Sample records for spatial statistical analysis

  1. R and Spatial Data

    EPA Science Inventory

    R is an open source language and environment for statistical computing and graphics that can also be used for both spatial analysis (i.e. geoprocessing and mapping of different types of spatial data) and spatial data analysis (i.e. the application of statistical descriptions and ...

  2. RADSS: an integration of GIS, spatial statistics, and network service for regional data mining

    NASA Astrophysics Data System (ADS)

    Hu, Haitang; Bao, Shuming; Lin, Hui; Zhu, Qing

    2005-10-01

    Regional data mining, which aims at the discovery of knowledge about spatial patterns, clusters or association between regions, has widely applications nowadays in social science, such as sociology, economics, epidemiology, crime, and so on. Many applications in the regional or other social sciences are more concerned with the spatial relationship, rather than the precise geographical location. Based on the spatial continuity rule derived from Tobler's first law of geography: observations at two sites tend to be more similar to each other if the sites are close together than if far apart, spatial statistics, as an important means for spatial data mining, allow the users to extract the interesting and useful information like spatial pattern, spatial structure, spatial association, spatial outlier and spatial interaction, from the vast amount of spatial data or non-spatial data. Therefore, by integrating with the spatial statistical methods, the geographical information systems will become more powerful in gaining further insights into the nature of spatial structure of regional system, and help the researchers to be more careful when selecting appropriate models. However, the lack of such tools holds back the application of spatial data analysis techniques and development of new methods and models (e.g., spatio-temporal models). Herein, we make an attempt to develop such an integrated software and apply it into the complex system analysis for the Poyang Lake Basin. This paper presents a framework for integrating GIS, spatial statistics and network service in regional data mining, as well as their implementation. After discussing the spatial statistics methods involved in regional complex system analysis, we introduce RADSS (Regional Analysis and Decision Support System), our new regional data mining tool, by integrating GIS, spatial statistics and network service. RADSS includes the functions of spatial data visualization, exploratory spatial data analysis, and spatial statistics. The tool also includes some fundamental spatial and non-spatial database in regional population and environment, which can be updated by external database via CD or network. Utilizing this data mining and exploratory analytical tool, the users can easily and quickly analyse the huge mount of the interrelated regional data, and better understand the spatial patterns and trends of the regional development, so as to make a credible and scientific decision. Moreover, it can be used as an educational tool for spatial data analysis and environmental studies. In this paper, we also present a case study on Poyang Lake Basin as an application of the tool and spatial data mining in complex environmental studies. At last, several concluding remarks are discussed.

  3. From fields to objects: A review of geographic boundary analysis

    NASA Astrophysics Data System (ADS)

    Jacquez, G. M.; Maruca, S.; Fortin, M.-J.

    Geographic boundary analysis is a relatively new approach unfamiliar to many spatial analysts. It is best viewed as a technique for defining objects - geographic boundaries - on spatial fields, and for evaluating the statistical significance of characteristics of those boundary objects. This is accomplished using null spatial models representative of the spatial processes expected in the absence of boundary-generating phenomena. Close ties to the object-field dialectic eminently suit boundary analysis to GIS data. The majority of existing spatial methods are field-based in that they describe, estimate, or predict how attributes (variables defining the field) vary through geographic space. Such methods are appropriate for field representations but not object representations. As the object-field paradigm gains currency in geographic information science, appropriate techniques for the statistical analysis of objects are required. The methods reviewed in this paper are a promising foundation. Geographic boundary analysis is clearly a valuable addition to the spatial statistical toolbox. This paper presents the philosophy of, and motivations for geographic boundary analysis. It defines commonly used statistics for quantifying boundaries and their characteristics, as well as simulation procedures for evaluating their significance. We review applications of these techniques, with the objective of making this promising approach accessible to the GIS-spatial analysis community. We also describe the implementation of these methods within geographic boundary analysis software: GEM.

  4. Improving Student Understanding of Spatial Ecology Statistics

    ERIC Educational Resources Information Center

    Hopkins, Robert, II; Alberts, Halley

    2015-01-01

    This activity is designed as a primer to teaching population dispersion analysis. The aim is to help improve students' spatial thinking and their understanding of how spatial statistic equations work. Students use simulated data to develop their own statistic and apply that equation to experimental behavioral data for Gambusia affinis (western…

  5. BaTMAn: Bayesian Technique for Multi-image Analysis

    NASA Astrophysics Data System (ADS)

    Casado, J.; Ascasibar, Y.; García-Benito, R.; Guidi, G.; Choudhury, O. S.; Bellocchi, E.; Sánchez, S. F.; Díaz, A. I.

    2016-12-01

    Bayesian Technique for Multi-image Analysis (BaTMAn) characterizes any astronomical dataset containing spatial information and performs a tessellation based on the measurements and errors provided as input. The algorithm iteratively merges spatial elements as long as they are statistically consistent with carrying the same information (i.e. identical signal within the errors). The output segmentations successfully adapt to the underlying spatial structure, regardless of its morphology and/or the statistical properties of the noise. BaTMAn identifies (and keeps) all the statistically-significant information contained in the input multi-image (e.g. an IFS datacube). The main aim of the algorithm is to characterize spatially-resolved data prior to their analysis.

  6. Statistical and Economic Techniques for Site-specific Nematode Management.

    PubMed

    Liu, Zheng; Griffin, Terry; Kirkpatrick, Terrence L

    2014-03-01

    Recent advances in precision agriculture technologies and spatial statistics allow realistic, site-specific estimation of nematode damage to field crops and provide a platform for the site-specific delivery of nematicides within individual fields. This paper reviews the spatial statistical techniques that model correlations among neighboring observations and develop a spatial economic analysis to determine the potential of site-specific nematicide application. The spatial econometric methodology applied in the context of site-specific crop yield response contributes to closing the gap between data analysis and realistic site-specific nematicide recommendations and helps to provide a practical method of site-specifically controlling nematodes.

  7. Analysis of thrips distribution: application of spatial statistics and Kriging

    Treesearch

    John Aleong; Bruce L. Parker; Margaret Skinner; Diantha Howard

    1991-01-01

    Kriging is a statistical technique that provides predictions for spatially and temporally correlated data. Observations of thrips distribution and density in Vermont soils are made in both space and time. Traditional statistical analysis of such data assumes that the counts taken over space and time are independent, which is not necessarily true. Therefore, to analyze...

  8. Spatiotemporal Analysis of the Ebola Hemorrhagic Fever in West Africa in 2014

    NASA Astrophysics Data System (ADS)

    Xu, M.; Cao, C. X.; Guo, H. F.

    2017-09-01

    Ebola hemorrhagic fever (EHF) is an acute hemorrhagic diseases caused by the Ebola virus, which is highly contagious. This paper aimed to explore the possible gathering area of EHF cases in West Africa in 2014, and identify endemic areas and their tendency by means of time-space analysis. We mapped distribution of EHF incidences and explored statistically significant space, time and space-time disease clusters. We utilized hotspot analysis to find the spatial clustering pattern on the basis of the actual outbreak cases. spatial-temporal cluster analysis is used to analyze the spatial or temporal distribution of agglomeration disease, examine whether its distribution is statistically significant. Local clusters were investigated using Kulldorff's scan statistic approach. The result reveals that the epidemic mainly gathered in the western part of Africa near north Atlantic with obvious regional distribution. For the current epidemic, we have found areas in high incidence of EVD by means of spatial cluster analysis.

  9. Effects of Heterogeniety on Spatial Pattern Analysis of Wild Pistachio Trees in Zagros Woodlands, Iran

    NASA Astrophysics Data System (ADS)

    Erfanifard, Y.; Rezayan, F.

    2014-10-01

    Vegetation heterogeneity biases second-order summary statistics, e.g., Ripley's K-function, applied for spatial pattern analysis in ecology. Second-order investigation based on Ripley's K-function and related statistics (i.e., L- and pair correlation function g) is widely used in ecology to develop hypothesis on underlying processes by characterizing spatial patterns of vegetation. The aim of this study was to demonstrate effects of underlying heterogeneity of wild pistachio (Pistacia atlantica Desf.) trees on the second-order summary statistics of point pattern analysis in a part of Zagros woodlands, Iran. The spatial distribution of 431 wild pistachio trees was accurately mapped in a 40 ha stand in the Wild Pistachio & Almond Research Site, Fars province, Iran. Three commonly used second-order summary statistics (i.e., K-, L-, and g-functions) were applied to analyse their spatial pattern. The two-sample Kolmogorov-Smirnov goodness-of-fit test showed that the observed pattern significantly followed an inhomogeneous Poisson process null model in the study region. The results also showed that heterogeneous pattern of wild pistachio trees biased the homogeneous form of K-, L-, and g-functions, demonstrating a stronger aggregation of the trees at the scales of 0-50 m than actually existed and an aggregation at scales of 150-200 m, while regularly distributed. Consequently, we showed that heterogeneity of point patterns may bias the results of homogeneous second-order summary statistics and we also suggested applying inhomogeneous summary statistics with related null models for spatial pattern analysis of heterogeneous vegetations.

  10. Statistical Analysis of Sport Movement Observations: the Case of Orienteering

    NASA Astrophysics Data System (ADS)

    Amouzandeh, K.; Karimipour, F.

    2017-09-01

    Study of movement observations is becoming more popular in several applications. Particularly, analyzing sport movement time series has been considered as a demanding area. However, most of the attempts made on analyzing movement sport data have focused on spatial aspects of movement to extract some movement characteristics, such as spatial patterns and similarities. This paper proposes statistical analysis of sport movement observations, which refers to analyzing changes in the spatial movement attributes (e.g. distance, altitude and slope) and non-spatial movement attributes (e.g. speed and heart rate) of athletes. As the case study, an example dataset of movement observations acquired during the "orienteering" sport is presented and statistically analyzed.

  11. Monitoring Method of Cow Anthrax Based on Gis and Spatial Statistical Analysis

    NASA Astrophysics Data System (ADS)

    Li, Lin; Yang, Yong; Wang, Hongbin; Dong, Jing; Zhao, Yujun; He, Jianbin; Fan, Honggang

    Geographic information system (GIS) is a computer application system, which possesses the ability of manipulating spatial information and has been used in many fields related with the spatial information management. Many methods and models have been established for analyzing animal diseases distribution models and temporal-spatial transmission models. Great benefits have been gained from the application of GIS in animal disease epidemiology. GIS is now a very important tool in animal disease epidemiological research. Spatial analysis function of GIS can be widened and strengthened by using spatial statistical analysis, allowing for the deeper exploration, analysis, manipulation and interpretation of spatial pattern and spatial correlation of the animal disease. In this paper, we analyzed the cow anthrax spatial distribution characteristics in the target district A (due to the secret of epidemic data we call it district A) based on the established GIS of the cow anthrax in this district in combination of spatial statistical analysis and GIS. The Cow anthrax is biogeochemical disease, and its geographical distribution is related closely to the environmental factors of habitats and has some spatial characteristics, and therefore the correct analysis of the spatial distribution of anthrax cow for monitoring and the prevention and control of anthrax has a very important role. However, the application of classic statistical methods in some areas is very difficult because of the pastoral nomadic context. The high mobility of livestock and the lack of enough suitable sampling for the some of the difficulties in monitoring currently make it nearly impossible to apply rigorous random sampling methods. It is thus necessary to develop an alternative sampling method, which could overcome the lack of sampling and meet the requirements for randomness. The GIS computer application software ArcGIS9.1 was used to overcome the lack of data of sampling sites.Using ArcGIS 9.1 and GEODA to analyze the cow anthrax spatial distribution of district A. we gained some conclusions about cow anthrax' density: (1) there is a spatial clustering model. (2) there is an intensely spatial autocorrelation. We established a prediction model to estimate the anthrax distribution based on the spatial characteristic of the density of cow anthrax. Comparing with the true distribution, the prediction model has a well coincidence and is feasible to the application. The method using a GIS tool facilitates can be implemented significantly in the cow anthrax monitoring and investigation, and the space statistics - related prediction model provides a fundamental use for other study on space-related animal diseases.

  12. Analysis of the dependence of extreme rainfalls

    NASA Astrophysics Data System (ADS)

    Padoan, Simone; Ancey, Christophe; Parlange, Marc

    2010-05-01

    The aim of spatial analysis is to quantitatively describe the behavior of environmental phenomena such as precipitation levels, wind speed or daily temperatures. A number of generic approaches to spatial modeling have been developed[1], but these are not necessarily ideal for handling extremal aspects given their focus on mean process levels. The areal modelling of the extremes of a natural process observed at points in space is important in environmental statistics; for example, understanding extremal spatial rainfall is crucial in flood protection. In light of recent concerns over climate change, the use of robust mathematical and statistical methods for such analyses has grown in importance. Multivariate extreme value models and the class of maxstable processes [2] have a similar asymptotic motivation to the univariate Generalized Extreme Value (GEV) distribution , but providing a general approach to modeling extreme processes incorporating temporal or spatial dependence. Statistical methods for max-stable processes and data analyses of practical problems are discussed by [3] and [4]. This work illustrates methods to the statistical modelling of spatial extremes and gives examples of their use by means of a real extremal data analysis of Switzerland precipitation levels. [1] Cressie, N. A. C. (1993). Statistics for Spatial Data. Wiley, New York. [2] de Haan, L and Ferreria A. (2006). Extreme Value Theory An Introduction. Springer, USA. [3] Padoan, S. A., Ribatet, M and Sisson, S. A. (2009). Likelihood-Based Inference for Max-Stable Processes. Journal of the American Statistical Association, Theory & Methods. In press. [4] Davison, A. C. and Gholamrezaee, M. (2009), Geostatistics of extremes. Journal of the Royal Statistical Society, Series B. To appear.

  13. Spatial Autocorrelation Approaches to Testing Residuals from Least Squares Regression.

    PubMed

    Chen, Yanguang

    2016-01-01

    In geo-statistics, the Durbin-Watson test is frequently employed to detect the presence of residual serial correlation from least squares regression analyses. However, the Durbin-Watson statistic is only suitable for ordered time or spatial series. If the variables comprise cross-sectional data coming from spatial random sampling, the test will be ineffectual because the value of Durbin-Watson's statistic depends on the sequence of data points. This paper develops two new statistics for testing serial correlation of residuals from least squares regression based on spatial samples. By analogy with the new form of Moran's index, an autocorrelation coefficient is defined with a standardized residual vector and a normalized spatial weight matrix. Then by analogy with the Durbin-Watson statistic, two types of new serial correlation indices are constructed. As a case study, the two newly presented statistics are applied to a spatial sample of 29 China's regions. These results show that the new spatial autocorrelation models can be used to test the serial correlation of residuals from regression analysis. In practice, the new statistics can make up for the deficiencies of the Durbin-Watson test.

  14. cluster trials v. 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, John; Castillo, Andrew

    2016-09-21

    This software contains a set of python modules – input, search, cluster, analysis; these modules read input files containing spatial coordinates and associated attributes which can be used to perform nearest neighbor search (spatial indexing via kdtree), cluster analysis/identification, and calculation of spatial statistics for analysis.

  15. SU-F-I-10: Spatially Local Statistics for Adaptive Image Filtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iliopoulos, AS; Sun, X; Floros, D

    Purpose: To facilitate adaptive image filtering operations, addressing spatial variations in both noise and signal. Such issues are prevalent in cone-beam projections, where physical effects such as X-ray scattering result in spatially variant noise, violating common assumptions of homogeneous noise and challenging conventional filtering approaches to signal extraction and noise suppression. Methods: We present a computational mechanism for probing into and quantifying the spatial variance of noise throughout an image. The mechanism builds a pyramid of local statistics at multiple spatial scales; local statistical information at each scale includes (weighted) mean, median, standard deviation, median absolute deviation, as well asmore » histogram or dynamic range after local mean/median shifting. Based on inter-scale differences of local statistics, the spatial scope of distinguishable noise variation is detected in a semi- or un-supervised manner. Additionally, we propose and demonstrate the incorporation of such information in globally parametrized (i.e., non-adaptive) filters, effectively transforming the latter into spatially adaptive filters. The multi-scale mechanism is materialized by efficient algorithms and implemented in parallel CPU/GPU architectures. Results: We demonstrate the impact of local statistics for adaptive image processing and analysis using cone-beam projections of a Catphan phantom, fitted within an annulus to increase X-ray scattering. The effective spatial scope of local statistics calculations is shown to vary throughout the image domain, necessitating multi-scale noise and signal structure analysis. Filtering results with and without spatial filter adaptation are compared visually, illustrating improvements in imaging signal extraction and noise suppression, and in preserving information in low-contrast regions. Conclusion: Local image statistics can be incorporated in filtering operations to equip them with spatial adaptivity to spatial signal/noise variations. An efficient multi-scale computational mechanism is developed to curtail processing latency. Spatially adaptive filtering may impact subsequent processing tasks such as reconstruction and numerical gradient computations for deformable registration. NIH Grant No. R01-184173.« less

  16. Tract-Based Spatial Statistics in Preterm-Born Neonates Predicts Cognitive and Motor Outcomes at 18 Months.

    PubMed

    Duerden, E G; Foong, J; Chau, V; Branson, H; Poskitt, K J; Grunau, R E; Synnes, A; Zwicker, J G; Miller, S P

    2015-08-01

    Adverse neurodevelopmental outcome is common in children born preterm. Early sensitive predictors of neurodevelopmental outcome such as MR imaging are needed. Tract-based spatial statistics, a diffusion MR imaging analysis method, performed at term-equivalent age (40 weeks) is a promising predictor of neurodevelopmental outcomes in children born very preterm. We sought to determine the association of tract-based spatial statistics findings before term-equivalent age with neurodevelopmental outcome at 18-months corrected age. Of 180 neonates (born at 24-32-weeks' gestation) enrolled, 153 had DTI acquired early at 32 weeks' postmenstrual age and 105 had DTI acquired later at 39.6 weeks' postmenstrual age. Voxelwise statistics were calculated by performing tract-based spatial statistics on DTI that was aligned to age-appropriate templates. At 18-month corrected age, 166 neonates underwent neurodevelopmental assessment by using the Bayley Scales of Infant Development, 3rd ed, and the Peabody Developmental Motor Scales, 2nd ed. Tract-based spatial statistics analysis applied to early-acquired scans (postmenstrual age of 30-33 weeks) indicated a limited significant positive association between motor skills and axial diffusivity and radial diffusivity values in the corpus callosum, internal and external/extreme capsules, and midbrain (P < .05, corrected). In contrast, for term scans (postmenstrual age of 37-41 weeks), tract-based spatial statistics analysis showed a significant relationship between both motor and cognitive scores with fractional anisotropy in the corpus callosum and corticospinal tracts (P < .05, corrected). Tract-based spatial statistics in a limited subset of neonates (n = 22) scanned at <30 weeks did not significantly predict neurodevelopmental outcomes. The strength of the association between fractional anisotropy values and neurodevelopmental outcome scores increased from early-to-late-acquired scans in preterm-born neonates, consistent with brain dysmaturation in this population. © 2015 by American Journal of Neuroradiology.

  17. Algorithm for Identifying Erroneous Rain-Gauge Readings

    NASA Technical Reports Server (NTRS)

    Rickman, Doug

    2005-01-01

    An algorithm analyzes rain-gauge data to identify statistical outliers that could be deemed to be erroneous readings. Heretofore, analyses of this type have been performed in burdensome manual procedures that have involved subjective judgements. Sometimes, the analyses have included computational assistance for detecting values falling outside of arbitrary limits. The analyses have been performed without statistically valid knowledge of the spatial and temporal variations of precipitation within rain events. In contrast, the present algorithm makes it possible to automate such an analysis, makes the analysis objective, takes account of the spatial distribution of rain gauges in conjunction with the statistical nature of spatial variations in rainfall readings, and minimizes the use of arbitrary criteria. The algorithm implements an iterative process that involves nonparametric statistics.

  18. Temporal scaling and spatial statistical analyses of groundwater level fluctuations

    NASA Astrophysics Data System (ADS)

    Sun, H.; Yuan, L., Sr.; Zhang, Y.

    2017-12-01

    Natural dynamics such as groundwater level fluctuations can exhibit multifractionality and/or multifractality due likely to multi-scale aquifer heterogeneity and controlling factors, whose statistics requires efficient quantification methods. This study explores multifractionality and non-Gaussian properties in groundwater dynamics expressed by time series of daily level fluctuation at three wells located in the lower Mississippi valley, after removing the seasonal cycle in the temporal scaling and spatial statistical analysis. First, using the time-scale multifractional analysis, a systematic statistical method is developed to analyze groundwater level fluctuations quantified by the time-scale local Hurst exponent (TS-LHE). Results show that the TS-LHE does not remain constant, implying the fractal-scaling behavior changing with time and location. Hence, we can distinguish the potentially location-dependent scaling feature, which may characterize the hydrology dynamic system. Second, spatial statistical analysis shows that the increment of groundwater level fluctuations exhibits a heavy tailed, non-Gaussian distribution, which can be better quantified by a Lévy stable distribution. Monte Carlo simulations of the fluctuation process also show that the linear fractional stable motion model can well depict the transient dynamics (i.e., fractal non-Gaussian property) of groundwater level, while fractional Brownian motion is inadequate to describe natural processes with anomalous dynamics. Analysis of temporal scaling and spatial statistics therefore may provide useful information and quantification to understand further the nature of complex dynamics in hydrology.

  19. Spatial Autocorrelation Approaches to Testing Residuals from Least Squares Regression

    PubMed Central

    Chen, Yanguang

    2016-01-01

    In geo-statistics, the Durbin-Watson test is frequently employed to detect the presence of residual serial correlation from least squares regression analyses. However, the Durbin-Watson statistic is only suitable for ordered time or spatial series. If the variables comprise cross-sectional data coming from spatial random sampling, the test will be ineffectual because the value of Durbin-Watson’s statistic depends on the sequence of data points. This paper develops two new statistics for testing serial correlation of residuals from least squares regression based on spatial samples. By analogy with the new form of Moran’s index, an autocorrelation coefficient is defined with a standardized residual vector and a normalized spatial weight matrix. Then by analogy with the Durbin-Watson statistic, two types of new serial correlation indices are constructed. As a case study, the two newly presented statistics are applied to a spatial sample of 29 China’s regions. These results show that the new spatial autocorrelation models can be used to test the serial correlation of residuals from regression analysis. In practice, the new statistics can make up for the deficiencies of the Durbin-Watson test. PMID:26800271

  20. Comparative analysis of ferroelectric domain statistics via nonlinear diffraction in random nonlinear materials.

    PubMed

    Wang, B; Switowski, K; Cojocaru, C; Roppo, V; Sheng, Y; Scalora, M; Kisielewski, J; Pawlak, D; Vilaseca, R; Akhouayri, H; Krolikowski, W; Trull, J

    2018-01-22

    We present an indirect, non-destructive optical method for domain statistic characterization in disordered nonlinear crystals having homogeneous refractive index and spatially random distribution of ferroelectric domains. This method relies on the analysis of the wave-dependent spatial distribution of the second harmonic, in the plane perpendicular to the optical axis in combination with numerical simulations. We apply this technique to the characterization of two different media, Calcium Barium Niobate and Strontium Barium Niobate, with drastically different statistical distributions of ferroelectric domains.

  1. A book review of Spatial data analysis in ecology and agriculture using R

    USDA-ARS?s Scientific Manuscript database

    Spatial Data Analysis in Ecology and Agriculture Using R is a valuable resource to assist agricultural and ecological researchers with spatial data analyses using the R statistical software(www.r-project.org). Special emphasis is on spatial data sets; how-ever, the text also provides ample guidance ...

  2. Research Update: Spatially resolved mapping of electronic structure on atomic level by multivariate statistical analysis

    NASA Astrophysics Data System (ADS)

    Belianinov, Alex; Ganesh, Panchapakesan; Lin, Wenzhi; Sales, Brian C.; Sefat, Athena S.; Jesse, Stephen; Pan, Minghu; Kalinin, Sergei V.

    2014-12-01

    Atomic level spatial variability of electronic structure in Fe-based superconductor FeTe0.55Se0.45 (Tc = 15 K) is explored using current-imaging tunneling-spectroscopy. Multivariate statistical analysis of the data differentiates regions of dissimilar electronic behavior that can be identified with the segregation of chalcogen atoms, as well as boundaries between terminations and near neighbor interactions. Subsequent clustering analysis allows identification of the spatial localization of these dissimilar regions. Similar statistical analysis of modeled calculated density of states of chemically inhomogeneous FeTe1-xSex structures further confirms that the two types of chalcogens, i.e., Te and Se, can be identified by their electronic signature and differentiated by their local chemical environment. This approach allows detailed chemical discrimination of the scanning tunneling microscopy data including separation of atomic identities, proximity, and local configuration effects and can be universally applicable to chemically and electronically inhomogeneous surfaces.

  3. An Environmental Decision Support System for Spatial Assessment and Selective Remediation

    EPA Science Inventory

    Spatial Analysis and Decision Assistance (SADA) is a Windows freeware program that incorporates environmental assessment tools for effective problem-solving. The software integrates modules for GIS, visualization, geospatial analysis, statistical analysis, human health and ecolog...

  4. Spatial data analytics on heterogeneous multi- and many-core parallel architectures using python

    USGS Publications Warehouse

    Laura, Jason R.; Rey, Sergio J.

    2017-01-01

    Parallel vector spatial analysis concerns the application of parallel computational methods to facilitate vector-based spatial analysis. The history of parallel computation in spatial analysis is reviewed, and this work is placed into the broader context of high-performance computing (HPC) and parallelization research. The rise of cyber infrastructure and its manifestation in spatial analysis as CyberGIScience is seen as a main driver of renewed interest in parallel computation in the spatial sciences. Key problems in spatial analysis that have been the focus of parallel computing are covered. Chief among these are spatial optimization problems, computational geometric problems including polygonization and spatial contiguity detection, the use of Monte Carlo Markov chain simulation in spatial statistics, and parallel implementations of spatial econometric methods. Future directions for research on parallelization in computational spatial analysis are outlined.

  5. Interfaces between statistical analysis packages and the ESRI geographic information system

    NASA Technical Reports Server (NTRS)

    Masuoka, E.

    1980-01-01

    Interfaces between ESRI's geographic information system (GIS) data files and real valued data files written to facilitate statistical analysis and display of spatially referenced multivariable data are described. An example of data analysis which utilized the GIS and the statistical analysis system is presented to illustrate the utility of combining the analytic capability of a statistical package with the data management and display features of the GIS.

  6. Spatio-temporal analysis of annual rainfall in Crete, Greece

    NASA Astrophysics Data System (ADS)

    Varouchakis, Emmanouil A.; Corzo, Gerald A.; Karatzas, George P.; Kotsopoulou, Anastasia

    2018-03-01

    Analysis of rainfall data from the island of Crete, Greece was performed to identify key hydrological years and return periods as well as to analyze the inter-annual behavior of the rainfall variability during the period 1981-2014. The rainfall spatial distribution was also examined in detail to identify vulnerable areas of the island. Data analysis using statistical tools and spectral analysis were applied to investigate and interpret the temporal course of the available rainfall data set. In addition, spatial analysis techniques were applied and compared to determine the rainfall spatial distribution on the island of Crete. The analysis presented that in contrast to Regional Climate Model estimations, rainfall rates have not decreased, while return periods vary depending on seasonality and geographic location. A small but statistical significant increasing trend was detected in the inter-annual rainfall variations as well as a significant rainfall cycle almost every 8 years. In addition, statistically significant correlation of the island's rainfall variability with the North Atlantic Oscillation is identified for the examined period. On the other hand, regression kriging method combining surface elevation as secondary information improved the estimation of the annual rainfall spatial variability on the island of Crete by 70% compared to ordinary kriging. The rainfall spatial and temporal trends on the island of Crete have variable characteristics that depend on the geographical area and on the hydrological period.

  7. Spatial statistical analysis of tree deaths using airborne digital imagery

    NASA Astrophysics Data System (ADS)

    Chang, Ya-Mei; Baddeley, Adrian; Wallace, Jeremy; Canci, Michael

    2013-04-01

    High resolution digital airborne imagery offers unprecedented opportunities for observation and monitoring of vegetation, providing the potential to identify, locate and track individual vegetation objects over time. Analytical tools are required to quantify relevant information. In this paper, locations of trees over a large area of native woodland vegetation were identified using morphological image analysis techniques. Methods of spatial point process statistics were then applied to estimate the spatially-varying tree death risk, and to show that it is significantly non-uniform. [Tree deaths over the area were detected in our previous work (Wallace et al., 2008).] The study area is a major source of ground water for the city of Perth, and the work was motivated by the need to understand and quantify vegetation changes in the context of water extraction and drying climate. The influence of hydrological variables on tree death risk was investigated using spatial statistics (graphical exploratory methods, spatial point pattern modelling and diagnostics).

  8. Spatial variation in the bacterial and denitrifying bacterial community in a biofilter treating subsurface agricultural drainage.

    PubMed

    Andrus, J Malia; Porter, Matthew D; Rodríguez, Luis F; Kuehlhorn, Timothy; Cooke, Richard A C; Zhang, Yuanhui; Kent, Angela D; Zilles, Julie L

    2014-02-01

    Denitrifying biofilters can remove agricultural nitrates from subsurface drainage, reducing nitrate pollution that contributes to coastal hypoxic zones. The performance and reliability of natural and engineered systems dependent upon microbially mediated processes, such as the denitrifying biofilters, can be affected by the spatial structure of their microbial communities. Furthermore, our understanding of the relationship between microbial community composition and function is influenced by the spatial distribution of samples.In this study we characterized the spatial structure of bacterial communities in a denitrifying biofilter in central Illinois. Bacterial communities were assessed using automated ribosomal intergenic spacer analysis for bacteria and terminal restriction fragment length polymorphism of nosZ for denitrifying bacteria.Non-metric multidimensional scaling and analysis of similarity (ANOSIM) analyses indicated that bacteria showed statistically significant spatial structure by depth and transect,while denitrifying bacteria did not exhibit significant spatial structure. For determination of spatial patterns, we developed a package of automated functions for the R statistical environment that allows directional analysis of microbial community composition data using either ANOSIM or Mantel statistics.Applying this package to the biofilter data, the flow path correlation range for the bacterial community was 6.4 m at the shallower, periodically in undated depth and 10.7 m at the deeper, continually submerged depth. These spatial structures suggest a strong influence of hydrology on the microbial community composition in these denitrifying biofilters. Understanding such spatial structure can also guide optimal sample collection strategies for microbial community analyses.

  9. Statistical Approaches Used to Assess the Equity of Access to Food Outlets: A Systematic Review

    PubMed Central

    Lamb, Karen E.; Thornton, Lukar E.; Cerin, Ester; Ball, Kylie

    2015-01-01

    Background Inequalities in eating behaviours are often linked to the types of food retailers accessible in neighbourhood environments. Numerous studies have aimed to identify if access to healthy and unhealthy food retailers is socioeconomically patterned across neighbourhoods, and thus a potential risk factor for dietary inequalities. Existing reviews have examined differences between methodologies, particularly focussing on neighbourhood and food outlet access measure definitions. However, no review has informatively discussed the suitability of the statistical methodologies employed; a key issue determining the validity of study findings. Our aim was to examine the suitability of statistical approaches adopted in these analyses. Methods Searches were conducted for articles published from 2000–2014. Eligible studies included objective measures of the neighbourhood food environment and neighbourhood-level socio-economic status, with a statistical analysis of the association between food outlet access and socio-economic status. Results Fifty-four papers were included. Outlet accessibility was typically defined as the distance to the nearest outlet from the neighbourhood centroid, or as the number of food outlets within a neighbourhood (or buffer). To assess if these measures were linked to neighbourhood disadvantage, common statistical methods included ANOVA, correlation, and Poisson or negative binomial regression. Although all studies involved spatial data, few considered spatial analysis techniques or spatial autocorrelation. Conclusions With advances in GIS software, sophisticated measures of neighbourhood outlet accessibility can be considered. However, approaches to statistical analysis often appear less sophisticated. Care should be taken to consider assumptions underlying the analysis and the possibility of spatially correlated residuals which could affect the results. PMID:29546115

  10. BATMAN: Bayesian Technique for Multi-image Analysis

    NASA Astrophysics Data System (ADS)

    Casado, J.; Ascasibar, Y.; García-Benito, R.; Guidi, G.; Choudhury, O. S.; Bellocchi, E.; Sánchez, S. F.; Díaz, A. I.

    2017-04-01

    This paper describes the Bayesian Technique for Multi-image Analysis (BATMAN), a novel image-segmentation technique based on Bayesian statistics that characterizes any astronomical data set containing spatial information and performs a tessellation based on the measurements and errors provided as input. The algorithm iteratively merges spatial elements as long as they are statistically consistent with carrying the same information (I.e. identical signal within the errors). We illustrate its operation and performance with a set of test cases including both synthetic and real integral-field spectroscopic data. The output segmentations adapt to the underlying spatial structure, regardless of its morphology and/or the statistical properties of the noise. The quality of the recovered signal represents an improvement with respect to the input, especially in regions with low signal-to-noise ratio. However, the algorithm may be sensitive to small-scale random fluctuations, and its performance in presence of spatial gradients is limited. Due to these effects, errors may be underestimated by as much as a factor of 2. Our analysis reveals that the algorithm prioritizes conservation of all the statistically significant information over noise reduction, and that the precise choice of the input data has a crucial impact on the results. Hence, the philosophy of BaTMAn is not to be used as a 'black box' to improve the signal-to-noise ratio, but as a new approach to characterize spatially resolved data prior to its analysis. The source code is publicly available at http://astro.ft.uam.es/SELGIFS/BaTMAn.

  11. Using spatial analysis to demonstrate the heterogeneity of the cardiovascular drug-prescribing pattern in Taiwan

    PubMed Central

    2011-01-01

    Background Geographic Information Systems (GIS) combined with spatial analytical methods could be helpful in examining patterns of drug use. Little attention has been paid to geographic variation of cardiovascular prescription use in Taiwan. The main objective was to use local spatial association statistics to test whether or not the cardiovascular medication-prescribing pattern is homogenous across 352 townships in Taiwan. Methods The statistical methods used were the global measures of Moran's I and Local Indicators of Spatial Association (LISA). While Moran's I provides information on the overall spatial distribution of the data, LISA provides information on types of spatial association at the local level. LISA statistics can also be used to identify influential locations in spatial association analysis. The major classes of prescription cardiovascular drugs were taken from Taiwan's National Health Insurance Research Database (NHIRD), which has a coverage rate of over 97%. The dosage of each prescription was converted into defined daily doses to measure the consumption of each class of drugs. Data were analyzed with ArcGIS and GeoDa at the township level. Results The LISA statistics showed an unusual use of cardiovascular medications in the southern townships with high local variation. Patterns of drug use also showed more low-low spatial clusters (cold spots) than high-high spatial clusters (hot spots), and those low-low associations were clustered in the rural areas. Conclusions The cardiovascular drug prescribing patterns were heterogeneous across Taiwan. In particular, a clear pattern of north-south disparity exists. Such spatial clustering helps prioritize the target areas that require better education concerning drug use. PMID:21609462

  12. Automation method to identify the geological structure of seabed using spatial statistic analysis of echo sounding data

    NASA Astrophysics Data System (ADS)

    Kwon, O.; Kim, W.; Kim, J.

    2017-12-01

    Recently construction of subsea tunnel has been increased globally. For safe construction of subsea tunnel, identifying the geological structure including fault at design and construction stage is more than important. Then unlike the tunnel in land, it's very difficult to obtain the data on geological structure because of the limit in geological survey. This study is intended to challenge such difficulties in a way of developing the technology to identify the geological structure of seabed automatically by using echo sounding data. When investigation a potential site for a deep subsea tunnel, there is the technical and economical limit with borehole of geophysical investigation. On the contrary, echo sounding data is easily obtainable while information reliability is higher comparing to above approaches. This study is aimed at developing the algorithm that identifies the large scale of geological structure of seabed using geostatic approach. This study is based on theory of structural geology that topographic features indicate geological structure. Basic concept of algorithm is outlined as follows; (1) convert the seabed topography to the grid data using echo sounding data, (2) apply the moving window in optimal size to the grid data, (3) estimate the spatial statistics of the grid data in the window area, (4) set the percentile standard of spatial statistics, (5) display the values satisfying the standard on the map, (6) visualize the geological structure on the map. The important elements in this study include optimal size of moving window, kinds of optimal spatial statistics and determination of optimal percentile standard. To determine such optimal elements, a numerous simulations were implemented. Eventually, user program based on R was developed using optimal analysis algorithm. The user program was designed to identify the variations of various spatial statistics. It leads to easy analysis of geological structure depending on variation of spatial statistics by arranging to easily designate the type of spatial statistics and percentile standard. This research was supported by the Korea Agency for Infrastructure Technology Advancement under the Ministry of Land, Infrastructure and Transport of the Korean government. (Project Number: 13 Construction Research T01)

  13. Hedonic approaches based on spatial econometrics and spatial statistics: application to evaluation of project benefits

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Morito; Seya, Hajime

    2009-12-01

    This study discusses the theoretical foundation of the application of spatial hedonic approaches—the hedonic approach employing spatial econometrics or/and spatial statistics—to benefits evaluation. The study highlights the limitations of the spatial econometrics approach since it uses a spatial weight matrix that is not employed by the spatial statistics approach. Further, the study presents empirical analyses by applying the Spatial Autoregressive Error Model (SAEM), which is based on the spatial econometrics approach, and the Spatial Process Model (SPM), which is based on the spatial statistics approach. SPMs are conducted based on both isotropy and anisotropy and applied to different mesh sizes. The empirical analysis reveals that the estimated benefits are quite different, especially between isotropic and anisotropic SPM and between isotropic SPM and SAEM; the estimated benefits are similar for SAEM and anisotropic SPM. The study demonstrates that the mesh size does not affect the estimated amount of benefits. Finally, the study provides a confidence interval for the estimated benefits and raises an issue with regard to benefit evaluation.

  14. Research Update: Spatially resolved mapping of electronic structure on atomic level by multivariate statistical analysis

    DOE PAGES

    Belianinov, Alex; Panchapakesan, G.; Lin, Wenzhi; ...

    2014-12-02

    Atomic level spatial variability of electronic structure in Fe-based superconductor FeTe0.55Se0.45 (Tc = 15 K) is explored using current-imaging tunneling-spectroscopy. Multivariate statistical analysis of the data differentiates regions of dissimilar electronic behavior that can be identified with the segregation of chalcogen atoms, as well as boundaries between terminations and near neighbor interactions. Subsequent clustering analysis allows identification of the spatial localization of these dissimilar regions. Similar statistical analysis of modeled calculated density of states of chemically inhomogeneous FeTe1 x Sex structures further confirms that the two types of chalcogens, i.e., Te and Se, can be identified by their electronic signaturemore » and differentiated by their local chemical environment. This approach allows detailed chemical discrimination of the scanning tunneling microscopy data including separation of atomic identities, proximity, and local configuration effects and can be universally applicable to chemically and electronically inhomogeneous surfaces.« less

  15. Research Update: Spatially resolved mapping of electronic structure on atomic level by multivariate statistical analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belianinov, Alex, E-mail: belianinova@ornl.gov; Ganesh, Panchapakesan; Lin, Wenzhi

    2014-12-01

    Atomic level spatial variability of electronic structure in Fe-based superconductor FeTe{sub 0.55}Se{sub 0.45} (T{sub c} = 15 K) is explored using current-imaging tunneling-spectroscopy. Multivariate statistical analysis of the data differentiates regions of dissimilar electronic behavior that can be identified with the segregation of chalcogen atoms, as well as boundaries between terminations and near neighbor interactions. Subsequent clustering analysis allows identification of the spatial localization of these dissimilar regions. Similar statistical analysis of modeled calculated density of states of chemically inhomogeneous FeTe{sub 1−x}Se{sub x} structures further confirms that the two types of chalcogens, i.e., Te and Se, can be identified bymore » their electronic signature and differentiated by their local chemical environment. This approach allows detailed chemical discrimination of the scanning tunneling microscopy data including separation of atomic identities, proximity, and local configuration effects and can be universally applicable to chemically and electronically inhomogeneous surfaces.« less

  16. Analysis of Coastal Dunes: A Remote Sensing and Statistical Approach.

    ERIC Educational Resources Information Center

    Jones, J. Richard

    1985-01-01

    Remote sensing analysis and statistical methods were used to analyze the coastal dunes of Plum Island, Massachusetts. The research methodology used provides an example of a student project for remote sensing, geomorphology, or spatial analysis courses at the university level. (RM)

  17. Gis-Based Spatial Statistical Analysis of College Graduates Employment

    NASA Astrophysics Data System (ADS)

    Tang, R.

    2012-07-01

    It is urgently necessary to be aware of the distribution and employment status of college graduates for proper allocation of human resources and overall arrangement of strategic industry. This study provides empirical evidence regarding the use of geocoding and spatial analysis in distribution and employment status of college graduates based on the data from 2004-2008 Wuhan Municipal Human Resources and Social Security Bureau, China. Spatio-temporal distribution of employment unit were analyzed with geocoding using ArcGIS software, and the stepwise multiple linear regression method via SPSS software was used to predict the employment and to identify spatially associated enterprise and professionals demand in the future. The results show that the enterprises in Wuhan east lake high and new technology development zone increased dramatically from 2004 to 2008, and tended to distributed southeastward. Furthermore, the models built by statistical analysis suggest that the specialty of graduates major in has an important impact on the number of the employment and the number of graduates engaging in pillar industries. In conclusion, the combination of GIS and statistical analysis which helps to simulate the spatial distribution of the employment status is a potential tool for human resource development research.

  18. Point pattern analysis of FIA data

    Treesearch

    Chris Woodall

    2002-01-01

    Point pattern analysis is a branch of spatial statistics that quantifies the spatial distribution of points in two-dimensional space. Point pattern analysis was conducted on stand stem-maps from FIA fixed-radius plots to explore point pattern analysis techniques and to determine the ability of pattern descriptions to describe stand attributes. Results indicate that the...

  19. Components of spatial information management in wildlife ecology: Software for statistical and modeling analysis [Chapter 14

    Treesearch

    Hawthorne L. Beyer; Jeff Jenness; Samuel A. Cushman

    2010-01-01

    Spatial information systems (SIS) is a term that describes a wide diversity of concepts, techniques, and technologies related to the capture, management, display and analysis of spatial information. It encompasses technologies such as geographic information systems (GIS), global positioning systems (GPS), remote sensing, and relational database management systems (...

  20. Spatio-temporal patterns of Barmah Forest virus disease in Queensland, Australia.

    PubMed

    Naish, Suchithra; Hu, Wenbiao; Mengersen, Kerrie; Tong, Shilu

    2011-01-01

    Barmah Forest virus (BFV) disease is a common and wide-spread mosquito-borne disease in Australia. This study investigated the spatio-temporal patterns of BFV disease in Queensland, Australia using geographical information system (GIS) tools and geostatistical analysis. We calculated the incidence rates and standardised incidence rates of BFV disease. Moran's I statistic was used to assess the spatial autocorrelation of BFV incidences. Spatial dynamics of BFV disease was examined using semi-variogram analysis. Interpolation techniques were applied to visualise and display the spatial distribution of BFV disease in statistical local areas (SLAs) throughout Queensland. Mapping of BFV disease by SLAs reveals the presence of substantial spatio-temporal variation over time. Statistically significant differences in BFV incidence rates were identified among age groups (χ(2) = 7587, df = 7327,p<0.01). There was a significant positive spatial autocorrelation of BFV incidence for all four periods, with the Moran's I statistic ranging from 0.1506 to 0.2901 (p<0.01). Semi-variogram analysis and smoothed maps created from interpolation techniques indicate that the pattern of spatial autocorrelation was not homogeneous across the state. This is the first study to examine spatial and temporal variation in the incidence rates of BFV disease across Queensland using GIS and geostatistics. The BFV transmission varied with age and gender, which may be due to exposure rates or behavioural risk factors. There are differences in the spatio-temporal patterns of BFV disease which may be related to local socio-ecological and environmental factors. These research findings may have implications in the BFV disease control and prevention programs in Queensland.

  1. Spatial variability effects on precision and power of forage yield estimation

    USDA-ARS?s Scientific Manuscript database

    Spatial analyses of yield trials are important, as they adjust cultivar means for spatial variation and improve the statistical precision of yield estimation. While the relative efficiency of spatial analysis has been frequently reported in several yield trials, its application on long-term forage y...

  2. Predicting thermal regimes of stream networks across the northeast United States: Natural and anthropogenic influences

    EPA Science Inventory

    We used STARS (Spatial Tools for the Analysis of River Systems), an ArcGIS geoprocessing toolbox, to create spatial stream networks. We then developed and assessed spatial statistical models for each of these metrics, incorporating spatial autocorrelation based on both distance...

  3. Research on the optimization of air quality monitoring station layout based on spatial grid statistical analysis method.

    PubMed

    Li, Tianxin; Zhou, Xing Chen; Ikhumhen, Harrison Odion; Difei, An

    2018-05-01

    In recent years, with the significant increase in urban development, it has become necessary to optimize the current air monitoring stations to reflect the quality of air in the environment. Highlighting the spatial representation of some air monitoring stations using Beijing's regional air monitoring station data from 2012 to 2014, the monthly mean particulate matter concentration (PM10) in the region was calculated and through the IDW interpolation method and spatial grid statistical method using GIS, the spatial distribution of PM10 concentration in the whole region was deduced. The spatial distribution variation of districts in Beijing using the gridding model was performed, and through the 3-year spatial analysis, PM10 concentration data including the variation and spatial overlay (1.5 km × 1.5 km cell resolution grid), the spatial distribution result obtained showed that the total PM10 concentration frequency variation exceeded the standard. It is very important to optimize the layout of the existing air monitoring stations by combining the concentration distribution of air pollutants with the spatial region using GIS.

  4. A spatial cluster analysis of tractor overturns in Kentucky from 1960 to 2002

    USGS Publications Warehouse

    Saman, D.M.; Cole, H.P.; Odoi, A.; Myers, M.L.; Carey, D.I.; Westneat, S.C.

    2012-01-01

    Background: Agricultural tractor overturns without rollover protective structures are the leading cause of farm fatalities in the United States. To our knowledge, no studies have incorporated the spatial scan statistic in identifying high-risk areas for tractor overturns. The aim of this study was to determine whether tractor overturns cluster in certain parts of Kentucky and identify factors associated with tractor overturns. Methods: A spatial statistical analysis using Kulldorff's spatial scan statistic was performed to identify county clusters at greatest risk for tractor overturns. A regression analysis was then performed to identify factors associated with tractor overturns. Results: The spatial analysis revealed a cluster of higher than expected tractor overturns in four counties in northern Kentucky (RR = 2.55) and 10 counties in eastern Kentucky (RR = 1.97). Higher rates of tractor overturns were associated with steeper average percent slope of pasture land by county (p = 0.0002) and a greater percent of total tractors with less than 40 horsepower by county (p<0.0001). Conclusions: This study reveals that geographic hotspots of tractor overturns exist in Kentucky and identifies factors associated with overturns. This study provides policymakers a guide to targeted county-level interventions (e.g., roll-over protective structures promotion interventions) with the intention of reducing tractor overturns in the highest risk counties in Kentucky. ?? 2012 Saman et al.

  5. Spatial variation of volcanic rock geochemistry in the Virunga Volcanic Province: Statistical analysis of an integrated database

    NASA Astrophysics Data System (ADS)

    Barette, Florian; Poppe, Sam; Smets, Benoît; Benbakkar, Mhammed; Kervyn, Matthieu

    2017-10-01

    We present an integrated, spatially-explicit database of existing geochemical major-element analyses available from (post-) colonial scientific reports, PhD Theses and international publications for the Virunga Volcanic Province, located in the western branch of the East African Rift System. This volcanic province is characterised by alkaline volcanism, including silica-undersaturated, alkaline and potassic lavas. The database contains a total of 908 geochemical analyses of eruptive rocks for the entire volcanic province with a localisation for most samples. A preliminary analysis of the overall consistency of the database, using statistical techniques on sets of geochemical analyses with contrasted analytical methods or dates, demonstrates that the database is consistent. We applied a principal component analysis and cluster analysis on whole-rock major element compositions included in the database to study the spatial variation of the chemical composition of eruptive products in the Virunga Volcanic Province. These statistical analyses identify spatially distributed clusters of eruptive products. The known geochemical contrasts are highlighted by the spatial analysis, such as the unique geochemical signature of Nyiragongo lavas compared to other Virunga lavas, the geochemical heterogeneity of the Bulengo area, and the trachyte flows of Karisimbi volcano. Most importantly, we identified separate clusters of eruptive products which originate from primitive magmatic sources. These lavas of primitive composition are preferentially located along NE-SW inherited rift structures, often at distance from the central Virunga volcanoes. Our results illustrate the relevance of a spatial analysis on integrated geochemical data for a volcanic province, as a complement to classical petrological investigations. This approach indeed helps to characterise geochemical variations within a complex of magmatic systems and to identify specific petrologic and geochemical investigations that should be tackled within a study area.

  6. Using a cross section to train veterinary students to visualize anatomical structures in three dimensions

    NASA Astrophysics Data System (ADS)

    Provo, Judy; Lamar, Carlton; Newby, Timothy

    2002-01-01

    A cross section was used to enhance three-dimensional knowledge of anatomy of the canine head. All veterinary students in two successive classes (n = 124) dissected the head; experimental groups also identified structures on a cross section of the head. A test assessing spatial knowledge of the head generated 10 dependent variables from two administrations. The test had content validity and statistically significant interrater and test-retest reliability. A live-dog examination generated one additional dependent variable. Analysis of covariance controlling for performance on course examinations and quizzes revealed no treatment effect. Including spatial skill as a third covariate revealed a statistically significant effect of spatial skill on three dependent variables. Men initially had greater spatial skill than women, but spatial skills were equal after 8 months. A qualitative analysis showed the positive impact of this experience on participants. Suggestions for improvement and future research are discussed.

  7. Spatial analyses for nonoverlapping objects with size variations and their application to coral communities.

    PubMed

    Muko, Soyoka; Shimatani, Ichiro K; Nozawa, Yoko

    2014-07-01

    Spatial distributions of individuals are conventionally analysed by representing objects as dimensionless points, in which spatial statistics are based on centre-to-centre distances. However, if organisms expand without overlapping and show size variations, such as is the case for encrusting corals, interobject spacing is crucial for spatial associations where interactions occur. We introduced new pairwise statistics using minimum distances between objects and demonstrated their utility when examining encrusting coral community data. We also calculated the conventional point process statistics and the grid-based statistics to clarify the advantages and limitations of each spatial statistical method. For simplicity, coral colonies were approximated by disks in these demonstrations. Focusing on short-distance effects, the use of minimum distances revealed that almost all coral genera were aggregated at a scale of 1-25 cm. However, when fragmented colonies (ramets) were treated as a genet, a genet-level analysis indicated weak or no aggregation, suggesting that most corals were randomly distributed and that fragmentation was the primary cause of colony aggregations. In contrast, point process statistics showed larger aggregation scales, presumably because centre-to-centre distances included both intercolony spacing and colony sizes (radius). The grid-based statistics were able to quantify the patch (aggregation) scale of colonies, but the scale was strongly affected by the colony size. Our approach quantitatively showed repulsive effects between an aggressive genus and a competitively weak genus, while the grid-based statistics (covariance function) also showed repulsion although the spatial scale indicated from the statistics was not directly interpretable in terms of ecological meaning. The use of minimum distances together with previously proposed spatial statistics helped us to extend our understanding of the spatial patterns of nonoverlapping objects that vary in size and the associated specific scales. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.

  8. Spatial prediction of landslide hazard using discriminant analysis and GIS

    Treesearch

    Peter V. Gorsevski; Paul Gessler; Randy B. Foltz

    2000-01-01

    Environmental attributes relevant for spatial prediction of landslides triggered by rain and snowmelt events were derived from digital elevation model (DEM). Those data in conjunction with statistics and geographic information system (GIS) provided a detailed basis for spatial prediction of landslide hazard. The spatial prediction of landslide hazard in this paper is...

  9. Spatio-Temporal Patterns of Barmah Forest Virus Disease in Queensland, Australia

    PubMed Central

    Naish, Suchithra; Hu, Wenbiao; Mengersen, Kerrie; Tong, Shilu

    2011-01-01

    Background Barmah Forest virus (BFV) disease is a common and wide-spread mosquito-borne disease in Australia. This study investigated the spatio-temporal patterns of BFV disease in Queensland, Australia using geographical information system (GIS) tools and geostatistical analysis. Methods/Principal Findings We calculated the incidence rates and standardised incidence rates of BFV disease. Moran's I statistic was used to assess the spatial autocorrelation of BFV incidences. Spatial dynamics of BFV disease was examined using semi-variogram analysis. Interpolation techniques were applied to visualise and display the spatial distribution of BFV disease in statistical local areas (SLAs) throughout Queensland. Mapping of BFV disease by SLAs reveals the presence of substantial spatio-temporal variation over time. Statistically significant differences in BFV incidence rates were identified among age groups (χ2 = 7587, df = 7327,p<0.01). There was a significant positive spatial autocorrelation of BFV incidence for all four periods, with the Moran's I statistic ranging from 0.1506 to 0.2901 (p<0.01). Semi-variogram analysis and smoothed maps created from interpolation techniques indicate that the pattern of spatial autocorrelation was not homogeneous across the state. Conclusions/Significance This is the first study to examine spatial and temporal variation in the incidence rates of BFV disease across Queensland using GIS and geostatistics. The BFV transmission varied with age and gender, which may be due to exposure rates or behavioural risk factors. There are differences in the spatio-temporal patterns of BFV disease which may be related to local socio-ecological and environmental factors. These research findings may have implications in the BFV disease control and prevention programs in Queensland. PMID:22022430

  10. Time and space in the middle paleolithic: Spatial structure and occupation dynamics of seven open-air sites.

    PubMed

    Clark, Amy E

    2016-05-06

    The spatial structure of archeological sites can help reconstruct the settlement dynamics of hunter-gatherers by providing information on the number and length of occupations. This study seeks to access this information through a comparison of seven sites. These sites are open-air and were all excavated over large spatial areas, up to 2,000 m(2) , and are therefore ideal for spatial analysis, which was done using two complementary methods, lithic refitting and density zones. Both methods were assessed statistically using confidence intervals. The statistically significant results from each site were then compiled to evaluate trends that occur across the seven sites. These results were used to assess the "spatial consistency" of each assemblage and, through that, the number and duration of occupations. This study demonstrates that spatial analysis can be a powerful tool in research on occupation dynamics and can help disentangle the many occupations that often make up an archeological assemblage. © 2016 Wiley Periodicals, Inc.

  11. Using R to implement spatial analysis in open source environment

    NASA Astrophysics Data System (ADS)

    Shao, Yixi; Chen, Dong; Zhao, Bo

    2007-06-01

    R is an open source (GPL) language and environment for spatial analysis, statistical computing and graphics which provides a wide variety of statistical and graphical techniques, and is highly extensible. In the Open Source environment it plays an important role in doing spatial analysis. So, to implement spatial analysis in the Open Source environment which we called the Open Source geocomputation is using the R data analysis language integrated with GRASS GIS and MySQL or PostgreSQL. This paper explains the architecture of the Open Source GIS environment and emphasizes the role R plays in the aspect of spatial analysis. Furthermore, one apt illustration of the functions of R is given in this paper through the project of constructing CZPGIS (Cheng Zhou Population GIS) supported by Changzhou Government, China. In this project we use R to implement the geostatistics in the Open Source GIS environment to evaluate the spatial correlation of land price and estimate it by Kriging Interpolation. We also use R integrated with MapServer and php to show how R and other Open Source software cooperate with each other in WebGIS environment, which represents the advantages of using R to implement spatial analysis in Open Source GIS environment. And in the end, we points out that the packages for spatial analysis in R is still scattered and the limited memory is still a bottleneck when large sum of clients connect at the same time. Therefore further work is to group the extensive packages in order or design normative packages and make R cooperate better with other commercial software such as ArcIMS. Also we look forward to developing packages for land price evaluation.

  12. Integrating the statistical analysis of spatial data in ecology

    Treesearch

    A. M. Liebhold; J. Gurevitch

    2002-01-01

    In many areas of ecology there is an increasing emphasis on spatial relationships. Often ecologists are interested in new ways of analyzing data with the objective of quantifying spatial patterns, and in designing surveys and experiments in light of the recognition that there may be underlying spatial pattern in biotic responses. In doing so, ecologists have adopted a...

  13. Comparison of Arterial Spin-labeling Perfusion Images at Different Spatial Normalization Methods Based on Voxel-based Statistical Analysis.

    PubMed

    Tani, Kazuki; Mio, Motohira; Toyofuku, Tatsuo; Kato, Shinichi; Masumoto, Tomoya; Ijichi, Tetsuya; Matsushima, Masatoshi; Morimoto, Shoichi; Hirata, Takumi

    2017-01-01

    Spatial normalization is a significant image pre-processing operation in statistical parametric mapping (SPM) analysis. The purpose of this study was to clarify the optimal method of spatial normalization for improving diagnostic accuracy in SPM analysis of arterial spin-labeling (ASL) perfusion images. We evaluated the SPM results of five spatial normalization methods obtained by comparing patients with Alzheimer's disease or normal pressure hydrocephalus complicated with dementia and cognitively healthy subjects. We used the following methods: 3DT1-conventional based on spatial normalization using anatomical images; 3DT1-DARTEL based on spatial normalization with DARTEL using anatomical images; 3DT1-conventional template and 3DT1-DARTEL template, created by averaging cognitively healthy subjects spatially normalized using the above methods; and ASL-DARTEL template created by averaging cognitively healthy subjects spatially normalized with DARTEL using ASL images only. Our results showed that ASL-DARTEL template was small compared with the other two templates. Our SPM results obtained with ASL-DARTEL template method were inaccurate. Also, there were no significant differences between 3DT1-conventional and 3DT1-DARTEL template methods. In contrast, the 3DT1-DARTEL method showed higher detection sensitivity, and precise anatomical location. Our SPM results suggest that we should perform spatial normalization with DARTEL using anatomical images.

  14. Application of spatial technology in malaria research & control: some new insights.

    PubMed

    Saxena, Rekha; Nagpal, B N; Srivastava, Aruna; Gupta, S K; Dash, A P

    2009-08-01

    Geographical information System (GIS) has emerged as the core of the spatial technology which integrates wide range of dataset available from different sources including Remote Sensing (RS) and Global Positioning System (GPS). Literature published during the decade (1998-2007) has been compiled and grouped into six categories according to the usage of the technology in malaria epidemiology. Different GIS modules like spatial data sources, mapping and geo-processing tools, distance calculation, digital elevation model (DEM), buffer zone and geo-statistical analysis have been investigated in detail, illustrated with examples as per the derived results. These GIS tools have contributed immensely in understanding the epidemiological processes of malaria and examples drawn have shown that GIS is now widely used for research and decision making in malaria control. Statistical data analysis currently is the most consistent and established set of tools to analyze spatial datasets. The desired future development of GIS is in line with the utilization of geo-statistical tools which combined with high quality data has capability to provide new insight into malaria epidemiology and the complexity of its transmission potential in endemic areas.

  15. A comparison of performance of automatic cloud coverage assessment algorithm for Formosat-2 image using clustering-based and spatial thresholding methods

    NASA Astrophysics Data System (ADS)

    Hsu, Kuo-Hsien

    2012-11-01

    Formosat-2 image is a kind of high-spatial-resolution (2 meters GSD) remote sensing satellite data, which includes one panchromatic band and four multispectral bands (Blue, Green, Red, near-infrared). An essential sector in the daily processing of received Formosat-2 image is to estimate the cloud statistic of image using Automatic Cloud Coverage Assessment (ACCA) algorithm. The information of cloud statistic of image is subsequently recorded as an important metadata for image product catalog. In this paper, we propose an ACCA method with two consecutive stages: preprocessing and post-processing analysis. For pre-processing analysis, the un-supervised K-means classification, Sobel's method, thresholding method, non-cloudy pixels reexamination, and cross-band filter method are implemented in sequence for cloud statistic determination. For post-processing analysis, Box-Counting fractal method is implemented. In other words, the cloud statistic is firstly determined via pre-processing analysis, the correctness of cloud statistic of image of different spectral band is eventually cross-examined qualitatively and quantitatively via post-processing analysis. The selection of an appropriate thresholding method is very critical to the result of ACCA method. Therefore, in this work, We firstly conduct a series of experiments of the clustering-based and spatial thresholding methods that include Otsu's, Local Entropy(LE), Joint Entropy(JE), Global Entropy(GE), and Global Relative Entropy(GRE) method, for performance comparison. The result shows that Otsu's and GE methods both perform better than others for Formosat-2 image. Additionally, our proposed ACCA method by selecting Otsu's method as the threshoding method has successfully extracted the cloudy pixels of Formosat-2 image for accurate cloud statistic estimation.

  16. Spatial Differentiation of Landscape Values in the Murray River Region of Victoria, Australia

    NASA Astrophysics Data System (ADS)

    Zhu, Xuan; Pfueller, Sharron; Whitelaw, Paul; Winter, Caroline

    2010-05-01

    This research advances the understanding of the location of perceived landscape values through a statistically based approach to spatial analysis of value densities. Survey data were obtained from a sample of people living in and using the Murray River region, Australia, where declining environmental quality prompted a reevaluation of its conservation status. When densities of 12 perceived landscape values were mapped using geographic information systems (GIS), valued places clustered along the entire river bank and in associated National/State Parks and reserves. While simple density mapping revealed high value densities in various locations, it did not indicate what density of a landscape value could be regarded as a statistically significant hotspot or distinguish whether overlapping areas of high density for different values indicate identical or adjacent locations. A spatial statistic Getis-Ord Gi* was used to indicate statistically significant spatial clusters of high value densities or “hotspots”. Of 251 hotspots, 40% were for single non-use values, primarily spiritual, therapeutic or intrinsic. Four hotspots had 11 landscape values. Two, lacking economic value, were located in ecologically important river red gum forests and two, lacking wilderness value, were near the major towns of Echuca-Moama and Albury-Wodonga. Hotspots for eight values showed statistically significant associations with another value. There were high associations between learning and heritage values while economic and biological diversity values showed moderate associations with several other direct and indirect use values. This approach may improve confidence in the interpretation of spatial analysis of landscape values by enhancing understanding of value relationships.

  17. [A spatially explicit analysis of traffic accidents involving pedestrians and cyclists in Berlin].

    PubMed

    Lakes, Tobia

    2017-12-01

    In many German cities and counties, sustainable mobility concepts that strengthen pedestrian and cyclist traffic are promoted. From the perspectives of urban development, traffic planning and public healthcare, a spatially differentiated analysis of traffic accident data is decisive. 1) The identification of spatial and temporal patterns of the distribution of accidents involving cyclists and pedestrians, 2) the identification of hotspots and exploration of possible underlying causes and 3) the critical discussion of benefits and challenges of the results and the derivation of conclusions. Spatio-temporal distributions of data from accident statistics in Berlin involving pedestrians and cyclists from 2011 to 2015 were analysed with geographic information systems (GIS). While the total number of accidents remains relatively stable for pedestrian and cyclist accidents, the spatial distribution analysis shows, however, that there are significant spatial clusters (hotspots) of traffic accidents with a strong concentration in the inner city area. In a critical discussion, the benefits of geographic concepts are identified, such as spatially explicit health data (in this case traffic accident data), the importance of the integration of other data sources for the evaluation of the health impact of areas (traffic accident statistics of the police), and the possibilities and limitations of spatial-temporal data analysis (spatial point-density analyses) for the derivation of decision-supported recommendations and for the evaluation of policy measures of health prevention and of health-relevant urban development.

  18. Binary Programming Models of Spatial Pattern Recognition: Applications in Remote Sensing Image Analysis

    DTIC Science & Technology

    1991-12-01

    9 2.6.1 Multi-Shape Detection. .. .. .. .. .. .. ...... 9 Page 2.6.2 Line Segment Extraction and Re-Combination.. 9 2.6.3 Planimetric Feature... Extraction ............... 10 2.6.4 Line Segment Extraction From Statistical Texture Analysis .............................. 11 2.6.5 Edge Following as Graph...image after image, could benefit clue to the fact that major spatial characteristics of subregions could be extracted , and minor spatial changes could be

  19. Quantitative analysis of spatial variability of geotechnical parameters

    NASA Astrophysics Data System (ADS)

    Fang, Xing

    2018-04-01

    Geotechnical parameters are the basic parameters of geotechnical engineering design, while the geotechnical parameters have strong regional characteristics. At the same time, the spatial variability of geotechnical parameters has been recognized. It is gradually introduced into the reliability analysis of geotechnical engineering. Based on the statistical theory of geostatistical spatial information, the spatial variability of geotechnical parameters is quantitatively analyzed. At the same time, the evaluation of geotechnical parameters and the correlation coefficient between geotechnical parameters are calculated. A residential district of Tianjin Survey Institute was selected as the research object. There are 68 boreholes in this area and 9 layers of mechanical stratification. The parameters are water content, natural gravity, void ratio, liquid limit, plasticity index, liquidity index, compressibility coefficient, compressive modulus, internal friction angle, cohesion and SP index. According to the principle of statistical correlation, the correlation coefficient of geotechnical parameters is calculated. According to the correlation coefficient, the law of geotechnical parameters is obtained.

  20. Understanding spatial organizations of chromosomes via statistical analysis of Hi-C data

    PubMed Central

    Hu, Ming; Deng, Ke; Qin, Zhaohui; Liu, Jun S.

    2015-01-01

    Understanding how chromosomes fold provides insights into the transcription regulation, hence, the functional state of the cell. Using the next generation sequencing technology, the recently developed Hi-C approach enables a global view of spatial chromatin organization in the nucleus, which substantially expands our knowledge about genome organization and function. However, due to multiple layers of biases, noises and uncertainties buried in the protocol of Hi-C experiments, analyzing and interpreting Hi-C data poses great challenges, and requires novel statistical methods to be developed. This article provides an overview of recent Hi-C studies and their impacts on biomedical research, describes major challenges in statistical analysis of Hi-C data, and discusses some perspectives for future research. PMID:26124977

  1. Spatial Thinking Ability Assessment in Rwandan Secondary Schools: Baseline Results

    ERIC Educational Resources Information Center

    Tomaszewski, Brian; Vodacek, Anthony; Parody, Robert; Holt, Nicholas

    2015-01-01

    This article discusses use and modification of Lee and Bednarz's (2012) Spatial Thinking Ability Test (STAT) as a spatial thinking assessment device in Rwandan secondary schools. After piloting and modifying the STAT, 222 students total from our rural and urban test schools and one control school were tested. Statistical analysis revealed that…

  2. Is the spatial distribution of brain lesions associated with closed-head injury predictive of subsequent development of attention-deficit/hyperactivity disorder? Analysis with brain-image database

    NASA Technical Reports Server (NTRS)

    Herskovits, E. H.; Megalooikonomou, V.; Davatzikos, C.; Chen, A.; Bryan, R. N.; Gerring, J. P.

    1999-01-01

    PURPOSE: To determine whether there is an association between the spatial distribution of lesions detected at magnetic resonance (MR) imaging of the brain in children after closed-head injury and the development of secondary attention-deficit/hyperactivity disorder (ADHD). MATERIALS AND METHODS: Data obtained from 76 children without prior history of ADHD were analyzed. MR images were obtained 3 months after closed-head injury. After manual delineation of lesions, images were registered to the Talairach coordinate system. For each subject, registered images and secondary ADHD status were integrated into a brain-image database, which contains depiction (visualization) and statistical analysis software. Using this database, we assessed visually the spatial distributions of lesions and performed statistical analysis of image and clinical variables. RESULTS: Of the 76 children, 15 developed secondary ADHD. Depiction of the data suggested that children who developed secondary ADHD had more lesions in the right putamen than children who did not develop secondary ADHD; this impression was confirmed statistically. After Bonferroni correction, we could not demonstrate significant differences between secondary ADHD status and lesion burdens for the right caudate nucleus or the right globus pallidus. CONCLUSION: Closed-head injury-induced lesions in the right putamen in children are associated with subsequent development of secondary ADHD. Depiction software is useful in guiding statistical analysis of image data.

  3. Use of Fouler Transforms to define landscape scales of analysis for disturbances: A case study of thinned and unthinned forest stands

    Treesearch

    J. E. Lundquist; R. A. Sommerfeld

    2002-01-01

    Various disturbances such as disease and management practices cause canopy gaps that change patterns of forest stand structure. This study examined the usefulness of digital image analysis using aerial photos, Fourier Tranforms, and cluster analysis to investigate how different spatial statistics are affected by spatial scale. The specific aims were to: 1) evaluate how...

  4. OSPAR standard method and software for statistical analysis of beach litter data.

    PubMed

    Schulz, Marcus; van Loon, Willem; Fleet, David M; Baggelaar, Paul; van der Meulen, Eit

    2017-09-15

    The aim of this study is to develop standard statistical methods and software for the analysis of beach litter data. The optimal ensemble of statistical methods comprises the Mann-Kendall trend test, the Theil-Sen slope estimation, the Wilcoxon step trend test and basic descriptive statistics. The application of Litter Analyst, a tailor-made software for analysing the results of beach litter surveys, to OSPAR beach litter data from seven beaches bordering on the south-eastern North Sea, revealed 23 significant trends in the abundances of beach litter types for the period 2009-2014. Litter Analyst revealed a large variation in the abundance of litter types between beaches. To reduce the effects of spatial variation, trend analysis of beach litter data can most effectively be performed at the beach or national level. Spatial aggregation of beach litter data within a region is possible, but resulted in a considerable reduction in the number of significant trends. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Segmentation of fluorescence microscopy images for quantitative analysis of cell nuclear architecture.

    PubMed

    Russell, Richard A; Adams, Niall M; Stephens, David A; Batty, Elizabeth; Jensen, Kirsten; Freemont, Paul S

    2009-04-22

    Considerable advances in microscopy, biophysics, and cell biology have provided a wealth of imaging data describing the functional organization of the cell nucleus. Until recently, cell nuclear architecture has largely been assessed by subjective visual inspection of fluorescently labeled components imaged by the optical microscope. This approach is inadequate to fully quantify spatial associations, especially when the patterns are indistinct, irregular, or highly punctate. Accurate image processing techniques as well as statistical and computational tools are thus necessary to interpret this data if meaningful spatial-function relationships are to be established. Here, we have developed a thresholding algorithm, stable count thresholding (SCT), to segment nuclear compartments in confocal laser scanning microscopy image stacks to facilitate objective and quantitative analysis of the three-dimensional organization of these objects using formal statistical methods. We validate the efficacy and performance of the SCT algorithm using real images of immunofluorescently stained nuclear compartments and fluorescent beads as well as simulated images. In all three cases, the SCT algorithm delivers a segmentation that is far better than standard thresholding methods, and more importantly, is comparable to manual thresholding results. By applying the SCT algorithm and statistical analysis, we quantify the spatial configuration of promyelocytic leukemia nuclear bodies with respect to irregular-shaped SC35 domains. We show that the compartments are closer than expected under a null model for their spatial point distribution, and furthermore that their spatial association varies according to cell state. The methods reported are general and can readily be applied to quantify the spatial interactions of other nuclear compartments.

  6. Segmentation of Fluorescence Microscopy Images for Quantitative Analysis of Cell Nuclear Architecture

    PubMed Central

    Russell, Richard A.; Adams, Niall M.; Stephens, David A.; Batty, Elizabeth; Jensen, Kirsten; Freemont, Paul S.

    2009-01-01

    Abstract Considerable advances in microscopy, biophysics, and cell biology have provided a wealth of imaging data describing the functional organization of the cell nucleus. Until recently, cell nuclear architecture has largely been assessed by subjective visual inspection of fluorescently labeled components imaged by the optical microscope. This approach is inadequate to fully quantify spatial associations, especially when the patterns are indistinct, irregular, or highly punctate. Accurate image processing techniques as well as statistical and computational tools are thus necessary to interpret this data if meaningful spatial-function relationships are to be established. Here, we have developed a thresholding algorithm, stable count thresholding (SCT), to segment nuclear compartments in confocal laser scanning microscopy image stacks to facilitate objective and quantitative analysis of the three-dimensional organization of these objects using formal statistical methods. We validate the efficacy and performance of the SCT algorithm using real images of immunofluorescently stained nuclear compartments and fluorescent beads as well as simulated images. In all three cases, the SCT algorithm delivers a segmentation that is far better than standard thresholding methods, and more importantly, is comparable to manual thresholding results. By applying the SCT algorithm and statistical analysis, we quantify the spatial configuration of promyelocytic leukemia nuclear bodies with respect to irregular-shaped SC35 domains. We show that the compartments are closer than expected under a null model for their spatial point distribution, and furthermore that their spatial association varies according to cell state. The methods reported are general and can readily be applied to quantify the spatial interactions of other nuclear compartments. PMID:19383481

  7. Urban Transmission of American Cutaneous Leishmaniasis in Argentina: Spatial Analysis Study

    PubMed Central

    Gil, José F.; Nasser, Julio R.; Cajal, Silvana P.; Juarez, Marisa; Acosta, Norma; Cimino, Rubén O.; Diosque, Patricio; Krolewiecki, Alejandro J.

    2010-01-01

    We used kernel density and scan statistics to examine the spatial distribution of cases of pediatric and adult American cutaneous leishmaniasis in an urban disease-endemic area in Salta Province, Argentina. Spatial analysis was used for the whole population and stratified by women > 14 years of age (n = 159), men > 14 years of age (n = 667), and children < 15 years of age (n = 213). Although kernel density for adults encompassed nearly the entire city, distribution in children was most prevalent in the peripheral areas of the city. Scan statistic analysis for adult males, adult females, and children found 11, 2, and 8 clusters, respectively. Clusters for children had the highest odds ratios (P < 0.05) and were located in proximity of plantations and secondary vegetation. The data from this study provide further evidence of the potential urban transmission of American cutaneous leishmaniasis in northern Argentina. PMID:20207869

  8. Spatio-Temporal Analysis of Smear-Positive Tuberculosis in the Sidama Zone, Southern Ethiopia

    PubMed Central

    Dangisso, Mesay Hailu; Datiko, Daniel Gemechu; Lindtjørn, Bernt

    2015-01-01

    Background Tuberculosis (TB) is a disease of public health concern, with a varying distribution across settings depending on socio-economic status, HIV burden, availability and performance of the health system. Ethiopia is a country with a high burden of TB, with regional variations in TB case notification rates (CNRs). However, TB program reports are often compiled and reported at higher administrative units that do not show the burden at lower units, so there is limited information about the spatial distribution of the disease. We therefore aim to assess the spatial distribution and presence of the spatio-temporal clustering of the disease in different geographic settings over 10 years in the Sidama Zone in southern Ethiopia. Methods A retrospective space–time and spatial analysis were carried out at the kebele level (the lowest administrative unit within a district) to identify spatial and space-time clusters of smear-positive pulmonary TB (PTB). Scan statistics, Global Moran’s I, and Getis and Ordi (Gi*) statistics were all used to help analyze the spatial distribution and clusters of the disease across settings. Results A total of 22,545 smear-positive PTB cases notified over 10 years were used for spatial analysis. In a purely spatial analysis, we identified the most likely cluster of smear-positive PTB in 192 kebeles in eight districts (RR= 2, p<0.001), with 12,155 observed and 8,668 expected cases. The Gi* statistic also identified the clusters in the same areas, and the spatial clusters showed stability in most areas in each year during the study period. The space-time analysis also detected the most likely cluster in 193 kebeles in the same eight districts (RR= 1.92, p<0.001), with 7,584 observed and 4,738 expected cases in 2003-2012. Conclusion The study found variations in CNRs and significant spatio-temporal clusters of smear-positive PTB in the Sidama Zone. The findings can be used to guide TB control programs to devise effective TB control strategies for the geographic areas characterized by the highest CNRs. Further studies are required to understand the factors associated with clustering based on individual level locations and investigation of cases. PMID:26030162

  9. Spatially characterizing visitor use and its association with informal trails in Yosemite Valley meadows.

    PubMed

    Walden-Schreiner, Chelsey; Leung, Yu-Fai

    2013-07-01

    Ecological impacts associated with nature-based recreation and tourism can compromise park and protected area goals if left unrestricted. Protected area agencies are increasingly incorporating indicator-based management frameworks into their management plans to address visitor impacts. Development of indicators requires empirical evaluation of indicator measures and examining their ecological and social relevance. This study addresses the development of the informal trail indicator in Yosemite National Park by spatially characterizing visitor use in open landscapes and integrating use patterns with informal trail condition data to examine their spatial association. Informal trail and visitor use data were collected concurrently during July and August of 2011 in three, high-use meadows of Yosemite Valley. Visitor use was clustered at statistically significant levels in all three study meadows. Spatial data integration found no statistically significant differences between use patterns and trail condition class. However, statistically significant differences were found between the distance visitors were observed from informal trails and visitor activity type with active activities occurring closer to trail corridors. Gender was also found to be significant with male visitors observed further from trail corridors. Results highlight the utility of integrated spatial analysis in supporting indicator-based monitoring and informing management of open landscapes. Additional variables for future analysis and methodological improvements are discussed.

  10. Spatially Characterizing Visitor Use and Its Association with Informal Trails in Yosemite Valley Meadows

    NASA Astrophysics Data System (ADS)

    Walden-Schreiner, Chelsey; Leung, Yu-Fai

    2013-07-01

    Ecological impacts associated with nature-based recreation and tourism can compromise park and protected area goals if left unrestricted. Protected area agencies are increasingly incorporating indicator-based management frameworks into their management plans to address visitor impacts. Development of indicators requires empirical evaluation of indicator measures and examining their ecological and social relevance. This study addresses the development of the informal trail indicator in Yosemite National Park by spatially characterizing visitor use in open landscapes and integrating use patterns with informal trail condition data to examine their spatial association. Informal trail and visitor use data were collected concurrently during July and August of 2011 in three, high-use meadows of Yosemite Valley. Visitor use was clustered at statistically significant levels in all three study meadows. Spatial data integration found no statistically significant differences between use patterns and trail condition class. However, statistically significant differences were found between the distance visitors were observed from informal trails and visitor activity type with active activities occurring closer to trail corridors. Gender was also found to be significant with male visitors observed further from trail corridors. Results highlight the utility of integrated spatial analysis in supporting indicator-based monitoring and informing management of open landscapes. Additional variables for future analysis and methodological improvements are discussed.

  11. Modelling the Effects of Land-Use Changes on Climate: a Case Study on Yamula DAM

    NASA Astrophysics Data System (ADS)

    Köylü, Ü.; Geymen, A.

    2016-10-01

    Dams block flow of rivers and cause artificial water reservoirs which affect the climate and the land use characteristics of the river basin. In this research, the effect of the huge water body obtained by Yamula Dam in Kızılırmak Basin is analysed over surrounding spatial's land use and climate change. Mann Kendal non-parametrical statistical test, Theil&Sen Slope method, Inverse Distance Weighting (IDW), Soil Conservation Service-Curve Number (SCS-CN) methods are integrated for spatial and temporal analysis of the research area. For this research humidity, temperature, wind speed, precipitation observations which are collected in 16 weather stations nearby Kızılırmak Basin are analyzed. After that these statistical information is combined by GIS data over years. An application is developed for GIS analysis in Python Programming Language and integrated with ArcGIS software. Statistical analysis calculated in the R Project for Statistical Computing and integrated with developed application. According to the statistical analysis of extracted time series of meteorological parameters, statistical significant spatiotemporal trends are observed for climate change and land use characteristics. In this study, we indicated the effect of big dams in local climate on semi-arid Yamula Dam.

  12. Statistics for Time-Series Spatial Data: Applying Survival Analysis to Study Land-Use Change

    ERIC Educational Resources Information Center

    Wang, Ninghua Nathan

    2013-01-01

    Traditional spatial analysis and data mining methods fall short of extracting temporal information from data. This inability makes their use difficult to study changes and the associated mechanisms of many geographic phenomena of interest, for example, land-use. On the other hand, the growing availability of land-change data over multiple time…

  13. Spatially explicit spectral analysis of point clouds and geospatial data

    USGS Publications Warehouse

    Buscombe, Daniel D.

    2015-01-01

    The increasing use of spatially explicit analyses of high-resolution spatially distributed data (imagery and point clouds) for the purposes of characterising spatial heterogeneity in geophysical phenomena necessitates the development of custom analytical and computational tools. In recent years, such analyses have become the basis of, for example, automated texture characterisation and segmentation, roughness and grain size calculation, and feature detection and classification, from a variety of data types. In this work, much use has been made of statistical descriptors of localised spatial variations in amplitude variance (roughness), however the horizontal scale (wavelength) and spacing of roughness elements is rarely considered. This is despite the fact that the ratio of characteristic vertical to horizontal scales is not constant and can yield important information about physical scaling relationships. Spectral analysis is a hitherto under-utilised but powerful means to acquire statistical information about relevant amplitude and wavelength scales, simultaneously and with computational efficiency. Further, quantifying spatially distributed data in the frequency domain lends itself to the development of stochastic models for probing the underlying mechanisms which govern the spatial distribution of geological and geophysical phenomena. The software packagePySESA (Python program for Spatially Explicit Spectral Analysis) has been developed for generic analyses of spatially distributed data in both the spatial and frequency domains. Developed predominantly in Python, it accesses libraries written in Cython and C++ for efficiency. It is open source and modular, therefore readily incorporated into, and combined with, other data analysis tools and frameworks with particular utility for supporting research in the fields of geomorphology, geophysics, hydrography, photogrammetry and remote sensing. The analytical and computational structure of the toolbox is described, and its functionality illustrated with an example of a high-resolution bathymetric point cloud data collected with multibeam echosounder.

  14. Statistical and Spatial Analysis of Bathymetric Data for the St. Clair River, 1971-2007

    USGS Publications Warehouse

    Bennion, David

    2009-01-01

    To address questions concerning ongoing geomorphic processes in the St. Clair River, selected bathymetric datasets spanning 36 years were analyzed. Comparisons of recent high-resolution datasets covering the upper river indicate a highly variable, active environment. Although statistical and spatial comparisons of the datasets show that some changes to the channel size and shape have taken place during the study period, uncertainty associated with various survey methods and interpolation processes limit the statistically certain results. The methods used to spatially compare the datasets are sensitive to small variations in position and depth that are within the range of uncertainty associated with the datasets. Characteristics of the data, such as the density of measured points and the range of values surveyed, can also influence the results of spatial comparison. With due consideration of these limitations, apparently active and ongoing areas of elevation change in the river are mapped and discussed.

  15. Quantifying spatial and temporal trends in beach-dune volumetric changes using spatial statistics

    NASA Astrophysics Data System (ADS)

    Eamer, Jordan B. R.; Walker, Ian J.

