solution usingmore » initialization is shown. The effects of forcing and diffusion on the convergence are discussed. Time truncation errors are found to dominate when a feature is large scale and well resolved; spatial truncation errors dominate for small-scale features and also for large scale after the small scales have affected them. Possible implications of these results for global atmospheric modeling are discussed. 31 refs., 14 figs., 4 tabs.« less

  9. Search for Extended Sources in the Galactic Plane Using Six Years of Fermi-Large Area Telescope Pass 8 Data above 10 GeV

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Ajello, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Bloom, E. D.; Bonino, R.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Bruel, P.; Buehler, R.; Cameron, R. A.; Caragiulo, M.; Caraveo, P. A.; Castro, D.; Cavazzuti, E.; Cecchi, C.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiaro, G.; Ciprini, S.; Cohen, J. M.; Costantin, D.; Costanza, F.; Cutini, S.; D'Ammando, F.; de Palma, F.; Desiante, R.; Digel, S. W.; Di Lalla, N.; Di Mauro, M.; Di Venere, L.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Franckowiak, A.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giordano, F.; Giroletti, M.; Green, D.; Grenier, I. A.; Grondin, M.-H.; Guillemot, L.; Guiriec, S.; Harding, A. K.; Hays, E.; Hewitt, J. W.; Horan, D.; Hou, X.; Jóhannesson, G.; Kamae, T.; Kuss, M.; La Mura, G.; Larsson, S.; Lemoine-Goumard, M.; Li, J.; Longo, F.; Loparco, F.; Lubrano, P.; Magill, J. D.; Maldera, S.; Malyshev, D.; Manfreda, A.; Mazziotta, M. N.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Negro, M.; Nuss, E.; Ohsugi, T.; Omodei, N.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paliya, V. S.; Paneque, D.; Perkins, J. S.; Persic, M.; Pesce-Rollins, M.; Petrosian, V.; Piron, F.; Porter, T. A.; Principe, G.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Reposeur, T.; Sgrò, C.; Simone, D.; Siskind, E. J.; Spada, F.; Spandre, G.; Spinelli, P.; Suson, D. J.; Tak, D.; Thayer, J. B.; Thompson, D. J.; Torres, D. F.; Tosti, G.; Troja, E.; Vianello, G.; Wood, K. S.; Wood, M.

    2017-07-01

    The spatial extension of a γ-ray source is an essential ingredient to determine its spectral properties, as well as its potential multiwavelength counterpart. The capability to spatially resolve γ-ray sources is greatly improved by the newly delivered Fermi-Large Area Telescope (LAT) Pass 8 event-level analysis, which provides a greater acceptance and an improved point-spread function, two crucial factors for the detection of extended sources. Here, we present a complete search for extended sources located within 7° from the Galactic plane, using 6 yr of Fermi-LAT data above 10 GeV. We find 46 extended sources and provide their morphological and spectral characteristics. This constitutes the first catalog of hard Fermi-LAT extended sources, named the Fermi Galactic Extended Source Catalog, which allows a thorough study of the properties of the Galactic plane in the sub-TeV domain.

  10. Mapping of Coral Reef Environment in the Arabian Gulf Using Multispectral Remote Sensing

    NASA Astrophysics Data System (ADS)

    Ben-Romdhane, H.; Marpu, P. R.; Ghedira, H.; Ouarda, T. B. M. J.

    2016-06-01

    Coral reefs of the Arabian Gulf are subject to several pressures, thus requiring conservation actions. Well-designed conservation plans involve efficient mapping and monitoring systems. Satellite remote sensing is a cost-effective tool for seafloor mapping at large scales. Multispectral remote sensing of coastal habitats, like those of the Arabian Gulf, presents a special challenge due to their complexity and heterogeneity. The present study evaluates the potential of multispectral sensor DubaiSat-2 in mapping benthic communities of United Arab Emirates. We propose to use a spectral-spatial method that includes multilevel segmentation, nonlinear feature analysis and ensemble learning methods. Support Vector Machine (SVM) is used for comparison of classification performances. Comparative data were derived from the habitat maps published by the Environment Agency-Abu Dhabi. The spectral-spatial method produced 96.41% mapping accuracy. SVM classification is assessed to be 94.17% accurate. The adaptation of these methods can help achieving well-designed coastal management plans in the region.

