Sample records for spatial statistics study

  1. A nonparametric spatial scan statistic for continuous data.

    PubMed

    Jung, Inkyung; Cho, Ho Jin

    2015-10-20

    Spatial scan statistics are widely used for spatial cluster detection, and several parametric models exist. For continuous data, a normal-based scan statistic can be used. However, the performance of the model has not been fully evaluated for non-normal data. We propose a nonparametric spatial scan statistic based on the Wilcoxon rank-sum test statistic and compared the performance of the method with parametric models via a simulation study under various scenarios. The nonparametric method outperforms the normal-based scan statistic in terms of power and accuracy in almost all cases under consideration in the simulation study. The proposed nonparametric spatial scan statistic is therefore an excellent alternative to the normal model for continuous data and is especially useful for data following skewed or heavy-tailed distributions.

  2. Hedonic approaches based on spatial econometrics and spatial statistics: application to evaluation of project benefits

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Morito; Seya, Hajime

    2009-12-01

    This study discusses the theoretical foundation of the application of spatial hedonic approaches—the hedonic approach employing spatial econometrics or/and spatial statistics—to benefits evaluation. The study highlights the limitations of the spatial econometrics approach since it uses a spatial weight matrix that is not employed by the spatial statistics approach. Further, the study presents empirical analyses by applying the Spatial Autoregressive Error Model (SAEM), which is based on the spatial econometrics approach, and the Spatial Process Model (SPM), which is based on the spatial statistics approach. SPMs are conducted based on both isotropy and anisotropy and applied to different mesh sizes. The empirical analysis reveals that the estimated benefits are quite different, especially between isotropic and anisotropic SPM and between isotropic SPM and SAEM; the estimated benefits are similar for SAEM and anisotropic SPM. The study demonstrates that the mesh size does not affect the estimated amount of benefits. Finally, the study provides a confidence interval for the estimated benefits and raises an issue with regard to benefit evaluation.

  3. RADSS: an integration of GIS, spatial statistics, and network service for regional data mining

    NASA Astrophysics Data System (ADS)

    Hu, Haitang; Bao, Shuming; Lin, Hui; Zhu, Qing

    2005-10-01

    Regional data mining, which aims at the discovery of knowledge about spatial patterns, clusters or association between regions, has widely applications nowadays in social science, such as sociology, economics, epidemiology, crime, and so on. Many applications in the regional or other social sciences are more concerned with the spatial relationship, rather than the precise geographical location. Based on the spatial continuity rule derived from Tobler's first law of geography: observations at two sites tend to be more similar to each other if the sites are close together than if far apart, spatial statistics, as an important means for spatial data mining, allow the users to extract the interesting and useful information like spatial pattern, spatial structure, spatial association, spatial outlier and spatial interaction, from the vast amount of spatial data or non-spatial data. Therefore, by integrating with the spatial statistical methods, the geographical information systems will become more powerful in gaining further insights into the nature of spatial structure of regional system, and help the researchers to be more careful when selecting appropriate models. However, the lack of such tools holds back the application of spatial data analysis techniques and development of new methods and models (e.g., spatio-temporal models). Herein, we make an attempt to develop such an integrated software and apply it into the complex system analysis for the Poyang Lake Basin. This paper presents a framework for integrating GIS, spatial statistics and network service in regional data mining, as well as their implementation. After discussing the spatial statistics methods involved in regional complex system analysis, we introduce RADSS (Regional Analysis and Decision Support System), our new regional data mining tool, by integrating GIS, spatial statistics and network service. RADSS includes the functions of spatial data visualization, exploratory spatial data analysis, and spatial statistics. The tool also includes some fundamental spatial and non-spatial database in regional population and environment, which can be updated by external database via CD or network. Utilizing this data mining and exploratory analytical tool, the users can easily and quickly analyse the huge mount of the interrelated regional data, and better understand the spatial patterns and trends of the regional development, so as to make a credible and scientific decision. Moreover, it can be used as an educational tool for spatial data analysis and environmental studies. In this paper, we also present a case study on Poyang Lake Basin as an application of the tool and spatial data mining in complex environmental studies. At last, several concluding remarks are discussed.

  4. A power comparison of generalized additive models and the spatial scan statistic in a case-control setting.

    PubMed

    Young, Robin L; Weinberg, Janice; Vieira, Verónica; Ozonoff, Al; Webster, Thomas F

    2010-07-19

    A common, important problem in spatial epidemiology is measuring and identifying variation in disease risk across a study region. In application of statistical methods, the problem has two parts. First, spatial variation in risk must be detected across the study region and, second, areas of increased or decreased risk must be correctly identified. The location of such areas may give clues to environmental sources of exposure and disease etiology. One statistical method applicable in spatial epidemiologic settings is a generalized additive model (GAM) which can be applied with a bivariate LOESS smoother to account for geographic location as a possible predictor of disease status. A natural hypothesis when applying this method is whether residential location of subjects is associated with the outcome, i.e. is the smoothing term necessary? Permutation tests are a reasonable hypothesis testing method and provide adequate power under a simple alternative hypothesis. These tests have yet to be compared to other spatial statistics. This research uses simulated point data generated under three alternative hypotheses to evaluate the properties of the permutation methods and compare them to the popular spatial scan statistic in a case-control setting. Case 1 was a single circular cluster centered in a circular study region. The spatial scan statistic had the highest power though the GAM method estimates did not fall far behind. Case 2 was a single point source located at the center of a circular cluster and Case 3 was a line source at the center of the horizontal axis of a square study region. Each had linearly decreasing logodds with distance from the point. The GAM methods outperformed the scan statistic in Cases 2 and 3. Comparing sensitivity, measured as the proportion of the exposure source correctly identified as high or low risk, the GAM methods outperformed the scan statistic in all three Cases. The GAM permutation testing methods provide a regression-based alternative to the spatial scan statistic. Across all hypotheses examined in this research, the GAM methods had competing or greater power estimates and sensitivities exceeding that of the spatial scan statistic.

  5. A power comparison of generalized additive models and the spatial scan statistic in a case-control setting

    PubMed Central

    2010-01-01

    Background A common, important problem in spatial epidemiology is measuring and identifying variation in disease risk across a study region. In application of statistical methods, the problem has two parts. First, spatial variation in risk must be detected across the study region and, second, areas of increased or decreased risk must be correctly identified. The location of such areas may give clues to environmental sources of exposure and disease etiology. One statistical method applicable in spatial epidemiologic settings is a generalized additive model (GAM) which can be applied with a bivariate LOESS smoother to account for geographic location as a possible predictor of disease status. A natural hypothesis when applying this method is whether residential location of subjects is associated with the outcome, i.e. is the smoothing term necessary? Permutation tests are a reasonable hypothesis testing method and provide adequate power under a simple alternative hypothesis. These tests have yet to be compared to other spatial statistics. Results This research uses simulated point data generated under three alternative hypotheses to evaluate the properties of the permutation methods and compare them to the popular spatial scan statistic in a case-control setting. Case 1 was a single circular cluster centered in a circular study region. The spatial scan statistic had the highest power though the GAM method estimates did not fall far behind. Case 2 was a single point source located at the center of a circular cluster and Case 3 was a line source at the center of the horizontal axis of a square study region. Each had linearly decreasing logodds with distance from the point. The GAM methods outperformed the scan statistic in Cases 2 and 3. Comparing sensitivity, measured as the proportion of the exposure source correctly identified as high or low risk, the GAM methods outperformed the scan statistic in all three Cases. Conclusions The GAM permutation testing methods provide a regression-based alternative to the spatial scan statistic. Across all hypotheses examined in this research, the GAM methods had competing or greater power estimates and sensitivities exceeding that of the spatial scan statistic. PMID:20642827

  6. A log-Weibull spatial scan statistic for time to event data.

    PubMed

    Usman, Iram; Rosychuk, Rhonda J

    2018-06-13

    Spatial scan statistics have been used for the identification of geographic clusters of elevated numbers of cases of a condition such as disease outbreaks. These statistics accompanied by the appropriate distribution can also identify geographic areas with either longer or shorter time to events. Other authors have proposed the spatial scan statistics based on the exponential and Weibull distributions. We propose the log-Weibull as an alternative distribution for the spatial scan statistic for time to events data and compare and contrast the log-Weibull and Weibull distributions through simulation studies. The effect of type I differential censoring and power have been investigated through simulated data. Methods are also illustrated on time to specialist visit data for discharged patients presenting to emergency departments for atrial fibrillation and flutter in Alberta during 2010-2011. We found northern regions of Alberta had longer times to specialist visit than other areas. We proposed the spatial scan statistic for the log-Weibull distribution as a new approach for detecting spatial clusters for time to event data. The simulation studies suggest that the test performs well for log-Weibull data.

  7. A flexible spatial scan statistic with a restricted likelihood ratio for detecting disease clusters.

    PubMed

    Tango, Toshiro; Takahashi, Kunihiko

    2012-12-30

    Spatial scan statistics are widely used tools for detection of disease clusters. Especially, the circular spatial scan statistic proposed by Kulldorff (1997) has been utilized in a wide variety of epidemiological studies and disease surveillance. However, as it cannot detect noncircular, irregularly shaped clusters, many authors have proposed different spatial scan statistics, including the elliptic version of Kulldorff's scan statistic. The flexible spatial scan statistic proposed by Tango and Takahashi (2005) has also been used for detecting irregularly shaped clusters. However, this method sets a feasible limitation of a maximum of 30 nearest neighbors for searching candidate clusters because of heavy computational load. In this paper, we show a flexible spatial scan statistic implemented with a restricted likelihood ratio proposed by Tango (2008) to (1) eliminate the limitation of 30 nearest neighbors and (2) to have surprisingly much less computational time than the original flexible spatial scan statistic. As a side effect, it is shown to be able to detect clusters with any shape reasonably well as the relative risk of the cluster becomes large via Monte Carlo simulation. We illustrate the proposed spatial scan statistic with data on mortality from cerebrovascular disease in the Tokyo Metropolitan area, Japan. Copyright © 2012 John Wiley & Sons, Ltd.

  8. Spatial Autocorrelation Approaches to Testing Residuals from Least Squares Regression.

    PubMed

    Chen, Yanguang

    2016-01-01

    In geo-statistics, the Durbin-Watson test is frequently employed to detect the presence of residual serial correlation from least squares regression analyses. However, the Durbin-Watson statistic is only suitable for ordered time or spatial series. If the variables comprise cross-sectional data coming from spatial random sampling, the test will be ineffectual because the value of Durbin-Watson's statistic depends on the sequence of data points. This paper develops two new statistics for testing serial correlation of residuals from least squares regression based on spatial samples. By analogy with the new form of Moran's index, an autocorrelation coefficient is defined with a standardized residual vector and a normalized spatial weight matrix. Then by analogy with the Durbin-Watson statistic, two types of new serial correlation indices are constructed. As a case study, the two newly presented statistics are applied to a spatial sample of 29 China's regions. These results show that the new spatial autocorrelation models can be used to test the serial correlation of residuals from regression analysis. In practice, the new statistics can make up for the deficiencies of the Durbin-Watson test.

  9. Selection of the Maximum Spatial Cluster Size of the Spatial Scan Statistic by Using the Maximum Clustering Set-Proportion Statistic.

    PubMed

    Ma, Yue; Yin, Fei; Zhang, Tao; Zhou, Xiaohua Andrew; Li, Xiaosong

    2016-01-01

    Spatial scan statistics are widely used in various fields. The performance of these statistics is influenced by parameters, such as maximum spatial cluster size, and can be improved by parameter selection using performance measures. Current performance measures are based on the presence of clusters and are thus inapplicable to data sets without known clusters. In this work, we propose a novel overall performance measure called maximum clustering set-proportion (MCS-P), which is based on the likelihood of the union of detected clusters and the applied dataset. MCS-P was compared with existing performance measures in a simulation study to select the maximum spatial cluster size. Results of other performance measures, such as sensitivity and misclassification, suggest that the spatial scan statistic achieves accurate results in most scenarios with the maximum spatial cluster sizes selected using MCS-P. Given that previously known clusters are not required in the proposed strategy, selection of the optimal maximum cluster size with MCS-P can improve the performance of the scan statistic in applications without identified clusters.

  10. Selection of the Maximum Spatial Cluster Size of the Spatial Scan Statistic by Using the Maximum Clustering Set-Proportion Statistic

    PubMed Central

    Ma, Yue; Yin, Fei; Zhang, Tao; Zhou, Xiaohua Andrew; Li, Xiaosong

    2016-01-01

    Spatial scan statistics are widely used in various fields. The performance of these statistics is influenced by parameters, such as maximum spatial cluster size, and can be improved by parameter selection using performance measures. Current performance measures are based on the presence of clusters and are thus inapplicable to data sets without known clusters. In this work, we propose a novel overall performance measure called maximum clustering set–proportion (MCS-P), which is based on the likelihood of the union of detected clusters and the applied dataset. MCS-P was compared with existing performance measures in a simulation study to select the maximum spatial cluster size. Results of other performance measures, such as sensitivity and misclassification, suggest that the spatial scan statistic achieves accurate results in most scenarios with the maximum spatial cluster sizes selected using MCS-P. Given that previously known clusters are not required in the proposed strategy, selection of the optimal maximum cluster size with MCS-P can improve the performance of the scan statistic in applications without identified clusters. PMID:26820646

  11. Evaluation of the Gini Coefficient in Spatial Scan Statistics for Detecting Irregularly Shaped Clusters

    PubMed Central

    Kim, Jiyu; Jung, Inkyung

    2017-01-01

    Spatial scan statistics with circular or elliptic scanning windows are commonly used for cluster detection in various applications, such as the identification of geographical disease clusters from epidemiological data. It has been pointed out that the method may have difficulty in correctly identifying non-compact, arbitrarily shaped clusters. In this paper, we evaluated the Gini coefficient for detecting irregularly shaped clusters through a simulation study. The Gini coefficient, the use of which in spatial scan statistics was recently proposed, is a criterion measure for optimizing the maximum reported cluster size. Our simulation study results showed that using the Gini coefficient works better than the original spatial scan statistic for identifying irregularly shaped clusters, by reporting an optimized and refined collection of clusters rather than a single larger cluster. We have provided a real data example that seems to support the simulation results. We think that using the Gini coefficient in spatial scan statistics can be helpful for the detection of irregularly shaped clusters. PMID:28129368

  12. Spatial Autocorrelation Approaches to Testing Residuals from Least Squares Regression

    PubMed Central

    Chen, Yanguang

    2016-01-01

    In geo-statistics, the Durbin-Watson test is frequently employed to detect the presence of residual serial correlation from least squares regression analyses. However, the Durbin-Watson statistic is only suitable for ordered time or spatial series. If the variables comprise cross-sectional data coming from spatial random sampling, the test will be ineffectual because the value of Durbin-Watson’s statistic depends on the sequence of data points. This paper develops two new statistics for testing serial correlation of residuals from least squares regression based on spatial samples. By analogy with the new form of Moran’s index, an autocorrelation coefficient is defined with a standardized residual vector and a normalized spatial weight matrix. Then by analogy with the Durbin-Watson statistic, two types of new serial correlation indices are constructed. As a case study, the two newly presented statistics are applied to a spatial sample of 29 China’s regions. These results show that the new spatial autocorrelation models can be used to test the serial correlation of residuals from regression analysis. In practice, the new statistics can make up for the deficiencies of the Durbin-Watson test. PMID:26800271

  13. Evaluation of Fuzzy-Logic Framework for Spatial Statistics Preserving Methods for Estimation of Missing Precipitation Data

    NASA Astrophysics Data System (ADS)

    El Sharif, H.; Teegavarapu, R. S.

    2012-12-01

    Spatial interpolation methods used for estimation of missing precipitation data at a site seldom check for their ability to preserve site and regional statistics. Such statistics are primarily defined by spatial correlations and other site-to-site statistics in a region. Preservation of site and regional statistics represents a means of assessing the validity of missing precipitation estimates at a site. This study evaluates the efficacy of a fuzzy-logic methodology for infilling missing historical daily precipitation data in preserving site and regional statistics. Rain gauge sites in the state of Kentucky, USA, are used as a case study for evaluation of this newly proposed method in comparison to traditional data infilling techniques. Several error and performance measures will be used to evaluate the methods and trade-offs in accuracy of estimation and preservation of site and regional statistics.

  14. Statistical Analysis of Sport Movement Observations: the Case of Orienteering

    NASA Astrophysics Data System (ADS)

    Amouzandeh, K.; Karimipour, F.

    2017-09-01

    Study of movement observations is becoming more popular in several applications. Particularly, analyzing sport movement time series has been considered as a demanding area. However, most of the attempts made on analyzing movement sport data have focused on spatial aspects of movement to extract some movement characteristics, such as spatial patterns and similarities. This paper proposes statistical analysis of sport movement observations, which refers to analyzing changes in the spatial movement attributes (e.g. distance, altitude and slope) and non-spatial movement attributes (e.g. speed and heart rate) of athletes. As the case study, an example dataset of movement observations acquired during the "orienteering" sport is presented and statistically analyzed.

  15. The case for increasing the statistical power of eddy covariance ecosystem studies: why, where and how?

    PubMed

    Hill, Timothy; Chocholek, Melanie; Clement, Robert

    2017-06-01

    Eddy covariance (EC) continues to provide invaluable insights into the dynamics of Earth's surface processes. However, despite its many strengths, spatial replication of EC at the ecosystem scale is rare. High equipment costs are likely to be partially responsible. This contributes to the low sampling, and even lower replication, of ecoregions in Africa, Oceania (excluding Australia) and South America. The level of replication matters as it directly affects statistical power. While the ergodicity of turbulence and temporal replication allow an EC tower to provide statistically robust flux estimates for its footprint, these principles do not extend to larger ecosystem scales. Despite the challenge of spatially replicating EC, it is clearly of interest to be able to use EC to provide statistically robust flux estimates for larger areas. We ask: How much spatial replication of EC is required for statistical confidence in our flux estimates of an ecosystem? We provide the reader with tools to estimate the number of EC towers needed to achieve a given statistical power. We show that for a typical ecosystem, around four EC towers are needed to have 95% statistical confidence that the annual flux of an ecosystem is nonzero. Furthermore, if the true flux is small relative to instrument noise and spatial variability, the number of towers needed can rise dramatically. We discuss approaches for improving statistical power and describe one solution: an inexpensive EC system that could help by making spatial replication more affordable. However, we note that diverting limited resources from other key measurements in order to allow spatial replication may not be optimal, and a balance needs to be struck. While individual EC towers are well suited to providing fluxes from the flux footprint, we emphasize that spatial replication is essential for statistically robust fluxes if a wider ecosystem is being studied. © 2016 The Authors Global Change Biology Published by John Wiley & Sons Ltd.

  16. Cluster detection methods applied to the Upper Cape Cod cancer data.

    PubMed

    Ozonoff, Al; Webster, Thomas; Vieira, Veronica; Weinberg, Janice; Ozonoff, David; Aschengrau, Ann

    2005-09-15

    A variety of statistical methods have been suggested to assess the degree and/or the location of spatial clustering of disease cases. However, there is relatively little in the literature devoted to comparison and critique of different methods. Most of the available comparative studies rely on simulated data rather than real data sets. We have chosen three methods currently used for examining spatial disease patterns: the M-statistic of Bonetti and Pagano; the Generalized Additive Model (GAM) method as applied by Webster; and Kulldorff's spatial scan statistic. We apply these statistics to analyze breast cancer data from the Upper Cape Cancer Incidence Study using three different latency assumptions. The three different latency assumptions produced three different spatial patterns of cases and controls. For 20 year latency, all three methods generally concur. However, for 15 year latency and no latency assumptions, the methods produce different results when testing for global clustering. The comparative analyses of real data sets by different statistical methods provides insight into directions for further research. We suggest a research program designed around examining real data sets to guide focused investigation of relevant features using simulated data, for the purpose of understanding how to interpret statistical methods applied to epidemiological data with a spatial component.

  17. Effect of Variable Spatial Scales on USLE-GIS Computations

    NASA Astrophysics Data System (ADS)

    Patil, R. J.; Sharma, S. K.

    2017-12-01

    Use of appropriate spatial scale is very important in Universal Soil Loss Equation (USLE) based spatially distributed soil erosion modelling. This study aimed at assessment of annual rates of soil erosion at different spatial scales/grid sizes and analysing how changes in spatial scales affect USLE-GIS computations using simulation and statistical variabilities. Efforts have been made in this study to recommend an optimum spatial scale for further USLE-GIS computations for management and planning in the study area. The present research study was conducted in Shakkar River watershed, situated in Narsinghpur and Chhindwara districts of Madhya Pradesh, India. Remote Sensing and GIS techniques were integrated with Universal Soil Loss Equation (USLE) to predict spatial distribution of soil erosion in the study area at four different spatial scales viz; 30 m, 50 m, 100 m, and 200 m. Rainfall data, soil map, digital elevation model (DEM) and an executable C++ program, and satellite image of the area were used for preparation of the thematic maps for various USLE factors. Annual rates of soil erosion were estimated for 15 years (1992 to 2006) at four different grid sizes. The statistical analysis of four estimated datasets showed that sediment loss dataset at 30 m spatial scale has a minimum standard deviation (2.16), variance (4.68), percent deviation from observed values (2.68 - 18.91 %), and highest coefficient of determination (R2 = 0.874) among all the four datasets. Thus, it is recommended to adopt this spatial scale for USLE-GIS computations in the study area due to its minimum statistical variability and better agreement with the observed sediment loss data. This study also indicates large scope for use of finer spatial scales in spatially distributed soil erosion modelling.

  18. Representing spatial structure through maps and language: Lord of the Rings encodes the spatial structure of middle Earth.

    PubMed

    Louwerse, Max M; Benesh, Nick

    2012-01-01

    Spatial mental representations can be derived from linguistic and non-linguistic sources of information. This study tested whether these representations could be formed from statistical linguistic frequencies of city names, and to what extent participants differed in their performance when they estimated spatial locations from language or maps. In a computational linguistic study, we demonstrated that co-occurrences of cities in Tolkien's Lord of the Rings trilogy and The Hobbit predicted the authentic longitude and latitude of those cities in Middle Earth. In a human study, we showed that human spatial estimates of the location of cities were very similar regardless of whether participants read Tolkien's texts or memorized a map of Middle Earth. However, text-based location estimates obtained from statistical linguistic frequencies better predicted the human text-based estimates than the human map-based estimates. These findings suggest that language encodes spatial structure of cities, and that human cognitive map representations can come from implicit statistical linguistic patterns, from explicit non-linguistic perceptual information, or from both. Copyright © 2012 Cognitive Science Society, Inc.

  19. Quantifying spatial and temporal trends in beach-dune volumetric changes using spatial statistics

    NASA Astrophysics Data System (ADS)

    Eamer, Jordan B. R.; Walker, Ian J.

    2013-06-01

    Spatial statistics are generally underutilized in coastal geomorphology, despite offering great potential for identifying and quantifying spatial-temporal trends in landscape morphodynamics. In particular, local Moran's Ii provides a statistical framework for detecting clusters of significant change in an attribute (e.g., surface erosion or deposition) and quantifying how this changes over space and time. This study analyzes and interprets spatial-temporal patterns in sediment volume changes in a beach-foredune-transgressive dune complex following removal of invasive marram grass (Ammophila spp.). Results are derived by detecting significant changes in post-removal repeat DEMs derived from topographic surveys and airborne LiDAR. The study site was separated into discrete, linked geomorphic units (beach, foredune, transgressive dune complex) to facilitate sub-landscape scale analysis of volumetric change and sediment budget responses. Difference surfaces derived from a pixel-subtraction algorithm between interval DEMs and the LiDAR baseline DEM were filtered using the local Moran's Ii method and two different spatial weights (1.5 and 5 m) to detect statistically significant change. Moran's Ii results were compared with those derived from a more spatially uniform statistical method that uses a simpler student's t distribution threshold for change detection. Morphodynamic patterns and volumetric estimates were similar between the uniform geostatistical method and Moran's Ii at a spatial weight of 5 m while the smaller spatial weight (1.5 m) consistently indicated volumetric changes of less magnitude. The larger 5 m spatial weight was most representative of broader site morphodynamics and spatial patterns while the smaller spatial weight provided volumetric changes consistent with field observations. All methods showed foredune deflation immediately following removal with increased sediment volumes into the spring via deposition at the crest and on lobes in the lee, despite erosion on the stoss slope and dune toe. Generally, the foredune became wider by landward extension and the seaward slope recovered from erosion to a similar height and form to that of pre-restoration despite remaining essentially free of vegetation.

  20. Latent spatial models and sampling design for landscape genetics

    USGS Publications Warehouse

    Hanks, Ephraim M.; Hooten, Mevin B.; Knick, Steven T.; Oyler-McCance, Sara J.; Fike, Jennifer A.; Cross, Todd B.; Schwartz, Michael K.

    2016-01-01

    We propose a spatially-explicit approach for modeling genetic variation across space and illustrate how this approach can be used to optimize spatial prediction and sampling design for landscape genetic data. We propose a multinomial data model for categorical microsatellite allele data commonly used in landscape genetic studies, and introduce a latent spatial random effect to allow for spatial correlation between genetic observations. We illustrate how modern dimension reduction approaches to spatial statistics can allow for efficient computation in landscape genetic statistical models covering large spatial domains. We apply our approach to propose a retrospective spatial sampling design for greater sage-grouse (Centrocercus urophasianus) population genetics in the western United States.

  1. Automation method to identify the geological structure of seabed using spatial statistic analysis of echo sounding data

    NASA Astrophysics Data System (ADS)

    Kwon, O.; Kim, W.; Kim, J.

    2017-12-01

    Recently construction of subsea tunnel has been increased globally. For safe construction of subsea tunnel, identifying the geological structure including fault at design and construction stage is more than important. Then unlike the tunnel in land, it's very difficult to obtain the data on geological structure because of the limit in geological survey. This study is intended to challenge such difficulties in a way of developing the technology to identify the geological structure of seabed automatically by using echo sounding data. When investigation a potential site for a deep subsea tunnel, there is the technical and economical limit with borehole of geophysical investigation. On the contrary, echo sounding data is easily obtainable while information reliability is higher comparing to above approaches. This study is aimed at developing the algorithm that identifies the large scale of geological structure of seabed using geostatic approach. This study is based on theory of structural geology that topographic features indicate geological structure. Basic concept of algorithm is outlined as follows; (1) convert the seabed topography to the grid data using echo sounding data, (2) apply the moving window in optimal size to the grid data, (3) estimate the spatial statistics of the grid data in the window area, (4) set the percentile standard of spatial statistics, (5) display the values satisfying the standard on the map, (6) visualize the geological structure on the map. The important elements in this study include optimal size of moving window, kinds of optimal spatial statistics and determination of optimal percentile standard. To determine such optimal elements, a numerous simulations were implemented. Eventually, user program based on R was developed using optimal analysis algorithm. The user program was designed to identify the variations of various spatial statistics. It leads to easy analysis of geological structure depending on variation of spatial statistics by arranging to easily designate the type of spatial statistics and percentile standard. This research was supported by the Korea Agency for Infrastructure Technology Advancement under the Ministry of Land, Infrastructure and Transport of the Korean government. (Project Number: 13 Construction Research T01)

  2. Geographical distribution patterns of iodine in drinking-water and its associations with geological factors in Shandong Province, China.

    PubMed

    Gao, Jie; Zhang, Zhijie; Hu, Yi; Bian, Jianchao; Jiang, Wen; Wang, Xiaoming; Sun, Liqian; Jiang, Qingwu

    2014-05-19

    County-based spatial distribution characteristics and the related geological factors for iodine in drinking-water were studied in Shandong Province (China). Spatial autocorrelation analysis and spatial scan statistic were applied to analyze the spatial characteristics. Generalized linear models (GLMs) and geographically weighted regression (GWR) studies were conducted to explore the relationship between water iodine level and its related geological factors. The spatial distribution of iodine in drinking-water was significantly heterogeneous in Shandong Province (Moran's I = 0.52, Z = 7.4, p < 0.001). Two clusters for high iodine in drinking-water were identified in the south-western and north-western parts of Shandong Province by the purely spatial scan statistic approach. Both GLMs and GWR indicated a significantly global association between iodine in drinking-water and geological factors. Furthermore, GWR showed obviously spatial variability across the study region. Soil type and distance to Yellow River were statistically significant at most areas of Shandong Province, confirming the hypothesis that the Yellow River causes iodine deposits in Shandong Province. Our results suggested that the more effective regional monitoring plan and water improvement strategies should be strengthened targeting at the cluster areas based on the characteristics of geological factors and the spatial variability of local relationships between iodine in drinking-water and geological factors.

  3. A spatial epidemiological analysis of self-rated mental health in the slums of Dhaka

    PubMed Central

    2011-01-01

    Background The deprived physical environments present in slums are well-known to have adverse health effects on their residents. However, little is known about the health effects of the social environments in slums. Moreover, neighbourhood quantitative spatial analyses of the mental health status of slum residents are still rare. The aim of this paper is to study self-rated mental health data in several slums of Dhaka, Bangladesh, by accounting for neighbourhood social and physical associations using spatial statistics. We hypothesised that mental health would show a significant spatial pattern in different population groups, and that the spatial patterns would relate to spatially-correlated health-determining factors (HDF). Methods We applied a spatial epidemiological approach, including non-spatial ANOVA/ANCOVA, as well as global and local univariate and bivariate Moran's I statistics. The WHO-5 Well-being Index was used as a measure of self-rated mental health. Results We found that poor mental health (WHO-5 scores < 13) among the adult population (age ≥15) was prevalent in all slum settlements. We detected spatially autocorrelated WHO-5 scores (i.e., spatial clusters of poor and good mental health among different population groups). Further, we detected spatial associations between mental health and housing quality, sanitation, income generation, environmental health knowledge, education, age, gender, flood non-affectedness, and selected properties of the natural environment. Conclusions Spatial patterns of mental health were detected and could be partly explained by spatially correlated HDF. We thereby showed that the socio-physical neighbourhood was significantly associated with health status, i.e., mental health at one location was spatially dependent on the mental health and HDF prevalent at neighbouring locations. Furthermore, the spatial patterns point to severe health disparities both within and between the slums. In addition to examining health outcomes, the methodology used here is also applicable to residuals of regression models, such as helping to avoid violating the assumption of data independence that underlies many statistical approaches. We assume that similar spatial structures can be found in other studies focussing on neighbourhood effects on health, and therefore argue for a more widespread incorporation of spatial statistics in epidemiological studies. PMID:21599932

  4. Spatial Statistical and Modeling Strategy for Inventorying and Monitoring Ecosystem Resources at Multiple Scales and Resolution Levels

    Treesearch

    Robin M. Reich; C. Aguirre-Bravo; M.S. Williams

    2006-01-01

    A statistical strategy for spatial estimation and modeling of natural and environmental resource variables and indicators is presented. This strategy is part of an inventory and monitoring pilot study that is being carried out in the Mexican states of Jalisco and Colima. Fine spatial resolution estimates of key variables and indicators are outputs that will allow the...

  5. New insights into the endophenotypic status of cognition in bipolar disorder: genetic modelling study of twins and siblings.

    PubMed

    Georgiades, Anna; Rijsdijk, Fruhling; Kane, Fergus; Rebollo-Mesa, Irene; Kalidindi, Sridevi; Schulze, Katja K; Stahl, Daniel; Walshe, Muriel; Sahakian, Barbara J; McDonald, Colm; Hall, Mei-Hua; Murray, Robin M; Kravariti, Eugenia

    2016-06-01

    Twin studies have lacked statistical power to apply advanced genetic modelling techniques to the search for cognitive endophenotypes for bipolar disorder. To quantify the shared genetic variability between bipolar disorder and cognitive measures. Structural equation modelling was performed on cognitive data collected from 331 twins/siblings of varying genetic relatedness, disease status and concordance for bipolar disorder. Using a parsimonious AE model, verbal episodic and spatial working memory showed statistically significant genetic correlations with bipolar disorder (rg = |0.23|-|0.27|), which lost statistical significance after covarying for affective symptoms. Using an ACE model, IQ and visual-spatial learning showed statistically significant genetic correlations with bipolar disorder (rg = |0.51|-|1.00|), which remained significant after covarying for affective symptoms. Verbal episodic and spatial working memory capture a modest fraction of the bipolar diathesis. IQ and visual-spatial learning may tap into genetic substrates of non-affective symptomatology in bipolar disorder. © The Royal College of Psychiatrists 2016.

  6. A spatial scan statistic for nonisotropic two-level risk cluster.

    PubMed

    Li, Xiao-Zhou; Wang, Jin-Feng; Yang, Wei-Zhong; Li, Zhong-Jie; Lai, Sheng-Jie

    2012-01-30

    Spatial scan statistic methods are commonly used for geographical disease surveillance and cluster detection. The standard spatial scan statistic does not model any variability in the underlying risks of subregions belonging to a detected cluster. For a multilevel risk cluster, the isotonic spatial scan statistic could model a centralized high-risk kernel in the cluster. Because variations in disease risks are anisotropic owing to different social, economical, or transport factors, the real high-risk kernel will not necessarily take the central place in a whole cluster area. We propose a spatial scan statistic for a nonisotropic two-level risk cluster, which could be used to detect a whole cluster and a noncentralized high-risk kernel within the cluster simultaneously. The performance of the three methods was evaluated through an intensive simulation study. Our proposed nonisotropic two-level method showed better power and geographical precision with two-level risk cluster scenarios, especially for a noncentralized high-risk kernel. Our proposed method is illustrated using the hand-foot-mouth disease data in Pingdu City, Shandong, China in May 2009, compared with two other methods. In this practical study, the nonisotropic two-level method is the only way to precisely detect a high-risk area in a detected whole cluster. Copyright © 2011 John Wiley & Sons, Ltd.

  7. Effects of Heterogeniety on Spatial Pattern Analysis of Wild Pistachio Trees in Zagros Woodlands, Iran

    NASA Astrophysics Data System (ADS)

    Erfanifard, Y.; Rezayan, F.

    2014-10-01

    Vegetation heterogeneity biases second-order summary statistics, e.g., Ripley's K-function, applied for spatial pattern analysis in ecology. Second-order investigation based on Ripley's K-function and related statistics (i.e., L- and pair correlation function g) is widely used in ecology to develop hypothesis on underlying processes by characterizing spatial patterns of vegetation. The aim of this study was to demonstrate effects of underlying heterogeneity of wild pistachio (Pistacia atlantica Desf.) trees on the second-order summary statistics of point pattern analysis in a part of Zagros woodlands, Iran. The spatial distribution of 431 wild pistachio trees was accurately mapped in a 40 ha stand in the Wild Pistachio & Almond Research Site, Fars province, Iran. Three commonly used second-order summary statistics (i.e., K-, L-, and g-functions) were applied to analyse their spatial pattern. The two-sample Kolmogorov-Smirnov goodness-of-fit test showed that the observed pattern significantly followed an inhomogeneous Poisson process null model in the study region. The results also showed that heterogeneous pattern of wild pistachio trees biased the homogeneous form of K-, L-, and g-functions, demonstrating a stronger aggregation of the trees at the scales of 0-50 m than actually existed and an aggregation at scales of 150-200 m, while regularly distributed. Consequently, we showed that heterogeneity of point patterns may bias the results of homogeneous second-order summary statistics and we also suggested applying inhomogeneous summary statistics with related null models for spatial pattern analysis of heterogeneous vegetations.

  8. Spatial Accessibility and Availability Measures and Statistical Properties in the Food Environment

    PubMed Central

    Van Meter, E.; Lawson, A.B.; Colabianchi, N.; Nichols, M.; Hibbert, J.; Porter, D.; Liese, A.D.

    2010-01-01

    Spatial accessibility is of increasing interest in the health sciences. This paper addresses the statistical use of spatial accessibility and availability indices. These measures are evaluated via an extensive simulation based on cluster models for local food outlet density. We derived Monte Carlo critical values for several statistical tests based on the indices. In particular we are interested in the ability to make inferential comparisons between different study areas where indices of accessibility and availability are to be calculated. We derive tests of mean difference as well as tests for differences in Moran's I for spatial correlation for each of the accessibility and availability indices. We also apply these new statistical tests to a data example based on two counties in South Carolina for various accessibility and availability measures calculated for food outlets, stores, and restaurants. PMID:21499528

  9. Initial phantom study comparing image quality in computed tomography using adaptive statistical iterative reconstruction and new adaptive statistical iterative reconstruction v.

    PubMed

    Lim, Kyungjae; Kwon, Heejin; Cho, Jinhan; Oh, Jongyoung; Yoon, Seongkuk; Kang, Myungjin; Ha, Dongho; Lee, Jinhwa; Kang, Eunju

    2015-01-01

    The purpose of this study was to assess the image quality of a novel advanced iterative reconstruction (IR) method called as "adaptive statistical IR V" (ASIR-V) by comparing the image noise, contrast-to-noise ratio (CNR), and spatial resolution from those of filtered back projection (FBP) and adaptive statistical IR (ASIR) on computed tomography (CT) phantom image. We performed CT scans at 5 different tube currents (50, 70, 100, 150, and 200 mA) using 3 types of CT phantoms. Scanned images were subsequently reconstructed in 7 different scan settings, such as FBP, and 3 levels of ASIR and ASIR-V (30%, 50%, and 70%). The image noise was measured in the first study using body phantom. The CNR was measured in the second study using contrast phantom and the spatial resolutions were measured in the third study using a high-resolution phantom. We compared the image noise, CNR, and spatial resolution among the 7 reconstructed image scan settings to determine whether noise reduction, high CNR, and high spatial resolution could be achieved at ASIR-V. At quantitative analysis of the first and second studies, it showed that the images reconstructed using ASIR-V had reduced image noise and improved CNR compared with those of FBP and ASIR (P < 0.001). At qualitative analysis of the third study, it also showed that the images reconstructed using ASIR-V had significantly improved spatial resolution than those of FBP and ASIR (P < 0.001). Our phantom studies showed that ASIR-V provides a significant reduction in image noise and a significant improvement in CNR as well as spatial resolution. Therefore, this technique has the potential to reduce the radiation dose further without compromising image quality.

  10. Geographical Distribution Patterns of Iodine in Drinking-Water and Its Associations with Geological Factors in Shandong Province, China

    PubMed Central

    Gao, Jie; Zhang, Zhijie; Hu, Yi; Bian, Jianchao; Jiang, Wen; Wang, Xiaoming; Sun, Liqian; Jiang, Qingwu

    2014-01-01

    County-based spatial distribution characteristics and the related geological factors for iodine in drinking-water were studied in Shandong Province (China). Spatial autocorrelation analysis and spatial scan statistic were applied to analyze the spatial characteristics. Generalized linear models (GLMs) and geographically weighted regression (GWR) studies were conducted to explore the relationship between water iodine level and its related geological factors. The spatial distribution of iodine in drinking-water was significantly heterogeneous in Shandong Province (Moran’s I = 0.52, Z = 7.4, p < 0.001). Two clusters for high iodine in drinking-water were identified in the south-western and north-western parts of Shandong Province by the purely spatial scan statistic approach. Both GLMs and GWR indicated a significantly global association between iodine in drinking-water and geological factors. Furthermore, GWR showed obviously spatial variability across the study region. Soil type and distance to Yellow River were statistically significant at most areas of Shandong Province, confirming the hypothesis that the Yellow River causes iodine deposits in Shandong Province. Our results suggested that the more effective regional monitoring plan and water improvement strategies should be strengthened targeting at the cluster areas based on the characteristics of geological factors and the spatial variability of local relationships between iodine in drinking-water and geological factors. PMID:24852390

  11. A study on the use of Gumbel approximation with the Bernoulli spatial scan statistic.

    PubMed

    Read, S; Bath, P A; Willett, P; Maheswaran, R

    2013-08-30

    The Bernoulli version of the spatial scan statistic is a well established method of detecting localised spatial clusters in binary labelled point data, a typical application being the epidemiological case-control study. A recent study suggests the inferential accuracy of several versions of the spatial scan statistic (principally the Poisson version) can be improved, at little computational cost, by using the Gumbel distribution, a method now available in SaTScan(TM) (www.satscan.org). We study in detail the effect of this technique when applied to the Bernoulli version and demonstrate that it is highly effective, albeit with some increase in false alarm rates at certain significance thresholds. We explain how this increase is due to the discrete nature of the Bernoulli spatial scan statistic and demonstrate that it can affect even small p-values. Despite this, we argue that the Gumbel method is actually preferable for very small p-values. Furthermore, we extend previous research by running benchmark trials on 12 000 synthetic datasets, thus demonstrating that the overall detection capability of the Bernoulli version (i.e. ratio of power to false alarm rate) is not noticeably affected by the use of the Gumbel method. We also provide an example application of the Gumbel method using data on hospital admissions for chronic obstructive pulmonary disease. Copyright © 2013 John Wiley & Sons, Ltd.

  12. Applications of spatial statistical network models to stream data

    USGS Publications Warehouse

    Isaak, Daniel J.; Peterson, Erin E.; Ver Hoef, Jay M.; Wenger, Seth J.; Falke, Jeffrey A.; Torgersen, Christian E.; Sowder, Colin; Steel, E. Ashley; Fortin, Marie-Josée; Jordan, Chris E.; Ruesch, Aaron S.; Som, Nicholas; Monestiez, Pascal

    2014-01-01

    Streams and rivers host a significant portion of Earth's biodiversity and provide important ecosystem services for human populations. Accurate information regarding the status and trends of stream resources is vital for their effective conservation and management. Most statistical techniques applied to data measured on stream networks were developed for terrestrial applications and are not optimized for streams. A new class of spatial statistical model, based on valid covariance structures for stream networks, can be used with many common types of stream data (e.g., water quality attributes, habitat conditions, biological surveys) through application of appropriate distributions (e.g., Gaussian, binomial, Poisson). The spatial statistical network models account for spatial autocorrelation (i.e., nonindependence) among measurements, which allows their application to databases with clustered measurement locations. Large amounts of stream data exist in many areas where spatial statistical analyses could be used to develop novel insights, improve predictions at unsampled sites, and aid in the design of efficient monitoring strategies at relatively low cost. We review the topic of spatial autocorrelation and its effects on statistical inference, demonstrate the use of spatial statistics with stream datasets relevant to common research and management questions, and discuss additional applications and development potential for spatial statistics on stream networks. Free software for implementing the spatial statistical network models has been developed that enables custom applications with many stream databases.

  13. Local multiplicity adjustment for the spatial scan statistic using the Gumbel distribution.

    PubMed

    Gangnon, Ronald E

    2012-03-01

    The spatial scan statistic is an important and widely used tool for cluster detection. It is based on the simultaneous evaluation of the statistical significance of the maximum likelihood ratio test statistic over a large collection of potential clusters. In most cluster detection problems, there is variation in the extent of local multiplicity across the study region. For example, using a fixed maximum geographic radius for clusters, urban areas typically have many overlapping potential clusters, whereas rural areas have relatively few. The spatial scan statistic does not account for local multiplicity variation. We describe a previously proposed local multiplicity adjustment based on a nested Bonferroni correction and propose a novel adjustment based on a Gumbel distribution approximation to the distribution of a local scan statistic. We compare the performance of all three statistics in terms of power and a novel unbiased cluster detection criterion. These methods are then applied to the well-known New York leukemia dataset and a Wisconsin breast cancer incidence dataset. © 2011, The International Biometric Society.

  14. Local multiplicity adjustment for the spatial scan statistic using the Gumbel distribution

    PubMed Central

    Gangnon, Ronald E.

    2011-01-01

    Summary The spatial scan statistic is an important and widely used tool for cluster detection. It is based on the simultaneous evaluation of the statistical significance of the maximum likelihood ratio test statistic over a large collection of potential clusters. In most cluster detection problems, there is variation in the extent of local multiplicity across the study region. For example, using a fixed maximum geographic radius for clusters, urban areas typically have many overlapping potential clusters, while rural areas have relatively few. The spatial scan statistic does not account for local multiplicity variation. We describe a previously proposed local multiplicity adjustment based on a nested Bonferroni correction and propose a novel adjustment based on a Gumbel distribution approximation to the distribution of a local scan statistic. We compare the performance of all three statistics in terms of power and a novel unbiased cluster detection criterion. These methods are then applied to the well-known New York leukemia dataset and a Wisconsin breast cancer incidence dataset. PMID:21762118

  15. Synthesis of instrumentally and historically recorded earthquakes and studying their spatial statistical relationship (A case study: Dasht-e-Biaz, Eastern Iran)

    NASA Astrophysics Data System (ADS)

    Jalali, Mohammad; Ramazi, Hamidreza

    2018-06-01

    Earthquake catalogues are the main source of statistical seismology for the long term studies of earthquake occurrence. Therefore, studying the spatiotemporal problems is important to reduce the related uncertainties in statistical seismology studies. A statistical tool, time normalization method, has been determined to revise time-frequency relationship in one of the most active regions of Asia, Eastern Iran and West of Afghanistan, (a and b were calculated around 8.84 and 1.99 in the exponential scale, not logarithmic scale). Geostatistical simulation method has been further utilized to reduce the uncertainties in the spatial domain. A geostatistical simulation produces a representative, synthetic catalogue with 5361 events to reduce spatial uncertainties. The synthetic database is classified using a Geographical Information System, GIS, based on simulated magnitudes to reveal the underlying seismicity patterns. Although some regions with highly seismicity correspond to known faults, significantly, as far as seismic patterns are concerned, the new method highlights possible locations of interest that have not been previously identified. It also reveals some previously unrecognized lineation and clusters in likely future strain release.

  16. Statistical Approaches Used to Assess the Equity of Access to Food Outlets: A Systematic Review

    PubMed Central

    Lamb, Karen E.; Thornton, Lukar E.; Cerin, Ester; Ball, Kylie

    2015-01-01

    Background Inequalities in eating behaviours are often linked to the types of food retailers accessible in neighbourhood environments. Numerous studies have aimed to identify if access to healthy and unhealthy food retailers is socioeconomically patterned across neighbourhoods, and thus a potential risk factor for dietary inequalities. Existing reviews have examined differences between methodologies, particularly focussing on neighbourhood and food outlet access measure definitions. However, no review has informatively discussed the suitability of the statistical methodologies employed; a key issue determining the validity of study findings. Our aim was to examine the suitability of statistical approaches adopted in these analyses. Methods Searches were conducted for articles published from 2000–2014. Eligible studies included objective measures of the neighbourhood food environment and neighbourhood-level socio-economic status, with a statistical analysis of the association between food outlet access and socio-economic status. Results Fifty-four papers were included. Outlet accessibility was typically defined as the distance to the nearest outlet from the neighbourhood centroid, or as the number of food outlets within a neighbourhood (or buffer). To assess if these measures were linked to neighbourhood disadvantage, common statistical methods included ANOVA, correlation, and Poisson or negative binomial regression. Although all studies involved spatial data, few considered spatial analysis techniques or spatial autocorrelation. Conclusions With advances in GIS software, sophisticated measures of neighbourhood outlet accessibility can be considered. However, approaches to statistical analysis often appear less sophisticated. Care should be taken to consider assumptions underlying the analysis and the possibility of spatially correlated residuals which could affect the results. PMID:29546115

  17. Local indicators of geocoding accuracy (LIGA): theory and application

    PubMed Central

    Jacquez, Geoffrey M; Rommel, Robert

    2009-01-01

    Background Although sources of positional error in geographic locations (e.g. geocoding error) used for describing and modeling spatial patterns are widely acknowledged, research on how such error impacts the statistical results has been limited. In this paper we explore techniques for quantifying the perturbability of spatial weights to different specifications of positional error. Results We find that a family of curves describes the relationship between perturbability and positional error, and use these curves to evaluate sensitivity of alternative spatial weight specifications to positional error both globally (when all locations are considered simultaneously) and locally (to identify those locations that would benefit most from increased geocoding accuracy). We evaluate the approach in simulation studies, and demonstrate it using a case-control study of bladder cancer in south-eastern Michigan. Conclusion Three results are significant. First, the shape of the probability distributions of positional error (e.g. circular, elliptical, cross) has little impact on the perturbability of spatial weights, which instead depends on the mean positional error. Second, our methodology allows researchers to evaluate the sensitivity of spatial statistics to positional accuracy for specific geographies. This has substantial practical implications since it makes possible routine sensitivity analysis of spatial statistics to positional error arising in geocoded street addresses, global positioning systems, LIDAR and other geographic data. Third, those locations with high perturbability (most sensitive to positional error) and high leverage (that contribute the most to the spatial weight being considered) will benefit the most from increased positional accuracy. These are rapidly identified using a new visualization tool we call the LIGA scatterplot. Herein lies a paradox for spatial analysis: For a given level of positional error increasing sample density to more accurately follow the underlying population distribution increases perturbability and introduces error into the spatial weights matrix. In some studies positional error may not impact the statistical results, and in others it might invalidate the results. We therefore must understand the relationships between positional accuracy and the perturbability of the spatial weights in order to have confidence in a study's results. PMID:19863795

  18. Spatio-temporal surveillance of water based infectious disease (malaria) in Rawalpindi, Pakistan using geostatistical modeling techniques.

    PubMed

    Ahmad, Sheikh Saeed; Aziz, Neelam; Butt, Amna; Shabbir, Rabia; Erum, Summra

    2015-09-01

    One of the features of medical geography that has made it so useful in health research is statistical spatial analysis, which enables the quantification and qualification of health events. The main objective of this research was to study the spatial distribution patterns of malaria in Rawalpindi district using spatial statistical techniques to identify the hot spots and the possible risk factor. Spatial statistical analyses were done in ArcGIS, and satellite images for land use classification were processed in ERDAS Imagine. Four hundred and fifty water samples were also collected from the study area to identify the presence or absence of any microbial contamination. The results of this study indicated that malaria incidence varied according to geographical location, with eco-climatic condition and showing significant positive spatial autocorrelation. Hotspots or location of clusters were identified using Getis-Ord Gi* statistic. Significant clustering of malaria incidence occurred in rural central part of the study area including Gujar Khan, Kaller Syedan, and some part of Kahuta and Rawalpindi Tehsil. Ordinary least square (OLS) regression analysis was conducted to analyze the relationship of risk factors with the disease cases. Relationship of different land cover with the disease cases indicated that malaria was more related with agriculture, low vegetation, and water class. Temporal variation of malaria cases showed significant positive association with the meteorological variables including average monthly rainfall and temperature. The results of the study further suggested that water supply and sewage system and solid waste collection system needs a serious attention to prevent any outbreak in the study area.

  19. Studies in the use of cloud type statistics in mission simulation

    NASA Technical Reports Server (NTRS)

    Fowler, M. G.; Willand, J. H.; Chang, D. T.; Cogan, J. L.

    1974-01-01

    A study to further improve NASA's global cloud statistics for mission simulation is reported. Regional homogeneity in cloud types was examined; most of the original region boundaries defined for cloud cover amount in previous studies were supported by the statistics on cloud types and the number of cloud layers. Conditionality in cloud statistics was also examined with special emphasis on temporal and spatial dependencies, and cloud type interdependence. Temporal conditionality was found up to 12 hours, and spatial conditionality up to 200 miles; the diurnal cycle in convective cloudiness was clearly evident. As expected, the joint occurrence of different cloud types reflected the dynamic processes which form the clouds. Other phases of the study improved the cloud type statistics for several region and proposed a mission simulation scheme combining the 4-dimensional atmospheric model, sponsored by MSFC, with the global cloud model.

  20. A flexibly shaped space-time scan statistic for disease outbreak detection and monitoring.

    PubMed

    Takahashi, Kunihiko; Kulldorff, Martin; Tango, Toshiro; Yih, Katherine

    2008-04-11

    Early detection of disease outbreaks enables public health officials to implement disease control and prevention measures at the earliest possible time. A time periodic geographical disease surveillance system based on a cylindrical space-time scan statistic has been used extensively for disease surveillance along with the SaTScan software. In the purely spatial setting, many different methods have been proposed to detect spatial disease clusters. In particular, some spatial scan statistics are aimed at detecting irregularly shaped clusters which may not be detected by the circular spatial scan statistic. Based on the flexible purely spatial scan statistic, we propose a flexibly shaped space-time scan statistic for early detection of disease outbreaks. The performance of the proposed space-time scan statistic is compared with that of the cylindrical scan statistic using benchmark data. In order to compare their performances, we have developed a space-time power distribution by extending the purely spatial bivariate power distribution. Daily syndromic surveillance data in Massachusetts, USA, are used to illustrate the proposed test statistic. The flexible space-time scan statistic is well suited for detecting and monitoring disease outbreaks in irregularly shaped areas.

  1. Computational pathology: Exploring the spatial dimension of tumor ecology.

    PubMed

    Nawaz, Sidra; Yuan, Yinyin

    2016-09-28

    Tumors are evolving ecosystems where cancer subclones and the microenvironment interact. This is analogous to interaction dynamics between species in their natural habitats, which is a prime area of study in ecology. Spatial statistics are frequently used in ecological studies to infer complex relations including predator-prey, resource dependency and co-evolution. Recently, the emerging field of computational pathology has enabled high-throughput spatial analysis by using image processing to identify different cell types and their locations within histological tumor samples. We discuss how these data may be analyzed with spatial statistics used in ecology to reveal patterns and advance our understanding of ecological interactions occurring among cancer cells and their microenvironment. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  2. Spatial and temporal patterns of locally-acquired dengue transmission in northern Queensland, Australia, 1993-2012.

    PubMed

    Naish, Suchithra; Dale, Pat; Mackenzie, John S; McBride, John; Mengersen, Kerrie; Tong, Shilu

    2014-01-01

    Dengue has been a major public health concern in Australia since it re-emerged in Queensland in 1992-1993. We explored spatio-temporal characteristics of locally-acquired dengue cases in northern tropical Queensland, Australia during the period 1993-2012. Locally-acquired notified cases of dengue were collected for northern tropical Queensland from 1993 to 2012. Descriptive spatial and temporal analyses were conducted using geographic information system tools and geostatistical techniques. 2,398 locally-acquired dengue cases were recorded in northern tropical Queensland during the study period. The areas affected by the dengue cases exhibited spatial and temporal variation over the study period. Notified cases of dengue occurred more frequently in autumn. Mapping of dengue by statistical local areas (census units) reveals the presence of substantial spatio-temporal variation over time and place. Statistically significant differences in dengue incidence rates among males and females (with more cases in females) (χ(2) = 15.17, d.f.  = 1, p<0.01). Differences were observed among age groups, but these were not statistically significant. There was a significant positive spatial autocorrelation of dengue incidence for the four sub-periods, with the Moran's I statistic ranging from 0.011 to 0.463 (p<0.01). Semi-variogram analysis and smoothed maps created from interpolation techniques indicate that the pattern of spatial autocorrelation was not homogeneous across the northern Queensland. Tropical areas are potential high-risk areas for mosquito-borne diseases such as dengue. This study demonstrated that the locally-acquired dengue cases have exhibited a spatial and temporal variation over the past twenty years in northern tropical Queensland, Australia. Therefore, this study provides an impetus for further investigation of clusters and risk factors in these high-risk areas.

  3. Spatial and Temporal Patterns of Locally-Acquired Dengue Transmission in Northern Queensland, Australia, 1993–2012

    PubMed Central

    Naish, Suchithra; Dale, Pat; Mackenzie, John S.; McBride, John; Mengersen, Kerrie; Tong, Shilu

    2014-01-01

    Background Dengue has been a major public health concern in Australia since it re-emerged in Queensland in 1992–1993. We explored spatio-temporal characteristics of locally-acquired dengue cases in northern tropical Queensland, Australia during the period 1993–2012. Methods Locally-acquired notified cases of dengue were collected for northern tropical Queensland from 1993 to 2012. Descriptive spatial and temporal analyses were conducted using geographic information system tools and geostatistical techniques. Results 2,398 locally-acquired dengue cases were recorded in northern tropical Queensland during the study period. The areas affected by the dengue cases exhibited spatial and temporal variation over the study period. Notified cases of dengue occurred more frequently in autumn. Mapping of dengue by statistical local areas (census units) reveals the presence of substantial spatio-temporal variation over time and place. Statistically significant differences in dengue incidence rates among males and females (with more cases in females) (χ2 = 15.17, d.f. = 1, p<0.01). Differences were observed among age groups, but these were not statistically significant. There was a significant positive spatial autocorrelation of dengue incidence for the four sub-periods, with the Moran's I statistic ranging from 0.011 to 0.463 (p<0.01). Semi-variogram analysis and smoothed maps created from interpolation techniques indicate that the pattern of spatial autocorrelation was not homogeneous across the northern Queensland. Conclusions Tropical areas are potential high-risk areas for mosquito-borne diseases such as dengue. This study demonstrated that the locally-acquired dengue cases have exhibited a spatial and temporal variation over the past twenty years in northern tropical Queensland, Australia. Therefore, this study provides an impetus for further investigation of clusters and risk factors in these high-risk areas. PMID:24691549

  4. Regression methods for spatially correlated data: an example using beetle attacks in a seed orchard

    Treesearch

    Preisler Haiganoush; Nancy G. Rappaport; David L. Wood

    1997-01-01

    We present a statistical procedure for studying the simultaneous effects of observed covariates and unmeasured spatial variables on responses of interest. The procedure uses regression type analyses that can be used with existing statistical software packages. An example using the rate of twig beetle attacks on Douglas-fir trees in a seed orchard illustrates the...

  5. Monitoring and identification of spatiotemporal landscape changes in multiple remote sensing images by using a stratified conditional Latin hypercube sampling approach and geostatistical simulation.

    PubMed

    Lin, Yu-Pin; Chu, Hone-Jay; Huang, Yu-Long; Tang, Chia-Hsi; Rouhani, Shahrokh

    2011-06-01

    This study develops a stratified conditional Latin hypercube sampling (scLHS) approach for multiple, remotely sensed, normalized difference vegetation index (NDVI) images. The objective is to sample, monitor, and delineate spatiotemporal landscape changes, including spatial heterogeneity and variability, in a given area. The scLHS approach, which is based on the variance quadtree technique (VQT) and the conditional Latin hypercube sampling (cLHS) method, selects samples in order to delineate landscape changes from multiple NDVI images. The images are then mapped for calibration and validation by using sequential Gaussian simulation (SGS) with the scLHS selected samples. Spatial statistical results indicate that in terms of their statistical distribution, spatial distribution, and spatial variation, the statistics and variograms of the scLHS samples resemble those of multiple NDVI images more closely than those of cLHS and VQT samples. Moreover, the accuracy of simulated NDVI images based on SGS with scLHS samples is significantly better than that of simulated NDVI images based on SGS with cLHS samples and VQT samples, respectively. However, the proposed approach efficiently monitors the spatial characteristics of landscape changes, including the statistics, spatial variability, and heterogeneity of NDVI images. In addition, SGS with the scLHS samples effectively reproduces spatial patterns and landscape changes in multiple NDVI images.

  6. Computationally efficient statistical differential equation modeling using homogenization

    USGS Publications Warehouse

    Hooten, Mevin B.; Garlick, Martha J.; Powell, James A.

    2013-01-01

    Statistical models using partial differential equations (PDEs) to describe dynamically evolving natural systems are appearing in the scientific literature with some regularity in recent years. Often such studies seek to characterize the dynamics of temporal or spatio-temporal phenomena such as invasive species, consumer-resource interactions, community evolution, and resource selection. Specifically, in the spatial setting, data are often available at varying spatial and temporal scales. Additionally, the necessary numerical integration of a PDE may be computationally infeasible over the spatial support of interest. We present an approach to impose computationally advantageous changes of support in statistical implementations of PDE models and demonstrate its utility through simulation using a form of PDE known as “ecological diffusion.” We also apply a statistical ecological diffusion model to a data set involving the spread of mountain pine beetle (Dendroctonus ponderosae) in Idaho, USA.

  7. Spatial statistical analysis of tree deaths using airborne digital imagery

    NASA Astrophysics Data System (ADS)

    Chang, Ya-Mei; Baddeley, Adrian; Wallace, Jeremy; Canci, Michael

    2013-04-01

    High resolution digital airborne imagery offers unprecedented opportunities for observation and monitoring of vegetation, providing the potential to identify, locate and track individual vegetation objects over time. Analytical tools are required to quantify relevant information. In this paper, locations of trees over a large area of native woodland vegetation were identified using morphological image analysis techniques. Methods of spatial point process statistics were then applied to estimate the spatially-varying tree death risk, and to show that it is significantly non-uniform. [Tree deaths over the area were detected in our previous work (Wallace et al., 2008).] The study area is a major source of ground water for the city of Perth, and the work was motivated by the need to understand and quantify vegetation changes in the context of water extraction and drying climate. The influence of hydrological variables on tree death risk was investigated using spatial statistics (graphical exploratory methods, spatial point pattern modelling and diagnostics).

  8. The Detection of Clusters with Spatial Heterogeneity

    ERIC Educational Resources Information Center

    Zhang, Zuoyi

    2011-01-01

    This thesis consists of two parts. In Chapter 2, we focus on the spatial scan statistics with overdispersion and Chapter 3 is devoted to the randomized permutation test for identifying local patterns of spatial association. The spatial scan statistic has been widely used in spatial disease surveillance and spatial cluster detection. To apply it, a…

  9. The study of combining Latin Hypercube Sampling method and LU decomposition method (LULHS method) for constructing spatial random field

    NASA Astrophysics Data System (ADS)

    WANG, P. T.

    2015-12-01

    Groundwater modeling requires to assign hydrogeological properties to every numerical grid. Due to the lack of detailed information and the inherent spatial heterogeneity, geological properties can be treated as random variables. Hydrogeological property is assumed to be a multivariate distribution with spatial correlations. By sampling random numbers from a given statistical distribution and assigning a value to each grid, a random field for modeling can be completed. Therefore, statistics sampling plays an important role in the efficiency of modeling procedure. Latin Hypercube Sampling (LHS) is a stratified random sampling procedure that provides an efficient way to sample variables from their multivariate distributions. This study combines the the stratified random procedure from LHS and the simulation by using LU decomposition to form LULHS. Both conditional and unconditional simulations of LULHS were develpoed. The simulation efficiency and spatial correlation of LULHS are compared to the other three different simulation methods. The results show that for the conditional simulation and unconditional simulation, LULHS method is more efficient in terms of computational effort. Less realizations are required to achieve the required statistical accuracy and spatial correlation.

  10. Time and space in the middle paleolithic: Spatial structure and occupation dynamics of seven open-air sites.

    PubMed

    Clark, Amy E

    2016-05-06

    The spatial structure of archeological sites can help reconstruct the settlement dynamics of hunter-gatherers by providing information on the number and length of occupations. This study seeks to access this information through a comparison of seven sites. These sites are open-air and were all excavated over large spatial areas, up to 2,000 m(2) , and are therefore ideal for spatial analysis, which was done using two complementary methods, lithic refitting and density zones. Both methods were assessed statistically using confidence intervals. The statistically significant results from each site were then compiled to evaluate trends that occur across the seven sites. These results were used to assess the "spatial consistency" of each assemblage and, through that, the number and duration of occupations. This study demonstrates that spatial analysis can be a powerful tool in research on occupation dynamics and can help disentangle the many occupations that often make up an archeological assemblage. © 2016 Wiley Periodicals, Inc.

  11. Statistical and Spatial Analysis of Bathymetric Data for the St. Clair River, 1971-2007

    USGS Publications Warehouse

    Bennion, David

    2009-01-01

    To address questions concerning ongoing geomorphic processes in the St. Clair River, selected bathymetric datasets spanning 36 years were analyzed. Comparisons of recent high-resolution datasets covering the upper river indicate a highly variable, active environment. Although statistical and spatial comparisons of the datasets show that some changes to the channel size and shape have taken place during the study period, uncertainty associated with various survey methods and interpolation processes limit the statistically certain results. The methods used to spatially compare the datasets are sensitive to small variations in position and depth that are within the range of uncertainty associated with the datasets. Characteristics of the data, such as the density of measured points and the range of values surveyed, can also influence the results of spatial comparison. With due consideration of these limitations, apparently active and ongoing areas of elevation change in the river are mapped and discussed.

  12. Origin of Pareto-like spatial distributions in ecosystems.

    PubMed

    Manor, Alon; Shnerb, Nadav M

    2008-12-31

    Recent studies of cluster distribution in various ecosystems revealed Pareto statistics for the size of spatial colonies. These results were supported by cellular automata simulations that yield robust criticality for endogenous pattern formation based on positive feedback. We show that this patch statistics is a manifestation of the law of proportionate effect. Mapping the stochastic model to a Markov birth-death process, the transition rates are shown to scale linearly with cluster size. This mapping provides a connection between patch statistics and the dynamics of the ecosystem; the "first passage time" for different colonies emerges as a powerful tool that discriminates between endogenous and exogenous clustering mechanisms. Imminent catastrophic shifts (such as desertification) manifest themselves in a drastic change of the stability properties of spatial colonies.

  13. Spatial dependency of V. cholera prevalence on open space refuse dumps in Kumasi, Ghana: a spatial statistical modelling

    PubMed Central

    Osei, Frank B; Duker, Alfred A

    2008-01-01

    Background Cholera has persisted in Ghana since its introduction in the early 70's. From 1999 to 2005, the Ghana Ministry of Health officially reported a total of 26,924 cases and 620 deaths to the WHO. Etiological studies suggest that the natural habitat of V. cholera is the aquatic environment. Its ability to survive within and outside the aquatic environment makes cholera a complex health problem to manage. Once the disease is introduced in a population, several environmental factors may lead to prolonged transmission and secondary cases. An important environmental factor that predisposes individuals to cholera infection is sanitation. In this study, we exploit the importance of two main spatial measures of sanitation in cholera transmission in an urban city, Kumasi. These are proximity and density of refuse dumps within a community. Results A spatial statistical modelling carried out to determine the spatial dependency of cholera prevalence on refuse dumps show that, there is a direct spatial relationship between cholera prevalence and density of refuse dumps, and an inverse spatial relationship between cholera prevalence and distance to refuse dumps. A spatial scan statistics also identified four significant spatial clusters of cholera; a primary cluster with greater than expected cholera prevalence, and three secondary clusters with lower than expected cholera prevalence. A GIS based buffer analysis also showed that the minimum distance within which refuse dumps should not be sited within community centres is 500 m. Conclusion The results suggest that proximity and density of open space refuse dumps play a contributory role in cholera infection in Kumasi. PMID:19087235

  14. A spatial cluster analysis of tractor overturns in Kentucky from 1960 to 2002

    USGS Publications Warehouse

    Saman, D.M.; Cole, H.P.; Odoi, A.; Myers, M.L.; Carey, D.I.; Westneat, S.C.

    2012-01-01

    Background: Agricultural tractor overturns without rollover protective structures are the leading cause of farm fatalities in the United States. To our knowledge, no studies have incorporated the spatial scan statistic in identifying high-risk areas for tractor overturns. The aim of this study was to determine whether tractor overturns cluster in certain parts of Kentucky and identify factors associated with tractor overturns. Methods: A spatial statistical analysis using Kulldorff's spatial scan statistic was performed to identify county clusters at greatest risk for tractor overturns. A regression analysis was then performed to identify factors associated with tractor overturns. Results: The spatial analysis revealed a cluster of higher than expected tractor overturns in four counties in northern Kentucky (RR = 2.55) and 10 counties in eastern Kentucky (RR = 1.97). Higher rates of tractor overturns were associated with steeper average percent slope of pasture land by county (p = 0.0002) and a greater percent of total tractors with less than 40 horsepower by county (p<0.0001). Conclusions: This study reveals that geographic hotspots of tractor overturns exist in Kentucky and identifies factors associated with overturns. This study provides policymakers a guide to targeted county-level interventions (e.g., roll-over protective structures promotion interventions) with the intention of reducing tractor overturns in the highest risk counties in Kentucky. ?? 2012 Saman et al.

  15. Regional variation in the severity of pesticide exposure outcomes: applications of geographic information systems and spatial scan statistics.

    PubMed

    Sudakin, Daniel L; Power, Laura E

    2009-03-01

    Geographic information systems and spatial scan statistics have been utilized to assess regional clustering of symptomatic pesticide exposures reported to a state Poison Control Center (PCC) during a single year. In the present study, we analyzed five subsequent years of PCC data to test whether there are significant geographic differences in pesticide exposure incidents resulting in serious (moderate, major, and fatal) medical outcomes. A PCC provided the data on unintentional pesticide exposures for the time period 2001-2005. The geographic location of the caller, the location where the exposure occurred, the exposure route, and the medical outcome were abstracted. There were 273 incidents resulting in moderate effects (n = 261), major effects (n = 10), or fatalities (n = 2). Spatial scan statistics identified a geographic area consisting of two adjacent counties (one urban, one rural), where statistically significant clustering of serious outcomes was observed. The relative risk of moderate, major, and fatal outcomes was 2.0 in this spatial cluster (p = 0.0005). PCC data, geographic information systems, and spatial scan statistics can identify clustering of serious outcomes from human exposure to pesticides. These analyses may be useful for public health officials to target preventive interventions. Further investigation is warranted to understand better the potential explanations for geographical clustering, and to assess whether preventive interventions have an impact on reducing pesticide exposure incidents resulting in serious medical outcomes.

  16. Spatial Dynamics and Determinants of County-Level Education Expenditure in China

    ERIC Educational Resources Information Center

    Gu, Jiafeng

    2012-01-01

    In this paper, a multivariate spatial autoregressive model of local public education expenditure determination with autoregressive disturbance is developed and estimated. The existence of spatial interdependence is tested using Moran's I statistic and Lagrange multiplier test statistics for both the spatial error and spatial lag models. The full…

  17. Spatio-temporal patterns of Barmah Forest virus disease in Queensland, Australia.

    PubMed

    Naish, Suchithra; Hu, Wenbiao; Mengersen, Kerrie; Tong, Shilu

    2011-01-01

    Barmah Forest virus (BFV) disease is a common and wide-spread mosquito-borne disease in Australia. This study investigated the spatio-temporal patterns of BFV disease in Queensland, Australia using geographical information system (GIS) tools and geostatistical analysis. We calculated the incidence rates and standardised incidence rates of BFV disease. Moran's I statistic was used to assess the spatial autocorrelation of BFV incidences. Spatial dynamics of BFV disease was examined using semi-variogram analysis. Interpolation techniques were applied to visualise and display the spatial distribution of BFV disease in statistical local areas (SLAs) throughout Queensland. Mapping of BFV disease by SLAs reveals the presence of substantial spatio-temporal variation over time. Statistically significant differences in BFV incidence rates were identified among age groups (χ(2) = 7587, df = 7327,p<0.01). There was a significant positive spatial autocorrelation of BFV incidence for all four periods, with the Moran's I statistic ranging from 0.1506 to 0.2901 (p<0.01). Semi-variogram analysis and smoothed maps created from interpolation techniques indicate that the pattern of spatial autocorrelation was not homogeneous across the state. This is the first study to examine spatial and temporal variation in the incidence rates of BFV disease across Queensland using GIS and geostatistics. The BFV transmission varied with age and gender, which may be due to exposure rates or behavioural risk factors. There are differences in the spatio-temporal patterns of BFV disease which may be related to local socio-ecological and environmental factors. These research findings may have implications in the BFV disease control and prevention programs in Queensland.

  18. Improving Student Understanding of Spatial Ecology Statistics

    ERIC Educational Resources Information Center

    Hopkins, Robert, II; Alberts, Halley

    2015-01-01

    This activity is designed as a primer to teaching population dispersion analysis. The aim is to help improve students' spatial thinking and their understanding of how spatial statistic equations work. Students use simulated data to develop their own statistic and apply that equation to experimental behavioral data for Gambusia affinis (western…

  19. Experimental assessment of the spatial variability of porosity, permeability and sorption isotherms in an ordinary building concrete

    NASA Astrophysics Data System (ADS)

    Issaadi, N.; Hamami, A. A.; Belarbi, R.; Aït-Mokhtar, A.

    2017-10-01

    In this paper, spatial variabilities of some transfer and storage properties of a concrete wall were assessed. The studied parameters deal with water porosity, water vapor permeability, intrinsic permeability and water vapor sorption isotherms. For this purpose, a concrete wall was built in the laboratory and specimens were periodically taken and tested. The obtained results allow highlighting a statistical estimation of the mean value, the standard deviation and the spatial correlation length of the studied fields for each parameter. These results were discussed and a statistical analysis was performed in order to assess for each of these parameters the appropriate probability density function.

  20. R and Spatial Data

    EPA Science Inventory

    R is an open source language and environment for statistical computing and graphics that can also be used for both spatial analysis (i.e. geoprocessing and mapping of different types of spatial data) and spatial data analysis (i.e. the application of statistical descriptions and ...

  1. Fine-scale landscape genetics of the American badger (Taxidea taxus): disentangling landscape effects and sampling artifacts in a poorly understood species

    PubMed Central

    Kierepka, E M; Latch, E K

    2016-01-01

    Landscape genetics is a powerful tool for conservation because it identifies landscape features that are important for maintaining genetic connectivity between populations within heterogeneous landscapes. However, using landscape genetics in poorly understood species presents a number of challenges, namely, limited life history information for the focal population and spatially biased sampling. Both obstacles can reduce power in statistics, particularly in individual-based studies. In this study, we genotyped 233 American badgers in Wisconsin at 12 microsatellite loci to identify alternative statistical approaches that can be applied to poorly understood species in an individual-based framework. Badgers are protected in Wisconsin owing to an overall lack in life history information, so our study utilized partial redundancy analysis (RDA) and spatially lagged regressions to quantify how three landscape factors (Wisconsin River, Ecoregions and land cover) impacted gene flow. We also performed simulations to quantify errors created by spatially biased sampling. Statistical analyses first found that geographic distance was an important influence on gene flow, mainly driven by fine-scale positive spatial autocorrelations. After controlling for geographic distance, both RDA and regressions found that Wisconsin River and Agriculture were correlated with genetic differentiation. However, only Agriculture had an acceptable type I error rate (3–5%) to be considered biologically relevant. Collectively, this study highlights the benefits of combining robust statistics and error assessment via simulations and provides a method for hypothesis testing in individual-based landscape genetics. PMID:26243136

  2. SU-F-I-10: Spatially Local Statistics for Adaptive Image Filtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iliopoulos, AS; Sun, X; Floros, D

    Purpose: To facilitate adaptive image filtering operations, addressing spatial variations in both noise and signal. Such issues are prevalent in cone-beam projections, where physical effects such as X-ray scattering result in spatially variant noise, violating common assumptions of homogeneous noise and challenging conventional filtering approaches to signal extraction and noise suppression. Methods: We present a computational mechanism for probing into and quantifying the spatial variance of noise throughout an image. The mechanism builds a pyramid of local statistics at multiple spatial scales; local statistical information at each scale includes (weighted) mean, median, standard deviation, median absolute deviation, as well asmore » histogram or dynamic range after local mean/median shifting. Based on inter-scale differences of local statistics, the spatial scope of distinguishable noise variation is detected in a semi- or un-supervised manner. Additionally, we propose and demonstrate the incorporation of such information in globally parametrized (i.e., non-adaptive) filters, effectively transforming the latter into spatially adaptive filters. The multi-scale mechanism is materialized by efficient algorithms and implemented in parallel CPU/GPU architectures. Results: We demonstrate the impact of local statistics for adaptive image processing and analysis using cone-beam projections of a Catphan phantom, fitted within an annulus to increase X-ray scattering. The effective spatial scope of local statistics calculations is shown to vary throughout the image domain, necessitating multi-scale noise and signal structure analysis. Filtering results with and without spatial filter adaptation are compared visually, illustrating improvements in imaging signal extraction and noise suppression, and in preserving information in low-contrast regions. Conclusion: Local image statistics can be incorporated in filtering operations to equip them with spatial adaptivity to spatial signal/noise variations. An efficient multi-scale computational mechanism is developed to curtail processing latency. Spatially adaptive filtering may impact subsequent processing tasks such as reconstruction and numerical gradient computations for deformable registration. NIH Grant No. R01-184173.« less

  3. A spatial scan statistic for multiple clusters.

    PubMed

    Li, Xiao-Zhou; Wang, Jin-Feng; Yang, Wei-Zhong; Li, Zhong-Jie; Lai, Sheng-Jie

    2011-10-01

    Spatial scan statistics are commonly used for geographical disease surveillance and cluster detection. While there are multiple clusters coexisting in the study area, they become difficult to detect because of clusters' shadowing effect to each other. The recently proposed sequential method showed its better power for detecting the second weaker cluster, but did not improve the ability of detecting the first stronger cluster which is more important than the second one. We propose a new extension of the spatial scan statistic which could be used to detect multiple clusters. Through constructing two or more clusters in the alternative hypothesis, our proposed method accounts for other coexisting clusters in the detecting and evaluating process. The performance of the proposed method is compared to the sequential method through an intensive simulation study, in which our proposed method shows better power in terms of both rejecting the null hypothesis and accurately detecting the coexisting clusters. In the real study of hand-foot-mouth disease data in Pingdu city, a true cluster town is successfully detected by our proposed method, which cannot be evaluated to be statistically significant by the standard method due to another cluster's shadowing effect. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Modulation of spatial attention by goals, statistical learning, and monetary reward.

    PubMed

    Jiang, Yuhong V; Sha, Li Z; Remington, Roger W

    2015-10-01

    This study documented the relative strength of task goals, visual statistical learning, and monetary reward in guiding spatial attention. Using a difficult T-among-L search task, we cued spatial attention to one visual quadrant by (i) instructing people to prioritize it (goal-driven attention), (ii) placing the target frequently there (location probability learning), or (iii) associating that quadrant with greater monetary gain (reward-based attention). Results showed that successful goal-driven attention exerted the strongest influence on search RT. Incidental location probability learning yielded a smaller though still robust effect. Incidental reward learning produced negligible guidance for spatial attention. The 95 % confidence intervals of the three effects were largely nonoverlapping. To understand these results, we simulated the role of location repetition priming in probability cuing and reward learning. Repetition priming underestimated the strength of location probability cuing, suggesting that probability cuing involved long-term statistical learning of how to shift attention. Repetition priming provided a reasonable account for the negligible effect of reward on spatial attention. We propose a multiple-systems view of spatial attention that includes task goals, search habit, and priming as primary drivers of top-down attention.

  5. Modulation of spatial attention by goals, statistical learning, and monetary reward

    PubMed Central

    Sha, Li Z.; Remington, Roger W.

    2015-01-01

    This study documented the relative strength of task goals, visual statistical learning, and monetary reward in guiding spatial attention. Using a difficult T-among-L search task, we cued spatial attention to one visual quadrant by (i) instructing people to prioritize it (goal-driven attention), (ii) placing the target frequently there (location probability learning), or (iii) associating that quadrant with greater monetary gain (reward-based attention). Results showed that successful goal-driven attention exerted the strongest influence on search RT. Incidental location probability learning yielded a smaller though still robust effect. Incidental reward learning produced negligible guidance for spatial attention. The 95 % confidence intervals of the three effects were largely nonoverlapping. To understand these results, we simulated the role of location repetition priming in probability cuing and reward learning. Repetition priming underestimated the strength of location probability cuing, suggesting that probability cuing involved long-term statistical learning of how to shift attention. Repetition priming provided a reasonable account for the negligible effect of reward on spatial attention. We propose a multiple-systems view of spatial attention that includes task goals, search habit, and priming as primary drivers of top-down attention. PMID:26105657

  6. Monitoring Method of Cow Anthrax Based on Gis and Spatial Statistical Analysis

    NASA Astrophysics Data System (ADS)

    Li, Lin; Yang, Yong; Wang, Hongbin; Dong, Jing; Zhao, Yujun; He, Jianbin; Fan, Honggang

    Geographic information system (GIS) is a computer application system, which possesses the ability of manipulating spatial information and has been used in many fields related with the spatial information management. Many methods and models have been established for analyzing animal diseases distribution models and temporal-spatial transmission models. Great benefits have been gained from the application of GIS in animal disease epidemiology. GIS is now a very important tool in animal disease epidemiological research. Spatial analysis function of GIS can be widened and strengthened by using spatial statistical analysis, allowing for the deeper exploration, analysis, manipulation and interpretation of spatial pattern and spatial correlation of the animal disease. In this paper, we analyzed the cow anthrax spatial distribution characteristics in the target district A (due to the secret of epidemic data we call it district A) based on the established GIS of the cow anthrax in this district in combination of spatial statistical analysis and GIS. The Cow anthrax is biogeochemical disease, and its geographical distribution is related closely to the environmental factors of habitats and has some spatial characteristics, and therefore the correct analysis of the spatial distribution of anthrax cow for monitoring and the prevention and control of anthrax has a very important role. However, the application of classic statistical methods in some areas is very difficult because of the pastoral nomadic context. The high mobility of livestock and the lack of enough suitable sampling for the some of the difficulties in monitoring currently make it nearly impossible to apply rigorous random sampling methods. It is thus necessary to develop an alternative sampling method, which could overcome the lack of sampling and meet the requirements for randomness. The GIS computer application software ArcGIS9.1 was used to overcome the lack of data of sampling sites.Using ArcGIS 9.1 and GEODA to analyze the cow anthrax spatial distribution of district A. we gained some conclusions about cow anthrax' density: (1) there is a spatial clustering model. (2) there is an intensely spatial autocorrelation. We established a prediction model to estimate the anthrax distribution based on the spatial characteristic of the density of cow anthrax. Comparing with the true distribution, the prediction model has a well coincidence and is feasible to the application. The method using a GIS tool facilitates can be implemented significantly in the cow anthrax monitoring and investigation, and the space statistics - related prediction model provides a fundamental use for other study on space-related animal diseases.

  7. Temporal scaling and spatial statistical analyses of groundwater level fluctuations

    NASA Astrophysics Data System (ADS)

    Sun, H.; Yuan, L., Sr.; Zhang, Y.

    2017-12-01

    Natural dynamics such as groundwater level fluctuations can exhibit multifractionality and/or multifractality due likely to multi-scale aquifer heterogeneity and controlling factors, whose statistics requires efficient quantification methods. This study explores multifractionality and non-Gaussian properties in groundwater dynamics expressed by time series of daily level fluctuation at three wells located in the lower Mississippi valley, after removing the seasonal cycle in the temporal scaling and spatial statistical analysis. First, using the time-scale multifractional analysis, a systematic statistical method is developed to analyze groundwater level fluctuations quantified by the time-scale local Hurst exponent (TS-LHE). Results show that the TS-LHE does not remain constant, implying the fractal-scaling behavior changing with time and location. Hence, we can distinguish the potentially location-dependent scaling feature, which may characterize the hydrology dynamic system. Second, spatial statistical analysis shows that the increment of groundwater level fluctuations exhibits a heavy tailed, non-Gaussian distribution, which can be better quantified by a Lévy stable distribution. Monte Carlo simulations of the fluctuation process also show that the linear fractional stable motion model can well depict the transient dynamics (i.e., fractal non-Gaussian property) of groundwater level, while fractional Brownian motion is inadequate to describe natural processes with anomalous dynamics. Analysis of temporal scaling and spatial statistics therefore may provide useful information and quantification to understand further the nature of complex dynamics in hydrology.

