Sample records for spatial stochastic models

  1. A spatial stochastic programming model for timber and core area management under risk of stand-replacing fire

    Treesearch

    Dung Tuan Nguyen

    2012-01-01

    Forest harvest scheduling has been modeled using deterministic and stochastic programming models. Past models seldom address explicit spatial forest management concerns under the influence of natural disturbances. In this research study, we employ multistage full recourse stochastic programming models to explore the challenges and advantages of building spatial...

  2. A spatial stochastic programming model for timber and core area management under risk of fires

    Treesearch

    Yu Wei; Michael Bevers; Dung Nguyen; Erin Belval

    2014-01-01

    Previous stochastic models in harvest scheduling seldom address explicit spatial management concerns under the influence of natural disturbances. We employ multistage stochastic programming models to explore the challenges and advantages of building spatial optimization models that account for the influences of random stand-replacing fires. Our exploratory test models...

  3. Numerical Approach to Spatial Deterministic-Stochastic Models Arising in Cell Biology.

    PubMed

    Schaff, James C; Gao, Fei; Li, Ye; Novak, Igor L; Slepchenko, Boris M

    2016-12-01

    Hybrid deterministic-stochastic methods provide an efficient alternative to a fully stochastic treatment of models which include components with disparate levels of stochasticity. However, general-purpose hybrid solvers for spatially resolved simulations of reaction-diffusion systems are not widely available. Here we describe fundamentals of a general-purpose spatial hybrid method. The method generates realizations of a spatially inhomogeneous hybrid system by appropriately integrating capabilities of a deterministic partial differential equation solver with a popular particle-based stochastic simulator, Smoldyn. Rigorous validation of the algorithm is detailed, using a simple model of calcium 'sparks' as a testbed. The solver is then applied to a deterministic-stochastic model of spontaneous emergence of cell polarity. The approach is general enough to be implemented within biologist-friendly software frameworks such as Virtual Cell.

  4. Numerical Approach to Spatial Deterministic-Stochastic Models Arising in Cell Biology

    PubMed Central

    Gao, Fei; Li, Ye; Novak, Igor L.; Slepchenko, Boris M.

    2016-01-01

    Hybrid deterministic-stochastic methods provide an efficient alternative to a fully stochastic treatment of models which include components with disparate levels of stochasticity. However, general-purpose hybrid solvers for spatially resolved simulations of reaction-diffusion systems are not widely available. Here we describe fundamentals of a general-purpose spatial hybrid method. The method generates realizations of a spatially inhomogeneous hybrid system by appropriately integrating capabilities of a deterministic partial differential equation solver with a popular particle-based stochastic simulator, Smoldyn. Rigorous validation of the algorithm is detailed, using a simple model of calcium ‘sparks’ as a testbed. The solver is then applied to a deterministic-stochastic model of spontaneous emergence of cell polarity. The approach is general enough to be implemented within biologist-friendly software frameworks such as Virtual Cell. PMID:27959915

  5. Stochastic Geometric Models with Non-stationary Spatial Correlations in Lagrangian Fluid Flows

    NASA Astrophysics Data System (ADS)

    Gay-Balmaz, François; Holm, Darryl D.

    2018-01-01

    Inspired by spatiotemporal observations from satellites of the trajectories of objects drifting near the surface of the ocean in the National Oceanic and Atmospheric Administration's "Global Drifter Program", this paper develops data-driven stochastic models of geophysical fluid dynamics (GFD) with non-stationary spatial correlations representing the dynamical behaviour of oceanic currents. Three models are considered. Model 1 from Holm (Proc R Soc A 471:20140963, 2015) is reviewed, in which the spatial correlations are time independent. Two new models, called Model 2 and Model 3, introduce two different symmetry breaking mechanisms by which the spatial correlations may be advected by the flow. These models are derived using reduction by symmetry of stochastic variational principles, leading to stochastic Hamiltonian systems, whose momentum maps, conservation laws and Lie-Poisson bracket structures are used in developing the new stochastic Hamiltonian models of GFD.

  6. Stochastic Geometric Models with Non-stationary Spatial Correlations in Lagrangian Fluid Flows

    NASA Astrophysics Data System (ADS)

    Gay-Balmaz, François; Holm, Darryl D.

    2018-06-01

    Inspired by spatiotemporal observations from satellites of the trajectories of objects drifting near the surface of the ocean in the National Oceanic and Atmospheric Administration's "Global Drifter Program", this paper develops data-driven stochastic models of geophysical fluid dynamics (GFD) with non-stationary spatial correlations representing the dynamical behaviour of oceanic currents. Three models are considered. Model 1 from Holm (Proc R Soc A 471:20140963, 2015) is reviewed, in which the spatial correlations are time independent. Two new models, called Model 2 and Model 3, introduce two different symmetry breaking mechanisms by which the spatial correlations may be advected by the flow. These models are derived using reduction by symmetry of stochastic variational principles, leading to stochastic Hamiltonian systems, whose momentum maps, conservation laws and Lie-Poisson bracket structures are used in developing the new stochastic Hamiltonian models of GFD.

  7. MOLNs: A CLOUD PLATFORM FOR INTERACTIVE, REPRODUCIBLE, AND SCALABLE SPATIAL STOCHASTIC COMPUTATIONAL EXPERIMENTS IN SYSTEMS BIOLOGY USING PyURDME.

    PubMed

    Drawert, Brian; Trogdon, Michael; Toor, Salman; Petzold, Linda; Hellander, Andreas

    2016-01-01

    Computational experiments using spatial stochastic simulations have led to important new biological insights, but they require specialized tools and a complex software stack, as well as large and scalable compute and data analysis resources due to the large computational cost associated with Monte Carlo computational workflows. The complexity of setting up and managing a large-scale distributed computation environment to support productive and reproducible modeling can be prohibitive for practitioners in systems biology. This results in a barrier to the adoption of spatial stochastic simulation tools, effectively limiting the type of biological questions addressed by quantitative modeling. In this paper, we present PyURDME, a new, user-friendly spatial modeling and simulation package, and MOLNs, a cloud computing appliance for distributed simulation of stochastic reaction-diffusion models. MOLNs is based on IPython and provides an interactive programming platform for development of sharable and reproducible distributed parallel computational experiments.

  8. Binomial tau-leap spatial stochastic simulation algorithm for applications in chemical kinetics.

    PubMed

    Marquez-Lago, Tatiana T; Burrage, Kevin

    2007-09-14

    In cell biology, cell signaling pathway problems are often tackled with deterministic temporal models, well mixed stochastic simulators, and/or hybrid methods. But, in fact, three dimensional stochastic spatial modeling of reactions happening inside the cell is needed in order to fully understand these cell signaling pathways. This is because noise effects, low molecular concentrations, and spatial heterogeneity can all affect the cellular dynamics. However, there are ways in which important effects can be accounted without going to the extent of using highly resolved spatial simulators (such as single-particle software), hence reducing the overall computation time significantly. We present a new coarse grained modified version of the next subvolume method that allows the user to consider both diffusion and reaction events in relatively long simulation time spans as compared with the original method and other commonly used fully stochastic computational methods. Benchmarking of the simulation algorithm was performed through comparison with the next subvolume method and well mixed models (MATLAB), as well as stochastic particle reaction and transport simulations (CHEMCELL, Sandia National Laboratories). Additionally, we construct a model based on a set of chemical reactions in the epidermal growth factor receptor pathway. For this particular application and a bistable chemical system example, we analyze and outline the advantages of our presented binomial tau-leap spatial stochastic simulation algorithm, in terms of efficiency and accuracy, in scenarios of both molecular homogeneity and heterogeneity.

  9. MOLNs: A CLOUD PLATFORM FOR INTERACTIVE, REPRODUCIBLE, AND SCALABLE SPATIAL STOCHASTIC COMPUTATIONAL EXPERIMENTS IN SYSTEMS BIOLOGY USING PyURDME

    PubMed Central

    Drawert, Brian; Trogdon, Michael; Toor, Salman; Petzold, Linda; Hellander, Andreas

    2017-01-01

    Computational experiments using spatial stochastic simulations have led to important new biological insights, but they require specialized tools and a complex software stack, as well as large and scalable compute and data analysis resources due to the large computational cost associated with Monte Carlo computational workflows. The complexity of setting up and managing a large-scale distributed computation environment to support productive and reproducible modeling can be prohibitive for practitioners in systems biology. This results in a barrier to the adoption of spatial stochastic simulation tools, effectively limiting the type of biological questions addressed by quantitative modeling. In this paper, we present PyURDME, a new, user-friendly spatial modeling and simulation package, and MOLNs, a cloud computing appliance for distributed simulation of stochastic reaction-diffusion models. MOLNs is based on IPython and provides an interactive programming platform for development of sharable and reproducible distributed parallel computational experiments. PMID:28190948

  10. Spatially explicit and stochastic simulation of forest landscape fire disturbance and succession

    Treesearch

    Hong S. He; David J. Mladenoff

    1999-01-01

    Understanding disturbance and recovery of forest landscapes is a challenge because of complex interactions over a range of temporal and spatial scales. Landscape simulation models offer an approach to studying such systems at broad scales. Fire can be simulated spatially using mechanistic or stochastic approaches. We describe the fire module in a spatially explicit,...

  11. Analytical approximations for spatial stochastic gene expression in single cells and tissues

    PubMed Central

    Smith, Stephen; Cianci, Claudia; Grima, Ramon

    2016-01-01

    Gene expression occurs in an environment in which both stochastic and diffusive effects are significant. Spatial stochastic simulations are computationally expensive compared with their deterministic counterparts, and hence little is currently known of the significance of intrinsic noise in a spatial setting. Starting from the reaction–diffusion master equation (RDME) describing stochastic reaction–diffusion processes, we here derive expressions for the approximate steady-state mean concentrations which are explicit functions of the dimensionality of space, rate constants and diffusion coefficients. The expressions have a simple closed form when the system consists of one effective species. These formulae show that, even for spatially homogeneous systems, mean concentrations can depend on diffusion coefficients: this contradicts the predictions of deterministic reaction–diffusion processes, thus highlighting the importance of intrinsic noise. We confirm our theory by comparison with stochastic simulations, using the RDME and Brownian dynamics, of two models of stochastic and spatial gene expression in single cells and tissues. PMID:27146686

  12. ML-Space: Hybrid Spatial Gillespie and Particle Simulation of Multi-Level Rule-Based Models in Cell Biology.

    PubMed

    Bittig, Arne T; Uhrmacher, Adelinde M

    2017-01-01

    Spatio-temporal dynamics of cellular processes can be simulated at different levels of detail, from (deterministic) partial differential equations via the spatial Stochastic Simulation algorithm to tracking Brownian trajectories of individual particles. We present a spatial simulation approach for multi-level rule-based models, which includes dynamically hierarchically nested cellular compartments and entities. Our approach ML-Space combines discrete compartmental dynamics, stochastic spatial approaches in discrete space, and particles moving in continuous space. The rule-based specification language of ML-Space supports concise and compact descriptions of models and to adapt the spatial resolution of models easily.

  13. Coupled stochastic spatial and non-spatial simulations of ErbB1 signaling pathways demonstrate the importance of spatial organization in signal transduction.

    PubMed

    Costa, Michelle N; Radhakrishnan, Krishnan; Wilson, Bridget S; Vlachos, Dionisios G; Edwards, Jeremy S

    2009-07-23

    The ErbB family of receptors activates intracellular signaling pathways that control cellular proliferation, growth, differentiation and apoptosis. Given these central roles, it is not surprising that overexpression of the ErbB receptors is often associated with carcinogenesis. Therefore, extensive laboratory studies have been devoted to understanding the signaling events associated with ErbB activation. Systems biology has contributed significantly to our current understanding of ErbB signaling networks. However, although computational models have grown in complexity over the years, little work has been done to consider the spatial-temporal dynamics of receptor interactions and to evaluate how spatial organization of membrane receptors influences signaling transduction. Herein, we explore the impact of spatial organization of the epidermal growth factor receptor (ErbB1/EGFR) on the initiation of downstream signaling. We describe the development of an algorithm that couples a spatial stochastic model of membrane receptors with a nonspatial stochastic model of the reactions and interactions in the cytosol. This novel algorithm provides a computationally efficient method to evaluate the effects of spatial heterogeneity on the coupling of receptors to cytosolic signaling partners. Mathematical models of signal transduction rarely consider the contributions of spatial organization due to high computational costs. A hybrid stochastic approach simplifies analyses of the spatio-temporal aspects of cell signaling and, as an example, demonstrates that receptor clustering contributes significantly to the efficiency of signal propagation from ligand-engaged growth factor receptors.

  14. Stochastic population dynamics in spatially extended predator-prey systems

    NASA Astrophysics Data System (ADS)

    Dobramysl, Ulrich; Mobilia, Mauro; Pleimling, Michel; Täuber, Uwe C.

    2018-02-01

    Spatially extended population dynamics models that incorporate demographic noise serve as case studies for the crucial role of fluctuations and correlations in biological systems. Numerical and analytic tools from non-equilibrium statistical physics capture the stochastic kinetics of these complex interacting many-particle systems beyond rate equation approximations. Including spatial structure and stochastic noise in models for predator-prey competition invalidates the neutral Lotka-Volterra population cycles. Stochastic models yield long-lived erratic oscillations stemming from a resonant amplification mechanism. Spatially extended predator-prey systems display noise-stabilized activity fronts that generate persistent correlations. Fluctuation-induced renormalizations of the oscillation parameters can be analyzed perturbatively via a Doi-Peliti field theory mapping of the master equation; related tools allow detailed characterization of extinction pathways. The critical steady-state and non-equilibrium relaxation dynamics at the predator extinction threshold are governed by the directed percolation universality class. Spatial predation rate variability results in more localized clusters, enhancing both competing species’ population densities. Affixing variable interaction rates to individual particles and allowing for trait inheritance subject to mutations induces fast evolutionary dynamics for the rate distributions. Stochastic spatial variants of three-species competition with ‘rock-paper-scissors’ interactions metaphorically describe cyclic dominance. These models illustrate intimate connections between population dynamics and evolutionary game theory, underscore the role of fluctuations to drive populations toward extinction, and demonstrate how space can support species diversity. Two-dimensional cyclic three-species May-Leonard models are characterized by the emergence of spiraling patterns whose properties are elucidated by a mapping onto a complex Ginzburg-Landau equation. Multiple-species extensions to general ‘food networks’ can be classified on the mean-field level, providing both fundamental understanding of ensuing cooperativity and profound insight into the rich spatio-temporal features and coarsening kinetics in the corresponding spatially extended systems. Novel space-time patterns emerge as a result of the formation of competing alliances; e.g. coarsening domains that each incorporate rock-paper-scissors competition games.

  15. Spatially heterogeneous stochasticity and the adaptive diversification of dormancy.

    PubMed

    Rajon, E; Venner, S; Menu, F

    2009-10-01

    Diversified bet-hedging, a strategy that leads several individuals with the same genotype to express distinct phenotypes in a given generation, is now well established as a common evolutionary response to environmental stochasticity. Life-history traits defined as diversified bet-hedging (e.g. germination or diapause strategies) display marked differences between populations in spatial proximity. In order to find out whether such differences can be explained by local adaptations to spatially heterogeneous environmental stochasticity, we explored the evolution of bet-hedging dormancy strategies in a metapopulation using a two-patch model with patch differences in stochastic juvenile survival. We found that spatial differences in the level of environmental stochasticity, restricted dispersal, increased fragmentation and intermediate survival during dormancy all favour the adaptive diversification of bet-hedging dormancy strategies. Density dependency also plays a major role in the diversification of dormancy strategies because: (i) it may interact locally with environmental stochasticity and amplify its effects; however, (ii) it can also generate chaotic population dynamics that may impede diversification. Our work proposes new hypotheses to explain the spatial patterns of bet-hedging strategies that we hope will encourage new empirical studies of this topic.

  16. Spatial scaling patterns and functional redundancies in a changing boreal lake landscape

    USGS Publications Warehouse

    Angeler, David G.; Allen, Craig R.; Uden, Daniel R.; Johnson, Richard K.

    2015-01-01

    Global transformations extend beyond local habitats; therefore, larger-scale approaches are needed to assess community-level responses and resilience to unfolding environmental changes. Using longterm data (1996–2011), we evaluated spatial patterns and functional redundancies in the littoral invertebrate communities of 85 Swedish lakes, with the objective of assessing their potential resilience to environmental change at regional scales (that is, spatial resilience). Multivariate spatial modeling was used to differentiate groups of invertebrate species exhibiting spatial patterns in composition and abundance (that is, deterministic species) from those lacking spatial patterns (that is, stochastic species). We then determined the functional feeding attributes of the deterministic and stochastic invertebrate species, to infer resilience. Between one and three distinct spatial patterns in invertebrate composition and abundance were identified in approximately one-third of the species; the remainder were stochastic. We observed substantial differences in metrics between deterministic and stochastic species. Functional richness and diversity decreased over time in the deterministic group, suggesting a loss of resilience in regional invertebrate communities. However, taxon richness and redundancy increased monotonically in the stochastic group, indicating the capacity of regional invertebrate communities to adapt to change. Our results suggest that a refined picture of spatial resilience emerges if patterns of both the deterministic and stochastic species are accounted for. Spatially extensive monitoring may help increase our mechanistic understanding of community-level responses and resilience to regional environmental change, insights that are critical for developing management and conservation agendas in this current period of rapid environmental transformation.