  11. Measuring spatially varying, multispectral, ultraviolet bidirectional reflectance distribution function with an imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Li, Hongsong; Lyu, Hang; Liao, Ningfang; Wu, Wenmin

    2016-12-01

    The bidirectional reflectance distribution function (BRDF) data in the ultraviolet (UV) band are valuable for many applications including cultural heritage, material analysis, surface characterization, and trace detection. We present a BRDF measurement instrument working in the near- and middle-UV spectral range. The instrument includes a collimated UV light source, a rotation stage, a UV imaging spectrometer, and a control computer. The data captured by the proposed instrument describe spatial, spectral, and angular variations of the light scattering from a sample surface. Such a multidimensional dataset of an example sample is captured by the proposed instrument and analyzed by a k-mean clustering algorithm to separate surface regions with same material but different surface roughnesses. The clustering results show that the angular dimension of the dataset can be exploited for surface roughness characterization. The two clustered BRDFs are fitted to a theoretical BRDF model. The fitting results show good agreement between the measurement data and the theoretical model.

  12. Measuring and Monitoring Long Term Disaster Recovery Using Remote Sensing: A Case Study of Post Katrina New Orleans

    NASA Astrophysics Data System (ADS)

    Archer, Reginald S.

    This research focuses on measuring and monitoring long term recovery progress from the impacts of Hurricane Katrina on New Orleans, LA. Remote sensing has frequently been used for emergency response and damage assessment after natural disasters. However, techniques for analysis of long term disaster recovery using remote sensing have not been widely explored. With increased availability and lower costs, remote sensing offers an objective perspective, systematic and repeatable analysis, and provides a substitute to multiple site visits. In addition, remote sensing allows access to large geographical areas and areas where ground access may be disrupted, restricted or denied. This dissertation addressed the primary difficulties involved in the development of change detection methods capable of detecting changes experienced by disaster recovery indicators. Maximum likelihood classification and post-classification change detection were applied to multi-temporal high resolution aerial images to quantitatively measure the progress of recovery. Images were classified to automatically identify disaster recovery indicators and exploit the indicators that are visible within each image. The spectral analysis demonstrated that employing maximum likelihood classification to high resolution true color aerial images performed adequately and provided a good indication of spectral pattern recognition, despite the limited spectral information. Applying the change detection to the classified images was effective for determining the temporal trajectory of indicators categorized as blue tarps, FEMA trailers, houses, vegetation, bare earth and pavement. The results of the post classification change detection revealed a dominant change trajectory from bluetarp to house, as damaged houses became permanently repaired. Specifically, the level of activity of blue tarps, housing, vegetation, FEMA trailers (temporary housing) pavement and bare earth were derived from aerial image processing to measure and monitor the progress of recovery. Trajectories of recovery for each individual indicator were examined to provide a better understanding of activity during reconstruction. A collection of spatial metrics was explored in order to identify spatial patterns and characterize classes in terms of patches of pixels. One of the key findings of the spatial analysis is that patch shapes were more complex in the presence of debris and damaged or destroyed buildings. The combination of spectral, temporal, and spatial analysis provided a satisfactory, though limited, solution to the question of whether remote sensing alone, can be used to quantitatively assess and monitor the progress of long term recovery following a major disaster. The research described in this dissertation provided a detailed illustration of the level of activity experienced by different recovery indicators during the long term recovery process. It also addressed the primary difficulties involved in the development of change detection methods capable of detecting changes experienced by disaster recovery indicators identified from classified high resolution true color aerial imagery. The results produced in this research demonstrate that the observed trajectories for actual indicators of recovery indicate different levels of recovery activity even within the same community. The level of activity of the long term reconstruction phase observed in the Kates model is not consistent with the level of activity of key recovery indicators in the Lower 9th Ward during the same period. Used in the proper context, these methods and results provide decision making information for determining resources. KEYWORDS: Change detection, classification, Katrina, New Orleans, remote sensing, disaster recovery, spatial metrics

  13. Encoding of Natural Sounds at Multiple Spectral and Temporal Resolutions in the Human Auditory Cortex

    PubMed Central

    Santoro, Roberta; Moerel, Michelle; De Martino, Federico; Goebel, Rainer; Ugurbil, Kamil; Yacoub, Essa; Formisano, Elia