  8. RipleyGUI: software for analyzing spatial patterns in 3D cell distributions

    PubMed Central

    Hansson, Kristin; Jafari-Mamaghani, Mehrdad; Krieger, Patrik

    2013-01-01

    The true revolution in the age of digital neuroanatomy is the ability to extensively quantify anatomical structures and thus investigate structure-function relationships in great detail. To facilitate the quantification of neuronal cell patterns we have developed RipleyGUI, a MATLAB-based software that can be used to detect patterns in the 3D distribution of cells. RipleyGUI uses Ripley's K-function to analyze spatial distributions. In addition the software contains statistical tools to determine quantitative statistical differences, and tools for spatial transformations that are useful for analyzing non-stationary point patterns. The software has a graphical user interface making it easy to use without programming experience, and an extensive user manual explaining the basic concepts underlying the different statistical tools used to analyze spatial point patterns. The described analysis tool can be used for determining the spatial organization of neurons that is important for a detailed study of structure-function relationships. For example, neocortex that can be subdivided into six layers based on cell density and cell types can also be analyzed in terms of organizational principles distinguishing the layers. PMID:23658544

  9. Identifying and characterizing hepatitis C virus hotspots in Massachusetts: a spatial epidemiological approach.

    PubMed

    Stopka, Thomas J; Goulart, Michael A; Meyers, David J; Hutcheson, Marga; Barton, Kerri; Onofrey, Shauna; Church, Daniel; Donahue, Ashley; Chui, Kenneth K H

    2017-04-20

    Hepatitis C virus (HCV) infections have increased during the past decade but little is known about geographic clustering patterns. We used a unique analytical approach, combining geographic information systems (GIS), spatial epidemiology, and statistical modeling to identify and characterize HCV hotspots, statistically significant clusters of census tracts with elevated HCV counts and rates. We compiled sociodemographic and HCV surveillance data (n = 99,780 cases) for Massachusetts census tracts (n = 1464) from 2002 to 2013. We used a five-step spatial epidemiological approach, calculating incremental spatial autocorrelations and Getis-Ord Gi* statistics to identify clusters. We conducted logistic regression analyses to determine factors associated with the HCV hotspots. We identified nine HCV clusters, with the largest in Boston, New Bedford/Fall River, Worcester, and Springfield (p < 0.05). In multivariable analyses, we found that HCV hotspots were independently and positively associated with the percent of the population that was Hispanic (adjusted odds ratio [AOR]: 1.07; 95% confidence interval [CI]: 1.04, 1.09) and the percent of households receiving food stamps (AOR: 1.83; 95% CI: 1.22, 2.74). HCV hotspots were independently and negatively associated with the percent of the population that were high school graduates or higher (AOR: 0.91; 95% CI: 0.89, 0.93) and the percent of the population in the "other" race/ethnicity category (AOR: 0.88; 95% CI: 0.85, 0.91). We identified locations where HCV clusters were a concern, and where enhanced HCV prevention, treatment, and care can help combat the HCV epidemic in Massachusetts. GIS, spatial epidemiological and statistical analyses provided a rigorous approach to identify hotspot clusters of disease, which can inform public health policy and intervention targeting. Further studies that incorporate spatiotemporal cluster analyses, Bayesian spatial and geostatistical models, spatially weighted regression analyses, and assessment of associations between HCV clustering and the built environment are needed to expand upon our combined spatial epidemiological and statistical methods.

  10. Spatially characterizing visitor use and its association with informal trails in Yosemite Valley meadows.

    PubMed

    Walden-Schreiner, Chelsey; Leung, Yu-Fai

    2013-07-01

    Ecological impacts associated with nature-based recreation and tourism can compromise park and protected area goals if left unrestricted. Protected area agencies are increasingly incorporating indicator-based management frameworks into their management plans to address visitor impacts. Development of indicators requires empirical evaluation of indicator measures and examining their ecological and social relevance. This study addresses the development of the informal trail indicator in Yosemite National Park by spatially characterizing visitor use in open landscapes and integrating use patterns with informal trail condition data to examine their spatial association. Informal trail and visitor use data were collected concurrently during July and August of 2011 in three, high-use meadows of Yosemite Valley. Visitor use was clustered at statistically significant levels in all three study meadows. Spatial data integration found no statistically significant differences between use patterns and trail condition class. However, statistically significant differences were found between the distance visitors were observed from informal trails and visitor activity type with active activities occurring closer to trail corridors. Gender was also found to be significant with male visitors observed further from trail corridors. Results highlight the utility of integrated spatial analysis in supporting indicator-based monitoring and informing management of open landscapes. Additional variables for future analysis and methodological improvements are discussed.

  11. Spatially Characterizing Visitor Use and Its Association with Informal Trails in Yosemite Valley Meadows

    NASA Astrophysics Data System (ADS)

    Walden-Schreiner, Chelsey; Leung, Yu-Fai

    2013-07-01

    Ecological impacts associated with nature-based recreation and tourism can compromise park and protected area goals if left unrestricted. Protected area agencies are increasingly incorporating indicator-based management frameworks into their management plans to address visitor impacts. Development of indicators requires empirical evaluation of indicator measures and examining their ecological and social relevance. This study addresses the development of the informal trail indicator in Yosemite National Park by spatially characterizing visitor use in open landscapes and integrating use patterns with informal trail condition data to examine their spatial association. Informal trail and visitor use data were collected concurrently during July and August of 2011 in three, high-use meadows of Yosemite Valley. Visitor use was clustered at statistically significant levels in all three study meadows. Spatial data integration found no statistically significant differences between use patterns and trail condition class. However, statistically significant differences were found between the distance visitors were observed from informal trails and visitor activity type with active activities occurring closer to trail corridors. Gender was also found to be significant with male visitors observed further from trail corridors. Results highlight the utility of integrated spatial analysis in supporting indicator-based monitoring and informing management of open landscapes. Additional variables for future analysis and methodological improvements are discussed.

  12. Spatial analyses for nonoverlapping objects with size variations and their application to coral communities.

    PubMed

    Muko, Soyoka; Shimatani, Ichiro K; Nozawa, Yoko

    2014-07-01

    Spatial distributions of individuals are conventionally analysed by representing objects as dimensionless points, in which spatial statistics are based on centre-to-centre distances. However, if organisms expand without overlapping and show size variations, such as is the case for encrusting corals, interobject spacing is crucial for spatial associations where interactions occur. We introduced new pairwise statistics using minimum distances between objects and demonstrated their utility when examining encrusting coral community data. We also calculated the conventional point process statistics and the grid-based statistics to clarify the advantages and limitations of each spatial statistical method. For simplicity, coral colonies were approximated by disks in these demonstrations. Focusing on short-distance effects, the use of minimum distances revealed that almost all coral genera were aggregated at a scale of 1-25 cm. However, when fragmented colonies (ramets) were treated as a genet, a genet-level analysis indicated weak or no aggregation, suggesting that most corals were randomly distributed and that fragmentation was the primary cause of colony aggregations. In contrast, point process statistics showed larger aggregation scales, presumably because centre-to-centre distances included both intercolony spacing and colony sizes (radius). The grid-based statistics were able to quantify the patch (aggregation) scale of colonies, but the scale was strongly affected by the colony size. Our approach quantitatively showed repulsive effects between an aggressive genus and a competitively weak genus, while the grid-based statistics (covariance function) also showed repulsion although the spatial scale indicated from the statistics was not directly interpretable in terms of ecological meaning. The use of minimum distances together with previously proposed spatial statistics helped us to extend our understanding of the spatial patterns of nonoverlapping objects that vary in size and the associated specific scales. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.

  13. A spatial scan statistic for survival data based on Weibull distribution.

    PubMed

    Bhatt, Vijaya; Tiwari, Neeraj

    2014-05-20

    The spatial scan statistic has been developed as a geographical cluster detection analysis tool for different types of data sets such as Bernoulli, Poisson, ordinal, normal and exponential. We propose a scan statistic for survival data based on Weibull distribution. It may also be used for other survival distributions, such as exponential, gamma, and log normal. The proposed method is applied on the survival data of tuberculosis patients for the years 2004-2005 in Nainital district of Uttarakhand, India. Simulation studies reveal that the proposed method performs well for different survival distribution functions. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Spatio-Temporal Patterns of Barmah Forest Virus Disease in Queensland, Australia

    PubMed Central

    Naish, Suchithra; Hu, Wenbiao; Mengersen, Kerrie; Tong, Shilu

    2011-01-01

    Background Barmah Forest virus (BFV) disease is a common and wide-spread mosquito-borne disease in Australia. This study investigated the spatio-temporal patterns of BFV disease in Queensland, Australia using geographical information system (GIS) tools and geostatistical analysis. Methods/Principal Findings We calculated the incidence rates and standardised incidence rates of BFV disease. Moran's I statistic was used to assess the spatial autocorrelation of BFV incidences. Spatial dynamics of BFV disease was examined using semi-variogram analysis. Interpolation techniques were applied to visualise and display the spatial distribution of BFV disease in statistical local areas (SLAs) throughout Queensland. Mapping of BFV disease by SLAs reveals the presence of substantial spatio-temporal variation over time. Statistically significant differences in BFV incidence rates were identified among age groups (χ2 = 7587, df = 7327,p<0.01). There was a significant positive spatial autocorrelation of BFV incidence for all four periods, with the Moran's I statistic ranging from 0.1506 to 0.2901 (p<0.01). Semi-variogram analysis and smoothed maps created from interpolation techniques indicate that the pattern of spatial autocorrelation was not homogeneous across the state. Conclusions/Significance This is the first study to examine spatial and temporal variation in the incidence rates of BFV disease across Queensland using GIS and geostatistics. The BFV transmission varied with age and gender, which may be due to exposure rates or behavioural risk factors. There are differences in the spatio-temporal patterns of BFV disease which may be related to local socio-ecological and environmental factors. These research findings may have implications in the BFV disease control and prevention programs in Queensland. PMID:22022430

  15. A spatial scan statistic for compound Poisson data.

    PubMed

    Rosychuk, Rhonda J; Chang, Hsing-Ming

    2013-12-20

    The topic of spatial cluster detection gained attention in statistics during the late 1980s and early 1990s. Effort has been devoted to the development of methods for detecting spatial clustering of cases and events in the biological sciences, astronomy and epidemiology. More recently, research has examined detecting clusters of correlated count data associated with health conditions of individuals. Such a method allows researchers to examine spatial relationships of disease-related events rather than just incident or prevalent cases. We introduce a spatial scan test that identifies clusters of events in a study region. Because an individual case may have multiple (repeated) events, we base the test on a compound Poisson model. We illustrate our method for cluster detection on emergency department visits, where individuals may make multiple disease-related visits. Copyright © 2013 John Wiley & Sons, Ltd.

  16. Spatial and temporal structure of typhoid outbreaks in Washington, D.C., 1906–1909: evaluating local clustering with the Gi* statistic

    PubMed Central

    Hinman, Sarah E; Blackburn, Jason K; Curtis, Andrew

    2006-01-01

    Background To better understand the distribution of typhoid outbreaks in Washington, D.C., the U.S. Public Health Service (PHS) conducted four investigations of typhoid fever. These studies included maps of cases reported between 1 May – 31 October 1906 – 1909. These data were entered into a GIS database and analyzed using Ripley's K-function followed by the Gi* statistic in yearly intervals to evaluate spatial clustering, the scale of clustering, and the temporal stability of these clusters. Results The Ripley's K-function indicated no global spatial autocorrelation. The Gi* statistic indicated clustering of typhoid at multiple scales across the four year time period, refuting the conclusions drawn in all four PHS reports concerning the distribution of cases. While the PHS reports suggested an even distribution of the disease, this study quantified both areas of localized disease clustering, as well as mobile larger regions of clustering. Thus, indicating both highly localized and periodic generalized sources of infection within the city. Conclusion The methodology applied in this study was useful for evaluating the spatial distribution and annual-level temporal patterns of typhoid outbreaks in Washington, D.C. from 1906 to 1909. While advanced spatial analyses of historical data sets must be interpreted with caution, this study does suggest that there is utility in these types of analyses and that they provide new insights into the urban patterns of typhoid outbreaks during the early part of the twentieth century. PMID:16566830

  17. Spatial and temporal structure of typhoid outbreaks in Washington, D.C., 1906-1909: evaluating local clustering with the Gi* statistic.

    PubMed

    Hinman, Sarah E; Blackburn, Jason K; Curtis, Andrew

    2006-03-27

    To better understand the distribution of typhoid outbreaks in Washington, D.C., the U.S. Public Health Service (PHS) conducted four investigations of typhoid fever. These studies included maps of cases reported between 1 May - 31 October 1906 - 1909. These data were entered into a GIS database and analyzed using Ripley's K-function followed by the Gi* statistic in yearly intervals to evaluate spatial clustering, the scale of clustering, and the temporal stability of these clusters. The Ripley's K-function indicated no global spatial autocorrelation. The Gi* statistic indicated clustering of typhoid at multiple scales across the four year time period, refuting the conclusions drawn in all four PHS reports concerning the distribution of cases. While the PHS reports suggested an even distribution of the disease, this study quantified both areas of localized disease clustering, as well as mobile larger regions of clustering. Thus, indicating both highly localized and periodic generalized sources of infection within the city. The methodology applied in this study was useful for evaluating the spatial distribution and annual-level temporal patterns of typhoid outbreaks in Washington, D.C. from 1906 to 1909. While advanced spatial analyses of historical data sets must be interpreted with caution, this study does suggest that there is utility in these types of analyses and that they provide new insights into the urban patterns of typhoid outbreaks during the early part of the twentieth century.

  18. The socio-spatial context as a risk factor for hospitalization due to mental illness in the metropolitan areas of Portugal.

    PubMed

    Loureiro, Adriana; Costa, Cláudia; Almendra, Ricardo; Freitas, Ângela; Santana, Paula

    2015-11-01

    This study's aims are: (i) identifying spatial patterns for the risk of hospitalization due to mental illness and for the potential risk resulting from contextual factors with influence on mental health; and (ii) analyzing the spatial association between risk of hospitalization due to mental illness and potential risk resulting from contextual factors in the metropolitan areas of Lisbon and Porto, Portugal. A cross-sectional ecological study was conducted by applying statistical methods for assessing spatial dependency and heterogeneity. Results reveal a spatial association between risk of hospitalization due to mental illness and potential risk resulting from contextual factors with a statistical relevance of moderate intensity. 20% of the population under study lives in areas with a simultaneously high potential risk resulting from contextual factors and risk of hospitalization due to mental illness. Porto Metropolitan Area show the highest percentage of population living in parishes with a significantly high risk of hospitalization due to mental health, which puts forward the need for interventions on territory-adjusted contextual factors influencing mental health.

  19. Spatial analysis for the epidemiological study of cardiovascular diseases: A systematic literature search.

    PubMed

    Mena, Carlos; Sepúlveda, Cesar; Fuentes, Eduardo; Ormazábal, Yony; Palomo, Iván

    2018-05-07

    Cardiovascular diseases (CVDs) are the primary cause of death and disability in de world, and the detection of populations at risk as well as localization of vulnerable areas is essential for adequate epidemiological management. Techniques developed for spatial analysis, among them geographical information systems and spatial statistics, such as cluster detection and spatial correlation, are useful for the study of the distribution of the CVDs. These techniques, enabling recognition of events at different geographical levels of study (e.g., rural, deprived neighbourhoods, etc.), make it possible to relate CVDs to factors present in the immediate environment. The systemic literature presented here shows that this group of diseases is clustered with regard to incidence, mortality and hospitalization as well as obesity, smoking, increased glycated haemoglobin levels, hypertension physical activity and age. In addition, acquired variables such as income, residency (rural or urban) and education, contribute to CVD clustering. Both local cluster detection and spatial regression techniques give statistical weight to the findings providing valuable information that can influence response mechanisms in the health services by indicating locations in need of intervention and assignment of available resources.

  20. Spatial variation in the bacterial and denitrifying bacterial community in a biofilter treating subsurface agricultural drainage.

    PubMed

    Andrus, J Malia; Porter, Matthew D; Rodríguez, Luis F; Kuehlhorn, Timothy; Cooke, Richard A C; Zhang, Yuanhui; Kent, Angela D; Zilles, Julie L

    2014-02-01

    Denitrifying biofilters can remove agricultural nitrates from subsurface drainage, reducing nitrate pollution that contributes to coastal hypoxic zones. The performance and reliability of natural and engineered systems dependent upon microbially mediated processes, such as the denitrifying biofilters, can be affected by the spatial structure of their microbial communities. Furthermore, our understanding of the relationship between microbial community composition and function is influenced by the spatial distribution of samples.In this study we characterized the spatial structure of bacterial communities in a denitrifying biofilter in central Illinois. Bacterial communities were assessed using automated ribosomal intergenic spacer analysis for bacteria and terminal restriction fragment length polymorphism of nosZ for denitrifying bacteria.Non-metric multidimensional scaling and analysis of similarity (ANOSIM) analyses indicated that bacteria showed statistically significant spatial structure by depth and transect,while denitrifying bacteria did not exhibit significant spatial structure. For determination of spatial patterns, we developed a package of automated functions for the R statistical environment that allows directional analysis of microbial community composition data using either ANOSIM or Mantel statistics.Applying this package to the biofilter data, the flow path correlation range for the bacterial community was 6.4 m at the shallower, periodically in undated depth and 10.7 m at the deeper, continually submerged depth. These spatial structures suggest a strong influence of hydrology on the microbial community composition in these denitrifying biofilters. Understanding such spatial structure can also guide optimal sample collection strategies for microbial community analyses.

  1. Statistical Downscaling and Bias Correction of Climate Model Outputs for Climate Change Impact Assessment in the U.S. Northeast

    NASA Technical Reports Server (NTRS)

    Ahmed, Kazi Farzan; Wang, Guiling; Silander, John; Wilson, Adam M.; Allen, Jenica M.; Horton, Radley; Anyah, Richard

    2013-01-01

    Statistical downscaling can be used to efficiently downscale a large number of General Circulation Model (GCM) outputs to a fine temporal and spatial scale. To facilitate regional impact assessments, this study statistically downscales (to 1/8deg spatial resolution) and corrects the bias of daily maximum and minimum temperature and daily precipitation data from six GCMs and four Regional Climate Models (RCMs) for the northeast United States (US) using the Statistical Downscaling and Bias Correction (SDBC) approach. Based on these downscaled data from multiple models, five extreme indices were analyzed for the future climate to quantify future changes of climate extremes. For a subset of models and indices, results based on raw and bias corrected model outputs for the present-day climate were compared with observations, which demonstrated that bias correction is important not only for GCM outputs, but also for RCM outputs. For future climate, bias correction led to a higher level of agreements among the models in predicting the magnitude and capturing the spatial pattern of the extreme climate indices. We found that the incorporation of dynamical downscaling as an intermediate step does not lead to considerable differences in the results of statistical downscaling for the study domain.

  2. Spatial heterogeneity and risk factors for stunting among children under age five in Ethiopia: A Bayesian geo-statistical model.

    PubMed

    Hagos, Seifu; Hailemariam, Damen; WoldeHanna, Tasew; Lindtjørn, Bernt

    2017-01-01

    Understanding the spatial distribution of stunting and underlying factors operating at meso-scale is of paramount importance for intervention designing and implementations. Yet, little is known about the spatial distribution of stunting and some discrepancies are documented on the relative importance of reported risk factors. Therefore, the present study aims at exploring the spatial distribution of stunting at meso- (district) scale, and evaluates the effect of spatial dependency on the identification of risk factors and their relative contribution to the occurrence of stunting and severe stunting in a rural area of Ethiopia. A community based cross sectional study was conducted to measure the occurrence of stunting and severe stunting among children aged 0-59 months. Additionally, we collected relevant information on anthropometric measures, dietary habits, parent and child-related demographic and socio-economic status. Latitude and longitude of surveyed households were also recorded. Local Anselin Moran's I was calculated to investigate the spatial variation of stunting prevalence and identify potential local pockets (hotspots) of high prevalence. Finally, we employed a Bayesian geo-statistical model, which accounted for spatial dependency structure in the data, to identify potential risk factors for stunting in the study area. Overall, the prevalence of stunting and severe stunting in the district was 43.7% [95%CI: 40.9, 46.4] and 21.3% [95%CI: 19.5, 23.3] respectively. We identified statistically significant clusters of high prevalence of stunting (hotspots) in the eastern part of the district and clusters of low prevalence (cold spots) in the western. We found out that the inclusion of spatial structure of the data into the Bayesian model has shown to improve the fit for stunting model. The Bayesian geo-statistical model indicated that the risk of stunting increased as the child's age increased (OR 4.74; 95% Bayesian credible interval [BCI]:3.35-6.58) and among boys (OR 1.28; 95%BCI; 1.12-1.45). However, maternal education and household food security were found to be protective against stunting and severe stunting. Stunting prevalence may vary across space at different scale. For this, it's important that nutrition studies and, more importantly, control interventions take into account this spatial heterogeneity in the distribution of nutritional deficits and their underlying associated factors. The findings of this study also indicated that interventions integrating household food insecurity in nutrition programs in the district might help to avert the burden of stunting.

  3. Improved spatial regression analysis of diffusion tensor imaging for lesion detection during longitudinal progression of multiple sclerosis in individual subjects

    NASA Astrophysics Data System (ADS)

    Liu, Bilan; Qiu, Xing; Zhu, Tong; Tian, Wei; Hu, Rui; Ekholm, Sven; Schifitto, Giovanni; Zhong, Jianhui

    2016-03-01

    Subject-specific longitudinal DTI study is vital for investigation of pathological changes of lesions and disease evolution. Spatial Regression Analysis of Diffusion tensor imaging (SPREAD) is a non-parametric permutation-based statistical framework that combines spatial regression and resampling techniques to achieve effective detection of localized longitudinal diffusion changes within the whole brain at individual level without a priori hypotheses. However, boundary blurring and dislocation limit its sensitivity, especially towards detecting lesions of irregular shapes. In the present study, we propose an improved SPREAD (dubbed improved SPREAD, or iSPREAD) method by incorporating a three-dimensional (3D) nonlinear anisotropic diffusion filtering method, which provides edge-preserving image smoothing through a nonlinear scale space approach. The statistical inference based on iSPREAD was evaluated and compared with the original SPREAD method using both simulated and in vivo human brain data. Results demonstrated that the sensitivity and accuracy of the SPREAD method has been improved substantially by adapting nonlinear anisotropic filtering. iSPREAD identifies subject-specific longitudinal changes in the brain with improved sensitivity, accuracy, and enhanced statistical power, especially when the spatial correlation is heterogeneous among neighboring image pixels in DTI.

  4. Relative risk estimates from spatial and space-time scan statistics: Are they biased?

    PubMed Central

    Prates, Marcos O.; Kulldorff, Martin; Assunção, Renato M.

    2014-01-01

    The purely spatial and space-time scan statistics have been successfully used by many scientists to detect and evaluate geographical disease clusters. Although the scan statistic has high power in correctly identifying a cluster, no study has considered the estimates of the cluster relative risk in the detected cluster. In this paper we evaluate whether there is any bias on these estimated relative risks. Intuitively, one may expect that the estimated relative risks has upward bias, since the scan statistic cherry picks high rate areas to include in the cluster. We show that this intuition is correct for clusters with low statistical power, but with medium to high power the bias becomes negligible. The same behaviour is not observed for the prospective space-time scan statistic, where there is an increasing conservative downward bias of the relative risk as the power to detect the cluster increases. PMID:24639031

  5. Spatial cross-correlation of undisturbed, natural shortleaf pine stands in northern Georgia

    Treesearch

    Robin M. Reich; Raymond L. Czaplewski; William A. Bechtold

    1994-01-01

    In this study a cross-correlation statistic is used to analyse the spatial relationship among stand characteristics of natural, undisturbed shortleaf pine stands sampled during 1961-72 and 1972-82 in northern Georgia. Stand characteristics included stand age, site index, tree density, hardwood competition, and mortality. In each time period, the spatial cross-...

  6. Application of hotspot detection using spatial scan statistic: Study of criminality in Indonesia

    NASA Astrophysics Data System (ADS)

    Runadi, Taruga; Widyaningsih, Yekti

    2017-03-01

    According to the police registered data, the number of criminal cases tends to fluctuate during 2011 to 2013. It means there is no significant reduction cases number of criminal acts during that period. Local government needs to observe whether their area was a high risk of criminal case. The objectives of this study are to detect hotspot area of certain criminal cases using spatial scan statistic. This study analyzed the data of 22 criminal types cases based on province in Indonesia that occurred during 2013. The data was obtained from Badan Pusat Statistik (BPS) that was released in 2014. Hotspot detection was performed according to the likelihood ratio of the Poisson model using SaTScanTM software and then mapped using R. The spatial scan statistic method successfully detected provinces that was categorized as hotspot for 22 crime types cases being analyzed with p-value less than 0.05. The local governments of province that were detected as hotspot area of certain crime cases should provide more attention to improve security quality.

  7. Ladar imaging detection of salient map based on PWVD and Rényi entropy

    NASA Astrophysics Data System (ADS)

    Xu, Yuannan; Zhao, Yuan; Deng, Rong; Dong, Yanbing

    2013-10-01

    Spatial-frequency information of a given image can be extracted by associating the grey-level spatial data with one of the well-known spatial/spatial-frequency distributions. The Wigner-Ville distribution (WVD) has a good characteristic that the images can be represented in spatial/spatial-frequency domains. For intensity and range images of ladar, through the pseudo Wigner-Ville distribution (PWVD) using one or two dimension window, the statistical property of Rényi entropy is studied. We also analyzed the change of Rényi entropy's statistical property in the ladar intensity and range images when the man-made objects appear. From this foundation, a novel method for generating saliency map based on PWVD and Rényi entropy is proposed. After that, target detection is completed when the saliency map is segmented using a simple and convenient threshold method. For the ladar intensity and range images, experimental results show the proposed method can effectively detect the military vehicles from complex earth background with low false alarm.

  8. Dengue hemorrhagic fever and typhoid fever association based on spatial standpoint using scan statistics in DKI Jakarta

    NASA Astrophysics Data System (ADS)

    Hervind, Widyaningsih, Y.

    2017-07-01

    Concurrent infection with multiple infectious agents may occur in one patient, it appears frequently in dengue hemorrhagic fever (DHF) and typhoid fever. This paper depicted association between DHF and typhoid based on spatial point of view. Since paucity of data regarding dengue and typhoid co-infection, data that be used are the number of patients of those diseases in every district (kecamatan) in Jakarta in 2014 and 2015 obtained from Jakarta surveillance website. Poisson spatial scan statistics is used to detect DHF and typhoid hotspots area district in Jakarta separately. After obtain the hotspot, Fisher's exact test is applied to validate association between those two diseases' hotspot. The result exhibit hotspots of DHF and typhoid are located around central Jakarta. The further analysis used Poisson space-time scan statistics to reveal the hotspot in term of spatial and time. DHF and typhoid fever more likely occurr from January until May in the area which is relatively similar with pure spatial result. Preventive action could be done especially in the hotspot areas and it is required further study to observe the causes based on characteristics of the hotspot area.

  9. Temporal and spatial scaling impacts on extreme precipitation

    NASA Astrophysics Data System (ADS)

    Eggert, B.; Berg, P.; Haerter, J. O.; Jacob, D.; Moseley, C.

    2015-01-01

    Both in the current climate and in the light of climate change, understanding of the causes and risk of precipitation extremes is essential for protection of human life and adequate design of infrastructure. Precipitation extreme events depend qualitatively on the temporal and spatial scales at which they are measured, in part due to the distinct types of rain formation processes that dominate extremes at different scales. To capture these differences, we first filter large datasets of high-resolution radar measurements over Germany (5 min temporally and 1 km spatially) using synoptic cloud observations, to distinguish convective and stratiform rain events. In a second step, for each precipitation type, the observed data are aggregated over a sequence of time intervals and spatial areas. The resulting matrix allows a detailed investigation of the resolutions at which convective or stratiform events are expected to contribute most to the extremes. We analyze where the statistics of the two types differ and discuss at which resolutions transitions occur between dominance of either of the two precipitation types. We characterize the scales at which the convective or stratiform events will dominate the statistics. For both types, we further develop a mapping between pairs of spatially and temporally aggregated statistics. The resulting curve is relevant when deciding on data resolutions where statistical information in space and time is balanced. Our study may hence also serve as a practical guide for modelers, and for planning the space-time layout of measurement campaigns. We also describe a mapping between different pairs of resolutions, possibly relevant when working with mismatched model and observational resolutions, such as in statistical bias correction.

  10. Linked Micromaps: Statistical Summaries in a Spatial Context

    EPA Science Inventory

    Communicating summaries of spatial data to decision makers and the public is challenging. We present a graphical method that provides both a geographic context and a statistical summary for such spatial data. Monitoring programs have a need for such geographical summaries. For ...

  11. Comparison of U-spatial statistics and C-A fractal models for delineating anomaly patterns of porphyry-type Cu geochemical signatures in the Varzaghan district, NW Iran

    NASA Astrophysics Data System (ADS)

    Ghezelbash, Reza; Maghsoudi, Abbas

    2018-05-01

    The delineation of populations of stream sediment geochemical data is a crucial task in regional exploration surveys. In this contribution, uni-element stream sediment geochemical data of Cu, Au, Mo, and Bi have been subjected to two reliable anomaly-background separation methods, namely, the concentration-area (C-A) fractal and the U-spatial statistics methods to separate geochemical anomalies related to porphyry-type Cu mineralization in northwest Iran. The quantitative comparison of the delineated geochemical populations using the modified success-rate curves revealed the superiority of the U-spatial statistics method over the fractal model. Moreover, geochemical maps of investigated elements revealed strongly positive correlations between strong anomalies and Oligocene-Miocene intrusions in the study area. Therefore, follow-up exploration programs should focus on these areas.

  12. The spatial clustering of obesity: does the built environment matter?

    PubMed

    Huang, R; Moudon, A V; Cook, A J; Drewnowski, A

    2015-12-01

    Obesity rates in the USA show distinct geographical patterns. The present study used spatial cluster detection methods and individual-level data to locate obesity clusters and to analyse them in relation to the neighbourhood built environment. The 2008-2009 Seattle Obesity Study provided data on the self-reported height, weight, and sociodemographic characteristics of 1602 King County adults. Home addresses were geocoded. Clusters of high or low body mass index were identified using Anselin's Local Moran's I and a spatial scan statistic with regression models that searched for unmeasured neighbourhood-level factors from residuals, adjusting for measured individual-level covariates. Spatially continuous values of objectively measured features of the local neighbourhood built environment (SmartMaps) were constructed for seven variables obtained from tax rolls and commercial databases. Both the Local Moran's I and a spatial scan statistic identified similar spatial concentrations of obesity. High and low obesity clusters were attenuated after adjusting for age, gender, race, education and income, and they disappeared once neighbourhood residential property values and residential density were included in the model. Using individual-level data to detect obesity clusters with two cluster detection methods, the present study showed that the spatial concentration of obesity was wholly explained by neighbourhood composition and socioeconomic characteristics. These characteristics may serve to more precisely locate obesity prevention and intervention programmes. © 2014 The British Dietetic Association Ltd.

  13. Spectral statistics of random geometric graphs

    NASA Astrophysics Data System (ADS)

    Dettmann, C. P.; Georgiou, O.; Knight, G.

    2017-04-01

    We use random matrix theory to study the spectrum of random geometric graphs, a fundamental model of spatial networks. Considering ensembles of random geometric graphs we look at short-range correlations in the level spacings of the spectrum via the nearest-neighbour and next-nearest-neighbour spacing distribution and long-range correlations via the spectral rigidity Δ3 statistic. These correlations in the level spacings give information about localisation of eigenvectors, level of community structure and the level of randomness within the networks. We find a parameter-dependent transition between Poisson and Gaussian orthogonal ensemble statistics. That is the spectral statistics of spatial random geometric graphs fits the universality of random matrix theory found in other models such as Erdős-Rényi, Barabási-Albert and Watts-Strogatz random graphs.

  14. Analysing the spatial patterns of erosion scars using point process theory at the coastal chalk cliff of Mesnil-Val, (Normandy, Northern France)

    NASA Astrophysics Data System (ADS)

    Rohmer, J.; Dewez, D.

    2014-09-01

    Over the last decade, many cliff erosion studies have focused on frequency-size statistics using inventories of sea cliff retreat sizes. By comparison, only a few paid attention to quantifying the spatial and temporal organisation of erosion scars over a cliff face. Yet, this spatial organisation carries essential information about the external processes and the environmental conditions that promote or initiate sea-cliff instabilities. In this article, we use summary statistics of spatial point process theory as a tool to examine the spatial and temporal pattern of a rockfall inventory recorded with repeated terrestrial laser scanning surveys at the chalk coastal cliff site of Mesnil-Val (Normandy, France). Results show that: (1) the spatial density of erosion scars is specifically conditioned alongshore by the distance to an engineered concrete groin, with an exponential-like decreasing trend, and vertically focused both at wave breaker height and on strong lithological contrasts; (2) small erosion scars (10-3-10-2 m3) aggregate in clusters within a radius of 5 to 10 m, which suggests some sort of attraction or focused causative process, and disperse above this critical distance; (3) on the contrary, larger erosion scars (10-2-101 m3) tend to disperse above a radius of 1 to 5 m, possibly due to the spreading of successive failures across the cliff face; (4) large scars significantly occur albeit moderately, where previous large rockfalls have occurred during preceeding winter; (5) this temporal trend is not apparent for small events. In conclusion, this study shows, with a worked example, how spatial point process summary statistics are a tool to test and quantify the significance of geomorphological observation organisation.

  15. Analysing the spatial patterns of erosion scars using point process theory at the coastal chalk cliff of Mesnil-Val, Normandy, northern France

    NASA Astrophysics Data System (ADS)

    Rohmer, J.; Dewez, T.

    2015-02-01

    Over the last decade, many cliff erosion studies have focused on frequency-size statistics using inventories of sea cliff retreat sizes. By comparison, only a few paid attention to quantifying the spatial and temporal organisation of erosion scars over a cliff face. Yet, this spatial organisation carries essential information about the external processes and the environmental conditions that promote or initiate sea-cliff instabilities. In this article, we use summary statistics of spatial point process theory as a tool to examine the spatial and temporal pattern of a rockfall inventory recorded with repeated terrestrial laser scanning surveys at the chalk coastal cliff site of Mesnil-Val (Normandy, France). Results show that: (1) the spatial density of erosion scars is specifically conditioned alongshore by the distance to an engineered concrete groyne, with an exponential-like decreasing trend, and vertically focused both at wave breaker height and on strong lithological contrasts; (2) small erosion scars (10-3 to 10-2 m3) aggregate in clusters within a radius of 5 to 10 m, which suggests some sort of attraction or focused causative process, and disperse above this critical distance; (3) on the contrary, larger erosion scars (10-2 to 101 m3) tend to disperse above a radius of 1 to 5 m, possibly due to the spreading of successive failures across the cliff face; (4) large scars significantly occur albeit moderately, where previous large rockfalls have occurred during preceding winter; (5) this temporal trend is not apparent for small events. In conclusion, this study shows, with a worked example, how spatial point process summary statistics are a tool to test and quantify the significance of geomorphological observation organisation.

  16. Diffusion tensor imaging in children with tuberous sclerosis complex: tract-based spatial statistics assessment of brain microstructural changes.

    PubMed

    Zikou, Anastasia K; Xydis, Vasileios G; Astrakas, Loukas G; Nakou, Iliada; Tzarouchi, Loukia C; Tzoufi, Meropi; Argyropoulou, Maria I

    2016-07-01

    There is evidence of microstructural changes in normal-appearing white matter of patients with tuberous sclerosis complex. To evaluate major white matter tracts in children with tuberous sclerosis complex using tract-based spatial statistics diffusion tensor imaging (DTI) analysis. Eight children (mean age ± standard deviation: 8.5 ± 5.5 years) with an established diagnosis of tuberous sclerosis complex and 8 age-matched controls were studied. The imaging protocol consisted of T1-weighted high-resolution 3-D spoiled gradient-echo sequence and a spin-echo, echo-planar diffusion-weighted sequence. Differences in the diffusion indices were evaluated using tract-based spatial statistics. Tract-based spatial statistics showed increased axial diffusivity in the children with tuberous sclerosis complex in the superior and anterior corona radiata, the superior longitudinal fascicle, the inferior fronto-occipital fascicle, the uncinate fascicle and the anterior thalamic radiation. No significant differences were observed in fractional anisotropy, mean diffusivity and radial diffusivity between patients and control subjects. No difference was found in the diffusion indices between the baseline and follow-up examination in the patient group. Patients with tuberous sclerosis complex have increased axial diffusivity in major white matter tracts, probably related to reduced axonal integrity.

  17. Statistical and Economic Techniques for Site-specific Nematode Management.

    PubMed

    Liu, Zheng; Griffin, Terry; Kirkpatrick, Terrence L

    2014-03-01

    Recent advances in precision agriculture technologies and spatial statistics allow realistic, site-specific estimation of nematode damage to field crops and provide a platform for the site-specific delivery of nematicides within individual fields. This paper reviews the spatial statistical techniques that model correlations among neighboring observations and develop a spatial economic analysis to determine the potential of site-specific nematicide application. The spatial econometric methodology applied in the context of site-specific crop yield response contributes to closing the gap between data analysis and realistic site-specific nematicide recommendations and helps to provide a practical method of site-specifically controlling nematodes.

  18. MnemoCity Task: Assessment of Childrens Spatial Memory Using Stereoscopy and Virtual Environments.

    PubMed

    Rodríguez-Andrés, David; Juan, M-Carmen; Méndez-López, Magdalena; Pérez-Hernández, Elena; Lluch, Javier

    2016-01-01

    This paper presents the MnemoCity task, which is a 3D application that introduces the user into a totally 3D virtual environment to evaluate spatial short-term memory. A study has been carried out to validate the MnemoCity task for the assessment of spatial short-term memory in children, by comparing the children's performance in the developed task with current approaches. A total of 160 children participated in the study. The task incorporates two types of interaction: one based on standard interaction and another one based on natural interaction involving physical movement by the user. There were no statistically significant differences in the results of the task using the two types of interaction. Furthermore, statistically significant differences were not found in relation to gender. The correlations between scores were obtained using the MnemoCity task and a traditional procedure for assessing spatial short-term memory. Those results revealed that the type of interaction used did not affect the performance of children in the MnemoCity task.

  19. Data-driven inference for the spatial scan statistic.

    PubMed

    Almeida, Alexandre C L; Duarte, Anderson R; Duczmal, Luiz H; Oliveira, Fernando L P; Takahashi, Ricardo H C

    2011-08-02

    Kulldorff's spatial scan statistic for aggregated area maps searches for clusters of cases without specifying their size (number of areas) or geographic location in advance. Their statistical significance is tested while adjusting for the multiple testing inherent in such a procedure. However, as is shown in this work, this adjustment is not done in an even manner for all possible cluster sizes. A modification is proposed to the usual inference test of the spatial scan statistic, incorporating additional information about the size of the most likely cluster found. A new interpretation of the results of the spatial scan statistic is done, posing a modified inference question: what is the probability that the null hypothesis is rejected for the original observed cases map with a most likely cluster of size k, taking into account only those most likely clusters of size k found under null hypothesis for comparison? This question is especially important when the p-value computed by the usual inference process is near the alpha significance level, regarding the correctness of the decision based in this inference. A practical procedure is provided to make more accurate inferences about the most likely cluster found by the spatial scan statistic.

  20. Spatial statistics of hydrography and water chemistry in a eutrophic boreal lake based on sounding and water samples.

    PubMed

    Leppäranta, Matti; Lewis, John E; Heini, Anniina; Arvola, Lauri

    2018-06-04

    Spatial variability, an essential characteristic of lake ecosystems, has often been neglected in field research and monitoring. In this study, we apply spatial statistical methods for the key physics and chemistry variables and chlorophyll a over eight sampling dates in two consecutive years in a large (area 103 km 2 ) eutrophic boreal lake in southern Finland. In the four summer sampling dates, the water body was vertically and horizontally heterogenic except with color and DOC, in the two winter ice-covered dates DO was vertically stratified, while in the two autumn dates, no significant spatial differences in any of the measured variables were found. Chlorophyll a concentration was one order of magnitude lower under the ice cover than in open water. The Moran statistic for spatial correlation was significant for chlorophyll a and NO 2 +NO 3 -N in all summer situations and for dissolved oxygen and pH in three cases. In summer, the mass centers of the chemicals were within 1.5 km from the geometric center of the lake, and the 2nd moment radius ranged in 3.7-4.1 km respective to 3.9 km for the homogeneous situation. The lateral length scales of the studied variables were 1.5-2.5 km, about 1 km longer in the surface layer. The detected spatial "noise" strongly suggests that besides vertical variation also the horizontal variation in eutrophic lakes, in particular, should be considered when the ecosystems are monitored.

  1. Statistical Analysis of 3D Images Detects Regular Spatial Distributions of Centromeres and Chromocenters in Animal and Plant Nuclei

    PubMed Central

    Biot, Eric; Adenot, Pierre-Gaël; Hue-Beauvais, Cathy; Houba-Hérin, Nicole; Duranthon, Véronique; Devinoy, Eve; Beaujean, Nathalie; Gaudin, Valérie; Maurin, Yves; Debey, Pascale

    2010-01-01

    In eukaryotes, the interphase nucleus is organized in morphologically and/or functionally distinct nuclear “compartments”. Numerous studies highlight functional relationships between the spatial organization of the nucleus and gene regulation. This raises the question of whether nuclear organization principles exist and, if so, whether they are identical in the animal and plant kingdoms. We addressed this issue through the investigation of the three-dimensional distribution of the centromeres and chromocenters. We investigated five very diverse populations of interphase nuclei at different differentiation stages in their physiological environment, belonging to rabbit embryos at the 8-cell and blastocyst stages, differentiated rabbit mammary epithelial cells during lactation, and differentiated cells of Arabidopsis thaliana plantlets. We developed new tools based on the processing of confocal images and a new statistical approach based on G- and F- distance functions used in spatial statistics. Our original computational scheme takes into account both size and shape variability by comparing, for each nucleus, the observed distribution against a reference distribution estimated by Monte-Carlo sampling over the same nucleus. This implicit normalization allowed similar data processing and extraction of rules in the five differentiated nuclei populations of the three studied biological systems, despite differences in chromosome number, genome organization and heterochromatin content. We showed that centromeres/chromocenters form significantly more regularly spaced patterns than expected under a completely random situation, suggesting that repulsive constraints or spatial inhomogeneities underlay the spatial organization of heterochromatic compartments. The proposed technique should be useful for identifying further spatial features in a wide range of cell types. PMID:20628576

  2. A scan statistic for binary outcome based on hypergeometric probability model, with an application to detecting spatial clusters of Japanese encephalitis.

    PubMed

    Zhao, Xing; Zhou, Xiao-Hua; Feng, Zijian; Guo, Pengfei; He, Hongyan; Zhang, Tao; Duan, Lei; Li, Xiaosong

    2013-01-01

    As a useful tool for geographical cluster detection of events, the spatial scan statistic is widely applied in many fields and plays an increasingly important role. The classic version of the spatial scan statistic for the binary outcome is developed by Kulldorff, based on the Bernoulli or the Poisson probability model. In this paper, we apply the Hypergeometric probability model to construct the likelihood function under the null hypothesis. Compared with existing methods, the likelihood function under the null hypothesis is an alternative and indirect method to identify the potential cluster, and the test statistic is the extreme value of the likelihood function. Similar with Kulldorff's methods, we adopt Monte Carlo test for the test of significance. Both methods are applied for detecting spatial clusters of Japanese encephalitis in Sichuan province, China, in 2009, and the detected clusters are identical. Through a simulation to independent benchmark data, it is indicated that the test statistic based on the Hypergeometric model outweighs Kulldorff's statistics for clusters of high population density or large size; otherwise Kulldorff's statistics are superior.

  3. Developing a bivariate spatial association measure: An integration of Pearson's r and Moran's I

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Il

    This research is concerned with developing a bivariate spatial association measure or spatial correlation coefficient, which is intended to capture spatial association among observations in terms of their point-to-point relationships across two spatial patterns. The need for parameterization of the bivariate spatial dependence is precipitated by the realization that aspatial bivariate association measures, such as Pearson's correlation coefficient, do not recognize spatial distributional aspects of data sets. This study devises an L statistic by integrating Pearson's r as an aspatial bivariate association measure and Moran's I as a univariate spatial association measure. The concept of a spatial smoothing scalar (SSS) plays a pivotal role in this task.

  4. Optimizing the maximum reported cluster size in the spatial scan statistic for ordinal data.

    PubMed

    Kim, Sehwi; Jung, Inkyung

    2017-01-01

    The spatial scan statistic is an important tool for spatial cluster detection. There have been numerous studies on scanning window shapes. However, little research has been done on the maximum scanning window size or maximum reported cluster size. Recently, Han et al. proposed to use the Gini coefficient to optimize the maximum reported cluster size. However, the method has been developed and evaluated only for the Poisson model. We adopt the Gini coefficient to be applicable to the spatial scan statistic for ordinal data to determine the optimal maximum reported cluster size. Through a simulation study and application to a real data example, we evaluate the performance of the proposed approach. With some sophisticated modification, the Gini coefficient can be effectively employed for the ordinal model. The Gini coefficient most often picked the optimal maximum reported cluster sizes that were the same as or smaller than the true cluster sizes with very high accuracy. It seems that we can obtain a more refined collection of clusters by using the Gini coefficient. The Gini coefficient developed specifically for the ordinal model can be useful for optimizing the maximum reported cluster size for ordinal data and helpful for properly and informatively discovering cluster patterns.

  5. Optimizing the maximum reported cluster size in the spatial scan statistic for ordinal data

    PubMed Central

    Kim, Sehwi

    2017-01-01

    The spatial scan statistic is an important tool for spatial cluster detection. There have been numerous studies on scanning window shapes. However, little research has been done on the maximum scanning window size or maximum reported cluster size. Recently, Han et al. proposed to use the Gini coefficient to optimize the maximum reported cluster size. However, the method has been developed and evaluated only for the Poisson model. We adopt the Gini coefficient to be applicable to the spatial scan statistic for ordinal data to determine the optimal maximum reported cluster size. Through a simulation study and application to a real data example, we evaluate the performance of the proposed approach. With some sophisticated modification, the Gini coefficient can be effectively employed for the ordinal model. The Gini coefficient most often picked the optimal maximum reported cluster sizes that were the same as or smaller than the true cluster sizes with very high accuracy. It seems that we can obtain a more refined collection of clusters by using the Gini coefficient. The Gini coefficient developed specifically for the ordinal model can be useful for optimizing the maximum reported cluster size for ordinal data and helpful for properly and informatively discovering cluster patterns. PMID:28753674

  6. Role of spatial inhomogenity in GPCR dimerisation predicted by receptor association-diffusion models

    NASA Astrophysics Data System (ADS)

    Deshpande, Sneha A.; Pawar, Aiswarya B.; Dighe, Anish; Athale, Chaitanya A.; Sengupta, Durba

    2017-06-01

    G protein-coupled receptor (GPCR) association is an emerging paradigm with far reaching implications in the regulation of signalling pathways and therapeutic interventions. Recent super resolution microscopy studies have revealed that receptor dimer steady state exhibits sub-second dynamics. In particular the GPCRs, muscarinic acetylcholine receptor M1 (M1MR) and formyl peptide receptor (FPR), have been demonstrated to exhibit a fast association/dissociation kinetics, independent of ligand binding. In this work, we have developed a spatial kinetic Monte Carlo model to investigate receptor homo-dimerisation at a single receptor resolution. Experimentally measured association/dissociation kinetic parameters and diffusion coefficients were used as inputs to the model. To test the effect of membrane spatial heterogeneity on the simulated steady state, simulations were compared to experimental statistics of dimerisation. In the simplest case the receptors are assumed to be diffusing in a spatially homogeneous environment, while spatial heterogeneity is modelled to result from crowding, membrane micro-domains and cytoskeletal compartmentalisation or ‘corrals’. We show that a simple association-diffusion model is sufficient to reproduce M1MR association statistics, but fails to reproduce FPR statistics despite comparable kinetic constants. A parameter sensitivity analysis is required to reproduce the association statistics of FPR. The model reveals the complex interplay between cytoskeletal components and their influence on receptor association kinetics within the features of the membrane landscape. These results constitute an important step towards understanding the factors modulating GPCR organisation.

  7. Statistics for Time-Series Spatial Data: Applying Survival Analysis to Study Land-Use Change

    ERIC Educational Resources Information Center

    Wang, Ninghua Nathan

    2013-01-01

    Traditional spatial analysis and data mining methods fall short of extracting temporal information from data. This inability makes their use difficult to study changes and the associated mechanisms of many geographic phenomena of interest, for example, land-use. On the other hand, the growing availability of land-change data over multiple time…

  8. Comparison of individual-based model output to data using a model of walleye pollock early life history in the Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Hinckley, Sarah; Parada, Carolina; Horne, John K.; Mazur, Michael; Woillez, Mathieu

    2016-10-01

    Biophysical individual-based models (IBMs) have been used to study aspects of early life history of marine fishes such as recruitment, connectivity of spawning and nursery areas, and marine reserve design. However, there is no consistent approach to validating the spatial outputs of these models. In this study, we hope to rectify this gap. We document additions to an existing individual-based biophysical model for Alaska walleye pollock (Gadus chalcogrammus), some simulations made with this model and methods that were used to describe and compare spatial output of the model versus field data derived from ichthyoplankton surveys in the Gulf of Alaska. We used visual methods (e.g. distributional centroids with directional ellipses), several indices (such as a Normalized Difference Index (NDI), and an Overlap Coefficient (OC), and several statistical methods: the Syrjala method, the Getis-Ord Gi* statistic, and a geostatistical method for comparing spatial indices. We assess the utility of these different methods in analyzing spatial output and comparing model output to data, and give recommendations for their appropriate use. Visual methods are useful for initial comparisons of model and data distributions. Metrics such as the NDI and OC give useful measures of co-location and overlap, but care must be taken in discretizing the fields into bins. The Getis-Ord Gi* statistic is useful to determine the patchiness of the fields. The Syrjala method is an easily implemented statistical measure of the difference between the fields, but does not give information on the details of the distributions. Finally, the geostatistical comparison of spatial indices gives good information of details of the distributions and whether they differ significantly between the model and the data. We conclude that each technique gives quite different information about the model-data distribution comparison, and that some are easy to apply and some more complex. We also give recommendations for a multistep process to validate spatial output from IBMs.

  9. Quantifying the influences of various ecological factors on land surface temperature of urban forests.

    PubMed

    Ren, Yin; Deng, Lu-Ying; Zuo, Shu-Di; Song, Xiao-Dong; Liao, Yi-Lan; Xu, Cheng-Dong; Chen, Qi; Hua, Li-Zhong; Li, Zheng-Wei

    2016-09-01

    Identifying factors that influence the land surface temperature (LST) of urban forests can help improve simulations and predictions of spatial patterns of urban cool islands. This requires a quantitative analytical method that combines spatial statistical analysis with multi-source observational data. The purpose of this study was to reveal how human activities and ecological factors jointly influence LST in clustering regions (hot or cool spots) of urban forests. Using Xiamen City, China from 1996 to 2006 as a case study, we explored the interactions between human activities and ecological factors, as well as their influences on urban forest LST. Population density was selected as a proxy for human activity. We integrated multi-source data (forest inventory, digital elevation models (DEM), population, and remote sensing imagery) to develop a database on a unified urban scale. The driving mechanism of urban forest LST was revealed through a combination of multi-source spatial data and spatial statistical analysis of clustering regions. The results showed that the main factors contributing to urban forest LST were dominant tree species and elevation. The interactions between human activity and specific ecological factors linearly or nonlinearly increased LST in urban forests. Strong interactions between elevation and dominant species were generally observed and were prevalent in either hot or cold spots areas in different years. In conclusion, quantitative studies based on spatial statistics and GeogDetector models should be conducted in urban areas to reveal interactions between human activities, ecological factors, and LST. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Effect of spatial smoothing on t-maps: arguments for going back from t-maps to masked contrast images.

    PubMed

    Reimold, Matthias; Slifstein, Mark; Heinz, Andreas; Mueller-Schauenburg, Wolfgang; Bares, Roland

    2006-06-01

    Voxelwise statistical analysis has become popular in explorative functional brain mapping with fMRI or PET. Usually, results are presented as voxelwise levels of significance (t-maps), and for clusters that survive correction for multiple testing the coordinates of the maximum t-value are reported. Before calculating a voxelwise statistical test, spatial smoothing is required to achieve a reasonable statistical power. Little attention is being given to the fact that smoothing has a nonlinear effect on the voxel variances and thus the local characteristics of a t-map, which becomes most evident after smoothing over different types of tissue. We investigated the related artifacts, for example, white matter peaks whose position depend on the relative variance (variance over contrast) of the surrounding regions, and suggest improving spatial precision with 'masked contrast images': color-codes are attributed to the voxelwise contrast, and significant clusters (e.g., detected with statistical parametric mapping, SPM) are enlarged by including contiguous pixels with a contrast above the mean contrast in the original cluster, provided they satisfy P < 0.05. The potential benefit is demonstrated with simulations and data from a [11C]Carfentanil PET study. We conclude that spatial smoothing may lead to critical, sometimes-counterintuitive artifacts in t-maps, especially in subcortical brain regions. If significant clusters are detected, for example, with SPM, the suggested method is one way to improve spatial precision and may give the investigator a more direct sense of the underlying data. Its simplicity and the fact that no further assumptions are needed make it a useful complement for standard methods of statistical mapping.

  11. The Stratification Analysis of Sediment Data for Lake Michigan

    EPA Science Inventory

    This research paper describes the development of spatial statistical tools that are applied to investigate the spatial trends of sediment data sets for nutrients and carbon in Lake Michigan. All of the sediment data utilized in the present study was collected over a two year per...

  12. A computational statistics approach for estimating the spatial range of morphogen gradients

    PubMed Central

    Kanodia, Jitendra S.; Kim, Yoosik; Tomer, Raju; Khan, Zia; Chung, Kwanghun; Storey, John D.; Lu, Hang; Keller, Philipp J.; Shvartsman, Stanislav Y.

    2011-01-01

    A crucial issue in studies of morphogen gradients relates to their range: the distance over which they can act as direct regulators of cell signaling, gene expression and cell differentiation. To address this, we present a straightforward statistical framework that can be used in multiple developmental systems. We illustrate the developed approach by providing a point estimate and confidence interval for the spatial range of the graded distribution of nuclear Dorsal, a transcription factor that controls the dorsoventral pattern of the Drosophila embryo. PMID:22007136

  13. Consideraciones para la estimacion de abundancia de poblaciones de mamiferos. [Considerations for the estimation of abundance of mammal populations.

    USGS Publications Warehouse

    Walker, R.S.; Novare, A.J.; Nichols, J.D.

    2000-01-01

    Estimation of abundance of mammal populations is essential for monitoring programs and for many ecological investigations. The first step for any study of variation in mammal abundance over space or time is to define the objectives of the study and how and why abundance data are to be used. The data used to estimate abundance are count statistics in the form of counts of animals or their signs. There are two major sources of uncertainty that must be considered in the design of the study: spatial variation and the relationship between abundance and the count statistic. Spatial variation in the distribution of animals or signs may be taken into account with appropriate spatial sampling. Count statistics may be viewed as random variables, with the expected value of the count statistic equal to the true abundance of the population multiplied by a coefficient p. With direct counts, p represents the probability of detection or capture of individuals, and with indirect counts it represents the rate of production of the signs as well as their probability of detection. Comparisons of abundance using count statistics from different times or places assume that the p are the same for all times or places being compared (p= pi). In spite of considerable evidence that this assumption rarely holds true, it is commonly made in studies of mammal abundance, as when the minimum number alive or indices based on sign counts are used to compare abundance in different habitats or times. Alternatives to relying on this assumption are to calibrate the index used by testing the assumption of p= pi, or to incorporate the estimation of p into the study design.

  14. GIS-supported investigation of human EHEC and cattle VTEC O157 infections in Sweden: geographical distribution, spatial variation and possible risk factors.

    PubMed Central

    Kistemann, Thomas; Zimmer, Sonja; Vågsholm, Ivar; Andersson, Yvonne

    2004-01-01

    This article describes the spatial and temporal distribution of verotoxin-producing Escherichia coli among humans (EHEC) and cattle (VTEC) in Sweden, in order to evaluate relationships between the incidence of EHEC in humans, prevalence of VTEC O157 in livestock and agricultural structure by an ecological study. The spatial patterns of the distribution of human infections were described and compared with spatial patterns of occurrence in cattle, using a Geographic Information System (GIS). The findings implicate a concentration of human infection and cattle prevalence in the southwest of Sweden. The use of probability mapping confirmed unusual patterns of infection rates. The comparison of human and cattle infection indicated a spatial and statistical association. The correlation between variables of the agricultural structure and human EHEC incidence was high, indicating a significant statistical association of cattle and farm density with human infection. The explained variation of a multiple linear regression model was 0.56. PMID:15188718

  15. Tract-Based Spatial Statistics in Preterm-Born Neonates Predicts Cognitive and Motor Outcomes at 18 Months.

    PubMed

    Duerden, E G; Foong, J; Chau, V; Branson, H; Poskitt, K J; Grunau, R E; Synnes, A; Zwicker, J G; Miller, S P

    2015-08-01

    Adverse neurodevelopmental outcome is common in children born preterm. Early sensitive predictors of neurodevelopmental outcome such as MR imaging are needed. Tract-based spatial statistics, a diffusion MR imaging analysis method, performed at term-equivalent age (40 weeks) is a promising predictor of neurodevelopmental outcomes in children born very preterm. We sought to determine the association of tract-based spatial statistics findings before term-equivalent age with neurodevelopmental outcome at 18-months corrected age. Of 180 neonates (born at 24-32-weeks' gestation) enrolled, 153 had DTI acquired early at 32 weeks' postmenstrual age and 105 had DTI acquired later at 39.6 weeks' postmenstrual age. Voxelwise statistics were calculated by performing tract-based spatial statistics on DTI that was aligned to age-appropriate templates. At 18-month corrected age, 166 neonates underwent neurodevelopmental assessment by using the Bayley Scales of Infant Development, 3rd ed, and the Peabody Developmental Motor Scales, 2nd ed. Tract-based spatial statistics analysis applied to early-acquired scans (postmenstrual age of 30-33 weeks) indicated a limited significant positive association between motor skills and axial diffusivity and radial diffusivity values in the corpus callosum, internal and external/extreme capsules, and midbrain (P < .05, corrected). In contrast, for term scans (postmenstrual age of 37-41 weeks), tract-based spatial statistics analysis showed a significant relationship between both motor and cognitive scores with fractional anisotropy in the corpus callosum and corticospinal tracts (P < .05, corrected). Tract-based spatial statistics in a limited subset of neonates (n = 22) scanned at <30 weeks did not significantly predict neurodevelopmental outcomes. The strength of the association between fractional anisotropy values and neurodevelopmental outcome scores increased from early-to-late-acquired scans in preterm-born neonates, consistent with brain dysmaturation in this population. © 2015 by American Journal of Neuroradiology.

  16. Variability of streambed hydraulic conductivity in an intermittent stream reach regulated by Vented Dams: A case study

    NASA Astrophysics Data System (ADS)

    Naganna, Sujay Raghavendra; Deka, Paresh Chandra

    2018-07-01

    The hydro-geological properties of streambed together with the hydraulic gradients determine the fluxes of water, energy and solutes between the stream and underlying aquifer system. Dam induced sedimentation affects hyporheic processes and alters substrate pore space geometries in the course of progressive stabilization of the sediment layers. Uncertainty in stream-aquifer interactions arises from the inherent complex-nested flow paths and spatio-temporal variability of streambed hydraulic properties. A detailed field investigation of streambed hydraulic conductivity (Ks) using Guelph Permeameter was carried out in an intermittent stream reach of the Pavanje river basin located in the mountainous, forested tract of western ghats of India. The present study reports the spatial and temporal variability of streambed hydraulic conductivity along the stream reach obstructed by two Vented Dams in sequence. Statistical tests such as Levene's and Welch's t-tests were employed to check for various variability measures. The strength of spatial dependence and the presence of spatial autocorrelation among the streambed Ks samples were tested by using Moran's I statistic. The measures of central tendency and dispersion pointed out reasonable spatial variability in Ks distribution throughout the study reach during two consecutive years 2016 and 2017. The streambed was heterogeneous with regard to hydraulic conductivity distribution with high-Ks zones near the backwater areas of the vented dam and low-Ks zones particularly at the tail water section of vented dams. Dam operational strategies were responsible for seasonal fluctuations in sedimentation and modifications to streambed substrate characteristics (such as porosity, grain size, packing etc.), resulting in heterogeneous streambed Ks profiles. The channel downstream of vented dams contained significantly more cohesive deposits of fine sediment due to the overflow of surplus suspended sediment-laden water at low velocity and pressure head. The statistical test results accept the hypothesis of significant spatial variability of streambed Ks but refuse to accept the temporal variations. The deterministic and geo-statistical approaches of spatial interpolation provided virtuous surface maps of streambed Ks distribution.

  17. Calibrating MODIS aerosol optical depth for predicting daily PM2.5 concentrations via statistical downscaling.

    PubMed

    Chang, Howard H; Hu, Xuefei; Liu, Yang

    2014-07-01

    There has been a growing interest in the use of satellite-retrieved aerosol optical depth (AOD) to estimate ambient concentrations of PM2.5 (particulate matter <2.5 μm in aerodynamic diameter). With their broad spatial coverage, satellite data can increase the spatial-temporal availability of air quality data beyond ground monitoring measurements and potentially improve exposure assessment for population-based health studies. This paper describes a statistical downscaling approach that brings together (1) recent advances in PM2.5 land use regression models utilizing AOD and (2) statistical data fusion techniques for combining air quality data sets that have different spatial resolutions. Statistical downscaling assumes the associations between AOD and PM2.5 concentrations to be spatially and temporally dependent and offers two key advantages. First, it enables us to use gridded AOD data to predict PM2.5 concentrations at spatial point locations. Second, the unified hierarchical framework provides straightforward uncertainty quantification in the predicted PM2.5 concentrations. The proposed methodology is applied to a data set of daily AOD values in southeastern United States during the period 2003-2005. Via cross-validation experiments, our model had an out-of-sample prediction R(2) of 0.78 and a root mean-squared error (RMSE) of 3.61 μg/m(3) between observed and predicted daily PM2.5 concentrations. This corresponds to a 10% decrease in RMSE compared with the same land use regression model without AOD as a predictor. Prediction performances of spatial-temporal interpolations to locations and on days without monitoring PM2.5 measurements were also examined.

  18. Analysis of the dependence of extreme rainfalls

    NASA Astrophysics Data System (ADS)

    Padoan, Simone; Ancey, Christophe; Parlange, Marc

    2010-05-01

    The aim of spatial analysis is to quantitatively describe the behavior of environmental phenomena such as precipitation levels, wind speed or daily temperatures. A number of generic approaches to spatial modeling have been developed[1], but these are not necessarily ideal for handling extremal aspects given their focus on mean process levels. The areal modelling of the extremes of a natural process observed at points in space is important in environmental statistics; for example, understanding extremal spatial rainfall is crucial in flood protection. In light of recent concerns over climate change, the use of robust mathematical and statistical methods for such analyses has grown in importance. Multivariate extreme value models and the class of maxstable processes [2] have a similar asymptotic motivation to the univariate Generalized Extreme Value (GEV) distribution , but providing a general approach to modeling extreme processes incorporating temporal or spatial dependence. Statistical methods for max-stable processes and data analyses of practical problems are discussed by [3] and [4]. This work illustrates methods to the statistical modelling of spatial extremes and gives examples of their use by means of a real extremal data analysis of Switzerland precipitation levels. [1] Cressie, N. A. C. (1993). Statistics for Spatial Data. Wiley, New York. [2] de Haan, L and Ferreria A. (2006). Extreme Value Theory An Introduction. Springer, USA. [3] Padoan, S. A., Ribatet, M and Sisson, S. A. (2009). Likelihood-Based Inference for Max-Stable Processes. Journal of the American Statistical Association, Theory & Methods. In press. [4] Davison, A. C. and Gholamrezaee, M. (2009), Geostatistics of extremes. Journal of the Royal Statistical Society, Series B. To appear.

  19. Spatial and space-time distribution of Plasmodium vivax and Plasmodium falciparum malaria in China, 2005-2014.

    PubMed

    Hundessa, Samuel H; Williams, Gail; Li, Shanshan; Guo, Jinpeng; Chen, Linping; Zhang, Wenyi; Guo, Yuming

    2016-12-19

    Despite the declining burden of malaria in China, the disease remains a significant public health problem with periodic outbreaks and spatial variation across the country. A better understanding of the spatial and temporal characteristics of malaria is essential for consolidating the disease control and elimination programme. This study aims to understand the spatial and spatiotemporal distribution of Plasmodium vivax and Plasmodium falciparum malaria in China during 2005-2009. Global Moran's I statistics was used to detect a spatial distribution of local P. falciparum and P. vivax malaria at the county level. Spatial and space-time scan statistics were applied to detect spatial and spatiotemporal clusters, respectively. Both P. vivax and P. falciparum malaria showed spatial autocorrelation. The most likely spatial cluster of P. vivax was detected in northern Anhui province between 2005 and 2009, and western Yunnan province between 2010 and 2014. For P. falciparum, the clusters included several counties of western Yunnan province from 2005 to 2011, Guangxi from 2012 to 2013, and Anhui in 2014. The most likely space-time clusters of P. vivax malaria and P. falciparum malaria were detected in northern Anhui province and western Yunnan province, respectively, during 2005-2009. The spatial and space-time cluster analysis identified high-risk areas and periods for both P. vivax and P. falciparum malaria. Both malaria types showed significant spatial and spatiotemporal variations. Contrary to P. vivax, the high-risk areas for P. falciparum malaria shifted from the west to the east of China. Further studies are required to examine the spatial changes in risk of malaria transmission and identify the underlying causes of elevated risk in the high-risk areas.

  20. The Spatial Distribution of Adult Obesity Prevalence in Denver County, Colorado: An Empirical Bayes Approach to Adjust EHR-Derived Small Area Estimates.

    PubMed

    Tabano, David C; Bol, Kirk; Newcomer, Sophia R; Barrow, Jennifer C; Daley, Matthew F

    2017-12-06

    Measuring obesity prevalence across geographic areas should account for environmental and socioeconomic factors that contribute to spatial autocorrelation, the dependency of values in estimates across neighboring areas, to mitigate the bias in measures and risk of type I errors in hypothesis testing. Dependency among observations across geographic areas violates statistical independence assumptions and may result in biased estimates. Empirical Bayes (EB) estimators reduce the variability of estimates with spatial autocorrelation, which limits the overall mean square-error and controls for sample bias. Using the Colorado Body Mass Index (BMI) Monitoring System, we modeled the spatial autocorrelation of adult (≥ 18 years old) obesity (BMI ≥ 30 kg m 2 ) measurements using patient-level electronic health record data from encounters between January 1, 2009, and December 31, 2011. Obesity prevalence was estimated among census tracts with >=10 observations in Denver County census tracts during the study period. We calculated the Moran's I statistic to test for spatial autocorrelation across census tracts, and mapped crude and EB obesity prevalence across geographic areas. In Denver County, there were 143 census tracts with 10 or more observations, representing a total of 97,710 adults with a valid BMI. The crude obesity prevalence for adults in Denver County was 29.8 percent (95% CI 28.4-31.1%) and ranged from 12.8 to 45.2 percent across individual census tracts. EB obesity prevalence was 30.2 percent (95% CI 28.9-31.5%) and ranged from 15.3 to 44.3 percent across census tracts. Statistical tests using the Moran's I statistic suggest adult obesity prevalence in Denver County was distributed in a non-random pattern. Clusters of EB obesity estimates were highly significant (alpha=0.05) in neighboring census tracts. Concentrations of obesity estimates were primarily in the west and north in Denver County. Statistical tests reveal adult obesity prevalence exhibit spatial autocorrelation in Denver County at the census tract level. EB estimates for obesity prevalence can be used to control for spatial autocorrelation between neighboring census tracts and may produce less biased estimates of obesity prevalence.

  1. A Comparative Analysis of Holographic, 3D-Printed, and Computer-Generated Models: Implications for Engineering Technology Students' Spatial Visualization Ability

    ERIC Educational Resources Information Center

    Katsioloudis, Petros J.; Jones, Mildred V.

    2018-01-01

    A number of studies indicate that the use of holographic displays can influence spatial visualization ability; however, research provides inconsistent results. Considering this, a quasi-experimental study was conducted to identify the existence of statistically significant effects on sectional view drawing ability due to the impacts of holographic…

  2. Urban Transmission of American Cutaneous Leishmaniasis in Argentina: Spatial Analysis Study

    PubMed Central

    Gil, José F.; Nasser, Julio R.; Cajal, Silvana P.; Juarez, Marisa; Acosta, Norma; Cimino, Rubén O.; Diosque, Patricio; Krolewiecki, Alejandro J.

    2010-01-01

    We used kernel density and scan statistics to examine the spatial distribution of cases of pediatric and adult American cutaneous leishmaniasis in an urban disease-endemic area in Salta Province, Argentina. Spatial analysis was used for the whole population and stratified by women > 14 years of age (n = 159), men > 14 years of age (n = 667), and children < 15 years of age (n = 213). Although kernel density for adults encompassed nearly the entire city, distribution in children was most prevalent in the peripheral areas of the city. Scan statistic analysis for adult males, adult females, and children found 11, 2, and 8 clusters, respectively. Clusters for children had the highest odds ratios (P < 0.05) and were located in proximity of plantations and secondary vegetation. The data from this study provide further evidence of the potential urban transmission of American cutaneous leishmaniasis in northern Argentina. PMID:20207869

  3. Assessing the significance of pedobarographic signals using random field theory.

    PubMed

    Pataky, Todd C

    2008-08-07

    Traditional pedobarographic statistical analyses are conducted over discrete regions. Recent studies have demonstrated that regionalization can corrupt pedobarographic field data through conflation when arbitrary dividing lines inappropriately delineate smooth field processes. An alternative is to register images such that homologous structures optimally overlap and then conduct statistical tests at each pixel to generate statistical parametric maps (SPMs). The significance of SPM processes may be assessed within the framework of random field theory (RFT). RFT is ideally suited to pedobarographic image analysis because its fundamental data unit is a lattice sampling of a smooth and continuous spatial field. To correct for the vast number of multiple comparisons inherent in such data, recent pedobarographic studies have employed a Bonferroni correction to retain a constant family-wise error rate. This approach unfortunately neglects the spatial correlation of neighbouring pixels, so provides an overly conservative (albeit valid) statistical threshold. RFT generally relaxes the threshold depending on field smoothness and on the geometry of the search area, but it also provides a framework for assigning p values to suprathreshold clusters based on their spatial extent. The current paper provides an overview of basic RFT concepts and uses simulated and experimental data to validate both RFT-relevant field smoothness estimations and RFT predictions regarding the topological characteristics of random pedobarographic fields. Finally, previously published experimental data are re-analysed using RFT inference procedures to demonstrate how RFT yields easily understandable statistical results that may be incorporated into routine clinical and laboratory analyses.

  4. Spatial variation of volcanic rock geochemistry in the Virunga Volcanic Province: Statistical analysis of an integrated database

    NASA Astrophysics Data System (ADS)

    Barette, Florian; Poppe, Sam; Smets, Benoît; Benbakkar, Mhammed; Kervyn, Matthieu

    2017-10-01

    We present an integrated, spatially-explicit database of existing geochemical major-element analyses available from (post-) colonial scientific reports, PhD Theses and international publications for the Virunga Volcanic Province, located in the western branch of the East African Rift System. This volcanic province is characterised by alkaline volcanism, including silica-undersaturated, alkaline and potassic lavas. The database contains a total of 908 geochemical analyses of eruptive rocks for the entire volcanic province with a localisation for most samples. A preliminary analysis of the overall consistency of the database, using statistical techniques on sets of geochemical analyses with contrasted analytical methods or dates, demonstrates that the database is consistent. We applied a principal component analysis and cluster analysis on whole-rock major element compositions included in the database to study the spatial variation of the chemical composition of eruptive products in the Virunga Volcanic Province. These statistical analyses identify spatially distributed clusters of eruptive products. The known geochemical contrasts are highlighted by the spatial analysis, such as the unique geochemical signature of Nyiragongo lavas compared to other Virunga lavas, the geochemical heterogeneity of the Bulengo area, and the trachyte flows of Karisimbi volcano. Most importantly, we identified separate clusters of eruptive products which originate from primitive magmatic sources. These lavas of primitive composition are preferentially located along NE-SW inherited rift structures, often at distance from the central Virunga volcanoes. Our results illustrate the relevance of a spatial analysis on integrated geochemical data for a volcanic province, as a complement to classical petrological investigations. This approach indeed helps to characterise geochemical variations within a complex of magmatic systems and to identify specific petrologic and geochemical investigations that should be tackled within a study area.

  5. Understanding spatial organizations of chromosomes via statistical analysis of Hi-C data

    PubMed Central

    Hu, Ming; Deng, Ke; Qin, Zhaohui; Liu, Jun S.

    2015-01-01

    Understanding how chromosomes fold provides insights into the transcription regulation, hence, the functional state of the cell. Using the next generation sequencing technology, the recently developed Hi-C approach enables a global view of spatial chromatin organization in the nucleus, which substantially expands our knowledge about genome organization and function. However, due to multiple layers of biases, noises and uncertainties buried in the protocol of Hi-C experiments, analyzing and interpreting Hi-C data poses great challenges, and requires novel statistical methods to be developed. This article provides an overview of recent Hi-C studies and their impacts on biomedical research, describes major challenges in statistical analysis of Hi-C data, and discusses some perspectives for future research. PMID:26124977

  6. Hot spot detection and spatio-temporal dispersion of dengue fever in Hanoi, Vietnam

    PubMed Central

    Toan, Do Thi Thanh; Hu, Wenbiao; Thai, Pham Quang; Hoat, Luu Ngoc; Wright, Pamela; Martens, Pim

    2013-01-01

    Introduction Dengue fever (DF) in Vietnam remains a serious emerging arboviral disease, which generates significant concerns among international health authorities. Incidence rates of DF have increased significantly during the last few years in many provinces and cities, especially Hanoi. The purpose of this study was to detect DF hot spots and identify the disease dynamics dispersion of DF over the period between 2004 and 2009 in Hanoi, Vietnam. Methods Daily data on DF cases and population data for each postcode area of Hanoi between January 1998 and December 2009 were obtained from the Hanoi Center for Preventive Health and the General Statistic Office of Vietnam. Moran's I statistic was used to assess the spatial autocorrelation of reported DF. Spatial scan statistics and logistic regression were used to identify space–time clusters and dispersion of DF. Results The study revealed a clear trend of geographic expansion of DF transmission in Hanoi through the study periods (OR 1.17, 95% CI 1.02–1.34). The spatial scan statistics showed that 6/14 (42.9%) districts in Hanoi had significant cluster patterns, which lasted 29 days and were limited to a radius of 1,000 m. The study also demonstrated that most DF cases occurred between June and November, during which the rainfall and temperatures are highest. Conclusions There is evidence for the existence of statistically significant clusters of DF in Hanoi, and that the geographical distribution of DF has expanded over recent years. This finding provides a foundation for further investigation into the social and environmental factors responsible for changing disease patterns, and provides data to inform program planning for DF control. PMID:23364076

  7. Hot spot detection and spatio-temporal dispersion of dengue fever in Hanoi, Vietnam.

    PubMed

    Toan, Do Thi Thanh; Hu, Wenbiao; Quang Thai, Pham; Hoat, Luu Ngoc; Wright, Pamela; Martens, Pim

    2013-01-24

    Dengue fever (DF) in Vietnam remains a serious emerging arboviral disease, which generates significant concerns among international health authorities. Incidence rates of DF have increased significantly during the last few years in many provinces and cities, especially Hanoi. The purpose of this study was to detect DF hot spots and identify the disease dynamics dispersion of DF over the period between 2004 and 2009 in Hanoi, Vietnam. Daily data on DF cases and population data for each postcode area of Hanoi between January 1998 and December 2009 were obtained from the Hanoi Center for Preventive Health and the General Statistic Office of Vietnam. Moran's I statistic was used to assess the spatial autocorrelation of reported DF. Spatial scan statistics and logistic regression were used to identify space-time clusters and dispersion of DF. The study revealed a clear trend of geographic expansion of DF transmission in Hanoi through the study periods (OR 1.17, 95% CI 1.02-1.34). The spatial scan statistics showed that 6/14 (42.9%) districts in Hanoi had significant cluster patterns, which lasted 29 days and were limited to a radius of 1,000 m. The study also demonstrated that most DF cases occurred between June and November, during which the rainfall and temperatures are highest. There is evidence for the existence of statistically significant clusters of DF in Hanoi, and that the geographical distribution of DF has expanded over recent years. This finding provides a foundation for further investigation into the social and environmental factors responsible for changing disease patterns, and provides data to inform program planning for DF control.

  8. Spatio-Temporal Analysis of Smear-Positive Tuberculosis in the Sidama Zone, Southern Ethiopia

    PubMed Central

    Dangisso, Mesay Hailu; Datiko, Daniel Gemechu; Lindtjørn, Bernt

    2015-01-01

    Background Tuberculosis (TB) is a disease of public health concern, with a varying distribution across settings depending on socio-economic status, HIV burden, availability and performance of the health system. Ethiopia is a country with a high burden of TB, with regional variations in TB case notification rates (CNRs). However, TB program reports are often compiled and reported at higher administrative units that do not show the burden at lower units, so there is limited information about the spatial distribution of the disease. We therefore aim to assess the spatial distribution and presence of the spatio-temporal clustering of the disease in different geographic settings over 10 years in the Sidama Zone in southern Ethiopia. Methods A retrospective space–time and spatial analysis were carried out at the kebele level (the lowest administrative unit within a district) to identify spatial and space-time clusters of smear-positive pulmonary TB (PTB). Scan statistics, Global Moran’s I, and Getis and Ordi (Gi*) statistics were all used to help analyze the spatial distribution and clusters of the disease across settings. Results A total of 22,545 smear-positive PTB cases notified over 10 years were used for spatial analysis. In a purely spatial analysis, we identified the most likely cluster of smear-positive PTB in 192 kebeles in eight districts (RR= 2, p<0.001), with 12,155 observed and 8,668 expected cases. The Gi* statistic also identified the clusters in the same areas, and the spatial clusters showed stability in most areas in each year during the study period. The space-time analysis also detected the most likely cluster in 193 kebeles in the same eight districts (RR= 1.92, p<0.001), with 7,584 observed and 4,738 expected cases in 2003-2012. Conclusion The study found variations in CNRs and significant spatio-temporal clusters of smear-positive PTB in the Sidama Zone. The findings can be used to guide TB control programs to devise effective TB control strategies for the geographic areas characterized by the highest CNRs. Further studies are required to understand the factors associated with clustering based on individual level locations and investigation of cases. PMID:26030162

  9. Laser-diagnostic mapping of temperature and soot statistics in a 2-m diameter turbulent pool fire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kearney, Sean P.; Grasser, Thomas W.

    We present spatial profiles of temperature and soot-volume-fraction statistics from a sooting 2-m base diameter turbulent pool fire, burning a 10%-toluene / 90%-methanol fuel mixture. Dual-pump coherent anti-Stokes Raman scattering and laser-induced incandescence are utilized to obtain radial profiles of temperature and soot probability density functions (pdf) as well as estimates of temperature/soot joint statistics at three vertical heights above the surface of the methanol/toluene fuel pool. Results are presented both in the fuel vapor-dome region at ¼ base diameter and in the actively burning region at ½ and ¾ diameters above the fuel surface. The spatial evolution of themore » soot and temperature pdfs is discussed and profiles of the temperature and soot mean and rms statistics are provided. Joint temperature/soot statistics are presented as spatially resolved conditional averages across the fire plume, and in terms of a joint pdf obtained by including measurements from multiple spatial locations.« less

  10. Laser-diagnostic mapping of temperature and soot statistics in a 2-m diameter turbulent pool fire

    DOE PAGES

    Kearney, Sean P.; Grasser, Thomas W.

    2017-08-10

    We present spatial profiles of temperature and soot-volume-fraction statistics from a sooting 2-m base diameter turbulent pool fire, burning a 10%-toluene / 90%-methanol fuel mixture. Dual-pump coherent anti-Stokes Raman scattering and laser-induced incandescence are utilized to obtain radial profiles of temperature and soot probability density functions (pdf) as well as estimates of temperature/soot joint statistics at three vertical heights above the surface of the methanol/toluene fuel pool. Results are presented both in the fuel vapor-dome region at ¼ base diameter and in the actively burning region at ½ and ¾ diameters above the fuel surface. The spatial evolution of themore » soot and temperature pdfs is discussed and profiles of the temperature and soot mean and rms statistics are provided. Joint temperature/soot statistics are presented as spatially resolved conditional averages across the fire plume, and in terms of a joint pdf obtained by including measurements from multiple spatial locations.« less

  11. Gis-Based Spatial Statistical Analysis of College Graduates Employment

    NASA Astrophysics Data System (ADS)

    Tang, R.

    2012-07-01

    It is urgently necessary to be aware of the distribution and employment status of college graduates for proper allocation of human resources and overall arrangement of strategic industry. This study provides empirical evidence regarding the use of geocoding and spatial analysis in distribution and employment status of college graduates based on the data from 2004-2008 Wuhan Municipal Human Resources and Social Security Bureau, China. Spatio-temporal distribution of employment unit were analyzed with geocoding using ArcGIS software, and the stepwise multiple linear regression method via SPSS software was used to predict the employment and to identify spatially associated enterprise and professionals demand in the future. The results show that the enterprises in Wuhan east lake high and new technology development zone increased dramatically from 2004 to 2008, and tended to distributed southeastward. Furthermore, the models built by statistical analysis suggest that the specialty of graduates major in has an important impact on the number of the employment and the number of graduates engaging in pillar industries. In conclusion, the combination of GIS and statistical analysis which helps to simulate the spatial distribution of the employment status is a potential tool for human resource development research.

  12. High-temperature behavior of a deformed Fermi gas obeying interpolating statistics.

    PubMed

    Algin, Abdullah; Senay, Mustafa

    2012-04-01

    An outstanding idea originally introduced by Greenberg is to investigate whether there is equivalence between intermediate statistics, which may be different from anyonic statistics, and q-deformed particle algebra. Also, a model to be studied for addressing such an idea could possibly provide us some new consequences about the interactions of particles as well as their internal structures. Motivated mainly by this idea, in this work, we consider a q-deformed Fermi gas model whose statistical properties enable us to effectively study interpolating statistics. Starting with a generalized Fermi-Dirac distribution function, we derive several thermostatistical functions of a gas of these deformed fermions in the thermodynamical limit. We study the high-temperature behavior of the system by analyzing the effects of q deformation on the most important thermostatistical characteristics of the system such as the entropy, specific heat, and equation of state. It is shown that such a deformed fermion model in two and three spatial dimensions exhibits the interpolating statistics in a specific interval of the model deformation parameter 0 < q < 1. In particular, for two and three spatial dimensions, it is found from the behavior of the third virial coefficient of the model that the deformation parameter q interpolates completely between attractive and repulsive systems, including the free boson and fermion cases. From the results obtained in this work, we conclude that such a model could provide much physical insight into some interacting theories of fermions, and could be useful to further study the particle systems with intermediate statistics.