  17. Rupture Propagation for Stochastic Fault Models

    NASA Astrophysics Data System (ADS)

    Favreau, P.; Lavallee, D.; Archuleta, R.

    2003-12-01

    The inversion of strong motion data of large earhquakes give the spatial distribution of pre-stress on the ruptured faults and it can be partially reproduced by stochastic models, but a fundamental question remains: how rupture propagates, constrained by the presence of spatial heterogeneity? For this purpose we investigate how the underlying random variables, that control the pre-stress spatial variability, condition the propagation of the rupture. Two stochastic models of prestress distributions are considered, respectively based on Cauchy and Gaussian random variables. The parameters of the two stochastic models have values corresponding to the slip distribution of the 1979 Imperial Valley earthquake. We use a finite difference code to simulate the spontaneous propagation of shear rupture on a flat fault in a 3D continuum elastic body. The friction law is the slip dependent friction law. The simulations show that the propagation of the rupture front is more complex, incoherent or snake-like for a prestress distribution based on Cauchy random variables. This may be related to the presence of a higher number of asperities in this case. These simulations suggest that directivity is stronger in the Cauchy scenario, compared to the smoother rupture of the Gauss scenario.

  18. Preferential sampling and Bayesian geostatistics: Statistical modeling and examples.

    PubMed

    Cecconi, Lorenzo; Grisotto, Laura; Catelan, Dolores; Lagazio, Corrado; Berrocal, Veronica; Biggeri, Annibale

    2016-08-01

    Preferential sampling refers to any situation in which the spatial process and the sampling locations are not stochastically independent. In this paper, we present two examples of geostatistical analysis in which the usual assumption of stochastic independence between the point process and the measurement process is violated. To account for preferential sampling, we specify a flexible and general Bayesian geostatistical model that includes a shared spatial random component. We apply the proposed model to two different case studies that allow us to highlight three different modeling and inferential aspects of geostatistical modeling under preferential sampling: (1) continuous or finite spatial sampling frame; (2) underlying causal model and relevant covariates; and (3) inferential goals related to mean prediction surface or prediction uncertainty. © The Author(s) 2016.

  19. Burstiness in Viral Bursts: How Stochasticity Affects Spatial Patterns in Virus-Microbe Dynamics

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Hui; Taylor, Bradford P.; Weitz, Joshua S.

    Spatial patterns emerge in living systems at the scale of microbes to metazoans. These patterns can be driven, in part, by the stochasticity inherent to the birth and death of individuals. For microbe-virus systems, infection and lysis of hosts by viruses results in both mortality of hosts and production of viral progeny. Here, we study how variation in the number of viral progeny per lysis event affects the spatial clustering of both viruses and microbes. Each viral ''burst'' is initially localized at a near-cellular scale. The number of progeny in a single lysis event can vary in magnitude between tens and thousands. These perturbations are not accounted for in mean-field models. Here we developed individual-based models to investigate how stochasticity affects spatial patterns in virus-microbe systems. We measured the spatial clustering of individuals using pair correlation functions. We found that increasing the burst size of viruses while maintaining the same production rate led to enhanced clustering. In this poster we also report on preliminary analysis on the evolution of the burstiness of viral bursts given a spatially distributed host community.

  20. Selection of polynomial chaos bases via Bayesian model uncertainty methods with applications to sparse approximation of PDEs with stochastic inputs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karagiannis, Georgios, E-mail: georgios.karagiannis@pnnl.gov; Lin, Guang, E-mail: guang.lin@pnnl.gov

    2014-02-15

    Generalized polynomial chaos (gPC) expansions allow us to represent the solution of a stochastic system using a series of polynomial chaos basis functions. The number of gPC terms increases dramatically as the dimension of the random input variables increases. When the number of the gPC terms is larger than that of the available samples, a scenario that often occurs when the corresponding deterministic solver is computationally expensive, evaluation of the gPC expansion can be inaccurate due to over-fitting. We propose a fully Bayesian approach that allows for global recovery of the stochastic solutions, in both spatial and random domains, bymore » coupling Bayesian model uncertainty and regularization regression methods. It allows the evaluation of the PC coefficients on a grid of spatial points, via (1) the Bayesian model average (BMA) or (2) the median probability model, and their construction as spatial functions on the spatial domain via spline interpolation. The former accounts for the model uncertainty and provides Bayes-optimal predictions; while the latter provides a sparse representation of the stochastic solutions by evaluating the expansion on a subset of dominating gPC bases. Moreover, the proposed methods quantify the importance of the gPC bases in the probabilistic sense through inclusion probabilities. We design a Markov chain Monte Carlo (MCMC) sampler that evaluates all the unknown quantities without the need of ad-hoc techniques. The proposed methods are suitable for, but not restricted to, problems whose stochastic solutions are sparse in the stochastic space with respect to the gPC bases while the deterministic solver involved is expensive. We demonstrate the accuracy and performance of the proposed methods and make comparisons with other approaches on solving elliptic SPDEs with 1-, 14- and 40-random dimensions.« less

  1. Scalable domain decomposition solvers for stochastic PDEs in high performance computing

    DOE PAGES

    Desai, Ajit; Khalil, Mohammad; Pettit, Chris; ...

    2017-09-21

    Stochastic spectral finite element models of practical engineering systems may involve solutions of linear systems or linearized systems for non-linear problems with billions of unknowns. For stochastic modeling, it is therefore essential to design robust, parallel and scalable algorithms that can efficiently utilize high-performance computing to tackle such large-scale systems. Domain decomposition based iterative solvers can handle such systems. And though these algorithms exhibit excellent scalabilities, significant algorithmic and implementational challenges exist to extend them to solve extreme-scale stochastic systems using emerging computing platforms. Intrusive polynomial chaos expansion based domain decomposition algorithms are extended here to concurrently handle high resolutionmore » in both spatial and stochastic domains using an in-house implementation. Sparse iterative solvers with efficient preconditioners are employed to solve the resulting global and subdomain level local systems through multi-level iterative solvers. We also use parallel sparse matrix–vector operations to reduce the floating-point operations and memory requirements. Numerical and parallel scalabilities of these algorithms are presented for the diffusion equation having spatially varying diffusion coefficient modeled by a non-Gaussian stochastic process. Scalability of the solvers with respect to the number of random variables is also investigated.« less

  2. Scalable domain decomposition solvers for stochastic PDEs in high performance computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desai, Ajit; Khalil, Mohammad; Pettit, Chris

    Stochastic spectral finite element models of practical engineering systems may involve solutions of linear systems or linearized systems for non-linear problems with billions of unknowns. For stochastic modeling, it is therefore essential to design robust, parallel and scalable algorithms that can efficiently utilize high-performance computing to tackle such large-scale systems. Domain decomposition based iterative solvers can handle such systems. And though these algorithms exhibit excellent scalabilities, significant algorithmic and implementational challenges exist to extend them to solve extreme-scale stochastic systems using emerging computing platforms. Intrusive polynomial chaos expansion based domain decomposition algorithms are extended here to concurrently handle high resolutionmore » in both spatial and stochastic domains using an in-house implementation. Sparse iterative solvers with efficient preconditioners are employed to solve the resulting global and subdomain level local systems through multi-level iterative solvers. We also use parallel sparse matrix–vector operations to reduce the floating-point operations and memory requirements. Numerical and parallel scalabilities of these algorithms are presented for the diffusion equation having spatially varying diffusion coefficient modeled by a non-Gaussian stochastic process. Scalability of the solvers with respect to the number of random variables is also investigated.« less

  3. Improved estimation of hydraulic conductivity by combining stochastically simulated hydrofacies with geophysical data.

    PubMed

    Zhu, Lin; Gong, Huili; Chen, Yun; Li, Xiaojuan; Chang, Xiang; Cui, Yijiao

    2016-03-01

    Hydraulic conductivity is a major parameter affecting the output accuracy of groundwater flow and transport models. The most commonly used semi-empirical formula for estimating conductivity is Kozeny-Carman equation. However, this method alone does not work well with heterogeneous strata. Two important parameters, grain size and porosity, often show spatial variations at different scales. This study proposes a method for estimating conductivity distributions by combining a stochastic hydrofacies model with geophysical methods. The Markov chain model with transition probability matrix was adopted to re-construct structures of hydrofacies for deriving spatial deposit information. The geophysical and hydro-chemical data were used to estimate the porosity distribution through the Archie's law. Results show that the stochastic simulated hydrofacies model reflects the sedimentary features with an average model accuracy of 78% in comparison with borehole log data in the Chaobai alluvial fan. The estimated conductivity is reasonable and of the same order of magnitude of the outcomes of the pumping tests. The conductivity distribution is consistent with the sedimentary distributions. This study provides more reliable spatial distributions of the hydraulic parameters for further numerical modeling.

  4. Using stochastic models to incorporate spatial and temporal variability [Exercise 14

    Treesearch

    Carolyn Hull Sieg; Rudy M. King; Fred Van Dyke

    2003-01-01

    To this point, our analysis of population processes and viability in the western prairie fringed orchid has used only deterministic models. In this exercise, we conduct a similar analysis, using a stochastic model instead. This distinction is of great importance to population biology in general and to conservation biology in particular. In deterministic models,...

  5. Modeling animal movements using stochastic differential equations

    Treesearch

    Haiganoush K. Preisler; Alan A. Ager; Bruce K. Johnson; John G. Kie

    2004-01-01

    We describe the use of bivariate stochastic differential equations (SDE) for modeling movements of 216 radiocollared female Rocky Mountain elk at the Starkey Experimental Forest and Range in northeastern Oregon. Spatially and temporally explicit vector fields were estimated using approximating difference equations and nonparametric regression techniques. Estimated...

  6. An advanced stochastic weather generator for simulating 2-D high-resolution climate variables

    NASA Astrophysics Data System (ADS)

    Peleg, Nadav; Fatichi, Simone; Paschalis, Athanasios; Molnar, Peter; Burlando, Paolo

    2017-07-01

    A new stochastic weather generator, Advanced WEather GENerator for a two-dimensional grid (AWE-GEN-2d) is presented. The model combines physical and stochastic approaches to simulate key meteorological variables at high spatial and temporal resolution: 2 km × 2 km and 5 min for precipitation and cloud cover and 100 m × 100 m and 1 h for near-surface air temperature, solar radiation, vapor pressure, atmospheric pressure, and near-surface wind. The model requires spatially distributed data for the calibration process, which can nowadays be obtained by remote sensing devices (weather radar and satellites), reanalysis data sets and ground stations. AWE-GEN-2d is parsimonious in terms of computational demand and therefore is particularly suitable for studies where exploring internal climatic variability at multiple spatial and temporal scales is fundamental. Applications of the model include models of environmental systems, such as hydrological and geomorphological models, where high-resolution spatial and temporal meteorological forcing is crucial. The weather generator was calibrated and validated for the Engelberg region, an area with complex topography in the Swiss Alps. Model test shows that the climate variables are generated by AWE-GEN-2d with a level of accuracy that is sufficient for many practical applications.

  7. Latin hypercube sampling and geostatistical modeling of spatial uncertainty in a spatially explicit forest landscape model simulation

    Treesearch

    Chonggang Xu; Hong S. He; Yuanman Hu; Yu Chang; Xiuzhen Li; Rencang Bu

    2005-01-01

    Geostatistical stochastic simulation is always combined with Monte Carlo method to quantify the uncertainty in spatial model simulations. However, due to the relatively long running time of spatially explicit forest models as a result of their complexity, it is always infeasible to generate hundreds or thousands of Monte Carlo simulations. Thus, it is of great...

  8. 3D replicon distributions arise from stochastic initiation and domino-like DNA replication progression.

    PubMed

    Löb, D; Lengert, N; Chagin, V O; Reinhart, M; Casas-Delucchi, C S; Cardoso, M C; Drossel, B

    2016-04-07

    DNA replication dynamics in cells from higher eukaryotes follows very complex but highly efficient mechanisms. However, the principles behind initiation of potential replication origins and emergence of typical patterns of nuclear replication sites remain unclear. Here, we propose a comprehensive model of DNA replication in human cells that is based on stochastic, proximity-induced replication initiation. Critical model features are: spontaneous stochastic firing of individual origins in euchromatin and facultative heterochromatin, inhibition of firing at distances below the size of chromatin loops and a domino-like effect by which replication forks induce firing of nearby origins. The model reproduces the empirical temporal and chromatin-related properties of DNA replication in human cells. We advance the one-dimensional DNA replication model to a spatial model by taking into account chromatin folding in the nucleus, and we are able to reproduce the spatial and temporal characteristics of the replication foci distribution throughout S-phase.

  9. Ground motion simulation for the 23 August 2011, Mineral, Virginia earthquake using physics-based and stochastic broadband methods

    USGS Publications Warehouse

    Sun, Xiaodan; Hartzell, Stephen; Rezaeian, Sanaz

    2015-01-01

    Three broadband simulation methods are used to generate synthetic ground motions for the 2011 Mineral, Virginia, earthquake and compare with observed motions. The methods include a physics‐based model by Hartzell et al. (1999, 2005), a stochastic source‐based model by Boore (2009), and a stochastic site‐based model by Rezaeian and Der Kiureghian (2010, 2012). The ground‐motion dataset consists of 40 stations within 600 km of the epicenter. Several metrics are used to validate the simulations: (1) overall bias of response spectra and Fourier spectra (from 0.1 to 10 Hz); (2) spatial distribution of residuals for GMRotI50 peak ground acceleration (PGA), peak ground velocity, and pseudospectral acceleration (PSA) at various periods; (3) comparison with ground‐motion prediction equations (GMPEs) for the eastern United States. Our results show that (1) the physics‐based model provides satisfactory overall bias from 0.1 to 10 Hz and produces more realistic synthetic waveforms; (2) the stochastic site‐based model also yields more realistic synthetic waveforms and performs superiorly for frequencies greater than about 1 Hz; (3) the stochastic source‐based model has larger bias at lower frequencies (<0.5  Hz) and cannot reproduce the varying frequency content in the time domain. The spatial distribution of GMRotI50 residuals shows that there is no obvious pattern with distance in the simulation bias, but there is some azimuthal variability. The comparison between synthetics and GMPEs shows similar fall‐off with distance for all three models, comparable PGA and PSA amplitudes for the physics‐based and stochastic site‐based models, and systematic lower amplitudes for the stochastic source‐based model at lower frequencies (<0.5  Hz).

  10. Doubly stochastic Poisson process models for precipitation at fine time-scales

    NASA Astrophysics Data System (ADS)

    Ramesh, Nadarajah I.; Onof, Christian; Xie, Dichao

    2012-09-01

    This paper considers a class of stochastic point process models, based on doubly stochastic Poisson processes, in the modelling of rainfall. We examine the application of this class of models, a neglected alternative to the widely-known Poisson cluster models, in the analysis of fine time-scale rainfall intensity. These models are mainly used to analyse tipping-bucket raingauge data from a single site but an extension to multiple sites is illustrated which reveals the potential of this class of models to study the temporal and spatial variability of precipitation at fine time-scales.

  11. Two stochastic models useful in petroleum exploration

    NASA Technical Reports Server (NTRS)

    Kaufman, G. M.; Bradley, P. G.

    1972-01-01

    A model of the petroleum exploration process that tests empirically the hypothesis that at an early stage in the exploration of a basin, the process behaves like sampling without replacement is proposed along with a model of the spatial distribution of petroleum reserviors that conforms to observed facts. In developing the model of discovery, the following topics are discussed: probabilitistic proportionality, likelihood function, and maximum likelihood estimation. In addition, the spatial model is described, which is defined as a stochastic process generating values of a sequence or random variables in a way that simulates the frequency distribution of areal extent, the geographic location, and shape of oil deposits

  12. Hybrid stochastic and deterministic simulations of calcium blips.

    PubMed

    Rüdiger, S; Shuai, J W; Huisinga, W; Nagaiah, C; Warnecke, G; Parker, I; Falcke, M

    2007-09-15

    Intracellular calcium release is a prime example for the role of stochastic effects in cellular systems. Recent models consist of deterministic reaction-diffusion equations coupled to stochastic transitions of calcium channels. The resulting dynamics is of multiple time and spatial scales, which complicates far-reaching computer simulations. In this article, we introduce a novel hybrid scheme that is especially tailored to accurately trace events with essential stochastic variations, while deterministic concentration variables are efficiently and accurately traced at the same time. We use finite elements to efficiently resolve the extreme spatial gradients of concentration variables close to a channel. We describe the algorithmic approach and we demonstrate its efficiency compared to conventional methods. Our single-channel model matches experimental data and results in intriguing dynamics if calcium is used as charge carrier. Random openings of the channel accumulate in bursts of calcium blips that may be central for the understanding of cellular calcium dynamics.