    2014-01-01

    Functional neuroimaging research provides detailed observations of the response patterns that natural sounds (e.g. human voices and speech, animal cries, environmental sounds) evoke in the human brain. The computational and representational mechanisms underlying these observations, however, remain largely unknown. Here we combine high spatial resolution (3 and 7 Tesla) functional magnetic resonance imaging (fMRI) with computational modeling to reveal how natural sounds are represented in the human brain. We compare competing models of sound representations and select the model that most accurately predicts fMRI response patterns to natural sounds. Our results show that the cortical encoding of natural sounds entails the formation of multiple representations of sound spectrograms with different degrees of spectral and temporal resolution. The cortex derives these multi-resolution representations through frequency-specific neural processing channels and through the combined analysis of the spectral and temporal modulations in the spectrogram. Furthermore, our findings suggest that a spectral-temporal resolution trade-off may govern the modulation tuning of neuronal populations throughout the auditory cortex. Specifically, our fMRI results suggest that neuronal populations in posterior/dorsal auditory regions preferably encode coarse spectral information with high temporal precision. Vice-versa, neuronal populations in anterior/ventral auditory regions preferably encode fine-grained spectral information with low temporal precision. We propose that such a multi-resolution analysis may be crucially relevant for flexible and behaviorally-relevant sound processing and may constitute one of the computational underpinnings of functional specialization in auditory cortex. PMID:24391486

  14. Nyquist-WDM filter shaping with a high-resolution colorless photonic spectral processor.

    PubMed

    Sinefeld, David; Ben-Ezra, Shalva; Marom, Dan M

    2013-09-01

    We employ a spatial-light-modulator-based colorless photonic spectral processor with a spectral addressability of 100 MHz along 100 GHz bandwidth, for multichannel, high-resolution reshaping of Gaussian channel response to square-like shape, compatible with Nyquist WDM requirements.

  15. [Study on the Spectral Characteristics of the Narrow-Band Filter in SHS].

    PubMed

    Luo, Hai-yan; Shi, Hai-liang; Li, Zhi-wei; Li, Shuang; Xiong, Wei; Hong, Jin

    2015-04-01

    The spectral response of spatial heterodyne spectroscopy (SHS) is determined by the spectrum property of narrow-band filter. As discussed in previous studies, the symmetric heterodyned interferogram of high frequency waves modulated by SHS and lack of sample lead to spectral confusion, which is associated with the true and ghost spectra. Because of the deviation from theoretical index of narrow-band filter in the process of coating, the boarded spectral response and middle wave shift are presented, and conditions in the theoretical Littrow wavelength made the effective wavelength range of SHS reduced. According to the measured curve of filter, a new wavenumber of zero spatial frequency can be reset by tunable laser, and it is easy for SHS to improve the spectral aliasing distortion. The results show that it is utilized to the maximum extent of the effective bandwidth by adjusting the grating angle of rotation to change the Littrow wavelength of the basic frequency, and the spectral region increased to 14.9 nm from original 12.9 nm.

  16. Investigation of multimodal forward scatter phenotyping from bacterial colonies

    NASA Astrophysics Data System (ADS)