    2013-06-01

    Spatial statistics are generally underutilized in coastal geomorphology, despite offering great potential for identifying and quantifying spatial-temporal trends in landscape morphodynamics. In particular, local Moran's Ii provides a statistical framework for detecting clusters of significant change in an attribute (e.g., surface erosion or deposition) and quantifying how this changes over space and time. This study analyzes and interprets spatial-temporal patterns in sediment volume changes in a beach-foredune-transgressive dune complex following removal of invasive marram grass (Ammophila spp.). Results are derived by detecting significant changes in post-removal repeat DEMs derived from topographic surveys and airborne LiDAR. The study site was separated into discrete, linked geomorphic units (beach, foredune, transgressive dune complex) to facilitate sub-landscape scale analysis of volumetric change and sediment budget responses. Difference surfaces derived from a pixel-subtraction algorithm between interval DEMs and the LiDAR baseline DEM were filtered using the local Moran's Ii method and two different spatial weights (1.5 and 5 m) to detect statistically significant change. Moran's Ii results were compared with those derived from a more spatially uniform statistical method that uses a simpler student's t distribution threshold for change detection. Morphodynamic patterns and volumetric estimates were similar between the uniform geostatistical method and Moran's Ii at a spatial weight of 5 m while the smaller spatial weight (1.5 m) consistently indicated volumetric changes of less magnitude. The larger 5 m spatial weight was most representative of broader site morphodynamics and spatial patterns while the smaller spatial weight provided volumetric changes consistent with field observations. All methods showed foredune deflation immediately following removal with increased sediment volumes into the spring via deposition at the crest and on lobes in the lee, despite erosion on the stoss slope and dune toe. Generally, the foredune became wider by landward extension and the seaward slope recovered from erosion to a similar height and form to that of pre-restoration despite remaining essentially free of vegetation.

  16. Analysis of the spatial and temporal distribution of malaria in an area of Northern Guatemala with seasonal malaria transmission.

    PubMed

    Malvisi, Lucio; Troisi, Catherine L; Selwyn, Beatrice J

    2018-06-23

    The risk of malaria infection displays spatial and temporal variability that is likely due to interaction between the physical environment and the human population. In this study, we performed a spatial analysis at three different time points, corresponding to three cross-sectional surveys conducted as part of an insecticide-treated bed nets efficacy study, to reveal patterns of malaria incidence distribution in an area of Northern Guatemala characterized by low malaria endemicity. A thorough understanding of the spatial and temporal patterns of malaria distribution is essential for targeted malaria control programs. Two methods, the local Moran's I and the Getis-Ord G * (d), were used for the analysis, providing two different statistical approaches and allowing for a comparison of results. A distance band of 3.5 km was considered to be the most appropriate distance for the analysis of data based on epidemiological and entomological factors. Incidence rates were higher at the first cross-sectional survey conducted prior to the intervention compared to the following two surveys. Clusters or hot spots of malaria incidence exhibited high spatial and temporal variations. Findings from the two statistics were similar, though the G * (d) detected cold spots using a higher distance band (5.5 km). The high spatial and temporal variability in the distribution of clusters of high malaria incidence seems to be consistent with an area of unstable malaria transmission. In such a context, a strong surveillance system and the use of spatial analysis may be crucial for targeted malaria control activities.

  17. Modeling fixation locations using spatial point processes.

    PubMed

    Barthelmé, Simon; Trukenbrod, Hans; Engbert, Ralf; Wichmann, Felix

    2013-10-01

    Whenever eye movements are measured, a central part of the analysis has to do with where subjects fixate and why they fixated where they fixated. To a first approximation, a set of fixations can be viewed as a set of points in space; this implies that fixations are spatial data and that the analysis of fixation locations can be beneficially thought of as a spatial statistics problem. We argue that thinking of fixation locations as arising from point processes is a very fruitful framework for eye-movement data, helping turn qualitative questions into quantitative ones. We provide a tutorial introduction to some of the main ideas of the field of spatial statistics, focusing especially on spatial Poisson processes. We show how point processes help relate image properties to fixation locations. In particular we show how point processes naturally express the idea that image features' predictability for fixations may vary from one image to another. We review other methods of analysis used in the literature, show how they relate to point process theory, and argue that thinking in terms of point processes substantially extends the range of analyses that can be performed and clarify their interpretation.

  18. Vibration Response Models of a Stiffened Aluminum Plate Excited by a Shaker

    NASA Technical Reports Server (NTRS)

    Cabell, Randolph H.

    2008-01-01

    Numerical models of structural-acoustic interactions are of interest to aircraft designers and the space program. This paper describes a comparison between two energy finite element codes, a statistical energy analysis code, a structural finite element code, and the experimentally measured response of a stiffened aluminum plate excited by a shaker. Different methods for modeling the stiffeners and the power input from the shaker are discussed. The results show that the energy codes (energy finite element and statistical energy analysis) accurately predicted the measured mean square velocity of the plate. In addition, predictions from an energy finite element code had the best spatial correlation with measured velocities. However, predictions from a considerably simpler, single subsystem, statistical energy analysis model also correlated well with the spatial velocity distribution. The results highlight a need for further work to understand the relationship between modeling assumptions and the prediction results.

  19. Spatially referenced crash data system for application to commercial motor vehicle crashes.

    DOT National Transportation Integrated Search

    2003-05-01

    The Maryland Spatial Analysis of Crashes (MSAC) project involves the design of a : prototype of a geographic information system (GIS) for the State of Maryland that has : the capability of providing online crash information and statistical informatio...

  20. Improved spatial regression analysis of diffusion tensor imaging for lesion detection during longitudinal progression of multiple sclerosis in individual subjects

    NASA Astrophysics Data System (ADS)

    Liu, Bilan; Qiu, Xing; Zhu, Tong; Tian, Wei; Hu, Rui; Ekholm, Sven; Schifitto, Giovanni; Zhong, Jianhui

    2016-03-01

    Subject-specific longitudinal DTI study is vital for investigation of pathological changes of lesions and disease evolution. Spatial Regression Analysis of Diffusion tensor imaging (SPREAD) is a non-parametric permutation-based statistical framework that combines spatial regression and resampling techniques to achieve effective detection of localized longitudinal diffusion changes within the whole brain at individual level without a priori hypotheses. However, boundary blurring and dislocation limit its sensitivity, especially towards detecting lesions of irregular shapes. In the present study, we propose an improved SPREAD (dubbed improved SPREAD, or iSPREAD) method by incorporating a three-dimensional (3D) nonlinear anisotropic diffusion filtering method, which provides edge-preserving image smoothing through a nonlinear scale space approach. The statistical inference based on iSPREAD was evaluated and compared with the original SPREAD method using both simulated and in vivo human brain data. Results demonstrated that the sensitivity and accuracy of the SPREAD method has been improved substantially by adapting nonlinear anisotropic filtering. iSPREAD identifies subject-specific longitudinal changes in the brain with improved sensitivity, accuracy, and enhanced statistical power, especially when the spatial correlation is heterogeneous among neighboring image pixels in DTI.

  1. A spatial scan statistic for survival data based on Weibull distribution.

    PubMed

    Bhatt, Vijaya; Tiwari, Neeraj

    2014-05-20

    The spatial scan statistic has been developed as a geographical cluster detection analysis tool for different types of data sets such as Bernoulli, Poisson, ordinal, normal and exponential. We propose a scan statistic for survival data based on Weibull distribution. It may also be used for other survival distributions, such as exponential, gamma, and log normal. The proposed method is applied on the survival data of tuberculosis patients for the years 2004-2005 in Nainital district of Uttarakhand, India. Simulation studies reveal that the proposed method performs well for different survival distribution functions. Copyright © 2013 John Wiley & Sons, Ltd.

  2. Statistical methods to estimate treatment effects from multichannel electroencephalography (EEG) data in clinical trials.

    PubMed

    Ma, Junshui; Wang, Shubing; Raubertas, Richard; Svetnik, Vladimir

    2010-07-15

    With the increasing popularity of using electroencephalography (EEG) to reveal the treatment effect in drug development clinical trials, the vast volume and complex nature of EEG data compose an intriguing, but challenging, topic. In this paper the statistical analysis methods recommended by the EEG community, along with methods frequently used in the published literature, are first reviewed. A straightforward adjustment of the existing methods to handle multichannel EEG data is then introduced. In addition, based on the spatial smoothness property of EEG data, a new category of statistical methods is proposed. The new methods use a linear combination of low-degree spherical harmonic (SPHARM) basis functions to represent a spatially smoothed version of the EEG data on the scalp, which is close to a sphere in shape. In total, seven statistical methods, including both the existing and the newly proposed methods, are applied to two clinical datasets to compare their power to detect a drug effect. Contrary to the EEG community's recommendation, our results suggest that (1) the nonparametric method does not outperform its parametric counterpart; and (2) including baseline data in the analysis does not always improve the statistical power. In addition, our results recommend that (3) simple paired statistical tests should be avoided due to their poor power; and (4) the proposed spatially smoothed methods perform better than their unsmoothed versions. Copyright 2010 Elsevier B.V. All rights reserved.

  3. Temporal and spatial assessment of river surface water quality using multivariate statistical techniques: a study in Can Tho City, a Mekong Delta area, Vietnam.

    PubMed

    Phung, Dung; Huang, Cunrui; Rutherford, Shannon; Dwirahmadi, Febi; Chu, Cordia; Wang, Xiaoming; Nguyen, Minh; Nguyen, Nga Huy; Do, Cuong Manh; Nguyen, Trung Hieu; Dinh, Tuan Anh Diep

    2015-05-01

    The present study is an evaluation of temporal/spatial variations of surface water quality using multivariate statistical techniques, comprising cluster analysis (CA), principal component analysis (PCA), factor analysis (FA) and discriminant analysis (DA). Eleven water quality parameters were monitored at 38 different sites in Can Tho City, a Mekong Delta area of Vietnam from 2008 to 2012. Hierarchical cluster analysis grouped the 38 sampling sites into three clusters, representing mixed urban-rural areas, agricultural areas and industrial zone. FA/PCA resulted in three latent factors for the entire research location, three for cluster 1, four for cluster 2, and four for cluster 3 explaining 60, 60.2, 80.9, and 70% of the total variance in the respective water quality. The varifactors from FA indicated that the parameters responsible for water quality variations are related to erosion from disturbed land or inflow of effluent from sewage plants and industry, discharges from wastewater treatment plants and domestic wastewater, agricultural activities and industrial effluents, and contamination by sewage waste with faecal coliform bacteria through sewer and septic systems. Discriminant analysis (DA) revealed that nephelometric turbidity units (NTU), chemical oxygen demand (COD) and NH₃ are the discriminating parameters in space, affording 67% correct assignation in spatial analysis; pH and NO₂ are the discriminating parameters according to season, assigning approximately 60% of cases correctly. The findings suggest a possible revised sampling strategy that can reduce the number of sampling sites and the indicator parameters responsible for large variations in water quality. This study demonstrates the usefulness of multivariate statistical techniques for evaluation of temporal/spatial variations in water quality assessment and management.

  4. Initial phantom study comparing image quality in computed tomography using adaptive statistical iterative reconstruction and new adaptive statistical iterative reconstruction v.

    PubMed

    Lim, Kyungjae; Kwon, Heejin; Cho, Jinhan; Oh, Jongyoung; Yoon, Seongkuk; Kang, Myungjin; Ha, Dongho; Lee, Jinhwa; Kang, Eunju

    2015-01-01

    The purpose of this study was to assess the image quality of a novel advanced iterative reconstruction (IR) method called as "adaptive statistical IR V" (ASIR-V) by comparing the image noise, contrast-to-noise ratio (CNR), and spatial resolution from those of filtered back projection (FBP) and adaptive statistical IR (ASIR) on computed tomography (CT) phantom image. We performed CT scans at 5 different tube currents (50, 70, 100, 150, and 200 mA) using 3 types of CT phantoms. Scanned images were subsequently reconstructed in 7 different scan settings, such as FBP, and 3 levels of ASIR and ASIR-V (30%, 50%, and 70%). The image noise was measured in the first study using body phantom. The CNR was measured in the second study using contrast phantom and the spatial resolutions were measured in the third study using a high-resolution phantom. We compared the image noise, CNR, and spatial resolution among the 7 reconstructed image scan settings to determine whether noise reduction, high CNR, and high spatial resolution could be achieved at ASIR-V. At quantitative analysis of the first and second studies, it showed that the images reconstructed using ASIR-V had reduced image noise and improved CNR compared with those of FBP and ASIR (P < 0.001). At qualitative analysis of the third study, it also showed that the images reconstructed using ASIR-V had significantly improved spatial resolution than those of FBP and ASIR (P < 0.001). Our phantom studies showed that ASIR-V provides a significant reduction in image noise and a significant improvement in CNR as well as spatial resolution. Therefore, this technique has the potential to reduce the radiation dose further without compromising image quality.

  5. Laser speckle imaging of rat retinal blood flow with hybrid temporal and spatial analysis method

    NASA Astrophysics Data System (ADS)

    Cheng, Haiying; Yan, Yumei; Duong, Timothy Q.

    2009-02-01

    Noninvasive monitoring of blood flow in retinal circulation will reveal the progression and treatment of ocular disorders, such as diabetic retinopathy, age-related macular degeneration and glaucoma. A non-invasive and direct BF measurement technique with high spatial-temporal resolution is needed for retinal imaging. Laser speckle imaging (LSI) is such a method. Currently, there are two analysis methods for LSI: spatial statistics LSI (SS-LSI) and temporal statistical LSI (TS-LSI). Comparing these two analysis methods, SS-LSI has higher signal to noise ratio (SNR) and TSLSI is less susceptible to artifacts from stationary speckle. We proposed a hybrid temporal and spatial analysis method (HTS-LSI) to measure the retinal blood flow. Gas challenge experiment was performed and images were analyzed by HTS-LSI. Results showed that HTS-LSI can not only remove the stationary speckle but also increase the SNR. Under 100% O2, retinal BF decreased by 20-30%. This was consistent with the results observed with laser Doppler technique. As retinal blood flow is a critical physiological parameter and its perturbation has been implicated in the early stages of many retinal diseases, HTS-LSI will be an efficient method in early detection of retina diseases.

  6. Statistical Quality Control of Moisture Data in GEOS DAS

    NASA Technical Reports Server (NTRS)

    Dee, D. P.; Rukhovets, L.; Todling, R.

    1999-01-01

    A new statistical quality control algorithm was recently implemented in the Goddard Earth Observing System Data Assimilation System (GEOS DAS). The final step in the algorithm consists of an adaptive buddy check that either accepts or rejects outlier observations based on a local statistical analysis of nearby data. A basic assumption in any such test is that the observed field is spatially coherent, in the sense that nearby data can be expected to confirm each other. However, the buddy check resulted in excessive rejection of moisture data, especially during the Northern Hemisphere summer. The analysis moisture variable in GEOS DAS is water vapor mixing ratio. Observational evidence shows that the distribution of mixing ratio errors is far from normal. Furthermore, spatial correlations among mixing ratio errors are highly anisotropic and difficult to identify. Both factors contribute to the poor performance of the statistical quality control algorithm. To alleviate the problem, we applied the buddy check to relative humidity data instead. This variable explicitly depends on temperature and therefore exhibits a much greater spatial coherence. As a result, reject rates of moisture data are much more reasonable and homogeneous in time and space.

  7. Systems and methods for knowledge discovery in spatial data

    DOEpatents

    Obradovic, Zoran; Fiez, Timothy E.; Vucetic, Slobodan; Lazarevic, Aleksandar; Pokrajac, Dragoljub; Hoskinson, Reed L.

    2005-03-08

    Systems and methods are provided for knowledge discovery in spatial data as well as to systems and methods for optimizing recipes used in spatial environments such as may be found in precision agriculture. A spatial data analysis and modeling module is provided which allows users to interactively and flexibly analyze and mine spatial data. The spatial data analysis and modeling module applies spatial data mining algorithms through a number of steps. The data loading and generation module obtains or generates spatial data and allows for basic partitioning. The inspection module provides basic statistical analysis. The preprocessing module smoothes and cleans the data and allows for basic manipulation of the data. The partitioning module provides for more advanced data partitioning. The prediction module applies regression and classification algorithms on the spatial data. The integration module enhances prediction methods by combining and integrating models. The recommendation module provides the user with site-specific recommendations as to how to optimize a recipe for a spatial environment such as a fertilizer recipe for an agricultural field.

  8. Local indicators of geocoding accuracy (LIGA): theory and application

    PubMed Central

    Jacquez, Geoffrey M; Rommel, Robert

    2009-01-01

    Background Although sources of positional error in geographic locations (e.g. geocoding error) used for describing and modeling spatial patterns are widely acknowledged, research on how such error impacts the statistical results has been limited. In this paper we explore techniques for quantifying the perturbability of spatial weights to different specifications of positional error. Results We find that a family of curves describes the relationship between perturbability and positional error, and use these curves to evaluate sensitivity of alternative spatial weight specifications to positional error both globally (when all locations are considered simultaneously) and locally (to identify those locations that would benefit most from increased geocoding accuracy). We evaluate the approach in simulation studies, and demonstrate it using a case-control study of bladder cancer in south-eastern Michigan. Conclusion Three results are significant. First, the shape of the probability distributions of positional error (e.g. circular, elliptical, cross) has little impact on the perturbability of spatial weights, which instead depends on the mean positional error. Second, our methodology allows researchers to evaluate the sensitivity of spatial statistics to positional accuracy for specific geographies. This has substantial practical implications since it makes possible routine sensitivity analysis of spatial statistics to positional error arising in geocoded street addresses, global positioning systems, LIDAR and other geographic data. Third, those locations with high perturbability (most sensitive to positional error) and high leverage (that contribute the most to the spatial weight being considered) will benefit the most from increased positional accuracy. These are rapidly identified using a new visualization tool we call the LIGA scatterplot. Herein lies a paradox for spatial analysis: For a given level of positional error increasing sample density to more accurately follow the underlying population distribution increases perturbability and introduces error into the spatial weights matrix. In some studies positional error may not impact the statistical results, and in others it might invalidate the results. We therefore must understand the relationships between positional accuracy and the perturbability of the spatial weights in order to have confidence in a study's results. PMID:19863795

  9. A scoping review of spatial cluster analysis techniques for point-event data.

    PubMed

    Fritz, Charles E; Schuurman, Nadine; Robertson, Colin; Lear, Scott

    2013-05-01

    Spatial cluster analysis is a uniquely interdisciplinary endeavour, and so it is important to communicate and disseminate ideas, innovations, best practices and challenges across practitioners, applied epidemiology researchers and spatial statisticians. In this research we conducted a scoping review to systematically search peer-reviewed journal databases for research that has employed spatial cluster analysis methods on individual-level, address location, or x and y coordinate derived data. To illustrate the thematic issues raised by our results, methods were tested using a dataset where known clusters existed. Point pattern methods, spatial clustering and cluster detection tests, and a locally weighted spatial regression model were most commonly used for individual-level, address location data (n = 29). The spatial scan statistic was the most popular method for address location data (n = 19). Six themes were identified relating to the application of spatial cluster analysis methods and subsequent analyses, which we recommend researchers to consider; exploratory analysis, visualization, spatial resolution, aetiology, scale and spatial weights. It is our intention that researchers seeking direction for using spatial cluster analysis methods, consider the caveats and strengths of each approach, but also explore the numerous other methods available for this type of analysis. Applied spatial epidemiology researchers and practitioners should give special consideration to applying multiple tests to a dataset. Future research should focus on developing frameworks for selecting appropriate methods and the corresponding spatial weighting schemes.

  10. Geographical distribution patterns of iodine in drinking-water and its associations with geological factors in Shandong Province, China.

    PubMed

    Gao, Jie; Zhang, Zhijie; Hu, Yi; Bian, Jianchao; Jiang, Wen; Wang, Xiaoming; Sun, Liqian; Jiang, Qingwu

    2014-05-19

    County-based spatial distribution characteristics and the related geological factors for iodine in drinking-water were studied in Shandong Province (China). Spatial autocorrelation analysis and spatial scan statistic were applied to analyze the spatial characteristics. Generalized linear models (GLMs) and geographically weighted regression (GWR) studies were conducted to explore the relationship between water iodine level and its related geological factors. The spatial distribution of iodine in drinking-water was significantly heterogeneous in Shandong Province (Moran's I = 0.52, Z = 7.4, p < 0.001). Two clusters for high iodine in drinking-water were identified in the south-western and north-western parts of Shandong Province by the purely spatial scan statistic approach. Both GLMs and GWR indicated a significantly global association between iodine in drinking-water and geological factors. Furthermore, GWR showed obviously spatial variability across the study region. Soil type and distance to Yellow River were statistically significant at most areas of Shandong Province, confirming the hypothesis that the Yellow River causes iodine deposits in Shandong Province. Our results suggested that the more effective regional monitoring plan and water improvement strategies should be strengthened targeting at the cluster areas based on the characteristics of geological factors and the spatial variability of local relationships between iodine in drinking-water and geological factors.

  11. Computational pathology: Exploring the spatial dimension of tumor ecology.

    PubMed

    Nawaz, Sidra; Yuan, Yinyin

    2016-09-28

    Tumors are evolving ecosystems where cancer subclones and the microenvironment interact. This is analogous to interaction dynamics between species in their natural habitats, which is a prime area of study in ecology. Spatial statistics are frequently used in ecological studies to infer complex relations including predator-prey, resource dependency and co-evolution. Recently, the emerging field of computational pathology has enabled high-throughput spatial analysis by using image processing to identify different cell types and their locations within histological tumor samples. We discuss how these data may be analyzed with spatial statistics used in ecology to reveal patterns and advance our understanding of ecological interactions occurring among cancer cells and their microenvironment. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  12. Spatial analysis for the epidemiological study of cardiovascular diseases: A systematic literature search.

    PubMed

    Mena, Carlos; Sepúlveda, Cesar; Fuentes, Eduardo; Ormazábal, Yony; Palomo, Iván

    2018-05-07

    Cardiovascular diseases (CVDs) are the primary cause of death and disability in de world, and the detection of populations at risk as well as localization of vulnerable areas is essential for adequate epidemiological management. Techniques developed for spatial analysis, among them geographical information systems and spatial statistics, such as cluster detection and spatial correlation, are useful for the study of the distribution of the CVDs. These techniques, enabling recognition of events at different geographical levels of study (e.g., rural, deprived neighbourhoods, etc.), make it possible to relate CVDs to factors present in the immediate environment. The systemic literature presented here shows that this group of diseases is clustered with regard to incidence, mortality and hospitalization as well as obesity, smoking, increased glycated haemoglobin levels, hypertension physical activity and age. In addition, acquired variables such as income, residency (rural or urban) and education, contribute to CVD clustering. Both local cluster detection and spatial regression techniques give statistical weight to the findings providing valuable information that can influence response mechanisms in the health services by indicating locations in need of intervention and assignment of available resources.

  13. Spatio-temporal surveillance of water based infectious disease (malaria) in Rawalpindi, Pakistan using geostatistical modeling techniques.

    PubMed

    Ahmad, Sheikh Saeed; Aziz, Neelam; Butt, Amna; Shabbir, Rabia; Erum, Summra

    2015-09-01

    One of the features of medical geography that has made it so useful in health research is statistical spatial analysis, which enables the quantification and qualification of health events. The main objective of this research was to study the spatial distribution patterns of malaria in Rawalpindi district using spatial statistical techniques to identify the hot spots and the possible risk factor. Spatial statistical analyses were done in ArcGIS, and satellite images for land use classification were processed in ERDAS Imagine. Four hundred and fifty water samples were also collected from the study area to identify the presence or absence of any microbial contamination. The results of this study indicated that malaria incidence varied according to geographical location, with eco-climatic condition and showing significant positive spatial autocorrelation. Hotspots or location of clusters were identified using Getis-Ord Gi* statistic. Significant clustering of malaria incidence occurred in rural central part of the study area including Gujar Khan, Kaller Syedan, and some part of Kahuta and Rawalpindi Tehsil. Ordinary least square (OLS) regression analysis was conducted to analyze the relationship of risk factors with the disease cases. Relationship of different land cover with the disease cases indicated that malaria was more related with agriculture, low vegetation, and water class. Temporal variation of malaria cases showed significant positive association with the meteorological variables including average monthly rainfall and temperature. The results of the study further suggested that water supply and sewage system and solid waste collection system needs a serious attention to prevent any outbreak in the study area.

  14. Spatial statistical analysis of basal stem root disease under natural field epidemic of oil palm

    NASA Astrophysics Data System (ADS)

    Kamu, Assis; Phin, Chong Khim; Seman, Idris Abu; Wan, Hoong Hak; Mun, Ho Chong

    2015-02-01

    Oil palm or scientifically known as Elaeis guineensis Jacq. is the most important commodity crop in Malaysia and has greatly contributed to the economy growth of the country. As far as disease is concerned in the industry, Basal Stem Rot (BSR) caused by Ganoderma boninence remains the most important disease. BSR disease is the most widely studied with information available for oil palm disease in Malaysia. However, there is still limited study on the spatial as well as temporal pattern or distribution of the disease especially under natural field epidemic condition in oil palm plantation. The objective of this study is to spatially identify the pattern of BSR disease under natural field epidemic using two geospatial analytical techniques, which are quadrat analysis for the first order properties of partial pattern analysis and nearest-neighbor analysis (NNA) for the second order properties of partial pattern analysis. Two study sites were selected with different age of tree. Both sites are located in Tawau, Sabah and managed by the same company. The results showed that at least one of the point pattern analysis used which is NNA (i.e. the second order properties of partial pattern analysis) has confirmed the disease is complete spatial randomness. This suggests the spread of the disease is not from tree to tree and the age of palm does not play a significance role in determining the spatial pattern of the disease. From the spatial pattern of the disease, it would help in the disease management program and for the industry in the future. The statistical modelling is expected to help in identifying the right model to estimate the yield loss of oil palm due to BSR disease in the future.

  15. Additional studies of forest classification accuracy as influenced by multispectral scanner spatial resolution

    NASA Technical Reports Server (NTRS)

    Sadowski, F. E.; Sarno, J. E.

    1976-01-01

    First, an analysis of forest feature signatures was used to help explain the large variation in classification accuracy that can occur among individual forest features for any one case of spatial resolution and the inconsistent changes in classification accuracy that were demonstrated among features as spatial resolution was degraded. Second, the classification rejection threshold was varied in an effort to reduce the large proportion of unclassified resolution elements that previously appeared in the processing of coarse resolution data when a constant rejection threshold was used for all cases of spatial resolution. For the signature analysis, two-channel ellipse plots showing the feature signature distributions for several cases of spatial resolution indicated that the capability of signatures to correctly identify their respective features is dependent on the amount of statistical overlap among signatures. Reductions in signature variance that occur in data of degraded spatial resolution may not necessarily decrease the amount of statistical overlap among signatures having large variance and small mean separations. Features classified by such signatures may thus continue to have similar amounts of misclassified elements in coarser resolution data, and thus, not necessarily improve in classification accuracy.

  16. AMES Stereo Pipeline Derived DEM Accuracy Experiment Using LROC-NAC Stereopairs and Weighted Spatial Dependence Simulation for Lunar Site Selection

    NASA Astrophysics Data System (ADS)

    Laura, J. R.; Miller, D.; Paul, M. V.

    2012-03-01

    An accuracy assessment of AMES Stereo Pipeline derived DEMs for lunar site selection using weighted spatial dependence simulation and a call for outside AMES derived DEMs to facilitate a statistical precision analysis.

  17. Evaluating and implementing temporal, spatial, and spatio-temporal methods for outbreak detection in a local syndromic surveillance system

    PubMed Central

    Lall, Ramona; Levin-Rector, Alison; Sell, Jessica; Paladini, Marc; Konty, Kevin J.; Olson, Don; Weiss, Don

    2017-01-01

    The New York City Department of Health and Mental Hygiene has operated an emergency department syndromic surveillance system since 2001, using temporal and spatial scan statistics run on a daily basis for cluster detection. Since the system was originally implemented, a number of new methods have been proposed for use in cluster detection. We evaluated six temporal and four spatial/spatio-temporal detection methods using syndromic surveillance data spiked with simulated injections. The algorithms were compared on several metrics, including sensitivity, specificity, positive predictive value, coherence, and timeliness. We also evaluated each method’s implementation, programming time, run time, and the ease of use. Among the temporal methods, at a set specificity of 95%, a Holt-Winters exponential smoother performed the best, detecting 19% of the simulated injects across all shapes and sizes, followed by an autoregressive moving average model (16%), a generalized linear model (15%), a modified version of the Early Aberration Reporting System’s C2 algorithm (13%), a temporal scan statistic (11%), and a cumulative sum control chart (<2%). Of the spatial/spatio-temporal methods we tested, a spatial scan statistic detected 3% of all injects, a Bayes regression found 2%, and a generalized linear mixed model and a space-time permutation scan statistic detected none at a specificity of 95%. Positive predictive value was low (<7%) for all methods. Overall, the detection methods we tested did not perform well in identifying the temporal and spatial clusters of cases in the inject dataset. The spatial scan statistic, our current method for spatial cluster detection, performed slightly better than the other tested methods across different inject magnitudes and types. Furthermore, we found the scan statistics, as applied in the SaTScan software package, to be the easiest to program and implement for daily data analysis. PMID:28886112

  18. Evaluating and implementing temporal, spatial, and spatio-temporal methods for outbreak detection in a local syndromic surveillance system.

    PubMed

    Mathes, Robert W; Lall, Ramona; Levin-Rector, Alison; Sell, Jessica; Paladini, Marc; Konty, Kevin J; Olson, Don; Weiss, Don

    2017-01-01

    The New York City Department of Health and Mental Hygiene has operated an emergency department syndromic surveillance system since 2001, using temporal and spatial scan statistics run on a daily basis for cluster detection. Since the system was originally implemented, a number of new methods have been proposed for use in cluster detection. We evaluated six temporal and four spatial/spatio-temporal detection methods using syndromic surveillance data spiked with simulated injections. The algorithms were compared on several metrics, including sensitivity, specificity, positive predictive value, coherence, and timeliness. We also evaluated each method's implementation, programming time, run time, and the ease of use. Among the temporal methods, at a set specificity of 95%, a Holt-Winters exponential smoother performed the best, detecting 19% of the simulated injects across all shapes and sizes, followed by an autoregressive moving average model (16%), a generalized linear model (15%), a modified version of the Early Aberration Reporting System's C2 algorithm (13%), a temporal scan statistic (11%), and a cumulative sum control chart (<2%). Of the spatial/spatio-temporal methods we tested, a spatial scan statistic detected 3% of all injects, a Bayes regression found 2%, and a generalized linear mixed model and a space-time permutation scan statistic detected none at a specificity of 95%. Positive predictive value was low (<7%) for all methods. Overall, the detection methods we tested did not perform well in identifying the temporal and spatial clusters of cases in the inject dataset. The spatial scan statistic, our current method for spatial cluster detection, performed slightly better than the other tested methods across different inject magnitudes and types. Furthermore, we found the scan statistics, as applied in the SaTScan software package, to be the easiest to program and implement for daily data analysis.

  19. RipleyGUI: software for analyzing spatial patterns in 3D cell distributions

    PubMed Central

    Hansson, Kristin; Jafari-Mamaghani, Mehrdad; Krieger, Patrik

    2013-01-01

    The true revolution in the age of digital neuroanatomy is the ability to extensively quantify anatomical structures and thus investigate structure-function relationships in great detail. To facilitate the quantification of neuronal cell patterns we have developed RipleyGUI, a MATLAB-based software that can be used to detect patterns in the 3D distribution of cells. RipleyGUI uses Ripley's K-function to analyze spatial distributions. In addition the software contains statistical tools to determine quantitative statistical differences, and tools for spatial transformations that are useful for analyzing non-stationary point patterns. The software has a graphical user interface making it easy to use without programming experience, and an extensive user manual explaining the basic concepts underlying the different statistical tools used to analyze spatial point patterns. The described analysis tool can be used for determining the spatial organization of neurons that is important for a detailed study of structure-function relationships. For example, neocortex that can be subdivided into six layers based on cell density and cell types can also be analyzed in terms of organizational principles distinguishing the layers. PMID:23658544

  20. Accounting for rate instability and spatial patterns in the boundary analysis of cancer mortality maps

    PubMed Central

    Goovaerts, Pierre

    2006-01-01

    Boundary analysis of cancer maps may highlight areas where causative exposures change through geographic space, the presence of local populations with distinct cancer incidences, or the impact of different cancer control methods. Too often, such analysis ignores the spatial pattern of incidence or mortality rates and overlooks the fact that rates computed from sparsely populated geographic entities can be very unreliable. This paper proposes a new methodology that accounts for the uncertainty and spatial correlation of rate data in the detection of significant edges between adjacent entities or polygons. Poisson kriging is first used to estimate the risk value and the associated standard error within each polygon, accounting for the population size and the risk semivariogram computed from raw rates. The boundary statistic is then defined as half the absolute difference between kriged risks. Its reference distribution, under the null hypothesis of no boundary, is derived through the generation of multiple realizations of the spatial distribution of cancer risk values. This paper presents three types of neutral models generated using methods of increasing complexity: the common random shuffle of estimated risk values, a spatial re-ordering of these risks, or p-field simulation that accounts for the population size within each polygon. The approach is illustrated using age-adjusted pancreatic cancer mortality rates for white females in 295 US counties of the Northeast (1970–1994). Simulation studies demonstrate that Poisson kriging yields more accurate estimates of the cancer risk and how its value changes between polygons (i.e. boundary statistic), relatively to the use of raw rates or local empirical Bayes smoother. When used in conjunction with spatial neutral models generated by p-field simulation, the boundary analysis based on Poisson kriging estimates minimizes the proportion of type I errors (i.e. edges wrongly declared significant) while the frequency of these errors is predicted well by the p-value of the statistical test. PMID:19023455

  1. An investigation on thermal patterns in Iran based on spatial autocorrelation

    NASA Astrophysics Data System (ADS)

    Fallah Ghalhari, Gholamabbas; Dadashi Roudbari, Abbasali

    2018-02-01

    The present study aimed at investigating temporal-spatial patterns and monthly patterns of temperature in Iran using new spatial statistical methods such as cluster and outlier analysis, and hotspot analysis. To do so, climatic parameters, monthly average temperature of 122 synoptic stations, were assessed. Statistical analysis showed that January with 120.75% had the most fluctuation among the studied months. Global Moran's Index revealed that yearly changes of temperature in Iran followed a strong spatially clustered pattern. Findings showed that the biggest thermal cluster pattern in Iran, 0.975388, occurred in May. Cluster and outlier analyses showed that thermal homogeneity in Iran decreases in cold months, while it increases in warm months. This is due to the radiation angle and synoptic systems which strongly influence thermal order in Iran. The elevations, however, have the most notable part proved by Geographically weighted regression model. Iran's thermal analysis through hotspot showed that hot thermal patterns (very hot, hot, and semi-hot) were dominant in the South, covering an area of 33.5% (about 552,145.3 km2). Regions such as mountain foot and low lands lack any significant spatial autocorrelation, 25.2% covering about 415,345.1 km2. The last is the cold thermal area (very cold, cold, and semi-cold) with about 25.2% covering about 552,145.3 km2 of the whole area of Iran.

  2. The Stratification Analysis of Sediment Data for Lake Michigan

    EPA Science Inventory

    This research paper describes the development of spatial statistical tools that are applied to investigate the spatial trends of sediment data sets for nutrients and carbon in Lake Michigan. All of the sediment data utilized in the present study was collected over a two year per...

  3. Attempting to physically explain space-time correlation of extremes

    NASA Astrophysics Data System (ADS)

    Bernardara, Pietro; Gailhard, Joel

    2010-05-01

    Spatial and temporal clustering of hydro-meteorological extreme events is scientific evidence. Moreover, the statistical parameters characterizing their local frequencies of occurrence show clear spatial patterns. Thus, in order to robustly assess the hydro-meteorological hazard, statistical models need to be able to take into account spatial and temporal dependencies. Statistical models considering long term correlation for quantifying and qualifying temporal and spatial dependencies are available, such as multifractal approach. Furthermore, the development of regional frequency analysis techniques allows estimating the frequency of occurrence of extreme events taking into account spatial patterns on the extreme quantiles behaviour. However, in order to understand the origin of spatio-temporal clustering, an attempt to find physical explanation should be done. Here, some statistical evidences of spatio-temporal correlation and spatial patterns of extreme behaviour are given on a large database of more than 400 rainfall and discharge series in France. In particular, the spatial distribution of multifractal and Generalized Pareto distribution parameters shows evident correlation patterns in the behaviour of frequency of occurrence of extremes. It is then shown that the identification of atmospheric circulation pattern (weather types) can physically explain the temporal clustering of extreme rainfall events (seasonality) and the spatial pattern of the frequency of occurrence. Moreover, coupling this information with the hydrological modelization of a watershed (as in the Schadex approach) an explanation of spatio-temporal distribution of extreme discharge can also be provided. We finally show that a hydro-meteorological approach (as the Schadex approach) can explain and take into account space and time dependencies of hydro-meteorological extreme events.

  4. Executive Order 12898 and Social, Economic, and Sociopolitical Factors Influencing Toxic Release Inventory Facility Location in EPA Region 6: A Multi-Scale Spatial Assessment of Environmental Justice

    ERIC Educational Resources Information Center

    Moore, Andrea Lisa

    2013-01-01

    Toxic Release Inventory facilities are among the many environmental hazards shown to create environmental inequities in the United States. This project examined four factors associated with Toxic Release Inventory, specifically, manufacturing facility location at multiple spatial scales using spatial analysis techniques (i.e., O-ring statistic and…

  5. Methods for Assessment of Memory Reactivation.

    PubMed

    Liu, Shizhao; Grosmark, Andres D; Chen, Zhe

    2018-04-13

    It has been suggested that reactivation of previously acquired experiences or stored information in declarative memories in the hippocampus and neocortex contributes to memory consolidation and learning. Understanding memory consolidation depends crucially on the development of robust statistical methods for assessing memory reactivation. To date, several statistical methods have seen established for assessing memory reactivation based on bursts of ensemble neural spike activity during offline states. Using population-decoding methods, we propose a new statistical metric, the weighted distance correlation, to assess hippocampal memory reactivation (i.e., spatial memory replay) during quiet wakefulness and slow-wave sleep. The new metric can be combined with an unsupervised population decoding analysis, which is invariant to latent state labeling and allows us to detect statistical dependency beyond linearity in memory traces. We validate the new metric using two rat hippocampal recordings in spatial navigation tasks. Our proposed analysis framework may have a broader impact on assessing memory reactivations in other brain regions under different behavioral tasks.

  6. Spatial and Temporal Emergence Pattern of Lyme Disease in Virginia

    PubMed Central

    Li, Jie; Kolivras, Korine N.; Hong, Yili; Duan, Yuanyuan; Seukep, Sara E.; Prisley, Stephen P.; Campbell, James B.; Gaines, David N.

    2014-01-01

    The emergence of infectious diseases over the past several decades has highlighted the need to better understand epidemics and prepare for the spread of diseases into new areas. As these diseases expand their geographic range, cases are recorded at different geographic locations over time, making the analysis and prediction of this expansion complicated. In this study, we analyze spatial patterns of the disease using a statistical smoothing analysis based on areal (census tract level) count data of Lyme disease cases in Virginia from 1998 to 2011. We also use space and space–time scan statistics to reveal the presence of clusters in the spatial and spatiotemporal distribution of Lyme disease. Our results confirm and quantify the continued emergence of Lyme disease to the south and west in states along the eastern coast of the United States. The results also highlight areas where education and surveillance needs are highest. PMID:25331806

  7. Bayesian analysis of spatially-dependent functional responses with spatially-dependent multi-dimensional functional predictors

    USDA-ARS?s Scientific Manuscript database

    Recent advances in technology have led to the collection of high-dimensional data not previously encountered in many scientific environments. As a result, scientists are often faced with the challenging task of including these high-dimensional data into statistical models. For example, data from sen...

  8. A spatial epidemiological analysis of self-rated mental health in the slums of Dhaka

    PubMed Central

    2011-01-01

    Background The deprived physical environments present in slums are well-known to have adverse health effects on their residents. However, little is known about the health effects of the social environments in slums. Moreover, neighbourhood quantitative spatial analyses of the mental health status of slum residents are still rare. The aim of this paper is to study self-rated mental health data in several slums of Dhaka, Bangladesh, by accounting for neighbourhood social and physical associations using spatial statistics. We hypothesised that mental health would show a significant spatial pattern in different population groups, and that the spatial patterns would relate to spatially-correlated health-determining factors (HDF). Methods We applied a spatial epidemiological approach, including non-spatial ANOVA/ANCOVA, as well as global and local univariate and bivariate Moran's I statistics. The WHO-5 Well-being Index was used as a measure of self-rated mental health. Results We found that poor mental health (WHO-5 scores < 13) among the adult population (age ≥15) was prevalent in all slum settlements. We detected spatially autocorrelated WHO-5 scores (i.e., spatial clusters of poor and good mental health among different population groups). Further, we detected spatial associations between mental health and housing quality, sanitation, income generation, environmental health knowledge, education, age, gender, flood non-affectedness, and selected properties of the natural environment. Conclusions Spatial patterns of mental health were detected and could be partly explained by spatially correlated HDF. We thereby showed that the socio-physical neighbourhood was significantly associated with health status, i.e., mental health at one location was spatially dependent on the mental health and HDF prevalent at neighbouring locations. Furthermore, the spatial patterns point to severe health disparities both within and between the slums. In addition to examining health outcomes, the methodology used here is also applicable to residuals of regression models, such as helping to avoid violating the assumption of data independence that underlies many statistical approaches. We assume that similar spatial structures can be found in other studies focussing on neighbourhood effects on health, and therefore argue for a more widespread incorporation of spatial statistics in epidemiological studies. PMID:21599932

  9. Geographical Distribution Patterns of Iodine in Drinking-Water and Its Associations with Geological Factors in Shandong Province, China

    PubMed Central

    Gao, Jie; Zhang, Zhijie; Hu, Yi; Bian, Jianchao; Jiang, Wen; Wang, Xiaoming; Sun, Liqian; Jiang, Qingwu

    2014-01-01

    County-based spatial distribution characteristics and the related geological factors for iodine in drinking-water were studied in Shandong Province (China). Spatial autocorrelation analysis and spatial scan statistic were applied to analyze the spatial characteristics. Generalized linear models (GLMs) and geographically weighted regression (GWR) studies were conducted to explore the relationship between water iodine level and its related geological factors. The spatial distribution of iodine in drinking-water was significantly heterogeneous in Shandong Province (Moran’s I = 0.52, Z = 7.4, p < 0.001). Two clusters for high iodine in drinking-water were identified in the south-western and north-western parts of Shandong Province by the purely spatial scan statistic approach. Both GLMs and GWR indicated a significantly global association between iodine in drinking-water and geological factors. Furthermore, GWR showed obviously spatial variability across the study region. Soil type and distance to Yellow River were statistically significant at most areas of Shandong Province, confirming the hypothesis that the Yellow River causes iodine deposits in Shandong Province. Our results suggested that the more effective regional monitoring plan and water improvement strategies should be strengthened targeting at the cluster areas based on the characteristics of geological factors and the spatial variability of local relationships between iodine in drinking-water and geological factors. PMID:24852390

  10. Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: A critical review.

    PubMed

    Hou, Deyi; O'Connor, David; Nathanail, Paul; Tian, Li; Ma, Yan

    2017-12-01

    Heavy metal soil contamination is associated with potential toxicity to humans or ecotoxicity. Scholars have increasingly used a combination of geographical information science (GIS) with geostatistical and multivariate statistical analysis techniques to examine the spatial distribution of heavy metals in soils at a regional scale. A review of such studies showed that most soil sampling programs were based on grid patterns and composite sampling methodologies. Many programs intended to characterize various soil types and land use types. The most often used sampling depth intervals were 0-0.10 m, or 0-0.20 m, below surface; and the sampling densities used ranged from 0.0004 to 6.1 samples per km 2 , with a median of 0.4 samples per km 2 . The most widely used spatial interpolators were inverse distance weighted interpolation and ordinary kriging; and the most often used multivariate statistical analysis techniques were principal component analysis and cluster analysis. The review also identified several determining and correlating factors in heavy metal distribution in soils, including soil type, soil pH, soil organic matter, land use type, Fe, Al, and heavy metal concentrations. The major natural and anthropogenic sources of heavy metals were found to derive from lithogenic origin, roadway and transportation, atmospheric deposition, wastewater and runoff from industrial and mining facilities, fertilizer application, livestock manure, and sewage sludge. This review argues that the full potential of integrated GIS and multivariate statistical analysis for assessing heavy metal distribution in soils on a regional scale has not yet been fully realized. It is proposed that future research be conducted to map multivariate results in GIS to pinpoint specific anthropogenic sources, to analyze temporal trends in addition to spatial patterns, to optimize modeling parameters, and to expand the use of different multivariate analysis tools beyond principal component analysis (PCA) and cluster analysis (CA). Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Evaluating the utility of companion animal tick surveillance practices for monitoring spread and occurrence of human Lyme disease in West Virginia, 2014-2016.

    PubMed

    Hendricks, Brian; Mark-Carew, Miguella; Conley, Jamison

    2017-11-13

    Domestic dogs and cats are potentially effective sentinel populations for monitoring occurrence and spread of Lyme disease. Few studies have evaluated the public health utility of sentinel programmes using geo-analytic approaches. Confirmed Lyme disease cases diagnosed by physicians and ticks submitted by veterinarians to the West Virginia State Health Department were obtained for 2014-2016. Ticks were identified to species, and only Ixodes scapularis were incorporated in the analysis. Separate ordinary least squares (OLS) and spatial lag regression models were conducted to estimate the association between average numbers of Ix. scapularis collected on pets and human Lyme disease incidence. Regression residuals were visualised using Local Moran's I as a diagnostic tool to identify spatial dependence. Statistically significant associations were identified between average numbers of Ix. scapularis collected from dogs and human Lyme disease in the OLS (β=20.7, P<0.001) and spatial lag (β=12.0, P=0.002) regression. No significant associations were identified for cats in either regression model. Statistically significant (P≤0.05) spatial dependence was identified in all regression models. Local Moran's I maps produced for spatial lag regression residuals indicated a decrease in model over- and under-estimation, but identified a higher number of statistically significant outliers than OLS regression. Results support previous conclusions that dogs are effective sentinel populations for monitoring risk of human exposure to Lyme disease. Findings reinforce the utility of spatial analysis of surveillance data, and highlight West Virginia's unique position within the eastern United States in regards to Lyme disease occurrence.

  12. Dark matter constraints from a joint analysis of dwarf Spheroidal galaxy observations with VERITAS

    DOE PAGES

    Archambault, S.; Archer, A.; Benbow, W.; ...

    2017-04-05

    We present constraints on the annihilation cross section of weakly interacting massive particles dark matter based on the joint statistical analysis of four dwarf galaxies with VERITAS. These results are derived from an optimized photon weighting statistical technique that improves on standard imaging atmospheric Cherenkov telescope (IACT) analyses by utilizing the spectral and spatial properties of individual photon events.

  13. Experimental assessment of the spatial variability of porosity, permeability and sorption isotherms in an ordinary building concrete

    NASA Astrophysics Data System (ADS)

    Issaadi, N.; Hamami, A. A.; Belarbi, R.; Aït-Mokhtar, A.

    2017-10-01

    In this paper, spatial variabilities of some transfer and storage properties of a concrete wall were assessed. The studied parameters deal with water porosity, water vapor permeability, intrinsic permeability and water vapor sorption isotherms. For this purpose, a concrete wall was built in the laboratory and specimens were periodically taken and tested. The obtained results allow highlighting a statistical estimation of the mean value, the standard deviation and the spatial correlation length of the studied fields for each parameter. These results were discussed and a statistical analysis was performed in order to assess for each of these parameters the appropriate probability density function.

  14. Statistical analysis of corn yields responding to climate variability at various spatio-temporal resolutions

    NASA Astrophysics Data System (ADS)

    Jiang, H.; Lin, T.

    2017-12-01

    Rain-fed corn production systems are subject to sub-seasonal variations of precipitation and temperature during the growing season. As each growth phase has varied inherent physiological process, plants necessitate different optimal environmental conditions during each phase. However, this temporal heterogeneity towards climate variability alongside the lifecycle of crops is often simplified and fixed as constant responses in large scale statistical modeling analysis. To capture the time-variant growing requirements in large scale statistical analysis, we develop and compare statistical models at various spatial and temporal resolutions to quantify the relationship between corn yield and weather factors for 12 corn belt states from 1981 to 2016. The study compares three spatial resolutions (county, agricultural district, and state scale) and three temporal resolutions (crop growth phase, monthly, and growing season) to characterize the effects of spatial and temporal variability. Our results show that the agricultural district model together with growth phase resolution can explain 52% variations of corn yield caused by temperature and precipitation variability. It provides a practical model structure balancing the overfitting problem in county specific model and weak explanation power in state specific model. In US corn belt, precipitation has positive impact on corn yield in growing season except for vegetative stage while extreme heat attains highest sensitivity from silking to dough phase. The results show the northern counties in corn belt area are less interfered by extreme heat but are more vulnerable to water deficiency.

  15. Spatial analysis of electricity demand patterns in Greece: Application of a GIS-based methodological framework

    NASA Astrophysics Data System (ADS)

    Tyralis, Hristos; Mamassis, Nikos; Photis, Yorgos N.

    2016-04-01

    We investigate various uses of electricity demand in Greece (agricultural, commercial, domestic, industrial use as well as use for public and municipal authorities and street lightning) and we examine their relation with variables such as population, total area, population density and the Gross Domestic Product. The analysis is performed on data which span from 2008 to 2012 and have annual temporal resolution and spatial resolution down to the level of prefecture. We both visualize the results of the analysis and we perform cluster and outlier analysis using the Anselin local Moran's I statistic as well as hot spot analysis using the Getis-Ord Gi* statistic. The definition of the spatial patterns and relationships of the aforementioned variables in a GIS environment provides meaningful insight and better understanding of the regional development model in Greece and justifies the basis for an energy demand forecasting methodology. Acknowledgement: This research has been partly financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: ARISTEIA II: Reinforcement of the interdisciplinary and/ or inter-institutional research and innovation (CRESSENDO project; grant number 5145).

  16. Built environment and Property Crime in Seattle, 1998-2000: A Bayesian Analysis.

    PubMed

    Matthews, Stephen A; Yang, Tse-Chuan; Hayslett-McCall, Karen L; Ruback, R Barry

    2010-06-01

    The past decade has seen a rapid growth in the use of a spatial perspective in studies of crime. In part this growth has been driven by the availability of georeferenced data, and the tools to analyze and visualize them: geographic information systems (GIS), spatial analysis, and spatial statistics. In this paper we use exploratory spatial data analysis (ESDA) tools and Bayesian models to help better understand the spatial patterning and predictors of property crime in Seattle, Washington for 1998-2000, including a focus on built environment variables. We present results for aggregate property crime data as well as models for specific property crime types: residential burglary, nonresidential burglary, theft, auto theft, and arson. ESDA confirms the presence of spatial clustering of property crime and we seek to explain these patterns using spatial Poisson models implemented in WinBUGS. Our results indicate that built environment variables were significant predictors of property crime, especially the presence of a highway on auto theft and burglary.

  17. Built environment and Property Crime in Seattle, 1998–2000: A Bayesian Analysis

    PubMed Central

    Matthews, Stephen A.; Yang, Tse-chuan; Hayslett-McCall, Karen L.; Ruback, R. Barry

    2014-01-01

    The past decade has seen a rapid growth in the use of a spatial perspective in studies of crime. In part this growth has been driven by the availability of georeferenced data, and the tools to analyze and visualize them: geographic information systems (GIS), spatial analysis, and spatial statistics. In this paper we use exploratory spatial data analysis (ESDA) tools and Bayesian models to help better understand the spatial patterning and predictors of property crime in Seattle, Washington for 1998–2000, including a focus on built environment variables. We present results for aggregate property crime data as well as models for specific property crime types: residential burglary, nonresidential burglary, theft, auto theft, and arson. ESDA confirms the presence of spatial clustering of property crime and we seek to explain these patterns using spatial Poisson models implemented in WinBUGS. Our results indicate that built environment variables were significant predictors of property crime, especially the presence of a highway on auto theft and burglary. PMID:24737924

  18. Preliminary frequency-domain analysis for the reconstructed spatial resolution of muon tomography

    NASA Astrophysics Data System (ADS)

    Yu, B.; Zhao, Z.; Wang, X.; Wang, Y.; Wu, D.; Zeng, Z.; Zeng, M.; Yi, H.; Luo, Z.; Yue, X.; Cheng, J.

    2014-11-01

    Muon tomography is an advanced technology to non-destructively detect high atomic number materials. It exploits the multiple Coulomb scattering information of muon to reconstruct the scattering density image of the traversed object. Because of the statistics of muon scattering, the measurement error of system and the data incompleteness, the reconstruction is always accompanied with a certain level of interference, which will influence the reconstructed spatial resolution. While statistical noises can be reduced by extending the measuring time, system parameters determine the ultimate spatial resolution that one system can reach. In this paper, an effective frequency-domain model is proposed to analyze the reconstructed spatial resolution of muon tomography. The proposed method modifies the resolution analysis in conventional computed tomography (CT) to fit the different imaging mechanism in muon scattering tomography. The measured scattering information is described in frequency domain, then a relationship between the measurements and the original image is proposed in Fourier domain, which is named as "Muon Central Slice Theorem". Furthermore, a preliminary analytical expression of the ultimate reconstructed spatial is derived, and the simulations are performed for validation. While the method is able to predict the ultimate spatial resolution of a given system, it can also be utilized for the optimization of system design and construction.

  19. Adverse effects of metallic artifacts on voxel-wise analysis and tract-based spatial statistics in diffusion tensor imaging.

    PubMed

    Goto, Masami; Abe, Osamu; Hata, Junichi; Fukunaga, Issei; Shimoji, Keigo; Kunimatsu, Akira; Gomi, Tsutomu

    2017-02-01

    Background Diffusion tensor imaging (DTI) is a magnetic resonance imaging (MRI) technique that reflects the Brownian motion of water molecules constrained within brain tissue. Fractional anisotropy (FA) is one of the most commonly measured DTI parameters, and can be applied to quantitative analysis of white matter as tract-based spatial statistics (TBSS) and voxel-wise analysis. Purpose To show an association between metallic implants and the results of statistical analysis (voxel-wise group comparison and TBSS) for fractional anisotropy (FA) mapping, in DTI of healthy adults. Material and Methods Sixteen healthy volunteers were scanned with 3-Tesla MRI. A magnetic keeper type of dental implant was used as the metallic implant. DTI was acquired three times in each participant: (i) without a magnetic keeper (FAnon1); (ii) with a magnetic keeper (FAimp); and (iii) without a magnetic keeper (FAnon2) as reproducibility of FAnon1. Group comparisons with paired t-test were performed as FAnon1 vs. FAnon2, and as FAnon1 vs. FAimp. Results Regions of significantly reduced and increased local FA values were revealed by voxel-wise group comparison analysis (a P value of less than 0.05, corrected with family-wise error), but not by TBSS. Conclusion Metallic implants existing outside the field of view produce artifacts that affect the statistical analysis (voxel-wise group comparisons) for FA mapping. When statistical analysis for FA mapping is conducted by researchers, it is important to pay attention to any dental implants present in the mouths of the participants.

  20. A GIS-based spatial correlation analysis for ambient air pollution and AECOPD hospitalizations in Jinan, China.

    PubMed

    Wang, Wenqiao; Ying, Yangyang; Wu, Quanyuan; Zhang, Haiping; Ma, Dedong; Xiao, Wei

    2015-03-01

    Acute exacerbations of COPD (AECOPD) are important events during disease procedure. AECOPD have negative effect on patients' quality of life, symptoms and lung function, and result in high socioeconomic costs. Though previous studies have demonstrated the significant association between outdoor air pollution and AECOPD hospitalizations, little is known about the spatial relationship utilized a spatial analyzing technique- Geographical Information System (GIS). Using GIS to investigate the spatial association between ambient air pollution and AECOPD hospitalizations in Jinan City, 2009. 414 AECOPD hospitalization cases in Jinan, 2009 were enrolled in our analysis. Monthly concentrations of five monitored air pollutants (NO2, SO2, PM10, O3, CO) during January 2009-December 2009 were provided by Environmental Protection Agency of Shandong Province. Each individual was geocoded in ArcGIS10.0 software. The spatial distribution of five pollutants and the temporal-spatial specific air pollutants exposure level for each individual was estimated by ordinary Kriging model. Spatial autocorrelation (Global Moran's I) was employed to explore the spatial association between ambient air pollutants and AECOPD hospitalizations. A generalized linear model (GLM) using a Poisson distribution with log-link function was used to construct a core model. At residence, concentrations of SO2, PM10, NO2, CO, O3 and AECOPD hospitalization cases showed statistical significant spatially clustered. The Z-score of SO2, PM10, CO, O3, NO2 at residence is 15.88, 13.93, 12.60, 4.02, 2.44 respectively, while at workplace, concentrations of PM10, SO2, O3, CO and AECOPD hospitalization cases showed statistical significant spatially clustered. The Z-score of PM10, SO2, O3, CO at workplace is 11.39, 8.07, 6.10, and 5.08 respectively. After adjusting for potential confounders in the model, only the PM10 concentrations at workplace showed statistical significance, with a 10 μg/m(3) increase of PM10 at workplace associated with a 7% (95%CI: [3.3%, 10%]) increase of hospitalizations due to AECOPD. Ambient air pollution is correlated with AECOPD hospitalizations spatially. A 10 μg/m(3) increase of PM10 at workplace was associated with a 7% (95%CI: [3.3%, 10%]) increase of hospitalizations due to AECOPD in Jinan, 2009. As a spatial data processing tool, GIS has novel and great potential on air pollutants exposure assessment and spatial analysis in AECOPD research. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Collaborative classification of hyperspectral and visible images with convolutional neural network

    NASA Astrophysics Data System (ADS)

    Zhang, Mengmeng; Li, Wei; Du, Qian

    2017-10-01

    Recent advances in remote sensing technology have made multisensor data available for the same area, and it is well-known that remote sensing data processing and analysis often benefit from multisource data fusion. Specifically, low spatial resolution of hyperspectral imagery (HSI) degrades the quality of the subsequent classification task while using visible (VIS) images with high spatial resolution enables high-fidelity spatial analysis. A collaborative classification framework is proposed to fuse HSI and VIS images for finer classification. First, the convolutional neural network model is employed to extract deep spectral features for HSI classification. Second, effective binarized statistical image features are learned as contextual basis vectors for the high-resolution VIS image, followed by a classifier. The proposed approach employs diversified data in a decision fusion, leading to an integration of the rich spectral information, spatial information, and statistical representation information. In particular, the proposed approach eliminates the potential problems of the curse of dimensionality and excessive computation time. The experiments evaluated on two standard data sets demonstrate better classification performance offered by this framework.

  2. Dengue hemorrhagic fever and typhoid fever association based on spatial standpoint using scan statistics in DKI Jakarta

    NASA Astrophysics Data System (ADS)

    Hervind, Widyaningsih, Y.

    2017-07-01

    Concurrent infection with multiple infectious agents may occur in one patient, it appears frequently in dengue hemorrhagic fever (DHF) and typhoid fever. This paper depicted association between DHF and typhoid based on spatial point of view. Since paucity of data regarding dengue and typhoid co-infection, data that be used are the number of patients of those diseases in every district (kecamatan) in Jakarta in 2014 and 2015 obtained from Jakarta surveillance website. Poisson spatial scan statistics is used to detect DHF and typhoid hotspots area district in Jakarta separately. After obtain the hotspot, Fisher's exact test is applied to validate association between those two diseases' hotspot. The result exhibit hotspots of DHF and typhoid are located around central Jakarta. The further analysis used Poisson space-time scan statistics to reveal the hotspot in term of spatial and time. DHF and typhoid fever more likely occurr from January until May in the area which is relatively similar with pure spatial result. Preventive action could be done especially in the hotspot areas and it is required further study to observe the causes based on characteristics of the hotspot area.

  3. Integration of modern statistical tools for the analysis of climate extremes into the web-GIS “CLIMATE”

    NASA Astrophysics Data System (ADS)

    Ryazanova, A. A.; Okladnikov, I. G.; Gordov, E. P.

    2017-11-01

    The frequency of occurrence and magnitude of precipitation and temperature extreme events show positive trends in several geographical regions. These events must be analyzed and studied in order to better understand their impact on the environment, predict their occurrences, and mitigate their effects. For this purpose, we augmented web-GIS called “CLIMATE” to include a dedicated statistical package developed in the R language. The web-GIS “CLIMATE” is a software platform for cloud storage processing and visualization of distributed archives of spatial datasets. It is based on a combined use of web and GIS technologies with reliable procedures for searching, extracting, processing, and visualizing the spatial data archives. The system provides a set of thematic online tools for the complex analysis of current and future climate changes and their effects on the environment. The package includes new powerful methods of time-dependent statistics of extremes, quantile regression and copula approach for the detailed analysis of various climate extreme events. Specifically, the very promising copula approach allows obtaining the structural connections between the extremes and the various environmental characteristics. The new statistical methods integrated into the web-GIS “CLIMATE” can significantly facilitate and accelerate the complex analysis of climate extremes using only a desktop PC connected to the Internet.

  4. Analysis of spatial variations in the effectiveness of graduated driver's licensing (GDL) program in the state of Michigan.

    PubMed

    Chen, Yu; Berrocal, Veronica J; Bingham, C Raymond; Song, Peter X K

    2014-04-01

    Injury resulting from motor vehicle crashes is the leading cause of death among teenagers in the US. Few programs or policies have been found to be effective in reducing the risk of fatal car crashes for young novice drivers. One effective policy that has been widely implemented is Graduated Driver Licensing (GDL). Published articles have mostly reported on the temporal effectiveness of GDL in the US. This article reports on the development of spatial statistical modeling approaches to evaluate and compare the effectiveness of GDL policy across eighty-three counties in the state of Michigan. Data were gathered from several publicly available databases, including the US Fatality Analysis Reporting System (FARS), US Census Bureau, US Bureau of Labor Statistics, and US Department of Agriculture. To account for spatial dependence among crash counts from adjacent counties we invoke spatial random effects, which we provide with a Conditionally AutoRegressive (CAR) prior. Our analysis confirms previous findings that GDL in Michigan is an effective policy that significantly reduces the risk of fatal car crashes among novice teenage drivers. In addition, it indicates that rurality is an important contextual variable associated with spatial differences in GDL effectiveness across the state of Michigan. Finally, our findings provide information that can be used to strengthen GDL policy and its implementation to further enhance teenage-driver safety. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, Richard O.

    The application of statistics to environmental pollution monitoring studies requires a knowledge of statistical analysis methods particularly well suited to pollution data. This book fills that need by providing sampling plans, statistical tests, parameter estimation procedure techniques, and references to pertinent publications. Most of the statistical techniques are relatively simple, and examples, exercises, and case studies are provided to illustrate procedures. The book is logically divided into three parts. Chapters 1, 2, and 3 are introductory chapters. Chapters 4 through 10 discuss field sampling designs and Chapters 11 through 18 deal with a broad range of statistical analysis procedures. Somemore » statistical techniques given here are not commonly seen in statistics book. For example, see methods for handling correlated data (Sections 4.5 and 11.12), for detecting hot spots (Chapter 10), and for estimating a confidence interval for the mean of a lognormal distribution (Section 13.2). Also, Appendix B lists a computer code that estimates and tests for trends over time at one or more monitoring stations using nonparametric methods (Chapters 16 and 17). Unfortunately, some important topics could not be included because of their complexity and the need to limit the length of the book. For example, only brief mention could be made of time series analysis using Box-Jenkins methods and of kriging techniques for estimating spatial and spatial-time patterns of pollution, although multiple references on these topics are provided. Also, no discussion of methods for assessing risks from environmental pollution could be included.« less

  6. Effect of Variable Spatial Scales on USLE-GIS Computations

    NASA Astrophysics Data System (ADS)

    Patil, R. J.; Sharma, S. K.

    2017-12-01

    Use of appropriate spatial scale is very important in Universal Soil Loss Equation (USLE) based spatially distributed soil erosion modelling. This study aimed at assessment of annual rates of soil erosion at different spatial scales/grid sizes and analysing how changes in spatial scales affect USLE-GIS computations using simulation and statistical variabilities. Efforts have been made in this study to recommend an optimum spatial scale for further USLE-GIS computations for management and planning in the study area. The present research study was conducted in Shakkar River watershed, situated in Narsinghpur and Chhindwara districts of Madhya Pradesh, India. Remote Sensing and GIS techniques were integrated with Universal Soil Loss Equation (USLE) to predict spatial distribution of soil erosion in the study area at four different spatial scales viz; 30 m, 50 m, 100 m, and 200 m. Rainfall data, soil map, digital elevation model (DEM) and an executable C++ program, and satellite image of the area were used for preparation of the thematic maps for various USLE factors. Annual rates of soil erosion were estimated for 15 years (1992 to 2006) at four different grid sizes. The statistical analysis of four estimated datasets showed that sediment loss dataset at 30 m spatial scale has a minimum standard deviation (2.16), variance (4.68), percent deviation from observed values (2.68 - 18.91 %), and highest coefficient of determination (R2 = 0.874) among all the four datasets. Thus, it is recommended to adopt this spatial scale for USLE-GIS computations in the study area due to its minimum statistical variability and better agreement with the observed sediment loss data. This study also indicates large scope for use of finer spatial scales in spatially distributed soil erosion modelling.

  7. Statistical Analysis of Small-Scale Magnetic Flux Emergence Patterns: A Useful Subsurface Diagnostic?

    NASA Astrophysics Data System (ADS)

    Lamb, Derek A.

    2016-10-01

    While sunspots follow a well-defined pattern of emergence in space and time, small-scale flux emergence is assumed to occur randomly at all times in the quiet Sun. HMI's full-disk coverage, high cadence, spatial resolution, and duty cycle allow us to probe that basic assumption. Some case studies of emergence suggest that temporal clustering on spatial scales of 50-150 Mm may occur. If clustering is present, it could serve as a diagnostic of large-scale subsurface magnetic field structures. We present the results of a manual survey of small-scale flux emergence events over a short time period, and a statistical analysis addressing the question of whether these events show spatio-temporal behavior that is anything other than random.

  8. A statistical spatial power spectrum of the Earth's lithospheric magnetic field

    NASA Astrophysics Data System (ADS)

    Thébault, E.; Vervelidou, F.

    2015-05-01

    The magnetic field of the Earth's lithosphere arises from rock magnetization contrasts that were shaped over geological times. The field can be described mathematically in spherical harmonics or with distributions of magnetization. We exploit this dual representation and assume that the lithospheric field is induced by spatially varying susceptibility values within a shell of constant thickness. By introducing a statistical assumption about the power spectrum of the susceptibility, we then derive a statistical expression for the spatial power spectrum of the crustal magnetic field for the spatial scales ranging from 60 to 2500 km. This expression depends on the mean induced magnetization, the thickness of the shell, and a power law exponent for the power spectrum of the susceptibility. We test the relevance of this form with a misfit analysis to the observational NGDC-720 lithospheric magnetic field model power spectrum. This allows us to estimate a mean global apparent induced magnetization value between 0.3 and 0.6 A m-1, a mean magnetic crustal thickness value between 23 and 30 km, and a root mean square for the field value between 190 and 205 nT at 95 per cent. These estimates are in good agreement with independent models of the crustal magnetization and of the seismic crustal thickness. We carry out the same analysis in the continental and oceanic domains separately. We complement the misfit analyses with a Kolmogorov-Smirnov goodness-of-fit test and we conclude that the observed power spectrum can be each time a sample of the statistical one.

  9. Multi objective climate change impact assessment using multi downscaled climate scenarios

    NASA Astrophysics Data System (ADS)

    Rana, Arun; Moradkhani, Hamid

    2016-04-01

    Global Climate Models (GCMs) are often used to downscale the climatic parameters on a regional and global scale. In the present study, we have analyzed the changes in precipitation and temperature for future scenario period of 2070-2099 with respect to historical period of 1970-2000 from a set of statistically downscaled GCM projections for Columbia River Basin (CRB). Analysis is performed using 2 different statistically downscaled climate projections namely the Bias Correction and Spatial Downscaling (BCSD) technique generated at Portland State University and the Multivariate Adaptive Constructed Analogs (MACA) technique, generated at University of Idaho, totaling to 40 different scenarios. Analysis is performed on spatial, temporal and frequency based parameters in the future period at a scale of 1/16th of degree for entire CRB region. Results have indicated in varied degree of spatial change pattern for the entire Columbia River Basin, especially western part of the basin. At temporal scales, winter precipitation has higher variability than summer and vice-versa for temperature. Frequency analysis provided insights into possible explanation to changes in precipitation.

  10. The spatial impact of neighbouring on the exports activities of COMESA countries by using spatial panel models

    NASA Astrophysics Data System (ADS)

    Hamzalouh, L.; Ismail, M. T.; Rahman, R. A.

    2017-09-01

    In this paper, spatial panel models were used and the method for selecting the best model amongst the spatial fixed effects model and the spatial random effects model to estimate the fitting model by using the robust Hausman test for analysis of the exports pattern of the Common Market for Eastern and Southern African (COMESA) countries. And examine the effects of the interactions of the economic statistic of explanatory variables on the exports of the COMESA. Results indicated that the spatial Durbin model with fixed effects specification should be tested and considered in most cases of this study. After that, the direct and indirect effects among COMESA regions were assessed, and the role of indirect spatial effects in estimating exports was empirically demonstrated. Regarding originality and research value, and to the best of the authors’ knowledge, this is the first attempt to examine exports between COMESA and its member countries through spatial panel models using XSMLE, which is a new command for spatial analysis using STATA.

  11. Geographic information systems, remote sensing, and spatial analysis activities in Texas, 2002-07

    USGS Publications Warehouse

    Pearson, D.K.; Gary, R.H.; Wilson, Z.D.

    2007-01-01

    Geographic information system (GIS) technology has become an important tool for scientific investigation, resource management, and environmental planning. A GIS is a computer-aided system capable of collecting, storing, analyzing, and displaying spatially referenced digital data. GIS technology is particularly useful when analyzing a wide variety of spatial data such as with remote sensing and spatial analysis. Remote sensing involves collecting remotely sensed data, such as satellite imagery, aerial photography, or radar images, and analyzing the data to gather information or investigate trends about the environment or the Earth's surface. Spatial analysis combines remotely sensed, thematic, statistical, quantitative, and geographical data through overlay, modeling, and other analytical techniques to investigate specific research questions. It is the combination of data formats and analysis techniques that has made GIS an essential tool in scientific investigations. This document presents information about the technical capabilities and project activities of the U.S. Geological Survey (USGS) Texas Water Science Center (TWSC) GIS Workgroup from 2002 through 2007.

  12. The remarkable geographical pattern of gastric cancer mortality in Ecuador.

    PubMed

    Montero-Oleas, Nadia; Núñez-González, Solange; Simancas-Racines, Daniel

    2017-12-01

    This study was aimed to describe the gastric cancer mortality trend, and to analyze the spatial distribution of gastric cancer mortality in Ecuador, between 2004 and 2015. Data were collected from the National Institute of Statistics and Census (INEC) database. Crude gastric cancer mortality rates, standardized mortality ratios (SMRs) and indirect standardized mortality rates (ISMRs) were calculated per 100,000 persons. For time trend analysis, joinpoint regression was used. The annual percentage rate change (APC) and the average annual percent change (AAPC) was computed for each province. Spatial age-adjusted analysis was used to detect high risk clusters of gastric cancer mortality, from 2010 to 2015, using Kulldorff spatial scan statistics. In Ecuador, between 2004 and 2015, gastric cancer caused a total of 19,115 deaths: 10,679 in men and 8436 in women. When crude rates were analyzed, a significant decline was detected (AAPC: -1.8%; p<0.001). ISMR also decreased, but this change was not statistically significant (APC: -0.53%; p=0.36). From 2004 to 2007 and from 2008 to 2011 the province with the highest ISMR was Carchi; and, from 2012 to 2015, was Cotopaxi. The most likely high occurrence cluster included Bolívar, Los Ríos, Chimborazo, Tungurahua, and Cotopaxi provinces, with a relative risk of 1.34 (p<0.001). There is a substantial geographic variation in gastric cancer mortality rates among Ecuadorian provinces. The spatial analysis indicates the presence of high occurrence clusters throughout the Andes Mountains. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. [Study on ecological suitability regionalization of Eucommia ulmoides in Guizhou].

    PubMed

    Kang, Chuan-Zhi; Wang, Qing-Qing; Zhou, Tao; Jiang, Wei-Ke; Xiao, Cheng-Hong; Xie, Yu

    2014-05-01

    To study the ecological suitability regionalization of Eucommia ulmoides, for selecting artificial planting base and high-quality industrial raw material purchase area of the herb in Guizhou. Based on the investigation of 14 Eucommia ulmoides producing areas, pinoresinol diglucoside content and ecological factors were obtained. Using spatial analysis method to carry on ecological suitability regionalization. Meanwhile, combining pinoresinol diglucoside content, the correlation of major active components and environmental factors were analyzed by statistical analysis. The most suitability planting area of Eucommia ulmoides was the northwest of Guizhou. The distribution of Eucommia ulmoides was mainly affected by the type and pH value of soil, and monthly precipitation. The spatial structure of major active components in Eucommia ulmoides were randomly distributed in global space, but had only one aggregation point which had a high positive correlation in local space. The major active components of Eucommia ulmoides had no correlation with altitude, longitude or latitude. Using the spatial analysis method and statistical analysis method, based on environmental factor and pinoresinol diglucoside content, the ecological suitability regionalization of Eucommia ulmoides can provide reference for the selection of suitable planting area, artificial planting base and directing production layout.

  14. Sequential analysis of hydrochemical data for watershed characterization.

    PubMed

    Thyne, Geoffrey; Güler, Cüneyt; Poeter, Eileen

    2004-01-01

    A methodology for characterizing the hydrogeology of watersheds using hydrochemical data that combine statistical, geochemical, and spatial techniques is presented. Surface water and ground water base flow and spring runoff samples (180 total) from a single watershed are first classified using hierarchical cluster analysis. The statistical clusters are analyzed for spatial coherence confirming that the clusters have a geological basis corresponding to topographic flowpaths and showing that the fractured rock aquifer behaves as an equivalent porous medium on the watershed scale. Then principal component analysis (PCA) is used to determine the sources of variation between parameters. PCA analysis shows that the variations within the dataset are related to variations in calcium, magnesium, SO4, and HCO3, which are derived from natural weathering reactions, and pH, NO3, and chlorine, which indicate anthropogenic impact. PHREEQC modeling is used to quantitatively describe the natural hydrochemical evolution for the watershed and aid in discrimination of samples that have an anthropogenic component. Finally, the seasonal changes in the water chemistry of individual sites were analyzed to better characterize the spatial variability of vertical hydraulic conductivity. The integrated result provides a method to characterize the hydrogeology of the watershed that fully utilizes traditional data.

  15. A factor analysis of the SSQ (Speech, Spatial, and Qualities of Hearing Scale).

    PubMed

    Akeroyd, Michael A; Guy, Fiona H; Harrison, Dawn L; Suller, Sharon L

    2014-02-01

    The speech, spatial, and qualities of hearing questionnaire (SSQ) is a self-report test of auditory disability. The 49 items ask how well a listener would do in many complex listening situations illustrative of real life. The scores on the items are often combined into the three main sections or into 10 pragmatic subscales. We report here a factor analysis of the SSQ that we conducted to further investigate its statistical properties and to determine its structure. Statistical factor analysis of questionnaire data, using parallel analysis to determine the number of factors to retain, oblique rotation of factors, and a bootstrap method to estimate the confidence intervals. 1220 people who have attended MRC IHR over the last decade. We found three clear factors, essentially corresponding to the three main sections of the SSQ. They are termed "speech understanding", "spatial perception", and "clarity, separation, and identification". Thirty-five of the SSQ questions were included in the three factors. There was partial evidence for a fourth factor, "effort and concentration", representing two more questions. These results aid in the interpretation and application of the SSQ and indicate potential methods for generating average scores.

  16. Applications of Remote Sensing and GIS(Geographic Information System) in Crime Analysis of Gujranwala City.

    NASA Astrophysics Data System (ADS)

    Munawar, Iqra

    2016-07-01

    Crime mapping is a dynamic process. It can be used to assist all stages of the problem solving process. Mapping crime can help police protect citizens more effectively. The decision to utilize a certain type of map or design element may change based on the purpose of a map, the audience or the available data. If the purpose of the crime analysis map is to assist in the identification of a particular problem, selected data may be mapped to identify patterns of activity that have been previously undetected. The main objective of this research was to study the spatial distribution patterns of the four common crimes i.e Narcotics, Arms, Burglary and Robbery in Gujranwala City using spatial statistical techniques to identify the hotspots. Hotspots or location of clusters were identified using Getis-Ord Gi* Statistic. Crime analysis mapping can be used to conduct a comprehensive spatial analysis of the problem. Graphic presentations of such findings provide a powerful medium to communicate conditions, patterns and trends thus creating an avenue for analysts to bring about significant policy changes. Moreover Crime mapping also helps in the reduction of crime rate.

  17. Improved analyses using function datasets and statistical modeling

    Treesearch

    John S. Hogland; Nathaniel M. Anderson

    2014-01-01

    Raster modeling is an integral component of spatial analysis. However, conventional raster modeling techniques can require a substantial amount of processing time and storage space and have limited statistical functionality and machine learning algorithms. To address this issue, we developed a new modeling framework using C# and ArcObjects and integrated that framework...

  18. Spatial Statistical Model and Optimal Survey Design for Rapid Geophysical Characterization of UXO Sites

    DTIC Science & Technology

    2003-07-01

    4, Gnanadesikan , 1977). An entity whose measured features fall into one of the regions is classified accordingly. For the approaches we discuss here... Gnanadesikan , R. 1977. Methods for Statistical Data Analysis of Multivariate Observations. John Wiley & Sons, New York. Hassig, N. L., O’Brien, R. F

  19. Diffusion tensor imaging in children with tuberous sclerosis complex: tract-based spatial statistics assessment of brain microstructural changes.

    PubMed

    Zikou, Anastasia K; Xydis, Vasileios G; Astrakas, Loukas G; Nakou, Iliada; Tzarouchi, Loukia C; Tzoufi, Meropi; Argyropoulou, Maria I

    2016-07-01

    There is evidence of microstructural changes in normal-appearing white matter of patients with tuberous sclerosis complex. To evaluate major white matter tracts in children with tuberous sclerosis complex using tract-based spatial statistics diffusion tensor imaging (DTI) analysis. Eight children (mean age ± standard deviation: 8.5 ± 5.5 years) with an established diagnosis of tuberous sclerosis complex and 8 age-matched controls were studied. The imaging protocol consisted of T1-weighted high-resolution 3-D spoiled gradient-echo sequence and a spin-echo, echo-planar diffusion-weighted sequence. Differences in the diffusion indices were evaluated using tract-based spatial statistics. Tract-based spatial statistics showed increased axial diffusivity in the children with tuberous sclerosis complex in the superior and anterior corona radiata, the superior longitudinal fascicle, the inferior fronto-occipital fascicle, the uncinate fascicle and the anterior thalamic radiation. No significant differences were observed in fractional anisotropy, mean diffusivity and radial diffusivity between patients and control subjects. No difference was found in the diffusion indices between the baseline and follow-up examination in the patient group. Patients with tuberous sclerosis complex have increased axial diffusivity in major white matter tracts, probably related to reduced axonal integrity.

  20. Spatial dependency of V. cholera prevalence on open space refuse dumps in Kumasi, Ghana: a spatial statistical modelling

    PubMed Central

    Osei, Frank B; Duker, Alfred A

    2008-01-01

    Background Cholera has persisted in Ghana since its introduction in the early 70's. From 1999 to 2005, the Ghana Ministry of Health officially reported a total of 26,924 cases and 620 deaths to the WHO. Etiological studies suggest that the natural habitat of V. cholera is the aquatic environment. Its ability to survive within and outside the aquatic environment makes cholera a complex health problem to manage. Once the disease is introduced in a population, several environmental factors may lead to prolonged transmission and secondary cases. An important environmental factor that predisposes individuals to cholera infection is sanitation. In this study, we exploit the importance of two main spatial measures of sanitation in cholera transmission in an urban city, Kumasi. These are proximity and density of refuse dumps within a community. Results A spatial statistical modelling carried out to determine the spatial dependency of cholera prevalence on refuse dumps show that, there is a direct spatial relationship between cholera prevalence and density of refuse dumps, and an inverse spatial relationship between cholera prevalence and distance to refuse dumps. A spatial scan statistics also identified four significant spatial clusters of cholera; a primary cluster with greater than expected cholera prevalence, and three secondary clusters with lower than expected cholera prevalence. A GIS based buffer analysis also showed that the minimum distance within which refuse dumps should not be sited within community centres is 500 m. Conclusion The results suggest that proximity and density of open space refuse dumps play a contributory role in cholera infection in Kumasi. PMID:19087235

  1. Can Retinal Ganglion Cell Dipoles Seed Iso-Orientation Domains in the Visual Cortex?

    PubMed Central

    Schottdorf, Manuel; Eglen, Stephen J.; Wolf, Fred; Keil, Wolfgang

    2014-01-01

    It has been argued that the emergence of roughly periodic orientation preference maps (OPMs) in the primary visual cortex (V1) of carnivores and primates can be explained by a so-called statistical connectivity model. This model assumes that input to V1 neurons is dominated by feed-forward projections originating from a small set of retinal ganglion cells (RGCs). The typical spacing between adjacent cortical orientation columns preferring the same orientation then arises via Moiré-Interference between hexagonal ON/OFF RGC mosaics. While this Moiré-Interference critically depends on long-range hexagonal order within the RGC mosaics, a recent statistical analysis of RGC receptive field positions found no evidence for such long-range positional order. Hexagonal order may be only one of several ways to obtain spatially repetitive OPMs in the statistical connectivity model. Here, we investigate a more general requirement on the spatial structure of RGC mosaics that can seed the emergence of spatially repetitive cortical OPMs, namely that angular correlations between so-called RGC dipoles exhibit a spatial structure similar to that of OPM autocorrelation functions. Both in cat beta cell mosaics as well as primate parasol receptive field mosaics we find that RGC dipole angles are spatially uncorrelated. To help assess the level of these correlations, we introduce a novel point process that generates mosaics with realistic nearest neighbor statistics and a tunable degree of spatial correlations of dipole angles. Using this process, we show that given the size of available data sets, the presence of even weak angular correlations in the data is very unlikely. We conclude that the layout of ON/OFF ganglion cell mosaics lacks the spatial structure necessary to seed iso-orientation domains in the primary visual cortex. PMID:24475081

  2. Can retinal ganglion cell dipoles seed iso-orientation domains in the visual cortex?

    PubMed

    Schottdorf, Manuel; Eglen, Stephen J; Wolf, Fred; Keil, Wolfgang

    2014-01-01

    It has been argued that the emergence of roughly periodic orientation preference maps (OPMs) in the primary visual cortex (V1) of carnivores and primates can be explained by a so-called statistical connectivity model. This model assumes that input to V1 neurons is dominated by feed-forward projections originating from a small set of retinal ganglion cells (RGCs). The typical spacing between adjacent cortical orientation columns preferring the same orientation then arises via Moiré-Interference between hexagonal ON/OFF RGC mosaics. While this Moiré-Interference critically depends on long-range hexagonal order within the RGC mosaics, a recent statistical analysis of RGC receptive field positions found no evidence for such long-range positional order. Hexagonal order may be only one of several ways to obtain spatially repetitive OPMs in the statistical connectivity model. Here, we investigate a more general requirement on the spatial structure of RGC mosaics that can seed the emergence of spatially repetitive cortical OPMs, namely that angular correlations between so-called RGC dipoles exhibit a spatial structure similar to that of OPM autocorrelation functions. Both in cat beta cell mosaics as well as primate parasol receptive field mosaics we find that RGC dipole angles are spatially uncorrelated. To help assess the level of these correlations, we introduce a novel point process that generates mosaics with realistic nearest neighbor statistics and a tunable degree of spatial correlations of dipole angles. Using this process, we show that given the size of available data sets, the presence of even weak angular correlations in the data is very unlikely. We conclude that the layout of ON/OFF ganglion cell mosaics lacks the spatial structure necessary to seed iso-orientation domains in the primary visual cortex.