  13. Cox process representation and inference for stochastic reaction-diffusion processes

    NASA Astrophysics Data System (ADS)

    Schnoerr, David; Grima, Ramon; Sanguinetti, Guido

    2016-05-01

    Complex behaviour in many systems arises from the stochastic interactions of spatially distributed particles or agents. Stochastic reaction-diffusion processes are widely used to model such behaviour in disciplines ranging from biology to the social sciences, yet they are notoriously difficult to simulate and calibrate to observational data. Here we use ideas from statistical physics and machine learning to provide a solution to the inverse problem of learning a stochastic reaction-diffusion process from data. Our solution relies on a non-trivial connection between stochastic reaction-diffusion processes and spatio-temporal Cox processes, a well-studied class of models from computational statistics. This connection leads to an efficient and flexible algorithm for parameter inference and model selection. Our approach shows excellent accuracy on numeric and real data examples from systems biology and epidemiology. Our work provides both insights into spatio-temporal stochastic systems, and a practical solution to a long-standing problem in computational modelling.

  14. Improved estimation of hydraulic conductivity by combining stochastically simulated hydrofacies with geophysical data

    PubMed Central

    Zhu, Lin; Gong, Huili; Chen, Yun; Li, Xiaojuan; Chang, Xiang; Cui, Yijiao

    2016-01-01

    Hydraulic conductivity is a major parameter affecting the output accuracy of groundwater flow and transport models. The most commonly used semi-empirical formula for estimating conductivity is Kozeny-Carman equation. However, this method alone does not work well with heterogeneous strata. Two important parameters, grain size and porosity, often show spatial variations at different scales. This study proposes a method for estimating conductivity distributions by combining a stochastic hydrofacies model with geophysical methods. The Markov chain model with transition probability matrix was adopted to re-construct structures of hydrofacies for deriving spatial deposit information. The geophysical and hydro-chemical data were used to estimate the porosity distribution through the Archie’s law. Results show that the stochastic simulated hydrofacies model reflects the sedimentary features with an average model accuracy of 78% in comparison with borehole log data in the Chaobai alluvial fan. The estimated conductivity is reasonable and of the same order of magnitude of the outcomes of the pumping tests. The conductivity distribution is consistent with the sedimentary distributions. This study provides more reliable spatial distributions of the hydraulic parameters for further numerical modeling. PMID:26927886

  15. Modeling precipitation-runoff relationships to determine water yield from a ponderosa pine forest watershed

    Treesearch

    Assefa S. Desta

    2006-01-01

    A stochastic precipitation-runoff modeling is used to estimate a cold and warm-seasons water yield from a ponderosa pine forested watershed in the north-central Arizona. The model consists of two parts namely, simulation of the temporal and spatial distribution of precipitation using a stochastic, event-based approach and estimation of water yield from the watershed...

  16. Mean field analysis of a spatial stochastic model of a gene regulatory network.

    PubMed

    Sturrock, M; Murray, P J; Matzavinos, A; Chaplain, M A J

    2015-10-01

    A gene regulatory network may be defined as a collection of DNA segments which interact with each other indirectly through their RNA and protein products. Such a network is said to contain a negative feedback loop if its products inhibit gene transcription, and a positive feedback loop if a gene product promotes its own production. Negative feedback loops can create oscillations in mRNA and protein levels while positive feedback loops are primarily responsible for signal amplification. It is often the case in real biological systems that both negative and positive feedback loops operate in parameter regimes that result in low copy numbers of gene products. In this paper we investigate the spatio-temporal dynamics of a single feedback loop in a eukaryotic cell. We first develop a simplified spatial stochastic model of a canonical feedback system (either positive or negative). Using a Gillespie's algorithm, we compute sample trajectories and analyse their corresponding statistics. We then derive a system of equations that describe the spatio-temporal evolution of the stochastic means. Subsequently, we examine the spatially homogeneous case and compare the results of numerical simulations with the spatially explicit case. Finally, using a combination of steady-state analysis and data clustering techniques, we explore model behaviour across a subregion of the parameter space that is difficult to access experimentally and compare the parameter landscape of our spatio-temporal and spatially-homogeneous models.

  17. Revisiting Temporal Markov Chains for Continuum modeling of Transport in Porous Media

    NASA Astrophysics Data System (ADS)

    Delgoshaie, A. H.; Jenny, P.; Tchelepi, H.

    2017-12-01

    The transport of fluids in porous media is dominated by flow­-field heterogeneity resulting from the underlying permeability field. Due to the high uncertainty in the permeability field, many realizations of the reference geological model are used to describe the statistics of the transport phenomena in a Monte Carlo (MC) framework. There has been strong interest in working with stochastic formulations of the transport that are different from the standard MC approach. Several stochastic models based on a velocity process for tracer particle trajectories have been proposed. Previous studies have shown that for high variances of the log-conductivity, the stochastic models need to account for correlations between consecutive velocity transitions to predict dispersion accurately. The correlated velocity models proposed in the literature can be divided into two general classes of temporal and spatial Markov models. Temporal Markov models have been applied successfully to tracer transport in both the longitudinal and transverse directions. These temporal models are Stochastic Differential Equations (SDEs) with very specific drift and diffusion terms tailored for a specific permeability correlation structure. The drift and diffusion functions devised for a certain setup would not necessarily be suitable for a different scenario, (e.g., a different permeability correlation structure). The spatial Markov models are simple discrete Markov chains that do not require case specific assumptions. However, transverse spreading of contaminant plumes has not been successfully modeled with the available correlated spatial models. Here, we propose a temporal discrete Markov chain to model both the longitudinal and transverse dispersion in a two-dimensional domain. We demonstrate that these temporal Markov models are valid for different correlation structures without modification. Similar to the temporal SDEs, the proposed model respects the limited asymptotic transverse spreading of the plume in two-dimensional problems.

  18. 3D replicon distributions arise from stochastic initiation and domino-like DNA replication progression

    PubMed Central

    Löb, D.; Lengert, N.; Chagin, V. O.; Reinhart, M.; Casas-Delucchi, C. S.; Cardoso, M. C.; Drossel, B.

    2016-01-01

    DNA replication dynamics in cells from higher eukaryotes follows very complex but highly efficient mechanisms. However, the principles behind initiation of potential replication origins and emergence of typical patterns of nuclear replication sites remain unclear. Here, we propose a comprehensive model of DNA replication in human cells that is based on stochastic, proximity-induced replication initiation. Critical model features are: spontaneous stochastic firing of individual origins in euchromatin and facultative heterochromatin, inhibition of firing at distances below the size of chromatin loops and a domino-like effect by which replication forks induce firing of nearby origins. The model reproduces the empirical temporal and chromatin-related properties of DNA replication in human cells. We advance the one-dimensional DNA replication model to a spatial model by taking into account chromatin folding in the nucleus, and we are able to reproduce the spatial and temporal characteristics of the replication foci distribution throughout S-phase. PMID:27052359

  19. Stochastic simulation of the spray formation assisted by a high pressure

    NASA Astrophysics Data System (ADS)

    Gorokhovski, M.; Chtab-Desportes, A.; Voloshina, I.; Askarova, A.

    2010-03-01

    The stochastic model of spray formation in the vicinity of the injector and in the far-field has been described and assessed by comparison with measurements in Diesel-like conditions. In the proposed mesh-free approach, the 3D configuration of continuous liquid core is simulated stochastically by ensemble of spatial trajectories of the specifically introduced stochastic particles. The parameters of the stochastic process are presumed from the physics of primary atomization. The spray formation model consists in computation of spatial distribution of the probability of finding the non-fragmented liquid jet in the near-to-injector region. This model is combined with KIVA II computation of atomizing Diesel spray in two-ways. First, simultaneously with the gas phase RANS computation, the ensemble of stochastic particles is tracking and the probability field of their positions is calculated, which is used for sampling of initial locations of primary blobs. Second, the velocity increment of the gas due to the liquid injection is computed from the mean volume fraction of the simulated liquid core. Two novelties are proposed in the secondary atomization modeling. The first one is due to unsteadiness of the injection velocity. When the injection velocity increment in time is decreasing, the supplementary breakup may be induced. Therefore the critical Weber number is based on such increment. Second, a new stochastic model of the secondary atomization is proposed, in which the intermittent turbulent stretching is taken into account as the main mechanism. The measurements reported by Arcoumanis et al. (time-history of the mean axial centre-line velocity of droplet, and of the centre-line Sauter Mean Diameter), are compared with computations.

  20. Spatial stochastic modelling of the Hes1 gene regulatory network: intrinsic noise can explain heterogeneity in embryonic stem cell differentiation.

    PubMed

    Sturrock, Marc; Hellander, Andreas; Matzavinos, Anastasios; Chaplain, Mark A J

    2013-03-06

    Individual mouse embryonic stem cells have been found to exhibit highly variable differentiation responses under the same environmental conditions. The noisy cyclic expression of Hes1 and its downstream genes are known to be responsible for this, but the mechanism underlying this variability in expression is not well understood. In this paper, we show that the observed experimental data and diverse differentiation responses can be explained by a spatial stochastic model of the Hes1 gene regulatory network. We also propose experiments to control the precise differentiation response using drug treatment.

  1. A framework for discrete stochastic simulation on 3D moving boundary domains

    DOE PAGES

    Drawert, Brian; Hellander, Stefan; Trogdon, Michael; ...

    2016-11-14

    We have developed a method for modeling spatial stochastic biochemical reactions in complex, three-dimensional, and time-dependent domains using the reaction-diffusion master equation formalism. In particular, we look to address the fully coupled problems that arise in systems biology where the shape and mechanical properties of a cell are determined by the state of the biochemistry and vice versa. To validate our method and characterize the error involved, we compare our results for a carefully constructed test problem to those of a microscale implementation. Finally, we demonstrate the effectiveness of our method by simulating a model of polarization and shmoo formationmore » during the mating of yeast. The method is generally applicable to problems in systems biology where biochemistry and mechanics are coupled, and spatial stochastic effects are critical.« less

  2. Spatial modeling of cell signaling networks.

    PubMed

    Cowan, Ann E; Moraru, Ion I; Schaff, James C; Slepchenko, Boris M; Loew, Leslie M

    2012-01-01

    The shape of a cell, the sizes of subcellular compartments, and the spatial distribution of molecules within the cytoplasm can all control how molecules interact to produce a cellular behavior. This chapter describes how these spatial features can be included in mechanistic mathematical models of cell signaling. The Virtual Cell computational modeling and simulation software is used to illustrate the considerations required to build a spatial model. An explanation of how to appropriately choose between physical formulations that implicitly or explicitly account for cell geometry and between deterministic versus stochastic formulations for molecular dynamics is provided, along with a discussion of their respective strengths and weaknesses. As a first step toward constructing a spatial model, the geometry needs to be specified and associated with the molecules, reactions, and membrane flux processes of the network. Initial conditions, diffusion coefficients, velocities, and boundary conditions complete the specifications required to define the mathematics of the model. The numerical methods used to solve reaction-diffusion problems both deterministically and stochastically are then described and some guidance is provided in how to set up and run simulations. A study of cAMP signaling in neurons ends the chapter, providing an example of the insights that can be gained in interpreting experimental results through the application of spatial modeling. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Stochasticity in numerical solutions of the nonlinear Schroedinger equation

    NASA Technical Reports Server (NTRS)

    Shen, Mei-Mei; Nicholson, D. R.

    1987-01-01

    The cubically nonlinear Schroedinger equation is an important model of nonlinear phenomena in fluids and plasmas. Numerical solutions in a spatially periodic system commonly involve truncation to a finite number of Fourier modes. These solutions are found to be stochastic in the sense that the largest Liapunov exponent is positive. As the number of modes is increased, the size of this exponent appears to converge to zero, in agreement with the recent demonstration of the integrability of the spatially periodic case.

  4. Ecological invasion, roughened fronts, and a competitor's extreme advance: integrating stochastic spatial-growth models.

    PubMed

    O'Malley, Lauren; Korniss, G; Caraco, Thomas

    2009-07-01

    Both community ecology and conservation biology seek further understanding of factors governing the advance of an invasive species. We model biological invasion as an individual-based, stochastic process on a two-dimensional landscape. An ecologically superior invader and a resident species compete for space preemptively. Our general model includes the basic contact process and a variant of the Eden model as special cases. We employ the concept of a "roughened" front to quantify effects of discreteness and stochasticity on invasion; we emphasize the probability distribution of the front-runner's relative position. That is, we analyze the location of the most advanced invader as the extreme deviation about the front's mean position. We find that a class of models with different assumptions about neighborhood interactions exhibits universal characteristics. That is, key features of the invasion dynamics span a class of models, independently of locally detailed demographic rules. Our results integrate theories of invasive spatial growth and generate novel hypotheses linking habitat or landscape size (length of the invading front) to invasion velocity, and to the relative position of the most advanced invader.

  5. Spatial stochastic modelling of the Hes1 gene regulatory network: intrinsic noise can explain heterogeneity in embryonic stem cell differentiation

    PubMed Central

    Sturrock, Marc; Hellander, Andreas; Matzavinos, Anastasios; Chaplain, Mark A. J.

    2013-01-01

    Individual mouse embryonic stem cells have been found to exhibit highly variable differentiation responses under the same environmental conditions. The noisy cyclic expression of Hes1 and its downstream genes are known to be responsible for this, but the mechanism underlying this variability in expression is not well understood. In this paper, we show that the observed experimental data and diverse differentiation responses can be explained by a spatial stochastic model of the Hes1 gene regulatory network. We also propose experiments to control the precise differentiation response using drug treatment. PMID:23325756

  6. An adaptive tau-leaping method for stochastic simulations of reaction-diffusion systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padgett, Jill M. A.; Ilie, Silvana, E-mail: silvana@ryerson.ca

    2016-03-15

    Stochastic modelling is critical for studying many biochemical processes in a cell, in particular when some reacting species have low population numbers. For many such cellular processes the spatial distribution of the molecular species plays a key role. The evolution of spatially heterogeneous biochemical systems with some species in low amounts is accurately described by the mesoscopic model of the Reaction-Diffusion Master Equation. The Inhomogeneous Stochastic Simulation Algorithm provides an exact strategy to numerically solve this model, but it is computationally very expensive on realistic applications. We propose a novel adaptive time-stepping scheme for the tau-leaping method for approximating themore » solution of the Reaction-Diffusion Master Equation. This technique combines effective strategies for variable time-stepping with path preservation to reduce the computational cost, while maintaining the desired accuracy. The numerical tests on various examples arising in applications show the improved efficiency achieved by the new adaptive method.« less

  7. A stochastic spatiotemporal model of a response-regulator network in the Caulobacter crescentus cell cycle

    NASA Astrophysics Data System (ADS)

    Li, Fei; Subramanian, Kartik; Chen, Minghan; Tyson, John J.; Cao, Yang

    2016-06-01

    The asymmetric cell division cycle in Caulobacter crescentus is controlled by an elaborate molecular mechanism governing the production, activation and spatial localization of a host of interacting proteins. In previous work, we proposed a deterministic mathematical model for the spatiotemporal dynamics of six major regulatory proteins. In this paper, we study a stochastic version of the model, which takes into account molecular fluctuations of these regulatory proteins in space and time during early stages of the cell cycle of wild-type Caulobacter cells. We test the stochastic model with regard to experimental observations of increased variability of cycle time in cells depleted of the divJ gene product. The deterministic model predicts that overexpression of the divK gene blocks cell cycle progression in the stalked stage; however, stochastic simulations suggest that a small fraction of the mutants cells do complete the cell cycle normally.

  8. Species survival emerge from rare events of individual migration

    NASA Astrophysics Data System (ADS)

    Zelnik, Yuval R.; Solomon, Sorin; Yaari, Gur

    2015-01-01

    Ecosystems greatly vary in their species composition and interactions, yet they all show remarkable resilience to external influences. Recent experiments have highlighted the significant effects of spatial structure and connectivity on the extinction and survival of species. It has also been emphasized lately that in order to study extinction dynamics reliably, it is essential to incorporate stochasticity, and in particular the discrete nature of populations, into the model. Accordingly, we applied a bottom-up modeling approach that includes both spatial features and stochastic interactions to study survival mechanisms of species. Using the simplest spatial extension of the Lotka-Volterra predator-prey model with competition, subject to demographic and environmental noise, we were able to systematically study emergent properties of this rich system. By scanning the relevant parameter space, we show that both survival and extinction processes often result from a combination of habitat fragmentation and individual rare events of recolonization.

  9. Species survival emerge from rare events of individual migration.

    PubMed

    Zelnik, Yuval R; Solomon, Sorin; Yaari, Gur

    2015-01-19

    Ecosystems greatly vary in their species composition and interactions, yet they all show remarkable resilience to external influences. Recent experiments have highlighted the significant effects of spatial structure and connectivity on the extinction and survival of species. It has also been emphasized lately that in order to study extinction dynamics reliably, it is essential to incorporate stochasticity, and in particular the discrete nature of populations, into the model. Accordingly, we applied a bottom-up modeling approach that includes both spatial features and stochastic interactions to study survival mechanisms of species. Using the simplest spatial extension of the Lotka-Volterra predator-prey model with competition, subject to demographic and environmental noise, we were able to systematically study emergent properties of this rich system. By scanning the relevant parameter space, we show that both survival and extinction processes often result from a combination of habitat fragmentation and individual rare events of recolonization.