  13. BaTMAn: Bayesian Technique for Multi-image Analysis

    NASA Astrophysics Data System (ADS)

    Casado, J.; Ascasibar, Y.; García-Benito, R.; Guidi, G.; Choudhury, O. S.; Bellocchi, E.; Sánchez, S. F.; Díaz, A. I.

    2016-12-01

    Bayesian Technique for Multi-image Analysis (BaTMAn) characterizes any astronomical dataset containing spatial information and performs a tessellation based on the measurements and errors provided as input. The algorithm iteratively merges spatial elements as long as they are statistically consistent with carrying the same information (i.e. identical signal within the errors). The output segmentations successfully adapt to the underlying spatial structure, regardless of its morphology and/or the statistical properties of the noise. BaTMAn identifies (and keeps) all the statistically-significant information contained in the input multi-image (e.g. an IFS datacube). The main aim of the algorithm is to characterize spatially-resolved data prior to their analysis.

  14. Improving satellite-based PM2.5 estimates in China using Gaussian processes modeling in a Bayesian hierarchical setting.

    PubMed

    Yu, Wenxi; Liu, Yang; Ma, Zongwei; Bi, Jun

    2017-08-01

    Using satellite-based aerosol optical depth (AOD) measurements and statistical models to estimate ground-level PM 2.5 is a promising way to fill the areas that are not covered by ground PM 2.5 monitors. The statistical models used in previous studies are primarily Linear Mixed Effects (LME) and Geographically Weighted Regression (GWR) models. In this study, we developed a new regression model between PM 2.5 and AOD using Gaussian processes in a Bayesian hierarchical setting. Gaussian processes model the stochastic nature of the spatial random effects, where the mean surface and the covariance function is specified. The spatial stochastic process is incorporated under the Bayesian hierarchical framework to explain the variation of PM 2.5 concentrations together with other factors, such as AOD, spatial and non-spatial random effects. We evaluate the results of our model and compare them with those of other, conventional statistical models (GWR and LME) by within-sample model fitting and out-of-sample validation (cross validation, CV). The results show that our model possesses a CV result (R 2  = 0.81) that reflects higher accuracy than that of GWR and LME (0.74 and 0.48, respectively). Our results indicate that Gaussian process models have the potential to improve the accuracy of satellite-based PM 2.5 estimates.

  15. Applying spatial regression to evaluate risk factors for microbiological contamination of urban groundwater sources in Juba, South Sudan

    NASA Astrophysics Data System (ADS)

    Engström, Emma; Mörtberg, Ulla; Karlström, Anders; Mangold, Mikael

    2017-06-01

    This study developed methodology for statistically assessing groundwater contamination mechanisms. It focused on microbial water pollution in low-income regions. Risk factors for faecal contamination of groundwater-fed drinking-water sources were evaluated in a case study in Juba, South Sudan. The study was based on counts of thermotolerant coliforms in water samples from 129 sources, collected by the humanitarian aid organisation Médecins Sans Frontières in 2010. The factors included hydrogeological settings, land use and socio-economic characteristics. The results showed that the residuals of a conventional probit regression model had a significant positive spatial autocorrelation (Moran's I = 3.05, I-stat = 9.28); therefore, a spatial model was developed that had better goodness-of-fit to the observations. The most significant factor in this model ( p-value 0.005) was the distance from a water source to the nearest Tukul area, an area with informal settlements that lack sanitation services. It is thus recommended that future remediation and monitoring efforts in the city be concentrated in such low-income regions. The spatial model differed from the conventional approach: in contrast with the latter case, lowland topography was not significant at the 5% level, as the p-value was 0.074 in the spatial model and 0.040 in the traditional model. This study showed that statistical risk-factor assessments of groundwater contamination need to consider spatial interactions when the water sources are located close to each other. Future studies might further investigate the cut-off distance that reflects spatial autocorrelation. Particularly, these results advise research on urban groundwater quality.

  16. Defining the spatial relationships between eight anatomic planes in the 11+6 to 13+6 weeks fetus: a pilot study.

    PubMed

    Abu-Rustum, Reem S; Ziade, M Fouad; Abu-Rustum, Sameer E

    2012-09-01

    Our study aims at investigating the spatial relationships between eight anatomic planes in the 11+6 to 13+6 weeks fetus. This is a retrospective pilot study where three-dimensional and four-dimensional stored data sets were manipulated to retrieve eight anatomic planes starting from the midsagittal plane of the fetus. Standardization of volumes was performed at the level of the transverse abdominal circumference plane. Parallel shift was utilized and the spatial relationships between eight anatomic planes were established. The median and the range were calculated for each of the planes, and they were evaluated as a function of the fetal crown-rump length. P < 0.05 was considered statistically significant. A total of 63 volume data sets were analyzed. The eight anatomic planes were found to adhere to normal distribution curves, and most of the planes were in a definable relationship to each other with statistically significant correlations. To our knowledge, this is the first study to describe the possible spatial relationships between eight two-dimensional anatomic planes in the 11+6 to 13+6 weeks fetus, utilizing a standardized approach. Defining these spatial relationships may serve as the first step for the potential future development of automation software for fetal anatomic assessment at 11+6 to 13+6 weeks. © 2012 John Wiley & Sons, Ltd.

  17. Analysis of thrips distribution: application of spatial statistics and Kriging

    Treesearch

    John Aleong; Bruce L. Parker; Margaret Skinner; Diantha Howard

    1991-01-01

    Kriging is a statistical technique that provides predictions for spatially and temporally correlated data. Observations of thrips distribution and density in Vermont soils are made in both space and time. Traditional statistical analysis of such data assumes that the counts taken over space and time are independent, which is not necessarily true. Therefore, to analyze...

  18. Geostatistics and GIS: tools for characterizing environmental contamination.

    PubMed

    Henshaw, Shannon L; Curriero, Frank C; Shields, Timothy M; Glass, Gregory E; Strickland, Paul T; Breysse, Patrick N

    2004-08-01

    Geostatistics is a set of statistical techniques used in the analysis of georeferenced data that can be applied to environmental contamination and remediation studies. In this study, the 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE) contamination at a Superfund site in western Maryland is evaluated. Concern about the site and its future clean up has triggered interest within the community because residential development surrounds the area. Spatial statistical methods, of which geostatistics is a subset, are becoming increasingly popular, in part due to the availability of geographic information system (GIS) software in a variety of application packages. In this article, the joint use of ArcGIS software and the R statistical computing environment are demonstrated as an approach for comprehensive geostatistical analyses. The spatial regression method, kriging, is used to provide predictions of DDE levels at unsampled locations both within the site and the surrounding areas where residential development is ongoing.

  19. Statistical Inference and Spatial Patterns in Correlates of IQ

    ERIC Educational Resources Information Center

    Hassall, Christopher; Sherratt, Thomas N.

    2011-01-01

    Cross-national comparisons of IQ have become common since the release of a large dataset of international IQ scores. However, these studies have consistently failed to consider the potential lack of independence of these scores based on spatial proximity. To demonstrate the importance of this omission, we present a re-evaluation of several…

  20. Statistics for NAEG: past efforts, new results, and future plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, R.O.; Simpson, J.C.; Kinnison, R.R.

    A brief review of Nevada Applied Ecology Group (NAEG) objectives is followed by a summary of past statistical analyses conducted by Pacific Northwest Laboratory for the NAEG. Estimates of spatial pattern of radionuclides and other statistical analyses at NS's 201, 219 and 221 are reviewed as background for new analyses presented in this paper. Suggested NAEG activities and statistical analyses needed for the projected termination date of NAEG studies in March 1986 are given.

  1. MnemoCity Task: Assessment of Childrens Spatial Memory Using Stereoscopy and Virtual Environments

    PubMed Central

    Rodríguez-Andrés, David; Méndez-López, Magdalena; Pérez-Hernández, Elena; Lluch, Javier

    2016-01-01

    This paper presents the MnemoCity task, which is a 3D application that introduces the user into a totally 3D virtual environment to evaluate spatial short-term memory. A study has been carried out to validate the MnemoCity task for the assessment of spatial short-term memory in children, by comparing the children’s performance in the developed task with current approaches. A total of 160 children participated in the study. The task incorporates two types of interaction: one based on standard interaction and another one based on natural interaction involving physical movement by the user. There were no statistically significant differences in the results of the task using the two types of interaction. Furthermore, statistically significant differences were not found in relation to gender. The correlations between scores were obtained using the MnemoCity task and a traditional procedure for assessing spatial short-term memory. Those results revealed that the type of interaction used did not affect the performance of children in the MnemoCity task. PMID:27579715

  2. Statistical characteristics of the spatial distribution of territorial contamination by radionuclides from the Chernobyl accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arutyunyan, R.V.; Bol`shov, L.A.; Vasil`ev, S.K.

    1994-06-01

    The objective of this study was to clarify a number of issues related to the spatial distribution of contaminants from the Chernobyl accident. The effects of local statistics were addressed by collecting and analyzing (for Cesium 137) soil samples from a number of regions, and it was found that sample activity differed by a factor of 3-5. The effect of local non-uniformity was estimated by modeling the distribution of the average activity of a set of five samples for each of the regions, with the spread in the activities for a {+-}2 range being equal to 25%. The statistical characteristicsmore » of the distribution of contamination were then analyzed and found to be a log-normal distribution with the standard deviation being a function of test area. All data for the Bryanskaya Oblast area were analyzed statistically and were adequately described by a log-normal function.« less

  3. Using spatial analysis to demonstrate the heterogeneity of the cardiovascular drug-prescribing pattern in Taiwan

    PubMed Central

    2011-01-01

    Background Geographic Information Systems (GIS) combined with spatial analytical methods could be helpful in examining patterns of drug use. Little attention has been paid to geographic variation of cardiovascular prescription use in Taiwan. The main objective was to use local spatial association statistics to test whether or not the cardiovascular medication-prescribing pattern is homogenous across 352 townships in Taiwan. Methods The statistical methods used were the global measures of Moran's I and Local Indicators of Spatial Association (LISA). While Moran's I provides information on the overall spatial distribution of the data, LISA provides information on types of spatial association at the local level. LISA statistics can also be used to identify influential locations in spatial association analysis. The major classes of prescription cardiovascular drugs were taken from Taiwan's National Health Insurance Research Database (NHIRD), which has a coverage rate of over 97%. The dosage of each prescription was converted into defined daily doses to measure the consumption of each class of drugs. Data were analyzed with ArcGIS and GeoDa at the township level. Results The LISA statistics showed an unusual use of cardiovascular medications in the southern townships with high local variation. Patterns of drug use also showed more low-low spatial clusters (cold spots) than high-high spatial clusters (hot spots), and those low-low associations were clustered in the rural areas. Conclusions The cardiovascular drug prescribing patterns were heterogeneous across Taiwan. In particular, a clear pattern of north-south disparity exists. Such spatial clustering helps prioritize the target areas that require better education concerning drug use. PMID:21609462

  4. Use of Fouler Transforms to define landscape scales of analysis for disturbances: A case study of thinned and unthinned forest stands

    Treesearch

    J. E. Lundquist; R. A. Sommerfeld

    2002-01-01

    Various disturbances such as disease and management practices cause canopy gaps that change patterns of forest stand structure. This study examined the usefulness of digital image analysis using aerial photos, Fourier Tranforms, and cluster analysis to investigate how different spatial statistics are affected by spatial scale. The specific aims were to: 1) evaluate how...

  5. An Investigation of the Fine Spatial Structure of Meteor Streams Using the Relational Database ``Meteor''

    NASA Astrophysics Data System (ADS)

    Karpov, A. V.; Yumagulov, E. Z.

    2003-05-01

    We have restored and ordered the archive of meteor observations carried out with a meteor radar complex ``KGU-M5'' since 1986. A relational database has been formed under the control of the Database Management System (DBMS) Oracle 8. We also improved and tested a statistical method for studying the fine spatial structure of meteor streams with allowance for the specific features of application of the DBMS. Statistical analysis of the results of observations made it possible to obtain information about the substance distribution in the Quadrantid, Geminid, and Perseid meteor streams.

  6. Spatial trends in Pearson Type III statistical parameters

    USGS Publications Warehouse

    Lichty, R.W.; Karlinger, M.R.

    1995-01-01

    Spatial trends in the statistical parameters (mean, standard deviation, and skewness coefficient) of a Pearson Type III distribution of the logarithms of annual flood peaks for small rural basins (less than 90 km2) are delineated using a climate factor CT, (T=2-, 25-, and 100-yr recurrence intervals), which quantifies the effects of long-term climatic data (rainfall and pan evaporation) on observed T-yr floods. Maps showing trends in average parameter values demonstrate the geographically varying influence of climate on the magnitude of Pearson Type III statistical parameters. The spatial trends in variability of the parameter values characterize the sensitivity of statistical parameters to the interaction of basin-runoff characteristics (hydrology) and climate. -from Authors

  7. Simulation of spatially evolving turbulence and the applicability of Taylor's hypothesis in compressible flow

    NASA Technical Reports Server (NTRS)

    Lee, Sangsan; Lele, Sanjiva K.; Moin, Parviz

    1992-01-01

    For the numerical simulation of inhomogeneous turbulent flows, a method is developed for generating stochastic inflow boundary conditions with a prescribed power spectrum. Turbulence statistics from spatial simulations using this method with a low fluctuation Mach number are in excellent agreement with the experimental data, which validates the procedure. Turbulence statistics from spatial simulations are also compared to those from temporal simulations using Taylor's hypothesis. Statistics such as turbulence intensity, vorticity, and velocity derivative skewness compare favorably with the temporal simulation. However, the statistics of dilatation show a significant departure from those obtained in the temporal simulation. To directly check the applicability of Taylor's hypothesis, space-time correlations of fluctuations in velocity, vorticity, and dilatation are investigated. Convection velocities based on vorticity and velocity fluctuations are computed as functions of the spatial and temporal separations. The profile of the space-time correlation of dilatation fluctuations is explained via a wave propagation model.

  8. Spatio-Temporal Trends of Fire in Slash and Burn Agriculture Landscape: A Case Study from Nagaland, India

    NASA Astrophysics Data System (ADS)

    Padalia, H.; Mondal, P. P.

    2014-11-01

    Increasing incidences of fire from land conversion and residue burning in tropics is the major concern in global warming. Spatial and temporal monitoring of trends of fire incidences is, therefore, significant in order to determine contribution of carbon emissions from slash and burn agriculture. In this study, we analyzed time-series Terra / Aqua MODIS satellite hotspot products from 2001 to 2013 to derive intra- and inter-annual trends in fire incidences in Nagaland state, located in the Indo-Burma biodiversity hotspot. Time-series regression was applied to MODIS fire products at variable spatial scales in GIS. Significance of change in fire frequency at each grid level was tested using t statistic. Spatial clustering of higher or lower fire incidences across study area was determined using Getis-OrdGi statistic. Maximum fire incidences were encountered in moist mixed deciduous forests (46%) followed by secondary moist bamboo brakes (30%). In most parts of the study area fire incidences peaked during March while in warmer parts (e.g. Mon district dominated by indigenous people) fire activity starts as early as during November and peaks in January. Regression trend analysis captured noticeable areas with statistically significant positive (e.g. Mokokchung, Wokha, Mon, Tuensang and Kiphire districts) and negative (e.g. Kohima and north-western part of Mokokchung district) inter-annual fire frequency trends based on area-based aggregation of fire occurrences at different grid sizes. Localization of spatial clusters of high fire incidences was observed in Mokokchung, Wokha, Mon,Tuensang and Kiphire districts.

  9. Evaluating and implementing temporal, spatial, and spatio-temporal methods for outbreak detection in a local syndromic surveillance system

    PubMed Central

    Lall, Ramona; Levin-Rector, Alison; Sell, Jessica; Paladini, Marc; Konty, Kevin J.; Olson, Don; Weiss, Don

    2017-01-01

    The New York City Department of Health and Mental Hygiene has operated an emergency department syndromic surveillance system since 2001, using temporal and spatial scan statistics run on a daily basis for cluster detection. Since the system was originally implemented, a number of new methods have been proposed for use in cluster detection. We evaluated six temporal and four spatial/spatio-temporal detection methods using syndromic surveillance data spiked with simulated injections. The algorithms were compared on several metrics, including sensitivity, specificity, positive predictive value, coherence, and timeliness. We also evaluated each method’s implementation, programming time, run time, and the ease of use. Among the temporal methods, at a set specificity of 95%, a Holt-Winters exponential smoother performed the best, detecting 19% of the simulated injects across all shapes and sizes, followed by an autoregressive moving average model (16%), a generalized linear model (15%), a modified version of the Early Aberration Reporting System’s C2 algorithm (13%), a temporal scan statistic (11%), and a cumulative sum control chart (<2%). Of the spatial/spatio-temporal methods we tested, a spatial scan statistic detected 3% of all injects, a Bayes regression found 2%, and a generalized linear mixed model and a space-time permutation scan statistic detected none at a specificity of 95%. Positive predictive value was low (<7%) for all methods. Overall, the detection methods we tested did not perform well in identifying the temporal and spatial clusters of cases in the inject dataset. The spatial scan statistic, our current method for spatial cluster detection, performed slightly better than the other tested methods across different inject magnitudes and types. Furthermore, we found the scan statistics, as applied in the SaTScan software package, to be the easiest to program and implement for daily data analysis. PMID:28886112

  10. Evaluating and implementing temporal, spatial, and spatio-temporal methods for outbreak detection in a local syndromic surveillance system.

    PubMed

    Mathes, Robert W; Lall, Ramona; Levin-Rector, Alison; Sell, Jessica; Paladini, Marc; Konty, Kevin J; Olson, Don; Weiss, Don

    2017-01-01

    The New York City Department of Health and Mental Hygiene has operated an emergency department syndromic surveillance system since 2001, using temporal and spatial scan statistics run on a daily basis for cluster detection. Since the system was originally implemented, a number of new methods have been proposed for use in cluster detection. We evaluated six temporal and four spatial/spatio-temporal detection methods using syndromic surveillance data spiked with simulated injections. The algorithms were compared on several metrics, including sensitivity, specificity, positive predictive value, coherence, and timeliness. We also evaluated each method's implementation, programming time, run time, and the ease of use. Among the temporal methods, at a set specificity of 95%, a Holt-Winters exponential smoother performed the best, detecting 19% of the simulated injects across all shapes and sizes, followed by an autoregressive moving average model (16%), a generalized linear model (15%), a modified version of the Early Aberration Reporting System's C2 algorithm (13%), a temporal scan statistic (11%), and a cumulative sum control chart (<2%). Of the spatial/spatio-temporal methods we tested, a spatial scan statistic detected 3% of all injects, a Bayes regression found 2%, and a generalized linear mixed model and a space-time permutation scan statistic detected none at a specificity of 95%. Positive predictive value was low (<7%) for all methods. Overall, the detection methods we tested did not perform well in identifying the temporal and spatial clusters of cases in the inject dataset. The spatial scan statistic, our current method for spatial cluster detection, performed slightly better than the other tested methods across different inject magnitudes and types. Furthermore, we found the scan statistics, as applied in the SaTScan software package, to be the easiest to program and implement for daily data analysis.

  11. The geostatistical approach for structural and stratigraphic framework analysis of offshore NW Bonaparte Basin, Australia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahid, Ali, E-mail: ali.wahid@live.com; Salim, Ahmed Mohamed Ahmed, E-mail: mohamed.salim@petronas.com.my; Yusoff, Wan Ismail Wan, E-mail: wanismail-wanyusoff@petronas.com.my

    2016-02-01

    Geostatistics or statistical approach is based on the studies of temporal and spatial trend, which depend upon spatial relationships to model known information of variable(s) at unsampled locations. The statistical technique known as kriging was used for petrophycial and facies analysis, which help to assume spatial relationship to model the geological continuity between the known data and the unknown to produce a single best guess of the unknown. Kriging is also known as optimal interpolation technique, which facilitate to generate best linear unbiased estimation of each horizon. The idea is to construct a numerical model of the lithofacies and rockmore » properties that honor available data and further integrate with interpreting seismic sections, techtonostratigraphy chart with sea level curve (short term) and regional tectonics of the study area to find the structural and stratigraphic growth history of the NW Bonaparte Basin. By using kriging technique the models were built which help to estimate different parameters like horizons, facies, and porosities in the study area. The variograms were used to determine for identification of spatial relationship between data which help to find the depositional history of the North West (NW) Bonaparte Basin.« less

  12. Comparison of Arterial Spin-labeling Perfusion Images at Different Spatial Normalization Methods Based on Voxel-based Statistical Analysis.

    PubMed

    Tani, Kazuki; Mio, Motohira; Toyofuku, Tatsuo; Kato, Shinichi; Masumoto, Tomoya; Ijichi, Tetsuya; Matsushima, Masatoshi; Morimoto, Shoichi; Hirata, Takumi

    2017-01-01

    Spatial normalization is a significant image pre-processing operation in statistical parametric mapping (SPM) analysis. The purpose of this study was to clarify the optimal method of spatial normalization for improving diagnostic accuracy in SPM analysis of arterial spin-labeling (ASL) perfusion images. We evaluated the SPM results of five spatial normalization methods obtained by comparing patients with Alzheimer's disease or normal pressure hydrocephalus complicated with dementia and cognitively healthy subjects. We used the following methods: 3DT1-conventional based on spatial normalization using anatomical images; 3DT1-DARTEL based on spatial normalization with DARTEL using anatomical images; 3DT1-conventional template and 3DT1-DARTEL template, created by averaging cognitively healthy subjects spatially normalized using the above methods; and ASL-DARTEL template created by averaging cognitively healthy subjects spatially normalized with DARTEL using ASL images only. Our results showed that ASL-DARTEL template was small compared with the other two templates. Our SPM results obtained with ASL-DARTEL template method were inaccurate. Also, there were no significant differences between 3DT1-conventional and 3DT1-DARTEL template methods. In contrast, the 3DT1-DARTEL method showed higher detection sensitivity, and precise anatomical location. Our SPM results suggest that we should perform spatial normalization with DARTEL using anatomical images.

  13. Identification and Simulation of Subsurface Soil patterns using hidden Markov random fields and remote sensing and geophysical EMI data sets

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Wellmann, Florian; Verweij, Elizabeth; von Hebel, Christian; van der Kruk, Jan

    2017-04-01

    Lateral and vertical spatial heterogeneity of subsurface properties such as soil texture and structure influences the available water and resource supply for crop growth. High-resolution mapping of subsurface structures using non-invasive geo-referenced geophysical measurements, like electromagnetic induction (EMI), enables a characterization of 3D soil structures, which have shown correlations to remote sensing information of the crop states. The benefit of EMI is that it can return 3D subsurface information, however the spatial dimensions are limited due to the labor intensive measurement procedure. Although active and passive sensors mounted on air- or space-borne platforms return 2D images, they have much larger spatial dimensions. Combining both approaches provides us with a potential pathway to extend the detailed 3D geophysical information to a larger area by using remote sensing information. In this study, we aim at extracting and providing insights into the spatial and statistical correlation of the geophysical and remote sensing observations of the soil/vegetation continuum system. To this end, two key points need to be addressed: 1) how to detect and recognize the geometric patterns (i.e., spatial heterogeneity) from multiple data sets, and 2) how to quantitatively describe the statistical correlation between remote sensing information and geophysical measurements. In the current study, the spatial domain is restricted to shallow depths up to 3 meters, and the geostatistical database contains normalized difference vegetation index (NDVI) derived from RapidEye satellite images and apparent electrical conductivities (ECa) measured from multi-receiver EMI sensors for nine depths of exploration ranging from 0-2.7 m. The integrated data sets are mapped into both the physical space (i.e. the spatial domain) and feature space (i.e. a two-dimensional space framed by the NDVI and the ECa data). Hidden Markov Random Fields (HMRF) are employed to model the underlying heterogeneities in spatial domain and finite Gaussian mixture models are adopted to quantitatively describe the statistical patterns in terms of center vectors and covariance matrices in feature space. A recently developed parallel stochastic clustering algorithm is adopted to implement the HMRF models and the Markov chain Monte Carlo based Bayesian inference. Certain spatial patterns such as buried paleo-river channels covered by shallow sediments are investigated as typical examples. The results indicate that the geometric patterns of the subsurface heterogeneity can be represented and quantitatively characterized by HMRF. Furthermore, the statistical patterns of the NDVI and the EMI data from the soil/vegetation-continuum system can be inferred and analyzed in a quantitative manner.

  14. Balancing geo-privacy and spatial patterns in epidemiological studies.

    PubMed

    Chen, Chien-Chou; Chuang, Jen-Hsiang; Wang, Da-Wei; Wang, Chien-Min; Lin, Bo-Cheng; Chan, Ta-Chien

    2017-11-08

    To balance the protection of geo-privacy and the accuracy of spatial patterns, we developed a geo-spatial tool (GeoMasker) intended to mask the residential locations of patients or cases in a geographic information system (GIS). To elucidate the effects of geo-masking parameters, we applied 2010 dengue epidemic data from Taiwan testing the tool's performance in an empirical situation. The similarity of pre- and post-spatial patterns was measured by D statistics under a 95% confidence interval. In the empirical study, different magnitudes of anonymisation (estimated Kanonymity ≥10 and 100) were achieved and different degrees of agreement on the pre- and post-patterns were evaluated. The application is beneficial for public health workers and researchers when processing data with individuals' spatial information.

  15. Virtual Auditory Space Training-Induced Changes of Auditory Spatial Processing in Listeners with Normal Hearing.

    PubMed

    Nisha, Kavassery Venkateswaran; Kumar, Ajith Uppunda

    2017-04-01

    Localization involves processing of subtle yet highly enriched monaural and binaural spatial cues. Remediation programs aimed at resolving spatial deficits are surprisingly scanty in literature. The present study is designed to explore the changes that occur in the spatial performance of normal-hearing listeners before and after subjecting them to virtual acoustic space (VAS) training paradigm using behavioral and electrophysiological measures. Ten normal-hearing listeners participated in the study, which was conducted in three phases, including a pre-training, training, and post-training phase. At the pre- and post-training phases both behavioral measures of spatial acuity and electrophysiological P300 were administered. The spatial acuity of the participants in the free field and closed field were measured apart from quantifying their binaural processing abilities. The training phase consisted of 5-8 sessions (20 min each) carried out using a hierarchy of graded VAS stimuli. The results obtained from descriptive statistics were indicative of an improvement in all the spatial acuity measures in the post-training phase. Statistically, significant changes were noted in interaural time difference (ITD) and virtual acoustic space identification scores measured in the post-training phase. Effect sizes (r) for all of these measures were substantially large, indicating the clinical relevance of these measures in documenting the impact of training. However, the same was not reflected in P300. The training protocol used in the present study on a preliminary basis proves to be effective in normal-hearing listeners, and its implications can be extended to other clinical population as well.

  16. Scene-based nonuniformity correction using local constant statistics.

    PubMed

    Zhang, Chao; Zhao, Wenyi

    2008-06-01

    In scene-based nonuniformity correction, the statistical approach assumes all possible values of the true-scene pixel are seen at each pixel location. This global-constant-statistics assumption does not distinguish fixed pattern noise from spatial variations in the average image. This often causes the "ghosting" artifacts in the corrected images since the existing spatial variations are treated as noises. We introduce a new statistical method to reduce the ghosting artifacts. Our method proposes a local-constant statistics that assumes that the temporal signal distribution is not constant at each pixel but is locally true. This considers statistically a constant distribution in a local region around each pixel but uneven distribution in a larger scale. Under the assumption that the fixed pattern noise concentrates in a higher spatial-frequency domain than the distribution variation, we apply a wavelet method to the gain and offset image of the noise and separate out the pattern noise from the spatial variations in the temporal distribution of the scene. We compare the results to the global-constant-statistics method using a clean sequence with large artificial pattern noises. We also apply the method to a challenging CCD video sequence and a LWIR sequence to show how effective it is in reducing noise and the ghosting artifacts.

  17. Accounting for regional background and population size in the detection of spatial clusters and outliers using geostatistical filtering and spatial neutral models: the case of lung cancer in Long Island, New York

    PubMed Central

    Goovaerts, Pierre; Jacquez, Geoffrey M

    2004-01-01

    Background Complete Spatial Randomness (CSR) is the null hypothesis employed by many statistical tests for spatial pattern, such as local cluster or boundary analysis. CSR is however not a relevant null hypothesis for highly complex and organized systems such as those encountered in the environmental and health sciences in which underlying spatial pattern is present. This paper presents a geostatistical approach to filter the noise caused by spatially varying population size and to generate spatially correlated neutral models that account for regional background obtained by geostatistical smoothing of observed mortality rates. These neutral models were used in conjunction with the local Moran statistics to identify spatial clusters and outliers in the geographical distribution of male and female lung cancer in Nassau, Queens, and Suffolk counties, New York, USA. Results We developed a typology of neutral models that progressively relaxes the assumptions of null hypotheses, allowing for the presence of spatial autocorrelation, non-uniform risk, and incorporation of spatially heterogeneous population sizes. Incorporation of spatial autocorrelation led to fewer significant ZIP codes than found in previous studies, confirming earlier claims that CSR can lead to over-identification of the number of significant spatial clusters or outliers. Accounting for population size through geostatistical filtering increased the size of clusters while removing most of the spatial outliers. Integration of regional background into the neutral models yielded substantially different spatial clusters and outliers, leading to the identification of ZIP codes where SMR values significantly depart from their regional background. Conclusion The approach presented in this paper enables researchers to assess geographic relationships using appropriate null hypotheses that account for the background variation extant in real-world systems. In particular, this new methodology allows one to identify geographic pattern above and beyond background variation. The implementation of this approach in spatial statistical software will facilitate the detection of spatial disparities in mortality rates, establishing the rationale for targeted cancer control interventions, including consideration of health services needs, and resource allocation for screening and diagnostic testing. It will allow researchers to systematically evaluate how sensitive their results are to assumptions implicit under alternative null hypotheses. PMID:15272930

  18. Spatial landscape model to characterize biological diversity using R statistical computing environment.

    PubMed

    Singh, Hariom; Garg, R D; Karnatak, Harish C; Roy, Arijit

    2018-01-15

    Due to urbanization and population growth, the degradation of natural forests and associated biodiversity are now widely recognized as a global environmental concern. Hence, there is an urgent need for rapid assessment and monitoring of biodiversity on priority using state-of-art tools and technologies. The main purpose of this research article is to develop and implement a new methodological approach to characterize biological diversity using spatial model developed during the study viz. Spatial Biodiversity Model (SBM). The developed model is scale, resolution and location independent solution for spatial biodiversity richness modelling. The platform-independent computation model is based on parallel computation. The biodiversity model based on open-source software has been implemented on R statistical computing platform. It provides information on high disturbance and high biological richness areas through different landscape indices and site specific information (e.g. forest fragmentation (FR), disturbance index (DI) etc.). The model has been developed based on the case study of Indian landscape; however it can be implemented in any part of the world. As a case study, SBM has been tested for Uttarakhand state in India. Inputs for landscape ecology are derived through multi-criteria decision making (MCDM) techniques in an interactive command line environment. MCDM with sensitivity analysis in spatial domain has been carried out to illustrate the model stability and robustness. Furthermore, spatial regression analysis has been made for the validation of the output. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Geographic Clusters of Basal Cell Carcinoma in a Northern California Health Plan Population.

    PubMed

    Ray, G Thomas; Kulldorff, Martin; Asgari, Maryam M

    2016-11-01

    Rates of skin cancer, including basal cell carcinoma (BCC), the most common cancer, have been increasing over the past 3 decades. A better understanding of geographic clustering of BCCs can help target screening and prevention efforts. Present a methodology to identify spatial clusters of BCC and identify such clusters in a northern California population. This retrospective study used a BCC registry to determine rates of BCC by census block group, and used spatial scan statistics to identify statistically significant geographic clusters of BCCs, adjusting for age, sex, and socioeconomic status. The study population consisted of white, non-Hispanic members of Kaiser Permanente Northern California during years 2011 and 2012. Statistically significant geographic clusters of BCC as determined by spatial scan statistics. Spatial analysis of 28 408 individuals who received a diagnosis of at least 1 BCC in 2011 or 2012 revealed distinct geographic areas with elevated BCC rates. Among the 14 counties studied, BCC incidence ranged from 661 to 1598 per 100 000 person-years. After adjustment for age, sex, and neighborhood socioeconomic status, a pattern of 5 discrete geographic clusters emerged, with a relative risk ranging from 1.12 (95% CI, 1.03-1.21; P = .006) for a cluster in eastern Sonoma and northern Napa Counties to 1.40 (95% CI, 1.15-1.71; P < .001) for a cluster in east Contra Costa and west San Joaquin Counties, compared with persons residing outside that cluster. In this study of a northern California population, we identified several geographic clusters with modestly elevated incidence of BCC. Knowledge of geographic clusters can help inform future research on the underlying etiology of the clustering including factors related to the environment, health care access, or other characteristics of the resident population, and can help target screening efforts to areas of highest yield.

  20. Additional studies of forest classification accuracy as influenced by multispectral scanner spatial resolution

    NASA Technical Reports Server (NTRS)

    Sadowski, F. E.; Sarno, J. E.

    1976-01-01

    First, an analysis of forest feature signatures was used to help explain the large variation in classification accuracy that can occur among individual forest features for any one case of spatial resolution and the inconsistent changes in classification accuracy that were demonstrated among features as spatial resolution was degraded. Second, the classification rejection threshold was varied in an effort to reduce the large proportion of unclassified resolution elements that previously appeared in the processing of coarse resolution data when a constant rejection threshold was used for all cases of spatial resolution. For the signature analysis, two-channel ellipse plots showing the feature signature distributions for several cases of spatial resolution indicated that the capability of signatures to correctly identify their respective features is dependent on the amount of statistical overlap among signatures. Reductions in signature variance that occur in data of degraded spatial resolution may not necessarily decrease the amount of statistical overlap among signatures having large variance and small mean separations. Features classified by such signatures may thus continue to have similar amounts of misclassified elements in coarser resolution data, and thus, not necessarily improve in classification accuracy.

  1. A Spatio-Temporal Approach for Global Validation and Analysis of MODIS Aerosol Products

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Chu, D. Allen; Mattoo, Shana; Kaufman, Yoram J.; Remer, Lorraine A.; Tanre, Didier; Slutsker, Ilya; Holben, Brent N.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    With the launch of the MODIS sensor on the Terra spacecraft, new data sets of the global distribution and properties of aerosol are being retrieved, and need to be validated and analyzed. A system has been put in place to generate spatial statistics (mean, standard deviation, direction and rate of spatial variation, and spatial correlation coefficient) of the MODIS aerosol parameters over more than 100 validation sites spread around the globe. Corresponding statistics are also computed from temporal subsets of AERONET-derived aerosol data. The means and standard deviations of identical parameters from MOMS and AERONET are compared. Although, their means compare favorably, their standard deviations reveal some influence of surface effects on the MODIS aerosol retrievals over land, especially at low aerosol loading. The direction and rate of spatial variation from MODIS are used to study the spatial distribution of aerosols at various locations either individually or comparatively. This paper introduces the methodology for generating and analyzing the data sets used by the two MODIS aerosol validation papers in this issue.

  2. Control of the amplifications of large-band amplitude-modulated pulses in an Nd-glass amplifier chain

    NASA Astrophysics Data System (ADS)

    Videau, Laurent; Bar, Emmanuel; Rouyer, Claude; Gouedard, Claude; Garnier, Josselin C.; Migus, Arnold

    1999-07-01

    We study nonlinear effects in amplification of partially coherent pulses in a high power laser chain. We compare statistical models with experimental results for temporal and spatial effects. First we show the interplay between self-phase modulation which broadens spectrum bandwidth and gain narrowing which reduces output spectrum. Theoretical results are presented for spectral broadening and energy limitation in case of time-incoherent pulses. In a second part, we introduce spatial incoherence with a multimode optical fiber which provides a smoothed beam. We show with experimental result that spatial filter pinholes are responsible for additive energy losses in the amplification. We develop a statistical model which takes into account the deformation of the focused beam as a function of B integral. We estimate the energy transmission of the spatial filter pinholes and compare this model with experimental data. We find a good agreement between theory and experiments. As a conclusion, we present an analogy between temporal and spatial effects with spectral broadening and spectral filter. Finally, we propose some solutions to control energy limitations in smoothed pulses amplification.

  3. Comparison of cosmology and seabed acoustics measurements using statistical inference from maximum entropy

    NASA Astrophysics Data System (ADS)

    Knobles, David; Stotts, Steven; Sagers, Jason

    2012-03-01

    Why can one obtain from similar measurements a greater amount of information about cosmological parameters than seabed parameters in ocean waveguides? The cosmological measurements are in the form of a power spectrum constructed from spatial correlations of temperature fluctuations within the microwave background radiation. The seabed acoustic measurements are in the form of spatial correlations along the length of a spatial aperture. This study explores the above question from the perspective of posterior probability distributions obtained from maximizing a relative entropy functional. An answer is in part that the seabed in shallow ocean environments generally has large temporal and spatial inhomogeneities, whereas the early universe was a nearly homogeneous cosmological soup with small but important fluctuations. Acoustic propagation models used in shallow water acoustics generally do not capture spatial and temporal variability sufficiently well, which leads to model error dominating the statistical inference problem. This is not the case in cosmology. Further, the physics of the acoustic modes in cosmology is that of a standing wave with simple initial conditions, whereas for underwater acoustics it is a traveling wave in a strongly inhomogeneous bounded medium.

  4. A full Bayes before-after study accounting for temporal and spatial effects: Evaluating the safety impact of new signal installations.

    PubMed

    Sacchi, Emanuele; Sayed, Tarek; El-Basyouny, Karim

    2016-09-01

    Recently, important advances in road safety statistics have been brought about by methods able to address issues other than the choice of the best error structure for modeling crash data. In particular, accounting for spatial and temporal interdependence, i.e., the notion that the collision occurrence of a site or unit times depend on those of others, has become an important issue that needs further research. Overall, autoregressive models can be used for this purpose as they can specify that the output variable depends on its own previous values and on a stochastic term. Spatial effects have been investigated and applied mostly in the context of developing safety performance functions (SPFs) to relate crash occurrence to highway characteristics. Hence, there is a need for studies that attempt to estimate the effectiveness of safety countermeasures by including the spatial interdependence of road sites within the context of an observational before-after (BA) study. Moreover, the combination of temporal dynamics and spatial effects on crash frequency has not been explored in depth for SPF development. Therefore, the main goal of this research was to carry out a BA study accounting for spatial effects and temporal dynamics in evaluating the effectiveness of a road safety treatment. The countermeasure analyzed was the installation of traffic signals at unsignalized urban/suburban intersections in British Columbia (Canada). The full Bayes approach was selected as the statistical framework to develop the models. The results demonstrated that zone variation was a major component of total crash variability and that spatial effects were alleviated by clustering intersections together. Finally, the methodology used also allowed estimation of the treatment's effectiveness in the form of crash modification factors and functions with time trends. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Modelling the Effects of Land-Use Changes on Climate: a Case Study on Yamula DAM

    NASA Astrophysics Data System (ADS)

    Köylü, Ü.; Geymen, A.

    2016-10-01

    Dams block flow of rivers and cause artificial water reservoirs which affect the climate and the land use characteristics of the river basin. In this research, the effect of the huge water body obtained by Yamula Dam in Kızılırmak Basin is analysed over surrounding spatial's land use and climate change. Mann Kendal non-parametrical statistical test, Theil&Sen Slope method, Inverse Distance Weighting (IDW), Soil Conservation Service-Curve Number (SCS-CN) methods are integrated for spatial and temporal analysis of the research area. For this research humidity, temperature, wind speed, precipitation observations which are collected in 16 weather stations nearby Kızılırmak Basin are analyzed. After that these statistical information is combined by GIS data over years. An application is developed for GIS analysis in Python Programming Language and integrated with ArcGIS software. Statistical analysis calculated in the R Project for Statistical Computing and integrated with developed application. According to the statistical analysis of extracted time series of meteorological parameters, statistical significant spatiotemporal trends are observed for climate change and land use characteristics. In this study, we indicated the effect of big dams in local climate on semi-arid Yamula Dam.

  6. Effect of land use on the spatial variability of organic matter and nutrient status in an Oxisol

    NASA Astrophysics Data System (ADS)

    Paz-Ferreiro, Jorge; Alves, Marlene Cristina; Vidal Vázquez, Eva

    2013-04-01

    Heterogeneity is now considered as an inherent soil property. Spatial variability of soil attributes in natural landscapes results mainly from soil formation factors. In cultivated soils much heterogeneity can additionally occur as a result of land use, agricultural systems and management practices. Organic matter content (OMC) and nutrients associated to soil exchange complex are key attribute in the maintenance of a high quality soil. Neglecting spatial heterogeneity in soil OMC and nutrient status at the field scale might result in reduced yield and in environmental damage. We analyzed the impact of land use on the pattern of spatial variability of OMC and soil macronutrients at the stand scale. The study was conducted in São Paulo state, Brazil. Land uses were pasture, mango orchard and corn field. Soil samples were taken at 0-10 cm and 10-20 cm depth in 84 points, within 100 m x 100 m plots. Texture, pH, OMC, cation exchange capacity (CEC), exchangeable cations (Ca, Mg, K, H, Al) and resin extractable phosphorus were analyzed.. Statistical variability was found to be higher in parameters defining the soil nutrient status (resin extractable P, K, Ca and Mg) than in general soil properties (OMC, CEC, base saturation and pH). Geostatistical analysis showed contrasting patterns of spatial dependence for the different soil uses, sampling depths and studied properties. Most of the studied data sets collected at two different depths exhibited spatial dependence at the sampled scale and their semivariograms were modeled by a nugget effect plus a structure. The pattern of soil spatial variability was found to be different between the three study soil uses and at the two sampling depths, as far as model type, nugget effect or ranges of spatial dependence were concerned. Both statistical and geostatistical results pointed out the importance of OMC as a driver responsible for the spatial variability of soil nutrient status.

  7. Spatial heterogeneity in statistical power to detect changes in lake area in Alaskan National Wildlife Refuges

    USGS Publications Warehouse

    Nicol, Samuel; Roach, Jennifer K.; Griffith, Brad

    2013-01-01

    Over the past 50 years, the number and size of high-latitude lakes have decreased throughout many regions; however, individual lake trends have been variable in direction and magnitude. This spatial heterogeneity in lake change makes statistical detection of temporal trends challenging, particularly in small analysis areas where weak trends are difficult to separate from inter- and intra-annual variability. Factors affecting trend detection include inherent variability, trend magnitude, and sample size. In this paper, we investigated how the statistical power to detect average linear trends in lake size of 0.5, 1.0 and 2.0 %/year was affected by the size of the analysis area and the number of years of monitoring in National Wildlife Refuges in Alaska. We estimated power for large (930–4,560 sq km) study areas within refuges and for 2.6, 12.9, and 25.9 sq km cells nested within study areas over temporal extents of 4–50 years. We found that: (1) trends in study areas could be detected within 5–15 years, (2) trends smaller than 2.0 %/year would take >50 years to detect in cells within study areas, and (3) there was substantial spatial variation in the time required to detect change among cells. Power was particularly low in the smallest cells which typically had the fewest lakes. Because small but ecologically meaningful trends may take decades to detect, early establishment of long-term monitoring will enhance power to detect change. Our results have broad applicability and our method is useful for any study involving change detection among variable spatial and temporal extents.

  8. Spatial Statistical Network Models for Stream and River Temperature in the Chesapeake Bay Watershed, USA

    EPA Science Inventory

    Regional temperature models are needed for characterizing and mapping stream thermal regimes, establishing reference conditions, predicting future impacts and identifying critical thermal refugia. Spatial statistical models have been developed to improve regression modeling techn...

  9. Algorithm for Identifying Erroneous Rain-Gauge Readings

    NASA Technical Reports Server (NTRS)

    Rickman, Doug

    2005-01-01

    An algorithm analyzes rain-gauge data to identify statistical outliers that could be deemed to be erroneous readings. Heretofore, analyses of this type have been performed in burdensome manual procedures that have involved subjective judgements. Sometimes, the analyses have included computational assistance for detecting values falling outside of arbitrary limits. The analyses have been performed without statistically valid knowledge of the spatial and temporal variations of precipitation within rain events. In contrast, the present algorithm makes it possible to automate such an analysis, makes the analysis objective, takes account of the spatial distribution of rain gauges in conjunction with the statistical nature of spatial variations in rainfall readings, and minimizes the use of arbitrary criteria. The algorithm implements an iterative process that involves nonparametric statistics.

  10. Inter-comparison of multiple statistically downscaled climate datasets for the Pacific Northwest, USA

    PubMed Central

    Jiang, Yueyang; Kim, John B.; Still, Christopher J.; Kerns, Becky K.; Kline, Jeffrey D.; Cunningham, Patrick G.

    2018-01-01

    Statistically downscaled climate data have been widely used to explore possible impacts of climate change in various fields of study. Although many studies have focused on characterizing differences in the downscaling methods, few studies have evaluated actual downscaled datasets being distributed publicly. Spatially focusing on the Pacific Northwest, we compare five statistically downscaled climate datasets distributed publicly in the US: ClimateNA, NASA NEX-DCP30, MACAv2-METDATA, MACAv2-LIVNEH and WorldClim. We compare the downscaled projections of climate change, and the associated observational data used as training data for downscaling. We map and quantify the variability among the datasets and characterize the spatio-temporal patterns of agreement and disagreement among the datasets. Pair-wise comparisons of datasets identify the coast and high-elevation areas as areas of disagreement for temperature. For precipitation, high-elevation areas, rainshadows and the dry, eastern portion of the study area have high dissimilarity among the datasets. By spatially aggregating the variability measures into watersheds, we develop guidance for selecting datasets within the Pacific Northwest climate change impact studies. PMID:29461513

  11. Inter-comparison of multiple statistically downscaled climate datasets for the Pacific Northwest, USA.

    PubMed

    Jiang, Yueyang; Kim, John B; Still, Christopher J; Kerns, Becky K; Kline, Jeffrey D; Cunningham, Patrick G

    2018-02-20

    Statistically downscaled climate data have been widely used to explore possible impacts of climate change in various fields of study. Although many studies have focused on characterizing differences in the downscaling methods, few studies have evaluated actual downscaled datasets being distributed publicly. Spatially focusing on the Pacific Northwest, we compare five statistically downscaled climate datasets distributed publicly in the US: ClimateNA, NASA NEX-DCP30, MACAv2-METDATA, MACAv2-LIVNEH and WorldClim. We compare the downscaled projections of climate change, and the associated observational data used as training data for downscaling. We map and quantify the variability among the datasets and characterize the spatio-temporal patterns of agreement and disagreement among the datasets. Pair-wise comparisons of datasets identify the coast and high-elevation areas as areas of disagreement for temperature. For precipitation, high-elevation areas, rainshadows and the dry, eastern portion of the study area have high dissimilarity among the datasets. By spatially aggregating the variability measures into watersheds, we develop guidance for selecting datasets within the Pacific Northwest climate change impact studies.

  12. Spatial Statistical Data Fusion (SSDF)

    NASA Technical Reports Server (NTRS)

    Braverman, Amy J.; Nguyen, Hai M.; Cressie, Noel

    2013-01-01

    As remote sensing for scientific purposes has transitioned from an experimental technology to an operational one, the selection of instruments has become more coordinated, so that the scientific community can exploit complementary measurements. However, tech nological and scientific heterogeneity across devices means that the statistical characteristics of the data they collect are different. The challenge addressed here is how to combine heterogeneous remote sensing data sets in a way that yields optimal statistical estimates of the underlying geophysical field, and provides rigorous uncertainty measures for those estimates. Different remote sensing data sets may have different spatial resolutions, different measurement error biases and variances, and other disparate characteristics. A state-of-the-art spatial statistical model was used to relate the true, but not directly observed, geophysical field to noisy, spatial aggregates observed by remote sensing instruments. The spatial covariances of the true field and the covariances of the true field with the observations were modeled. The observations are spatial averages of the true field values, over pixels, with different measurement noise superimposed. A kriging framework is used to infer optimal (minimum mean squared error and unbiased) estimates of the true field at point locations from pixel-level, noisy observations. A key feature of the spatial statistical model is the spatial mixed effects model that underlies it. The approach models the spatial covariance function of the underlying field using linear combinations of basis functions of fixed size. Approaches based on kriging require the inversion of very large spatial covariance matrices, and this is usually done by making simplifying assumptions about spatial covariance structure that simply do not hold for geophysical variables. In contrast, this method does not require these assumptions, and is also computationally much faster. This method is fundamentally different than other approaches to data fusion for remote sensing data because it is inferential rather than merely descriptive. All approaches combine data in a way that minimizes some specified loss function. Most of these are more or less ad hoc criteria based on what looks good to the eye, or some criteria that relate only to the data at hand.

  13. Flood probability quantification for road infrastructure: Data-driven spatial-statistical approach and case study applications.

    PubMed

    Kalantari, Zahra; Cavalli, Marco; Cantone, Carolina; Crema, Stefano; Destouni, Georgia

    2017-03-01

    Climate-driven increase in the frequency of extreme hydrological events is expected to impose greater strain on the built environment and major transport infrastructure, such as roads and railways. This study develops a data-driven spatial-statistical approach to quantifying and mapping the probability of flooding at critical road-stream intersection locations, where water flow and sediment transport may accumulate and cause serious road damage. The approach is based on novel integration of key watershed and road characteristics, including also measures of sediment connectivity. The approach is concretely applied to and quantified for two specific study case examples in southwest Sweden, with documented road flooding effects of recorded extreme rainfall. The novel contributions of this study in combining a sediment connectivity account with that of soil type, land use, spatial precipitation-runoff variability and road drainage in catchments, and in extending the connectivity measure use for different types of catchments, improve the accuracy of model results for road flood probability. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. From fields to objects: A review of geographic boundary analysis

    NASA Astrophysics Data System (ADS)

    Jacquez, G. M.; Maruca, S.; Fortin, M.-J.

    Geographic boundary analysis is a relatively new approach unfamiliar to many spatial analysts. It is best viewed as a technique for defining objects - geographic boundaries - on spatial fields, and for evaluating the statistical significance of characteristics of those boundary objects. This is accomplished using null spatial models representative of the spatial processes expected in the absence of boundary-generating phenomena. Close ties to the object-field dialectic eminently suit boundary analysis to GIS data. The majority of existing spatial methods are field-based in that they describe, estimate, or predict how attributes (variables defining the field) vary through geographic space. Such methods are appropriate for field representations but not object representations. As the object-field paradigm gains currency in geographic information science, appropriate techniques for the statistical analysis of objects are required. The methods reviewed in this paper are a promising foundation. Geographic boundary analysis is clearly a valuable addition to the spatial statistical toolbox. This paper presents the philosophy of, and motivations for geographic boundary analysis. It defines commonly used statistics for quantifying boundaries and their characteristics, as well as simulation procedures for evaluating their significance. We review applications of these techniques, with the objective of making this promising approach accessible to the GIS-spatial analysis community. We also describe the implementation of these methods within geographic boundary analysis software: GEM.

  15. A global approach to estimate irrigated areas - a comparison between different data and statistics

    NASA Astrophysics Data System (ADS)

    Meier, Jonas; Zabel, Florian; Mauser, Wolfram

    2018-02-01

    Agriculture is the largest global consumer of water. Irrigated areas constitute 40 % of the total area used for agricultural production (FAO, 2014a) Information on their spatial distribution is highly relevant for regional water management and food security. Spatial information on irrigation is highly important for policy and decision makers, who are facing the transition towards more efficient sustainable agriculture. However, the mapping of irrigated areas still represents a challenge for land use classifications, and existing global data sets differ strongly in their results. The following study tests an existing irrigation map based on statistics and extends the irrigated area using ancillary data. The approach processes and analyzes multi-temporal normalized difference vegetation index (NDVI) SPOT-VGT data and agricultural suitability data - both at a spatial resolution of 30 arcsec - incrementally in a multiple decision tree. It covers the period from 1999 to 2012. The results globally show a 18 % larger irrigated area than existing approaches based on statistical data. The largest differences compared to the official national statistics are found in Asia and particularly in China and India. The additional areas are mainly identified within already known irrigated regions where irrigation is more dense than previously estimated. The validation with global and regional products shows the large divergence of existing data sets with respect to size and distribution of irrigated areas caused by spatial resolution, the considered time period and the input data and assumption made.

  16. Effects of health intervention programs and arsenic exposure on child mortality from acute lower respiratory infections in rural Bangladesh.

    PubMed

    Jochem, Warren C; Razzaque, Abdur; Root, Elisabeth Dowling

    2016-09-01

    Respiratory infections continue to be a public health threat, particularly to young children in developing countries. Understanding the geographic patterns of diseases and the role of potential risk factors can help improve future mitigation efforts. Toward this goal, this paper applies a spatial scan statistic combined with a zero-inflated negative-binomial regression to re-examine the impacts of a community-based treatment program on the geographic patterns of acute lower respiratory infection (ALRI) mortality in an area of rural Bangladesh. Exposure to arsenic-contaminated drinking water is also a serious threat to the health of children in this area, and the variation in exposure to arsenic must be considered when evaluating the health interventions. ALRI mortality data were obtained for children under 2 years old from 1989 to 1996 in the Matlab Health and Demographic Surveillance System. This study period covers the years immediately following the implementation of an ALRI control program. A zero-inflated negative binomial (ZINB) regression model was first used to simultaneously estimate mortality rates and the likelihood of no deaths in groups of related households while controlling for socioeconomic status, potential arsenic exposure, and access to care. Next a spatial scan statistic was used to assess the location and magnitude of clusters of ALRI mortality. The ZINB model was used to adjust the scan statistic for multiple social and environmental risk factors. The results of the ZINB models and spatial scan statistic suggest that the ALRI control program was successful in reducing child mortality in the study area. Exposure to arsenic-contaminated drinking water was not associated with increased mortality. Higher socioeconomic status also significantly reduced mortality rates, even among households who were in the treatment program area. Community-based ALRI interventions can be effective at reducing child mortality, though socioeconomic factors may continue to influence mortality patterns. The combination of spatial and non-spatial methods used in this paper has not been applied previously in the literature, and this study demonstrates the importance of such approaches for evaluating and improving public health intervention programs.

  17. Evaluating the utility of companion animal tick surveillance practices for monitoring spread and occurrence of human Lyme disease in West Virginia, 2014-2016.

    PubMed

    Hendricks, Brian; Mark-Carew, Miguella; Conley, Jamison

    2017-11-13

    Domestic dogs and cats are potentially effective sentinel populations for monitoring occurrence and spread of Lyme disease. Few studies have evaluated the public health utility of sentinel programmes using geo-analytic approaches. Confirmed Lyme disease cases diagnosed by physicians and ticks submitted by veterinarians to the West Virginia State Health Department were obtained for 2014-2016. Ticks were identified to species, and only Ixodes scapularis were incorporated in the analysis. Separate ordinary least squares (OLS) and spatial lag regression models were conducted to estimate the association between average numbers of Ix. scapularis collected on pets and human Lyme disease incidence. Regression residuals were visualised using Local Moran's I as a diagnostic tool to identify spatial dependence. Statistically significant associations were identified between average numbers of Ix. scapularis collected from dogs and human Lyme disease in the OLS (β=20.7, P<0.001) and spatial lag (β=12.0, P=0.002) regression. No significant associations were identified for cats in either regression model. Statistically significant (P≤0.05) spatial dependence was identified in all regression models. Local Moran's I maps produced for spatial lag regression residuals indicated a decrease in model over- and under-estimation, but identified a higher number of statistically significant outliers than OLS regression. Results support previous conclusions that dogs are effective sentinel populations for monitoring risk of human exposure to Lyme disease. Findings reinforce the utility of spatial analysis of surveillance data, and highlight West Virginia's unique position within the eastern United States in regards to Lyme disease occurrence.

  18. A look at spatial abilities in undergraduate women science majors

    NASA Astrophysics Data System (ADS)

    Lord, Thomas R.

    Contemporary investigations indicate that men generally perform significantly better in tasks involving visuo-spatial awareness than do women. Researchers have attempted to explain this difference through several hypotheses but as yet the reason for the dimorphism has not been established. Further, contemporary studies have indicated that enhancement of mental image formation and manipulation is possible when students are subjected to carefully designed spatial interventions. Present research was conducted to see if women in the sciences were as spatial perceptively accurate as their male counterparts. The researcher also was interested to find if the women that received the intervention excercises improved in their visuo-spatial awareness as rapidly as their male counterparts.The study was conducted on science majors at a suburban two year college. The population was randomly divided into groups (experimental, placebo, and control) each containing approximately the same number of men and women. All groups were given a battery of spatial perception tests (Ekstrom et al, 1976) at the onset of the winter semester and a second version of the battery at the conclusion of the semester. An analysis of variance followed by Scheffe contrasts were run on the results. The statistics revealed that the experimental group significantly outperformed the nonexperimental groups on the tests. When the differences between the mean scores for the women in the experimental group were statistically compared to those of the men in the experimental group the women were improving at a more rapid rate. Many women have the capacity to develop visuo-spatial aptitude and although they may start out behind men in spatial ability, they learn quickly and often catch up to the men's level when given meaningful visuo-spatial interventions.

  19. Caustics and Rogue Waves in an Optical Sea.

    PubMed

    Mathis, Amaury; Froehly, Luc; Toenger, Shanti; Dias, Frédéric; Genty, Goëry; Dudley, John M

    2015-08-06

    There are many examples in physics of systems showing rogue wave behaviour, the generation of high amplitude events at low probability. Although initially studied in oceanography, rogue waves have now been seen in many other domains, with particular recent interest in optics. Although most studies in optics have focussed on how nonlinearity can drive rogue wave emergence, purely linear effects have also been shown to induce extreme wave amplitudes. In this paper, we report a detailed experimental study of linear rogue waves in an optical system, using a spatial light modulator to impose random phase structure on a coherent optical field. After free space propagation, different random intensity patterns are generated, including partially-developed speckle, a broadband caustic network, and an intermediate pattern with characteristics of both speckle and caustic structures. Intensity peaks satisfying statistical criteria for rogue waves are seen especially in the case of the caustic network, and are associated with broader spatial spectra. In addition, the electric field statistics of the intermediate pattern shows properties of an "optical sea" with near-Gaussian statistics in elevation amplitude, and trough-to-crest statistics that are near-Rayleigh distributed but with an extended tail where a number of rogue wave events are observed.

  20. Caustics and Rogue Waves in an Optical Sea

    PubMed Central

    Mathis, Amaury; Froehly, Luc; Toenger, Shanti; Dias, Frédéric; Genty, Goëry; Dudley, John M.

    2015-01-01

    There are many examples in physics of systems showing rogue wave behaviour, the generation of high amplitude events at low probability. Although initially studied in oceanography, rogue waves have now been seen in many other domains, with particular recent interest in optics. Although most studies in optics have focussed on how nonlinearity can drive rogue wave emergence, purely linear effects have also been shown to induce extreme wave amplitudes. In this paper, we report a detailed experimental study of linear rogue waves in an optical system, using a spatial light modulator to impose random phase structure on a coherent optical field. After free space propagation, different random intensity patterns are generated, including partially-developed speckle, a broadband caustic network, and an intermediate pattern with characteristics of both speckle and caustic structures. Intensity peaks satisfying statistical criteria for rogue waves are seen especially in the case of the caustic network, and are associated with broader spatial spectra. In addition, the electric field statistics of the intermediate pattern shows properties of an “optical sea” with near-Gaussian statistics in elevation amplitude, and trough-to-crest statistics that are near-Rayleigh distributed but with an extended tail where a number of rogue wave events are observed. PMID:26245864

  1. Geographic variations in cervical cancer risk in San Luis Potosí state, Mexico: A spatial statistical approach.

    PubMed

    Terán-Hernández, Mónica; Ramis-Prieto, Rebeca; Calderón-Hernández, Jaqueline; Garrocho-Rangel, Carlos Félix; Campos-Alanís, Juan; Ávalos-Lozano, José Antonio; Aguilar-Robledo, Miguel

    2016-09-29

    Worldwide, Cervical Cancer (CC) is the fourth most common type of cancer and cause of death in women. It is a significant public health problem, especially in low and middle-income/Gross Domestic Product (GDP) countries. In the past decade, several studies of CC have been published, that identify the main modifiable and non-modifiable CC risk factors for Mexican women. However, there are no studies that attempt to explain the residual spatial variation in CC incidence In Mexico, i.e. spatial variation that cannot be ascribed to known, spatially varying risk factors. This paper uses a spatial statistical methodology that takes into account spatial variation in socio-economic factors and accessibility to health services, whilst allowing for residual, unexplained spatial variation in risk. To describe residual spatial variations in CC risk, we used generalised linear mixed models (GLMM) with both spatially structured and unstructured random effects, using a Bayesian approach to inference. The highest risk is concentrated in the southeast, where the Matlapa and Aquismón municipalities register excessive risk, with posterior probabilities greater than 0.8. The lack of coverage of Cervical Cancer-Screening Programme (CCSP) (RR 1.17, 95 % CI 1.12-1.22), Marginalisation Index (RR 1.05, 95 % CI 1.03-1.08), and lack of accessibility to health services (RR 1.01, 95 % CI 1.00-1.03) were significant covariates. There are substantial differences between municipalities, with high-risk areas mainly in low-resource areas lacking accessibility to health services for CC. Our results clearly indicate the presence of spatial patterns, and the relevance of the spatial analysis for public health intervention. Ignoring the spatial variability means to continue a public policy that does not tackle deficiencies in its national CCSP and to keep disadvantaging and disempowering Mexican women in regard to their health care.

  2. Spatial Distribution of Soil Fauna In Long Term No Tillage

    NASA Astrophysics Data System (ADS)

    Corbo, J. Z. F.; Vieira, S. R.; Siqueira, G. M.

    2012-04-01

    The soil is a complex system constituted by living beings, organic and mineral particles, whose components define their physical, chemical and biological properties. Soil fauna plays an important role in soil and may reflect and interfere in its functionality. These organisms' populations may be influenced by management practices, fertilization, liming and porosity, among others. Such changes may reduce the composition and distribution of soil fauna community. Thus, this study aimed to determine the spatial variability of soil fauna in consolidated no-tillage system. The experimental area is located at Instituto Agronômico in Campinas (São Paulo, Brazil). The sampling was conducted in a Rhodic Eutrudox, under no tillage system and 302 points distributed in a 3.2 hectare area in a regular grid of 10.00 m x 10.00 m were sampled. The soil fauna was sampled with "Pitfall Traps" method and traps remained in the area for seven days. Data were analyzed using descriptive statistics to determine the main statistical moments (mean variance, coefficient of variation, standard deviation, skewness and kurtosis). Geostatistical tools were used to determine the spatial variability of the attributes using the experimental semivariogram. For the biodiversity analysis, Shannon and Pielou indexes and richness were calculated for each sample. Geostatistics has proven to be a great tool for mapping the spatial variability of groups from the soil epigeal fauna. The family Formicidae proved to be the most abundant and dominant in the study area. The parameters of descriptive statistics showed that all attributes studied showed lognormal frequency distribution for groups from the epigeal soil fauna. The exponential model was the most suited for the obtained data, for both groups of epigeal soil fauna (Acari, Araneae, Coleoptera, Formicidae and Coleoptera larva), and the other biodiversity indexes. The sampling scheme (10.00 m x 10.00 m) was not sufficient to detect the spatial variability for all groups of soil epigeal fauna found in this study.

  3. An alternative way to evaluate chemistry-transport model variability

    NASA Astrophysics Data System (ADS)

    Menut, Laurent; Mailler, Sylvain; Bessagnet, Bertrand; Siour, Guillaume; Colette, Augustin; Couvidat, Florian; Meleux, Frédérik

    2017-03-01

    A simple and complementary model evaluation technique for regional chemistry transport is discussed. The methodology is based on the concept that we can learn about model performance by comparing the simulation results with observational data available for time periods other than the period originally targeted. First, the statistical indicators selected in this study (spatial and temporal correlations) are computed for a given time period, using colocated observation and simulation data in time and space. Second, the same indicators are used to calculate scores for several other years while conserving the spatial locations and Julian days of the year. The difference between the results provides useful insights on the model capability to reproduce the observed day-to-day and spatial variability. In order to synthesize the large amount of results, a new indicator is proposed, designed to compare several error statistics between all the years of validation and to quantify whether the period and area being studied were well captured by the model for the correct reasons.

  4. Google Earth in the middle school geography classroom: Its impact on spatial literacy and place geography understanding of students

    NASA Astrophysics Data System (ADS)

    Westgard, Kerri S. W.

    Success in today's globalized, multi-dimensional, and connected world requires individuals to have a variety of skill sets -- i.e. oracy, numeracy, literacy, as well as the ability to think spatially. Student's spatial literacy, based on various national and international assessment results, indicates that even though there have been gains in U.S. scores over the past decade, overall performance, including those specific to spatial skills, are still below proficiency. Existing studies focused on the potential of virtual learning environment technology to reach students in a variety of academic areas, but a need still exists to study specifically the phenomenon of using Google Earth as a potentially more useful pedagogical tool to develop spatial literacy than the currently employed methods. The purpose of this study was to determine the extent to which graphicacy achievement scores of students who were immersed in a Google Earth environment were different from students who were provided with only two-dimensional instruction for developing spatial skills. Situated learning theory and the work of Piaget and Inhelder's Child's Conception of Space provided the theoretical grounding from which this study evolved. The National Research Council's call to develop spatial literacy, as seen in Learning to Think Spatially , provided the impetus to begin research. The target population (N = 84) for this study consisted of eighth grade geography students at an upper Midwest Jr. High School during the 2009-2010 academic year. Students were assigned to the control or experimental group based on when they had geography class. Control group students ( n = 44) used two-dimensional PowerPoint images to complete activities, while experimental group students (n = 40) were immersed in the three-dimensional Google Earth world for activity completion. Research data was then compiled and statistically analyzed to answer five research questions developed for this study. One-way ANOVAs were run on data collected and no statistically significant difference was found between the control and experimental group. However, two of the five research questions yielded practically significant data that indicates students who used Google Earth outperformed their counterparts who used PowerPoint on pattern prediction and spatial relationship understanding.

  5. Variations in intensity statistics for representational and abstract art, and for art from the Eastern and Western hemispheres.

    PubMed

    Graham, Daniel J; Field, David J

    2008-01-01

    Two recent studies suggest that natural scenes and paintings show similar statistical properties. But does the content or region of origin of an artwork affect its statistical properties? We addressed this question by having judges place paintings from a large, diverse collection of paintings into one of three subject-matter categories using a forced-choice paradigm. Basic statistics for images whose caterogization was agreed by all judges showed no significant differences between those judged to be 'landscape' and 'portrait/still-life', but these two classes differed from paintings judged to be 'abstract'. All categories showed basic spatial statistical regularities similar to those typical of natural scenes. A test of the full painting collection (140 images) with respect to the works' place of origin (provenance) showed significant differences between Eastern works and Western ones, differences which we find are likely related to the materials and the choice of background color. Although artists deviate slightly from reproducing natural statistics in abstract art (compared to representational art), the great majority of human art likely shares basic statistical limitations. We argue that statistical regularities in art are rooted in the need to make art visible to the eye, not in the inherent aesthetic value of natural-scene statistics, and we suggest that variability in spatial statistics may be generally imposed by manufacture.

  6. Identifying irregularly shaped crime hot-spots using a multiobjective evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Wu, Xiaolan; Grubesic, Tony H.

    2010-12-01

    Spatial cluster detection techniques are widely used in criminology, geography, epidemiology, and other fields. In particular, spatial scan statistics are popular and efficient techniques for detecting areas of elevated crime or disease events. The majority of spatial scan approaches attempt to delineate geographic zones by evaluating the significance of clusters using likelihood ratio statistics tested with the Poisson distribution. While this can be effective, many scan statistics give preference to circular clusters, diminishing their ability to identify elongated and/or irregular shaped clusters. Although adjusting the shape of the scan window can mitigate some of these problems, both the significance of irregular clusters and their spatial structure must be accounted for in a meaningful way. This paper utilizes a multiobjective evolutionary algorithm to find clusters with maximum significance while quantitatively tracking their geographic structure. Crime data for the city of Cincinnati are utilized to demonstrate the advantages of the new approach and highlight its benefits versus more traditional scan statistics.

  7. Spatial patterns in vegetation fires in the Indian region.

    PubMed

    Vadrevu, Krishna Prasad; Badarinath, K V S; Anuradha, Eaturu

    2008-12-01

    In this study, we used fire count datasets derived from Along Track Scanning Radiometer (ATSR) satellite to characterize spatial patterns in fire occurrences across highly diverse geographical, vegetation and topographic gradients in the Indian region. For characterizing the spatial patterns of fire occurrences, observed fire point patterns were tested against the hypothesis of a complete spatial random (CSR) pattern using three different techniques, the quadrat analysis, nearest neighbor analysis and Ripley's K function. Hierarchical nearest neighboring technique was used to depict the 'hotspots' of fire incidents. Of the different states, highest fire counts were recorded in Madhya Pradesh (14.77%) followed by Gujarat (10.86%), Maharastra (9.92%), Mizoram (7.66%), Jharkhand (6.41%), etc. With respect to the vegetation categories, highest number of fires were recorded in agricultural regions (40.26%) followed by tropical moist deciduous vegetation (12.72), dry deciduous vegetation (11.40%), abandoned slash and burn secondary forests (9.04%), tropical montane forests (8.07%) followed by others. Analysis of fire counts based on elevation and slope range suggested that maximum number of fires occurred in low and medium elevation types and in very low to low-slope categories. Results from three different spatial techniques for spatial pattern suggested clustered pattern in fire events compared to CSR. Most importantly, results from Ripley's K statistic suggested that fire events are highly clustered at a lag-distance of 125 miles. Hierarchical nearest neighboring clustering technique identified significant clusters of fire 'hotspots' in different states in northeast and central India. The implications of these results in fire management and mitigation were discussed. Also, this study highlights the potential of spatial point pattern statistics in environmental monitoring and assessment studies with special reference to fire events in the Indian region.

  8. Remote sensing and spatial statistical techniques for modelling Ommatissus lybicus (Hemiptera: Tropiduchidae) habitat and population densities

    PubMed Central

    Kwan, Paul; Welch, Mitchell

    2017-01-01

    In order to understand the distribution and prevalence of Ommatissus lybicus (Hemiptera: Tropiduchidae) as well as analyse their current biographical patterns and predict their future spread, comprehensive and detailed information on the environmental, climatic, and agricultural practices are essential. The spatial analytical techniques such as Remote Sensing and Spatial Statistics Tools, can help detect and model spatial links and correlations between the presence, absence and density of O. lybicus in response to climatic, environmental, and human factors. The main objective of this paper is to review remote sensing and relevant analytical techniques that can be applied in mapping and modelling the habitat and population density of O. lybicus. An exhaustive search of related literature revealed that there are very limited studies linking location-based infestation levels of pests like the O. lybicus with climatic, environmental, and human practice related variables. This review also highlights the accumulated knowledge and addresses the gaps in this area of research. Furthermore, it makes recommendations for future studies, and gives suggestions on monitoring and surveillance methods in designing both local and regional level integrated pest management strategies of palm tree and other affected cultivated crops. PMID:28875085

  9. Remote sensing and spatial statistical techniques for modelling Ommatissus lybicus (Hemiptera: Tropiduchidae) habitat and population densities.

    PubMed

    Al-Kindi, Khalifa M; Kwan, Paul; R Andrew, Nigel; Welch, Mitchell

    2017-01-01

    In order to understand the distribution and prevalence of Ommatissus lybicus (Hemiptera: Tropiduchidae) as well as analyse their current biographical patterns and predict their future spread, comprehensive and detailed information on the environmental, climatic, and agricultural practices are essential. The spatial analytical techniques such as Remote Sensing and Spatial Statistics Tools, can help detect and model spatial links and correlations between the presence, absence and density of O. lybicus in response to climatic, environmental, and human factors. The main objective of this paper is to review remote sensing and relevant analytical techniques that can be applied in mapping and modelling the habitat and population density of O. lybicus . An exhaustive search of related literature revealed that there are very limited studies linking location-based infestation levels of pests like the O. lybicus with climatic, environmental, and human practice related variables. This review also highlights the accumulated knowledge and addresses the gaps in this area of research. Furthermore, it makes recommendations for future studies, and gives suggestions on monitoring and surveillance methods in designing both local and regional level integrated pest management strategies of palm tree and other affected cultivated crops.

  10. Spatial analysis of dengue fever in Guangdong Province, China, 2001-2006.

    PubMed

    Liu, Chunxiao; Liu, Qiyong; Lin, Hualiang; Xin, Benqiang; Nie, Jun

    2014-01-01

    Guangdong Province is the area most seriously affected by dengue fever in China. In this study, we describe the spatial distribution of dengue fever in Guangdong Province from 2001 to 2006 with the objective of informing priority areas for public health planning and resource allocation. Annualized incidence at a county level was calculated and mapped to show crude incidence, excess hazard, and spatial smoothed incidence. Geographic information system-based spatial scan statistics was conducted to detect the spatial distribution pattern of dengue fever incidence at the county level. Spatial scan cluster analyses suggested that counties around Guangzhou City and Chaoshan Region were at increased risk for dengue fever (P < .01). Some spatial clusters of dengue fever were found in Guangdong Province, which allowed intervention measures to be targeted for maximum effect.

  11. Attempting to physically explain space-time correlation of extremes

    NASA Astrophysics Data System (ADS)

    Bernardara, Pietro; Gailhard, Joel

    2010-05-01

    Spatial and temporal clustering of hydro-meteorological extreme events is scientific evidence. Moreover, the statistical parameters characterizing their local frequencies of occurrence show clear spatial patterns. Thus, in order to robustly assess the hydro-meteorological hazard, statistical models need to be able to take into account spatial and temporal dependencies. Statistical models considering long term correlation for quantifying and qualifying temporal and spatial dependencies are available, such as multifractal approach. Furthermore, the development of regional frequency analysis techniques allows estimating the frequency of occurrence of extreme events taking into account spatial patterns on the extreme quantiles behaviour. However, in order to understand the origin of spatio-temporal clustering, an attempt to find physical explanation should be done. Here, some statistical evidences of spatio-temporal correlation and spatial patterns of extreme behaviour are given on a large database of more than 400 rainfall and discharge series in France. In particular, the spatial distribution of multifractal and Generalized Pareto distribution parameters shows evident correlation patterns in the behaviour of frequency of occurrence of extremes. It is then shown that the identification of atmospheric circulation pattern (weather types) can physically explain the temporal clustering of extreme rainfall events (seasonality) and the spatial pattern of the frequency of occurrence. Moreover, coupling this information with the hydrological modelization of a watershed (as in the Schadex approach) an explanation of spatio-temporal distribution of extreme discharge can also be provided. We finally show that a hydro-meteorological approach (as the Schadex approach) can explain and take into account space and time dependencies of hydro-meteorological extreme events.

  12. Estimating regional plant biodiversity with GIS modelling

    Treesearch

    Louis R. Iverson; Anantha M. Prasad; Anantha M. Prasad

    1998-01-01

    We analyzed a statewide species database together with a county-level geographic information system to build a model based on well-surveyed areas to estimate species richness in less surveyed counties. The model involved GIS (Arc/Info) and statistics (S-PLUS), including spatial statistics (S+SpatialStats).

  13. Statistical Analysis of TEC Anomalies Prior to M6.0+ Earthquakes During 2003-2014

    NASA Astrophysics Data System (ADS)

    Zhu, Fuying; Su, Fanfan; Lin, Jian

    2018-04-01

    There are many studies on the anomalous variations of the ionospheric TEC prior to large earthquakes. However, whether or not the morphological characteristics of the TEC anomalies in the daytime and at night are different is rarely studied. In the present paper, based on the total electron content (TEC) data from the global ionosphere map (GIM), we carry out a statistical survey on the spatial-temporal distribution of TEC anomalies before 1339 global M6.0+ earthquakes during 2003-2014. After excluding the interference of geomagnetic disturbance, the temporal and spatial distributions of ionospheric TEC anomalies prior to the earthquakes in the daytime and at night are investigated and compared. Except that the nighttime occurrence rates of the pre-earthquake ionospheric anomalies (PEIAs) are higher than those in the daytime, our analysis has not found any statistically significant difference in the spatial-temporal distribution of PEIAs in the daytime and at night. Moreover, the occurrence rates of pre-earthquake ionospheric TEC both positive anomalies and negative anomalies at night tend to increase slightly with the earthquake magnitude. Thus, we suggest that monitoring the ionospheric TEC changes at night might be a clue to reveal the relation between ionospheric disturbances and seismic activities.

  14. A framework for incorporating DTI Atlas Builder registration into Tract-Based Spatial Statistics and a simulated comparison to standard TBSS.

    PubMed

    Leming, Matthew; Steiner, Rachel; Styner, Martin

    2016-02-27

    Tract-based spatial statistics (TBSS) 6 is a software pipeline widely employed in comparative analysis of the white matter integrity from diffusion tensor imaging (DTI) datasets. In this study, we seek to evaluate the relationship between different methods of atlas registration for use with TBSS and different measurements of DTI (fractional anisotropy, FA, axial diffusivity, AD, radial diffusivity, RD, and medial diffusivity, MD). To do so, we have developed a novel tool that builds on existing diffusion atlas building software, integrating it into an adapted version of TBSS called DAB-TBSS (DTI Atlas Builder-Tract-Based Spatial Statistics) by using the advanced registration offered in DTI Atlas Builder 7 . To compare the effectiveness of these two versions of TBSS, we also propose a framework for simulating population differences for diffusion tensor imaging data, providing a more substantive means of empirically comparing DTI group analysis programs such as TBSS. In this study, we used 33 diffusion tensor imaging datasets and simulated group-wise changes in this data by increasing, in three different simulations, the principal eigenvalue (directly altering AD), the second and third eigenvalues (RD), and all three eigenvalues (MD) in the genu, the right uncinate fasciculus, and the left IFO. Additionally, we assessed the benefits of comparing the tensors directly using a functional analysis of diffusion tensor tract statistics (FADTTS 10 ). Our results indicate comparable levels of FA-based detection between DAB-TBSS and TBSS, with standard TBSS registration reporting a higher rate of false positives in other measurements of DTI. Within the simulated changes investigated here, this study suggests that the use of DTI Atlas Builder's registration enhances TBSS group-based studies.

  15. Digital spatial data for predicted nitrate and arsenic concentrations in basin-fill aquifers of the Southwest Principal Aquifers study area

    USGS Publications Warehouse

    McKinney, Tim S.; Anning, David W.

    2012-01-01

    This product "Digital spatial data for predicted nitrate and arsenic concentrations in basin-fill aquifers of the Southwest Principal Aquifers study area" is a 1:250,000-scale vector spatial dataset developed as part of a regional Southwest Principal Aquifers (SWPA) study (Anning and others, 2012). The study examined the vulnerability of basin-fill aquifers in the southwestern United States to nitrate contamination and arsenic enrichment. Statistical models were developed by using the random forest classifier algorithm to predict concentrations of nitrate and arsenic across a model grid that represents local- and basin-scale measures of source, aquifer susceptibility, and geochemical conditions.

  16. Relation between clinical mature and immature lymphocyte cells in human peripheral blood and their spatial label free scattering patterns

    NASA Astrophysics Data System (ADS)

    Zhang, Lu; Zhao, Xin; Zhang, Zhenxi; Zhao, Hong; Chen, Wei; Yuan, Li

    2016-07-01

    A single living cell's light scattering pattern (LSP) in the horizontal plane, which has been denoted as the cell's "2D fingerprint," may provide a powerful label-free detection tool in clinical applications. We have recently studied the LSP in spatial scattering planes, denoted as the cell's "3D fingerprint," for mature and immature lymphocyte cells in human peripheral blood. The effects of membrane size, morphology, and the existence of the nucleus on the spatial LSP are discussed. In order to distinguish clinical label-free mature and immature lymphocytes, the special features of the spatial LSP are studied by statistical method in both the spatial and frequency domains. Spatial LSP provides rich information on the cell's morphology and contents, which can distinguish mature from immature lymphocyte cells and hence ultimately it may be a useful label-free technique for clinical leukemia diagnosis.

  17. Quantitative approaches in climate change ecology

    PubMed Central

    Brown, Christopher J; Schoeman, David S; Sydeman, William J; Brander, Keith; Buckley, Lauren B; Burrows, Michael; Duarte, Carlos M; Moore, Pippa J; Pandolfi, John M; Poloczanska, Elvira; Venables, William; Richardson, Anthony J

    2011-01-01

    Contemporary impacts of anthropogenic climate change on ecosystems are increasingly being recognized. Documenting the extent of these impacts requires quantitative tools for analyses of ecological observations to distinguish climate impacts in noisy data and to understand interactions between climate variability and other drivers of change. To assist the development of reliable statistical approaches, we review the marine climate change literature and provide suggestions for quantitative approaches in climate change ecology. We compiled 267 peer-reviewed articles that examined relationships between climate change and marine ecological variables. Of the articles with time series data (n = 186), 75% used statistics to test for a dependency of ecological variables on climate variables. We identified several common weaknesses in statistical approaches, including marginalizing other important non-climate drivers of change, ignoring temporal and spatial autocorrelation, averaging across spatial patterns and not reporting key metrics. We provide a list of issues that need to be addressed to make inferences more defensible, including the consideration of (i) data limitations and the comparability of data sets; (ii) alternative mechanisms for change; (iii) appropriate response variables; (iv) a suitable model for the process under study; (v) temporal autocorrelation; (vi) spatial autocorrelation and patterns; and (vii) the reporting of rates of change. While the focus of our review was marine studies, these suggestions are equally applicable to terrestrial studies. Consideration of these suggestions will help advance global knowledge of climate impacts and understanding of the processes driving ecological change.

  18. Enhancing the visuo-spatial aptitude of students

    NASA Astrophysics Data System (ADS)

    Lord, Thomas R.

    Research to date has not been able to agree whether visuo-spatial ability can be influenced through practice. Many have concluded that spatial awareness is an innate phenomena and cannot be learned. Others contend that an individual's visuo-spatial potentials are acquired through interactions with the environment. Many of these theorists believe that spatial thinking can be developed through interactive exercises devised to encourage mental image formation and manipulation. To help alleviate the confusion surrounding this question the following study was undertaken. Eighty-four college undergraduates were randomly placed into control and experimental sections. Student records were examined to assure that the groups did not differ significantly in their verbal or math proficiency and pertinent pretests were given to ascertain spatial levels. The groups were also similar on their male and female ratios. During the semester the experimental section was treated to a 30-minute interaction each week. These sessions involved spatial exercises that required the participants to mentally bisect three-dimensional geometric figures and to envision the shape of the two-dimensional surface formed by the bisection. The subjects drew their mental image of this surface on a sheet of paper. Fourteen weeks later both groups were post tested with a second comparable version of the pretest. Statistical t tests were performed on the group means to see if significant differences developed between the sections. The results indicate that statistical improvement in visuo-spatial cognition did occur for the experimental group in spatial visualization, and spatial orientation. This finding suggests that the weekly intervention sessions had a positive effect on the students' visuo-spatial awareness. These results, therefore, tend to support those researchers that claim visuo-spatial aptitude can be enhanced through teaching.