  3. An Introduction to Macro- Level Spatial Nonstationarity: a Geographically Weighted Regression Analysis of Diabetes and Poverty

    PubMed Central

    Siordia, Carlos; Saenz, Joseph; Tom, Sarah E.

    2014-01-01

    Type II diabetes is a growing health problem in the United States. Understanding geographic variation in diabetes prevalence will inform where resources for management and prevention should be allocated. Investigations of the correlates of diabetes prevalence have largely ignored how spatial nonstationarity might play a role in the macro-level distribution of diabetes. This paper introduces the reader to the concept of spatial nonstationarity—variance in statistical relationships as a function of geographical location. Since spatial nonstationarity means different predictors can have varying effects on model outcomes, we make use of a geographically weighed regression to calculate correlates of diabetes as a function of geographic location. By doing so, we demonstrate an exploratory example in which the diabetes-poverty macro-level statistical relationship varies as a function of location. In particular, we provide evidence that when predicting macro-level diabetes prevalence, poverty is not always positively associated with diabetes PMID:25414731

  4. An Introduction to Macro- Level Spatial Nonstationarity: a Geographically Weighted Regression Analysis of Diabetes and Poverty.

    PubMed

    Siordia, Carlos; Saenz, Joseph; Tom, Sarah E

    2012-01-01

    Type II diabetes is a growing health problem in the United States. Understanding geographic variation in diabetes prevalence will inform where resources for management and prevention should be allocated. Investigations of the correlates of diabetes prevalence have largely ignored how spatial nonstationarity might play a role in the macro-level distribution of diabetes. This paper introduces the reader to the concept of spatial nonstationarity-variance in statistical relationships as a function of geographical location. Since spatial nonstationarity means different predictors can have varying effects on model outcomes, we make use of a geographically weighed regression to calculate correlates of diabetes as a function of geographic location. By doing so, we demonstrate an exploratory example in which the diabetes-poverty macro-level statistical relationship varies as a function of location. In particular, we provide evidence that when predicting macro-level diabetes prevalence, poverty is not always positively associated with diabetes.

  5. Learning place cells, grid cells and invariances with excitatory and inhibitory plasticity

    PubMed Central

    2018-01-01

    Neurons in the hippocampus and adjacent brain areas show a large diversity in their tuning to location and head direction, and the underlying circuit mechanisms are not yet resolved. In particular, it is unclear why certain cell types are selective to one spatial variable, but invariant to another. For example, place cells are typically invariant to head direction. We propose that all observed spatial tuning patterns – in both their selectivity and their invariance – arise from the same mechanism: Excitatory and inhibitory synaptic plasticity driven by the spatial tuning statistics of synaptic inputs. Using simulations and a mathematical analysis, we show that combined excitatory and inhibitory plasticity can lead to localized, grid-like or invariant activity. Combinations of different input statistics along different spatial dimensions reproduce all major spatial tuning patterns observed in rodents. Our proposed model is robust to changes in parameters, develops patterns on behavioral timescales and makes distinctive experimental predictions. PMID:29465399

  6. An Investigation of the Fine Spatial Structure of Meteor Streams Using the Relational Database ``Meteor''

    NASA Astrophysics Data System (ADS)

    Karpov, A. V.; Yumagulov, E. Z.

    2003-05-01

    We have restored and ordered the archive of meteor observations carried out with a meteor radar complex ``KGU-M5'' since 1986. A relational database has been formed under the control of the Database Management System (DBMS) Oracle 8. We also improved and tested a statistical method for studying the fine spatial structure of meteor streams with allowance for the specific features of application of the DBMS. Statistical analysis of the results of observations made it possible to obtain information about the substance distribution in the Quadrantid, Geminid, and Perseid meteor streams.

  7. Quantifying the influences of various ecological factors on land surface temperature of urban forests.

    PubMed

    Ren, Yin; Deng, Lu-Ying; Zuo, Shu-Di; Song, Xiao-Dong; Liao, Yi-Lan; Xu, Cheng-Dong; Chen, Qi; Hua, Li-Zhong; Li, Zheng-Wei

    2016-09-01

    Identifying factors that influence the land surface temperature (LST) of urban forests can help improve simulations and predictions of spatial patterns of urban cool islands. This requires a quantitative analytical method that combines spatial statistical analysis with multi-source observational data. The purpose of this study was to reveal how human activities and ecological factors jointly influence LST in clustering regions (hot or cool spots) of urban forests. Using Xiamen City, China from 1996 to 2006 as a case study, we explored the interactions between human activities and ecological factors, as well as their influences on urban forest LST. Population density was selected as a proxy for human activity. We integrated multi-source data (forest inventory, digital elevation models (DEM), population, and remote sensing imagery) to develop a database on a unified urban scale. The driving mechanism of urban forest LST was revealed through a combination of multi-source spatial data and spatial statistical analysis of clustering regions. The results showed that the main factors contributing to urban forest LST were dominant tree species and elevation. The interactions between human activity and specific ecological factors linearly or nonlinearly increased LST in urban forests. Strong interactions between elevation and dominant species were generally observed and were prevalent in either hot or cold spots areas in different years. In conclusion, quantitative studies based on spatial statistics and GeogDetector models should be conducted in urban areas to reveal interactions between human activities, ecological factors, and LST. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Statistical analysis of the surface figure of the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Lightsey, Paul A.; Chaney, David; Gallagher, Benjamin B.; Brown, Bob J.; Smith, Koby; Schwenker, John

    2012-09-01

    The performance of an optical system is best characterized by either the point spread function (PSF) or the optical transfer function (OTF). However, for system budgeting purposes, it is convenient to use a single scalar metric, or a combination of a few scalar metrics to track performance. For the James Webb Space Telescope, the Observatory level requirements were expressed in metrics of Strehl Ratio, and Encircled Energy. These in turn were converted to the metrics of total rms WFE and rms WFE within spatial frequency domains. The 18 individual mirror segments for the primary mirror segment assemblies (PMSA), the secondary mirror (SM), tertiary mirror (TM), and Fine Steering Mirror have all been fabricated. They are polished beryllium mirrors with a protected gold reflective coating. The statistical analysis of the resulting Surface Figure Error of these mirrors has been analyzed. The average spatial frequency distribution and the mirror-to-mirror consistency of the spatial frequency distribution are reported. The results provide insight to system budgeting processes for similar optical systems.

  9. Atmospheric Tracer Inverse Modeling Using Markov Chain Monte Carlo (MCMC)

    NASA Astrophysics Data System (ADS)

    Kasibhatla, P.

    2004-12-01

    In recent years, there has been an increasing emphasis on the use of Bayesian statistical estimation techniques to characterize the temporal and spatial variability of atmospheric trace gas sources and sinks. The applications have been varied in terms of the particular species of interest, as well as in terms of the spatial and temporal resolution of the estimated fluxes. However, one common characteristic has been the use of relatively simple statistical models for describing the measurement and chemical transport model error statistics and prior source statistics. For example, multivariate normal probability distribution functions (pdfs) are commonly used to model these quantities and inverse source estimates are derived for fixed values of pdf paramaters. While the advantage of this approach is that closed form analytical solutions for the a posteriori pdfs of interest are available, it is worth exploring Bayesian analysis approaches which allow for a more general treatment of error and prior source statistics. Here, we present an application of the Markov Chain Monte Carlo (MCMC) methodology to an atmospheric tracer inversion problem to demonstrate how more gereral statistical models for errors can be incorporated into the analysis in a relatively straightforward manner. The MCMC approach to Bayesian analysis, which has found wide application in a variety of fields, is a statistical simulation approach that involves computing moments of interest of the a posteriori pdf by efficiently sampling this pdf. The specific inverse problem that we focus on is the annual mean CO2 source/sink estimation problem considered by the TransCom3 project. TransCom3 was a collaborative effort involving various modeling groups and followed a common modeling and analysis protocoal. As such, this problem provides a convenient case study to demonstrate the applicability of the MCMC methodology to atmospheric tracer source/sink estimation problems.

  10. Spatial Skill Profile of Mathematics Pre-Service Teachers

    NASA Astrophysics Data System (ADS)

    Putri, R. O. E.

    2018-01-01

    This study is aimed to investigate the spatial intelligence of mathematics pre-service teachers and find the best instructional strategy that facilitates this aspect. Data were collected from 35 mathematics pre-service teachers. The Purdue Spatial Visualization Test (PSVT) was used to identify the spatial skill of mathematics pre-service teachers. Statistical analysis indicate that more than 50% of the participants possessed spatial skill in intermediate level, whereas the other were in high and low level of spatial skill. The result also shows that there is a positive correlation between spatial skill and mathematics ability, especially in geometrical problem solving. High spatial skill students tend to have better mathematical performance compare to those in two other levels. Furthermore, qualitative analysis reveals that most students have difficulty in manipulating geometrical objects mentally. This problem mostly appears in intermediate and low-level spatial skill students. The observation revealed that 3-D geometrical figures is the best method that can overcome the mentally manipulation problem and develop the spatial visualization. Computer application can also be used to improve students’ spatial skill.

  11. Applications of spatial statistical network models to stream data

    USGS Publications Warehouse

    Isaak, Daniel J.; Peterson, Erin E.; Ver Hoef, Jay M.; Wenger, Seth J.; Falke, Jeffrey A.; Torgersen, Christian E.; Sowder, Colin; Steel, E. Ashley; Fortin, Marie-Josée; Jordan, Chris E.; Ruesch, Aaron S.; Som, Nicholas; Monestiez, Pascal

    2014-01-01

    Streams and rivers host a significant portion of Earth's biodiversity and provide important ecosystem services for human populations. Accurate information regarding the status and trends of stream resources is vital for their effective conservation and management. Most statistical techniques applied to data measured on stream networks were developed for terrestrial applications and are not optimized for streams. A new class of spatial statistical model, based on valid covariance structures for stream networks, can be used with many common types of stream data (e.g., water quality attributes, habitat conditions, biological surveys) through application of appropriate distributions (e.g., Gaussian, binomial, Poisson). The spatial statistical network models account for spatial autocorrelation (i.e., nonindependence) among measurements, which allows their application to databases with clustered measurement locations. Large amounts of stream data exist in many areas where spatial statistical analyses could be used to develop novel insights, improve predictions at unsampled sites, and aid in the design of efficient monitoring strategies at relatively low cost. We review the topic of spatial autocorrelation and its effects on statistical inference, demonstrate the use of spatial statistics with stream datasets relevant to common research and management questions, and discuss additional applications and development potential for spatial statistics on stream networks. Free software for implementing the spatial statistical network models has been developed that enables custom applications with many stream databases.

  12. Spatial patterns in vegetation fires in the Indian region.

    PubMed

    Vadrevu, Krishna Prasad; Badarinath, K V S; Anuradha, Eaturu

    2008-12-01

    In this study, we used fire count datasets derived from Along Track Scanning Radiometer (ATSR) satellite to characterize spatial patterns in fire occurrences across highly diverse geographical, vegetation and topographic gradients in the Indian region. For characterizing the spatial patterns of fire occurrences, observed fire point patterns were tested against the hypothesis of a complete spatial random (CSR) pattern using three different techniques, the quadrat analysis, nearest neighbor analysis and Ripley's K function. Hierarchical nearest neighboring technique was used to depict the 'hotspots' of fire incidents. Of the different states, highest fire counts were recorded in Madhya Pradesh (14.77%) followed by Gujarat (10.86%), Maharastra (9.92%), Mizoram (7.66%), Jharkhand (6.41%), etc. With respect to the vegetation categories, highest number of fires were recorded in agricultural regions (40.26%) followed by tropical moist deciduous vegetation (12.72), dry deciduous vegetation (11.40%), abandoned slash and burn secondary forests (9.04%), tropical montane forests (8.07%) followed by others. Analysis of fire counts based on elevation and slope range suggested that maximum number of fires occurred in low and medium elevation types and in very low to low-slope categories. Results from three different spatial techniques for spatial pattern suggested clustered pattern in fire events compared to CSR. Most importantly, results from Ripley's K statistic suggested that fire events are highly clustered at a lag-distance of 125 miles. Hierarchical nearest neighboring clustering technique identified significant clusters of fire 'hotspots' in different states in northeast and central India. The implications of these results in fire management and mitigation were discussed. Also, this study highlights the potential of spatial point pattern statistics in environmental monitoring and assessment studies with special reference to fire events in the Indian region.

  13. Mapping and modeling the urban landscape in Bangkok, Thailand: Physical-spectral-spatial relations of population-environmental interactions

    NASA Astrophysics Data System (ADS)

    Shao, Yang

    This research focuses on the application of remote sensing, geographic information systems, statistical modeling, and spatial analysis to examine the dynamics of urban land cover, urban structure, and population-environment interactions in Bangkok, Thailand, with an emphasis on rural-to-urban migration from rural Nang Rong District, Northeast Thailand to the primate city of Bangkok. The dissertation consists of four main sections: (1) development of remote sensing image classification and change-detection methods for characterizing imperviousness for Bangkok, Thailand from 1993-2002; (2) development of 3-D urban mapping methods, using high spatial resolution IKONOS satellite images, to assess high-rises and other urban structures; (3) assessment of urban spatial structure from 2-D and 3-D perspectives; and (4) an analysis of the spatial clustering of migrants from Nang Rong District in Bangkok and the neighborhood environments of migrants' locations. Techniques are developed to improve the accuracy of the neural network classification approach for the analysis of remote sensing data, with an emphasis on the spectral unmixing problem. The 3-D building heights are derived using the shadow information on the high-resolution IKONOS image. The results from the 2-D and 3-D mapping are further examined to assess urban structure and urban feature identification. This research contributes to image processing of remotely-sensed images and urban studies. The rural-urban migration process and migrants' settlement patterns are examined using spatial statistics, GIS, and remote sensing perspectives. The results show that migrants' spatial clustering in urban space is associated with the source village and a number of socio-demographic variables. In addition, the migrants' neighborhood environments in urban setting are modeled using a set of geographic and socio-demographic variables, and the results are scale-dependent.

  14. A flexible spatial scan statistic with a restricted likelihood ratio for detecting disease clusters.

    PubMed

    Tango, Toshiro; Takahashi, Kunihiko

    2012-12-30

    Spatial scan statistics are widely used tools for detection of disease clusters. Especially, the circular spatial scan statistic proposed by Kulldorff (1997) has been utilized in a wide variety of epidemiological studies and disease surveillance. However, as it cannot detect noncircular, irregularly shaped clusters, many authors have proposed different spatial scan statistics, including the elliptic version of Kulldorff's scan statistic. The flexible spatial scan statistic proposed by Tango and Takahashi (2005) has also been used for detecting irregularly shaped clusters. However, this method sets a feasible limitation of a maximum of 30 nearest neighbors for searching candidate clusters because of heavy computational load. In this paper, we show a flexible spatial scan statistic implemented with a restricted likelihood ratio proposed by Tango (2008) to (1) eliminate the limitation of 30 nearest neighbors and (2) to have surprisingly much less computational time than the original flexible spatial scan statistic. As a side effect, it is shown to be able to detect clusters with any shape reasonably well as the relative risk of the cluster becomes large via Monte Carlo simulation. We illustrate the proposed spatial scan statistic with data on mortality from cerebrovascular disease in the Tokyo Metropolitan area, Japan. Copyright © 2012 John Wiley & Sons, Ltd.

  15. a Comparative Analysis of Five Cropland Datasets in Africa

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Lu, M.; Wu, W.

    2018-04-01

    The food security, particularly in Africa, is a challenge to be resolved. The cropland area and spatial distribution obtained from remote sensing imagery are vital information. In this paper, according to cropland area and spatial location, we compare five global cropland datasets including CCI Land Cover, GlobCover, MODIS Collection 5, GlobeLand30 and Unified Cropland in circa 2010 of Africa in terms of cropland area and spatial location. The accuracy of cropland area calculated from five datasets was analyzed compared with statistic data. Based on validation samples, the accuracies of spatial location for the five cropland products were assessed by error matrix. The results show that GlobeLand30 has the best fitness with the statistics, followed by MODIS Collection 5 and Unified Cropland, GlobCover and CCI Land Cover have the lower accuracies. For the accuracy of spatial location of cropland, GlobeLand30 reaches the highest accuracy, followed by Unified Cropland, MODIS Collection 5 and GlobCover, CCI Land Cover has the lowest accuracy. The spatial location accuracy of five datasets in the Csa with suitable farming condition is generally higher than in the Bsk.

  16. Resource materials for a GIS spatial analysis course

    USGS Publications Warehouse

    Raines, Gary L.

    2001-01-01

    This report consists of materials prepared for a GIS spatial analysis course offered as part of the Geography curriculum at the University of Nevada, Reno and the University of California at Santa Barbara in the spring of 2000. The report is intended to share information with instructors preparing spatial-modeling training and scientists with advanced GIS expertise. The students taking this class had completed each universities GIS curriculum and had a foundation in statistics as part of a science major. This report is organized into chapters that contain the following: Slides used during lectures, Guidance on the use of Arcview, Introduction to filtering in Arcview, Conventional and spatial correlation in Arcview, Tools for fuzzification in Arcview, Data and instructions for creating using ArcSDM for simple weights-of-evidence, fuzzy logic, and neural network models for Carlin-type gold deposits in central Nevada, Reading list on spatial modeling, and Selected student spatial-modeling posters from the laboratory exercises.

  17. On the potential for the Partial Triadic Analysis to grasp the spatio-temporal variability of groundwater hydrochemistry

    NASA Astrophysics Data System (ADS)

    Gourdol, L.; Hissler, C.; Pfister, L.

    2012-04-01

    The Luxembourg sandstone aquifer is of major relevance for the national supply of drinking water in Luxembourg. The city of Luxembourg (20% of the country's population) gets almost 2/3 of its drinking water from this aquifer. As a consequence, the study of both the groundwater hydrochemistry, as well as its spatial and temporal variations, are considered as of highest priority. Since 2005, a monitoring network has been implemented by the Water Department of Luxembourg City, with a view to a more sustainable management of this strategic water resource. The data collected to date forms a large and complex dataset, describing spatial and temporal variations of many hydrochemical parameters. The data treatment issue is tightly connected to this kind of water monitoring programs and complex databases. Standard multivariate statistical techniques, such as principal components analysis and hierarchical cluster analysis, have been widely used as unbiased methods for extracting meaningful information from groundwater quality data and are now classically used in many hydrogeological studies, in particular to characterize temporal or spatial hydrochemical variations induced by natural and anthropogenic factors. But these classical multivariate methods deal with two-way matrices, usually parameters/sites or parameters/time, while often the dataset resulting from qualitative water monitoring programs should be seen as a datacube parameters/sites/time. Three-way matrices, such as the one we propose here, are difficult to handle and to analyse by classical multivariate statistical tools and thus should be treated with approaches dealing with three-way data structures. One possible analysis approach consists in the use of partial triadic analysis (PTA). The PTA was previously used with success in many ecological studies but never to date in the domain of hydrogeology. Applied to the dataset of the Luxembourg Sandstone aquifer, the PTA appears as a new promising statistical instrument for hydrogeologists, in particular to characterize temporal and spatial hydrochemical variations induced by natural and anthropogenic factors. This new approach for groundwater management offers potential for 1) identifying a common multivariate spatial structure, 2) untapping the different hydrochemical patterns and explaining their controlling factors and 3) analysing the temporal variability of this structure and grasping hydrochemical changes.

  18. Automatic Assessment and Reduction of Noise using Edge Pattern Analysis in Non-Linear Image Enhancement

    NASA Technical Reports Server (NTRS)

    Jobson, Daniel J.; Rahman, Zia-Ur; Woodell, Glenn A.; Hines, Glenn D.

    2004-01-01

    Noise is the primary visibility limit in the process of non-linear image enhancement, and is no longer a statistically stable additive noise in the post-enhancement image. Therefore novel approaches are needed to both assess and reduce spatially variable noise at this stage in overall image processing. Here we will examine the use of edge pattern analysis both for automatic assessment of spatially variable noise and as a foundation for new noise reduction methods.

  19. Role of spatial inhomogenity in GPCR dimerisation predicted by receptor association-diffusion models

    NASA Astrophysics Data System (ADS)

    Deshpande, Sneha A.; Pawar, Aiswarya B.; Dighe, Anish; Athale, Chaitanya A.; Sengupta, Durba

    2017-06-01

    G protein-coupled receptor (GPCR) association is an emerging paradigm with far reaching implications in the regulation of signalling pathways and therapeutic interventions. Recent super resolution microscopy studies have revealed that receptor dimer steady state exhibits sub-second dynamics. In particular the GPCRs, muscarinic acetylcholine receptor M1 (M1MR) and formyl peptide receptor (FPR), have been demonstrated to exhibit a fast association/dissociation kinetics, independent of ligand binding. In this work, we have developed a spatial kinetic Monte Carlo model to investigate receptor homo-dimerisation at a single receptor resolution. Experimentally measured association/dissociation kinetic parameters and diffusion coefficients were used as inputs to the model. To test the effect of membrane spatial heterogeneity on the simulated steady state, simulations were compared to experimental statistics of dimerisation. In the simplest case the receptors are assumed to be diffusing in a spatially homogeneous environment, while spatial heterogeneity is modelled to result from crowding, membrane micro-domains and cytoskeletal compartmentalisation or ‘corrals’. We show that a simple association-diffusion model is sufficient to reproduce M1MR association statistics, but fails to reproduce FPR statistics despite comparable kinetic constants. A parameter sensitivity analysis is required to reproduce the association statistics of FPR. The model reveals the complex interplay between cytoskeletal components and their influence on receptor association kinetics within the features of the membrane landscape. These results constitute an important step towards understanding the factors modulating GPCR organisation.

  20. Measuring forest landscape patterns in the Cascade Range of Oregon, USA

    NASA Technical Reports Server (NTRS)

    Ripple, William J.; Bradshaw, G. A.; Spies, Thomas A.

    1995-01-01

    This paper describes the use of a set of spatial statistics to quantify the landscape pattern caused by the patchwork of clearcuts made over a 15-year period in the western Cascades of Oregon. Fifteen areas were selected at random to represent a diversity of landscape fragmentation patterns. Managed forest stands (patches) were digitized and analyzed to produce both tabular and mapped information describing patch size, shape, abundance and spacing, and matrix characteristics of a given area. In addition, a GIS fragmentation index was developed which was found to be sensitive to patch abundance and to the spatial distribution of patches. Use of the GIS-derived index provides an automated method of determining the level of forest fragmentation and can be used to facilitate spatial analysis of the landscape for later coordination with field and remotely sensed data. A comparison of the spatial statistics calculated for the two years indicates an increase in forest fragmentation as characterized by an increase in mean patch abundance and a decrease in interpatch distance, amount of interior natural forest habitat, and the GIS fragmentation index. Such statistics capable of quantifying patch shape and spatial distribution may prove important in the evaluation of the changing character of interior and edge habitats for wildlife.

  1. A Comparative Analysis of Holographic, 3D-Printed, and Computer-Generated Models: Implications for Engineering Technology Students' Spatial Visualization Ability

    ERIC Educational Resources Information Center

    Katsioloudis, Petros J.; Jones, Mildred V.

    2018-01-01

    A number of studies indicate that the use of holographic displays can influence spatial visualization ability; however, research provides inconsistent results. Considering this, a quasi-experimental study was conducted to identify the existence of statistically significant effects on sectional view drawing ability due to the impacts of holographic…

  2. Descriptive statistics and spatial distributions of geochemical variables associated with manganese oxide-rich phases in the northern Pacific

    USGS Publications Warehouse

    Botbol, Joseph Moses; Evenden, Gerald Ian

    1989-01-01

    Tables, graphs, and maps are used to portray the frequency characteristics and spatial distribution of manganese oxide-rich phase geochemical data, to characterize the northern Pacific in terms of publicly available nodule geochemical data, and to develop data portrayal methods that will facilitate data analysis. Source data are a subset of the Scripps Institute of Oceanography's Sediment Data Bank. The study area is bounded by 0° N., 40° N., 120° E., and 100° W. and is arbitrarily subdivided into 14-20°x20° geographic subregions. Frequency distributions of trace metals characterized in the original raw data are graphed as ogives, and salient parameters are tabulated. All variables are transformed to enrichment values relative to median concentration within their host subregions. Scatter plots of all pairs of original variables and their enrichment transforms are provided as an aid to the interpretation of correlations between variables. Gridded spatial distributions of all variables are portrayed as gray-scale maps. The use of tables and graphs to portray frequency statistics and gray-scale maps to portray spatial distributions is an effective way to prepare for and facilitate multivariate data analysis.

  3. The geostatistical approach for structural and stratigraphic framework analysis of offshore NW Bonaparte Basin, Australia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahid, Ali, E-mail: ali.wahid@live.com; Salim, Ahmed Mohamed Ahmed, E-mail: mohamed.salim@petronas.com.my; Yusoff, Wan Ismail Wan, E-mail: wanismail-wanyusoff@petronas.com.my

    2016-02-01

    Geostatistics or statistical approach is based on the studies of temporal and spatial trend, which depend upon spatial relationships to model known information of variable(s) at unsampled locations. The statistical technique known as kriging was used for petrophycial and facies analysis, which help to assume spatial relationship to model the geological continuity between the known data and the unknown to produce a single best guess of the unknown. Kriging is also known as optimal interpolation technique, which facilitate to generate best linear unbiased estimation of each horizon. The idea is to construct a numerical model of the lithofacies and rockmore » properties that honor available data and further integrate with interpreting seismic sections, techtonostratigraphy chart with sea level curve (short term) and regional tectonics of the study area to find the structural and stratigraphic growth history of the NW Bonaparte Basin. By using kriging technique the models were built which help to estimate different parameters like horizons, facies, and porosities in the study area. The variograms were used to determine for identification of spatial relationship between data which help to find the depositional history of the North West (NW) Bonaparte Basin.« less

  4. Analysis of spatial and temporal rainfall trends in Sicily during the 1921-2012 period

    NASA Astrophysics Data System (ADS)

    Liuzzo, Lorena; Bono, Enrico; Sammartano, Vincenzo; Freni, Gabriele

    2016-10-01

    Precipitation patterns worldwide are changing under the effects of global warming. The impacts of these changes could dramatically affect the hydrological cycle and, consequently, the availability of water resources. In order to improve the quality and reliability of forecasting models, it is important to analyse historical precipitation data to account for possible future changes. For these reasons, a large number of studies have recently been carried out with the aim of investigating the existence of statistically significant trends in precipitation at different spatial and temporal scales. In this paper, the existence of statistically significant trends in rainfall from observational datasets, which were measured by 245 rain gauges over Sicily (Italy) during the 1921-2012 period, was investigated. Annual, seasonal and monthly time series were examined using the Mann-Kendall non-parametric statistical test to detect statistically significant trends at local and regional scales, and their significance levels were assessed. Prior to the application of the Mann-Kendall test, the historical dataset was completed using a geostatistical spatial interpolation technique, the residual ordinary kriging, and then processed to remove the influence of serial correlation on the test results, applying the procedure of trend-free pre-whitening. Once the trends at each site were identified, the spatial patterns of the detected trends were examined using spatial interpolation techniques. Furthermore, focusing on the 30 years from 1981 to 2012, the trend analysis was repeated with the aim of detecting short-term trends or possible changes in the direction of the trends. Finally, the effect of climate change on the seasonal distribution of rainfall during the year was investigated by analysing the trend in the precipitation concentration index. The application of the Mann-Kendall test to the rainfall data provided evidence of a general decrease in precipitation in Sicily during the 1921-2012 period. Downward trends frequently occurred during the autumn and winter months. However, an increase in total annual precipitation was detected during the period from 1981 to 2012.

  5. A nonparametric spatial scan statistic for continuous data.

    PubMed

    Jung, Inkyung; Cho, Ho Jin

    2015-10-20

    Spatial scan statistics are widely used for spatial cluster detection, and several parametric models exist. For continuous data, a normal-based scan statistic can be used. However, the performance of the model has not been fully evaluated for non-normal data. We propose a nonparametric spatial scan statistic based on the Wilcoxon rank-sum test statistic and compared the performance of the method with parametric models via a simulation study under various scenarios. The nonparametric method outperforms the normal-based scan statistic in terms of power and accuracy in almost all cases under consideration in the simulation study. The proposed nonparametric spatial scan statistic is therefore an excellent alternative to the normal model for continuous data and is especially useful for data following skewed or heavy-tailed distributions.

  6. Effect of spatial smoothing on t-maps: arguments for going back from t-maps to masked contrast images.

    PubMed

    Reimold, Matthias; Slifstein, Mark; Heinz, Andreas; Mueller-Schauenburg, Wolfgang; Bares, Roland

    2006-06-01

    Voxelwise statistical analysis has become popular in explorative functional brain mapping with fMRI or PET. Usually, results are presented as voxelwise levels of significance (t-maps), and for clusters that survive correction for multiple testing the coordinates of the maximum t-value are reported. Before calculating a voxelwise statistical test, spatial smoothing is required to achieve a reasonable statistical power. Little attention is being given to the fact that smoothing has a nonlinear effect on the voxel variances and thus the local characteristics of a t-map, which becomes most evident after smoothing over different types of tissue. We investigated the related artifacts, for example, white matter peaks whose position depend on the relative variance (variance over contrast) of the surrounding regions, and suggest improving spatial precision with 'masked contrast images': color-codes are attributed to the voxelwise contrast, and significant clusters (e.g., detected with statistical parametric mapping, SPM) are enlarged by including contiguous pixels with a contrast above the mean contrast in the original cluster, provided they satisfy P < 0.05. The potential benefit is demonstrated with simulations and data from a [11C]Carfentanil PET study. We conclude that spatial smoothing may lead to critical, sometimes-counterintuitive artifacts in t-maps, especially in subcortical brain regions. If significant clusters are detected, for example, with SPM, the suggested method is one way to improve spatial precision and may give the investigator a more direct sense of the underlying data. Its simplicity and the fact that no further assumptions are needed make it a useful complement for standard methods of statistical mapping.

  7. The statistical geoportal and the ``cartographic added value'' - creation of the spatial knowledge infrastructure

    NASA Astrophysics Data System (ADS)

    Fiedukowicz, Anna; Gasiorowski, Jedrzej; Kowalski, Paweł; Olszewski, Robert; Pillich-Kolipinska, Agata

    2012-11-01

    The wide access to source data, published by numerous websites, results in situation, when information acquisition is not a problem any more. The real problem is how to transform information in the useful knowledge. Cartographic method of research, dealing with spatial data, has been serving this purpose for many years. Nowadays, it allows conducting analyses at the high complexity level, thanks to the intense development in IT technologies, The vast majority of analytic methods utilizing the so-called data mining and data enrichment techniques, however, concerns non-spatial data. According to the Authors, utilizing those techniques in spatial data analysis (including analysis based on statistical data with spatial reference), would allow the evolution of the Spatial Information Infrastructure (SII) into the Spatial Knowledge Infrastructure (SKI). The SKI development would benefit from the existence of statistical geoportal. Its proposed functionality, consisting of data analysis as well as visualization, is outlined in the article. The examples of geostatistical analyses (ANOVA and the regression model considering the spatial neighborhood), possible to implement in such portal and allowing to produce the “cartographic added value”, are also presented here. Szeroki dostep do danych zródłowych publikowanych w licznych serwisach internetowych sprawia, iz współczesnie problemem jest nie pozyskanie informacji, lecz umiejetne przekształcenie jej w uzyteczna wiedze. Kartograficzna metoda badan, która od wielu lat słuzy temu celowi w odniesieniu do danych przestrzennych, zyskuje dzis nowe oblicze - pozwala na wykonywanie złozonych analiz dzieki wykorzystaniu intensywnego rozwoju technologii informatycznych. Znaczaca wiekszosc zastosowan metod analitycznych tzw. eksploracyjnej analizy danych (data mining) i ich "wzbogacania” (data enrichment) dotyczy jednakze danych nieprzestrzennych. Wykorzystanie tych metod do analizy danych o charakterze przestrzennym, w tym danych statystycznych, i zapewnienie dostepu do nich w formie dedykowanych usług przyczyniłoby sie, zdaniem Autorów, do przetworzenia infrastruktury informacji przestrzennej (Spatial InformationInfrastructure - SII) w infrastrukture wiedzy przestrzennej (Spatial Knowledge Infrastructure - SKI). Rozwojowi SKI mógłby słuzyc geoportal statystyczny, którego propozycje funkcjonalnosci, obejmujace zarówno analize jak i wizualizacje danych, zarysowano w artykule. Zaprezentowano tez przykłady analiz statystycznych (ANOVA, regresja z uwzglednieniem sasiedztwa przestrzennego), mozliwych do zaimplementowania w takim portalu, a które mogłyby sie przyczynic do wytworzenia "kartograficznej wartosci dodanej”.

  8. Spatial characterization of dissolved trace elements and heavy metals in the upper Han River (China) using multivariate statistical techniques.

    PubMed

    Li, Siyue; Zhang, Quanfa

    2010-04-15

    A data matrix (4032 observations), obtained during a 2-year monitoring period (2005-2006) from 42 sites in the upper Han River is subjected to various multivariate statistical techniques including cluster analysis, principal component analysis (PCA), factor analysis (FA), correlation analysis and analysis of variance to determine the spatial characterization of dissolved trace elements and heavy metals. Our results indicate that waters in the upper Han River are primarily polluted by Al, As, Cd, Pb, Sb and Se, and the potential pollutants include Ba, Cr, Hg, Mn and Ni. Spatial distribution of trace metals indicates the polluted sections mainly concentrate in the Danjiang, Danjiangkou Reservoir catchment and Hanzhong Plain, and the most contaminated river is in the Hanzhong Plain. Q-model clustering depends on geographical location of sampling sites and groups the 42 sampling sites into four clusters, i.e., Danjiang, Danjiangkou Reservoir region (lower catchment), upper catchment and one river in headwaters pertaining to water quality. The headwaters, Danjiang and lower catchment, and upper catchment correspond to very high polluted, moderate polluted and relatively low polluted regions, respectively. Additionally, PCA/FA and correlation analysis demonstrates that Al, Cd, Mn, Ni, Fe, Si and Sr are controlled by natural sources, whereas the other metals appear to be primarily controlled by anthropogenic origins though geogenic source contributing to them. 2009 Elsevier B.V. All rights reserved.

  9. Spatial patterns of heavy metals in soil under different geological structures and land uses for assessing metal enrichments.

    PubMed

    Krami, Loghman Khoda; Amiri, Fazel; Sefiyanian, Alireza; Shariff, Abdul Rashid B Mohamed; Tabatabaie, Tayebeh; Pradhan, Biswajeet

    2013-12-01

    One hundred and thirty composite soil samples were collected from Hamedan county, Iran to characterize the spatial distribution and trace the sources of heavy metals including As, Cd, Co, Cr, Cu, Ni, Pb, V, Zn, and Fe. The multivariate gap statistical analysis was used; for interrelation of spatial patterns of pollution, the disjunctive kriging and geoenrichment factor (EF(G)) techniques were applied. Heavy metals and soil properties were grouped using agglomerative hierarchical clustering and gap statistic. Principal component analysis was used for identification of the source of metals in a set of data. Geostatistics was used for the geospatial data processing. Based on the comparison between the original data and background values of the ten metals, the disjunctive kriging and EF(G) techniques were used to quantify their geospatial patterns and assess the contamination levels of the heavy metals. The spatial distribution map combined with the statistical analysis showed that the main source of Cr, Co, Ni, Zn, Pb, and V in group A land use (agriculture, rocky, and urban) was geogenic; the origin of As, Cd, and Cu was industrial and agricultural activities (anthropogenic sources). In group B land use (rangeland and orchards), the origin of metals (Cr, Co, Ni, Zn, and V) was mainly controlled by natural factors and As, Cd, Cu, and Pb had been added by organic factors. In group C land use (water), the origin of most heavy metals is natural without anthropogenic sources. The Cd and As pollution was relatively more serious in different land use. The EF(G) technique used confirmed the anthropogenic influence of heavy metal pollution. All metals showed concentrations substantially higher than their background values, suggesting anthropogenic pollution.

  10. Analysing and correcting the differences between multi-source and multi-scale spatial remote sensing observations.

    PubMed

    Dong, Yingying; Luo, Ruisen; Feng, Haikuan; Wang, Jihua; Zhao, Jinling; Zhu, Yining; Yang, Guijun

    2014-01-01

    Differences exist among analysis results of agriculture monitoring and crop production based on remote sensing observations, which are obtained at different spatial scales from multiple remote sensors in same time period, and processed by same algorithms, models or methods. These differences can be mainly quantitatively described from three aspects, i.e. multiple remote sensing observations, crop parameters estimation models, and spatial scale effects of surface parameters. Our research proposed a new method to analyse and correct the differences between multi-source and multi-scale spatial remote sensing surface reflectance datasets, aiming to provide references for further studies in agricultural application with multiple remotely sensed observations from different sources. The new method was constructed on the basis of physical and mathematical properties of multi-source and multi-scale reflectance datasets. Theories of statistics were involved to extract statistical characteristics of multiple surface reflectance datasets, and further quantitatively analyse spatial variations of these characteristics at multiple spatial scales. Then, taking the surface reflectance at small spatial scale as the baseline data, theories of Gaussian distribution were selected for multiple surface reflectance datasets correction based on the above obtained physical characteristics and mathematical distribution properties, and their spatial variations. This proposed method was verified by two sets of multiple satellite images, which were obtained in two experimental fields located in Inner Mongolia and Beijing, China with different degrees of homogeneity of underlying surfaces. Experimental results indicate that differences of surface reflectance datasets at multiple spatial scales could be effectively corrected over non-homogeneous underlying surfaces, which provide database for further multi-source and multi-scale crop growth monitoring and yield prediction, and their corresponding consistency analysis evaluation.

  11. Analysing and Correcting the Differences between Multi-Source and Multi-Scale Spatial Remote Sensing Observations

    PubMed Central

    Dong, Yingying; Luo, Ruisen; Feng, Haikuan; Wang, Jihua; Zhao, Jinling; Zhu, Yining; Yang, Guijun

    2014-01-01

    Differences exist among analysis results of agriculture monitoring and crop production based on remote sensing observations, which are obtained at different spatial scales from multiple remote sensors in same time period, and processed by same algorithms, models or methods. These differences can be mainly quantitatively described from three aspects, i.e. multiple remote sensing observations, crop parameters estimation models, and spatial scale effects of surface parameters. Our research proposed a new method to analyse and correct the differences between multi-source and multi-scale spatial remote sensing surface reflectance datasets, aiming to provide references for further studies in agricultural application with multiple remotely sensed observations from different sources. The new method was constructed on the basis of physical and mathematical properties of multi-source and multi-scale reflectance datasets. Theories of statistics were involved to extract statistical characteristics of multiple surface reflectance datasets, and further quantitatively analyse spatial variations of these characteristics at multiple spatial scales. Then, taking the surface reflectance at small spatial scale as the baseline data, theories of Gaussian distribution were selected for multiple surface reflectance datasets correction based on the above obtained physical characteristics and mathematical distribution properties, and their spatial variations. This proposed method was verified by two sets of multiple satellite images, which were obtained in two experimental fields located in Inner Mongolia and Beijing, China with different degrees of homogeneity of underlying surfaces. Experimental results indicate that differences of surface reflectance datasets at multiple spatial scales could be effectively corrected over non-homogeneous underlying surfaces, which provide database for further multi-source and multi-scale crop growth monitoring and yield prediction, and their corresponding consistency analysis evaluation. PMID:25405760

  12. Statistical Analysis of TEC Anomalies Prior to M6.0+ Earthquakes During 2003-2014

    NASA Astrophysics Data System (ADS)

    Zhu, Fuying; Su, Fanfan; Lin, Jian

    2018-04-01

    There are many studies on the anomalous variations of the ionospheric TEC prior to large earthquakes. However, whether or not the morphological characteristics of the TEC anomalies in the daytime and at night are different is rarely studied. In the present paper, based on the total electron content (TEC) data from the global ionosphere map (GIM), we carry out a statistical survey on the spatial-temporal distribution of TEC anomalies before 1339 global M6.0+ earthquakes during 2003-2014. After excluding the interference of geomagnetic disturbance, the temporal and spatial distributions of ionospheric TEC anomalies prior to the earthquakes in the daytime and at night are investigated and compared. Except that the nighttime occurrence rates of the pre-earthquake ionospheric anomalies (PEIAs) are higher than those in the daytime, our analysis has not found any statistically significant difference in the spatial-temporal distribution of PEIAs in the daytime and at night. Moreover, the occurrence rates of pre-earthquake ionospheric TEC both positive anomalies and negative anomalies at night tend to increase slightly with the earthquake magnitude. Thus, we suggest that monitoring the ionospheric TEC changes at night might be a clue to reveal the relation between ionospheric disturbances and seismic activities.

  13. A flexibly shaped space-time scan statistic for disease outbreak detection and monitoring.

    PubMed

    Takahashi, Kunihiko; Kulldorff, Martin; Tango, Toshiro; Yih, Katherine

    2008-04-11

    Early detection of disease outbreaks enables public health officials to implement disease control and prevention measures at the earliest possible time. A time periodic geographical disease surveillance system based on a cylindrical space-time scan statistic has been used extensively for disease surveillance along with the SaTScan software. In the purely spatial setting, many different methods have been proposed to detect spatial disease clusters. In particular, some spatial scan statistics are aimed at detecting irregularly shaped clusters which may not be detected by the circular spatial scan statistic. Based on the flexible purely spatial scan statistic, we propose a flexibly shaped space-time scan statistic for early detection of disease outbreaks. The performance of the proposed space-time scan statistic is compared with that of the cylindrical scan statistic using benchmark data. In order to compare their performances, we have developed a space-time power distribution by extending the purely spatial bivariate power distribution. Daily syndromic surveillance data in Massachusetts, USA, are used to illustrate the proposed test statistic. The flexible space-time scan statistic is well suited for detecting and monitoring disease outbreaks in irregularly shaped areas.

  14. Dynamic Analysis and Research on Environmental Pollution in China from 1992 to 2014

    NASA Astrophysics Data System (ADS)

    Sun, Fei; Yuan, Peng; Li, Huiting; Zhang, Moli

    2018-01-01

    The regular pattern of development of the environmental pollution events was analyzed from the perspective of statistical analysis of pollution events in recent years. The Moran, s I and spatial center-of-gravity shift curve of China, s environmental emergencies were calculated by ARCGIS software. And the method is global spatial analysis and spatial center of gravity shift. The results showed that the trend of China, s environmental pollution events from 1992 to 2014 was the first dynamic growth and then gradually reduced. Environmental pollution events showed spatial aggregation distribution in 1992-1994, 2001-2006, 2008-2014, and the rest of year was a random distribution of space. There were two stages in China, s environmental pollution events: The transition to the southwest from 1992 to 2006 and the transition to the northeast from the year of 2006 to 2014.

  15. BATSE analysis techniques for probing the GRB spatial and luminosity distributions

    NASA Technical Reports Server (NTRS)

    Hakkila, Jon; Meegan, Charles A.

    1992-01-01

    The Burst And Transient Source Experiment (BATSE) has measured homogeneity and isotropy parameters from an increasingly large sample of observed gamma-ray bursts (GRBs), while also maintaining a summary of the way in which the sky has been sampled. Measurement of both of these are necessary for any study of the BATSE data statistically, as they take into account the most serious observational selection effects known in the study of GRBs: beam-smearing and inhomogeneous, anisotropic sky sampling. Knowledge of these effects is important to analysis of GRB angular and intensity distributions. In addition to determining that the bursts are local, it is hoped that analysis of such distributions will allow boundaries to be placed on the true GRB spatial distribution and luminosity function. The technique for studying GRB spatial and luminosity distributions is direct. Results of BATSE analyses are compared to Monte Carlo models parameterized by a variety of spatial and luminosity characteristics.

  16. Dynamics of land change in India: a fine-scale spatial analysis

    NASA Astrophysics Data System (ADS)

    Meiyappan, P.; Roy, P. S.; Sharma, Y.; Jain, A. K.; Ramachandran, R.; Joshi, P. K.

    2015-12-01

    Land is scarce in India: India occupies 2.4% of worlds land area, but supports over 1/6th of worlds human and livestock population. This high population to land ratio, combined with socioeconomic development and increasing consumption has placed tremendous pressure on India's land resources for food, feed, and fuel. In this talk, we present contemporary (1985 to 2005) spatial estimates of land change in India using national-level analysis of Landsat imageries. Further, we investigate the causes of the spatial patterns of change using two complementary lines of evidence. First, we use statistical models estimated at macro-scale to understand the spatial relationships between land change patterns and their concomitant drivers. This analysis using our newly compiled extensive socioeconomic database at village level (~630,000 units), is 100x higher in spatial resolution compared to existing datasets, and covers over 200 variables. The detailed socioeconomic data enabled the fine-scale spatial analysis with Landsat data. Second, we synthesized information from over 130 survey based case studies on land use drivers in India to complement our macro-scale analysis. The case studies are especially useful to identify unobserved variables (e.g. farmer's attitude towards risk). Ours is the most detailed analysis of contemporary land change in India, both in terms of national extent, and the use of detailed spatial information on land change, socioeconomic factors, and synthesis of case studies.

  17. Using vadose zone data and spatial statistics to assess the impact of cultivated land and dairy waste lagoons on groundwater contamination

    NASA Astrophysics Data System (ADS)

    Baram, S.; Ronen, Z.; Kurtzman, D.; Peeters, A.; Dahan, O.

    2013-12-01

    Land cultivation and dairy waste lagoons are considered to be nonpoint and point sources of groundwater contamination by chloride (Cl-) and nitrate (NO3-). The objective of this work is to introduce a methodology to assess the past and future impacts of such agricultural activities on regional groundwater quality. The method is based on mass balances and on spatial statistical analysis of Cl- and NO3-concentration distributions in the saturated and unsaturated zones. The method enables quantitative analysis of the relation between the locations of pollution point sources and the spatial variability in Cl- and NO3- concentrations in groundwater. The method was applied to the Beer-Tuvia region, Israel, where intensive dairy farming along with land cultivation has been practiced for over 50 years above the local phreatic aquifer. Mass balance calculations accounted for the various groundwater recharge and abstraction sources and sinks in the entire region. The mass balances showed that leachates from lagoons and the cultivated land have contributed 6.0 and 89.4 % of the total mass of Cl- added to the aquifer and 12.6 and 77.4 % of the total mass of NO3-. The chemical composition of the aquifer and vadose zone water suggested that irrigated agricultural activity in the region is the main contributor of Cl- and NO3- to the groundwater. A low spatial correlation between the Cl- and NO3- concentrations in the groundwater and the on-land location of the dairy farms strengthened this assumption, despite the dairy waste lagoon being a point source for groundwater contamination by Cl- and NO3-. Results demonstrate that analyzing vadose zone and groundwater data by spatial statistical analysis methods can significantly contribute to the understanding of the relations between groundwater contaminating sources, and to assessing appropriate remediation steps.

  18. The influence of the interactions between anthropogenic activities and multiple ecological factors on land surface temperatures of urban forests

    NASA Astrophysics Data System (ADS)

    Ren, Y.

    2017-12-01

    Context Land surface temperatures (LSTs) spatio-temporal distribution pattern of urban forests are influenced by many ecological factors; the identification of interaction between these factors can improve simulations and predictions of spatial patterns of urban cold islands. This quantitative research requires an integrated method that combines multiple sources data with spatial statistical analysis. Objectives The purpose of this study was to clarify urban forest LST influence interaction between anthropogenic activities and multiple ecological factors using cluster analysis of hot and cold spots and Geogdetector model. We introduced the hypothesis that anthropogenic activity interacts with certain ecological factors, and their combination influences urban forests LST. We also assumed that spatio-temporal distributions of urban forest LST should be similar to those of ecological factors and can be represented quantitatively. Methods We used Jinjiang as a representative city in China as a case study. Population density was employed to represent anthropogenic activity. We built up a multi-source data (forest inventory, digital elevation models (DEM), population, and remote sensing imagery) on a unified urban scale to support urban forest LST influence interaction research. Through a combination of spatial statistical analysis results, multi-source spatial data, and Geogdetector model, the interaction mechanisms of urban forest LST were revealed. Results Although different ecological factors have different influences on forest LST, in two periods with different hot spots and cold spots, the patch area and dominant tree species were the main factors contributing to LST clustering in urban forests. The interaction between anthropogenic activity and multiple ecological factors increased LST in urban forest stands, linearly and nonlinearly. Strong interactions between elevation and dominant species were generally observed and were prevalent in either hot or cold spots areas in different years. Conclusions In conclusion, a combination of spatial statistics and GeogDetector models should be effective for quantitatively evaluating interactive relationships among ecological factors, anthropogenic activity and LST.

  19. Extracting temporal and spatial information from remotely sensed data for mapping wildlife habitat: Tucson

    USGS Publications Warehouse

    Wallace, Cynthia S.A.; Advised by Marsh, Stuart E.

    2002-01-01

    The research accomplished in this dissertation used both mathematical and statistical techniques to extract and evaluate measures of landscape temporal dynamics and spatial structure from remotely sensed data for the purpose of mapping wildlife habitat. By coupling the landscape measures gleaned from the remotely sensed data with various sets of animal sightings and population data, effective models of habitat preference were created.Measures of temporal dynamics of vegetation greenness as measured by National Oceanographic and Atmospheric Administration’s Advanced Very High Resolution Radiometer (AVHRR) satellite were used to effectively characterize and map season specific habitat of the Sonoran pronghorn antelope, as well as produce preliminary models of potential yellow-billed cuckoo habitat in Arizona. Various measures that capture different aspects of the temporal dynamics of the landscape were derived from AVHRR Normalized Difference Vegetation Index composite data using three main classes of calculations: basic statistics, standardized principal components analysis, and Fourier analysis. Pronghorn habitat models based on the AVHRR measures correspond visually and statistically to GIS-based models produced using data that represent detailed knowledge of ground-condition.Measures of temporal dynamics also revealed statistically significant correlations with annual estimates of elk population in selected Arizona Game Management Units, suggesting elk respond to regional environmental changes that can be measured using satellite data. Such relationships, once verified and established, can be used to help indirectly monitor the population.Measures of landscape spatial structure derived from IKONOS high spatial resolution (1-m) satellite data using geostatistics effectively map details of Sonoran pronghorn antelope habitat. Local estimates of the nugget, sill, and range variogram parameters calculated within 25 x 25-meter image windows describe the spatial autocorrelation of the image, permitting classification of all pixels into coherent units whose signature graphs exhibit a classic variogram shape. The variogram parameters captured in these signatures have been shown in previous studies to discriminate between different species-specific vegetation associations.The synoptic view of the landscape provided by satellite data can inform resource management efforts. The ability to characterize the spatial structure and temporal dynamics of habitat using repeatable remote sensing data allows closer monitoring of the relationship between a species and its landscape.

  20. Groundwater quality assessment of urban Bengaluru using multivariate statistical techniques

    NASA Astrophysics Data System (ADS)

    Gulgundi, Mohammad Shahid; Shetty, Amba

    2018-03-01

    Groundwater quality deterioration due to anthropogenic activities has become a subject of prime concern. The objective of the study was to assess the spatial and temporal variations in groundwater quality and to identify the sources in the western half of the Bengaluru city using multivariate statistical techniques. Water quality index rating was calculated for pre and post monsoon seasons to quantify overall water quality for human consumption. The post-monsoon samples show signs of poor quality in drinking purpose compared to pre-monsoon. Cluster analysis (CA), principal component analysis (PCA) and discriminant analysis (DA) were applied to the groundwater quality data measured on 14 parameters from 67 sites distributed across the city. Hierarchical cluster analysis (CA) grouped the 67 sampling stations into two groups, cluster 1 having high pollution and cluster 2 having lesser pollution. Discriminant analysis (DA) was applied to delineate the most meaningful parameters accounting for temporal and spatial variations in groundwater quality of the study area. Temporal DA identified pH as the most important parameter, which discriminates between water quality in the pre-monsoon and post-monsoon seasons and accounts for 72% seasonal assignation of cases. Spatial DA identified Mg, Cl and NO3 as the three most important parameters discriminating between two clusters and accounting for 89% spatial assignation of cases. Principal component analysis was applied to the dataset obtained from the two clusters, which evolved three factors in each cluster, explaining 85.4 and 84% of the total variance, respectively. Varifactors obtained from principal component analysis showed that groundwater quality variation is mainly explained by dissolution of minerals from rock water interactions in the aquifer, effect of anthropogenic activities and ion exchange processes in water.

  1. Spatial analysis of relative humidity during ungauged periods in a mountainous region

    NASA Astrophysics Data System (ADS)

    Um, Myoung-Jin; Kim, Yeonjoo

    2017-08-01

    Although atmospheric humidity influences environmental and agricultural conditions, thereby influencing plant growth, human health, and air pollution, efforts to develop spatial maps of atmospheric humidity using statistical approaches have thus far been limited. This study therefore aims to develop statistical approaches for inferring the spatial distribution of relative humidity (RH) for a mountainous island, for which data are not uniformly available across the region. A multiple regression analysis based on various mathematical models was used to identify the optimal model for estimating monthly RH by incorporating not only temperature but also location and elevation. Based on the regression analysis, we extended the monthly RH data from weather stations to cover the ungauged periods when no RH observations were available. Then, two different types of station-based data, the observational data and the data extended via the regression model, were used to form grid-based data with a resolution of 100 m. The grid-based data that used the extended station-based data captured the increasing RH trend along an elevation gradient. Furthermore, annual RH values averaged over the regions were examined. Decreasing temporal trends were found in most cases, with magnitudes varying based on the season and region.

  2. Optimization method of superpixel analysis for multi-contrast Jones matrix tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Miyazawa, Arata; Hong, Young-Joo; Makita, Shuichi; Kasaragod, Deepa K.; Miura, Masahiro; Yasuno, Yoshiaki

    2017-02-01

    Local statistics are widely utilized for quantification and image processing of OCT. For example, local mean is used to reduce speckle, local variation of polarization state (degree-of-polarization-uniformity (DOPU)) is used to visualize melanin. Conventionally, these statistics are calculated in a rectangle kernel whose size is uniform over the image. However, the fixed size and shape of the kernel result in a tradeoff between image sharpness and statistical accuracy. Superpixel is a cluster of pixels which is generated by grouping image pixels based on the spatial proximity and similarity of signal values. Superpixels have variant size and flexible shapes which preserve the tissue structure. Here we demonstrate a new superpixel method which is tailored for multifunctional Jones matrix OCT (JM-OCT). This new method forms the superpixels by clustering image pixels in a 6-dimensional (6-D) feature space (spatial two dimensions and four dimensions of optical features). All image pixels were clustered based on their spatial proximity and optical feature similarity. The optical features are scattering, OCT-A, birefringence and DOPU. The method is applied to retinal OCT. Generated superpixels preserve the tissue structures such as retinal layers, sclera, vessels, and retinal pigment epithelium. Hence, superpixel can be utilized as a local statistics kernel which would be more suitable than a uniform rectangle kernel. Superpixelized image also can be used for further image processing and analysis. Since it reduces the number of pixels to be analyzed, it reduce the computational cost of such image processing.

  3. Spatial and temporal patterns of locally-acquired dengue transmission in northern Queensland, Australia, 1993-2012.

    PubMed

    Naish, Suchithra; Dale, Pat; Mackenzie, John S; McBride, John; Mengersen, Kerrie; Tong, Shilu

    2014-01-01

    Dengue has been a major public health concern in Australia since it re-emerged in Queensland in 1992-1993. We explored spatio-temporal characteristics of locally-acquired dengue cases in northern tropical Queensland, Australia during the period 1993-2012. Locally-acquired notified cases of dengue were collected for northern tropical Queensland from 1993 to 2012. Descriptive spatial and temporal analyses were conducted using geographic information system tools and geostatistical techniques. 2,398 locally-acquired dengue cases were recorded in northern tropical Queensland during the study period. The areas affected by the dengue cases exhibited spatial and temporal variation over the study period. Notified cases of dengue occurred more frequently in autumn. Mapping of dengue by statistical local areas (census units) reveals the presence of substantial spatio-temporal variation over time and place. Statistically significant differences in dengue incidence rates among males and females (with more cases in females) (χ(2) = 15.17, d.f.  = 1, p<0.01). Differences were observed among age groups, but these were not statistically significant. There was a significant positive spatial autocorrelation of dengue incidence for the four sub-periods, with the Moran's I statistic ranging from 0.011 to 0.463 (p<0.01). Semi-variogram analysis and smoothed maps created from interpolation techniques indicate that the pattern of spatial autocorrelation was not homogeneous across the northern Queensland. Tropical areas are potential high-risk areas for mosquito-borne diseases such as dengue. This study demonstrated that the locally-acquired dengue cases have exhibited a spatial and temporal variation over the past twenty years in northern tropical Queensland, Australia. Therefore, this study provides an impetus for further investigation of clusters and risk factors in these high-risk areas.

  4. Spatial and Temporal Patterns of Locally-Acquired Dengue Transmission in Northern Queensland, Australia, 1993–2012

    PubMed Central

    Naish, Suchithra; Dale, Pat; Mackenzie, John S.; McBride, John; Mengersen, Kerrie; Tong, Shilu

    2014-01-01

    Background Dengue has been a major public health concern in Australia since it re-emerged in Queensland in 1992–1993. We explored spatio-temporal characteristics of locally-acquired dengue cases in northern tropical Queensland, Australia during the period 1993–2012. Methods Locally-acquired notified cases of dengue were collected for northern tropical Queensland from 1993 to 2012. Descriptive spatial and temporal analyses were conducted using geographic information system tools and geostatistical techniques. Results 2,398 locally-acquired dengue cases were recorded in northern tropical Queensland during the study period. The areas affected by the dengue cases exhibited spatial and temporal variation over the study period. Notified cases of dengue occurred more frequently in autumn. Mapping of dengue by statistical local areas (census units) reveals the presence of substantial spatio-temporal variation over time and place. Statistically significant differences in dengue incidence rates among males and females (with more cases in females) (χ2 = 15.17, d.f. = 1, p<0.01). Differences were observed among age groups, but these were not statistically significant. There was a significant positive spatial autocorrelation of dengue incidence for the four sub-periods, with the Moran's I statistic ranging from 0.011 to 0.463 (p<0.01). Semi-variogram analysis and smoothed maps created from interpolation techniques indicate that the pattern of spatial autocorrelation was not homogeneous across the northern Queensland. Conclusions Tropical areas are potential high-risk areas for mosquito-borne diseases such as dengue. This study demonstrated that the locally-acquired dengue cases have exhibited a spatial and temporal variation over the past twenty years in northern tropical Queensland, Australia. Therefore, this study provides an impetus for further investigation of clusters and risk factors in these high-risk areas. PMID:24691549

  5. A factor analysis of the SSQ (Speech, Spatial, and Qualities of Hearing Scale)

    PubMed Central

    2014-01-01

    Objective The speech, spatial, and qualities of hearing questionnaire (SSQ) is a self-report test of auditory disability. The 49 items ask how well a listener would do in many complex listening situations illustrative of real life. The scores on the items are often combined into the three main sections or into 10 pragmatic subscales. We report here a factor analysis of the SSQ that we conducted to further investigate its statistical properties and to determine its structure. Design Statistical factor analysis of questionnaire data, using parallel analysis to determine the number of factors to retain, oblique rotation of factors, and a bootstrap method to estimate the confidence intervals. Study sample 1220 people who have attended MRC IHR over the last decade. Results We found three clear factors, essentially corresponding to the three main sections of the SSQ. They are termed “speech understanding”, “spatial perception”, and “clarity, separation, and identification”. Thirty-five of the SSQ questions were included in the three factors. There was partial evidence for a fourth factor, “effort and concentration”, representing two more questions. Conclusions These results aid in the interpretation and application of the SSQ and indicate potential methods for generating average scores. PMID:24417459

  6. A framework for incorporating DTI Atlas Builder registration into Tract-Based Spatial Statistics and a simulated comparison to standard TBSS.

    PubMed

    Leming, Matthew; Steiner, Rachel; Styner, Martin

    2016-02-27

    Tract-based spatial statistics (TBSS) 6 is a software pipeline widely employed in comparative analysis of the white matter integrity from diffusion tensor imaging (DTI) datasets. In this study, we seek to evaluate the relationship between different methods of atlas registration for use with TBSS and different measurements of DTI (fractional anisotropy, FA, axial diffusivity, AD, radial diffusivity, RD, and medial diffusivity, MD). To do so, we have developed a novel tool that builds on existing diffusion atlas building software, integrating it into an adapted version of TBSS called DAB-TBSS (DTI Atlas Builder-Tract-Based Spatial Statistics) by using the advanced registration offered in DTI Atlas Builder 7 . To compare the effectiveness of these two versions of TBSS, we also propose a framework for simulating population differences for diffusion tensor imaging data, providing a more substantive means of empirically comparing DTI group analysis programs such as TBSS. In this study, we used 33 diffusion tensor imaging datasets and simulated group-wise changes in this data by increasing, in three different simulations, the principal eigenvalue (directly altering AD), the second and third eigenvalues (RD), and all three eigenvalues (MD) in the genu, the right uncinate fasciculus, and the left IFO. Additionally, we assessed the benefits of comparing the tensors directly using a functional analysis of diffusion tensor tract statistics (FADTTS 10 ). Our results indicate comparable levels of FA-based detection between DAB-TBSS and TBSS, with standard TBSS registration reporting a higher rate of false positives in other measurements of DTI. Within the simulated changes investigated here, this study suggests that the use of DTI Atlas Builder's registration enhances TBSS group-based studies.

  7. Multivariate Statistical Analysis: a tool for groundwater quality assessment in the hidrogeologic region of the Ring of Cenotes, Yucatan, Mexico.

    NASA Astrophysics Data System (ADS)

    Ye, M.; Pacheco Castro, R. B.; Pacheco Avila, J.; Cabrera Sansores, A.

    2014-12-01

    The karstic aquifer of Yucatan is a vulnerable and complex system. The first fifteen meters of this aquifer have been polluted, due to this the protection of this resource is important because is the only source of potable water of the entire State. Through the assessment of groundwater quality we can gain some knowledge about the main processes governing water chemistry as well as spatial patterns which are important to establish protection zones. In this work multivariate statistical techniques are used to assess the groundwater quality of the supply wells (30 to 40 meters deep) in the hidrogeologic region of the Ring of Cenotes, located in Yucatan, Mexico. Cluster analysis and principal component analysis are applied in groundwater chemistry data of the study area. Results of principal component analysis show that the main sources of variation in the data are due sea water intrusion and the interaction of the water with the carbonate rocks of the system and some pollution processes. The cluster analysis shows that the data can be divided in four clusters. The spatial distribution of the clusters seems to be random, but is consistent with sea water intrusion and pollution with nitrates. The overall results show that multivariate statistical analysis can be successfully applied in the groundwater quality assessment of this karstic aquifer.

  8. Spatial landscape model to characterize biological diversity using R statistical computing environment.

    PubMed

    Singh, Hariom; Garg, R D; Karnatak, Harish C; Roy, Arijit

    2018-01-15

    Due to urbanization and population growth, the degradation of natural forests and associated biodiversity are now widely recognized as a global environmental concern. Hence, there is an urgent need for rapid assessment and monitoring of biodiversity on priority using state-of-art tools and technologies. The main purpose of this research article is to develop and implement a new methodological approach to characterize biological diversity using spatial model developed during the study viz. Spatial Biodiversity Model (SBM). The developed model is scale, resolution and location independent solution for spatial biodiversity richness modelling. The platform-independent computation model is based on parallel computation. The biodiversity model based on open-source software has been implemented on R statistical computing platform. It provides information on high disturbance and high biological richness areas through different landscape indices and site specific information (e.g. forest fragmentation (FR), disturbance index (DI) etc.). The model has been developed based on the case study of Indian landscape; however it can be implemented in any part of the world. As a case study, SBM has been tested for Uttarakhand state in India. Inputs for landscape ecology are derived through multi-criteria decision making (MCDM) techniques in an interactive command line environment. MCDM with sensitivity analysis in spatial domain has been carried out to illustrate the model stability and robustness. Furthermore, spatial regression analysis has been made for the validation of the output. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Spatial interpolation of monthly mean air temperature data for Latvia

    NASA Astrophysics Data System (ADS)

    Aniskevich, Svetlana

    2016-04-01

    Temperature data with high spatial resolution are essential for appropriate and qualitative local characteristics analysis. Nowadays the surface observation station network in Latvia consists of 22 stations recording daily air temperature, thus in order to analyze very specific and local features in the spatial distribution of temperature values in the whole Latvia, a high quality spatial interpolation method is required. Until now inverse distance weighted interpolation was used for the interpolation of air temperature data at the meteorological and climatological service of the Latvian Environment, Geology and Meteorology Centre, and no additional topographical information was taken into account. This method made it almost impossible to reasonably assess the actual temperature gradient and distribution between the observation points. During this project a new interpolation method was applied and tested, considering auxiliary explanatory parameters. In order to spatially interpolate monthly mean temperature values, kriging with external drift was used over a grid of 1 km resolution, which contains parameters such as 5 km mean elevation, continentality, distance from the Gulf of Riga and the Baltic Sea, biggest lakes and rivers, population density. As the most appropriate of these parameters, based on a complex situation analysis, mean elevation and continentality was chosen. In order to validate interpolation results, several statistical indicators of the differences between predicted values and the values actually observed were used. Overall, the introduced model visually and statistically outperforms the previous interpolation method and provides a meteorologically reasonable result, taking into account factors that influence the spatial distribution of the monthly mean temperature.

  10. Spatial Analysis of Hemorrhagic Fever with Renal Syndrome in Zibo City, China, 2009–2012

    PubMed Central

    Wang, Ling; Yang, Shuxia; Zhang, Ling; Cao, Haixia; Zhang, Yan; Hu, Haodong; Zhai, Shenyong

    2013-01-01

    Background Hemorrhagic fever with renal syndrome (HFRS) is highly endemic in mainland China, where human cases account for 90% of the total global cases. Zibo City is one of the most serious affected areas in Shandong Province China with the HFRS incidence increasing sharply from 2009 to 2012. However, the hotspots of HFRS in Zibo remained unclear. Thus, a spatial analysis was conducted with the aim to explore the spatial, spatial-temporal and seasonal patterns of HFRS in Zibo from 2009 to 2012, and to provide guidance for formulating regional prevention and control strategies. Methods The study was based on the reported cases of HFRS from the National Notifiable Disease Surveillance System. Annualized incidence maps and seasonal incidence maps were produced to analyze the spatial and seasonal distribution of HFRS in Zibo City. Then spatial scan statistics and space-time scan statistics were conducted to identify clusters of HFRS. Results There were 200 cases reported in Zibo City during the 4-year study period. One most likely cluster and one secondary cluster for high incidence of HFRS were identified by the space-time analysis. And the most likely cluster was found to exist at Yiyuan County in October to December 2012. The human infections in the fall and winter reflected a seasonal characteristic pattern of Hantaan virus (HTNV) transmission. The secondary cluster was detected at the center of Zibo in May to June 2009, presenting a seasonal characteristic of Seoul virus (SEOV) transmission. Conclusion To control and prevent HFRS in Zibo city, the comprehensive preventive strategy should be implemented in the southern areas of Zibo in autumn and in the northern areas of Zibo in spring. PMID:23840719

  11. Genotyping and spatial analysis of pulmonary tuberculosis and diabetes cases in the state of Veracruz, Mexico.

    PubMed

    Blanco-Guillot, Francles; Castañeda-Cediel, M Lucía; Cruz-Hervert, Pablo; Ferreyra-Reyes, Leticia; Delgado-Sánchez, Guadalupe; Ferreira-Guerrero, Elizabeth; Montero-Campos, Rogelio; Bobadilla-Del-Valle, Miriam; Martínez-Gamboa, Rosa Areli; Torres-González, Pedro; Téllez-Vazquez, Norma; Canizales-Quintero, Sergio; Yanes-Lane, Mercedes; Mongua-Rodríguez, Norma; Ponce-de-León, Alfredo; Sifuentes-Osornio, José; García-García, Lourdes

    2018-01-01

    Genotyping and georeferencing in tuberculosis (TB) have been used to characterize the distribution of the disease and occurrence of transmission within specific groups and communities. The objective of this study was to test the hypothesis that diabetes mellitus (DM) and pulmonary TB may occur in spatial and molecular aggregations. Retrospective cohort study of patients with pulmonary TB. The study area included 12 municipalities in the Sanitary Jurisdiction of Orizaba, Veracruz, México. Patients with acid-fast bacilli in sputum smears and/or Mycobacterium tuberculosis in sputum cultures were recruited from 1995 to 2010. Clinical (standardized questionnaire, physical examination, chest X-ray, blood glucose test and HIV test), microbiological, epidemiological, and molecular evaluations were carried out. Patients were considered "genotype-clustered" if two or more isolates from different patients were identified within 12 months of each other and had six or more IS6110 bands in an identical pattern, or < 6 bands with identical IS6110 RFLP patterns and spoligotype with the same spacer oligonucleotides. Residential and health care centers addresses were georeferenced. We used a Jeep hand GPS. The coordinates were transferred from the GPS files to ArcGIS using ArcMap 9.3. We evaluated global spatial aggregation of patients in IS6110-RFLP/ spoligotype clusters using global Moran´s I. Since global distribution was not random, we evaluated "hotspots" using Getis-Ord Gi* statistic. Using bivariate and multivariate analysis we analyzed sociodemographic, behavioral, clinic and bacteriological conditions associated with "hotspots". We used STATA® v13.1 for all statistical analysis. From 1995 to 2010, 1,370 patients >20 years were diagnosed with pulmonary TB; 33% had DM. The proportion of isolates that were genotyped was 80.7% (n = 1105), of which 31% (n = 342) were grouped in 91 genotype clusters with 2 to 23 patients each; 65.9% of total clusters were small (2 members) involving 35.08% of patients. Twenty three (22.7) percent of cases were classified as recent transmission. Moran`s I indicated that distribution of patients in IS6110-RFLP/spoligotype clusters was not random (Moran`s I = 0.035468, Z value = 7.0, p = 0.00). Local spatial analysis showed statistically significant spatial aggregation of patients in IS6110-RFLP/spoligotype clusters identifying "hotspots" and "coldspots". GI* statistic showed that the hotspot for spatial clustering was located in Camerino Z. Mendoza municipality; 14.6% (50/342) of patients in genotype clusters were located in a hotspot; of these, 60% (30/50) lived with DM. Using logistic regression the statistically significant variables associated with hotspots were: DM [adjusted Odds Ratio (aOR) 7.04, 95% Confidence interval (CI) 3.03-16.38] and attending the health center in Camerino Z. Mendoza (aOR18.04, 95% CI 7.35-44.28). The combination of molecular and epidemiological information with geospatial data allowed us to identify the concurrence of molecular clustering and spatial aggregation of patients with DM and TB. This information may be highly useful for TB control programs.

  12. Genotyping and spatial analysis of pulmonary tuberculosis and diabetes cases in the state of Veracruz, Mexico

    PubMed Central

    Blanco-Guillot, Francles; Ferreyra-Reyes, Leticia; Delgado-Sánchez, Guadalupe; Ferreira-Guerrero, Elizabeth; Montero-Campos, Rogelio; Bobadilla-del-Valle, Miriam; Martínez-Gamboa, Rosa Areli; Torres-González, Pedro; Téllez-Vazquez, Norma; Canizales-Quintero, Sergio; Yanes-Lane, Mercedes; Mongua-Rodríguez, Norma; Ponce-de-León, Alfredo; Sifuentes-Osornio, José

    2018-01-01

    Background Genotyping and georeferencing in tuberculosis (TB) have been used to characterize the distribution of the disease and occurrence of transmission within specific groups and communities. Objective The objective of this study was to test the hypothesis that diabetes mellitus (DM) and pulmonary TB may occur in spatial and molecular aggregations. Material and methods Retrospective cohort study of patients with pulmonary TB. The study area included 12 municipalities in the Sanitary Jurisdiction of Orizaba, Veracruz, México. Patients with acid-fast bacilli in sputum smears and/or Mycobacterium tuberculosis in sputum cultures were recruited from 1995 to 2010. Clinical (standardized questionnaire, physical examination, chest X-ray, blood glucose test and HIV test), microbiological, epidemiological, and molecular evaluations were carried out. Patients were considered “genotype-clustered” if two or more isolates from different patients were identified within 12 months of each other and had six or more IS6110 bands in an identical pattern, or < 6 bands with identical IS6110 RFLP patterns and spoligotype with the same spacer oligonucleotides. Residential and health care centers addresses were georeferenced. We used a Jeep hand GPS. The coordinates were transferred from the GPS files to ArcGIS using ArcMap 9.3. We evaluated global spatial aggregation of patients in IS6110-RFLP/ spoligotype clusters using global Moran´s I. Since global distribution was not random, we evaluated “hotspots” using Getis-Ord Gi* statistic. Using bivariate and multivariate analysis we analyzed sociodemographic, behavioral, clinic and bacteriological conditions associated with “hotspots”. We used STATA® v13.1 for all statistical analysis. Results From 1995 to 2010, 1,370 patients >20 years were diagnosed with pulmonary TB; 33% had DM. The proportion of isolates that were genotyped was 80.7% (n = 1105), of which 31% (n = 342) were grouped in 91 genotype clusters with 2 to 23 patients each; 65.9% of total clusters were small (2 members) involving 35.08% of patients. Twenty three (22.7) percent of cases were classified as recent transmission. Moran`s I indicated that distribution of patients in IS6110-RFLP/spoligotype clusters was not random (Moran`s I = 0.035468, Z value = 7.0, p = 0.00). Local spatial analysis showed statistically significant spatial aggregation of patients in IS6110-RFLP/spoligotype clusters identifying “hotspots” and “coldspots”. GI* statistic showed that the hotspot for spatial clustering was located in Camerino Z. Mendoza municipality; 14.6% (50/342) of patients in genotype clusters were located in a hotspot; of these, 60% (30/50) lived with DM. Using logistic regression the statistically significant variables associated with hotspots were: DM [adjusted Odds Ratio (aOR) 7.04, 95% Confidence interval (CI) 3.03–16.38] and attending the health center in Camerino Z. Mendoza (aOR18.04, 95% CI 7.35–44.28). Conclusions The combination of molecular and epidemiological information with geospatial data allowed us to identify the concurrence of molecular clustering and spatial aggregation of patients with DM and TB. This information may be highly useful for TB control programs. PMID:29534104

  13. A Spatio-Temporal Approach for Global Validation and Analysis of MODIS Aerosol Products

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Chu, D. Allen; Mattoo, Shana; Kaufman, Yoram J.; Remer, Lorraine A.; Tanre, Didier; Slutsker, Ilya; Holben, Brent N.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    With the launch of the MODIS sensor on the Terra spacecraft, new data sets of the global distribution and properties of aerosol are being retrieved, and need to be validated and analyzed. A system has been put in place to generate spatial statistics (mean, standard deviation, direction and rate of spatial variation, and spatial correlation coefficient) of the MODIS aerosol parameters over more than 100 validation sites spread around the globe. Corresponding statistics are also computed from temporal subsets of AERONET-derived aerosol data. The means and standard deviations of identical parameters from MOMS and AERONET are compared. Although, their means compare favorably, their standard deviations reveal some influence of surface effects on the MODIS aerosol retrievals over land, especially at low aerosol loading. The direction and rate of spatial variation from MODIS are used to study the spatial distribution of aerosols at various locations either individually or comparatively. This paper introduces the methodology for generating and analyzing the data sets used by the two MODIS aerosol validation papers in this issue.

  14. [The occurrence of Echinococcus multilocularis in red foxes in lower Saxony: identification of a high risk area by spatial epidemiological cluster analysis].

    PubMed

    Berke, Olaf; von Keyserlingk, Michael; Broll, Susanne; Kreienbrock, Lothar

    2002-01-01

    There is considerable interest in the spatial distribution of Echinococcus multilocularis in red foxes (Vulpes vulpes L.), because this parasite causes the zoonoses of alveolar echinococcosis which is potentially of high fatality rate. High risk areas are known from France, Switzerland and the Swabian Alb in Germany for a long time. In this work, the spatial scan statistic is introduced as an instrument for identification and localisation of high risk areas, so called disease clusters in spatial epidemiology. The use of the spatial scan statistic along with data about the distribution of the parasite in 5365 red foxes in Lower Saxony, that were collected during 1991 to 1997, led to the identification of another high risk area. The relative risk for this disease cluster is approximated by RR = 5.03 (CI0.95(RR) = [4.27; 6.58]) for the period of 1991 to 1994 and by RR = 4.45 (CI0.95(RR) = [3.53; 5.59]) for the period of 1994 to 1997, respectively.

  15. Spatiotemporal Trends Analysis of Pyrethroid Sediment Concentrations Spanning 10 Years in a Residential Creek in California.

    PubMed

    Hall, Lenwood W; Anderson, Ronald D; Killen, William D

    2016-02-01

    The objective of this study was to assess temporal and spatial trends for eight pyrethroids monitored in sediment spanning 10 years from 2006 to 2015 in a residential stream in California (Pleasant Grove Creek). The timeframe for this study included sampling 3 years during a somewhat normal non-drought period (2006-2008) and 3 years during a severe drought period (2013-2015). Regression analysis of pyrethroid concentrations in Pleasant Grove Creek for 2006, 2007, 2008, 2012, 2013, 2014, and 2015 using ½ the detection limit for nondetected concentrations showed statistically significant declining trends for cyfluthrin, cypermethrin, deltamethrin, permethrin, and total pyrethoids. Additional trends analysis of the Pleasant Grove Creek pyrethroid data using only measured concentrations, without nondetected values, showed similar statistically significant declining trends for cyfluthrin, cypermethrin, deltamethrin, esfenvalerate, fenpropathrin, permethrin, and total pyrethroids. Spatial trends analysis for the specific creek sites showed that six of the eight pyrethroids had a greater number of sites with statistically significant declining concentrations. Possible reasons for reduced pyrethroid concentrations in the stream bed in Pleasant Grove Creek during this 10-year period are label changes in 2012 that reduced residential use and lack of precipitation during the later severe drought years of 2013-2015.

  16. Statistical analysis of the MODIS atmosphere products for the Tomsk region

    NASA Astrophysics Data System (ADS)

    Afonin, Sergey V.; Belov, Vladimir V.; Engel, Marina V.

    2005-10-01

    The paper presents the results of using the MODIS Atmosphere Products satellite information to study the atmospheric characteristics (the aerosol and water vapor) in the Tomsk Region (56-61°N, 75-90°E) in 2001-2004. The satellite data were received from the NASA Goddard Distributed Active Archive Center (DAAC) through the INTERNET.To use satellite data for a solution of scientific and applied problems, it is very important to know their accuracy. Despite the results of validation of the MODIS data have already been available in the literature, we decided to carry out additional investigations for the Tomsk Region. The paper presents the results of validation of the aerosol optical thickness (AOT) and total column precipitable water (TCPW), which are in good agreement with the test data. The statistical analysis revealed some interesting facts. Thus, for example, analyzing the data on the spatial distribution of the average seasonal values of AOT or TCPW for 2001-2003 in the Tomsk Region, we established that instead of the expected spatial homogeneity of these distributions, they have similar spatial structures.

  17. Spatial and temporal changes in household structure locations using high-resolution satellite imagery for population assessment: an analysis in southern Zambia, 2006-2011.

    PubMed

    Shields, Timothy; Pinchoff, Jessie; Lubinda, Jailos; Hamapumbu, Harry; Searle, Kelly; Kobayashi, Tamaki; Thuma, Philip E; Moss, William J; Curriero, Frank C

    2016-05-31

    Satellite imagery is increasingly available at high spatial resolution and can be used for various purposes in public health research and programme implementation. Comparing a census generated from two satellite images of the same region in rural southern Zambia obtained four and a half years apart identified patterns of household locations and change over time. The length of time that a satellite image-based census is accurate determines its utility. Households were enumerated manually from satellite images obtained in 2006 and 2011 of the same area. Spatial statistics were used to describe clustering, cluster detection, and spatial variation in the location of households. A total of 3821 household locations were enumerated in 2006 and 4256 in 2011, a net change of 435 houses (11.4% increase). Comparison of the images indicated that 971 (25.4%) structures were added and 536 (14.0%) removed. Further analysis suggested similar household clustering in the two images and no substantial difference in concentration of households across the study area. Cluster detection analysis identified a small area where significantly more household structures were removed than expected; however, the amount of change was of limited practical significance. These findings suggest that random sampling of households for study participation would not induce geographic bias if based on a 4.5-year-old image in this region. Application of spatial statistical methods provides insights into the population distribution changes between two time periods and can be helpful in assessing the accuracy of satellite imagery.

  18. Spatial analysis of dengue fever in Guangdong Province, China, 2001-2006.

    PubMed

    Liu, Chunxiao; Liu, Qiyong; Lin, Hualiang; Xin, Benqiang; Nie, Jun

    2014-01-01

    Guangdong Province is the area most seriously affected by dengue fever in China. In this study, we describe the spatial distribution of dengue fever in Guangdong Province from 2001 to 2006 with the objective of informing priority areas for public health planning and resource allocation. Annualized incidence at a county level was calculated and mapped to show crude incidence, excess hazard, and spatial smoothed incidence. Geographic information system-based spatial scan statistics was conducted to detect the spatial distribution pattern of dengue fever incidence at the county level. Spatial scan cluster analyses suggested that counties around Guangzhou City and Chaoshan Region were at increased risk for dengue fever (P < .01). Some spatial clusters of dengue fever were found in Guangdong Province, which allowed intervention measures to be targeted for maximum effect.

  19. Selection of the Maximum Spatial Cluster Size of the Spatial Scan Statistic by Using the Maximum Clustering Set-Proportion Statistic.

    PubMed

    Ma, Yue; Yin, Fei; Zhang, Tao; Zhou, Xiaohua Andrew; Li, Xiaosong

    2016-01-01

    Spatial scan statistics are widely used in various fields. The performance of these statistics is influenced by parameters, such as maximum spatial cluster size, and can be improved by parameter selection using performance measures. Current performance measures are based on the presence of clusters and are thus inapplicable to data sets without known clusters. In this work, we propose a novel overall performance measure called maximum clustering set-proportion (MCS-P), which is based on the likelihood of the union of detected clusters and the applied dataset. MCS-P was compared with existing performance measures in a simulation study to select the maximum spatial cluster size. Results of other performance measures, such as sensitivity and misclassification, suggest that the spatial scan statistic achieves accurate results in most scenarios with the maximum spatial cluster sizes selected using MCS-P. Given that previously known clusters are not required in the proposed strategy, selection of the optimal maximum cluster size with MCS-P can improve the performance of the scan statistic in applications without identified clusters.