  10. Review of applications for SIMDEUM, a stochastic drinking water demand model with a small temporal and spatial scale

    NASA Astrophysics Data System (ADS)

    Blokker, Mirjam; Agudelo-Vera, Claudia; Moerman, Andreas; van Thienen, Peter; Pieterse-Quirijns, Ilse

    2017-04-01

    Many researchers have developed drinking water demand models with various temporal and spatial scales. A limited number of models is available at a temporal scale of 1 s and a spatial scale of a single home. The reasons for building these models were described in the papers in which the models were introduced, along with a discussion on their potential applications. However, the predicted applications are seldom re-examined. SIMDEUM, a stochastic end-use model for drinking water demand, has often been applied in research and practice since it was developed. We are therefore re-examining its applications in this paper. SIMDEUM's original purpose was to calculate maximum demands in order to design self-cleaning networks. Yet, the model has been useful in many more applications. This paper gives an overview of the many fields of application for SIMDEUM and shows where this type of demand model is indispensable and where it has limited practical value. This overview also leads to an understanding of the requirements for demand models in various applications.

  11. Optimal Groundwater Extraction under Uncertainty and a Spatial Stock Externality

    EPA Science Inventory

    We introduce a model that incorporates two important elements to estimating welfare gains from groundwater management: stochasticity and a spatial stock externality. We estimate welfare gains resulting from optimal management under uncertainty as well as a gradual stock externali...

  12. Evaluating critical uncertainty thresholds in a spatial model of forest pest invasion risk

    Treesearch

    Frank H. Koch; Denys Yemshanov; Daniel W. McKenney; William D. Smith

    2009-01-01

    Pest risk maps can provide useful decision support in invasive species management, but most do not adequately consider the uncertainty associated with predicted risk values. This study explores how increased uncertainty in a risk model’s numeric assumptions might affect the resultant risk map. We used a spatial stochastic model, integrating components for...

  13. A DG approach to the numerical solution of the Stein-Stein stochastic volatility option pricing model

    NASA Astrophysics Data System (ADS)

    Hozman, J.; Tichý, T.

    2017-12-01

    Stochastic volatility models enable to capture the real world features of the options better than the classical Black-Scholes treatment. Here we focus on pricing of European-style options under the Stein-Stein stochastic volatility model when the option value depends on the time, on the price of the underlying asset and on the volatility as a function of a mean reverting Orstein-Uhlenbeck process. A standard mathematical approach to this model leads to the non-stationary second-order degenerate partial differential equation of two spatial variables completed by the system of boundary and terminal conditions. In order to improve the numerical valuation process for a such pricing equation, we propose a numerical technique based on the discontinuous Galerkin method and the Crank-Nicolson scheme. Finally, reference numerical experiments on real market data illustrate comprehensive empirical findings on options with stochastic volatility.

  14. Modelling ecosystem service flows under uncertainty with stochiastic SPAN

    USGS Publications Warehouse

    Johnson, Gary W.; Snapp, Robert R.; Villa, Ferdinando; Bagstad, Kenneth J.

    2012-01-01

    Ecosystem service models are increasingly in demand for decision making. However, the data required to run these models are often patchy, missing, outdated, or untrustworthy. Further, communication of data and model uncertainty to decision makers is often either absent or unintuitive. In this work, we introduce a systematic approach to addressing both the data gap and the difficulty in communicating uncertainty through a stochastic adaptation of the Service Path Attribution Networks (SPAN) framework. The SPAN formalism assesses ecosystem services through a set of up to 16 maps, which characterize the services in a study area in terms of flow pathways between ecosystems and human beneficiaries. Although the SPAN algorithms were originally defined deterministically, we present them here in a stochastic framework which combines probabilistic input data with a stochastic transport model in order to generate probabilistic spatial outputs. This enables a novel feature among ecosystem service models: the ability to spatially visualize uncertainty in the model results. The stochastic SPAN model can analyze areas where data limitations are prohibitive for deterministic models. Greater uncertainty in the model inputs (including missing data) should lead to greater uncertainty expressed in the model’s output distributions. By using Bayesian belief networks to fill data gaps and expert-provided trust assignments to augment untrustworthy or outdated information, we can account for uncertainty in input data, producing a model that is still able to run and provide information where strictly deterministic models could not. Taken together, these attributes enable more robust and intuitive modelling of ecosystem services under uncertainty.

  15. Spatial patterns and biodiversity in off-lattice simulations of a cyclic three-species Lotka-Volterra model

    NASA Astrophysics Data System (ADS)

    Avelino, P. P.; Bazeia, D.; Losano, L.; Menezes, J.; de Oliveira, B. F.

    2018-02-01

    Stochastic simulations of cyclic three-species spatial predator-prey models are usually performed in square lattices with nearest-neighbour interactions starting from random initial conditions. In this letter we describe the results of off-lattice Lotka-Volterra stochastic simulations, showing that the emergence of spiral patterns does occur for sufficiently high values of the (conserved) total density of individuals. We also investigate the dynamics in our simulations, finding an empirical relation characterizing the dependence of the characteristic peak frequency and amplitude on the total density. Finally, we study the impact of the total density on the extinction probability, showing how a low population density may jeopardize biodiversity.

  16. Stochastic Evolution of Augmented Born-Infeld Equations

    NASA Astrophysics Data System (ADS)

    Holm, Darryl D.

    2018-06-01

    This paper compares the results of applying a recently developed method of stochastic uncertainty quantification designed for fluid dynamics to the Born-Infeld model of nonlinear electromagnetism. The similarities in the results are striking. Namely, the introduction of Stratonovich cylindrical noise into each of their Hamiltonian formulations introduces stochastic Lie transport into their dynamics in the same form for both theories. Moreover, the resulting stochastic partial differential equations retain their unperturbed form, except for an additional term representing induced Lie transport by the set of divergence-free vector fields associated with the spatial correlations of the cylindrical noise. The explanation for this remarkable similarity lies in the method of construction of the Hamiltonian for the Stratonovich stochastic contribution to the motion in both cases, which is done via pairing spatial correlation eigenvectors for cylindrical noise with the momentum map for the deterministic motion. This momentum map is responsible for the well-known analogy between hydrodynamics and electromagnetism. The momentum map for the Maxwell and Born-Infeld theories of electromagnetism treated here is the 1-form density known as the Poynting vector. Two appendices treat the Hamiltonian structures underlying these results.

  17. Parallel STEPS: Large Scale Stochastic Spatial Reaction-Diffusion Simulation with High Performance Computers

    PubMed Central

    Chen, Weiliang; De Schutter, Erik

    2017-01-01

    Stochastic, spatial reaction-diffusion simulations have been widely used in systems biology and computational neuroscience. However, the increasing scale and complexity of models and morphologies have exceeded the capacity of any serial implementation. This led to the development of parallel solutions that benefit from the boost in performance of modern supercomputers. In this paper, we describe an MPI-based, parallel operator-splitting implementation for stochastic spatial reaction-diffusion simulations with irregular tetrahedral meshes. The performance of our implementation is first examined and analyzed with simulations of a simple model. We then demonstrate its application to real-world research by simulating the reaction-diffusion components of a published calcium burst model in both Purkinje neuron sub-branch and full dendrite morphologies. Simulation results indicate that our implementation is capable of achieving super-linear speedup for balanced loading simulations with reasonable molecule density and mesh quality. In the best scenario, a parallel simulation with 2,000 processes runs more than 3,600 times faster than its serial SSA counterpart, and achieves more than 20-fold speedup relative to parallel simulation with 100 processes. In a more realistic scenario with dynamic calcium influx and data recording, the parallel simulation with 1,000 processes and no load balancing is still 500 times faster than the conventional serial SSA simulation. PMID:28239346

  18. Parallel STEPS: Large Scale Stochastic Spatial Reaction-Diffusion Simulation with High Performance Computers.

    PubMed

    Chen, Weiliang; De Schutter, Erik

    2017-01-01

    Stochastic, spatial reaction-diffusion simulations have been widely used in systems biology and computational neuroscience. However, the increasing scale and complexity of models and morphologies have exceeded the capacity of any serial implementation. This led to the development of parallel solutions that benefit from the boost in performance of modern supercomputers. In this paper, we describe an MPI-based, parallel operator-splitting implementation for stochastic spatial reaction-diffusion simulations with irregular tetrahedral meshes. The performance of our implementation is first examined and analyzed with simulations of a simple model. We then demonstrate its application to real-world research by simulating the reaction-diffusion components of a published calcium burst model in both Purkinje neuron sub-branch and full dendrite morphologies. Simulation results indicate that our implementation is capable of achieving super-linear speedup for balanced loading simulations with reasonable molecule density and mesh quality. In the best scenario, a parallel simulation with 2,000 processes runs more than 3,600 times faster than its serial SSA counterpart, and achieves more than 20-fold speedup relative to parallel simulation with 100 processes. In a more realistic scenario with dynamic calcium influx and data recording, the parallel simulation with 1,000 processes and no load balancing is still 500 times faster than the conventional serial SSA simulation.

  19. Regional-specific Stochastic Simulation of Spatially-distributed Ground-motion Time Histories using Wavelet Packet Analysis

    NASA Astrophysics Data System (ADS)

    Huang, D.; Wang, G.

    2014-12-01

    Stochastic simulation of spatially distributed ground-motion time histories is important for performance-based earthquake design of geographically distributed systems. In this study, we develop a novel technique to stochastically simulate regionalized ground-motion time histories using wavelet packet analysis. First, a transient acceleration time history is characterized by wavelet-packet parameters proposed by Yamamoto and Baker (2013). The wavelet-packet parameters fully characterize ground-motion time histories in terms of energy content, time- frequency-domain characteristics and time-frequency nonstationarity. This study further investigates the spatial cross-correlations of wavelet-packet parameters based on geostatistical analysis of 1500 regionalized ground motion data from eight well-recorded earthquakes in California, Mexico, Japan and Taiwan. The linear model of coregionalization (LMC) is used to develop a permissible spatial cross-correlation model for each parameter group. The geostatistical analysis of ground-motion data from different regions reveals significant dependence of the LMC structure on regional site conditions, which can be characterized by the correlation range of Vs30 in each region. In general, the spatial correlation and cross-correlation of wavelet-packet parameters are stronger if the site condition is more homogeneous. Using the regional-specific spatial cross-correlation model and cokriging technique, wavelet packet parameters at unmeasured locations can be best estimated, and regionalized ground-motion time histories can be synthesized. Case studies and blind tests demonstrated that the simulated ground motions generally agree well with the actual recorded data, if the influence of regional-site conditions is considered. The developed method has great potential to be used in computational-based seismic analysis and loss estimation in a regional scale.

  20. Influence of stochastic sea ice parametrization on climate and the role of atmosphere–sea ice–ocean interaction

    PubMed Central

    Juricke, Stephan; Jung, Thomas

    2014-01-01

    The influence of a stochastic sea ice strength parametrization on the mean climate is investigated in a coupled atmosphere–sea ice–ocean model. The results are compared with an uncoupled simulation with a prescribed atmosphere. It is found that the stochastic sea ice parametrization causes an effective weakening of the sea ice. In the uncoupled model this leads to an Arctic sea ice volume increase of about 10–20% after an accumulation period of approximately 20–30 years. In the coupled model, no such increase is found. Rather, the stochastic perturbations lead to a spatial redistribution of the Arctic sea ice thickness field. A mechanism involving a slightly negative atmospheric feedback is proposed that can explain the different responses in the coupled and uncoupled system. Changes in integrated Antarctic sea ice quantities caused by the stochastic parametrization are generally small, as memory is lost during the melting season because of an almost complete loss of sea ice. However, stochastic sea ice perturbations affect regional sea ice characteristics in the Southern Hemisphere, both in the uncoupled and coupled model. Remote impacts of the stochastic sea ice parametrization on the mean climate of non-polar regions were found to be small. PMID:24842027

  1. Constraining Stochastic Parametrisation Schemes Using High-Resolution Model Simulations

    NASA Astrophysics Data System (ADS)

    Christensen, H. M.; Dawson, A.; Palmer, T.

    2017-12-01

    Stochastic parametrisations are used in weather and climate models as a physically motivated way to represent model error due to unresolved processes. Designing new stochastic schemes has been the target of much innovative research over the last decade. While a focus has been on developing physically motivated approaches, many successful stochastic parametrisation schemes are very simple, such as the European Centre for Medium-Range Weather Forecasts (ECMWF) multiplicative scheme `Stochastically Perturbed Parametrisation Tendencies' (SPPT). The SPPT scheme improves the skill of probabilistic weather and seasonal forecasts, and so is widely used. However, little work has focused on assessing the physical basis of the SPPT scheme. We address this matter by using high-resolution model simulations to explicitly measure the `error' in the parametrised tendency that SPPT seeks to represent. The high resolution simulations are first coarse-grained to the desired forecast model resolution before they are used to produce initial conditions and forcing data needed to drive the ECMWF Single Column Model (SCM). By comparing SCM forecast tendencies with the evolution of the high resolution model, we can measure the `error' in the forecast tendencies. In this way, we provide justification for the multiplicative nature of SPPT, and for the temporal and spatial scales of the stochastic perturbations. However, we also identify issues with the SPPT scheme. It is therefore hoped these measurements will improve both holistic and process based approaches to stochastic parametrisation. Figure caption: Instantaneous snapshot of the optimal SPPT stochastic perturbation, derived by comparing high-resolution simulations with a low resolution forecast model.

  2. A novel stochastic modeling method to simulate cooling loads in residential districts

    DOE PAGES

    An, Jingjing; Yan, Da; Hong, Tianzhen; ...

    2017-09-04

    District cooling systems are widely used in urban residential communities in China. Most of such systems are oversized, which leads to wasted investment, low operational efficiency and, thus, waste of energy. The accurate prediction of district cooling loads that can support the rightsizing of cooling plant equipment remains a challenge. This study develops a novel stochastic modeling method that consists of (1) six prototype house models representing most apartments in a district, (2) occupant behavior models of residential buildings reflecting their spatial and temporal diversity as well as their complexity based on a large-scale residential survey in China, and (3)more » a stochastic sampling process to represent all apartments and occupants in the district. The stochastic method was applied to a case study using the Designer's Simulation Toolkit (DeST) to simulate the cooling loads of a residential district in Wuhan, China. The simulation results agreed well with the measured data based on five performance metrics representing the aggregated cooling consumption, the peak cooling loads, the spatial load distribution, the temporal load distribution and the load profiles. Two prevalent simulation methods were also employed to simulate the district cooling loads. Here, the results showed that oversimplified assumptions about occupant behavior could lead to significant overestimation of the peak cooling load and the total cooling loads in the district. Future work will aim to simplify the workflow and data requirements of the stochastic method for its application, and to explore its use in predicting district heating loads and in commercial or mixed-use districts.« less

  3. A novel stochastic modeling method to simulate cooling loads in residential districts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, Jingjing; Yan, Da; Hong, Tianzhen

    District cooling systems are widely used in urban residential communities in China. Most of such systems are oversized, which leads to wasted investment, low operational efficiency and, thus, waste of energy. The accurate prediction of district cooling loads that can support the rightsizing of cooling plant equipment remains a challenge. This study develops a novel stochastic modeling method that consists of (1) six prototype house models representing most apartments in a district, (2) occupant behavior models of residential buildings reflecting their spatial and temporal diversity as well as their complexity based on a large-scale residential survey in China, and (3)more » a stochastic sampling process to represent all apartments and occupants in the district. The stochastic method was applied to a case study using the Designer's Simulation Toolkit (DeST) to simulate the cooling loads of a residential district in Wuhan, China. The simulation results agreed well with the measured data based on five performance metrics representing the aggregated cooling consumption, the peak cooling loads, the spatial load distribution, the temporal load distribution and the load profiles. Two prevalent simulation methods were also employed to simulate the district cooling loads. Here, the results showed that oversimplified assumptions about occupant behavior could lead to significant overestimation of the peak cooling load and the total cooling loads in the district. Future work will aim to simplify the workflow and data requirements of the stochastic method for its application, and to explore its use in predicting district heating loads and in commercial or mixed-use districts.« less

  4. How noise and coupling influence leading indicators of population extinction in a spatially extended ecological system.

    PubMed

    O'Regan, Suzanne M

    2018-12-01

    Anticipating critical transitions in spatially extended systems is a key topic of interest to ecologists. Gradually declining metapopulations are an important example of a spatially extended biological system that may exhibit a critical transition. Theory for spatially extended systems approaching extinction that accounts for environmental stochasticity and coupling is currently lacking. Here, we develop spatially implicit two-patch models with additive and multiplicative forms of environmental stochasticity that are slowly forced through population collapse, through changing environmental conditions. We derive patch-specific expressions for candidate indicators of extinction and test their performance via a simulation study. Coupling and spatial heterogeneities decrease the magnitude of the proposed indicators in coupled populations relative to isolated populations, and the noise regime and the degree of coupling together determine trends in summary statistics. This theory may be readily applied to other spatially extended ecological systems, such as coupled infectious disease systems on the verge of elimination.