  19. Statistical characterization of portal images and noise from portal imaging systems.

    PubMed

    González-López, Antonio; Morales-Sánchez, Juan; Verdú-Monedero, Rafael; Larrey-Ruiz, Jorge

    2013-06-01

    In this paper, we consider the statistical characteristics of the so-called portal images, which are acquired prior to the radiotherapy treatment, as well as the noise that present the portal imaging systems, in order to analyze whether the well-known noise and image features in other image modalities, such as natural image, can be found in the portal imaging modality. The study is carried out in the spatial image domain, in the Fourier domain, and finally in the wavelet domain. The probability density of the noise in the spatial image domain, the power spectral densities of the image and noise, and the marginal, joint, and conditional statistical distributions of the wavelet coefficients are estimated. Moreover, the statistical dependencies between noise and signal are investigated. The obtained results are compared with practical and useful references, like the characteristics of the natural image and the white noise. Finally, we discuss the implication of the results obtained in several noise reduction methods that operate in the wavelet domain.

  20. OSPAR standard method and software for statistical analysis of beach litter data.

    PubMed

    Schulz, Marcus; van Loon, Willem; Fleet, David M; Baggelaar, Paul; van der Meulen, Eit

    2017-09-15

    The aim of this study is to develop standard statistical methods and software for the analysis of beach litter data. The optimal ensemble of statistical methods comprises the Mann-Kendall trend test, the Theil-Sen slope estimation, the Wilcoxon step trend test and basic descriptive statistics. The application of Litter Analyst, a tailor-made software for analysing the results of beach litter surveys, to OSPAR beach litter data from seven beaches bordering on the south-eastern North Sea, revealed 23 significant trends in the abundances of beach litter types for the period 2009-2014. Litter Analyst revealed a large variation in the abundance of litter types between beaches. To reduce the effects of spatial variation, trend analysis of beach litter data can most effectively be performed at the beach or national level. Spatial aggregation of beach litter data within a region is possible, but resulted in a considerable reduction in the number of significant trends. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Analysis of the spatial and temporal distribution of malaria in an area of Northern Guatemala with seasonal malaria transmission.

    PubMed

    Malvisi, Lucio; Troisi, Catherine L; Selwyn, Beatrice J

    2018-06-23

    The risk of malaria infection displays spatial and temporal variability that is likely due to interaction between the physical environment and the human population. In this study, we performed a spatial analysis at three different time points, corresponding to three cross-sectional surveys conducted as part of an insecticide-treated bed nets efficacy study, to reveal patterns of malaria incidence distribution in an area of Northern Guatemala characterized by low malaria endemicity. A thorough understanding of the spatial and temporal patterns of malaria distribution is essential for targeted malaria control programs. Two methods, the local Moran's I and the Getis-Ord G * (d), were used for the analysis, providing two different statistical approaches and allowing for a comparison of results. A distance band of 3.5 km was considered to be the most appropriate distance for the analysis of data based on epidemiological and entomological factors. Incidence rates were higher at the first cross-sectional survey conducted prior to the intervention compared to the following two surveys. Clusters or hot spots of malaria incidence exhibited high spatial and temporal variations. Findings from the two statistics were similar, though the G * (d) detected cold spots using a higher distance band (5.5 km). The high spatial and temporal variability in the distribution of clusters of high malaria incidence seems to be consistent with an area of unstable malaria transmission. In such a context, a strong surveillance system and the use of spatial analysis may be crucial for targeted malaria control activities.

  2. Space, race, and poverty: Spatial inequalities in walkable neighborhood amenities?

    PubMed Central

    Aldstadt, Jared; Whalen, John; White, Kellee; Castro, Marcia C.; Williams, David R.

    2017-01-01

    BACKGROUND Multiple and varied benefits have been suggested for increased neighborhood walkability. However, spatial inequalities in neighborhood walkability likely exist and may be attributable, in part, to residential segregation. OBJECTIVE Utilizing a spatial demographic perspective, we evaluated potential spatial inequalities in walkable neighborhood amenities across census tracts in Boston, MA (US). METHODS The independent variables included minority racial/ethnic population percentages and percent of families in poverty. Walkable neighborhood amenities were assessed with a composite measure. Spatial autocorrelation in key study variables were first calculated with the Global Moran’s I statistic. Then, Spearman correlations between neighborhood socio-demographic characteristics and walkable neighborhood amenities were calculated as well as Spearman correlations accounting for spatial autocorrelation. We fit ordinary least squares (OLS) regression and spatial autoregressive models, when appropriate, as a final step. RESULTS Significant positive spatial autocorrelation was found in neighborhood socio-demographic characteristics (e.g. census tract percent Black), but not walkable neighborhood amenities or in the OLS regression residuals. Spearman correlations between neighborhood socio-demographic characteristics and walkable neighborhood amenities were not statistically significant, nor were neighborhood socio-demographic characteristics significantly associated with walkable neighborhood amenities in OLS regression models. CONCLUSIONS Our results suggest that there is residential segregation in Boston and that spatial inequalities do not necessarily show up using a composite measure. COMMENTS Future research in other geographic areas (including international contexts) and using different definitions of neighborhoods (including small-area definitions) should evaluate if spatial inequalities are found using composite measures but also should use measures of specific neighborhood amenities. PMID:29046612

  3. Measurement of turbulent spatial structure and kinetic energy spectrum by exact temporal-to-spatial mapping

    NASA Astrophysics Data System (ADS)

    Buchhave, Preben; Velte, Clara M.

    2017-08-01

    We present a method for converting a time record of turbulent velocity measured at a point in a flow to a spatial velocity record consisting of consecutive convection elements. The spatial record allows computation of dynamic statistical moments such as turbulent kinetic wavenumber spectra and spatial structure functions in a way that completely bypasses the need for Taylor's hypothesis. The spatial statistics agree with the classical counterparts, such as the total kinetic energy spectrum, at least for spatial extents up to the Taylor microscale. The requirements for applying the method are access to the instantaneous velocity magnitude, in addition to the desired flow quantity, and a high temporal resolution in comparison to the relevant time scales of the flow. We map, without distortion and bias, notoriously difficult developing turbulent high intensity flows using three main aspects that distinguish these measurements from previous work in the field: (1) The measurements are conducted using laser Doppler anemometry and are therefore not contaminated by directional ambiguity (in contrast to, e.g., frequently employed hot-wire anemometers); (2) the measurement data are extracted using a correctly and transparently functioning processor and are analysed using methods derived from first principles to provide unbiased estimates of the velocity statistics; (3) the exact mapping proposed herein has been applied to the high turbulence intensity flows investigated to avoid the significant distortions caused by Taylor's hypothesis. The method is first confirmed to produce the correct statistics using computer simulations and later applied to measurements in some of the most difficult regions of a round turbulent jet—the non-equilibrium developing region and the outermost parts of the developed jet. The proposed mapping is successfully validated using corresponding directly measured spatial statistics in the fully developed jet, even in the difficult outer regions of the jet where the average convection velocity is negligible and turbulence intensities increase dramatically. The measurements in the developing region reveal interesting features of an incomplete Richardson-Kolmogorov cascade under development.

  4. Applicability of Various Interpolation Approaches for High Resolution Spatial Mapping of Climate Data in Korea

    NASA Astrophysics Data System (ADS)

    Jo, A.; Ryu, J.; Chung, H.; Choi, Y.; Jeon, S.

    2018-04-01

    The purpose of this study is to create a new dataset of spatially interpolated monthly climate data for South Korea at high spatial resolution (approximately 30m) by performing various spatio-statistical interpolation and comparing with forecast LDAPS gridded climate data provided from Korea Meterological Administration (KMA). Automatic Weather System (AWS) and Automated Synoptic Observing System (ASOS) data in 2017 obtained from KMA were included for the spatial mapping of temperature and rainfall; instantaneous temperature and 1-hour accumulated precipitation at 09:00 am on 31th March, 21th June, 23th September, and 24th December. Among observation data, 80 percent of the total point (478) and remaining 120 points were used for interpolations and for quantification, respectively. With the training data and digital elevation model (DEM) with 30 m resolution, inverse distance weighting (IDW), co-kriging, and kriging were performed by using ArcGIS10.3.1 software and Python 3.6.4. Bias and root mean square were computed to compare prediction performance quantitatively. When statistical analysis was performed for each cluster using 20 % validation data, co kriging was more suitable for spatialization of instantaneous temperature than other interpolation method. On the other hand, IDW technique was appropriate for spatialization of precipitation.

  5. Navigating the currents of seascape genomics: how spatial analyses can augment population genomic studies

    PubMed Central

    Crandall, Eric D.; Liggins, Libby; Bongaerts, Pim; Treml, Eric A.

    2016-01-01

    Population genomic approaches are making rapid inroads in the study of non-model organisms, including marine taxa. To date, these marine studies have predominantly focused on rudimentary metrics describing the spatial and environmental context of their study region (e.g., geographical distance, average sea surface temperature, average salinity). We contend that a more nuanced and considered approach to quantifying seascape dynamics and patterns can strengthen population genomic investigations and help identify spatial, temporal, and environmental factors associated with differing selective regimes or demographic histories. Nevertheless, approaches for quantifying marine landscapes are complicated. Characteristic features of the marine environment, including pelagic living in flowing water (experienced by most marine taxa at some point in their life cycle), require a well-designed spatial-temporal sampling strategy and analysis. Many genetic summary statistics used to describe populations may be inappropriate for marine species with large population sizes, large species ranges, stochastic recruitment, and asymmetrical gene flow. Finally, statistical approaches for testing associations between seascapes and population genomic patterns are still maturing with no single approach able to capture all relevant considerations. None of these issues are completely unique to marine systems and therefore similar issues and solutions will be shared for many organisms regardless of habitat. Here, we outline goals and spatial approaches for landscape genomics with an emphasis on marine systems and review the growing empirical literature on seascape genomics. We review established tools and approaches and highlight promising new strategies to overcome select issues including a strategy to spatially optimize sampling. Despite the many challenges, we argue that marine systems may be especially well suited for identifying candidate genomic regions under environmentally mediated selection and that seascape genomic approaches are especially useful for identifying robust locus-by-environment associations. PMID:29491947

  6. Navigating the currents of seascape genomics: how spatial analyses can augment population genomic studies.

    PubMed

    Riginos, Cynthia; Crandall, Eric D; Liggins, Libby; Bongaerts, Pim; Treml, Eric A

    2016-12-01

    Population genomic approaches are making rapid inroads in the study of non-model organisms, including marine taxa. To date, these marine studies have predominantly focused on rudimentary metrics describing the spatial and environmental context of their study region (e.g., geographical distance, average sea surface temperature, average salinity). We contend that a more nuanced and considered approach to quantifying seascape dynamics and patterns can strengthen population genomic investigations and help identify spatial, temporal, and environmental factors associated with differing selective regimes or demographic histories. Nevertheless, approaches for quantifying marine landscapes are complicated. Characteristic features of the marine environment, including pelagic living in flowing water (experienced by most marine taxa at some point in their life cycle), require a well-designed spatial-temporal sampling strategy and analysis. Many genetic summary statistics used to describe populations may be inappropriate for marine species with large population sizes, large species ranges, stochastic recruitment, and asymmetrical gene flow. Finally, statistical approaches for testing associations between seascapes and population genomic patterns are still maturing with no single approach able to capture all relevant considerations. None of these issues are completely unique to marine systems and therefore similar issues and solutions will be shared for many organisms regardless of habitat. Here, we outline goals and spatial approaches for landscape genomics with an emphasis on marine systems and review the growing empirical literature on seascape genomics. We review established tools and approaches and highlight promising new strategies to overcome select issues including a strategy to spatially optimize sampling. Despite the many challenges, we argue that marine systems may be especially well suited for identifying candidate genomic regions under environmentally mediated selection and that seascape genomic approaches are especially useful for identifying robust locus-by-environment associations.

  7. Spatial statistical analysis of basal stem root disease under natural field epidemic of oil palm

    NASA Astrophysics Data System (ADS)

    Kamu, Assis; Phin, Chong Khim; Seman, Idris Abu; Wan, Hoong Hak; Mun, Ho Chong

    2015-02-01

    Oil palm or scientifically known as Elaeis guineensis Jacq. is the most important commodity crop in Malaysia and has greatly contributed to the economy growth of the country. As far as disease is concerned in the industry, Basal Stem Rot (BSR) caused by Ganoderma boninence remains the most important disease. BSR disease is the most widely studied with information available for oil palm disease in Malaysia. However, there is still limited study on the spatial as well as temporal pattern or distribution of the disease especially under natural field epidemic condition in oil palm plantation. The objective of this study is to spatially identify the pattern of BSR disease under natural field epidemic using two geospatial analytical techniques, which are quadrat analysis for the first order properties of partial pattern analysis and nearest-neighbor analysis (NNA) for the second order properties of partial pattern analysis. Two study sites were selected with different age of tree. Both sites are located in Tawau, Sabah and managed by the same company. The results showed that at least one of the point pattern analysis used which is NNA (i.e. the second order properties of partial pattern analysis) has confirmed the disease is complete spatial randomness. This suggests the spread of the disease is not from tree to tree and the age of palm does not play a significance role in determining the spatial pattern of the disease. From the spatial pattern of the disease, it would help in the disease management program and for the industry in the future. The statistical modelling is expected to help in identifying the right model to estimate the yield loss of oil palm due to BSR disease in the future.

  8. Comparison of climate envelope models developed using expert-selected variables versus statistical selection

    USGS Publications Warehouse

    Brandt, Laura A.; Benscoter, Allison; Harvey, Rebecca G.; Speroterra, Carolina; Bucklin, David N.; Romañach, Stephanie; Watling, James I.; Mazzotti, Frank J.

    2017-01-01

    Climate envelope models are widely used to describe potential future distribution of species under different climate change scenarios. It is broadly recognized that there are both strengths and limitations to using climate envelope models and that outcomes are sensitive to initial assumptions, inputs, and modeling methods Selection of predictor variables, a central step in modeling, is one of the areas where different techniques can yield varying results. Selection of climate variables to use as predictors is often done using statistical approaches that develop correlations between occurrences and climate data. These approaches have received criticism in that they rely on the statistical properties of the data rather than directly incorporating biological information about species responses to temperature and precipitation. We evaluated and compared models and prediction maps for 15 threatened or endangered species in Florida based on two variable selection techniques: expert opinion and a statistical method. We compared model performance between these two approaches for contemporary predictions, and the spatial correlation, spatial overlap and area predicted for contemporary and future climate predictions. In general, experts identified more variables as being important than the statistical method and there was low overlap in the variable sets (<40%) between the two methods Despite these differences in variable sets (expert versus statistical), models had high performance metrics (>0.9 for area under the curve (AUC) and >0.7 for true skill statistic (TSS). Spatial overlap, which compares the spatial configuration between maps constructed using the different variable selection techniques, was only moderate overall (about 60%), with a great deal of variability across species. Difference in spatial overlap was even greater under future climate projections, indicating additional divergence of model outputs from different variable selection techniques. Our work is in agreement with other studies which have found that for broad-scale species distribution modeling, using statistical methods of variable selection is a useful first step, especially when there is a need to model a large number of species or expert knowledge of the species is limited. Expert input can then be used to refine models that seem unrealistic or for species that experts believe are particularly sensitive to change. It also emphasizes the importance of using multiple models to reduce uncertainty and improve map outputs for conservation planning. Where outputs overlap or show the same direction of change there is greater certainty in the predictions. Areas of disagreement can be used for learning by asking why the models do not agree, and may highlight areas where additional on-the-ground data collection could improve the models.

  9. Effects of sampling interval on spatial patterns and statistics of watershed nitrogen concentration

    USGS Publications Warehouse

    Wu, S.-S.D.; Usery, E.L.; Finn, M.P.; Bosch, D.D.

    2009-01-01

    This study investigates how spatial patterns and statistics of a 30 m resolution, model-simulated, watershed nitrogen concentration surface change with sampling intervals from 30 m to 600 m for every 30 m increase for the Little River Watershed (Georgia, USA). The results indicate that the mean, standard deviation, and variogram sills do not have consistent trends with increasing sampling intervals, whereas the variogram ranges remain constant. A sampling interval smaller than or equal to 90 m is necessary to build a representative variogram. The interpolation accuracy, clustering level, and total hot spot areas show decreasing trends approximating a logarithmic function. The trends correspond to the nitrogen variogram and start to level at a sampling interval of 360 m, which is therefore regarded as a critical spatial scale of the Little River Watershed. Copyright ?? 2009 by Bellwether Publishing, Ltd. All right reserved.

  10. Spatial and Temporal Emergence Pattern of Lyme Disease in Virginia

    PubMed Central

    Li, Jie; Kolivras, Korine N.; Hong, Yili; Duan, Yuanyuan; Seukep, Sara E.; Prisley, Stephen P.; Campbell, James B.; Gaines, David N.

    2014-01-01

    The emergence of infectious diseases over the past several decades has highlighted the need to better understand epidemics and prepare for the spread of diseases into new areas. As these diseases expand their geographic range, cases are recorded at different geographic locations over time, making the analysis and prediction of this expansion complicated. In this study, we analyze spatial patterns of the disease using a statistical smoothing analysis based on areal (census tract level) count data of Lyme disease cases in Virginia from 1998 to 2011. We also use space and space–time scan statistics to reveal the presence of clusters in the spatial and spatiotemporal distribution of Lyme disease. Our results confirm and quantify the continued emergence of Lyme disease to the south and west in states along the eastern coast of the United States. The results also highlight areas where education and surveillance needs are highest. PMID:25331806

  11. Exploring spatial evolution of economic clusters: A case study of Beijing

    NASA Astrophysics Data System (ADS)

    Yang, Zhenshan; Sliuzas, Richard; Cai, Jianming; Ottens, Henk F. L.

    2012-10-01

    An identification of economic clusters and analysing their changing spatial patterns is important for understanding urban economic space dynamics. Previous studies, however, suffer from limitations as a consequence of using fixed geographically areas and not combining functional and spatial dynamics. The paper presents an approach, based on local spatial statistics and the case of Beijing to understand the spatial clustering of industries that are functionally interconnected by common or complementary patterns of demand or supply relations. Using register data of business establishments, it identifies economic clusters and analyses their pattern based on postcodes at different time slices during the period 1983-2002. The study shows how the advanced services occupy the urban centre and key sub centres. The Information and Communication Technology (ICT) cluster is mainly concentrated in the north part of the city and circles the urban centre, and the main manufacturing clusters are evolved in the key sub centers. This type of outcomes improves understanding of urban-economic dynamics, which can support spatial and economic planning.

  12. Spatial cluster detection for repeatedly measured outcomes while accounting for residential history.

    PubMed

    Cook, Andrea J; Gold, Diane R; Li, Yi

    2009-10-01

    Spatial cluster detection has become an important methodology in quantifying the effect of hazardous exposures. Previous methods have focused on cross-sectional outcomes that are binary or continuous. There are virtually no spatial cluster detection methods proposed for longitudinal outcomes. This paper proposes a new spatial cluster detection method for repeated outcomes using cumulative geographic residuals. A major advantage of this method is its ability to readily incorporate information on study participants relocation, which most cluster detection statistics cannot. Application of these methods will be illustrated by the Home Allergens and Asthma prospective cohort study analyzing the relationship between environmental exposures and repeated measured outcome, occurrence of wheeze in the last 6 months, while taking into account mobile locations.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, Richard O.

    The application of statistics to environmental pollution monitoring studies requires a knowledge of statistical analysis methods particularly well suited to pollution data. This book fills that need by providing sampling plans, statistical tests, parameter estimation procedure techniques, and references to pertinent publications. Most of the statistical techniques are relatively simple, and examples, exercises, and case studies are provided to illustrate procedures. The book is logically divided into three parts. Chapters 1, 2, and 3 are introductory chapters. Chapters 4 through 10 discuss field sampling designs and Chapters 11 through 18 deal with a broad range of statistical analysis procedures. Somemore » statistical techniques given here are not commonly seen in statistics book. For example, see methods for handling correlated data (Sections 4.5 and 11.12), for detecting hot spots (Chapter 10), and for estimating a confidence interval for the mean of a lognormal distribution (Section 13.2). Also, Appendix B lists a computer code that estimates and tests for trends over time at one or more monitoring stations using nonparametric methods (Chapters 16 and 17). Unfortunately, some important topics could not be included because of their complexity and the need to limit the length of the book. For example, only brief mention could be made of time series analysis using Box-Jenkins methods and of kriging techniques for estimating spatial and spatial-time patterns of pollution, although multiple references on these topics are provided. Also, no discussion of methods for assessing risks from environmental pollution could be included.« less

  14. A method to estimate the effect of deformable image registration uncertainties on daily dose mapping

    PubMed Central

    Murphy, Martin J.; Salguero, Francisco J.; Siebers, Jeffrey V.; Staub, David; Vaman, Constantin

    2012-01-01

    Purpose: To develop a statistical sampling procedure for spatially-correlated uncertainties in deformable image registration and then use it to demonstrate their effect on daily dose mapping. Methods: Sequential daily CT studies are acquired to map anatomical variations prior to fractionated external beam radiotherapy. The CTs are deformably registered to the planning CT to obtain displacement vector fields (DVFs). The DVFs are used to accumulate the dose delivered each day onto the planning CT. Each DVF has spatially-correlated uncertainties associated with it. Principal components analysis (PCA) is applied to measured DVF error maps to produce decorrelated principal component modes of the errors. The modes are sampled independently and reconstructed to produce synthetic registration error maps. The synthetic error maps are convolved with dose mapped via deformable registration to model the resulting uncertainty in the dose mapping. The results are compared to the dose mapping uncertainty that would result from uncorrelated DVF errors that vary randomly from voxel to voxel. Results: The error sampling method is shown to produce synthetic DVF error maps that are statistically indistinguishable from the observed error maps. Spatially-correlated DVF uncertainties modeled by our procedure produce patterns of dose mapping error that are different from that due to randomly distributed uncertainties. Conclusions: Deformable image registration uncertainties have complex spatial distributions. The authors have developed and tested a method to decorrelate the spatial uncertainties and make statistical samples of highly correlated error maps. The sample error maps can be used to investigate the effect of DVF uncertainties on daily dose mapping via deformable image registration. An initial demonstration of this methodology shows that dose mapping uncertainties can be sensitive to spatial patterns in the DVF uncertainties. PMID:22320766

  15. An investigation on thermal patterns in Iran based on spatial autocorrelation

    NASA Astrophysics Data System (ADS)

    Fallah Ghalhari, Gholamabbas; Dadashi Roudbari, Abbasali

    2018-02-01

    The present study aimed at investigating temporal-spatial patterns and monthly patterns of temperature in Iran using new spatial statistical methods such as cluster and outlier analysis, and hotspot analysis. To do so, climatic parameters, monthly average temperature of 122 synoptic stations, were assessed. Statistical analysis showed that January with 120.75% had the most fluctuation among the studied months. Global Moran's Index revealed that yearly changes of temperature in Iran followed a strong spatially clustered pattern. Findings showed that the biggest thermal cluster pattern in Iran, 0.975388, occurred in May. Cluster and outlier analyses showed that thermal homogeneity in Iran decreases in cold months, while it increases in warm months. This is due to the radiation angle and synoptic systems which strongly influence thermal order in Iran. The elevations, however, have the most notable part proved by Geographically weighted regression model. Iran's thermal analysis through hotspot showed that hot thermal patterns (very hot, hot, and semi-hot) were dominant in the South, covering an area of 33.5% (about 552,145.3 km2). Regions such as mountain foot and low lands lack any significant spatial autocorrelation, 25.2% covering about 415,345.1 km2. The last is the cold thermal area (very cold, cold, and semi-cold) with about 25.2% covering about 552,145.3 km2 of the whole area of Iran.

  16. Choosing an Appropriate Modelling Framework for Analysing Multispecies Co-culture Cell Biology Experiments.

    PubMed

    Markham, Deborah C; Simpson, Matthew J; Baker, Ruth E

    2015-04-01

    In vitro cell biology assays play a crucial role in informing our understanding of the migratory, proliferative and invasive properties of many cell types in different biological contexts. While mono-culture assays involve the study of a population of cells composed of a single cell type, co-culture assays study a population of cells composed of multiple cell types (or subpopulations of cells). Such co-culture assays can provide more realistic insights into many biological processes including tissue repair, tissue regeneration and malignant spreading. Typically, system parameters, such as motility and proliferation rates, are estimated by calibrating a mathematical or computational model to the observed experimental data. However, parameter estimates can be highly sensitive to the choice of model and modelling framework. This observation motivates us to consider the fundamental question of how we can best choose a model to facilitate accurate parameter estimation for a particular assay. In this work we describe three mathematical models of mono-culture and co-culture assays that include different levels of spatial detail. We study various spatial summary statistics to explore if they can be used to distinguish between the suitability of each model over a range of parameter space. Our results for mono-culture experiments are promising, in that we suggest two spatial statistics that can be used to direct model choice. However, co-culture experiments are far more challenging: we show that these same spatial statistics which provide useful insight into mono-culture systems are insufficient for co-culture systems. Therefore, we conclude that great care ought to be exercised when estimating the parameters of co-culture assays.

  17. From regular text to artistic writing and artworks: Fourier statistics of images with low and high aesthetic appeal

    PubMed Central

    Melmer, Tamara; Amirshahi, Seyed A.; Koch, Michael; Denzler, Joachim; Redies, Christoph

    2013-01-01

    The spatial characteristics of letters and their influence on readability and letter identification have been intensely studied during the last decades. There have been few studies, however, on statistical image properties that reflect more global aspects of text, for example properties that may relate to its aesthetic appeal. It has been shown that natural scenes and a large variety of visual artworks possess a scale-invariant Fourier power spectrum that falls off linearly with increasing frequency in log-log plots. We asked whether images of text share this property. As expected, the Fourier spectrum of images of regular typed or handwritten text is highly anisotropic, i.e., the spectral image properties in vertical, horizontal, and oblique orientations differ. Moreover, the spatial frequency spectra of text images are not scale-invariant in any direction. The decline is shallower in the low-frequency part of the spectrum for text than for aesthetic artworks, whereas, in the high-frequency part, it is steeper. These results indicate that, in general, images of regular text contain less global structure (low spatial frequencies) relative to fine detail (high spatial frequencies) than images of aesthetics artworks. Moreover, we studied images of text with artistic claim (ornate print and calligraphy) and ornamental art. For some measures, these images assume average values intermediate between regular text and aesthetic artworks. Finally, to answer the question of whether the statistical properties measured by us are universal amongst humans or are subject to intercultural differences, we compared images from three different cultural backgrounds (Western, East Asian, and Arabic). Results for different categories (regular text, aesthetic writing, ornamental art, and fine art) were similar across cultures. PMID:23554592

  18. Temporal and spatial assessment of river surface water quality using multivariate statistical techniques: a study in Can Tho City, a Mekong Delta area, Vietnam.

    PubMed

    Phung, Dung; Huang, Cunrui; Rutherford, Shannon; Dwirahmadi, Febi; Chu, Cordia; Wang, Xiaoming; Nguyen, Minh; Nguyen, Nga Huy; Do, Cuong Manh; Nguyen, Trung Hieu; Dinh, Tuan Anh Diep

    2015-05-01

    The present study is an evaluation of temporal/spatial variations of surface water quality using multivariate statistical techniques, comprising cluster analysis (CA), principal component analysis (PCA), factor analysis (FA) and discriminant analysis (DA). Eleven water quality parameters were monitored at 38 different sites in Can Tho City, a Mekong Delta area of Vietnam from 2008 to 2012. Hierarchical cluster analysis grouped the 38 sampling sites into three clusters, representing mixed urban-rural areas, agricultural areas and industrial zone. FA/PCA resulted in three latent factors for the entire research location, three for cluster 1, four for cluster 2, and four for cluster 3 explaining 60, 60.2, 80.9, and 70% of the total variance in the respective water quality. The varifactors from FA indicated that the parameters responsible for water quality variations are related to erosion from disturbed land or inflow of effluent from sewage plants and industry, discharges from wastewater treatment plants and domestic wastewater, agricultural activities and industrial effluents, and contamination by sewage waste with faecal coliform bacteria through sewer and septic systems. Discriminant analysis (DA) revealed that nephelometric turbidity units (NTU), chemical oxygen demand (COD) and NH₃ are the discriminating parameters in space, affording 67% correct assignation in spatial analysis; pH and NO₂ are the discriminating parameters according to season, assigning approximately 60% of cases correctly. The findings suggest a possible revised sampling strategy that can reduce the number of sampling sites and the indicator parameters responsible for large variations in water quality. This study demonstrates the usefulness of multivariate statistical techniques for evaluation of temporal/spatial variations in water quality assessment and management.

  19. Topics in strong Langmuir turbulence

    NASA Technical Reports Server (NTRS)

    Nicholson, D. R.

    1983-01-01

    Progress in two approaches to the study of strong Langmuir turbulence is reported. In two spatial dimensions, numerical solution of the Zakharov equations yields a steady state involving linear growth, linear damping, and a collection of coherent, long-lived entities which might loosely be called solitons. In one spatial dimension, a statistical theory is applied to the cubically nonlinear Schroedinger equation and is solved analytically in a special case.

  20. Topics in strong Langmuir turbulence

    NASA Technical Reports Server (NTRS)

    Nicholson, D. R.

    1982-01-01

    Progress in two approaches to the study of strong Langmuir turbulence is reported. In two spatial dimensions, numerical solution of the Zakharov equations yields a steady state involving linear growth, linear damping, and a collection of coherent, long-lived entities which might loosely be called solitons. In one spatial dimension, a statistical theory is applied to the cubically nonlinear Schroedinger equation and is solved analytically in a special case.

  1. Stochastic Spatial Models in Ecology: A Statistical Physics Approach

    NASA Astrophysics Data System (ADS)

    Pigolotti, Simone; Cencini, Massimo; Molina, Daniel; Muñoz, Miguel A.

    2018-07-01

    Ecosystems display a complex spatial organization. Ecologists have long tried to characterize them by looking at how different measures of biodiversity change across spatial scales. Ecological neutral theory has provided simple predictions accounting for general empirical patterns in communities of competing species. However, while neutral theory in well-mixed ecosystems is mathematically well understood, spatial models still present several open problems, limiting the quantitative understanding of spatial biodiversity. In this review, we discuss the state of the art in spatial neutral theory. We emphasize the connection between spatial ecological models and the physics of non-equilibrium phase transitions and how concepts developed in statistical physics translate in population dynamics, and vice versa. We focus on non-trivial scaling laws arising at the critical dimension D = 2 of spatial neutral models, and their relevance for biological populations inhabiting two-dimensional environments. We conclude by discussing models incorporating non-neutral effects in the form of spatial and temporal disorder, and analyze how their predictions deviate from those of purely neutral theories.

  2. Stochastic Spatial Models in Ecology: A Statistical Physics Approach

    NASA Astrophysics Data System (ADS)

    Pigolotti, Simone; Cencini, Massimo; Molina, Daniel; Muñoz, Miguel A.

    2017-11-01

    Ecosystems display a complex spatial organization. Ecologists have long tried to characterize them by looking at how different measures of biodiversity change across spatial scales. Ecological neutral theory has provided simple predictions accounting for general empirical patterns in communities of competing species. However, while neutral theory in well-mixed ecosystems is mathematically well understood, spatial models still present several open problems, limiting the quantitative understanding of spatial biodiversity. In this review, we discuss the state of the art in spatial neutral theory. We emphasize the connection between spatial ecological models and the physics of non-equilibrium phase transitions and how concepts developed in statistical physics translate in population dynamics, and vice versa. We focus on non-trivial scaling laws arising at the critical dimension D = 2 of spatial neutral models, and their relevance for biological populations inhabiting two-dimensional environments. We conclude by discussing models incorporating non-neutral effects in the form of spatial and temporal disorder, and analyze how their predictions deviate from those of purely neutral theories.

  3. Uncertainties and implications of applying aggregated data for spatial modelling of atmospheric ammonia emissions.

    PubMed

    Hellsten, S; Dragosits, U; Place, C J; Dore, A J; Tang, Y S; Sutton, M A

    2018-05-09

    Ammonia emissions vary greatly at a local scale, and effects (eutrophication, acidification) occur primarily close to sources. Therefore it is important that spatially distributed emission estimates are located as accurately as possible. The main source of ammonia emissions is agriculture, and therefore agricultural survey statistics are the most important input data to an ammonia emission inventory alongside per activity estimates of emission potential. In the UK, agricultural statistics are collected at farm level, but are aggregated to parish level, NUTS-3 level or regular grid resolution for distribution to users. In this study, the Modifiable Areal Unit Problem (MAUP), associated with such amalgamation, is investigated in the context of assessing the spatial distribution of ammonia sources for emission inventories. England was used as a test area to study the effects of the MAUP. Agricultural survey data at farm level (point data) were obtained under license and amalgamated to different areal units or zones: regular 1-km, 5-km, 10-km grids and parish level, before they were imported into the emission model. The results of using the survey data at different levels of amalgamation were assessed to estimate the effects of the MAUP on the spatial inventory. The analysis showed that the size and shape of aggregation zones applied to the farm-level agricultural statistics strongly affect the location of the emissions estimated by the model. If the zones are too small, this may result in false emission "hot spots", i.e., artificially high emission values that are in reality not confined to the zone to which they are allocated. Conversely, if the zones are too large, detail may be lost and emissions smoothed out, which may give a false impression of the spatial patterns and magnitude of emissions in those zones. The results of the study indicate that the MAUP has a significant effect on the location and local magnitude of emissions in spatial inventories where amalgamated, zonal data are used. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Spatial and space-time clustering of tuberculosis in Gurage Zone, Southern Ethiopia.

    PubMed

    Tadesse, Sebsibe; Enqueselassie, Fikre; Hagos, Seifu

    2018-01-01

    Spatial targeting is advocated as an effective method that contributes for achieving tuberculosis control in high-burden countries. However, there is a paucity of studies clarifying the spatial nature of the disease in these countries. This study aims to identify the location, size and risk of purely spatial and space-time clusters for high occurrence of tuberculosis in Gurage Zone, Southern Ethiopia during 2007 to 2016. A total of 15,805 patient data that were retrieved from unit TB registers were included in the final analyses. The spatial and space-time cluster analyses were performed using the global Moran's I, Getis-Ord [Formula: see text] and Kulldorff's scan statistics. Eleven purely spatial and three space-time clusters were detected (P <0.001).The clusters were concentrated in border areas of the Gurage Zone. There were considerable spatial variations in the risk of tuberculosis by year during the study period. This study showed that tuberculosis clusters were mainly concentrated at border areas of the Gurage Zone during the study period, suggesting that there has been sustained transmission of the disease within these locations. The findings may help intensify the implementation of tuberculosis control activities in these locations. Further study is warranted to explore the roles of various ecological factors on the observed spatial distribution of tuberculosis.

  5. Temporal and spatial mapping of hand, foot and mouth disease in Sarawak, Malaysia.

    PubMed

    Sham, Noraishah M; Krishnarajah, Isthrinayagy; Ibrahim, Noor Akma; Lye, Munn-Sann

    2014-05-01

    Hand, foot and mouth disease (HFMD) is endemic in Sarawak, Malaysia. In this study, a geographical information system (GIS) was used to investigate the relationship between the reported HFMD cases and the spatial patterns in 11 districts of Sarawak from 2006 to 2012. Within this 7-years period, the highest number of reported HFMD cases occurred in 2006, followed by 2012, 2008, 2009, 2007, 2010 and 2011, in descending order. However, while there was no significant distribution pattern or clustering in the first part of the study period (2006 to 2011) based on Moran's I statistic, spatial autocorrelation (P = 0.068) was observed in 2012.

  6. Evaluation of the Sensitivity of the Amazonian Diurnal Cycle to Convective Intensity in Reanalyses

    NASA Technical Reports Server (NTRS)

    Itterly, Kyle F.; Taylor, Patrick C.

    2016-01-01

    Model parameterizations of tropical deep convection are unable to reproduce the observed diurnal and spatial variability of convection in the Amazon, which contributes to climatological biases in the water cycle and energy budget. Convective intensity regimes are defined using percentiles of daily minimum 3-hourly averaged outgoing longwave radiation (OLR) from Clouds and the Earth's Radiant Energy System (CERES). This study compares the observed spatial variability of convective diurnal cycle statistics for each regime to MERRA-2 and ERA-Interim (ERA) reanalysis data sets. Composite diurnal cycle statistics are computed for daytime hours (06:00-21:00 local time) in the wet season (December-January-February). MERRA-2 matches observations more closely than ERA for domain averaged composite diurnal statistics-specifically precipitation. However, ERA reproduces mesoscale features of OLR and precipitation phase associated with topography and the propagation of the coastal squall line. Both reanalysis models are shown to underestimate extreme convection.

  7. A Method to Categorize 2-Dimensional Patterns Using Statistics of Spatial Organization.

    PubMed

    López-Sauceda, Juan; Rueda-Contreras, Mara D

    2017-01-01

    We developed a measurement framework of spatial organization to categorize 2-dimensional patterns from 2 multiscalar biological architectures. We propose that underlying shapes of biological entities can be approached using the statistical concept of degrees of freedom, defining it through expansion of area variability in a pattern. To help scope this suggestion, we developed a mathematical argument recognizing the deep foundations of area variability in a polygonal pattern (spatial heterogeneity). This measure uses a parameter called eutacticity . Our measuring platform of spatial heterogeneity can assign particular ranges of distribution of spatial areas for 2 biological architectures: ecological patterns of Namibia fairy circles and epithelial sheets. The spatial organizations of our 2 analyzed biological architectures are demarcated by being in a particular position among spatial order and disorder. We suggest that this theoretical platform can give us some insights about the nature of shapes in biological systems to understand organizational constraints.

  8. Spatiotemporal Analysis of the Ebola Hemorrhagic Fever in West Africa in 2014

    NASA Astrophysics Data System (ADS)

    Xu, M.; Cao, C. X.; Guo, H. F.

    2017-09-01

    Ebola hemorrhagic fever (EHF) is an acute hemorrhagic diseases caused by the Ebola virus, which is highly contagious. This paper aimed to explore the possible gathering area of EHF cases in West Africa in 2014, and identify endemic areas and their tendency by means of time-space analysis. We mapped distribution of EHF incidences and explored statistically significant space, time and space-time disease clusters. We utilized hotspot analysis to find the spatial clustering pattern on the basis of the actual outbreak cases. spatial-temporal cluster analysis is used to analyze the spatial or temporal distribution of agglomeration disease, examine whether its distribution is statistically significant. Local clusters were investigated using Kulldorff's scan statistic approach. The result reveals that the epidemic mainly gathered in the western part of Africa near north Atlantic with obvious regional distribution. For the current epidemic, we have found areas in high incidence of EVD by means of spatial cluster analysis.

  9. Thermodynamic Model of Spatial Memory

    NASA Astrophysics Data System (ADS)

    Kaufman, Miron; Allen, P.

    1998-03-01

    We develop and test a thermodynamic model of spatial memory. Our model is an application of statistical thermodynamics to cognitive science. It is related to applications of the statistical mechanics framework in parallel distributed processes research. Our macroscopic model allows us to evaluate an entropy associated with spatial memory tasks. We find that older adults exhibit higher levels of entropy than younger adults. Thurstone's Law of Categorical Judgment, according to which the discriminal processes along the psychological continuum produced by presentations of a single stimulus are normally distributed, is explained by using a Hooke spring model of spatial memory. We have also analyzed a nonlinear modification of the ideal spring model of spatial memory. This work is supported by NIH/NIA grant AG09282-06.

  10. Spatial variability of turbulent fluxes in the roughness sublayer of an even-aged pine forest

    USGS Publications Warehouse

    Katul, G.; Hsieh, C.-I.; Bowling, D.; Clark, K.; Shurpali, N.; Turnipseed, A.; Albertson, J.; Tu, K.; Hollinger, D.; Evans, B. M.; Offerle, B.; Anderson, D.; Ellsworth, D.; Vogel, C.; Oren, R.

    1999-01-01

    The spatial variability of turbulent flow statistics in the roughness sublayer (RSL) of a uniform even-aged 14 m (= h) tall loblolly pine forest was investigated experimentally. Using seven existing walkup towers at this stand, high frequency velocity, temperature, water vapour and carbon dioxide concentrations were measured at 15.5 m above the ground surface from October 6 to 10 in 1997. These seven towers were separated by at least 100 m from each other. The objective of this study was to examine whether single tower turbulence statistics measurements represent the flow properties of RSL turbulence above a uniform even-aged managed loblolly pine forest as a best-case scenario for natural forested ecosystems. From the intensive space-time series measurements, it was demonstrated that standard deviations of longitudinal and vertical velocities (??(u), ??(w)) and temperature (??(T)) are more planar homogeneous than their vertical flux of momentum (u(*)2) and sensible heat (H) counterparts. Also, the measured H is more horizontally homogeneous when compared to fluxes of other scalar entities such as CO2 and water vapour. While the spatial variability in fluxes was significant (> 15%), this unique data set confirmed that single tower measurements represent the 'canonical' structure of single-point RSL turbulence statistics, especially flux-variance relationships. Implications to extending the 'moving-equilibrium' hypothesis for RSL flows are discussed. The spatial variability in all RSL flow variables was not constant in time and varied strongly with spatially averaged friction velocity u(*), especially when u(*) was small. It is shown that flow properties derived from two-point temporal statistics such as correlation functions are more sensitive to local variability in leaf area density when compared to single point flow statistics. Specifically, that the local relationship between the reciprocal of the vertical velocity integral time scale (I(w)) and the arrival frequency of organized structures (u??/h) predicted from a mixing-layer theory exhibited dependence on the local leaf area index. The broader implications of these findings to the measurement and modelling of RSL flows are also discussed.

  11. Dose reduction with adaptive statistical iterative reconstruction for paediatric CT: phantom study and clinical experience on chest and abdomen CT.

    PubMed

    Gay, F; Pavia, Y; Pierrat, N; Lasalle, S; Neuenschwander, S; Brisse, H J

    2014-01-01

    To assess the benefit and limits of iterative reconstruction of paediatric chest and abdominal computed tomography (CT). The study compared adaptive statistical iterative reconstruction (ASIR) with filtered back projection (FBP) on 64-channel MDCT. A phantom study was first performed using variable tube potential, tube current and ASIR settings. The assessed image quality indices were the signal-to-noise ratio (SNR), the noise power spectrum, low contrast detectability (LCD) and spatial resolution. A clinical retrospective study of 26 children (M:F = 14/12, mean age: 4 years, range: 1-9 years) was secondarily performed allowing comparison of 18 chest and 14 abdominal CT pairs, one with a routine CT dose and FBP reconstruction, and the other with 30 % lower dose and 40 % ASIR reconstruction. Two radiologists independently compared the images for overall image quality, noise, sharpness and artefacts, and measured image noise. The phantom study demonstrated a significant increase in SNR without impairment of the LCD or spatial resolution, except for tube current values below 30-50 mA. On clinical images, no significant difference was observed between FBP and reduced dose ASIR images. Iterative reconstruction allows at least 30 % dose reduction in paediatric chest and abdominal CT, without impairment of image quality. • Iterative reconstruction helps lower radiation exposure levels in children undergoing CT. • Adaptive statistical iterative reconstruction (ASIR) significantly increases SNR without impairing spatial resolution. • For abdomen and chest CT, ASIR allows at least a 30 % dose reduction.

  12. Unilateral spatial neglect in the acute phase of ischemic stroke can predict long-term disability and functional capacity.

    PubMed

    Luvizutto, Gustavo José; Moliga, Augusta Fabiana; Rizzatti, Gabriela Rizzo Soares; Fogaroli, Marcelo Ortolani; Moura Neto, Eduardo de; Nunes, Hélio Rubens de Carvalho; Resende, Luiz Antônio de Lima; Bazan, Rodrigo

    2018-05-21

    The aim of this study was to assess the relationship between the degree of unilateral spatial neglect during the acute phase of stroke and long-term functional independence. This was a prospective study of right ischemic stroke patients in which the independent variable was the degree of spatial neglect and the outcome that was measured was functional independence. The potential confounding factors included sex, age, stroke severity, topography of the lesion, risk factors, glycemia and the treatment received. Unilateral spatial neglect was measured using the line cancellation test, the star cancellation test and the line bisection test within 48 hours of the onset of symptoms. Functional independence was measured using the modified Rankin and Barthel scales at 90 days after discharge. The relationship between unilateral spatial neglect and functional independence was analyzed using multiple logistic regression that was corrected for confounding factors. We studied 60 patients with a median age of 68 (34-89) years, 52% of whom were male and 74% of whom were Caucasian. The risk for moderate to severe disability increased with increasing star cancellation test scores (OR=1.14 [1.03-1.26], p=0.01) corrected for the stroke severity, which was a confounding factor that had a statistically positive association with disability (OR=1.63 [1.13-2.65], p=0.01). The best chance of functional independence decreased with increasing star cancellation test scores (OR=0.86 [0.78-0.96], p=0.006) corrected for the stroke severity, which was a confounding factor that had a statistically negative association with independence (OR=0.66 [0.48-0.92], p=0.017). The severity of unilateral spatial neglect in acute stroke worsens the degree of long-term disability and functional independence.

  13. Relationships between species feeding traits and environmental conditions in fish communities: a three-matrix approach.

    PubMed

    Brind'Amour, Anik; Boisclair, Daniel; Dray, Stéphane; Legendre, Pierre

    2011-03-01

    Understanding the relationships between species biological traits and the environment is crucial to predicting the effect of habitat perturbations on fish communities. It is also an essential step in the assessment of the functional diversity. Using two complementary three-matrix approaches (fourth-corner and RLQ analyses), we tested the hypothesis that feeding-oriented traits determine the spatial distributions of littoral fish species by assessing the relationship between fish spatial distributions, fish species traits, and habitat characteristics in two Laurentian Shield lakes. Significant associations between the feeding-oriented traits and the environmental characteristics suggested that fish communities in small lakes (displaying low species richness) can be spatially structured. Three groups of traits, mainly categorized by the species spatial and temporal feeding activity, were identified. The water column may be divided in two sections, each of them corresponding to a group of traits related to the vertical distribution of the prey coupled with the position of the mouth. Lake areas of low structural complexity were inhabited by functional assemblages dominated by surface feeders while structurally more complex areas were occupied by mid-water and benthic feeders. A third group referring to the time of feeding activity was observed. Our work could serve as a guideline study to evaluate species traits x environment associations at multiple spatial scales. Our results indicate that three-matrix statistical approaches are powerful tools that can be used to study such relationships. These recent statistical approaches open up new research directions such as the study of spatially based biological functions in lakes. They also provide new analytical tools for determining, for example, the potential size of freshwater protected areas.

  14. The relative effects of habitat loss and fragmentation on population genetic variation in the red-cockaded woodpecker (Picoides borealis).

    PubMed

    Bruggeman, Douglas J; Wiegand, Thorsten; Fernández, Néstor

    2010-09-01

    The relative influence of habitat loss, fragmentation and matrix heterogeneity on the viability of populations is a critical area of conservation research that remains unresolved. Using simulation modelling, we provide an analysis of the influence both patch size and patch isolation have on abundance, effective population size (N(e)) and F(ST). An individual-based, spatially explicit population model based on 15 years of field work on the red-cockaded woodpecker (Picoides borealis) was applied to different landscape configurations. The variation in landscape patterns was summarized using spatial statistics based on O-ring statistics. By regressing demographic and genetics attributes that emerged across the landscape treatments against proportion of total habitat and O-ring statistics, we show that O-ring statistics provide an explicit link between population processes, habitat area, and critical thresholds of fragmentation that affect those processes. Spatial distances among land cover classes that affect biological processes translated into critical scales at which the measures of landscape structure correlated best with genetic indices. Therefore our study infers pattern from process, which contrasts with past studies of landscape genetics. We found that population genetic structure was more strongly affected by fragmentation than population size, which suggests that examining only population size may limit recognition of fragmentation effects that erode genetic variation. If effective population size is used to set recovery goals for endangered species, then habitat fragmentation effects may be sufficiently strong to prevent evaluation of recovery based on the ratio of census:effective population size alone.

  15. Spatial variations in the incidence of breast cancer and potential risks associated with soil dioxin contamination in Midland, Saginaw, and Bay Counties, Michigan, USA

    PubMed Central

    Dai, Dajun; Oyana, Tonny J

    2008-01-01

    Background High levels of dioxins in soil and higher-than-average body burdens of dioxins in local residents have been found in the city of Midland and the Tittabawassee River floodplain in Michigan. The objective of this study is threefold: (1) to evaluate dioxin levels in soils; (2) to evaluate the spatial variations in breast cancer incidence in Midland, Saginaw, and Bay Counties in Michigan; (3) to evaluate whether breast cancer rates are spatially associated with the dioxin contamination areas. Methods We acquired 532 published soil dioxin data samples collected from 1995 to 2003 and data pertaining to female breast cancer cases (n = 4,604) at ZIP code level in Midland, Saginaw, and Bay Counties for years 1985 through 2002. Descriptive statistics and self-organizing map algorithm were used to evaluate dioxin levels in soils. Geographic information systems techniques, the Kulldorff's spatial and space-time scan statistics, and genetic algorithms were used to explore the variation in the incidence of breast cancer in space and space-time. Odds ratio and their corresponding 95% confidence intervals, with adjustment for age, were used to investigate a spatial association between breast cancer incidence and soil dioxin contamination. Results High levels of dioxin in soils were observed in the city of Midland and the Tittabawassee River 100-year floodplain. After adjusting for age, we observed high breast cancer incidence rates and detected the presence of spatial clusters in the city of Midland, the confluence area of the Tittabawassee, and Saginaw Rivers. After accounting for spatiotemporal variations, we observed a spatial cluster of breast cancer incidence in Midland between 1985 and 1993. The odds ratio further suggests a statistically significant (α = 0.05) increased breast cancer rate as women get older, and a higher disease burden in Midland and the surrounding areas in close proximity to the dioxin contaminated areas. Conclusion These findings suggest that increased breast cancer incidences are spatially associated with soil dioxin contamination. Aging is a substantial factor in the development of breast cancer. Findings can be used for heightened surveillance and education, as well as formulating new study hypotheses for further research. PMID:18939976

  16. Comparative analysis of ferroelectric domain statistics via nonlinear diffraction in random nonlinear materials.

    PubMed

    Wang, B; Switowski, K; Cojocaru, C; Roppo, V; Sheng, Y; Scalora, M; Kisielewski, J; Pawlak, D; Vilaseca, R; Akhouayri, H; Krolikowski, W; Trull, J

    2018-01-22

    We present an indirect, non-destructive optical method for domain statistic characterization in disordered nonlinear crystals having homogeneous refractive index and spatially random distribution of ferroelectric domains. This method relies on the analysis of the wave-dependent spatial distribution of the second harmonic, in the plane perpendicular to the optical axis in combination with numerical simulations. We apply this technique to the characterization of two different media, Calcium Barium Niobate and Strontium Barium Niobate, with drastically different statistical distributions of ferroelectric domains.

  17. Shallow plumbing systems inferred from spatial analysis of pockmark arrays

    NASA Astrophysics Data System (ADS)

    Maia, A.; Cartwright, J. A.; Andersen, E.

    2016-12-01

    This study describes and analyses an extraordinary array of pockmarks at the modern seabed of the Lower Congo Basin (offshore Angola), in order to understand the fluid migration routes and shallow plumbing system of the area. The 3D seismic visualization of feeding conduits (pipes) allowed the identification of the source interval for the fluids expelled during pockmark formation. Spatial statistics are used to show the relationship between the underlying (polarised) polygonal fault (PPFs) patterns and seabed pockmarks distributions. Our results show PPFs control the linear arrangement of pockmarks and feeder pipes along fault strike, but faults do not act as conduits. Spatial statistics also revealed pockmark occurrence is not considered to be random, especially at short distances to nearest neighbours (<200m) where anti-clustering distributions suggest the presence of an exclusion zone around each pockmark in which no other pockmark will form. The results of this study are relevant for the understanding of shallow fluid plumbing systems in offshore settings, with implications on our current knowledge of overall fluid flow systems in hydrocarbon-rich continental margins.

  18. The Use of Spatial Analysis to Estimate the Prevalence of Canine Leishmaniasis in Greece and Cyprus to Predict Its Future Variation and Relate It to Human Disease

    PubMed Central

    Sifaki-Pistola, Dimitra; Ntais, Pantelis; Christodoulou, Vasiliki; Mazeris, Apostolos; Antoniou, Maria

    2014-01-01

    Climatic, environmental, and demographic changes favor the emergence of neglected vector-borne diseases like leishmaniasis, which is spreading through dogs, the principle host of the protozoan Leishmania infantum. Surveillance of the disease in dogs is important, because the number of infected animals in an area determines the local risk of human infection. However, dog epidemiological studies are costly. Our aim was to evaluate the Emerging Diseases in a Changing European Environment (EDEN) veterinary questionnaire as a cost-effective tool in providing reliable, spatially explicit indicators of canine leishmaniasis prevalence. For this purpose, the data from the questionnaire were compared with data from two epidemiological studies on leishmaniasis carried out in Greece and Cyprus at the same time using statistical methods and spatial statistics. Although the questionnaire data cannot provide a quantitative measure of leishmaniasis in an area, it indicates the dynamic of the disease; information is obtained in a short period of time at low cost. PMID:24957543

  19. Analysis of spatial and temporal rainfall trends in Sicily during the 1921-2012 period

    NASA Astrophysics Data System (ADS)

    Liuzzo, Lorena; Bono, Enrico; Sammartano, Vincenzo; Freni, Gabriele

    2016-10-01

    Precipitation patterns worldwide are changing under the effects of global warming. The impacts of these changes could dramatically affect the hydrological cycle and, consequently, the availability of water resources. In order to improve the quality and reliability of forecasting models, it is important to analyse historical precipitation data to account for possible future changes. For these reasons, a large number of studies have recently been carried out with the aim of investigating the existence of statistically significant trends in precipitation at different spatial and temporal scales. In this paper, the existence of statistically significant trends in rainfall from observational datasets, which were measured by 245 rain gauges over Sicily (Italy) during the 1921-2012 period, was investigated. Annual, seasonal and monthly time series were examined using the Mann-Kendall non-parametric statistical test to detect statistically significant trends at local and regional scales, and their significance levels were assessed. Prior to the application of the Mann-Kendall test, the historical dataset was completed using a geostatistical spatial interpolation technique, the residual ordinary kriging, and then processed to remove the influence of serial correlation on the test results, applying the procedure of trend-free pre-whitening. Once the trends at each site were identified, the spatial patterns of the detected trends were examined using spatial interpolation techniques. Furthermore, focusing on the 30 years from 1981 to 2012, the trend analysis was repeated with the aim of detecting short-term trends or possible changes in the direction of the trends. Finally, the effect of climate change on the seasonal distribution of rainfall during the year was investigated by analysing the trend in the precipitation concentration index. The application of the Mann-Kendall test to the rainfall data provided evidence of a general decrease in precipitation in Sicily during the 1921-2012 period. Downward trends frequently occurred during the autumn and winter months. However, an increase in total annual precipitation was detected during the period from 1981 to 2012.

  20. Statistical physics of the spatial Prisoner's Dilemma with memory-aware agents

    NASA Astrophysics Data System (ADS)

    Javarone, Marco Alberto

    2016-02-01

    We introduce an analytical model to study the evolution towards equilibrium in spatial games, with `memory-aware' agents, i.e., agents that accumulate their payoff over time. In particular, we focus our attention on the spatial Prisoner's Dilemma, as it constitutes an emblematic example of a game whose Nash equilibrium is defection. Previous investigations showed that, under opportune conditions, it is possible to reach, in the evolutionary Prisoner's Dilemma, an equilibrium of cooperation. Notably, it seems that mechanisms like motion may lead a population to become cooperative. In the proposed model, we map agents to particles of a gas so that, on varying the system temperature, they randomly move. In doing so, we are able to identify a relation between the temperature and the final equilibrium of the population, explaining how it is possible to break the classical Nash equilibrium in the spatial Prisoner's Dilemma when considering agents able to increase their payoff over time. Moreover, we introduce a formalism to study order-disorder phase transitions in these dynamics. As result, we highlight that the proposed model allows to explain analytically how a population, whose interactions are based on the Prisoner's Dilemma, can reach an equilibrium far from the expected one; opening also the way to define a direct link between evolutionary game theory and statistical physics.

  1. A statistical model for monitoring shell disease in inshore lobster fisheries: A case study in Long Island Sound

    PubMed Central

    Chen, Yong

    2017-01-01

    The expansion of shell disease is an emerging threat to the inshore lobster fisheries in the northeastern United States. The development of models to improve the efficiency and precision of existing monitoring programs is advocated as an important step in mitigating its harmful effects. The objective of this study is to construct a statistical model that could enhance the existing monitoring effort through (1) identification of potential disease-associated abiotic and biotic factors, and (2) estimation of spatial variation in disease prevalence in the lobster fishery. A delta-generalized additive modeling (GAM) approach was applied using bottom trawl survey data collected from 2001–2013 in Long Island Sound, a tidal estuary between New York and Connecticut states. Spatial distribution of shell disease prevalence was found to be strongly influenced by the interactive effects of latitude and longitude, possibly indicative of a geographic origin of shell disease. Bottom temperature, bottom salinity, and depth were also important factors affecting the spatial variability in shell disease prevalence. The delta-GAM projected high disease prevalence in non-surveyed locations. Additionally, a potential spatial discrepancy was found between modeled disease hotspots and survey-based gravity centers of disease prevalence. This study provides a modeling framework to enhance research, monitoring and management of emerging and continuing marine disease threats. PMID:28196150

  2. Extracting temporal and spatial information from remotely sensed data for mapping wildlife habitat: Tucson

    USGS Publications Warehouse

    Wallace, Cynthia S.A.; Advised by Marsh, Stuart E.

    2002-01-01

    The research accomplished in this dissertation used both mathematical and statistical techniques to extract and evaluate measures of landscape temporal dynamics and spatial structure from remotely sensed data for the purpose of mapping wildlife habitat. By coupling the landscape measures gleaned from the remotely sensed data with various sets of animal sightings and population data, effective models of habitat preference were created.Measures of temporal dynamics of vegetation greenness as measured by National Oceanographic and Atmospheric Administration’s Advanced Very High Resolution Radiometer (AVHRR) satellite were used to effectively characterize and map season specific habitat of the Sonoran pronghorn antelope, as well as produce preliminary models of potential yellow-billed cuckoo habitat in Arizona. Various measures that capture different aspects of the temporal dynamics of the landscape were derived from AVHRR Normalized Difference Vegetation Index composite data using three main classes of calculations: basic statistics, standardized principal components analysis, and Fourier analysis. Pronghorn habitat models based on the AVHRR measures correspond visually and statistically to GIS-based models produced using data that represent detailed knowledge of ground-condition.Measures of temporal dynamics also revealed statistically significant correlations with annual estimates of elk population in selected Arizona Game Management Units, suggesting elk respond to regional environmental changes that can be measured using satellite data. Such relationships, once verified and established, can be used to help indirectly monitor the population.Measures of landscape spatial structure derived from IKONOS high spatial resolution (1-m) satellite data using geostatistics effectively map details of Sonoran pronghorn antelope habitat. Local estimates of the nugget, sill, and range variogram parameters calculated within 25 x 25-meter image windows describe the spatial autocorrelation of the image, permitting classification of all pixels into coherent units whose signature graphs exhibit a classic variogram shape. The variogram parameters captured in these signatures have been shown in previous studies to discriminate between different species-specific vegetation associations.The synoptic view of the landscape provided by satellite data can inform resource management efforts. The ability to characterize the spatial structure and temporal dynamics of habitat using repeatable remote sensing data allows closer monitoring of the relationship between a species and its landscape.

  3. Making Spatial Statistics Service Accessible On Cloud Platform

    NASA Astrophysics Data System (ADS)

    Mu, X.; Wu, J.; Li, T.; Zhong, Y.; Gao, X.

    2014-04-01

    Web service can bring together applications running on diverse platforms, users can access and share various data, information and models more effectively and conveniently from certain web service platform. Cloud computing emerges as a paradigm of Internet computing in which dynamical, scalable and often virtualized resources are provided as services. With the rampant growth of massive data and restriction of net, traditional web services platforms have some prominent problems existing in development such as calculation efficiency, maintenance cost and data security. In this paper, we offer a spatial statistics service based on Microsoft cloud. An experiment was carried out to evaluate the availability and efficiency of this service. The results show that this spatial statistics service is accessible for the public conveniently with high processing efficiency.

  4. Exploring the Mechanisms of Ecological Land Change Based on the Spatial Autoregressive Model: A Case Study of the Poyang Lake Eco-Economic Zone, China

    PubMed Central

    Xie, Hualin; Liu, Zhifei; Wang, Peng; Liu, Guiying; Lu, Fucai

    2013-01-01

    Ecological land is one of the key resources and conditions for the survival of humans because it can provide ecosystem services and is particularly important to public health and safety. It is extremely valuable for effective ecological management to explore the evolution mechanisms of ecological land. Based on spatial statistical analyses, we explored the spatial disparities and primary potential drivers of ecological land change in the Poyang Lake Eco-economic Zone of China. The results demonstrated that the global Moran’s I value is 0.1646 during the 1990 to 2005 time period and indicated significant positive spatial correlation (p < 0.05). The results also imply that the clustering trend of ecological land changes weakened in the study area. Some potential driving forces were identified by applying the spatial autoregressive model in this study. The results demonstrated that the higher economic development level and industrialization rate were the main drivers for the faster change of ecological land in the study area. This study also tested the superiority of the spatial autoregressive model to study the mechanisms of ecological land change by comparing it with the traditional linear regressive model. PMID:24384778

  5. Integration of Spatial and Social Network Analysis in Disease Transmission Studies.

    PubMed

    Emch, Michael; Root, Elisabeth D; Giebultowicz, Sophia; Ali, Mohammad; Perez-Heydrich, Carolina; Yunus, Mohammad

    2012-01-01

    This study presents a case study of how social network and spatial analytical methods can be used simultaneously for disease transmission modeling. The paper first reviews strategies employed in previous studies and then offers the example of transmission of two bacterial diarrheal diseases in rural Bangladesh. The goal is to understand how diseases vary socially above and beyond the effects of the local neighborhood context. Patterns of cholera and shigellosis incidence are analyzed in space and within kinship-based social networks in Matlab, Bangladesh. Data include a spatially referenced longitudinal demographic database which consists of approximately 200,000 people and laboratory-confirmed cholera and shigellosis cases from 1983 to 2003. Matrices are created of kinship ties between households using a complete network design and distance matrices are also created to model spatial relationships. Moran's I statistics are calculated to measure clustering within both social and spatial matrices. Combined spatial effects-spatial disturbance models are built to simultaneously analyze spatial and social effects while controlling for local environmental context. Results indicate that cholera and shigellosis always clusters in space and only sometimes within social networks. This suggests that the local environment is most important for understanding transmission of both diseases however kinship-based social networks also influence their transmission. Simultaneous spatial and social network analysis can help us better understand disease transmission and this study has offered several strategies on how.

  6. Integration of Spatial and Social Network Analysis in Disease Transmission Studies

    PubMed Central

    Root, Elisabeth D; Giebultowicz, Sophia; Ali, Mohammad; Perez-Heydrich, Carolina; Yunus, Mohammad

    2013-01-01

    This study presents a case study of how social network and spatial analytical methods can be used simultaneously for disease transmission modeling. The paper first reviews strategies employed in previous studies and then offers the example of transmission of two bacterial diarrheal diseases in rural Bangladesh. The goal is to understand how diseases vary socially above and beyond the effects of the local neighborhood context. Patterns of cholera and shigellosis incidence are analyzed in space and within kinship-based social networks in Matlab, Bangladesh. Data include a spatially referenced longitudinal demographic database which consists of approximately 200,000 people and laboratory-confirmed cholera and shigellosis cases from 1983 to 2003. Matrices are created of kinship ties between households using a complete network design and distance matrices are also created to model spatial relationships. Moran's I statistics are calculated to measure clustering within both social and spatial matrices. Combined spatial effects-spatial disturbance models are built to simultaneously analyze spatial and social effects while controlling for local environmental context. Results indicate that cholera and shigellosis always clusters in space and only sometimes within social networks. This suggests that the local environment is most important for understanding transmission of both diseases however kinship-based social networks also influence their transmission. Simultaneous spatial and social network analysis can help us better understand disease transmission and this study has offered several strategies on how. PMID:24163443

  7. A worldwide analysis of the impact of forest cover change on annual runoff across multiple spatial scales

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Liu, S.

    2017-12-01

    Despite extensive studies on hydrological responses to forest cover change in small watersheds, the hydrological responses to forest change and associated mechanisms across multiple spatial scales have not been fully understood. This review thus examined about 312 watersheds worldwide to provide a generalized framework to evaluate hydrological responses to forest cover change and to identify the contribution of spatial scale, climate, forest type and hydrological regime in determining the intensity of forest change related hydrological responses in small (<1000 km2) and large watersheds (≥1000 km2). Key findings include: 1) the increase in annual runoff associated with forest cover loss is statistically significant at multiple spatial scales whereas the effect of forest cover gain is statistically inconsistent; 2) the sensitivity of annual runoff to forest cover change tends to attenuate as watershed size increases only in large watersheds; 3) annual runoff is more sensitive to forest cover change in water-limited watersheds than in energy-limited watersheds across all spatial scales; and 4) small mixed forest-dominated watersheds or large snow-dominated watersheds are more hydrologically resilient to forest cover change. These findings improve the understanding of hydrological response to forest cover change at different spatial scales and provide a scientific underpinning to future watershed management in the context of climate change and increasing anthropogenic disturbances.

  8. A GIS-based spatial correlation analysis for ambient air pollution and AECOPD hospitalizations in Jinan, China.

    PubMed

    Wang, Wenqiao; Ying, Yangyang; Wu, Quanyuan; Zhang, Haiping; Ma, Dedong; Xiao, Wei

    2015-03-01

    Acute exacerbations of COPD (AECOPD) are important events during disease procedure. AECOPD have negative effect on patients' quality of life, symptoms and lung function, and result in high socioeconomic costs. Though previous studies have demonstrated the significant association between outdoor air pollution and AECOPD hospitalizations, little is known about the spatial relationship utilized a spatial analyzing technique- Geographical Information System (GIS). Using GIS to investigate the spatial association between ambient air pollution and AECOPD hospitalizations in Jinan City, 2009. 414 AECOPD hospitalization cases in Jinan, 2009 were enrolled in our analysis. Monthly concentrations of five monitored air pollutants (NO2, SO2, PM10, O3, CO) during January 2009-December 2009 were provided by Environmental Protection Agency of Shandong Province. Each individual was geocoded in ArcGIS10.0 software. The spatial distribution of five pollutants and the temporal-spatial specific air pollutants exposure level for each individual was estimated by ordinary Kriging model. Spatial autocorrelation (Global Moran's I) was employed to explore the spatial association between ambient air pollutants and AECOPD hospitalizations. A generalized linear model (GLM) using a Poisson distribution with log-link function was used to construct a core model. At residence, concentrations of SO2, PM10, NO2, CO, O3 and AECOPD hospitalization cases showed statistical significant spatially clustered. The Z-score of SO2, PM10, CO, O3, NO2 at residence is 15.88, 13.93, 12.60, 4.02, 2.44 respectively, while at workplace, concentrations of PM10, SO2, O3, CO and AECOPD hospitalization cases showed statistical significant spatially clustered. The Z-score of PM10, SO2, O3, CO at workplace is 11.39, 8.07, 6.10, and 5.08 respectively. After adjusting for potential confounders in the model, only the PM10 concentrations at workplace showed statistical significance, with a 10 μg/m(3) increase of PM10 at workplace associated with a 7% (95%CI: [3.3%, 10%]) increase of hospitalizations due to AECOPD. Ambient air pollution is correlated with AECOPD hospitalizations spatially. A 10 μg/m(3) increase of PM10 at workplace was associated with a 7% (95%CI: [3.3%, 10%]) increase of hospitalizations due to AECOPD in Jinan, 2009. As a spatial data processing tool, GIS has novel and great potential on air pollutants exposure assessment and spatial analysis in AECOPD research. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. An Investigation of the Relationship Between fMRI and ERP Source Localized Measurements of Brain Activity during Face Processing

    PubMed Central

    Richards, Todd; Webb, Sara Jane; Murias, Michael; Merkle, Kristen; Kleinhans, Natalia M.; Johnson, L. Clark; Poliakov, Andrew; Aylward, Elizabeth; Dawson, Geraldine

    2013-01-01

    Brain activity patterns during face processing have been extensively explored with functional magnetic resonance imaging (fMRI) and event-related potentials (ERPs). ERP source localization adds a spatial dimension to the ERP time series recordings, which allows for a more direct comparison and integration with fMRI findings. The goals for this study were (1) to compare the spatial descriptions of neuronal activity during face processing obtained with fMRI and ERP source localization using low-resolution electro-magnetic tomography (LORETA), and (2) to use the combined information from source localization and fMRI to explore how the temporal sequence of brain activity during face processing is summarized in fMRI activation maps. fMRI and high-density ERP data were acquired in separate sessions for 17 healthy adult males for a face and object processing task. LORETA statistical maps for the comparison of viewing faces and viewing houses were coregistered and compared to fMRI statistical maps for the same conditions. The spatial locations of face processing-sensitive activity measured by fMRI and LORETA were found to overlap in a number of areas including the bilateral fusiform gyri, the right superior, middle and inferior temporal gyri, and the bilateral precuneus. Both the fMRI and LORETA solutions additionally demon-strated activity in regions that did not overlap. fMRI and LORETA statistical maps of face processing-sensitive brain activity were found to converge spatially primarily at LORETA solution latencies that were within 18 ms of the N170 latency. The combination of data from these techniques suggested that electrical brain activity at the latency of the N170 is highly represented in fMRI statistical maps. PMID:19322649

  10. Calibrating MODIS aerosol optical depth for predicting daily PM2.5 concentrations via statistical downscaling

    PubMed Central

    Chang, Howard H.; Hu, Xuefei; Liu, Yang

    2014-01-01

    There has been a growing interest in the use of satellite-retrieved aerosol optical depth (AOD) to estimate ambient concentrations of PM2.5 (particulate matter <2.5 μm in aerodynamic diameter). With their broad spatial coverage, satellite data can increase the spatial–temporal availability of air quality data beyond ground monitoring measurements and potentially improve exposure assessment for population-based health studies. This paper describes a statistical downscaling approach that brings together (1) recent advances in PM2.5 land use regression models utilizing AOD and (2) statistical data fusion techniques for combining air quality data sets that have different spatial resolutions. Statistical downscaling assumes the associations between AOD and PM2.5 concentrations to be spatially and temporally dependent and offers two key advantages. First, it enables us to use gridded AOD data to predict PM2.5 concentrations at spatial point locations. Second, the unified hierarchical framework provides straightforward uncertainty quantification in the predicted PM2.5 concentrations. The proposed methodology is applied to a data set of daily AOD values in southeastern United States during the period 2003–2005. Via cross-validation experiments, our model had an out-of-sample prediction R2 of 0.78 and a root mean-squared error (RMSE) of 3.61 μg/m3 between observed and predicted daily PM2.5 concentrations. This corresponds to a 10% decrease in RMSE compared with the same land use regression model without AOD as a predictor. Prediction performances of spatial–temporal interpolations to locations and on days without monitoring PM2.5 measurements were also examined. PMID:24368510

  11. Spatial and Alignment Analyses for a field of Small Volcanic Vents South of Pavonis Mons Mars

    NASA Technical Reports Server (NTRS)

    Bleacher, J. E.; Glaze, L. S.; Greeley, R.; Hauber, E.; Baloga, S. M.; Sakimoto, S. E. H.; Williams, D. A.; Glotch, T. D.

    2008-01-01

    The Tharsis province of Mars displays a variety of small volcanic vent (10s krn in diameter) morphologies. These features were identified in Mariner and Viking images [1-4], and Mars Orbiter Laser Altimeter (MOLA) data show them to be more abundant than originally observed [5,6]. Recent studies are classifying their diverse morphologies [7-9]. Building on this work, we are mapping the location of small volcanic vents (small-vents) in the Tharsis province using MOLA, Thermal Emission Imaging System, and High Resolution Stereo Camera data [10]. Here we report on a preliminary study of the spatial and alignment relationships between small-vents south of Pavonis Mons, as determined by nearest neighbor and two-point azimuth statistical analyses. Terrestrial monogenetic volcanic fields display four fundamental characteristics: 1) recurrence rates of eruptions,2 ) vent abundance, 3) vent distribution, and 4) tectonic relationships [11]. While understanding recurrence rates typically requires field measurements, insight into vent abundance, distribution, and tectonic relationships can be established by mapping of remotely sensed data, and subsequent application of spatial statistical studies [11,12], the goal of which is to link the distribution of vents to causal processes.

  12. Analyzing the equilibrium states of a quasi-neutral spatially inhomogeneous system of charges above a liquid dielectric film based on the first principles of quantum statistics

    NASA Astrophysics Data System (ADS)

    Lytvynenko, D. M.; Slyusarenko, Yu V.

    2017-08-01

    A theory of quasi-neutral equilibrium states of charges above a liquid dielectric surface is developed. This theory is based on the first principles of quantum statistics for systems comprising many identical particles. The proposed approach involves applying the variational principle, modified for the considered systems, and the Thomas-Fermi model. In the terms of the developed theory self-consistency equations are obtained. These equations provide the relation between the main parameters describing the system: the potential of the static electric field, the distribution function of charges and the surface profile of the liquid dielectric. The equations are used to study the phase transition in the system to a spatially periodic state. The proposed method can be applied in analyzing the properties of the phase transition in the system in relation to the spatially periodic states of wave type. Using the analytical and numerical methods, we perform a detailed study of the dependence of the critical parameters of such a phase transition on the thickness of the liquid dielectric film. Some stability criteria for the new asymmetric phase of the studied system are discussed.

  13. Assessment of six dissimilarity metrics for climate analogues

    NASA Astrophysics Data System (ADS)

    Grenier, Patrick; Parent, Annie-Claude; Huard, David; Anctil, François; Chaumont, Diane

    2013-04-01

    Spatial analogue techniques consist in identifying locations whose recent-past climate is similar in some aspects to the future climate anticipated at a reference location. When identifying analogues, one key step is the quantification of the dissimilarity between two climates separated in time and space, which involves the choice of a metric. In this communication, spatial analogues and their usefulness are briefly discussed. Next, six metrics are presented (the standardized Euclidean distance, the Kolmogorov-Smirnov statistic, the nearest-neighbor distance, the Zech-Aslan energy statistic, the Friedman-Rafsky runs statistic and the Kullback-Leibler divergence), along with a set of criteria used for their assessment. The related case study involves the use of numerical simulations performed with the Canadian Regional Climate Model (CRCM-v4.2.3), from which three annual indicators (total precipitation, heating degree-days and cooling degree-days) are calculated over 30-year periods (1971-2000 and 2041-2070). Results indicate that the six metrics identify comparable analogue regions at a relatively large scale, but best analogues may differ substantially. For best analogues, it is also shown that the uncertainty stemming from the metric choice does generally not exceed that stemming from the simulation or model choice. A synthesis of the advantages and drawbacks of each metric is finally presented, in which the Zech-Aslan energy statistic stands out as the most recommended metric for analogue studies, whereas the Friedman-Rafsky runs statistic is the least recommended, based on this case study.

  14. Genotyping and spatial analysis of pulmonary tuberculosis and diabetes cases in the state of Veracruz, Mexico.

    PubMed

    Blanco-Guillot, Francles; Castañeda-Cediel, M Lucía; Cruz-Hervert, Pablo; Ferreyra-Reyes, Leticia; Delgado-Sánchez, Guadalupe; Ferreira-Guerrero, Elizabeth; Montero-Campos, Rogelio; Bobadilla-Del-Valle, Miriam; Martínez-Gamboa, Rosa Areli; Torres-González, Pedro; Téllez-Vazquez, Norma; Canizales-Quintero, Sergio; Yanes-Lane, Mercedes; Mongua-Rodríguez, Norma; Ponce-de-León, Alfredo; Sifuentes-Osornio, José; García-García, Lourdes

    2018-01-01

    Genotyping and georeferencing in tuberculosis (TB) have been used to characterize the distribution of the disease and occurrence of transmission within specific groups and communities. The objective of this study was to test the hypothesis that diabetes mellitus (DM) and pulmonary TB may occur in spatial and molecular aggregations. Retrospective cohort study of patients with pulmonary TB. The study area included 12 municipalities in the Sanitary Jurisdiction of Orizaba, Veracruz, México. Patients with acid-fast bacilli in sputum smears and/or Mycobacterium tuberculosis in sputum cultures were recruited from 1995 to 2010. Clinical (standardized questionnaire, physical examination, chest X-ray, blood glucose test and HIV test), microbiological, epidemiological, and molecular evaluations were carried out. Patients were considered "genotype-clustered" if two or more isolates from different patients were identified within 12 months of each other and had six or more IS6110 bands in an identical pattern, or < 6 bands with identical IS6110 RFLP patterns and spoligotype with the same spacer oligonucleotides. Residential and health care centers addresses were georeferenced. We used a Jeep hand GPS. The coordinates were transferred from the GPS files to ArcGIS using ArcMap 9.3. We evaluated global spatial aggregation of patients in IS6110-RFLP/ spoligotype clusters using global Moran´s I. Since global distribution was not random, we evaluated "hotspots" using Getis-Ord Gi* statistic. Using bivariate and multivariate analysis we analyzed sociodemographic, behavioral, clinic and bacteriological conditions associated with "hotspots". We used STATA® v13.1 for all statistical analysis. From 1995 to 2010, 1,370 patients >20 years were diagnosed with pulmonary TB; 33% had DM. The proportion of isolates that were genotyped was 80.7% (n = 1105), of which 31% (n = 342) were grouped in 91 genotype clusters with 2 to 23 patients each; 65.9% of total clusters were small (2 members) involving 35.08% of patients. Twenty three (22.7) percent of cases were classified as recent transmission. Moran`s I indicated that distribution of patients in IS6110-RFLP/spoligotype clusters was not random (Moran`s I = 0.035468, Z value = 7.0, p = 0.00). Local spatial analysis showed statistically significant spatial aggregation of patients in IS6110-RFLP/spoligotype clusters identifying "hotspots" and "coldspots". GI* statistic showed that the hotspot for spatial clustering was located in Camerino Z. Mendoza municipality; 14.6% (50/342) of patients in genotype clusters were located in a hotspot; of these, 60% (30/50) lived with DM. Using logistic regression the statistically significant variables associated with hotspots were: DM [adjusted Odds Ratio (aOR) 7.04, 95% Confidence interval (CI) 3.03-16.38] and attending the health center in Camerino Z. Mendoza (aOR18.04, 95% CI 7.35-44.28). The combination of molecular and epidemiological information with geospatial data allowed us to identify the concurrence of molecular clustering and spatial aggregation of patients with DM and TB. This information may be highly useful for TB control programs.

  15. Genotyping and spatial analysis of pulmonary tuberculosis and diabetes cases in the state of Veracruz, Mexico

    PubMed Central

    Blanco-Guillot, Francles; Ferreyra-Reyes, Leticia; Delgado-Sánchez, Guadalupe; Ferreira-Guerrero, Elizabeth; Montero-Campos, Rogelio; Bobadilla-del-Valle, Miriam; Martínez-Gamboa, Rosa Areli; Torres-González, Pedro; Téllez-Vazquez, Norma; Canizales-Quintero, Sergio; Yanes-Lane, Mercedes; Mongua-Rodríguez, Norma; Ponce-de-León, Alfredo; Sifuentes-Osornio, José

    2018-01-01

    Background Genotyping and georeferencing in tuberculosis (TB) have been used to characterize the distribution of the disease and occurrence of transmission within specific groups and communities. Objective The objective of this study was to test the hypothesis that diabetes mellitus (DM) and pulmonary TB may occur in spatial and molecular aggregations. Material and methods Retrospective cohort study of patients with pulmonary TB. The study area included 12 municipalities in the Sanitary Jurisdiction of Orizaba, Veracruz, México. Patients with acid-fast bacilli in sputum smears and/or Mycobacterium tuberculosis in sputum cultures were recruited from 1995 to 2010. Clinical (standardized questionnaire, physical examination, chest X-ray, blood glucose test and HIV test), microbiological, epidemiological, and molecular evaluations were carried out. Patients were considered “genotype-clustered” if two or more isolates from different patients were identified within 12 months of each other and had six or more IS6110 bands in an identical pattern, or < 6 bands with identical IS6110 RFLP patterns and spoligotype with the same spacer oligonucleotides. Residential and health care centers addresses were georeferenced. We used a Jeep hand GPS. The coordinates were transferred from the GPS files to ArcGIS using ArcMap 9.3. We evaluated global spatial aggregation of patients in IS6110-RFLP/ spoligotype clusters using global Moran´s I. Since global distribution was not random, we evaluated “hotspots” using Getis-Ord Gi* statistic. Using bivariate and multivariate analysis we analyzed sociodemographic, behavioral, clinic and bacteriological conditions associated with “hotspots”. We used STATA® v13.1 for all statistical analysis. Results From 1995 to 2010, 1,370 patients >20 years were diagnosed with pulmonary TB; 33% had DM. The proportion of isolates that were genotyped was 80.7% (n = 1105), of which 31% (n = 342) were grouped in 91 genotype clusters with 2 to 23 patients each; 65.9% of total clusters were small (2 members) involving 35.08% of patients. Twenty three (22.7) percent of cases were classified as recent transmission. Moran`s I indicated that distribution of patients in IS6110-RFLP/spoligotype clusters was not random (Moran`s I = 0.035468, Z value = 7.0, p = 0.00). Local spatial analysis showed statistically significant spatial aggregation of patients in IS6110-RFLP/spoligotype clusters identifying “hotspots” and “coldspots”. GI* statistic showed that the hotspot for spatial clustering was located in Camerino Z. Mendoza municipality; 14.6% (50/342) of patients in genotype clusters were located in a hotspot; of these, 60% (30/50) lived with DM. Using logistic regression the statistically significant variables associated with hotspots were: DM [adjusted Odds Ratio (aOR) 7.04, 95% Confidence interval (CI) 3.03–16.38] and attending the health center in Camerino Z. Mendoza (aOR18.04, 95% CI 7.35–44.28). Conclusions The combination of molecular and epidemiological information with geospatial data allowed us to identify the concurrence of molecular clustering and spatial aggregation of patients with DM and TB. This information may be highly useful for TB control programs. PMID:29534104

  16. The spatial impact of neighbouring on the exports activities of COMESA countries by using spatial panel models

    NASA Astrophysics Data System (ADS)

    Hamzalouh, L.; Ismail, M. T.; Rahman, R. A.