  20. Selection of the Maximum Spatial Cluster Size of the Spatial Scan Statistic by Using the Maximum Clustering Set-Proportion Statistic

    PubMed Central

    Ma, Yue; Yin, Fei; Zhang, Tao; Zhou, Xiaohua Andrew; Li, Xiaosong

    2016-01-01

    Spatial scan statistics are widely used in various fields. The performance of these statistics is influenced by parameters, such as maximum spatial cluster size, and can be improved by parameter selection using performance measures. Current performance measures are based on the presence of clusters and are thus inapplicable to data sets without known clusters. In this work, we propose a novel overall performance measure called maximum clustering set–proportion (MCS-P), which is based on the likelihood of the union of detected clusters and the applied dataset. MCS-P was compared with existing performance measures in a simulation study to select the maximum spatial cluster size. Results of other performance measures, such as sensitivity and misclassification, suggest that the spatial scan statistic achieves accurate results in most scenarios with the maximum spatial cluster sizes selected using MCS-P. Given that previously known clusters are not required in the proposed strategy, selection of the optimal maximum cluster size with MCS-P can improve the performance of the scan statistic in applications without identified clusters. PMID:26820646

  1. GIS Tools For Improving Pedestrian & Bicycle Safety

    DOT National Transportation Integrated Search

    2000-07-01

    Geographic Information System (GIS) software turns statistical data, such as accidents, and geographic data, such as roads and crash locations, into meaningful information for spatial analysis and mapping. In this project, GIS-based analytical techni...

  2. Spatial analysis of malaria in Anhui province, China

    PubMed Central

    Zhang, Wenyi; Wang, Liping; Fang, Liqun; Ma, Jiaqi; Xu, Youfu; Jiang, Jiafu; Hui, Fengming; Wang, Jianjun; Liang, Song; Yang, Hong; Cao, Wuchun

    2008-01-01

    Background Malaria has re-emerged in Anhui Province, China, and this province was the most seriously affected by malaria during 2005–2006. It is necessary to understand the spatial distribution of malaria cases and to identify highly endemic areas for future public health planning and resource allocation in Anhui Province. Methods The annual average incidence at the county level was calculated using malaria cases reported between 2000 and 2006 in Anhui Province. GIS-based spatial analyses were conducted to detect spatial distribution and clustering of malaria incidence at the county level. Results The spatial distribution of malaria cases in Anhui Province from 2000 to 2006 was mapped at the county level to show crude incidence, excess hazard and spatial smoothed incidence. Spatial cluster analysis suggested 10 and 24 counties were at increased risk for malaria (P < 0.001) with the maximum spatial cluster sizes at < 50% and < 25% of the total population, respectively. Conclusion The application of GIS, together with spatial statistical techniques, provide a means to quantify explicit malaria risks and to further identify environmental factors responsible for the re-emerged malaria risks. Future public health planning and resource allocation in Anhui Province should be focused on the maximum spatial cluster region. PMID:18847489

  3. Asymptotic modal analysis and statistical energy analysis

    NASA Technical Reports Server (NTRS)

    Dowell, Earl H.

    1992-01-01

    Asymptotic Modal Analysis (AMA) is a method which is used to model linear dynamical systems with many participating modes. The AMA method was originally developed to show the relationship between statistical energy analysis (SEA) and classical modal analysis (CMA). In the limit of a large number of modes of a vibrating system, the classical modal analysis result can be shown to be equivalent to the statistical energy analysis result. As the CMA result evolves into the SEA result, a number of systematic assumptions are made. Most of these assumptions are based upon the supposition that the number of modes approaches infinity. It is for this reason that the term 'asymptotic' is used. AMA is the asymptotic result of taking the limit of CMA as the number of modes approaches infinity. AMA refers to any of the intermediate results between CMA and SEA, as well as the SEA result which is derived from CMA. The main advantage of the AMA method is that individual modal characteristics are not required in the model or computations. By contrast, CMA requires that each modal parameter be evaluated at each frequency. In the latter, contributions from each mode are computed and the final answer is obtained by summing over all the modes in the particular band of interest. AMA evaluates modal parameters only at their center frequency and does not sum the individual contributions from each mode in order to obtain a final result. The method is similar to SEA in this respect. However, SEA is only capable of obtaining spatial averages or means, as it is a statistical method. Since AMA is systematically derived from CMA, it can obtain local spatial information as well.

  4. Meteor localization via statistical analysis of spatially temporal fluctuations in image sequences

    NASA Astrophysics Data System (ADS)

    Kukal, Jaromír.; Klimt, Martin; Šihlík, Jan; Fliegel, Karel

    2015-09-01

    Meteor detection is one of the most important procedures in astronomical imaging. Meteor path in Earth's atmosphere is traditionally reconstructed from double station video observation system generating 2D image sequences. However, the atmospheric turbulence and other factors cause spatially-temporal fluctuations of image background, which makes the localization of meteor path more difficult. Our approach is based on nonlinear preprocessing of image intensity using Box-Cox and logarithmic transform as its particular case. The transformed image sequences are then differentiated along discrete coordinates to obtain statistical description of sky background fluctuations, which can be modeled by multivariate normal distribution. After verification and hypothesis testing, we use the statistical model for outlier detection. Meanwhile the isolated outlier points are ignored, the compact cluster of outliers indicates the presence of meteoroids after ignition.

  5. The Detection of Clusters with Spatial Heterogeneity

    ERIC Educational Resources Information Center

    Zhang, Zuoyi

    2011-01-01

    This thesis consists of two parts. In Chapter 2, we focus on the spatial scan statistics with overdispersion and Chapter 3 is devoted to the randomized permutation test for identifying local patterns of spatial association. The spatial scan statistic has been widely used in spatial disease surveillance and spatial cluster detection. To apply it, a…

  6. Disorganization of white matter architecture in major depressive disorder: a meta-analysis of diffusion tensor imaging with tract-based spatial statistics.

    PubMed

    Chen, Guangxiang; Hu, Xinyu; Li, Lei; Huang, Xiaoqi; Lui, Su; Kuang, Weihong; Ai, Hua; Bi, Feng; Gu, Zhongwei; Gong, Qiyong

    2016-02-24

    White matter (WM) abnormalities have long been suspected in major depressive disorder (MDD). Tract-based spatial statistics (TBSS) studies have detected abnormalities in fractional anisotropy (FA) in MDD, but the available evidence has been inconsistent. We performed a quantitative meta-analysis of TBSS studies contrasting MDD patients with healthy control subjects (HCS). A total of 17 studies with 18 datasets that included 641 MDD patients and 581 HCS were identified. Anisotropic effect size-signed differential mapping (AES-SDM) meta-analysis was performed to assess FA alterations in MDD patients compared to HCS. FA reductions were identified in the genu of the corpus callosum (CC) extending to the body of the CC and left anterior limb of the internal capsule (ALIC) in MDD patients relative to HCS. Descriptive analysis of quartiles, sensitivity analysis and subgroup analysis further confirmed these findings. Meta-regression analysis revealed that individuals with more severe MDD were significantly more likely to have FA reductions in the genu of the CC. This study provides a thorough profile of WM abnormalities in MDD and evidence that interhemispheric connections and frontal-striatal-thalamic pathways are the most convergent circuits affected in MDD.

  7. Applications of geostatistics and Markov models for logo recognition

    NASA Astrophysics Data System (ADS)

    Pham, Tuan

    2003-01-01

    Spatial covariances based on geostatistics are extracted as representative features of logo or trademark images. These spatial covariances are different from other statistical features for image analysis in that the structural information of an image is independent of the pixel locations and represented in terms of spatial series. We then design a classifier in the sense of hidden Markov models to make use of these geostatistical sequential data to recognize the logos. High recognition rates are obtained from testing the method against a public-domain logo database.

  8. Advanced analysis of forest fire clustering

    NASA Astrophysics Data System (ADS)

    Kanevski, Mikhail; Pereira, Mario; Golay, Jean

    2017-04-01

    Analysis of point pattern clustering is an important topic in spatial statistics and for many applications: biodiversity, epidemiology, natural hazards, geomarketing, etc. There are several fundamental approaches used to quantify spatial data clustering using topological, statistical and fractal measures. In the present research, the recently introduced multi-point Morisita index (mMI) is applied to study the spatial clustering of forest fires in Portugal. The data set consists of more than 30000 fire events covering the time period from 1975 to 2013. The distribution of forest fires is very complex and highly variable in space. mMI is a multi-point extension of the classical two-point Morisita index. In essence, mMI is estimated by covering the region under study by a grid and by computing how many times more likely it is that m points selected at random will be from the same grid cell than it would be in the case of a complete random Poisson process. By changing the number of grid cells (size of the grid cells), mMI characterizes the scaling properties of spatial clustering. From mMI, the data intrinsic dimension (fractal dimension) of the point distribution can be estimated as well. In this study, the mMI of forest fires is compared with the mMI of random patterns (RPs) generated within the validity domain defined as the forest area of Portugal. It turns out that the forest fires are highly clustered inside the validity domain in comparison with the RPs. Moreover, they demonstrate different scaling properties at different spatial scales. The results obtained from the mMI analysis are also compared with those of fractal measures of clustering - box counting and sand box counting approaches. REFERENCES Golay J., Kanevski M., Vega Orozco C., Leuenberger M., 2014: The multipoint Morisita index for the analysis of spatial patterns. Physica A, 406, 191-202. Golay J., Kanevski M. 2015: A new estimator of intrinsic dimension based on the multipoint Morisita index. Pattern Recognition, 48, 4070-4081.

  9. A global estimate of the Earth's magnetic crustal thickness

    NASA Astrophysics Data System (ADS)

    Vervelidou, Foteini; Thébault, Erwan

    2014-05-01

    The Earth's lithosphere is considered to be magnetic only down to the Curie isotherm. Therefore the Curie isotherm can, in principle, be estimated by analysis of magnetic data. Here, we propose such an analysis in the spectral domain by means of a newly introduced regional spatial power spectrum. This spectrum is based on the Revised Spherical Cap Harmonic Analysis (R-SCHA) formalism (Thébault et al., 2006). We briefly discuss its properties and its relationship with the Spherical Harmonic spatial power spectrum. This relationship allows us to adapt any theoretical expression of the lithospheric field power spectrum expressed in Spherical Harmonic degrees to the regional formulation. We compared previously published statistical expressions (Jackson, 1994 ; Voorhies et al., 2002) to the recent lithospheric field models derived from the CHAMP and airborne measurements and we finally developed a new statistical form for the power spectrum of the Earth's magnetic lithosphere that we think provides more consistent results. This expression depends on the mean magnetization, the mean crustal thickness and a power law value that describes the amount of spatial correlation of the sources. In this study, we make a combine use of the R-SCHA surface power spectrum and this statistical form. We conduct a series of regional spectral analyses for the entire Earth. For each region, we estimate the R-SCHA surface power spectrum of the NGDC-720 Spherical Harmonic model (Maus, 2010). We then fit each of these observational spectra to the statistical expression of the power spectrum of the Earth's lithosphere. By doing so, we estimate the large wavelengths of the magnetic crustal thickness on a global scale that are not accessible directly from the magnetic measurements due to the masking core field. We then discuss these results and compare them to the results we obtained by conducting a similar spectral analysis, but this time in the cartesian coordinates, by means of a published statistical expression (Maus et al., 1997). We also compare our results to crustal thickness global maps derived by means of additional geophysical data (Purucker et al., 2002).

  10. Spatial Dynamics and Determinants of County-Level Education Expenditure in China

    ERIC Educational Resources Information Center

    Gu, Jiafeng

    2012-01-01

    In this paper, a multivariate spatial autoregressive model of local public education expenditure determination with autoregressive disturbance is developed and estimated. The existence of spatial interdependence is tested using Moran's I statistic and Lagrange multiplier test statistics for both the spatial error and spatial lag models. The full…

  11. A spatial analysis of population dynamics and climate change in Africa: potential vulnerability hot spots emerge where precipitation declines and demographic pressures coincide

    USGS Publications Warehouse

    López-Carr, David; Pricope, Narcisa G.; Aukema, Juliann E.; Jankowska, Marta M.; Funk, Christopher C.; Husak, Gregory J.; Michaelsen, Joel C.

    2014-01-01

    We present an integrative measure of exposure and sensitivity components of vulnerability to climatic and demographic change for the African continent in order to identify “hot spots” of high potential population vulnerability. Getis-Ord Gi* spatial clustering analyses reveal statistically significant locations of spatio-temporal precipitation decline coinciding with high population density and increase. Statistically significant areas are evident, particularly across central, southern, and eastern Africa. The highly populated Lake Victoria basin emerges as a particularly salient hot spot. People located in the regions highlighted in this analysis suffer exceptionally high exposure to negative climate change impacts (as populations increase on lands with decreasing rainfall). Results may help inform further hot spot mapping and related research on demographic vulnerabilities to climate change. Results may also inform more suitable geographical targeting of policy interventions across the continent.

  12. Measure Projection Analysis: A Probabilistic Approach to EEG Source Comparison and Multi-Subject Inference

    PubMed Central

    Bigdely-Shamlo, Nima; Mullen, Tim; Kreutz-Delgado, Kenneth; Makeig, Scott

    2013-01-01

    A crucial question for the analysis of multi-subject and/or multi-session electroencephalographic (EEG) data is how to combine information across multiple recordings from different subjects and/or sessions, each associated with its own set of source processes and scalp projections. Here we introduce a novel statistical method for characterizing the spatial consistency of EEG dynamics across a set of data records. Measure Projection Analysis (MPA) first finds voxels in a common template brain space at which a given dynamic measure is consistent across nearby source locations, then computes local-mean EEG measure values for this voxel subspace using a statistical model of source localization error and between-subject anatomical variation. Finally, clustering the mean measure voxel values in this locally consistent brain subspace finds brain spatial domains exhibiting distinguishable measure features and provides 3-D maps plus statistical significance estimates for each EEG measure of interest. Applied to sufficient high-quality data, the scalp projections of many maximally independent component (IC) processes contributing to recorded high-density EEG data closely match the projection of a single equivalent dipole located in or near brain cortex. We demonstrate the application of MPA to a multi-subject EEG study decomposed using independent component analysis (ICA), compare the results to k-means IC clustering in EEGLAB (sccn.ucsd.edu/eeglab), and use surrogate data to test MPA robustness. A Measure Projection Toolbox (MPT) plug-in for EEGLAB is available for download (sccn.ucsd.edu/wiki/MPT). Together, MPA and ICA allow use of EEG as a 3-D cortical imaging modality with near-cm scale spatial resolution. PMID:23370059

  13. Fine-scale landscape genetics of the American badger (Taxidea taxus): disentangling landscape effects and sampling artifacts in a poorly understood species

    PubMed Central

    Kierepka, E M; Latch, E K

    2016-01-01

    Landscape genetics is a powerful tool for conservation because it identifies landscape features that are important for maintaining genetic connectivity between populations within heterogeneous landscapes. However, using landscape genetics in poorly understood species presents a number of challenges, namely, limited life history information for the focal population and spatially biased sampling. Both obstacles can reduce power in statistics, particularly in individual-based studies. In this study, we genotyped 233 American badgers in Wisconsin at 12 microsatellite loci to identify alternative statistical approaches that can be applied to poorly understood species in an individual-based framework. Badgers are protected in Wisconsin owing to an overall lack in life history information, so our study utilized partial redundancy analysis (RDA) and spatially lagged regressions to quantify how three landscape factors (Wisconsin River, Ecoregions and land cover) impacted gene flow. We also performed simulations to quantify errors created by spatially biased sampling. Statistical analyses first found that geographic distance was an important influence on gene flow, mainly driven by fine-scale positive spatial autocorrelations. After controlling for geographic distance, both RDA and regressions found that Wisconsin River and Agriculture were correlated with genetic differentiation. However, only Agriculture had an acceptable type I error rate (3–5%) to be considered biologically relevant. Collectively, this study highlights the benefits of combining robust statistics and error assessment via simulations and provides a method for hypothesis testing in individual-based landscape genetics. PMID:26243136

  14. Multifractal analysis of mobile social networks

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; Zhang, Zifeng; Deng, Yufan

    2017-09-01

    As Wireless Fidelity (Wi-Fi)-enabled handheld devices have been widely used, the mobile social networks (MSNs) has been attracting extensive attention. Fractal approaches have also been widely applied to characterierize natural networks as useful tools to depict their spatial distribution and scaling properties. Moreover, when the complexity of the spatial distribution of MSNs cannot be properly charaterized by single fractal dimension, multifractal analysis is required. For further research, we introduced a multifractal analysis method based on box-covering algorithm to describe the structure of MSNs. Using this method, we find that the networks are multifractal at different time interval. The simulation results demonstrate that the proposed method is efficient for analyzing the multifractal characteristic of MSNs, which provides a distribution of singularities adequately describing both the heterogeneity of fractal patterns and the statistics of measurements across spatial scales in MSNs.

  15. Spatial distribution and cluster analysis of retail drug shop characteristics and antimalarial behaviors as reported by private medicine retailers in western Kenya: informing future interventions.

    PubMed

    Rusk, Andria; Highfield, Linda; Wilkerson, J Michael; Harrell, Melissa; Obala, Andrew; Amick, Benjamin

    2016-02-19

    Efforts to improve malaria case management in sub-Saharan Africa have shifted focus to private antimalarial retailers to increase access to appropriate treatment. Demands to decrease intervention cost while increasing efficacy requires interventions tailored to geographic regions with demonstrated need. Cluster analysis presents an opportunity to meet this demand, but has not been applied to the retail sector or antimalarial retailer behaviors. This research conducted cluster analysis on medicine retailer behaviors in Kenya, to improve malaria case management and inform future interventions. Ninety-seven surveys were collected from medicine retailers working in the Webuye Health and Demographic Surveillance Site. Survey items included retailer training, education, antimalarial drug knowledge, recommending behavior, sales, and shop characteristics, and were analyzed using Kulldorff's spatial scan statistic. The Bernoulli purely spatial model for binomial data was used, comparing cases to controls. Statistical significance of found clusters was tested with a likelihood ratio test, using the null hypothesis of no clustering, and a p value based on 999 Monte Carlo simulations. The null hypothesis was rejected with p values of 0.05 or less. A statistically significant cluster of fewer than expected pharmacy-trained retailers was found (RR = .09, p = .001) when compared to the expected random distribution. Drug recommending behavior also yielded a statistically significant cluster, with fewer than expected retailers recommending the correct antimalarial medication to adults (RR = .018, p = .01), and fewer than expected shops selling that medication more often than outdated antimalarials when compared to random distribution (RR = 0.23, p = .007). All three of these clusters were co-located, overlapping in the northwest of the study area. Spatial clustering was found in the data. A concerning amount of correlation was found in one specific region in the study area where multiple behaviors converged in space, highlighting a prime target for interventions. These results also demonstrate the utility of applying geospatial methods in the study of medicine retailer behaviors, making the case for expanding this approach to other regions.

  16. Comparison of two spatially-resolved fossil fuel CO2 emissions inventories at the urban scale in four US cities

    NASA Astrophysics Data System (ADS)

    Liang, J.; Gurney, K. R.; O'Keeffe, D.; Patarasuk, R.; Hutchins, M.; Rao, P.

    2017-12-01

    Spatially-resolved fossil fuel CO2 (FFCO2) emissions are used not only in complex atmospheric modeling systems as prior scenarios to simulate concentrations of CO2 in the atmosphere, but to improve understanding of relationships with socioeconomic factors in support of sustainability policymaking. We present a comparison of ODIAC, a top-down global gridded FFCO2 emissions dataset, and Hesita, a bottom-up FFCO2 emissions dataset, in four US cities, including Los Angles, Indianapolis, Salt Lake City and Baltimore City. ODIAC was developed by downscaling national total emissions to 1km-by-1km grid cells using satellite nightlight imagery as proxy. Hesita was built from the ground up by allocating sector-specific county-level emissions to urban-level spatial surrogates including facility locations, road maps, building footprints/parcels, railroad maps and shipping lanes. The differences in methodology and data sources could lead to large discrepancies in FFCO2 estimates at the urban scale, and these discrepancies need to be taken into account in conducting atmospheric modeling or socioeconomic analysis. This comparison work is aimed at quantifying the statistical and spatial difference between the two FFCO2 inventories. An analysis of the difference in total emissions, spatial distribution and statistical distribution resulted in the following findings: (1) ODIAC agrees well with Hestia in total FFCO2 emissions estimates across the four cities with a difference from 3%-20%; (2) Small-scale areal and linear spatial features such as roads and buildings are either entirely missing or not very well represented in ODIAC, since nightlight imagery might not be able to capture these information. This might further lead to underestimated on-road FFCO2 emissions in ODIAC; (3) The statistical distribution of ODIAC is more concentrated around the mean with much less samples in the lower range. These phenomena could result from the nightlight halo and saturation effects; (4) The grid-cell cumulative emissions of ODIAC appear in good agreement with that of Hestia, implying the two inventories have similar overall spatial structures at the city scale.

  17. A Review of the Statistical and Quantitative Methods Used to Study Alcohol-Attributable Crime.

    PubMed

    Fitterer, Jessica L; Nelson, Trisalyn A

    2015-01-01

    Modelling the relationship between alcohol consumption and crime generates new knowledge for crime prevention strategies. Advances in data, particularly data with spatial and temporal attributes, have led to a growing suite of applied methods for modelling. In support of alcohol and crime researchers we synthesized and critiqued existing methods of spatially and quantitatively modelling the effects of alcohol exposure on crime to aid method selection, and identify new opportunities for analysis strategies. We searched the alcohol-crime literature from 1950 to January 2014. Analyses that statistically evaluated or mapped the association between alcohol and crime were included. For modelling purposes, crime data were most often derived from generalized police reports, aggregated to large spatial units such as census tracts or postal codes, and standardized by residential population data. Sixty-eight of the 90 selected studies included geospatial data of which 48 used cross-sectional datasets. Regression was the prominent modelling choice (n = 78) though dependent on data many variations existed. There are opportunities to improve information for alcohol-attributable crime prevention by using alternative population data to standardize crime rates, sourcing crime information from non-traditional platforms (social media), increasing the number of panel studies, and conducting analysis at the local level (neighbourhood, block, or point). Due to the spatio-temporal advances in crime data, we expect a continued uptake of flexible Bayesian hierarchical modelling, a greater inclusion of spatial-temporal point pattern analysis, and shift toward prospective (forecast) modelling over small areas (e.g., blocks).

  18. A Review of the Statistical and Quantitative Methods Used to Study Alcohol-Attributable Crime

    PubMed Central

    Fitterer, Jessica L.; Nelson, Trisalyn A.

    2015-01-01

    Modelling the relationship between alcohol consumption and crime generates new knowledge for crime prevention strategies. Advances in data, particularly data with spatial and temporal attributes, have led to a growing suite of applied methods for modelling. In support of alcohol and crime researchers we synthesized and critiqued existing methods of spatially and quantitatively modelling the effects of alcohol exposure on crime to aid method selection, and identify new opportunities for analysis strategies. We searched the alcohol-crime literature from 1950 to January 2014. Analyses that statistically evaluated or mapped the association between alcohol and crime were included. For modelling purposes, crime data were most often derived from generalized police reports, aggregated to large spatial units such as census tracts or postal codes, and standardized by residential population data. Sixty-eight of the 90 selected studies included geospatial data of which 48 used cross-sectional datasets. Regression was the prominent modelling choice (n = 78) though dependent on data many variations existed. There are opportunities to improve information for alcohol-attributable crime prevention by using alternative population data to standardize crime rates, sourcing crime information from non-traditional platforms (social media), increasing the number of panel studies, and conducting analysis at the local level (neighbourhood, block, or point). Due to the spatio-temporal advances in crime data, we expect a continued uptake of flexible Bayesian hierarchical modelling, a greater inclusion of spatial-temporal point pattern analysis, and shift toward prospective (forecast) modelling over small areas (e.g., blocks). PMID:26418016

  19. Evaluation of Deep Learning Representations of Spatial Storm Data

    NASA Astrophysics Data System (ADS)

    Gagne, D. J., II; Haupt, S. E.; Nychka, D. W.

    2017-12-01

    The spatial structure of a severe thunderstorm and its surrounding environment provide useful information about the potential for severe weather hazards, including tornadoes, hail, and high winds. Statistics computed over the area of a storm or from the pre-storm environment can provide descriptive information but fail to capture structural information. Because the storm environment is a complex, high-dimensional space, identifying methods to encode important spatial storm information in a low-dimensional form should aid analysis and prediction of storms by statistical and machine learning models. Principal component analysis (PCA), a more traditional approach, transforms high-dimensional data into a set of linearly uncorrelated, orthogonal components ordered by the amount of variance explained by each component. The burgeoning field of deep learning offers two potential approaches to this problem. Convolutional Neural Networks are a supervised learning method for transforming spatial data into a hierarchical set of feature maps that correspond with relevant combinations of spatial structures in the data. Generative Adversarial Networks (GANs) are an unsupervised deep learning model that uses two neural networks trained against each other to produce encoded representations of spatial data. These different spatial encoding methods were evaluated on the prediction of severe hail for a large set of storm patches extracted from the NCAR convection-allowing ensemble. Each storm patch contains information about storm structure and the near-storm environment. Logistic regression and random forest models were trained using the PCA and GAN encodings of the storm data and were compared against the predictions from a convolutional neural network. All methods showed skill over climatology at predicting the probability of severe hail. However, the verification scores among the methods were very similar and the predictions were highly correlated. Further evaluations are being performed to determine how the choice of input variables affects the results.

  20. Epidemiological Characteristics and Space-Time Analysis of the 2015 Dengue Outbreak in the Metropolitan Region of Tainan City, Taiwan

    PubMed Central

    Ng, Ka-Chon; Nguyen, Thi Luong

    2018-01-01

    The metropolitan region of Tainan City in southern Taiwan experienced a dengue outbreak in 2015. This manuscript describes basic epidemiological features of this outbreak and uses spatial and temporal analysis tools to understand the spread of dengue during the outbreak. The analysis found that, independently of gender, dengue incidence rate increased with age, and proportionally affected more males below the age of 40 years but females above the age of 40 years. A spatial scan statistic was applied to detect clusters of disease transmission. The scan statistic found that dengue spread in a north-south diffusion direction, which is across the North, West-Central and South districts of Tainan City. Spatial regression models were used to quantify factors associated with transmission. This analysis indicated that neighborhoods with high proportions of residential area (or low wetland cover) were associated with dengue transmission. However, these association patterns were non-linear. The findings presented here can help Taiwanese public health agencies to understand the fundamental epidemiological characteristics and diffusion patterns of the 2015 dengue outbreak in Tainan City. This type of information is fundamental for policy making to prevent future uncontrolled dengue outbreaks, given that results from this study suggest that control interventions should be emphasized in the North and West-Central districts of Tainan city, in areas with a moderate percentage of residential land cover. PMID:29495351

  1. Epidemiological Characteristics and Space-Time Analysis of the 2015 Dengue Outbreak in the Metropolitan Region of Tainan City, Taiwan.

    PubMed

    Chuang, Ting-Wu; Ng, Ka-Chon; Nguyen, Thi Luong; Chaves, Luis Fernando

    2018-02-26

    The metropolitan region of Tainan City in southern Taiwan experienced a dengue outbreak in 2015. This manuscript describes basic epidemiological features of this outbreak and uses spatial and temporal analysis tools to understand the spread of dengue during the outbreak. The analysis found that, independently of gender, dengue incidence rate increased with age, and proportionally affected more males below the age of 40 years but females above the age of 40 years. A spatial scan statistic was applied to detect clusters of disease transmission. The scan statistic found that dengue spread in a north-south diffusion direction, which is across the North, West-Central and South districts of Tainan City. Spatial regression models were used to quantify factors associated with transmission. This analysis indicated that neighborhoods with high proportions of residential area (or low wetland cover) were associated with dengue transmission. However, these association patterns were non-linear. The findings presented here can help Taiwanese public health agencies to understand the fundamental epidemiological characteristics and diffusion patterns of the 2015 dengue outbreak in Tainan City. This type of information is fundamental for policy making to prevent future uncontrolled dengue outbreaks, given that results from this study suggest that control interventions should be emphasized in the North and West-Central districts of Tainan city, in areas with a moderate percentage of residential land cover.

  2. Incorporating geologic information into hydraulic tomography: A general framework based on geostatistical approach

    NASA Astrophysics Data System (ADS)

    Zha, Yuanyuan; Yeh, Tian-Chyi J.; Illman, Walter A.; Onoe, Hironori; Mok, Chin Man W.; Wen, Jet-Chau; Huang, Shao-Yang; Wang, Wenke

    2017-04-01

    Hydraulic tomography (HT) has become a mature aquifer test technology over the last two decades. It collects nonredundant information of aquifer heterogeneity by sequentially stressing the aquifer at different wells and collecting aquifer responses at other wells during each stress. The collected information is then interpreted by inverse models. Among these models, the geostatistical approaches, built upon the Bayesian framework, first conceptualize hydraulic properties to be estimated as random fields, which are characterized by means and covariance functions. They then use the spatial statistics as prior information with the aquifer response data to estimate the spatial distribution of the hydraulic properties at a site. Since the spatial statistics describe the generic spatial structures of the geologic media at the site rather than site-specific ones (e.g., known spatial distributions of facies, faults, or paleochannels), the estimates are often not optimal. To improve the estimates, we introduce a general statistical framework, which allows the inclusion of site-specific spatial patterns of geologic features. Subsequently, we test this approach with synthetic numerical experiments. Results show that this approach, using conditional mean and covariance that reflect site-specific large-scale geologic features, indeed improves the HT estimates. Afterward, this approach is applied to HT surveys at a kilometer-scale-fractured granite field site with a distinct fault zone. We find that by including fault information from outcrops and boreholes for HT analysis, the estimated hydraulic properties are improved. The improved estimates subsequently lead to better prediction of flow during a different pumping test at the site.

  3. Statistical Analysis of 3D Images Detects Regular Spatial Distributions of Centromeres and Chromocenters in Animal and Plant Nuclei

    PubMed Central

    Biot, Eric; Adenot, Pierre-Gaël; Hue-Beauvais, Cathy; Houba-Hérin, Nicole; Duranthon, Véronique; Devinoy, Eve; Beaujean, Nathalie; Gaudin, Valérie; Maurin, Yves; Debey, Pascale

    2010-01-01

    In eukaryotes, the interphase nucleus is organized in morphologically and/or functionally distinct nuclear “compartments”. Numerous studies highlight functional relationships between the spatial organization of the nucleus and gene regulation. This raises the question of whether nuclear organization principles exist and, if so, whether they are identical in the animal and plant kingdoms. We addressed this issue through the investigation of the three-dimensional distribution of the centromeres and chromocenters. We investigated five very diverse populations of interphase nuclei at different differentiation stages in their physiological environment, belonging to rabbit embryos at the 8-cell and blastocyst stages, differentiated rabbit mammary epithelial cells during lactation, and differentiated cells of Arabidopsis thaliana plantlets. We developed new tools based on the processing of confocal images and a new statistical approach based on G- and F- distance functions used in spatial statistics. Our original computational scheme takes into account both size and shape variability by comparing, for each nucleus, the observed distribution against a reference distribution estimated by Monte-Carlo sampling over the same nucleus. This implicit normalization allowed similar data processing and extraction of rules in the five differentiated nuclei populations of the three studied biological systems, despite differences in chromosome number, genome organization and heterochromatin content. We showed that centromeres/chromocenters form significantly more regularly spaced patterns than expected under a completely random situation, suggesting that repulsive constraints or spatial inhomogeneities underlay the spatial organization of heterochromatic compartments. The proposed technique should be useful for identifying further spatial features in a wide range of cell types. PMID:20628576

  4. A log-Weibull spatial scan statistic for time to event data.

    PubMed

    Usman, Iram; Rosychuk, Rhonda J

    2018-06-13

    Spatial scan statistics have been used for the identification of geographic clusters of elevated numbers of cases of a condition such as disease outbreaks. These statistics accompanied by the appropriate distribution can also identify geographic areas with either longer or shorter time to events. Other authors have proposed the spatial scan statistics based on the exponential and Weibull distributions. We propose the log-Weibull as an alternative distribution for the spatial scan statistic for time to events data and compare and contrast the log-Weibull and Weibull distributions through simulation studies. The effect of type I differential censoring and power have been investigated through simulated data. Methods are also illustrated on time to specialist visit data for discharged patients presenting to emergency departments for atrial fibrillation and flutter in Alberta during 2010-2011. We found northern regions of Alberta had longer times to specialist visit than other areas. We proposed the spatial scan statistic for the log-Weibull distribution as a new approach for detecting spatial clusters for time to event data. The simulation studies suggest that the test performs well for log-Weibull data.

  5. Utilization of an Enhanced Canonical Correlation Analysis (ECCA) to Predict Daily Precipitation and Temperature in a Semi-Arid Environment

    NASA Astrophysics Data System (ADS)

    Lopez, S. R.; Hogue, T. S.

    2011-12-01

    Global climate models (GCMs) are primarily used to generate historical and future large-scale circulation patterns at a coarse resolution (typical order of 50,000 km2) and fail to capture climate variability at the ground level due to localized surface influences (i.e topography, marine, layer, land cover, etc). Their inability to accurately resolve these processes has led to the development of numerous 'downscaling' techniques. The goal of this study is to enhance statistical downscaling of daily precipitation and temperature for regions with heterogeneous land cover and topography. Our analysis was divided into two periods, historical (1961-2000) and contemporary (1980-2000), and tested using sixteen predictand combinations from four GCMs (GFDL CM2.0, GFDL CM2.1, CNRM-CM3 and MRI-CGCM2 3.2a. The Southern California area was separated into five county regions: Santa Barbara, Ventura, Los Angeles, Orange and San Diego. Principle component analysis (PCA) was performed on ground-based observations in order to (1) reduce the number of redundant gauges and minimize dimensionality and (2) cluster gauges that behave statistically similarly for post-analysis. Post-PCA analysis included extensive testing of predictor-predictand relationships using an enhanced canonical correlation analysis (ECCA). The ECCA includes obtaining the optimal predictand sets for all models within each spatial domain (county) as governed by daily and monthly overall statistics. Results show all models maintain mean annual and monthly behavior within each county and daily statistics are improved. The level of improvement highly depends on the vegetation extent within each county and the land-to-ocean ratio within the GCM spatial grid. The utilization of the entire historical period also leads to better statistical representation of observed daily precipitation. The validated ECCA technique is being applied to future climate scenarios distributed by the IPCC in order to provide forcing data for regional hydrologic models and assess future water resources in the Southern California region.

  6. A new framework for estimating return levels using regional frequency analysis

    NASA Astrophysics Data System (ADS)

    Winter, Hugo; Bernardara, Pietro; Clegg, Georgina

    2017-04-01

    We propose a new framework for incorporating more spatial and temporal information into the estimation of extreme return levels. Currently, most studies use extreme value models applied to data from a single site; an approach which is inefficient statistically and leads to return level estimates that are less physically realistic. We aim to highlight the benefits that could be obtained by using methodology based upon regional frequency analysis as opposed to classic single site extreme value analysis. This motivates a shift in thinking, which permits the evaluation of local and regional effects and makes use of the wide variety of data that are now available on high temporal and spatial resolutions. The recent winter storms over the UK during the winters of 2013-14 and 2015-16, which have caused wide-ranging disruption and damaged important infrastructure, provide the main motivation for the current work. One of the most impactful natural hazards is flooding, which is often initiated by extreme precipitation. In this presentation, we focus on extreme rainfall, but shall discuss other meteorological variables alongside potentially damaging hazard combinations. To understand the risks posed by extreme precipitation, we need reliable statistical models which can be used to estimate quantities such as the T-year return level, i.e. the level which is expected to be exceeded once every T-years. Extreme value theory provides the main collection of statistical models that can be used to estimate the risks posed by extreme precipitation events. Broadly, at a single site, a statistical model is fitted to exceedances of a high threshold and the model is used to extrapolate to levels beyond the range of the observed data. However, when we have data at many sites over a spatial domain, fitting a separate model for each separate site makes little sense and it would be better if we could incorporate all this information to improve the reliability of return level estimates. Here, we use the regional frequency analysis approach to define homogeneous regions which are affected by the same storms. Extreme value models are then fitted to the data pooled from across a region. We find that this approach leads to more spatially consistent return level estimates with reduced uncertainty bounds.

  7. Geostatistics and GIS: tools for characterizing environmental contamination.

    PubMed

    Henshaw, Shannon L; Curriero, Frank C; Shields, Timothy M; Glass, Gregory E; Strickland, Paul T; Breysse, Patrick N

    2004-08-01

    Geostatistics is a set of statistical techniques used in the analysis of georeferenced data that can be applied to environmental contamination and remediation studies. In this study, the 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE) contamination at a Superfund site in western Maryland is evaluated. Concern about the site and its future clean up has triggered interest within the community because residential development surrounds the area. Spatial statistical methods, of which geostatistics is a subset, are becoming increasingly popular, in part due to the availability of geographic information system (GIS) software in a variety of application packages. In this article, the joint use of ArcGIS software and the R statistical computing environment are demonstrated as an approach for comprehensive geostatistical analyses. The spatial regression method, kriging, is used to provide predictions of DDE levels at unsampled locations both within the site and the surrounding areas where residential development is ongoing.

  8. Understanding spatio-temporal mobility patterns for seniors, child/student and adult using smart card data

    NASA Astrophysics Data System (ADS)

    Huang, X.; Tan, J.

    2014-11-01

    Commutes in urban areas create interesting travel patterns that are often stored in regional transportation databases. These patterns can vary based on the day of the week, the time of the day, and commuter type. This study proposes methods to detect underlying spatio-temporal variability among three groups of commuters (senior citizens, child/students, and adults) using data mining and spatial analytics. Data from over 36 million individual trip records collected over one week (March 2012) on the Singapore bus and Mass Rapid Transit (MRT) system by the fare collection system were used. Analyses of such data are important for transportation and landuse designers and contribute to a better understanding of urban dynamics. Specifically, descriptive statistics, network analysis, and spatial analysis methods are presented. Descriptive variables were proposed such as density and duration to detect temporal features of people. A directed weighted graph G ≡ (N , L, W) was defined to analyze the global network properties of every pair of the transportation link in the city during an average workday for all three categories. Besides, spatial interpolation and spatial statistic tools were used to transform the discrete network nodes into structured human movement landscape to understand the role of transportation systems in urban areas. The travel behaviour of the three categories follows a certain degree of temporal and spatial universality but also displays unique patterns within their own specialties. Each category is characterized by their different peak hours, commute distances, and specific locations for travel on weekdays.

  9. An Overview of Equal Educational Opportunities in Turkey: A Spatial Analysis of Classrooms in Rural and Urban Primary Schools

    ERIC Educational Resources Information Center

    Gökçe, Nazli; Kaya, Erdogan; Aktas, Semra Günay; Kantar, Yeliz Mert

    2017-01-01

    The number of students in a class is a primary factor affecting the quality of education. Therefore, this study examines the distribution of the number of students per class in rural and urban primary schools in Turkey, and efforts have been made to specify classroom needs. Statistical data was obtained from the Turkish Institute of Statistics and…

  10. Spatial Statistical Models and Optimal Survey Design for Rapid Geophysical characterization of UXO Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G. Ostrouchov; W.E.Doll; D.A.Wolf

    2003-07-01

    Unexploded ordnance(UXO)surveys encompass large areas, and the cost of surveying these areas can be high. Enactment of earlier protocols for sampling UXO sites have shown the shortcomings of these procedures and led to a call for development of scientifically defensible statistical procedures for survey design and analysis. This project is one of three funded by SERDP to address this need.

  11. Spatial and temporal statistical analysis of bycatch data: Patterns of sea turtle bycatch in the North Atlantic

    USGS Publications Warehouse

    Gardner, B.; Sullivan, P.J.; Morreale, S.J.; Epperly, S.P.

    2008-01-01

    Loggerhead (Caretta caretta) and leatherback (Dermochelys coriacea) sea turtle distributions and movements in offshore waters of the western North Atlantic are not well understood despite continued efforts to monitor, survey, and observe them. Loggerhead and leatherback sea turtles are listed as endangered by the World Conservation Union, and thus anthropogenic mortality of these species, including fishing, is of elevated interest. This study quantifies spatial and temporal patterns of sea turtle bycatch distributions to identify potential processes influencing their locations. A Ripley's K function analysis was employed on the NOAA Fisheries Atlantic Pelagic Longline Observer Program data to determine spatial, temporal, and spatio-temporal patterns of sea turtle bycatch distributions within the pattern of the pelagic fishery distribution. Results indicate that loggerhead and leatherback sea turtle catch distributions change seasonally, with patterns of spatial clustering appearing from July through October. The results from the space-time analysis indicate that sea turtle catch distributions are related on a relatively fine scale (30-200 km and 1-5 days). The use of spatial and temporal point pattern analysis, particularly K function analysis, is a novel way to examine bycatch data and can be used to inform fishing practices such that fishing could still occur while minimizing sea turtle bycatch. ?? 2008 NRC.

  12. Accounting for regional background and population size in the detection of spatial clusters and outliers using geostatistical filtering and spatial neutral models: the case of lung cancer in Long Island, New York

    PubMed Central

    Goovaerts, Pierre; Jacquez, Geoffrey M

    2004-01-01

    Background Complete Spatial Randomness (CSR) is the null hypothesis employed by many statistical tests for spatial pattern, such as local cluster or boundary analysis. CSR is however not a relevant null hypothesis for highly complex and organized systems such as those encountered in the environmental and health sciences in which underlying spatial pattern is present. This paper presents a geostatistical approach to filter the noise caused by spatially varying population size and to generate spatially correlated neutral models that account for regional background obtained by geostatistical smoothing of observed mortality rates. These neutral models were used in conjunction with the local Moran statistics to identify spatial clusters and outliers in the geographical distribution of male and female lung cancer in Nassau, Queens, and Suffolk counties, New York, USA. Results We developed a typology of neutral models that progressively relaxes the assumptions of null hypotheses, allowing for the presence of spatial autocorrelation, non-uniform risk, and incorporation of spatially heterogeneous population sizes. Incorporation of spatial autocorrelation led to fewer significant ZIP codes than found in previous studies, confirming earlier claims that CSR can lead to over-identification of the number of significant spatial clusters or outliers. Accounting for population size through geostatistical filtering increased the size of clusters while removing most of the spatial outliers. Integration of regional background into the neutral models yielded substantially different spatial clusters and outliers, leading to the identification of ZIP codes where SMR values significantly depart from their regional background. Conclusion The approach presented in this paper enables researchers to assess geographic relationships using appropriate null hypotheses that account for the background variation extant in real-world systems. In particular, this new methodology allows one to identify geographic pattern above and beyond background variation. The implementation of this approach in spatial statistical software will facilitate the detection of spatial disparities in mortality rates, establishing the rationale for targeted cancer control interventions, including consideration of health services needs, and resource allocation for screening and diagnostic testing. It will allow researchers to systematically evaluate how sensitive their results are to assumptions implicit under alternative null hypotheses. PMID:15272930

  13. Applicability of Various Interpolation Approaches for High Resolution Spatial Mapping of Climate Data in Korea

    NASA Astrophysics Data System (ADS)

    Jo, A.; Ryu, J.; Chung, H.; Choi, Y.; Jeon, S.

    2018-04-01

    The purpose of this study is to create a new dataset of spatially interpolated monthly climate data for South Korea at high spatial resolution (approximately 30m) by performing various spatio-statistical interpolation and comparing with forecast LDAPS gridded climate data provided from Korea Meterological Administration (KMA). Automatic Weather System (AWS) and Automated Synoptic Observing System (ASOS) data in 2017 obtained from KMA were included for the spatial mapping of temperature and rainfall; instantaneous temperature and 1-hour accumulated precipitation at 09:00 am on 31th March, 21th June, 23th September, and 24th December. Among observation data, 80 percent of the total point (478) and remaining 120 points were used for interpolations and for quantification, respectively. With the training data and digital elevation model (DEM) with 30 m resolution, inverse distance weighting (IDW), co-kriging, and kriging were performed by using ArcGIS10.3.1 software and Python 3.6.4. Bias and root mean square were computed to compare prediction performance quantitatively. When statistical analysis was performed for each cluster using 20 % validation data, co kriging was more suitable for spatialization of instantaneous temperature than other interpolation method. On the other hand, IDW technique was appropriate for spatialization of precipitation.

  14. Spatial variation in hyperthermia emergency department visits among those with employer-based insurance in the United States - a case-crossover analysis.

    PubMed

    Saha, Shubhayu; Brock, John W; Vaidyanathan, Ambarish; Easterling, David R; Luber, George

    2015-03-04

    Predictions of intense heat waves across the United States will lead to localized health impacts, most of which are preventable. There is a need to better understand the spatial variation in the morbidity impacts associated with extreme heat across the country to prevent such adverse health outcomes. Hyperthermia-related emergency department (ED) visits were obtained from the Truven Health MarketScan(®) Research dataset for 2000-2010. Three measures of daily ambient heat were constructed using meteorological observations from the National Climatic Data Center (maximum temperature, heat index) and the Spatial Synoptic Classification. Using a time-stratified case crossover approach, odds ratio of hyperthermia-related ED visit were estimated for the three different heat measures. Random effects meta-analysis was used to combine the odds ratios for 94 Metropolitan Statistical Areas (MSA) to examine the spatial variation by eight latitude categories and nine U.S. climate regions. Examination of lags for all three temperature measures showed that the odds ratio of ED visit was statistically significant and highest on the day of the ED visit. For heat waves lasting two or more days, additional statistically significant association was observed when heat index and synoptic classification was used as the temperature measure. These results were insensitive to the inclusion of air pollution measures. On average, the maximum temperature on the day of an ED visit was 93.4°F in 'South' and 81.9°F in the 'Northwest' climatic regions of United States. The meta-analysis showed higher odds ratios of hyperthermia ED visit in the central and the northern parts of the country compared to the south and southwest. The results showed spatial variation in average temperature on days of ED visit and odds ratio for hyperthermia ED visits associated with extreme heat across United States. This suggests that heat response plans need to be customized for different regions and the potential role of hyperthermia ED visits in syndromic surveillance for extreme heat.

  15. Modeling urbanization patterns at a global scale with generative adversarial networks

    NASA Astrophysics Data System (ADS)

    Albert, A. T.; Strano, E.; Gonzalez, M.

    2017-12-01

    Current demographic projections show that, in the next 30 years, global population growth will mostly take place in developing countries. Coupled with a decrease in density, such population growth could potentially double the land occupied by settlements by 2050. The lack of reliable and globally consistent socio-demographic data, coupled with the limited predictive performance underlying traditional urban spatial explicit models, call for developing better predictive methods, calibrated using a globally-consistent dataset. Thus, richer models of the spatial interplay between the urban built-up land, population distribution and energy use are central to the discussion around the expansion and development of cities, and their impact on the environment in the context of a changing climate. In this talk we discuss methods for, and present an analysis of, urban form, defined as the spatial distribution of macroeconomic quantities that characterize a city, using modern machine learning methods and best-available remote-sensing data for the world's largest 25,000 cities. We first show that these cities may be described by a small set of patterns in radial building density, nighttime luminosity, and population density, which highlight, to first order, differences in development and land use across the world. We observe significant, spatially-dependent variance around these typical patterns, which would be difficult to model using traditional statistical methods. We take a first step in addressing this challenge by developing CityGAN, a conditional generative adversarial network model for simulating realistic urban forms. To guide learning and measure the quality of the simulated synthetic cities, we develop a specialized loss function for GAN optimization that incorporates standard spatial statistics used by urban analysis experts. Our framework is a stark departure from both the standard physics-based approaches in the literature (that view urban forms as fractals with a scale-free behavior), and the traditional statistical learning approaches (whereby values of individual pixels are modeled as functions of locally-defined, hand-engineered features). This is a first-of-its-kind analysis of urban forms using data at a planetary scale.

  16. SpatialEpiApp: A Shiny web application for the analysis of spatial and spatio-temporal disease data.

    PubMed

    Moraga, Paula

    2017-11-01

    During last years, public health surveillance has been facilitated by the existence of several packages implementing statistical methods for the analysis of spatial and spatio-temporal disease data. However, these methods are still inaccesible for many researchers lacking the adequate programming skills to effectively use the required software. In this paper we present SpatialEpiApp, a Shiny web application that integrate two of the most common approaches in health surveillance: disease mapping and detection of clusters. SpatialEpiApp is easy to use and does not require any programming knowledge. Given information about the cases, population and optionally covariates for each of the areas and dates of study, the application allows to fit Bayesian models to obtain disease risk estimates and their uncertainty by using R-INLA, and to detect disease clusters by using SaTScan. The application allows user interaction and the creation of interactive data visualizations and reports showing the analyses performed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Impact of Satellite Viewing-Swath Width on Global and Regional Aerosol Optical Thickness Statistics and Trends

    NASA Technical Reports Server (NTRS)

    Colarco, P. R.; Kahn, R. A.; Remer, L. A.; Levy, R. C.

    2014-01-01

    We use the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite aerosol optical thickness (AOT) product to assess the impact of reduced swath width on global and regional AOT statistics and trends. Alongtrack and across-track sampling strategies are employed, in which the full MODIS data set is sub-sampled with various narrow-swath (approximately 400-800 km) and single pixel width (approximately 10 km) configurations. Although view-angle artifacts in the MODIS AOT retrieval confound direct comparisons between averages derived from different sub-samples, careful analysis shows that with many portions of the Earth essentially unobserved, spatial sampling introduces uncertainty in the derived seasonal-regional mean AOT. These AOT spatial sampling artifacts comprise up to 60%of the full-swath AOT value under moderate aerosol loading, and can be as large as 0.1 in some regions under high aerosol loading. Compared to full-swath observations, narrower swath and single pixel width sampling exhibits a reduced ability to detect AOT trends with statistical significance. On the other hand, estimates of the global, annual mean AOT do not vary significantly from the full-swath values as spatial sampling is reduced. Aggregation of the MODIS data at coarse grid scales (10 deg) shows consistency in the aerosol trends across sampling strategies, with increased statistical confidence, but quantitative errors in the derived trends are found even for the full-swath data when compared to high spatial resolution (0.5 deg) aggregations. Using results of a model-derived aerosol reanalysis, we find consistency in our conclusions about a seasonal-regional spatial sampling artifact in AOT Furthermore, the model shows that reduced spatial sampling can amount to uncertainty in computed shortwave top-ofatmosphere aerosol radiative forcing of 2-3 W m(sup-2). These artifacts are lower bounds, as possibly other unconsidered sampling strategies would perform less well. These results suggest that future aerosol satellite missions having significantly less than full-swath viewing are unlikely to sample the true AOT distribution well enough to obtain the statistics needed to reduce uncertainty in aerosol direct forcing of climate.

  18. Application of spatial Poisson process models to air mass thunderstorm rainfall

    NASA Technical Reports Server (NTRS)

    Eagleson, P. S.; Fennessy, N. M.; Wang, Qinliang; Rodriguez-Iturbe, I.

    1987-01-01

    Eight years of summer storm rainfall observations from 93 stations in and around the 154 sq km Walnut Gulch catchment of the Agricultural Research Service, U.S. Department of Agriculture, in Arizona are processed to yield the total station depths of 428 storms. Statistical analysis of these random fields yields the first two moments, the spatial correlation and variance functions, and the spatial distribution of total rainfall for each storm. The absolute and relative worth of three Poisson models are evaluated by comparing their prediction of the spatial distribution of storm rainfall with observations from the second half of the sample. The effect of interstorm parameter variation is examined.

  19. Spatial heterogeneity in statistical power to detect changes in lake area in Alaskan National Wildlife Refuges

    USGS Publications Warehouse

    Nicol, Samuel; Roach, Jennifer K.; Griffith, Brad

    2013-01-01

    Over the past 50 years, the number and size of high-latitude lakes have decreased throughout many regions; however, individual lake trends have been variable in direction and magnitude. This spatial heterogeneity in lake change makes statistical detection of temporal trends challenging, particularly in small analysis areas where weak trends are difficult to separate from inter- and intra-annual variability. Factors affecting trend detection include inherent variability, trend magnitude, and sample size. In this paper, we investigated how the statistical power to detect average linear trends in lake size of 0.5, 1.0 and 2.0 %/year was affected by the size of the analysis area and the number of years of monitoring in National Wildlife Refuges in Alaska. We estimated power for large (930–4,560 sq km) study areas within refuges and for 2.6, 12.9, and 25.9 sq km cells nested within study areas over temporal extents of 4–50 years. We found that: (1) trends in study areas could be detected within 5–15 years, (2) trends smaller than 2.0 %/year would take >50 years to detect in cells within study areas, and (3) there was substantial spatial variation in the time required to detect change among cells. Power was particularly low in the smallest cells which typically had the fewest lakes. Because small but ecologically meaningful trends may take decades to detect, early establishment of long-term monitoring will enhance power to detect change. Our results have broad applicability and our method is useful for any study involving change detection among variable spatial and temporal extents.

  20. Targeting regional pediatric congenital hearing loss using a spatial scan statistic.

    PubMed

    Bush, Matthew L; Christian, Warren Jay; Bianchi, Kristin; Lester, Cathy; Schoenberg, Nancy

    2015-01-01

    Congenital hearing loss is a common problem, and timely identification and intervention are paramount for language development. Patients from rural regions may have many barriers to timely diagnosis and intervention. The purpose of this study was to examine the spatial and hospital-based distribution of failed infant hearing screening testing and pediatric congenital hearing loss throughout Kentucky. Data on live births and audiological reporting of infant hearing loss results in Kentucky from 2009 to 2011 were analyzed. The authors used spatial scan statistics to identify high-rate clusters of failed newborn screening tests and permanent congenital hearing loss (PCHL), based on the total number of live births per county. The authors conducted further analyses on PCHL and failed newborn hearing screening tests, based on birth hospital data and method of screening. The authors observed four statistically significant (p < 0.05) high-rate clusters with failed newborn hearing screenings in Kentucky, including two in the Appalachian region. Hospitals using two-stage otoacoustic emission testing demonstrated higher rates of failed screening (p = 0.009) than those using two-stage automated auditory brainstem response testing. A significant cluster of high rate of PCHL was observed in Western Kentucky. Five of the 54 birthing hospitals were found to have higher relative risk of PCHL, and two of those hospitals are located in a very rural region of Western Kentucky within the cluster. This spatial analysis in children in Kentucky has identified specific regions throughout the state with high rates of congenital hearing loss and failed newborn hearing screening tests. Further investigation regarding causative factors is warranted. This method of analysis can be useful in the setting of hearing health disparities to focus efforts on regions facing high incidence of congenital hearing loss.

  1. Exploring the Micro-Social Geography of Children's Interactions in Preschool: A Long-Term Observational Study and Analysis Using Geographic Information Technologies

    ERIC Educational Resources Information Center

    Torrens, Paul M.; Griffin, William A.

    2013-01-01

    The authors describe an observational and analytic methodology for recording and interpreting dynamic microprocesses that occur during social interaction, making use of space--time data collection techniques, spatial-statistical analysis, and visualization. The scheme has three investigative foci: Structure, Activity Composition, and Clustering.…

  2. An Analysis of San Diego's Housing Market Using a Geographically Weighted Regression Approach

    NASA Astrophysics Data System (ADS)

    Grant, Christina P.

    San Diego County real estate transaction data was evaluated with a set of linear models calibrated by ordinary least squares and geographically weighted regression (GWR). The goal of the analysis was to determine whether the spatial effects assumed to be in the data are best studied globally with no spatial terms, globally with a fixed effects submarket variable, or locally with GWR. 18,050 single-family residential sales which closed in the six months between April 2014 and September 2014 were used in the analysis. Diagnostic statistics including AICc, R2, Global Moran's I, and visual inspection of diagnostic plots and maps indicate superior model performance by GWR as compared to both global regressions.

  3. A power comparison of generalized additive models and the spatial scan statistic in a case-control setting.

    PubMed

    Young, Robin L; Weinberg, Janice; Vieira, Verónica; Ozonoff, Al; Webster, Thomas F

    2010-07-19

    A common, important problem in spatial epidemiology is measuring and identifying variation in disease risk across a study region. In application of statistical methods, the problem has two parts. First, spatial variation in risk must be detected across the study region and, second, areas of increased or decreased risk must be correctly identified. The location of such areas may give clues to environmental sources of exposure and disease etiology. One statistical method applicable in spatial epidemiologic settings is a generalized additive model (GAM) which can be applied with a bivariate LOESS smoother to account for geographic location as a possible predictor of disease status. A natural hypothesis when applying this method is whether residential location of subjects is associated with the outcome, i.e. is the smoothing term necessary? Permutation tests are a reasonable hypothesis testing method and provide adequate power under a simple alternative hypothesis. These tests have yet to be compared to other spatial statistics. This research uses simulated point data generated under three alternative hypotheses to evaluate the properties of the permutation methods and compare them to the popular spatial scan statistic in a case-control setting. Case 1 was a single circular cluster centered in a circular study region. The spatial scan statistic had the highest power though the GAM method estimates did not fall far behind. Case 2 was a single point source located at the center of a circular cluster and Case 3 was a line source at the center of the horizontal axis of a square study region. Each had linearly decreasing logodds with distance from the point. The GAM methods outperformed the scan statistic in Cases 2 and 3. Comparing sensitivity, measured as the proportion of the exposure source correctly identified as high or low risk, the GAM methods outperformed the scan statistic in all three Cases. The GAM permutation testing methods provide a regression-based alternative to the spatial scan statistic. Across all hypotheses examined in this research, the GAM methods had competing or greater power estimates and sensitivities exceeding that of the spatial scan statistic.

  4. A power comparison of generalized additive models and the spatial scan statistic in a case-control setting

    PubMed Central

    2010-01-01

    Background A common, important problem in spatial epidemiology is measuring and identifying variation in disease risk across a study region. In application of statistical methods, the problem has two parts. First, spatial variation in risk must be detected across the study region and, second, areas of increased or decreased risk must be correctly identified. The location of such areas may give clues to environmental sources of exposure and disease etiology. One statistical method applicable in spatial epidemiologic settings is a generalized additive model (GAM) which can be applied with a bivariate LOESS smoother to account for geographic location as a possible predictor of disease status. A natural hypothesis when applying this method is whether residential location of subjects is associated with the outcome, i.e. is the smoothing term necessary? Permutation tests are a reasonable hypothesis testing method and provide adequate power under a simple alternative hypothesis. These tests have yet to be compared to other spatial statistics. Results This research uses simulated point data generated under three alternative hypotheses to evaluate the properties of the permutation methods and compare them to the popular spatial scan statistic in a case-control setting. Case 1 was a single circular cluster centered in a circular study region. The spatial scan statistic had the highest power though the GAM method estimates did not fall far behind. Case 2 was a single point source located at the center of a circular cluster and Case 3 was a line source at the center of the horizontal axis of a square study region. Each had linearly decreasing logodds with distance from the point. The GAM methods outperformed the scan statistic in Cases 2 and 3. Comparing sensitivity, measured as the proportion of the exposure source correctly identified as high or low risk, the GAM methods outperformed the scan statistic in all three Cases. Conclusions The GAM permutation testing methods provide a regression-based alternative to the spatial scan statistic. Across all hypotheses examined in this research, the GAM methods had competing or greater power estimates and sensitivities exceeding that of the spatial scan statistic. PMID:20642827

  5. Distribution of ULF energy (f is less than 80 mHz) in the inner magnetosphere - A statistical analysis of AMPTE CCE magnetic field data

    NASA Technical Reports Server (NTRS)

    Takahashi, Kazue; Anderson, Brian J.

    1992-01-01

    Magnetic field measurements made with the AMPTE CCE spacecraft are used to investigate the distribution of ULF energy in the inner magnetosphere. The data base is employed to examine the spatial distribution of ULF energy. The spatial distribution of wave power and spectral structures are used to identify several pulsation types, including multiharmonic toroidal oscillations; equatorial compressional Pc 3 oscillations; second harmonic poloidal oscillations; and nightside compressional oscillations. The frequencies of the toroidal oscillations are applied to determine the statistical radial profile of the plasma mass density and Alfven velocity. A clear signature of the plasma pause in the profiles of these average parameters is found.

  6. Analysis of the changes in the tarcrete layer on the desert surface of Kuwait using satellite imagery and cell-based modeling

    NASA Astrophysics Data System (ADS)

    Al-Doasari, Ahmad E.

    The 1991 Gulf War caused massive environmental damage in Kuwait. Deposition of oil and soot droplets from hundreds of burning oil-wells created a layer of tarcrete on the desert surface covering over 900 km2. This research investigates the spatial change in the tarcrete extent from 1991 to 1998 using Landsat Thematic Mapper (TM) imagery and statistical modeling techniques. The pixel structure of TM data allows the spatial analysis of the change in tarcrete extent to be conducted at the pixel (cell) level within a geographical information system (GIS). There are two components to this research. The first is a comparison of three remote sensing classification techniques used to map the tarcrete layer. The second is a spatial-temporal analysis and simulation of tarcrete changes through time. The analysis focuses on an area of 389 km2 located south of the Al-Burgan oil field. Five TM images acquired in 1991, 1993, 1994, 1995, and 1998 were geometrically and atmospherically corrected. These images were classified into six classes: oil lakes; heavy, intermediate, light, and traces of tarcrete; and sand. The classification methods tested were unsupervised, supervised, and neural network supervised (fuzzy ARTMAP). Field data of tarcrete characteristics were collected to support the classification process and to evaluate the classification accuracies. Overall, the neural network method is more accurate (60 percent) than the other two methods; both the unsupervised and the supervised classification accuracy assessments resulted in 46 percent accuracy. The five classifications were used in a lagged autologistic model to analyze the spatial changes of the tarcrete through time. The autologistic model correctly identified overall tarcrete contraction between 1991--1993 and 1995--1998. However, tarcrete contraction between 1993--1994 and 1994--1995 was less well marked, in part because of classification errors in the maps from these time periods. Initial simulations of tarcrete contraction with a cellular automaton model were not very successful. However, more accurate classifications could improve the simulations. This study illustrates how an empirical investigation using satellite images, field data, GIS, and spatial statistics can simulate dynamic land-cover change through the use of a discrete statistical and cellular automaton model.

  7. Spatial autocorrelation analysis of health care hotspots in Taiwan in 2006

    PubMed Central

    2009-01-01

    Background Spatial analytical techniques and models are often used in epidemiology to identify spatial anomalies (hotspots) in disease regions. These analytical approaches can be used to not only identify the location of such hotspots, but also their spatial patterns. Methods In this study, we utilize spatial autocorrelation methodologies, including Global Moran's I and Local Getis-Ord statistics, to describe and map spatial clusters, and areas in which these are situated, for the 20 leading causes of death in Taiwan. In addition, we use the fit to a logistic regression model to test the characteristics of similarity and dissimilarity by gender. Results Gender is compared in efforts to formulate the common spatial risk. The mean found by local spatial autocorrelation analysis is utilized to identify spatial cluster patterns. There is naturally great interest in discovering the relationship between the leading causes of death and well-documented spatial risk factors. For example, in Taiwan, we found the geographical distribution of clusters where there is a prevalence of tuberculosis to closely correspond to the location of aboriginal townships. Conclusions Cluster mapping helps to clarify issues such as the spatial aspects of both internal and external correlations for leading health care events. This is of great aid in assessing spatial risk factors, which in turn facilitates the planning of the most advantageous types of health care policies and implementation of effective health care services. PMID:20003460

  8. Modeling vertebrate diversity in Oregon using satellite imagery

    NASA Astrophysics Data System (ADS)

    Cablk, Mary Elizabeth

    Vertebrate diversity was modeled for the state of Oregon using a parametric approach to regression tree analysis. This exploratory data analysis effectively modeled the non-linear relationships between vertebrate richness and phenology, terrain, and climate. Phenology was derived from time-series NOAA-AVHRR satellite imagery for the year 1992 using two methods: principal component analysis and derivation of EROS data center greenness metrics. These two measures of spatial and temporal vegetation condition incorporated the critical temporal element in this analysis. The first three principal components were shown to contain spatial and temporal information about the landscape and discriminated phenologically distinct regions in Oregon. Principal components 2 and 3, 6 greenness metrics, elevation, slope, aspect, annual precipitation, and annual seasonal temperature difference were investigated as correlates to amphibians, birds, all vertebrates, reptiles, and mammals. Variation explained for each regression tree by taxa were: amphibians (91%), birds (67%), all vertebrates (66%), reptiles (57%), and mammals (55%). Spatial statistics were used to quantify the pattern of each taxa and assess validity of resulting predictions from regression tree models. Regression tree analysis was relatively robust against spatial autocorrelation in the response data and graphical results indicated models were well fit to the data.

  9. Spatial and space-time distribution of Plasmodium vivax and Plasmodium falciparum malaria in China, 2005-2014.

    PubMed

    Hundessa, Samuel H; Williams, Gail; Li, Shanshan; Guo, Jinpeng; Chen, Linping; Zhang, Wenyi; Guo, Yuming

    2016-12-19

    Despite the declining burden of malaria in China, the disease remains a significant public health problem with periodic outbreaks and spatial variation across the country. A better understanding of the spatial and temporal characteristics of malaria is essential for consolidating the disease control and elimination programme. This study aims to understand the spatial and spatiotemporal distribution of Plasmodium vivax and Plasmodium falciparum malaria in China during 2005-2009. Global Moran's I statistics was used to detect a spatial distribution of local P. falciparum and P. vivax malaria at the county level. Spatial and space-time scan statistics were applied to detect spatial and spatiotemporal clusters, respectively. Both P. vivax and P. falciparum malaria showed spatial autocorrelation. The most likely spatial cluster of P. vivax was detected in northern Anhui province between 2005 and 2009, and western Yunnan province between 2010 and 2014. For P. falciparum, the clusters included several counties of western Yunnan province from 2005 to 2011, Guangxi from 2012 to 2013, and Anhui in 2014. The most likely space-time clusters of P. vivax malaria and P. falciparum malaria were detected in northern Anhui province and western Yunnan province, respectively, during 2005-2009. The spatial and space-time cluster analysis identified high-risk areas and periods for both P. vivax and P. falciparum malaria. Both malaria types showed significant spatial and spatiotemporal variations. Contrary to P. vivax, the high-risk areas for P. falciparum malaria shifted from the west to the east of China. Further studies are required to examine the spatial changes in risk of malaria transmission and identify the underlying causes of elevated risk in the high-risk areas.

  10. Statistical analysis of mesoscale rainfall: Dependence of a random cascade generator on large-scale forcing

    NASA Technical Reports Server (NTRS)

    Over, Thomas, M.; Gupta, Vijay K.

    1994-01-01

    Under the theory of independent and identically distributed random cascades, the probability distribution of the cascade generator determines the spatial and the ensemble properties of spatial rainfall. Three sets of radar-derived rainfall data in space and time are analyzed to estimate the probability distribution of the generator. A detailed comparison between instantaneous scans of spatial rainfall and simulated cascades using the scaling properties of the marginal moments is carried out. This comparison highlights important similarities and differences between the data and the random cascade theory. Differences are quantified and measured for the three datasets. Evidence is presented to show that the scaling properties of the rainfall can be captured to the first order by a random cascade with a single parameter. The dependence of this parameter on forcing by the large-scale meteorological conditions, as measured by the large-scale spatial average rain rate, is investigated for these three datasets. The data show that this dependence can be captured by a one-to-one function. Since the large-scale average rain rate can be diagnosed from the large-scale dynamics, this relationship demonstrates an important linkage between the large-scale atmospheric dynamics and the statistical cascade theory of mesoscale rainfall. Potential application of this research to parameterization of runoff from the land surface and regional flood frequency analysis is briefly discussed, and open problems for further research are presented.

  11. Spatial, temporal and frequency based climate change assessment in Columbia River Basin using multi downscaled-scenarios

    NASA Astrophysics Data System (ADS)

    Rana, Arun; Moradkhani, Hamid

    2016-07-01

    Uncertainties in climate modelling are well documented in literature. Global Climate Models (GCMs) are often used to downscale the climatic parameters on a regional scale. In the present work, we have analyzed the changes in precipitation and temperature for future scenario period of 2070-2099 with respect to historical period of 1970-2000 from statistically downscaled GCM projections in Columbia River Basin (CRB). Analysis is performed using two different statistically downscaled climate projections (with ten GCMs downscaled products each, for RCP 4.5 and RCP 8.5, from CMIP5 dataset) namely, those from the Bias Correction and Spatial Downscaling (BCSD) technique generated at Portland State University and from the Multivariate Adaptive Constructed Analogs (MACA) technique, generated at University of Idaho, totaling to 40 different scenarios. The two datasets for BCSD and MACA are downscaled from observed data for both scenarios projections i.e. RCP4.5 and RCP8.5. Analysis is performed using spatial change (yearly scale), temporal change (monthly scale), percentile change (seasonal scale), quantile change (yearly scale), and wavelet analysis (yearly scale) in the future period from the historical period, respectively, at a scale of 1/16th of degree for entire CRB region. Results have indicated in varied degree of spatial change pattern for the entire Columbia River Basin, especially western part of the basin. At temporal scales, winter precipitation has higher variability than summer and vice versa for temperature. Most of the models have indicated considerate positive change in quantiles and percentiles for both precipitation and temperature. Wavelet analysis provided insights into possible explanation to changes in precipitation.

  12. Assessing the significance of pedobarographic signals using random field theory.

    PubMed

    Pataky, Todd C

    2008-08-07

    Traditional pedobarographic statistical analyses are conducted over discrete regions. Recent studies have demonstrated that regionalization can corrupt pedobarographic field data through conflation when arbitrary dividing lines inappropriately delineate smooth field processes. An alternative is to register images such that homologous structures optimally overlap and then conduct statistical tests at each pixel to generate statistical parametric maps (SPMs). The significance of SPM processes may be assessed within the framework of random field theory (RFT). RFT is ideally suited to pedobarographic image analysis because its fundamental data unit is a lattice sampling of a smooth and continuous spatial field. To correct for the vast number of multiple comparisons inherent in such data, recent pedobarographic studies have employed a Bonferroni correction to retain a constant family-wise error rate. This approach unfortunately neglects the spatial correlation of neighbouring pixels, so provides an overly conservative (albeit valid) statistical threshold. RFT generally relaxes the threshold depending on field smoothness and on the geometry of the search area, but it also provides a framework for assigning p values to suprathreshold clusters based on their spatial extent. The current paper provides an overview of basic RFT concepts and uses simulated and experimental data to validate both RFT-relevant field smoothness estimations and RFT predictions regarding the topological characteristics of random pedobarographic fields. Finally, previously published experimental data are re-analysed using RFT inference procedures to demonstrate how RFT yields easily understandable statistical results that may be incorporated into routine clinical and laboratory analyses.

  13. Explorative spatial analysis of traffic accident statistics and road mortality among the provinces of Turkey.

    PubMed

    Erdogan, Saffet

    2009-10-01

    The aim of the study is to describe the inter-province differences in traffic accidents and mortality on roads of Turkey. Two different risk indicators were used to evaluate the road safety performance of the provinces in Turkey. These indicators are the ratios between the number of persons killed in road traffic accidents (1) and the number of accidents (2) (nominators) and their exposure to traffic risk (denominator). Population and the number of registered motor vehicles in the provinces were used as denominators individually. Spatial analyses were performed to the mean annual rate of deaths and to the number of fatal accidents that were calculated for the period of 2001-2006. Empirical Bayes smoothing was used to remove background noise from the raw death and accident rates because of the sparsely populated provinces and small number of accident and death rates of provinces. Global and local spatial autocorrelation analyses were performed to show whether the provinces with high rates of deaths-accidents show clustering or are located closer by chance. The spatial distribution of provinces with high rates of deaths and accidents was nonrandom and detected as clustered with significance of P<0.05 with spatial autocorrelation analyses. Regions with high concentration of fatal accidents and deaths were located in the provinces that contain the roads connecting the Istanbul, Ankara, and Antalya provinces. Accident and death rates were also modeled with some independent variables such as number of motor vehicles, length of roads, and so forth using geographically weighted regression analysis with forward step-wise elimination. The level of statistical significance was taken as P<0.05. Large differences were found between the rates of deaths and accidents according to denominators in the provinces. The geographically weighted regression analyses did significantly better predictions for both accident rates and death rates than did ordinary least regressions, as indicated by adjusted R(2) values. Geographically weighted regression provided values of 0.89-0.99 adjusted R(2) for death and accident rates, compared with 0.88-0.95, respectively, by ordinary least regressions. Geographically weighted regression has the potential to reveal local patterns in the spatial distribution of rates, which would be ignored by the ordinary least regression approach. The application of spatial analysis and modeling of accident statistics and death rates at provincial level in Turkey will help to identification of provinces with outstandingly high accident and death rates. This could help more efficient road safety management in Turkey.

  14. Taking a statistical approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wild, M.; Rouhani, S.

    1995-02-01

    A typical site investigation entails extensive sampling and monitoring. In the past, sampling plans have been designed on purely ad hoc bases, leading to significant expenditures and, in some cases, collection of redundant information. In many instances, sampling costs exceed the true worth of the collected data. The US Environmental Protection Agency (EPA) therefore has advocated the use of geostatistics to provide a logical framework for sampling and analysis of environmental data. Geostatistical methodology uses statistical techniques for the spatial analysis of a variety of earth-related data. The use of geostatistics was developed by the mining industry to estimate oremore » concentrations. The same procedure is effective in quantifying environmental contaminants in soils for risk assessments. Unlike classical statistical techniques, geostatistics offers procedures to incorporate the underlying spatial structure of the investigated field. Sample points spaced close together tend to be more similar than samples spaced further apart. This can guide sampling strategies and determine complex contaminant distributions. Geostatistic techniques can be used to evaluate site conditions on the basis of regular, irregular, random and even spatially biased samples. In most environmental investigations, it is desirable to concentrate sampling in areas of known or suspected contamination. The rigorous mathematical procedures of geostatistics allow for accurate estimates at unsampled locations, potentially reducing sampling requirements. The use of geostatistics serves as a decision-aiding and planning tool and can significantly reduce short-term site assessment costs, long-term sampling and monitoring needs, as well as lead to more accurate and realistic remedial design criteria.« less

  15. A Quantile Mapping Bias Correction Method Based on Hydroclimatic Classification of the Guiana Shield

    PubMed Central

    Ringard, Justine; Seyler, Frederique; Linguet, Laurent

    2017-01-01

    Satellite precipitation products (SPPs) provide alternative precipitation data for regions with sparse rain gauge measurements. However, SPPs are subject to different types of error that need correction. Most SPP bias correction methods use the statistical properties of the rain gauge data to adjust the corresponding SPP data. The statistical adjustment does not make it possible to correct the pixels of SPP data for which there is no rain gauge data. The solution proposed in this article is to correct the daily SPP data for the Guiana Shield using a novel two set approach, without taking into account the daily gauge data of the pixel to be corrected, but the daily gauge data from surrounding pixels. In this case, a spatial analysis must be involved. The first step defines hydroclimatic areas using a spatial classification that considers precipitation data with the same temporal distributions. The second step uses the Quantile Mapping bias correction method to correct the daily SPP data contained within each hydroclimatic area. We validate the results by comparing the corrected SPP data and daily rain gauge measurements using relative RMSE and relative bias statistical errors. The results show that analysis scale variation reduces rBIAS and rRMSE significantly. The spatial classification avoids mixing rainfall data with different temporal characteristics in each hydroclimatic area, and the defined bias correction parameters are more realistic and appropriate. This study demonstrates that hydroclimatic classification is relevant for implementing bias correction methods at the local scale. PMID:28621723

  16. A Quantile Mapping Bias Correction Method Based on Hydroclimatic Classification of the Guiana Shield.

    PubMed

    Ringard, Justine; Seyler, Frederique; Linguet, Laurent

    2017-06-16

    Satellite precipitation products (SPPs) provide alternative precipitation data for regions with sparse rain gauge measurements. However, SPPs are subject to different types of error that need correction. Most SPP bias correction methods use the statistical properties of the rain gauge data to adjust the corresponding SPP data. The statistical adjustment does not make it possible to correct the pixels of SPP data for which there is no rain gauge data. The solution proposed in this article is to correct the daily SPP data for the Guiana Shield using a novel two set approach, without taking into account the daily gauge data of the pixel to be corrected, but the daily gauge data from surrounding pixels. In this case, a spatial analysis must be involved. The first step defines hydroclimatic areas using a spatial classification that considers precipitation data with the same temporal distributions. The second step uses the Quantile Mapping bias correction method to correct the daily SPP data contained within each hydroclimatic area. We validate the results by comparing the corrected SPP data and daily rain gauge measurements using relative RMSE and relative bias statistical errors. The results show that analysis scale variation reduces rBIAS and rRMSE significantly. The spatial classification avoids mixing rainfall data with different temporal characteristics in each hydroclimatic area, and the defined bias correction parameters are more realistic and appropriate. This study demonstrates that hydroclimatic classification is relevant for implementing bias correction methods at the local scale.

  17. Geospatial Characterization of Fluvial Wood Arrangement in a Semi-confined Alluvial River

    NASA Astrophysics Data System (ADS)

    Martin, D. J.; Harden, C. P.; Pavlowsky, R. T.

    2014-12-01

    Large woody debris (LWD) has become universally recognized as an integral component of fluvial systems, and as a result, has become increasingly common as a river restoration tool. However, "natural" processes of wood recruitment and the subsequent arrangement of LWD within the river network are poorly understood. This research used a suite of spatial statistics to investigate longitudinal arrangement patterns of LWD in a low-gradient, Midwestern river. First, a large-scale GPS inventory of LWD, performed on the Big River in the eastern Missouri Ozarks, resulted in over 4,000 logged positions of LWD along seven river segments that covered nearly 100 km of the 237 km river system. A global Moran's I analysis indicates that LWD density is spatially autocorrelated and displays a clustering tendency within all seven river segments (P-value range = 0.000 to 0.054). A local Moran's I analysis identified specific locations along the segments where clustering occurs and revealed that, on average, clusters of LWD density (high or low) spanned 400 m. Spectral analyses revealed that, in some segments, LWD density is spatially periodic. Two segments displayed strong periodicity, while the remaining segments displayed varying degrees of noisiness. Periodicity showed a positive association with gravel bar spacing and meander wavelength, although there were insufficient data to statistically confirm the relationship. A wavelet analysis was then performed to investigate periodicity relative to location along the segment. The wavelet analysis identified significant (α = 0.05) periodicity at discrete locations along each of the segments. Those reaches yielding strong periodicity showed stronger relationships between LWD density and the geomorphic/riparian independent variables tested. Analyses consistently identified valley width and sinuosity as being associated with LWD density. The results of these analyses contribute a new perspective on the longitudinal distribution of LWD in a river system, which should help identify physical and/or riparian control mechanisms of LWD arrangement and support the development of models of LWD arrangement. Additionally, the spatial statistical tools presented here have shown to be valuable for identifying longitudinal patterns in river system components.

  18. Spatial Correlations of Malaria Incidence Hotspots with Environmental Factors in Assam, North East India

    NASA Astrophysics Data System (ADS)

    Handique, Bijoy K.; Khan, Siraj A.; Dutta, Prafulla; Nath, Manash J.; Qadir, Abdul; Raju, P. L. N.

    2016-06-01

    Malaria is endemic and a major public health problem in north east (NE) region of India and contributes about 8-12 % of India's malaria positives cases. Historical morbidity pattern of malaria in terms of API (Annual Parasite Incidence) in the state of Assam has been used for delineating the malaria incidence hotspots at health sub centre (HSC) level. Strong spatial autocorrelation (p < 0.01) among the HSCs have been observed in terms of API (Annual Parasite Incidence). Malaria incidence hot spots in the state could be identified based on General G statistics and tested for statistical significance. Spatial correlation of malaria incidence hotspots with physiographic and climatic parameters across 6 agro-climatic zones of the state reveals the types of land cover pattern and the range of elevation contributing to the malaria outbreaks. Analysis shows that villages under malaria hotspots are having more agricultural land, evergreen/semi-evergreen forests with abundant waterbodies. Statistical and spatial analyses of malaria incidence showed a significant positive correlation with malaria incidence hotspots and the elevation (p < 0.05) with villages under malaria hotspots are having average elevation ranging between 17 to 240 MSL. This conforms to the characteristics of two dominant mosquito species in the state Anopheles minimus and An. baimai that prefers the habitat of slow flowing streams in the foot hills and in forest ecosystems respectively.

  19. ASSESSMENT OF SPATIAL AUTOCORRELATION IN EMPIRICAL MODELS IN ECOLOGY

    EPA Science Inventory

    Statistically assessing ecological models is inherently difficult because data are autocorrelated and this autocorrelation varies in an unknown fashion. At a simple level, the linking of a single species to a habitat type is a straightforward analysis. With some investigation int...

  20. Analysis of field-scale spatial correlations and variations of soil nutrients using geostatistics.

    PubMed

    Liu, Ruimin; Xu, Fei; Yu, Wenwen; Shi, Jianhan; Zhang, Peipei; Shen, Zhenyao

    2016-02-01

    Spatial correlations and soil nutrient variations are important for soil nutrient management. They help to reduce the negative impacts of agricultural nonpoint source pollution. Based on the sampled available nitrogen (AN), available phosphorus (AP), and available potassium (AK), soil nutrient data from 2010, the spatial correlation, was analyzed, and the probabilities of the nutrient's abundance or deficiency were discussed. This paper presents a statistical approach to spatial analysis, the spatial correlation analysis (SCA), which was originally developed for describing heterogeneity in the presence of correlated variation and based on ordinary kriging (OK) results. Indicator kriging (IK) was used to assess the susceptibility of excess of soil nutrients based on crop needs. The kriged results showed there was a distinct spatial variability in the concentration of all three soil nutrients. High concentrations of these three soil nutrients were found near Anzhou. As the distance from the center of town increased, the concentration of the soil nutrients gradually decreased. Spatially, the relationship between AN and AP was negative, and the relationship between AP and AK was not clear. The IK results showed that there were few areas with a risk of AN and AP overabundance. However, almost the entire study region was at risk of AK overabundance. Based on the soil nutrient distribution results, it is clear that the spatial variability of the soil nutrients differed throughout the study region. This spatial soil nutrient variability might be caused by different fertilizer types and different fertilizing practices.

  1. A geostatistical approach to the change-of-support problem and variable-support data fusion in spatial analysis

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Wang, Yang; Zeng, Hui

    2016-01-01

    A key issue to address in synthesizing spatial data with variable-support in spatial analysis and modeling is the change-of-support problem. We present an approach for solving the change-of-support and variable-support data fusion problems. This approach is based on geostatistical inverse modeling that explicitly accounts for differences in spatial support. The inverse model is applied here to produce both the best predictions of a target support and prediction uncertainties, based on one or more measurements, while honoring measurements. Spatial data covering large geographic areas often exhibit spatial nonstationarity and can lead to computational challenge due to the large data size. We developed a local-window geostatistical inverse modeling approach to accommodate these issues of spatial nonstationarity and alleviate computational burden. We conducted experiments using synthetic and real-world raster data. Synthetic data were generated and aggregated to multiple supports and downscaled back to the original support to analyze the accuracy of spatial predictions and the correctness of prediction uncertainties. Similar experiments were conducted for real-world raster data. Real-world data with variable-support were statistically fused to produce single-support predictions and associated uncertainties. The modeling results demonstrate that geostatistical inverse modeling can produce accurate predictions and associated prediction uncertainties. It is shown that the local-window geostatistical inverse modeling approach suggested offers a practical way to solve the well-known change-of-support problem and variable-support data fusion problem in spatial analysis and modeling.