  5. Compartmental and Spatial Rule-Based Modeling with Virtual Cell.

    PubMed

    Blinov, Michael L; Schaff, James C; Vasilescu, Dan; Moraru, Ion I; Bloom, Judy E; Loew, Leslie M

    2017-10-03

    In rule-based modeling, molecular interactions are systematically specified in the form of reaction rules that serve as generators of reactions. This provides a way to account for all the potential molecular complexes and interactions among multivalent or multistate molecules. Recently, we introduced rule-based modeling into the Virtual Cell (VCell) modeling framework, permitting graphical specification of rules and merger of networks generated automatically (using the BioNetGen modeling engine) with hand-specified reaction networks. VCell provides a number of ordinary differential equation and stochastic numerical solvers for single-compartment simulations of the kinetic systems derived from these networks, and agent-based network-free simulation of the rules. In this work, compartmental and spatial modeling of rule-based models has been implemented within VCell. To enable rule-based deterministic and stochastic spatial simulations and network-free agent-based compartmental simulations, the BioNetGen and NFSim engines were each modified to support compartments. In the new rule-based formalism, every reactant and product pattern and every reaction rule are assigned locations. We also introduce the rule-based concept of molecular anchors. This assures that any species that has a molecule anchored to a predefined compartment will remain in this compartment. Importantly, in addition to formulation of compartmental models, this now permits VCell users to seamlessly connect reaction networks derived from rules to explicit geometries to automatically generate a system of reaction-diffusion equations. These may then be simulated using either the VCell partial differential equations deterministic solvers or the Smoldyn stochastic simulator. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Bubonic plague: a metapopulation model of a zoonosis.

    PubMed Central

    Keeling, M J; Gilligan, C A

    2000-01-01

    Bubonic plague (Yersinia pestis) is generally thought of as a historical disease; however, it is still responsible for around 1000-3000 deaths each year worldwide. This paper expands the analysis of a model for bubonic plague that encompasses the disease dynamics in rat, flea and human populations. Some key variables of the deterministic model, including the force of infection to humans, are shown to be robust to changes in the basic parameters, although variation in the flea searching efficiency, and the movement rates of rats and fleas will be considered throughout the paper. The stochastic behaviour of the corresponding metapopulation model is discussed, with attention focused on the dynamics of rats and the force of infection at the local spatial scale. Short-lived local epidemics in rats govern the invasion of the disease and produce an irregular pattern of human cases similar to those observed. However, the endemic behaviour in a few rat subpopulations allows the disease to persist for many years. This spatial stochastic model is also used to identify the criteria for the spread to human populations in terms of the rat density. Finally, the full stochastic model is reduced to the form of a probabilistic cellular automaton, which allows the analysis of a large number of replicated epidemics in large populations. This simplified model enables us to analyse the spatial properties of rat epidemics and the effects of movement rates, and also to test whether the emergent metapopulation behaviour is a property of the local dynamics rather than the precise details of the model. PMID:11413636

  7. Improving satellite-based PM2.5 estimates in China using Gaussian processes modeling in a Bayesian hierarchical setting.

    PubMed

    Yu, Wenxi; Liu, Yang; Ma, Zongwei; Bi, Jun

    2017-08-01

    Using satellite-based aerosol optical depth (AOD) measurements and statistical models to estimate ground-level PM 2.5 is a promising way to fill the areas that are not covered by ground PM 2.5 monitors. The statistical models used in previous studies are primarily Linear Mixed Effects (LME) and Geographically Weighted Regression (GWR) models. In this study, we developed a new regression model between PM 2.5 and AOD using Gaussian processes in a Bayesian hierarchical setting. Gaussian processes model the stochastic nature of the spatial random effects, where the mean surface and the covariance function is specified. The spatial stochastic process is incorporated under the Bayesian hierarchical framework to explain the variation of PM 2.5 concentrations together with other factors, such as AOD, spatial and non-spatial random effects. We evaluate the results of our model and compare them with those of other, conventional statistical models (GWR and LME) by within-sample model fitting and out-of-sample validation (cross validation, CV). The results show that our model possesses a CV result (R 2  = 0.81) that reflects higher accuracy than that of GWR and LME (0.74 and 0.48, respectively). Our results indicate that Gaussian process models have the potential to improve the accuracy of satellite-based PM 2.5 estimates.

  8. Unveiling Galaxy Bias via the Halo Model, KiDS and GAMA

    NASA Astrophysics Data System (ADS)

    Dvornik, Andrej; Hoekstra, Henk; Kuijken, Konrad; Schneider, Peter; Amon, Alexandra; Nakajima, Reiko; Viola, Massimo; Choi, Ami; Erben, Thomas; Farrow, Daniel J.; Heymans, Catherine; Hildebrandt, Hendrik; Sifón, Cristóbal; Wang, Lingyu

    2018-06-01

    We measure the projected galaxy clustering and galaxy-galaxy lensing signals using the Galaxy And Mass Assembly (GAMA) survey and Kilo-Degree Survey (KiDS) to study galaxy bias. We use the concept of non-linear and stochastic galaxy biasing in the framework of halo occupation statistics to constrain the parameters of the halo occupation statistics and to unveil the origin of galaxy biasing. The bias function Γgm(rp), where rp is the projected comoving separation, is evaluated using the analytical halo model from which the scale dependence of Γgm(rp), and the origin of the non-linearity and stochasticity in halo occupation models can be inferred. Our observations unveil the physical reason for the non-linearity and stochasticity, further explored using hydrodynamical simulations, with the stochasticity mostly originating from the non-Poissonian behaviour of satellite galaxies in the dark matter haloes and their spatial distribution, which does not follow the spatial distribution of dark matter in the halo. The observed non-linearity is mostly due to the presence of the central galaxies, as was noted from previous theoretical work on the same topic. We also see that overall, more massive galaxies reveal a stronger scale dependence, and out to a larger radius. Our results show that a wealth of information about galaxy bias is hidden in halo occupation models. These models should therefore be used to determine the influence of galaxy bias in cosmological studies.

  9. The stochastic runoff-runon process: Extending its analysis to a finite hillslope

    NASA Astrophysics Data System (ADS)

    Jones, O. D.; Lane, P. N. J.; Sheridan, G. J.

    2016-10-01

    The stochastic runoff-runon process models the volume of infiltration excess runoff from a hillslope via the overland flow path. Spatial variability is represented in the model by the spatial distribution of rainfall and infiltration, and their ;correlation scale;, that is, the scale at which the spatial correlation of rainfall and infiltration become negligible. Notably, the process can produce runoff even when the mean rainfall rate is less than the mean infiltration rate, and it displays a gradual increase in net runoff as the rainfall rate increases. In this paper we present a number of contributions to the analysis of the stochastic runoff-runon process. Firstly we illustrate the suitability of the process by fitting it to experimental data. Next we extend previous asymptotic analyses to include the cases where the mean rainfall rate equals or exceeds the mean infiltration rate, and then use Monte Carlo simulation to explore the range of parameters for which the asymptotic limit gives a good approximation on finite hillslopes. Finally we use this to obtain an equation for the mean net runoff, consistent with our asymptotic results but providing an excellent approximation for finite hillslopes. Our function uses a single parameter to capture spatial variability, and varying this parameter gives us a family of curves which interpolate between known upper and lower bounds for the mean net runoff.

  10. Stochastic Analysis and Probabilistic Downscaling of Soil Moisture

    NASA Astrophysics Data System (ADS)

    Deshon, J. P.; Niemann, J. D.; Green, T. R.; Jones, A. S.

    2017-12-01

    Soil moisture is a key variable for rainfall-runoff response estimation, ecological and biogeochemical flux estimation, and biodiversity characterization, each of which is useful for watershed condition assessment. These applications require not only accurate, fine-resolution soil-moisture estimates but also confidence limits on those estimates and soil-moisture patterns that exhibit realistic statistical properties (e.g., variance and spatial correlation structure). The Equilibrium Moisture from Topography, Vegetation, and Soil (EMT+VS) model downscales coarse-resolution (9-40 km) soil moisture from satellite remote sensing or land-surface models to produce fine-resolution (10-30 m) estimates. The model was designed to produce accurate deterministic soil-moisture estimates at multiple points, but the resulting patterns do not reproduce the variance or spatial correlation of observed soil-moisture patterns. The primary objective of this research is to generalize the EMT+VS model to produce a probability density function (pdf) for soil moisture at each fine-resolution location and time. Each pdf has a mean that is equal to the deterministic soil-moisture estimate, and the pdf can be used to quantify the uncertainty in the soil-moisture estimates and to simulate soil-moisture patterns. Different versions of the generalized model are hypothesized based on how uncertainty enters the model, whether the uncertainty is additive or multiplicative, and which distributions describe the uncertainty. These versions are then tested by application to four catchments with detailed soil-moisture observations (Tarrawarra, Satellite Station, Cache la Poudre, and Nerrigundah). The performance of the generalized models is evaluated by comparing the statistical properties of the simulated soil-moisture patterns to those of the observations and the deterministic EMT+VS model. The versions of the generalized EMT+VS model with normally distributed stochastic components produce soil-moisture patterns with more realistic statistical properties than the deterministic model. Additionally, the results suggest that the variance and spatial correlation of the stochastic soil-moisture variations do not vary consistently with the spatial-average soil moisture.

  11. Stochastic Parametrization for the Impact of Neglected Variability Patterns

    NASA Astrophysics Data System (ADS)

    Kaiser, Olga; Hien, Steffen; Achatz, Ulrich; Horenko, Illia

    2017-04-01

    An efficient description of the gravity wave variability and the related spontaneous emission processes requires an empirical stochastic closure for the impact of neglected variability patterns (subgridscales or SGS). In particular, we focus on the analysis of the IGW emission within a tangent linear model which requires a stochastic SGS parameterization for taking the self interaction of the ageostrophic flow components into account. For this purpose, we identify the best SGS model in terms of exactness and simplicity by deploying a wide range of different data-driven model classes, including standard stationary regression models, autoregression and artificial neuronal networks models - as well as the family of nonstationary models like FEM-BV-VARX model class (Finite Element based vector autoregressive time series analysis with bounded variation of the model parameters). The models are used to investigate the main characteristics of the underlying dynamics and to explore the significant spatial and temporal neighbourhood dependencies. The best SGS model in terms of exactness and simplicity is obtained for the nonstationary FEM-BV-VARX setting, determining only direct spatial and temporal neighbourhood as significant - and allowing to drastically reduce the number of informations that are required for the optimal SGS. Additionally, the models are characterized by sets of vector- and matrix-valued parameters that must be inferred from big data sets provided by simulations - making it a task that can not be solved without deploying high-performance computing facilities (HPC).

  12. Spatially Controlled Relay Beamforming

    NASA Astrophysics Data System (ADS)

    Kalogerias, Dionysios

    This thesis is about fusion of optimal stochastic motion control and physical layer communications. Distributed, networked communication systems, such as relay beamforming networks (e.g., Amplify & Forward (AF)), are typically designed without explicitly considering how the positions of the respective nodes might affect the quality of the communication. Optimum placement of network nodes, which could potentially improve the quality of the communication, is not typically considered. However, in most practical settings in physical layer communications, such as relay beamforming, the Channel State Information (CSI) observed by each node, per channel use, although it might be (modeled as) random, it is both spatially and temporally correlated. It is, therefore, reasonable to ask if and how the performance of the system could be improved by (predictively) controlling the positions of the network nodes (e.g., the relays), based on causal side (CSI) information, and exploitting the spatiotemporal dependencies of the wireless medium. In this work, we address this problem in the context of AF relay beamforming networks. This novel, cyber-physical system approach to relay beamforming is termed as "Spatially Controlled Relay Beamforming". First, we discuss wireless channel modeling, however, in a rigorous, Bayesian framework. Experimentally accurate and, at the same time, technically precise channel modeling is absolutely essential for designing and analyzing spatially controlled communication systems. In this work, we are interested in two distinct spatiotemporal statistical models, for describing the behavior of the log-scale magnitude of the wireless channel: 1. Stationary Gaussian Fields: In this case, the channel is assumed to evolve as a stationary, Gaussian stochastic field in continuous space and discrete time (say, for instance, time slots). Under such assumptions, spatial and temporal statistical interactions are determined by a set of time and space invariant parameters, which completely determine the mean and covariance of the underlying Gaussian measure. This model is relatively simple to describe, and can be sufficiently characterized, at least for our purposes, both statistically and topologically. Additionally, the model is rather versatile and there is existing experimental evidence, supporting its practical applicability. Our contributions are summarized in properly formulating the whole spatiotemporal model in a completely rigorous mathematical setting, under a convenient measure theoretic framework. Such framework greatly facilitates formulation of meaningful stochastic control problems, where the wireless channel field (or a function of it) can be regarded as a stochastic optimization surface.. 2. Conditionally Gaussian Fields, when conditioned on a Markovian channel state: This is a completely novel approach to wireless channel modeling. In this approach, the communication medium is assumed to behave as a partially observable (or hidden) system, where a hidden, global, temporally varying underlying stochastic process, called the channel state, affects the spatial interactions of the actual channel magnitude, evaluated at any set of locations in the plane. More specifically, we assume that, conditioned on the channel state, the wireless channel constitutes an observable, conditionally Gaussian stochastic process. The channel state evolves in time according to a known, possibly non stationary, non Gaussian, low dimensional Markov kernel. Recognizing the intractability of general nonlinear state estimation, we advocate the use of grid based approximate nonlinear filters as an effective and robust means for recursive tracking of the channel state. We also propose a sequential spatiotemporal predictor for tracking the channel gains at any point in time and space, providing real time sequential estimates for the respective channel gain map. In this context, our contributions are multifold. Except for the introduction of the layered channel model previously described, this line of research has resulted in a number of general, asymptotic convergence results, advancing the theory of grid-based approximate nonlinear stochastic filtering. In particular, sufficient conditions, ensuring asymptotic optimality are relaxed, and, at the same time, the mode of convergence is strengthened. Although the need for such results initiated as an attempt to theoretically characterize the performance of the proposed approximate methods for statistical inference, in regard to the proposed channel modeling approach, they turn out to be of fundamental importance in the areas of nonlinear estimation and stochastic control. The experimental validation of the proposed channel model, as well as the related parameter estimation problem, termed as "Markovian Channel Profiling (MCP)", fundamentally important for any practical deployment, are subject of current, ongoing research. Second, adopting the first of the two aforementioned channel modeling approaches, we consider the spatially controlled relay beamforming problem for an AF network with a single source, a single destination, and multiple, controlled at will, relay nodes. (Abstract shortened by ProQuest.).

  13. Definition and solution of a stochastic inverse problem for the Manning's n parameter field in hydrodynamic models.

    PubMed

    Butler, T; Graham, L; Estep, D; Dawson, C; Westerink, J J

    2015-04-01

    The uncertainty in spatially heterogeneous Manning's n fields is quantified using a novel formulation and numerical solution of stochastic inverse problems for physics-based models. The uncertainty is quantified in terms of a probability measure and the physics-based model considered here is the state-of-the-art ADCIRC model although the presented methodology applies to other hydrodynamic models. An accessible overview of the formulation and solution of the stochastic inverse problem in a mathematically rigorous framework based on measure theory is presented. Technical details that arise in practice by applying the framework to determine the Manning's n parameter field in a shallow water equation model used for coastal hydrodynamics are presented and an efficient computational algorithm and open source software package are developed. A new notion of "condition" for the stochastic inverse problem is defined and analyzed as it relates to the computation of probabilities. This notion of condition is investigated to determine effective output quantities of interest of maximum water elevations to use for the inverse problem for the Manning's n parameter and the effect on model predictions is analyzed.

  14. Definition and solution of a stochastic inverse problem for the Manning's n parameter field in hydrodynamic models

    NASA Astrophysics Data System (ADS)

    Butler, T.; Graham, L.; Estep, D.; Dawson, C.; Westerink, J. J.

    2015-04-01

    The uncertainty in spatially heterogeneous Manning's n fields is quantified using a novel formulation and numerical solution of stochastic inverse problems for physics-based models. The uncertainty is quantified in terms of a probability measure and the physics-based model considered here is the state-of-the-art ADCIRC model although the presented methodology applies to other hydrodynamic models. An accessible overview of the formulation and solution of the stochastic inverse problem in a mathematically rigorous framework based on measure theory is presented. Technical details that arise in practice by applying the framework to determine the Manning's n parameter field in a shallow water equation model used for coastal hydrodynamics are presented and an efficient computational algorithm and open source software package are developed. A new notion of "condition" for the stochastic inverse problem is defined and analyzed as it relates to the computation of probabilities. This notion of condition is investigated to determine effective output quantities of interest of maximum water elevations to use for the inverse problem for the Manning's n parameter and the effect on model predictions is analyzed.

  15. Data-adaptive harmonic analysis and prediction of sea level change in North Atlantic region

    NASA Astrophysics Data System (ADS)

    Kondrashov, D. A.; Chekroun, M.