    2017-09-01

    In this paper, spatial panel models were used and the method for selecting the best model amongst the spatial fixed effects model and the spatial random effects model to estimate the fitting model by using the robust Hausman test for analysis of the exports pattern of the Common Market for Eastern and Southern African (COMESA) countries. And examine the effects of the interactions of the economic statistic of explanatory variables on the exports of the COMESA. Results indicated that the spatial Durbin model with fixed effects specification should be tested and considered in most cases of this study. After that, the direct and indirect effects among COMESA regions were assessed, and the role of indirect spatial effects in estimating exports was empirically demonstrated. Regarding originality and research value, and to the best of the authors’ knowledge, this is the first attempt to examine exports between COMESA and its member countries through spatial panel models using XSMLE, which is a new command for spatial analysis using STATA.

  17. Research on the optimization of air quality monitoring station layout based on spatial grid statistical analysis method.

    PubMed

    Li, Tianxin; Zhou, Xing Chen; Ikhumhen, Harrison Odion; Difei, An

    2018-05-01

    In recent years, with the significant increase in urban development, it has become necessary to optimize the current air monitoring stations to reflect the quality of air in the environment. Highlighting the spatial representation of some air monitoring stations using Beijing's regional air monitoring station data from 2012 to 2014, the monthly mean particulate matter concentration (PM10) in the region was calculated and through the IDW interpolation method and spatial grid statistical method using GIS, the spatial distribution of PM10 concentration in the whole region was deduced. The spatial distribution variation of districts in Beijing using the gridding model was performed, and through the 3-year spatial analysis, PM10 concentration data including the variation and spatial overlay (1.5 km × 1.5 km cell resolution grid), the spatial distribution result obtained showed that the total PM10 concentration frequency variation exceeded the standard. It is very important to optimize the layout of the existing air monitoring stations by combining the concentration distribution of air pollutants with the spatial region using GIS.

  18. Area-based tests for association between spatial patterns

    NASA Astrophysics Data System (ADS)

    Maruca, Susan L.; Jacquez, Geoffrey M.

    Edge effects pervade natural systems, and the processes that determine spatial heterogeneity (e.g. physical, geochemical, biological, ecological factors) occur on diverse spatial scales. Hence, tests for association between spatial patterns should be unbiased by edge effects and be based on null spatial models that incorporate the spatial heterogeneity characteristic of real-world systems. This paper develops probabilistic pattern association tests that are appropriate when edge effects are present, polygon size is heterogeneous, and the number of polygons varies from one classification to another. The tests are based on the amount of overlap between polygons in each of two partitions. Unweighted and area-weighted versions of the statistics are developed and verified using scenarios representing both polygon overlap and avoidance at different spatial scales and for different distributions of polygon sizes. These statistics were applied to Soda Butte Creek, Wyoming, to determine whether stream microhabitats, such as riffles, pools and glides, can be identified remotely using high spatial resolution hyperspectral imagery. These new ``spatially explicit'' techniques provide information and insights that cannot be obtained from the spectral information alone.

  19. Spatial Inequalities in the Incidence of Colorectal Cancer and Associated Factors in the Neighborhoods of Tehran, Iran: Bayesian Spatial Models

    PubMed Central

    2018-01-01

    Objectives The aim of this study was to determine the factors associated with the spatial distribution of the incidence of colorectal cancer (CRC) in the neighborhoods of Tehran, Iran using Bayesian spatial models. Methods This ecological study was implemented in Tehran on the neighborhood level. Socioeconomic variables, risk factors, and health costs were extracted from the Equity Assessment Study conducted in Tehran. The data on CRC incidence were extracted from the Iranian population-based cancer registry. The Besag-York-Mollié (BYM) model was used to identify factors associated with the spatial distribution of CRC incidence. The software programs OpenBUGS version 3.2.3, ArcGIS 10.3, and GeoDa were used for the analysis. Results The Moran index was statistically significant for all the variables studied (p<0.05). The BYM model showed that having a women head of household (median standardized incidence ratio [SIR], 1.63; 95% confidence interval [CI], 1.06 to 2.53), living in a rental house (median SIR, 0.82; 95% CI, 0.71 to 0.96), not consuming milk daily (median SIR, 0.71; 95% CI, 0.55 to 0.94) and having greater household health expenditures (median SIR, 1.34; 95% CI, 1.06 to 1.68) were associated with a statistically significant elevation in the SIR of CRC. The median (interquartile range) and mean (standard deviation) values of the SIR of CRC, with the inclusion of all the variables studied in the model, were 0.57 (1.01) and 1.05 (1.31), respectively. Conclusions Inequality was found in the spatial distribution of CRC incidence in Tehran on the neighborhood level. Paying attention to this inequality and the factors associated with it may be useful for resource allocation and developing preventive strategies in atrisk areas. PMID:29397644

  20. Statistical Analysis of Small-Scale Magnetic Flux Emergence Patterns: A Useful Subsurface Diagnostic?

    NASA Astrophysics Data System (ADS)

    Lamb, Derek A.

    2016-10-01

    While sunspots follow a well-defined pattern of emergence in space and time, small-scale flux emergence is assumed to occur randomly at all times in the quiet Sun. HMI's full-disk coverage, high cadence, spatial resolution, and duty cycle allow us to probe that basic assumption. Some case studies of emergence suggest that temporal clustering on spatial scales of 50-150 Mm may occur. If clustering is present, it could serve as a diagnostic of large-scale subsurface magnetic field structures. We present the results of a manual survey of small-scale flux emergence events over a short time period, and a statistical analysis addressing the question of whether these events show spatio-temporal behavior that is anything other than random.

  1. Governance and Regional Variation of Homicide Rates: Evidence From Cross-National Data.

    PubMed

    Cao, Liqun; Zhang, Yan

    2017-01-01

    Criminological theories of cross-national studies of homicide have underestimated the effects of quality governance of liberal democracy and region. Data sets from several sources are combined and a comprehensive model of homicide is proposed. Results of the spatial regression model, which controls for the effect of spatial autocorrelation, show that quality governance, human development, economic inequality, and ethnic heterogeneity are statistically significant in predicting homicide. In addition, regions of Latin America and non-Muslim Sub-Saharan Africa have significantly higher rates of homicides ceteris paribus while the effects of East Asian countries and Islamic societies are not statistically significant. These findings are consistent with the expectation of the new modernization and regional theories. © The Author(s) 2015.

  2. Combining optical remote sensing, agricultural statistics and field observations for culture recognition over a peri-urban region

    NASA Astrophysics Data System (ADS)

    Delbart, Nicolas; Emmanuelle, Vaudour; Fabienne, Maignan; Catherine, Ottlé; Jean-Marc, Gilliot

    2017-04-01

    This study explores the potential of multi-temporal optical remote sensing, with high revisit frequency, to derive missing information on agricultural calendar and crop types over the agricultural lands in the Versailles plain in the western Paris suburbs. This study comes besides past and ongoing studies on the use of radar and high spatial resolution optical remote sensing to monitor agricultural practices in this study area (e.g. Vaudour et al. 2014). Agricultural statistics, such as the Land Parcel Identification System (LPIS) for France, permit to know the nature of annual crops for each digitized declared field of this land parcel registry. However, within each declared field several cropped plots and a diversity of practices may exist, being marked by agricultural rotations which vary both spatially and temporally within it and differ from one year to the other. Even though the new LPIS to be released in 2016 is expected to describe individual plots within declared fields, its attributes may not enable to discriminate between winter and spring crops. Here we evaluate the potential of high observation frequency remote sensing to differentiate seasonal crops based essentially on the seasonality of the spectral properties. In particular, we use the Landsat data to spatially disaggregate the LPIS statistical data, on the basis of the analysis of the remote sensing spectral seasonality measured on a number of selected ground-observed fields. This work is carried out in the framework of the CNES TOSCA-PLEIADES-CO of the French Space Agency.

  3. Can Retinal Ganglion Cell Dipoles Seed Iso-Orientation Domains in the Visual Cortex?

    PubMed Central

    Schottdorf, Manuel; Eglen, Stephen J.; Wolf, Fred; Keil, Wolfgang

    2014-01-01

    It has been argued that the emergence of roughly periodic orientation preference maps (OPMs) in the primary visual cortex (V1) of carnivores and primates can be explained by a so-called statistical connectivity model. This model assumes that input to V1 neurons is dominated by feed-forward projections originating from a small set of retinal ganglion cells (RGCs). The typical spacing between adjacent cortical orientation columns preferring the same orientation then arises via Moiré-Interference between hexagonal ON/OFF RGC mosaics. While this Moiré-Interference critically depends on long-range hexagonal order within the RGC mosaics, a recent statistical analysis of RGC receptive field positions found no evidence for such long-range positional order. Hexagonal order may be only one of several ways to obtain spatially repetitive OPMs in the statistical connectivity model. Here, we investigate a more general requirement on the spatial structure of RGC mosaics that can seed the emergence of spatially repetitive cortical OPMs, namely that angular correlations between so-called RGC dipoles exhibit a spatial structure similar to that of OPM autocorrelation functions. Both in cat beta cell mosaics as well as primate parasol receptive field mosaics we find that RGC dipole angles are spatially uncorrelated. To help assess the level of these correlations, we introduce a novel point process that generates mosaics with realistic nearest neighbor statistics and a tunable degree of spatial correlations of dipole angles. Using this process, we show that given the size of available data sets, the presence of even weak angular correlations in the data is very unlikely. We conclude that the layout of ON/OFF ganglion cell mosaics lacks the spatial structure necessary to seed iso-orientation domains in the primary visual cortex. PMID:24475081

  4. Can retinal ganglion cell dipoles seed iso-orientation domains in the visual cortex?

    PubMed

    Schottdorf, Manuel; Eglen, Stephen J; Wolf, Fred; Keil, Wolfgang

    2014-01-01

    It has been argued that the emergence of roughly periodic orientation preference maps (OPMs) in the primary visual cortex (V1) of carnivores and primates can be explained by a so-called statistical connectivity model. This model assumes that input to V1 neurons is dominated by feed-forward projections originating from a small set of retinal ganglion cells (RGCs). The typical spacing between adjacent cortical orientation columns preferring the same orientation then arises via Moiré-Interference between hexagonal ON/OFF RGC mosaics. While this Moiré-Interference critically depends on long-range hexagonal order within the RGC mosaics, a recent statistical analysis of RGC receptive field positions found no evidence for such long-range positional order. Hexagonal order may be only one of several ways to obtain spatially repetitive OPMs in the statistical connectivity model. Here, we investigate a more general requirement on the spatial structure of RGC mosaics that can seed the emergence of spatially repetitive cortical OPMs, namely that angular correlations between so-called RGC dipoles exhibit a spatial structure similar to that of OPM autocorrelation functions. Both in cat beta cell mosaics as well as primate parasol receptive field mosaics we find that RGC dipole angles are spatially uncorrelated. To help assess the level of these correlations, we introduce a novel point process that generates mosaics with realistic nearest neighbor statistics and a tunable degree of spatial correlations of dipole angles. Using this process, we show that given the size of available data sets, the presence of even weak angular correlations in the data is very unlikely. We conclude that the layout of ON/OFF ganglion cell mosaics lacks the spatial structure necessary to seed iso-orientation domains in the primary visual cortex.

  5. Spatial variability effects on precision and power of forage yield estimation

    USDA-ARS?s Scientific Manuscript database

    Spatial analyses of yield trials are important, as they adjust cultivar means for spatial variation and improve the statistical precision of yield estimation. While the relative efficiency of spatial analysis has been frequently reported in several yield trials, its application on long-term forage y...

  6. Predicting thermal regimes of stream networks across the northeast United States: Natural and anthropogenic influences

    EPA Science Inventory

    We used STARS (Spatial Tools for the Analysis of River Systems), an ArcGIS geoprocessing toolbox, to create spatial stream networks. We then developed and assessed spatial statistical models for each of these metrics, incorporating spatial autocorrelation based on both distance...

  7. Changing viewer perspectives reveals constraints to implicit visual statistical learning.

    PubMed

    Jiang, Yuhong V; Swallow, Khena M

    2014-10-07

    Statistical learning-learning environmental regularities to guide behavior-likely plays an important role in natural human behavior. One potential use is in search for valuable items. Because visual statistical learning can be acquired quickly and without intention or awareness, it could optimize search and thereby conserve energy. For this to be true, however, visual statistical learning needs to be viewpoint invariant, facilitating search even when people walk around. To test whether implicit visual statistical learning of spatial information is viewpoint independent, we asked participants to perform a visual search task from variable locations around a monitor placed flat on a stand. Unbeknownst to participants, the target was more often in some locations than others. In contrast to previous research on stationary observers, visual statistical learning failed to produce a search advantage for targets in high-probable regions that were stable within the environment but variable relative to the viewer. This failure was observed even when conditions for spatial updating were optimized. However, learning was successful when the rich locations were referenced relative to the viewer. We conclude that changing viewer perspective disrupts implicit learning of the target's location probability. This form of learning shows limited integration with spatial updating or spatiotopic representations. © 2014 ARVO.

  8. Spatial network surrogates for disentangling complex system structure from spatial embedding of nodes

    NASA Astrophysics Data System (ADS)

    Wiedermann, Marc; Donges, Jonathan F.; Kurths, Jürgen; Donner, Reik V.

    2016-04-01

    Networks with nodes embedded in a metric space have gained increasing interest in recent years. The effects of spatial embedding on the networks' structural characteristics, however, are rarely taken into account when studying their macroscopic properties. Here, we propose a hierarchy of null models to generate random surrogates from a given spatially embedded network that can preserve certain global and local statistics associated with the nodes' embedding in a metric space. Comparing the original network's and the resulting surrogates' global characteristics allows one to quantify to what extent these characteristics are already predetermined by the spatial embedding of the nodes and links. We apply our framework to various real-world spatial networks and show that the proposed models capture macroscopic properties of the networks under study much better than standard random network models that do not account for the nodes' spatial embedding. Depending on the actual performance of the proposed null models, the networks are categorized into different classes. Since many real-world complex networks are in fact spatial networks, the proposed approach is relevant for disentangling the underlying complex system structure from spatial embedding of nodes in many fields, ranging from social systems over infrastructure and neurophysiology to climatology.

  9. Spatial distribution and cluster analysis of retail drug shop characteristics and antimalarial behaviors as reported by private medicine retailers in western Kenya: informing future interventions.

    PubMed

    Rusk, Andria; Highfield, Linda; Wilkerson, J Michael; Harrell, Melissa; Obala, Andrew; Amick, Benjamin

    2016-02-19

    Efforts to improve malaria case management in sub-Saharan Africa have shifted focus to private antimalarial retailers to increase access to appropriate treatment. Demands to decrease intervention cost while increasing efficacy requires interventions tailored to geographic regions with demonstrated need. Cluster analysis presents an opportunity to meet this demand, but has not been applied to the retail sector or antimalarial retailer behaviors. This research conducted cluster analysis on medicine retailer behaviors in Kenya, to improve malaria case management and inform future interventions. Ninety-seven surveys were collected from medicine retailers working in the Webuye Health and Demographic Surveillance Site. Survey items included retailer training, education, antimalarial drug knowledge, recommending behavior, sales, and shop characteristics, and were analyzed using Kulldorff's spatial scan statistic. The Bernoulli purely spatial model for binomial data was used, comparing cases to controls. Statistical significance of found clusters was tested with a likelihood ratio test, using the null hypothesis of no clustering, and a p value based on 999 Monte Carlo simulations. The null hypothesis was rejected with p values of 0.05 or less. A statistically significant cluster of fewer than expected pharmacy-trained retailers was found (RR = .09, p = .001) when compared to the expected random distribution. Drug recommending behavior also yielded a statistically significant cluster, with fewer than expected retailers recommending the correct antimalarial medication to adults (RR = .018, p = .01), and fewer than expected shops selling that medication more often than outdated antimalarials when compared to random distribution (RR = 0.23, p = .007). All three of these clusters were co-located, overlapping in the northwest of the study area. Spatial clustering was found in the data. A concerning amount of correlation was found in one specific region in the study area where multiple behaviors converged in space, highlighting a prime target for interventions. These results also demonstrate the utility of applying geospatial methods in the study of medicine retailer behaviors, making the case for expanding this approach to other regions.

  10. Spatial Differentiation of Landscape Values in the Murray River Region of Victoria, Australia

    NASA Astrophysics Data System (ADS)

    Zhu, Xuan; Pfueller, Sharron; Whitelaw, Paul; Winter, Caroline

    2010-05-01

    This research advances the understanding of the location of perceived landscape values through a statistically based approach to spatial analysis of value densities. Survey data were obtained from a sample of people living in and using the Murray River region, Australia, where declining environmental quality prompted a reevaluation of its conservation status. When densities of 12 perceived landscape values were mapped using geographic information systems (GIS), valued places clustered along the entire river bank and in associated National/State Parks and reserves. While simple density mapping revealed high value densities in various locations, it did not indicate what density of a landscape value could be regarded as a statistically significant hotspot or distinguish whether overlapping areas of high density for different values indicate identical or adjacent locations. A spatial statistic Getis-Ord Gi* was used to indicate statistically significant spatial clusters of high value densities or “hotspots”. Of 251 hotspots, 40% were for single non-use values, primarily spiritual, therapeutic or intrinsic. Four hotspots had 11 landscape values. Two, lacking economic value, were located in ecologically important river red gum forests and two, lacking wilderness value, were near the major towns of Echuca-Moama and Albury-Wodonga. Hotspots for eight values showed statistically significant associations with another value. There were high associations between learning and heritage values while economic and biological diversity values showed moderate associations with several other direct and indirect use values. This approach may improve confidence in the interpretation of spatial analysis of landscape values by enhancing understanding of value relationships.

  11. Analysing and correcting the differences between multi-source and multi-scale spatial remote sensing observations.

    PubMed

    Dong, Yingying; Luo, Ruisen; Feng, Haikuan; Wang, Jihua; Zhao, Jinling; Zhu, Yining; Yang, Guijun

    2014-01-01

    Differences exist among analysis results of agriculture monitoring and crop production based on remote sensing observations, which are obtained at different spatial scales from multiple remote sensors in same time period, and processed by same algorithms, models or methods. These differences can be mainly quantitatively described from three aspects, i.e. multiple remote sensing observations, crop parameters estimation models, and spatial scale effects of surface parameters. Our research proposed a new method to analyse and correct the differences between multi-source and multi-scale spatial remote sensing surface reflectance datasets, aiming to provide references for further studies in agricultural application with multiple remotely sensed observations from different sources. The new method was constructed on the basis of physical and mathematical properties of multi-source and multi-scale reflectance datasets. Theories of statistics were involved to extract statistical characteristics of multiple surface reflectance datasets, and further quantitatively analyse spatial variations of these characteristics at multiple spatial scales. Then, taking the surface reflectance at small spatial scale as the baseline data, theories of Gaussian distribution were selected for multiple surface reflectance datasets correction based on the above obtained physical characteristics and mathematical distribution properties, and their spatial variations. This proposed method was verified by two sets of multiple satellite images, which were obtained in two experimental fields located in Inner Mongolia and Beijing, China with different degrees of homogeneity of underlying surfaces. Experimental results indicate that differences of surface reflectance datasets at multiple spatial scales could be effectively corrected over non-homogeneous underlying surfaces, which provide database for further multi-source and multi-scale crop growth monitoring and yield prediction, and their corresponding consistency analysis evaluation.

  12. Analysing and Correcting the Differences between Multi-Source and Multi-Scale Spatial Remote Sensing Observations

    PubMed Central

    Dong, Yingying; Luo, Ruisen; Feng, Haikuan; Wang, Jihua; Zhao, Jinling; Zhu, Yining; Yang, Guijun

    2014-01-01

    Differences exist among analysis results of agriculture monitoring and crop production based on remote sensing observations, which are obtained at different spatial scales from multiple remote sensors in same time period, and processed by same algorithms, models or methods. These differences can be mainly quantitatively described from three aspects, i.e. multiple remote sensing observations, crop parameters estimation models, and spatial scale effects of surface parameters. Our research proposed a new method to analyse and correct the differences between multi-source and multi-scale spatial remote sensing surface reflectance datasets, aiming to provide references for further studies in agricultural application with multiple remotely sensed observations from different sources. The new method was constructed on the basis of physical and mathematical properties of multi-source and multi-scale reflectance datasets. Theories of statistics were involved to extract statistical characteristics of multiple surface reflectance datasets, and further quantitatively analyse spatial variations of these characteristics at multiple spatial scales. Then, taking the surface reflectance at small spatial scale as the baseline data, theories of Gaussian distribution were selected for multiple surface reflectance datasets correction based on the above obtained physical characteristics and mathematical distribution properties, and their spatial variations. This proposed method was verified by two sets of multiple satellite images, which were obtained in two experimental fields located in Inner Mongolia and Beijing, China with different degrees of homogeneity of underlying surfaces. Experimental results indicate that differences of surface reflectance datasets at multiple spatial scales could be effectively corrected over non-homogeneous underlying surfaces, which provide database for further multi-source and multi-scale crop growth monitoring and yield prediction, and their corresponding consistency analysis evaluation. PMID:25405760

  13. The influence of the interactions between anthropogenic activities and multiple ecological factors on land surface temperatures of urban forests

    NASA Astrophysics Data System (ADS)

    Ren, Y.

    2017-12-01

    Context Land surface temperatures (LSTs) spatio-temporal distribution pattern of urban forests are influenced by many ecological factors; the identification of interaction between these factors can improve simulations and predictions of spatial patterns of urban cold islands. This quantitative research requires an integrated method that combines multiple sources data with spatial statistical analysis. Objectives The purpose of this study was to clarify urban forest LST influence interaction between anthropogenic activities and multiple ecological factors using cluster analysis of hot and cold spots and Geogdetector model. We introduced the hypothesis that anthropogenic activity interacts with certain ecological factors, and their combination influences urban forests LST. We also assumed that spatio-temporal distributions of urban forest LST should be similar to those of ecological factors and can be represented quantitatively. Methods We used Jinjiang as a representative city in China as a case study. Population density was employed to represent anthropogenic activity. We built up a multi-source data (forest inventory, digital elevation models (DEM), population, and remote sensing imagery) on a unified urban scale to support urban forest LST influence interaction research. Through a combination of spatial statistical analysis results, multi-source spatial data, and Geogdetector model, the interaction mechanisms of urban forest LST were revealed. Results Although different ecological factors have different influences on forest LST, in two periods with different hot spots and cold spots, the patch area and dominant tree species were the main factors contributing to LST clustering in urban forests. The interaction between anthropogenic activity and multiple ecological factors increased LST in urban forest stands, linearly and nonlinearly. Strong interactions between elevation and dominant species were generally observed and were prevalent in either hot or cold spots areas in different years. Conclusions In conclusion, a combination of spatial statistics and GeogDetector models should be effective for quantitatively evaluating interactive relationships among ecological factors, anthropogenic activity and LST.

  14. BATSE analysis techniques for probing the GRB spatial and luminosity distributions

    NASA Technical Reports Server (NTRS)

    Hakkila, Jon; Meegan, Charles A.

    1992-01-01

    The Burst And Transient Source Experiment (BATSE) has measured homogeneity and isotropy parameters from an increasingly large sample of observed gamma-ray bursts (GRBs), while also maintaining a summary of the way in which the sky has been sampled. Measurement of both of these are necessary for any study of the BATSE data statistically, as they take into account the most serious observational selection effects known in the study of GRBs: beam-smearing and inhomogeneous, anisotropic sky sampling. Knowledge of these effects is important to analysis of GRB angular and intensity distributions. In addition to determining that the bursts are local, it is hoped that analysis of such distributions will allow boundaries to be placed on the true GRB spatial distribution and luminosity function. The technique for studying GRB spatial and luminosity distributions is direct. Results of BATSE analyses are compared to Monte Carlo models parameterized by a variety of spatial and luminosity characteristics.

  15. Scaling impacts on environmental controls and spatial heterogeneity of soil organic carbon stocks

    NASA Astrophysics Data System (ADS)

    Mishra, U.; Riley, W. J.

    2015-01-01

    The spatial heterogeneity of land surfaces affects energy, moisture, and greenhouse gas exchanges with the atmosphere. However, representing heterogeneity of terrestrial hydrological and biogeochemical processes in earth system models (ESMs) remains a critical scientific challenge. We report the impact of spatial scaling on environmental controls, spatial structure, and statistical properties of soil organic carbon (SOC) stocks across the US state of Alaska. We used soil profile observations and environmental factors such as topography, climate, land cover types, and surficial geology to predict the SOC stocks at a 50 m spatial scale. These spatially heterogeneous estimates provide a dataset with reasonable fidelity to the observations at a sufficiently high resolution to examine the environmental controls on the spatial structure of SOC stocks. We upscaled both the predicted SOC stocks and environmental variables from finer to coarser spatial scales (s = 100, 200, 500 m, 1, 2, 5, 10 km) and generated various statistical properties of SOC stock estimates. We found different environmental factors to be statistically significant predictors at different spatial scales. Only elevation, temperature, potential evapotranspiration, and scrub land cover types were significant predictors at all scales. The strengths of control (the median value of geographically weighted regression coefficients) of these four environmental variables on SOC stocks decreased with increasing scale and were accurately represented using mathematical functions (R2 = 0.83-0.97). The spatial structure of SOC stocks across Alaska changed with spatial scale. Although the variance (sill) and unstructured variability (nugget) of the calculated variograms of SOC stocks decreased exponentially with scale, the correlation length (range) remained relatively constant across scale. The variance of predicted SOC stocks decreased with spatial scale over the range of 50 to ~ 500 m, and remained constant beyond this scale. The fitted exponential function accounted for 98% of variability in the variance of SOC stocks. We found moderately-accurate linear relationships between mean and higher-order moments of predicted SOC stocks (R2 ~ 0.55-0.63). Current ESMs operate at coarse spatial scales (50-100 km), and are therefore unable to represent environmental controllers and spatial heterogeneity of high-latitude SOC stocks consistent with observations. We conclude that improved understanding of the scaling behavior of environmental controls and statistical properties of SOC stocks can improve ESM land model benchmarking and perhaps allow representation of spatial heterogeneity of biogeochemistry at scales finer than those currently resolved by ESMs.

  16. Scaling impacts on environmental controls and spatial heterogeneity of soil organic carbon stocks

    NASA Astrophysics Data System (ADS)

    Mishra, U.; Riley, W. J.

    2015-07-01

    The spatial heterogeneity of land surfaces affects energy, moisture, and greenhouse gas exchanges with the atmosphere. However, representing the heterogeneity of terrestrial hydrological and biogeochemical processes in Earth system models (ESMs) remains a critical scientific challenge. We report the impact of spatial scaling on environmental controls, spatial structure, and statistical properties of soil organic carbon (SOC) stocks across the US state of Alaska. We used soil profile observations and environmental factors such as topography, climate, land cover types, and surficial geology to predict the SOC stocks at a 50 m spatial scale. These spatially heterogeneous estimates provide a data set with reasonable fidelity to the observations at a sufficiently high resolution to examine the environmental controls on the spatial structure of SOC stocks. We upscaled both the predicted SOC stocks and environmental variables from finer to coarser spatial scales (s = 100, 200, and 500 m and 1, 2, 5, and 10 km) and generated various statistical properties of SOC stock estimates. We found different environmental factors to be statistically significant predictors at different spatial scales. Only elevation, temperature, potential evapotranspiration, and scrub land cover types were significant predictors at all scales. The strengths of control (the median value of geographically weighted regression coefficients) of these four environmental variables on SOC stocks decreased with increasing scale and were accurately represented using mathematical functions (R2 = 0.83-0.97). The spatial structure of SOC stocks across Alaska changed with spatial scale. Although the variance (sill) and unstructured variability (nugget) of the calculated variograms of SOC stocks decreased exponentially with scale, the correlation length (range) remained relatively constant across scale. The variance of predicted SOC stocks decreased with spatial scale over the range of 50 m to ~ 500 m, and remained constant beyond this scale. The fitted exponential function accounted for 98 % of variability in the variance of SOC stocks. We found moderately accurate linear relationships between mean and higher-order moments of predicted SOC stocks (R2 ∼ 0.55-0.63). Current ESMs operate at coarse spatial scales (50-100 km), and are therefore unable to represent environmental controllers and spatial heterogeneity of high-latitude SOC stocks consistent with observations. We conclude that improved understanding of the scaling behavior of environmental controls and statistical properties of SOC stocks could improve ESM land model benchmarking and perhaps allow representation of spatial heterogeneity of biogeochemistry at scales finer than those currently resolved by ESMs.

  17. Scaling impacts on environmental controls and spatial heterogeneity of soil organic carbon stocks

    DOE PAGES

    Mishra, U.; Riley, W. J.

    2015-07-02

    The spatial heterogeneity of land surfaces affects energy, moisture, and greenhouse gas exchanges with the atmosphere. However, representing the heterogeneity of terrestrial hydrological and biogeochemical processes in Earth system models (ESMs) remains a critical scientific challenge. We report the impact of spatial scaling on environmental controls, spatial structure, and statistical properties of soil organic carbon (SOC) stocks across the US state of Alaska. We used soil profile observations and environmental factors such as topography, climate, land cover types, and surficial geology to predict the SOC stocks at a 50 m spatial scale. These spatially heterogeneous estimates provide a data setmore » with reasonable fidelity to the observations at a sufficiently high resolution to examine the environmental controls on the spatial structure of SOC stocks. We upscaled both the predicted SOC stocks and environmental variables from finer to coarser spatial scales ( s = 100, 200, and 500 m and 1, 2, 5, and 10 km) and generated various statistical properties of SOC stock estimates. We found different environmental factors to be statistically significant predictors at different spatial scales. Only elevation, temperature, potential evapotranspiration, and scrub land cover types were significant predictors at all scales. The strengths of control (the median value of geographically weighted regression coefficients) of these four environmental variables on SOC stocks decreased with increasing scale and were accurately represented using mathematical functions ( R 2 = 0.83–0.97). The spatial structure of SOC stocks across Alaska changed with spatial scale. Although the variance (sill) and unstructured variability (nugget) of the calculated variograms of SOC stocks decreased exponentially with scale, the correlation length (range) remained relatively constant across scale. The variance of predicted SOC stocks decreased with spatial scale over the range of 50 m to ~ 500 m, and remained constant beyond this scale. The fitted exponential function accounted for 98 % of variability in the variance of SOC stocks. We found moderately accurate linear relationships between mean and higher-order moments of predicted SOC stocks ( R 2 ∼ 0.55–0.63). Current ESMs operate at coarse spatial scales (50–100 km), and are therefore unable to represent environmental controllers and spatial heterogeneity of high-latitude SOC stocks consistent with observations. We conclude that improved understanding of the scaling behavior of environmental controls and statistical properties of SOC stocks could improve ESM land model benchmarking and perhaps allow representation of spatial heterogeneity of biogeochemistry at scales finer than those currently resolved by ESMs.« less

  18. Scaling impacts on environmental controls and spatial heterogeneity of soil organic carbon stocks

    DOE PAGES

    Mishra, U.; Riley, W. J.

    2015-01-01

    The spatial heterogeneity of land surfaces affects energy, moisture, and greenhouse gas exchanges with the atmosphere. However, representing heterogeneity of terrestrial hydrological and biogeochemical processes in earth system models (ESMs) remains a critical scientific challenge. We report the impact of spatial scaling on environmental controls, spatial structure, and statistical properties of soil organic carbon (SOC) stocks across the US state of Alaska. We used soil profile observations and environmental factors such as topography, climate, land cover types, and surficial geology to predict the SOC stocks at a 50 m spatial scale. These spatially heterogeneous estimates provide a dataset with reasonablemore » fidelity to the observations at a sufficiently high resolution to examine the environmental controls on the spatial structure of SOC stocks. We upscaled both the predicted SOC stocks and environmental variables from finer to coarser spatial scales ( s = 100, 200, 500 m, 1, 2, 5, 10 km) and generated various statistical properties of SOC stock estimates. We found different environmental factors to be statistically significant predictors at different spatial scales. Only elevation, temperature, potential evapotranspiration, and scrub land cover types were significant predictors at all scales. The strengths of control (the median value of geographically weighted regression coefficients) of these four environmental variables on SOC stocks decreased with increasing scale and were accurately represented using mathematical functions ( R 2 = 0.83–0.97). The spatial structure of SOC stocks across Alaska changed with spatial scale. Although the variance (sill) and unstructured variability (nugget) of the calculated variograms of SOC stocks decreased exponentially with scale, the correlation length (range) remained relatively constant across scale. The variance of predicted SOC stocks decreased with spatial scale over the range of 50 to ~ 500 m, and remained constant beyond this scale. The fitted exponential function accounted for 98% of variability in the variance of SOC stocks. We found moderately-accurate linear relationships between mean and higher-order moments of predicted SOC stocks ( R 2 ~ 0.55–0.63). Current ESMs operate at coarse spatial scales (50–100 km), and are therefore unable to represent environmental controllers and spatial heterogeneity of high-latitude SOC stocks consistent with observations. We conclude that improved understanding of the scaling behavior of environmental controls and statistical properties of SOC stocks can improve ESM land model benchmarking and perhaps allow representation of spatial heterogeneity of biogeochemistry at scales finer than those currently resolved by ESMs.« less

  19. Effects of natural factors on the spatial distribution of heavy metals in soils surrounding mining regions.

    PubMed

    Ding, Qian; Cheng, Gong; Wang, Yong; Zhuang, Dafang

    2017-02-01

    Various studies have shown that soils surrounding mining areas are seriously polluted with heavy metals. Determining the effects of natural factors on spatial distribution of heavy metals is important for determining the distribution characteristics of heavy metals in soils. In this study, an 8km buffer zone surrounding a typical non-ferrous metal mine in Suxian District of Hunan Province, China, was selected as the study area, and statistical, spatial autocorrelation and spatial interpolation analyses were used to obtain descriptive statistics and spatial autocorrelation characteristics of As, Pb, Cu, and Zn in soil. Additionally, the distributions of soil heavy metals under the influences of natural factors, including terrain (elevation and slope), wind direction and distance from a river, were determined. Layout of sampling sites, spatial changes of heavy metal contents at high elevations and concentration differences between upwind and downwind directions were then evaluated. The following results were obtained: (1) At low elevations, heavy metal concentrations decreased slightly, then increased considerably with increasing elevation. At high elevations, heavy metal concentrations first decreased, then increased, then decreased with increasing elevation. As the slope increased, heavy metal contents increased then decreased. (2) Heavy metal contents changed consistently in the upwind and downwind directions. Heavy metal contents were highest in 1km buffer zone and decreased with increasing distance from the mining area. The largest decrease in heavy metal concentrations was in 2km buffer zone. Perennial wind promotes the transport of heavy metals in downwind direction. (3) The spatial extent of the influence of the river on Pb, Zn and Cu in the soil was 800m. (4) The influence of the terrain on the heavy metal concentrations was greater than that of the wind. These results provide a scientific basis for preventing and mitigating heavy metal soil pollution in areas surrounding mines. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Geographic variation in forest composition and precipitation predict the synchrony of forest insect outbreaks

    Treesearch

    Kyle J. Haynes; Andrew M. Liebhold; Ottar N. Bjørnstad; Andrew J. Allstadt; Randall S. Morin

    2018-01-01

    Evaluating the causes of spatial synchrony in population dynamics in nature is notoriously difficult due to a lack of data and appropriate statistical methods. Here, we use a recently developed method, a multivariate extension of the local indicators of spatial autocorrelation statistic, to map geographic variation in the synchrony of gypsy moth outbreaks. Regression...

  1. The effects of spatial autoregressive dependencies on inference in ordinary least squares: a geometric approach

    NASA Astrophysics Data System (ADS)

    Smith, Tony E.; Lee, Ka Lok

    2012-01-01

    There is a common belief that the presence of residual spatial autocorrelation in ordinary least squares (OLS) regression leads to inflated significance levels in beta coefficients and, in particular, inflated levels relative to the more efficient spatial error model (SEM). However, our simulations show that this is not always the case. Hence, the purpose of this paper is to examine this question from a geometric viewpoint. The key idea is to characterize the OLS test statistic in terms of angle cosines and examine the geometric implications of this characterization. Our first result is to show that if the explanatory variables in the regression exhibit no spatial autocorrelation, then the distribution of test statistics for individual beta coefficients in OLS is independent of any spatial autocorrelation in the error term. Hence, inferences about betas exhibit all the optimality properties of the classic uncorrelated error case. However, a second more important series of results show that if spatial autocorrelation is present in both the dependent and explanatory variables, then the conventional wisdom is correct. In particular, even when an explanatory variable is statistically independent of the dependent variable, such joint spatial dependencies tend to produce "spurious correlation" that results in over-rejection of the null hypothesis. The underlying geometric nature of this problem is clarified by illustrative examples. The paper concludes with a brief discussion of some possible remedies for this problem.

  2. Spatial Skill Profile of Mathematics Pre-Service Teachers

    NASA Astrophysics Data System (ADS)

    Putri, R. O. E.

    2018-01-01

    This study is aimed to investigate the spatial intelligence of mathematics pre-service teachers and find the best instructional strategy that facilitates this aspect. Data were collected from 35 mathematics pre-service teachers. The Purdue Spatial Visualization Test (PSVT) was used to identify the spatial skill of mathematics pre-service teachers. Statistical analysis indicate that more than 50% of the participants possessed spatial skill in intermediate level, whereas the other were in high and low level of spatial skill. The result also shows that there is a positive correlation between spatial skill and mathematics ability, especially in geometrical problem solving. High spatial skill students tend to have better mathematical performance compare to those in two other levels. Furthermore, qualitative analysis reveals that most students have difficulty in manipulating geometrical objects mentally. This problem mostly appears in intermediate and low-level spatial skill students. The observation revealed that 3-D geometrical figures is the best method that can overcome the mentally manipulation problem and develop the spatial visualization. Computer application can also be used to improve students’ spatial skill.

  3. Accounting for spatial effects in land use regression for urban air pollution modeling.

    PubMed

    Bertazzon, Stefania; Johnson, Markey; Eccles, Kristin; Kaplan, Gilaad G

    2015-01-01

    In order to accurately assess air pollution risks, health studies require spatially resolved pollution concentrations. Land-use regression (LUR) models estimate ambient concentrations at a fine spatial scale. However, spatial effects such as spatial non-stationarity and spatial autocorrelation can reduce the accuracy of LUR estimates by increasing regression errors and uncertainty; and statistical methods for resolving these effects--e.g., spatially autoregressive (SAR) and geographically weighted regression (GWR) models--may be difficult to apply simultaneously. We used an alternate approach to address spatial non-stationarity and spatial autocorrelation in LUR models for nitrogen dioxide. Traditional models were re-specified to include a variable capturing wind speed and direction, and re-fit as GWR models. Mean R(2) values for the resulting GWR-wind models (summer: 0.86, winter: 0.73) showed a 10-20% improvement over traditional LUR models. GWR-wind models effectively addressed both spatial effects and produced meaningful predictive models. These results suggest a useful method for improving spatially explicit models. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. How big should a mammal be? A macroecological look at mammalian body size over space and time

    PubMed Central

    Smith, Felisa A.; Lyons, S. Kathleen

    2011-01-01

    Macroecology was developed as a big picture statistical approach to the study of ecology and evolution. By focusing on broadly occurring patterns and processes operating at large spatial and temporal scales rather than on localized and/or fine-scaled details, macroecology aims to uncover general mechanisms operating at organism, population, and ecosystem levels of organization. Macroecological studies typically involve the statistical analysis of fundamental species-level traits, such as body size, area of geographical range, and average density and/or abundance. Here, we briefly review the history of macroecology and use the body size of mammals as a case study to highlight current developments in the field, including the increasing linkage with biogeography and other disciplines. Characterizing the factors underlying the spatial and temporal patterns of body size variation in mammals is a daunting task and moreover, one not readily amenable to traditional statistical analyses. Our results clearly illustrate remarkable regularities in the distribution and variation of mammalian body size across both geographical space and evolutionary time that are related to ecology and trophic dynamics and that would not be apparent without a broader perspective. PMID:21768152

  5. Spatial modelling and mapping of female genital mutilation in Kenya.

    PubMed

    Achia, Thomas N O

    2014-03-25

    Female genital mutilation/cutting (FGM/C) is still prevalent in several communities in Kenya and other areas in Africa, as well as being practiced by some migrants from African countries living in other parts of the world. This study aimed at detecting clustering of FGM/C in Kenya, and identifying those areas within the country where women still intend to continue the practice. A broader goal of the study was to identify geographical areas where the practice continues unabated and where broad intervention strategies need to be introduced. The prevalence of FGM/C was investigated using the 2008 Kenya Demographic and Health Survey (KDHS) data. The 2008 KDHS used a multistage stratified random sampling plan to select women of reproductive age (15-49 years) and asked questions concerning their FGM/C status and their support for the continuation of FGM/C. A spatial scan statistical analysis was carried out using SaTScan™ to test for statistically significant clustering of the practice of FGM/C in the country. The risk of FGM/C was also modelled and mapped using a hierarchical spatial model under the Integrated Nested Laplace approximation approach using the INLA library in R. The prevalence of FGM/C stood at 28.2% and an estimated 10.3% of the women interviewed indicated that they supported the continuation of FGM. On the basis of the Deviance Information Criterion (DIC), hierarchical spatial models with spatially structured random effects were found to best fit the data for both response variables considered. Age, region, rural-urban classification, education, marital status, religion, socioeconomic status and media exposure were found to be significantly associated with FGM/C. The current FGM/C status of a woman was also a significant predictor of support for the continuation of FGM/C. Spatial scan statistics confirm FGM clusters in the North-Eastern and South-Western regions of Kenya (p<0.001). This suggests that the fight against FGM/C in Kenya is not yet over. There are still deep cultural and religious beliefs to be addressed in a bid to eradicate the practice. Interventions by government and other stakeholders must address these challenges and target the identified clusters.

  6. Trends in spatio-temporal dynamics of visceral leishmaniasis cases in a highly-endemic focus of Bihar, India: an investigation based on GIS tools.

    PubMed

    Mandal, Rakesh; Kesari, Shreekant; Kumar, Vijay; Das, Pradeep

    2018-04-02

    Visceral leishmaniasis (VL) in Bihar State (India) continues to be endemic, despite the existence of effective treatment and a vector control program to control disease morbidity. A clear understanding of spatio-temporal distribution of VL may improve surveillance and control implementation. This study explored the trends in spatio-temporal dynamics of VL endemicity at a meso-scale level in Vaishali District, based on geographical information systems (GIS) tools and spatial statistical analysis. A GIS database was used to integrate the VL case data from the study area between 2009 and 2014. All cases were spatially linked at a meso-scale level. Geospatial techniques, such as GIS-layer overlaying and mapping, were employed to visualize and detect the spatio-temporal patterns of a VL endemic outbreak across the district. The spatial statistic Moran's I Index (Moran's I) was used to simultaneously evaluate spatial-correlation between endemic villages and the spatial distribution patterns based on both the village location and the case incidence rate (CIR). Descriptive statistics such as mean, standard error, confidence intervals and percentages were used to summarize the VL case data. There were 624 endemic villages with 2719 (average 906 cases/year) VL cases during 2012-2014. The Moran's I revealed a cluster pattern (P < 0.05) of CIR distribution at the meso-scale level. On average, 68 villages were newly-endemic each year. Of which 93.1% of villages' endemicity were found to have occurred on the peripheries of the previous year endemic villages. The mean CIR of the endemic villages that were peripheral to the following year newly-endemic villages, compared to all endemic villages of the same year, was higher (P < 0.05). The results show that the VL endemicity of new villages tends to occur on the periphery of villages endemic in the previous year. High-CIR plays a major role in the spatial dispersion of the VL cases between non-endemic and endemic villages. This information can help achieve VL elimination throughout the Indian subcontinent by improving vector control design and implementation in highly-endemic district.

  7. Bayesian Tracking of Emerging Epidemics Using Ensemble Optimal Statistical Interpolation

    PubMed Central

    Cobb, Loren; Krishnamurthy, Ashok; Mandel, Jan; Beezley, Jonathan D.

    2014-01-01

    We present a preliminary test of the Ensemble Optimal Statistical Interpolation (EnOSI) method for the statistical tracking of an emerging epidemic, with a comparison to its popular relative for Bayesian data assimilation, the Ensemble Kalman Filter (EnKF). The spatial data for this test was generated by a spatial susceptible-infectious-removed (S-I-R) epidemic model of an airborne infectious disease. Both tracking methods in this test employed Poisson rather than Gaussian noise, so as to handle epidemic data more accurately. The EnOSI and EnKF tracking methods worked well on the main body of the simulated spatial epidemic, but the EnOSI was able to detect and track a distant secondary focus of infection that the EnKF missed entirely. PMID:25113590

  8. Price Collusion or Competition in US Higher Education

    ERIC Educational Resources Information Center

    Gu, Jiafeng

    2015-01-01

    How geographical neighboring competitors influence the strategic price behaviors of universities is still unclear because previous studies assume spatial independence between universities. Using data from the National Center for Education Statistics college navigator dataset, this study shows that the price of one university is spatially…

  9. Topological and canonical kriging for design flood prediction in ungauged catchments: an improvement over a traditional regional regression approach?

    USGS Publications Warehouse

    Archfield, Stacey A.; Pugliese, Alessio; Castellarin, Attilio; Skøien, Jon O.; Kiang, Julie E.

    2013-01-01

    In the United States, estimation of flood frequency quantiles at ungauged locations has been largely based on regional regression techniques that relate measurable catchment descriptors to flood quantiles. More recently, spatial interpolation techniques of point data have been shown to be effective for predicting streamflow statistics (i.e., flood flows and low-flow indices) in ungauged catchments. Literature reports successful applications of two techniques, canonical kriging, CK (or physiographical-space-based interpolation, PSBI), and topological kriging, TK (or top-kriging). CK performs the spatial interpolation of the streamflow statistic of interest in the two-dimensional space of catchment descriptors. TK predicts the streamflow statistic along river networks taking both the catchment area and nested nature of catchments into account. It is of interest to understand how these spatial interpolation methods compare with generalized least squares (GLS) regression, one of the most common approaches to estimate flood quantiles at ungauged locations. By means of a leave-one-out cross-validation procedure, the performance of CK and TK was compared to GLS regression equations developed for the prediction of 10, 50, 100 and 500 yr floods for 61 streamgauges in the southeast United States. TK substantially outperforms GLS and CK for the study area, particularly for large catchments. The performance of TK over GLS highlights an important distinction between the treatments of spatial correlation when using regression-based or spatial interpolation methods to estimate flood quantiles at ungauged locations. The analysis also shows that coupling TK with CK slightly improves the performance of TK; however, the improvement is marginal when compared to the improvement in performance over GLS.

  10. Built-Up Area Detection from High-Resolution Satellite Images Using Multi-Scale Wavelet Transform and Local Spatial Statistics

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Zhang, Y.; Gao, J.; Yuan, Y.; Lv, Z.

    2018-04-01

    Recently, built-up area detection from high-resolution satellite images (HRSI) has attracted increasing attention because HRSI can provide more detailed object information. In this paper, multi-resolution wavelet transform and local spatial autocorrelation statistic are introduced to model the spatial patterns of built-up areas. First, the input image is decomposed into high- and low-frequency subbands by wavelet transform at three levels. Then the high-frequency detail information in three directions (horizontal, vertical and diagonal) are extracted followed by a maximization operation to integrate the information in all directions. Afterward, a cross-scale operation is implemented to fuse different levels of information. Finally, local spatial autocorrelation statistic is introduced to enhance the saliency of built-up features and an adaptive threshold algorithm is used to achieve the detection of built-up areas. Experiments are conducted on ZY-3 and Quickbird panchromatic satellite images, and the results show that the proposed method is very effective for built-up area detection.

  11. An Overview of Equal Educational Opportunities in Turkey: A Spatial Analysis of Classrooms in Rural and Urban Primary Schools

    ERIC Educational Resources Information Center

    Gökçe, Nazli; Kaya, Erdogan; Aktas, Semra Günay; Kantar, Yeliz Mert

    2017-01-01

    The number of students in a class is a primary factor affecting the quality of education. Therefore, this study examines the distribution of the number of students per class in rural and urban primary schools in Turkey, and efforts have been made to specify classroom needs. Statistical data was obtained from the Turkish Institute of Statistics and…

  12. Regional and Temporal Variation in Methamphetamine-Related Incidents: Applications of Spatial and Temporal Scan Statistics

    PubMed Central

    Sudakin, Daniel L.

    2009-01-01

    Introduction This investigation utilized spatial scan statistics, geographic information systems and multiple data sources to assess spatial clustering of statewide methamphetamine-related incidents. Temporal and spatial associations with regulatory interventions to reduce access to precursor chemicals (pseudoephedrine) were also explored. Methods Four statewide data sources were utilized including regional poison control center statistics, fatality incidents, methamphetamine laboratory seizures, and hazardous substance releases involving methamphetamine laboratories. Spatial clustering of methamphetamine incidents was assessed using SaTScan™. SaTScan™ was also utilized to assess space-time clustering of methamphetamine laboratory incidents, in relation to the enactment of regulations to reduce access to pseudoephedrine. Results Five counties with a significantly higher relative risk of methamphetamine-related incidents were identified. The county identified as the most likely cluster had a significantly elevated relative risk of methamphetamine laboratories (RR=11.5), hazardous substance releases (RR=8.3), and fatalities relating to methamphetamine (RR=1.4). A significant increase in relative risk of methamphetamine laboratory incidents was apparent in this same geographic area (RR=20.7) during the time period when regulations were enacted in 2004 and 2005, restricting access to pseudoephedrine. Subsequent to the enactment of these regulations, a significantly lower rate of incidents (RR 0.111, p=0.0001) was observed over a large geographic area of the state, including regions that previously had significantly higher rates. Conclusions Spatial and temporal scan statistics can be effectively applied to multiple data sources to assess regional variation in methamphetamine-related incidents, and explore the impact of preventive regulatory interventions. PMID:19225949

  13. Characterizing multiscale variability of zero intermittency in spatial rainfall

    NASA Technical Reports Server (NTRS)

    Kumar, Praveen; Foufoula-Georgiou, Efi

    1994-01-01

    In this paper the authors study how zero intermittency in spatial rainfall, as described by the fraction of area covered by rainfall, changes with spatial scale of rainfall measurement or representation. A statistical measure of intermittency that describes the size distribution of 'voids' (nonrainy areas imbedded inside rainy areas) as a function of scale is also introduced. Morphological algorithms are proposed for reconstructing rainfall intermittency at fine scales given the intermittency at coarser scales. These algorithms are envisioned to be useful in hydroclimatological studies where the rainfall spatial variability at the subgrid scale needs to be reconstructed from the results of synoptic- or mesoscale meteorological numerical models. The developed methodologies are demsonstrated and tested using data from a severe springtime midlatitude squall line and a mild midlatitude winter storm monitored by a meteorological radar in Norman, Oklahoma.

  14. Early Warning Signals of Ecological Transitions: Methods for Spatial Patterns

    PubMed Central

    Brock, William A.; Carpenter, Stephen R.; Ellison, Aaron M.; Livina, Valerie N.; Seekell, David A.; Scheffer, Marten; van Nes, Egbert H.; Dakos, Vasilis

    2014-01-01

    A number of ecosystems can exhibit abrupt shifts between alternative stable states. Because of their important ecological and economic consequences, recent research has focused on devising early warning signals for anticipating such abrupt ecological transitions. In particular, theoretical studies show that changes in spatial characteristics of the system could provide early warnings of approaching transitions. However, the empirical validation of these indicators lag behind their theoretical developments. Here, we summarize a range of currently available spatial early warning signals, suggest potential null models to interpret their trends, and apply them to three simulated spatial data sets of systems undergoing an abrupt transition. In addition to providing a step-by-step methodology for applying these signals to spatial data sets, we propose a statistical toolbox that may be used to help detect approaching transitions in a wide range of spatial data. We hope that our methodology together with the computer codes will stimulate the application and testing of spatial early warning signals on real spatial data. PMID:24658137

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, U.; Riley, W. J.

    The spatial heterogeneity of land surfaces affects energy, moisture, and greenhouse gas exchanges with the atmosphere. However, representing the heterogeneity of terrestrial hydrological and biogeochemical processes in Earth system models (ESMs) remains a critical scientific challenge. We report the impact of spatial scaling on environmental controls, spatial structure, and statistical properties of soil organic carbon (SOC) stocks across the US state of Alaska. We used soil profile observations and environmental factors such as topography, climate, land cover types, and surficial geology to predict the SOC stocks at a 50 m spatial scale. These spatially heterogeneous estimates provide a data setmore » with reasonable fidelity to the observations at a sufficiently high resolution to examine the environmental controls on the spatial structure of SOC stocks. We upscaled both the predicted SOC stocks and environmental variables from finer to coarser spatial scales ( s = 100, 200, and 500 m and 1, 2, 5, and 10 km) and generated various statistical properties of SOC stock estimates. We found different environmental factors to be statistically significant predictors at different spatial scales. Only elevation, temperature, potential evapotranspiration, and scrub land cover types were significant predictors at all scales. The strengths of control (the median value of geographically weighted regression coefficients) of these four environmental variables on SOC stocks decreased with increasing scale and were accurately represented using mathematical functions ( R 2 = 0.83–0.97). The spatial structure of SOC stocks across Alaska changed with spatial scale. Although the variance (sill) and unstructured variability (nugget) of the calculated variograms of SOC stocks decreased exponentially with scale, the correlation length (range) remained relatively constant across scale. The variance of predicted SOC stocks decreased with spatial scale over the range of 50 m to ~ 500 m, and remained constant beyond this scale. The fitted exponential function accounted for 98 % of variability in the variance of SOC stocks. We found moderately accurate linear relationships between mean and higher-order moments of predicted SOC stocks ( R 2 ∼ 0.55–0.63). Current ESMs operate at coarse spatial scales (50–100 km), and are therefore unable to represent environmental controllers and spatial heterogeneity of high-latitude SOC stocks consistent with observations. We conclude that improved understanding of the scaling behavior of environmental controls and statistical properties of SOC stocks could improve ESM land model benchmarking and perhaps allow representation of spatial heterogeneity of biogeochemistry at scales finer than those currently resolved by ESMs.« less

  16. Turbulent solutions of equations of fluid motion

    NASA Technical Reports Server (NTRS)

    Deissler, R. G.

    1985-01-01

    Some turbulent solutions of the unaveraged Navier-Stokes equations (equations of fluid motion) are reviewed. Those equations are solved numerically in order to study the nonlinear physics of incompressible turbulent flow. The three components of the mean-square velocity fluctuations are initially equal for the conditions chosen. The resulting solutions show characteristics of turbulence, such as the linear and nonlinear excitation of small-scale fluctuations. For the stronger fluctuations the initially nonrandom flow develops into an apparently random turbulence. The cases considered include turbulence that is statistically homogeneous or inhomogeneous and isotropic or anisotropic. A statistically steady-state turbulence is obtained by using a spatially periodic body force. Various turbulence processes, including the transfer of energy between eddy sizes and between directional components and the production, dissipation, and spatial diffusion of turbulence, are considered. It is concluded that the physical processes occurring in turbulence can be profitably studied numerically.

  17. Significance tests for functional data with complex dependence structure.

    PubMed

    Staicu, Ana-Maria; Lahiri, Soumen N; Carroll, Raymond J

    2015-01-01

    We propose an L 2 -norm based global testing procedure for the null hypothesis that multiple group mean functions are equal, for functional data with complex dependence structure. Specifically, we consider the setting of functional data with a multilevel structure of the form groups-clusters or subjects-units, where the unit-level profiles are spatially correlated within the cluster, and the cluster-level data are independent. Orthogonal series expansions are used to approximate the group mean functions and the test statistic is estimated using the basis coefficients. The asymptotic null distribution of the test statistic is developed, under mild regularity conditions. To our knowledge this is the first work that studies hypothesis testing, when data have such complex multilevel functional and spatial structure. Two small-sample alternatives, including a novel block bootstrap for functional data, are proposed, and their performance is examined in simulation studies. The paper concludes with an illustration of a motivating experiment.

  18. Spatial prediction of landslide hazard using discriminant analysis and GIS

    Treesearch

    Peter V. Gorsevski; Paul Gessler; Randy B. Foltz

    2000-01-01

    Environmental attributes relevant for spatial prediction of landslides triggered by rain and snowmelt events were derived from digital elevation model (DEM). Those data in conjunction with statistics and geographic information system (GIS) provided a detailed basis for spatial prediction of landslide hazard. The spatial prediction of landslide hazard in this paper is...

  19. A book review of Spatial data analysis in ecology and agriculture using R

    USDA-ARS?s Scientific Manuscript database

    Spatial Data Analysis in Ecology and Agriculture Using R is a valuable resource to assist agricultural and ecological researchers with spatial data analyses using the R statistical software(www.r-project.org). Special emphasis is on spatial data sets; how-ever, the text also provides ample guidance ...

  20. Wavefront-guided versus wavefront-optimized laser in situ keratomileusis: contralateral comparative study.

    PubMed

    Padmanabhan, Prema; Mrochen, Michael; Basuthkar, Subam; Viswanathan, Deepa; Joseph, Roy

    2008-03-01

    To compare the outcomes of wavefront-guided and wavefront-optimized treatment in fellow eyes of patients having laser in situ keratomileusis (LASIK) for myopia. Medical and Vision Research Foundation, Tamil Nadu, India. This prospective comparative study comprised 27 patients who had wavefront-guided LASIK in 1 eye and wavefront-optimized LASIK in the fellow eye. The Hansatome (Bausch & Lomb) was used to create a superior-hinged flap and the Allegretto laser (WaveLight Laser Technologie AG), for photoablation. The Allegretto wave analyzer was used to measure ocular wavefront aberrations and the Functional Acuity Contrast Test chart, to measure contrast sensitivity before and 1 month after LASIK. The refractive and visual outcomes and the changes in aberrations and contrast sensitivity were compared between the 2 treatment modalities. One month postoperatively, 92% of eyes in the wavefront-guided group and 85% in the wavefront-optimized group had uncorrected visual acuity of 20/20 or better; 93% and 89%, respectively, had a postoperative spherical equivalent refraction of +/-0.50 diopter. The differences between groups were not statistically significant. Wavefront-guided LASIK induced less change in 18 of 22 higher-order Zernike terms than wavefront-optimized LASIK, with the change in positive spherical aberration the only statistically significant one (P= .01). Contrast sensitivity improved at the low and middle spatial frequencies (not statistically significant) and worsened significantly at high spatial frequencies after wavefront-guided LASIK; there was a statistically significant worsening at all spatial frequencies after wavefront-optimized LASIK. Although both wavefront-guided and wavefront-optimized LASIK gave excellent refractive correction results, the former induced less higher-order aberrations and was associated with better contrast sensitivity.

  1. Descriptive statistics and spatial distributions of geochemical variables associated with manganese oxide-rich phases in the northern Pacific

    USGS Publications Warehouse

    Botbol, Joseph Moses; Evenden, Gerald Ian

    1989-01-01

    Tables, graphs, and maps are used to portray the frequency characteristics and spatial distribution of manganese oxide-rich phase geochemical data, to characterize the northern Pacific in terms of publicly available nodule geochemical data, and to develop data portrayal methods that will facilitate data analysis. Source data are a subset of the Scripps Institute of Oceanography's Sediment Data Bank. The study area is bounded by 0° N., 40° N., 120° E., and 100° W. and is arbitrarily subdivided into 14-20°x20° geographic subregions. Frequency distributions of trace metals characterized in the original raw data are graphed as ogives, and salient parameters are tabulated. All variables are transformed to enrichment values relative to median concentration within their host subregions. Scatter plots of all pairs of original variables and their enrichment transforms are provided as an aid to the interpretation of correlations between variables. Gridded spatial distributions of all variables are portrayed as gray-scale maps. The use of tables and graphs to portray frequency statistics and gray-scale maps to portray spatial distributions is an effective way to prepare for and facilitate multivariate data analysis.

  2. Estimating Preferential Flow in Karstic Aquifers Using Statistical Mixed Models

    PubMed Central

    Anaya, Angel A.; Padilla, Ingrid; Macchiavelli, Raul; Vesper, Dorothy J.; Meeker, John D.; Alshawabkeh, Akram N.

    2013-01-01

    Karst aquifers are highly productive groundwater systems often associated with conduit flow. These systems can be highly vulnerable to contamination, resulting in a high potential for contaminant exposure to humans and ecosystems. This work develops statistical models to spatially characterize flow and transport patterns in karstified limestone and determines the effect of aquifer flow rates on these patterns. A laboratory-scale Geo-HydroBed model is used to simulate flow and transport processes in a karstic limestone unit. The model consists of stainless-steel tanks containing a karstified limestone block collected from a karst aquifer formation in northern Puerto Rico. Experimental work involves making a series of flow and tracer injections, while monitoring hydraulic and tracer response spatially and temporally. Statistical mixed models are applied to hydraulic data to determine likely pathways of preferential flow in the limestone units. The models indicate a highly heterogeneous system with dominant, flow-dependent preferential flow regions. Results indicate that regions of preferential flow tend to expand at higher groundwater flow rates, suggesting a greater volume of the system being flushed by flowing water at higher rates. Spatial and temporal distribution of tracer concentrations indicates the presence of conduit-like and diffuse flow transport in the system, supporting the notion of both combined transport mechanisms in the limestone unit. The temporal response of tracer concentrations at different locations in the model coincide with, and confirms the preferential flow distribution generated with the statistical mixed models used in the study. PMID:23802921

  3. DNA viewed as an out-of-equilibrium structure

    NASA Astrophysics Data System (ADS)

    Provata, A.; Nicolis, C.; Nicolis, G.

    2014-05-01

    The complexity of the primary structure of human DNA is explored using methods from nonequilibrium statistical mechanics, dynamical systems theory, and information theory. A collection of statistical analyses is performed on the DNA data and the results are compared with sequences derived from different stochastic processes. The use of χ2 tests shows that DNA can not be described as a low order Markov chain of order up to r =6. Although detailed balance seems to hold at the level of a binary alphabet, it fails when all four base pairs are considered, suggesting spatial asymmetry and irreversibility. Furthermore, the block entropy does not increase linearly with the block size, reflecting the long-range nature of the correlations in the human genomic sequences. To probe locally the spatial structure of the chain, we study the exit distances from a specific symbol, the distribution of recurrence distances, and the Hurst exponent, all of which show power law tails and long-range characteristics. These results suggest that human DNA can be viewed as a nonequilibrium structure maintained in its state through interactions with a constantly changing environment. Based solely on the exit distance distribution accounting for the nonequilibrium statistics and using the Monte Carlo rejection sampling method, we construct a model DNA sequence. This method allows us to keep both long- and short-range statistical characteristics of the native DNA data. The model sequence presents the same characteristic exponents as the natural DNA but fails to capture spatial correlations and point-to-point details.

  4. DNA viewed as an out-of-equilibrium structure.

    PubMed

    Provata, A; Nicolis, C; Nicolis, G

    2014-05-01

    The complexity of the primary structure of human DNA is explored using methods from nonequilibrium statistical mechanics, dynamical systems theory, and information theory. A collection of statistical analyses is performed on the DNA data and the results are compared with sequences derived from different stochastic processes. The use of χ^{2} tests shows that DNA can not be described as a low order Markov chain of order up to r=6. Although detailed balance seems to hold at the level of a binary alphabet, it fails when all four base pairs are considered, suggesting spatial asymmetry and irreversibility. Furthermore, the block entropy does not increase linearly with the block size, reflecting the long-range nature of the correlations in the human genomic sequences. To probe locally the spatial structure of the chain, we study the exit distances from a specific symbol, the distribution of recurrence distances, and the Hurst exponent, all of which show power law tails and long-range characteristics. These results suggest that human DNA can be viewed as a nonequilibrium structure maintained in its state through interactions with a constantly changing environment. Based solely on the exit distance distribution accounting for the nonequilibrium statistics and using the Monte Carlo rejection sampling method, we construct a model DNA sequence. This method allows us to keep both long- and short-range statistical characteristics of the native DNA data. The model sequence presents the same characteristic exponents as the natural DNA but fails to capture spatial correlations and point-to-point details.

  5. Statistical analysis of corn yields responding to climate variability at various spatio-temporal resolutions

    NASA Astrophysics Data System (ADS)

    Jiang, H.; Lin, T.

    2017-12-01

    Rain-fed corn production systems are subject to sub-seasonal variations of precipitation and temperature during the growing season. As each growth phase has varied inherent physiological process, plants necessitate different optimal environmental conditions during each phase. However, this temporal heterogeneity towards climate variability alongside the lifecycle of crops is often simplified and fixed as constant responses in large scale statistical modeling analysis. To capture the time-variant growing requirements in large scale statistical analysis, we develop and compare statistical models at various spatial and temporal resolutions to quantify the relationship between corn yield and weather factors for 12 corn belt states from 1981 to 2016. The study compares three spatial resolutions (county, agricultural district, and state scale) and three temporal resolutions (crop growth phase, monthly, and growing season) to characterize the effects of spatial and temporal variability. Our results show that the agricultural district model together with growth phase resolution can explain 52% variations of corn yield caused by temperature and precipitation variability. It provides a practical model structure balancing the overfitting problem in county specific model and weak explanation power in state specific model. In US corn belt, precipitation has positive impact on corn yield in growing season except for vegetative stage while extreme heat attains highest sensitivity from silking to dough phase. The results show the northern counties in corn belt area are less interfered by extreme heat but are more vulnerable to water deficiency.

  6. Spatial variability of soil moisture retrieved by SMOS satellite

    NASA Astrophysics Data System (ADS)

    Lukowski, Mateusz; Marczewski, Wojciech; Usowicz, Boguslaw; Rojek, Edyta; Slominski, Jan; Lipiec, Jerzy

    2015-04-01

    Standard statistical methods assume that the analysed variables are independent. Since the majority of the processes observed in the nature are continuous in space and time, this assumption introduces a significant limitation for understanding the examined phenomena. In classical approach, valuable information about the locations of examined observations is completely lost. However, there is a branch of statistics, called geostatistics, which is the study of random variables, but taking into account the space where they occur. A common example of so-called "regionalized variable" is soil moisture. Using in situ methods it is difficult to estimate soil moisture distribution because it is often significantly diversified. Thanks to the geostatistical methods, by employing semivariance analysis, it is possible to get the information about the nature of spatial dependences and their lengths. Since the Soil Moisture and Ocean Salinity mission launch in 2009, the estimation of soil moisture spatial distribution for regional up to continental scale started to be much easier. In this study, the SMOS L2 data for Central and Eastern Europe were examined. The statistical and geostatistical features of moisture distributions of this area were studied for selected natural soil phenomena for 2010-2014 including: freezing, thawing, rainfalls (wetting), drying and drought. Those soil water "states" were recognized employing ground data from the agro-meteorological network of ground-based stations SWEX and SMUDP2 data from SMOS. After pixel regularization, without any upscaling, the geostatistical methods were applied directly on Discrete Global Grid (15-km resolution) in ISEA 4H9 projection, on which SMOS observations are reported. Analysis of spatial distribution of SMOS soil moisture, carried out for each data set, in most cases did not show significant trends. It was therefore assumed that each of the examined distributions of soil moisture in the adopted scale satisfies ergodicity and quasi-stationarity assumptions, required for geostatistical analysis. The semivariograms examinations revealed that spatial dependences occurring in the surface soil moisture distributions for the selected area were more or less 200 km. The exception was the driest of the studied days, when the spatial correlations of soil moisture were not disturbed for a long time by any rainfall. Spatial correlation length on that day was about 400 km. Because of zonal character of frost, the spatial dependences in the examined surface soil moisture distributions during freezing/thawing found to be disturbed. Probably, the amount of water remains the same, but it is not detected by SMOS, hence analysing dielectric constant instead of soil moisture would be more appropriate. Some spatial relations of soil moisture and freezing distribution with existing maps of soil granulometric fractions and soil specific surface area for Poland have also been found. The work was partially funded under the ELBARA_PD (Penetration Depth) project No. 4000107897/13/NL/KML. ELBARA_PD project is funded by the Government of Poland through an ESA (European Space Agency) Contract under the PECS (Plan for European Cooperating States).

  7. Spatial modeling of households' knowledge about arsenic pollution in Bangladesh.

    PubMed

    Sarker, M Mizanur Rahman

    2012-04-01

    Arsenic in drinking water is an important public health issue in Bangladesh, which is affected by households' knowledge about arsenic threats from their drinking water. In this study, spatial statistical models were used to investigate the determinants and spatial dependence of households' knowledge about arsenic risk. The binary join matrix/binary contiguity matrix and inverse distance spatial weight matrix techniques are used to capture spatial dependence in the data. This analysis extends the spatial model by allowing spatial dependence to vary across divisions and regions. A positive spatial correlation was found in households' knowledge across neighboring districts at district, divisional and regional levels, but the strength of this spatial correlation varies considerably by spatial weight. Literacy rate, daily wage rate of agricultural labor, arsenic status, and percentage of red mark tube well usage in districts were found to contribute positively and significantly to households' knowledge. These findings have policy implications both at regional and national levels in mitigating the present arsenic crisis and to ensure arsenic-free water in Bangladesh. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. On the potential for the Partial Triadic Analysis to grasp the spatio-temporal variability of groundwater hydrochemistry

    NASA Astrophysics Data System (ADS)

    Gourdol, L.; Hissler, C.; Pfister, L.

    2012-04-01

    The Luxembourg sandstone aquifer is of major relevance for the national supply of drinking water in Luxembourg. The city of Luxembourg (20% of the country's population) gets almost 2/3 of its drinking water from this aquifer. As a consequence, the study of both the groundwater hydrochemistry, as well as its spatial and temporal variations, are considered as of highest priority. Since 2005, a monitoring network has been implemented by the Water Department of Luxembourg City, with a view to a more sustainable management of this strategic water resource. The data collected to date forms a large and complex dataset, describing spatial and temporal variations of many hydrochemical parameters. The data treatment issue is tightly connected to this kind of water monitoring programs and complex databases. Standard multivariate statistical techniques, such as principal components analysis and hierarchical cluster analysis, have been widely used as unbiased methods for extracting meaningful information from groundwater quality data and are now classically used in many hydrogeological studies, in particular to characterize temporal or spatial hydrochemical variations induced by natural and anthropogenic factors. But these classical multivariate methods deal with two-way matrices, usually parameters/sites or parameters/time, while often the dataset resulting from qualitative water monitoring programs should be seen as a datacube parameters/sites/time. Three-way matrices, such as the one we propose here, are difficult to handle and to analyse by classical multivariate statistical tools and thus should be treated with approaches dealing with three-way data structures. One possible analysis approach consists in the use of partial triadic analysis (PTA). The PTA was previously used with success in many ecological studies but never to date in the domain of hydrogeology. Applied to the dataset of the Luxembourg Sandstone aquifer, the PTA appears as a new promising statistical instrument for hydrogeologists, in particular to characterize temporal and spatial hydrochemical variations induced by natural and anthropogenic factors. This new approach for groundwater management offers potential for 1) identifying a common multivariate spatial structure, 2) untapping the different hydrochemical patterns and explaining their controlling factors and 3) analysing the temporal variability of this structure and grasping hydrochemical changes.

  9. Effects of population succession on demographic and genetic processes: predictions and tests in the daylily Hemerocallis thunbergii (Liliaceae).

    PubMed

    Chung, Mi Yoon; Nason, John D; Chung, Myong Gi

    2007-07-01

    Spatial genetic structure within plant populations is influenced by variation in demographic processes through space and time, including a population's successional status. To determine how demographic structure and fine-scale genetic structure (FSGS) change with stages in a population's successional history, we studied Hemerocallis thunbergii (Liliaceae), a nocturnal flowering and hawkmoth-pollinated herbaceous perennial with rapid population turnover dynamics. We examined nine populations assigned to three successive stages of population succession: expansion, maturation, and senescence. We developed stage-specific expectations for within-population demographic and genetic structure, and then for each population quantified the spatial aggregation of individuals and genotypes using spatial autocorrelation methods (nonaccumulative O-ring and kinship statistics, respectively), and at the landscape level measured inbreeding and genetic structure using Wright's F-statistics. Analyses using the O-ring statistic revealed significant aggregation of individuals at short spatial scales in expanding and senescing populations, in particular, which may reflect restricted seed dispersal around maternal individuals combined with relatively low local population densities at these stages. Significant FSGS was found for three of four expanding, no mature, and only one senescing population, a pattern generally consistent with expectations of successional processes. Although allozyme genetic diversity was high within populations (mean %P = 78.9 and H(E) = 0.281), landscape-level differentiation among sites was also high (F(ST) = 0.166) and all populations exhibited a significant deficit of heterozygotes relative to Hardy-Weinberg expectations (range F = 0.201-0.424, mean F(IS) = 0.321). Within populations, F was not correlated with the degree of FSGS, thus suggesting inbreeding due primarily to selfing as opposed to mating among close relatives in spatially structured populations. Our results demonstrate considerable variation in the spatial distribution of individuals and patterns and magnitude of FSGS in H. thunbergii populations across the landscape. This variation is generally consistent with succession-stage-specific differences in ecological processes operating within these populations.

  10. Spatiotemporal clusters of malaria cases at village level, northwest Ethiopia.

    PubMed

    Alemu, Kassahun; Worku, Alemayehu; Berhane, Yemane; Kumie, Abera

    2014-06-06

    Malaria attacks are not evenly distributed in space and time. In highland areas with low endemicity, malaria transmission is highly variable and malaria acquisition risk for individuals is unevenly distributed even within a neighbourhood. Characterizing the spatiotemporal distribution of malaria cases in high-altitude villages is necessary to prioritize the risk areas and facilitate interventions. Spatial scan statistics using the Bernoulli method were employed to identify spatial and temporal clusters of malaria in high-altitude villages. Daily malaria data were collected, using a passive surveillance system, from patients visiting local health facilities. Georeference data were collected at villages using hand-held global positioning system devices and linked to patient data. Bernoulli model using Bayesian approaches and Marcov Chain Monte Carlo (MCMC) methods were used to identify the effects of factors on spatial clusters of malaria cases. The deviance information criterion (DIC) was used to assess the goodness-of-fit of the different models. The smaller the DIC, the better the model fit. Malaria cases were clustered in both space and time in high-altitude villages. Spatial scan statistics identified a total of 56 spatial clusters of malaria in high-altitude villages. Of these, 39 were the most likely clusters (LLR = 15.62, p < 0.00001) and 17 were secondary clusters (LLR = 7.05, p < 0.03). The significant most likely temporal malaria clusters were detected between August and December (LLR = 17.87, p < 0.001). Travel away home, males and age above 15 years had statistically significant effect on malaria clusters at high-altitude villages. The study identified spatial clusters of malaria cases occurring at high elevation villages within the district. A patient who travelled away from home to a malaria-endemic area might be the most probable source of malaria infection in a high-altitude village. Malaria interventions in high altitude villages should address factors associated with malaria clustering.

  11. Accounting for rate instability and spatial patterns in the boundary analysis of cancer mortality maps

    PubMed Central

    Goovaerts, Pierre

    2006-01-01

    Boundary analysis of cancer maps may highlight areas where causative exposures change through geographic space, the presence of local populations with distinct cancer incidences, or the impact of different cancer control methods. Too often, such analysis ignores the spatial pattern of incidence or mortality rates and overlooks the fact that rates computed from sparsely populated geographic entities can be very unreliable. This paper proposes a new methodology that accounts for the uncertainty and spatial correlation of rate data in the detection of significant edges between adjacent entities or polygons. Poisson kriging is first used to estimate the risk value and the associated standard error within each polygon, accounting for the population size and the risk semivariogram computed from raw rates. The boundary statistic is then defined as half the absolute difference between kriged risks. Its reference distribution, under the null hypothesis of no boundary, is derived through the generation of multiple realizations of the spatial distribution of cancer risk values. This paper presents three types of neutral models generated using methods of increasing complexity: the common random shuffle of estimated risk values, a spatial re-ordering of these risks, or p-field simulation that accounts for the population size within each polygon. The approach is illustrated using age-adjusted pancreatic cancer mortality rates for white females in 295 US counties of the Northeast (1970–1994). Simulation studies demonstrate that Poisson kriging yields more accurate estimates of the cancer risk and how its value changes between polygons (i.e. boundary statistic), relatively to the use of raw rates or local empirical Bayes smoother. When used in conjunction with spatial neutral models generated by p-field simulation, the boundary analysis based on Poisson kriging estimates minimizes the proportion of type I errors (i.e. edges wrongly declared significant) while the frequency of these errors is predicted well by the p-value of the statistical test. PMID:19023455

  12. Spatial Analysis of Hemorrhagic Fever with Renal Syndrome in Zibo City, China, 2009–2012

    PubMed Central

    Wang, Ling; Yang, Shuxia; Zhang, Ling; Cao, Haixia; Zhang, Yan; Hu, Haodong; Zhai, Shenyong

    2013-01-01

    Background Hemorrhagic fever with renal syndrome (HFRS) is highly endemic in mainland China, where human cases account for 90% of the total global cases. Zibo City is one of the most serious affected areas in Shandong Province China with the HFRS incidence increasing sharply from 2009 to 2012. However, the hotspots of HFRS in Zibo remained unclear. Thus, a spatial analysis was conducted with the aim to explore the spatial, spatial-temporal and seasonal patterns of HFRS in Zibo from 2009 to 2012, and to provide guidance for formulating regional prevention and control strategies. Methods The study was based on the reported cases of HFRS from the National Notifiable Disease Surveillance System. Annualized incidence maps and seasonal incidence maps were produced to analyze the spatial and seasonal distribution of HFRS in Zibo City. Then spatial scan statistics and space-time scan statistics were conducted to identify clusters of HFRS. Results There were 200 cases reported in Zibo City during the 4-year study period. One most likely cluster and one secondary cluster for high incidence of HFRS were identified by the space-time analysis. And the most likely cluster was found to exist at Yiyuan County in October to December 2012. The human infections in the fall and winter reflected a seasonal characteristic pattern of Hantaan virus (HTNV) transmission. The secondary cluster was detected at the center of Zibo in May to June 2009, presenting a seasonal characteristic of Seoul virus (SEOV) transmission. Conclusion To control and prevent HFRS in Zibo city, the comprehensive preventive strategy should be implemented in the southern areas of Zibo in autumn and in the northern areas of Zibo in spring. PMID:23840719

  13. A methodological approach for deriving regional crop rotations as basis for the assessment of the impact of agricultural strategies using soil erosion as example.

    PubMed

    Lorenz, Marco; Fürst, Christine; Thiel, Enrico

    2013-09-01

    Regarding increasing pressures by global societal and climate change, the assessment of the impact of land use and land management practices on land degradation and the related decrease in sustainable provision of ecosystem services gains increasing interest. Existing approaches to assess agricultural practices focus on the assessment of single crops or statistical data because spatially explicit information on practically applied crop rotations is mostly not available. This provokes considerable uncertainties in crop production models as regional specifics have to be neglected or cannot be considered in an appropriate way. In a case study in Saxony, we developed an approach to (i) derive representative regional crop rotations by combining different data sources and expert knowledge. This includes the integration of innovative crop sequences related to bio-energy production or organic farming and different soil tillage, soil management and soil protection techniques. Furthermore, (ii) we developed a regionalization approach for transferring crop rotations and related soil management strategies on the basis of statistical data and spatially explicit data taken from so called field blocks. These field blocks are the smallest spatial entity for which agricultural practices must be reported to apply for agricultural funding within the frame of the European Agricultural Fund for Rural Development (EAFRD) program. The information was finally integrated into the spatial decision support tool GISCAME to assess and visualize in spatially explicit manner the impact of alternative agricultural land use strategies on soil erosion risk and ecosystem services provision. Objective of this paper is to present the approach how to create spatially explicit information on agricultural management practices for a study area around Dresden, the capital of the German Federal State Saxony. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Time series evaluation of landscape dynamics using annual Landsat imagery and spatial statistical modeling: Evidence from the Phoenix metropolitan region

    NASA Astrophysics Data System (ADS)

    Fan, Chao; Myint, Soe W.; Rey, Sergio J.; Li, Wenwen

    2017-06-01

    Urbanization is a natural and social process involving simultaneous changes to the Earth's land systems, energy flow, demographics, and the economy. Understanding the spatiotemporal pattern of urbanization is increasingly important for policy formulation, decision making, and natural resource management. A combination of satellite remote sensing and patch-based models has been widely adopted to characterize landscape changes at various spatial and temporal scales. Nevertheless, the validity of this type of framework in identifying long-term changes, especially subtle or gradual land modifications is seriously challenged. In this paper, we integrate annual image time series, continuous spatial indices, and non-parametric trend analysis into a spatiotemporal study of landscape dynamics over the Phoenix metropolitan area from 1991 to 2010. We harness local indicators of spatial dependence and modified Mann-Kendall test to describe the monotonic trends in the quantity and spatial arrangement of two important land use land cover types: vegetation and built-up areas. Results suggest that declines in vegetation and increases in built-up areas are the two prevalent types of changes across the region. Vegetation increases mostly occur at the outskirts where new residential areas are developed from natural desert. A sizable proportion of vegetation declines and built-up increases are seen in the central and southeast part. Extensive land conversion from agricultural fields into urban land use is one important driver of vegetation declines. The xeriscaping practice also contributes to part of vegetation loss and an increasingly heterogeneous landscape. The quantitative framework proposed in this study provides a pathway to effective landscape mapping and change monitoring from a spatial statistical perspective.

  15. Zubarev's Nonequilibrium Statistical Operator Method in the Generalized Statistics of Multiparticle Systems

    NASA Astrophysics Data System (ADS)

    Glushak, P. A.; Markiv, B. B.; Tokarchuk, M. V.

    2018-01-01

    We present a generalization of Zubarev's nonequilibrium statistical operator method based on the principle of maximum Renyi entropy. In the framework of this approach, we obtain transport equations for the basic set of parameters of the reduced description of nonequilibrium processes in a classical system of interacting particles using Liouville equations with fractional derivatives. For a classical systems of particles in a medium with a fractal structure, we obtain a non-Markovian diffusion equation with fractional spatial derivatives. For a concrete model of the frequency dependence of a memory function, we obtain generalized Kettano-type diffusion equation with the spatial and temporal fractality taken into account. We present a generalization of nonequilibrium thermofield dynamics in Zubarev's nonequilibrium statistical operator method in the framework of Renyi statistics.

  16. OdorMapComparer: an application for quantitative analyses and comparisons of fMRI brain odor maps.

    PubMed

    Liu, Nian; Xu, Fuqiang; Miller, Perry L; Shepherd, Gordon M

    2007-01-01

    Brain odor maps are reconstructed flat images that describe the spatial activity patterns in the glomerular layer of the olfactory bulbs in animals exposed to different odor stimuli. We have developed a software application, OdorMapComparer, to carry out quantitative analyses and comparisons of the fMRI odor maps. This application is an open-source window program that first loads two odor map images being compared. It allows image transformations including scaling, flipping, rotating, and warping so that the two images can be appropriately aligned to each other. It performs simple subtraction, addition, and average of signals in the two images. It also provides comparative statistics including the normalized correlation (NC) and spatial correlation coefficient. Experimental studies showed that the rodent fMRI odor maps for aliphatic aldehydes displayed spatial activity patterns that are similar in gross outlines but somewhat different in specific subregions. Analyses with OdorMapComparer indicate that the similarity between odor maps decreases with increasing difference in the length of carbon chains. For example, the map of butanal is more closely related to that of pentanal (with a NC = 0.617) than to that of octanal (NC = 0.082), which is consistent with animal behavioral studies. The study also indicates that fMRI odor maps are statistically odor-specific and repeatable across both the intra- and intersubject trials. OdorMapComparer thus provides a tool for quantitative, statistical analyses and comparisons of fMRI odor maps in a fashion that is integrated with the overall odor mapping techniques.