  2. Statistical analysis of experimental data for mathematical modeling of physical processes in the atmosphere

    NASA Astrophysics Data System (ADS)

    Karpushin, P. A.; Popov, Yu B.; Popova, A. I.; Popova, K. Yu; Krasnenko, N. P.; Lavrinenko, A. V.

    2017-11-01

    In this paper, the probabilities of faultless operation of aerologic stations are analyzed, the hypothesis of normality of the empirical data required for using the Kalman filter algorithms is tested, and the spatial correlation functions of distributions of meteorological parameters are determined. The results of a statistical analysis of two-term (0, 12 GMT) radiosonde observations of the temperature and wind velocity components at some preset altitude ranges in the troposphere in 2001-2016 are presented. These data can be used in mathematical modeling of physical processes in the atmosphere.

  3. GEMAS: Spatial pattern analysis of Ni by using digital image processing techniques on European agricultural soil data

    NASA Astrophysics Data System (ADS)

    Jordan, Gyozo; Petrik, Attila; De Vivo, Benedetto; Albanese, Stefano; Demetriades, Alecos; Sadeghi, Martiya

    2017-04-01

    Several studies have investigated the spatial distribution of chemical elements in topsoil (0-20 cm) within the framework of the EuroGeoSurveys Geochemistry Expert Group's 'Geochemical Mapping of Agricultural and Grazing Land Soil' project . Most of these studies used geostatistical analyses and interpolated concentration maps, Exploratory and Compositional Data and Analysis to identify anomalous patterns. The objective of our investigation is to demonstrate the use of digital image processing techniques for reproducible spatial pattern recognition and quantitative spatial feature characterisation. A single element (Ni) concentration in agricultural topsoil is used to perform the detailed spatial analysis, and to relate these features to possible underlying processes. In this study, simple univariate statistical methods were implemented first, and Tukey's inner-fence criterion was used to delineate statistical outliers. The linear and triangular irregular network (TIN) interpolation was used on the outlier-free Ni data points, which was resampled to a 10*10 km grid. Successive moving average smoothing was applied to generalise the TIN model and to suppress small- and at the same time enhance significant large-scale features of Nickel concentration spatial distribution patterns in European topsoil. The TIN map smoothed with a moving average filter revealed the spatial trends and patterns without losing much detail, and it was used as the input into digital image processing, such as local maxima and minima determination, digital cross sections, gradient magnitude and gradient direction calculation, second derivative profile curvature calculation, edge detection, local variability assessment, lineament density and directional variogram analyses. The detailed image processing analysis revealed several NE-SW, E-W and NW-SE oriented elongated features, which coincide with different spatial parameter classes and alignment with local maxima and minima. The NE-SW oriented linear pattern is the dominant feature to the south of the last glaciation limit. Some of these linear features are parallel to the suture zone of the Iapetus Ocean, while the others follow the Alpine and Carpathian Chains. The highest variability zones of Ni concentration in topsoil are located in the Alps and in the Balkans where mafic and ultramafic rocks outcrop. The predominant NE-SW oriented pattern is also captured by the strong anisotropy in the semi-variograms in this direction. A single major E-W oriented north-facing feature runs along the southern border of the last glaciation zone. This zone also coincides with a series of local maxima in Ni concentration along the glaciofluvial deposits. The NW-SE elongated spatial features are less dominant and are located in the Pyrenees and Scandinavia. This study demonstrates the efficiency of systematic image processing analysis in identifying and characterising spatial geochemical patterns that often remain uncovered by the usual visual map interpretation techniques.

  4. Statistical analysis of content of Cs-137 in soils in Bansko-Razlog region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobilarov, R. G., E-mail: rkobi@tu-sofia.bg

    Statistical analysis of the data set consisting of the activity concentrations of {sup 137}Cs in soils in Bansko–Razlog region is carried out in order to establish the dependence of the deposition and the migration of {sup 137}Cs on the soil type. The descriptive statistics and the test of normality show that the data set have not normal distribution. Positively skewed distribution and possible outlying values of the activity of {sup 137}Cs in soils were observed. After reduction of the effects of outliers, the data set is divided into two parts, depending on the soil type. Test of normality of themore » two new data sets shows that they have a normal distribution. Ordinary kriging technique is used to characterize the spatial distribution of the activity of {sup 137}Cs over an area covering 40 km{sup 2} (whole Razlog valley). The result (a map of the spatial distribution of the activity concentration of {sup 137}Cs) can be used as a reference point for future studies on the assessment of radiological risk to the population and the erosion of soils in the study area.« less

  5. Spatial Statistics for Tumor Cell Counting and Classification

    NASA Astrophysics Data System (ADS)

    Wirjadi, Oliver; Kim, Yoo-Jin; Breuel, Thomas

    To count and classify cells in histological sections is a standard task in histology. One example is the grading of meningiomas, benign tumors of the meninges, which requires to assess the fraction of proliferating cells in an image. As this process is very time consuming when performed manually, automation is required. To address such problems, we propose a novel application of Markov point process methods in computer vision, leading to algorithms for computing the locations of circular objects in images. In contrast to previous algorithms using such spatial statistics methods in image analysis, the present one is fully trainable. This is achieved by combining point process methods with statistical classifiers. Using simulated data, the method proposed in this paper will be shown to be more accurate and more robust to noise than standard image processing methods. On the publicly available SIMCEP benchmark for cell image analysis algorithms, the cell count performance of the present paper is significantly more accurate than results published elsewhere, especially when cells form dense clusters. Furthermore, the proposed system performs as well as a state-of-the-art algorithm for the computer-aided histological grading of meningiomas when combined with a simple k-nearest neighbor classifier for identifying proliferating cells.

  6. A method to estimate the effect of deformable image registration uncertainties on daily dose mapping

    PubMed Central

    Murphy, Martin J.; Salguero, Francisco J.; Siebers, Jeffrey V.; Staub, David; Vaman, Constantin

    2012-01-01

    Purpose: To develop a statistical sampling procedure for spatially-correlated uncertainties in deformable image registration and then use it to demonstrate their effect on daily dose mapping. Methods: Sequential daily CT studies are acquired to map anatomical variations prior to fractionated external beam radiotherapy. The CTs are deformably registered to the planning CT to obtain displacement vector fields (DVFs). The DVFs are used to accumulate the dose delivered each day onto the planning CT. Each DVF has spatially-correlated uncertainties associated with it. Principal components analysis (PCA) is applied to measured DVF error maps to produce decorrelated principal component modes of the errors. The modes are sampled independently and reconstructed to produce synthetic registration error maps. The synthetic error maps are convolved with dose mapped via deformable registration to model the resulting uncertainty in the dose mapping. The results are compared to the dose mapping uncertainty that would result from uncorrelated DVF errors that vary randomly from voxel to voxel. Results: The error sampling method is shown to produce synthetic DVF error maps that are statistically indistinguishable from the observed error maps. Spatially-correlated DVF uncertainties modeled by our procedure produce patterns of dose mapping error that are different from that due to randomly distributed uncertainties. Conclusions: Deformable image registration uncertainties have complex spatial distributions. The authors have developed and tested a method to decorrelate the spatial uncertainties and make statistical samples of highly correlated error maps. The sample error maps can be used to investigate the effect of DVF uncertainties on daily dose mapping via deformable image registration. An initial demonstration of this methodology shows that dose mapping uncertainties can be sensitive to spatial patterns in the DVF uncertainties. PMID:22320766

  7. Imaging of Al/Fe ratios in synthetic Al-goethite revealed by nanoscale secondary ion mass spectrometry.

    PubMed

    Pohl, Lydia; Kölbl, Angelika; Werner, Florian; Mueller, Carsten W; Höschen, Carmen; Häusler, Werner; Kögel-Knabner, Ingrid

    2018-04-30

    Aluminium (Al)-substituted goethite is ubiquitous in soils and sediments. The extent of Al-substitution affects the physicochemical properties of the mineral and influences its macroscale properties. Bulk analysis only provides total Al/Fe ratios without providing information with respect to the Al-substitution of single minerals. Here, we demonstrate that nanoscale secondary ion mass spectrometry (NanoSIMS) enables the precise determination of Al-content in single minerals, while simultaneously visualising the variation of the Al/Fe ratio. Al-substituted goethite samples were synthesized with increasing Al concentrations of 0.1, 3, and 7 % and analysed by NanoSIMS in combination with established bulk spectroscopic methods (XRD, FTIR, Mössbauer spectroscopy). The high spatial resolution (50-150 nm) of NanoSIMS is accompanied by a high number of single-point measurements. We statistically evaluated the Al/Fe ratios derived from NanoSIMS, while maintaining the spatial information and reassigning it to its original localization. XRD analyses confirmed increasing concentration of incorporated Al within the goethite structure. Mössbauer spectroscopy revealed 11 % of the goethite samples generated at high Al concentrations consisted of hematite. The NanoSIMS data show that the Al/Fe ratios are in agreement with bulk data derived from total digestion and demonstrated small spatial variability between single-point measurements. More advantageously, statistical analysis and reassignment of single-point measurements allowed us to identify distinct spots with significantly higher or lower Al/Fe ratios. NanoSIMS measurements confirmed the capacity to produce images, which indicated the uniform increase in Al-concentrations in goethite. Using a combination of statistical analysis with information from complementary spectroscopic techniques (XRD, FTIR and Mössbauer spectroscopy) we were further able to reveal spots with lower Al/Fe ratios as hematite. Copyright © 2018 John Wiley & Sons, Ltd.

  8. Geovisual analytics to enhance spatial scan statistic interpretation: an analysis of U.S. cervical cancer mortality

    PubMed Central

    Chen, Jin; Roth, Robert E; Naito, Adam T; Lengerich, Eugene J; MacEachren, Alan M

    2008-01-01

    Background Kulldorff's spatial scan statistic and its software implementation – SaTScan – are widely used for detecting and evaluating geographic clusters. However, two issues make using the method and interpreting its results non-trivial: (1) the method lacks cartographic support for understanding the clusters in geographic context and (2) results from the method are sensitive to parameter choices related to cluster scaling (abbreviated as scaling parameters), but the system provides no direct support for making these choices. We employ both established and novel geovisual analytics methods to address these issues and to enhance the interpretation of SaTScan results. We demonstrate our geovisual analytics approach in a case study analysis of cervical cancer mortality in the U.S. Results We address the first issue by providing an interactive visual interface to support the interpretation of SaTScan results. Our research to address the second issue prompted a broader discussion about the sensitivity of SaTScan results to parameter choices. Sensitivity has two components: (1) the method can identify clusters that, while being statistically significant, have heterogeneous contents comprised of both high-risk and low-risk locations and (2) the method can identify clusters that are unstable in location and size as the spatial scan scaling parameter is varied. To investigate cluster result stability, we conducted multiple SaTScan runs with systematically selected parameters. The results, when scanning a large spatial dataset (e.g., U.S. data aggregated by county), demonstrate that no single spatial scan scaling value is known to be optimal to identify clusters that exist at different scales; instead, multiple scans that vary the parameters are necessary. We introduce a novel method of measuring and visualizing reliability that facilitates identification of homogeneous clusters that are stable across analysis scales. Finally, we propose a logical approach to proceed through the analysis of SaTScan results. Conclusion The geovisual analytics approach described in this manuscript facilitates the interpretation of spatial cluster detection methods by providing cartographic representation of SaTScan results and by providing visualization methods and tools that support selection of SaTScan parameters. Our methods distinguish between heterogeneous and homogeneous clusters and assess the stability of clusters across analytic scales. Method We analyzed the cervical cancer mortality data for the United States aggregated by county between 2000 and 2004. We ran SaTScan on the dataset fifty times with different parameter choices. Our geovisual analytics approach couples SaTScan with our visual analytic platform, allowing users to interactively explore and compare SaTScan results produced by different parameter choices. The Standardized Mortality Ratio and reliability scores are visualized for all the counties to identify stable, homogeneous clusters. We evaluated our analysis result by comparing it to that produced by other independent techniques including the Empirical Bayes Smoothing and Kafadar spatial smoother methods. The geovisual analytics approach introduced here is developed and implemented in our Java-based Visual Inquiry Toolkit. PMID:18992163

  9. Geovisual analytics to enhance spatial scan statistic interpretation: an analysis of U.S. cervical cancer mortality.

    PubMed

    Chen, Jin; Roth, Robert E; Naito, Adam T; Lengerich, Eugene J; Maceachren, Alan M

    2008-11-07

    Kulldorff's spatial scan statistic and its software implementation - SaTScan - are widely used for detecting and evaluating geographic clusters. However, two issues make using the method and interpreting its results non-trivial: (1) the method lacks cartographic support for understanding the clusters in geographic context and (2) results from the method are sensitive to parameter choices related to cluster scaling (abbreviated as scaling parameters), but the system provides no direct support for making these choices. We employ both established and novel geovisual analytics methods to address these issues and to enhance the interpretation of SaTScan results. We demonstrate our geovisual analytics approach in a case study analysis of cervical cancer mortality in the U.S. We address the first issue by providing an interactive visual interface to support the interpretation of SaTScan results. Our research to address the second issue prompted a broader discussion about the sensitivity of SaTScan results to parameter choices. Sensitivity has two components: (1) the method can identify clusters that, while being statistically significant, have heterogeneous contents comprised of both high-risk and low-risk locations and (2) the method can identify clusters that are unstable in location and size as the spatial scan scaling parameter is varied. To investigate cluster result stability, we conducted multiple SaTScan runs with systematically selected parameters. The results, when scanning a large spatial dataset (e.g., U.S. data aggregated by county), demonstrate that no single spatial scan scaling value is known to be optimal to identify clusters that exist at different scales; instead, multiple scans that vary the parameters are necessary. We introduce a novel method of measuring and visualizing reliability that facilitates identification of homogeneous clusters that are stable across analysis scales. Finally, we propose a logical approach to proceed through the analysis of SaTScan results. The geovisual analytics approach described in this manuscript facilitates the interpretation of spatial cluster detection methods by providing cartographic representation of SaTScan results and by providing visualization methods and tools that support selection of SaTScan parameters. Our methods distinguish between heterogeneous and homogeneous clusters and assess the stability of clusters across analytic scales. We analyzed the cervical cancer mortality data for the United States aggregated by county between 2000 and 2004. We ran SaTScan on the dataset fifty times with different parameter choices. Our geovisual analytics approach couples SaTScan with our visual analytic platform, allowing users to interactively explore and compare SaTScan results produced by different parameter choices. The Standardized Mortality Ratio and reliability scores are visualized for all the counties to identify stable, homogeneous clusters. We evaluated our analysis result by comparing it to that produced by other independent techniques including the Empirical Bayes Smoothing and Kafadar spatial smoother methods. The geovisual analytics approach introduced here is developed and implemented in our Java-based Visual Inquiry Toolkit.

  10. Spatial-temporal analysis of building surface temperatures in Hung Hom

    NASA Astrophysics Data System (ADS)

    Zeng, Ying; Shen, Yueqian

    2015-12-01

    This thesis presents a study on spatial-temporal analysis of building surface temperatures in Hung Hom. Observations were collected from Aug 2013 to Oct 2013 at a 30-min interval, using iButton sensors (N=20) covering twelve locations in Hung Hom. And thermal images were captured in PolyU from 05 Aug 2013 to 06 Aug 2013. A linear regression model of iButton and thermal records is established to calibrate temperature data. A 3D modeling system is developed based on Visual Studio 2010 development platform, using ArcEngine10.0 component, Microsoft Access 2010 database and C# programming language. The system realizes processing data, spatial analysis, compound query and 3D face temperature rendering and so on. After statistical analyses, building face azimuths are found to have a statistically significant relationship with sun azimuths at peak time. And seasonal building temperature changing also corresponds to the sun angle and sun azimuth variations. Building materials are found to have a significant effect on building surface temperatures. Buildings with lower albedo materials tend to have higher temperatures and larger thermal conductivity material have significant diurnal variations. For the geographical locations, the peripheral faces of campus have higher temperatures than the inner faces during day time and buildings located at the southeast are cooler than the western. Furthermore, human activity is found to have a strong relationship with building surface temperatures through weekday and weekend comparison.

  11. Landsat Thematic Mapper studies of land cover spatial variability related to hydrology

    NASA Technical Reports Server (NTRS)

    Wharton, S.; Ormsby, J.; Salomonson, V.; Mulligan, P.

    1984-01-01

    Past accomplishments involving remote sensing based land-cover analysis for hydrologic applications are reviewed. Ongoing research in exploiting the increased spatial, radiometric, and spectral capabilities afforded by the TM on Landsats 4 and 5 is considered. Specific studies to compare MSS and TM for urbanizing watersheds, wetlands, and floodplain mapping situations show that only a modest improvement in classification accuracy is achieved via statistical per pixel multispectral classifiers. The limitations of current approaches to multispectral classification are illustrated. The objectives, background, and progress in the development of an alternative analysis approach for defining inputs to urban hydrologic models using TM are discussed.

  12. Watching the clock

    PubMed Central

    Fetterman, J. Gregor; Killeen, Peter R.; Hall, Scott

    2008-01-01

    Four rats and four pigeons were monitored while performing retrospective timing tasks. All animals displayed collateral behaviors which could have mediated their temporal judgements. Statistical analysis made a good case for such mediation in the case of two pigeons performing on a spatially-differentiated response, but not for the two responding on a color-differentiated response. For the rats, all of which performed on a spatially-differentiated task, prediction of their temporal judgements was always better if based on collateral activity than if based on the passage of time. PMID:19701487

  13. Evaluation of the Gini Coefficient in Spatial Scan Statistics for Detecting Irregularly Shaped Clusters

    PubMed Central

    Kim, Jiyu; Jung, Inkyung

    2017-01-01

    Spatial scan statistics with circular or elliptic scanning windows are commonly used for cluster detection in various applications, such as the identification of geographical disease clusters from epidemiological data. It has been pointed out that the method may have difficulty in correctly identifying non-compact, arbitrarily shaped clusters. In this paper, we evaluated the Gini coefficient for detecting irregularly shaped clusters through a simulation study. The Gini coefficient, the use of which in spatial scan statistics was recently proposed, is a criterion measure for optimizing the maximum reported cluster size. Our simulation study results showed that using the Gini coefficient works better than the original spatial scan statistic for identifying irregularly shaped clusters, by reporting an optimized and refined collection of clusters rather than a single larger cluster. We have provided a real data example that seems to support the simulation results. We think that using the Gini coefficient in spatial scan statistics can be helpful for the detection of irregularly shaped clusters. PMID:28129368

  14. Linked Micromaps: Statistical Summaries in a Spatial Context

    EPA Science Inventory

    Communicating summaries of spatial data to decision makers and the public is challenging. We present a graphical method that provides both a geographic context and a statistical summary for such spatial data. Monitoring programs have a need for such geographical summaries. For ...

  15. Modeling the Spatiotemporal Evolution of the Melanoma Tumor Microenvironment

    NASA Astrophysics Data System (ADS)

    Signoriello, Alexandra; Bosenberg, Marcus; Shattuck, Mark; O'Hern, Corey

    The tumor microenvironment, which includes tumor cells, tumor-associated macrophages (TAM), cancer-associated fibroblasts, and endothelial cells, drives the formation and progression of melanoma tumors. Using quantitative analysis of in vivo confocal images of melanoma tumors in three spatial dimensions, we examine the physical properties of the melanoma tumor microenvironment, including the numbers of different cells types, cell size, and morphology. We also compute the nearest neighbor statistics and measure intermediate range spatial correlations between different cell types. We also calculate the step size distribution, mean-square displacement, and non-Gaussian parameter from the spatial trajectories of different cell types in the tumor microenvironment.

  16. Modeling of non-uniform spatial arrangement of fibers in a ceramic matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, S.; Tewari, A.; Gokhale, A.M.

    In the unidirectional fiber reinforced composites, the spatial agreement of fibers is often non-uniform. These non-uniformities are linked to the processing conditions, and they affect the properties of the composite. In this contribution, a recently developed digital image analysis technique is used to quantify the non-uniform spatial arrangement of Nicalon fibers in a ceramic matrix composite (CMC). These quantitative data are utilized to develop a six parameter computer simulated microstructure model that is statistically equivalent to the non-uniform microstructure of the CMC. The simulated microstructure can be utilized as a RVE for the micro-mechanical modeling studies.

  17. A worldwide analysis of the impact of forest cover change on annual runoff across multiple spatial scales

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Liu, S.

    2017-12-01

    Despite extensive studies on hydrological responses to forest cover change in small watersheds, the hydrological responses to forest change and associated mechanisms across multiple spatial scales have not been fully understood. This review thus examined about 312 watersheds worldwide to provide a generalized framework to evaluate hydrological responses to forest cover change and to identify the contribution of spatial scale, climate, forest type and hydrological regime in determining the intensity of forest change related hydrological responses in small (<1000 km2) and large watersheds (≥1000 km2). Key findings include: 1) the increase in annual runoff associated with forest cover loss is statistically significant at multiple spatial scales whereas the effect of forest cover gain is statistically inconsistent; 2) the sensitivity of annual runoff to forest cover change tends to attenuate as watershed size increases only in large watersheds; 3) annual runoff is more sensitive to forest cover change in water-limited watersheds than in energy-limited watersheds across all spatial scales; and 4) small mixed forest-dominated watersheds or large snow-dominated watersheds are more hydrologically resilient to forest cover change. These findings improve the understanding of hydrological response to forest cover change at different spatial scales and provide a scientific underpinning to future watershed management in the context of climate change and increasing anthropogenic disturbances.

  18. Spatial analysis of alcohol-related motor vehicle crash injuries in southeastern Michigan.

    PubMed

    Meliker, Jaymie R; Maio, Ronald F; Zimmerman, Marc A; Kim, Hyungjin Myra; Smith, Sarah C; Wilson, Mark L

    2004-11-01

    Temporal, behavioral and social risk factors that affect injuries resulting from alcohol-related motor vehicle crashes have been characterized in previous research. Much less is known about spatial patterns and environmental associations of alcohol-related motor vehicle crashes. The aim of this study was to evaluate geographic patterns of alcohol-related motor vehicle crashes and to determine if locations of alcohol outlets are associated with those crashes. In addition, we sought to demonstrate the value of integrating spatial and traditional statistical techniques in the analysis of this preventable public health risk. The study design was a cross-sectional analysis of individual-level blood alcohol content, traffic report information, census block group data, and alcohol distribution outlets. Besag and Newell's spatial analysis and traditional logistic regression both indicated that areas of low population density had more alcohol-related motor vehicle crashes than expected (P < 0.05). There was no significant association between alcohol outlets and alcohol-related motor vehicle crashes using distance analyses, logistic regression, and Chi-square. Differences in environmental or behavioral factors characteristic of areas of low population density may be responsible for the higher proportion of alcohol-related crashes occurring in these areas.

  19. Testing averaged cosmology with type Ia supernovae and BAO data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos, B.; Alcaniz, J.S.; Coley, A.A.

    An important problem in precision cosmology is the determination of the effects of averaging and backreaction on observational predictions, particularly in view of the wealth of new observational data and improved statistical techniques. In this paper, we discuss the observational viability of a class of averaged cosmologies which consist of a simple parametrized phenomenological two-scale backreaction model with decoupled spatial curvature parameters. We perform a Bayesian model selection analysis and find that this class of averaged phenomenological cosmological models is favored with respect to the standard ΛCDM cosmological scenario when a joint analysis of current SNe Ia and BAO datamore » is performed. In particular, the analysis provides observational evidence for non-trivial spatial curvature.« less

  20. Environmental analysis using integrated GIS and remotely sensed data - Some research needs and priorities

    NASA Technical Reports Server (NTRS)

    Davis, Frank W.; Quattrochi, Dale A.; Ridd, Merrill K.; Lam, Nina S.-N.; Walsh, Stephen J.

    1991-01-01

    This paper discusses some basic scientific issues and research needs in the joint processing of remotely sensed and GIS data for environmental analysis. Two general topics are treated in detail: (1) scale dependence of geographic data and the analysis of multiscale remotely sensed and GIS data, and (2) data transformations and information flow during data processing. The discussion of scale dependence focuses on the theory and applications of spatial autocorrelation, geostatistics, and fractals for characterizing and modeling spatial variation. Data transformations during processing are described within the larger framework of geographical analysis, encompassing sampling, cartography, remote sensing, and GIS. Development of better user interfaces between image processing, GIS, database management, and statistical software is needed to expedite research on these and other impediments to integrated analysis of remotely sensed and GIS data.

  1. Spatial correlation in precipitation trends in the Brazilian Amazon

    NASA Astrophysics Data System (ADS)

    Buarque, Diogo Costa; Clarke, Robin T.; Mendes, Carlos Andre Bulhoes

    2010-06-01

    A geostatistical analysis of variables derived from Amazon daily precipitation records (trends in annual precipitation totals, trends in annual maximum precipitation accumulated over 1-5 days, trend in length of dry spell, trend in number of wet days per year) gave results that are consistent with those previously reported. Averaged over the Brazilian Amazon region as a whole, trends in annual maximum precipitations were slightly negative, the trend in the length of dry spell was slightly positive, and the trend in the number of wet days in the year was slightly negative. For trends in annual maximum precipitation accumulated over 1-5 days, spatial correlation between trends was found to extend up to a distance equivalent to at least half a degree of latitude or longitude, with some evidence of anisotropic correlation. Time trends in annual precipitation were found to be spatially correlated up to at least ten degrees of separation, in both W-E and S-N directions. Anisotropic spatial correlation was strongly evident in time trends in length of dry spell with much stronger evidence of spatial correlation in the W-E direction, extending up to at least five degrees of separation, than in the S-N. Because the time trends analyzed are shown to be spatially correlated, it is argued that methods at present widely used to test the statistical significance of climate trends over time lead to erroneous conclusions if spatial correlation is ignored, because records from different sites are assumed to be statistically independent.

  2. Multispectral scanner system parameter study and analysis software system description, volume 2

    NASA Technical Reports Server (NTRS)

    Landgrebe, D. A. (Principal Investigator); Mobasseri, B. G.; Wiersma, D. J.; Wiswell, E. R.; Mcgillem, C. D.; Anuta, P. E.

    1978-01-01

    The author has identified the following significant results. The integration of the available methods provided the analyst with the unified scanner analysis package (USAP), the flexibility and versatility of which was superior to many previous integrated techniques. The USAP consisted of three main subsystems; (1) a spatial path, (2) a spectral path, and (3) a set of analytic classification accuracy estimators which evaluated the system performance. The spatial path consisted of satellite and/or aircraft data, data correlation analyzer, scanner IFOV, and random noise model. The output of the spatial path was fed into the analytic classification and accuracy predictor. The spectral path consisted of laboratory and/or field spectral data, EXOSYS data retrieval, optimum spectral function calculation, data transformation, and statistics calculation. The output of the spectral path was fended into the stratified posterior performance estimator.

  3. Trends and spatial distribution of deaths of children aged 12-60 months in São Paulo, Brazil, 1980-98.

    PubMed Central

    Antunes, José Leopoldo Ferreira; Waldman, Eliseu Alves

    2002-01-01

    OBJECTIVE: To describe trends in the mortality of children aged 12-60 months and to perform spatial data analysis of its distribution at the inner city district level in São Paulo from 1980 to 1998. METHODS: Official mortality data were analysed in relation to the underlying causes of death. The population of children aged 12-60 months, disaggregated by sex and age, was estimated for each year. Educational levels, income, employment status, and other socioeconomic indices were also assessed. Statistical Package for Social Sciences software was used for the statistical processing of time series. The Cochrane-Orcutt procedure of generalized least squares regression analysis was used to estimate the regression parameters with control of first-order autocorrelation. Spatial data analysis employed the discrimination of death rates and socioeconomic indices at the inner city district level. For classifying area-level death rates the method of K-means cluster analysis was used. Spatial correlation between variables was analysed by the simultaneous autoregressive regression method. FINDINGS: There was a steady decline in death rates during the 1980s at an average rate of 3.08% per year, followed by a levelling off. Infectious diseases remained the major cause of mortality, accounting for 43.1% of deaths during the last three years of the study. Injuries accounted for 16.5% of deaths. Mortality rates at the area level clearly demonstrated inequity in the city's health profile: there was an increasing difference between the rich and the underprivileged social strata in this respect. CONCLUSION: The overall mortality rate among children aged 12-60 months dropped by almost 30% during the study period. Most of the decline happened during the 1980s. Many people still live in a state of deprivation in underserved areas. Time-series and spatial data analysis provided indications of potential value in the planning of social policies promoting well-being, through the identification of factors affecting child survival and the regions with the worst health profiles, to which programmes and resources should be preferentially directed. PMID:12077615

  4. Związek rozmieszczenia powierzchniowych form krasowych międzyrzecza środkowego Wieprza i Bugu z tektoniką dysjunktywną w świetle analizy statystycznej

    NASA Astrophysics Data System (ADS)

    Kamińska, Anna

    2010-01-01

    The relationship between karst of chalk and tectonics in the interfluve of the middle Wieprz and Bug Rivers has been already examined by Maruszczak (1966), Harasimiuk (1980) and Dobrowolski (1998). Investigating the connection of the karst formation course and the substratum structure, the direction of the landforms and their spatial pattern were analysed and compared later to the structural pattern. The obvious completion of the collected data is a quantity analysis using statistical methods. This paper deals with the characteristics of such quantity analysis. By using the tools of the directional statistics, the following indexes have been calculated: the mean vector orientation, the length of the vector mean, strength of the vector mean, the Batschelet variance, as well as determined confidence intervals for the mean vector. In order to examine the distribution structure of these forms, the selected methods of the spatial statistics have been used-angular wavelet analysis (Rosenberg 2004) and the semivariogram analysis (Namysłowska-Wilczyńska 2006). On the basis of conducted analyses, it is possible to describe in detail the regularities in spatial distribution of the surface karst forms in the interfluve of the middle Wieprz and Bug Rivers. The orientation analysis reveals an important feature of their direction-along with a rise in the size of surface karst forms, the level of concentration around the mean vector orientation increases. Primary karst forms point out poor concentration along the longitudinal direction whereas complex forms are clearly concentrated along the WNW-ESE direction. Hence, only after clumping of the primary forms into the complex ones, the convergence of the surface karst forms direction with the direction of the main faults in the Meso-Cenozoic complex is visible (after A. Henkiel 1984). The results of the wavelet analysis modified by Rosenberg (2004) have indicated significant directions of the clumping of the surface karst forms. A clear difference in the distribution of these forms in west and east areas is noticed. Whereas the west area is dominated by the W-E, NW-SE, N-S directions, the karst forms in the east are concentrated along the NE-SW direction. The semivariogram analysis has confirmed the importance of the W-E and NE-SW directions. Moreover, this analysis has indicated which areas are characterized by the poor karst forms direction. It is a region where the Kock-Wasylów dislocation zone crosses the Święcica dislocation zone in the north-east part of the analysed area. The south-east region is the second such area. The picture of the spatial pattern one confirms the previous results (Dobrowolski 1998) and refers clearly to the structural pattern of this area. Nevertheless, the analyses mentioned above have shown the dominance of the W-E direction over the NW-SE one. The obtained results of the spatial and direction analyses expand and confirm hitherto information about the relation between the spatial pattern of the karst landforms and the tectonics in the interfluve of the middle Wieprz and Bug Rivers.

  5. NIRS-SPM: statistical parametric mapping for near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Tak, Sungho; Jang, Kwang Eun; Jung, Jinwook; Jang, Jaeduck; Jeong, Yong; Ye, Jong Chul

    2008-02-01

    Even though there exists a powerful statistical parametric mapping (SPM) tool for fMRI, similar public domain tools are not available for near infrared spectroscopy (NIRS). In this paper, we describe a new public domain statistical toolbox called NIRS-SPM for quantitative analysis of NIRS signals. Specifically, NIRS-SPM statistically analyzes the NIRS data using GLM and makes inference as the excursion probability which comes from the random field that are interpolated from the sparse measurement. In order to obtain correct inference, NIRS-SPM offers the pre-coloring and pre-whitening method for temporal correlation estimation. For simultaneous recording NIRS signal with fMRI, the spatial mapping between fMRI image and real coordinate in 3-D digitizer is estimated using Horn's algorithm. These powerful tools allows us the super-resolution localization of the brain activation which is not possible using the conventional NIRS analysis tools.

  6. Spatial/Temporal Variations of Crime: A Routine Activity Theory Perspective.

    PubMed

    de Melo, Silas Nogueira; Pereira, Débora V S; Andresen, Martin A; Matias, Lindon Fonseca

    2018-05-01

    Temporal and spatial patterns of crime in Campinas, Brazil, are analyzed considering the relevance of routine activity theory in a Latin American context. We use geo-referenced criminal event data, 2010-2013, analyzing spatial patterns using census tracts and temporal patterns considering seasons, months, days, and hours. Our analyses include difference in means tests, count-based regression models, and Kulldorff's scan test. We find that crime in Campinas, Brazil, exhibits both temporal and spatial-temporal patterns. However, the presence of these patterns at the different temporal scales varies by crime type. Specifically, not all crime types have statistically significant temporal patterns at all scales of analysis. As such, routine activity theory works well to explain temporal and spatial-temporal patterns of crime in Campinas, Brazil. However, local knowledge of Brazilian culture is necessary for understanding a portion of these crime patterns.

  7. Experimental Effects and Individual Differences in Linear Mixed Models: Estimating the Relationship between Spatial, Object, and Attraction Effects in Visual Attention

    PubMed Central

    Kliegl, Reinhold; Wei, Ping; Dambacher, Michael; Yan, Ming; Zhou, Xiaolin

    2011-01-01

    Linear mixed models (LMMs) provide a still underused methodological perspective on combining experimental and individual-differences research. Here we illustrate this approach with two-rectangle cueing in visual attention (Egly et al., 1994). We replicated previous experimental cue-validity effects relating to a spatial shift of attention within an object (spatial effect), to attention switch between objects (object effect), and to the attraction of attention toward the display centroid (attraction effect), also taking into account the design-inherent imbalance of valid and other trials. We simultaneously estimated variance/covariance components of subject-related random effects for these spatial, object, and attraction effects in addition to their mean reaction times (RTs). The spatial effect showed a strong positive correlation with mean RT and a strong negative correlation with the attraction effect. The analysis of individual differences suggests that slow subjects engage attention more strongly at the cued location than fast subjects. We compare this joint LMM analysis of experimental effects and associated subject-related variances and correlations with two frequently used alternative statistical procedures. PMID:21833292

  8. Differences in Looking at Own- and Other-Race Faces Are Subtle and Analysis-Dependent: An Account of Discrepant Reports.

    PubMed

    Arizpe, Joseph; Kravitz, Dwight J; Walsh, Vincent; Yovel, Galit; Baker, Chris I

    2016-01-01

    The Other-Race Effect (ORE) is the robust and well-established finding that people are generally poorer at facial recognition of individuals of another race than of their own race. Over the past four decades, much research has focused on the ORE because understanding this phenomenon is expected to elucidate fundamental face processing mechanisms and the influence of experience on such mechanisms. Several recent studies of the ORE in which the eye-movements of participants viewing own- and other-race faces were tracked have, however, reported highly conflicting results regarding the presence or absence of differential patterns of eye-movements to own- versus other-race faces. This discrepancy, of course, leads to conflicting theoretical interpretations of the perceptual basis for the ORE. Here we investigate fixation patterns to own- versus other-race (African and Chinese) faces for Caucasian participants using different analysis methods. While we detect statistically significant, though subtle, differences in fixation pattern using an Area of Interest (AOI) approach, we fail to detect significant differences when applying a spatial density map approach. Though there were no significant differences in the spatial density maps, the qualitative patterns matched the results from the AOI analyses reflecting how, in certain contexts, Area of Interest (AOI) analyses can be more sensitive in detecting the differential fixation patterns than spatial density analyses, due to spatial pooling of data with AOIs. AOI analyses, however, also come with the limitation of requiring a priori specification. These findings provide evidence that the conflicting reports in the prior literature may be at least partially accounted for by the differences in the statistical sensitivity associated with the different analysis methods employed across studies. Overall, our results suggest that detection of differences in eye-movement patterns can be analysis-dependent and rests on the assumptions inherent in the given analysis.

  9. Differences in Looking at Own- and Other-Race Faces Are Subtle and Analysis-Dependent: An Account of Discrepant Reports

    PubMed Central

    Arizpe, Joseph; Kravitz, Dwight J.; Walsh, Vincent; Yovel, Galit; Baker, Chris I.

    2016-01-01

    The Other-Race Effect (ORE) is the robust and well-established finding that people are generally poorer at facial recognition of individuals of another race than of their own race. Over the past four decades, much research has focused on the ORE because understanding this phenomenon is expected to elucidate fundamental face processing mechanisms and the influence of experience on such mechanisms. Several recent studies of the ORE in which the eye-movements of participants viewing own- and other-race faces were tracked have, however, reported highly conflicting results regarding the presence or absence of differential patterns of eye-movements to own- versus other-race faces. This discrepancy, of course, leads to conflicting theoretical interpretations of the perceptual basis for the ORE. Here we investigate fixation patterns to own- versus other-race (African and Chinese) faces for Caucasian participants using different analysis methods. While we detect statistically significant, though subtle, differences in fixation pattern using an Area of Interest (AOI) approach, we fail to detect significant differences when applying a spatial density map approach. Though there were no significant differences in the spatial density maps, the qualitative patterns matched the results from the AOI analyses reflecting how, in certain contexts, Area of Interest (AOI) analyses can be more sensitive in detecting the differential fixation patterns than spatial density analyses, due to spatial pooling of data with AOIs. AOI analyses, however, also come with the limitation of requiring a priori specification. These findings provide evidence that the conflicting reports in the prior literature may be at least partially accounted for by the differences in the statistical sensitivity associated with the different analysis methods employed across studies. Overall, our results suggest that detection of differences in eye-movement patterns can be analysis-dependent and rests on the assumptions inherent in the given analysis. PMID:26849447

  10. The case for increasing the statistical power of eddy covariance ecosystem studies: why, where and how?

    PubMed

    Hill, Timothy; Chocholek, Melanie; Clement, Robert

    2017-06-01

    Eddy covariance (EC) continues to provide invaluable insights into the dynamics of Earth's surface processes. However, despite its many strengths, spatial replication of EC at the ecosystem scale is rare. High equipment costs are likely to be partially responsible. This contributes to the low sampling, and even lower replication, of ecoregions in Africa, Oceania (excluding Australia) and South America. The level of replication matters as it directly affects statistical power. While the ergodicity of turbulence and temporal replication allow an EC tower to provide statistically robust flux estimates for its footprint, these principles do not extend to larger ecosystem scales. Despite the challenge of spatially replicating EC, it is clearly of interest to be able to use EC to provide statistically robust flux estimates for larger areas. We ask: How much spatial replication of EC is required for statistical confidence in our flux estimates of an ecosystem? We provide the reader with tools to estimate the number of EC towers needed to achieve a given statistical power. We show that for a typical ecosystem, around four EC towers are needed to have 95% statistical confidence that the annual flux of an ecosystem is nonzero. Furthermore, if the true flux is small relative to instrument noise and spatial variability, the number of towers needed can rise dramatically. We discuss approaches for improving statistical power and describe one solution: an inexpensive EC system that could help by making spatial replication more affordable. However, we note that diverting limited resources from other key measurements in order to allow spatial replication may not be optimal, and a balance needs to be struck. While individual EC towers are well suited to providing fluxes from the flux footprint, we emphasize that spatial replication is essential for statistically robust fluxes if a wider ecosystem is being studied. © 2016 The Authors Global Change Biology Published by John Wiley & Sons Ltd.

  11. Spatial variability of soil moisture retrieved by SMOS satellite

    NASA Astrophysics Data System (ADS)

    Lukowski, Mateusz; Marczewski, Wojciech; Usowicz, Boguslaw; Rojek, Edyta; Slominski, Jan; Lipiec, Jerzy

    2015-04-01

    Standard statistical methods assume that the analysed variables are independent. Since the majority of the processes observed in the nature are continuous in space and time, this assumption introduces a significant limitation for understanding the examined phenomena. In classical approach, valuable information about the locations of examined observations is completely lost. However, there is a branch of statistics, called geostatistics, which is the study of random variables, but taking into account the space where they occur. A common example of so-called "regionalized variable" is soil moisture. Using in situ methods it is difficult to estimate soil moisture distribution because it is often significantly diversified. Thanks to the geostatistical methods, by employing semivariance analysis, it is possible to get the information about the nature of spatial dependences and their lengths. Since the Soil Moisture and Ocean Salinity mission launch in 2009, the estimation of soil moisture spatial distribution for regional up to continental scale started to be much easier. In this study, the SMOS L2 data for Central and Eastern Europe were examined. The statistical and geostatistical features of moisture distributions of this area were studied for selected natural soil phenomena for 2010-2014 including: freezing, thawing, rainfalls (wetting), drying and drought. Those soil water "states" were recognized employing ground data from the agro-meteorological network of ground-based stations SWEX and SMUDP2 data from SMOS. After pixel regularization, without any upscaling, the geostatistical methods were applied directly on Discrete Global Grid (15-km resolution) in ISEA 4H9 projection, on which SMOS observations are reported. Analysis of spatial distribution of SMOS soil moisture, carried out for each data set, in most cases did not show significant trends. It was therefore assumed that each of the examined distributions of soil moisture in the adopted scale satisfies ergodicity and quasi-stationarity assumptions, required for geostatistical analysis. The semivariograms examinations revealed that spatial dependences occurring in the surface soil moisture distributions for the selected area were more or less 200 km. The exception was the driest of the studied days, when the spatial correlations of soil moisture were not disturbed for a long time by any rainfall. Spatial correlation length on that day was about 400 km. Because of zonal character of frost, the spatial dependences in the examined surface soil moisture distributions during freezing/thawing found to be disturbed. Probably, the amount of water remains the same, but it is not detected by SMOS, hence analysing dielectric constant instead of soil moisture would be more appropriate. Some spatial relations of soil moisture and freezing distribution with existing maps of soil granulometric fractions and soil specific surface area for Poland have also been found. The work was partially funded under the ELBARA_PD (Penetration Depth) project No. 4000107897/13/NL/KML. ELBARA_PD project is funded by the Government of Poland through an ESA (European Space Agency) Contract under the PECS (Plan for European Cooperating States).

  12. Spatial modeling of households' knowledge about arsenic pollution in Bangladesh.

    PubMed

    Sarker, M Mizanur Rahman

    2012-04-01

    Arsenic in drinking water is an important public health issue in Bangladesh, which is affected by households' knowledge about arsenic threats from their drinking water. In this study, spatial statistical models were used to investigate the determinants and spatial dependence of households' knowledge about arsenic risk. The binary join matrix/binary contiguity matrix and inverse distance spatial weight matrix techniques are used to capture spatial dependence in the data. This analysis extends the spatial model by allowing spatial dependence to vary across divisions and regions. A positive spatial correlation was found in households' knowledge across neighboring districts at district, divisional and regional levels, but the strength of this spatial correlation varies considerably by spatial weight. Literacy rate, daily wage rate of agricultural labor, arsenic status, and percentage of red mark tube well usage in districts were found to contribute positively and significantly to households' knowledge. These findings have policy implications both at regional and national levels in mitigating the present arsenic crisis and to ensure arsenic-free water in Bangladesh. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Coupled Effects of Natural and Anthropogenic Controls on Seasonal and Spatial Variations of River Water Quality during Baseflow in a Coastal Watershed of Southeast China

    PubMed Central

    Huang, Jinliang; Huang, Yaling; Zhang, Zhenyu

    2014-01-01

    Surface water samples of baseflow were collected from 20 headwater sub-watersheds which were classified into three types of watersheds (natural, urban and agricultural) in the flood, dry and transition seasons during three consecutive years (2010–2012) within a coastal watershed of Southeast China. Integrating spatial statistics with multivariate statistical techniques, river water quality variations and their interactions with natural and anthropogenic controls were examined to identify the causal factors and underlying mechanisms governing spatiotemporal patterns of water quality. Anthropogenic input related to industrial effluents and domestic wastewater, agricultural activities associated with the precipitation-induced surface runoff, and natural weathering process were identified as the potential important factors to drive the seasonal variations in stream water quality for the transition, flood and dry seasons, respectively. All water quality indicators except SRP had the highest mean concentrations in the dry and transition seasons. Anthropogenic activities and watershed characteristics led to the spatial variations in stream water quality in three types of watersheds. Concentrations of NH4 +-N, SRP, K+, CODMn, and Cl− were generally highest in urban watersheds. NO3 –N Concentration was generally highest in agricultural watersheds. Mg2+ concentration in natural watersheds was significantly higher than that in agricultural watersheds. Spatial autocorrelations analysis showed similar levels of water pollution between the neighboring sub-watersheds exhibited in the dry and transition seasons while non-point source pollution contributed to the significant variations in water quality between neighboring sub-watersheds. Spatial regression analysis showed anthropogenic controls played critical roles in variations of water quality in the JRW. Management implications were further discussed for water resource management. This research demonstrates that the coupled effects of natural and anthropogenic controls involved in watershed processes, contribute to the seasonal and spatial variation of headwater stream water quality in a coastal watershed with high spatial variability and intensive anthropogenic activities. PMID:24618771

  14. Demographic inference under the coalescent in a spatial continuum.

    PubMed

    Guindon, Stéphane; Guo, Hongbin; Welch, David

    2016-10-01

    Understanding population dynamics from the analysis of molecular and spatial data requires sound statistical modeling. Current approaches assume that populations are naturally partitioned into discrete demes, thereby failing to be relevant in cases where individuals are scattered on a spatial continuum. Other models predict the formation of increasingly tight clusters of individuals in space, which, again, conflicts with biological evidence. Building on recent theoretical work, we introduce a new genealogy-based inference framework that alleviates these issues. This approach effectively implements a stochastic model in which the distribution of individuals is homogeneous and stationary, thereby providing a relevant null model for the fluctuation of genetic diversity in time and space. Importantly, the spatial density of individuals in a population and their range of dispersal during the course of evolution are two parameters that can be inferred separately with this method. The validity of the new inference framework is confirmed with extensive simulations and the analysis of influenza sequences collected over five seasons in the USA. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Spatial Analysis of PAHs in Soils along an Urban-Suburban-Rural Gradient: scale effect, distribution patterns, diffusion and influencing factors

    NASA Astrophysics Data System (ADS)

    Peng, Chi; Wang, Meie; Chen, Weiping

    2016-11-01

    Spatial statistical methods including Cokriging interpolation, Morans I analysis, and geographically weighted regression (GWR) were used for studying the spatial characteristics of polycyclic aromatic hydrocarbon (PAH) accumulation in urban, suburban, and rural soils of Beijing. The concentrations of PAHs decreased spatially as the level of urbanization decreased. Generally, PAHs in soil showed two spatial patterns on the regional scale: (1) regional baseline depositions with a radius of 16.5 km related to the level of urbanization and (2) isolated pockets of soil contaminated with PAHs were found up to around 3.5 km from industrial point sources. In the urban areas, soil PAHs showed high spatial heterogeneity on the block scale, which was probably related to vegetation cover, land use, and physical soil disturbance. The distribution of total PAHs in urban blocks was unrelated to the indicators of the intensity of anthropogenic activity, namely population density, light intensity at night, and road density, but was significantly related to the same indicators in the suburban and rural areas. The moving averages of molecular ratios suggested that PAHs in the suburban and rural soils were a mix of local emissions and diffusion from urban areas.

  16. Clustering, randomness and regularity in cloud fields. I - Theoretical considerations. II - Cumulus cloud fields

    NASA Technical Reports Server (NTRS)

    Weger, R. C.; Lee, J.; Zhu, Tianri; Welch, R. M.

    1992-01-01

    The current controversy existing in reference to the regularity vs. clustering in cloud fields is examined by means of analysis and simulation studies based upon nearest-neighbor cumulative distribution statistics. It is shown that the Poisson representation of random point processes is superior to pseudorandom-number-generated models and that pseudorandom-number-generated models bias the observed nearest-neighbor statistics towards regularity. Interpretation of this nearest-neighbor statistics is discussed for many cases of superpositions of clustering, randomness, and regularity. A detailed analysis is carried out of cumulus cloud field spatial distributions based upon Landsat, AVHRR, and Skylab data, showing that, when both large and small clouds are included in the cloud field distributions, the cloud field always has a strong clustering signal.

  17. New dimensions from statistical graphics for GIS (geographic information system) analysis and interpretation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCord, R.A.; Olson, R.J.

    1988-01-01

    Environmental research and assessment activities at Oak Ridge National Laboratory (ORNL) include the analysis of spatial and temporal patterns of ecosystem response at a landscape scale. Analysis through use of geographic information system (GIS) involves an interaction between the user and thematic data sets frequently expressed as maps. A portion of GIS analysis has a mathematical or statistical aspect, especially for the analysis of temporal patterns. ARC/INFO is an excellent tool for manipulating GIS data and producing the appropriate map graphics. INFO also has some limited ability to produce statistical tabulation. At ORNL we have extended our capabilities by graphicallymore » interfacing ARC/INFO and SAS/GRAPH to provide a combined mapping and statistical graphics environment. With the data management, statistical, and graphics capabilities of SAS added to ARC/INFO, we have expanded the analytical and graphical dimensions of the GIS environment. Pie or bar charts, frequency curves, hydrographs, or scatter plots as produced by SAS can be added to maps from attribute data associated with ARC/INFO coverages. Numerous, small, simplified graphs can also become a source of complex map ''symbols.'' These additions extend the dimensions of GIS graphics to include time, details of the thematic composition, distribution, and interrelationships. 7 refs., 3 figs.« less

  18. Environmental drivers and spatial dependency in wildfire ignition patterns of northwestern Patagonia.

    PubMed

    Mundo, Ignacio A; Wiegand, Thorsten; Kanagaraj, Rajapandian; Kitzberger, Thomas

    2013-07-15

    Fire management requires an understanding of the spatial characteristics of fire ignition patterns and how anthropogenic and natural factors influence ignition patterns across space. In this study we take advantage of a recent fire ignition database (855 points) to conduct a comprehensive analysis of the spatial pattern of fire ignitions in the western area of Neuquén province (57,649 km(2)), Argentina, for the 1992-2008 period. The objectives of our study were to better understand the spatial pattern and the environmental drivers of the fire ignitions, with the ultimate aim of supporting fire management. We conducted our analyses on three different levels: statistical "habitat" modelling of fire ignition (natural, anthropogenic, and all causes) based on an information theoretic approach to test several competing hypotheses on environmental drivers (i.e. topographic, climatic, anthropogenic, land cover, and their combinations); spatial point pattern analysis to quantify additional spatial autocorrelation in the ignition patterns; and quantification of potential spatial associations between fires of different causes relative to towns using a novel implementation of the independence null model. Anthropogenic fire ignitions were best predicted by the most complex habitat model including all groups of variables, whereas natural ignitions were best predicted by topographic, climatic and land-cover variables. The spatial pattern of all ignitions showed considerable clustering at intermediate distances (<40 km) not captured by the probability of fire ignitions predicted by the habitat model. There was a strong (linear) and highly significant increase in the density of fire ignitions with decreasing distance to towns (<5 km), but fire ignitions of natural and anthropogenic causes were statistically independent. A two-dimensional habitat model that quantifies differences between ignition probabilities of natural and anthropogenic causes allows fire managers to delineate target areas for consideration of major preventive treatments, strategic placement of fuel treatments, and forecasting of fire ignition. The techniques presented here can be widely applied to situations where a spatial point pattern is jointly influenced by extrinsic environmental factors and intrinsic point interactions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Integration of Spatial and Social Network Analysis in Disease Transmission Studies.

    PubMed

    Emch, Michael; Root, Elisabeth D; Giebultowicz, Sophia; Ali, Mohammad; Perez-Heydrich, Carolina; Yunus, Mohammad

    2012-01-01

    This study presents a case study of how social network and spatial analytical methods can be used simultaneously for disease transmission modeling. The paper first reviews strategies employed in previous studies and then offers the example of transmission of two bacterial diarrheal diseases in rural Bangladesh. The goal is to understand how diseases vary socially above and beyond the effects of the local neighborhood context. Patterns of cholera and shigellosis incidence are analyzed in space and within kinship-based social networks in Matlab, Bangladesh. Data include a spatially referenced longitudinal demographic database which consists of approximately 200,000 people and laboratory-confirmed cholera and shigellosis cases from 1983 to 2003. Matrices are created of kinship ties between households using a complete network design and distance matrices are also created to model spatial relationships. Moran's I statistics are calculated to measure clustering within both social and spatial matrices. Combined spatial effects-spatial disturbance models are built to simultaneously analyze spatial and social effects while controlling for local environmental context. Results indicate that cholera and shigellosis always clusters in space and only sometimes within social networks. This suggests that the local environment is most important for understanding transmission of both diseases however kinship-based social networks also influence their transmission. Simultaneous spatial and social network analysis can help us better understand disease transmission and this study has offered several strategies on how.

  20. Integration of Spatial and Social Network Analysis in Disease Transmission Studies

    PubMed Central

    Root, Elisabeth D; Giebultowicz, Sophia; Ali, Mohammad; Perez-Heydrich, Carolina; Yunus, Mohammad

    2013-01-01

    This study presents a case study of how social network and spatial analytical methods can be used simultaneously for disease transmission modeling. The paper first reviews strategies employed in previous studies and then offers the example of transmission of two bacterial diarrheal diseases in rural Bangladesh. The goal is to understand how diseases vary socially above and beyond the effects of the local neighborhood context. Patterns of cholera and shigellosis incidence are analyzed in space and within kinship-based social networks in Matlab, Bangladesh. Data include a spatially referenced longitudinal demographic database which consists of approximately 200,000 people and laboratory-confirmed cholera and shigellosis cases from 1983 to 2003. Matrices are created of kinship ties between households using a complete network design and distance matrices are also created to model spatial relationships. Moran's I statistics are calculated to measure clustering within both social and spatial matrices. Combined spatial effects-spatial disturbance models are built to simultaneously analyze spatial and social effects while controlling for local environmental context. Results indicate that cholera and shigellosis always clusters in space and only sometimes within social networks. This suggests that the local environment is most important for understanding transmission of both diseases however kinship-based social networks also influence their transmission. Simultaneous spatial and social network analysis can help us better understand disease transmission and this study has offered several strategies on how. PMID:24163443

  1. Data-driven inference for the spatial scan statistic.

    PubMed

    Almeida, Alexandre C L; Duarte, Anderson R; Duczmal, Luiz H; Oliveira, Fernando L P; Takahashi, Ricardo H C

    2011-08-02

    Kulldorff's spatial scan statistic for aggregated area maps searches for clusters of cases without specifying their size (number of areas) or geographic location in advance. Their statistical significance is tested while adjusting for the multiple testing inherent in such a procedure. However, as is shown in this work, this adjustment is not done in an even manner for all possible cluster sizes. A modification is proposed to the usual inference test of the spatial scan statistic, incorporating additional information about the size of the most likely cluster found. A new interpretation of the results of the spatial scan statistic is done, posing a modified inference question: what is the probability that the null hypothesis is rejected for the original observed cases map with a most likely cluster of size k, taking into account only those most likely clusters of size k found under null hypothesis for comparison? This question is especially important when the p-value computed by the usual inference process is near the alpha significance level, regarding the correctness of the decision based in this inference. A practical procedure is provided to make more accurate inferences about the most likely cluster found by the spatial scan statistic.

  2. A scan statistic for binary outcome based on hypergeometric probability model, with an application to detecting spatial clusters of Japanese encephalitis.

    PubMed

    Zhao, Xing; Zhou, Xiao-Hua; Feng, Zijian; Guo, Pengfei; He, Hongyan; Zhang, Tao; Duan, Lei; Li, Xiaosong

    2013-01-01

    As a useful tool for geographical cluster detection of events, the spatial scan statistic is widely applied in many fields and plays an increasingly important role. The classic version of the spatial scan statistic for the binary outcome is developed by Kulldorff, based on the Bernoulli or the Poisson probability model. In this paper, we apply the Hypergeometric probability model to construct the likelihood function under the null hypothesis. Compared with existing methods, the likelihood function under the null hypothesis is an alternative and indirect method to identify the potential cluster, and the test statistic is the extreme value of the likelihood function. Similar with Kulldorff's methods, we adopt Monte Carlo test for the test of significance. Both methods are applied for detecting spatial clusters of Japanese encephalitis in Sichuan province, China, in 2009, and the detected clusters are identical. Through a simulation to independent benchmark data, it is indicated that the test statistic based on the Hypergeometric model outweighs Kulldorff's statistics for clusters of high population density or large size; otherwise Kulldorff's statistics are superior.

  3. Clusters in irregular areas and lattices.

    PubMed

    Wieczorek, William F; Delmerico, Alan M; Rogerson, Peter A; Wong, David W S

    2012-01-01

    Geographic areas of different sizes and shapes of polygons that represent counts or rate data are often encountered in social, economic, health, and other information. Often political or census boundaries are used to define these areas because the information is available only for those geographies. Therefore, these types of boundaries are frequently used to define neighborhoods in spatial analyses using geographic information systems and related approaches such as multilevel models. When point data can be geocoded, it is possible to examine the impact of polygon shape on spatial statistical properties, such as clustering. We utilized point data (alcohol outlets) to examine the issue of polygon shape and size on visualization and statistical properties. The point data were allocated to regular lattices (hexagons and squares) and census areas for zip-code tabulation areas and tracts. The number of units in the lattices was set to be similar to the number of tract and zip-code areas. A spatial clustering statistic and visualization were used to assess the impact of polygon shape for zip- and tract-sized units. Results showed substantial similarities and notable differences across shape and size. The specific circumstances of a spatial analysis that aggregates points to polygons will determine the size and shape of the areal units to be used. The irregular polygons of census units may reflect underlying characteristics that could be missed by large regular lattices. Future research to examine the potential for using a combination of irregular polygons and regular lattices would be useful.

  4. Mining Claim Activity on Federal Land in the United States

    USGS Publications Warehouse

    Causey, J. Douglas

    2007-01-01

    Several statistical compilations of mining claim activity on Federal land derived from the Bureau of Land Management's LR2000 database have previously been published by the U.S Geological Survey (USGS). The work in the 1990s did not include Arkansas or Florida. None of the previous reports included Alaska because it is stored in a separate database (Alaska Land Information System) and is in a different format. This report includes data for all states for which there are Federal mining claim records, beginning in 1976 and continuing to the present. The intent is to update the spatial and statistical data associated with this report on an annual basis, beginning with 2005 data. The statistics compiled from the databases are counts of the number of active mining claims in a section of land each year from 1976 to the present for all states within the United States. Claim statistics are subset by lode and placer types, as well as a dataset summarizing all claims including mill site and tunnel site claims. One table presents data by case type, case status, and number of claims in a section. This report includes a spatial database for each state in which mining claims were recorded, except North Dakota, which only has had two claims. A field is present that allows the statistical data to be joined to the spatial databases so that spatial displays and analysis can be done by using appropriate geographic information system (GIS) software. The data show how mining claim activity has changed in intensity, space, and time. Variations can be examined on a state, as well as a national level. The data are tied to a section of land, approximately 640 acres, which allows it to be used at regional, as well as local scale. The data only pertain to Federal land and mineral estate that was open to mining claim location at the time the claims were staked.

  5. Betty Petersen Memorial Library - NCWCP Publications - NWS

    Science.gov Websites

    Filters to Variational Statistical Analysis with Spatially Inhomogeneous Covariances (.PDF file) 432 2001 file) 456 2008 Purser, R. James Normalization Of The Diffusive Filters That Represent The Inhomogeneous file) 457 2008 Purser, R. James Normalization Of The Diffusive Filters That Represent The Inhomogeneous

  6. The potential of 2D Kalman filtering for soil moisture data assimilation

    USDA-ARS?s Scientific Manuscript database

    We examine the potential for parameterizing a two-dimensional (2D) land data assimilation system using spatial error auto-correlation statistics gleaned from a triple collocation analysis and the triplet of: (1) active microwave-, (2) passive microwave- and (3) land surface model-based surface soil ...

  7. The spatial equity principle in the administrative division of the Central European countries

    PubMed Central

    Klapka, Pavel; Bačík, Vladimír; Klobučník, Michal

    2017-01-01

    The paper generally builds on the concept of justice in social science. It attempts to interpret this concept in a geographical and particularly in a spatial context. The paper uses the concept of accessibility to define the principle of spatial equity. The main objective of the paper is to propose an approach with which to assess the level of spatial equity in the administrative division of a territory. In order to fulfil this objective the paper theoretically discusses the concept of spatial equity and relates it to other relevant concepts, such as spatial efficiency. The paper proposes some measures of spatial equity and uses the territory of four Central European countries (Austria, the Czech Republic, Hungary, Slovakia) as example of the application of the proposed measures and the corroboration of the proposed approach. The analysis is based on the administrative division of four countries and is carried out at different hierarchical levels as defined by the Nomenclature of Units for Territorial Statistics (NUTS). PMID:29091953

  8. A look at spatial abilities in undergraduate women science majors

    NASA Astrophysics Data System (ADS)

    Lord, Thomas R.

    Contemporary investigations indicate that men generally perform significantly better in tasks involving visuo-spatial awareness than do women. Researchers have attempted to explain this difference through several hypotheses but as yet the reason for the dimorphism has not been established. Further, contemporary studies have indicated that enhancement of mental image formation and manipulation is possible when students are subjected to carefully designed spatial interventions. Present research was conducted to see if women in the sciences were as spatial perceptively accurate as their male counterparts. The researcher also was interested to find if the women that received the intervention excercises improved in their visuo-spatial awareness as rapidly as their male counterparts.The study was conducted on science majors at a suburban two year college. The population was randomly divided into groups (experimental, placebo, and control) each containing approximately the same number of men and women. All groups were given a battery of spatial perception tests (Ekstrom et al, 1976) at the onset of the winter semester and a second version of the battery at the conclusion of the semester. An analysis of variance followed by Scheffe contrasts were run on the results. The statistics revealed that the experimental group significantly outperformed the nonexperimental groups on the tests. When the differences between the mean scores for the women in the experimental group were statistically compared to those of the men in the experimental group the women were improving at a more rapid rate. Many women have the capacity to develop visuo-spatial aptitude and although they may start out behind men in spatial ability, they learn quickly and often catch up to the men's level when given meaningful visuo-spatial interventions.

  9. Statistical analysis of Geopotential Height (GH) timeseries based on Tsallis non-extensive statistical mechanics

    NASA Astrophysics Data System (ADS)

    Karakatsanis, L. P.; Iliopoulos, A. C.; Pavlos, E. G.; Pavlos, G. P.

    2018-02-01

    In this paper, we perform statistical analysis of time series deriving from Earth's climate. The time series are concerned with Geopotential Height (GH) and correspond to temporal and spatial components of the global distribution of month average values, during the period (1948-2012). The analysis is based on Tsallis non-extensive statistical mechanics and in particular on the estimation of Tsallis' q-triplet, namely {qstat, qsens, qrel}, the reconstructed phase space and the estimation of correlation dimension and the Hurst exponent of rescaled range analysis (R/S). The deviation of Tsallis q-triplet from unity indicates non-Gaussian (Tsallis q-Gaussian) non-extensive character with heavy tails probability density functions (PDFs), multifractal behavior and long range dependences for all timeseries considered. Also noticeable differences of the q-triplet estimation found in the timeseries at distinct local or temporal regions. Moreover, in the reconstructive phase space revealed a lower-dimensional fractal set in the GH dynamical phase space (strong self-organization) and the estimation of Hurst exponent indicated multifractality, non-Gaussianity and persistence. The analysis is giving significant information identifying and characterizing the dynamical characteristics of the earth's climate.

  10. Spatial Intensity Duration Frequency Relationships Using Hierarchical Bayesian Analysis for Urban Areas

    NASA Astrophysics Data System (ADS)

    Rupa, Chandra; Mujumdar, Pradeep

    2016-04-01

    In urban areas, quantification of extreme precipitation is important in the design of storm water drains and other infrastructure. Intensity Duration Frequency (IDF) relationships are generally used to obtain design return level for a given duration and return period. Due to lack of availability of extreme precipitation data for sufficiently large number of years, estimating the probability of extreme events is difficult. Typically, a single station data is used to obtain the design return levels for various durations and return periods, which are used in the design of urban infrastructure for the entire city. In an urban setting, the spatial variation of precipitation can be high; the precipitation amounts and patterns often vary within short distances of less than 5 km. Therefore it is crucial to study the uncertainties in the spatial variation of return levels for various durations. In this work, the extreme precipitation is modeled spatially using the Bayesian hierarchical analysis and the spatial variation of return levels is studied. The analysis is carried out with Block Maxima approach for defining the extreme precipitation, using Generalized Extreme Value (GEV) distribution for Bangalore city, Karnataka state, India. Daily data for nineteen stations in and around Bangalore city is considered in the study. The analysis is carried out for summer maxima (March - May), monsoon maxima (June - September) and the annual maxima rainfall. In the hierarchical analysis, the statistical model is specified in three layers. The data layer models the block maxima, pooling the extreme precipitation from all the stations. In the process layer, the latent spatial process characterized by geographical and climatological covariates (lat-lon, elevation, mean temperature etc.) which drives the extreme precipitation is modeled and in the prior level, the prior distributions that govern the latent process are modeled. Markov Chain Monte Carlo (MCMC) algorithm (Metropolis Hastings algorithm within a Gibbs sampler) is used to obtain the samples of parameters from the posterior distribution of parameters. The spatial maps of return levels for specified return periods, along with the associated uncertainties, are obtained for the summer, monsoon and annual maxima rainfall. Considering various covariates, the best fit model is selected using Deviance Information Criteria. It is observed that the geographical covariates outweigh the climatological covariates for the monsoon maxima rainfall (latitude and longitude). The best covariates for summer maxima and annual maxima rainfall are mean summer precipitation and mean monsoon precipitation respectively, including elevation for both the cases. The scale invariance theory, which states that statistical properties of a process observed at various scales are governed by the same relationship, is used to disaggregate the daily rainfall to hourly scales. The spatial maps of the scale are obtained for the study area. The spatial maps of IDF relationships thus generated are useful in storm water designs, adequacy analysis and identifying the vulnerable flooding areas.

  11. Bagging Voronoi classifiers for clustering spatial functional data

    NASA Astrophysics Data System (ADS)

    Secchi, Piercesare; Vantini, Simone; Vitelli, Valeria

    2013-06-01

    We propose a bagging strategy based on random Voronoi tessellations for the exploration of geo-referenced functional data, suitable for different purposes (e.g., classification, regression, dimensional reduction, …). Urged by an application to environmental data contained in the Surface Solar Energy database, we focus in particular on the problem of clustering functional data indexed by the sites of a spatial finite lattice. We thus illustrate our strategy by implementing a specific algorithm whose rationale is to (i) replace the original data set with a reduced one, composed by local representatives of neighborhoods covering the entire investigated area; (ii) analyze the local representatives; (iii) repeat the previous analysis many times for different reduced data sets associated to randomly generated different sets of neighborhoods, thus obtaining many different weak formulations of the analysis; (iv) finally, bag together the weak analyses to obtain a conclusive strong analysis. Through an extensive simulation study, we show that this new procedure - which does not require an explicit model for spatial dependence - is statistically and computationally efficient.

  12. Spatial pattern of spring phytoplankton community in the coastal waters of northern Zhejiang, East China Sea

    NASA Astrophysics Data System (ADS)

    Ye, Ran; Cai, Yanhong; Wei, Yongjie; Li, Xiaoming

    2017-04-01

    The spatial pattern of phytoplankton community can indicate potential environmental variation in different water bodies. In this context, spatial pattern of phytoplankton community and its response to environmental and spatial factors were studied in the coastal waters of northern Zhejiang, East China Sea using multivariate statistical techniques. Results showed that 94 species belonging to 40 genera, 5 phyla were recorded (the remaining 9 were identified to genus level) with diatoms being the most dominant followed by dinoflagellates. Hierarchical clustering analysis (HCA), nonmetric multidimentional scaling (NMDS), and analysis of similarity (ANOSIM) all demomstrated that the whole study area could be divided into 3 subareas with significant differences. Indicator species analysis (ISA) further confirmed that the indicator species of each subarea correlated significantly with specific environmental factors. Distance-based linear model (Distlm) and Mantel test revealed that silicate (SiO32-), phosphate (PO43-), pH, and dissolved oxygen (DO) were the most important environmental factors influencing phytoplankton community. Variation portioning (VP) finally concluded that the shared fractions of environmental and spatial factors were higher than either the pure environmental effects or the pure spatial effects, suggesting phytoplankton biogeography were mainly affected by both the environmental variability and dispersal limitation. Additionally, other factors (eg., trace metals, biological grazing, climate change, and time-scale variation) may also be the sources of the unexplained variation which need further study.

  13. Astrophysical data analysis with information field theory

    NASA Astrophysics Data System (ADS)

    Enßlin, Torsten

    2014-12-01

    Non-parametric imaging and data analysis in astrophysics and cosmology can be addressed by information field theory (IFT), a means of Bayesian, data based inference on spatially distributed signal fields. IFT is a statistical field theory, which permits the construction of optimal signal recovery algorithms. It exploits spatial correlations of the signal fields even for nonlinear and non-Gaussian signal inference problems. The alleviation of a perception threshold for recovering signals of unknown correlation structure by using IFT will be discussed in particular as well as a novel improvement on instrumental self-calibration schemes. IFT can be applied to many areas. Here, applications in in cosmology (cosmic microwave background, large-scale structure) and astrophysics (galactic magnetism, radio interferometry) are presented.

  14. The calibration analysis of soil infiltration formula in farmland scale

    NASA Astrophysics Data System (ADS)

    Qian, Tao; Han, Na Na; Chang, Shuan Ling

    2018-06-01

    Soil infiltration characteristic is an important basis of farmland scale parameter estimation. Based on 12 groups of double-loop infiltration tests conducted in the test field of tianjin agricultural university west campus. Based on the calibration theory and the combination of statistics, the calibration analysis of phillips formula was carried out and the spatial variation characteristics of the calibration factor were analyzed. Results show that in study area based on the soil stability infiltration rate A calculate calibration factor αA calibration effect is best, that is suitable for the area formula of calibration infiltration and αA variation coefficient is 0.3234, with A certain degree of spatial variability.

  15. Space evolution model and empirical analysis of an urban public transport network

    NASA Astrophysics Data System (ADS)

    Sui, Yi; Shao, Feng-jing; Sun, Ren-cheng; Li, Shu-jing

    2012-07-01

    This study explores the space evolution of an urban public transport network, using empirical evidence and a simulation model validated on that data. Public transport patterns primarily depend on traffic spatial-distribution, demands of passengers and expected utility of investors. Evolution is an iterative process of satisfying the needs of passengers and investors based on a given traffic spatial-distribution. The temporal change of urban public transport network is evaluated both using topological measures and spatial ones. The simulation model is validated using empirical data from nine big cities in China. Statistical analyses on topological and spatial attributes suggest that an evolution network with traffic demands characterized by power-law numerical values which distribute in a mode of concentric circles tallies well with these nine cities.

  16. Exploring the relationship between food access and foodborne illness by using spatial analysis.

    PubMed

    Newbold, Bruce; Watson, Susannah; Mackay, Kevin; Isaacs, Sandy

    2013-09-01

    There is some evidence that neighborhood deprivation increases residents' risk of foodborne illnesses. Because urban areas with the least available access to adequate amounts of nutritious or affordable food options (or "food deserts") also tend to be the most deprived areas within a city, it is hypothesized that food access and foodborne illness risk are linked. However, the complexity of tracking numbers and sources of gastrointestinal (GI) illnesses often leads researchers to speculate about reasons for disproportionate rates of pathogen outbreaks among demographic groups. This study explores the suitability of existing data to examine associations between food deserts and the spatial distribution of GI illnesses in Hamilton, Ontario, Canada. A spatial analysis by using GIS software methodology was used to identify and map food retail outlets and accessibility, as well as GI illness outbreaks and sales of antidiarrhea, antinausea, and rehydration products (used as a proxy for GI cases) within the city, based on available data. Statistical analysis of the maps shows no statistical relationship between location, access to food outlets, and rates of GI illness. The analysis points to shortfalls and gaps in the existing data, which leaves us unable to draw conclusions either supporting or refuting our hypothesis. This article includes recommendations to improve the current system of illness reporting and to continue to refine the definition and process of mapping food access issues. A more comprehensive set of data would enable municipalities to more easily identify groups most at risk, depending on exposures and the type of pathogen, and reduce the occurrence of foodborne disease.

  17. Visual Data Analysis for Satellites

    NASA Technical Reports Server (NTRS)

    Lau, Yee; Bhate, Sachin; Fitzpatrick, Patrick

    2008-01-01

    The Visual Data Analysis Package is a collection of programs and scripts that facilitate visual analysis of data available from NASA and NOAA satellites, as well as dropsonde, buoy, and conventional in-situ observations. The package features utilities for data extraction, data quality control, statistical analysis, and data visualization. The Hierarchical Data Format (HDF) satellite data extraction routines from NASA's Jet Propulsion Laboratory were customized for specific spatial coverage and file input/output. Statistical analysis includes the calculation of the relative error, the absolute error, and the root mean square error. Other capabilities include curve fitting through the data points to fill in missing data points between satellite passes or where clouds obscure satellite data. For data visualization, the software provides customizable Generic Mapping Tool (GMT) scripts to generate difference maps, scatter plots, line plots, vector plots, histograms, timeseries, and color fill images.

  18. Spatial Analysis of Hospital Incidence and in Hospital Mortality of Abdominal Aortic Aneurysms in Germany: Secondary Data Analysis of Nationwide Hospital Episode (DRG) Data.

    PubMed

    Kuehnl, Andreas; Salvermoser, Michael; Erk, Alexander; Trenner, Matthias; Schmid, Volker; Eckstein, Hans-Henning

    2018-06-01

    This study aimed to analyze the spatial distribution and regional variation of the hospital incidence and in hospital mortality of abdominal aortic aneurysms (AAA) in Germany. German DRG statistics (2011-2014) were analysed. Patients with ruptured AAA (rAAA, I71.3, treated or not) and patients with non-ruptured AAA (nrAAA, I71.4, treated by open or endovascular aneurysm repair) were included. Age, sex, and risk standardisation was done using standard statistical procedures. Regional variation was quantified using systematic component of variation. To analyse spatial auto-correlation and spatial pattern, global Moran's I and Getis-Ord Gi* were calculated. A total of 50,702 cases were included. Raw hospital incidence of AAA was 15.7 per 100,000 inhabitants (nrAAA 13.1; all rAAA 2.7; treated rAAA 1.6). The standardised hospital incidence of AAA ranged from 6.3 to 30.3 per 100,000. Systematic component of variation proportion was 96% in nrAAA and 55% in treated rAAA. Incidence rates of all AAA were significantly clustered with above average values in the northwestern parts of Germany and below average values in the south and eastern regions. Standardised mortality of nrAAA ranged from 1.7% to 4.3%, with that of treated rAAA ranging from 28% to 52%. Regional variation and spatial distribution of standardised mortality was not different from random. There was significant regional variation and clustering of the hospital incidence of AAA in Germany, with higher rates in the northwest and lower rates in the southeast. There was no significant variation in standardised (age/sex/risk) mortality between counties. Copyright © 2018. Published by Elsevier B.V.

  19. Spatial distribution and cluster analysis of risky sexual behaviours and STDs reported by Chinese adults in Guangzhou, China: a representative population-based study

    PubMed Central

    Chen, Wen; Zhou, Fangjing; Hall, Brian J; Wang, Yu; Latkin, Carl; Ling, Li; Tucker, Joseph D

    2016-01-01

    Objectives To assess associations between residences location, risky sexual behaviours and sexually transmitted diseases (STDs) among adults living in Guangzhou, China. Methods Data were obtained from 751 Chinese adults aged 18–59 years in Guangzhou, China, using stratified random sampling by using spatial epidemiological methods. Face-to-face household interviews were conducted to collect self-report data on risky sexual behaviours and diagnosed STDs. Kulldorff’s spatial scan statistic was implemented to identify and detect spatial distribution and clusters of risky sexual behaviours and STDs. The presence and location of statistically significant clusters were mapped in the study areas using ArcGIS software. Results The prevalence of self-reported risky sexual behaviours was between 5.1% and 50.0%. The self-reported lifetime prevalence of diagnosed STDs was 7.06%. Anal intercourse clustered in an area located along the border within the rural–urban continuum (p=0.001). High rate clusters for alcohol or other drugs using before sex (p=0.008) and migrants who lived in Guangzhou <1 year (p=0.007) overlapped this cluster. Excess cases for unprotected sex (p=0.031) overlapped the cluster for college students (p<0.001). Five of nine (55.6%) students who had sexual experience during the last 12 months located in the cluster of unprotected sex. Conclusions Short-term migrants and college students reported greater risky sexual behaviours. Programmes to increase safer sex within these communities to reduce the risk of STDs are warranted in Guangzhou. Spatial analysis identified geographical clusters of risky sexual behaviours, which is critical for optimising surveillance and targeting control measures for these locations in the future. PMID:26843400

  20. Architecture of a spatial data service system for statistical analysis and visualization of regional climate changes

    NASA Astrophysics Data System (ADS)

    Titov, A. G.; Okladnikov, I. G.; Gordov, E. P.

    2017-11-01

    The use of large geospatial datasets in climate change studies requires the development of a set of Spatial Data Infrastructure (SDI) elements, including geoprocessing and cartographical visualization web services. This paper presents the architecture of a geospatial OGC web service system as an integral part of a virtual research environment (VRE) general architecture for statistical processing and visualization of meteorological and climatic data. The architecture is a set of interconnected standalone SDI nodes with corresponding data storage systems. Each node runs a specialized software, such as a geoportal, cartographical web services (WMS/WFS), a metadata catalog, and a MySQL database of technical metadata describing geospatial datasets available for the node. It also contains geospatial data processing services (WPS) based on a modular computing backend realizing statistical processing functionality and, thus, providing analysis of large datasets with the results of visualization and export into files of standard formats (XML, binary, etc.). Some cartographical web services have been developed in a system’s prototype to provide capabilities to work with raster and vector geospatial data based on OGC web services. The distributed architecture presented allows easy addition of new nodes, computing and data storage systems, and provides a solid computational infrastructure for regional climate change studies based on modern Web and GIS technologies.

  1. Spatial diffusion of influenza outbreak-related climate factors in Chiang Mai Province, Thailand.

    PubMed

    Nakapan, Supachai; Tripathi, Nitin Kumar; Tipdecho, Taravudh; Souris, Marc

    2012-10-24

    Influenza is one of the most important leading causes of respiratory illness in the countries located in the tropical areas of South East Asia and Thailand. In this study the climate factors associated with influenza incidence in Chiang Mai Province, Northern Thailand, were investigated. Identification of factors responsible for influenza outbreaks and the mapping of potential risk areas in Chiang Mai are long overdue. This work examines the association between yearly climate patterns between 2001 and 2008 and influenza outbreaks in the Chiang Mai Province. The climatic factors included the amount of rainfall, percent of rainy days, relative humidity, maximum, minimum temperatures and temperature difference. The study develops a statistical analysis to quantitatively assess the relationship between climate and influenza outbreaks and then evaluate its suitability for predicting influenza outbreaks. A multiple linear regression technique was used to fit the statistical model. The Inverse Distance Weighted (IDW) interpolation and Geographic Information System (GIS) techniques were used in mapping the spatial diffusion of influenza risk zones. The results show that there is a significance correlation between influenza outbreaks and climate factors for the majority of the studied area. A statistical analysis was conducted to assess the validity of the model comparing model outputs and actual outbreaks.

  2. Spatial and spatiotemporal pattern analysis of coconut lethal yellowing in Mozambique.

    PubMed

    Bonnot, F; de Franqueville, H; Lourenço, E

    2010-04-01

    Coconut lethal yellowing (LY) is caused by a phytoplasma and is a major threat for coconut production throughout its growing area. Incidence of LY was monitored visually on every coconut tree in six fields in Mozambique for 34 months. Disease progress curves were plotted and average monthly disease incidence was estimated. Spatial patterns of disease incidence were analyzed at six assessment times. Aggregation was tested by the coefficient of spatial autocorrelation of the beta-binomial distribution of diseased trees in quadrats. The binary power law was used as an assessment of overdispersion across the six fields. Spatial autocorrelation between symptomatic trees was measured by the BB join count statistic based on the number of pairs of diseased trees separated by a specific distance and orientation, and tested using permutation methods. Aggregation of symptomatic trees was detected in every field in both cumulative and new cases. Spatiotemporal patterns were analyzed with two methods. The proximity of symptomatic trees at two assessment times was investigated using the spatiotemporal BB join count statistic based on the number of pairs of trees separated by a specific distance and orientation and exhibiting the first symptoms of LY at the two times. The semivariogram of times of appearance of LY was calculated to characterize how the lag between times of appearance of LY was related to the distance between symptomatic trees. Both statistics were tested using permutation methods. A tendency for new cases to appear in the proximity of previously diseased trees and a spatially structured pattern of times of appearance of LY within clusters of diseased trees were detected, suggesting secondary spread of the disease.

  3. Topological and canonical kriging for design flood prediction in ungauged catchments: an improvement over a traditional regional regression approach?

    USGS Publications Warehouse

    Archfield, Stacey A.; Pugliese, Alessio; Castellarin, Attilio; Skøien, Jon O.; Kiang, Julie E.

    2013-01-01

    In the United States, estimation of flood frequency quantiles at ungauged locations has been largely based on regional regression techniques that relate measurable catchment descriptors to flood quantiles. More recently, spatial interpolation techniques of point data have been shown to be effective for predicting streamflow statistics (i.e., flood flows and low-flow indices) in ungauged catchments. Literature reports successful applications of two techniques, canonical kriging, CK (or physiographical-space-based interpolation, PSBI), and topological kriging, TK (or top-kriging). CK performs the spatial interpolation of the streamflow statistic of interest in the two-dimensional space of catchment descriptors. TK predicts the streamflow statistic along river networks taking both the catchment area and nested nature of catchments into account. It is of interest to understand how these spatial interpolation methods compare with generalized least squares (GLS) regression, one of the most common approaches to estimate flood quantiles at ungauged locations. By means of a leave-one-out cross-validation procedure, the performance of CK and TK was compared to GLS regression equations developed for the prediction of 10, 50, 100 and 500 yr floods for 61 streamgauges in the southeast United States. TK substantially outperforms GLS and CK for the study area, particularly for large catchments. The performance of TK over GLS highlights an important distinction between the treatments of spatial correlation when using regression-based or spatial interpolation methods to estimate flood quantiles at ungauged locations. The analysis also shows that coupling TK with CK slightly improves the performance of TK; however, the improvement is marginal when compared to the improvement in performance over GLS.