    2017-12-01

    This study aims to characterize North Atlantic sea level variability across the temporal and spatial scales. We apply recently developed data-adaptive Harmonic Decomposition (DAH) and Multilayer Stuart-Landau Models (MSLM) stochastic modeling techniques [Chekroun and Kondrashov, 2017] to monthly 1993-2017 dataset of Combined TOPEX/Poseidon, Jason-1 and Jason-2/OSTM altimetry fields over North Atlantic region. The key numerical feature of the DAH relies on the eigendecomposition of a matrix constructed from time-lagged spatial cross-correlations. In particular, eigenmodes form an orthogonal set of oscillating data-adaptive harmonic modes (DAHMs) that come in pairs and in exact phase quadrature for a given temporal frequency. Furthermore, the pairs of data-adaptive harmonic coefficients (DAHCs), obtained by projecting the dataset onto associated DAHMs, can be very efficiently modeled by a universal parametric family of simple nonlinear stochastic models - coupled Stuart-Landau oscillators stacked per frequency, and synchronized across different frequencies by the stochastic forcing. Despite the short record of altimetry dataset, developed DAH-MSLM model provides for skillful prediction of key dynamical and statistical features of sea level variability. References M. D. Chekroun and D. Kondrashov, Data-adaptive harmonic spectra and multilayer Stuart-Landau models. HAL preprint, 2017, https://hal.archives-ouvertes.fr/hal-01537797

  16. Discovering network behind infectious disease outbreak

    NASA Astrophysics Data System (ADS)

    Maeno, Yoshiharu

    2010-11-01

    Stochasticity and spatial heterogeneity are of great interest recently in studying the spread of an infectious disease. The presented method solves an inverse problem to discover the effectively decisive topology of a heterogeneous network and reveal the transmission parameters which govern the stochastic spreads over the network from a dataset on an infectious disease outbreak in the early growth phase. Populations in a combination of epidemiological compartment models and a meta-population network model are described by stochastic differential equations. Probability density functions are derived from the equations and used for the maximal likelihood estimation of the topology and parameters. The method is tested with computationally synthesized datasets and the WHO dataset on the SARS outbreak.

  17. Spatial Stochastic Intracellular Kinetics: A Review of Modelling Approaches.

    PubMed

    Smith, Stephen; Grima, Ramon

    2018-05-21

    Models of chemical kinetics that incorporate both stochasticity and diffusion are an increasingly common tool for studying biology. The variety of competing models is vast, but two stand out by virtue of their popularity: the reaction-diffusion master equation and Brownian dynamics. In this review, we critically address a number of open questions surrounding these models: How can they be justified physically? How do they relate to each other? How do they fit into the wider landscape of chemical models, ranging from the rate equations to molecular dynamics? This review assumes no prior knowledge of modelling chemical kinetics and should be accessible to a wide range of readers.

  18. Efficient Simulation of Tropical Cyclone Pathways with Stochastic Perturbations

    NASA Astrophysics Data System (ADS)

    Webber, R.; Plotkin, D. A.; Abbot, D. S.; Weare, J.

    2017-12-01

    Global Climate Models (GCMs) are known to statistically underpredict intense tropical cyclones (TCs) because they fail to capture the rapid intensification and high wind speeds characteristic of the most destructive TCs. Stochastic parametrization schemes have the potential to improve the accuracy of GCMs. However, current analysis of these schemes through direct sampling is limited by the computational expense of simulating a rare weather event at fine spatial gridding. The present work introduces a stochastically perturbed parametrization tendency (SPPT) scheme to increase simulated intensity of TCs. We adapt the Weighted Ensemble algorithm to simulate the distribution of TCs at a fraction of the computational effort required in direct sampling. We illustrate the efficiency of the SPPT scheme by comparing simulations at different spatial resolutions and stochastic parameter regimes. Stochastic parametrization and rare event sampling strategies have great potential to improve TC prediction and aid understanding of tropical cyclogenesis. Since rising sea surface temperatures are postulated to increase the intensity of TCs, these strategies can also improve predictions about climate change-related weather patterns. The rare event sampling strategies used in the current work are not only a novel tool for studying TCs, but they may also be applied to sampling any range of extreme weather events.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Wei; Wang, Jin, E-mail: jin.wang.1@stonybrook.edu; State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, China and College of Physics, Jilin University, 130021 Changchun

    We have established a general non-equilibrium thermodynamic formalism consistently applicable to both spatially homogeneous and, more importantly, spatially inhomogeneous systems, governed by the Langevin and Fokker-Planck stochastic dynamics with multiple state transition mechanisms, using the potential-flux landscape framework as a bridge connecting stochastic dynamics with non-equilibrium thermodynamics. A set of non-equilibrium thermodynamic equations, quantifying the relations of the non-equilibrium entropy, entropy flow, entropy production, and other thermodynamic quantities, together with their specific expressions, is constructed from a set of dynamical decomposition equations associated with the potential-flux landscape framework. The flux velocity plays a pivotal role on both the dynamic andmore » thermodynamic levels. On the dynamic level, it represents a dynamic force breaking detailed balance, entailing the dynamical decomposition equations. On the thermodynamic level, it represents a thermodynamic force generating entropy production, manifested in the non-equilibrium thermodynamic equations. The Ornstein-Uhlenbeck process and more specific examples, the spatial stochastic neuronal model, in particular, are studied to test and illustrate the general theory. This theoretical framework is particularly suitable to study the non-equilibrium (thermo)dynamics of spatially inhomogeneous systems abundant in nature. This paper is the second of a series.« less

  20. Identification of gene regulation models from single-cell data

    NASA Astrophysics Data System (ADS)

    Weber, Lisa; Raymond, William; Munsky, Brian

    2018-09-01

    In quantitative analyses of biological processes, one may use many different scales of models (e.g. spatial or non-spatial, deterministic or stochastic, time-varying or at steady-state) or many different approaches to match models to experimental data (e.g. model fitting or parameter uncertainty/sloppiness quantification with different experiment designs). These different analyses can lead to surprisingly different results, even when applied to the same data and the same model. We use a simplified gene regulation model to illustrate many of these concerns, especially for ODE analyses of deterministic processes, chemical master equation and finite state projection analyses of heterogeneous processes, and stochastic simulations. For each analysis, we employ MATLAB and PYTHON software to consider a time-dependent input signal (e.g. a kinase nuclear translocation) and several model hypotheses, along with simulated single-cell data. We illustrate different approaches (e.g. deterministic and stochastic) to identify the mechanisms and parameters of the same model from the same simulated data. For each approach, we explore how uncertainty in parameter space varies with respect to the chosen analysis approach or specific experiment design. We conclude with a discussion of how our simulated results relate to the integration of experimental and computational investigations to explore signal-activated gene expression models in yeast (Neuert et al 2013 Science 339 584–7) and human cells (Senecal et al 2014 Cell Rep. 8 75–83)5.

  1. Spatial distribution and optimal harvesting of an age-structured population in a fluctuating environment.

    PubMed

    Engen, Steinar; Lee, Aline Magdalena; Sæther, Bernt-Erik

    2018-02-01

    We analyze a spatial age-structured model with density regulation, age specific dispersal, stochasticity in vital rates and proportional harvesting. We include two age classes, juveniles and adults, where juveniles are subject to logistic density dependence. There are environmental stochastic effects with arbitrary spatial scales on all birth and death rates, and individuals of both age classes are subject to density independent dispersal with given rates and specified distributions of dispersal distances. We show how to simulate the joint density fields of the age classes and derive results for the spatial scales of all spatial autocovariance functions for densities. A general result is that the squared scale has an additive term equal to the squared scale of the environmental noise, corresponding to the Moran effect, as well as additive terms proportional to the dispersal rate and variance of dispersal distance for the age classes and approximately inversely proportional to the strength of density regulation. We show that the optimal harvesting strategy in the deterministic case is to harvest only juveniles when their relative value (e.g. financial) is large, and otherwise only adults. With increasing environmental stochasticity there is an interval of increasing length of values of juveniles relative to adults where both age classes should be harvested. Harvesting generally tends to increase all spatial scales of the autocovariances of densities. Copyright © 2017. Published by Elsevier Inc.

  2. Establishing a beachhead: A stochastic population model with an Allee effect applied to species invasion

    USGS Publications Warehouse

    Ackleh, A.S.; Allen, L.J.S.; Carter, J.

    2007-01-01

    We formulated a spatially explicit stochastic population model with an Allee effect in order to explore how invasive species may become established. In our model, we varied the degree of migration between local populations and used an Allee effect with variable birth and death rates. Because of the stochastic component, population sizes below the Allee effect threshold may still have a positive probability for successful invasion. The larger the network of populations, the greater the probability of an invasion occurring when initial population sizes are close to or above the Allee threshold. Furthermore, if migration rates are low, one or more than one patch may be successfully invaded, while if migration rates are high all patches are invaded. ?? 2007 Elsevier Inc. All rights reserved.

  3. The joint space-time statistics of macroweather precipitation, space-time statistical factorization and macroweather models.

    PubMed

    Lovejoy, S; de Lima, M I P

    2015-07-01

    Over the range of time scales from about 10 days to 30-100 years, in addition to the familiar weather and climate regimes, there is an intermediate "macroweather" regime characterized by negative temporal fluctuation exponents: implying that fluctuations tend to cancel each other out so that averages tend to converge. We show theoretically and numerically that macroweather precipitation can be modeled by a stochastic weather-climate model (the Climate Extended Fractionally Integrated Flux, model, CEFIF) first proposed for macroweather temperatures and we show numerically that a four parameter space-time CEFIF model can approximately reproduce eight or so empirical space-time exponents. In spite of this success, CEFIF is theoretically and numerically difficult to manage. We therefore propose a simplified stochastic model in which the temporal behavior is modeled as a fractional Gaussian noise but the spatial behaviour as a multifractal (climate) cascade: a spatial extension of the recently introduced ScaLIng Macroweather Model, SLIMM. Both the CEFIF and this spatial SLIMM model have a property often implicitly assumed by climatologists that climate statistics can be "homogenized" by normalizing them with the standard deviation of the anomalies. Physically, it means that the spatial macroweather variability corresponds to different climate zones that multiplicatively modulate the local, temporal statistics. This simplified macroweather model provides a framework for macroweather forecasting that exploits the system's long range memory and spatial correlations; for it, the forecasting problem has been solved. We test this factorization property and the model with the help of three centennial, global scale precipitation products that we analyze jointly in space and in time.

  4. Simulating biological processes: stochastic physics from whole cells to colonies.

    PubMed

    Earnest, Tyler M; Cole, John A; Luthey-Schulten, Zaida

    2018-05-01

    The last few decades have revealed the living cell to be a crowded spatially heterogeneous space teeming with biomolecules whose concentrations and activities are governed by intrinsically random forces. It is from this randomness, however, that a vast array of precisely timed and intricately coordinated biological functions emerge that give rise to the complex forms and behaviors we see in the biosphere around us. This seemingly paradoxical nature of life has drawn the interest of an increasing number of physicists, and recent years have seen stochastic modeling grow into a major subdiscipline within biological physics. Here we review some of the major advances that have shaped our understanding of stochasticity in biology. We begin with some historical context, outlining a string of important experimental results that motivated the development of stochastic modeling. We then embark upon a fairly rigorous treatment of the simulation methods that are currently available for the treatment of stochastic biological models, with an eye toward comparing and contrasting their realms of applicability, and the care that must be taken when parameterizing them. Following that, we describe how stochasticity impacts several key biological functions, including transcription, translation, ribosome biogenesis, chromosome replication, and metabolism, before considering how the functions may be coupled into a comprehensive model of a 'minimal cell'. Finally, we close with our expectation for the future of the field, focusing on how mesoscopic stochastic methods may be augmented with atomic-scale molecular modeling approaches in order to understand life across a range of length and time scales.

  5. Simulating biological processes: stochastic physics from whole cells to colonies

    NASA Astrophysics Data System (ADS)

    Earnest, Tyler M.; Cole, John A.; Luthey-Schulten, Zaida

    2018-05-01

    The last few decades have revealed the living cell to be a crowded spatially heterogeneous space teeming with biomolecules whose concentrations and activities are governed by intrinsically random forces. It is from this randomness, however, that a vast array of precisely timed and intricately coordinated biological functions emerge that give rise to the complex forms and behaviors we see in the biosphere around us. This seemingly paradoxical nature of life has drawn the interest of an increasing number of physicists, and recent years have seen stochastic modeling grow into a major subdiscipline within biological physics. Here we review some of the major advances that have shaped our understanding of stochasticity in biology. We begin with some historical context, outlining a string of important experimental results that motivated the development of stochastic modeling. We then embark upon a fairly rigorous treatment of the simulation methods that are currently available for the treatment of stochastic biological models, with an eye toward comparing and contrasting their realms of applicability, and the care that must be taken when parameterizing them. Following that, we describe how stochasticity impacts several key biological functions, including transcription, translation, ribosome biogenesis, chromosome replication, and metabolism, before considering how the functions may be coupled into a comprehensive model of a ‘minimal cell’. Finally, we close with our expectation for the future of the field, focusing on how mesoscopic stochastic methods may be augmented with atomic-scale molecular modeling approaches in order to understand life across a range of length and time scales.

  6. STOCHASTIC DESCRIPTION OF SUBGRID POLLUTANT VARIABILITY IN CMAQ

    EPA Science Inventory

    This paper describes a tool for investigating and describing fine scale spatial variability in model concentration fields with the goal of improving the use of air quality models for driving exposure modeling to assess human risk to hazardous air pollutants or air toxics. Region...

  7. InterSpread Plus: a spatial and stochastic simulation model of disease in animal populations.

    PubMed

    Stevenson, M A; Sanson, R L; Stern, M W; O'Leary, B D; Sujau, M; Moles-Benfell, N; Morris, R S

    2013-04-01

    We describe the spatially explicit, stochastic simulation model of disease spread, InterSpread Plus, in terms of its epidemiological framework, operation, and mode of use. The input data required by the model, the method for simulating contact and infection spread, and methods for simulating disease control measures are described. Data and parameters that are essential for disease simulation modelling using InterSpread Plus are distinguished from those that are non-essential, and it is suggested that a rational approach to simulating disease epidemics using this tool is to start with core data and parameters, adding additional layers of complexity if and when the specific requirements of the simulation exercise require it. We recommend that simulation models of disease are best developed as part of epidemic contingency planning so decision makers are familiar with model outputs and assumptions and are well-positioned to evaluate their strengths and weaknesses to make informed decisions in times of crisis. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Examination of global correlations in ground deformation for terrestrial reference frame estimation

    NASA Astrophysics Data System (ADS)

    Chin, T. M.; Abbondanza, C.; Argus, D. F.; Gross, R. S.; Heflin, M. B.; Parker, J. W.; Wu, X.

    2016-12-01

    The KALman filter for REFerence frames (KALREF, Wu et al. 2015) has been developed to produce terrestrial reference frame (TRF) solutions. TRFs consist of precise position coordinates and velocity vectors of terrestrial reference sites (with the geocenter as the origin) along with the Earth orientation parameters, and they are produced by combining decades worth of space geodetic data using site tie data. To perform the combination, KALREF relies on stochastic models of the geophysical processes that are causing the Earth's surface to deform and reference sites to be displaced. We are investigating application of the GRACE data to improve the KALREF stochastic models by determining spatial statistics of the deformation of the Earth's surface caused by mass loading. A potential target of improvement is the non-uniform distribution of the geodetic observation sites, which can introduce bias in TRF estimates of the geocenter. The global and relatively uniform coverage of the GRACE measurements is expected to be free of such bias and allow us to improve physical realism of the stochastic model. For such a goal, we examine the spatial correlations in ground deformation derived from several GRACE data sets.[Wu et al. 2015: Journal of Geophysical Research (Solid Earth) 120:3775-3802

  9. Spatial vs. individual variability with inheritance in a stochastic Lotka-Volterra system

    NASA Astrophysics Data System (ADS)

    Dobramysl, Ulrich; Tauber, Uwe C.

    2012-02-01

    We investigate a stochastic spatial Lotka-Volterra predator-prey model with randomized interaction rates that are either affixed to the lattice sites and quenched, and / or specific to individuals in either population. In the latter situation, we include rate inheritance with mutations from the particles' progenitors. Thus we arrive at a simple model for competitive evolution with environmental variability and selection pressure. We employ Monte Carlo simulations in zero and two dimensions to study the time evolution of both species' densities and their interaction rate distributions. The predator and prey concentrations in the ensuing steady states depend crucially on the environmental variability, whereas the temporal evolution of the individualized rate distributions leads to largely neutral optimization. Contrary to, e.g., linear gene expression models, this system does not experience fixation at extreme values. An approximate description of the resulting data is achieved by means of an effective master equation approach for the interaction rate distribution.

  10. The role of stochastic storms on hillslope runoff generation and connectivity in a dryland basin

    NASA Astrophysics Data System (ADS)

    Michaelides, K.; Singer, M. B.; Mudd, S. M.