  17. A Review of the Statistical and Quantitative Methods Used to Study Alcohol-Attributable Crime.

    PubMed

    Fitterer, Jessica L; Nelson, Trisalyn A

    2015-01-01

    Modelling the relationship between alcohol consumption and crime generates new knowledge for crime prevention strategies. Advances in data, particularly data with spatial and temporal attributes, have led to a growing suite of applied methods for modelling. In support of alcohol and crime researchers we synthesized and critiqued existing methods of spatially and quantitatively modelling the effects of alcohol exposure on crime to aid method selection, and identify new opportunities for analysis strategies. We searched the alcohol-crime literature from 1950 to January 2014. Analyses that statistically evaluated or mapped the association between alcohol and crime were included. For modelling purposes, crime data were most often derived from generalized police reports, aggregated to large spatial units such as census tracts or postal codes, and standardized by residential population data. Sixty-eight of the 90 selected studies included geospatial data of which 48 used cross-sectional datasets. Regression was the prominent modelling choice (n = 78) though dependent on data many variations existed. There are opportunities to improve information for alcohol-attributable crime prevention by using alternative population data to standardize crime rates, sourcing crime information from non-traditional platforms (social media), increasing the number of panel studies, and conducting analysis at the local level (neighbourhood, block, or point). Due to the spatio-temporal advances in crime data, we expect a continued uptake of flexible Bayesian hierarchical modelling, a greater inclusion of spatial-temporal point pattern analysis, and shift toward prospective (forecast) modelling over small areas (e.g., blocks).

  18. A Review of the Statistical and Quantitative Methods Used to Study Alcohol-Attributable Crime

    PubMed Central

    Fitterer, Jessica L.; Nelson, Trisalyn A.

    2015-01-01

    Modelling the relationship between alcohol consumption and crime generates new knowledge for crime prevention strategies. Advances in data, particularly data with spatial and temporal attributes, have led to a growing suite of applied methods for modelling. In support of alcohol and crime researchers we synthesized and critiqued existing methods of spatially and quantitatively modelling the effects of alcohol exposure on crime to aid method selection, and identify new opportunities for analysis strategies. We searched the alcohol-crime literature from 1950 to January 2014. Analyses that statistically evaluated or mapped the association between alcohol and crime were included. For modelling purposes, crime data were most often derived from generalized police reports, aggregated to large spatial units such as census tracts or postal codes, and standardized by residential population data. Sixty-eight of the 90 selected studies included geospatial data of which 48 used cross-sectional datasets. Regression was the prominent modelling choice (n = 78) though dependent on data many variations existed. There are opportunities to improve information for alcohol-attributable crime prevention by using alternative population data to standardize crime rates, sourcing crime information from non-traditional platforms (social media), increasing the number of panel studies, and conducting analysis at the local level (neighbourhood, block, or point). Due to the spatio-temporal advances in crime data, we expect a continued uptake of flexible Bayesian hierarchical modelling, a greater inclusion of spatial-temporal point pattern analysis, and shift toward prospective (forecast) modelling over small areas (e.g., blocks). PMID:26418016

  19. Spatial distribution of the gamma-ray bursts at very high redshift

    NASA Astrophysics Data System (ADS)

    Mészáros, Attila

    2018-05-01

    The author - with his collaborators - already in years 1995-96 have shown - purely from the analyses of the observations - that the gamma-ray bursts (GRBs) can be till redshift 20. Since that time several other statistical studies of the spatial distribution of GRBs were provided. Remarkable conclusions concerning the star-formation rate and the validity of the cosmological principle were obtained about the regions of the cosmic dawn. In this contribution these efforts are surveyed.

  20. Downscaling SMAP Soil Moisture Using Geoinformation Data and Geostatistics

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Wang, L.

    2017-12-01

    Soil moisture is important for agricultural and hydrological studies. However, ground truth soil moisture data for wide area is difficult to achieve. Microwave remote sensing such as Soil Moisture Active Passive (SMAP) can offer a solution for wide coverage. However, existing global soil moisture products only provide observations at coarse spatial resolutions, which often limit their applications in regional agricultural and hydrological studies. This paper therefore aims to generate fine scale soil moisture information and extend soil moisture spatial availability. A statistical downscaling scheme is presented that incorporates multiple fine scale geoinformation data into the downscaling of coarse scale SMAP data in the absence of ground measurement data. Geoinformation data related to soil moisture patterns including digital elevation model (DEM), land surface temperature (LST), land use and normalized difference vegetation index (NDVI) at a fine scale are used as auxiliary environmental variables for downscaling SMAP data. Generalized additive model (GAM) and regression tree are first conducted to derive statistical relationships between SMAP data and auxiliary geoinformation data at an original coarse scale, and residuals are then downscaled to a finer scale via area-to-point kriging (ATPK) by accounting for the spatial correlation information of the input residuals. The results from standard validation scores as well as the triple collocation (TC) method against soil moisture in-situ measurements show that the downscaling method can significantly improve the spatial details of SMAP soil moisture while maintain the accuracy.

  1. Spatial, temporal and spatio-temporal clusters of measles incidence at the county level in Guangxi, China during 2004-2014: flexibly shaped scan statistics.

    PubMed

    Tang, Xianyan; Geater, Alan; McNeil, Edward; Deng, Qiuyun; Dong, Aihu; Zhong, Ge

    2017-04-04

    Outbreaks of measles re-emerged in Guangxi province during 2013-2014, where measles again became a major public health concern. A better understanding of the patterns of measles cases would help in identifying high-risk areas and periods for optimizing preventive strategies, yet these patterns remain largely unknown. Thus, this study aimed to determine the patterns of measles clusters in space, time and space-time at the county level over the period 2004-2014 in Guangxi. Annual data on measles cases and population sizes for each county were obtained from Guangxi CDC and Guangxi Bureau of Statistics, respectively. Epidemic curves and Kulldorff's temporal scan statistics were used to identify seasonal peaks and high-risk periods. Tango's flexible scan statistics were implemented to determine irregular spatial clusters. Spatio-temporal clusters in elliptical cylinder shapes were detected by Kulldorff's scan statistics. Population attributable risk percent (PAR%) of children aged ≤24 months was used to identify regions with a heavy burden of measles. Seasonal peaks occurred between April and June, and a temporal measles cluster was detected in 2014. Spatial clusters were identified in West, Southwest and North Central Guangxi. Three phases of spatio-temporal clusters with high relative risk were detected: Central Guangxi during 2004-2005, Midwest Guangxi in 2007, and West and Southwest Guangxi during 2013-2014. Regions with high PAR% were mainly clustered in West, Southwest, North and Central Guangxi. A temporal uptrend of measles incidence existed in Guangxi between 2010 and 2014, while downtrend during 2004-2009. The hotspots shifted from Central to West and Southwest Guangxi, regions overburdened with measles. Thus, intensifying surveillance of timeliness and completeness of routine vaccination and implementing supplementary immunization activities for measles should prioritized in these regions.

  2. Spatial study of homicide rates in the state of Bahia, Brazil, 1996-2010

    PubMed Central

    de Souza, Tiago Oliveira; Pinto, Liana Wernersbach; de Souza, Edinilsa Ramos

    2014-01-01

    OBJECTIVE To analyze the spatial distribution of homicide mortality in the state of Bahia, Northeastern Brazil. METHODS Ecological study of the 15 to 39-year old male population in the state of Bahia in the period 1996-2010. Data from the Mortality Information System, relating to homicide (X85-Y09) and population estimates from the Brazilian Institute of Geography and Statistics were used. The existence of spatial correlation, the presence of clusters and critical areas of the event studied were analyzed using Moran’s I Global and Local indices. RESULTS A non-random spatial pattern was observed in the distribution of rates, as was the presence of three clusters, the first in the north health district, the second in the eastern region, and the third cluster included townships in the south and the far south of Bahia. CONCLUSIONS The homicide mortality in the three different critical areas requires further studies that consider the socioeconomic, cultural and environmental characteristics in order to guide specific preventive and interventionist practices. PMID:25119942

  3. Pair correlation functions for identifying spatial correlation in discrete domains

    NASA Astrophysics Data System (ADS)

    Gavagnin, Enrico; Owen, Jennifer P.; Yates, Christian A.

    2018-06-01

    Identifying and quantifying spatial correlation are important aspects of studying the collective behavior of multiagent systems. Pair correlation functions (PCFs) are powerful statistical tools that can provide qualitative and quantitative information about correlation between pairs of agents. Despite the numerous PCFs defined for off-lattice domains, only a few recent studies have considered a PCF for discrete domains. Our work extends the study of spatial correlation in discrete domains by defining a new set of PCFs using two natural and intuitive definitions of distance for a square lattice: the taxicab and uniform metric. We show how these PCFs improve upon previous attempts and compare between the quantitative data acquired. We also extend our definitions of the PCF to other types of regular tessellation that have not been studied before, including hexagonal, triangular, and cuboidal. Finally, we provide a comprehensive PCF for any tessellation and metric, allowing investigation of spatial correlation in irregular lattices for which recognizing correlation is less intuitive.

  4. Retrospective space-time cluster analysis of whooping cough, re-emergence in Barcelona, Spain, 2000-2011.

    PubMed

    Solano, Rubén; Gómez-Barroso, Diana; Simón, Fernando; Lafuente, Sarah; Simón, Pere; Rius, Cristina; Gorrindo, Pilar; Toledo, Diana; Caylà, Joan A

    2014-05-01

    A retrospective, space-time study of whooping cough cases reported to the Public Health Agency of Barcelona, Spain between the years 2000 and 2011 is presented. It is based on 633 individual whooping cough cases and the 2006 population census from the Spanish National Statistics Institute, stratified by age and sex at the census tract level. Cluster identification was attempted using space-time scan statistic assuming a Poisson distribution and restricting temporal extent to 7 days and spatial distance to 500 m. Statistical calculations were performed with Stata 11 and SatScan and mapping was performed with ArcGis 10.0. Only clusters showing statistical significance (P <0.05) were mapped. The most likely cluster identified included five census tracts located in three neighbourhoods in central Barcelona during the week from 17 to 23 August 2011. This cluster included five cases compared with the expected level of 0.0021 (relative risk = 2436, P <0.001). In addition, 11 secondary significant space-time clusters were detected with secondary clusters occurring at different times and localizations. Spatial statistics is felt to be useful by complementing epidemiological surveillance systems through visualizing excess in the number of cases in space and time and thus increase the possibility of identifying outbreaks not reported by the surveillance system.

  5. Structure and covariance of cloud and rain water in marine stratocumulus

    NASA Astrophysics Data System (ADS)

    Witte, Mikael; Morrison, Hugh; Gettelman, Andrew

    2017-04-01

    Many state of the art cloud microphysics parameterizations in large-scale models use assumed probability density functions (pdfs) to represent subgrid scale variability of relevant resolved scale variables such as vertical velocity and cloud liquid water content (LWC). Integration over the assumed pdfs of small scale variability results in physically consistent prediction of nonlinear microphysical process rates and obviates the need to apply arbitrary tuning parameters to the calculated rates. In such parameterizations, the covariance of cloud and rain LWC is an important quantity for parameterizing the accretion process by which rain drops grow via collection of cloud droplets. This covariance has been diagnosed by other workers from a variety of observational and model datasets (Boutle et al., 2013; Larson and Griffin, 2013; Lebsock et al., 2013), but there is poor agreement in findings across the studies. Two key assumptions that may explain some of the discrepancies among past studies are 1) LWC (both cloud and rain) distributions are statistically stationary and 2) spatial structure may be neglected. Given the highly intermittent nature of precipitation and the fact that cloud LWC has been found to be poorly represented by stationary pdfs (e.g. Marshak et al., 1997), neither of the aforementioned assumptions are valid. Therefore covariance must be evaluated as a function of spatial scale without the assumption of stationary statistics (i.e. variability cannot be expressed as a fractional standard deviation, which necessitates well-defined first and second moments of the LWC distribution). The present study presents multifractal analyses of both rain and cloud LWC using aircraft data from the VOCALS-REx field campaign to illustrate the importance of spatial structure in microphysical parameterizations and extends the results of Boutle et al. (2013) to provide a parameterization of rain-cloud water covariance as a function of spatial scale without the assumption of statistical stationarity.

  6. Statistical Considerations of Data Processing in Giovanni Online Tool

    NASA Technical Reports Server (NTRS)

    Suhung, Shen; Leptoukh, G.; Acker, J.; Berrick, S.

    2005-01-01

    The GES DISC Interactive Online Visualization and Analysis Infrastructure (Giovanni) is a web-based interface for the rapid visualization and analysis of gridded data from a number of remote sensing instruments. The GES DISC currently employs several Giovanni instances to analyze various products, such as Ocean-Giovanni for ocean products from SeaWiFS and MODIS-Aqua; TOMS & OM1 Giovanni for atmospheric chemical trace gases from TOMS and OMI, and MOVAS for aerosols from MODIS, etc. (http://giovanni.gsfc.nasa.gov) Foremost among the Giovanni statistical functions is data averaging. Two aspects of this function are addressed here. The first deals with the accuracy of averaging gridded mapped products vs. averaging from the ungridded Level 2 data. Some mapped products contain mean values only; others contain additional statistics, such as number of pixels (NP) for each grid, standard deviation, etc. Since NP varies spatially and temporally, averaging with or without weighting by NP will be different. In this paper, we address differences of various weighting algorithms for some datasets utilized in Giovanni. The second aspect is related to different averaging methods affecting data quality and interpretation for data with non-normal distribution. The present study demonstrates results of different spatial averaging methods using gridded SeaWiFS Level 3 mapped monthly chlorophyll a data. Spatial averages were calculated using three different methods: arithmetic mean (AVG), geometric mean (GEO), and maximum likelihood estimator (MLE). Biogeochemical data, such as chlorophyll a, are usually considered to have a log-normal distribution. The study determined that differences between methods tend to increase with increasing size of a selected coastal area, with no significant differences in most open oceans. The GEO method consistently produces values lower than AVG and MLE. The AVG method produces values larger than MLE in some cases, but smaller in other cases. Further studies indicated that significant differences between AVG and MLE methods occurred in coastal areas where data have large spatial variations and a log-bimodal distribution instead of log-normal distribution.

  7. Biosocial correlates and spatial distribution of consanguinity in South America.

    PubMed

    Bronberg, Ruben; Gili, Juan; Gimenez, Lucas; Dipierri, Jose; Lopez Camelo, Jorge

    2016-05-01

    To analyze potential biosocial factors in consanguineous unions according to the level of consanguinity and its spatial distribution in South America. The data used came from the Latin American Collaborative Study of Congenital Malformations. Information on 126,213 nonmalformed newborns out of 6,014,749 births was used. This information was collected between 1967 and 2011 at 204 hospitals in 116 cities in 10 South American countries. The spatial scan statistic was performed under a model of nonhierarchical k-means segmentation, based on statistically significant clusters, areas with levels of high, medium, and low consanguinity were determined. Consanguinity in South America is heterogeneously distributed, with two groups of high consanguinity, in northwestern Venezuela and southeast of Brazil, and two clusters of low consanguinity located in the south of the continent, mainly Argentina. The socio-demographic factors associated with consanguinity influence the population structure in areas of high consanguinity. This study demonstrates that consanguinity in the South American continent is strongly associated with a greater magnitude of poverty in the area of high consanguinity. Am. J. Hum. Biol. 28:405-411, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  8. [Study on ecological suitability regionalization of Eucommia ulmoides in Guizhou].

    PubMed

    Kang, Chuan-Zhi; Wang, Qing-Qing; Zhou, Tao; Jiang, Wei-Ke; Xiao, Cheng-Hong; Xie, Yu

    2014-05-01

    To study the ecological suitability regionalization of Eucommia ulmoides, for selecting artificial planting base and high-quality industrial raw material purchase area of the herb in Guizhou. Based on the investigation of 14 Eucommia ulmoides producing areas, pinoresinol diglucoside content and ecological factors were obtained. Using spatial analysis method to carry on ecological suitability regionalization. Meanwhile, combining pinoresinol diglucoside content, the correlation of major active components and environmental factors were analyzed by statistical analysis. The most suitability planting area of Eucommia ulmoides was the northwest of Guizhou. The distribution of Eucommia ulmoides was mainly affected by the type and pH value of soil, and monthly precipitation. The spatial structure of major active components in Eucommia ulmoides were randomly distributed in global space, but had only one aggregation point which had a high positive correlation in local space. The major active components of Eucommia ulmoides had no correlation with altitude, longitude or latitude. Using the spatial analysis method and statistical analysis method, based on environmental factor and pinoresinol diglucoside content, the ecological suitability regionalization of Eucommia ulmoides can provide reference for the selection of suitable planting area, artificial planting base and directing production layout.

  9. Integrating the statistical analysis of spatial data in ecology

    Treesearch

    A. M. Liebhold; J. Gurevitch

    2002-01-01

    In many areas of ecology there is an increasing emphasis on spatial relationships. Often ecologists are interested in new ways of analyzing data with the objective of quantifying spatial patterns, and in designing surveys and experiments in light of the recognition that there may be underlying spatial pattern in biotic responses. In doing so, ecologists have adopted a...

  10. Impact of socioeconomic inequalities on geographic disparities in cancer incidence: comparison of methods for spatial disease mapping.

    PubMed

    Goungounga, Juste Aristide; Gaudart, Jean; Colonna, Marc; Giorgi, Roch

    2016-10-12

    The reliability of spatial statistics is often put into question because real spatial variations may not be found, especially in heterogeneous areas. Our objective was to compare empirically different cluster detection methods. We assessed their ability to find spatial clusters of cancer cases and evaluated the impact of the socioeconomic status (e.g., the Townsend index) on cancer incidence. Moran's I, the empirical Bayes index (EBI), and Potthoff-Whittinghill test were used to investigate the general clustering. The local cluster detection methods were: i) the spatial oblique decision tree (SpODT); ii) the spatial scan statistic of Kulldorff (SaTScan); and, iii) the hierarchical Bayesian spatial modeling (HBSM) in a univariate and multivariate setting. These methods were used with and without introducing the Townsend index of socioeconomic deprivation known to be related to the distribution of cancer incidence. Incidence data stemmed from the Cancer Registry of Isère and were limited to prostate, lung, colon-rectum, and bladder cancers diagnosed between 1999 and 2007 in men only. The study found a spatial heterogeneity (p < 0.01) and an autocorrelation for prostate (EBI = 0.02; p = 0.001), lung (EBI = 0.01; p = 0.019) and bladder (EBI = 0.007; p = 0.05) cancers. After introduction of the Townsend index, SaTScan failed in finding cancers clusters. This introduction changed the results obtained with the other methods. SpODT identified five spatial classes (p < 0.05): four in the Western and one in the Northern parts of the study area (standardized incidence ratios: 1.68, 1.39, 1.14, 1.12, and 1.16, respectively). In the univariate setting, the Bayesian smoothing method found the same clusters as the two other methods (RR >1.2). The multivariate HBSM found a spatial correlation between lung and bladder cancers (r = 0.6). In spatial analysis of cancer incidence, SpODT and HBSM may be used not only for cluster detection but also for searching for confounding or etiological factors in small areas. Moreover, the multivariate HBSM offers a flexible and meaningful modeling of spatial variations; it shows plausible previously unknown associations between various cancers.

  11. Noise spatial nonuniformity and the impact of statistical image reconstruction in CT myocardial perfusion imaging.

    PubMed

    Lauzier, Pascal Theriault; Tang, Jie; Speidel, Michael A; Chen, Guang-Hong

    2012-07-01

    To achieve high temporal resolution in CT myocardial perfusion imaging (MPI), images are often reconstructed using filtered backprojection (FBP) algorithms from data acquired within a short-scan angular range. However, the variation in the central angle from one time frame to the next in gated short scans has been shown to create detrimental partial scan artifacts when performing quantitative MPI measurements. This study has two main purposes. (1) To demonstrate the existence of a distinct detrimental effect in short-scan FBP, i.e., the introduction of a nonuniform spatial image noise distribution; this nonuniformity can lead to unexpectedly high image noise and streaking artifacts, which may affect CT MPI quantification. (2) To demonstrate that statistical image reconstruction (SIR) algorithms can be a potential solution to address the nonuniform spatial noise distribution problem and can also lead to radiation dose reduction in the context of CT MPI. Projection datasets from a numerically simulated perfusion phantom and an in vivo animal myocardial perfusion CT scan were used in this study. In the numerical phantom, multiple realizations of Poisson noise were added to projection data at each time frame to investigate the spatial distribution of noise. Images from all datasets were reconstructed using both FBP and SIR reconstruction algorithms. To quantify the spatial distribution of noise, the mean and standard deviation were measured in several regions of interest (ROIs) and analyzed across time frames. In the in vivo study, two low-dose scans at tube currents of 25 and 50 mA were reconstructed using FBP and SIR. Quantitative perfusion metrics, namely, the normalized upslope (NUS), myocardial blood volume (MBV), and first moment transit time (FMT), were measured for two ROIs and compared to reference values obtained from a high-dose scan performed at 500 mA. Images reconstructed using FBP showed a highly nonuniform spatial distribution of noise. This spatial nonuniformity led to large fluctuations in the temporal direction. In the numerical phantom study, the level of noise was shown to vary by as much as 87% within a given image, and as much as 110% between different time frames for a ROI far from isocenter. The spatially nonuniform noise pattern was shown to correlate with the source trajectory and the object structure. In contrast, images reconstructed using SIR showed a highly uniform spatial distribution of noise, leading to smaller unexpected noise fluctuations in the temporal direction when a short scan angular range was used. In the numerical phantom study, the noise varied by less than 37% within a given image, and by less than 20% between different time frames. Also, the noise standard deviation in SIR images was on average half of that of FBP images. In the in vivo studies, the deviation observed between quantitative perfusion metrics measured from low-dose scans and high-dose scans was mitigated when SIR was used instead of FBP to reconstruct images. (1) Images reconstructed using FBP suffered from nonuniform spatial noise levels. This nonuniformity is another manifestation of the detrimental effects caused by short-scan reconstruction in CT MPI. (2) Images reconstructed using SIR had a much lower and more uniform noise level and thus can be used as a potential solution to address the FBP nonuniformity. (3) Given the improvement in the accuracy of the perfusion metrics when using SIR, it may be desirable to use a statistical reconstruction framework to perform low-dose dynamic CT MPI.

  12. Noise spatial nonuniformity and the impact of statistical image reconstruction in CT myocardial perfusion imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lauzier, Pascal Theriault; Tang Jie; Speidel, Michael A.

    Purpose: To achieve high temporal resolution in CT myocardial perfusion imaging (MPI), images are often reconstructed using filtered backprojection (FBP) algorithms from data acquired within a short-scan angular range. However, the variation in the central angle from one time frame to the next in gated short scans has been shown to create detrimental partial scan artifacts when performing quantitative MPI measurements. This study has two main purposes. (1) To demonstrate the existence of a distinct detrimental effect in short-scan FBP, i.e., the introduction of a nonuniform spatial image noise distribution; this nonuniformity can lead to unexpectedly high image noise andmore » streaking artifacts, which may affect CT MPI quantification. (2) To demonstrate that statistical image reconstruction (SIR) algorithms can be a potential solution to address the nonuniform spatial noise distribution problem and can also lead to radiation dose reduction in the context of CT MPI. Methods: Projection datasets from a numerically simulated perfusion phantom and an in vivo animal myocardial perfusion CT scan were used in this study. In the numerical phantom, multiple realizations of Poisson noise were added to projection data at each time frame to investigate the spatial distribution of noise. Images from all datasets were reconstructed using both FBP and SIR reconstruction algorithms. To quantify the spatial distribution of noise, the mean and standard deviation were measured in several regions of interest (ROIs) and analyzed across time frames. In the in vivo study, two low-dose scans at tube currents of 25 and 50 mA were reconstructed using FBP and SIR. Quantitative perfusion metrics, namely, the normalized upslope (NUS), myocardial blood volume (MBV), and first moment transit time (FMT), were measured for two ROIs and compared to reference values obtained from a high-dose scan performed at 500 mA. Results: Images reconstructed using FBP showed a highly nonuniform spatial distribution of noise. This spatial nonuniformity led to large fluctuations in the temporal direction. In the numerical phantom study, the level of noise was shown to vary by as much as 87% within a given image, and as much as 110% between different time frames for a ROI far from isocenter. The spatially nonuniform noise pattern was shown to correlate with the source trajectory and the object structure. In contrast, images reconstructed using SIR showed a highly uniform spatial distribution of noise, leading to smaller unexpected noise fluctuations in the temporal direction when a short scan angular range was used. In the numerical phantom study, the noise varied by less than 37% within a given image, and by less than 20% between different time frames. Also, the noise standard deviation in SIR images was on average half of that of FBP images. In the in vivo studies, the deviation observed between quantitative perfusion metrics measured from low-dose scans and high-dose scans was mitigated when SIR was used instead of FBP to reconstruct images. Conclusions: (1) Images reconstructed using FBP suffered from nonuniform spatial noise levels. This nonuniformity is another manifestation of the detrimental effects caused by short-scan reconstruction in CT MPI. (2) Images reconstructed using SIR had a much lower and more uniform noise level and thus can be used as a potential solution to address the FBP nonuniformity. (3) Given the improvement in the accuracy of the perfusion metrics when using SIR, it may be desirable to use a statistical reconstruction framework to perform low-dose dynamic CT MPI.« less

  13. Noise spatial nonuniformity and the impact of statistical image reconstruction in CT myocardial perfusion imaging

    PubMed Central

    Lauzier, Pascal Thériault; Tang, Jie; Speidel, Michael A.; Chen, Guang-Hong

    2012-01-01

    Purpose: To achieve high temporal resolution in CT myocardial perfusion imaging (MPI), images are often reconstructed using filtered backprojection (FBP) algorithms from data acquired within a short-scan angular range. However, the variation in the central angle from one time frame to the next in gated short scans has been shown to create detrimental partial scan artifacts when performing quantitative MPI measurements. This study has two main purposes. (1) To demonstrate the existence of a distinct detrimental effect in short-scan FBP, i.e., the introduction of a nonuniform spatial image noise distribution; this nonuniformity can lead to unexpectedly high image noise and streaking artifacts, which may affect CT MPI quantification. (2) To demonstrate that statistical image reconstruction (SIR) algorithms can be a potential solution to address the nonuniform spatial noise distribution problem and can also lead to radiation dose reduction in the context of CT MPI. Methods: Projection datasets from a numerically simulated perfusion phantom and an in vivo animal myocardial perfusion CT scan were used in this study. In the numerical phantom, multiple realizations of Poisson noise were added to projection data at each time frame to investigate the spatial distribution of noise. Images from all datasets were reconstructed using both FBP and SIR reconstruction algorithms. To quantify the spatial distribution of noise, the mean and standard deviation were measured in several regions of interest (ROIs) and analyzed across time frames. In the in vivo study, two low-dose scans at tube currents of 25 and 50 mA were reconstructed using FBP and SIR. Quantitative perfusion metrics, namely, the normalized upslope (NUS), myocardial blood volume (MBV), and first moment transit time (FMT), were measured for two ROIs and compared to reference values obtained from a high-dose scan performed at 500 mA. Results: Images reconstructed using FBP showed a highly nonuniform spatial distribution of noise. This spatial nonuniformity led to large fluctuations in the temporal direction. In the numerical phantom study, the level of noise was shown to vary by as much as 87% within a given image, and as much as 110% between different time frames for a ROI far from isocenter. The spatially nonuniform noise pattern was shown to correlate with the source trajectory and the object structure. In contrast, images reconstructed using SIR showed a highly uniform spatial distribution of noise, leading to smaller unexpected noise fluctuations in the temporal direction when a short scan angular range was used. In the numerical phantom study, the noise varied by less than 37% within a given image, and by less than 20% between different time frames. Also, the noise standard deviation in SIR images was on average half of that of FBP images. In the in vivo studies, the deviation observed between quantitative perfusion metrics measured from low-dose scans and high-dose scans was mitigated when SIR was used instead of FBP to reconstruct images. Conclusions: (1) Images reconstructed using FBP suffered from nonuniform spatial noise levels. This nonuniformity is another manifestation of the detrimental effects caused by short-scan reconstruction in CT MPI. (2) Images reconstructed using SIR had a much lower and more uniform noise level and thus can be used as a potential solution to address the FBP nonuniformity. (3) Given the improvement in the accuracy of the perfusion metrics when using SIR, it may be desirable to use a statistical reconstruction framework to perform low-dose dynamic CT MPI. PMID:22830741

  14. Socio-Spatial Patterning of Off-Sale and On-Sale Alcohol Outlets in a Texas City

    PubMed Central

    Han, Daikwon; Gorman, Dennis M.

    2014-01-01

    Introduction and Aims To examine the socio-spatial patterning of off-sale and on-sale alcohol outlets following a policy change that ended prohibition of off-sale outlets in Lubbock, Texas. Design and Methods The spatial patterning of alcohol outlets by licensing type was examined using the k-function difference (D statistic) to compare the relative degree of spatial aggregation of the two types of alcohol outlets and by the spatial scan statistic to identify statistically significant geographic clusters of outlets. The sociodemographic characteristics of the areas containing clusters of outlets were compared to the rest of the city. In addition, the socioeconomic characteristics of census block groups with and without existing on-sale outlets were compared, as were the socioeconomic characteristics of census block groups with and without the newly issued off-sale licenses. Results The existing on-sale premises in Lubbock and the newly established off-sale premises introduced as a result of the 2009 policy change displayed different spatial patterns, with the latter being more spatially dispersed. A large cluster of on-sale outlets identified in the north-east of the city was located in a socially and economically disadvantaged area of the city. Discussion and Conclusion The findings support the view that it is important to understand the local context of deprivation within a city when examining the location of alcohol outlets and add to the existing research by drawing attention to the importance of geographic scale in assessing such relationships. PMID:24320205

  15. Socio-spatial patterning of off-sale and on-sale alcohol outlets in a Texas city.

    PubMed

    Han, Daikwon; Gorman, Dennis M

    2014-03-01

    To examine the socio-spatial patterning of off-sale and on-sale alcohol outlets following a policy change that ended prohibition of off-sale outlets in Lubbock, Texas. The spatial patterning of alcohol outlets by licensing type was examined using the k-function difference (D statistic) to compare the relative degree of spatial aggregation of the two types of alcohol outlets and by the spatial scan statistic to identify statistically significant geographic clusters of outlets. The sociodemographic characteristics of the areas containing clusters of outlets were compared with the rest of the city. In addition, the socioeconomic characteristics of census block groups with and without existing on-sale outlets were compared, as were the socioeconomic characteristics of census block groups with and without the newly issued off-sale licenses. The existing on-sale premises in Lubbock and the newly established off-sale premises introduced as a result of the 2009 policy change displayed different spatial patterns, with the latter being more spatially dispersed. A large cluster of on-sale outlets identified in the north-east of the city was located in a socially and economically disadvantaged area of the city. The findings support the view that it is important to understand the local context of deprivation within a city when examining the location of alcohol outlets and add to the existing research by drawing attention to the importance of geographic scale in assessing such relationships. © 2013 Australasian Professional Society on Alcohol and other Drugs.

  16. BATMAN: Bayesian Technique for Multi-image Analysis

    NASA Astrophysics Data System (ADS)

    Casado, J.; Ascasibar, Y.; García-Benito, R.; Guidi, G.; Choudhury, O. S.; Bellocchi, E.; Sánchez, S. F.; Díaz, A. I.

    2017-04-01

    This paper describes the Bayesian Technique for Multi-image Analysis (BATMAN), a novel image-segmentation technique based on Bayesian statistics that characterizes any astronomical data set containing spatial information and performs a tessellation based on the measurements and errors provided as input. The algorithm iteratively merges spatial elements as long as they are statistically consistent with carrying the same information (I.e. identical signal within the errors). We illustrate its operation and performance with a set of test cases including both synthetic and real integral-field spectroscopic data. The output segmentations adapt to the underlying spatial structure, regardless of its morphology and/or the statistical properties of the noise. The quality of the recovered signal represents an improvement with respect to the input, especially in regions with low signal-to-noise ratio. However, the algorithm may be sensitive to small-scale random fluctuations, and its performance in presence of spatial gradients is limited. Due to these effects, errors may be underestimated by as much as a factor of 2. Our analysis reveals that the algorithm prioritizes conservation of all the statistically significant information over noise reduction, and that the precise choice of the input data has a crucial impact on the results. Hence, the philosophy of BaTMAn is not to be used as a 'black box' to improve the signal-to-noise ratio, but as a new approach to characterize spatially resolved data prior to its analysis. The source code is publicly available at http://astro.ft.uam.es/SELGIFS/BaTMAn.

  17. Digital spatial data for observed, predicted, and misclassification errors for observations in the training dataset for nitrate and arsenic concentrations in basin-fill aquifers in the Southwest Principal Aquifers study area

    USGS Publications Warehouse

    McKinney, Tim S.; Anning, David W.

    2012-01-01

    This product "Digital spatial data for observed, predicted, and misclassification errors for observations in the training dataset for nitrate and arsenic concentrations in basin-fill aquifers in the Southwest Principal Aquifers study area" is a 1:250,000-scale point spatial dataset developed as part of a regional Southwest Principal Aquifers (SWPA) study (Anning and others, 2012). The study examined the vulnerability of basin-fill aquifers in the southwestern United States to nitrate contamination and arsenic enrichment. Statistical models were developed by using the random forest classifier algorithm to predict concentrations of nitrate and arsenic across a model grid that represents local- and basin-scale measures of source, aquifer susceptibility, and geochemical conditions.

  18. Scaling field data to calibrate and validate moderate spatial resolution remote sensing models

    USGS Publications Warehouse

    Baccini, A.; Friedl, M.A.; Woodcock, C.E.; Zhu, Z.

    2007-01-01

    Validation and calibration are essential components of nearly all remote sensing-based studies. In both cases, ground measurements are collected and then related to the remote sensing observations or model results. In many situations, and particularly in studies that use moderate resolution remote sensing, a mismatch exists between the sensor's field of view and the scale at which in situ measurements are collected. The use of in situ measurements for model calibration and validation, therefore, requires a robust and defensible method to spatially aggregate ground measurements to the scale at which the remotely sensed data are acquired. This paper examines this challenge and specifically considers two different approaches for aggregating field measurements to match the spatial resolution of moderate spatial resolution remote sensing data: (a) landscape stratification; and (b) averaging of fine spatial resolution maps. The results show that an empirically estimated stratification based on a regression tree method provides a statistically defensible and operational basis for performing this type of procedure. 

  19. From medium heterogeneity to flow and transport: A time-domain random walk approach

    NASA Astrophysics Data System (ADS)

    Hakoun, V.; Comolli, A.; Dentz, M.

    2017-12-01

    The prediction of flow and transport processes in heterogeneous porous media is based on the qualitative and quantitative understanding of the interplay between 1) spatial variability of hydraulic conductivity, 2) groundwater flow and 3) solute transport. Using a stochastic modeling approach, we study this interplay through direct numerical simulations of Darcy flow and advective transport in heterogeneous media. First, we study flow in correlated hydraulic permeability fields and shed light on the relationship between the statistics of log-hydraulic conductivity, a medium attribute, and the flow statistics. Second, we determine relationships between Eulerian and Lagrangian velocity statistics, this means, between flow and transport attributes. We show how Lagrangian statistics and thus transport behaviors such as late particle arrival times are influenced by the medium heterogeneity on one hand and the initial particle velocities on the other. We find that equidistantly sampled Lagrangian velocities can be described by a Markov process that evolves on the characteristic heterogeneity length scale. We employ a stochastic relaxation model for the equidistantly sampled particle velocities, which is parametrized by the velocity correlation length. This description results in a time-domain random walk model for the particle motion, whose spatial transitions are characterized by the velocity correlation length and temporal transitions by the particle velocities. This approach relates the statistical medium and flow properties to large scale transport, and allows for conditioning on the initial particle velocities and thus to the medium properties in the injection region. The approach is tested against direct numerical simulations.

  20. cluster trials v. 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, John; Castillo, Andrew

    2016-09-21

    This software contains a set of python modules – input, search, cluster, analysis; these modules read input files containing spatial coordinates and associated attributes which can be used to perform nearest neighbor search (spatial indexing via kdtree), cluster analysis/identification, and calculation of spatial statistics for analysis.

  1. Nonstationarity RC Workshop Report: Nonstationary Weather Patterns and Extreme Events Informing Design and Planning for Long-Lived Infrastructure

    DTIC Science & Technology

    2017-11-01

    magnitude, intensity, and seasonality of climate. For infrastructure projects, relevant design life often exceeds 30 years—a period of time of...uncertainty about future statistical properties of climate at time and spatial scales required for planning and design purposes. Information...about future statistical properties of climate at time and spatial scales required for planning and design , and for assessing future operational

  2. Hypothesis Testing Using Spatially Dependent Heavy Tailed Multisensor Data

    DTIC Science & Technology

    2014-12-01

    Office of Research 113 Bowne Hall Syracuse, NY 13244 -1200 ABSTRACT HYPOTHESIS TESTING USING SPATIALLY DEPENDENT HEAVY-TAILED MULTISENSOR DATA Report...consistent with the null hypothesis of linearity and can be used to estimate the distribution of a test statistic that can discrimi- nate between the null... Test for nonlinearity. Histogram is generated using the surrogate data. The statistic of the original time series is represented by the solid line

  3. Cluster Detection Tests in Spatial Epidemiology: A Global Indicator for Performance Assessment

    PubMed Central

    Guttmann, Aline; Li, Xinran; Feschet, Fabien; Gaudart, Jean; Demongeot, Jacques; Boire, Jean-Yves; Ouchchane, Lemlih

    2015-01-01

    In cluster detection of disease, the use of local cluster detection tests (CDTs) is current. These methods aim both at locating likely clusters and testing for their statistical significance. New or improved CDTs are regularly proposed to epidemiologists and must be subjected to performance assessment. Because location accuracy has to be considered, performance assessment goes beyond the raw estimation of type I or II errors. As no consensus exists for performance evaluations, heterogeneous methods are used, and therefore studies are rarely comparable. A global indicator of performance, which assesses both spatial accuracy and usual power, would facilitate the exploration of CDTs behaviour and help between-studies comparisons. The Tanimoto coefficient (TC) is a well-known measure of similarity that can assess location accuracy but only for one detected cluster. In a simulation study, performance is measured for many tests. From the TC, we here propose two statistics, the averaged TC and the cumulated TC, as indicators able to provide a global overview of CDTs performance for both usual power and location accuracy. We evidence the properties of these two indicators and the superiority of the cumulated TC to assess performance. We tested these indicators to conduct a systematic spatial assessment displayed through performance maps. PMID:26086911

  4. Spatial temporal clustering for hotspot using kulldorff scan statistic method (KSS): A case in Riau Province

    NASA Astrophysics Data System (ADS)

    Hudjimartsu, S. A.; Djatna, T.; Ambarwari, A.; Apriliantono

    2017-01-01

    The forest fires in Indonesia occurs frequently in the dry season. Almost all the causes of forest fires are caused by the human activity itself. The impact of forest fires is the loss of biodiversity, pollution hazard and harm the economy of surrounding communities. To prevent fires required the method, one of them with spatial temporal clustering. Spatial temporal clustering formed grouping data so that the results of these groupings can be used as initial information on fire prevention. To analyze the fires, used hotspot data as early indicator of fire spot. Hotspot data consists of spatial and temporal dimensions can be processed using the Spatial Temporal Clustering with Kulldorff Scan Statistic (KSS). The result of this research is to the effectiveness of KSS method to cluster spatial hotspot in a case within Riau Province and produces two types of clusters, most cluster and secondary cluster. This cluster can be used as an early fire warning information.

  5. Built environment and Property Crime in Seattle, 1998-2000: A Bayesian Analysis.

    PubMed

    Matthews, Stephen A; Yang, Tse-Chuan; Hayslett-McCall, Karen L; Ruback, R Barry

    2010-06-01

    The past decade has seen a rapid growth in the use of a spatial perspective in studies of crime. In part this growth has been driven by the availability of georeferenced data, and the tools to analyze and visualize them: geographic information systems (GIS), spatial analysis, and spatial statistics. In this paper we use exploratory spatial data analysis (ESDA) tools and Bayesian models to help better understand the spatial patterning and predictors of property crime in Seattle, Washington for 1998-2000, including a focus on built environment variables. We present results for aggregate property crime data as well as models for specific property crime types: residential burglary, nonresidential burglary, theft, auto theft, and arson. ESDA confirms the presence of spatial clustering of property crime and we seek to explain these patterns using spatial Poisson models implemented in WinBUGS. Our results indicate that built environment variables were significant predictors of property crime, especially the presence of a highway on auto theft and burglary.

  6. How noise and coupling influence leading indicators of population extinction in a spatially extended ecological system.

    PubMed

    O'Regan, Suzanne M

    2018-12-01

    Anticipating critical transitions in spatially extended systems is a key topic of interest to ecologists. Gradually declining metapopulations are an important example of a spatially extended biological system that may exhibit a critical transition. Theory for spatially extended systems approaching extinction that accounts for environmental stochasticity and coupling is currently lacking. Here, we develop spatially implicit two-patch models with additive and multiplicative forms of environmental stochasticity that are slowly forced through population collapse, through changing environmental conditions. We derive patch-specific expressions for candidate indicators of extinction and test their performance via a simulation study. Coupling and spatial heterogeneities decrease the magnitude of the proposed indicators in coupled populations relative to isolated populations, and the noise regime and the degree of coupling together determine trends in summary statistics. This theory may be readily applied to other spatially extended ecological systems, such as coupled infectious disease systems on the verge of elimination.

  7. Built environment and Property Crime in Seattle, 1998–2000: A Bayesian Analysis

    PubMed Central

    Matthews, Stephen A.; Yang, Tse-chuan; Hayslett-McCall, Karen L.; Ruback, R. Barry

    2014-01-01

    The past decade has seen a rapid growth in the use of a spatial perspective in studies of crime. In part this growth has been driven by the availability of georeferenced data, and the tools to analyze and visualize them: geographic information systems (GIS), spatial analysis, and spatial statistics. In this paper we use exploratory spatial data analysis (ESDA) tools and Bayesian models to help better understand the spatial patterning and predictors of property crime in Seattle, Washington for 1998–2000, including a focus on built environment variables. We present results for aggregate property crime data as well as models for specific property crime types: residential burglary, nonresidential burglary, theft, auto theft, and arson. ESDA confirms the presence of spatial clustering of property crime and we seek to explain these patterns using spatial Poisson models implemented in WinBUGS. Our results indicate that built environment variables were significant predictors of property crime, especially the presence of a highway on auto theft and burglary. PMID:24737924

  8. Mapping extreme rainfall in the Northwest Portugal region: statistical analysis and spatial modelling

    NASA Astrophysics Data System (ADS)

    Santos, Monica; Fragoso, Marcelo

    2010-05-01

    Extreme precipitation events are one of the causes of natural hazards, such as floods and landslides, making its investigation so important, and this research aims to contribute to the study of the extreme rainfall patterns in a Portuguese mountainous area. The study area is centred on the Arcos de Valdevez county, located in the northwest region of Portugal, the rainiest of the country, with more than 3000 mm of annual rainfall at the Peneda-Gerês mountain system. This work focus on two main subjects related with the precipitation variability on the study area. First, a statistical analysis of several precipitation parameters is carried out, using daily data from 17 rain-gauges with a complete record for the 1960-1995 period. This approach aims to evaluate the main spatial contrasts regarding different aspects of the rainfall regime, described by ten parameters and indices of precipitation extremes (e.g. mean annual precipitation, the annual frequency of precipitation days, wet spells durations, maximum daily precipitation, maximum of precipitation in 30 days, number of days with rainfall exceeding 100 mm and estimated maximum daily rainfall for a return period of 100 years). The results show that the highest precipitation amounts (from annual to daily scales) and the higher frequency of very abundant rainfall events occur in the Serra da Peneda and Gerês mountains, opposing to the valleys of the Lima, Minho and Vez rivers, with lower precipitation amounts and less frequent heavy storms. The second purpose of this work is to find a method of mapping extreme rainfall in this mountainous region, investigating the complex influence of the relief (e.g. elevation, topography) on the precipitation patterns, as well others geographical variables (e.g. distance from coast, latitude), applying tested geo-statistical techniques (Goovaerts, 2000; Diodato, 2005). Models of linear regression were applied to evaluate the influence of different geographical variables (altitude, latitude, distance from sea and distance to the highest orographic barrier) on the rainfall behaviours described by the studied variables. The techniques of spatial interpolation evaluated include univariate and multivariate methods: cokriging, kriging, IDW (inverse distance weighted) and multiple linear regression. Validation procedures were used, assessing the estimated errors in the analysis of descriptive statistics of the models. Multiple linear regression models produced satisfactory results in relation to 70% of the rainfall parameters, suggested by lower average percentage of error. However, the results also demonstrates that there is no an unique and ideal model, depending on the rainfall parameter in consideration. Probably, the unsatisfactory results obtained in relation to some rainfall parameters was motivated by constraints as the spatial complexity of the precipitation patterns, as well as to the deficient spatial coverage of the territory by the rain-gauges network. References Diodato, N. (2005). The influence of topographic co-variables on the spatial variability of precipitation over small regions of complex terrain. Internacional Journal of Climatology, 25(3), 351-363. Goovaerts, P. (2000). Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of Hydrology, 228, 113 - 129.

  9. Spatiotemporal dynamics of the Southern California Asian citrus psyllid (Diaphorina citri) invasion.

    PubMed

    Bayles, Brett R; Thomas, Shyam M; Simmons, Gregory S; Grafton-Cardwell, Elizabeth E; Daugherty, Mathew P

    2017-01-01

    Biological invasions are governed by spatial processes that tend to be distributed in non-random ways across landscapes. Characterizing the spatial and temporal heterogeneities of the introduction, establishment, and spread of non-native insect species is a key aspect of effectively managing their geographic expansion. The Asian citrus psyllid (Diaphorina citri), a vector of the bacterium associated with huanglongbing (HLB), poses a serious threat to commercial and residential citrus trees. In 2008, D. citri first began expanding northward from Mexico into parts of Southern California. Using georeferenced D. citri occurrence data from 2008-2014, we sought to better understand the extent of the geographic expansion of this invasive vector species. Our objectives were to: 1) describe the spatial and temporal distribution of D. citri in Southern California, 2) identify the locations of statistically significant D. citri hotspots, and 3) quantify the dynamics of anisotropic spread. We found clear evidence that the spatial and temporal distribution of D. citri in Southern California is non-random. Further, we identified the existence of statistically significant hotspots of D. citri occurrence and described the anisotropic dispersion across the Southern California landscape. For example, the dominant hotspot surrounding Los Angeles showed rapid and strongly asymmetric spread to the south and east. Our study demonstrates the feasibility of quantitative invasive insect risk assessment with the application of a spatial epidemiology framework.

  10. Spatiotemporal dynamics of the Southern California Asian citrus psyllid (Diaphorina citri) invasion

    PubMed Central

    Thomas, Shyam M.; Simmons, Gregory S.; Grafton-Cardwell, Elizabeth E.; Daugherty, Mathew P.

    2017-01-01

    Biological invasions are governed by spatial processes that tend to be distributed in non-random ways across landscapes. Characterizing the spatial and temporal heterogeneities of the introduction, establishment, and spread of non-native insect species is a key aspect of effectively managing their geographic expansion. The Asian citrus psyllid (Diaphorina citri), a vector of the bacterium associated with huanglongbing (HLB), poses a serious threat to commercial and residential citrus trees. In 2008, D. citri first began expanding northward from Mexico into parts of Southern California. Using georeferenced D. citri occurrence data from 2008–2014, we sought to better understand the extent of the geographic expansion of this invasive vector species. Our objectives were to: 1) describe the spatial and temporal distribution of D. citri in Southern California, 2) identify the locations of statistically significant D. citri hotspots, and 3) quantify the dynamics of anisotropic spread. We found clear evidence that the spatial and temporal distribution of D. citri in Southern California is non-random. Further, we identified the existence of statistically significant hotspots of D. citri occurrence and described the anisotropic dispersion across the Southern California landscape. For example, the dominant hotspot surrounding Los Angeles showed rapid and strongly asymmetric spread to the south and east. Our study demonstrates the feasibility of quantitative invasive insect risk assessment with the application of a spatial epidemiology framework. PMID:28278188

  11. Using a cross section to train veterinary students to visualize anatomical structures in three dimensions

    NASA Astrophysics Data System (ADS)

    Provo, Judy; Lamar, Carlton; Newby, Timothy

    2002-01-01

    A cross section was used to enhance three-dimensional knowledge of anatomy of the canine head. All veterinary students in two successive classes (n = 124) dissected the head; experimental groups also identified structures on a cross section of the head. A test assessing spatial knowledge of the head generated 10 dependent variables from two administrations. The test had content validity and statistically significant interrater and test-retest reliability. A live-dog examination generated one additional dependent variable. Analysis of covariance controlling for performance on course examinations and quizzes revealed no treatment effect. Including spatial skill as a third covariate revealed a statistically significant effect of spatial skill on three dependent variables. Men initially had greater spatial skill than women, but spatial skills were equal after 8 months. A qualitative analysis showed the positive impact of this experience on participants. Suggestions for improvement and future research are discussed.

  12. Spatial and temporal changes in household structure locations using high-resolution satellite imagery for population assessment: an analysis in southern Zambia, 2006-2011.

    PubMed

    Shields, Timothy; Pinchoff, Jessie; Lubinda, Jailos; Hamapumbu, Harry; Searle, Kelly; Kobayashi, Tamaki; Thuma, Philip E; Moss, William J; Curriero, Frank C

    2016-05-31

    Satellite imagery is increasingly available at high spatial resolution and can be used for various purposes in public health research and programme implementation. Comparing a census generated from two satellite images of the same region in rural southern Zambia obtained four and a half years apart identified patterns of household locations and change over time. The length of time that a satellite image-based census is accurate determines its utility. Households were enumerated manually from satellite images obtained in 2006 and 2011 of the same area. Spatial statistics were used to describe clustering, cluster detection, and spatial variation in the location of households. A total of 3821 household locations were enumerated in 2006 and 4256 in 2011, a net change of 435 houses (11.4% increase). Comparison of the images indicated that 971 (25.4%) structures were added and 536 (14.0%) removed. Further analysis suggested similar household clustering in the two images and no substantial difference in concentration of households across the study area. Cluster detection analysis identified a small area where significantly more household structures were removed than expected; however, the amount of change was of limited practical significance. These findings suggest that random sampling of households for study participation would not induce geographic bias if based on a 4.5-year-old image in this region. Application of spatial statistical methods provides insights into the population distribution changes between two time periods and can be helpful in assessing the accuracy of satellite imagery.

  13. Bayesian estimation of the transmissivity spatial structure from pumping test data

    NASA Astrophysics Data System (ADS)

    Demir, Mehmet Taner; Copty, Nadim K.; Trinchero, Paolo; Sanchez-Vila, Xavier

    2017-06-01

    Estimating the statistical parameters (mean, variance, and integral scale) that define the spatial structure of the transmissivity or hydraulic conductivity fields is a fundamental step for the accurate prediction of subsurface flow and contaminant transport. In practice, the determination of the spatial structure is a challenge because of spatial heterogeneity and data scarcity. In this paper, we describe a novel approach that uses time drawdown data from multiple pumping tests to determine the transmissivity statistical spatial structure. The method builds on the pumping test interpretation procedure of Copty et al. (2011) (Continuous Derivation method, CD), which uses the time-drawdown data and its time derivative to estimate apparent transmissivity values as a function of radial distance from the pumping well. A Bayesian approach is then used to infer the statistical parameters of the transmissivity field by combining prior information about the parameters and the likelihood function expressed in terms of radially-dependent apparent transmissivities determined from pumping tests. A major advantage of the proposed Bayesian approach is that the likelihood function is readily determined from randomly generated multiple realizations of the transmissivity field, without the need to solve the groundwater flow equation. Applying the method to synthetically-generated pumping test data, we demonstrate that, through a relatively simple procedure, information on the spatial structure of the transmissivity may be inferred from pumping tests data. It is also shown that the prior parameter distribution has a significant influence on the estimation procedure, given the non-uniqueness of the estimation procedure. Results also indicate that the reliability of the estimated transmissivity statistical parameters increases with the number of available pumping tests.

  14. Quantifying seascape structure: Extending terrestrial spatial pattern metrics to the marine realm

    USGS Publications Warehouse

    Wedding, L.M.; Christopher, L.A.; Pittman, S.J.; Friedlander, A.M.; Jorgensen, S.

    2011-01-01

    Spatial pattern metrics have routinely been applied to characterize and quantify structural features of terrestrial landscapes and have demonstrated great utility in landscape ecology and conservation planning. The important role of spatial structure in ecology and management is now commonly recognized, and recent advances in marine remote sensing technology have facilitated the application of spatial pattern metrics to the marine environment. However, it is not yet clear whether concepts, metrics, and statistical techniques developed for terrestrial ecosystems are relevant for marine species and seascapes. To address this gap in our knowledge, we reviewed, synthesized, and evaluated the utility and application of spatial pattern metrics in the marine science literature over the past 30 yr (1980 to 2010). In total, 23 studies characterized seascape structure, of which 17 quantified spatial patterns using a 2-dimensional patch-mosaic model and 5 used a continuously varying 3-dimensional surface model. Most seascape studies followed terrestrial-based studies in their search for ecological patterns and applied or modified existing metrics. Only 1 truly unique metric was found (hydrodynamic aperture applied to Pacific atolls). While there are still relatively few studies using spatial pattern metrics in the marine environment, they have suffered from similar misuse as reported for terrestrial studies, such as the lack of a priori considerations or the problem of collinearity between metrics. Spatial pattern metrics offer great potential for ecological research and environmental management in marine systems, and future studies should focus on (1) the dynamic boundary between the land and sea; (2) quantifying 3-dimensional spatial patterns; and (3) assessing and monitoring seascape change. ?? Inter-Research 2011.

  15. Examination of the Spatial Correlation of Statistics Information in the Ultrasonic Echo from Diseased Liver

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Tadashi; Hachiya, Hiroyuki; Kamiyama, Naohisa; Moriyasu, Fuminori

    2002-05-01

    To realize a quantitative diagnosis of liver cirrhosis, we have been analyzing the characteristics of echo amplitude in B-mode images. Realizing the distinction between liver diseases such as liver cirrhosis and chronic hepatitis is required in the field of medical ultrasonics. In this study, we examine the spatial correlation, with the coefficient of correlation between the frames and the amplitude characteristics of each frame, using the volumetric data of RF echo signals from normal and diseased liver. It is found that there is a relationship between the tissue structure of liver and the spatial correlation of echo information.

  16. Modeling of non-uniform spatial arrangement of fibers in a ceramic matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, S.; Tewari, A.; Gokhale, A.M.

    In the unidirectional fiber reinforced composites, the spatial agreement of fibers is often non-uniform. These non-uniformities are linked to the processing conditions, and they affect the properties of the composite. In this contribution, a recently developed digital image analysis technique is used to quantify the non-uniform spatial arrangement of Nicalon fibers in a ceramic matrix composite (CMC). These quantitative data are utilized to develop a six parameter computer simulated microstructure model that is statistically equivalent to the non-uniform microstructure of the CMC. The simulated microstructure can be utilized as a RVE for the micro-mechanical modeling studies.

  17. Remote sensing data with the conditional latin hypercube sampling and geostatistical approach to delineate landscape changes induced by large chronological physical disturbances.

    PubMed

    Lin, Yu-Pin; Chu, Hone-Jay; Wang, Cheng-Long; Yu, Hsiao-Hsuan; Wang, Yung-Chieh

    2009-01-01

    This study applies variogram analyses of normalized difference vegetation index (NDVI) images derived from SPOT HRV images obtained before and after the ChiChi earthquake in the Chenyulan watershed, Taiwan, as well as images after four large typhoons, to delineate the spatial patterns, spatial structures and spatial variability of landscapes caused by these large disturbances. The conditional Latin hypercube sampling approach was applied to select samples from multiple NDVI images. Kriging and sequential Gaussian simulation with sufficient samples were then used to generate maps of NDVI images. The variography of NDVI image results demonstrate that spatial patterns of disturbed landscapes were successfully delineated by variogram analysis in study areas. The high-magnitude Chi-Chi earthquake created spatial landscape variations in the study area. After the earthquake, the cumulative impacts of typhoons on landscape patterns depended on the magnitudes and paths of typhoons, but were not always evident in the spatiotemporal variability of landscapes in the study area. The statistics and spatial structures of multiple NDVI images were captured by 3,000 samples from 62,500 grids in the NDVI images. Kriging and sequential Gaussian simulation with the 3,000 samples effectively reproduced spatial patterns of NDVI images. However, the proposed approach, which integrates the conditional Latin hypercube sampling approach, variogram, kriging and sequential Gaussian simulation in remotely sensed images, efficiently monitors, samples and maps the effects of large chronological disturbances on spatial characteristics of landscape changes including spatial variability and heterogeneity.

  18. Videogame interventions and spatial ability interactions.

    PubMed

    Redick, Thomas S; Webster, Sean B

    2014-01-01

    Numerous research studies have been conducted on the use of videogames as tools to improve one's cognitive abilities. While meta-analyses and qualitative reviews have provided evidence that some aspects of cognition such as spatial imagery are modified after exposure to videogames, other evidence has shown that matrix reasoning measures of fluid intelligence do not show evidence of transfer from videogame training. In the current work, we investigate the available evidence for transfer specifically to nonverbal intelligence and spatial ability measures, given recent research that these abilities may be most sensitive to training on cognitive and working memory tasks. Accordingly, we highlight a few studies that on the surface provide evidence for transfer to spatial abilities, but a closer look at the pattern of data does not reveal a clean interpretation of the results. We discuss the implications of these results in relation to research design and statistical analysis practices.

  19. Videogame interventions and spatial ability interactions

    PubMed Central

    Redick, Thomas S.; Webster, Sean B.

    2014-01-01

    Numerous research studies have been conducted on the use of videogames as tools to improve one’s cognitive abilities. While meta-analyses and qualitative reviews have provided evidence that some aspects of cognition such as spatial imagery are modified after exposure to videogames, other evidence has shown that matrix reasoning measures of fluid intelligence do not show evidence of transfer from videogame training. In the current work, we investigate the available evidence for transfer specifically to nonverbal intelligence and spatial ability measures, given recent research that these abilities may be most sensitive to training on cognitive and working memory tasks. Accordingly, we highlight a few studies that on the surface provide evidence for transfer to spatial abilities, but a closer look at the pattern of data does not reveal a clean interpretation of the results. We discuss the implications of these results in relation to research design and statistical analysis practices. PMID:24723880

  20. Spatial scan statistics for detection of multiple clusters with arbitrary shapes.

    PubMed

    Lin, Pei-Sheng; Kung, Yi-Hung; Clayton, Murray

    2016-12-01

    In applying scan statistics for public health research, it would be valuable to develop a detection method for multiple clusters that accommodates spatial correlation and covariate effects in an integrated model. In this article, we connect the concepts of the likelihood ratio (LR) scan statistic and the quasi-likelihood (QL) scan statistic to provide a series of detection procedures sufficiently flexible to apply to clusters of arbitrary shape. First, we use an independent scan model for detection of clusters and then a variogram tool to examine the existence of spatial correlation and regional variation based on residuals of the independent scan model. When the estimate of regional variation is significantly different from zero, a mixed QL estimating equation is developed to estimate coefficients of geographic clusters and covariates. We use the Benjamini-Hochberg procedure (1995) to find a threshold for p-values to address the multiple testing problem. A quasi-deviance criterion is used to regroup the estimated clusters to find geographic clusters with arbitrary shapes. We conduct simulations to compare the performance of the proposed method with other scan statistics. For illustration, the method is applied to enterovirus data from Taiwan. © 2016, The International Biometric Society.

  1. Adjusting for geographic variation in observational comparative effectiveness studies: a case study of antipsychotics using state Medicaid data.

    PubMed

    Root, Elisabeth Dowling; Thomas, Deborah S K; Campagna, Elizabeth J; Morrato, Elaine H

    2014-08-27

    Area-level variation in treatment and outcomes may be a potential source of confounding bias in observational comparative effectiveness studies. This paper demonstrates how to use exploratory spatial data analysis (ESDA) and spatial statistical methods to investigate and control for these potential biases. The case presented compares the effectiveness of two antipsychotic treatment strategies: oral second-generation antipsychotics (SGAs) vs. long-acting paliperiodone palmitate (PP). A new-start cohort study was conducted analyzing patient-level administrative claims data (8/1/2008-4/30/2011) from Missouri Medicaid. ESDA techniques were used to examine spatial patterns of antipsychotic prescriptions and outcomes (hospitalization and emergency department (ED) visits). Likelihood of mental health-related outcomes were compared between patients starting PP (N = 295) and oral SGAs (N = 8,626) using multilevel logistic regression models adjusting for patient composition (demographic and clinical factors) and geographic region. ESDA indicated significant spatial variation in antipsychotic prescription patterns and moderate variation in hospitalization and ED visits thereby indicating possible confounding by geography. In the multilevel models for this antipsychotic case example, patient composition represented a stronger source of confounding than geographic context. Because geographic variation in health care delivery is ubiquitous, it could be a comparative effectiveness research (CER) best practice to test for possible geographic confounding in observational data. Though the magnitude of the area-level geography effects were small in this case, they were still statistically significant and should therefore be examined as part of this observational CER study. More research is needed to better estimate the range of confounding due to geography across different types of observational comparative effectiveness studies and healthcare utilization outcomes.

  2. Crop yield response to climate change varies with crop spatial distribution pattern

    DOE PAGES

    Leng, Guoyong; Huang, Maoyi

    2017-05-03

    The linkage between crop yield and climate variability has been confirmed in numerous studies using statistical approaches. A crucial assumption in these studies is that crop spatial distribution pattern is constant over time. Here, we explore how changes in county-level corn spatial distribution pattern modulate the response of its yields to climate change at the state level over the Contiguous United States. Our results show that corn yield response to climate change varies with crop spatial distribution pattern, with distinct impacts on the magnitude and even the direction at the state level. Corn yield is predicted to decrease by 20~40%more » by 2050s when considering crop spatial distribution pattern changes, which is 6~12% less than the estimates with fixed cropping pattern. The beneficial effects are mainly achieved by reducing the negative impacts of daily maximum temperature and strengthening the positive impacts of precipitation. Our results indicate that previous empirical studies could be biased in assessing climate change impacts by ignoring the changes in crop spatial distribution pattern. As a result, this has great implications for understanding the increasing debates on whether climate change will be a net gain or loss for regional agriculture.« less

  3. Crop yield response to climate change varies with crop spatial distribution pattern

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leng, Guoyong; Huang, Maoyi

    The linkage between crop yield and climate variability has been confirmed in numerous studies using statistical approaches. A crucial assumption in these studies is that crop spatial distribution pattern is constant over time. Here, we explore how changes in county-level corn spatial distribution pattern modulate the response of its yields to climate change at the state level over the Contiguous United States. Our results show that corn yield response to climate change varies with crop spatial distribution pattern, with distinct impacts on the magnitude and even the direction at the state level. Corn yield is predicted to decrease by 20~40%more » by 2050s when considering crop spatial distribution pattern changes, which is 6~12% less than the estimates with fixed cropping pattern. The beneficial effects are mainly achieved by reducing the negative impacts of daily maximum temperature and strengthening the positive impacts of precipitation. Our results indicate that previous empirical studies could be biased in assessing climate change impacts by ignoring the changes in crop spatial distribution pattern. As a result, this has great implications for understanding the increasing debates on whether climate change will be a net gain or loss for regional agriculture.« less

  4. Evaluation of spatial and spatiotemporal estimation methods in simulation of precipitation variability patterns

    NASA Astrophysics Data System (ADS)

    Bayat, Bardia; Zahraie, Banafsheh; Taghavi, Farahnaz; Nasseri, Mohsen

    2013-08-01

    Identification of spatial and spatiotemporal precipitation variations plays an important role in different hydrological applications such as missing data estimation. In this paper, the results of Bayesian maximum entropy (BME) and ordinary kriging (OK) are compared for modeling spatial and spatiotemporal variations of annual precipitation with and without incorporating elevation variations. The study area of this research is Namak Lake watershed located in the central part of Iran with an area of approximately 90,000 km2. The BME and OK methods have been used to model the spatial and spatiotemporal variations of precipitation in this watershed, and their performances have been evaluated using cross-validation statistics. The results of the case study have shown the superiority of BME over OK in both spatial and spatiotemporal modes. The results have shown that BME estimates are less biased and more accurate than OK. The improvements in the BME estimates are mostly related to incorporating hard and soft data in the estimation process, which resulted in more detailed and reliable results. Estimation error variance for BME results is less than OK estimations in the study area in both spatial and spatiotemporal modes.

  5. Gyrokinetic Statistical Absolute Equilibrium and Turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jian-Zhou Zhu and Gregory W. Hammett

    2011-01-10

    A paradigm based on the absolute equilibrium of Galerkin-truncated inviscid systems to aid in understanding turbulence [T.-D. Lee, "On some statistical properties of hydrodynamical and magnetohydrodynamical fields," Q. Appl. Math. 10, 69 (1952)] is taken to study gyrokinetic plasma turbulence: A finite set of Fourier modes of the collisionless gyrokinetic equations are kept and the statistical equilibria are calculated; possible implications for plasma turbulence in various situations are discussed. For the case of two spatial and one velocity dimension, in the calculation with discretization also of velocity v with N grid points (where N + 1 quantities are conserved, correspondingmore » to an energy invariant and N entropy-related invariants), the negative temperature states, corresponding to the condensation of the generalized energy into the lowest modes, are found. This indicates a generic feature of inverse energy cascade. Comparisons are made with some classical results, such as those of Charney-Hasegawa-Mima in the cold-ion limit. There is a universal shape for statistical equilibrium of gyrokinetics in three spatial and two velocity dimensions with just one conserved quantity. Possible physical relevance to turbulence, such as ITG zonal flows, and to a critical balance hypothesis are also discussed.« less

  6. Statistics of Optical Coherence Tomography Data From Human Retina

    PubMed Central

    de Juan, Joaquín; Ferrone, Claudia; Giannini, Daniela; Huang, David; Koch, Giorgio; Russo, Valentina; Tan, Ou; Bruni, Carlo

    2010-01-01

    Optical coherence tomography (OCT) has recently become one of the primary methods for noninvasive probing of the human retina. The pseudoimage formed by OCT (the so-called B-scan) varies probabilistically across pixels due to complexities in the measurement technique. Hence, sensitive automatic procedures of diagnosis using OCT may exploit statistical analysis of the spatial distribution of reflectance. In this paper, we perform a statistical study of retinal OCT data. We find that the stretched exponential probability density function can model well the distribution of intensities in OCT pseudoimages. Moreover, we show a small, but significant correlation between neighbor pixels when measuring OCT intensities with pixels of about 5 µm. We then develop a simple joint probability model for the OCT data consistent with known retinal features. This model fits well the stretched exponential distribution of intensities and their spatial correlation. In normal retinas, fit parameters of this model are relatively constant along retinal layers, but varies across layers. However, in retinas with diabetic retinopathy, large spikes of parameter modulation interrupt the constancy within layers, exactly where pathologies are visible. We argue that these results give hope for improvement in statistical pathology-detection methods even when the disease is in its early stages. PMID:20304733

  7. Environmental drivers and spatial dependency in wildfire ignition patterns of northwestern Patagonia.

    PubMed

    Mundo, Ignacio A; Wiegand, Thorsten; Kanagaraj, Rajapandian; Kitzberger, Thomas

    2013-07-15

    Fire management requires an understanding of the spatial characteristics of fire ignition patterns and how anthropogenic and natural factors influence ignition patterns across space. In this study we take advantage of a recent fire ignition database (855 points) to conduct a comprehensive analysis of the spatial pattern of fire ignitions in the western area of Neuquén province (57,649 km(2)), Argentina, for the 1992-2008 period. The objectives of our study were to better understand the spatial pattern and the environmental drivers of the fire ignitions, with the ultimate aim of supporting fire management. We conducted our analyses on three different levels: statistical "habitat" modelling of fire ignition (natural, anthropogenic, and all causes) based on an information theoretic approach to test several competing hypotheses on environmental drivers (i.e. topographic, climatic, anthropogenic, land cover, and their combinations); spatial point pattern analysis to quantify additional spatial autocorrelation in the ignition patterns; and quantification of potential spatial associations between fires of different causes relative to towns using a novel implementation of the independence null model. Anthropogenic fire ignitions were best predicted by the most complex habitat model including all groups of variables, whereas natural ignitions were best predicted by topographic, climatic and land-cover variables. The spatial pattern of all ignitions showed considerable clustering at intermediate distances (<40 km) not captured by the probability of fire ignitions predicted by the habitat model. There was a strong (linear) and highly significant increase in the density of fire ignitions with decreasing distance to towns (<5 km), but fire ignitions of natural and anthropogenic causes were statistically independent. A two-dimensional habitat model that quantifies differences between ignition probabilities of natural and anthropogenic causes allows fire managers to delineate target areas for consideration of major preventive treatments, strategic placement of fuel treatments, and forecasting of fire ignition. The techniques presented here can be widely applied to situations where a spatial point pattern is jointly influenced by extrinsic environmental factors and intrinsic point interactions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. The remarkable geographical pattern of gastric cancer mortality in Ecuador.

    PubMed

    Montero-Oleas, Nadia; Núñez-González, Solange; Simancas-Racines, Daniel

    2017-12-01

    This study was aimed to describe the gastric cancer mortality trend, and to analyze the spatial distribution of gastric cancer mortality in Ecuador, between 2004 and 2015. Data were collected from the National Institute of Statistics and Census (INEC) database. Crude gastric cancer mortality rates, standardized mortality ratios (SMRs) and indirect standardized mortality rates (ISMRs) were calculated per 100,000 persons. For time trend analysis, joinpoint regression was used. The annual percentage rate change (APC) and the average annual percent change (AAPC) was computed for each province. Spatial age-adjusted analysis was used to detect high risk clusters of gastric cancer mortality, from 2010 to 2015, using Kulldorff spatial scan statistics. In Ecuador, between 2004 and 2015, gastric cancer caused a total of 19,115 deaths: 10,679 in men and 8436 in women. When crude rates were analyzed, a significant decline was detected (AAPC: -1.8%; p<0.001). ISMR also decreased, but this change was not statistically significant (APC: -0.53%; p=0.36). From 2004 to 2007 and from 2008 to 2011 the province with the highest ISMR was Carchi; and, from 2012 to 2015, was Cotopaxi. The most likely high occurrence cluster included Bolívar, Los Ríos, Chimborazo, Tungurahua, and Cotopaxi provinces, with a relative risk of 1.34 (p<0.001). There is a substantial geographic variation in gastric cancer mortality rates among Ecuadorian provinces. The spatial analysis indicates the presence of high occurrence clusters throughout the Andes Mountains. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. A geographic analysis of individual and environmental risk factors for hypospadias births

    PubMed Central

    Winston, Jennifer J; Meyer, Robert E; Emch, Michael E

    2014-01-01

    Background Hypospadias is a relatively common birth defect affecting the male urinary tract. We explored the etiology of hypospadias by examining its spatial distribution in North Carolina and the spatial clustering of residuals from individual and environmental risk factors. Methods We used data collected by the North Carolina Birth Defects Monitoring Program from 2003-2005 to estimate local Moran's I statistics to identify geographic clustering of overall and severe hypospadias, using 995 overall cases and 16,013 controls. We conducted logistic regression and local Moran's I statistics on standardized residuals to consider the contribution of individual variables (maternal age, maternal race/ethnicity, maternal education, smoking, parity, and diabetes) and environmental variables (block group land cover) to this clustering. Results Local Moran's I statistics indicated significant clustering of overall and severe hypospadias in eastern central North Carolina. Spatial clustering of hypospadias persisted when controlling for individual factors, but diminished somewhat when controlling for environmental factors. In adjusted models, maternal residence in a block group with more than 5% crop cover was associated with overall hypospadias (OR = 1.22; 95% CI = 1.04 – 1.43); that is living in a block group with greater than 5% crop cover was associated with a 22% increase in the odds of having a baby with hypospadias. Land cover was not associated with severe hypospadias. Conclusions This study illustrates the potential contribution of mapping in generating hypotheses about disease etiology. Results suggest that environmental factors including proximity to agriculture may play some role in the spatial distribution of hypospadias. PMID:25196538

  10. Measurement and data processing approach for detecting anisotropic spatial statistics of the turbulence-induced index of refraction fluctuations in the upper atmosphere.

    PubMed

    Havens, Timothy C; Roggemann, Michael C; Schulz, Timothy J; Brown, Wade W; Beyer, Jeff T; Otten, L John

    2002-05-20

    We discuss a method of data reduction and analysis that has been developed for a novel experiment to detect anisotropic turbulence in the tropopause and to measure the spatial statistics of these flows. The experimental concept is to make measurements of temperature at 15 points on a hexagonal grid for altitudes from 12,000 to 18,000 m while suspended from a balloon performing a controlled descent. From the temperature data, we estimate the index of refraction and study the spatial statistics of the turbulence-induced index of refraction fluctuations. We present and evaluate the performance of a processing approach to estimate the parameters of an anisotropic model for the spatial power spectrum of the turbulence-induced index of refraction fluctuations. A Gaussian correlation model and a least-squares optimization routine are used to estimate the parameters of the model from the measurements. In addition, we implemented a quick-look algorithm to have a computationally nonintensive way of viewing the autocorrelation function of the index fluctuations. The autocorrelation of the index of refraction fluctuations is binned and interpolated onto a uniform grid from the sparse points that exist in our experiment. This allows the autocorrelation to be viewed with a three-dimensional plot to determine whether anisotropy exists in a specific data slab. Simulation results presented here show that, in the presence of the anticipated levels of measurement noise, the least-squares estimation technique allows turbulence parameters to be estimated with low rms error.

  11. Spatial and Temporal Variation of Japanese encephalitis Disease and Detection of Disease Hotspots: a Case Study of Gorakhpur District, Uttar Pradesh, India

    NASA Astrophysics Data System (ADS)

    Verma, S.; Gupta, R. D.

    2014-11-01

    In recent times, Japanese Encephalitis (JE) has emerged as a serious public health problem. In India, JE outbreaks were recently reported in Uttar Pradesh, Gorakhpur. The present study presents an approach to use GIS for analyzing the reported cases of JE in the Gorakhpur district based on spatial analysis to bring out the spatial and temporal dynamics of the JE epidemic. The study investigates spatiotemporal pattern of the occurrence of disease and detection of the JE hotspot. Spatial patterns of the JE disease can provide an understanding of geographical changes. Geospatial distribution of the JE disease outbreak is being investigated since 2005 in this study. The JE incidence data for the years 2005 to 2010 is used. The data is then geo-coded at block level. Spatial analysis is used to evaluate autocorrelation in JE distribution and to test the cases that are clustered or dispersed in space. The Inverse Distance Weighting interpolation technique is used to predict the pattern of JE incidence distribution prevalent across the study area. Moran's I Index (Moran's I) statistics is used to evaluate autocorrelation in spatial distribution. The Getis-Ord Gi*(d) is used to identify the disease areas. The results represent spatial disease patterns from 2005 to 2010, depicting spatially clustered patterns with significant differences between the blocks. It is observed that the blocks on the built up areas reported higher incidences.

  12. Three-dimensional mapping of soil chemical characteristics at micrometric scale: Statistical prediction by combining 2D SEM-EDX data and 3D X-ray computed micro-tomographic images

    NASA Astrophysics Data System (ADS)

    Hapca, Simona

    2015-04-01

    Many soil properties and functions emerge from interactions of physical, chemical and biological processes at microscopic scales, which can be understood only by integrating techniques that traditionally are developed within separate disciplines. While recent advances in imaging techniques, such as X-ray computed tomography (X-ray CT), offer the possibility to reconstruct the 3D physical structure at fine resolutions, for the distribution of chemicals in soil, existing methods, based on scanning electron microscope (SEM) and energy dispersive X-ray detection (EDX), allow for characterization of the chemical composition only on 2D surfaces. At present, direct 3D measurement techniques are still lacking, sequential sectioning of soils, followed by 2D mapping of chemical elements and interpolation to 3D, being an alternative which is explored in this study. Specifically, we develop an integrated experimental and theoretical framework which combines 3D X-ray CT imaging technique with 2D SEM-EDX and use spatial statistics methods to map the chemical composition of soil in 3D. The procedure involves three stages 1) scanning a resin impregnated soil cube by X-ray CT, followed by precision cutting to produce parallel thin slices, the surfaces of which are scanned by SEM-EDX, 2) alignment of the 2D chemical maps within the internal 3D structure of the soil cube, and 3) development, of spatial statistics methods to predict the chemical composition of 3D soil based on the observed 2D chemical and 3D physical data. Specifically, three statistical models consisting of a regression tree, a regression tree kriging and cokriging model were used to predict the 3D spatial distribution of carbon, silicon, iron and oxygen in soil, these chemical elements showing a good spatial agreement between the X-ray grayscale intensities and the corresponding 2D SEM-EDX data. Due to the spatial correlation between the physical and chemical data, the regression-tree model showed a great potential in predicting chemical composition in particular for iron, which is generally sparsely distributed in soil. For carbon, silicon and oxygen, which are more densely distributed, the additional kriging of the regression tree residuals improved significantly the prediction, whereas prediction based on co-kriging was less consistent across replicates, underperforming regression-tree kriging. The present study shows a great potential in integrating geo-statistical methods with imaging techniques to unveil the 3D chemical structure of soil at very fine scales, the framework being suitable to be further applied to other types of imaging data such as images of biological thin sections for characterization of microbial distribution. Key words: X-ray CT, SEM-EDX, segmentation techniques, spatial correlation, 3D soil images, 2D chemical maps.

  13. Advanced analysis of forest fire clustering

    NASA Astrophysics Data System (ADS)

    Kanevski, Mikhail; Pereira, Mario; Golay, Jean

    2017-04-01

    Analysis of point pattern clustering is an important topic in spatial statistics and for many applications: biodiversity, epidemiology, natural hazards, geomarketing, etc. There are several fundamental approaches used to quantify spatial data clustering using topological, statistical and fractal measures. In the present research, the recently introduced multi-point Morisita index (mMI) is applied to study the spatial clustering of forest fires in Portugal. The data set consists of more than 30000 fire events covering the time period from 1975 to 2013. The distribution of forest fires is very complex and highly variable in space. mMI is a multi-point extension of the classical two-point Morisita index. In essence, mMI is estimated by covering the region under study by a grid and by computing how many times more likely it is that m points selected at random will be from the same grid cell than it would be in the case of a complete random Poisson process. By changing the number of grid cells (size of the grid cells), mMI characterizes the scaling properties of spatial clustering. From mMI, the data intrinsic dimension (fractal dimension) of the point distribution can be estimated as well. In this study, the mMI of forest fires is compared with the mMI of random patterns (RPs) generated within the validity domain defined as the forest area of Portugal. It turns out that the forest fires are highly clustered inside the validity domain in comparison with the RPs. Moreover, they demonstrate different scaling properties at different spatial scales. The results obtained from the mMI analysis are also compared with those of fractal measures of clustering - box counting and sand box counting approaches. REFERENCES Golay J., Kanevski M., Vega Orozco C., Leuenberger M., 2014: The multipoint Morisita index for the analysis of spatial patterns. Physica A, 406, 191-202. Golay J., Kanevski M. 2015: A new estimator of intrinsic dimension based on the multipoint Morisita index. Pattern Recognition, 48, 4070-4081.

  14. Establishing a learning foundation in a dynamically changing world: Insights from artificial language work

    NASA Astrophysics Data System (ADS)

    Gonzales, Kalim

    It is argued that infants build a foundation for learning about the world through their incidental acquisition of the spatial and temporal regularities surrounding them. A challenge is that learning occurs across multiple contexts whose statistics can greatly differ. Two artificial language studies with 12-month-olds demonstrate that infants come prepared to parse statistics across contexts using the temporal and perceptual features that distinguish one context from another. These results suggest that infants can organize their statistical input with a wider range of features that typically considered. Possible attention, decision making, and memory mechanisms are discussed.

  15. Pixels, Blocks of Pixels, and Polygons: Choosing a Spatial Unit for Thematic Accuracy Assessment

    EPA Science Inventory

    Pixels, polygons, and blocks of pixels are all potentially viable spatial assessment units for conducting an accuracy assessment. We develop a statistical population-based framework to examine how the spatial unit chosen affects the outcome of an accuracy assessment. The populati...

  16. Statistical analysis of content of Cs-137 in soils in Bansko-Razlog region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobilarov, R. G., E-mail: rkobi@tu-sofia.bg

    Statistical analysis of the data set consisting of the activity concentrations of {sup 137}Cs in soils in Bansko–Razlog region is carried out in order to establish the dependence of the deposition and the migration of {sup 137}Cs on the soil type. The descriptive statistics and the test of normality show that the data set have not normal distribution. Positively skewed distribution and possible outlying values of the activity of {sup 137}Cs in soils were observed. After reduction of the effects of outliers, the data set is divided into two parts, depending on the soil type. Test of normality of themore » two new data sets shows that they have a normal distribution. Ordinary kriging technique is used to characterize the spatial distribution of the activity of {sup 137}Cs over an area covering 40 km{sup 2} (whole Razlog valley). The result (a map of the spatial distribution of the activity concentration of {sup 137}Cs) can be used as a reference point for future studies on the assessment of radiological risk to the population and the erosion of soils in the study area.« less

  17. Application of spatial technology in malaria research & control: some new insights.

    PubMed

    Saxena, Rekha; Nagpal, B N; Srivastava, Aruna; Gupta, S K; Dash, A P

    2009-08-01

    Geographical information System (GIS) has emerged as the core of the spatial technology which integrates wide range of dataset available from different sources including Remote Sensing (RS) and Global Positioning System (GPS). Literature published during the decade (1998-2007) has been compiled and grouped into six categories according to the usage of the technology in malaria epidemiology. Different GIS modules like spatial data sources, mapping and geo-processing tools, distance calculation, digital elevation model (DEM), buffer zone and geo-statistical analysis have been investigated in detail, illustrated with examples as per the derived results. These GIS tools have contributed immensely in understanding the epidemiological processes of malaria and examples drawn have shown that GIS is now widely used for research and decision making in malaria control. Statistical data analysis currently is the most consistent and established set of tools to analyze spatial datasets. The desired future development of GIS is in line with the utilization of geo-statistical tools which combined with high quality data has capability to provide new insight into malaria epidemiology and the complexity of its transmission potential in endemic areas.