  4. Geographic variations in cervical cancer risk in San Luis Potosí state, Mexico: A spatial statistical approach.

    PubMed

    Terán-Hernández, Mónica; Ramis-Prieto, Rebeca; Calderón-Hernández, Jaqueline; Garrocho-Rangel, Carlos Félix; Campos-Alanís, Juan; Ávalos-Lozano, José Antonio; Aguilar-Robledo, Miguel

    2016-09-29

    Worldwide, Cervical Cancer (CC) is the fourth most common type of cancer and cause of death in women. It is a significant public health problem, especially in low and middle-income/Gross Domestic Product (GDP) countries. In the past decade, several studies of CC have been published, that identify the main modifiable and non-modifiable CC risk factors for Mexican women. However, there are no studies that attempt to explain the residual spatial variation in CC incidence In Mexico, i.e. spatial variation that cannot be ascribed to known, spatially varying risk factors. This paper uses a spatial statistical methodology that takes into account spatial variation in socio-economic factors and accessibility to health services, whilst allowing for residual, unexplained spatial variation in risk. To describe residual spatial variations in CC risk, we used generalised linear mixed models (GLMM) with both spatially structured and unstructured random effects, using a Bayesian approach to inference. The highest risk is concentrated in the southeast, where the Matlapa and Aquismón municipalities register excessive risk, with posterior probabilities greater than 0.8. The lack of coverage of Cervical Cancer-Screening Programme (CCSP) (RR 1.17, 95 % CI 1.12-1.22), Marginalisation Index (RR 1.05, 95 % CI 1.03-1.08), and lack of accessibility to health services (RR 1.01, 95 % CI 1.00-1.03) were significant covariates. There are substantial differences between municipalities, with high-risk areas mainly in low-resource areas lacking accessibility to health services for CC. Our results clearly indicate the presence of spatial patterns, and the relevance of the spatial analysis for public health intervention. Ignoring the spatial variability means to continue a public policy that does not tackle deficiencies in its national CCSP and to keep disadvantaging and disempowering Mexican women in regard to their health care.

  5. Geospatial and machine learning techniques for wicked social science problems: analysis of crash severity on a regional highway corridor

    NASA Astrophysics Data System (ADS)

    Effati, Meysam; Thill, Jean-Claude; Shabani, Shahin

    2015-04-01

    The contention of this paper is that many social science research problems are too "wicked" to be suitably studied using conventional statistical and regression-based methods of data analysis. This paper argues that an integrated geospatial approach based on methods of machine learning is well suited to this purpose. Recognizing the intrinsic wickedness of traffic safety issues, such approach is used to unravel the complexity of traffic crash severity on highway corridors as an example of such problems. The support vector machine (SVM) and coactive neuro-fuzzy inference system (CANFIS) algorithms are tested as inferential engines to predict crash severity and uncover spatial and non-spatial factors that systematically relate to crash severity, while a sensitivity analysis is conducted to determine the relative influence of crash severity factors. Different specifications of the two methods are implemented, trained, and evaluated against crash events recorded over a 4-year period on a regional highway corridor in Northern Iran. Overall, the SVM model outperforms CANFIS by a notable margin. The combined use of spatial analysis and artificial intelligence is effective at identifying leading factors of crash severity, while explicitly accounting for spatial dependence and spatial heterogeneity effects. Thanks to the demonstrated effectiveness of a sensitivity analysis, this approach produces comprehensive results that are consistent with existing traffic safety theories and supports the prioritization of effective safety measures that are geographically targeted and behaviorally sound on regional highway corridors.

  6. Retrospective space-time cluster analysis of whooping cough, re-emergence in Barcelona, Spain, 2000-2011.

    PubMed

    Solano, Rubén; Gómez-Barroso, Diana; Simón, Fernando; Lafuente, Sarah; Simón, Pere; Rius, Cristina; Gorrindo, Pilar; Toledo, Diana; Caylà, Joan A

    2014-05-01

    A retrospective, space-time study of whooping cough cases reported to the Public Health Agency of Barcelona, Spain between the years 2000 and 2011 is presented. It is based on 633 individual whooping cough cases and the 2006 population census from the Spanish National Statistics Institute, stratified by age and sex at the census tract level. Cluster identification was attempted using space-time scan statistic assuming a Poisson distribution and restricting temporal extent to 7 days and spatial distance to 500 m. Statistical calculations were performed with Stata 11 and SatScan and mapping was performed with ArcGis 10.0. Only clusters showing statistical significance (P <0.05) were mapped. The most likely cluster identified included five census tracts located in three neighbourhoods in central Barcelona during the week from 17 to 23 August 2011. This cluster included five cases compared with the expected level of 0.0021 (relative risk = 2436, P <0.001). In addition, 11 secondary significant space-time clusters were detected with secondary clusters occurring at different times and localizations. Spatial statistics is felt to be useful by complementing epidemiological surveillance systems through visualizing excess in the number of cases in space and time and thus increase the possibility of identifying outbreaks not reported by the surveillance system.

  7. Order-Constrained Reference Priors with Implications for Bayesian Isotonic Regression, Analysis of Covariance and Spatial Models

    NASA Astrophysics Data System (ADS)

    Gong, Maozhen

    Selecting an appropriate prior distribution is a fundamental issue in Bayesian Statistics. In this dissertation, under the framework provided by Berger and Bernardo, I derive the reference priors for several models which include: Analysis of Variance (ANOVA)/Analysis of Covariance (ANCOVA) models with a categorical variable under common ordering constraints, the conditionally autoregressive (CAR) models and the simultaneous autoregressive (SAR) models with a spatial autoregression parameter rho considered. The performances of reference priors for ANOVA/ANCOVA models are evaluated by simulation studies with comparisons to Jeffreys' prior and Least Squares Estimation (LSE). The priors are then illustrated in a Bayesian model of the "Risk of Type 2 Diabetes in New Mexico" data, where the relationship between the type 2 diabetes risk (through Hemoglobin A1c) and different smoking levels is investigated. In both simulation studies and real data set modeling, the reference priors that incorporate internal order information show good performances and can be used as default priors. The reference priors for the CAR and SAR models are also illustrated in the "1999 SAT State Average Verbal Scores" data with a comparison to a Uniform prior distribution. Due to the complexity of the reference priors for both CAR and SAR models, only a portion (12 states in the Midwest) of the original data set is considered. The reference priors can give a different marginal posterior distribution compared to a Uniform prior, which provides an alternative for prior specifications for areal data in Spatial statistics.

  8. Spatio-temporal pattern of sylvatic rabies in the Sultanate of Oman, 2006-2010.

    PubMed

    Hussain, Muhammad Hammad; Ward, Michael P; Body, Mohammed; Al-Rawahi, Abdulmajeed; Wadir, Ali Awlad; Al-Habsi, Saif; Saqib, Muhammad; Ahmed, Mohammed Sayed; Almaawali, Mahir Gharib

    2013-07-01

    Rabies was first reported in the Sultanate of Oman is 1990. We analysed passive surveillance data (444 samples) collected and reported between 2006 and 2010. During this period, between 45 and 75% of samples submitted from suspect animals were subsequently confirmed (fluorescent antibody test, histopathology and reverse transcription PCR) as rabies cases. Overall, 63% of submitted samples were confirmed as rabies cases. The spatial distribution of species-specific cases were similar (centred in north-central Oman with a northeast-southwest distribution), although fox cases had a wider distribution and an east-west orientation. Clustering of cases was detected using interpolation, local spatial autocorrelation and scan statistical analysis. Several local government areas (wilayats) in north-central Oman were identified where higher than expected numbers of laboratory-confirmed rabies cases were reported. For fox rabies, more clusters (local spatial autocorrelation analysis) and a larger clustered area (scan statistical analysis) were detected. In Oman, monthly reports of fox rabies cases were highly correlated (rSP>0.5) with reports of camel, cattle, sheep and goat rabies. The best-fitting ARIMA model included a seasonality component. Fox rabies cases reported 6 months previously best explained rabies reported cases in other animal species. Despite likely reporting bias, results suggest that rabies exists as a sylvatic cycle of transmission in Oman and an opportunity still exists to prevent establishment of dog-mediated rabies. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Mapping extreme rainfall in the Northwest Portugal region: statistical analysis and spatial modelling

    NASA Astrophysics Data System (ADS)

    Santos, Monica; Fragoso, Marcelo

    2010-05-01

    Extreme precipitation events are one of the causes of natural hazards, such as floods and landslides, making its investigation so important, and this research aims to contribute to the study of the extreme rainfall patterns in a Portuguese mountainous area. The study area is centred on the Arcos de Valdevez county, located in the northwest region of Portugal, the rainiest of the country, with more than 3000 mm of annual rainfall at the Peneda-Gerês mountain system. This work focus on two main subjects related with the precipitation variability on the study area. First, a statistical analysis of several precipitation parameters is carried out, using daily data from 17 rain-gauges with a complete record for the 1960-1995 period. This approach aims to evaluate the main spatial contrasts regarding different aspects of the rainfall regime, described by ten parameters and indices of precipitation extremes (e.g. mean annual precipitation, the annual frequency of precipitation days, wet spells durations, maximum daily precipitation, maximum of precipitation in 30 days, number of days with rainfall exceeding 100 mm and estimated maximum daily rainfall for a return period of 100 years). The results show that the highest precipitation amounts (from annual to daily scales) and the higher frequency of very abundant rainfall events occur in the Serra da Peneda and Gerês mountains, opposing to the valleys of the Lima, Minho and Vez rivers, with lower precipitation amounts and less frequent heavy storms. The second purpose of this work is to find a method of mapping extreme rainfall in this mountainous region, investigating the complex influence of the relief (e.g. elevation, topography) on the precipitation patterns, as well others geographical variables (e.g. distance from coast, latitude), applying tested geo-statistical techniques (Goovaerts, 2000; Diodato, 2005). Models of linear regression were applied to evaluate the influence of different geographical variables (altitude, latitude, distance from sea and distance to the highest orographic barrier) on the rainfall behaviours described by the studied variables. The techniques of spatial interpolation evaluated include univariate and multivariate methods: cokriging, kriging, IDW (inverse distance weighted) and multiple linear regression. Validation procedures were used, assessing the estimated errors in the analysis of descriptive statistics of the models. Multiple linear regression models produced satisfactory results in relation to 70% of the rainfall parameters, suggested by lower average percentage of error. However, the results also demonstrates that there is no an unique and ideal model, depending on the rainfall parameter in consideration. Probably, the unsatisfactory results obtained in relation to some rainfall parameters was motivated by constraints as the spatial complexity of the precipitation patterns, as well as to the deficient spatial coverage of the territory by the rain-gauges network. References Diodato, N. (2005). The influence of topographic co-variables on the spatial variability of precipitation over small regions of complex terrain. Internacional Journal of Climatology, 25(3), 351-363. Goovaerts, P. (2000). Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of Hydrology, 228, 113 - 129.

  10. MEG/EEG Source Reconstruction, Statistical Evaluation, and Visualization with NUTMEG

    PubMed Central

    Dalal, Sarang S.; Zumer, Johanna M.; Guggisberg, Adrian G.; Trumpis, Michael; Wong, Daniel D. E.; Sekihara, Kensuke; Nagarajan, Srikantan S.

    2011-01-01

    NUTMEG is a source analysis toolbox geared towards cognitive neuroscience researchers using MEG and EEG, including intracranial recordings. Evoked and unaveraged data can be imported to the toolbox for source analysis in either the time or time-frequency domains. NUTMEG offers several variants of adaptive beamformers, probabilistic reconstruction algorithms, as well as minimum-norm techniques to generate functional maps of spatiotemporal neural source activity. Lead fields can be calculated from single and overlapping sphere head models or imported from other software. Group averages and statistics can be calculated as well. In addition to data analysis tools, NUTMEG provides a unique and intuitive graphical interface for visualization of results. Source analyses can be superimposed onto a structural MRI or headshape to provide a convenient visual correspondence to anatomy. These results can also be navigated interactively, with the spatial maps and source time series or spectrogram linked accordingly. Animations can be generated to view the evolution of neural activity over time. NUTMEG can also display brain renderings and perform spatial normalization of functional maps using SPM's engine. As a MATLAB package, the end user may easily link with other toolboxes or add customized functions. PMID:21437174

  11. MEG/EEG source reconstruction, statistical evaluation, and visualization with NUTMEG.

    PubMed

    Dalal, Sarang S; Zumer, Johanna M; Guggisberg, Adrian G; Trumpis, Michael; Wong, Daniel D E; Sekihara, Kensuke; Nagarajan, Srikantan S

    2011-01-01

    NUTMEG is a source analysis toolbox geared towards cognitive neuroscience researchers using MEG and EEG, including intracranial recordings. Evoked and unaveraged data can be imported to the toolbox for source analysis in either the time or time-frequency domains. NUTMEG offers several variants of adaptive beamformers, probabilistic reconstruction algorithms, as well as minimum-norm techniques to generate functional maps of spatiotemporal neural source activity. Lead fields can be calculated from single and overlapping sphere head models or imported from other software. Group averages and statistics can be calculated as well. In addition to data analysis tools, NUTMEG provides a unique and intuitive graphical interface for visualization of results. Source analyses can be superimposed onto a structural MRI or headshape to provide a convenient visual correspondence to anatomy. These results can also be navigated interactively, with the spatial maps and source time series or spectrogram linked accordingly. Animations can be generated to view the evolution of neural activity over time. NUTMEG can also display brain renderings and perform spatial normalization of functional maps using SPM's engine. As a MATLAB package, the end user may easily link with other toolboxes or add customized functions.

  12. A systematic review and meta-analysis of tract-based spatial statistics studies regarding attention-deficit/hyperactivity disorder.

    PubMed

    Chen, Lizhou; Hu, Xinyu; Ouyang, Luo; He, Ning; Liao, Yi; Liu, Qi; Zhou, Ming; Wu, Min; Huang, Xiaoqi; Gong, Qiyong

    2016-09-01

    Diffusion tensor imaging (DTI) studies that use tract-based spatial statistics (TBSS) have demonstrated the microstructural abnormalities of white matter (WM) in patients with attention-deficit/hyperactivity disorder (ADHD); however, robust conclusions have not yet been drawn. The present study integrated the findings of previous TBSS studies to determine the most consistent WM alterations in ADHD via a narrative review and meta-analysis. The literature search was conducted through October 2015 to identify TBSS studies that compared fractional anisotropy (FA) between ADHD patients and healthy controls. FA reductions were identified in the splenium of the corpus callosum (CC) that extended to the right cingulum, right sagittal stratum, and left tapetum. The first two clusters retained significance in the sensitivity analysis and in all subgroup analyses. The FA reduction in the CC splenium was negatively associated with the mean age of the ADHD group. We hypothesize that, in addition to the fronto-striatal-cerebellar circuit, the disturbed WM matter tracts that integrate the bilateral hemispheres and posterior-brain circuitries play a crucial role in the pathophysiology of ADHD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. A novel principal component analysis for spatially misaligned multivariate air pollution data.

    PubMed

    Jandarov, Roman A; Sheppard, Lianne A; Sampson, Paul D; Szpiro, Adam A

    2017-01-01

    We propose novel methods for predictive (sparse) PCA with spatially misaligned data. These methods identify principal component loading vectors that explain as much variability in the observed data as possible, while also ensuring the corresponding principal component scores can be predicted accurately by means of spatial statistics at locations where air pollution measurements are not available. This will make it possible to identify important mixtures of air pollutants and to quantify their health effects in cohort studies, where currently available methods cannot be used. We demonstrate the utility of predictive (sparse) PCA in simulated data and apply the approach to annual averages of particulate matter speciation data from national Environmental Protection Agency (EPA) regulatory monitors.

  14. Spatial decision support system to evaluate crop residue energy potential by anaerobic digestion.

    PubMed

    Escalante, Humberto; Castro, Liliana; Gauthier-Maradei, Paola; Rodríguez De La Vega, Reynel

    2016-11-01

    Implementing anaerobic digestion (AD) in energy production from crop residues requires development of decision tools to assess its feasibility and sustainability. A spatial decision support system (SDSS) was constructed to assist decision makers to select appropriate feedstock according to biomethanation potential, identify the most suitable location for biogas facilities, determine optimum plant capacity and supply chain, and evaluate associated risks and costs. SDSS involves a spatially explicit analysis, fuzzy multi-criteria analysis, and statistical and optimization models. The tool was validated on seven crop residues located in Santander, Colombia. For example, fique bagasse generates about 0.21millionm(3)CH4year(-1) (0.329m(3)CH4kg(-1) volatile solids) with a minimum profitable plant of about 2000tonyear(-1) and an internal rate of return of 10.5%. SDSS can be applied to evaluate other biomass resources, availability periods, and co-digestion potential. Copyright © 2016. Published by Elsevier Ltd.

  15. Analyzing Protein Clusters on the Plasma Membrane: Application of Spatial Statistical Analysis Methods on Super-Resolution Microscopy Images.

    PubMed

    Paparelli, Laura; Corthout, Nikky; Pavie, Benjamin; Annaert, Wim; Munck, Sebastian

    2016-01-01

    The spatial distribution of proteins within the cell affects their capability to interact with other molecules and directly influences cellular processes and signaling. At the plasma membrane, multiple factors drive protein compartmentalization into specialized functional domains, leading to the formation of clusters in which intermolecule interactions are facilitated. Therefore, quantifying protein distributions is a necessity for understanding their regulation and function. The recent advent of super-resolution microscopy has opened up the possibility of imaging protein distributions at the nanometer scale. In parallel, new spatial analysis methods have been developed to quantify distribution patterns in super-resolution images. In this chapter, we provide an overview of super-resolution microscopy and summarize the factors influencing protein arrangements on the plasma membrane. Finally, we highlight methods for analyzing clusterization of plasma membrane proteins, including examples of their applications.

  16. Spatial pattern analysis of Cu, Zn and Ni and their interpretation in the Campania region (Italy)

    NASA Astrophysics Data System (ADS)

    Petrik, Attila; Albanese, Stefano; Jordan, Gyozo; Rolandi, Roberto; De Vivo, Benedetto

    2017-04-01

    The uniquely abundant Campanian topsoil dataset enabled us to perform a spatial pattern analysis on 3 potentially toxic elements of Cu, Zn and Ni. This study is focusing on revealing the spatial texture and distribution of these elements by spatial point pattern and image processing analysis such as lineament density and spatial variability index calculation. The application of these methods on geochemical data provides a new and efficient tool to understand the spatial variation of concentrations and their background/baseline values. The determination and quantification of spatial variability is crucial to understand how fast the change in concentration is in a certain area and what processes might govern the variation. The spatial variability index calculation and image processing analysis including lineament density enables us to delineate homogenous areas and analyse them with respect to lithology and land use. Identification of spatial outliers and their patterns were also investigated by local spatial autocorrelation and image processing analysis including the determination of local minima and maxima points and singularity index analysis. The spatial variability of Cu and Zn reveals the highest zone (Cu: 0.5 MAD, Zn: 0.8-0.9 MAD, Median Deviation Index) along the coast between Campi Flegrei and the Sorrento Peninsula with the vast majority of statistically identified outliers and high-high spatial clustered points. The background/baseline maps of Cu and Zn reveals a moderate to high variability (Cu: 0.3 MAD, Zn: 0.4-0.5 MAD) NW-SE oriented zone including disrupted patches from Bisaccia to Mignano following the alluvial plains of Appenine's rivers. This zone has high abundance of anomaly concentrations identified using singularity analysis and it also has a high density of lineaments. The spatial variability of Ni shows the highest variability zone (0.6-0.7 MAD) around Campi Flegrei where the majority of low outliers are concentrated. The variability of background/baseline map of Ni reveals a shift to the east in case of highest variability zones coinciding with limestone outcrops. The high segmented area between Mignano and Bisaccia partially follows the alluvial plains of Appenine's rivers which seem to be playing a crucial role in the distribution and redistribution pattern of Cu, Zn and Ni in Campania. The high spatial variability zones of the later elements are located in topsoils on volcanoclastic rocks and are mostly related to cultivation and urbanised areas.

  17. A Dasymetric-Based Monte Carlo Simulation Approach to the Probabilistic Analysis of Spatial Variables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morton, April M; Piburn, Jesse O; McManamay, Ryan A

    2017-01-01

    Monte Carlo simulation is a popular numerical experimentation technique used in a range of scientific fields to obtain the statistics of unknown random output variables. Despite its widespread applicability, it can be difficult to infer required input probability distributions when they are related to population counts unknown at desired spatial resolutions. To overcome this challenge, we propose a framework that uses a dasymetric model to infer the probability distributions needed for a specific class of Monte Carlo simulations which depend on population counts.

  18. Describing spatial pattern in stream networks: A practical approach

    USGS Publications Warehouse

    Ganio, L.M.; Torgersen, C.E.; Gresswell, R.E.

    2005-01-01

    The shape and configuration of branched networks influence ecological patterns and processes. Recent investigations of network influences in riverine ecology stress the need to quantify spatial structure not only in a two-dimensional plane, but also in networks. An initial step in understanding data from stream networks is discerning non-random patterns along the network. On the other hand, data collected in the network may be spatially autocorrelated and thus not suitable for traditional statistical analyses. Here we provide a method that uses commercially available software to construct an empirical variogram to describe spatial pattern in the relative abundance of coastal cutthroat trout in headwater stream networks. We describe the mathematical and practical considerations involved in calculating a variogram using a non-Euclidean distance metric to incorporate the network pathway structure in the analysis of spatial variability, and use a non-parametric technique to ascertain if the pattern in the empirical variogram is non-random.

  19. A geostatistical approach for describing spatial pattern in stream networks

    USGS Publications Warehouse

    Ganio, L.M.; Torgersen, C.E.; Gresswell, R.E.

    2005-01-01

    The shape and configuration of branched networks influence ecological patterns and processes. Recent investigations of network influences in riverine ecology stress the need to quantify spatial structure not only in a two-dimensional plane, but also in networks. An initial step in understanding data from stream networks is discerning non-random patterns along the network. On the other hand, data collected in the network may be spatially autocorrelated and thus not suitable for traditional statistical analyses. Here we provide a method that uses commercially available software to construct an empirical variogram to describe spatial pattern in the relative abundance of coastal cutthroat trout in headwater stream networks. We describe the mathematical and practical considerations involved in calculating a variogram using a non-Euclidean distance metric to incorporate the network pathway structure in the analysis of spatial variability, and use a non-parametric technique to ascertain if the pattern in the empirical variogram is non-random.

  20. Development of spatial density maps based on geoprocessing web services: application to tuberculosis incidence in Barcelona, Spain.

    PubMed

    Dominkovics, Pau; Granell, Carlos; Pérez-Navarro, Antoni; Casals, Martí; Orcau, Angels; Caylà, Joan A

    2011-11-29

    Health professionals and authorities strive to cope with heterogeneous data, services, and statistical models to support decision making on public health. Sophisticated analysis and distributed processing capabilities over geocoded epidemiological data are seen as driving factors to speed up control and decision making in these health risk situations. In this context, recent Web technologies and standards-based web services deployed on geospatial information infrastructures have rapidly become an efficient way to access, share, process, and visualize geocoded health-related information. Data used on this study is based on Tuberculosis (TB) cases registered in Barcelona city during 2009. Residential addresses are geocoded and loaded into a spatial database that acts as a backend database. The web-based application architecture and geoprocessing web services are designed according to the Representational State Transfer (REST) principles. These web processing services produce spatial density maps against the backend database. The results are focused on the use of the proposed web-based application to the analysis of TB cases in Barcelona. The application produces spatial density maps to ease the monitoring and decision making process by health professionals. We also include a discussion of how spatial density maps may be useful for health practitioners in such contexts. In this paper, we developed web-based client application and a set of geoprocessing web services to support specific health-spatial requirements. Spatial density maps of TB incidence were generated to help health professionals in analysis and decision-making tasks. The combined use of geographic information tools, map viewers, and geoprocessing services leads to interesting possibilities in handling health data in a spatial manner. In particular, the use of spatial density maps has been effective to identify the most affected areas and its spatial impact. This study is an attempt to demonstrate how web processing services together with web-based mapping capabilities suit the needs of health practitioners in epidemiological analysis scenarios.

  1. Development of spatial density maps based on geoprocessing web services: application to tuberculosis incidence in Barcelona, Spain

    PubMed Central

    2011-01-01

    Background Health professionals and authorities strive to cope with heterogeneous data, services, and statistical models to support decision making on public health. Sophisticated analysis and distributed processing capabilities over geocoded epidemiological data are seen as driving factors to speed up control and decision making in these health risk situations. In this context, recent Web technologies and standards-based web services deployed on geospatial information infrastructures have rapidly become an efficient way to access, share, process, and visualize geocoded health-related information. Methods Data used on this study is based on Tuberculosis (TB) cases registered in Barcelona city during 2009. Residential addresses are geocoded and loaded into a spatial database that acts as a backend database. The web-based application architecture and geoprocessing web services are designed according to the Representational State Transfer (REST) principles. These web processing services produce spatial density maps against the backend database. Results The results are focused on the use of the proposed web-based application to the analysis of TB cases in Barcelona. The application produces spatial density maps to ease the monitoring and decision making process by health professionals. We also include a discussion of how spatial density maps may be useful for health practitioners in such contexts. Conclusions In this paper, we developed web-based client application and a set of geoprocessing web services to support specific health-spatial requirements. Spatial density maps of TB incidence were generated to help health professionals in analysis and decision-making tasks. The combined use of geographic information tools, map viewers, and geoprocessing services leads to interesting possibilities in handling health data in a spatial manner. In particular, the use of spatial density maps has been effective to identify the most affected areas and its spatial impact. This study is an attempt to demonstrate how web processing services together with web-based mapping capabilities suit the needs of health practitioners in epidemiological analysis scenarios. PMID:22126392

  2. Evaluation of Fuzzy-Logic Framework for Spatial Statistics Preserving Methods for Estimation of Missing Precipitation Data

    NASA Astrophysics Data System (ADS)

    El Sharif, H.; Teegavarapu, R. S.

    2012-12-01

    Spatial interpolation methods used for estimation of missing precipitation data at a site seldom check for their ability to preserve site and regional statistics. Such statistics are primarily defined by spatial correlations and other site-to-site statistics in a region. Preservation of site and regional statistics represents a means of assessing the validity of missing precipitation estimates at a site. This study evaluates the efficacy of a fuzzy-logic methodology for infilling missing historical daily precipitation data in preserving site and regional statistics. Rain gauge sites in the state of Kentucky, USA, are used as a case study for evaluation of this newly proposed method in comparison to traditional data infilling techniques. Several error and performance measures will be used to evaluate the methods and trade-offs in accuracy of estimation and preservation of site and regional statistics.

  3. Spatial Analysis of Geothermal Resource Potential in New York and Pennsylvania: A Stratified Kriging Approach

    NASA Astrophysics Data System (ADS)

    Smith, J. D.; Whealton, C. A.; Stedinger, J. R.

    2014-12-01

    Resource assessments for low-grade geothermal applications employ available well temperature measurements to determine if the resource potential is sufficient for supporting district heating opportunities. This study used a compilation of bottomhole temperature (BHT) data from recent unconventional shale oil and gas wells, along with legacy oil, gas, and storage wells, in Pennsylvania (PA) and New York (NY). Our study's goal was to predict the geothermal resource potential and associated uncertainty for the NY-PA region using kriging interpolation. The dataset was scanned for outliers, and some observations were removed. Because these wells were drilled for reasons other than geothermal resource assessment, their spatial density varied widely. An exploratory spatial statistical analysis revealed differences in the spatial structure of the geothermal gradient data (the kriging semi-variogram and its nugget variance, shape, sill, and the degree of anisotropy). As a result, a stratified kriging procedure was adopted to better capture the statistical structure of the data, to generate an interpolated surface, and to quantify the uncertainty of the computed surface. The area was stratified reflecting different physiographic provinces in NY and PA that have geologic properties likely related to variations in the value of the geothermal gradient. The kriging prediction and the variance-of-prediction were determined for each province by the generation of a semi-variogram using only the wells that were located within that province. A leave-one-out cross validation (LOOCV) was conducted as a diagnostic tool. The results of stratified kriging were compared to kriging using the whole region to determine the impact of stratification. The two approaches provided similar predictions of the geothermal gradient. However, the variance-of-prediction was different. The stratified approach is recommended because it gave a more appropriate site-specific characterization of uncertainty based upon a more realistic description of the statistical structure of the data given the geologic characteristics of each province.

  4. Statistical Considerations of Data Processing in Giovanni Online Tool

    NASA Technical Reports Server (NTRS)

    Suhung, Shen; Leptoukh, G.; Acker, J.; Berrick, S.

    2005-01-01

    The GES DISC Interactive Online Visualization and Analysis Infrastructure (Giovanni) is a web-based interface for the rapid visualization and analysis of gridded data from a number of remote sensing instruments. The GES DISC currently employs several Giovanni instances to analyze various products, such as Ocean-Giovanni for ocean products from SeaWiFS and MODIS-Aqua; TOMS & OM1 Giovanni for atmospheric chemical trace gases from TOMS and OMI, and MOVAS for aerosols from MODIS, etc. (http://giovanni.gsfc.nasa.gov) Foremost among the Giovanni statistical functions is data averaging. Two aspects of this function are addressed here. The first deals with the accuracy of averaging gridded mapped products vs. averaging from the ungridded Level 2 data. Some mapped products contain mean values only; others contain additional statistics, such as number of pixels (NP) for each grid, standard deviation, etc. Since NP varies spatially and temporally, averaging with or without weighting by NP will be different. In this paper, we address differences of various weighting algorithms for some datasets utilized in Giovanni. The second aspect is related to different averaging methods affecting data quality and interpretation for data with non-normal distribution. The present study demonstrates results of different spatial averaging methods using gridded SeaWiFS Level 3 mapped monthly chlorophyll a data. Spatial averages were calculated using three different methods: arithmetic mean (AVG), geometric mean (GEO), and maximum likelihood estimator (MLE). Biogeochemical data, such as chlorophyll a, are usually considered to have a log-normal distribution. The study determined that differences between methods tend to increase with increasing size of a selected coastal area, with no significant differences in most open oceans. The GEO method consistently produces values lower than AVG and MLE. The AVG method produces values larger than MLE in some cases, but smaller in other cases. Further studies indicated that significant differences between AVG and MLE methods occurred in coastal areas where data have large spatial variations and a log-bimodal distribution instead of log-normal distribution.

  5. Shiga toxigenic Escherichia coli incidence is related to small area variation in cattle density in a region in Ireland.

    PubMed

    Brehony, C; Cullinan, J; Cormican, M; Morris, D

    2018-10-01

    Shiga toxigenic Escherichia coli (STEC) are pathogenic E. coli that cause infectious diarrhoea. In some cases infection may be complicated by renal failure and death. The incidence of human infection with STEC in Ireland is the highest in Europe. The objective of the study was to examine the spatial incidence of human STEC infection in a region of Ireland with significantly higher rates of STEC incidence than the national average and to identify possible risk factors of STEC incidence at area level. Anonymised laboratory records (n = 379) from 2009 to 2015 were obtained from laboratories serving three counties in the West of Ireland. Data included location and sample date. Population and electoral division (ED) data were obtained from the Irish 2011 Census of Population. STEC incidence was calculated for each ED (n = 498) and used to map hotspots/coldspots using the Getis-Ord Gi* spatial statistic and significant spatial clustering using the Anselin's Local Moran's I statistic. Multivariable regression analysis was used to consider the importance of a number of potential predictors of STEC incidence. Incidence rates for the seven-year period ranged from 0 to 10.9 cases per 1000. A number of areas with significant local clustering of STEC incidence as well as variation in the spatial distribution of the two main serogroups associated with disease in the region i.e. O26 and O157 were identified. Cattle density was found to be a statistically significant predictor of STEC in the region. GIS analysis of routine data indicates that cattle density is associated STEC infection in this high incidence region. This finding points to the importance of agricultural practices for human health and the importance of a "one-health" approach to public policy in relation to agriculture, health and environment. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Statistics of Optical Coherence Tomography Data From Human Retina

    PubMed Central

    de Juan, Joaquín; Ferrone, Claudia; Giannini, Daniela; Huang, David; Koch, Giorgio; Russo, Valentina; Tan, Ou; Bruni, Carlo

    2010-01-01

    Optical coherence tomography (OCT) has recently become one of the primary methods for noninvasive probing of the human retina. The pseudoimage formed by OCT (the so-called B-scan) varies probabilistically across pixels due to complexities in the measurement technique. Hence, sensitive automatic procedures of diagnosis using OCT may exploit statistical analysis of the spatial distribution of reflectance. In this paper, we perform a statistical study of retinal OCT data. We find that the stretched exponential probability density function can model well the distribution of intensities in OCT pseudoimages. Moreover, we show a small, but significant correlation between neighbor pixels when measuring OCT intensities with pixels of about 5 µm. We then develop a simple joint probability model for the OCT data consistent with known retinal features. This model fits well the stretched exponential distribution of intensities and their spatial correlation. In normal retinas, fit parameters of this model are relatively constant along retinal layers, but varies across layers. However, in retinas with diabetic retinopathy, large spikes of parameter modulation interrupt the constancy within layers, exactly where pathologies are visible. We argue that these results give hope for improvement in statistical pathology-detection methods even when the disease is in its early stages. PMID:20304733

  7. Spatio-Temporal Clustering of Monitoring Network

    NASA Astrophysics Data System (ADS)

    Hussain, I.; Pilz, J.

    2009-04-01

    Pakistan has much diversity in seasonal variation of different locations. Some areas are in desserts and remain very hot and waterless, for example coastal areas are situated along the Arabian Sea and have very warm season and a little rainfall. Some areas are covered with mountains, have very low temperature and heavy rainfall; for instance Karakoram ranges. The most important variables that have an impact on the climate are temperature, precipitation, humidity, wind speed and elevation. Furthermore, it is hard to find homogeneous regions in Pakistan with respect to climate variation. Identification of homogeneous regions in Pakistan can be useful in many aspects. It can be helpful for prediction of the climate in the sub-regions and for optimizing the number of monitoring sites. In the earlier literature no one tried to identify homogeneous regions of Pakistan with respect to climate variation. There are only a few papers about spatio-temporal clustering of monitoring network. Steinhaus (1956) presented the well-known K-means clustering method. It can identify a predefined number of clusters by iteratively assigning centriods to clusters based. Castro et al. (1997) developed a genetic heuristic algorithm to solve medoids based clustering. Their method is based on genetic recombination upon random assorting recombination. The suggested method is appropriate for clustering the attributes which have genetic characteristics. Sap and Awan (2005) presented a robust weighted kernel K-means algorithm incorporating spatial constraints for clustering climate data. The proposed algorithm can effectively handle noise, outliers and auto-correlation in the spatial data, for effective and efficient data analysis by exploring patterns and structures in the data. Soltani and Modarres (2006) used hierarchical and divisive cluster analysis to categorize patterns of rainfall in Iran. They only considered rainfall at twenty-eight monitoring sites and concluded that eight clusters existed. Soltani and Modarres (2006) classified the sites by using only average rainfall of sites, they did not consider time replications and spatial coordinates. Kerby et.al (2007) purposed spatial clustering method based on likelihood. They took account of the geographic locations through the variance covariance matrix. Their purposed method works like hierarchical clustering methods. Moreovere, it is inappropiriate for time replication data and could not perform well for large number of sites. Tuia.et.al (2008) used scan statistics for identifying spatio-temporal clusters for fire sequences in the Tuscany region in Italy. The scan statistics clustering method was developed by Kulldorff et al. (1997) to detect spatio-temporal clusters in epidemiology and assessing their significance. The purposed scan statistics method is used only for univariate discrete stochastic random variables. In this paper we make use of a very simple approach for spatio-temporal clustering which can create separable and homogeneous clusters. Most of the clustering methods are based on Euclidean distances. It is well known that geographic coordinates are spherical coordinates and estimating Euclidean distances from spherical coordinates is inappropriate. As a transformation from geographic coordinates to rectangular (D-plane) coordinates we use the Lambert projection method. The partition around medoids clustering method is incorporated on the data including D-plane coordinates. Ordinary kriging is taken as validity measure for the precipitation data. The kriging results for clusters are more accurate and have less variation compared to complete monitoring network precipitation data. References Casto.V.E and Murray.A.T (1997). Spatial Clustering with Data Mining with Genetic Algorithms. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.8573 Kaufman.L and Rousseeuw.P.J (1990). Finding Groups in Data: An Introduction to Cluster Analysis. Wiley series of Probability and Mathematical Statistics, New York. Kulldorf.M (1997). A spatial scan statistic. Commun. Stat.-Theor. Math. 26(6), 1481-1496 Kerby. A , Marx. D, Samal. A and Adamchuck. V. (2007). Spatial Clustering Using the Likelihood Function. Seventh IEEE International Conference on Data Mining - Workshops Steinhaus.H (1956). Sur la division des corp materiels en parties. Bull. Acad. Polon. Sci., C1. III vol IV:801- 804 Snyder, J. P. (1987). Map Projection: A Working Manual. U. S. Geological Survey Professional Paper 1395. Washington, DC: U. S. Government Printing Office, pp. 104-110 Sap.M.N and Awan. A.M (2005). Finding Spatio-Temporal Patterns in Climate Data Using Clustering. Proceedings of the International Conference on Cyberworlds (CW'05) Soltani.S and Modarres.R (2006). Classification of Spatio -Temporal Pattern of Rainfall in Iran: Using Hierarchical and Divisive Cluster Analysis. Journal of Spatial Hydrology Vol.6, No.2 Tuia.D, Ratle.F, Lasaponara.R, Telesca.L and Kanevski.M (2008). Scan Statistics Analysis for Forest Fire Clusters. Commun. in Nonlinear science and numerical simulation 13,1689-1694.

  8. Latent spatial models and sampling design for landscape genetics

    USGS Publications Warehouse

    Hanks, Ephraim M.; Hooten, Mevin B.; Knick, Steven T.; Oyler-McCance, Sara J.; Fike, Jennifer A.; Cross, Todd B.; Schwartz, Michael K.

    2016-01-01

    We propose a spatially-explicit approach for modeling genetic variation across space and illustrate how this approach can be used to optimize spatial prediction and sampling design for landscape genetic data. We propose a multinomial data model for categorical microsatellite allele data commonly used in landscape genetic studies, and introduce a latent spatial random effect to allow for spatial correlation between genetic observations. We illustrate how modern dimension reduction approaches to spatial statistics can allow for efficient computation in landscape genetic statistical models covering large spatial domains. We apply our approach to propose a retrospective spatial sampling design for greater sage-grouse (Centrocercus urophasianus) population genetics in the western United States.

  9. M-TraCE: a new tool for high-resolution computation and statistical elaboration of backward trajectories on the Italian domain

    NASA Astrophysics Data System (ADS)

    Vitali, Lina; Righini, Gaia; Piersanti, Antonio; Cremona, Giuseppe; Pace, Giandomenico; Ciancarella, Luisella

    2017-12-01

    Air backward trajectory calculations are commonly used in a variety of atmospheric analyses, in particular for source attribution evaluation. The accuracy of backward trajectory analysis is mainly determined by the quality and the spatial and temporal resolution of the underlying meteorological data set, especially in the cases of complex terrain. This work describes a new tool for the calculation and the statistical elaboration of backward trajectories. To take advantage of the high-resolution meteorological database of the Italian national air quality model MINNI, a dedicated set of procedures was implemented under the name of M-TraCE (MINNI module for Trajectories Calculation and statistical Elaboration) to calculate and process the backward trajectories of air masses reaching a site of interest. Some outcomes from the application of the developed methodology to the Italian Network of Special Purpose Monitoring Stations are shown to assess its strengths for the meteorological characterization of air quality monitoring stations. M-TraCE has demonstrated its capabilities to provide a detailed statistical assessment of transport patterns and region of influence of the site under investigation, which is fundamental for correctly interpreting pollutants measurements and ascertaining the official classification of the monitoring site based on meta-data information. Moreover, M-TraCE has shown its usefulness in supporting other assessments, i.e., spatial representativeness of a monitoring site, focussing specifically on the analysis of the effects due to meteorological variables.

  10. A national streamflow network gap analysis

    USGS Publications Warehouse

    Kiang, Julie E.; Stewart, David W.; Archfield, Stacey A.; Osborne, Emily B.; Eng, Ken

    2013-01-01

    The U.S. Geological Survey (USGS) conducted a gap analysis to evaluate how well the USGS streamgage network meets a variety of needs, focusing on the ability to calculate various statistics at locations that have streamgages (gaged) and that do not have streamgages (ungaged). This report presents the results of analysis to determine where there are gaps in the network of gaged locations, how accurately desired statistics can be calculated with a given length of record, and whether the current network allows for estimation of these statistics at ungaged locations. The analysis indicated that there is variability across the Nation’s streamflow data-collection network in terms of the spatial and temporal coverage of streamgages. In general, the Eastern United States has better coverage than the Western United States. The arid Southwestern United States, Alaska, and Hawaii were observed to have the poorest spatial coverage, using the dataset assembled for this study. Except in Hawaii, these areas also tended to have short streamflow records. Differences in hydrology lead to differences in the uncertainty of statistics calculated in different regions of the country. Arid and semiarid areas of the Central and Southwestern United States generally exhibited the highest levels of interannual variability in flow, leading to larger uncertainty in flow statistics. At ungaged locations, information can be transferred from nearby streamgages if there is sufficient similarity between the gaged watersheds and the ungaged watersheds of interest. Areas where streamgages exhibit high correlation are most likely to be suitable for this type of information transfer. The areas with the most highly correlated streamgages appear to coincide with mountainous areas of the United States. Lower correlations are found in the Central United States and coastal areas of the Southeastern United States. Information transfer from gaged basins to ungaged basins is also most likely to be successful when basin attributes show high similarity. At the scale of the analysis completed in this study, the attributes of basins upstream of USGS streamgages cover the full range of basin attributes observed at potential locations of interest fairly well. Some exceptions included very high or very low elevation areas and very arid areas.

  11. Cluster detection methods applied to the Upper Cape Cod cancer data.

    PubMed

    Ozonoff, Al; Webster, Thomas; Vieira, Veronica; Weinberg, Janice; Ozonoff, David; Aschengrau, Ann

    2005-09-15

    A variety of statistical methods have been suggested to assess the degree and/or the location of spatial clustering of disease cases. However, there is relatively little in the literature devoted to comparison and critique of different methods. Most of the available comparative studies rely on simulated data rather than real data sets. We have chosen three methods currently used for examining spatial disease patterns: the M-statistic of Bonetti and Pagano; the Generalized Additive Model (GAM) method as applied by Webster; and Kulldorff's spatial scan statistic. We apply these statistics to analyze breast cancer data from the Upper Cape Cancer Incidence Study using three different latency assumptions. The three different latency assumptions produced three different spatial patterns of cases and controls. For 20 year latency, all three methods generally concur. However, for 15 year latency and no latency assumptions, the methods produce different results when testing for global clustering. The comparative analyses of real data sets by different statistical methods provides insight into directions for further research. We suggest a research program designed around examining real data sets to guide focused investigation of relevant features using simulated data, for the purpose of understanding how to interpret statistical methods applied to epidemiological data with a spatial component.

  12. A tale of two cities: The role of neighborhood socioeconomic status in spatial clustering of bystander CPR in Austin and Houston☆

    PubMed Central

    Root, Elisabeth Dowling; Gonzales, Louis; Persse, David E.; Hinchey, Paul R.; McNally, Bryan; Sasson, Comilla

    2013-01-01

    Background Despite evidence to suggest significant spatial variation in out-of-hospital cardiac arrest (OHCA) and bystander cardiopulmonary resuscitation (BCPR) rates, geographic information systems (GIS) and spatial analysis have not been widely used to understand the reasons behind this variation. This study employs spatial statistics to identify the location and extent of clusters of bystander CPR in Houston and Travis County, TX. Methods Data were extracted from the Cardiac Arrest Registry to Enhance Survival for two U.S. sites –Austin-Travis County EMS and the Houston Fire Department – between October 1, 2006 and December 31, 2009. Hierarchical logistic regression models were used to assess the relationship between income and racial/ethnic composition of a neighborhood and BCPR for OHCA and to adjust expected counts of BCPR for spatial cluster analysis. The spatial scan statistic was used to find the geographic extent of clusters of high and low BCPR. Results Results indicate spatial clusters of lower than expected BCPR rates in Houston. Compared to BCPR rates in the rest of the community, there was a circular area of 4.2 km radius where BCPR rates were lower than expected (RR = 0.62; p < 0.0001 and RR = 0.55; p = 0.037) which persist when adjusted for individual-level patient characteristics (RR = 0.34; p = 0.027) and neighborhood-level race (RR = 0.34; p = 0.034) and household income (RR = 0.34; p = 0.046). We also find a spatial cluster of higher than expected BCPR in Austin. Compared to the rest of the community, there was a 23.8 km radius area where BCPR rates were higher than expected (RR = 1.75; p = 0.07) which disappears after controlling for individual-level characteristics. Conclusions A geographically targeted CPR training strategy which is tailored to individual and neighborhood population characteristics may be effective in reducing existing disparities in the provision of bystander CPR for out-of-hospital cardiac arrest. PMID:23318916

  13. Spatial patterns of multidrug resistant tuberculosis and relationships to socio-economic, demographic and household factors in northwest Ethiopia.

    PubMed

    Alene, Kefyalew Addis; Viney, Kerri; McBryde, Emma S; Clements, Archie C A

    2017-01-01

    Understanding the geographical distribution of multidrug-resistant tuberculosis (MDR-TB) in high TB burden countries such as Ethiopia is crucial for effective control of TB epidemics in these countries, and thus globally. We present the first spatial analysis of multidrug resistant tuberculosis, and its relationship to socio-economic, demographic and household factors in northwest Ethiopia. An ecological study was conducted using data on patients diagnosed with MDR-TB at the University of Gondar Hospital MDR-TB treatment centre, for the period 2010 to 2015. District level population data were extracted from the Ethiopia National and Regional Census Report. Spatial autocorrelation was explored using Moran's I statistic, Local Indicators of Spatial Association (LISA), and the Getis-Ord statistics. A multivariate Poisson regression model was developed with a conditional autoregressive (CAR) prior structure, and with posterior parameters estimated using a Bayesian Markov chain Monte Carlo (MCMC) simulation approach with Gibbs sampling, in WinBUGS. A total of 264 MDR-TB patients were included in the analysis. The overall crude incidence rate of MDR-TB for the six-year period was 3.0 cases per 100,000 population. The highest incidence rate was observed in Metema (21 cases per 100,000 population) and Humera (18 cases per 100,000 population) districts; whereas nine districts had zero cases. Spatial clustering of MDR-TB was observed in districts located in the Ethiopia-Sudan and Ethiopia-Eritrea border regions, where large numbers of seasonal migrants live. Spatial clustering of MDR-TB was positively associated with urbanization (RR: 1.02; 95%CI: 1.01, 1.04) and the percentage of men (RR: 1.58; 95% CI: 1.26, 1.99) in the districts; after accounting for these factors there was no residual spatial clustering. Spatial clustering of MDR-TB, fully explained by demographic factors (urbanization and percent male), was detected in the border regions of northwest Ethiopia, in locations where seasonal migrants live and work. Cross-border initiatives including options for mobile TB treatment and follow up are important for the effective control of MDR-TB in the region.

  14. Developing a spatial-statistical model and map of historical malaria prevalence in Botswana using a staged variable selection procedure

    PubMed Central

    Craig, Marlies H; Sharp, Brian L; Mabaso, Musawenkosi LH; Kleinschmidt, Immo

    2007-01-01

    Background Several malaria risk maps have been developed in recent years, many from the prevalence of infection data collated by the MARA (Mapping Malaria Risk in Africa) project, and using various environmental data sets as predictors. Variable selection is a major obstacle due to analytical problems caused by over-fitting, confounding and non-independence in the data. Testing and comparing every combination of explanatory variables in a Bayesian spatial framework remains unfeasible for most researchers. The aim of this study was to develop a malaria risk map using a systematic and practicable variable selection process for spatial analysis and mapping of historical malaria risk in Botswana. Results Of 50 potential explanatory variables from eight environmental data themes, 42 were significantly associated with malaria prevalence in univariate logistic regression and were ranked by the Akaike Information Criterion. Those correlated with higher-ranking relatives of the same environmental theme, were temporarily excluded. The remaining 14 candidates were ranked by selection frequency after running automated step-wise selection procedures on 1000 bootstrap samples drawn from the data. A non-spatial multiple-variable model was developed through step-wise inclusion in order of selection frequency. Previously excluded variables were then re-evaluated for inclusion, using further step-wise bootstrap procedures, resulting in the exclusion of another variable. Finally a Bayesian geo-statistical model using Markov Chain Monte Carlo simulation was fitted to the data, resulting in a final model of three predictor variables, namely summer rainfall, mean annual temperature and altitude. Each was independently and significantly associated with malaria prevalence after allowing for spatial correlation. This model was used to predict malaria prevalence at unobserved locations, producing a smooth risk map for the whole country. Conclusion We have produced a highly plausible and parsimonious model of historical malaria risk for Botswana from point-referenced data from a 1961/2 prevalence survey of malaria infection in 1–14 year old children. After starting with a list of 50 potential variables we ended with three highly plausible predictors, by applying a systematic and repeatable staged variable selection procedure that included a spatial analysis, which has application for other environmentally determined infectious diseases. All this was accomplished using general-purpose statistical software. PMID:17892584

  15. Geostatistical applications in environmental remediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, R.N.; Purucker, S.T.; Lyon, B.F.

    1995-02-01

    Geostatistical analysis refers to a collection of statistical methods for addressing data that vary in space. By incorporating spatial information into the analysis, geostatistics has advantages over traditional statistical analysis for problems with a spatial context. Geostatistics has a history of success in earth science applications, and its popularity is increasing in other areas, including environmental remediation. Due to recent advances in computer technology, geostatistical algorithms can be executed at a speed comparable to many standard statistical software packages. When used responsibly, geostatistics is a systematic and defensible tool can be used in various decision frameworks, such as the Datamore » Quality Objectives (DQO) process. At every point in the site, geostatistics can estimate both the concentration level and the probability or risk of exceeding a given value. Using these probability maps can assist in identifying clean-up zones. Given any decision threshold and an acceptable level of risk, the probability maps identify those areas that are estimated to be above or below the acceptable risk. Those areas that are above the threshold are of the most concern with regard to remediation. In addition to estimating clean-up zones, geostatistics can assist in designing cost-effective secondary sampling schemes. Those areas of the probability map with high levels of estimated uncertainty are areas where more secondary sampling should occur. In addition, geostatistics has the ability to incorporate soft data directly into the analysis. These data include historical records, a highly correlated secondary contaminant, or expert judgment. The role of geostatistics in environmental remediation is a tool that in conjunction with other methods can provide a common forum for building consensus.« less

  16. Modeling spatiotemporal covariance for magnetoencephalography or electroencephalography source analysis.

    PubMed

    Plis, Sergey M; George, J S; Jun, S C; Paré-Blagoev, J; Ranken, D M; Wood, C C; Schmidt, D M

    2007-01-01

    We propose a new model to approximate spatiotemporal noise covariance for use in neural electromagnetic source analysis, which better captures temporal variability in background activity. As with other existing formalisms, our model employs a Kronecker product of matrices representing temporal and spatial covariance. In our model, spatial components are allowed to have differing temporal covariances. Variability is represented as a series of Kronecker products of spatial component covariances and corresponding temporal covariances. Unlike previous attempts to model covariance through a sum of Kronecker products, our model is designed to have a computationally manageable inverse. Despite increased descriptive power, inversion of the model is fast, making it useful in source analysis. We have explored two versions of the model. One is estimated based on the assumption that spatial components of background noise have uncorrelated time courses. Another version, which gives closer approximation, is based on the assumption that time courses are statistically independent. The accuracy of the structural approximation is compared to an existing model, based on a single Kronecker product, using both Frobenius norm of the difference between spatiotemporal sample covariance and a model, and scatter plots. Performance of ours and previous models is compared in source analysis of a large number of single dipole problems with simulated time courses and with background from authentic magnetoencephalography data.

  17. Statistical analysis and interpolation of compositional data in materials science.

    PubMed

    Pesenson, Misha Z; Suram, Santosh K; Gregoire, John M

    2015-02-09

    Compositional data are ubiquitous in chemistry and materials science: analysis of elements in multicomponent systems, combinatorial problems, etc., lead to data that are non-negative and sum to a constant (for example, atomic concentrations). The constant sum constraint restricts the sampling space to a simplex instead of the usual Euclidean space. Since statistical measures such as mean and standard deviation are defined for the Euclidean space, traditional correlation studies, multivariate analysis, and hypothesis testing may lead to erroneous dependencies and incorrect inferences when applied to compositional data. Furthermore, composition measurements that are used for data analytics may not include all of the elements contained in the material; that is, the measurements may be subcompositions of a higher-dimensional parent composition. Physically meaningful statistical analysis must yield results that are invariant under the number of composition elements, requiring the application of specialized statistical tools. We present specifics and subtleties of compositional data processing through discussion of illustrative examples. We introduce basic concepts, terminology, and methods required for the analysis of compositional data and utilize them for the spatial interpolation of composition in a sputtered thin film. The results demonstrate the importance of this mathematical framework for compositional data analysis (CDA) in the fields of materials science and chemistry.

  18. Multi-criteria decision analysis and spatial statistic: an approach to determining human vulnerability to vector transmission of Trypanosoma cruzi.

    PubMed

    Montenegro, Diego; Cunha, Ana Paula da; Ladeia-Andrade, Simone; Vera, Mauricio; Pedroso, Marcel; Junqueira, Angela

    2017-10-01

    Chagas disease (CD), caused by the protozoan Trypanosoma cruzi, is a neglected human disease. It is endemic to the Americas and is estimated to have an economic impact, including lost productivity and disability, of 7 billion dollars per year on average. To assess vulnerability to vector-borne transmission of T. cruzi in domiciliary environments within an area undergoing domiciliary vector interruption of T. cruzi in Colombia. Multi-criteria decision analysis [preference ranking method for enrichment evaluation (PROMETHEE) and geometrical analysis for interactive assistance (GAIA) methods] and spatial statistics were performed on data from a socio-environmental questionnaire and an entomological survey. In the construction of multi-criteria descriptors, decision-making processes and indicators of five determinants of the CD vector pathway were summarily defined, including: (1) house indicator (HI); (2) triatominae indicator (TI); (3) host/reservoir indicator (Ho/RoI); (4) ecotope indicator (EI); and (5) socio-cultural indicator (S-CI). Determination of vulnerability to CD is mostly influenced by TI, with 44.96% of the total weight in the model, while the lowest contribution was from S-CI, with 7.15%. The five indicators comprise 17 indices, and include 78 of the original 104 priority criteria and variables. The PROMETHEE and GAIA methods proved very efficient for prioritisation and quantitative categorisation of socio-environmental determinants and for better determining which criteria should be considered for interrupting the man-T. cruzi-vector relationship in endemic areas of the Americas. Through the analysis of spatial autocorrelation it is clear that there is a spatial dependence in establishing categories of vulnerability, therefore, the effect of neighbors' setting (border areas) on local values should be incorporated into disease management for establishing programs of surveillance and control of CD via vector. The study model proposed here is flexible and can be adapted to various eco-epidemiological profiles and is suitable for focusing anti-T. cruzi serological surveillance programs in vulnerable human populations.

  19. Data Rods: High Speed, Time-Series Analysis of Massive Cryospheric Data Sets Using Object-Oriented Database Methods

    NASA Astrophysics Data System (ADS)

    Liang, Y.; Gallaher, D. W.; Grant, G.; Lv, Q.

    2011-12-01

    Change over time, is the central driver of climate change detection. The goal is to diagnose the underlying causes, and make projections into the future. In an effort to optimize this process we have developed the Data Rod model, an object-oriented approach that provides the ability to query grid cell changes and their relationships to neighboring grid cells through time. The time series data is organized in time-centric structures called "data rods." A single data rod can be pictured as the multi-spectral data history at one grid cell: a vertical column of data through time. This resolves the long-standing problem of managing time-series data and opens new possibilities for temporal data analysis. This structure enables rapid time- centric analysis at any grid cell across multiple sensors and satellite platforms. Collections of data rods can be spatially and temporally filtered, statistically analyzed, and aggregated for use with pattern matching algorithms. Likewise, individual image pixels can be extracted to generate multi-spectral imagery at any spatial and temporal location. The Data Rods project has created a series of prototype databases to store and analyze massive datasets containing multi-modality remote sensing data. Using object-oriented technology, this method overcomes the operational limitations of traditional relational databases. To demonstrate the speed and efficiency of time-centric analysis using the Data Rods model, we have developed a sea ice detection algorithm. This application determines the concentration of sea ice in a small spatial region across a long temporal window. If performed using traditional analytical techniques, this task would typically require extensive data downloads and spatial filtering. Using Data Rods databases, the exact spatio-temporal data set is immediately available No extraneous data is downloaded, and all selected data querying occurs transparently on the server side. Moreover, fundamental statistical calculations such as running averages are easily implemented against the time-centric columns of data.

  20. Transition-Region Ultraviolet Explosive Events in IRIS Si IV: A Statistical Analysis

    NASA Astrophysics Data System (ADS)

    Bartz, Allison

    2018-01-01

    Explosive events (EEs) in the solar transition region are characterized by broad, non-Gaussian line profiles with wings at Doppler velocities exceeding the speed of sound. We present a statistical analysis of 23 IRIS (Interface Region Imaging Spectrograph) sit-and-stare observations, observed between April 2014 and March 2017. Using the IRIS Si IV 1394 Å and 1403 Å spectral windows and the 1400Å Slit Jaw images we have identified 581 EEs. We found that most EEs last less than 20 min. and have a spatial scale on the slit less than 10”, agreeing with measurements in previous work. We observed most EEs in active regions, regardless of date of observation, but selection bias of IRIS observations cannot be ruled out. We also present preliminary findings of optical depth effects from our statistical study.

  1. Spatial Accessibility and Availability Measures and Statistical Properties in the Food Environment

    PubMed Central

    Van Meter, E.; Lawson, A.B.; Colabianchi, N.; Nichols, M.; Hibbert, J.; Porter, D.; Liese, A.D.

    2010-01-01

    Spatial accessibility is of increasing interest in the health sciences. This paper addresses the statistical use of spatial accessibility and availability indices. These measures are evaluated via an extensive simulation based on cluster models for local food outlet density. We derived Monte Carlo critical values for several statistical tests based on the indices. In particular we are interested in the ability to make inferential comparisons between different study areas where indices of accessibility and availability are to be calculated. We derive tests of mean difference as well as tests for differences in Moran's I for spatial correlation for each of the accessibility and availability indices. We also apply these new statistical tests to a data example based on two counties in South Carolina for various accessibility and availability measures calculated for food outlets, stores, and restaurants. PMID:21499528

  2. Shallow plumbing systems inferred from spatial analysis of pockmark arrays

    NASA Astrophysics Data System (ADS)

    Maia, A.; Cartwright, J. A.; Andersen, E.

    2016-12-01

    This study describes and analyses an extraordinary array of pockmarks at the modern seabed of the Lower Congo Basin (offshore Angola), in order to understand the fluid migration routes and shallow plumbing system of the area. The 3D seismic visualization of feeding conduits (pipes) allowed the identification of the source interval for the fluids expelled during pockmark formation. Spatial statistics are used to show the relationship between the underlying (polarised) polygonal fault (PPFs) patterns and seabed pockmarks distributions. Our results show PPFs control the linear arrangement of pockmarks and feeder pipes along fault strike, but faults do not act as conduits. Spatial statistics also revealed pockmark occurrence is not considered to be random, especially at short distances to nearest neighbours (<200m) where anti-clustering distributions suggest the presence of an exclusion zone around each pockmark in which no other pockmark will form. The results of this study are relevant for the understanding of shallow fluid plumbing systems in offshore settings, with implications on our current knowledge of overall fluid flow systems in hydrocarbon-rich continental margins.

  3. The Use of Spatial Analysis to Estimate the Prevalence of Canine Leishmaniasis in Greece and Cyprus to Predict Its Future Variation and Relate It to Human Disease

    PubMed Central

    Sifaki-Pistola, Dimitra; Ntais, Pantelis; Christodoulou, Vasiliki; Mazeris, Apostolos; Antoniou, Maria

    2014-01-01

    Climatic, environmental, and demographic changes favor the emergence of neglected vector-borne diseases like leishmaniasis, which is spreading through dogs, the principle host of the protozoan Leishmania infantum. Surveillance of the disease in dogs is important, because the number of infected animals in an area determines the local risk of human infection. However, dog epidemiological studies are costly. Our aim was to evaluate the Emerging Diseases in a Changing European Environment (EDEN) veterinary questionnaire as a cost-effective tool in providing reliable, spatially explicit indicators of canine leishmaniasis prevalence. For this purpose, the data from the questionnaire were compared with data from two epidemiological studies on leishmaniasis carried out in Greece and Cyprus at the same time using statistical methods and spatial statistics. Although the questionnaire data cannot provide a quantitative measure of leishmaniasis in an area, it indicates the dynamic of the disease; information is obtained in a short period of time at low cost. PMID:24957543

  4. Laser-diagnostic mapping of temperature and soot statistics in a 2-m diameter turbulent pool fire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kearney, Sean P.; Grasser, Thomas W.

    We present spatial profiles of temperature and soot-volume-fraction statistics from a sooting 2-m base diameter turbulent pool fire, burning a 10%-toluene / 90%-methanol fuel mixture. Dual-pump coherent anti-Stokes Raman scattering and laser-induced incandescence are utilized to obtain radial profiles of temperature and soot probability density functions (pdf) as well as estimates of temperature/soot joint statistics at three vertical heights above the surface of the methanol/toluene fuel pool. Results are presented both in the fuel vapor-dome region at ¼ base diameter and in the actively burning region at ½ and ¾ diameters above the fuel surface. The spatial evolution of themore » soot and temperature pdfs is discussed and profiles of the temperature and soot mean and rms statistics are provided. Joint temperature/soot statistics are presented as spatially resolved conditional averages across the fire plume, and in terms of a joint pdf obtained by including measurements from multiple spatial locations.« less

  5. Laser-diagnostic mapping of temperature and soot statistics in a 2-m diameter turbulent pool fire

    DOE PAGES

    Kearney, Sean P.; Grasser, Thomas W.

    2017-08-10

    We present spatial profiles of temperature and soot-volume-fraction statistics from a sooting 2-m base diameter turbulent pool fire, burning a 10%-toluene / 90%-methanol fuel mixture. Dual-pump coherent anti-Stokes Raman scattering and laser-induced incandescence are utilized to obtain radial profiles of temperature and soot probability density functions (pdf) as well as estimates of temperature/soot joint statistics at three vertical heights above the surface of the methanol/toluene fuel pool. Results are presented both in the fuel vapor-dome region at ¼ base diameter and in the actively burning region at ½ and ¾ diameters above the fuel surface. The spatial evolution of themore » soot and temperature pdfs is discussed and profiles of the temperature and soot mean and rms statistics are provided. Joint temperature/soot statistics are presented as spatially resolved conditional averages across the fire plume, and in terms of a joint pdf obtained by including measurements from multiple spatial locations.« less

  6. Fitting and Modeling in the ASC Data Analysis Environment

    NASA Astrophysics Data System (ADS)

    Doe, S.; Siemiginowska, A.; Joye, W.; McDowell, J.

    As part of the AXAF Science Center (ASC) Data Analysis Environment, we will provide to the astronomical community a Fitting Application. We present a design of the application in this paper. Our design goal is to give the user the flexibility to use a variety of optimization techniques (Levenberg-Marquardt, maximum entropy, Monte Carlo, Powell, downhill simplex, CERN-Minuit, and simulated annealing) and fit statistics (chi (2) , Cash, variance, and maximum likelihood); our modular design allows the user easily to add their own optimization techniques and/or fit statistics. We also present a comparison of the optimization techniques to be provided by the Application. The high spatial and spectral resolutions that will be obtained with AXAF instruments require a sophisticated data modeling capability. We will provide not only a suite of astronomical spatial and spectral source models, but also the capability of combining these models into source models of up to four data dimensions (i.e., into source functions f(E,x,y,t)). We will also provide tools to create instrument response models appropriate for each observation.

  7. Creativity and technical innovation: spatial ability's unique role.

    PubMed

    Kell, Harrison J; Lubinski, David; Benbow, Camilla P; Steiger, James H

    2013-09-01

    In the late 1970s, 563 intellectually talented 13-year-olds (identified by the SAT as in the top 0.5% of ability) were assessed on spatial ability. More than 30 years later, the present study evaluated whether spatial ability provided incremental validity (beyond the SAT's mathematical and verbal reasoning subtests) for differentially predicting which of these individuals had patents and three classes of refereed publications. A two-step discriminant-function analysis revealed that the SAT subtests jointly accounted for 10.8% of the variance among these outcomes (p < .01); when spatial ability was added, an additional 7.6% was accounted for--a statistically significant increase (p < .01). The findings indicate that spatial ability has a unique role in the development of creativity, beyond the roles played by the abilities traditionally measured in educational selection, counseling, and industrial-organizational psychology. Spatial ability plays a key and unique role in structuring many important psychological phenomena and should be examined more broadly across the applied and basic psychological sciences.

  8. Fast mean and variance computation of the diffuse sound transmission through finite-sized thick and layered wall and floor systems

    NASA Astrophysics Data System (ADS)

    Decraene, Carolina; Dijckmans, Arne; Reynders, Edwin P. B.

    2018-05-01

    A method is developed for computing the mean and variance of the diffuse field sound transmission loss of finite-sized layered wall and floor systems that consist of solid, fluid and/or poroelastic layers. This is achieved by coupling a transfer matrix model of the wall or floor to statistical energy analysis subsystem models of the adjacent room volumes. The modal behavior of the wall is approximately accounted for by projecting the wall displacement onto a set of sinusoidal lateral basis functions. This hybrid modal transfer matrix-statistical energy analysis method is validated on multiple wall systems: a thin steel plate, a polymethyl methacrylate panel, a thick brick wall, a sandwich panel, a double-leaf wall with poro-elastic material in the cavity, and a double glazing. The predictions are compared with experimental data and with results obtained using alternative prediction methods such as the transfer matrix method with spatial windowing, the hybrid wave based-transfer matrix method, and the hybrid finite element-statistical energy analysis method. These comparisons confirm the prediction accuracy of the proposed method and the computational efficiency against the conventional hybrid finite element-statistical energy analysis method.

  9. Morphological image analysis for classification of gastrointestinal tissues using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Garcia-Allende, P. Beatriz; Amygdalos, Iakovos; Dhanapala, Hiruni; Goldin, Robert D.; Hanna, George B.; Elson, Daniel S.

    2012-01-01

    Computer-aided diagnosis of ophthalmic diseases using optical coherence tomography (OCT) relies on the extraction of thickness and size measures from the OCT images, but such defined layers are usually not observed in emerging OCT applications aimed at "optical biopsy" such as pulmonology or gastroenterology. Mathematical methods such as Principal Component Analysis (PCA) or textural analyses including both spatial textural analysis derived from the two-dimensional discrete Fourier transform (DFT) and statistical texture analysis obtained independently from center-symmetric auto-correlation (CSAC) and spatial grey-level dependency matrices (SGLDM), as well as, quantitative measurements of the attenuation coefficient have been previously proposed to overcome this problem. We recently proposed an alternative approach consisting of a region segmentation according to the intensity variation along the vertical axis and a pure statistical technology for feature quantification. OCT images were first segmented in the axial direction in an automated manner according to intensity. Afterwards, a morphological analysis of the segmented OCT images was employed for quantifying the features that served for tissue classification. In this study, a PCA processing of the extracted features is accomplished to combine their discriminative power in a lower number of dimensions. Ready discrimination of gastrointestinal surgical specimens is attained demonstrating that the approach further surpasses the algorithms previously reported and is feasible for tissue classification in the clinical setting.

  10. Geospatial data sharing, online spatial analysis and processing of Indian Biodiversity data in Internet GIS domain - A case study for raster based online geo-processing

    NASA Astrophysics Data System (ADS)

    Karnatak, H.; Pandey, K.; Oberai, K.; Roy, A.; Joshi, D.; Singh, H.; Raju, P. L. N.; Krishna Murthy, Y. V. N.

    2014-11-01

    National Biodiversity Characterization at Landscape Level, a project jointly sponsored by Department of Biotechnology and Department of Space, was implemented to identify and map the potential biodiversity rich areas in India. This project has generated spatial information at three levels viz. Satellite based primary information (Vegetation Type map, spatial locations of road & village, Fire occurrence); geospatially derived or modelled information (Disturbance Index, Fragmentation, Biological Richness) and geospatially referenced field samples plots. The study provides information of high disturbance and high biological richness areas suggesting future management strategies and formulating action plans. The study has generated for the first time baseline database in India which will be a valuable input towards climate change study in the Indian Subcontinent. The spatial data generated during the study is organized as central data repository in Geo-RDBMS environment using PostgreSQL and POSTGIS. The raster and vector data is published as OGC WMS and WFS standard for development of web base geoinformation system using Service Oriented Architecture (SOA). The WMS and WFS based system allows geo-visualization, online query and map outputs generation based on user request and response. This is a typical mashup architecture based geo-information system which allows access to remote web services like ISRO Bhuvan, Openstreet map, Google map etc., with overlay on Biodiversity data for effective study on Bio-resources. The spatial queries and analysis with vector data is achieved through SQL queries on POSTGIS and WFS-T operations. But the most important challenge is to develop a system for online raster based geo-spatial analysis and processing based on user defined Area of Interest (AOI) for large raster data sets. The map data of this study contains approximately 20 GB of size for each data layer which are five in number. An attempt has been to develop system using python, PostGIS and PHP for raster data analysis over the web for Biodiversity conservation and prioritization. The developed system takes inputs from users as WKT, Openlayer based Polygon geometry and Shape file upload as AOI to perform raster based operation using Python and GDAL/OGR. The intermediate products are stored in temporary files and tables which generate XML outputs for web representation. The raster operations like clip-zip-ship, class wise area statistics, single to multi-layer operations, diagrammatic representation and other geo-statistical analysis are performed. This is indigenous geospatial data processing engine developed using Open system architecture for spatial analysis of Biodiversity data sets in Internet GIS environment. The performance of this applications in multi-user environment like Internet domain is another challenging task which is addressed by fine tuning the source code, server hardening, spatial indexing and running the process in load balance mode. The developed system is hosted in Internet domain (http://bis.iirs.gov.in) for user access.

  11. Spatial clustering of malaria and associated risk factors during an epidemic in a highland area of western Kenya.

    PubMed

    Brooker, Simon; Clarke, Siân; Njagi, Joseph Kiambo; Polack, Sarah; Mugo, Benbolt; Estambale, Benson; Muchiri, Eric; Magnussen, Pascal; Cox, Jonathan

    2004-07-01

    The epidemiology of malaria over small areas remains poorly understood, and this is particularly true for malaria during epidemics in highland areas of Africa, where transmission intensity is low and characterized by acute within and between year variations. We report an analysis of the spatial distribution of clinical malaria during an epidemic and investigate putative risk factors. Active case surveillance was undertaken in three schools in Nandi District, Western Kenya for 10 weeks during a malaria outbreak in May-July 2002. Household surveys of cases and age-matched controls were conducted to collect information on household construction, exposure factors and socio-economic status. Household geographical location and altitude were determined using a hand-held geographical positioning system and landcover types were determined using high spatial resolution satellite sensor data. Among 129 cases identified during the surveillance, which were matched to 155 controls, we identified significant spatial clusters of malaria cases as determined using the spatial scan statistic. Conditional multiple logistic regression analysis showed that the risk of malaria was higher in children who were underweight, who lived at lower altitudes, and who lived in households where drugs were not kept at home. Copyright 2004 Blackwell Publishing Ltd

  12. Spatial patterns of hydro-social metrics in the Northeastern United States from the Colonial Era through the Industrial Revolution (1600-1920)

    NASA Astrophysics Data System (ADS)

    Witherell, B. B.; Bain, D. J.; Salant, N.; Aloysius, N. R.

    2009-12-01

    Humans impact the hydrologic cycle at local, regional and global scales. Understanding how spatial patterns of human water use and hydrologic impact have changed over time is important to future water management in an era of increasing water constraints and globalization of high water-use resources. This study investigates spatial dependence and spatial patterns of hydro-social metrics for the Northeastern United States from 1600 to 1920 through the use of spatial statistical techniques. Several relevant hydro-social metrics, including water residence time, surface water storage (natural and human engineered) and per capita water availability, are analyzed. This study covers a region and period of time that saw significant population growth, landscape change, and industrial growth. These changes had important impacts on water availability. Although some changes such as the elimination of beavers, and the resulting loss of beaver ponds on low-order streams, are felt at a regional scale, preliminary analysis indicates that humans responded to water constraints by acting locally (e.g., mill ponds for water power and water supply reservoirs for public health). This 320-year historical analysis of spatial patterns of hydro-social metrics provides unique insight into long-term changes in coupled human-water systems.

  13. Adding Spatially Correlated Noise to a Median Ionosphere

    NASA Astrophysics Data System (ADS)

    Holmes, J. M.; Egert, A. R.; Dao, E. V.; Colman, J. J.; Parris, R. T.

    2017-12-01

    We describe a process for adding spatially correlated noise to a background ionospheric model, in this case the International Reference Ionosphere (IRI). Monthly median models do a good job describing bulk features of the ionosphere in a median sense. It is well known that the ionosphere almost never actually looks like its median. For the purposes of constructing an Operational System Simulation Experiment, it may be desirable to construct an ionosphere more similar to a particular instant, hour, or day than to the monthly median. We will examine selected data from the Global Ionosphere Radio Observatory (GIRO) database and estimate the amount of variance captured by the IRI model. We will then examine spatial and temporal correlations within the residuals. This analysis will be used to construct a temporal-spatial gridded ionosphere that represents a particular instantiation of those statistics.

  14. Tempo-spatial analysis of Fennoscandian intraplate seismicity

    NASA Astrophysics Data System (ADS)

    Roberts, Roland; Lund, Björn

    2017-04-01

    Coupled spatial-temporal patterns of the occurrence of earthquakes in Fennoscandia are analysed using non-parametric methods. The occurrence of larger events is unambiguously and very strongly temporally clustered, with major implications for the assessment of seismic hazard in areas such as Fennoscandia. In addition, there is a clear pattern of geographical migration of activity. Data from the Swedish National Seismic Network and a collated international catalogue are analysed. Results show consistent patterns on different spatial and temporal scales. We are currently investigating these patterns in order to assess the statistical significance of the tempo-spatial patterns, and to what extent these may be consistent with stress transfer mechanism such as coulomb stress and pore fluid migration. Indications are that some further mechanism is necessary in order to explain the data, perhaps related to post-glacial uplift, which is up to 1cm/year.

  15. Violent crime in San Antonio, Texas: an application of spatial epidemiological methods.

    PubMed

    Sparks, Corey S

    2011-12-01

    Violent crimes are rarely considered a public health problem or investigated using epidemiological methods. But patterns of violent crime and other health conditions are often affected by similar characteristics of the built environment. In this paper, methods and perspectives from spatial epidemiology are used in an analysis of violent crimes in San Antonio, TX. Bayesian statistical methods are used to examine the contextual influence of several aspects of the built environment. Additionally, spatial regression models using Bayesian model specifications are used to examine spatial patterns of violent crime risk. Results indicate that the determinants of violent crime depend on the model specification, but are primarily related to the built environment and neighborhood socioeconomic conditions. Results are discussed within the context of a rapidly growing urban area with a diverse population. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Application of GIS Rapid Mapping Technology in Disaster Monitoring

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Tu, J.; Liu, G.; Zhao, Q.

    2018-04-01

    With the rapid development of GIS and RS technology, especially in recent years, GIS technology and its software functions have been increasingly mature and enhanced. And with the rapid development of mathematical statistical tools for spatial modeling and simulation, has promoted the widespread application and popularization of quantization in the field of geology. Based on the investigation of field disaster and the construction of spatial database, this paper uses remote sensing image, DEM and GIS technology to obtain the data information of disaster vulnerability analysis, and makes use of the information model to carry out disaster risk assessment mapping.Using ArcGIS software and its spatial data modeling method, the basic data information of the disaster risk mapping process was acquired and processed, and the spatial data simulation tool was used to map the disaster rapidly.

  17. A geographic analysis of individual and environmental risk factors for hypospadias births

    PubMed Central

    Winston, Jennifer J; Meyer, Robert E; Emch, Michael E

    2014-01-01

    Background Hypospadias is a relatively common birth defect affecting the male urinary tract. We explored the etiology of hypospadias by examining its spatial distribution in North Carolina and the spatial clustering of residuals from individual and environmental risk factors. Methods We used data collected by the North Carolina Birth Defects Monitoring Program from 2003-2005 to estimate local Moran's I statistics to identify geographic clustering of overall and severe hypospadias, using 995 overall cases and 16,013 controls. We conducted logistic regression and local Moran's I statistics on standardized residuals to consider the contribution of individual variables (maternal age, maternal race/ethnicity, maternal education, smoking, parity, and diabetes) and environmental variables (block group land cover) to this clustering. Results Local Moran's I statistics indicated significant clustering of overall and severe hypospadias in eastern central North Carolina. Spatial clustering of hypospadias persisted when controlling for individual factors, but diminished somewhat when controlling for environmental factors. In adjusted models, maternal residence in a block group with more than 5% crop cover was associated with overall hypospadias (OR = 1.22; 95% CI = 1.04 – 1.43); that is living in a block group with greater than 5% crop cover was associated with a 22% increase in the odds of having a baby with hypospadias. Land cover was not associated with severe hypospadias. Conclusions This study illustrates the potential contribution of mapping in generating hypotheses about disease etiology. Results suggest that environmental factors including proximity to agriculture may play some role in the spatial distribution of hypospadias. PMID:25196538

  18. Spatial statistical network models for stream and river temperature in New England, USA

    NASA Astrophysics Data System (ADS)

    Detenbeck, Naomi E.; Morrison, Alisa C.; Abele, Ralph W.; Kopp, Darin A.

    2016-08-01

    Watershed managers are challenged by the need for predictive temperature models with sufficient accuracy and geographic breadth for practical use. We described thermal regimes of New England rivers and streams based on a reduced set of metrics for the May-September growing season (July or August median temperature, diurnal rate of change, and magnitude and timing of growing season maximum) chosen through principal component analysis of 78 candidate metrics. We then developed and assessed spatial statistical models for each of these metrics, incorporating spatial autocorrelation based on both distance along the flow network and Euclidean distance between points. Calculation of spatial autocorrelation based on travel or retention time in place of network distance yielded tighter-fitting Torgegrams with less scatter but did not improve overall model prediction accuracy. We predicted monthly median July or August stream temperatures as a function of median air temperature, estimated urban heat island effect, shaded solar radiation, main channel slope, watershed storage (percent lake and wetland area), percent coarse-grained surficial deposits, and presence or maximum depth of a lake immediately upstream, with an overall root-mean-square prediction error of 1.4 and 1.5°C, respectively. Growing season maximum water temperature varied as a function of air temperature, local channel slope, shaded August solar radiation, imperviousness, and watershed storage. Predictive models for July or August daily range, maximum daily rate of change, and timing of growing season maximum were statistically significant but explained a much lower proportion of variance than the above models (5-14% of total).

  19. Spatio-Temporal Trends of Fire in Slash and Burn Agriculture Landscape: A Case Study from Nagaland, India

    NASA Astrophysics Data System (ADS)

    Padalia, H.; Mondal, P. P.

    2014-11-01

    Increasing incidences of fire from land conversion and residue burning in tropics is the major concern in global warming. Spatial and temporal monitoring of trends of fire incidences is, therefore, significant in order to determine contribution of carbon emissions from slash and burn agriculture. In this study, we analyzed time-series Terra / Aqua MODIS satellite hotspot products from 2001 to 2013 to derive intra- and inter-annual trends in fire incidences in Nagaland state, located in the Indo-Burma biodiversity hotspot. Time-series regression was applied to MODIS fire products at variable spatial scales in GIS. Significance of change in fire frequency at each grid level was tested using t statistic. Spatial clustering of higher or lower fire incidences across study area was determined using Getis-OrdGi statistic. Maximum fire incidences were encountered in moist mixed deciduous forests (46%) followed by secondary moist bamboo brakes (30%). In most parts of the study area fire incidences peaked during March while in warmer parts (e.g. Mon district dominated by indigenous people) fire activity starts as early as during November and peaks in January. Regression trend analysis captured noticeable areas with statistically significant positive (e.g. Mokokchung, Wokha, Mon, Tuensang and Kiphire districts) and negative (e.g. Kohima and north-western part of Mokokchung district) inter-annual fire frequency trends based on area-based aggregation of fire occurrences at different grid sizes. Localization of spatial clusters of high fire incidences was observed in Mokokchung, Wokha, Mon,Tuensang and Kiphire districts.

  20. Measurement and data processing approach for detecting anisotropic spatial statistics of the turbulence-induced index of refraction fluctuations in the upper atmosphere.

    PubMed

    Havens, Timothy C; Roggemann, Michael C; Schulz, Timothy J; Brown, Wade W; Beyer, Jeff T; Otten, L John

    2002-05-20

    We discuss a method of data reduction and analysis that has been developed for a novel experiment to detect anisotropic turbulence in the tropopause and to measure the spatial statistics of these flows. The experimental concept is to make measurements of temperature at 15 points on a hexagonal grid for altitudes from 12,000 to 18,000 m while suspended from a balloon performing a controlled descent. From the temperature data, we estimate the index of refraction and study the spatial statistics of the turbulence-induced index of refraction fluctuations. We present and evaluate the performance of a processing approach to estimate the parameters of an anisotropic model for the spatial power spectrum of the turbulence-induced index of refraction fluctuations. A Gaussian correlation model and a least-squares optimization routine are used to estimate the parameters of the model from the measurements. In addition, we implemented a quick-look algorithm to have a computationally nonintensive way of viewing the autocorrelation function of the index fluctuations. The autocorrelation of the index of refraction fluctuations is binned and interpolated onto a uniform grid from the sparse points that exist in our experiment. This allows the autocorrelation to be viewed with a three-dimensional plot to determine whether anisotropy exists in a specific data slab. Simulation results presented here show that, in the presence of the anticipated levels of measurement noise, the least-squares estimation technique allows turbulence parameters to be estimated with low rms error.

  1. Validation of satellite-based rainfall in Kalahari

    NASA Astrophysics Data System (ADS)

    Lekula, Moiteela; Lubczynski, Maciek W.; Shemang, Elisha M.; Verhoef, Wouter

    2018-06-01

    Water resources management in arid and semi-arid areas is hampered by insufficient rainfall data, typically obtained from sparsely distributed rain gauges. Satellite-based rainfall estimates (SREs) are alternative sources of such data in these areas. In this study, daily rainfall estimates from FEWS-RFE∼11 km, TRMM-3B42∼27 km, CMOPRH∼27 km and CMORPH∼8 km were evaluated against nine, daily rain gauge records in Central Kalahari Basin (CKB), over a five-year period, 01/01/2001-31/12/2005. The aims were to evaluate the daily rainfall detection capabilities of the four SRE algorithms, analyze the spatio-temporal variability of rainfall in the CKB and perform bias-correction of the four SREs. Evaluation methods included scatter plot analysis, descriptive statistics, categorical statistics and bias decomposition. The spatio-temporal variability of rainfall, was assessed using the SREs' mean annual rainfall, standard deviation, coefficient of variation and spatial correlation functions. Bias correction of the four SREs was conducted using a Time-Varying Space-Fixed bias-correction scheme. The results underlined the importance of validating daily SREs, as they had different rainfall detection capabilities in the CKB. The FEWS-RFE∼11 km performed best, providing better results of descriptive and categorical statistics than the other three SREs, although bias decomposition showed that all SREs underestimated rainfall. The analysis showed that the most reliable SREs performance analysis indicator were the frequency of "miss" rainfall events and the "miss-bias", as they directly indicated SREs' sensitivity and bias of rainfall detection, respectively. The Time Varying and Space Fixed (TVSF) bias-correction scheme, improved some error measures but resulted in the reduction of the spatial correlation distance, thus increased, already high, spatial rainfall variability of all the four SREs. This study highlighted SREs as valuable source of daily rainfall data providing good spatio-temporal data coverage especially suitable for areas with limited rain gauges, such as the CKB, but also emphasized SREs' drawbacks, creating avenue for follow up research.