    2016-12-01

    Despite low annual rainfall, dryland basins can generate significant surface runoff during certain rainstorms, which can cause flash flooding and high rates of erosion. However, it remains challenging to anticipate the nature and frequency of runoff generation in hydrological systems which are driven by spatially and temporally stochastic rainstorms. In particular, the stochasticity of rainfall presents challenges to simulating the hydrological response of dryland basins and understanding flow connectivity from hillslopes to the channel. Here we simulate hillslope runoff generation using rainfall characteristics produced by a simple stochastic rainfall generator, which is based on a rich rainfall dataset from the Walnut Gulch Experimental Watershed (WGEW) in Arizona, USA. We assess hillslope runoff generation using the hydrological model, COUP2D, driven by a subset of characteristic output from multiple ensembles of decadal monsoonal rainfall from the stochastic rainfall generator. The rainfall generator operates across WGEW by simulating storms with areas smaller than the basin and enables explicit characterization of rainfall characteristics at any location. We combine the characteristics of rainfall intensity and duration with data on rainstorm area and location to model the surface runoff properties (depth, velocity, duration, distance downslope) on a range of hillslopes within the basin derived from LiDAR analysis. We also analyze connectivity of flow from hillslopes to the channel for various combinations of hillslopes and storms. This approach provides a framework for understanding spatial and temporal dynamics of runoff generation and connectivity that is faithful to the hydrological characteristics of dryland environments.

  11. [Stochastic characteristics of daily precipitation and its spatiotemporal difference over China based on information entropy].

    PubMed

    Li, Xin Xin; Sang, Yan Fang; Xie, Ping; Liu, Chang Ming

    2018-04-01

    Daily precipitation process in China showed obvious randomness and spatiotemporal variation. It is important to accurately understand the influence of precipitation changes on control of flood and waterlogging disaster. Using the daily precipitation data measured at 520 stations in China during 1961-2013, we quantified the stochastic characteristics of daily precipitation over China based on the index of information entropy. Results showed that the randomness of daily precipitation in the southeast region were larger than that in the northwest region. Moreover, the spatial distribution of stochastic characteristics of precipitation was different at various grades. Stochastic characteri-stics of P 0 (precipitation at 0.1-10 mm) was large, but the spatial variation was not obvious. The stochastic characteristics of P 10 (precipitation at 10-25 mm) and P 25 (precipitation at 25-50 mm) were the largest and their spatial difference was obvious. P 50 (precipitation ≥50 mm) had the smallest stochastic characteristics and the most obviously spatial difference. Generally, the entropy values of precipitation obviously increased over the last five decades, indicating more significantly stochastic characteristics of precipitation (especially the obvious increase of heavy precipitation events) in most region over China under the scenarios of global climate change. Given that the spatial distribution and long-term trend of entropy values of daily precipitation could reflect thespatial distribution of stochastic characteristics of precipitation, our results could provide scientific basis for the control of flood and waterlogging disaster, the layout of agricultural planning, and the planning of ecological environment.

  12. Global Well-posedness of the Spatially Homogeneous Kolmogorov-Vicsek Model as a Gradient Flow

    NASA Astrophysics Data System (ADS)

    Figalli, Alessio; Kang, Moon-Jin; Morales, Javier

    2018-03-01

    We consider the so-called spatially homogenous Kolmogorov-Vicsek model, a non-linear Fokker-Planck equation of self-driven stochastic particles with orientation interaction under the space-homogeneity. We prove the global existence and uniqueness of weak solutions to the equation. We also show that weak solutions exponentially converge to a steady state, which has the form of the Fisher-von Mises distribution.

  13. A discontinuous Galerkin method for numerical pricing of European options under Heston stochastic volatility

    NASA Astrophysics Data System (ADS)

    Hozman, J.; Tichý, T.

    2016-12-01

    The paper is based on the results from our recent research on multidimensional option pricing problems. We focus on European option valuation when the price movement of the underlying asset is driven by a stochastic volatility following a square root process proposed by Heston. The stochastic approach incorporates a new additional spatial variable into this model and makes it very robust, i.e. it provides a framework to price a variety of options that is closer to reality. The main topic is to present the numerical scheme arising from the concept of discontinuous Galerkin methods and applicable to the Heston option pricing model. The numerical results are presented on artificial benchmarks as well as on reference market data.

  14. Fractional Stochastic Field Theory

    NASA Astrophysics Data System (ADS)

    Honkonen, Juha

    2018-02-01

    Models describing evolution of physical, chemical, biological, social and financial processes are often formulated as differential equations with the understanding that they are large-scale equations for averages of quantities describing intrinsically random processes. Explicit account of randomness may lead to significant changes in the asymptotic behaviour (anomalous scaling) in such models especially in low spatial dimensions, which in many cases may be captured with the use of the renormalization group. Anomalous scaling and memory effects may also be introduced with the use of fractional derivatives and fractional noise. Construction of renormalized stochastic field theory with fractional derivatives and fractional noise in the underlying stochastic differential equations and master equations and the interplay between fluctuation-induced and built-in anomalous scaling behaviour is reviewed and discussed.

  15. Multi-Scale Modeling to Improve Single-Molecule, Single-Cell Experiments

    NASA Astrophysics Data System (ADS)

    Munsky, Brian; Shepherd, Douglas

    2014-03-01

    Single-cell, single-molecule experiments are producing an unprecedented amount of data to capture the dynamics of biological systems. When integrated with computational models, observations of spatial, temporal and stochastic fluctuations can yield powerful quantitative insight. We concentrate on experiments that localize and count individual molecules of mRNA. These high precision experiments have large imaging and computational processing costs, and we explore how improved computational analyses can dramatically reduce overall data requirements. In particular, we show how analyses of spatial, temporal and stochastic fluctuations can significantly enhance parameter estimation results for small, noisy data sets. We also show how full probability distribution analyses can constrain parameters with far less data than bulk analyses or statistical moment closures. Finally, we discuss how a systematic modeling progression from simple to more complex analyses can reduce total computational costs by orders of magnitude. We illustrate our approach using single-molecule, spatial mRNA measurements of Interleukin 1-alpha mRNA induction in human THP1 cells following stimulation. Our approach could improve the effectiveness of single-molecule gene regulation analyses for many other process.

  16. Spatial Aspects of Interspecific Competition

    NASA Technical Reports Server (NTRS)

    Durrett, Rick; Levin, Simon

    1998-01-01

    Using several variants of a stochastic spatial model introduced by Silvertown et al., we investigate the effect of spatial distribution of individuals on the outcome of competition. First, we prove rigorously that if one species has a competitive advantage over each of the others, then eventually it takes over all the sites in the system. Second, we examine tradeoffs between competition and dispersal distance in a two-species system. Third, we consider a cyclic competitive relationship between three types. In this case, a nonspatial treatment leads to densities that follow neutrally stable cycles or even unstable spiral solutions, while a spatial model yields a stationary distribution with an interesting spatial structure.

  17. Addressing model uncertainty through stochastic parameter perturbations within the High Resolution Rapid Refresh (HRRR) ensemble

    NASA Astrophysics Data System (ADS)

    Wolff, J.; Jankov, I.; Beck, J.; Carson, L.; Frimel, J.; Harrold, M.; Jiang, H.

    2016-12-01

    It is well known that global and regional numerical weather prediction ensemble systems are under-dispersive, producing unreliable and overconfident ensemble forecasts. Typical approaches to alleviate this problem include the use of multiple dynamic cores, multiple physics suite configurations, or a combination of the two. While these approaches may produce desirable results, they have practical and theoretical deficiencies and are more difficult and costly to maintain. An active area of research that promotes a more unified and sustainable system for addressing the deficiencies in ensemble modeling is the use of stochastic physics to represent model-related uncertainty. Stochastic approaches include Stochastic Parameter Perturbations (SPP), Stochastic Kinetic Energy Backscatter (SKEB), Stochastic Perturbation of Physics Tendencies (SPPT), or some combination of all three. The focus of this study is to assess the model performance within a convection-permitting ensemble at 3-km grid spacing across the Contiguous United States (CONUS) when using stochastic approaches. For this purpose, the test utilized a single physics suite configuration based on the operational High-Resolution Rapid Refresh (HRRR) model, with ensemble members produced by employing stochastic methods. Parameter perturbations were employed in the Rapid Update Cycle (RUC) land surface model and Mellor-Yamada-Nakanishi-Niino (MYNN) planetary boundary layer scheme. Results will be presented in terms of bias, error, spread, skill, accuracy, reliability, and sharpness using the Model Evaluation Tools (MET) verification package. Due to the high level of complexity of running a frequently updating (hourly), high spatial resolution (3 km), large domain (CONUS) ensemble system, extensive high performance computing (HPC) resources were needed to meet this objective. Supercomputing resources were provided through the National Center for Atmospheric Research (NCAR) Strategic Capability (NSC) project support, allowing for a more extensive set of tests over multiple seasons, consequently leading to more robust results. Through the use of these stochastic innovations and powerful supercomputing at NCAR, further insights and advancements in ensemble forecasting at convection-permitting scales will be possible.

  18. Definition and solution of a stochastic inverse problem for the Manning’s n parameter field in hydrodynamic models

    DOE PAGES

    Butler, Troy; Graham, L.; Estep, D.; ...

    2015-02-03

    The uncertainty in spatially heterogeneous Manning’s n fields is quantified using a novel formulation and numerical solution of stochastic inverse problems for physics-based models. The uncertainty is quantified in terms of a probability measure and the physics-based model considered here is the state-of-the-art ADCIRC model although the presented methodology applies to other hydrodynamic models. An accessible overview of the formulation and solution of the stochastic inverse problem in a mathematically rigorous framework based on measure theory is presented in this paper. Technical details that arise in practice by applying the framework to determine the Manning’s n parameter field in amore » shallow water equation model used for coastal hydrodynamics are presented and an efficient computational algorithm and open source software package are developed. A new notion of “condition” for the stochastic inverse problem is defined and analyzed as it relates to the computation of probabilities. Finally, this notion of condition is investigated to determine effective output quantities of interest of maximum water elevations to use for the inverse problem for the Manning’s n parameter and the effect on model predictions is analyzed.« less

  19. Accurate reaction-diffusion operator splitting on tetrahedral meshes for parallel stochastic molecular simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hepburn, I.; De Schutter, E., E-mail: erik@oist.jp; Theoretical Neurobiology & Neuroengineering, University of Antwerp, Antwerp 2610

    Spatial stochastic molecular simulations in biology are limited by the intense computation required to track molecules in space either in a discrete time or discrete space framework, which has led to the development of parallel methods that can take advantage of the power of modern supercomputers in recent years. We systematically test suggested components of stochastic reaction-diffusion operator splitting in the literature and discuss their effects on accuracy. We introduce an operator splitting implementation for irregular meshes that enhances accuracy with minimal performance cost. We test a range of models in small-scale MPI simulations from simple diffusion models to realisticmore » biological models and find that multi-dimensional geometry partitioning is an important consideration for optimum performance. We demonstrate performance gains of 1-3 orders of magnitude in the parallel implementation, with peak performance strongly dependent on model specification.« less

  20. Utilizing remote sensing of thematic mapper data to improve our understanding of estuarine processes and their influence on the productivity of estuarine-dependent fisheries

    NASA Technical Reports Server (NTRS)

    Browder, Joan A.; May, L. Nelson, Jr.; Rosenthal, Alan; Baumann, Robert H.; Gosselink, James G.

    1987-01-01

    A stochastic spatial computer model addressing coastal resource problems in Lousiana is being refined and validated using thematic mapper (TM) imagery. The TM images of brackish marsh sites were processed and data were tabulated on spatial parameters from TM images of the salt marsh sites. The Fisheries Image Processing Systems (FIPS) was used to analyze the TM scene. Activities were concentrated on improving the structure of the model and developing a structure and methodology for calibrating the model with spatial-pattern data from the TM imagery.

  1. Stochastical analysis of surfactant-enhanced remediation of denser-than-water nonaqueous phase liquid (DNAPL)-contaminated soils.

    PubMed

    Zhang, Renduo; Wood, A Lynn; Enfield, Carl G; Jeong, Seung-Woo

    2003-01-01

    Stochastical analysis was performed to assess the effect of soil spatial variability and heterogeneity on the recovery of denser-than-water nonaqueous phase liquids (DNAPL) during the process of surfactant-enhanced remediation. UTCHEM, a three-dimensional, multicomponent, multiphase, compositional model, was used to simulate water flow and chemical transport processes in heterogeneous soils. Soil spatial variability and heterogeneity were accounted for by considering the soil permeability as a spatial random variable and a geostatistical method was used to generate random distributions of the permeability. The randomly generated permeability fields were incorporated into UTCHEM to simulate DNAPL transport in heterogeneous media and stochastical analysis was conducted based on the simulated results. From the analysis, an exponential relationship between average DNAPL recovery and soil heterogeneity (defined as the standard deviation of log of permeability) was established with a coefficient of determination (r2) of 0.991, which indicated that DNAPL recovery decreased exponentially with increasing soil heterogeneity. Temporal and spatial distributions of relative saturations in the water phase, DNAPL, and microemulsion in heterogeneous soils were compared with those in homogeneous soils and related to soil heterogeneity. Cleanup time and uncertainty to determine DNAPL distributions in heterogeneous soils were also quantified. The study would provide useful information to design strategies for the characterization and remediation of nonaqueous phase liquid-contaminated soils with spatial variability and heterogeneity.

  2. Stochastic Approaches Within a High Resolution Rapid Refresh Ensemble

    NASA Astrophysics Data System (ADS)

    Jankov, I.

    2017-12-01

    It is well known that global and regional numerical weather prediction (NWP) ensemble systems are under-dispersive, producing unreliable and overconfident ensemble forecasts. Typical approaches to alleviate this problem include the use of multiple dynamic cores, multiple physics suite configurations, or a combination of the two. While these approaches may produce desirable results, they have practical and theoretical deficiencies and are more difficult and costly to maintain. An active area of research that promotes a more unified and sustainable system is the use of stochastic physics. Stochastic approaches include Stochastic Parameter Perturbations (SPP), Stochastic Kinetic Energy Backscatter (SKEB), and Stochastic Perturbation of Physics Tendencies (SPPT). The focus of this study is to assess model performance within a convection-permitting ensemble at 3-km grid spacing across the Contiguous United States (CONUS) using a variety of stochastic approaches. A single physics suite configuration based on the operational High-Resolution Rapid Refresh (HRRR) model was utilized and ensemble members produced by employing stochastic methods. Parameter perturbations (using SPP) for select fields were employed in the Rapid Update Cycle (RUC) land surface model (LSM) and Mellor-Yamada-Nakanishi-Niino (MYNN) Planetary Boundary Layer (PBL) schemes. Within MYNN, SPP was applied to sub-grid cloud fraction, mixing length, roughness length, mass fluxes and Prandtl number. In the RUC LSM, SPP was applied to hydraulic conductivity and tested perturbing soil moisture at initial time. First iterative testing was conducted to assess the initial performance of several configuration settings (e.g. variety of spatial and temporal de-correlation lengths). Upon selection of the most promising candidate configurations using SPP, a 10-day time period was run and more robust statistics were gathered. SKEB and SPPT were included in additional retrospective tests to assess the impact of using all three stochastic approaches to address model uncertainty. Results from the stochastic perturbation testing were compared to a baseline multi-physics control ensemble. For probabilistic forecast performance the Model Evaluation Tools (MET) verification package was used.

  3. Stochastic dynamic modeling of regular and slow earthquakes

    NASA Astrophysics Data System (ADS)

    Aso, N.; Ando, R.; Ide, S.

    2017-12-01

    Both regular and slow earthquakes are slip phenomena on plate boundaries and are simulated by a (quasi-)dynamic modeling [Liu and Rice, 2005]. In these numerical simulations, spatial heterogeneity is usually considered not only for explaining real physical properties but also for evaluating the stability of the calculations or the sensitivity of the results on the condition. However, even though we discretize the model space with small grids, heterogeneity at smaller scales than the grid size is not considered in the models with deterministic governing equations. To evaluate the effect of heterogeneity at the smaller scales we need to consider stochastic interactions between slip and stress in a dynamic modeling. Tidal stress is known to trigger or affect both regular and slow earthquakes [Yabe et al., 2015; Ide et al., 2016], and such an external force with fluctuation can also be considered as a stochastic external force. A healing process of faults may also be stochastic, so we introduce stochastic friction law. In the present study, we propose a stochastic dynamic model to explain both regular and slow earthquakes. We solve mode III problem, which corresponds to the rupture propagation along the strike direction. We use BIEM (boundary integral equation method) scheme to simulate slip evolution, but we add stochastic perturbations in the governing equations, which is usually written in a deterministic manner. As the simplest type of perturbations, we adopt Gaussian deviations in the formulation of the slip-stress kernel, external force, and friction. By increasing the amplitude of perturbations of the slip-stress kernel, we reproduce complicated rupture process of regular earthquakes including unilateral and bilateral ruptures. By perturbing external force, we reproduce slow rupture propagation at a scale of km/day. The slow propagation generated by a combination of fast interaction at S-wave velocity is analogous to the kinetic theory of gasses: thermal diffusion appears much slower than the particle velocity of each molecule. The concept of stochastic triggering originates in the Brownian walk model [Ide, 2008], and the present study introduces the stochastic dynamics into dynamic simulations. The stochastic dynamic model has the potential to explain both regular and slow earthquakes more realistically.