  18. Automated thematic mapping and change detection of ERTS-A images. [digital interpretation of Arizona imagery

    NASA Technical Reports Server (NTRS)

    Gramenopoulos, N. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. For the recognition of terrain types, spatial signatures are developed from the diffraction patterns of small areas of ERTS-1 images. This knowledge is exploited for the measurements of a small number of meaningful spatial features from the digital Fourier transforms of ERTS-1 image cells containing 32 x 32 picture elements. Using these spatial features and a heuristic algorithm, the terrain types in the vicinity of Phoenix, Arizona were recognized by the computer with a high accuracy. Then, the spatial features were combined with spectral features and using the maximum likelihood criterion the recognition accuracy of terrain types increased substantially. It was determined that the recognition accuracy with the maximum likelihood criterion depends on the statistics of the feature vectors. Nonlinear transformations of the feature vectors are required so that the terrain class statistics become approximately Gaussian. It was also determined that for a given geographic area the statistics of the classes remain invariable for a period of a month but vary substantially between seasons.

  19. Hierarchical Bayesian spatial models for multispecies conservation planning and monitoring

    Treesearch

    Carlos Carroll; Devin S. Johnson; Jeffrey R. Dunk; William J. Zielinski

    2010-01-01

    Biologists who develop and apply habitat models are often familiar with the statistical challenges posed by their data’s spatial structure but are unsure of whether the use of complex spatial models will increase the utility of model results in planning. We compared the relative performance of nonspatial and hierarchical Bayesian spatial models for three vertebrate and...

  20. A technique for evaluating the influence of spatial sampling on the determination of global mean total columnar ozone

    NASA Technical Reports Server (NTRS)

    Tolson, R. H.

    1981-01-01

    A technique is described for providing a means of evaluating the influence of spatial sampling on the determination of global mean total columnar ozone. A finite number of coefficients in the expansion are determined, and the truncated part of the expansion is shown to contribute an error to the estimate, which depends strongly on the spatial sampling and is relatively insensitive to data noise. First and second order statistics are derived for each term in a spherical harmonic expansion which represents the ozone field, and the statistics are used to estimate systematic and random errors in the estimates of total ozone.

  1. Spatial distribution and risk assessment of radionuclides in soils around a coal-fired power plant: A case study from the city of Baoji, China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai Lijun; Wei Haiyan; Wang Lingqing

    2007-06-15

    Coal burning may enhance human exposure to the natural radionuclides that occur around coal-fired power plants (CFPP). In this study, the spatial distribution and hazard assessment of radionuclides found in soils around a CFPP were investigated using statistics, geostatistics, and geographic information system (GIS) techniques. The concentrations of {sup 226}Ra, {sup 232}Th, and {sup 40}K in soils range from 12.54 to 40.18, 38.02 to 72.55, and 498.02 to 1126.98 Bq kg{sup -1}, respectively. Ordinary kriging was carried out to map the spatial patterns of radionuclides, and disjunctive kriging was used to quantify the probability of radium equivalent activity (Ra{sub eq})more » higher than the threshold. The maps show that the spatial variability of the natural radionuclide concentrations in soils was apparent. The results of this study could provide valuable information for risk assessment of environmental pollution and decision support.« less

  2. Spatial distribution and risk assessment of radionuclides in soils around a coal-fired power plant: A case study from the city of Baoji, China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, L.J.; Wei, H.Y.; Wang, L.Q.

    2007-06-15

    Coal burning may enhance human exposure to the natural radionuclides that occur around coal-fired power plants (CFPP). In this study, the spatial distribution and hazard assessment of radionuclides found in soils around a CFPP were investigated using statistics, geostatistics, and geographic information system (GIS) techniques. The concentrations of Ra-226, Th-232, and K-40 in soils range from 12.54 to 40.18, 38.02 to 72.55, and 498.02 to 1126.98 Bq kg{sup -1}, respectively. Ordinary kriging was carried out to map the spatial patterns of radionuclides, and disjunctive kriging was used to quantify the probability of radium equivalent activity (Ra{sub eq}) higher than themore » threshold. The maps show that the spatial variability of the natural radionuclide concentrations in soils was apparent. The results of this study could provide valuable information for risk assessment of environmental pollution and decision support.« less

  3. A pilot study of spatial patterns in referrals to a multicentre cancer genetics service.

    PubMed

    Tempest, Vanessa; Higgs, Gary; McDonald, Kevin; Iredale, Rachel; Bater, Tony; Gray, Jonathon

    2005-01-01

    To analyse spatial and temporal patterns in patients referred to a cancer genetics service in order to monitor service utilization and accessibility. Postcodes of patients during a 4-year period were used to examine spatial patterns using a Geographical Information System (GIS). Referral rates were compared visually and statistically to explore yearly variation for administrative areas in Wales. There has been a four-fold increase in actual referrals to the service over the period of study. The variance between unitary authority referral rates has decreased from the inception of the service from an almost ten-fold difference between lowest and highest in year 1 to less than a three-fold difference in year 4. This study shows the potential of GIS to highlight spatial variations in referral rates across Wales. Although the disparity in referral rates has decreased, trends in referral rates are not consistent. Ongoing research will examine those referral and referrer characteristics affecting uptake. Copyright 2005 S. Karger AG, Basel.

  4. Research Update: Spatially resolved mapping of electronic structure on atomic level by multivariate statistical analysis

    NASA Astrophysics Data System (ADS)

    Belianinov, Alex; Ganesh, Panchapakesan; Lin, Wenzhi; Sales, Brian C.; Sefat, Athena S.; Jesse, Stephen; Pan, Minghu; Kalinin, Sergei V.

    2014-12-01

    Atomic level spatial variability of electronic structure in Fe-based superconductor FeTe0.55Se0.45 (Tc = 15 K) is explored using current-imaging tunneling-spectroscopy. Multivariate statistical analysis of the data differentiates regions of dissimilar electronic behavior that can be identified with the segregation of chalcogen atoms, as well as boundaries between terminations and near neighbor interactions. Subsequent clustering analysis allows identification of the spatial localization of these dissimilar regions. Similar statistical analysis of modeled calculated density of states of chemically inhomogeneous FeTe1-xSex structures further confirms that the two types of chalcogens, i.e., Te and Se, can be identified by their electronic signature and differentiated by their local chemical environment. This approach allows detailed chemical discrimination of the scanning tunneling microscopy data including separation of atomic identities, proximity, and local configuration effects and can be universally applicable to chemically and electronically inhomogeneous surfaces.

  5. Spatial correlation and irradiance statistics in a multiple-beam terrestrial free-space optical communication link.

    PubMed

    Anguita, Jaime A; Neifeld, Mark A; Vasic, Bane V

    2007-09-10

    By means of numerical simulations we analyze the statistical properties of the power fluctuations induced by the incoherent superposition of multiple transmitted laser beams in a terrestrial free-space optical communication link. The measured signals arising from different transmitted optical beams are found to be statistically correlated. This channel correlation increases with receiver aperture and propagation distance. We find a simple scaling rule for the spatial correlation coefficient in terms of the propagation distance and we are able to predict the scintillation reduction in previously reported experiments with good accuracy. We propose an approximation to the probability density function of the received power of a spatially correlated multiple-beam system in terms of the parameters of the single-channel gamma-gamma function. A bit-error-rate evaluation is also presented to demonstrate the improvement of a multibeam system over its single-beam counterpart.

  6. Adaptation to stimulus statistics in the perception and neural representation of auditory space.

    PubMed

    Dahmen, Johannes C; Keating, Peter; Nodal, Fernando R; Schulz, Andreas L; King, Andrew J

    2010-06-24

    Sensory systems are known to adapt their coding strategies to the statistics of their environment, but little is still known about the perceptual implications of such adjustments. We investigated how auditory spatial processing adapts to stimulus statistics by presenting human listeners and anesthetized ferrets with noise sequences in which interaural level differences (ILD) rapidly fluctuated according to a Gaussian distribution. The mean of the distribution biased the perceived laterality of a subsequent stimulus, whereas the distribution's variance changed the listeners' spatial sensitivity. The responses of neurons in the inferior colliculus changed in line with these perceptual phenomena. Their ILD preference adjusted to match the stimulus distribution mean, resulting in large shifts in rate-ILD functions, while their gain adapted to the stimulus variance, producing pronounced changes in neural sensitivity. Our findings suggest that processing of auditory space is geared toward emphasizing relative spatial differences rather than the accurate representation of absolute position.

  7. Spatial diffusion of influenza outbreak-related climate factors in Chiang Mai Province, Thailand.

    PubMed

    Nakapan, Supachai; Tripathi, Nitin Kumar; Tipdecho, Taravudh; Souris, Marc

    2012-10-24

    Influenza is one of the most important leading causes of respiratory illness in the countries located in the tropical areas of South East Asia and Thailand. In this study the climate factors associated with influenza incidence in Chiang Mai Province, Northern Thailand, were investigated. Identification of factors responsible for influenza outbreaks and the mapping of potential risk areas in Chiang Mai are long overdue. This work examines the association between yearly climate patterns between 2001 and 2008 and influenza outbreaks in the Chiang Mai Province. The climatic factors included the amount of rainfall, percent of rainy days, relative humidity, maximum, minimum temperatures and temperature difference. The study develops a statistical analysis to quantitatively assess the relationship between climate and influenza outbreaks and then evaluate its suitability for predicting influenza outbreaks. A multiple linear regression technique was used to fit the statistical model. The Inverse Distance Weighted (IDW) interpolation and Geographic Information System (GIS) techniques were used in mapping the spatial diffusion of influenza risk zones. The results show that there is a significance correlation between influenza outbreaks and climate factors for the majority of the studied area. A statistical analysis was conducted to assess the validity of the model comparing model outputs and actual outbreaks.

  8. Interlaced X-ray diffraction computed tomography

    PubMed Central

    Vamvakeros, Antonios; Jacques, Simon D. M.; Di Michiel, Marco; Senecal, Pierre; Middelkoop, Vesna; Cernik, Robert J.; Beale, Andrew M.

    2016-01-01

    An X-ray diffraction computed tomography data-collection strategy that allows, post experiment, a choice between temporal and spatial resolution is reported. This strategy enables time-resolved studies on comparatively short timescales, or alternatively allows for improved spatial resolution if the system under study, or components within it, appear to be unchanging. The application of the method for studying an Mn–Na–W/SiO2 fixed-bed reactor in situ is demonstrated. Additionally, the opportunities to improve the data-collection strategy further, enabling post-collection tuning between statistical, temporal and spatial resolutions, are discussed. In principle, the interlaced scanning approach can also be applied to other pencil-beam tomographic techniques, like X-ray fluorescence computed tomography, X-ray absorption fine structure computed tomography, pair distribution function computed tomography and tomographic scanning transmission X-ray microscopy. PMID:27047305

  9. Measuring forest landscape patterns in the Cascade Range of Oregon, USA

    NASA Technical Reports Server (NTRS)

    Ripple, William J.; Bradshaw, G. A.; Spies, Thomas A.

    1995-01-01

    This paper describes the use of a set of spatial statistics to quantify the landscape pattern caused by the patchwork of clearcuts made over a 15-year period in the western Cascades of Oregon. Fifteen areas were selected at random to represent a diversity of landscape fragmentation patterns. Managed forest stands (patches) were digitized and analyzed to produce both tabular and mapped information describing patch size, shape, abundance and spacing, and matrix characteristics of a given area. In addition, a GIS fragmentation index was developed which was found to be sensitive to patch abundance and to the spatial distribution of patches. Use of the GIS-derived index provides an automated method of determining the level of forest fragmentation and can be used to facilitate spatial analysis of the landscape for later coordination with field and remotely sensed data. A comparison of the spatial statistics calculated for the two years indicates an increase in forest fragmentation as characterized by an increase in mean patch abundance and a decrease in interpatch distance, amount of interior natural forest habitat, and the GIS fragmentation index. Such statistics capable of quantifying patch shape and spatial distribution may prove important in the evaluation of the changing character of interior and edge habitats for wildlife.

  10. Dental Workforce Availability and Dental Services Utilization in Appalachia: A Geospatial Analysis

    PubMed Central

    Feng, Xue; Sambamoorthi, Usha; Wiener, R. Constance

    2016-01-01

    Objectives There is considerable variation in dental services utilization across Appalachian counties, and a plausible explanation is that individuals in some geographical areas do not utilize dental care due to dental workforce shortage. We conducted an ecological study on dental workforce availability and dental services utilization in Appalachia. Methods We derived county-level (n = 364) data on demographic, socio-economic characteristics and dental services utilization in Appalachia from the 2010 Behavioral Risk Factor Surveillance System (BRFSS) using person-level data. We obtained county-level dental workforce availability and physician-to-population ratio estimates from Area Health Resource File, and linked them to the county-level BRFSS data. The dependent variable was the proportion using dental services within the last year in each county (ranging from 16.6% to 91.0%). We described the association between dental workforce availability and dental services utilization using ordinary least squares regression and spatial regression techniques. Spatial analyses consisted of bivariate Local Indicators of Spatial Association (LISA) and geographically weighted regression (GWR). Results Bivariate LISA showed that counties in the central and southern Appalachian regions had significant (p < .05) low-low spatial clusters (low dental workforce availability, low percent dental services utilization). GWR revealed considerable local variations in the association between dental utilization and dental workforce availability. In the multivariate GWR models, 8.5% (t-statistics >1.96) and 13.45% (t-statistics >1.96) of counties showed positive and statistically significant relationships between the dental services utilization and workforce availability of dentists and dental hygienists, respectively. Conclusions Dental workforce availability was associated with dental services utilization in the Appalachian region; however, this association was not statistically significant in all counties. The findings suggest that program and policy efforts to improve dental services utilization need to focus on factors other than increasing the dental workforce availability for many counties in Appalachia. PMID:27957773

  11. Space evolution model and empirical analysis of an urban public transport network

    NASA Astrophysics Data System (ADS)

    Sui, Yi; Shao, Feng-jing; Sun, Ren-cheng; Li, Shu-jing

    2012-07-01

    This study explores the space evolution of an urban public transport network, using empirical evidence and a simulation model validated on that data. Public transport patterns primarily depend on traffic spatial-distribution, demands of passengers and expected utility of investors. Evolution is an iterative process of satisfying the needs of passengers and investors based on a given traffic spatial-distribution. The temporal change of urban public transport network is evaluated both using topological measures and spatial ones. The simulation model is validated using empirical data from nine big cities in China. Statistical analyses on topological and spatial attributes suggest that an evolution network with traffic demands characterized by power-law numerical values which distribute in a mode of concentric circles tallies well with these nine cities.

  12. Spatial distribution of limited resources and local density regulation in juvenile Atlantic salmon.

    PubMed

    Finstad, Anders G; Einum, Sigurd; Ugedal, Ola; Forseth, Torbjørn

    2009-01-01

    1. Spatial heterogeneity of resources may influence competition among individuals and thus have a fundamental role in shaping population dynamics and carrying capacity. In the present study, we identify shelter opportunities as a limiting resource for juvenile Atlantic salmon (Salmo salar L.). Experimental and field studies are combined in order to demonstrate how the spatial distribution of shelters may influence population dynamics on both within and among population scales. 2. In closed experimental streams, fish performance scaled negatively with decreasing shelter availability and increasing densities. In contrast, the fish in open stream channels dispersed according to shelter availability and performance of fish remaining in the streams did not depend on initial density or shelters. 3. The field study confirmed that spatial variation in densities of 1-year-old juveniles was governed both by initial recruit density and shelter availability. Strength of density-dependent population regulation, measured as carrying capacity, increased with decreasing number of shelters. 4. Nine rivers were surveyed for spatial variation in shelter availability and increased shelter heterogeneity tended to decrease maximum observed population size (measured using catch statistics of adult salmon as a proxy). 5. Our studies highlight the importance of small-scale within-population spatial structure in population dynamics and demonstrate that not only the absolute amount of limiting resources but also their spatial arrangement can be an important factor influencing population carrying capacity.

  13. The spatiotemporal characteristics of environmental hazards caused by offshore oil and gas operations in the Gulf of Mexico.

    PubMed

    Meng, Qingmin

    2016-09-15

    Marine ecosystems are home to a host of numerous species ranging from tiny planktonic organisms, fishes, and birds, to large mammals such as the whales, manatees, and seals. However, human activities such as offshore oil and gas operations increasingly threaten marine and coastal ecosystems, for which there has been little exploration into the spatial and temporal risks of offshore oil operations. Using the Gulf of Mexico, one of the world's hottest spots of offshore oil and gas mining, as the study area, we propose a spatiotemporal approach that integrates spatial statistics and geostatistics in a geographic information system environment to provide insight to environmental management and decision making for oil and gas operators, coastal communities, local governments, and the federal government. We use the records from 1995 to 2015 of twelve types of hazards caused by offshore oil and gas operations, and analyze them spatially over a five year period. The spatial clusters of these hazards are analyzed and mapped using Getis-Ord Gi and local Moran's I statistics. We then design a spatial correlation coefficient matrix for multivariate spatial correlation, which is the ratio of the cross variogram of two types of hazards to the product of the variograms of the two hazards, showing a primary understanding of the degrees of spatial correlation among the twelve types hazards. To the best of our knowledge, it is the first application of spatiotemporal analysis methods to environmental hazards caused by offshore oil and gas operations; the proposed methods can be applied to other regions for the management and monitoring of environmental hazards caused by offshore oil operations. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Mapping and modeling the urban landscape in Bangkok, Thailand: Physical-spectral-spatial relations of population-environmental interactions

    NASA Astrophysics Data System (ADS)

    Shao, Yang

    This research focuses on the application of remote sensing, geographic information systems, statistical modeling, and spatial analysis to examine the dynamics of urban land cover, urban structure, and population-environment interactions in Bangkok, Thailand, with an emphasis on rural-to-urban migration from rural Nang Rong District, Northeast Thailand to the primate city of Bangkok. The dissertation consists of four main sections: (1) development of remote sensing image classification and change-detection methods for characterizing imperviousness for Bangkok, Thailand from 1993-2002; (2) development of 3-D urban mapping methods, using high spatial resolution IKONOS satellite images, to assess high-rises and other urban structures; (3) assessment of urban spatial structure from 2-D and 3-D perspectives; and (4) an analysis of the spatial clustering of migrants from Nang Rong District in Bangkok and the neighborhood environments of migrants' locations. Techniques are developed to improve the accuracy of the neural network classification approach for the analysis of remote sensing data, with an emphasis on the spectral unmixing problem. The 3-D building heights are derived using the shadow information on the high-resolution IKONOS image. The results from the 2-D and 3-D mapping are further examined to assess urban structure and urban feature identification. This research contributes to image processing of remotely-sensed images and urban studies. The rural-urban migration process and migrants' settlement patterns are examined using spatial statistics, GIS, and remote sensing perspectives. The results show that migrants' spatial clustering in urban space is associated with the source village and a number of socio-demographic variables. In addition, the migrants' neighborhood environments in urban setting are modeled using a set of geographic and socio-demographic variables, and the results are scale-dependent.

  15. Monitoring survival rates of Swainson's Thrush Catharus ustulatus at multiple spatial scales

    USGS Publications Warehouse

    Rosenberg, D.K.; DeSante, D.F.; McKelvey, K.S.; Hines, J.E.

    1999-01-01

    We estimated survival rates of Swainson's Thrush, a common, neotropical, migratory landbird, at multiple spatial scales, using data collected in the western USA from the Monitoring Avian Productivity and Survivorship Programme. We evaluated statistical power to detect spatially heterogeneous survival rates and exponentially declining survival rates among spatial scales with simulated populations parameterized from results of the Swainson's Thrush analyses. Models describing survival rates as constant across large spatial scales did not fit the data. The model we chose as most appropriate to describe survival rates of Swainson's Thrush allowed survival rates to vary among Physiographic Provinces, included a separate parameter for the probability that a newly captured bird is a resident individual in the study population, and constrained capture probability to be constant across all stations. Estimated annual survival rates under this model varied from 0.42 to 0.75 among Provinces. The coefficient of variation of survival estimates ranged from 5.8 to 20% among Physiographic Provinces. Statistical power to detect exponentially declining trends was fairly low for small spatial scales, although large annual declines (3% of previous year's rate) were likely to be detected when monitoring was conducted for long periods of time (e.g. 20 years). Although our simulations and field results are based on only four years of data from a limited number and distribution of stations, it is likely that they illustrate genuine difficulties inherent to broadscale efforts to monitor survival rates of territorial landbirds. In particular, our results suggest that more attention needs to be paid to sampling schemes of monitoring programmes, particularly regarding the trade-off between precision and potential bias of parameter estimates at varying spatial scales.

  16. Monitoring survival rates of Swainson's Thrush Catharus ustulatus at multiple spatial scales

    USGS Publications Warehouse

    Rosenberg, D.K.; DeSante, D.F.; McKelvey, K.S.; Hines, J.E.

    1999-01-01

    We estimated survival rates of Swainson's Thrush, a common, neotropical, migratory landbird, at multiple spatial scales, using data collected in the western USA from the Monitoring Avian Productivity and Survivorship Programme. We evaluated statistical power to detect spatially heterogeneous survival rates and exponentially declining survival rates among spatial scales with simulated populations parameterized from results of the Swainson's Thrush analyses. Models describing survival rates as constant across large spatial scales did not fit the data. The model we chose as most appropriate to describe survival rates of Swainson's Thrush allowed survival rates to vary among Physiographic Provinces, included a separate parameter for the probability that a newly captured bird is a resident individual in the study population, and constrained capture probability to be constant across all stations. Estimated annual survival rates under this model varied from 0.42 to 0.75 among Provinces. The coefficient of variation of survival estimates ranged from 5.8 to 20% among Physiographic Provinces. Statistical power to detect exponentially declining trends was fairly low for small spatial scales, although large annual declines (3% of previous year's rate) were likely to be detected when monitoring was conducted for long periods of time (e.g. 20 years). Although our simulations and field results are based on only four years of date from a limited number and distribution of stations, it is likely that they illustrate genuine difficulties inherent to broadscale efforts to monitor survival rates of territorial landbirds. In particular, our results suggest that more attention needs to be paid to sampling schemes of monitoring programmes particularly regarding the trade-off between precison and potential bias o parameter estimates at varying spatial scales.

  17. Multi objective climate change impact assessment using multi downscaled climate scenarios

    NASA Astrophysics Data System (ADS)

    Rana, Arun; Moradkhani, Hamid

    2016-04-01

    Global Climate Models (GCMs) are often used to downscale the climatic parameters on a regional and global scale. In the present study, we have analyzed the changes in precipitation and temperature for future scenario period of 2070-2099 with respect to historical period of 1970-2000 from a set of statistically downscaled GCM projections for Columbia River Basin (CRB). Analysis is performed using 2 different statistically downscaled climate projections namely the Bias Correction and Spatial Downscaling (BCSD) technique generated at Portland State University and the Multivariate Adaptive Constructed Analogs (MACA) technique, generated at University of Idaho, totaling to 40 different scenarios. Analysis is performed on spatial, temporal and frequency based parameters in the future period at a scale of 1/16th of degree for entire CRB region. Results have indicated in varied degree of spatial change pattern for the entire Columbia River Basin, especially western part of the basin. At temporal scales, winter precipitation has higher variability than summer and vice-versa for temperature. Frequency analysis provided insights into possible explanation to changes in precipitation.

  18. Statistical analysis of the MODIS atmosphere products for the Tomsk region

    NASA Astrophysics Data System (ADS)

    Afonin, Sergey V.; Belov, Vladimir V.; Engel, Marina V.

    2005-10-01

    The paper presents the results of using the MODIS Atmosphere Products satellite information to study the atmospheric characteristics (the aerosol and water vapor) in the Tomsk Region (56-61°N, 75-90°E) in 2001-2004. The satellite data were received from the NASA Goddard Distributed Active Archive Center (DAAC) through the INTERNET.To use satellite data for a solution of scientific and applied problems, it is very important to know their accuracy. Despite the results of validation of the MODIS data have already been available in the literature, we decided to carry out additional investigations for the Tomsk Region. The paper presents the results of validation of the aerosol optical thickness (AOT) and total column precipitable water (TCPW), which are in good agreement with the test data. The statistical analysis revealed some interesting facts. Thus, for example, analyzing the data on the spatial distribution of the average seasonal values of AOT or TCPW for 2001-2003 in the Tomsk Region, we established that instead of the expected spatial homogeneity of these distributions, they have similar spatial structures.

  19. Effect of fertility on secondary sex ratio and twinning rate in Sweden, 1749-1870.

    PubMed

    Fellman, Johan; Eriksson, Aldur W

    2015-02-01

    We analyzed the effect of total fertility rate (TFR) and crude birth rate (CBR) on the number of males per 100 females at birth, also called the secondary sex ratio (SR), and on the twinning rate (TWR). Earlier studies have noted regional variations in TWR and racial differences in the SR. Statistical analyses have shown that comparisons between SRs demand large data sets because random fluctuations in moderate data are marked. Consequently, reliable results presuppose national birth data. Here, we analyzed historical demographic data and their regional variations between counties in Sweden. We built spatial models for the TFR in 1860 and the CBR in 1751-1870, and as regressors we used geographical coordinates for the provincial capitals of the counties. For both variables, we obtained significant spatial variations, albeit of different patterns and power. The SR among the live-born in 1749-1869 and the TWR in 1751-1860 showed slight spatial variations. The influence of CBR and TFR on the SR and TWR was examined and statistical significant effects were found.

  20. Spatial Statistics for Segmenting Histological Structures in H&E Stained Tissue Images.

    PubMed

    Nguyen, Luong; Tosun, Akif Burak; Fine, Jeffrey L; Lee, Adrian V; Taylor, D Lansing; Chennubhotla, S Chakra

    2017-07-01

    Segmenting a broad class of histological structures in transmitted light and/or fluorescence-based images is a prerequisite for determining the pathological basis of cancer, elucidating spatial interactions between histological structures in tumor microenvironments (e.g., tumor infiltrating lymphocytes), facilitating precision medicine studies with deep molecular profiling, and providing an exploratory tool for pathologists. This paper focuses on segmenting histological structures in hematoxylin- and eosin-stained images of breast tissues, e.g., invasive carcinoma, carcinoma in situ, atypical and normal ducts, adipose tissue, and lymphocytes. We propose two graph-theoretic segmentation methods based on local spatial color and nuclei neighborhood statistics. For benchmarking, we curated a data set of 232 high-power field breast tissue images together with expertly annotated ground truth. To accurately model the preference for histological structures (ducts, vessels, tumor nets, adipose, etc.) over the remaining connective tissue and non-tissue areas in ground truth annotations, we propose a new region-based score for evaluating segmentation algorithms. We demonstrate the improvement of our proposed methods over the state-of-the-art algorithms in both region- and boundary-based performance measures.

  1. Spatial and temporal study of nitrate concentration in groundwater by means of coregionalization

    USGS Publications Warehouse

    D'Agostino, V.; Greene, E.A.; Passarella, G.; Vurro, M.

    1998-01-01

    Spatial and temporal behavior of hydrochemical parameters in groundwater can be studied using tools provided by geostatistics. The cross-variogram can be used to measure the spatial increments between observations at two given times as a function of distance (spatial structure). Taking into account the existence of such a spatial structure, two different data sets (sampled at two different times), representing concentrations of the same hydrochemical parameter, can be analyzed by cokriging in order to reduce the uncertainty of the estimation. In particular, if one of the two data sets is a subset of the other (that is, an undersampled set), cokriging allows us to study the spatial distribution of the hydrochemical parameter at that time, while also considering the statistical characteristics of the full data set established at a different time. This paper presents an application of cokriging by using temporal subsets to study the spatial distribution of nitrate concentration in the aquifer of the Lucca Plain, central Italy. Three data sets of nitrate concentration in groundwater were collected during three different periods in 1991. The first set was from 47 wells, but the second and the third are undersampled and represent 28 and 27 wells, respectively. Comparing the result of cokriging with ordinary kriging showed an improvement of the uncertainty in terms of reducing the estimation variance. The application of cokriging to the undersampled data sets reduced the uncertainty in estimating nitrate concentration and at the same time decreased the cost of the field sampling and laboratory analysis.Spatial and temporal behavior of hydrochemical parameters in groundwater can be studied using tools provided by geostatistics. The cross-variogram can be used to measure the spatial increments between observations at two given times as a function of distance (spatial structure). Taking into account the existence of such a spatial structure, two different data sets (sampled at two different times), representing concentrations of the same hydrochemical parameter, can be analyzed by cokriging in order to reduce the uncertainty of the estimation. In particular, if one of the two data sets is a subset of the other (that is, an undersampled set), cokriging allows us to study the spatial distribution of the hydrochemical parameter at that time, while also considering the statistical characteristics of the full data set established at a different time. This paper presents an application of cokriging by using temporal subsets to study the spatial distribution of nitrate concentration in the aquifer of the Lucca Plain, central Italy. Three data sets of nitrate concentration in groundwater were collected during three different periods in 1991. The first set was from 47 wells, but the second and the third are undersampled and represent 28 and 27 wells, respectively. Comparing the result of cokriging with ordinary kriging showed an improvement of the uncertainty in terms of reducing the estimation variance. The application of cokriging to the undersampled data sets reduced the uncertainty in estimating nitrate concentration and at the same time decreased the cost of the field sampling and laboratory analysis.

  2. [Spatial pattern of land surface dead combustible fuel load in Huzhong forest area in Great Xing'an Mountains].

    PubMed

    Liu, Zhi-Hua; Chang, Yu; Chen, Hong-Wei; Zhou, Rui; Jing, Guo-Zhi; Zhang, Hong-Xin; Zhang, Chang-Meng

    2008-03-01

    By using geo-statistics and based on time-lag classification standard, a comparative study was made on the land surface dead combustible fuels in Huzhong forest area in Great Xing'an Mountains. The results indicated that the first level land surface dead combustible fuel, i. e., 1 h time-lag dead fuel, presented stronger spatial auto-correlation, with an average of 762.35 g x m(-2) and contributing to 55.54% of the total load. Its determining factors were species composition and stand age. The second and third levels land surface dead combustible fuel, i. e., 10 h and 100 h time-lag dead fuels, had a sum of 610.26 g x m(-2), and presented weaker spatial auto-correlation than 1 h time-lag dead fuel. Their determining factor was the disturbance history of forest stand. The complexity and heterogeneity of the factors determining the quality and quantity of forest land surface dead combustible fuels were the main reasons for the relatively inaccurate interpolation. However, the utilization of field survey data coupled with geo-statistics could easily and accurately interpolate the spatial pattern of forest land surface dead combustible fuel loads, and indirectly provide a practical basis for forest management.

  3. Spatial clustering and local risk of leprosy in São Paulo, Brazil.

    PubMed

    Ramos, Antônio Carlos Vieira; Yamamura, Mellina; Arroyo, Luiz Henrique; Popolin, Marcela Paschoal; Chiaravalloti Neto, Francisco; Palha, Pedro Fredemir; Uchoa, Severina Alice da Costa; Pieri, Flávia Meneguetti; Pinto, Ione Carvalho; Fiorati, Regina Célia; Queiroz, Ana Angélica Rêgo de; Belchior, Aylana de Souza; Dos Santos, Danielle Talita; Garcia, Maria Concebida da Cunha; Crispim, Juliane de Almeida; Alves, Luana Seles; Berra, Thaís Zamboni; Arcêncio, Ricardo Alexandre

    2017-02-01

    Although the detection rate is decreasing, the proportion of new cases with WHO grade 2 disability (G2D) is increasing, creating concern among policy makers and the Brazilian government. This study aimed to identify spatial clustering of leprosy and classify high-risk areas in a major leprosy cluster using the SatScan method. Data were obtained including all leprosy cases diagnosed between January 2006 and December 2013. In addition to the clinical variable, information was also gathered regarding the G2D of the patient at diagnosis and after treatment. The Scan Spatial statistic test, developed by Kulldorff e Nagarwalla, was used to identify spatial clustering and to measure the local risk (Relative Risk-RR) of leprosy. Maps considering these risks and their confidence intervals were constructed. A total of 434 cases were identified, including 188 (43.31%) borderline leprosy and 101 (23.28%) lepromatous leprosy cases. There was a predominance of males, with ages ranging from 15 to 59 years, and 51 patients (11.75%) presented G2D. Two significant spatial clusters and three significant spatial-temporal clusters were also observed. The main spatial cluster (p = 0.000) contained 90 census tracts, a population of approximately 58,438 inhabitants, detection rate of 22.6 cases per 100,000 people and RR of approximately 3.41 (95%CI = 2.721-4.267). Regarding the spatial-temporal clusters, two clusters were observed, with RR ranging between 24.35 (95%CI = 11.133-52.984) and 15.24 (95%CI = 10.114-22.919). These findings could contribute to improvements in policies and programming, aiming for the eradication of leprosy in Brazil. The Spatial Scan statistic test was found to be an interesting resource for health managers and healthcare professionals to map the vulnerability of areas in terms of leprosy transmission risk and areas of underreporting.

  4. The joint space-time statistics of macroweather precipitation, space-time statistical factorization and macroweather models.

    PubMed

    Lovejoy, S; de Lima, M I P

    2015-07-01

    Over the range of time scales from about 10 days to 30-100 years, in addition to the familiar weather and climate regimes, there is an intermediate "macroweather" regime characterized by negative temporal fluctuation exponents: implying that fluctuations tend to cancel each other out so that averages tend to converge. We show theoretically and numerically that macroweather precipitation can be modeled by a stochastic weather-climate model (the Climate Extended Fractionally Integrated Flux, model, CEFIF) first proposed for macroweather temperatures and we show numerically that a four parameter space-time CEFIF model can approximately reproduce eight or so empirical space-time exponents. In spite of this success, CEFIF is theoretically and numerically difficult to manage. We therefore propose a simplified stochastic model in which the temporal behavior is modeled as a fractional Gaussian noise but the spatial behaviour as a multifractal (climate) cascade: a spatial extension of the recently introduced ScaLIng Macroweather Model, SLIMM. Both the CEFIF and this spatial SLIMM model have a property often implicitly assumed by climatologists that climate statistics can be "homogenized" by normalizing them with the standard deviation of the anomalies. Physically, it means that the spatial macroweather variability corresponds to different climate zones that multiplicatively modulate the local, temporal statistics. This simplified macroweather model provides a framework for macroweather forecasting that exploits the system's long range memory and spatial correlations; for it, the forecasting problem has been solved. We test this factorization property and the model with the help of three centennial, global scale precipitation products that we analyze jointly in space and in time.

  5. White matter alterations in narcolepsy patients with cataplexy: tract-based spatial statistics.

    PubMed

    Park, Yun K; Kwon, Oh-Hun; Joo, Eun Yeon; Kim, Jae-Hun; Lee, Jong M; Kim, Sung T; Hong, Seung B

    2016-04-01

    Functional imaging studies and voxel-based morphometry analysis of brain magnetic resonance imaging showed abnormalities in the hypothalamus-thalamus-orbitofrontal pathway, demonstrating altered hypocretin pathway in narcolepsy. Those distinct morphometric changes account for problems in wake-sleep control, attention and memory. It also raised the necessity to evaluate white matter changes. To investigate brain white matter alterations in drug-naïve narcolepsy patients with cataplexy and to explore relationships between white matter changes and patient clinical characteristics, drug-naïve narcolepsy patients with cataplexy (n = 22) and healthy age- and gender-matched controls (n = 26) were studied. Fractional anisotropy and mean diffusivity images were obtained from whole-brain diffusion tensor imaging, and tract-based spatial statistics were used to localize white matter abnormalities. Compared with controls, patients showed significant decreases in fractional anisotropy of white matter of the bilateral anterior cingulate, fronto-orbital area, frontal lobe, anterior limb of the internal capsule and corpus callosum, as well as the left anterior and medial thalamus. Patients and controls showed no differences in mean diffusivity. Among patients, mean diffusivity values of white matter in the bilateral superior frontal gyri, bilateral fronto-orbital gyri and right superior parietal gyrus were positively correlated with depressive mood. This tract-based spatial statistics study demonstrated that drug-naïve patients with narcolepsy had reduced fractional anisotropy of white matter in multiple brain areas and significant relationship between increased mean diffusivity of white matter in frontal/cingulate and depression. It suggests the widespread disruption of white matter integrity and prevalent brain degeneration of frontal lobes according to a depressive symptom in narcolepsy. © 2015 European Sleep Research Society.

  6. Nightside Quiet-Time Mid-Latitude Ionospheric Convection and Its Connection to Penetration Electric Fields

    NASA Astrophysics Data System (ADS)

    Ruohoniemi, J. M.; Maimaiti, M.; Baker, J. B.; Ribeiro, A. J.

    2017-12-01

    Previous studies have shown that during quiet geomagnetic conditions F-region subauroral ionospheric plasma exhibits drifts of a few tens of m/s, predominantly in the westward direction. However, the exact driving mechanisms for this plasma motion are still not well understood. Recent expansion of SuperDARN radars into the mid-latitude region has provided new opportunities to study subauroral ionospheric convection over large areas and with greater spatial resolution and statistical significance than previously possible. Mid-latitude SuperDARN radars tend to observe subauroral ionospheric backscatter with low Doppler velocities on most geomagnetically quiet nights. In this study, we have used two years of data obtained from the six mid-latitude SuperDARN radars in the North American sector to derive a statistical model of quiet-time nightside mid-latitude plasma convection between 52°- 58° magnetic latitude. The model is organized in MLAT-MLT coordinates and has a spatial resolution of 1°x 7 min with each grid cell typically counting thousands of velocity measurements. Our results show that the flow is predominantly westward (20 - 60 m/s) and weakly northward (0 -20 m/s) near midnight but with a strong seasonal dependence such that the flows tend to be strongest and most spatially variable in winter. These statistical results are in good agreement with previously reported observations from ISR measurements but also show some interesting new features, one being a significant latitudinal variation of zonal flow velocity near midnight in winter. In this presentation, we describe the derivation of the nightside quite-time subauroral convection model, analyze its most prominent features, and discuss the results in terms of the Ionosphere-Thermosphere coupling and penetration electric fields.

  7. Use of a spatial scan statistic to identify clusters of births occurring outside Ghanaian health facilities for targeted intervention.

    PubMed

    Bosomprah, Samuel; Dotse-Gborgbortsi, Winfred; Aboagye, Patrick; Matthews, Zoe

    2016-11-01

    To identify and evaluate clusters of births that occurred outside health facilities in Ghana for targeted intervention. A retrospective study was conducted using a convenience sample of live births registered in Ghanaian health facilities from January 1 to December 31, 2014. Data were extracted from the district health information system. A spatial scan statistic was used to investigate clusters of home births through a discrete Poisson probability model. Scanning with a circular spatial window was conducted only for clusters with high rates of such deliveries. The district was used as the geographic unit of analysis. The likelihood P value was estimated using Monte Carlo simulations. Ten statistically significant clusters with a high rate of home birth were identified. The relative risks ranged from 1.43 ("least likely" cluster; P=0.001) to 1.95 ("most likely" cluster; P=0.001). The relative risks of the top five "most likely" clusters ranged from 1.68 to 1.95; these clusters were located in Ashanti, Brong Ahafo, and the Western, Eastern, and Greater regions of Accra. Health facility records, geospatial techniques, and geographic information systems provided locally relevant information to assist policy makers in delivering targeted interventions to small geographic areas. Copyright © 2016 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.

  8. Statistical methods to estimate treatment effects from multichannel electroencephalography (EEG) data in clinical trials.

    PubMed

    Ma, Junshui; Wang, Shubing; Raubertas, Richard; Svetnik, Vladimir

    2010-07-15

    With the increasing popularity of using electroencephalography (EEG) to reveal the treatment effect in drug development clinical trials, the vast volume and complex nature of EEG data compose an intriguing, but challenging, topic. In this paper the statistical analysis methods recommended by the EEG community, along with methods frequently used in the published literature, are first reviewed. A straightforward adjustment of the existing methods to handle multichannel EEG data is then introduced. In addition, based on the spatial smoothness property of EEG data, a new category of statistical methods is proposed. The new methods use a linear combination of low-degree spherical harmonic (SPHARM) basis functions to represent a spatially smoothed version of the EEG data on the scalp, which is close to a sphere in shape. In total, seven statistical methods, including both the existing and the newly proposed methods, are applied to two clinical datasets to compare their power to detect a drug effect. Contrary to the EEG community's recommendation, our results suggest that (1) the nonparametric method does not outperform its parametric counterpart; and (2) including baseline data in the analysis does not always improve the statistical power. In addition, our results recommend that (3) simple paired statistical tests should be avoided due to their poor power; and (4) the proposed spatially smoothed methods perform better than their unsmoothed versions. Copyright 2010 Elsevier B.V. All rights reserved.

  9. Spatial analysis of charcoal kiln remains in the former royal forest district Tauer (Lower Lusatia, North German Lowlands)

    NASA Astrophysics Data System (ADS)

    Raab, Alexandra; Schneider, Anna; Bonhage, Alexander; Takla, Melanie; Hirsch, Florian; Müller, Frank; Rösler, Horst; Heußner, Karl-Uwe

    2016-04-01

    Archaeological excavations have revealed more than thousand charcoal kiln remains (CKRs) in the prefield of the active opencast lignite mine Jänschwalde, situated about 150 km SE of Berlin (SE Brandenburg, Germany). The charcoal was mainly produced for the ironwork Peitz nearby, which operated from the 16th to the mid-19th centuries. In a first approach, to estimate the dimension of the charcoal production, CKRs were mapped on shaded-relief maps (SRMs) derived from high-resolution LiDAR data (Raab et al. 2015). Subsequently, for a selected test area, identified CKRs on the SRMs were compared with archaeologically excavated CKRs in the field. This survey showed a considerably number of falsely detected sites. Therefore, the data was critically re-evaluated using additional relief visualisations. Further, we extended the CKR mapping to areas which are not archaeologically investigated. The study area, the former royal forest district Tauer, consists of two separate areas: the Tauersche Heide (c. 96 km2 area) N of Peitz and the area Jänschwalde (c. 32 km2 area) NE of Peitz. The study area is characterized by a flat topography. Different former and current anthropogenic uses (e.g., military training, solar power plant, forestry measures) have affected the study area, resulting in extensive disturbances of the terrain surface. The revised CKR abundance in the study area Jänschwalde was considerably smaller than the numbers produced by our first approach. Further, the CKR mapping revealed, that a total record of the CKRs is not possible for various reasons. Despite these limitations, a solid database can be provided for a much larger area than before. Basic statistic parameters of the CKR diameters and all comparative statistical tests were calculated using SPSS. To detect underlying spatial relationships in the CKR site distribution, we applied the Getis-Ord Gi* statistic, a method to test for local spatial autocorrelation between neighbouring sites. The test is available as part of the ArcGis 10.1 spatial statistics toolbox. The outcomes are discussed in consideration of our archaeological, archival and dendrochronological research results. Raab, A., Takla, M., Raab, T., Nicolay, A., Schneider, A., Rösler, H., et al. (2015). Pre-industrial charcoal production in Lower Lusatia (Brandenburg, Germany): Detection and evaluation of a large charcoal-burning field by combining archaeological studies, GIS-based analyses of shaded-relief maps and dendrochronological age determination. Quaternary International, doi:http://dx.doi.org/10.1016/j.quaint.2014.09.041.

  10. Spatial modelling and mapping of female genital mutilation in Kenya

    PubMed Central

    2014-01-01

    Background Female genital mutilation/cutting (FGM/C) is still prevalent in several communities in Kenya and other areas in Africa, as well as being practiced by some migrants from African countries living in other parts of the world. This study aimed at detecting clustering of FGM/C in Kenya, and identifying those areas within the country where women still intend to continue the practice. A broader goal of the study was to identify geographical areas where the practice continues unabated and where broad intervention strategies need to be introduced. Methods The prevalence of FGM/C was investigated using the 2008 Kenya Demographic and Health Survey (KDHS) data. The 2008 KDHS used a multistage stratified random sampling plan to select women of reproductive age (15–49 years) and asked questions concerning their FGM/C status and their support for the continuation of FGM/C. A spatial scan statistical analysis was carried out using SaTScan™ to test for statistically significant clustering of the practice of FGM/C in the country. The risk of FGM/C was also modelled and mapped using a hierarchical spatial model under the Integrated Nested Laplace approximation approach using the INLA library in R. Results The prevalence of FGM/C stood at 28.2% and an estimated 10.3% of the women interviewed indicated that they supported the continuation of FGM. On the basis of the Deviance Information Criterion (DIC), hierarchical spatial models with spatially structured random effects were found to best fit the data for both response variables considered. Age, region, rural–urban classification, education, marital status, religion, socioeconomic status and media exposure were found to be significantly associated with FGM/C. The current FGM/C status of a woman was also a significant predictor of support for the continuation of FGM/C. Spatial scan statistics confirm FGM clusters in the North-Eastern and South-Western regions of Kenya (p < 0.001). Conclusion This suggests that the fight against FGM/C in Kenya is not yet over. There are still deep cultural and religious beliefs to be addressed in a bid to eradicate the practice. Interventions by government and other stakeholders must address these challenges and target the identified clusters. PMID:24661558

  11. New quantitative approaches reveal the spatial preference of nuclear compartments in mammalian fibroblasts.

    PubMed

    Weston, David J; Russell, Richard A; Batty, Elizabeth; Jensen, Kirsten; Stephens, David A; Adams, Niall M; Freemont, Paul S

    2015-03-06

    The nuclei of higher eukaryotic cells display compartmentalization and certain nuclear compartments have been shown to follow a degree of spatial organization. To date, the study of nuclear organization has often involved simple quantitative procedures that struggle with both the irregularity of the nuclear boundary and the problem of handling replicate images. Such studies typically focus on inter-object distance, rather than spatial location within the nucleus. The concern of this paper is the spatial preference of nuclear compartments, for which we have developed statistical tools to quantitatively study and explore nuclear organization. These tools combine replicate images to generate 'aggregate maps' which represent the spatial preferences of nuclear compartments. We present two examples of different compartments in mammalian fibroblasts (WI-38 and MRC-5) that demonstrate new knowledge of spatial preference within the cell nucleus. Specifically, the spatial preference of RNA polymerase II is preserved across normal and immortalized cells, whereas PML nuclear bodies exhibit a change in spatial preference from avoiding the centre in normal cells to exhibiting a preference for the centre in immortalized cells. In addition, we show that SC35 splicing speckles are excluded from the nuclear boundary and localize throughout the nucleoplasm and in the interchromatin space in non-transformed WI-38 cells. This new methodology is thus able to reveal the effect of large-scale perturbation on spatial architecture and preferences that would not be obvious from single cell imaging.

  12. Improving alignment in Tract-based spatial statistics: evaluation and optimization of image registration.

    PubMed

    de Groot, Marius; Vernooij, Meike W; Klein, Stefan; Ikram, M Arfan; Vos, Frans M; Smith, Stephen M; Niessen, Wiro J; Andersson, Jesper L R

    2013-08-01

    Anatomical alignment in neuroimaging studies is of such importance that considerable effort is put into improving the registration used to establish spatial correspondence. Tract-based spatial statistics (TBSS) is a popular method for comparing diffusion characteristics across subjects. TBSS establishes spatial correspondence using a combination of nonlinear registration and a "skeleton projection" that may break topological consistency of the transformed brain images. We therefore investigated feasibility of replacing the two-stage registration-projection procedure in TBSS with a single, regularized, high-dimensional registration. To optimize registration parameters and to evaluate registration performance in diffusion MRI, we designed an evaluation framework that uses native space probabilistic tractography for 23 white matter tracts, and quantifies tract similarity across subjects in standard space. We optimized parameters for two registration algorithms on two diffusion datasets of different quality. We investigated reproducibility of the evaluation framework, and of the optimized registration algorithms. Next, we compared registration performance of the regularized registration methods and TBSS. Finally, feasibility and effect of incorporating the improved registration in TBSS were evaluated in an example study. The evaluation framework was highly reproducible for both algorithms (R(2) 0.993; 0.931). The optimal registration parameters depended on the quality of the dataset in a graded and predictable manner. At optimal parameters, both algorithms outperformed the registration of TBSS, showing feasibility of adopting such approaches in TBSS. This was further confirmed in the example experiment. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Solution strategies as possible explanations of individual and sex differences in a dynamic spatial task.

    PubMed

    Peña, Daniel; Contreras, María José; Shih, Pei Chun; Santacreu, José

    2008-05-01

    When individuals perform spatial tasks, individual differences emerge in accuracy and speed as well as in the response patterns used to cope with the task. The purpose of this study is to identify, through empirical criteria, the different response patterns or strategies used by individuals when performing the dynamic spatial task presented in the Spatial Orientation Dynamic Test-Revised (SODT-R). Results show that participants can be classified according to their response patterns. Three different ways of solving a task are described, and their relation to (a) performance factors (response latency, response frequency, and invested time) and (b) ability tests (analytical reasoning, verbal reasoning, and spatial estimation) are investigated. Sex differences in response patterns and performance are also analyzed. It is found that the frequency with which men and women employ each one of the strategies described here, is different and statistically significant. Thus, employed strategy plays an important role when interpreting sex differences on dynamic spatial tasks.

  14. Creativity and technical innovation: spatial ability's unique role.

    PubMed

    Kell, Harrison J; Lubinski, David; Benbow, Camilla P; Steiger, James H

    2013-09-01

    In the late 1970s, 563 intellectually talented 13-year-olds (identified by the SAT as in the top 0.5% of ability) were assessed on spatial ability. More than 30 years later, the present study evaluated whether spatial ability provided incremental validity (beyond the SAT's mathematical and verbal reasoning subtests) for differentially predicting which of these individuals had patents and three classes of refereed publications. A two-step discriminant-function analysis revealed that the SAT subtests jointly accounted for 10.8% of the variance among these outcomes (p < .01); when spatial ability was added, an additional 7.6% was accounted for--a statistically significant increase (p < .01). The findings indicate that spatial ability has a unique role in the development of creativity, beyond the roles played by the abilities traditionally measured in educational selection, counseling, and industrial-organizational psychology. Spatial ability plays a key and unique role in structuring many important psychological phenomena and should be examined more broadly across the applied and basic psychological sciences.

  15. Pattern-Based Inverse Modeling for Characterization of Subsurface Flow Models with Complex Geologic Heterogeneity

    NASA Astrophysics Data System (ADS)

    Golmohammadi, A.; Jafarpour, B.; M Khaninezhad, M. R.

    2017-12-01

    Calibration of heterogeneous subsurface flow models leads to ill-posed nonlinear inverse problems, where too many unknown parameters are estimated from limited response measurements. When the underlying parameters form complex (non-Gaussian) structured spatial connectivity patterns, classical variogram-based geostatistical techniques cannot describe the underlying connectivity patterns. Modern pattern-based geostatistical methods that incorporate higher-order spatial statistics are more suitable for describing such complex spatial patterns. Moreover, when the underlying unknown parameters are discrete (geologic facies distribution), conventional model calibration techniques that are designed for continuous parameters cannot be applied directly. In this paper, we introduce a novel pattern-based model calibration method to reconstruct discrete and spatially complex facies distributions from dynamic flow response data. To reproduce complex connectivity patterns during model calibration, we impose a feasibility constraint to ensure that the solution follows the expected higher-order spatial statistics. For model calibration, we adopt a regularized least-squares formulation, involving data mismatch, pattern connectivity, and feasibility constraint terms. Using an alternating directions optimization algorithm, the regularized objective function is divided into a continuous model calibration problem, followed by mapping the solution onto the feasible set. The feasibility constraint to honor the expected spatial statistics is implemented using a supervised machine learning algorithm. The two steps of the model calibration formulation are repeated until the convergence criterion is met. Several numerical examples are used to evaluate the performance of the developed method.

  16. Relationships between brightness of nighttime lights and population density

    NASA Astrophysics Data System (ADS)

    Naizhuo, Z.

    2012-12-01

    Brightness of nighttime lights has been proven to be a good proxy for socioeconomic and demographic statistics. Moreover, the satellite nighttime lights data have been used to spatially disaggregate amounts of gross domestic product (GDP), fossil fuel carbon dioxide emission, and electric power consumption (Ghosh et al., 2010; Oda and Maksyutov, 2011; Zhao et al., 2012). Spatial disaggregations were performed in these previous studies based on assumed linear relationships between digital number (DN) value of pixels in the nighttime light images and socioeconomic data. However, reliability of the linear relationships was never tested due to lack of relative high-spatial-resolution (equal to or finer than 1 km × 1 km) statistical data. With the similar assumption that brightness linearly correlates to population, Bharti et al. (2011) used nighttime light data as a proxy for population density and then developed a model about seasonal fluctuations of measles in West Africa. The Oak Ridge National Laboratory used sub-national census population data and high spatial resolution remotely-sensed-images to produce LandScan population raster datasets. The LandScan population datasets have 1 km × 1 km spatial resolution which is consistent with the spatial resolution of the nighttime light images. Therefore, in this study I selected 2008 LandScan population data as baseline reference data and the contiguous United State as study area. Relationships between DN value of pixels in the 2008 Defense Meteorological Satellite Program's Operational Linescan System (DMSP-OLS) stable light image and population density were established. Results showed that an exponential function can more accurately reflect the relationship between luminosity and population density than a linear function. Additionally, a certain number of saturated pixels with DN value of 63 exist in urban core areas. If directly using the exponential function to estimate the population density for the whole brightly lit area, relatively large under-estimations would emerge in the urban core regions. Previous studies have shown that GDP, carbon dioxide emission, and electric power consumption strongly correlate to urban population (Ghosh et al., 2010; Sutton et al., 2007; Zhao et al., 2012). Thus, although this study only examined the relationships between brightness of nighttime lights and population density, the results can provide insight for the spatial disaggregations of socioeconomic data (e.g. GDP, carbon dioxide emission, and electric power consumption) using the satellite nighttime light image data. Simply distributing the socioeconomic data to each pixel in proportion to the DN value of the nighttime light images may generate relatively large errors. References Bharit N, Tatem AJ, Ferrari MJ, Grais RF, Djibo A, Grenfell BT, 2011. Science, 334:1424-1427. Ghosh T, Elvidge CD, Sutton PC, Baugh KE, Ziskin D, Tuttle BT, 2010. Energies, 3:1895-1913. Oda T, Maksyutov S, 2011. Atmospheric Chemistry and Physics, 11:543-556. Sutton PC, Elvidge CD, Ghosh T, 2007. International Journal of Ecological Economics and Statistics, 8:5-21. Zhao N, Ghosh T, Samson EL, 2012. International Journal of Remote sensing, 33:6304-6320.

  17. Impact of Satellite Viewing-Swath Width on Global and Regional Aerosol Optical Thickness Statistics and Trends

    NASA Technical Reports Server (NTRS)

    Colarco, P. R.; Kahn, R. A.; Remer, L. A.; Levy, R. C.

    2014-01-01

    We use the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite aerosol optical thickness (AOT) product to assess the impact of reduced swath width on global and regional AOT statistics and trends. Alongtrack and across-track sampling strategies are employed, in which the full MODIS data set is sub-sampled with various narrow-swath (approximately 400-800 km) and single pixel width (approximately 10 km) configurations. Although view-angle artifacts in the MODIS AOT retrieval confound direct comparisons between averages derived from different sub-samples, careful analysis shows that with many portions of the Earth essentially unobserved, spatial sampling introduces uncertainty in the derived seasonal-regional mean AOT. These AOT spatial sampling artifacts comprise up to 60%of the full-swath AOT value under moderate aerosol loading, and can be as large as 0.1 in some regions under high aerosol loading. Compared to full-swath observations, narrower swath and single pixel width sampling exhibits a reduced ability to detect AOT trends with statistical significance. On the other hand, estimates of the global, annual mean AOT do not vary significantly from the full-swath values as spatial sampling is reduced. Aggregation of the MODIS data at coarse grid scales (10 deg) shows consistency in the aerosol trends across sampling strategies, with increased statistical confidence, but quantitative errors in the derived trends are found even for the full-swath data when compared to high spatial resolution (0.5 deg) aggregations. Using results of a model-derived aerosol reanalysis, we find consistency in our conclusions about a seasonal-regional spatial sampling artifact in AOT Furthermore, the model shows that reduced spatial sampling can amount to uncertainty in computed shortwave top-ofatmosphere aerosol radiative forcing of 2-3 W m(sup-2). These artifacts are lower bounds, as possibly other unconsidered sampling strategies would perform less well. These results suggest that future aerosol satellite missions having significantly less than full-swath viewing are unlikely to sample the true AOT distribution well enough to obtain the statistics needed to reduce uncertainty in aerosol direct forcing of climate.

  18. Spatial analysis of highway incident durations in the context of Hurricane Sandy.

    PubMed

    Xie, Kun; Ozbay, Kaan; Yang, Hong

    2015-01-01

    The objectives of this study are (1) to develop an incident duration model which can account for the spatial dependence of duration observations, and (2) to investigate the impacts of a hurricane on incident duration. Highway incident data from New York City and its surrounding regions before and after Hurricane Sandy was used for the study. Moran's I statistics confirmed that durations of the neighboring incidents were spatially correlated. Moreover, Lagrange Multiplier tests suggested that the spatial dependence should be captured in a spatial lag specification. A spatial error model, a spatial lag model and a standard model without consideration of spatial effects were developed. The spatial lag model is found to outperform the others by capturing the spatial dependence of incident durations via a spatially lagged dependent variable. It was further used to assess the effects of hurricane-related variables on incident duration. The results show that the incidents during and post the hurricane are expected to have 116.3% and 79.8% longer durations than those that occurred in the regular time. However, no significant increase in incident duration is observed in the evacuation period before Sandy's landfall. Results of temporal stability tests further confirm the existence of the significant changes in incident duration patterns during and post the hurricane. Those findings can provide insights to aid in the development of hurricane evacuation plans and emergency management strategies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. TEMPORAL CHANGE IN FOREST FRAGMENTATION AT MULTIPLE SCALES

    EPA Science Inventory

    Previous studies of temporal changes in fragmentation have focused almost exclusively on patch and edge statistics, which might not detect changes in the spatial scale at which forest occurs in or dominates the landscape. We used temporal land-cover data for the Chesapeake Bay r...

  20. Leads Detection Using Mixture Statistical Distribution Based CRF Algorithm from Sentinel-1 Dual Polarization SAR Imagery

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Li, Fei; Zhang, Shengkai; Zhu, Tingting

    2017-04-01

    Synthetic Aperture Radar (SAR) is significantly important for polar remote sensing since it can provide continuous observations in all days and all weather. SAR can be used for extracting the surface roughness information characterized by the variance of dielectric properties and different polarization channels, which make it possible to observe different ice types and surface structure for deformation analysis. In November, 2016, Chinese National Antarctic Research Expedition (CHINARE) 33rd cruise has set sails in sea ice zone in Antarctic. Accurate leads spatial distribution in sea ice zone for routine planning of ship navigation is essential. In this study, the semantic relationship between leads and sea ice categories has been described by the Conditional Random Fields (CRF) model, and leads characteristics have been modeled by statistical distributions in SAR imagery. In the proposed algorithm, a mixture statistical distribution based CRF is developed by considering the contexture information and the statistical characteristics of sea ice for improving leads detection in Sentinel-1A dual polarization SAR imagery. The unary potential and pairwise potential in CRF model is constructed by integrating the posteriori probability estimated from statistical distributions. For mixture statistical distribution parameter estimation, Method of Logarithmic Cumulants (MoLC) is exploited for single statistical distribution parameters estimation. The iteration based Expectation Maximal (EM) algorithm is investigated to calculate the parameters in mixture statistical distribution based CRF model. In the posteriori probability inference, graph-cut energy minimization method is adopted in the initial leads detection. The post-processing procedures including aspect ratio constrain and spatial smoothing approaches are utilized to improve the visual result. The proposed method is validated on Sentinel-1A SAR C-band Extra Wide Swath (EW) Ground Range Detected (GRD) imagery with a pixel spacing of 40 meters near Prydz Bay area, East Antarctica. Main work is listed as follows: 1) A mixture statistical distribution based CRF algorithm has been developed for leads detection from Sentinel-1A dual polarization images. 2) The assessment of the proposed mixture statistical distribution based CRF method and single distribution based CRF algorithm has been presented. 3) The preferable parameters sets including statistical distributions, the aspect ratio threshold and spatial smoothing window size have been provided. In the future, the proposed algorithm will be developed for the operational Sentinel series data sets processing due to its less time consuming cost and high accuracy in leads detection.

  1. Influence of Scale Effect and Model Performance in Downscaling ASTER Land Surface Temperatures to a Very High Spatial Resolution in an Agricultural Area

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Li, G.; Liu, S.; Zhan, W.; Zhang, X.

    2015-12-01

    At present land surface temperatures (LSTs) can be generated from thermal infrared remote sensing with spatial resolutions from ~100 m to tens of kilometers. However, LSTs with high spatial resolution, e.g. tens of meters, are still lack. The purpose of LST downscaling is to generate LSTs with finer spatial resolutions than their native spatial resolutions. The statistical linear or nonlinear regression models are most frequently used for LST downscaling. The basic assumption of these models is the scale-invariant relationships between LST and its descriptors, which is questioned but rare researches have been reported. In addition, few researches can be found for downscaling satellite LST or TIR data to a high spatial resolution, i.e. better than 100 m or even finer. The lack of LST with high spatial resolution cannot satisfy the requirements of applications such as evapotranspiration mapping at the field scale. By selecting a dynamically developing agricultural oasis as the study area, the aim of this study is to downscale the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) LSTs to 15 m, to satisfy the requirement of evapotranspiration mapping at the field scale. Twelve ASTER images from May to September in 2012, covering the entire growth stage of maize, were selected. Four statistical models were evaluated, including one global model, one piecewise model, and two local models. The influence from scale effect in downscaling LST was quantified. The downscaled LSTs are evaluated from accuracy and image quality. Results demonstrate that the influence from scale effect varies according to models and the maize growth stage. Significant influence about -4 K to 6 K existed at the early stage and weaker influence existed in the middle stage. When compared with the ground measured LSTs, the downscaled LSTs resulted from the global and local models yielded higher accuracies and better image qualities than the local models. In addition to the vegetation indices, the surface albedo is an important descriptor for downscaling LST through explaining its spatial variation induced by soil moisture.

  2. The intersection of aggregate-level lead exposure and crime.

    PubMed

    Boutwell, Brian B; Nelson, Erik J; Emo, Brett; Vaughn, Michael G; Schootman, Mario; Rosenfeld, Richard; Lewis, Roger

    2016-07-01

    Childhood lead exposure has been associated with criminal behavior later in life. The current study aimed to analyze the association between elevated blood lead levels (n=59,645) and crime occurrence (n=90,433) across census tracts within St. Louis, Missouri. Longitudinal ecological study. Saint Louis, Missouri. Blood lead levels. Violent, Non-violent, and total crime at the census tract level. Spatial statistical models were used to account for the spatial autocorrelation of the data. Greater lead exposure at the census-tract level was associated with increased violent, non-violent, and total crime. In addition, we examined whether non-additive effects existed in the data by testing for an interaction between lead exposure and concentrated disadvantage. Some evidence of a negative interaction emerged, however, it failed to reach traditional levels of statistical significance (supplementary models, however, revealed a similar negative interaction that was significant). More precise measurements of lead exposure in the aggregate, produced additional evidence that lead is a potent predictor of criminal outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. A novel principal component analysis for spatially misaligned multivariate air pollution data.

    PubMed

    Jandarov, Roman A; Sheppard, Lianne A; Sampson, Paul D; Szpiro, Adam A

    2017-01-01

    We propose novel methods for predictive (sparse) PCA with spatially misaligned data. These methods identify principal component loading vectors that explain as much variability in the observed data as possible, while also ensuring the corresponding principal component scores can be predicted accurately by means of spatial statistics at locations where air pollution measurements are not available. This will make it possible to identify important mixtures of air pollutants and to quantify their health effects in cohort studies, where currently available methods cannot be used. We demonstrate the utility of predictive (sparse) PCA in simulated data and apply the approach to annual averages of particulate matter speciation data from national Environmental Protection Agency (EPA) regulatory monitors.

  4. Function modeling improves the efficiency of spatial modeling using big data from remote sensing

    Treesearch

    John Hogland; Nathaniel Anderson

    2017-01-01

    Spatial modeling is an integral component of most geographic information systems (GISs). However, conventional GIS modeling techniques can require substantial processing time and storage space and have limited statistical and machine learning functionality. To address these limitations, many have parallelized spatial models using multiple coding libraries and have...

  5. Spatial autocorrelation in growth of undisturbed natural pine stands across Georgia

    Treesearch

    Raymond L. Czaplewski; Robin M. Reich; William A. Bechtold

    1994-01-01

    Moran's I statistic measures the spatial autocorrelation in a random variable measured at discrete locations in space. Permutation procedures test the null hypothesis that the observed Moran's I value is no greater than that expected by chance. The spatial autocorrelation of gross basal area increment is analyzed for undisturbed, naturally regenerated stands...

  6. Logistic regression for southern pine beetle outbreaks with spatial and temporal autocorrelation

    Treesearch

    M. L. Gumpertz; C.-T. Wu; John M. Pye

    2000-01-01

    Regional outbreaks of southern pine beetle (Dendroctonus frontalis Zimm.) show marked spatial and temporal patterns. While these patterns are of interest in themselves, we focus on statistical methods for estimating the effects of underlying environmental factors in the presence of spatial and temporal autocorrelation. The most comprehensive available information on...

  7. Spatial Thinking Ability Assessment in Rwandan Secondary Schools: Baseline Results

    ERIC Educational Resources Information Center

    Tomaszewski, Brian; Vodacek, Anthony; Parody, Robert; Holt, Nicholas

    2015-01-01

    This article discusses use and modification of Lee and Bednarz's (2012) Spatial Thinking Ability Test (STAT) as a spatial thinking assessment device in Rwandan secondary schools. After piloting and modifying the STAT, 222 students total from our rural and urban test schools and one control school were tested. Statistical analysis revealed that…

  8. a Comparative Analysis of Five Cropland Datasets in Africa

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Lu, M.; Wu, W.

    2018-04-01

    The food security, particularly in Africa, is a challenge to be resolved. The cropland area and spatial distribution obtained from remote sensing imagery are vital information. In this paper, according to cropland area and spatial location, we compare five global cropland datasets including CCI Land Cover, GlobCover, MODIS Collection 5, GlobeLand30 and Unified Cropland in circa 2010 of Africa in terms of cropland area and spatial location. The accuracy of cropland area calculated from five datasets was analyzed compared with statistic data. Based on validation samples, the accuracies of spatial location for the five cropland products were assessed by error matrix. The results show that GlobeLand30 has the best fitness with the statistics, followed by MODIS Collection 5 and Unified Cropland, GlobCover and CCI Land Cover have the lower accuracies. For the accuracy of spatial location of cropland, GlobeLand30 reaches the highest accuracy, followed by Unified Cropland, MODIS Collection 5 and GlobCover, CCI Land Cover has the lowest accuracy. The spatial location accuracy of five datasets in the Csa with suitable farming condition is generally higher than in the Bsk.

  9. [The application of the prospective space-time statistic in early warning of infectious disease].

    PubMed

    Yin, Fei; Li, Xiao-Song; Feng, Zi-Jian; Ma, Jia-Qi

    2007-06-01

    To investigate the application of prospective space-time scan statistic in the early stage of detecting infectious disease outbreaks. The prospective space-time scan statistic was tested by mimicking daily prospective analyses of bacillary dysentery data of Chengdu city in 2005 (3212 cases in 102 towns and villages). And the results were compared with that of purely temporal scan statistic. The prospective space-time scan statistic could give specific messages both in spatial and temporal. The results of June indicated that the prospective space-time scan statistic could timely detect the outbreaks that started from the local site, and the early warning message was powerful (P = 0.007). When the merely temporal scan statistic for detecting the outbreak was sent two days later, and the signal was less powerful (P = 0.039). The prospective space-time scan statistic could make full use of the spatial and temporal information in infectious disease data and could timely and effectively detect the outbreaks that start from the local sites. The prospective space-time scan statistic could be an important tool for local and national CDC to set up early detection surveillance systems.

  10. Gyrokinetic statistical absolute equilibrium and turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu Jianzhou; Hammett, Gregory W.

    2010-12-15

    A paradigm based on the absolute equilibrium of Galerkin-truncated inviscid systems to aid in understanding turbulence [T.-D. Lee, Q. Appl. Math. 10, 69 (1952)] is taken to study gyrokinetic plasma turbulence: a finite set of Fourier modes of the collisionless gyrokinetic equations are kept and the statistical equilibria are calculated; possible implications for plasma turbulence in various situations are discussed. For the case of two spatial and one velocity dimension, in the calculation with discretization also of velocity v with N grid points (where N+1 quantities are conserved, corresponding to an energy invariant and N entropy-related invariants), the negative temperaturemore » states, corresponding to the condensation of the generalized energy into the lowest modes, are found. This indicates a generic feature of inverse energy cascade. Comparisons are made with some classical results, such as those of Charney-Hasegawa-Mima in the cold-ion limit. There is a universal shape for statistical equilibrium of gyrokinetics in three spatial and two velocity dimensions with just one conserved quantity. Possible physical relevance to turbulence, such as ITG zonal flows, and to a critical balance hypothesis are also discussed.« less

  11. Statistical relationship between the succeeding solar flares detected by the RHESSI satellite

    NASA Astrophysics Data System (ADS)

    Balázs, L. G.; Gyenge, N.; Korsós, M. B.; Baranyi, T.; Forgács-Dajka, E.; Ballai, I.

    2014-06-01

    The Reuven Ramaty High Energy Solar Spectroscopic Imager has observed more than 80 000 solar energetic events since its launch on 2002 February 12. Using this large sample of observed flares, we studied the spatiotemporal relationship between succeeding flares. Our results show that the statistical relationship between the temporal and spatial differences of succeeding flares can be described as a power law of the form R(t) ˜ tp with p = 0.327 ± 0.007. We discuss the possible interpretations of this result as a characteristic function of a supposed underlying physics. Different scenarios are considered to explain this relation, including the case where the connectivity between succeeding events is realized through a shock wave in the post Sedov-Taylor phase or where the spatial and temporal relationship between flares is supposed to be provided by an expanding flare area in the sub-diffusive regime. Furthermore, we cannot exclude the possibility that the physical process behind the statistical relationship is the reordering of the magnetic field by the flare or it is due to some unknown processes.

  12. Effects of sample size, number of markers, and allelic richness on the detection of spatial genetic pattern

    USGS Publications Warehouse

    Landguth, Erin L.; Gedy, Bradley C.; Oyler-McCance, Sara J.; Garey, Andrew L.; Emel, Sarah L.; Mumma, Matthew; Wagner, Helene H.; Fortin, Marie-Josée; Cushman, Samuel A.

    2012-01-01

    The influence of study design on the ability to detect the effects of landscape pattern on gene flow is one of the most pressing methodological gaps in landscape genetic research. To investigate the effect of study design on landscape genetics inference, we used a spatially-explicit, individual-based program to simulate gene flow in a spatially continuous population inhabiting a landscape with gradual spatial changes in resistance to movement. We simulated a wide range of combinations of number of loci, number of alleles per locus and number of individuals sampled from the population. We assessed how these three aspects of study design influenced the statistical power to successfully identify the generating process among competing hypotheses of isolation-by-distance, isolation-by-barrier, and isolation-by-landscape resistance using a causal modelling approach with partial Mantel tests. We modelled the statistical power to identify the generating process as a response surface for equilibrium and non-equilibrium conditions after introduction of isolation-by-landscape resistance. All three variables (loci, alleles and sampled individuals) affect the power of causal modelling, but to different degrees. Stronger partial Mantel r correlations between landscape distances and genetic distances were found when more loci were used and when loci were more variable, which makes comparisons of effect size between studies difficult. Number of individuals did not affect the accuracy through mean equilibrium partial Mantel r, but larger samples decreased the uncertainty (increasing the precision) of equilibrium partial Mantel r estimates. We conclude that amplifying more (and more variable) loci is likely to increase the power of landscape genetic inferences more than increasing number of individuals.

  13. Effects of sample size, number of markers, and allelic richness on the detection of spatial genetic pattern

    USGS Publications Warehouse

    Landguth, E.L.; Fedy, B.C.; Oyler-McCance, S.J.; Garey, A.L.; Emel, S.L.; Mumma, M.; Wagner, H.H.; Fortin, M.-J.; Cushman, S.A.

    2012-01-01

    The influence of study design on the ability to detect the effects of landscape pattern on gene flow is one of the most pressing methodological gaps in landscape genetic research. To investigate the effect of study design on landscape genetics inference, we used a spatially-explicit, individual-based program to simulate gene flow in a spatially continuous population inhabiting a landscape with gradual spatial changes in resistance to movement. We simulated a wide range of combinations of number of loci, number of alleles per locus and number of individuals sampled from the population. We assessed how these three aspects of study design influenced the statistical power to successfully identify the generating process among competing hypotheses of isolation-by-distance, isolation-by-barrier, and isolation-by-landscape resistance using a causal modelling approach with partial Mantel tests. We modelled the statistical power to identify the generating process as a response surface for equilibrium and non-equilibrium conditions after introduction of isolation-by-landscape resistance. All three variables (loci, alleles and sampled individuals) affect the power of causal modelling, but to different degrees. Stronger partial Mantel r correlations between landscape distances and genetic distances were found when more loci were used and when loci were more variable, which makes comparisons of effect size between studies difficult. Number of individuals did not affect the accuracy through mean equilibrium partial Mantel r, but larger samples decreased the uncertainty (increasing the precision) of equilibrium partial Mantel r estimates. We conclude that amplifying more (and more variable) loci is likely to increase the power of landscape genetic inferences more than increasing number of individuals. ?? 2011 Blackwell Publishing Ltd.

  14. Geostatistical conditional simulation for the assessment of contaminated land by abandoned heavy metal mining.

    PubMed

    Ersoy, Adem; Yunsel, Tayfun Yusuf; Atici, Umit

    2008-02-01

    Abandoned mine workings can undoubtedly cause varying degrees of contamination of soil with heavy metals such as lead and zinc has occurred on a global scale. Exposure to these elements may cause to harm human health and environment. In the study, a total of 269 soil samples were collected at 1, 5, and 10 m regular grid intervals of 100 x 100 m area of Carsington Pasture in the UK. Cell declustering technique was applied to the data set due to no statistical representativity. Directional experimental semivariograms of the elements for the transformed data showed that both geometric and zonal anisotropy exists in the data. The most evident spatial dependence structure of the continuity for the directional experimental semivariogram, characterized by spherical and exponential models of Pb and Zn were obtained. This study reports the spatial distribution and uncertainty of Pb and Zn concentrations in soil at the study site using a probabilistic approach. The approach was based on geostatistical sequential Gaussian simulation (SGS), which is used to yield a series of conditional images characterized by equally probable spatial distributions of the heavy elements concentrations across the area. Postprocessing of many simulations allowed the mapping of contaminated and uncontaminated areas, and provided a model for the uncertainty in the spatial distribution of element concentrations. Maps of the simulated Pb and Zn concentrations revealed the extent and severity of contamination. SGS was validated by statistics, histogram, variogram reproduction, and simulation errors. The maps of the elements might be used in the remediation studies, help decision-makers and others involved in the abandoned heavy metal mining site in the world.

  15. Geospatial data to support analysis of water-quality conditions in basin-fill aquifers in the southwestern United States

    USGS Publications Warehouse

    McKinney, Tim S.; Anning, David W.

    2009-01-01

    The Southwest Principal Aquifers study area consists of most of California and Nevada and parts of Utah, Arizona, New Mexico, and Colorado; it is about 409,000 square miles. The Basin-fill aquifers extend through about 201,000 square miles of the study area and are the primary source of water for cities and agricultural communities in basins in the arid and semiarid southwestern United States (Southwest). The demand on limited ground-water resources in areas in the southwestern United States has increased significantly. This increased demand underscores the importance of understanding factors that affect the water quality in basin-fill aquifers in the region, which are being studied through the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) program. As a part of this study, spatial datasets of natural and anthropogenic factors that may affect ground-water quality of the basin-fill aquifers in the southwestern United States were developed. These data include physical characteristics of the region, such as geology, elevation, and precipitation, as well as anthropogenic factors, including population, land use, and water use. Spatial statistics for the alluvial basins in the Southwest have been calculated using the datasets. This information provides a foundation for the development of conceptual and statistical models that relate natural and anthropogenic factors to ground-water quality across the Southwest. A geographic information system (GIS) was used to determine and illustrate the spatial distribution of these basin-fill variables across the region. One hundred-meter resolution raster data layers that represent the spatial characteristics of the basins' boundaries, drainage areas, population densities, land use, and water use were developed for the entire Southwest.

  16. Performance map of a cluster detection test using extended power

    PubMed Central

    2013-01-01

    Background Conventional power studies possess limited ability to assess the performance of cluster detection tests. In particular, they cannot evaluate the accuracy of the cluster location, which is essential in such assessments. Furthermore, they usually estimate power for one or a few particular alternative hypotheses and thus cannot assess performance over an entire region. Takahashi and Tango developed the concept of extended power that indicates both the rate of null hypothesis rejection and the accuracy of the cluster location. We propose a systematic assessment method, using here extended power, to produce a map showing the performance of cluster detection tests over an entire region. Methods To explore the behavior of a cluster detection test on identical cluster types at any possible location, we successively applied four different spatial and epidemiological parameters. These parameters determined four cluster collections, each covering the entire study region. We simulated 1,000 datasets for each cluster and analyzed them with Kulldorff’s spatial scan statistic. From the area under the extended power curve, we constructed a map for each parameter set showing the performance of the test across the entire region. Results Consistent with previous studies, the performance of the spatial scan statistic increased with the baseline incidence of disease, the size of the at-risk population and the strength of the cluster (i.e., the relative risk). Performance was heterogeneous, however, even for very similar clusters (i.e., similar with respect to the aforementioned factors), suggesting the influence of other factors. Conclusions The area under the extended power curve is a single measure of performance and, although needing further exploration, it is suitable to conduct a systematic spatial evaluation of performance. The performance map we propose enables epidemiologists to assess cluster detection tests across an entire study region. PMID:24156765

  17. Effect of spatial variability on solute velocity and dispersion in two soils of the Argentinian Pampas

    NASA Astrophysics Data System (ADS)

    Aparicio, Virginia; Costa, José; Domenech, Marisa; Castro Franco, Mauricio

    2013-04-01

    Predicting how solutes move through the unsaturated zone is essential to determine the potential risk of groundwater contamination (Costa et al., 1994). The estimation of the spatial variability of solute transport parameters, such as velocity and dispersion, enables a more accurate understanding of transport processes. Apparent electrical conductivity (ECa) has been used to characterize the spatial behavior of soil properties. The objective of this study was to characterize the spatial variability of soil transport parameters at field scale using ECa measurements. ECa measurements of 42 ha (Tres Arroyos) and 50 ha (Balcarce) farms were collected for the top 0-30 cm (ECa(s)) soil using the Veris® 3100. ECa maps were generated using geostatistical interpolation techniques. From these maps, three general areas were delineated, named high, medium, and low ECa zones. At each zone, three sub samples were collected. Soil samples were taken at 0-30 cm. Clay content and organic matter (OM) was analyzed. The transport assay was performed in the laboratory using undisturbed soil columns, under controlled conditions of T ° (22 ° C).Br- determinations were performed with a specific Br- electrode. The breakthrough curves were fitted using the model CXTFIT 2.1 (Toride et al., 1999) to estimate the transport parameters Velocity (V) and Dispersion (D). In this study we found no statistical significant differences for V and D between treatments. Also, there were no differences in V and D between sites. The average V and D value was 9.3 cm h-1 and 357.5 cm2 h-2, respectively. Despite finding statistically significant differences between treatments for the other measured physical and chemical properties, in our work it was not possible to detect the spatial variability of solute transport parameters.

  18. Spatial distribution and cluster analysis of risky sexual behaviours and STDs reported by Chinese adults in Guangzhou, China: a representative population-based study

    PubMed Central

    Chen, Wen; Zhou, Fangjing; Hall, Brian J; Wang, Yu; Latkin, Carl; Ling, Li; Tucker, Joseph D

    2016-01-01

    Objectives To assess associations between residences location, risky sexual behaviours and sexually transmitted diseases (STDs) among adults living in Guangzhou, China. Methods Data were obtained from 751 Chinese adults aged 18–59 years in Guangzhou, China, using stratified random sampling by using spatial epidemiological methods. Face-to-face household interviews were conducted to collect self-report data on risky sexual behaviours and diagnosed STDs. Kulldorff’s spatial scan statistic was implemented to identify and detect spatial distribution and clusters of risky sexual behaviours and STDs. The presence and location of statistically significant clusters were mapped in the study areas using ArcGIS software. Results The prevalence of self-reported risky sexual behaviours was between 5.1% and 50.0%. The self-reported lifetime prevalence of diagnosed STDs was 7.06%. Anal intercourse clustered in an area located along the border within the rural–urban continuum (p=0.001). High rate clusters for alcohol or other drugs using before sex (p=0.008) and migrants who lived in Guangzhou <1 year (p=0.007) overlapped this cluster. Excess cases for unprotected sex (p=0.031) overlapped the cluster for college students (p<0.001). Five of nine (55.6%) students who had sexual experience during the last 12 months located in the cluster of unprotected sex. Conclusions Short-term migrants and college students reported greater risky sexual behaviours. Programmes to increase safer sex within these communities to reduce the risk of STDs are warranted in Guangzhou. Spatial analysis identified geographical clusters of risky sexual behaviours, which is critical for optimising surveillance and targeting control measures for these locations in the future. PMID:26843400

  19. Spatial Analysis of Geothermal Resource Potential in New York and Pennsylvania: A Stratified Kriging Approach

    NASA Astrophysics Data System (ADS)

    Smith, J. D.; Whealton, C. A.; Stedinger, J. R.

    2014-12-01

    Resource assessments for low-grade geothermal applications employ available well temperature measurements to determine if the resource potential is sufficient for supporting district heating opportunities. This study used a compilation of bottomhole temperature (BHT) data from recent unconventional shale oil and gas wells, along with legacy oil, gas, and storage wells, in Pennsylvania (PA) and New York (NY). Our study's goal was to predict the geothermal resource potential and associated uncertainty for the NY-PA region using kriging interpolation. The dataset was scanned for outliers, and some observations were removed. Because these wells were drilled for reasons other than geothermal resource assessment, their spatial density varied widely. An exploratory spatial statistical analysis revealed differences in the spatial structure of the geothermal gradient data (the kriging semi-variogram and its nugget variance, shape, sill, and the degree of anisotropy). As a result, a stratified kriging procedure was adopted to better capture the statistical structure of the data, to generate an interpolated surface, and to quantify the uncertainty of the computed surface. The area was stratified reflecting different physiographic provinces in NY and PA that have geologic properties likely related to variations in the value of the geothermal gradient. The kriging prediction and the variance-of-prediction were determined for each province by the generation of a semi-variogram using only the wells that were located within that province. A leave-one-out cross validation (LOOCV) was conducted as a diagnostic tool. The results of stratified kriging were compared to kriging using the whole region to determine the impact of stratification. The two approaches provided similar predictions of the geothermal gradient. However, the variance-of-prediction was different. The stratified approach is recommended because it gave a more appropriate site-specific characterization of uncertainty based upon a more realistic description of the statistical structure of the data given the geologic characteristics of each province.