  2. Frontal networks in adults with autism spectrum disorder

    PubMed Central

    Catani, Marco; Dell’Acqua, Flavio; Budisavljevic, Sanja; Howells, Henrietta; Thiebaut de Schotten, Michel; Froudist-Walsh, Seán; D’Anna, Lucio; Thompson, Abigail; Sandrone, Stefano; Bullmore, Edward T.; Suckling, John; Baron-Cohen, Simon; Lombardo, Michael V.; Wheelwright, Sally J.; Chakrabarti, Bhismadev; Lai, Meng-Chuan; Ruigrok, Amber N. V.; Leemans, Alexander; Ecker, Christine; Consortium, MRC AIMS; Craig, Michael C.

    2016-01-01

    Abstract It has been postulated that autism spectrum disorder is underpinned by an ‘atypical connectivity’ involving higher-order association brain regions. To test this hypothesis in a large cohort of adults with autism spectrum disorder we compared the white matter networks of 61 adult males with autism spectrum disorder and 61 neurotypical controls, using two complementary approaches to diffusion tensor magnetic resonance imaging. First, we applied tract-based spatial statistics, a ‘whole brain’ non-hypothesis driven method, to identify differences in white matter networks in adults with autism spectrum disorder. Following this we used a tract-specific analysis, based on tractography, to carry out a more detailed analysis of individual tracts identified by tract-based spatial statistics. Finally, within the autism spectrum disorder group, we studied the relationship between diffusion measures and autistic symptom severity. Tract-based spatial statistics revealed that autism spectrum disorder was associated with significantly reduced fractional anisotropy in regions that included frontal lobe pathways. Tractography analysis of these specific pathways showed increased mean and perpendicular diffusivity, and reduced number of streamlines in the anterior and long segments of the arcuate fasciculus, cingulum and uncinate—predominantly in the left hemisphere. Abnormalities were also evident in the anterior portions of the corpus callosum connecting left and right frontal lobes. The degree of microstructural alteration of the arcuate and uncinate fasciculi was associated with severity of symptoms in language and social reciprocity in childhood. Our results indicated that autism spectrum disorder is a developmental condition associated with abnormal connectivity of the frontal lobes. Furthermore our findings showed that male adults with autism spectrum disorder have regional differences in brain anatomy, which correlate with specific aspects of autistic symptoms. Overall these results suggest that autism spectrum disorder is a condition linked to aberrant developmental trajectories of the frontal networks that persist in adult life. PMID:26912520

  3. Frontal networks in adults with autism spectrum disorder.

    PubMed

    Catani, Marco; Dell'Acqua, Flavio; Budisavljevic, Sanja; Howells, Henrietta; Thiebaut de Schotten, Michel; Froudist-Walsh, Seán; D'Anna, Lucio; Thompson, Abigail; Sandrone, Stefano; Bullmore, Edward T; Suckling, John; Baron-Cohen, Simon; Lombardo, Michael V; Wheelwright, Sally J; Chakrabarti, Bhismadev; Lai, Meng-Chuan; Ruigrok, Amber N V; Leemans, Alexander; Ecker, Christine; Consortium, Mrc Aims; Craig, Michael C; Murphy, Declan G M

    2016-02-01

    It has been postulated that autism spectrum disorder is underpinned by an 'atypical connectivity' involving higher-order association brain regions. To test this hypothesis in a large cohort of adults with autism spectrum disorder we compared the white matter networks of 61 adult males with autism spectrum disorder and 61 neurotypical controls, using two complementary approaches to diffusion tensor magnetic resonance imaging. First, we applied tract-based spatial statistics, a 'whole brain' non-hypothesis driven method, to identify differences in white matter networks in adults with autism spectrum disorder. Following this we used a tract-specific analysis, based on tractography, to carry out a more detailed analysis of individual tracts identified by tract-based spatial statistics. Finally, within the autism spectrum disorder group, we studied the relationship between diffusion measures and autistic symptom severity. Tract-based spatial statistics revealed that autism spectrum disorder was associated with significantly reduced fractional anisotropy in regions that included frontal lobe pathways. Tractography analysis of these specific pathways showed increased mean and perpendicular diffusivity, and reduced number of streamlines in the anterior and long segments of the arcuate fasciculus, cingulum and uncinate--predominantly in the left hemisphere. Abnormalities were also evident in the anterior portions of the corpus callosum connecting left and right frontal lobes. The degree of microstructural alteration of the arcuate and uncinate fasciculi was associated with severity of symptoms in language and social reciprocity in childhood. Our results indicated that autism spectrum disorder is a developmental condition associated with abnormal connectivity of the frontal lobes. Furthermore our findings showed that male adults with autism spectrum disorder have regional differences in brain anatomy, which correlate with specific aspects of autistic symptoms. Overall these results suggest that autism spectrum disorder is a condition linked to aberrant developmental trajectories of the frontal networks that persist in adult life. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.

  4. Automated X-ray Flare Detection with GOES, 2003-2017: The Where of the Flare Catalog and Early Statistical Analysis

    NASA Astrophysics Data System (ADS)

    Loftus, K.; Saar, S. H.

    2017-12-01

    NOAA's Space Weather Prediction Center publishes the current definitive public soft X-ray flare catalog, derived using data from the X-ray Sensor (XRS) on the Geostationary Operational Environmental Satellites (GOES) series. However, this flare list has shortcomings for use in scientific analysis. Its detection algorithm has drawbacks (missing smaller flux events and poorly characterizing complex ones), and its event timing is imprecise (peak and end times are frequently marked incorrectly, and hence peak fluxes are underestimated). It also lacks explicit and regular spatial location data. We present a new database, "The Where of the Flare" catalog, which improves upon the precision of NOAA's current version, with more consistent and accurate spatial locations, timings, and peak fluxes. Our catalog also offers several new parameters per flare (e.g. background flux, integrated flux). We use data from the GOES Solar X-ray Imager (SXI) for spatial flare locating. Our detection algorithm is more sensitive to smaller flux events close to the background level and more precisely marks flare start/peak/end times so that integrated flux can be accurately calculated. It also decomposes complex events (with multiple overlapping flares) by constituent peaks. The catalog dates from the operation of the first SXI instrument in 2003 until the present. We give an overview of the detection algorithm's design, review the catalog's features, and discuss preliminary statistical analyses of light curve morphology, complex event decomposition, and integrated flux distribution. The Where of the Flare catalog will be useful in studying X-ray flare statistics and correlating X-ray flare properties with other observations. This work was supported by Contract #8100002705 from Lockheed-Martin to SAO in support of the science of NASA's IRIS mission.

  5. Automated thematic mapping and change detection of ERTS-A images. [farmlands, cities, and mountain identification in Utah, Washington, Arizona, and California

    NASA Technical Reports Server (NTRS)

    Gramenopoulos, N. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. A diffraction pattern analysis of MSS images led to the development of spatial signatures for farm land, urban areas and mountains. Four spatial features are employed to describe the spatial characteristics of image cells in the digital data. Three spectral features are combined with the spatial features to form a seven dimensional vector describing each cell. Then, the classification of the feature vectors is accomplished by using the maximum likelihood criterion. It was determined that the recognition accuracy with the maximum likelihood criterion depends on the statistics of the feature vectors. It was also determined that for a given geographic area the statistics of the classes remain invariable for a period of a month, but vary substantially between seasons. Three ERTS-1 images from the Phoenix, Arizona area were processed, and recognition rates between 85% and 100% were obtained for the terrain classes of desert, farms, mountains, and urban areas. To eliminate the need for training data, a new clustering algorithm has been developed. Seven ERTS-1 images from four test sites have been processed through the clustering algorithm, and high recognition rates have been achieved for all terrain classes.

  6. Blind separation of incoherent and spatially disjoint sound sources

    NASA Astrophysics Data System (ADS)

    Dong, Bin; Antoni, Jérôme; Pereira, Antonio; Kellermann, Walter

    2016-11-01

    Blind separation of sound sources aims at reconstructing the individual sources which contribute to the overall radiation of an acoustical field. The challenge is to reach this goal using distant measurements when all sources are operating concurrently. The working assumption is usually that the sources of interest are incoherent - i.e. statistically orthogonal - so that their separation can be approached by decorrelating a set of simultaneous measurements, which amounts to diagonalizing the cross-spectral matrix. Principal Component Analysis (PCA) is traditionally used to this end. This paper reports two new findings in this context. First, a sufficient condition is established under which "virtual" sources returned by PCA coincide with true sources; it stipulates that the sources of interest should be not only incoherent but also spatially orthogonal. A particular case of this instance is met by spatially disjoint sources - i.e. with non-overlapping support sets. Second, based on this finding, a criterion that enforces both statistical and spatial orthogonality is proposed to blindly separate incoherent sound sources which radiate from disjoint domains. This criterion can be easily incorporated into acoustic imaging algorithms such as beamforming or acoustical holography to identify sound sources of different origins. The proposed methodology is validated on laboratory experiments. In particular, the separation of aeroacoustic sources is demonstrated in a wind tunnel.

  7. GIS, geostatistics, metadata banking, and tree-based models for data analysis and mapping in environmental monitoring and epidemiology.

    PubMed

    Schröder, Winfried

    2006-05-01

    By the example of environmental monitoring, some applications of geographic information systems (GIS), geostatistics, metadata banking, and Classification and Regression Trees (CART) are presented. These tools are recommended for mapping statistically estimated hot spots of vectors and pathogens. GIS were introduced as tools for spatially modelling the real world. The modelling can be done by mapping objects according to the spatial information content of data. Additionally, this can be supported by geostatistical and multivariate statistical modelling. This is demonstrated by the example of modelling marine habitats of benthic communities and of terrestrial ecoregions. Such ecoregionalisations may be used to predict phenomena based on the statistical relation between measurements of an interesting phenomenon such as, e.g., the incidence of medically relevant species and correlated characteristics of the ecoregions. The combination of meteorological data and data on plant phenology can enhance the spatial resolution of the information on climate change. To this end, meteorological and phenological data have to be correlated. To enable this, both data sets which are from disparate monitoring networks have to be spatially connected by means of geostatistical estimation. This is demonstrated by the example of transformation of site-specific data on plant phenology into surface data. The analysis allows for spatial comparison of the phenology during the two periods 1961-1990 and 1991-2002 covering whole Germany. The changes in both plant phenology and air temperature were proved to be statistically significant. Thus, they can be combined by GIS overlay technique to enhance the spatial resolution of the information on the climate change and use them for the prediction of vector incidences at the regional scale. The localisation of such risk hot spots can be done by geometrically merging surface data on promoting factors. This is demonstrated by the example of the transfer of heavy metals through soils. The predicted hot spots of heavy metal transfer can be validated empirically by measurement data which can be inquired by a metadata base linked with a geographic information system. A corresponding strategy for the detection of vector hot spots in medical epidemiology is recommended. Data on incidences and habitats of the Anophelinae in the marsh regions of Lower Saxony (Germany) were used to calculate a habitat model by CART, which together with climate data and data on ecoregions can be further used for the prediction of habitats of medically relevant vector species. In the future, this approach should be supported by an internet-based information system consisting of three components: metadata questionnaire, metadata base, and GIS to link metadata, surface data, and measurement data on incidences and habitats of medically relevant species and related data on climate, phenology, and ecoregional characteristic conditions.

  8. Reconnection AND Bursty Bulk Flow Associated Turbulence IN THE Earth'S Plasma Sheet

    NASA Astrophysics Data System (ADS)

    Voros, Z.; Nakamura, R.; Baumjohann, W.; Runov, A.; Volwerk, M.; Jankovicova, D.; Balogh, A.; Klecker, B.

    2006-12-01

    Reconnection related fast flows in the Earth's plasma sheet can be associated with several accompanying phenomena, such as magnetic field dipolarization, current sheet thinning and turbulence. Statistical analysis of multi-scale properties of turbulence facilitates to understand the interaction of the plasma flow with the dipolar magnetic field and to recognize the remote or nearby temporal and spatial characteristics of reconnection. The main emphasis of this presentation is on differentiating between the specific statistical features of flow associated fluctuations at different distances from the reconnection site.

  9. Analysis of TCE Fate and Transport in Karst Groundwater Systems Using Statistical Mixed Models

    NASA Astrophysics Data System (ADS)

    Anaya, A. A.; Padilla, I. Y.

    2012-12-01

    Karst groundwater systems are highly productive and provide an important fresh water resource for human development and ecological integrity. Their high productivity is often associated with conduit flow and high matrix permeability. The same characteristics that make these aquifers productive also make them highly vulnerable to contamination and a likely for contaminant exposure. Of particular interest are trichloroethylene, (TCE) and Di-(2-Ethylhexyl) phthalate (DEHP). These chemicals have been identified as potential precursors of pre-term birth, a leading cause of neonatal complications with a significant health and societal cost. Both of these contaminants have been found in the karst groundwater formations in this area of the island. The general objectives of this work are to: (1) develop fundamental knowledge and determine the processes controlling the release, mobility, persistence, and possible pathways of contaminants in karst groundwater systems, and (2) characterize transport processes in conduit and diffusion-dominated flow under base flow and storm flow conditions. The work presented herein focuses on the use of geo-hydro statistical tools to characterize flow and transport processes under different flow regimes, and their application in the analysis of fate and transport of TCE. Multidimensional, laboratory-scale Geo-Hydrobed models (GHM) were used for this purpose. The models consist of stainless-steel tanks containing karstified limestone blocks collected from the karst aquifer formation of northern Puerto Rico. The models integrates a network of sampling wells to monitor flow, pressure, and solute concentrations temporally and spatially. Experimental work entails injecting dissolved CaCl2 tracers and TCE in the upstream boundary of the GHM while monitoring TCE and tracer concentrations spatially and temporally in the limestone under different groundwater flow regimes. Analysis of the temporal and spatial concentration distributions of solutes indicates a highly heterogeneous system resulting in large preferential flow components. The distributions are highly correlated with statistically-developed spatial flow models. High degree of tailing in breakthrough curves indicate significant amount of mass limitations, particularly in diffuse flow regions. Higher flow rates in the system result in increasing preferential flow region volumes, but lower mass transfer limitations. Future work will involve experiments with non-aqueous phase liquid TCE, DEHP, and a mixture of these, and geo-temporal statistical modeling. This work is supported by the U.S. Department of Energy, Savannah River (Grant Award No. DE-FG09-07SR22571), and the National Institute of Environmental Health Sciences (NIEHS, Grant Award No. P42ES017198).

  10. Social determinants, their relationship with leprosy risk and temporal trends in a tri-border region in Latin America

    PubMed Central

    Arcoverde, Marcos Augusto Moraes; Ramos, Antônio Carlos Viera; Alves, Luana Seles; Berra, Thais Zamboni; Arroyo, Luiz Henrique; de Queiroz, Ana Angélica Rêgo; dos Santos, Danielle Talita; Belchior, Aylana de Souza; Alves, Josilene Dália; Pieri, Flávia Meneguetti; Silva-Sobrinho, Reinaldo Antônio; Pinto, Ione Carvalho; Tavares, Clodis Maria; Yamamura, Mellina; Frade, Marco Andrey Cipriani; Palha, Pedro Fredemir; Chiaravalloti-Neto, Francisco; Arcêncio, Ricardo Alexandre

    2018-01-01

    Background Brazil is the only country in Latin America that has adopted a national health system. This causes differences in access to health among Latin American countries and induces noticeable migration to Brazilian regions to seek healthcare. This phenomenon has led to difficulties in the control and elimination of diseases related to poverty, such as leprosy. The aim of this study was to evaluate social determinants and their relationship with the risk of leprosy, as well as to examine the temporal trend of its occurrence in a Brazilian municipality located on the tri-border area between Brazil, Paraguay and Argentina. Methods This ecological study investigated newly-diagnosed cases of leprosy between 2003 and 2015. Exploratory analysis of the data was performed through descriptive statistics. For spatial analysis, geocoding of the data was performed using spatial scan statistic techniques to obtain the Relative Risk (RR) for each census tract, with their respective 95% confidence intervals calculated. The Bivariate Moran I test, Ordinary Least Squares (OLS) and Geographically Weighted Regression (GWR) models were applied to analyze the spatial relationships of social determinants and leprosy risk. The temporal trend of the annual coefficient of new cases was obtained through the Prais-Winsten regression. A standard error of 5% was considered statistically significant (p < 0.05). Results Of the 840 new cases identified in the study, there was a predominance of females (n = 427, 50.8%), of white race/color (n = 685, 81.6%), age range 15 to 59 years (n = 624, 74.3%), and incomplete elementary education (n = 504, 60.0%). The results obtained from multivariate analysis revealed that the proportion of households with monthly nominal household income per capita greater than 1 minimum wage (β = 0.025, p = 0.036) and people of brown race (β = -0.101, p = 0.024) were statistically-significantly associated with risk of illness due to leprosy. These results also confirmed that social determinants and risk of leprosy were significantly spatially non-stationary. Regarding the temporal trend, a decrease of 4% (95% CI [-0.053, -0.033], p = 0.000) per year was observed in the rate of detection of new cases of leprosy. Conclusion The social determinants income and race/color were associated with the risk of leprosy. The study’s highlighting of these social determinants can contribute to the development of public policies directed toward the elimination of leprosy in the border region. PMID:29624595

  11. Urban land use monitoring from computer-implemented processing of airborne multispectral data

    NASA Technical Reports Server (NTRS)

    Todd, W. J.; Mausel, P. W.; Baumgardner, M. F.

    1976-01-01

    Machine processing techniques were applied to multispectral data obtained from airborne scanners at an elevation of 600 meters over central Indianapolis in August, 1972. Computer analysis of these spectral data indicate that roads (two types), roof tops (three types), dense grass (two types), sparse grass (two types), trees, bare soil, and water (two types) can be accurately identified. Using computers, it is possible to determine land uses from analysis of type, size, shape, and spatial associations of earth surface images identified from multispectral data. Land use data developed through machine processing techniques can be programmed to monitor land use changes, simulate land use conditions, and provide impact statistics that are required to analyze stresses placed on spatial systems.

  12. Spatial trends in Pearson Type III statistical parameters

    USGS Publications Warehouse

    Lichty, R.W.; Karlinger, M.R.

    1995-01-01

    Spatial trends in the statistical parameters (mean, standard deviation, and skewness coefficient) of a Pearson Type III distribution of the logarithms of annual flood peaks for small rural basins (less than 90 km2) are delineated using a climate factor CT, (T=2-, 25-, and 100-yr recurrence intervals), which quantifies the effects of long-term climatic data (rainfall and pan evaporation) on observed T-yr floods. Maps showing trends in average parameter values demonstrate the geographically varying influence of climate on the magnitude of Pearson Type III statistical parameters. The spatial trends in variability of the parameter values characterize the sensitivity of statistical parameters to the interaction of basin-runoff characteristics (hydrology) and climate. -from Authors

  13. Landscape complexity and soil moisture variation in south Georgia, USA, for remote sensing applications

    NASA Astrophysics Data System (ADS)

    Giraldo, Mario A.; Bosch, David; Madden, Marguerite; Usery, Lynn; Kvien, Craig

    2008-08-01

    SummaryThis research addressed the temporal and spatial variation of soil moisture (SM) in a heterogeneous landscape. The research objective was to investigate soil moisture variation in eight homogeneous 30 by 30 m plots, similar to the pixel size of a Landsat Thematic Mapper (TM) or Enhanced Thematic Mapper plus (ETM+) image. The plots were adjacent to eight stations of an in situ soil moisture network operated by the United States Department of Agriculture-Agriculture Research Service USDA-ARS in Tifton, GA. We also studied five adjacent agricultural fields to examine the effect of different landuses/land covers (LULC) (grass, orchard, peanuts, cotton and bare soil) on the temporal and spatial variation of soil moisture. Soil moisture field data were collected on eight occasions throughout 2005 and January 2006 to establish comparisons within and among eight homogeneous plots. Consistently throughout time, analysis of variance (ANOVA) showed high variation in the soil moisture behavior among the plots and high homogeneity in the soil moisture behavior within them. A precipitation analysis for the eight sampling dates throughout the year 2005 showed similar rainfall conditions for the eight study plots. Therefore, soil moisture variation among locations was explained by in situ local conditions. Temporal stability geostatistical analysis showed that soil moisture has high temporal stability within the small plots and that a single point reading can be used to monitor soil moisture status for the plot within a maximum 3% volume/volume (v/v) soil moisture variation. Similarly, t-statistic analysis showed that soil moisture status in the upper soil layer changes within 24 h. We found statistical differences in the soil moisture between the different LULC in the agricultural fields as well as statistical differences between these fields and the adjacent 30 by 30 m plots. From this analysis, it was demonstrated that spatial proximity is not enough to produce similar soil moisture, since t-test's among adjacent plots with different LULCs showed significant differences. These results confirm that a remote sensing approach that considers homogeneous LULC landscape fragments can be used to identify landscape units of similar soil moisture behavior under heterogeneous landscapes. In addition, the in situ USDA-ARS network will serve better in remote sensing studies in which sensors with fine spatial resolution are evaluated. This study is a first step towards identifying landscape units that can be monitored using the single point reading of the USDA-ARS stations network.

  14. Landscape complexity and soil moisture variation in south Georgia, USA, for remote sensing applications

    USGS Publications Warehouse

    Giraldo, M.A.; Bosch, D.; Madden, M.; Usery, L.; Kvien, Craig

    2008-01-01

    This research addressed the temporal and spatial variation of soil moisture (SM) in a heterogeneous landscape. The research objective was to investigate soil moisture variation in eight homogeneous 30 by 30 m plots, similar to the pixel size of a Landsat Thematic Mapper (TM) or Enhanced Thematic Mapper plus (ETM+) image. The plots were adjacent to eight stations of an in situ soil moisture network operated by the United States Department of Agriculture-Agriculture Research Service USDA-ARS in Tifton, GA. We also studied five adjacent agricultural fields to examine the effect of different landuses/land covers (LULC) (grass, orchard, peanuts, cotton and bare soil) on the temporal and spatial variation of soil moisture. Soil moisture field data were collected on eight occasions throughout 2005 and January 2006 to establish comparisons within and among eight homogeneous plots. Consistently throughout time, analysis of variance (ANOVA) showed high variation in the soil moisture behavior among the plots and high homogeneity in the soil moisture behavior within them. A precipitation analysis for the eight sampling dates throughout the year 2005 showed similar rainfall conditions for the eight study plots. Therefore, soil moisture variation among locations was explained by in situ local conditions. Temporal stability geostatistical analysis showed that soil moisture has high temporal stability within the small plots and that a single point reading can be used to monitor soil moisture status for the plot within a maximum 3% volume/volume (v/v) soil moisture variation. Similarly, t-statistic analysis showed that soil moisture status in the upper soil layer changes within 24 h. We found statistical differences in the soil moisture between the different LULC in the agricultural fields as well as statistical differences between these fields and the adjacent 30 by 30 m plots. From this analysis, it was demonstrated that spatial proximity is not enough to produce similar soil moisture, since t-test's among adjacent plots with different LULCs showed significant differences. These results confirm that a remote sensing approach that considers homogeneous LULC landscape fragments can be used to identify landscape units of similar soil moisture behavior under heterogeneous landscapes. In addition, the in situ USDA-ARS network will serve better in remote sensing studies in which sensors with fine spatial resolution are evaluated. This study is a first step towards identifying landscape units that can be monitored using the single point reading of the USDA-ARS stations network. ?? 2008 Elsevier B.V.

  15. Simulation of spatially evolving turbulence and the applicability of Taylor's hypothesis in compressible flow

    NASA Technical Reports Server (NTRS)

    Lee, Sangsan; Lele, Sanjiva K.; Moin, Parviz

    1992-01-01

    For the numerical simulation of inhomogeneous turbulent flows, a method is developed for generating stochastic inflow boundary conditions with a prescribed power spectrum. Turbulence statistics from spatial simulations using this method with a low fluctuation Mach number are in excellent agreement with the experimental data, which validates the procedure. Turbulence statistics from spatial simulations are also compared to those from temporal simulations using Taylor's hypothesis. Statistics such as turbulence intensity, vorticity, and velocity derivative skewness compare favorably with the temporal simulation. However, the statistics of dilatation show a significant departure from those obtained in the temporal simulation. To directly check the applicability of Taylor's hypothesis, space-time correlations of fluctuations in velocity, vorticity, and dilatation are investigated. Convection velocities based on vorticity and velocity fluctuations are computed as functions of the spatial and temporal separations. The profile of the space-time correlation of dilatation fluctuations is explained via a wave propagation model.

  16. Generation of future potential scenarios in an Alpine Catchment by applying bias-correction techniques, delta-change approaches and stochastic Weather Generators at different spatial scale. Analysis of their influence on basic and drought statistics.

    NASA Astrophysics Data System (ADS)

    Collados-Lara, Antonio-Juan; Pulido-Velazquez, David; Pardo-Iguzquiza, Eulogio

    2017-04-01

    Assessing impacts of potential future climate change scenarios in precipitation and temperature is essential to design adaptive strategies in water resources systems. The objective of this work is to analyze the possibilities of different statistical downscaling methods to generate future potential scenarios in an Alpine Catchment from historical data and the available climate models simulations performed in the frame of the CORDEX EU project. The initial information employed to define these downscaling approaches are the historical climatic data (taken from the Spain02 project for the period 1971-2000 with a spatial resolution of 12.5 Km) and the future series provided by climatic models in the horizon period 2071-2100 . We have used information coming from nine climate model simulations (obtained from five different Regional climate models (RCM) nested to four different Global Climate Models (GCM)) from the European CORDEX project. In our application we have focused on the Representative Concentration Pathways (RCP) 8.5 emissions scenario, which is the most unfavorable scenario considered in the fifth Assessment Report (AR5) by the Intergovernmental Panel on Climate Change (IPCC). For each RCM we have generated future climate series for the period 2071-2100 by applying two different approaches, bias correction and delta change, and five different transformation techniques (first moment correction, first and second moment correction, regression functions, quantile mapping using distribution derived transformation and quantile mapping using empirical quantiles) for both of them. Ensembles of the obtained series were proposed to obtain more representative potential future climate scenarios to be employed to study potential impacts. In this work we propose a non-equifeaseble combination of the future series giving more weight to those coming from models (delta change approaches) or combination of models and techniques that provides better approximation to the basic and drought statistic of the historical data. A multi-objective analysis using basic statistics (mean, standard deviation and asymmetry coefficient) and droughts statistics (duration, magnitude and intensity) has been performed to identify which models are better in terms of goodness of fit to reproduce the historical series. The drought statistics have been obtained from the Standard Precipitation index (SPI) series using the Theory of Runs. This analysis allows discriminate the best RCM and the best combination of model and correction technique in the bias-correction method. We have also analyzed the possibilities of using different Stochastic Weather Generators to approximate the basic and droughts statistics of the historical series. These analyses have been performed in our case study in a lumped and in a distributed way in order to assess its sensibility to the spatial scale. The statistic of the future temperature series obtained with different ensemble options are quite homogeneous, but the precipitation shows a higher sensibility to the adopted method and spatial scale. The global increment in the mean temperature values are 31.79 %, 31.79 %, 31.03 % and 31.74 % for the distributed bias-correction, distributed delta-change, lumped bias-correction and lumped delta-change ensembles respectively and in the precipitation they are -25.48 %, -28.49 %, -26.42 % and -27.35% respectively. Acknowledgments: This research work has been partially supported by the GESINHIMPADAPT project (CGL2013-48424-C2-2-R) with Spanish MINECO funds. We would also like to thank Spain02 and CORDEX projects for the data provided for this study and the R package qmap.

  17. The effects of context on multidimensional spatial cognitive models. Ph.D. Thesis - Arizona Univ.

    NASA Technical Reports Server (NTRS)

    Dupnick, E. G.

    1979-01-01

    Spatial cognitive models obtained by multidimensional scaling represent cognitive structure by defining alternatives as points in a coordinate space based on relevant dimensions such that interstimulus dissimilarities perceived by the individual correspond to distances between the respective alternatives. The dependence of spatial models on the context of the judgments required of the individual was investigated. Context, which is defined as a perceptual interpretation and cognitive understanding of a judgment situation, was analyzed and classified with respect to five characteristics: physical environment, social environment, task definition, individual perspective, and temporal setting. Four experiments designed to produce changes in the characteristics of context and to test the effects of these changes upon individual cognitive spaces are described with focus on experiment design, objectives, statistical analysis, results, and conclusions. The hypothesis is advanced that an individual can be characterized as having a master cognitive space for a set of alternatives. When the context changes, the individual appears to change the dimension weights to give a new spatial configuration. Factor analysis was used in the interpretation and labeling of cognitive space dimensions.

  18. Application of GIS in public health in India: A literature-based review, analysis, and recommendations.

    PubMed

    Ruiz, Marilyn O'Hara; Sharma, Arun Kumar

    2016-01-01

    The implementation of geospatial technologies and methods for improving health has become widespread in many nations, but India's adoption of these approaches has been fairly slow. With a large population, ongoing public health challenges, and a growing economy with an emphasis on innovative technologies, the adoption of spatial approaches to disease surveillance, spatial epidemiology, and implementation of health policies in India has great potential for both success and efficacy. Through our evaluation of scientific papers selected through a structured key phrase review of the National Center for Biotechnology Information on the database PubMed, we found that current spatial approaches to health research in India are fairly descriptive in nature, but the use of more complex models and statistics is increasing. The institutional home of the authors is skewed regionally, with Delhi and South India more likely to show evidence of use. The need for scientists engaged in spatial health analysis to first digitize basic data, such as maps of road networks, hydrological features, and land use, is a strong impediment to efficiency, and their work would certainly advance more quickly without this requirement.

  19. Addressing Spatial Dependence Bias in Climate Model Simulations—An Independent Component Analysis Approach

    NASA Astrophysics Data System (ADS)

    Nahar, Jannatun; Johnson, Fiona; Sharma, Ashish

    2018-02-01

    Conventional bias correction is usually applied on a grid-by-grid basis, meaning that the resulting corrections cannot address biases in the spatial distribution of climate variables. To solve this problem, a two-step bias correction method is proposed here to correct time series at multiple locations conjointly. The first step transforms the data to a set of statistically independent univariate time series, using a technique known as independent component analysis (ICA). The mutually independent signals can then be bias corrected as univariate time series and back-transformed to improve the representation of spatial dependence in the data. The spatially corrected data are then bias corrected at the grid scale in the second step. The method has been applied to two CMIP5 General Circulation Model simulations for six different climate regions of Australia for two climate variables—temperature and precipitation. The results demonstrate that the ICA-based technique leads to considerable improvements in temperature simulations with more modest improvements in precipitation. Overall, the method results in current climate simulations that have greater equivalency in space and time with observational data.

  20. Spatial and temporal air quality pattern recognition using environmetric techniques: a case study in Malaysia.

    PubMed

    Syed Abdul Mutalib, Sharifah Norsukhairin; Juahir, Hafizan; Azid, Azman; Mohd Sharif, Sharifah; Latif, Mohd Talib; Aris, Ahmad Zaharin; Zain, Sharifuddin M; Dominick, Doreena

    2013-09-01

    The objective of this study is to identify spatial and temporal patterns in the air quality at three selected Malaysian air monitoring stations based on an eleven-year database (January 2000-December 2010). Four statistical methods, Discriminant Analysis (DA), Hierarchical Agglomerative Cluster Analysis (HACA), Principal Component Analysis (PCA) and Artificial Neural Networks (ANNs), were selected to analyze the datasets of five air quality parameters, namely: SO2, NO2, O3, CO and particulate matter with a diameter size of below 10 μm (PM10). The three selected air monitoring stations share the characteristic of being located in highly urbanized areas and are surrounded by a number of industries. The DA results show that spatial characterizations allow successful discrimination between the three stations, while HACA shows the temporal pattern from the monthly and yearly factor analysis which correlates with severe haze episodes that have happened in this country at certain periods of time. The PCA results show that the major source of air pollution is mostly due to the combustion of fossil fuel in motor vehicles and industrial activities. The spatial pattern recognition (S-ANN) results show a better prediction performance in discriminating between the regions, with an excellent percentage of correct classification compared to DA. This study presents the necessity and usefulness of environmetric techniques for the interpretation of large datasets aiming to obtain better information about air quality patterns based on spatial and temporal characterizations at the selected air monitoring stations.

  1. Analysis of spatial autocorrelation patterns of heavy and super-heavy rainfall in Iran

    NASA Astrophysics Data System (ADS)

    Rousta, Iman; Doostkamian, Mehdi; Haghighi, Esmaeil; Ghafarian Malamiri, Hamid Reza; Yarahmadi, Parvane

    2017-09-01

    Rainfall is a highly variable climatic element, and rainfall-related changes occur in spatial and temporal dimensions within a regional climate. The purpose of this study is to investigate the spatial autocorrelation changes of Iran's heavy and super-heavy rainfall over the past 40 years. For this purpose, the daily rainfall data of 664 meteorological stations between 1971 and 2011 are used. To analyze the changes in rainfall within a decade, geostatistical techniques like spatial autocorrelation analysis of hot spots, based on the Getis-Ord G i statistic, are employed. Furthermore, programming features in MATLAB, Surfer, and GIS are used. The results indicate that the Caspian coast, the northwest and west of the western foothills of the Zagros Mountains of Iran, the inner regions of Iran, and southern parts of Southeast and Northeast Iran, have the highest likelihood of heavy and super-heavy rainfall. The spatial pattern of heavy rainfall shows that, despite its oscillation in different periods, the maximum positive spatial autocorrelation pattern of heavy rainfall includes areas of the west, northwest and west coast of the Caspian Sea. On the other hand, a negative spatial autocorrelation pattern of heavy rainfall is observed in central Iran and parts of the east, particularly in Zabul. Finally, it is found that patterns of super-heavy rainfall are similar to those of heavy rainfall.

  2. Web-based GIS for spatial pattern detection: application to malaria incidence in Vietnam.

    PubMed

    Bui, Thanh Quang; Pham, Hai Minh

    2016-01-01

    There is a great concern on how to build up an interoperable health information system of public health and health information technology within the development of public information and health surveillance programme. Technically, some major issues remain regarding to health data visualization, spatial processing of health data, health information dissemination, data sharing and the access of local communities to health information. In combination with GIS, we propose a technical framework for web-based health data visualization and spatial analysis. Data was collected from open map-servers and geocoded by open data kit package and data geocoding tools. The Web-based system is designed based on Open-source frameworks and libraries. The system provides Web-based analyst tool for pattern detection through three spatial tests: Nearest neighbour, K function, and Spatial Autocorrelation. The result is a web-based GIS, through which end users can detect disease patterns via selecting area, spatial test parameters and contribute to managers and decision makers. The end users can be health practitioners, educators, local communities, health sector authorities and decision makers. This web-based system allows for the improvement of health related services to public sector users as well as citizens in a secure manner. The combination of spatial statistics and web-based GIS can be a solution that helps empower health practitioners in direct and specific intersectional actions, thus provide for better analysis, control and decision-making.

  3. Regional Patterns and Spatial Clusters of Nonstationarities in Annual Peak Instantaneous Streamflow

    NASA Astrophysics Data System (ADS)

    White, K. D.; Baker, B.; Mueller, C.; Villarini, G.; Foley, P.; Friedman, D.

    2017-12-01

    Information about hydrologic changes resulting from changes in climate, land use, and land cover is a necessity planning and design or water resources infrastructure. The United States Army Corps of Engineers (USACE) evaluated and selected 12 methods to detect abrupt and slowly varying nonstationarities in records of maximum peak annual flows. They deployed a publicly available tool[1]in 2016 and a guidance document in 2017 to support identification of nonstationarities in a reproducible manner using a robust statistical framework. This statistical framework has now been applied to streamflow records across the continental United States to explore the presence of regional patterns and spatial clusters of nonstationarities in peak annual flow. Incorporating this geographic dimension into the detection of nonstationarities provides valuable insight for the process of attribution of these significant changes. This poster summarizes the methods used and provides the results of the regional analysis. [1] Available here - http://www.corpsclimate.us/ptcih.cfm

  4. Complex polarization-phase and spatial-frequency selections of laser images of blood-plasma films in diagnostics of changes in their polycrystalline structure

    NASA Astrophysics Data System (ADS)

    Ushenko, Yu. A.; Angelskii, P. O.; Dubolazov, A. V.; Karachevtsev, A. O.; Sidor, M. I.; Mintser, O. P.; Oleinichenko, B. P.; Bizer, L. I.

    2013-10-01

    We present a theoretical formalism of correlation phase analysis of laser images of human blood plasma with spatial-frequency selection of manifestations of mechanisms of linear and circular birefringence of albumin and globulin polycrystalline networks. Comparative results of the measurement of coordinate distributions of the correlation parameter—the modulus of the degree of local correlation of amplitudes—of laser images of blood plasma taken from patients of three groups—healthy patients (donors), rheumatoid-arthritis patients, and breast-cancer patients—are presented. We investigate values and ranges of change of statistical (the first to fourth statistical moments), correlation (excess of autocorrelation functions), and fractal (slopes of approximating curves and dispersion of extrema of logarithmic dependences of power spectra) parameters of coordinate distributions of the degree of local correlation of amplitudes. Objective criteria for diagnostics of occurrence and differentiation of inflammatory and oncological states are determined.

  5. Ice Mass Change in Greenland and Antarctica Between 1993 and 2013 from Satellite Gravity Measurements

    NASA Technical Reports Server (NTRS)

    Talpe, Matthieu J.; Nerem, R. Steven; Forootan, Ehsan; Schmidt, Michael; Lemoine, Frank G.; Enderlin, Ellyn M.; Landerer, Felix W.

    2017-01-01

    We construct long-term time series of Greenland and Antarctic ice sheet mass change from satellite gravity measurements. A statistical reconstruction approach is developed based on a principal component analysis (PCA) to combine high-resolution spatial modes from the Gravity Recovery and Climate Experiment (GRACE) mission with the gravity information from conventional satellite tracking data. Uncertainties of this reconstruction are rigorously assessed; they include temporal limitations for short GRACE measurements, spatial limitations for the low-resolution conventional tracking data measurements, and limitations of the estimated statistical relationships between low- and high-degree potential coefficients reflected in the PCA modes. Trends of mass variations in Greenland and Antarctica are assessed against a number of previous studies. The resulting time series for Greenland show a higher rate of mass loss than other methods before 2000, while the Antarctic ice sheet appears heavily influenced by interannual variations.

  6. High-resolution Statistics of Solar Wind Turbulence at Kinetic Scales Using the Magnetospheric Multiscale Mission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chasapis, Alexandros; Matthaeus, W. H.; Parashar, T. N.

    Using data from the Magnetospheric Multiscale (MMS) and Cluster missions obtained in the solar wind, we examine second-order and fourth-order structure functions at varying spatial lags normalized to ion inertial scales. The analysis includes direct two-spacecraft results and single-spacecraft results employing the familiar Taylor frozen-in flow approximation. Several familiar statistical results, including the spectral distribution of energy, and the sale-dependent kurtosis, are extended down to unprecedented spatial scales of ∼6 km, approaching electron scales. The Taylor approximation is also confirmed at those small scales, although small deviations are present in the kinetic range. The kurtosis is seen to attain verymore » high values at sub-proton scales, supporting the previously reported suggestion that monofractal behavior may be due to high-frequency plasma waves at kinetic scales.« less

  7. Estimation of spatial-temporal gait parameters using a low-cost ultrasonic motion analysis system.

    PubMed

    Qi, Yongbin; Soh, Cheong Boon; Gunawan, Erry; Low, Kay-Soon; Thomas, Rijil

    2014-08-20

    In this paper, a low-cost motion analysis system using a wireless ultrasonic sensor network is proposed and investigated. A methodology has been developed to extract spatial-temporal gait parameters including stride length, stride duration, stride velocity, stride cadence, and stride symmetry from 3D foot displacements estimated by the combination of spherical positioning technique and unscented Kalman filter. The performance of this system is validated against a camera-based system in the laboratory with 10 healthy volunteers. Numerical results show the feasibility of the proposed system with average error of 2.7% for all the estimated gait parameters. The influence of walking speed on the measurement accuracy of proposed system is also evaluated. Statistical analysis demonstrates its capability of being used as a gait assessment tool for some medical applications.

  8. PRANAS: A New Platform for Retinal Analysis and Simulation.

    PubMed

    Cessac, Bruno; Kornprobst, Pierre; Kraria, Selim; Nasser, Hassan; Pamplona, Daniela; Portelli, Geoffrey; Viéville, Thierry

    2017-01-01

    The retina encodes visual scenes by trains of action potentials that are sent to the brain via the optic nerve. In this paper, we describe a new free access user-end software allowing to better understand this coding. It is called PRANAS (https://pranas.inria.fr), standing for Platform for Retinal ANalysis And Simulation. PRANAS targets neuroscientists and modelers by providing a unique set of retina-related tools. PRANAS integrates a retina simulator allowing large scale simulations while keeping a strong biological plausibility and a toolbox for the analysis of spike train population statistics. The statistical method (entropy maximization under constraints) takes into account both spatial and temporal correlations as constraints, allowing to analyze the effects of memory on statistics. PRANAS also integrates a tool computing and representing in 3D (time-space) receptive fields. All these tools are accessible through a friendly graphical user interface. The most CPU-costly of them have been implemented to run in parallel.

  9. Time-series network analysis of civil aviation in Japan (1985-2005)

    NASA Astrophysics Data System (ADS)

    Michishita, Ryo; Xu, Bing; Yamada, Ikuho

    2008-10-01

    Due to the airline deregulation in 1985, a series of new airport developments in the 1990s and 2000s, and the reorganization of airline companies in the 2000s, Japan's air passenger transportation has been dramatically altered in the last two decades in many ways. In this paper, the authors examine how the network and flow structures of domestic air passenger transportation in Japan have geographically changed since 1985. For this purpose, passenger flow data in 1985, 1995, and 2005 were extracted from the Air Transportation Statistical Survey conducted by the Ministry of Land, Infrastructure and Transport, Japan. First, national and regional hub airports are identified via dominant flow and hub function analysis. Then the roles of the hub airports and individual connections over the network are examined with respect to their spatial and network autocorrelations. Spatial and network autocorrelations were evaluated both globally and locally using Moran's I and LISA statistics. The passenger flow data were first examined as a whole and then divided into 3 airline-based categories. Dominant flow and hub function enabled us to detect the hub airports. Structural processes of the hub-and-spoke network were confirmed in each airline through spatial autocorrelation analysis. Network autocorrelation analysis showed that all airlines ingeniously optimized their networks by connecting their routes with large numbers of passengers to other routes with large numbers of passengers, and routes with small numbers of passengers to other routes with small numbers of passengers. The effects of political events and the changes in the strategies of each airline on the whole networks were strongly reflected in the results of this study.

  10. Preferential sampling and Bayesian geostatistics: Statistical modeling and examples.

    PubMed

    Cecconi, Lorenzo; Grisotto, Laura; Catelan, Dolores; Lagazio, Corrado; Berrocal, Veronica; Biggeri, Annibale

    2016-08-01

    Preferential sampling refers to any situation in which the spatial process and the sampling locations are not stochastically independent. In this paper, we present two examples of geostatistical analysis in which the usual assumption of stochastic independence between the point process and the measurement process is violated. To account for preferential sampling, we specify a flexible and general Bayesian geostatistical model that includes a shared spatial random component. We apply the proposed model to two different case studies that allow us to highlight three different modeling and inferential aspects of geostatistical modeling under preferential sampling: (1) continuous or finite spatial sampling frame; (2) underlying causal model and relevant covariates; and (3) inferential goals related to mean prediction surface or prediction uncertainty. © The Author(s) 2016.

  11. Use of a spatial scan statistic to identify clusters of births occurring outside Ghanaian health facilities for targeted intervention.

    PubMed

    Bosomprah, Samuel; Dotse-Gborgbortsi, Winfred; Aboagye, Patrick; Matthews, Zoe

    2016-11-01

    To identify and evaluate clusters of births that occurred outside health facilities in Ghana for targeted intervention. A retrospective study was conducted using a convenience sample of live births registered in Ghanaian health facilities from January 1 to December 31, 2014. Data were extracted from the district health information system. A spatial scan statistic was used to investigate clusters of home births through a discrete Poisson probability model. Scanning with a circular spatial window was conducted only for clusters with high rates of such deliveries. The district was used as the geographic unit of analysis. The likelihood P value was estimated using Monte Carlo simulations. Ten statistically significant clusters with a high rate of home birth were identified. The relative risks ranged from 1.43 ("least likely" cluster; P=0.001) to 1.95 ("most likely" cluster; P=0.001). The relative risks of the top five "most likely" clusters ranged from 1.68 to 1.95; these clusters were located in Ashanti, Brong Ahafo, and the Western, Eastern, and Greater regions of Accra. Health facility records, geospatial techniques, and geographic information systems provided locally relevant information to assist policy makers in delivering targeted interventions to small geographic areas. Copyright © 2016 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.

  12. Classifying Facial Actions

    PubMed Central

    Donato, Gianluca; Bartlett, Marian Stewart; Hager, Joseph C.; Ekman, Paul; Sejnowski, Terrence J.

    2010-01-01

    The Facial Action Coding System (FACS) [23] is an objective method for quantifying facial movement in terms of component actions. This system is widely used in behavioral investigations of emotion, cognitive processes, and social interaction. The coding is presently performed by highly trained human experts. This paper explores and compares techniques for automatically recognizing facial actions in sequences of images. These techniques include analysis of facial motion through estimation of optical flow; holistic spatial analysis, such as principal component analysis, independent component analysis, local feature analysis, and linear discriminant analysis; and methods based on the outputs of local filters, such as Gabor wavelet representations and local principal components. Performance of these systems is compared to naive and expert human subjects. Best performances were obtained using the Gabor wavelet representation and the independent component representation, both of which achieved 96 percent accuracy for classifying 12 facial actions of the upper and lower face. The results provide converging evidence for the importance of using local filters, high spatial frequencies, and statistical independence for classifying facial actions. PMID:21188284

  13. “Spatial Energetics”: Integrating Data From GPS, Accelerometry, and GIS to Address Obesity and Inactivity

    PubMed Central

    James, Peter; Jankowska, Marta; Marx, Christine; Hart, Jaime E.; Berrigan, David; Kerr, Jacqueline; Hurvitz, Philip M.; Hipp, J. Aaron; Laden, Francine

    2016-01-01

    To address the current obesity and inactivity epidemics, public health researchers have attempted to identify spatial factors that influence physical inactivity and obesity. Technologic and methodologic developments have led to a revolutionary ability to examine dynamic, high-resolution measures of temporally matched location and behavior data through GPS, accelerometry, and GIS. These advances allow the investigation of spatial energetics, high–spatiotemporal resolution data on location and time-matched energetics, to examine how environmental characteristics, space, and time are linked to activity-related health behaviors with far more robust and detailed data than in previous work. Although the transdisciplinary field of spatial energetics demonstrates promise to provide novel insights on how individuals and populations interact with their environment, there remain significant conceptual, technical, analytical, and ethical challenges stemming from the complex data streams that spatial energetics research generates. First, it is essential to better understand what spatial energetics data represent, the relevant spatial context of analysis for these data, and if spatial energetics can establish causality for development of spatially relevant interventions. Second, there are significant technical problems for analysis of voluminous and complex data that may require development of spatially aware scalable computational infrastructures. Third, the field must come to agreement on appropriate statistical methodologies to account for multiple observations per person. Finally, these challenges must be considered within the context of maintaining participant privacy and security. This article describes gaps in current practice and understanding, and suggests solutions to move this promising area of research forward. PMID:27528538

  14. Applying spatial analysis tools in public health: an example using SaTScan to detect geographic targets for colorectal cancer screening interventions.

    PubMed

    Sherman, Recinda L; Henry, Kevin A; Tannenbaum, Stacey L; Feaster, Daniel J; Kobetz, Erin; Lee, David J

    2014-03-20

    Epidemiologists are gradually incorporating spatial analysis into health-related research as geocoded cases of disease become widely available and health-focused geospatial computer applications are developed. One health-focused application of spatial analysis is cluster detection. Using cluster detection to identify geographic areas with high-risk populations and then screening those populations for disease can improve cancer control. SaTScan is a free cluster-detection software application used by epidemiologists around the world to describe spatial clusters of infectious and chronic disease, as well as disease vectors and risk factors. The objectives of this article are to describe how spatial analysis can be used in cancer control to detect geographic areas in need of colorectal cancer screening intervention, identify issues commonly encountered by SaTScan users, detail how to select the appropriate methods for using SaTScan, and explain how method selection can affect results. As an example, we used various methods to detect areas in Florida where the population is at high risk for late-stage diagnosis of colorectal cancer. We found that much of our analysis was underpowered and that no single method detected all clusters of statistical or public health significance. However, all methods detected 1 area as high risk; this area is potentially a priority area for a screening intervention. Cluster detection can be incorporated into routine public health operations, but the challenge is to identify areas in which the burden of disease can be alleviated through public health intervention. Reliance on SaTScan's default settings does not always produce pertinent results.

  15. The relative effects of habitat loss and fragmentation on population genetic variation in the red-cockaded woodpecker (Picoides borealis).

    PubMed

    Bruggeman, Douglas J; Wiegand, Thorsten; Fernández, Néstor

    2010-09-01

    The relative influence of habitat loss, fragmentation and matrix heterogeneity on the viability of populations is a critical area of conservation research that remains unresolved. Using simulation modelling, we provide an analysis of the influence both patch size and patch isolation have on abundance, effective population size (N(e)) and F(ST). An individual-based, spatially explicit population model based on 15 years of field work on the red-cockaded woodpecker (Picoides borealis) was applied to different landscape configurations. The variation in landscape patterns was summarized using spatial statistics based on O-ring statistics. By regressing demographic and genetics attributes that emerged across the landscape treatments against proportion of total habitat and O-ring statistics, we show that O-ring statistics provide an explicit link between population processes, habitat area, and critical thresholds of fragmentation that affect those processes. Spatial distances among land cover classes that affect biological processes translated into critical scales at which the measures of landscape structure correlated best with genetic indices. Therefore our study infers pattern from process, which contrasts with past studies of landscape genetics. We found that population genetic structure was more strongly affected by fragmentation than population size, which suggests that examining only population size may limit recognition of fragmentation effects that erode genetic variation. If effective population size is used to set recovery goals for endangered species, then habitat fragmentation effects may be sufficiently strong to prevent evaluation of recovery based on the ratio of census:effective population size alone.

  16. Local multiplicity adjustment for the spatial scan statistic using the Gumbel distribution.

    PubMed

    Gangnon, Ronald E

    2012-03-01

    The spatial scan statistic is an important and widely used tool for cluster detection. It is based on the simultaneous evaluation of the statistical significance of the maximum likelihood ratio test statistic over a large collection of potential clusters. In most cluster detection problems, there is variation in the extent of local multiplicity across the study region. For example, using a fixed maximum geographic radius for clusters, urban areas typically have many overlapping potential clusters, whereas rural areas have relatively few. The spatial scan statistic does not account for local multiplicity variation. We describe a previously proposed local multiplicity adjustment based on a nested Bonferroni correction and propose a novel adjustment based on a Gumbel distribution approximation to the distribution of a local scan statistic. We compare the performance of all three statistics in terms of power and a novel unbiased cluster detection criterion. These methods are then applied to the well-known New York leukemia dataset and a Wisconsin breast cancer incidence dataset. © 2011, The International Biometric Society.

  17. Local multiplicity adjustment for the spatial scan statistic using the Gumbel distribution

    PubMed Central

    Gangnon, Ronald E.

    2011-01-01

    Summary The spatial scan statistic is an important and widely used tool for cluster detection. It is based on the simultaneous evaluation of the statistical significance of the maximum likelihood ratio test statistic over a large collection of potential clusters. In most cluster detection problems, there is variation in the extent of local multiplicity across the study region. For example, using a fixed maximum geographic radius for clusters, urban areas typically have many overlapping potential clusters, while rural areas have relatively few. The spatial scan statistic does not account for local multiplicity variation. We describe a previously proposed local multiplicity adjustment based on a nested Bonferroni correction and propose a novel adjustment based on a Gumbel distribution approximation to the distribution of a local scan statistic. We compare the performance of all three statistics in terms of power and a novel unbiased cluster detection criterion. These methods are then applied to the well-known New York leukemia dataset and a Wisconsin breast cancer incidence dataset. PMID:21762118

  18. A study on spatial decision support systems for HIV/AIDS prevention based on COM GIS technology

    NASA Astrophysics Data System (ADS)

    Yang, Kun; Luo, Huasong; Peng, Shungyun; Xu, Quanli

    2007-06-01

    Based on the deeply analysis of the current status and the existing problems of GIS technology applications in Epidemiology, this paper has proposed the method and process for establishing the spatial decision support systems of AIDS epidemic prevention by integrating the COM GIS, Spatial Database, GPS, Remote Sensing, and Communication technologies, as well as ASP and ActiveX software development technologies. One of the most important issues for constructing the spatial decision support systems of AIDS epidemic prevention is how to integrate the AIDS spreading models with GIS. The capabilities of GIS applications in the AIDS epidemic prevention have been described here in this paper firstly. Then some mature epidemic spreading models have also been discussed for extracting the computation parameters. Furthermore, a technical schema has been proposed for integrating the AIDS spreading models with GIS and relevant geospatial technologies, in which the GIS and model running platforms share a common spatial database and the computing results can be spatially visualized on Desktop or Web GIS clients. Finally, a complete solution for establishing the decision support systems of AIDS epidemic prevention has been offered in this paper based on the model integrating methods and ESRI COM GIS software packages. The general decision support systems are composed of data acquisition sub-systems, network communication sub-systems, model integrating sub-systems, AIDS epidemic information spatial database sub-systems, AIDS epidemic information querying and statistical analysis sub-systems, AIDS epidemic dynamic surveillance sub-systems, AIDS epidemic information spatial analysis and decision support sub-systems, as well as AIDS epidemic information publishing sub-systems based on Web GIS.

  19. Poverty, health and satellite-derived vegetation indices: their inter-spatial relationship in West Africa

    PubMed Central

    Sedda, Luigi; Tatem, Andrew J.; Morley, David W.; Atkinson, Peter M.; Wardrop, Nicola A.; Pezzulo, Carla; Sorichetta, Alessandro; Kuleszo, Joanna; Rogers, David J.

    2015-01-01

    Background Previous analyses have shown the individual correlations between poverty, health and satellite-derived vegetation indices such as the normalized difference vegetation index (NDVI). However, generally these analyses did not explore the statistical interconnections between poverty, health outcomes and NDVI. Methods In this research aspatial methods (principal component analysis) and spatial models (variography, factorial kriging and cokriging) were applied to investigate the correlations and spatial relationships between intensity of poverty, health (expressed as child mortality and undernutrition), and NDVI for a large area of West Africa. Results This research showed that the intensity of poverty (and hence child mortality and nutrition) varies inversely with NDVI. From the spatial point-of-view, similarities in the spatial variation of intensity of poverty and NDVI were found. Conclusions These results highlight the utility of satellite-based metrics for poverty models including health and ecological components and, in general for large scale analysis, estimation and optimisation of multidimensional poverty metrics. However, it also stresses the need for further studies on the causes of the association between NDVI, health and poverty. Once these relationships are confirmed and better understood, the presence of this ecological component in poverty metrics has the potential to facilitate the analysis of the impacts of climate change on the rural populations afflicted by poverty and child mortality. PMID:25733559

  20. How does spatial extent of fMRI datasets affect independent component analysis decomposition?

    PubMed

    Aragri, Adriana; Scarabino, Tommaso; Seifritz, Erich; Comani, Silvia; Cirillo, Sossio; Tedeschi, Gioacchino; Esposito, Fabrizio; Di Salle, Francesco

    2006-09-01

    Spatial independent component analysis (sICA) of functional magnetic resonance imaging (fMRI) time series can generate meaningful activation maps and associated descriptive signals, which are useful to evaluate datasets of the entire brain or selected portions of it. Besides computational implications, variations in the input dataset combined with the multivariate nature of ICA may lead to different spatial or temporal readouts of brain activation phenomena. By reducing and increasing a volume of interest (VOI), we applied sICA to different datasets from real activation experiments with multislice acquisition and single or multiple sensory-motor task-induced blood oxygenation level-dependent (BOLD) signal sources with different spatial and temporal structure. Using receiver operating characteristics (ROC) methodology for accuracy evaluation and multiple regression analysis as benchmark, we compared sICA decompositions of reduced and increased VOI fMRI time-series containing auditory, motor and hemifield visual activation occurring separately or simultaneously in time. Both approaches yielded valid results; however, the results of the increased VOI approach were spatially more accurate compared to the results of the decreased VOI approach. This is consistent with the capability of sICA to take advantage of extended samples of statistical observations and suggests that sICA is more powerful with extended rather than reduced VOI datasets to delineate brain activity. (c) 2006 Wiley-Liss, Inc.

  1. HydroClimATe: hydrologic and climatic analysis toolkit

    USGS Publications Warehouse

    Dickinson, Jesse; Hanson, Randall T.; Predmore, Steven K.

    2014-01-01

    The potential consequences of climate variability and climate change have been identified as major issues for the sustainability and availability of the worldwide water resources. Unlike global climate change, climate variability represents deviations from the long-term state of the climate over periods of a few years to several decades. Currently, rich hydrologic time-series data are available, but the combination of data preparation and statistical methods developed by the U.S. Geological Survey as part of the Groundwater Resources Program is relatively unavailable to hydrologists and engineers who could benefit from estimates of climate variability and its effects on periodic recharge and water-resource availability. This report documents HydroClimATe, a computer program for assessing the relations between variable climatic and hydrologic time-series data. HydroClimATe was developed for a Windows operating system. The software includes statistical tools for (1) time-series preprocessing, (2) spectral analysis, (3) spatial and temporal analysis, (4) correlation analysis, and (5) projections. The time-series preprocessing tools include spline fitting, standardization using a normal or gamma distribution, and transformation by a cumulative departure. The spectral analysis tools include discrete Fourier transform, maximum entropy method, and singular spectrum analysis. The spatial and temporal analysis tool is empirical orthogonal function analysis. The correlation analysis tools are linear regression and lag correlation. The projection tools include autoregressive time-series modeling and generation of many realizations. These tools are demonstrated in four examples that use stream-flow discharge data, groundwater-level records, gridded time series of precipitation data, and the Multivariate ENSO Index.

  2. A heteroskedastic error covariance matrix estimator using a first-order conditional autoregressive Markov simulation for deriving asympotical efficient estimates from ecological sampled Anopheles arabiensis aquatic habitat covariates

    PubMed Central

    Jacob, Benjamin G; Griffith, Daniel A; Muturi, Ephantus J; Caamano, Erick X; Githure, John I; Novak, Robert J

    2009-01-01

    Background Autoregressive regression coefficients for Anopheles arabiensis aquatic habitat models are usually assessed using global error techniques and are reported as error covariance matrices. A global statistic, however, will summarize error estimates from multiple habitat locations. This makes it difficult to identify where there are clusters of An. arabiensis aquatic habitats of acceptable prediction. It is therefore useful to conduct some form of spatial error analysis to detect clusters of An. arabiensis aquatic habitats based on uncertainty residuals from individual sampled habitats. In this research, a method of error estimation for spatial simulation models was demonstrated using autocorrelation indices and eigenfunction spatial filters to distinguish among the effects of parameter uncertainty on a stochastic simulation of ecological sampled Anopheles aquatic habitat covariates. A test for diagnostic checking error residuals in an An. arabiensis aquatic habitat model may enable intervention efforts targeting productive habitats clusters, based on larval/pupal productivity, by using the asymptotic distribution of parameter estimates from a residual autocovariance matrix. The models considered in this research extends a normal regression analysis previously considered in the literature. Methods Field and remote-sampled data were collected during July 2006 to December 2007 in Karima rice-village complex in Mwea, Kenya. SAS 9.1.4® was used to explore univariate statistics, correlations, distributions, and to generate global autocorrelation statistics from the ecological sampled datasets. A local autocorrelation index was also generated using spatial covariance parameters (i.e., Moran's Indices) in a SAS/GIS® database. The Moran's statistic was decomposed into orthogonal and uncorrelated synthetic map pattern components using a Poisson model with a gamma-distributed mean (i.e. negative binomial regression). The eigenfunction values from the spatial configuration matrices were then used to define expectations for prior distributions using a Markov chain Monte Carlo (MCMC) algorithm. A set of posterior means were defined in WinBUGS 1.4.3®. After the model had converged, samples from the conditional distributions were used to summarize the posterior distribution of the parameters. Thereafter, a spatial residual trend analyses was used to evaluate variance uncertainty propagation in the model using an autocovariance error matrix. Results By specifying coefficient estimates in a Bayesian framework, the covariate number of tillers was found to be a significant predictor, positively associated with An. arabiensis aquatic habitats. The spatial filter models accounted for approximately 19% redundant locational information in the ecological sampled An. arabiensis aquatic habitat data. In the residual error estimation model there was significant positive autocorrelation (i.e., clustering of habitats in geographic space) based on log-transformed larval/pupal data and the sampled covariate depth of habitat. Conclusion An autocorrelation error covariance matrix and a spatial filter analyses can prioritize mosquito control strategies by providing a computationally attractive and feasible description of variance uncertainty estimates for correctly identifying clusters of prolific An. arabiensis aquatic habitats based on larval/pupal productivity. PMID:19772590

  3. Scene-based nonuniformity correction using local constant statistics.

    PubMed

    Zhang, Chao; Zhao, Wenyi

    2008-06-01

    In scene-based nonuniformity correction, the statistical approach assumes all possible values of the true-scene pixel are seen at each pixel location. This global-constant-statistics assumption does not distinguish fixed pattern noise from spatial variations in the average image. This often causes the "ghosting" artifacts in the corrected images since the existing spatial variations are treated as noises. We introduce a new statistical method to reduce the ghosting artifacts. Our method proposes a local-constant statistics that assumes that the temporal signal distribution is not constant at each pixel but is locally true. This considers statistically a constant distribution in a local region around each pixel but uneven distribution in a larger scale. Under the assumption that the fixed pattern noise concentrates in a higher spatial-frequency domain than the distribution variation, we apply a wavelet method to the gain and offset image of the noise and separate out the pattern noise from the spatial variations in the temporal distribution of the scene. We compare the results to the global-constant-statistics method using a clean sequence with large artificial pattern noises. We also apply the method to a challenging CCD video sequence and a LWIR sequence to show how effective it is in reducing noise and the ghosting artifacts.

  4. Joint Multifractal Analysis of penetration resistance variability in an olive orchard.

    NASA Astrophysics Data System (ADS)

    Lopez-Herrera, Juan; Herrero-Tejedor, Tomas; Saa-Requejo, Antonio; Villeta, Maria; Tarquis, Ana M.

    2016-04-01

    Spatial variability of soil properties is relevant for identifying those zones with physical degradation. We used descriptive statistics and multifractal analysis for characterizing the spatial patterns of soil penetrometer resistance (PR) distributions and compare them at different soil depths and soil water content to investigate the tillage effect in soil compactation. The study was conducted on an Inceptisol dedicated to olive orchard for the last 70 years. Two parallel transects of 64 m were selected as different soil management plots, conventional tillage (CT) and no tillage (NT). Penetrometer resistance readings were carried out at 50 cm intervals within the first 20 cm of soil depth (López de Herrera et al., 2015a). Two way ANOVA highlighted that tillage system, soil depth and their interaction are statistically significant to explain the variance of PR data. The comparison of CT and NT results at different depths showed that there are significant differences deeper than 10 cm but not in the first two soil layers. The scaling properties of each PR profile was characterized by τ(q) function, calculated in the range of moment orders (q) between -5 and +5 taken at 0.5 lag increments. Several parameters were calculated from this to establish different comparisons (López de Herrera et al., 2015b). While the multifractal analysis characterizes the distribution of a single variable along its spatial support, the joint multifractal analysis can be used to characterize the joint distribution of two or more variables along a common spatial support (Kravchenko et al., 2000; Zeleke and Si, 2004). This type of analysis was performed to study the scaling properties of the joint distribution of PR at different depths. The results showed that this type of analysis added valuable information to describe the spatial arrangement of depth-dependent penetrometer data sets in all the soil layers. References Kravchenko AN, Bullock DG, Boast CW (2000) Joint multifractal analysis of crop yield and terrain slope. Agro. j. 92: 1279-1290. López de Herrera, J., Tomas Herrero Tejedor, Antonio Saa-Requejo and Ana M. Tarquis (2015a) Influence of tillage in soil penetration resistance variability in an olive orchard. Geophysical Research Abstracts, 17, EGU2015-15425. López de Herrera, J., Tomás Herrero Tejedor, Antonio Saa-Requejo, A.M. Tarquis. Influence of tillage in soil penetration resistance variability in an olive orchard. Soil Research, accepted, 2015b. doi: SR15046 Zeleke TB, Si BC (2004) Scaling properties of topographic indices and crop yield: Multifractal and joint multifractal approaches. Agro. j. 96: 1082-1090.

  5. Spatio-temporal dependencies between hospital beds, physicians and health expenditure using visual variables and data classification in statistical table

    NASA Astrophysics Data System (ADS)

    Medyńska-Gulij, Beata; Cybulski, Paweł

    2016-06-01

    This paper analyses the use of table visual variables of statistical data of hospital beds as an important tool for revealing spatio-temporal dependencies. It is argued that some of conclusions from the data about public health and public expenditure on health have a spatio-temporal reference. Different from previous studies, this article adopts combination of cartographic pragmatics and spatial visualization with previous conclusions made in public health literature. While the significant conclusions about health care and economic factors has been highlighted in research papers, this article is the first to apply visual analysis to statistical table together with maps which is called previsualisation.

  6. Macroecological factors shape local-scale spatial patterns in agriculturalist settlements.

    PubMed

    Tao, Tingting; Abades, Sebastián; Teng, Shuqing; Huang, Zheng Y X; Reino, Luís; Chen, Bin J W; Zhang, Yong; Xu, Chi; Svenning, Jens-Christian

    2017-11-15

    Macro-scale patterns of human systems ranging from population distribution to linguistic diversity have attracted recent attention, giving rise to the suggestion that macroecological rules shape the assembly of human societies. However, in which aspects the geography of our own species is shaped by macroecological factors remains poorly understood. Here, we provide a first demonstration that macroecological factors shape strong local-scale spatial patterns in human settlement systems, through an analysis of spatial patterns in agriculturalist settlements in eastern mainland China based on high-resolution Google Earth images. We used spatial point pattern analysis to show that settlement spatial patterns are characterized by over-dispersion at fine spatial scales (0.05-1.4 km), consistent with territory segregation, and clumping at coarser spatial scales beyond the over-dispersion signals, indicating territorial clustering. Statistical modelling shows that, at macroscales, potential evapotranspiration and topographic heterogeneity have negative effects on territory size, but positive effects on territorial clustering. These relationships are in line with predictions from territory theory for hunter-gatherers as well as for many animal species. Our results help to disentangle the complex interactions between intrinsic spatial processes in agriculturalist societies and external forcing by macroecological factors. While one may speculate that humans can escape ecological constraints because of unique abilities for environmental modification and globalized resource transportation, our work highlights that universal macroecological principles still shape the geography of current human agricultural societies. © 2017 The Author(s).

  7. Spatial and Temporal Variation of Japanese encephalitis Disease and Detection of Disease Hotspots: a Case Study of Gorakhpur District, Uttar Pradesh, India

    NASA Astrophysics Data System (ADS)

    Verma, S.; Gupta, R. D.

    2014-11-01

    In recent times, Japanese Encephalitis (JE) has emerged as a serious public health problem. In India, JE outbreaks were recently reported in Uttar Pradesh, Gorakhpur. The present study presents an approach to use GIS for analyzing the reported cases of JE in the Gorakhpur district based on spatial analysis to bring out the spatial and temporal dynamics of the JE epidemic. The study investigates spatiotemporal pattern of the occurrence of disease and detection of the JE hotspot. Spatial patterns of the JE disease can provide an understanding of geographical changes. Geospatial distribution of the JE disease outbreak is being investigated since 2005 in this study. The JE incidence data for the years 2005 to 2010 is used. The data is then geo-coded at block level. Spatial analysis is used to evaluate autocorrelation in JE distribution and to test the cases that are clustered or dispersed in space. The Inverse Distance Weighting interpolation technique is used to predict the pattern of JE incidence distribution prevalent across the study area. Moran's I Index (Moran's I) statistics is used to evaluate autocorrelation in spatial distribution. The Getis-Ord Gi*(d) is used to identify the disease areas. The results represent spatial disease patterns from 2005 to 2010, depicting spatially clustered patterns with significant differences between the blocks. It is observed that the blocks on the built up areas reported higher incidences.

  8. Generation and optimization of superpixels as image processing kernels for Jones matrix optical coherence tomography

    PubMed Central

    Miyazawa, Arata; Hong, Young-Joo; Makita, Shuichi; Kasaragod, Deepa; Yasuno, Yoshiaki

    2017-01-01

    Jones matrix-based polarization sensitive optical coherence tomography (JM-OCT) simultaneously measures optical intensity, birefringence, degree of polarization uniformity, and OCT angiography. The statistics of the optical features in a local region, such as the local mean of the OCT intensity, are frequently used for image processing and the quantitative analysis of JM-OCT. Conventionally, local statistics have been computed with fixed-size rectangular kernels. However, this results in a trade-off between image sharpness and statistical accuracy. We introduce a superpixel method to JM-OCT for generating the flexible kernels of local statistics. A superpixel is a cluster of image pixels that is formed by the pixels’ spatial and signal value proximities. An algorithm for superpixel generation specialized for JM-OCT and its optimization methods are presented in this paper. The spatial proximity is in two-dimensional cross-sectional space and the signal values are the four optical features. Hence, the superpixel method is a six-dimensional clustering technique for JM-OCT pixels. The performance of the JM-OCT superpixels and its optimization methods are evaluated in detail using JM-OCT datasets of posterior eyes. The superpixels were found to well preserve tissue structures, such as layer structures, sclera, vessels, and retinal pigment epithelium. And hence, they are more suitable for local statistics kernels than conventional uniform rectangular kernels. PMID:29082073

  9. Grave mapping in support of the search for missing persons in conflict contexts.

    PubMed

    Congram, Derek; Kenyhercz, Michael; Green, Arthur Gill

    2017-09-01

    We review the current and potential uses of Geographic Information Software (GIS) and "spatial thinking" for understanding body disposal behaviour in times of mass fatalities, particularly armed conflict contexts. The review includes observations made by the authors during the course of their academic research and professional consulting on the use of spatial analysis and GIS to support Humanitarian Forensic Action (HFA) to search for the dead, theoretical and statistical considerations in modelling grave site locations, and suggestions on how this work may be advanced further. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The spatiotemporal characteristics of environmental hazards caused by offshore oil and gas operations in the Gulf of Mexico.

    PubMed

    Meng, Qingmin

    2016-09-15

    Marine ecosystems are home to a host of numerous species ranging from tiny planktonic organisms, fishes, and birds, to large mammals such as the whales, manatees, and seals. However, human activities such as offshore oil and gas operations increasingly threaten marine and coastal ecosystems, for which there has been little exploration into the spatial and temporal risks of offshore oil operations. Using the Gulf of Mexico, one of the world's hottest spots of offshore oil and gas mining, as the study area, we propose a spatiotemporal approach that integrates spatial statistics and geostatistics in a geographic information system environment to provide insight to environmental management and decision making for oil and gas operators, coastal communities, local governments, and the federal government. We use the records from 1995 to 2015 of twelve types of hazards caused by offshore oil and gas operations, and analyze them spatially over a five year period. The spatial clusters of these hazards are analyzed and mapped using Getis-Ord Gi and local Moran's I statistics. We then design a spatial correlation coefficient matrix for multivariate spatial correlation, which is the ratio of the cross variogram of two types of hazards to the product of the variograms of the two hazards, showing a primary understanding of the degrees of spatial correlation among the twelve types hazards. To the best of our knowledge, it is the first application of spatiotemporal analysis methods to environmental hazards caused by offshore oil and gas operations; the proposed methods can be applied to other regions for the management and monitoring of environmental hazards caused by offshore oil operations. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Spatial Statistical and Modeling Strategy for Inventorying and Monitoring Ecosystem Resources at Multiple Scales and Resolution Levels

    Treesearch

    Robin M. Reich; C. Aguirre-Bravo; M.S. Williams

    2006-01-01

    A statistical strategy for spatial estimation and modeling of natural and environmental resource variables and indicators is presented. This strategy is part of an inventory and monitoring pilot study that is being carried out in the Mexican states of Jalisco and Colima. Fine spatial resolution estimates of key variables and indicators are outputs that will allow the...

  12. Maximum entropy modeling of invasive plants in the forests of Cumberland Plateau and Mountain Region

    Treesearch

    Dawn Lemke; Philip Hulme; Jennifer Brown; Wubishet. Tadesse

    2011-01-01

    As anthropogenic influences on the landscape change the composition of 'natural' areas, it is important that we apply spatial technology in active management to mitigate human impact. This research explores the integration of geographic information systems (GIS) and remote sensing with statistical analysis to assist in modeling the distribution of invasive...

  13. A spatial database of wildfires in the United States, 1992-2011

    Treesearch

    K. C. Short

    2014-01-01

    The statistical analysis of wildfire activity is a critical component of national wildfire planning, operations, and research in the United States (US). However, there are multiple federal, state, and local entities with wildfire protection and reporting responsibilities in the US, and no single, unified system of wildfire record keeping exists. To conduct even the...

  14. A spatial database of wildfires in the United States, 1992-2011 [Discussions

    Treesearch

    K. C. Short

    2013-01-01

    The statistical analysis of wildfire activity is a critical component of national wildfire planning, operations, and research in the United States (US). However, there are multiple federal, state, and local entities with wildfire protection and reporting responsibilities in the US, and no single, unified system of wildfire record-keeping exists. To conduct even the...

  15. A PRINCIPAL COMPONENT ANALYSIS OF THE CLEAN AIR STATUS AND TRENDS NETWORK (CASTNET) AIR CONCENTRATION DATA

    EPA Science Inventory

    The spatial and temporal variability of ambient air concentrations of SO2, SO42-, NO3, HNO3, and NH4+ obtained from EPA's CASTNet was examined using an objective, statistically based technique...

  16. Geographic analysis of forest health indicators using spatial scan statistics

    Treesearch

    John W. Coulston; Kurt H. Riitters

    2003-01-01

    Forest health analysts seek to define the location, extent, and magnitude of changes in forest ecosystems, to explain the observed changes when possible, and to draw attention to the unexplained changes for further investigation. The data come from a variety of sources including satellite images, field plot measurements, and low-altitude aerial surveys. Indicators...

  17. Evaluation of SOVAT: an OLAP-GIS decision support system for community health assessment data analysis.

    PubMed

    Scotch, Matthew; Parmanto, Bambang; Monaco, Valerie

    2008-06-09

    Data analysis in community health assessment (CHA) involves the collection, integration, and analysis of large numerical and spatial data sets in order to identify health priorities. Geographic Information Systems (GIS) enable for management and analysis using spatial data, but have limitations in performing analysis of numerical data because of its traditional database architecture.On-Line Analytical Processing (OLAP) is a multidimensional datawarehouse designed to facilitate querying of large numerical data. Coupling the spatial capabilities of GIS with the numerical analysis of OLAP, might enhance CHA data analysis. OLAP-GIS systems have been developed by university researchers and corporations, yet their potential for CHA data analysis is not well understood. To evaluate the potential of an OLAP-GIS decision support system for CHA problem solving, we compared OLAP-GIS to the standard information technology (IT) currently used by many public health professionals. SOVAT, an OLAP-GIS decision support system developed at the University of Pittsburgh, was compared against current IT for data analysis for CHA. For this study, current IT was considered the combined use of SPSS and GIS ("SPSS-GIS"). Graduate students, researchers, and faculty in the health sciences at the University of Pittsburgh were recruited. Each round consisted of: an instructional video of the system being evaluated, two practice tasks, five assessment tasks, and one post-study questionnaire. Objective and subjective measurement included: task completion time, success in answering the tasks, and system satisfaction. Thirteen individuals participated. Inferential statistics were analyzed using linear mixed model analysis. SOVAT was statistically significant (alpha = .01) from SPSS-GIS for satisfaction and time (p < .002). Descriptive results indicated that participants had greater success in answering the tasks when using SOVAT as compared to SPSS-GIS. Using SOVAT, tasks were completed more efficiently, with a higher rate of success, and with greater satisfaction, than the combined use of SPSS and GIS. The results from this study indicate a potential for OLAP-GIS decision support systems as a valuable tool for CHA data analysis.

  18. Evaluation of SOVAT: An OLAP-GIS decision support system for community health assessment data analysis

    PubMed Central

    Scotch, Matthew; Parmanto, Bambang; Monaco, Valerie

    2008-01-01

    Background Data analysis in community health assessment (CHA) involves the collection, integration, and analysis of large numerical and spatial data sets in order to identify health priorities. Geographic Information Systems (GIS) enable for management and analysis using spatial data, but have limitations in performing analysis of numerical data because of its traditional database architecture. On-Line Analytical Processing (OLAP) is a multidimensional datawarehouse designed to facilitate querying of large numerical data. Coupling the spatial capabilities of GIS with the numerical analysis of OLAP, might enhance CHA data analysis. OLAP-GIS systems have been developed by university researchers and corporations, yet their potential for CHA data analysis is not well understood. To evaluate the potential of an OLAP-GIS decision support system for CHA problem solving, we compared OLAP-GIS to the standard information technology (IT) currently used by many public health professionals. Methods SOVAT, an OLAP-GIS decision support system developed at the University of Pittsburgh, was compared against current IT for data analysis for CHA. For this study, current IT was considered the combined use of SPSS and GIS ("SPSS-GIS"). Graduate students, researchers, and faculty in the health sciences at the University of Pittsburgh were recruited. Each round consisted of: an instructional video of the system being evaluated, two practice tasks, five assessment tasks, and one post-study questionnaire. Objective and subjective measurement included: task completion time, success in answering the tasks, and system satisfaction. Results Thirteen individuals participated. Inferential statistics were analyzed using linear mixed model analysis. SOVAT was statistically significant (α = .01) from SPSS-GIS for satisfaction and time (p < .002). Descriptive results indicated that participants had greater success in answering the tasks when using SOVAT as compared to SPSS-GIS. Conclusion Using SOVAT, tasks were completed more efficiently, with a higher rate of success, and with greater satisfaction, than the combined use of SPSS and GIS. The results from this study indicate a potential for OLAP-GIS decision support systems as a valuable tool for CHA data analysis. PMID:18541037

  19. Probabilistic Common Spatial Patterns for Multichannel EEG Analysis

    PubMed Central

    Chen, Zhe; Gao, Xiaorong; Li, Yuanqing; Brown, Emery N.; Gao, Shangkai

    2015-01-01

    Common spatial patterns (CSP) is a well-known spatial filtering algorithm for multichannel electroencephalogram (EEG) analysis. In this paper, we cast the CSP algorithm in a probabilistic modeling setting. Specifically, probabilistic CSP (P-CSP) is proposed as a generic EEG spatio-temporal modeling framework that subsumes the CSP and regularized CSP algorithms. The proposed framework enables us to resolve the overfitting issue of CSP in a principled manner. We derive statistical inference algorithms that can alleviate the issue of local optima. In particular, an efficient algorithm based on eigendecomposition is developed for maximum a posteriori (MAP) estimation in the case of isotropic noise. For more general cases, a variational algorithm is developed for group-wise sparse Bayesian learning for the P-CSP model and for automatically determining the model size. The two proposed algorithms are validated on a simulated data set. Their practical efficacy is also demonstrated by successful applications to single-trial classifications of three motor imagery EEG data sets and by the spatio-temporal pattern analysis of one EEG data set recorded in a Stroop color naming task. PMID:26005228

  20. Simulation of anisoplanatic imaging through optical turbulence using numerical wave propagation with new validation analysis

    NASA Astrophysics Data System (ADS)

    Hardie, Russell C.; Power, Jonathan D.; LeMaster, Daniel A.; Droege, Douglas R.; Gladysz, Szymon; Bose-Pillai, Santasri

    2017-07-01

    We present a numerical wave propagation method for simulating imaging of an extended scene under anisoplanatic conditions. While isoplanatic simulation is relatively common, few tools are specifically designed for simulating the imaging of extended scenes under anisoplanatic conditions. We provide a complete description of the proposed simulation tool, including the wave propagation method used. Our approach computes an array of point spread functions (PSFs) for a two-dimensional grid on the object plane. The PSFs are then used in a spatially varying weighted sum operation, with an ideal image, to produce a simulated image with realistic optical turbulence degradation. The degradation includes spatially varying warping and blurring. To produce the PSF array, we generate a series of extended phase screens. Simulated point sources are numerically propagated from an array of positions on the object plane, through the phase screens, and ultimately to the focal plane of the simulated camera. Note that the optical path for each PSF will be different, and thus, pass through a different portion of the extended phase screens. These different paths give rise to a spatially varying PSF to produce anisoplanatic effects. We use a method for defining the individual phase screen statistics that we have not seen used in previous anisoplanatic simulations. We also present a validation analysis. In particular, we compare simulated outputs with the theoretical anisoplanatic tilt correlation and a derived differential tilt variance statistic. This is in addition to comparing the long- and short-exposure PSFs and isoplanatic angle. We believe this analysis represents the most thorough validation of an anisoplanatic simulation to date. The current work is also unique that we simulate and validate both constant and varying Cn2(z) profiles. Furthermore, we simulate sequences with both temporally independent and temporally correlated turbulence effects. Temporal correlation is introduced by generating even larger extended phase screens and translating this block of screens in front of the propagation area. Our validation analysis shows an excellent match between the simulation statistics and the theoretical predictions. Thus, we think this tool can be used effectively to study optical anisoplanatic turbulence and to aid in the development of image restoration methods.

  1. Development of spatial data guidelines and standards: spatial data set documentation to support hydrologic analysis in the U.S. Geological Survey

    USGS Publications Warehouse

    Fulton, James L.