    Kim, Huisung

    A rapid, label-free, and elastic light scattering (ELS) based bacterial colony phenotyping technology, bacterial rapid detection using optical scattering technology (BARDOT) provides a successful classification of several bacterial genus and species. For a thorough understanding of the phenomena and overcoming the limitations of the previous design, five additional modalities from a bacterial colony: 3D morphology, spatial optical density (OD) distribution, spectral forward scattering pattern, spectral OD, and surface backward reflection pattern are proposed to enhance the classification/identification ratio, and the feasibilities of each modality are verified. For the verification, three different instruments: integrated colony morphology analyzer (ICMA), multi-spectral BARDOT (MS-BARDOT) , and multi-modal BARDOT (MM-BARDOT) are proposed and developed. The ICMA can measure 3D morphology and spatial OD distribution of the colony simultaneously. A commercialized confocal displacement meter is used to measure the profiles of the bacterial colonies, together with a custom built optical density measurement unit to interrogate the biophysics behind the collective behavior of a bacterial colony. The system delivers essential information related to the quantitative growth dynamics (height, diameter, aspect ratio, optical density) of the bacterial colony, as well as, a relationship in between the morphological characteristics of the bacterial colony and its forward scattering pattern. Two different genera: Escherichia coli O157:H7 EDL933, and Staphylococcus aureus ATCC 25923 are selected for the analysis of the spatially resolved growth dynamics, while, Bacillus spp. such as B. subtilis ATCC 6633, B. cereus ATCC 14579, B. thuringiensis DUP6044, B. polymyxa B719W, and B. megaterium DSP 81319, are interrogated since some of the Bacillus spp. provides strikingly different characteristics of ELS patterns, and the origin of the speckle patterns are successfully correlated with the 2-D spatial density map from the ICMA. The MS-BARDOT can measure multispectral elastic-light-scatter patterns of the bacterial colony and its spectral OD to overcome the inherent limits of the single-wavelength BARDOT. A theoretical model for spectral forward scatter patterns from a bacterial colony based on elastic light scatter is presented. The spectral forward scatter patterns are computed by scalar diffraction theory, and compared with experimental results of three discrete wavelengths (405 nm, 635 nm, and 904 nm). Both model and experiment results show an excellent agreement; a longer wavelength induces a wider ring width, a wider ring gap, a smaller pattern size, and smaller numbers of rings. Further analysis using spatial fast Fourier transform (SFFT) shows a good agreement; the spatial frequencies are increasing towards the inward direction, and the slope is inversely proportional to the incoming wavelength. Four major pathogenic bacterial genera (Escherichia coli O157:H7 EDL933, Listeria monocytogenes F4244, Salmonella enterica serovar Enteritidis PT21, and Staphylococcus aureus ATCC 25923) and the seven major Escherichia coli serovar (O26, O45, O103, O111, O121, O145, and O157) with 3-4 strains each are measured and analyzed with the proposed instrument and algorithm. The MM-BARDOT can measure six different modalities: 1) light microscopy, 2) 3D morphology map from confocal microscopy, 3) 3D optical density map, 4) spectral forward scattering pattern, 5) spectral OD, 6) surface backward reflection pattern, and 7) fluorescence of a bacterial colony without moving the specimen. A custom-built confocal microscope with a controller which can be easily attached to an infinity-corrected commercial microscope is designed and built. Since the current BARDOT needs additional information from a bacterial colony to enhance the identification/classification ratio for a lower hierarchy of bacterial taxonomy such as serovar or strain level, the approach can offer a series of coordinates matched and correlated bio-optical characteristics of a colony and enhance the classification accuracy of the previously introduced BARDOT system. Four major pathogenic bacterial genera: Escherichia coli O157:H7 EDL933, Listeria monocytogenes F4244, Salmonella enterica serovar Enteritidis PT21, and Staphylococcus aureus ATCC 25923 are measured and analyzed with the proposed instrument and algorithm. Also, a feasibility test for a smaller colony (up to 500 mum) classification utilizing a surface backward reflection pattern from the measurement is done, and shows a potential as an additional modality for the bacterial phenotyping.

  17. Plant leaf chlorophyll content retrieval based on a field imaging spectroscopy system.

    PubMed

    Liu, Bo; Yue, Yue-Min; Li, Ru; Shen, Wen-Jing; Wang, Ke-Lin

    2014-10-23

    A field imaging spectrometer system (FISS; 380-870 nm and 344 bands) was designed for agriculture applications. In this study, FISS was used to gather spectral information from soybean leaves. The chlorophyll content was retrieved using a multiple linear regression (MLR), partial least squares (PLS) regression and support vector machine (SVM) regression. Our objective was to verify the performance of FISS in a quantitative spectral analysis through the estimation of chlorophyll content and to determine a proper quantitative spectral analysis method for processing FISS data. The results revealed that the derivative reflectance was a more sensitive indicator of chlorophyll content and could extract content information more efficiently than the spectral reflectance, which is more significant for FISS data compared to ASD (analytical spectral devices) data, reducing the corresponding RMSE (root mean squared error) by 3.3%-35.6%. Compared with the spectral features, the regression methods had smaller effects on the retrieval accuracy. A multivariate linear model could be the ideal model to retrieve chlorophyll information with a small number of significant wavelengths used. The smallest RMSE of the chlorophyll content retrieved using FISS data was 0.201 mg/g, a relative reduction of more than 30% compared with the RMSE based on a non-imaging ASD spectrometer, which represents a high estimation accuracy compared with the mean chlorophyll content of the sampled leaves (4.05 mg/g). Our study indicates that FISS could obtain both spectral and spatial detailed information of high quality. Its image-spectrum-in-one merit promotes the good performance of FISS in quantitative spectral analyses, and it can potentially be widely used in the agricultural sector.