  20. A Third-Generation Adaptive Statistical Iterative Reconstruction Technique: Phantom Study of Image Noise, Spatial Resolution, Lesion Detectability, and Dose Reduction Potential.

    PubMed

    Euler, André; Solomon, Justin; Marin, Daniele; Nelson, Rendon C; Samei, Ehsan

    2018-06-01

    The purpose of this study was to assess image noise, spatial resolution, lesion detectability, and the dose reduction potential of a proprietary third-generation adaptive statistical iterative reconstruction (ASIR-V) technique. A phantom representing five different body sizes (12-37 cm) and a contrast-detail phantom containing lesions of five low-contrast levels (5-20 HU) and three sizes (2-6 mm) were deployed. Both phantoms were scanned on a 256-MDCT scanner at six different radiation doses (1.25-10 mGy). Images were reconstructed with filtered back projection (FBP), ASIR-V with 50% blending with FBP (ASIR-V 50%), and ASIR-V without blending (ASIR-V 100%). In the first phantom, noise properties were assessed by noise power spectrum analysis. Spatial resolution properties were measured by use of task transfer functions for objects of different contrasts. Noise magnitude, noise texture, and resolution were compared between the three groups. In the second phantom, low-contrast detectability was assessed by nine human readers independently for each condition. The dose reduction potential of ASIR-V was estimated on the basis of a generalized linear statistical regression model. On average, image noise was reduced 37.3% with ASIR-V 50% and 71.5% with ASIR-V 100% compared with FBP. ASIR-V shifted the noise power spectrum toward lower frequencies compared with FBP. The spatial resolution of ASIR-V was equivalent or slightly superior to that of FBP, except for the low-contrast object, which had lower resolution. Lesion detection significantly increased with both ASIR-V levels (p = 0.001), with an estimated radiation dose reduction potential of 15% ± 5% (SD) for ASIR-V 50% and 31% ± 9% for ASIR-V 100%. ASIR-V reduced image noise and improved lesion detection compared with FBP and had potential for radiation dose reduction while preserving low-contrast detectability.

  1. Controlling for unmeasured confounding and spatial misalignment in long-term air pollution and health studies.

    PubMed

    Lee, Duncan; Sarran, Christophe

    2015-11-01

    The health impact of long-term exposure to air pollution is now routinely estimated using spatial ecological studies, owing to the recent widespread availability of spatial referenced pollution and disease data. However, this areal unit study design presents a number of statistical challenges, which if ignored have the potential to bias the estimated pollution-health relationship. One such challenge is how to control for the spatial autocorrelation present in the data after accounting for the known covariates, which is caused by unmeasured confounding. A second challenge is how to adjust the functional form of the model to account for the spatial misalignment between the pollution and disease data, which causes within-area variation in the pollution data. These challenges have largely been ignored in existing long-term spatial air pollution and health studies, so here we propose a novel Bayesian hierarchical model that addresses both challenges and provide software to allow others to apply our model to their own data. The effectiveness of the proposed model is compared by simulation against a number of state-of-the-art alternatives proposed in the literature and is then used to estimate the impact of nitrogen dioxide and particulate matter concentrations on respiratory hospital admissions in a new epidemiological study in England in 2010 at the local authority level. © 2015 The Authors. Environmetrics published by John Wiley & Sons Ltd.

  2. Geographical Clusters of Rape in the United States: 2000-2012

    PubMed Central

    Amin, Raid; Nabors, Nicole S.; Nelson, Arlene M.; Saqlain, Murshid; Kulldorff, Martin

    2016-01-01

    Background While rape is a very serious crime and public health problem, no spatial mapping has been attempted for rape on the national scale. This paper addresses the three research questions: (1) Are reported rape cases randomly distributed across the USA, after being adjusted for population density and age, or are there geographical clusters of reported rape cases? (2) Are the geographical clusters of reported rapes still present after adjusting for differences in poverty levels? (3) Are there geographical clusters where the proportion of reported rape cases that lead to an arrest is exceptionally low or exceptionally high? Methods We studied the geographical variation of reported rape events (2003-2012) and rape arrests (2000-2012) in the 48 contiguous states of the USA. The disease Surveillance software SaTScan™ with its spatial scan statistic is used to evaluate the spatial variation in rapes. The spatial scan statistic has been widely used as a geographical surveillance tool for diseases, and we used it to identify geographical areas with clusters of reported rape and clusters of arrest rates for rape. Results The spatial scan statistic was used to identify geographical areas with exceptionally high rates of reported rape. The analyses were adjusted for age, and in secondary analyses, for both age and poverty level. We also identified geographical areas with either a low or a high proportion of reported rapes leading to an arrest. Conclusions We have identified geographical areas with exceptionally high (low) rates of reported rape. The geographical problem areas identified are prime candidates for more intensive preventive counseling and criminal prosecution efforts by public health, social service, and law enforcement agencies Geographical clusters of high rates of reported rape are prime areas in need of expanded implementation of preventive measures, such as changing attitudes in our society toward rape crimes, in addition to having the criminal justice system play an even larger role in preventing rape. PMID:28078318

  3. Geographical Clusters of Rape in the United States: 2000-2012.

    PubMed

    Amin, Raid; Nabors, Nicole S; Nelson, Arlene M; Saqlain, Murshid; Kulldorff, Martin

    2015-01-01

    While rape is a very serious crime and public health problem, no spatial mapping has been attempted for rape on the national scale. This paper addresses the three research questions: (1) Are reported rape cases randomly distributed across the USA, after being adjusted for population density and age, or are there geographical clusters of reported rape cases? (2) Are the geographical clusters of reported rapes still present after adjusting for differences in poverty levels? (3) Are there geographical clusters where the proportion of reported rape cases that lead to an arrest is exceptionally low or exceptionally high? We studied the geographical variation of reported rape events (2003-2012) and rape arrests (2000-2012) in the 48 contiguous states of the USA. The disease Surveillance software SaTScan™ with its spatial scan statistic is used to evaluate the spatial variation in rapes. The spatial scan statistic has been widely used as a geographical surveillance tool for diseases, and we used it to identify geographical areas with clusters of reported rape and clusters of arrest rates for rape. The spatial scan statistic was used to identify geographical areas with exceptionally high rates of reported rape. The analyses were adjusted for age, and in secondary analyses, for both age and poverty level. We also identified geographical areas with either a low or a high proportion of reported rapes leading to an arrest. We have identified geographical areas with exceptionally high (low) rates of reported rape. The geographical problem areas identified are prime candidates for more intensive preventive counseling and criminal prosecution efforts by public health, social service, and law enforcement agencies Geographical clusters of high rates of reported rape are prime areas in need of expanded implementation of preventive measures, such as changing attitudes in our society toward rape crimes, in addition to having the criminal justice system play an even larger role in preventing rape.

  4. Impacting the effect of fMRI noise through hardware and acquisition choices - Implications for controlling false positive rates.

    PubMed

    Wald, Lawrence L; Polimeni, Jonathan R

    2017-07-01

    We review the components of time-series noise in fMRI experiments and the effect of image acquisition parameters on the noise. In addition to helping determine the total amount of signal and noise (and thus temporal SNR), the acquisition parameters have been shown to be critical in determining the ratio of thermal to physiological induced noise components in the time series. Although limited attention has been given to this latter metric, we show that it determines the degree of spatial correlations seen in the time-series noise. The spatially correlations of the physiological noise component are well known, but recent studies have shown that they can lead to a higher than expected false-positive rate in cluster-wise inference based on parametric statistical methods used by many researchers. Based on understanding the effect of acquisition parameters on the noise mixture, we propose several acquisition strategies that might be helpful reducing this elevated false-positive rate, such as moving to high spatial resolution or using highly-accelerated acquisitions where thermal sources dominate. We suggest that the spatial noise correlations at the root of the inflated false-positive rate problem can be limited with these strategies, and the well-behaved spatial auto-correlation functions (ACFs) assumed by the conventional statistical methods are retained if the high resolution data is smoothed to conventional resolutions. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Understanding spatio-temporal mobility patterns for seniors, child/student and adult using smart card data

    NASA Astrophysics Data System (ADS)

    Huang, X.; Tan, J.

    2014-11-01

    Commutes in urban areas create interesting travel patterns that are often stored in regional transportation databases. These patterns can vary based on the day of the week, the time of the day, and commuter type. This study proposes methods to detect underlying spatio-temporal variability among three groups of commuters (senior citizens, child/students, and adults) using data mining and spatial analytics. Data from over 36 million individual trip records collected over one week (March 2012) on the Singapore bus and Mass Rapid Transit (MRT) system by the fare collection system were used. Analyses of such data are important for transportation and landuse designers and contribute to a better understanding of urban dynamics. Specifically, descriptive statistics, network analysis, and spatial analysis methods are presented. Descriptive variables were proposed such as density and duration to detect temporal features of people. A directed weighted graph G ≡ (N , L, W) was defined to analyze the global network properties of every pair of the transportation link in the city during an average workday for all three categories. Besides, spatial interpolation and spatial statistic tools were used to transform the discrete network nodes into structured human movement landscape to understand the role of transportation systems in urban areas. The travel behaviour of the three categories follows a certain degree of temporal and spatial universality but also displays unique patterns within their own specialties. Each category is characterized by their different peak hours, commute distances, and specific locations for travel on weekdays.

  6. Assessing socioeconomic vulnerability to dengue fever in Cali, Colombia: statistical vs expert-based modeling

    PubMed Central

    2013-01-01

    Background As a result of changes in climatic conditions and greater resistance to insecticides, many regions across the globe, including Colombia, have been facing a resurgence of vector-borne diseases, and dengue fever in particular. Timely information on both (1) the spatial distribution of the disease, and (2) prevailing vulnerabilities of the population are needed to adequately plan targeted preventive intervention. We propose a methodology for the spatial assessment of current socioeconomic vulnerabilities to dengue fever in Cali, a tropical urban environment of Colombia. Methods Based on a set of socioeconomic and demographic indicators derived from census data and ancillary geospatial datasets, we develop a spatial approach for both expert-based and purely statistical-based modeling of current vulnerability levels across 340 neighborhoods of the city using a Geographic Information System (GIS). The results of both approaches are comparatively evaluated by means of spatial statistics. A web-based approach is proposed to facilitate the visualization and the dissemination of the output vulnerability index to the community. Results The statistical and the expert-based modeling approach exhibit a high concordance, globally, and spatially. The expert-based approach indicates a slightly higher vulnerability mean (0.53) and vulnerability median (0.56) across all neighborhoods, compared to the purely statistical approach (mean = 0.48; median = 0.49). Both approaches reveal that high values of vulnerability tend to cluster in the eastern, north-eastern, and western part of the city. These are poor neighborhoods with high percentages of young (i.e., < 15 years) and illiterate residents, as well as a high proportion of individuals being either unemployed or doing housework. Conclusions Both modeling approaches reveal similar outputs, indicating that in the absence of local expertise, statistical approaches could be used, with caution. By decomposing identified vulnerability “hotspots” into their underlying factors, our approach provides valuable information on both (1) the location of neighborhoods, and (2) vulnerability factors that should be given priority in the context of targeted intervention strategies. The results support decision makers to allocate resources in a manner that may reduce existing susceptibilities and strengthen resilience, and thus help to reduce the burden of vector-borne diseases. PMID:23945265

  7. Toward a community ecology of landscapes: predicting multiple predator-prey interactions across geographic space.

    PubMed

    Schmitz, Oswald J; Miller, Jennifer R B; Trainor, Anne M; Abrahms, Briana

    2017-09-01

    Community ecology was traditionally an integrative science devoted to studying interactions between species and their abiotic environments in order to predict species' geographic distributions and abundances. Yet for philosophical and methodological reasons, it has become divided into two enterprises: one devoted to local experimentation on species interactions to predict community dynamics; the other devoted to statistical analyses of abiotic and biotic information to describe geographic distribution. Our goal here is to instigate thinking about ways to reconnect the two enterprises and thereby return to a tradition to do integrative science. We focus specifically on the community ecology of predators and prey, which is ripe for integration. This is because there is active, simultaneous interest in experimentally resolving the nature and strength of predator-prey interactions as well as explaining patterns across landscapes and seascapes. We begin by describing a conceptual theory rooted in classical analyses of non-spatial food web modules used to predict species interactions. We show how such modules can be extended to consideration of spatial context using the concept of habitat domain. Habitat domain describes the spatial extent of habitat space that predators and prey use while foraging, which differs from home range, the spatial extent used by an animal to meet all of its daily needs. This conceptual theory can be used to predict how different spatial relations of predators and prey could lead to different emergent multiple predator-prey interactions such as whether predator consumptive or non-consumptive effects should dominate, and whether intraguild predation, predator interference or predator complementarity are expected. We then review the literature on studies of large predator-prey interactions that make conclusions about the nature of multiple predator-prey interactions. This analysis reveals that while many studies provide sufficient information about predator or prey spatial locations, and thus meet necessary conditions of the habitat domain conceptual theory for drawing conclusions about the nature of the predator-prey interactions, several studies do not. We therefore elaborate how modern technology and statistical approaches for animal movement analysis could be used to test the conceptual theory, using experimental or quasi-experimental analyses at landscape scales. © 2017 by the Ecological Society of America.

  8. Mapping concentrations of posttraumatic stress and depression trajectories following Hurricane Ike

    PubMed Central

    Gruebner, Oliver; Lowe, Sarah R.; Tracy, Melissa; Joshi, Spruha; Cerdá, Magdalena; Norris, Fran H.; Subramanian, S. V.; Galea, Sandro

    2016-01-01

    We investigated geographic concentration in elevated risk for a range of postdisaster trajectories of chronic posttraumatic stress symptom (PTSS) and depression symptoms in a longitudinal study (N = 561) of a Hurricane Ike affected population in Galveston and Chambers counties, TX. Using an unadjusted spatial scan statistic, we detected clusters of elevated risk of PTSS trajectories, but not depression trajectories, on Galveston Island. We then tested for predictors of membership in each trajectory of PTSS and depression (e.g., demographic variables, trauma exposure, social support), not taking the geographic nature of the data into account. After adjusting for significant predictors in the spatial scan statistic, we noted that spatial clusters of PTSS persisted and additional clusters of depression trajectories emerged. This is the first study to show that longitudinal trajectories of postdisaster mental health problems may vary depending on the geographic location and the individual- and community-level factors present at these locations. Such knowledge is crucial to identifying vulnerable regions and populations within them, to provide guidance for early responders, and to mitigate mental health consequences through early detection of mental health needs in the population. As human-made disasters increase, our approach may be useful also in other regions in comparable settings worldwide. PMID:27558011

  9. Mapping concentrations of posttraumatic stress and depression trajectories following Hurricane Ike.

    PubMed

    Gruebner, Oliver; Lowe, Sarah R; Tracy, Melissa; Joshi, Spruha; Cerdá, Magdalena; Norris, Fran H; Subramanian, S V; Galea, Sandro

    2016-08-25

    We investigated geographic concentration in elevated risk for a range of postdisaster trajectories of chronic posttraumatic stress symptom (PTSS) and depression symptoms in a longitudinal study (N = 561) of a Hurricane Ike affected population in Galveston and Chambers counties, TX. Using an unadjusted spatial scan statistic, we detected clusters of elevated risk of PTSS trajectories, but not depression trajectories, on Galveston Island. We then tested for predictors of membership in each trajectory of PTSS and depression (e.g., demographic variables, trauma exposure, social support), not taking the geographic nature of the data into account. After adjusting for significant predictors in the spatial scan statistic, we noted that spatial clusters of PTSS persisted and additional clusters of depression trajectories emerged. This is the first study to show that longitudinal trajectories of postdisaster mental health problems may vary depending on the geographic location and the individual- and community-level factors present at these locations. Such knowledge is crucial to identifying vulnerable regions and populations within them, to provide guidance for early responders, and to mitigate mental health consequences through early detection of mental health needs in the population. As human-made disasters increase, our approach may be useful also in other regions in comparable settings worldwide.

  10. Listening to Sentences in Noise: Revealing Binaural Hearing Challenges in Patients with Schizophrenia.

    PubMed

    Abdul Wahab, Noor Alaudin; Zakaria, Mohd Normani; Abdul Rahman, Abdul Hamid; Sidek, Dinsuhaimi; Wahab, Suzaily

    2017-11-01

    The present, case-control, study investigates binaural hearing performance in schizophrenia patients towards sentences presented in quiet and noise. Participants were twenty-one healthy controls and sixteen schizophrenia patients with normal peripheral auditory functions. The binaural hearing was examined in four listening conditions by using the Malay version of hearing in noise test. The syntactically and semantically correct sentences were presented via headphones to the randomly selected subjects. In each condition, the adaptively obtained reception thresholds for speech (RTS) were used to determine RTS noise composite and spatial release from masking. Schizophrenia patients demonstrated significantly higher mean RTS value relative to healthy controls (p=0.018). The large effect size found in three listening conditions, i.e., in quiet (d=1.07), noise right (d=0.88) and noise composite (d=0.90) indicates statistically significant difference between the groups. However, noise front and noise left conditions show medium (d=0.61) and small (d=0.50) effect size respectively. No statistical difference between groups was noted in regards to spatial release from masking on right (p=0.305) and left (p=0.970) ear. The present findings suggest an abnormal unilateral auditory processing in central auditory pathway in schizophrenia patients. Future studies to explore the role of binaural and spatial auditory processing were recommended.

  11. Learning place cells, grid cells and invariances with excitatory and inhibitory plasticity

    PubMed Central

    2018-01-01

    Neurons in the hippocampus and adjacent brain areas show a large diversity in their tuning to location and head direction, and the underlying circuit mechanisms are not yet resolved. In particular, it is unclear why certain cell types are selective to one spatial variable, but invariant to another. For example, place cells are typically invariant to head direction. We propose that all observed spatial tuning patterns – in both their selectivity and their invariance – arise from the same mechanism: Excitatory and inhibitory synaptic plasticity driven by the spatial tuning statistics of synaptic inputs. Using simulations and a mathematical analysis, we show that combined excitatory and inhibitory plasticity can lead to localized, grid-like or invariant activity. Combinations of different input statistics along different spatial dimensions reproduce all major spatial tuning patterns observed in rodents. Our proposed model is robust to changes in parameters, develops patterns on behavioral timescales and makes distinctive experimental predictions. PMID:29465399

  12. SERAPHIM: studying environmental rasters and phylogenetically informed movements.

    PubMed

    Dellicour, Simon; Rose, Rebecca; Faria, Nuno R; Lemey, Philippe; Pybus, Oliver G

    2016-10-15

    SERAPHIM ("Studying Environmental Rasters and PHylogenetically Informed Movements") is a suite of computational methods developed to study phylogenetic reconstructions of spatial movement in an environmental context. SERAPHIM extracts the spatio-temporal information contained in estimated phylogenetic trees and uses this information to calculate summary statistics of spatial spread and to visualize dispersal history. Most importantly, SERAPHIM enables users to study the impact of customized environmental variables on the spread of the study organism. Specifically, given an environmental raster, SERAPHIM computes environmental "weights" for each phylogeny branch, which represent the degree to which the environmental variable impedes (or facilitates) lineage movement. Correlations between movement duration and these environmental weights are then assessed, and the statistical significances of these correlations are evaluated using null distributions generated by a randomization procedure. SERAPHIM can be applied to any phylogeny whose nodes are annotated with spatial and temporal information. At present, such phylogenies are most often found in the field of emerging infectious diseases, but will become increasingly common in other biological disciplines as population genomic data grows. SERAPHIM 1.0 is freely available from http://evolve.zoo.ox.ac.uk/ R package, source code, example files, tutorials and a manual are also available from this website. simon.dellicour@kuleuven.be or oliver.pybus@zoo.ox.ac.ukSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. The statistical power to detect cross-scale interactions at macroscales

    USGS Publications Warehouse

    Wagner, Tyler; Fergus, C. Emi; Stow, Craig A.; Cheruvelil, Kendra S.; Soranno, Patricia A.

    2016-01-01

    Macroscale studies of ecological phenomena are increasingly common because stressors such as climate and land-use change operate at large spatial and temporal scales. Cross-scale interactions (CSIs), where ecological processes operating at one spatial or temporal scale interact with processes operating at another scale, have been documented in a variety of ecosystems and contribute to complex system dynamics. However, studies investigating CSIs are often dependent on compiling multiple data sets from different sources to create multithematic, multiscaled data sets, which results in structurally complex, and sometimes incomplete data sets. The statistical power to detect CSIs needs to be evaluated because of their importance and the challenge of quantifying CSIs using data sets with complex structures and missing observations. We studied this problem using a spatially hierarchical model that measures CSIs between regional agriculture and its effects on the relationship between lake nutrients and lake productivity. We used an existing large multithematic, multiscaled database, LAke multiscaled GeOSpatial, and temporal database (LAGOS), to parameterize the power analysis simulations. We found that the power to detect CSIs was more strongly related to the number of regions in the study rather than the number of lakes nested within each region. CSI power analyses will not only help ecologists design large-scale studies aimed at detecting CSIs, but will also focus attention on CSI effect sizes and the degree to which they are ecologically relevant and detectable with large data sets.

  14. Clustering, randomness, and regularity in cloud fields. 4. Stratocumulus cloud fields

    NASA Astrophysics Data System (ADS)

    Lee, J.; Chou, J.; Weger, R. C.; Welch, R. M.

    1994-07-01

    To complete the analysis of the spatial distribution of boundary layer cloudiness, the present study focuses on nine stratocumulus Landsat scenes. The results indicate many similarities between stratocumulus and cumulus spatial distributions. Most notably, at full spatial resolution all scenes exhibit a decidedly clustered distribution. The strength of the clustering signal decreases with increasing cloud size; the clusters themselves consist of a few clouds (less than 10), occupy a small percentage of the cloud field area (less than 5%), contain between 20% and 60% of the cloud field population, and are randomly located within the scene. In contrast, stratocumulus in almost every respect are more strongly clustered than are cumulus cloud fields. For instance, stratocumulus clusters contain more clouds per cluster, occupy a larger percentage of the total area, and have a larger percentage of clouds participating in clusters than the corresponding cumulus examples. To investigate clustering at intermediate spatial scales, the local dimensionality statistic is introduced. Results obtained from this statistic provide the first direct evidence for regularity among large (>900 m in diameter) clouds in stratocumulus and cumulus cloud fields, in support of the inhibition hypothesis of Ramirez and Bras (1990). Also, the size compensated point-to-cloud cumulative distribution function statistic is found to be necessary to obtain a consistent description of stratocumulus cloud distributions. A hypothesis regarding the underlying physical mechanisms responsible for cloud clustering is presented. It is suggested that cloud clusters often arise from 4 to 10 triggering events localized within regions less than 2 km in diameter and randomly distributed within the cloud field. As the size of the cloud surpasses the scale of the triggering region, the clustering signal weakens and the larger cloud locations become more random.

  15. Clustering, randomness, and regularity in cloud fields. 4: Stratocumulus cloud fields

    NASA Technical Reports Server (NTRS)

    Lee, J.; Chou, J.; Weger, R. C.; Welch, R. M.

    1994-01-01

    To complete the analysis of the spatial distribution of boundary layer cloudiness, the present study focuses on nine stratocumulus Landsat scenes. The results indicate many similarities between stratocumulus and cumulus spatial distributions. Most notably, at full spatial resolution all scenes exhibit a decidedly clustered distribution. The strength of the clustering signal decreases with increasing cloud size; the clusters themselves consist of a few clouds (less than 10), occupy a small percentage of the cloud field area (less than 5%), contain between 20% and 60% of the cloud field population, and are randomly located within the scene. In contrast, stratocumulus in almost every respect are more strongly clustered than are cumulus cloud fields. For instance, stratocumulus clusters contain more clouds per cluster, occupy a larger percentage of the total area, and have a larger percentage of clouds participating in clusters than the corresponding cumulus examples. To investigate clustering at intermediate spatial scales, the local dimensionality statistic is introduced. Results obtained from this statistic provide the first direct evidence for regularity among large (more than 900 m in diameter) clouds in stratocumulus and cumulus cloud fields, in support of the inhibition hypothesis of Ramirez and Bras (1990). Also, the size compensated point-to-cloud cumulative distribution function statistic is found to be necessary to obtain a consistent description of stratocumulus cloud distributions. A hypothesis regarding the underlying physical mechanisms responsible for cloud clustering is presented. It is suggested that cloud clusters often arise from 4 to 10 triggering events localized within regions less than 2 km in diameter and randomly distributed within the cloud field. As the size of the cloud surpasses the scale of the triggering region, the clustering signal weakens and the larger cloud locations become more random.

  16. Statistical Validation of Image Segmentation Quality Based on a Spatial Overlap Index1

    PubMed Central

    Zou, Kelly H.; Warfield, Simon K.; Bharatha, Aditya; Tempany, Clare M.C.; Kaus, Michael R.; Haker, Steven J.; Wells, William M.; Jolesz, Ferenc A.; Kikinis, Ron

    2005-01-01

    Rationale and Objectives To examine a statistical validation method based on the spatial overlap between two sets of segmentations of the same anatomy. Materials and Methods The Dice similarity coefficient (DSC) was used as a statistical validation metric to evaluate the performance of both the reproducibility of manual segmentations and the spatial overlap accuracy of automated probabilistic fractional segmentation of MR images, illustrated on two clinical examples. Example 1: 10 consecutive cases of prostate brachytherapy patients underwent both preoperative 1.5T and intraoperative 0.5T MR imaging. For each case, 5 repeated manual segmentations of the prostate peripheral zone were performed separately on preoperative and on intraoperative images. Example 2: A semi-automated probabilistic fractional segmentation algorithm was applied to MR imaging of 9 cases with 3 types of brain tumors. DSC values were computed and logit-transformed values were compared in the mean with the analysis of variance (ANOVA). Results Example 1: The mean DSCs of 0.883 (range, 0.876–0.893) with 1.5T preoperative MRI and 0.838 (range, 0.819–0.852) with 0.5T intraoperative MRI (P < .001) were within and at the margin of the range of good reproducibility, respectively. Example 2: Wide ranges of DSC were observed in brain tumor segmentations: Meningiomas (0.519–0.893), astrocytomas (0.487–0.972), and other mixed gliomas (0.490–0.899). Conclusion The DSC value is a simple and useful summary measure of spatial overlap, which can be applied to studies of reproducibility and accuracy in image segmentation. We observed generally satisfactory but variable validation results in two clinical applications. This metric may be adapted for similar validation tasks. PMID:14974593

  17. Targeting regional pediatric congenital hearing loss using a spatial scan statistic.

    PubMed

    Bush, Matthew L; Christian, Warren Jay; Bianchi, Kristin; Lester, Cathy; Schoenberg, Nancy

    2015-01-01

    Congenital hearing loss is a common problem, and timely identification and intervention are paramount for language development. Patients from rural regions may have many barriers to timely diagnosis and intervention. The purpose of this study was to examine the spatial and hospital-based distribution of failed infant hearing screening testing and pediatric congenital hearing loss throughout Kentucky. Data on live births and audiological reporting of infant hearing loss results in Kentucky from 2009 to 2011 were analyzed. The authors used spatial scan statistics to identify high-rate clusters of failed newborn screening tests and permanent congenital hearing loss (PCHL), based on the total number of live births per county. The authors conducted further analyses on PCHL and failed newborn hearing screening tests, based on birth hospital data and method of screening. The authors observed four statistically significant (p < 0.05) high-rate clusters with failed newborn hearing screenings in Kentucky, including two in the Appalachian region. Hospitals using two-stage otoacoustic emission testing demonstrated higher rates of failed screening (p = 0.009) than those using two-stage automated auditory brainstem response testing. A significant cluster of high rate of PCHL was observed in Western Kentucky. Five of the 54 birthing hospitals were found to have higher relative risk of PCHL, and two of those hospitals are located in a very rural region of Western Kentucky within the cluster. This spatial analysis in children in Kentucky has identified specific regions throughout the state with high rates of congenital hearing loss and failed newborn hearing screening tests. Further investigation regarding causative factors is warranted. This method of analysis can be useful in the setting of hearing health disparities to focus efforts on regions facing high incidence of congenital hearing loss.

  18. SYNTHESIS OF SPATIAL DATA FOR DECISION-MAKING

    EPA Science Inventory

    EPA'S Regional Vulnerability Assessment Program (ReVA) has developed a web-based statistical tool that synthesizes available spatial data into indices of condition, vulnerability (risk, considering cumulative effects), and feasibility of management options. The Environmental Deci...

  19. Spatial Downscaling of TRMM Precipitation using MODIS product in the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Cho, H.; Choi, M.

    2013-12-01

    Precipitation is a major driving force in the water cycle. But, it is difficult to provide spatially distributed precipitation data from isolated individual in situ. The Tropical Rainfall Monitoring Mission (TRMM) satellite can provide precipitation data with relatively coarse spatial resolution (0.25° scale) at daily basis. In order to overcome the coarse spatial resolution of TRMM precipitation products, we conducted a downscaling technique using a scaling parameter from the Moderate Resolution Imaging Spectroradiometers (MODIS) sensor. In this study, statistical relations between precipitation estimates derived from the TRMM satellite and the normalized difference vegetation index (NDVI) which is obtained from the MODIS sensor in TERRA satellite are found for different spatial scales on the Korean peninsula in northeast Asia. We obtain the downscaled precipitation mapping by regression equation between yearly TRMM precipitations values and annual average NDVI aggregating 1km to 25 degree. The downscaled precipitation is validated using time series of the ground measurements precipitation dataset provided by Korea Meteorological Organization (KMO) from 2002 to 2005. To improve the spatial downscaling of precipitation, we will conduct a study about correlation between precipitation and land surface temperature, perceptible water and other hydrological parameters.

  20. Assessing exotic plant species invasions and associated soil characteristics: A case study in eastern Rocky Mountain National Park, Colorado, USA, using the pixel nested plot design

    USGS Publications Warehouse

    Kalkhan, M.A.; Stafford, E.J.; Woodly, P.J.; Stohlgren, T.J.

    2007-01-01

    Rocky Mountain National Park (RMNP), Colorado, USA, contains a diversity of plant species. However, many exotic plant species have become established, potentially impacting the structure and function of native plant communities. Our goal was to quantify patterns of exotic plant species in relation to native plant species, soil characteristics, and other abiotic factors that may indicate or predict their establishment and success. Our research approach for field data collection was based on a field plot design called the pixel nested plot. The pixel nested plot provides a link to multi-phase and multi-scale spatial modeling-mapping techniques that can be used to estimate total species richness and patterns of plant diversity at finer landscape scales. Within the eastern region of RMNP, in an area of approximately 35,000 ha, we established a total of 60 pixel nested plots in 9 vegetation types. We used canonical correspondence analysis (CCA) and multiple linear regressions to quantify relationships between soil characteristics and native and exotic plant species richness and cover. We also used linear correlation, spatial autocorrelation and cross correlation statistics to test for the spatial patterns of variables of interest. CCA showed that exotic species were significantly (P < 0.05) associated with photosynthetically active radiation (r = 0.55), soil nitrogen (r = 0.58) and bare ground (r = -0.66). Pearson's correlation statistic showed significant linear relationships between exotic species, organic carbon, soil nitrogen, and bare ground. While spatial autocorrelations indicated that our 60 pixel nested plots were spatially independent, the cross correlation statistics indicated that exotic plant species were spatially associated with bare ground, in general, exotic plant species were most abundant in areas of high native species richness. This indicates that resource managers should focus on the protection of relatively rare native rich sites with little canopy cover, and fertile soils. Using the pixel nested plot approach for data collection can facilitate the ecological monitoring of these vulnerable areas at the landscape scale in a time- and cost-effective manner. ?? 2006 Elsevier B.V. All rights reserved.

  1. FIBER AND INTEGRATED OPTICS: Efficiency of nonstationary transformation of the spatial coherence of pulsed laser radiation in a multimode optical fibre upon self-phase modulation

    NASA Astrophysics Data System (ADS)

    Kitsak, M. A.; Kitsak, A. I.

    2007-08-01

    The model scheme of the nonlinear mechanism of transformation (decreasing) of the spatial coherence of a pulsed laser field in an extended multimode optical fibre upon nonstationary interaction with the fibre core is theoretically analysed. The case is considered when the spatial statistics of input radiation is caused by phase fluctuations. The analytic expression is obtained which relates the number of spatially coherent radiation modes with the spatially energy parameters on the initial radiation and fibre parameters. The efficiency of decorrelation of radiation upon excitation of the thermal and electrostriction nonlinearities in the fibre is estimated. Experimental studies are performed which revealed the basic properties of the transformation of the spatial coherence of a laser beam in a multimode fibre. The experimental results are compared with the predictions of the model of radiation transfer proposed in the paper. It is found that the spatial decorrelation of a light beam in a silica multimode fibre is mainly restricted by stimulated Raman scattering.

  2. Contribution of geodiversity, climate and spatial variables for biodiversity across a gradient of human influence

    NASA Astrophysics Data System (ADS)

    Tukiainen, Helena; Alahuhta, Janne; Ala-Hulkko, Terhi; Field, Richard; Lampinen, Raino; Hjort, Jan

    2016-04-01

    Implementation of geodiversity may provide new perspectives for nature conservation. The relation between geodiversity and biodiversity has been established in recent studies but remains underexplored in environments with high human pressure. In this study, we explored the effect of geodiversity (i.e. geological, hydrological and geomorphological diversity), climate and spatial variables on biodiversity (vascular plant species richness) in environments with different human impact. The study area ranged trough the boreal vegetation zone in Finland and included altogether 1401 1-km2 grid cells from urban, rural and natural environments. The contribution of environmental variable groups for species diversity in different environments was statistically analyzed with variation partitioning method. According to the results, the contribution of geodiversity decreased and the contribution of climate and spatial variables increased as the land use became more human-induced. Hence, the connection between geodiversity and species richness was most pronounced in natural state environments.

  3. Dynamics of land change in India: a fine-scale spatial analysis

    NASA Astrophysics Data System (ADS)

    Meiyappan, P.; Roy, P. S.; Sharma, Y.; Jain, A. K.; Ramachandran, R.; Joshi, P. K.

    2015-12-01

    Land is scarce in India: India occupies 2.4% of worlds land area, but supports over 1/6th of worlds human and livestock population. This high population to land ratio, combined with socioeconomic development and increasing consumption has placed tremendous pressure on India's land resources for food, feed, and fuel. In this talk, we present contemporary (1985 to 2005) spatial estimates of land change in India using national-level analysis of Landsat imageries. Further, we investigate the causes of the spatial patterns of change using two complementary lines of evidence. First, we use statistical models estimated at macro-scale to understand the spatial relationships between land change patterns and their concomitant drivers. This analysis using our newly compiled extensive socioeconomic database at village level (~630,000 units), is 100x higher in spatial resolution compared to existing datasets, and covers over 200 variables. The detailed socioeconomic data enabled the fine-scale spatial analysis with Landsat data. Second, we synthesized information from over 130 survey based case studies on land use drivers in India to complement our macro-scale analysis. The case studies are especially useful to identify unobserved variables (e.g. farmer's attitude towards risk). Ours is the most detailed analysis of contemporary land change in India, both in terms of national extent, and the use of detailed spatial information on land change, socioeconomic factors, and synthesis of case studies.

  4. Grading of cervical intraepithelial neoplasia using spatial frequency for optical histology

    NASA Astrophysics Data System (ADS)

    Pu, Yang; Jagtap, Jaidip; Pradhan, Asima; Alfano, Robert R.

    2014-03-01

    It is important to detect cervical dysplasia, Cervical Intraepithelial Neoplasia (CIN). CIN is the potentially premalignant and abnormal squamous cells on surface of cervix. In this study, the spatial frequency spectra of pre-cancer cervical tissues are used to detect differences among different grades of human cervical tissues. Seven sets of thick tissue sections of human cervix of normal, CIN 1, CIN 2, and CIN 3 tissues are studied. The confocal microscope images of the stromal region of normal and CIN human tissues were analyzed using Fast Fourier Transform (FFT) to generate the spatial spectra. It is observed that higher frequency components exist in CIN tissues than those in normal tissue, as well as those in higher grade CIN tissue than those in lower grade CIN tissue. The width of the spatial frequency of different types of tissues is used to create a criterion for CIN grading by training a support vector machine (SVM) classifier. The results show that the randomness of tissue structures from normal to different stages of precancer in cervical tissue can be recognized by fingerprints of the spatial frequency. The efficacy of spatial frequency analysis for CIN grading is evaluated as excellent since high AUC (area under the ROC curve), sensitivity and specificity are obtained by the statistics study. This works lays the foundation of using spatial frequency spectra for a histology evaluation.

  5. Connectopic mapping with resting-state fMRI.

    PubMed

    Haak, Koen V; Marquand, Andre F; Beckmann, Christian F

    2018-04-15

    Brain regions are often topographically connected: nearby locations within one brain area connect with nearby locations in another area. Mapping these connection topographies, or 'connectopies' in short, is crucial for understanding how information is processed in the brain. Here, we propose principled, fully data-driven methods for mapping connectopies using functional magnetic resonance imaging (fMRI) data acquired at rest by combining spectral embedding of voxel-wise connectivity 'fingerprints' with a novel approach to spatial statistical inference. We apply the approach in human primary motor and visual cortex, and show that it can trace biologically plausible, overlapping connectopies in individual subjects that follow these regions' somatotopic and retinotopic maps. As a generic mechanism to perform inference over connectopies, the new spatial statistics approach enables rigorous statistical testing of hypotheses regarding the fine-grained spatial profile of functional connectivity and whether that profile is different between subjects or between experimental conditions. The combined framework offers a fundamental alternative to existing approaches to investigating functional connectivity in the brain, from voxel- or seed-pair wise characterizations of functional association, towards a full, multivariate characterization of spatial topography. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Stability of Major Geogenic Cations in Drinking Water-An Issue of Public Health Importance: A Danish Study, 1980⁻2017.

    PubMed

    Wodschow, Kirstine; Hansen, Birgitte; Schullehner, Jörg; Ersbøll, Annette Kjær

    2018-06-08

    Concentrations and spatial variations of the four cations Na, K, Mg and Ca are known to some extent for groundwater and to a lesser extent for drinking water. Using Denmark as case, the purpose of this study was to analyze the spatial and temporal variations in the major cations in drinking water. The results will contribute to a better exposure estimation in future studies of the association between cations and diseases. Spatial and temporal variations and the association with aquifer types, were analyzed with spatial scan statistics, linear regression and a multilevel mixed-effects linear regression model. About 65,000 water samples of each cation (1980⁻2017) were included in the study. Results of mean concentrations were 31.4 mg/L, 3.5 mg/L, 12.1 mg/L and 84.5 mg/L for 1980⁻2017 for Na, K, Mg and Ca, respectively. An expected west-east trend in concentrations were confirmed, mainly explained by variations in aquifer types. The trend in concentration was stable for about 31⁻45% of the public water supply areas. It is therefore recommended that the exposure estimate in future health related studies not only be based on a single mean value, but that temporal and spatial variations should also be included.

  7. Climate and Edaphic Controls on Humid Tropical Forest Tree Height

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Saatchi, S. S.; Xu, L.

    2014-12-01

    Uncertainty in the magnitude and spatial variations of forest carbon density in tropical regions is due to under sampling of forest structure from inventory plots and the lack of regional allometry to estimate the carbon density from structure. Here we quantify the variation of tropical forest structure by using more than 2.5 million measurements of canopy height from systematic sampling of Geoscience Laser Altimeter System (GLAS) satellite observations between 2004 to 2008 and examine the climate and edaphic variables influencing the variations. We used top canopy height of GLAS footprints (~ 0.25 ha) to grid the statistical mean and 90 percentile of samples at 0.5 degrees to capture the regional variability of large trees in tropics. GLAS heights were also aggregated based on a stratification of tropical regions using soil, elevation, and forest types. Both approaches provided consistent patterns of statistically dominant large trees and the least heterogeneity, both as strong drivers of distribution of high biomass forests. Statistical models accounting for spatial autocorrelation suggest that climate, soil and spatial features together can explain more than 60% of the variations in observed tree height information, while climate-only variables explains about one third of the first-order changes in tree height. Soil basics, including physical compositions such as clay and sand contents, chemical properties such as PH values and cation-exchange capacity, as well as biological variables such as organic matters, all present independent but statistically significant relationships to tree height variations. The results confirm other landscape and regional studies that soil fertility, geology and climate may jointly control a majority of the regional variations of forest structure in pan-tropics and influencing both biomass stocks and dynamics. Consequently, other factors such as biotic and disturbance regimes, not included in this study, may have less influence on regional variations but strongly mediate landscape and small-scale forest structure and dynamics.

  8. Extracting Hydrologic Understanding from the Unique Space-time Sampling of the Surface Water and Ocean Topography (SWOT) Mission

    NASA Astrophysics Data System (ADS)

    Nickles, C.; Zhao, Y.; Beighley, E.; Durand, M. T.; David, C. H.; Lee, H.

    2017-12-01

    The Surface Water and Ocean Topography (SWOT) satellite mission is jointly developed by NASA, the French space agency (CNES), with participation from the Canadian and UK space agencies to serve both the hydrology and oceanography communities. The SWOT mission will sample global surface water extents and elevations (lakes/reservoirs, rivers, estuaries, oceans, sea and land ice) at a finer spatial resolution than is currently possible enabling hydrologic discovery, model advancements and new applications that are not currently possible or likely even conceivable. Although the mission will provide global cover, analysis and interpolation of the data generated from the irregular space/time sampling represents a significant challenge. In this study, we explore the applicability of the unique space/time sampling for understanding river discharge dynamics throughout the Ohio River Basin. River network topology, SWOT sampling (i.e., orbit and identified SWOT river reaches) and spatial interpolation concepts are used to quantify the fraction of effective sampling of river reaches each day of the three-year mission. Streamflow statistics for SWOT generated river discharge time series are compared to continuous daily river discharge series. Relationships are presented to transform SWOT generated streamflow statistics to equivalent continuous daily discharge time series statistics intended to support hydrologic applications using low-flow and annual flow duration statistics.

  9. Integration of modern statistical tools for the analysis of climate extremes into the web-GIS “CLIMATE”

    NASA Astrophysics Data System (ADS)

    Ryazanova, A. A.; Okladnikov, I. G.; Gordov, E. P.

    2017-11-01

    The frequency of occurrence and magnitude of precipitation and temperature extreme events show positive trends in several geographical regions. These events must be analyzed and studied in order to better understand their impact on the environment, predict their occurrences, and mitigate their effects. For this purpose, we augmented web-GIS called “CLIMATE” to include a dedicated statistical package developed in the R language. The web-GIS “CLIMATE” is a software platform for cloud storage processing and visualization of distributed archives of spatial datasets. It is based on a combined use of web and GIS technologies with reliable procedures for searching, extracting, processing, and visualizing the spatial data archives. The system provides a set of thematic online tools for the complex analysis of current and future climate changes and their effects on the environment. The package includes new powerful methods of time-dependent statistics of extremes, quantile regression and copula approach for the detailed analysis of various climate extreme events. Specifically, the very promising copula approach allows obtaining the structural connections between the extremes and the various environmental characteristics. The new statistical methods integrated into the web-GIS “CLIMATE” can significantly facilitate and accelerate the complex analysis of climate extremes using only a desktop PC connected to the Internet.

  10. Spatial evolution of laser filaments in turbulent air

    NASA Astrophysics Data System (ADS)

    Zeng, Tao; Zhu, Shiping; Zhou, Shengling; He, Yan

    2018-04-01

    In this study, the spatial evolution properties of laser filament clusters in turbulent air were evaluated using numerical simulations. Various statistical parameters were calculated, such as the percolation probability, filling factor, and average cluster size. The results indicate that turbulence-induced multi-filamentation can be described as a new phase transition universality class. In addition, during this process, the relationship between the average cluster size and filling factor could be fit by a power function. Our results are valuable for applications involving filamentation that can be influenced by the geometrical features of multiple filaments.

  11. The Geography of Mental Health and General Wellness in Galveston Bay After Hurricane Ike: A Spatial Epidemiologic Study With Longitudinal Data.

    PubMed

    Gruebner, Oliver; Lowe, Sarah R; Tracy, Melissa; Cerdá, Magdalena; Joshi, Spruha; Norris, Fran H; Galea, Sandro

    2016-04-01

    To demonstrate a spatial epidemiologic approach that could be used in the aftermath of disasters to (1) detect spatial clusters and (2) explore geographic heterogeneity in predictors for mental health and general wellness. We used a cohort study of Hurricane Ike survivors (n=508) to assess the spatial distribution of postdisaster mental health wellness (most likely resilience trajectory for posttraumatic stress symptoms [PTSS] and depression) and general wellness (most likely resilience trajectory for PTSS, depression, functional impairment, and days of poor health) in Galveston, Texas. We applied the spatial scan statistic (SaTScan) and geographically weighted regression. We found spatial clusters of high likelihood wellness in areas north of Texas City and spatial concentrations of low likelihood wellness in Galveston Island. Geographic variation was found in predictors of wellness, showing increasing associations with both forms of wellness the closer respondents were located to Galveston City in Galveston Island. Predictors for postdisaster wellness may manifest differently across geographic space with concentrations of lower likelihood wellness and increased associations with predictors in areas of higher exposure. Our approach could be used to inform geographically targeted interventions to promote mental health and general wellness in disaster-affected communities.

  12. Spatial Distribution of Coffee Wilt Disease Under Roguing and Replanting Conditions: A Case Study from Kaweri Estate in Uganda.

    PubMed

    Pinard, F; Makune, S E; Campagne, P; Mwangi, J

    2016-11-01

    Based on time and spatial dynamic considerations, this study evaluates the potential role of short- and long-distance dispersal in the spread of coffee wilt disease (CWD) in a large commercial Robusta coffee estate in Uganda (Kaweri, 1,755 ha) over a 4-year period (2008 to 2012). In monthly surveys, total disease incidence, expansion of infection foci, and the occurrence of isolated infected trees were recorded and submitted to spatial analysis. Incidence was higher and disease progression faster in old coffee plantings compared with young plantings, indicating a lack of efficiency of roguing for reducing disease development in old plantings. At large spatial scale (approximately 1 km), Moran indices (both global and local) revealed the existence of clusters characterized by contrasting disease incidences. This suggested that local environmental conditions were heterogeneous or there were spatial interactions among blocks. At finer spatial scale (approximately 200 m), O-ring statistics revealed positive correlation between distant infection sites across distances as great as 60 m. Although these observations indicate the role of short-distance dispersal in foci expansion, dispersal at greater distances (>20 m) appeared to also contribute to both initiation of new foci and disease progression at coarser spatial scales. Therefore, our results suggested the role of aerial dispersal in CWD progression.

  13. Can spatial statistical river temperature models be transferred between catchments?

    NASA Astrophysics Data System (ADS)

    Jackson, Faye L.; Fryer, Robert J.; Hannah, David M.; Malcolm, Iain A.

    2017-09-01

    There has been increasing use of spatial statistical models to understand and predict river temperature (Tw) from landscape covariates. However, it is not financially or logistically feasible to monitor all rivers and the transferability of such models has not been explored. This paper uses Tw data from four river catchments collected in August 2015 to assess how well spatial regression models predict the maximum 7-day rolling mean of daily maximum Tw (Twmax) within and between catchments. Models were fitted for each catchment separately using (1) landscape covariates only (LS models) and (2) landscape covariates and an air temperature (Ta) metric (LS_Ta models). All the LS models included upstream catchment area and three included a river network smoother (RNS) that accounted for unexplained spatial structure. The LS models transferred reasonably to other catchments, at least when predicting relative levels of Twmax. However, the predictions were biased when mean Twmax differed between catchments. The RNS was needed to characterise and predict finer-scale spatially correlated variation. Because the RNS was unique to each catchment and thus non-transferable, predictions were better within catchments than between catchments. A single model fitted to all catchments found no interactions between the landscape covariates and catchment, suggesting that the landscape relationships were transferable. The LS_Ta models transferred less well, with particularly poor performance when the relationship with the Ta metric was physically implausible or required extrapolation outside the range of the data. A single model fitted to all catchments found catchment-specific relationships between Twmax and the Ta metric, indicating that the Ta metric was not transferable. These findings improve our understanding of the transferability of spatial statistical river temperature models and provide a foundation for developing new approaches for predicting Tw at unmonitored locations across multiple catchments and larger spatial scales.

  14. Spatio-temporal analysis of annual rainfall in Crete, Greece

    NASA Astrophysics Data System (ADS)

    Varouchakis, Emmanouil A.; Corzo, Gerald A.; Karatzas, George P.; Kotsopoulou, Anastasia

    2018-03-01

    Analysis of rainfall data from the island of Crete, Greece was performed to identify key hydrological years and return periods as well as to analyze the inter-annual behavior of the rainfall variability during the period 1981-2014. The rainfall spatial distribution was also examined in detail to identify vulnerable areas of the island. Data analysis using statistical tools and spectral analysis were applied to investigate and interpret the temporal course of the available rainfall data set. In addition, spatial analysis techniques were applied and compared to determine the rainfall spatial distribution on the island of Crete. The analysis presented that in contrast to Regional Climate Model estimations, rainfall rates have not decreased, while return periods vary depending on seasonality and geographic location. A small but statistical significant increasing trend was detected in the inter-annual rainfall variations as well as a significant rainfall cycle almost every 8 years. In addition, statistically significant correlation of the island's rainfall variability with the North Atlantic Oscillation is identified for the examined period. On the other hand, regression kriging method combining surface elevation as secondary information improved the estimation of the annual rainfall spatial variability on the island of Crete by 70% compared to ordinary kriging. The rainfall spatial and temporal trends on the island of Crete have variable characteristics that depend on the geographical area and on the hydrological period.

  15. Detecting Genomic Clustering of Risk Variants from Sequence Data: Cases vs. Controls

    PubMed Central

    Schaid, Daniel J.; Sinnwell, Jason P.; McDonnell, Shannon K.; Thibodeau, Stephen N.

    2013-01-01

    As the ability to measure dense genetic markers approaches the limit of the DNA sequence itself, taking advantage of possible clustering of genetic variants in, and around, a gene would benefit genetic association analyses, and likely provide biological insights. The greatest benefit might be realized when multiple rare variants cluster in a functional region. Several statistical tests have been developed, one of which is based on the popular Kulldorff scan statistic for spatial clustering of disease. We extended another popular spatial clustering method – Tango’s statistic – to genomic sequence data. An advantage of Tango’s method is that it is rapid to compute, and when single test statistic is computed, its distribution is well approximated by a scaled chi-square distribution, making computation of p-values very rapid. We compared the Type-I error rates and power of several clustering statistics, as well as the omnibus sequence kernel association test (SKAT). Although our version of Tango’s statistic, which we call “Kernel Distance” statistic, took approximately half the time to compute than the Kulldorff scan statistic, it had slightly less power than the scan statistic. Our results showed that the Ionita-Laza version of Kulldorff’s scan statistic had the greatest power over a range of clustering scenarios. PMID:23842950

  16. Spatial outline of malaria transmission in Iran.

    PubMed

    Barati, Mohammad; Keshavarz-valian, Hossein; Habibi-nokhandan, Majid; Raeisi, Ahmad; Faraji, Leyla; Salahi-moghaddam, Abdoreza

    2012-10-01

    To conduct for modeling spatial distribution of malaria transmission in Iran. Records of all malaria cases from the period 2008-2010 in Iran were retrieved for malaria control department, MOH&ME. Metrological data including annual rainfall, maximum and minimum temperature, relative humidity, altitude, demographic, districts border shapefiles, and NDVI images received from Iranian Climatologic Research Center. Data arranged in ArcGIS. 99.65% of malaria transmission cases were focused in southeast part of Iran. These transmissions had statistically correlation with altitude (650 m), maximum (30 °C), minimum (20 °C) and average temperature (25.3 °C). Statistical correlation and overall relationship between NDVI (118.81), relative humidity (⩾45%) and rainfall in southeast area was defined and explained in this study. According to ecological condition and mentioned cut-off points, predictive map was generated using cokriging method. Copyright © 2012 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  17. Effect of spatial coherence of light on the photoregulation processes in cells

    NASA Astrophysics Data System (ADS)

    Budagovsky, A. V.; Solovykh, N. V.; Yankovskaya, M. B.; Maslova, M. V.; Budagovskaya, O. N.; Budagovsky, I. A.

    2016-07-01

    The effect of the statistical properties of light on the value of the photoinduced reaction of the biological objects, which differ in the morphological and physiological characteristics, the optical properties, and the size of cells, was studied. The fruit of apple trees, the pollen of cherries, the microcuttings of blackberries in vitro, and the spores and the mycelium of fungi were irradiated by quasimonochromatic light fluxes with identical energy parameters but different values of coherence length and radius of correlation. In all cases, the greatest stimulation effect occurred when the cells completely fit in the volume of the coherence of the field, while both temporal and spatial coherence have a significant and mathematically certain impact on the physiological activity of cells. It was concluded that not only the spectral, but also the statistical (coherent) properties of the acting light play an important role in the photoregulation process.

  18. Influence of thermal light correlations on photosynthetic structures

    NASA Astrophysics Data System (ADS)

    de Mendoza, Adriana; Manrique, Pedro; Caycedo-Soler, Felipe; Johnson, Neil F.; Rodríguez, Ferney J.; Quiroga, Luis

    2014-03-01

    The thermal light from the sun is characterized by both classical and quantum mechanical correlations. These correlations have left a fingerprint on the natural harvesting structures developed through five billion years of evolutionary pressure, specially in photosynthetic organisms. In this work, based upon previous extensive studies of spatio-temporal correlations of light fields, we hypothesize that structures involving photosensitive pigments like those present in purple bacteria vesicles emerge as an evolutionary response to the different properties of incident light. By using burstiness and memory as measures that quantify higher moments of the photon arrival statistics, we generate photon-time traces. They are used to simulate absorption on detectors spatially extended over regions comparable to these light fields coherence length. Finally, we provide some insights into the connection between these photo-statistical features with the photosynthetic membrane architecture and the lights' spatial correlation. Facultad de Ciencias Uniandes.

  19. Chaos and Forecasting - Proceedings of the Royal Society Discussion Meeting

    NASA Astrophysics Data System (ADS)

    Tong, Howell

    1995-04-01

    The Table of Contents for the full book PDF is as follows: * Preface * Orthogonal Projection, Embedding Dimension and Sample Size in Chaotic Time Series from a Statistical Perspective * A Theory of Correlation Dimension for Stationary Time Series * On Prediction and Chaos in Stochastic Systems * Locally Optimized Prediction of Nonlinear Systems: Stochastic and Deterministic * A Poisson Distribution for the BDS Test Statistic for Independence in a Time Series * Chaos and Nonlinear Forecastability in Economics and Finance * Paradigm Change in Prediction * Predicting Nonuniform Chaotic Attractors in an Enzyme Reaction * Chaos in Geophysical Fluids * Chaotic Modulation of the Solar Cycle * Fractal Nature in Earthquake Phenomena and its Simple Models * Singular Vectors and the Predictability of Weather and Climate * Prediction as a Criterion for Classifying Natural Time Series * Measuring and Characterising Spatial Patterns, Dynamics and Chaos in Spatially-Extended Dynamical Systems and Ecologies * Non-Linear Forecasting and Chaos in Ecology and Epidemiology: Measles as a Case Study

  20. Evaluation of the sensitivity of the Amazonian diurnal cycle to convective intensity in reanalyses

    NASA Astrophysics Data System (ADS)

    Itterly, Kyle F.; Taylor, Patrick C.

    2017-02-01

    Model parameterizations of tropical deep convection are unable to reproduce the observed diurnal and spatial variability of convection in the Amazon, which contributes to climatological biases in the water cycle and energy budget. Convective intensity regimes are defined using percentiles of daily minimum 3-hourly averaged outgoing longwave radiation (OLR) from Clouds and the Earth's Radiant Energy System (CERES). This study compares the observed spatial variability of convective diurnal cycle statistics for each regime to MERRA-2 and ERA-Interim (ERA) reanalysis data sets. Composite diurnal cycle statistics are computed for daytime hours (06:00-21:00 local time) in the wet season (December-January-February). MERRA-2 matches observations more closely than ERA for domain averaged composite diurnal statistics—specifically precipitation. However, ERA reproduces mesoscale features of OLR and precipitation phase associated with topography and the propagation of the coastal squall line. Both reanalysis models are shown to underestimate extreme convection.

  1. Ice Mass Change in Greenland and Antarctica Between 1993 and 2013 from Satellite Gravity Measurements

    NASA Technical Reports Server (NTRS)

    Talpe, Matthieu J.; Nerem, R. Steven; Forootan, Ehsan; Schmidt, Michael; Lemoine, Frank G.; Enderlin, Ellyn M.; Landerer, Felix W.

    2017-01-01

    We construct long-term time series of Greenland and Antarctic ice sheet mass change from satellite gravity measurements. A statistical reconstruction approach is developed based on a principal component analysis (PCA) to combine high-resolution spatial modes from the Gravity Recovery and Climate Experiment (GRACE) mission with the gravity information from conventional satellite tracking data. Uncertainties of this reconstruction are rigorously assessed; they include temporal limitations for short GRACE measurements, spatial limitations for the low-resolution conventional tracking data measurements, and limitations of the estimated statistical relationships between low- and high-degree potential coefficients reflected in the PCA modes. Trends of mass variations in Greenland and Antarctica are assessed against a number of previous studies. The resulting time series for Greenland show a higher rate of mass loss than other methods before 2000, while the Antarctic ice sheet appears heavily influenced by interannual variations.

  2. The joint space-time statistics of macroweather precipitation, space-time statistical factorization and macroweather models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovejoy, S., E-mail: lovejoy@physics.mcgill.ca; Lima, M. I. P. de; Department of Civil Engineering, University of Coimbra, 3030-788 Coimbra

    2015-07-15

    Over the range of time scales from about 10 days to 30–100 years, in addition to the familiar weather and climate regimes, there is an intermediate “macroweather” regime characterized by negative temporal fluctuation exponents: implying that fluctuations tend to cancel each other out so that averages tend to converge. We show theoretically and numerically that macroweather precipitation can be modeled by a stochastic weather-climate model (the Climate Extended Fractionally Integrated Flux, model, CEFIF) first proposed for macroweather temperatures and we show numerically that a four parameter space-time CEFIF model can approximately reproduce eight or so empirical space-time exponents. In spitemore » of this success, CEFIF is theoretically and numerically difficult to manage. We therefore propose a simplified stochastic model in which the temporal behavior is modeled as a fractional Gaussian noise but the spatial behaviour as a multifractal (climate) cascade: a spatial extension of the recently introduced ScaLIng Macroweather Model, SLIMM. Both the CEFIF and this spatial SLIMM model have a property often implicitly assumed by climatologists that climate statistics can be “homogenized” by normalizing them with the standard deviation of the anomalies. Physically, it means that the spatial macroweather variability corresponds to different climate zones that multiplicatively modulate the local, temporal statistics. This simplified macroweather model provides a framework for macroweather forecasting that exploits the system's long range memory and spatial correlations; for it, the forecasting problem has been solved. We test this factorization property and the model with the help of three centennial, global scale precipitation products that we analyze jointly in space and in time.« less

  3. DOA-informed source extraction in the presence of competing talkers and background noise

    NASA Astrophysics Data System (ADS)

    Taseska, Maja; Habets, Emanuël A. P.

    2017-12-01

    A desired speech signal in hands-free communication systems is often degraded by noise and interfering speech. Even though the number and locations of the interferers are often unknown in practice, it is justified to assume in certain applications that the direction-of-arrival (DOA) of the desired source is approximately known. Using the known DOA, fixed spatial filters such as the delay-and-sum beamformer can be steered to extract the desired source. However, it is well-known that fixed data-independent spatial filters do not provide sufficient reduction of directional interferers. Instead, the DOA information can be used to estimate the statistics of the desired and the undesired signals and to compute optimal data-dependent spatial filters. One way the DOA is exploited for optimal spatial filtering in the literature, is by designing DOA-based narrowband detectors to determine whether a desired or an undesired signal is dominant at each time-frequency (TF) bin. Subsequently, the statistics of the desired and the undesired signals can be estimated during the TF bins where the respective signal is dominant. In a similar manner, a Gaussian signal model-based detector which does not incorporate DOA information has been used in scenarios where the undesired signal consists of stationary background noise. However, when the undesired signal is non-stationary, resulting for example from interfering speakers, such a Gaussian signal model-based detector is unable to robustly distinguish desired from undesired speech. To this end, we propose a DOA model-based detector to determine the dominant source at each TF bin and estimate the desired and undesired signal statistics. We demonstrate that data-dependent spatial filters that use the statistics estimated by the proposed framework achieve very good undesired signal reduction, even when using only three microphones.

  4. A spatially explicit approach to the study of socio-demographic inequality in the spatial distribution of trees across Boston neighborhoods.

    PubMed

    Duncan, Dustin T; Kawachi, Ichiro; Kum, Susan; Aldstadt, Jared; Piras, Gianfranco; Matthews, Stephen A; Arbia, Giuseppe; Castro, Marcia C; White, Kellee; Williams, David R

    2014-04-01

    The racial/ethnic and income composition of neighborhoods often influences local amenities, including the potential spatial distribution of trees, which are important for population health and community wellbeing, particularly in urban areas. This ecological study used spatial analytical methods to assess the relationship between neighborhood socio-demographic characteristics (i.e. minority racial/ethnic composition and poverty) and tree density at the census tact level in Boston, Massachusetts (US). We examined spatial autocorrelation with the Global Moran's I for all study variables and in the ordinary least squares (OLS) regression residuals as well as computed Spearman correlations non-adjusted and adjusted for spatial autocorrelation between socio-demographic characteristics and tree density. Next, we fit traditional regressions (i.e. OLS regression models) and spatial regressions (i.e. spatial simultaneous autoregressive models), as appropriate. We found significant positive spatial autocorrelation for all neighborhood socio-demographic characteristics (Global Moran's I range from 0.24 to 0.86, all P =0.001), for tree density (Global Moran's I =0.452, P =0.001), and in the OLS regression residuals (Global Moran's I range from 0.32 to 0.38, all P <0.001). Therefore, we fit the spatial simultaneous autoregressive models. There was a negative correlation between neighborhood percent non-Hispanic Black and tree density (r S =-0.19; conventional P -value=0.016; spatially adjusted P -value=0.299) as well as a negative correlation between predominantly non-Hispanic Black (over 60% Black) neighborhoods and tree density (r S =-0.18; conventional P -value=0.019; spatially adjusted P -value=0.180). While the conventional OLS regression model found a marginally significant inverse relationship between Black neighborhoods and tree density, we found no statistically significant relationship between neighborhood socio-demographic composition and tree density in the spatial regression models. Methodologically, our study suggests the need to take into account spatial autocorrelation as findings/conclusions can change when the spatial autocorrelation is ignored. Substantively, our findings suggest no need for policy intervention vis-à-vis trees in Boston, though we hasten to add that replication studies, and more nuanced data on tree quality, age and diversity are needed.

  5. Components of spatial information management in wildlife ecology: Software for statistical and modeling analysis [Chapter 14

    Treesearch

    Hawthorne L. Beyer; Jeff Jenness; Samuel A. Cushman

    2010-01-01

    Spatial information systems (SIS) is a term that describes a wide diversity of concepts, techniques, and technologies related to the capture, management, display and analysis of spatial information. It encompasses technologies such as geographic information systems (GIS), global positioning systems (GPS), remote sensing, and relational database management systems (...

  6. Geographical variation in the spatial synchrony of a forest-defoliating insect: isolation of environmental and spatial drivers

    Treesearch

    K.yle J. Haynes; Ottar N. Bjornstad; Andrew J. Allstadt; Andrew M. Liebhold

    2012-01-01

    Despite the pervasiveness of spatial synchrony of population fluctuations in virtually every taxon, it remains difficult to disentangle its underlying mechanisms, such as environmental perturbations and dispersal. We used multiple regression of distance matrices (MRMs) to statistically partition the importance of several factors potentially synchronizing the dynamics...

  7. Mapping the Philippines' mangrove forests using Landsat imagery

    USGS Publications Warehouse

    Long, Jordan; Giri, Chandra

    2011-01-01

    Current, accurate, and reliable information on the areal extent and spatial distribution of mangrove forests in the Philippines is limited. Previous estimates of mangrove extent do not illustrate the spatial distribution for the entire country. This study, part of a global assessment of mangrove dynamics, mapped the spatial distribution and areal extent of the Philippines’ mangroves circa 2000. We used publicly available Landsat data acquired primarily from the Global Land Survey to map the total extent and spatial distribution. ISODATA clustering, an unsupervised classification technique, was applied to 61 Landsat images. Statistical analysis indicates the total area of mangrove forest cover was approximately 256,185 hectares circa 2000 with overall classification accuracy of 96.6% and a kappa coefficient of 0.926. These results differ substantially from most recent estimates of mangrove area in the Philippines. The results of this study may assist the decision making processes for rehabilitation and conservation efforts that are currently needed to protect and restore the Philippines’ degraded mangrove forests.

  8. The effects of an inquiry-based earth science course on the spatial thinking of pre-service elementary teacher education students

    NASA Astrophysics Data System (ADS)

    Weakley, Kevin Douglas

    This study examined the effectiveness of two geography courses at improving student spatial thinking skills. Spatial thinking is an important cognitive skill in the sciences and everyday life. A taxonomy of spatial thinking was constructed by Gersmehl (2008) in geography education which included core modes assessed in this study: comparison, region, transition, analogy, pattern, and association. Two additional modes related to space over time, change and movement, were also assessed. The central research question in this study is: What are the effects of a pre-service teacher education earth science content course (Geography 1900) that is conceptually designed and inquiry-based on the spatial thinking of university students compared to the Geography 1020 course that follows a lecture format with an atlas study component? The six sub-questions to this central question were: (1) What spatial thinking modes are embedded in the Geography 1900 course based on the Gersmehl (2008) classification of modes of spatial thinking? (2) What modes of spatial thinking do pre-service elementary education students exhibit prior to instruction in Geography 1900 and 1020? (3) What changes occur in spatial thinking and spatial skills as a result of enrolling in and completing a conceptually based, inquiry course (Geography 1900) that has embedded clearly identifiable spatial tasks based on Gersmehl's classification? (4) What are the effects of Geography 1900 on the modes of spatial thinking that students apply at the completion of the course? (5) What modes of spatial thinking do students transfer from the classroom to the outdoors as they move about campus? (6) Are there differences in spatial thinking between the Geography 1900 population and the Geography 1020 comparison sample of students that received a different course treatment? The research used a mixed methods approach with both quantitative and qualitative information. Statistically significant changes were observed in the use of spatial constructs and concepts by students in each of the course treatments that were compared. Students were also observed to apply spatial modes outside the classroom that represented the spatial thinking within the new context of the university environment as they observed and described the landscape.

  9. Statistical regularities of art images and natural scenes: spectra, sparseness and nonlinearities.

    PubMed

    Graham, Daniel J; Field, David J

    2007-01-01

    Paintings are the product of a process that begins with ordinary vision in the natural world and ends with manipulation of pigments on canvas. Because artists must produce images that can be seen by a visual system that is thought to take advantage of statistical regularities in natural scenes, artists are likely to replicate many of these regularities in their painted art. We have tested this notion by computing basic statistical properties and modeled cell response properties for a large set of digitized paintings and natural scenes. We find that both representational and non-representational (abstract) paintings from our sample (124 images) show basic similarities to a sample of natural scenes in terms of their spatial frequency amplitude spectra, but the paintings and natural scenes show significantly different mean amplitude spectrum slopes. We also find that the intensity distributions of paintings show a lower skewness and sparseness than natural scenes. We account for this by considering the range of luminances found in the environment compared to the range available in the medium of paint. A painting's range is limited by the reflective properties of its materials. We argue that artists do not simply scale the intensity range down but use a compressive nonlinearity. In our studies, modeled retinal and cortical filter responses to the images were less sparse for the paintings than for the natural scenes. But when a compressive nonlinearity was applied to the images, both the paintings' sparseness and the modeled responses to the paintings showed the same or greater sparseness compared to the natural scenes. This suggests that artists achieve some degree of nonlinear compression in their paintings. Because paintings have captivated humans for millennia, finding basic statistical regularities in paintings' spatial structure could grant insights into the range of spatial patterns that humans find compelling.

  10. Landsat Thematic Mapper studies of land cover spatial variability related to hydrology

    NASA Technical Reports Server (NTRS)

    Wharton, S.; Ormsby, J.; Salomonson, V.; Mulligan, P.

    1984-01-01

    Past accomplishments involving remote sensing based land-cover analysis for hydrologic applications are reviewed. Ongoing research in exploiting the increased spatial, radiometric, and spectral capabilities afforded by the TM on Landsats 4 and 5 is considered. Specific studies to compare MSS and TM for urbanizing watersheds, wetlands, and floodplain mapping situations show that only a modest improvement in classification accuracy is achieved via statistical per pixel multispectral classifiers. The limitations of current approaches to multispectral classification are illustrated. The objectives, background, and progress in the development of an alternative analysis approach for defining inputs to urban hydrologic models using TM are discussed.

  11. The design and research of poverty alleviation monitoring and evaluation system: a case study in the Jiangxi province

    NASA Astrophysics Data System (ADS)

    Mo, Hong-yuan; Wang, Ying-jie; Yu, Zhuo-yuan

    2009-07-01

    The Poverty Alleviation Monitoring and Evaluation System (PAMES) is introduced in this paper. The authors present environment platform selection, and details of system design and realization. Different with traditional research of poverty alleviation, this paper develops a new analytical geo-visualization approach to study the distribution and causes of poverty phenomena within Geographic Information System (GIS). Based on the most detailed poverty population data, the spatial location and population statistical indicators of poverty village in Jiangxi province, the distribution characteristics of poverty population are detailed. The research results can provide much poverty alleviation decision support from a spatial-temporal view. It should be better if the administrative unit of poverty-stricken area to be changed from county to village according to spatial distribution pattern of poverty.

  12. [Teenage pregnancy rates and socioeconomic characteristics of municipalities in São Paulo State, Southeast Brazil: a spatial analysis].

    PubMed

    Martinez, Edson Zangiacomi; Roza, Daiane Leite da; Caccia-Bava, Maria do Carmo Gullaci Guimarães; Achcar, Jorge Alberto; Dal-Fabbro, Amaury Lelis

    2011-05-01

    Teenage pregnancy is a common public health problem worldwide. The objective of this ecological study was to investigate the spatial association between teenage pregnancy rates and socioeconomic characteristics of municipalities in São Paulo State, Southeast Brazil. We used a Bayesian model with a spatial distribution following a conditional autoregressive (CAR) form based on Markov Chain Monte Carlo algorithm. We used data from the Live Birth Information System (SINASC) and the Brazilian Institute of Geography and Statistics (IBGE). Early pregnancy was more frequent in municipalities with lower per capital gross domestic product (GDP), higher poverty rate, smaller population, lower human development index (HDI), and a higher percentage of individuals with State social vulnerability index of 5 or 6 (more vulnerable). The study demonstrates a significant association between teenage pregnancy and socioeconomic indicators.

  13. SU-E-T-96: Energy Dependence of the New GafChromic- EBT3 Film's Dose Response-Curve.

    PubMed

    Chiu-Tsao, S; Massillon-Jl, G; Domingo-Muñoz, I; Chan, M

    2012-06-01

    To study and compare the dose response curves of the new GafChromic EBT3 film for megavoltage and kilovoltage x-ray beams, with different spatial resolution. Two sets of EBT3 films (lot#A101711-02) were exposed to each x-ray beam (6MV, 15MV and 50kV) at 8 dose values (50-3200cGy). The megavoltage beams were calibrated per AAPM TG-51 protocol while the kilovoltage beam was calibrated following the TG-61 using an ionization chamber calibrated at NIST. Each film piece was scanned three consecutive times in the center of Epson 10000XL flatbed scanner in transmission mode, landscape orientation, 48-bit color at two separate spatial resolutions of 75 and 300 dpi. The data were analyzed using ImageJ and, for each scanned image, a region of interest (ROI) of 2×2cm 2 at the field center was selected to obtain the mean pixel value with its standard deviation in the ROI. For each energy, dose value and spatial resolution, the average netOD and its associated uncertainty were determined. The Student's t-test was performed to evaluate the statistical differences between the netOD/dose values of the three energy modalities, with different color channels and spatial resolutions. The dose response curves for the three energy modalities were compared in three color channels with 75 and 300dpi. Weak energy dependence was found. For doses above 100cGy, no statistical differences were observed between 6 and 15MV beams, regardless of spatial resolution. However, statistical differences were observed between 50kV and the megavoltage beams. The degree of energy dependence (from MV to 50kV) was found to be function of color channel, dose level and spatial resolution. The dose response curves for GafChromic EBT3 films were found to be weakly dependent on the energy of the photon beams from 6MV to 50kV. The degree of energy dependence varies with color channel, dose and spatial resolution. GafChromic EBT3 films were supplied by Ashland Corp. This work was partially supported by DGAPA-UNAM grant IN102610 and Conacyt Mexico grant 127409. © 2012 American Association of Physicists in Medicine.

  14. An Introduction to Macro- Level Spatial Nonstationarity: a Geographically Weighted Regression Analysis of Diabetes and Poverty

    PubMed Central

    Siordia, Carlos; Saenz, Joseph; Tom, Sarah E.

    2014-01-01

    Type II diabetes is a growing health problem in the United States. Understanding geographic variation in diabetes prevalence will inform where resources for management and prevention should be allocated. Investigations of the correlates of diabetes prevalence have largely ignored how spatial nonstationarity might play a role in the macro-level distribution of diabetes. This paper introduces the reader to the concept of spatial nonstationarity—variance in statistical relationships as a function of geographical location. Since spatial nonstationarity means different predictors can have varying effects on model outcomes, we make use of a geographically weighed regression to calculate correlates of diabetes as a function of geographic location. By doing so, we demonstrate an exploratory example in which the diabetes-poverty macro-level statistical relationship varies as a function of location. In particular, we provide evidence that when predicting macro-level diabetes prevalence, poverty is not always positively associated with diabetes PMID:25414731

  15. An Introduction to Macro- Level Spatial Nonstationarity: a Geographically Weighted Regression Analysis of Diabetes and Poverty.

    PubMed

    Siordia, Carlos; Saenz, Joseph; Tom, Sarah E

    2012-01-01

    Type II diabetes is a growing health problem in the United States. Understanding geographic variation in diabetes prevalence will inform where resources for management and prevention should be allocated. Investigations of the correlates of diabetes prevalence have largely ignored how spatial nonstationarity might play a role in the macro-level distribution of diabetes. This paper introduces the reader to the concept of spatial nonstationarity-variance in statistical relationships as a function of geographical location. Since spatial nonstationarity means different predictors can have varying effects on model outcomes, we make use of a geographically weighed regression to calculate correlates of diabetes as a function of geographic location. By doing so, we demonstrate an exploratory example in which the diabetes-poverty macro-level statistical relationship varies as a function of location. In particular, we provide evidence that when predicting macro-level diabetes prevalence, poverty is not always positively associated with diabetes.

  16. Quantitative analysis of spatial variability of geotechnical parameters

    NASA Astrophysics Data System (ADS)

    Fang, Xing

    2018-04-01

    Geotechnical parameters are the basic parameters of geotechnical engineering design, while the geotechnical parameters have strong regional characteristics. At the same time, the spatial variability of geotechnical parameters has been recognized. It is gradually introduced into the reliability analysis of geotechnical engineering. Based on the statistical theory of geostatistical spatial information, the spatial variability of geotechnical parameters is quantitatively analyzed. At the same time, the evaluation of geotechnical parameters and the correlation coefficient between geotechnical parameters are calculated. A residential district of Tianjin Survey Institute was selected as the research object. There are 68 boreholes in this area and 9 layers of mechanical stratification. The parameters are water content, natural gravity, void ratio, liquid limit, plasticity index, liquidity index, compressibility coefficient, compressive modulus, internal friction angle, cohesion and SP index. According to the principle of statistical correlation, the correlation coefficient of geotechnical parameters is calculated. According to the correlation coefficient, the law of geotechnical parameters is obtained.

  17. GEMAS: Spatial pattern analysis of Ni by using digital image processing techniques on European agricultural soil data

    NASA Astrophysics Data System (ADS)

    Jordan, Gyozo; Petrik, Attila; De Vivo, Benedetto; Albanese, Stefano; Demetriades, Alecos; Sadeghi, Martiya

    2017-04-01

    Several studies have investigated the spatial distribution of chemical elements in topsoil (0-20 cm) within the framework of the EuroGeoSurveys Geochemistry Expert Group's 'Geochemical Mapping of Agricultural and Grazing Land Soil' project . Most of these studies used geostatistical analyses and interpolated concentration maps, Exploratory and Compositional Data and Analysis to identify anomalous patterns. The objective of our investigation is to demonstrate the use of digital image processing techniques for reproducible spatial pattern recognition and quantitative spatial feature characterisation. A single element (Ni) concentration in agricultural topsoil is used to perform the detailed spatial analysis, and to relate these features to possible underlying processes. In this study, simple univariate statistical methods were implemented first, and Tukey's inner-fence criterion was used to delineate statistical outliers. The linear and triangular irregular network (TIN) interpolation was used on the outlier-free Ni data points, which was resampled to a 10*10 km grid. Successive moving average smoothing was applied to generalise the TIN model and to suppress small- and at the same time enhance significant large-scale features of Nickel concentration spatial distribution patterns in European topsoil. The TIN map smoothed with a moving average filter revealed the spatial trends and patterns without losing much detail, and it was used as the input into digital image processing, such as local maxima and minima determination, digital cross sections, gradient magnitude and gradient direction calculation, second derivative profile curvature calculation, edge detection, local variability assessment, lineament density and directional variogram analyses. The detailed image processing analysis revealed several NE-SW, E-W and NW-SE oriented elongated features, which coincide with different spatial parameter classes and alignment with local maxima and minima. The NE-SW oriented linear pattern is the dominant feature to the south of the last glaciation limit. Some of these linear features are parallel to the suture zone of the Iapetus Ocean, while the others follow the Alpine and Carpathian Chains. The highest variability zones of Ni concentration in topsoil are located in the Alps and in the Balkans where mafic and ultramafic rocks outcrop. The predominant NE-SW oriented pattern is also captured by the strong anisotropy in the semi-variograms in this direction. A single major E-W oriented north-facing feature runs along the southern border of the last glaciation zone. This zone also coincides with a series of local maxima in Ni concentration along the glaciofluvial deposits. The NW-SE elongated spatial features are less dominant and are located in the Pyrenees and Scandinavia. This study demonstrates the efficiency of systematic image processing analysis in identifying and characterising spatial geochemical patterns that often remain uncovered by the usual visual map interpretation techniques.

  18. Spatial epidemiological techniques in cholera mapping and analysis towards a local scale predictive modelling

    NASA Astrophysics Data System (ADS)

    Rasam, A. R. A.; Ghazali, R.; Noor, A. M. M.; Mohd, W. M. N. W.; Hamid, J. R. A.; Bazlan, M. J.; Ahmad, N.

    2014-02-01

    Cholera spatial epidemiology is the study of the spread and control of the disease spatial pattern and epidemics. Previous studies have shown that multi-factorial causation such as human behaviour, ecology and other infectious risk factors influence the disease outbreaks. Thus, understanding spatial pattern and possible interrelationship factors of the outbreaks are crucial to be explored an in-depth study. This study focuses on the integration of geographical information system (GIS) and epidemiological techniques in exploratory analyzing the cholera spatial pattern and distribution in the selected district of Sabah. Spatial Statistic and Pattern tools in ArcGIS and Microsoft Excel software were utilized to map and analyze the reported cholera cases and other data used. Meanwhile, cohort study in epidemiological technique was applied to investigate multiple outcomes of the disease exposure. The general spatial pattern of cholera was highly clustered showed the disease spread easily at a place or person to others especially 1500 meters from the infected person and locations. Although the cholera outbreaks in the districts are not critical, it could be endemic at the crowded areas, unhygienic environment, and close to contaminated water. It was also strongly believed that the coastal water of the study areas has possible relationship with the cholera transmission and phytoplankton bloom since the areas recorded higher cases. GIS demonstrates a vital spatial epidemiological technique in determining the distribution pattern and elucidating the hypotheses generating of the disease. The next research would be applying some advanced geo-analysis methods and other disease risk factors for producing a significant a local scale predictive risk model of the disease in Malaysia.

  19. Architecture of a spatial data service system for statistical analysis and visualization of regional climate changes

    NASA Astrophysics Data System (ADS)

    Titov, A. G.; Okladnikov, I. G.; Gordov, E. P.

    2017-11-01

    The use of large geospatial datasets in climate change studies requires the development of a set of Spatial Data Infrastructure (SDI) elements, including geoprocessing and cartographical visualization web services. This paper presents the architecture of a geospatial OGC web service system as an integral part of a virtual research environment (VRE) general architecture for statistical processing and visualization of meteorological and climatic data. The architecture is a set of interconnected standalone SDI nodes with corresponding data storage systems. Each node runs a specialized software, such as a geoportal, cartographical web services (WMS/WFS), a metadata catalog, and a MySQL database of technical metadata describing geospatial datasets available for the node. It also contains geospatial data processing services (WPS) based on a modular computing backend realizing statistical processing functionality and, thus, providing analysis of large datasets with the results of visualization and export into files of standard formats (XML, binary, etc.). Some cartographical web services have been developed in a system’s prototype to provide capabilities to work with raster and vector geospatial data based on OGC web services. The distributed architecture presented allows easy addition of new nodes, computing and data storage systems, and provides a solid computational infrastructure for regional climate change studies based on modern Web and GIS technologies.

  20. Spatiotemporal Trends Analysis of Pyrethroid Sediment Concentrations Spanning 10 Years in a Residential Creek in California.

    PubMed

    Hall, Lenwood W; Anderson, Ronald D; Killen, William D

    2016-02-01

    The objective of this study was to assess temporal and spatial trends for eight pyrethroids monitored in sediment spanning 10 years from 2006 to 2015 in a residential stream in California (Pleasant Grove Creek). The timeframe for this study included sampling 3 years during a somewhat normal non-drought period (2006-2008) and 3 years during a severe drought period (2013-2015). Regression analysis of pyrethroid concentrations in Pleasant Grove Creek for 2006, 2007, 2008, 2012, 2013, 2014, and 2015 using ½ the detection limit for nondetected concentrations showed statistically significant declining trends for cyfluthrin, cypermethrin, deltamethrin, permethrin, and total pyrethoids. Additional trends analysis of the Pleasant Grove Creek pyrethroid data using only measured concentrations, without nondetected values, showed similar statistically significant declining trends for cyfluthrin, cypermethrin, deltamethrin, esfenvalerate, fenpropathrin, permethrin, and total pyrethroids. Spatial trends analysis for the specific creek sites showed that six of the eight pyrethroids had a greater number of sites with statistically significant declining concentrations. Possible reasons for reduced pyrethroid concentrations in the stream bed in Pleasant Grove Creek during this 10-year period are label changes in 2012 that reduced residential use and lack of precipitation during the later severe drought years of 2013-2015.

Top