    1992-01-01

    Spatial data analysis has become an integral component in many surface and sub-surface hydrologic investigations within the U.S. Geological Survey (USGS). Currently, one of the largest costs in applying spatial data analysis is the cost of developing the needed spatial data. Therefore, guidelines and standards are required for the development of spatial data in order to allow for data sharing and reuse; this eliminates costly redevelopment. In order to attain this goal, the USGS is expanding efforts to identify guidelines and standards for the development of spatial data for hydrologic analysis. Because of the variety of project and database needs, the USGS has concentrated on developing standards for documenting spatial sets to aid in the assessment of data set quality and compatibility of different data sets. An interim data set documentation standard (1990) has been developed that provides a mechanism for associating a wide variety of information with a data set, including data about source material, data automation and editing procedures used, projection parameters, data statistics, descriptions of features and feature attributes, information on organizational contacts lists of operations performed on the data, and free-form comments and notes about the data, made at various times in the evolution of the data set. The interim data set documentation standard has been automated using a commercial geographic information system (GIS) and data set documentation software developed by the USGS. Where possible, USGS developed software is used to enter data into the data set documentation file automatically. The GIS software closely associates a data set with its data set documentation file; the documentation file is retained with the data set whenever it is modified, copied, or transferred to another computer system. The Water Resources Division of the USGS is continuing to develop spatial data and data processing standards, with emphasis on standards needed to support hydrologic analysis, hydrologic data processing, and publication of hydrologic thermatic maps. There is a need for the GIS vendor community to develop data set documentation tools similar to those developed by the USGS, or to incorporate USGS developed tools in their software.

  2. Impact of Uncertainty on the Porous Media Description in the Subsurface Transport Analysis

    NASA Astrophysics Data System (ADS)

    Darvini, G.; Salandin, P.

    2008-12-01

    In the modelling of flow and transport phenomena in naturally heterogeneous media, the spatial variability of hydraulic properties, typically the hydraulic conductivity, is generally described by use of a variogram of constant sill and spatial correlation. While some analyses reported in the literature discuss of spatial inhomogeneity related to a trend in the mean hydraulic conductivity, the effect in the flow and transport due to an inexact definition of spatial statistical properties of media as far as we know had never taken into account. The relevance of this topic is manifest, and it is related to the uncertainty in the definition of spatial moments of hydraulic log-conductivity from an (usually) little number of data, as well as to the modelling of flow and transport processes by the Monte Carlo technique, whose numerical fields have poor ergodic properties and are not strictly statistically homogeneous. In this work we investigate the effects related to mean log-conductivity (logK) field behaviours different from the constant one due to different sources of inhomogeneity as: i) a deterministic trend; ii) a deterministic sinusoidal pattern and iii) a random behaviour deriving from the hierarchical sedimentary architecture of porous formations and iv) conditioning procedure on available measurements of the hydraulic conductivity. These mean log-conductivity behaviours are superimposed to a correlated weakly fluctuating logK field. The time evolution of the spatial moments of the plume driven by a statistically inhomogeneous steady state random velocity field is analyzed in a 2-D finite domain by taking into account different sizes of injection area. The problem is approached by both a classical Monte Carlo procedure and SFEM (stochastic finite element method). By the latter the moments are achieved by space-time integration of the velocity field covariance structure derived according to the first- order Taylor series expansion. Two different goals are foreseen: 1) from the results it will be possible to distinguish the contribute in the plume dispersion of the uncertainty in the statistics of the medium hydraulic properties in all the cases considered, and 2) we will try to highlight the loss of performances that seems to affect the first-order approaches in the transport phenomena that take place in hierarchical architecture of porous formations.

  3. Spatial Statistical Network Models for Stream and River Temperature in the Chesapeake Bay Watershed, USA

    EPA Science Inventory

    Regional temperature models are needed for characterizing and mapping stream thermal regimes, establishing reference conditions, predicting future impacts and identifying critical thermal refugia. Spatial statistical models have been developed to improve regression modeling techn...

  4. A spatial scan statistic for nonisotropic two-level risk cluster.

    PubMed

    Li, Xiao-Zhou; Wang, Jin-Feng; Yang, Wei-Zhong; Li, Zhong-Jie; Lai, Sheng-Jie

    2012-01-30

    Spatial scan statistic methods are commonly used for geographical disease surveillance and cluster detection. The standard spatial scan statistic does not model any variability in the underlying risks of subregions belonging to a detected cluster. For a multilevel risk cluster, the isotonic spatial scan statistic could model a centralized high-risk kernel in the cluster. Because variations in disease risks are anisotropic owing to different social, economical, or transport factors, the real high-risk kernel will not necessarily take the central place in a whole cluster area. We propose a spatial scan statistic for a nonisotropic two-level risk cluster, which could be used to detect a whole cluster and a noncentralized high-risk kernel within the cluster simultaneously. The performance of the three methods was evaluated through an intensive simulation study. Our proposed nonisotropic two-level method showed better power and geographical precision with two-level risk cluster scenarios, especially for a noncentralized high-risk kernel. Our proposed method is illustrated using the hand-foot-mouth disease data in Pingdu City, Shandong, China in May 2009, compared with two other methods. In this practical study, the nonisotropic two-level method is the only way to precisely detect a high-risk area in a detected whole cluster. Copyright © 2011 John Wiley & Sons, Ltd.

  5. A primer on the study of transitory dynamics in ecological series using the scale-dependent correlation analysis.

    PubMed

    Rodríguez-Arias, Miquel Angel; Rodó, Xavier

    2004-03-01

    Here we describe a practical, step-by-step primer to scale-dependent correlation (SDC) analysis. The analysis of transitory processes is an important but often neglected topic in ecological studies because only a few statistical techniques appear to detect temporary features accurately enough. We introduce here the SDC analysis, a statistical and graphical method to study transitory processes at any temporal or spatial scale. SDC analysis, thanks to the combination of conventional procedures and simple well-known statistical techniques, becomes an improved time-domain analogue of wavelet analysis. We use several simple synthetic series to describe the method, a more complex example, full of transitory features, to compare SDC and wavelet analysis, and finally we analyze some selected ecological series to illustrate the methodology. The SDC analysis of time series of copepod abundances in the North Sea indicates that ENSO primarily is the main climatic driver of short-term changes in population dynamics. SDC also uncovers some long-term, unexpected features in the population. Similarly, the SDC analysis of Nicholson's blowflies data locates where the proposed models fail and provides new insights about the mechanism that drives the apparent vanishing of the population cycle during the second half of the series.

  6. Dental Workforce Availability and Dental Services Utilization in Appalachia: A Geospatial Analysis

    PubMed Central

    Feng, Xue; Sambamoorthi, Usha; Wiener, R. Constance

    2016-01-01

    Objectives There is considerable variation in dental services utilization across Appalachian counties, and a plausible explanation is that individuals in some geographical areas do not utilize dental care due to dental workforce shortage. We conducted an ecological study on dental workforce availability and dental services utilization in Appalachia. Methods We derived county-level (n = 364) data on demographic, socio-economic characteristics and dental services utilization in Appalachia from the 2010 Behavioral Risk Factor Surveillance System (BRFSS) using person-level data. We obtained county-level dental workforce availability and physician-to-population ratio estimates from Area Health Resource File, and linked them to the county-level BRFSS data. The dependent variable was the proportion using dental services within the last year in each county (ranging from 16.6% to 91.0%). We described the association between dental workforce availability and dental services utilization using ordinary least squares regression and spatial regression techniques. Spatial analyses consisted of bivariate Local Indicators of Spatial Association (LISA) and geographically weighted regression (GWR). Results Bivariate LISA showed that counties in the central and southern Appalachian regions had significant (p < .05) low-low spatial clusters (low dental workforce availability, low percent dental services utilization). GWR revealed considerable local variations in the association between dental utilization and dental workforce availability. In the multivariate GWR models, 8.5% (t-statistics >1.96) and 13.45% (t-statistics >1.96) of counties showed positive and statistically significant relationships between the dental services utilization and workforce availability of dentists and dental hygienists, respectively. Conclusions Dental workforce availability was associated with dental services utilization in the Appalachian region; however, this association was not statistically significant in all counties. The findings suggest that program and policy efforts to improve dental services utilization need to focus on factors other than increasing the dental workforce availability for many counties in Appalachia. PMID:27957773

  7. Contextual Interactions in Grating Plaid Configurations Are Explained by Natural Image Statistics and Neural Modeling

    PubMed Central

    Ernst, Udo A.; Schiffer, Alina; Persike, Malte; Meinhardt, Günter

    2016-01-01

    Processing natural scenes requires the visual system to integrate local features into global object descriptions. To achieve coherent representations, the human brain uses statistical dependencies to guide weighting of local feature conjunctions. Pairwise interactions among feature detectors in early visual areas may form the early substrate of these local feature bindings. To investigate local interaction structures in visual cortex, we combined psychophysical experiments with computational modeling and natural scene analysis. We first measured contrast thresholds for 2 × 2 grating patch arrangements (plaids), which differed in spatial frequency composition (low, high, or mixed), number of grating patch co-alignments (0, 1, or 2), and inter-patch distances (1° and 2° of visual angle). Contrast thresholds for the different configurations were compared to the prediction of probability summation (PS) among detector families tuned to the four retinal positions. For 1° distance the thresholds for all configurations were larger than predicted by PS, indicating inhibitory interactions. For 2° distance, thresholds were significantly lower compared to PS when the plaids were homogeneous in spatial frequency and orientation, but not when spatial frequencies were mixed or there was at least one misalignment. Next, we constructed a neural population model with horizontal laminar structure, which reproduced the detection thresholds after adaptation of connection weights. Consistent with prior work, contextual interactions were medium-range inhibition and long-range, orientation-specific excitation. However, inclusion of orientation-specific, inhibitory interactions between populations with different spatial frequency preferences were crucial for explaining detection thresholds. Finally, for all plaid configurations we computed their likelihood of occurrence in natural images. The likelihoods turned out to be inversely related to the detection thresholds obtained at larger inter-patch distances. However, likelihoods were almost independent of inter-patch distance, implying that natural image statistics could not explain the crowding-like results at short distances. This failure of natural image statistics to resolve the patch distance modulation of plaid visibility remains a challenge to the approach. PMID:27757076

  8. Geographic Clusters of Basal Cell Carcinoma in a Northern California Health Plan Population.

    PubMed

    Ray, G Thomas; Kulldorff, Martin; Asgari, Maryam M

    2016-11-01

    Rates of skin cancer, including basal cell carcinoma (BCC), the most common cancer, have been increasing over the past 3 decades. A better understanding of geographic clustering of BCCs can help target screening and prevention efforts. Present a methodology to identify spatial clusters of BCC and identify such clusters in a northern California population. This retrospective study used a BCC registry to determine rates of BCC by census block group, and used spatial scan statistics to identify statistically significant geographic clusters of BCCs, adjusting for age, sex, and socioeconomic status. The study population consisted of white, non-Hispanic members of Kaiser Permanente Northern California during years 2011 and 2012. Statistically significant geographic clusters of BCC as determined by spatial scan statistics. Spatial analysis of 28 408 individuals who received a diagnosis of at least 1 BCC in 2011 or 2012 revealed distinct geographic areas with elevated BCC rates. Among the 14 counties studied, BCC incidence ranged from 661 to 1598 per 100 000 person-years. After adjustment for age, sex, and neighborhood socioeconomic status, a pattern of 5 discrete geographic clusters emerged, with a relative risk ranging from 1.12 (95% CI, 1.03-1.21; P = .006) for a cluster in eastern Sonoma and northern Napa Counties to 1.40 (95% CI, 1.15-1.71; P < .001) for a cluster in east Contra Costa and west San Joaquin Counties, compared with persons residing outside that cluster. In this study of a northern California population, we identified several geographic clusters with modestly elevated incidence of BCC. Knowledge of geographic clusters can help inform future research on the underlying etiology of the clustering including factors related to the environment, health care access, or other characteristics of the resident population, and can help target screening efforts to areas of highest yield.

  9. Spatial Statistical Data Fusion (SSDF)

    NASA Technical Reports Server (NTRS)

    Braverman, Amy J.; Nguyen, Hai M.; Cressie, Noel

    2013-01-01

    As remote sensing for scientific purposes has transitioned from an experimental technology to an operational one, the selection of instruments has become more coordinated, so that the scientific community can exploit complementary measurements. However, tech nological and scientific heterogeneity across devices means that the statistical characteristics of the data they collect are different. The challenge addressed here is how to combine heterogeneous remote sensing data sets in a way that yields optimal statistical estimates of the underlying geophysical field, and provides rigorous uncertainty measures for those estimates. Different remote sensing data sets may have different spatial resolutions, different measurement error biases and variances, and other disparate characteristics. A state-of-the-art spatial statistical model was used to relate the true, but not directly observed, geophysical field to noisy, spatial aggregates observed by remote sensing instruments. The spatial covariances of the true field and the covariances of the true field with the observations were modeled. The observations are spatial averages of the true field values, over pixels, with different measurement noise superimposed. A kriging framework is used to infer optimal (minimum mean squared error and unbiased) estimates of the true field at point locations from pixel-level, noisy observations. A key feature of the spatial statistical model is the spatial mixed effects model that underlies it. The approach models the spatial covariance function of the underlying field using linear combinations of basis functions of fixed size. Approaches based on kriging require the inversion of very large spatial covariance matrices, and this is usually done by making simplifying assumptions about spatial covariance structure that simply do not hold for geophysical variables. In contrast, this method does not require these assumptions, and is also computationally much faster. This method is fundamentally different than other approaches to data fusion for remote sensing data because it is inferential rather than merely descriptive. All approaches combine data in a way that minimizes some specified loss function. Most of these are more or less ad hoc criteria based on what looks good to the eye, or some criteria that relate only to the data at hand.

  10. Monitoring and identification of spatiotemporal landscape changes in multiple remote sensing images by using a stratified conditional Latin hypercube sampling approach and geostatistical simulation.

    PubMed

    Lin, Yu-Pin; Chu, Hone-Jay; Huang, Yu-Long; Tang, Chia-Hsi; Rouhani, Shahrokh

    2011-06-01

    This study develops a stratified conditional Latin hypercube sampling (scLHS) approach for multiple, remotely sensed, normalized difference vegetation index (NDVI) images. The objective is to sample, monitor, and delineate spatiotemporal landscape changes, including spatial heterogeneity and variability, in a given area. The scLHS approach, which is based on the variance quadtree technique (VQT) and the conditional Latin hypercube sampling (cLHS) method, selects samples in order to delineate landscape changes from multiple NDVI images. The images are then mapped for calibration and validation by using sequential Gaussian simulation (SGS) with the scLHS selected samples. Spatial statistical results indicate that in terms of their statistical distribution, spatial distribution, and spatial variation, the statistics and variograms of the scLHS samples resemble those of multiple NDVI images more closely than those of cLHS and VQT samples. Moreover, the accuracy of simulated NDVI images based on SGS with scLHS samples is significantly better than that of simulated NDVI images based on SGS with cLHS samples and VQT samples, respectively. However, the proposed approach efficiently monitors the spatial characteristics of landscape changes, including the statistics, spatial variability, and heterogeneity of NDVI images. In addition, SGS with the scLHS samples effectively reproduces spatial patterns and landscape changes in multiple NDVI images.

  11. Geographical Environment Factors and Risk Assessment of Tick-Borne Encephalitis in Hulunbuir, Northeastern China.

    PubMed

    Li, Yifan; Wang, Juanle; Gao, Mengxu; Fang, Liqun; Liu, Changhua; Lyu, Xin; Bai, Yongqing; Zhao, Qiang; Li, Hairong; Yu, Hongjie; Cao, Wuchun; Feng, Liqiang; Wang, Yanjun; Zhang, Bin

    2017-05-26

    Tick-borne encephalitis (TBE) is one of natural foci diseases transmitted by ticks. Its distribution and transmission are closely related to geographic and environmental factors. Identification of environmental determinates of TBE is of great importance to understanding the general distribution of existing and potential TBE natural foci. Hulunbuir, one of the most severe endemic areas of the disease, is selected as the study area. Statistical analysis, global and local spatial autocorrelation analysis, and regression methods were applied to detect the spatiotemporal characteristics, compare the impact degree of associated factors, and model the risk distribution using the heterogeneity. The statistical analysis of gridded geographic and environmental factors and TBE incidence show that the TBE patients mainly occurred during spring and summer and that there is a significant positive spatial autocorrelation between the distribution of TBE cases and environmental characteristics. The impact degree of these factors on TBE risks has the following descending order: temperature, relative humidity, vegetation coverage, precipitation and topography. A high-risk area with a triangle shape was determined in the central part of Hulunbuir; the low-risk area is located in the two belts next to the outside edge of the central triangle. The TBE risk distribution revealed that the impact of the geographic factors changed depending on the heterogeneity.

  12. Acoustic fill factors for a 120 inch diameter fairing

    NASA Technical Reports Server (NTRS)

    Lee, Y. Albert

    1992-01-01

    Data from the acoustic test of a 120-inch diameter payload fairing were collected and an analysis of acoustic fill factors were performed. Correction factors for obtaining a weighted spatial average of the interior sound pressure level (SPL) were derived based on this database and a normalized 200-inch diameter fairing database. The weighted fill factors were determined and compared with statistical energy analysis (VAPEPS code) derived fill factors. The comparison is found to be reasonable.

  13. Extracting Hydrologic Understanding from the Unique Space-time Sampling of the Surface Water and Ocean Topography (SWOT) Mission

    NASA Astrophysics Data System (ADS)

    Nickles, C.; Zhao, Y.; Beighley, E.; Durand, M. T.; David, C. H.; Lee, H.

    2017-12-01

    The Surface Water and Ocean Topography (SWOT) satellite mission is jointly developed by NASA, the French space agency (CNES), with participation from the Canadian and UK space agencies to serve both the hydrology and oceanography communities. The SWOT mission will sample global surface water extents and elevations (lakes/reservoirs, rivers, estuaries, oceans, sea and land ice) at a finer spatial resolution than is currently possible enabling hydrologic discovery, model advancements and new applications that are not currently possible or likely even conceivable. Although the mission will provide global cover, analysis and interpolation of the data generated from the irregular space/time sampling represents a significant challenge. In this study, we explore the applicability of the unique space/time sampling for understanding river discharge dynamics throughout the Ohio River Basin. River network topology, SWOT sampling (i.e., orbit and identified SWOT river reaches) and spatial interpolation concepts are used to quantify the fraction of effective sampling of river reaches each day of the three-year mission. Streamflow statistics for SWOT generated river discharge time series are compared to continuous daily river discharge series. Relationships are presented to transform SWOT generated streamflow statistics to equivalent continuous daily discharge time series statistics intended to support hydrologic applications using low-flow and annual flow duration statistics.

  14. Effect of land use on the spatial variability of organic matter and nutrient status in an Oxisol

    NASA Astrophysics Data System (ADS)

    Paz-Ferreiro, Jorge; Alves, Marlene Cristina; Vidal Vázquez, Eva

    2013-04-01

    Heterogeneity is now considered as an inherent soil property. Spatial variability of soil attributes in natural landscapes results mainly from soil formation factors. In cultivated soils much heterogeneity can additionally occur as a result of land use, agricultural systems and management practices. Organic matter content (OMC) and nutrients associated to soil exchange complex are key attribute in the maintenance of a high quality soil. Neglecting spatial heterogeneity in soil OMC and nutrient status at the field scale might result in reduced yield and in environmental damage. We analyzed the impact of land use on the pattern of spatial variability of OMC and soil macronutrients at the stand scale. The study was conducted in São Paulo state, Brazil. Land uses were pasture, mango orchard and corn field. Soil samples were taken at 0-10 cm and 10-20 cm depth in 84 points, within 100 m x 100 m plots. Texture, pH, OMC, cation exchange capacity (CEC), exchangeable cations (Ca, Mg, K, H, Al) and resin extractable phosphorus were analyzed.. Statistical variability was found to be higher in parameters defining the soil nutrient status (resin extractable P, K, Ca and Mg) than in general soil properties (OMC, CEC, base saturation and pH). Geostatistical analysis showed contrasting patterns of spatial dependence for the different soil uses, sampling depths and studied properties. Most of the studied data sets collected at two different depths exhibited spatial dependence at the sampled scale and their semivariograms were modeled by a nugget effect plus a structure. The pattern of soil spatial variability was found to be different between the three study soil uses and at the two sampling depths, as far as model type, nugget effect or ranges of spatial dependence were concerned. Both statistical and geostatistical results pointed out the importance of OMC as a driver responsible for the spatial variability of soil nutrient status.

  15. Analyses and assessments of span wise gust gradient data from NASA B-57B aircraft

    NASA Technical Reports Server (NTRS)

    Frost, Walter; Chang, Ho-Pen; Ringnes, Erik A.

    1987-01-01

    Analysis of turbulence measured across the airfoil of a Cambera B-57 aircraft is reported. The aircraft is instrumented with probes for measuring wind at both wing tips and at the nose. Statistical properties of the turbulence are reported. These consist of the standard deviations of turbulence measured by each individual probe, standard deviations and probability distribution of differences in turbulence measured between probes and auto- and two-point spatial correlations and spectra. Procedures associated with calculations of two-point spatial correlations and spectra utilizing data were addressed. Methods and correction procedures for assuring the accuracy of aircraft measured winds are also described. Results are found, in general, to agree with correlations existing in the literature. The velocity spatial differences fit a Gaussian/Bessel type probability distribution. The turbulence agrees with the von Karman turbulence correlation and with two-point spatial correlations developed from the von Karman correlation.

  16. Videogame interventions and spatial ability interactions.

    PubMed

    Redick, Thomas S; Webster, Sean B

    2014-01-01

    Numerous research studies have been conducted on the use of videogames as tools to improve one's cognitive abilities. While meta-analyses and qualitative reviews have provided evidence that some aspects of cognition such as spatial imagery are modified after exposure to videogames, other evidence has shown that matrix reasoning measures of fluid intelligence do not show evidence of transfer from videogame training. In the current work, we investigate the available evidence for transfer specifically to nonverbal intelligence and spatial ability measures, given recent research that these abilities may be most sensitive to training on cognitive and working memory tasks. Accordingly, we highlight a few studies that on the surface provide evidence for transfer to spatial abilities, but a closer look at the pattern of data does not reveal a clean interpretation of the results. We discuss the implications of these results in relation to research design and statistical analysis practices.

  17. Videogame interventions and spatial ability interactions

    PubMed Central

    Redick, Thomas S.; Webster, Sean B.

    2014-01-01

    Numerous research studies have been conducted on the use of videogames as tools to improve one’s cognitive abilities. While meta-analyses and qualitative reviews have provided evidence that some aspects of cognition such as spatial imagery are modified after exposure to videogames, other evidence has shown that matrix reasoning measures of fluid intelligence do not show evidence of transfer from videogame training. In the current work, we investigate the available evidence for transfer specifically to nonverbal intelligence and spatial ability measures, given recent research that these abilities may be most sensitive to training on cognitive and working memory tasks. Accordingly, we highlight a few studies that on the surface provide evidence for transfer to spatial abilities, but a closer look at the pattern of data does not reveal a clean interpretation of the results. We discuss the implications of these results in relation to research design and statistical analysis practices. PMID:24723880

  18. Effects of spatial variability and scale on areal -average evapotranspiration

    NASA Technical Reports Server (NTRS)

    Famiglietti, J. S.; Wood, Eric F.

    1993-01-01

    This paper explores the effect of spatial variability and scale on areally-averaged evapotranspiration. A spatially-distributed water and energy balance model is employed to determine the effect of explicit patterns of model parameters and atmospheric forcing on modeled areally-averaged evapotranspiration over a range of increasing spatial scales. The analysis is performed from the local scale to the catchment scale. The study area is King's Creek catchment, an 11.7 sq km watershed located on the native tallgrass prairie of Kansas. The dominant controls on the scaling behavior of catchment-average evapotranspiration are investigated by simulation, as is the existence of a threshold scale for evapotranspiration modeling, with implications for explicit versus statistical representation of important process controls. It appears that some of our findings are fairly general, and will therefore provide a framework for understanding the scaling behavior of areally-averaged evapotranspiration at the catchment and larger scales.

  19. Spatial and temporal variability of hyperspectral signatures of terrain

    NASA Astrophysics Data System (ADS)

    Jones, K. F.; Perovich, D. K.; Koenig, G. G.

    2008-04-01

    Electromagnetic signatures of terrain exhibit significant spatial heterogeneity on a range of scales as well as considerable temporal variability. A statistical characterization of the spatial heterogeneity and spatial scaling algorithms of terrain electromagnetic signatures are required to extrapolate measurements to larger scales. Basic terrain elements including bare soil, grass, deciduous, and coniferous trees were studied in a quasi-laboratory setting using instrumented test sites in Hanover, NH and Yuma, AZ. Observations were made using a visible and near infrared spectroradiometer (350 - 2500 nm) and hyperspectral camera (400 - 1100 nm). Results are reported illustrating: i) several difference scenes; ii) a terrain scene time series sampled over an annual cycle; and iii) the detection of artifacts in scenes. A principal component analysis indicated that the first three principal components typically explained between 90 and 99% of the variance of the 30 to 40-channel hyperspectral images. Higher order principal components of hyperspectral images are useful for detecting artifacts in scenes.

  20. Spatial Analysis of the Human Immunodeficiency Virus Epidemic among Men Who Have Sex with Men in China, 2006-2015.

    PubMed

    Qin, Qianqian; Guo, Wei; Tang, Weiming; Mahapatra, Tanmay; Wang, Liyan; Zhang, Nanci; Ding, Zhengwei; Cai, Chang; Cui, Yan; Sun, Jiangping

    2017-04-01

    Studies have shown a recent upsurge in human immunodeficiency virus (HIV) burden among men who have sex with men (MSM) in China, especially in urban areas. For intervention planning and resource allocation, spatial analyses of HIV/AIDS case-clusters were required to identify epidemic foci and trends among MSM in China. Information regarding MSM recorded as HIV/AIDS cases during 2006-2015 were extracted from the National Case Reporting System. Demographic trends were determined through Cochran-Armitage trend tests. Distribution of case-clusters was examined using spatial autocorrelation. Spatial-temporal scan was used to detect disease clustering. Spatial correlations between cases and socioenvironmental factors were determined by spatial regression. Between 2006 and 2015, in China, 120 371 HIV/AIDS cases were identified among MSM. Newly identified HIV/AIDS cases among self-reported MSM increased from 487 cases in 2006 to >30 000 cases in 2015. Among those HIV/AIDS cases recorded during 2006-2015, 47.0% were 20-29 years old and 24.9% were aged 30-39 years. Based on clusters of HIV/AIDS cases identified through spatial analysis, the epidemic was concentrated among MSM in large cities. Spatial-temporal clusters contained municipalities, provincial capitals, and main cities such as Beijing, Shanghai, Chongqing, Chengdu, and Guangzhou. Spatial regression analysis showed that sociodemographic indicators such as population density, per capita gross domestic product, and number of county-level medical institutions had statistically significant positive correlations with HIV/AIDS among MSM. Assorted spatial analyses revealed an increasingly concentrated HIV epidemic among young MSM in Chinese cities, calling for targeted health education and intensive interventions at an early age. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  1. An Innovative Metric to Evaluate Satellite Precipitation's Spatial Distribution

    NASA Astrophysics Data System (ADS)

    Liu, H.; Chu, W.; Gao, X.; Sorooshian, S.

    2011-12-01

    Thanks to its capability to cover the mountains, where ground measurement instruments cannot reach, satellites provide a good means of estimating precipitation over mountainous regions. In regions with complex terrains, accurate information on high-resolution spatial distribution of precipitation is critical for many important issues, such as flood/landslide warning, reservoir operation, water system planning, etc. Therefore, in order to be useful in many practical applications, satellite precipitation products should possess high quality in characterizing spatial distribution. However, most existing validation metrics, which are based on point/grid comparison using simple statistics, cannot effectively measure satellite's skill of capturing the spatial patterns of precipitation fields. This deficiency results from the fact that point/grid-wised comparison does not take into account of the spatial coherence of precipitation fields. Furth more, another weakness of many metrics is that they can barely provide information on why satellite products perform well or poor. Motivated by our recent findings of the consistent spatial patterns of the precipitation field over the western U.S., we developed a new metric utilizing EOF analysis and Shannon entropy. The metric can be derived through two steps: 1) capture the dominant spatial patterns of precipitation fields from both satellite products and reference data through EOF analysis, and 2) compute the similarities between the corresponding dominant patterns using mutual information measurement defined with Shannon entropy. Instead of individual point/grid, the new metric treat the entire precipitation field simultaneously, naturally taking advantage of spatial dependence. Since the dominant spatial patterns are shaped by physical processes, the new metric can shed light on why satellite product can or cannot capture the spatial patterns. For demonstration, a experiment was carried out to evaluate a satellite precipitation product, CMORPH, against the U.S. daily precipitation analysis of Climate Prediction Center (CPC) at a daily and .25o scale over the Western U.S.

  2. Characterization of spatial and temporal variability in hydrochemistry of Johor Straits, Malaysia.

    PubMed

    Abdullah, Pauzi; Abdullah, Sharifah Mastura Syed; Jaafar, Othman; Mahmud, Mastura; Khalik, Wan Mohd Afiq Wan Mohd

    2015-12-15

    Characterization of hydrochemistry changes in Johor Straits within 5 years of monitoring works was successfully carried out. Water quality data sets (27 stations and 19 parameters) collected in this area were interpreted subject to multivariate statistical analysis. Cluster analysis grouped all the stations into four clusters ((Dlink/Dmax) × 100<90) and two clusters ((Dlink/Dmax) × 100<80) for site and period similarities. Principal component analysis rendered six significant components (eigenvalue>1) that explained 82.6% of the total variance of the data set. Classification matrix of discriminant analysis assigned 88.9-92.6% and 83.3-100% correctness in spatial and temporal variability, respectively. Times series analysis then confirmed that only four parameters were not significant over time change. Therefore, it is imperative that the environmental impact of reclamation and dredging works, municipal or industrial discharge, marine aquaculture and shipping activities in this area be effectively controlled and managed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Geographic information systems, remote sensing, and spatial analysis activities in Texas, 2008-09

    USGS Publications Warehouse

    ,

    2009-01-01

    Geographic information system (GIS) technology has become an important tool for scientific investigation, resource management, and environmental planning. A GIS is a computer-aided system capable of collecting, storing, analyzing, and displaying spatially referenced digital data. GIS technology is useful for analyzing a wide variety of spatial data. Remote sensing involves collecting remotely sensed data, such as satellite imagery, aerial photography, or radar images, and analyzing the data to gather information or investigate trends about the environment or the Earth's surface. Spatial analysis combines remotely sensed, thematic, statistical, quantitative, and geographical data through overlay, modeling, and other analytical techniques to investigate specific research questions. It is the combination of data formats and analysis techniques that has made GIS an essential tool in scientific investigations. This fact sheet presents information about the technical capabilities and project activities of the U.S. Geological Survey (USGS) Texas Water Science Center (TWSC) GIS Workgroup during 2008 and 2009. After a summary of GIS Workgroup capabilities, brief descriptions of activities by project at the local and national levels are presented. Projects are grouped by the fiscal year (October-September 2008 or 2009) the project ends and include overviews, project images, and Internet links to additional project information and related publications or articles.

  4. [Prevalence and spatial distribution of trachoma among schoolchildren in Botucatu, São Paulo - Brazil].

    PubMed

    Schellini, Silvana Artioli; Lavezzo, Marcelo Mendes; Ferraz, Lucieni Barbarini; Olbrich Neto, Jaime; Medina, Norma Hellen; Padovani, Carlos Roberto

    2010-01-01

    To assess the prevalence of trachoma in schoolchildren of Botucatu/ SP-Brazil and its spatial distribution. Cross-sectional study in children aged from 7 to 14 years, who attended elementary schools in Botucatu/SP in November/2005. The sample size was estimated in 2,092 children, considering the 11.2% historic prevalence of trachoma, accepting an estimation error of 10% and confidence level of 95%. The sample was random, weighted and increased by 20%, because of the possible occurrence of losses. The total number of children examined was 2,692. The diagnosis was clinical, based on WHO guidelines. For the evaluation of spatial data, the CartaLinx program (v1.2) was used, and the school demand sectors digitized according to the planning divisions of the Department of Education. The data were statistically analyzed, and the analysis of the spatial structure of events calculated using the Geode program. The prevalence of trachoma in schoolchildren of Botucatu was 2.9% and there were cases of follicular trachoma. The exploratory spatial analysis failed to reject the null hypothesis of randomness (R= -0.45, p>0.05), with no significant demand sectors. The analysis for the Thiessen polygons also showed that the overall pattern was random (I= -0.07, p=0.49). However, local indicators pointed to a group of low-low type for a polygon to the north of the urban area. The prevalence of trachoma in schoolchildren in Botucatu was 2.9%. The analysis of the spatial distribution did not reveal areas of greater clustering of cases. Although the overall pattern of the disease does not reproduce the socio-economic conditions of the population, the lower prevalence of trachoma was found in areas of lower social vulnerability.

  5. Does objective cluster analysis serve as a useful precursor to seasonal precipitation prediction at local scale? Application to western Ethiopia

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Moges, Semu; Block, Paul

    2018-01-01

    Prediction of seasonal precipitation can provide actionable information to guide management of various sectoral activities. For instance, it is often translated into hydrological forecasts for better water resources management. However, many studies assume homogeneity in precipitation across an entire study region, which may prove ineffective for operational and local-level decisions, particularly for locations with high spatial variability. This study proposes advancing local-level seasonal precipitation predictions by first conditioning on regional-level predictions, as defined through objective cluster analysis, for western Ethiopia. To our knowledge, this is the first study predicting seasonal precipitation at high resolution in this region, where lives and livelihoods are vulnerable to precipitation variability given the high reliance on rain-fed agriculture and limited water resources infrastructure. The combination of objective cluster analysis, spatially high-resolution prediction of seasonal precipitation, and a modeling structure spanning statistical and dynamical approaches makes clear advances in prediction skill and resolution, as compared with previous studies. The statistical model improves versus the non-clustered case or dynamical models for a number of specific clusters in northwestern Ethiopia, with clusters having regional average correlation and ranked probability skill score (RPSS) values of up to 0.5 and 33 %, respectively. The general skill (after bias correction) of the two best-performing dynamical models over the entire study region is superior to that of the statistical models, although the dynamical models issue predictions at a lower resolution and the raw predictions require bias correction to guarantee comparable skills.

  6. Revealing spatially heterogeneous relaxation in a model nanocomposite.

    PubMed

    Cheng, Shiwang; Mirigian, Stephen; Carrillo, Jan-Michael Y; Bocharova, Vera; Sumpter, Bobby G; Schweizer, Kenneth S; Sokolov, Alexei P

    2015-11-21

    The detailed nature of spatially heterogeneous dynamics of glycerol-silica nanocomposites is unraveled by combining dielectric spectroscopy with atomistic simulation and statistical mechanical theory. Analysis of the spatial mobility gradient shows no "glassy" layer, but the α-relaxation time near the nanoparticle grows with cooling faster than the α-relaxation time in the bulk and is ∼20 times longer at low temperatures. The interfacial layer thickness increases from ∼1.8 nm at higher temperatures to ∼3.5 nm upon cooling to near bulk Tg. A real space microscopic description of the mobility gradient is constructed by synergistically combining high temperature atomistic simulation with theory. Our analysis suggests that the interfacial slowing down arises mainly due to an increase of the local cage scale barrier for activated hopping induced by enhanced packing and densification near the nanoparticle surface. The theory is employed to predict how local surface densification can be manipulated to control layer dynamics and shear rigidity over a wide temperature range.

  7. Improved application of independent component analysis to functional magnetic resonance imaging study via linear projection techniques.

    PubMed

    Long, Zhiying; Chen, Kewei; Wu, Xia; Reiman, Eric; Peng, Danling; Yao, Li

    2009-02-01

    Spatial Independent component analysis (sICA) has been widely used to analyze functional magnetic resonance imaging (fMRI) data. The well accepted implicit assumption is the spatially statistical independency of intrinsic sources identified by sICA, making the sICA applications difficult for data in which there exist interdependent sources and confounding factors. This interdependency can arise, for instance, from fMRI studies investigating two tasks in a single session. In this study, we introduced a linear projection approach and considered its utilization as a tool to separate task-related components from two-task fMRI data. The robustness and feasibility of the method are substantiated through simulation on computer data and fMRI real rest data. Both simulated and real two-task fMRI experiments demonstrated that sICA in combination with the projection method succeeded in separating spatially dependent components and had better detection power than pure model-based method when estimating activation induced by each task as well as both tasks.

  8. elevatr: Access Elevation Data from Various APIs | Science ...

    EPA Pesticide Factsheets

    Several web services are available that provide access to elevation data. This package provides access to several of those services and returns elevation data either as a SpatialPointsDataFrame from point elevation services or as a raster object from raster elevation services. Currently, the package supports access to the Mapzen Elevation Service, Mapzen Terrain Service, and the USGS Elevation Point Query Service. The R language for statistical computing is increasingly used for spatial data analysis . This R package, elevatr, is in response to this and provides access to elevation data from various sources directly in R. The impact of `elevatr` is that it will 1) facilitate spatial analysis in R by providing access to foundational dataset for many types of analyses (e.g. hydrology, limnology) 2) open up a new set of users and uses for APIs widely used outside of R, and 3) provide an excellent example federal open source development as promoted by the Federal Source Code Policy (https://sourcecode.cio.gov/).

  9. Revealing spatially heterogeneous relaxation in a model nanocomposite

    DOE PAGES

    Cheng, Shiwang; Mirigian, Stephen; Carrillo, Jan-Michael Y.; ...

    2015-11-18

    The detailed nature of spatially heterogeneous dynamics of glycerol-silica nanocomposites is unraveled by combining dielectric spectroscopy with atomistic simulation and statistical mechanical theory. Analysis of the spatial mobility gradient shows no glassy layer, but the -relaxation time near the nanoparticle grows with cooling faster than the -relaxation time in the bulk and is ~20 times longer at low temperatures. The interfacial layer thickness increases from ~1.8 nm at higher temperatures to ~3.5 nm upon cooling to near bulk T g. A real space microscopic description of the mobility gradient is constructed by synergistically combining high temperature atomistic simulation with theory.more » Our analysis suggests that the interfacial slowing down arises mainly due to an increase of the local cage scale barrier for activated hopping induced by enhanced packing and densification near the nanoparticle surface. As a result, the theory is employed to predict how local surface densification can be manipulated to control layer dynamics and shear rigidity over a wide temperature range.« less

  10. Spatially Pooled Contrast Responses Predict Neural and Perceptual Similarity of Naturalistic Image Categories

    PubMed Central

    Groen, Iris I. A.; Ghebreab, Sennay; Lamme, Victor A. F.; Scholte, H. Steven

    2012-01-01

    The visual world is complex and continuously changing. Yet, our brain transforms patterns of light falling on our retina into a coherent percept within a few hundred milliseconds. Possibly, low-level neural responses already carry substantial information to facilitate rapid characterization of the visual input. Here, we computationally estimated low-level contrast responses to computer-generated naturalistic images, and tested whether spatial pooling of these responses could predict image similarity at the neural and behavioral level. Using EEG, we show that statistics derived from pooled responses explain a large amount of variance between single-image evoked potentials (ERPs) in individual subjects. Dissimilarity analysis on multi-electrode ERPs demonstrated that large differences between images in pooled response statistics are predictive of more dissimilar patterns of evoked activity, whereas images with little difference in statistics give rise to highly similar evoked activity patterns. In a separate behavioral experiment, images with large differences in statistics were judged as different categories, whereas images with little differences were confused. These findings suggest that statistics derived from low-level contrast responses can be extracted in early visual processing and can be relevant for rapid judgment of visual similarity. We compared our results with two other, well- known contrast statistics: Fourier power spectra and higher-order properties of contrast distributions (skewness and kurtosis). Interestingly, whereas these statistics allow for accurate image categorization, they do not predict ERP response patterns or behavioral categorization confusions. These converging computational, neural and behavioral results suggest that statistics of pooled contrast responses contain information that corresponds with perceived visual similarity in a rapid, low-level categorization task. PMID:23093921

  11. Spatial Analysis of Phytophthora infestans Genotypes and Late Blight Severity on Tomato and Potato in the Del Fuerte Valley Using Geostatistics and Geographic Information Systems.

    PubMed

    Jaime-Garcia, R; Orum, T V; Felix-Gastelum, R; Trinidad-Correa, R; Vanetten, H D; Nelson, M R

    2001-12-01

    ABSTRACT Genetic structure of Phytophthora infestans, the causal agent of potato and tomato late blight, was analyzed spatially in a mixed potato and tomato production area in the Del Fuerte Valley, Sinaloa, Mexico. Isolates of P. infestans were characterized by mating type, allozyme analysis at the glucose-6-phosphate isomerase and peptidase loci, restriction fragment length polymorphism with probe RG57, metalaxyl sensitivity, and aggressiveness to tomato and potato. Spatial patterns of P. infestans genotypes were analyzed by geographical information systems and geo-statistics during the seasons of 1994-95, 1995-96, and 1996-97. Spatial analysis of the genetic structure of P. infestans indicates that geographic substructuring of this pathogen occurs in this area. Maps displaying the probabilities of occurrence of mating types and genotypes of P. infestans, and of disease severity at a regional scale, were presented. Some genotypes that exhibited differences in epidemiologically important features such as metalaxyl sensitivity and aggressiveness to tomato and potato had a restricted spread and were localized in isolated areas. Analysis of late blight severity showed recurring patterns, such as the earliest onset of the disease in the area where both potato and tomato were growing, strengthening the hypothesis that infected potato tubers are the main source of primary inoculum. The information that geostatistical analysis provides might help improve management programs for late blight in the Del Fuerte Valley.

  12. Evaluation of MODIS aerosol optical depth for semi­-arid environments in complex terrain

    NASA Astrophysics Data System (ADS)

    Holmes, H.; Loria Salazar, S. M.; Panorska, A. K.; Arnott, W. P.; Barnard, J.

    2015-12-01

    The use of satellite remote sensing to estimate spatially resolved ground level air pollutant concentrations is increasing due to advancements in remote sensing technology and the limited number of surface observations. Satellite retrievals provide global, spatiotemporal air quality information and are used to track plumes, estimate human exposures, model emissions, and determine sources (i.e., natural versus anthropogenic) in regulatory applications. Ground level PM2.5 concentrations can be estimated using columnar aerosol optical depth (AOD) from MODIS, where the satellite retrieval serves as a spatial surrogate to simulate surface PM2.5 gradients. The spatial statistical models and MODIS AOD retrieval algorithms have been evaluated for the dark, vegetated eastern US, while the semi-arid western US continues to be an understudied region with associated complexity due to heterogeneous emissions, smoke from wildfires, and complex terrain. The objective of this work is to evaluate the uncertainty of MODIS AOD retrievals by comparing with columnar AOD and surface PM2.5 measurements from AERONET and EPA networks. Data is analyzed from multiple stations in California and Nevada for three years where four major wildfires occurred. Results indicate that MODIS retrievals fail to estimate column-integrated aerosol pollution in the summer months. This is further investigated by quantifying the statistical relationships between MODIS AOD, AERONET AOD, and surface PM2.5 concentrations. Data analysis indicates that the distribution of MODIS AOD is significantly (p<0.05) different than AERONET AOD. Further, using the results of distributional and association analysis the impacts of MODIS AOD uncertainties on the spatial gradients are evaluated. Additionally, the relationships between these uncertainties and physical parameters in the retrieval algorithm (e.g., surface reflectance, Ångström Extinction Exponent) are discussed.

  13. Clustering, randomness, and regularity in cloud fields. 4. Stratocumulus cloud fields

    NASA Astrophysics Data System (ADS)

    Lee, J.; Chou, J.; Weger, R. C.; Welch, R. M.

    1994-07-01

    To complete the analysis of the spatial distribution of boundary layer cloudiness, the present study focuses on nine stratocumulus Landsat scenes. The results indicate many similarities between stratocumulus and cumulus spatial distributions. Most notably, at full spatial resolution all scenes exhibit a decidedly clustered distribution. The strength of the clustering signal decreases with increasing cloud size; the clusters themselves consist of a few clouds (less than 10), occupy a small percentage of the cloud field area (less than 5%), contain between 20% and 60% of the cloud field population, and are randomly located within the scene. In contrast, stratocumulus in almost every respect are more strongly clustered than are cumulus cloud fields. For instance, stratocumulus clusters contain more clouds per cluster, occupy a larger percentage of the total area, and have a larger percentage of clouds participating in clusters than the corresponding cumulus examples. To investigate clustering at intermediate spatial scales, the local dimensionality statistic is introduced. Results obtained from this statistic provide the first direct evidence for regularity among large (>900 m in diameter) clouds in stratocumulus and cumulus cloud fields, in support of the inhibition hypothesis of Ramirez and Bras (1990). Also, the size compensated point-to-cloud cumulative distribution function statistic is found to be necessary to obtain a consistent description of stratocumulus cloud distributions. A hypothesis regarding the underlying physical mechanisms responsible for cloud clustering is presented. It is suggested that cloud clusters often arise from 4 to 10 triggering events localized within regions less than 2 km in diameter and randomly distributed within the cloud field. As the size of the cloud surpasses the scale of the triggering region, the clustering signal weakens and the larger cloud locations become more random.

  14. Clustering, randomness, and regularity in cloud fields. 4: Stratocumulus cloud fields

    NASA Technical Reports Server (NTRS)

    Lee, J.; Chou, J.; Weger, R. C.; Welch, R. M.

    1994-01-01

    To complete the analysis of the spatial distribution of boundary layer cloudiness, the present study focuses on nine stratocumulus Landsat scenes. The results indicate many similarities between stratocumulus and cumulus spatial distributions. Most notably, at full spatial resolution all scenes exhibit a decidedly clustered distribution. The strength of the clustering signal decreases with increasing cloud size; the clusters themselves consist of a few clouds (less than 10), occupy a small percentage of the cloud field area (less than 5%), contain between 20% and 60% of the cloud field population, and are randomly located within the scene. In contrast, stratocumulus in almost every respect are more strongly clustered than are cumulus cloud fields. For instance, stratocumulus clusters contain more clouds per cluster, occupy a larger percentage of the total area, and have a larger percentage of clouds participating in clusters than the corresponding cumulus examples. To investigate clustering at intermediate spatial scales, the local dimensionality statistic is introduced. Results obtained from this statistic provide the first direct evidence for regularity among large (more than 900 m in diameter) clouds in stratocumulus and cumulus cloud fields, in support of the inhibition hypothesis of Ramirez and Bras (1990). Also, the size compensated point-to-cloud cumulative distribution function statistic is found to be necessary to obtain a consistent description of stratocumulus cloud distributions. A hypothesis regarding the underlying physical mechanisms responsible for cloud clustering is presented. It is suggested that cloud clusters often arise from 4 to 10 triggering events localized within regions less than 2 km in diameter and randomly distributed within the cloud field. As the size of the cloud surpasses the scale of the triggering region, the clustering signal weakens and the larger cloud locations become more random.

  15. Statistical Validation of Image Segmentation Quality Based on a Spatial Overlap Index1

    PubMed Central

    Zou, Kelly H.; Warfield, Simon K.; Bharatha, Aditya; Tempany, Clare M.C.; Kaus, Michael R.; Haker, Steven J.; Wells, William M.; Jolesz, Ferenc A.; Kikinis, Ron

    2005-01-01

    Rationale and Objectives To examine a statistical validation method based on the spatial overlap between two sets of segmentations of the same anatomy. Materials and Methods The Dice similarity coefficient (DSC) was used as a statistical validation metric to evaluate the performance of both the reproducibility of manual segmentations and the spatial overlap accuracy of automated probabilistic fractional segmentation of MR images, illustrated on two clinical examples. Example 1: 10 consecutive cases of prostate brachytherapy patients underwent both preoperative 1.5T and intraoperative 0.5T MR imaging. For each case, 5 repeated manual segmentations of the prostate peripheral zone were performed separately on preoperative and on intraoperative images. Example 2: A semi-automated probabilistic fractional segmentation algorithm was applied to MR imaging of 9 cases with 3 types of brain tumors. DSC values were computed and logit-transformed values were compared in the mean with the analysis of variance (ANOVA). Results Example 1: The mean DSCs of 0.883 (range, 0.876–0.893) with 1.5T preoperative MRI and 0.838 (range, 0.819–0.852) with 0.5T intraoperative MRI (P < .001) were within and at the margin of the range of good reproducibility, respectively. Example 2: Wide ranges of DSC were observed in brain tumor segmentations: Meningiomas (0.519–0.893), astrocytomas (0.487–0.972), and other mixed gliomas (0.490–0.899). Conclusion The DSC value is a simple and useful summary measure of spatial overlap, which can be applied to studies of reproducibility and accuracy in image segmentation. We observed generally satisfactory but variable validation results in two clinical applications. This metric may be adapted for similar validation tasks. PMID:14974593

  16. Identifying clusters of active transportation using spatial scan statistics.

    PubMed

    Huang, Lan; Stinchcomb, David G; Pickle, Linda W; Dill, Jennifer; Berrigan, David

    2009-08-01

    There is an intense interest in the possibility that neighborhood characteristics influence active transportation such as walking or biking. The purpose of this paper is to illustrate how a spatial cluster identification method can evaluate the geographic variation of active transportation and identify neighborhoods with unusually high/low levels of active transportation. Self-reported walking/biking prevalence, demographic characteristics, street connectivity variables, and neighborhood socioeconomic data were collected from respondents to the 2001 California Health Interview Survey (CHIS; N=10,688) in Los Angeles County (LAC) and San Diego County (SDC). Spatial scan statistics were used to identify clusters of high or low prevalence (with and without age-adjustment) and the quantity of time spent walking and biking. The data, a subset from the 2001 CHIS, were analyzed in 2007-2008. Geographic clusters of significantly high or low prevalence of walking and biking were detected in LAC and SDC. Structural variables such as street connectivity and shorter block lengths are consistently associated with higher levels of active transportation, but associations between active transportation and socioeconomic variables at the individual and neighborhood levels are mixed. Only one cluster with less time spent walking and biking among walkers/bikers was detected in LAC, and this was of borderline significance. Age-adjustment affects the clustering pattern of walking/biking prevalence in LAC, but not in SDC. The use of spatial scan statistics to identify significant clustering of health behaviors such as active transportation adds to the more traditional regression analysis that examines associations between behavior and environmental factors by identifying specific geographic areas with unusual levels of the behavior independent of predefined administrative units.

  17. Identifying Clusters of Active Transportation Using Spatial Scan Statistics

    PubMed Central

    Huang, Lan; Stinchcomb, David G.; Pickle, Linda W.; Dill, Jennifer; Berrigan, David

    2009-01-01

    Background There is an intense interest in the possibility that neighborhood characteristics influence active transportation such as walking or biking. The purpose of this paper is to illustrate how a spatial cluster identification method can evaluate the geographic variation of active transportation and identify neighborhoods with unusually high/low levels of active transportation. Methods Self-reported walking/biking prevalence, demographic characteristics, street connectivity variables, and neighborhood socioeconomic data were collected from respondents to the 2001 California Health Interview Survey (CHIS; N=10,688) in Los Angeles County (LAC) and San Diego County (SDC). Spatial scan statistics were used to identify clusters of high or low prevalence (with and without age-adjustment) and the quantity of time spent walking and biking. The data, a subset from the 2001 CHIS, were analyzed in 2007–2008. Results Geographic clusters of significantly high or low prevalence of walking and biking were detected in LAC and SDC. Structural variables such as street connectivity and shorter block lengths are consistently associated with higher levels of active transportation, but associations between active transportation and socioeconomic variables at the individual and neighborhood levels are mixed. Only one cluster with less time spent walking and biking among walkers/bikers was detected in LAC, and this was of borderline significance. Age-adjustment affects the clustering pattern of walking/biking prevalence in LAC, but not in SDC. Conclusions The use of spatial scan statistics to identify significant clustering of health behaviors such as active transportation adds to the more traditional regression analysis that examines associations between behavior and environmental factors by identifying specific geographic areas with unusual levels of the behavior independent of predefined administrative units. PMID:19589451

  18. New insights into the endophenotypic status of cognition in bipolar disorder: genetic modelling study of twins and siblings.

    PubMed

    Georgiades, Anna; Rijsdijk, Fruhling; Kane, Fergus; Rebollo-Mesa, Irene; Kalidindi, Sridevi; Schulze, Katja K; Stahl, Daniel; Walshe, Muriel; Sahakian, Barbara J; McDonald, Colm; Hall, Mei-Hua; Murray, Robin M; Kravariti, Eugenia

    2016-06-01

    Twin studies have lacked statistical power to apply advanced genetic modelling techniques to the search for cognitive endophenotypes for bipolar disorder. To quantify the shared genetic variability between bipolar disorder and cognitive measures. Structural equation modelling was performed on cognitive data collected from 331 twins/siblings of varying genetic relatedness, disease status and concordance for bipolar disorder. Using a parsimonious AE model, verbal episodic and spatial working memory showed statistically significant genetic correlations with bipolar disorder (rg = |0.23|-|0.27|), which lost statistical significance after covarying for affective symptoms. Using an ACE model, IQ and visual-spatial learning showed statistically significant genetic correlations with bipolar disorder (rg = |0.51|-|1.00|), which remained significant after covarying for affective symptoms. Verbal episodic and spatial working memory capture a modest fraction of the bipolar diathesis. IQ and visual-spatial learning may tap into genetic substrates of non-affective symptomatology in bipolar disorder. © The Royal College of Psychiatrists 2016.

  19. Identifying irregularly shaped crime hot-spots using a multiobjective evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Wu, Xiaolan; Grubesic, Tony H.

    2010-12-01

    Spatial cluster detection techniques are widely used in criminology, geography, epidemiology, and other fields. In particular, spatial scan statistics are popular and efficient techniques for detecting areas of elevated crime or disease events. The majority of spatial scan approaches attempt to delineate geographic zones by evaluating the significance of clusters using likelihood ratio statistics tested with the Poisson distribution. While this can be effective, many scan statistics give preference to circular clusters, diminishing their ability to identify elongated and/or irregular shaped clusters. Although adjusting the shape of the scan window can mitigate some of these problems, both the significance of irregular clusters and their spatial structure must be accounted for in a meaningful way. This paper utilizes a multiobjective evolutionary algorithm to find clusters with maximum significance while quantitatively tracking their geographic structure. Crime data for the city of Cincinnati are utilized to demonstrate the advantages of the new approach and highlight its benefits versus more traditional scan statistics.

  20. The Canadian Precipitation Analysis (CaPA): Evaluation of the statistical interpolation scheme

    NASA Astrophysics Data System (ADS)

    Evans, Andrea; Rasmussen, Peter; Fortin, Vincent

    2013-04-01

    CaPA (Canadian Precipitation Analysis) is a data assimilation system which employs statistical interpolation to combine observed precipitation with gridded precipitation fields produced by Environment Canada's Global Environmental Multiscale (GEM) climate model into a final gridded precipitation analysis. Precipitation is important in many fields and applications, including agricultural water management projects, flood control programs, and hydroelectric power generation planning. Precipitation is a key input to hydrological models, and there is a desire to have access to the best available information about precipitation in time and space. The principal goal of CaPA is to produce this type of information. In order to perform the necessary statistical interpolation, CaPA requires the estimation of a semi-variogram. This semi-variogram is used to describe the spatial correlations between precipitation innovations, defined as the observed precipitation amounts minus the GEM forecasted amounts predicted at the observation locations. Currently, CaPA uses a single isotropic variogram across the entire analysis domain. The present project investigates the implications of this choice by first conducting a basic variographic analysis of precipitation innovation data across the Canadian prairies, with specific interest in identifying and quantifying potential anisotropy within the domain. This focus is further expanded by identifying the effect of storm type on the variogram. The ultimate goal of the variographic analysis is to develop improved semi-variograms for CaPA that better capture the spatial complexities of precipitation over the Canadian prairies. CaPA presently applies a Box-Cox data transformation to both the observations and the GEM data, prior to the calculation of the innovations. The data transformation is necessary to satisfy the normal distribution assumption, but introduces a significant bias. The second part of the investigation aims at devising a bias correction scheme based on a moving-window averaging technique. For both the variogram and bias correction components of this investigation, a series of trial runs are conducted to evaluate the impact of these changes on the resulting CaPA precipitation analyses.

  1. Poisson-event-based analysis of cell proliferation.

    PubMed

    Summers, Huw D; Wills, John W; Brown, M Rowan; Rees, Paul

    2015-05-01

    A protocol for the assessment of cell proliferation dynamics is presented. This is based on the measurement of cell division events and their subsequent analysis using Poisson probability statistics. Detailed analysis of proliferation dynamics in heterogeneous populations requires single cell resolution within a time series analysis and so is technically demanding to implement. Here, we show that by focusing on the events during which cells undergo division rather than directly on the cells themselves a simplified image acquisition and analysis protocol can be followed, which maintains single cell resolution and reports on the key metrics of cell proliferation. The technique is demonstrated using a microscope with 1.3 μm spatial resolution to track mitotic events within A549 and BEAS-2B cell lines, over a period of up to 48 h. Automated image processing of the bright field images using standard algorithms within the ImageJ software toolkit yielded 87% accurate recording of the manually identified, temporal, and spatial positions of the mitotic event series. Analysis of the statistics of the interevent times (i.e., times between observed mitoses in a field of view) showed that cell division conformed to a nonhomogeneous Poisson process in which the rate of occurrence of mitotic events, λ exponentially increased over time and provided values of the mean inter mitotic time of 21.1 ± 1.2 hours for the A549 cells and 25.0 ± 1.1 h for the BEAS-2B cells. Comparison of the mitotic event series for the BEAS-2B cell line to that predicted by random Poisson statistics indicated that temporal synchronisation of the cell division process was occurring within 70% of the population and that this could be increased to 85% through serum starvation of the cell culture. © 2015 International Society for Advancement of Cytometry.

  2. GIS-based spatial statistical analysis of risk areas for liver flukes in Surin Province of Thailand.

    PubMed

    Rujirakul, Ratana; Ueng-arporn, Naporn; Kaewpitoon, Soraya; Loyd, Ryan J; Kaewthani, Sarochinee; Kaewpitoon, Natthawut

    2015-01-01

    It is urgently necessary to be aware of the distribution and risk areas of liver fluke, Opisthorchis viverrini, for proper allocation of prevention and control measures. This study aimed to investigate the human behavior, and environmental factors influencing the distribution in Surin Province of Thailand, and to build a model using stepwise multiple regression analysis with a geographic information system (GIS) on environment and climate data. The relationship between the human behavior, attitudes (<50%; X111), environmental factors like population density (148-169 pop/km2; X73), and land use as wetland (X64), were correlated with the liver fluke disease distribution at 0.000, 0.034, and 0.006 levels, respectively. Multiple regression analysis, by equations OV=-0.599+0.005(population density (148-169 pop/km2); X73)+0.040 (human attitude (<50%); X111)+0.022 (land used (wetland; X64), was used to predict the distribution of liver fluke. OV is the patients of liver fluke infection, R Square=0.878, and, Adjust R Square=0.849. By GIS analysis, we found Si Narong, Sangkha, Phanom Dong Rak, Mueang Surin, Non Narai, Samrong Thap, Chumphon Buri, and Rattanaburi to have the highest distributions in Surin province. In conclusion, the combination of GIS and statistical analysis can help simulate the spatial distribution and risk areas of liver fluke, and thus may be an important tool for future planning of prevention and control measures.

  3. Limbic and corpus callosum aberrations in adolescents with bipolar disorder: a tract-based spatial statistics analysis.

    PubMed

    Barnea-Goraly, Naama; Chang, Kiki D; Karchemskiy, Asya; Howe, Meghan E; Reiss, Allan L

    2009-08-01

    Bipolar disorder (BD) is a common and debilitating condition, often beginning in adolescence. Converging evidence from genetic and neuroimaging studies indicates that white matter abnormalities may be involved in BD. In this study, we investigated white matter structure in adolescents with familial bipolar disorder using diffusion tensor imaging (DTI) and a whole brain analysis. We analyzed DTI images using tract-based spatial statistics (TBSS), a whole-brain voxel-by-voxel analysis, to investigate white matter structure in 21 adolescents with BD, who also were offspring of at least one parent with BD, and 18 age- and IQ-matched control subjects. Fractional anisotropy (FA; a measure of diffusion anisotropy), trace values (average diffusivity), and apparent diffusion coefficient (ADC; a measure of overall diffusivity) were used as variables in this analysis. In a post hoc analysis, we correlated between FA values, behavioral measures, and medication exposure. Adolescents with BD had lower FA values than control subjects in the fornix, the left mid-posterior cingulate gyrus, throughout the corpus callosum, in fibers extending from the fornix to the thalamus, and in parietal and occipital corona radiata bilaterally. There were no significant between-group differences in trace or ADC values and no significant correlation between behavioral measures, medication exposure, and FA values. Significant white matter tract alterations in adolescents with BD were observed in regions involved in emotional, behavioral, and cognitive regulation. These results suggest that alterations in white matter are present early in the course of disease in familial BD.

  4. Spatial Modeling for Groundwater Arsenic Levels in North Carolina

    PubMed Central

    Kim, Dohyeong; Miranda, Marie Lynn; Tootoo, Joshua; Bradley, Phil; Gelfand, Alan E.

    2013-01-01

    To examine environmental and geologic determinants of arsenic in groundwater, detailed geologic data were integrated with well water arsenic concentration data and well construction data for 471 private wells in Orange County, NC, via a geographic information system. For the statistical analysis, the geologic units were simplified into four generalized categories based on rock type and interpreted mode of deposition/emplacement. The geologic transitions from rocks of a primary pyroclastic origin to rocks of volcaniclastic sedimentary origin were designated as polylines. The data were fitted to a left-censored regression model to identify key determinants of arsenic levels in groundwater. A Bayesian spatial random effects model was then developed to capture any spatial patterns in groundwater arsenic residuals into model estimation. Statistical model results indicate (1) wells close to a transition zone or fault are more likely to contain detectible arsenic; (2) welded tuffs and hydrothermal quartz bodies are associated with relatively higher groundwater arsenic concentrations and even higher for those proximal to a pluton; and (3) wells of greater depth are more likely to contain elevated arsenic. This modeling effort informs policy intervention by creating three-dimensional maps of predicted arsenic levels in groundwater for any location and depth in the area. PMID:21528844

  5. Spatial modeling for groundwater arsenic levels in North Carolina.

    PubMed

    Kim, Dohyeong; Miranda, Marie Lynn; Tootoo, Joshua; Bradley, Phil; Gelfand, Alan E

    2011-06-01

    To examine environmental and geologic determinants of arsenic in groundwater, detailed geologic data were integrated with well water arsenic concentration data and well construction data for 471 private wells in Orange County, NC, via a geographic information system. For the statistical analysis, the geologic units were simplified into four generalized categories based on rock type and interpreted mode of deposition/emplacement. The geologic transitions from rocks of a primary pyroclastic origin to rocks of volcaniclastic sedimentary origin were designated as polylines. The data were fitted to a left-censored regression model to identify key determinants of arsenic levels in groundwater. A Bayesian spatial random effects model was then developed to capture any spatial patterns in groundwater arsenic residuals into model estimation. Statistical model results indicate (1) wells close to a transition zone or fault are more likely to contain detectible arsenic; (2) welded tuffs and hydrothermal quartz bodies are associated with relatively higher groundwater arsenic concentrations and even higher for those proximal to a pluton; and (3) wells of greater depth are more likely to contain elevated arsenic. This modeling effort informs policy intervention by creating three-dimensional maps of predicted arsenic levels in groundwater for any location and depth in the area.

  6. Spatial analysis of lettuce downy mildew using geostatistics and geographic information systems.

    PubMed

    Wu, B M; van Bruggen, A H; Subbarao, K V; Pennings, G G

    2001-02-01

    ABSTRACT The epidemiology of lettuce downy mildew has been investigated extensively in coastal California. However, the spatial patterns of the disease and the distance that Bremia lactucae spores can be transported have not been determined. During 1995 to 1998, we conducted several field- and valley-scale surveys to determine spatial patterns of this disease in the Salinas valley. Geostatistical analyses of the survey data at both scales showed that the influence range of downy mildew incidence at one location on incidence at other locations was between 80 and 3,000 m. A linear relationship was detected between semivariance and lag distance at the field scale, although no single statistical model could fit the semi-variograms at the valley scale. Spatial interpolation by the inverse distance weighting method with a power of 2 resulted in plausible estimates of incidence throughout the valley. Cluster analysis in geographic information systems on the interpolated disease incidence from different dates demonstrated that the Salinas valley could be divided into two areas, north and south of Salinas City, with high and low disease pressure, respectively. Seasonal and spatial trends along the valley suggested that the distinction between the downy mildew conducive and nonconducive areas might be determined by environmental factors.

  7. Spatial Distribution of Soil Fauna In Long Term No Tillage

    NASA Astrophysics Data System (ADS)

    Corbo, J. Z. F.; Vieira, S. R.; Siqueira, G. M.

    2012-04-01

    The soil is a complex system constituted by living beings, organic and mineral particles, whose components define their physical, chemical and biological properties. Soil fauna plays an important role in soil and may reflect and interfere in its functionality. These organisms' populations may be influenced by management practices, fertilization, liming and porosity, among others. Such changes may reduce the composition and distribution of soil fauna community. Thus, this study aimed to determine the spatial variability of soil fauna in consolidated no-tillage system. The experimental area is located at Instituto Agronômico in Campinas (São Paulo, Brazil). The sampling was conducted in a Rhodic Eutrudox, under no tillage system and 302 points distributed in a 3.2 hectare area in a regular grid of 10.00 m x 10.00 m were sampled. The soil fauna was sampled with "Pitfall Traps" method and traps remained in the area for seven days. Data were analyzed using descriptive statistics to determine the main statistical moments (mean variance, coefficient of variation, standard deviation, skewness and kurtosis). Geostatistical tools were used to determine the spatial variability of the attributes using the experimental semivariogram. For the biodiversity analysis, Shannon and Pielou indexes and richness were calculated for each sample. Geostatistics has proven to be a great tool for mapping the spatial variability of groups from the soil epigeal fauna. The family Formicidae proved to be the most abundant and dominant in the study area. The parameters of descriptive statistics showed that all attributes studied showed lognormal frequency distribution for groups from the epigeal soil fauna. The exponential model was the most suited for the obtained data, for both groups of epigeal soil fauna (Acari, Araneae, Coleoptera, Formicidae and Coleoptera larva), and the other biodiversity indexes. The sampling scheme (10.00 m x 10.00 m) was not sufficient to detect the spatial variability for all groups of soil epigeal fauna found in this study.

  8. Spatial-temporal event detection in climate parameter imagery.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKenna, Sean Andrew; Gutierrez, Karen A.

    Previously developed techniques that comprise statistical parametric mapping, with applications focused on human brain imaging, are examined and tested here for new applications in anomaly detection within remotely-sensed imagery. Two approaches to analysis are developed: online, regression-based anomaly detection and conditional differences. These approaches are applied to two example spatial-temporal data sets: data simulated with a Gaussian field deformation approach and weekly NDVI images derived from global satellite coverage. Results indicate that anomalies can be identified in spatial temporal data with the regression-based approach. Additionally, la Nina and el Nino climatic conditions are used as different stimuli applied to themore » earth and this comparison shows that el Nino conditions lead to significant decreases in NDVI in both the Amazon Basin and in Southern India.« less

  9. Assessment of the spatial pattern of colorectal tumour perfusion estimated at perfusion CT using two-dimensional fractal analysis.

    PubMed

    Goh, Vicky; Sanghera, Bal; Wellsted, David M; Sundin, Josefin; Halligan, Steve

    2009-06-01

    The aim was to evaluate the feasibility of fractal analysis for assessing the spatial pattern of colorectal tumour perfusion at dynamic contrast-enhanced CT (perfusion CT). Twenty patients with colorectal adenocarcinoma underwent a 65-s perfusion CT study from which a perfusion parametric map was generated using validated commercial software. The tumour was identified by an experienced radiologist, segmented via thresholding and fractal analysis applied using in-house software: fractal dimension, abundance and lacunarity were assessed for the entire outlined tumour and for selected representative areas within the tumour of low and high perfusion. Comparison was made with ten patients with normal colons, processed in a similar manner, using two-way mixed analysis of variance with statistical significance at the 5% level. Fractal values were higher in cancer than normal colon (p < or = 0.001): mean (SD) 1.71 (0.07) versus 1.61 (0.07) for fractal dimension and 7.82 (0.62) and 6.89 (0.47) for fractal abundance. Fractal values were lower in 'high' than 'low' perfusion areas. Lacunarity curves were shifted to the right for cancer compared with normal colon. In conclusion, colorectal cancer mapped by perfusion CT demonstrates fractal properties. Fractal analysis is feasible, potentially providing a quantitative measure of the spatial pattern of tumour perfusion.

  10. Spatial independent component analysis of functional MRI time-series: to what extent do results depend on the algorithm used?

    PubMed

    Esposito, Fabrizio; Formisano, Elia; Seifritz, Erich; Goebel, Rainer; Morrone, Renato; Tedeschi, Gioacchino; Di Salle, Francesco

    2002-07-01

    Independent component analysis (ICA) has been successfully employed to decompose functional MRI (fMRI) time-series into sets of activation maps and associated time-courses. Several ICA algorithms have been proposed in the neural network literature. Applied to fMRI, these algorithms might lead to different spatial or temporal readouts of brain activation. We compared the two ICA algorithms that have been used so far for spatial ICA (sICA) of fMRI time-series: the Infomax (Bell and Sejnowski [1995]: Neural Comput 7:1004-1034) and the Fixed-Point (Hyvärinen [1999]: Adv Neural Inf Proc Syst 10:273-279) algorithms. We evaluated the Infomax- and Fixed Point-based sICA decompositions of simulated motor, and real motor and visual activation fMRI time-series using an ensemble of measures. Log-likelihood (McKeown et al. [1998]: Hum Brain Mapp 6:160-188) was used as a measure of how significantly the estimated independent sources fit the statistical structure of the data; receiver operating characteristics (ROC) and linear correlation analyses were used to evaluate the algorithms' accuracy of estimating the spatial layout and the temporal dynamics of simulated and real activations; cluster sizing calculations and an estimation of a residual gaussian noise term within the components were used to examine the anatomic structure of ICA components and for the assessment of noise reduction capabilities. Whereas both algorithms produced highly accurate results, the Fixed-Point outperformed the Infomax in terms of spatial and temporal accuracy as long as inferential statistics were employed as benchmarks. Conversely, the Infomax sICA was superior in terms of global estimation of the ICA model and noise reduction capabilities. Because of its adaptive nature, the Infomax approach appears to be better suited to investigate activation phenomena that are not predictable or adequately modelled by inferential techniques. Copyright 2002 Wiley-Liss, Inc.

  11. The Elementary School Classroom. The Study of the Built Environment Through Student and Teacher Responses. The Elementary School and Its Population, Phase 2.

    ERIC Educational Resources Information Center

    Artinian, Vrej-Armen

    An extensive investigation of elementary school classrooms was conducted through the collection and statistical analysis of student and teacher responses to questions concerning the educational environment. Several asepcts of the classroom are discussed, including the spatial, thermal, luminous, and aural environments. Questions were organized so…

  12. Determination of the refractive index of dehydrated cells by means of digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Belashov, A. V.; Zhikhoreva, A. A.; Bespalov, V. G.; Vasyutinskii, O. S.; Zhilinskaya, N. T.; Novik, V. I.; Semenova, I. V.

    2017-10-01

    Spatial distributions of the integral refractive index in dehydrated cells of human oral cavity epithelium are obtained by means of digital holographic microscopy, and mean refractive index of the cells is determined. The statistical analysis of the data obtained is carried out, and absolute errors of the method are estimated for different experimental conditions.

  13. Location error uncertainties - an advanced using of probabilistic inverse theory

    NASA Astrophysics Data System (ADS)

    Debski, Wojciech

    2016-04-01

    The spatial location of sources of seismic waves is one of the first tasks when transient waves from natural (uncontrolled) sources are analyzed in many branches of physics, including seismology, oceanology, to name a few. Source activity and its spatial variability in time, the geometry of recording network, the complexity and heterogeneity of wave velocity distribution are all factors influencing the performance of location algorithms and accuracy of the achieved results. While estimating of the earthquake foci location is relatively simple a quantitative estimation of the location accuracy is really a challenging task even if the probabilistic inverse method is used because it requires knowledge of statistics of observational, modelling, and apriori uncertainties. In this presentation we addressed this task when statistics of observational and/or modeling errors are unknown. This common situation requires introduction of apriori constraints on the likelihood (misfit) function which significantly influence the estimated errors. Based on the results of an analysis of 120 seismic events from the Rudna copper mine operating in southwestern Poland we illustrate an approach based on an analysis of Shanon's entropy calculated for the aposteriori distribution. We show that this meta-characteristic of the aposteriori distribution carries some information on uncertainties of the solution found.

  14. Demographic characterization and spatial cluster analysis of human Salmonella 1,4,[5],12:i:- infections in Portugal: A 10year study.

    PubMed

    Seixas, R; Nunes, T; Machado, J; Tavares, L; Owen, S P; Bernardo, F; Oliveira, M

    Salmonella 1,4,[5],12:i:- is presently considered one of the major serovars responsible for human salmonellosis worldwide. Due to its recent emergence, studies assessing the demographic characterization and spatial epidemiology of salmonellosis 1,4,[5],12:i:- at local- or country-level are lacking. In this study, a analysis was conducted over a 10year period, from 2000 to the first quarter of 2011 at the Portuguese National Laboratory in Portugal mainland, with a total of 215 Salmonella 1,4,[5],12:i:- serotyped isolates obtained from human infections by a passive surveillance system. Data regarding source, year and month of sampling, gender, age, district and municipality of the patients were registered. Descriptive statistical analysis and a spatial scan statistic combined with a geographic information system were employed to characterize the epidemiology and identify spatial clusters. Results showed that most districts have reports of Salmonella 1,4,[5],12:i:-, with a higher number of cases at the Portuguese coastland, including districts like Porto (n=60, 27.9%), Lisboa (n=29, 13.5%) and Aveiro (n=28, 13.0%). An increased incidence was observed in the period from 2004 to 2011 and most infections occurred during May and October. Spatial analysis revealed 4 clusters of higher than expected infection rates. Three were located in the north of Portugal, including two at the coastland (Cluster 1 [RR=3.58, p≤0.001] and 4 [RR=10.42 p≤0.230]), and one at the countryside (Cluster 3 [RR=17.76, p≤0.001]). A larger cluster was detected involving the center and south of Portugal (Cluster 2 [RR=4.85, p≤0.001]). The present study was elaborated with data provided by a passive surveillance system, which may originate an underestimation of disease burden. However, this is the first report describing the incidence and the distribution of areas with higher risk of infection in Portugal, revealing that Salmonella 1,4,[5],12:i:- displayed a significant geographic clustering and these areas should be further evaluated to identify risk factors in order to establish prevention programs. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Spatio-temporal analysis of prodelta dynamics by means of new satellite generation: the case of Po river by Landsat-8 data

    NASA Astrophysics Data System (ADS)

    Manzo, Ciro; Braga, Federica; Zaggia, Luca; Brando, Vittorio Ernesto; Giardino, Claudia; Bresciani, Mariano; Bassani, Cristiana

    2018-04-01

    This paper describes a procedure to perform spatio-temporal analysis of river plume dispersion in prodelta areas by multi-temporal Landsat-8-derived products for identifying zones sensitive to water discharge and for providing geostatistical patterns of turbidity linked to different meteo-marine forcings. In particular, we characterized the temporal and spatial variability of turbidity and sea surface temperature (SST) in the Po River prodelta (Northern Adriatic Sea, Italy) during the period 2013-2016. To perform this analysis, a two-pronged processing methodology was implemented and the resulting outputs were analysed through a series of statistical tools. A pixel-based spatial correlation analysis was carried out by comparing temporal curves of turbidity and SST hypercubes with in situ time series of wind speed and water discharge, providing correlation coefficient maps. A geostatistical analysis was performed to determine the spatial dependency of the turbidity datasets per each satellite image, providing maps of correlation and variograms. The results show a linear correlation between water discharge and turbidity variations in the points more affected by the buoyant plumes and along the southern coast of Po River delta. Better inverse correlation was found between turbidity and SST during floods rather than other periods. The correlation maps of wind speed with turbidity show different spatial patterns depending on local or basin-scale wind effects. Variogram maps identify different spatial anisotropy structures of turbidity in response to ambient conditions (i.e. strong Bora or Scirocco winds, floods). Since the implemented processing methodology is based on open source software and free satellite data, it represents a promising tool for the monitoring of maritime ecosystems and to address water quality analyses and the investigations of sediment dynamics in estuarine and coastal waters.

  16. The Statistical Consulting Center for Astronomy (SCCA)

    NASA Technical Reports Server (NTRS)

    Akritas, Michael

    2001-01-01

    The process by which raw astronomical data acquisition is transformed into scientifically meaningful results and interpretation typically involves many statistical steps. Traditional astronomy limits itself to a narrow range of old and familiar statistical methods: means and standard deviations; least-squares methods like chi(sup 2) minimization; and simple nonparametric procedures such as the Kolmogorov-Smirnov tests. These tools are often inadequate for the complex problems and datasets under investigations, and recent years have witnessed an increased usage of maximum-likelihood, survival analysis, multivariate analysis, wavelet and advanced time-series methods. The Statistical Consulting Center for Astronomy (SCCA) assisted astronomers with the use of sophisticated tools, and to match these tools with specific problems. The SCCA operated with two professors of statistics and a professor of astronomy working together. Questions were received by e-mail, and were discussed in detail with the questioner. Summaries of those questions and answers leading to new approaches were posted on the Web (www.state.psu.edu/ mga/SCCA). In addition to serving individual astronomers, the SCCA established a Web site for general use that provides hypertext links to selected on-line public-domain statistical software and services. The StatCodes site (www.astro.psu.edu/statcodes) provides over 200 links in the areas of: Bayesian statistics; censored and truncated data; correlation and regression, density estimation and smoothing, general statistics packages and information; image analysis; interactive Web tools; multivariate analysis; multivariate clustering and classification; nonparametric analysis; software written by astronomers; spatial statistics; statistical distributions; time series analysis; and visualization tools. StatCodes has received a remarkable high and constant hit rate of 250 hits/week (over 10,000/year) since its inception in mid-1997. It is of interest to scientists both within and outside of astronomy. The most popular sections are multivariate techniques, image analysis, and time series analysis. Hundreds of copies of the ASURV, SLOPES and CENS-TAU codes developed by SCCA scientists were also downloaded from the StatCodes site. In addition to formal SCCA duties, SCCA scientists continued a variety of related activities in astrostatistics, including refereeing of statistically oriented papers submitted to the Astrophysical Journal, talks in meetings including Feigelson's talk to science journalists entitled "The reemergence of astrostatistics" at the American Association for the Advancement of Science meeting, and published papers of astrostatistical content.

  17. The Spatial Scaling of Global Rainfall Extremes

    NASA Astrophysics Data System (ADS)

    Devineni, N.; Xi, C.; Lall, U.; Rahill-Marier, B.

    2013-12-01

    Floods associated with severe storms are a significant source of risk for property, life and supply chains. These property losses tend to be determined as much by the duration of flooding as by the depth and velocity of inundation. High duration floods are typically induced by persistent rainfall (upto 30 day duration) as seen recently in Thailand, Pakistan, the Ohio and the Mississippi Rivers, France, and Germany. Events related to persistent and recurrent rainfall appear to correspond to the persistence of specific global climate patterns that may be identifiable from global, historical data fields, and also from climate models that project future conditions. A clear understanding of the space-time rainfall patterns for events or for a season will enable in assessing the spatial distribution of areas likely to have a high/low inundation potential for each type of rainfall forcing. In this paper, we investigate the statistical properties of the spatial manifestation of the rainfall exceedances. We also investigate the connection of persistent rainfall events at different latitudinal bands to large-scale climate phenomena such as ENSO. Finally, we present the scaling phenomena of contiguous flooded areas as a result of large scale organization of long duration rainfall events. This can be used for spatially distributed flood risk assessment conditional on a particular rainfall scenario. Statistical models for spatio-temporal loss simulation including model uncertainty to support regional and portfolio analysis can be developed.

  18. On testing for spatial correspondence between maps of human brain structure and function.

    PubMed

    Alexander-Bloch, Aaron F; Shou, Haochang; Liu, Siyuan; Satterthwaite, Theodore D; Glahn, David C; Shinohara, Russell T; Vandekar, Simon N; Raznahan, Armin

    2018-06-01

    A critical issue in many neuroimaging studies is the comparison between brain maps. Nonetheless, it remains unclear how one should test hypotheses focused on the overlap or spatial correspondence between two or more brain maps. This "correspondence problem" affects, for example, the interpretation of comparisons between task-based patterns of functional activation, resting-state networks or modules, and neuroanatomical landmarks. To date, this problem has been addressed with remarkable variability in terms of methodological approaches and statistical rigor. In this paper, we address the correspondence problem using a spatial permutation framework to generate null models of overlap by applying random rotations to spherical representations of the cortical surface, an approach for which we also provide a theoretical statistical foundation. We use this method to derive clusters of cognitive functions that are correlated in terms of their functional neuroatomical substrates. In addition, using publicly available data, we formally demonstrate the correspondence between maps of task-based functional activity, resting-state fMRI networks and gyral-based anatomical landmarks. We provide open-access code to implement the methods presented for two commonly-used tools for surface based cortical analysis (https://www.github.com/spin-test). This spatial permutation approach constitutes a useful advance over widely-used methods for the comparison of cortical maps, thereby opening new possibilities for the integration of diverse neuroimaging data. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Spatial epidemiology of Escherichia coli O157:H7 in dairy cattle in relation to night roosts Of Sturnus vulgaris (European Starling) in Ohio, USA (2007-2009).

    PubMed

    Swirski, A L; Pearl, D L; Williams, M L; Homan, H J; Linz, G M; Cernicchiaro, N; LeJeune, J T

    2014-09-01

    The goal of our study was to use spatial scan statics to determine whether the night roosts of European starlings (Sturnus vulgaris) act as point sources for the dissemination of Escherichia coli O157:H7 among dairy farms. From 2007 to 2009, we collected bovine faecal samples (n = 9000) and starling gastrointestinal contents (n = 430) from 150 dairy farms in northeastern Ohio, USA. Isolates of E. coli O157:H7 recovered from these samples were subtyped using multilocus variable-number tandem repeat analysis (MLVA). Generated MLVA types were used to construct a dendrogram based on a categorical multistate coefficient and unweighted pair-group method with arithmetic mean (UPGMA). Using a focused spatial scan statistic, we identified statistically significant spatial clusters among dairy farms surrounding starling night roosts, with an increased prevalence of E. coli O157:H7-positive bovine faecal pats, increased diversity of distinguishable MLVA types and a greater number of isolates with MLVA types from bovine-starling clades versus bovine-only clades. Thus, our findings are compatible with the hypothesis that starlings have a role in the dissemination of E. coli O157:H7 among dairy farms, and further research into starling management is warranted. © 2013 Blackwell Verlag GmbH.

  20. Estimating regional plant biodiversity with GIS modelling

    Treesearch

    Louis R. Iverson; Anantha M. Prasad; Anantha M. Prasad

    1998-01-01

    We analyzed a statewide species database together with a county-level geographic information system to build a model based on well-surveyed areas to estimate species richness in less surveyed counties. The model involved GIS (Arc/Info) and statistics (S-PLUS), including spatial statistics (S+SpatialStats).

Top