  18. Plant Leaf Chlorophyll Content Retrieval Based on a Field Imaging Spectroscopy System

    PubMed Central

    Liu, Bo; Yue, Yue-Min; Li, Ru; Shen, Wen-Jing; Wang, Ke-Lin

    2014-01-01

    A field imaging spectrometer system (FISS; 380–870 nm and 344 bands) was designed for agriculture applications. In this study, FISS was used to gather spectral information from soybean leaves. The chlorophyll content was retrieved using a multiple linear regression (MLR), partial least squares (PLS) regression and support vector machine (SVM) regression. Our objective was to verify the performance of FISS in a quantitative spectral analysis through the estimation of chlorophyll content and to determine a proper quantitative spectral analysis method for processing FISS data. The results revealed that the derivative reflectance was a more sensitive indicator of chlorophyll content and could extract content information more efficiently than the spectral reflectance, which is more significant for FISS data compared to ASD (analytical spectral devices) data, reducing the corresponding RMSE (root mean squared error) by 3.3%–35.6%. Compared with the spectral features, the regression methods had smaller effects on the retrieval accuracy. A multivariate linear model could be the ideal model to retrieve chlorophyll information with a small number of significant wavelengths used. The smallest RMSE of the chlorophyll content retrieved using FISS data was 0.201 mg/g, a relative reduction of more than 30% compared with the RMSE based on a non-imaging ASD spectrometer, which represents a high estimation accuracy compared with the mean chlorophyll content of the sampled leaves (4.05 mg/g). Our study indicates that FISS could obtain both spectral and spatial detailed information of high quality. Its image-spectrum-in-one merit promotes the good performance of FISS in quantitative spectral analyses, and it can potentially be widely used in the agricultural sector. PMID:25341439

  19. Ultraspectral imaging for propulsion test monitoring

    NASA Astrophysics Data System (ADS)

    Otten, Leonard John, III; Jones, Bernard A.; Prinzing, Philip; Swantner, William H.; Rafert, Bruce

    2002-02-01

    Under a NASA Stennis Space Center (SSC) SBIR, technologies required for an imaging spectral radiometer with wavenumber spectral resolution and milliradian spatial resolution that operates over the 8 micrometers to 12 micrometers (LWIR), and 3 micrometers to 5 micrometers (MWIR) bands, for use in a non-intrusive monitoring static rocket firing application are being investigated. The research is based on a spatially modulated Fourier transform spectral imager to take advantage of the inherent benefits in these devices in the MWIR and LWIR. The research verified optical techniques that could be merged with a Sagnac interferometer to create conceptual designs for an LWIR imaging spectrometer that has a 0.4 cm-1 spectral resolution using an available HgCdTe detector. These same techniques produce an MWIR imaging spectrometer with 1.5 cm-1 spectral resolution based on a commercial InSb array. Initial laboratory measurements indicate that the modeled spectral resolution is being met. Applications to environmental measurement applications under standard temperatures can be undertaken by taking advantage of several unique features of the Sagnac interferometer in being able to decouple the limiting aperature from the spectral resolution.

  20. Radiometric calibration of optical microscopy and microspectroscopy apparata over a broad spectral range using a special thin-film luminescence standard

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valenta, J., E-mail: jan.valenta@mff.cuni.cz; Greben, M.

    2015-04-15

    Application capabilities of optical microscopes and microspectroscopes can be considerably enhanced by a proper calibration of their spectral sensitivity. We propose and demonstrate a method of relative and absolute calibration of a microspectroscope over an extraordinary broad spectral range covered by two (parallel) detection branches in visible and near-infrared spectral regions. The key point of the absolute calibration of a relative spectral sensitivity is application of the standard sample formed by a thin layer of Si nanocrystals with stable and efficient photoluminescence. The spectral PL quantum yield and the PL spatial distribution of the standard sample must be characterized bymore » separate experiments. The absolutely calibrated microspectroscope enables to characterize spectral photon emittance of a studied object or even its luminescence quantum yield (QY) if additional knowledge about spatial distribution of emission and about excitance is available. Capabilities of the calibrated microspectroscope are demonstrated by measuring external QY of electroluminescence from a standard poly-Si solar-cell and of photoluminescence of Er-doped Si nanocrystals.« less

Top