  4. The joint space-time statistics of macroweather precipitation, space-time statistical factorization and macroweather models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovejoy, S., E-mail: lovejoy@physics.mcgill.ca; Lima, M. I. P. de; Department of Civil Engineering, University of Coimbra, 3030-788 Coimbra

    2015-07-15

    Over the range of time scales from about 10 days to 30–100 years, in addition to the familiar weather and climate regimes, there is an intermediate “macroweather” regime characterized by negative temporal fluctuation exponents: implying that fluctuations tend to cancel each other out so that averages tend to converge. We show theoretically and numerically that macroweather precipitation can be modeled by a stochastic weather-climate model (the Climate Extended Fractionally Integrated Flux, model, CEFIF) first proposed for macroweather temperatures and we show numerically that a four parameter space-time CEFIF model can approximately reproduce eight or so empirical space-time exponents. In spitemore » of this success, CEFIF is theoretically and numerically difficult to manage. We therefore propose a simplified stochastic model in which the temporal behavior is modeled as a fractional Gaussian noise but the spatial behaviour as a multifractal (climate) cascade: a spatial extension of the recently introduced ScaLIng Macroweather Model, SLIMM. Both the CEFIF and this spatial SLIMM model have a property often implicitly assumed by climatologists that climate statistics can be “homogenized” by normalizing them with the standard deviation of the anomalies. Physically, it means that the spatial macroweather variability corresponds to different climate zones that multiplicatively modulate the local, temporal statistics. This simplified macroweather model provides a framework for macroweather forecasting that exploits the system's long range memory and spatial correlations; for it, the forecasting problem has been solved. We test this factorization property and the model with the help of three centennial, global scale precipitation products that we analyze jointly in space and in time.« less

  5. Stochastic lattice model of synaptic membrane protein domains.

    PubMed

    Li, Yiwei; Kahraman, Osman; Haselwandter, Christoph A

    2017-05-01

    Neurotransmitter receptor molecules, concentrated in synaptic membrane domains along with scaffolds and other kinds of proteins, are crucial for signal transmission across chemical synapses. In common with other membrane protein domains, synaptic domains are characterized by low protein copy numbers and protein crowding, with rapid stochastic turnover of individual molecules. We study here in detail a stochastic lattice model of the receptor-scaffold reaction-diffusion dynamics at synaptic domains that was found previously to capture, at the mean-field level, the self-assembly, stability, and characteristic size of synaptic domains observed in experiments. We show that our stochastic lattice model yields quantitative agreement with mean-field models of nonlinear diffusion in crowded membranes. Through a combination of analytic and numerical solutions of the master equation governing the reaction dynamics at synaptic domains, together with kinetic Monte Carlo simulations, we find substantial discrepancies between mean-field and stochastic models for the reaction dynamics at synaptic domains. Based on the reaction and diffusion properties of synaptic receptors and scaffolds suggested by previous experiments and mean-field calculations, we show that the stochastic reaction-diffusion dynamics of synaptic receptors and scaffolds provide a simple physical mechanism for collective fluctuations in synaptic domains, the molecular turnover observed at synaptic domains, key features of the observed single-molecule trajectories, and spatial heterogeneity in the effective rates at which receptors and scaffolds are recycled at the cell membrane. Our work sheds light on the physical mechanisms and principles linking the collective properties of membrane protein domains to the stochastic dynamics that rule their molecular components.

  6. Stochastic characteristics of different duration annual maximum rainfall and its spatial difference in China based on information entropy

    NASA Astrophysics Data System (ADS)

    Li, X.; Sang, Y. F.

    2017-12-01

    Mountain torrents, urban floods and other disasters caused by extreme precipitation bring great losses to the ecological environment, social and economic development, people's lives and property security. So there is of great significance to floods prevention and control by the study of its spatial distribution. Based on the annual maximum rainfall data of 60min, 6h and 24h, the paper generate long sequences following Pearson-III distribution, and then use the information entropy index to study the spatial distribution and difference of different duration. The results show that the information entropy value of annual maximum rainfall in the south region is greater than that in the north region, indicating more obvious stochastic characteristics of annual maximum rainfall in the latter. However, the spatial distribution of stochastic characteristics is different in different duration. For example, stochastic characteristics of 60min annual maximum rainfall in the Eastern Tibet is smaller than surrounding, but 6h and 24h annual maximum rainfall is larger than surrounding area. In the Haihe River Basin and the Huaihe River Basin, the stochastic characteristics of the 60min annual maximum rainfall was not significantly different from that in the surrounding area, and stochastic characteristics of 6h and 24h was smaller than that in the surrounding area. We conclude that the spatial distribution of information entropy values of annual maximum rainfall in different duration can reflect the spatial distribution of its stochastic characteristics, thus the results can be an importantly scientific basis for the flood prevention and control, agriculture, economic-social developments and urban flood control and waterlogging.

  7. High-resolution stochastic downscaling of climate models: simulating wind advection, cloud cover and precipitation

    NASA Astrophysics Data System (ADS)

    Peleg, Nadav; Fatichi, Simone; Burlando, Paolo

    2015-04-01

    A new stochastic approach to generate wind advection, cloud cover and precipitation fields is presented with the aim of formulating a space-time weather generator characterized by fields with high spatial and temporal resolution (e.g., 1 km x 1 km and 5 min). Its use is suitable for stochastic downscaling of climate scenarios in the context of hydrological, ecological and geomorphological applications. The approach is based on concepts from the Advanced WEather GENerator (AWE-GEN) presented by Fatichi et al. (2011, Adv. Water Resour.), the Space-Time Realizations of Areal Precipitation model (STREAP) introduced by Paschalis et al. (2013, Water Resour. Res.), and the High-Resolution Synoptically conditioned Weather Generator (HiReS-WG) presented by Peleg and Morin (2014, Water Resour. Res.). Advection fields are generated on the basis of the 500 hPa u and v wind direction variables derived from global or regional climate models. The advection velocity and direction are parameterized using Kappa and von Mises distributions respectively. A random Gaussian fields is generated using a fast Fourier transform to preserve the spatial correlation of advection. The cloud cover area, total precipitation area and mean advection of the field are coupled using a multi-autoregressive model. The approach is relatively parsimonious in terms of computational demand and, in the context of climate change, allows generating many stochastic realizations of current and projected climate in a fast and efficient way. A preliminary test of the approach is presented with reference to a case study in a complex orography terrain in the Swiss Alps.

  8. A stochastic spatial model of HIV dynamics with an asymmetric battle between the virus and the immune system

    NASA Astrophysics Data System (ADS)

    Lin, Hai; Shuai, J. W.

    2010-04-01

    A stochastic spatial model based on the Monte Carlo approach is developed to study the dynamics of human immunodeficiency virus (HIV) infection. We aim to propose a more detailed and realistic simulation frame by incorporating many important features of HIV dynamics, which include infections, replications and mutations of viruses, antigen recognitions, activations and proliferations of lymphocytes, and diffusions, encounters and interactions of virions and lymphocytes. Our model successfully reproduces the three-phase pattern observed in HIV infection, and the simulation results for the time distribution from infection to AIDS onset are also in good agreement with the clinical data. The interactions of viruses and the immune system in all the three phases are investigated. We assess the relative importance of various immune system components in the acute phase. The dynamics of how the two important factors, namely the viral diversity and the asymmetric battle between HIV and the immune system, result in AIDS are investigated in detail with the model.

  9. Enhancement of epidemic spread by noise and stochastic resonance in spatial network models with viral dynamics.

    PubMed

    Tuckwell, H C; Toubiana, L; Vibert, J F

    2000-05-01

    We extend a previous dynamical viral network model to include stochastic effects. The dynamical equations for the viral and immune effector densities within a host population of size n are bilinear, and the noise is white, additive, and Gaussian. The individuals are connected with an n x n transmission matrix, with terms which decay exponentially with distance. In a single individual, for the range of noise parameters considered, it is found that increasing the amplitude of the noise tends to decrease the maximum mean virion level, and slightly accelerate its attainment. Two different spatial dynamical models are employed to ascertain the effects of environmental stochasticity on viral spread. In the first model transmission is unrestricted and there is no threshold within individuals. This model has the advantage that it can be analyzed using a Fokker-Planck approach. The noise is found both to synchronize and uniformize the trajectories of the viral levels across the population of infected individuals, and thus to promote the epidemic spread of the virus. Quantitative measures of the speed of spread and overall amplitude of the epidemic are obtained as functions of the noise and virulence parameters. The mean amplitude increases steadily without threshold effects for a fixed value of the virulence as the noise amplitude sigma is increased, and there is no evidence of a stochastic resonance. However, the speed of transmission, both with respect to its mean and variance, undergoes rapid increases as sigma changes by relatively small amounts. In the second, more realistic, model, there is a threshold for infection and an upper limit to the transmission rate. There may be no spread of infection at all in the absence of noise. With increasing noise level and a low threshold, the mean maximum virion level grows quickly and shows a broad-based stochastic resonance effect. When the threshold within individuals is increased, the mean population virion level increases only slowly as sigma increases, until a critical value is reached at which the mean infection level suddenly increases. Similar results are obtained when the parameters of the model are also randomized across the population. We conclude with a discussion and a description of a diffusion approximation for a model in which stochasticity arises through random contacts rather than fluctuation in ambient virion levels.

  10. Stochastic Spatial Models in Ecology: A Statistical Physics Approach

    NASA Astrophysics Data System (ADS)

    Pigolotti, Simone; Cencini, Massimo; Molina, Daniel; Muñoz, Miguel A.

    2018-07-01

    Ecosystems display a complex spatial organization. Ecologists have long tried to characterize them by looking at how different measures of biodiversity change across spatial scales. Ecological neutral theory has provided simple predictions accounting for general empirical patterns in communities of competing species. However, while neutral theory in well-mixed ecosystems is mathematically well understood, spatial models still present several open problems, limiting the quantitative understanding of spatial biodiversity. In this review, we discuss the state of the art in spatial neutral theory. We emphasize the connection between spatial ecological models and the physics of non-equilibrium phase transitions and how concepts developed in statistical physics translate in population dynamics, and vice versa. We focus on non-trivial scaling laws arising at the critical dimension D = 2 of spatial neutral models, and their relevance for biological populations inhabiting two-dimensional environments. We conclude by discussing models incorporating non-neutral effects in the form of spatial and temporal disorder, and analyze how their predictions deviate from those of purely neutral theories.

  11. Stochastic Spatial Models in Ecology: A Statistical Physics Approach

    NASA Astrophysics Data System (ADS)

    Pigolotti, Simone; Cencini, Massimo; Molina, Daniel; Muñoz, Miguel A.

    2017-11-01

    Ecosystems display a complex spatial organization. Ecologists have long tried to characterize them by looking at how different measures of biodiversity change across spatial scales. Ecological neutral theory has provided simple predictions accounting for general empirical patterns in communities of competing species. However, while neutral theory in well-mixed ecosystems is mathematically well understood, spatial models still present several open problems, limiting the quantitative understanding of spatial biodiversity. In this review, we discuss the state of the art in spatial neutral theory. We emphasize the connection between spatial ecological models and the physics of non-equilibrium phase transitions and how concepts developed in statistical physics translate in population dynamics, and vice versa. We focus on non-trivial scaling laws arising at the critical dimension D = 2 of spatial neutral models, and their relevance for biological populations inhabiting two-dimensional environments. We conclude by discussing models incorporating non-neutral effects in the form of spatial and temporal disorder, and analyze how their predictions deviate from those of purely neutral theories.

  12. Effects of soil spatial variability at the hillslope and catchment scales on characteristics of rainfall-induced landslides

    NASA Astrophysics Data System (ADS)

    Fan, Linfeng; Lehmann, Peter; Or, Dani

    2016-03-01

    Spatial variations in soil properties affect key hydrological processes, yet their role in soil mechanical response to hydro-mechanical loading is rarely considered. This study aims to fill this gap by systematically quantifying effects of spatial variations in soil type and initial water content on rapid rainfall-induced shallow landslide predictions at the hillslope- and catchment-scales. We employed a physically-based landslide triggering model that considers mechanical interactions among soil columns governed by strength thresholds. At the hillslope scale, we found that the emergence of weak regions induced by spatial variations of soil type and initial water content resulted in early triggering of landslides with smaller volumes of released mass relative to a homogeneous slope. At the catchment scale, initial water content was linked to a topographic wetness index, whereas soil type varied deterministically with soil depth considering spatially correlated stochastic components. Results indicate that a strong spatial organization of initial water content delays landslide triggering, whereas spatially linked soil type with soil depth promoted landslide initiation. Increasing the standard deviation and correlation length of the stochastic component of soil type increases landslide volume and hastens onset of landslides. The study illustrates that for similar external boundary conditions and mean soil properties, landslide characteristics vary significantly with soil variability, hence it must be considered for improved landslide model predictions.

  13. A coupled stochastic inverse-management framework for dealing with nonpoint agriculture pollution under groundwater parameter uncertainty

    NASA Astrophysics Data System (ADS)

    Llopis-Albert, Carlos; Palacios-Marqués, Daniel; Merigó, José M.

    2014-04-01

    In this paper a methodology for the stochastic management of groundwater quality problems is presented, which can be used to provide agricultural advisory services. A stochastic algorithm to solve the coupled flow and mass transport inverse problem is combined with a stochastic management approach to develop methods for integrating uncertainty; thus obtaining more reliable policies on groundwater nitrate pollution control from agriculture. The stochastic inverse model allows identifying non-Gaussian parameters and reducing uncertainty in heterogeneous aquifers by constraining stochastic simulations to data. The management model determines the spatial and temporal distribution of fertilizer application rates that maximizes net benefits in agriculture constrained by quality requirements in groundwater at various control sites. The quality constraints can be taken, for instance, by those given by water laws such as the EU Water Framework Directive (WFD). Furthermore, the methodology allows providing the trade-off between higher economic returns and reliability in meeting the environmental standards. Therefore, this new technology can help stakeholders in the decision-making process under an uncertainty environment. The methodology has been successfully applied to a 2D synthetic aquifer, where an uncertainty assessment has been carried out by means of Monte Carlo simulation techniques.

  14. Stochastic ecological network occupancy (SENO) models: a new tool for modeling ecological networks across spatial scales

    USGS Publications Warehouse

    Lafferty, Kevin D.; Dunne, Jennifer A.

    2010-01-01

    Stochastic ecological network occupancy (SENO) models predict the probability that species will occur in a sample of an ecological network. In this review, we introduce SENO models as a means to fill a gap in the theoretical toolkit of ecologists. As input, SENO models use a topological interaction network and rates of colonization and extinction (including consumer effects) for each species. A SENO model then simulates the ecological network over time, resulting in a series of sub-networks that can be used to identify commonly encountered community modules. The proportion of time a species is present in a patch gives its expected probability of occurrence, whose sum across species gives expected species richness. To illustrate their utility, we provide simple examples of how SENO models can be used to investigate how topological complexity, species interactions, species traits, and spatial scale affect communities in space and time. They can categorize species as biodiversity facilitators, contributors, or inhibitors, making this approach promising for ecosystem-based management of invasive, threatened, or exploited species.

  15. Compensating for estimation smoothing in kriging

    USGS Publications Warehouse

    Olea, R.A.; Pawlowsky, Vera

    1996-01-01

    Smoothing is a characteristic inherent to all minimum mean-square-error spatial estimators such as kriging. Cross-validation can be used to detect and model such smoothing. Inversion of the model produces a new estimator-compensated kriging. A numerical comparison based on an exhaustive permeability sampling of a 4-fr2 slab of Berea Sandstone shows that the estimation surface generated by compensated kriging has properties intermediate between those generated by ordinary kriging and stochastic realizations resulting from simulated annealing and sequential Gaussian simulation. The frequency distribution is well reproduced by the compensated kriging surface, which also approximates the experimental semivariogram well - better than ordinary kriging, but not as well as stochastic realizations. Compensated kriging produces surfaces that are more accurate than stochastic realizations, but not as accurate as ordinary kriging. ?? 1996 International Association for Mathematical Geology.

  16. Baseline Error Analysis and Experimental Validation for Height Measurement of Formation Insar Satellite

    NASA Astrophysics Data System (ADS)

    Gao, X.; Li, T.; Zhang, X.; Geng, X.

    2018-04-01

    In this paper, we proposed the stochastic model of InSAR height measurement by considering the interferometric geometry of InSAR height measurement. The model directly described the relationship between baseline error and height measurement error. Then the simulation analysis in combination with TanDEM-X parameters was implemented to quantitatively evaluate the influence of baseline error to height measurement. Furthermore, the whole emulation validation of InSAR stochastic model was performed on the basis of SRTM DEM and TanDEM-X parameters. The spatial distribution characteristics and error propagation rule of InSAR height measurement were fully evaluated.

  17. Stochastic optimal control of non-stationary response of a single-degree-of-freedom vehicle model

    NASA Astrophysics Data System (ADS)

    Narayanan, S.; Raju, G. V.

    1990-09-01

    An active suspension system to control the non-stationary response of a single-degree-of-freedom (sdf) vehicle model with variable velocity traverse over a rough road is investigated. The suspension is optimized with respect to ride comfort and road holding, using stochastic optimal control theory. The ground excitation is modelled as a spatial homogeneous random process, being the output of a linear shaping filter to white noise. The effect of the rolling contact of the tyre is considered by an additional filter in cascade. The non-stationary response with active suspension is compared with that of a passive system.

  18. Front propagation and effect of memory in stochastic desertification models with an absorbing state

    NASA Astrophysics Data System (ADS)

    Herman, Dor; Shnerb, Nadav M.

    2017-08-01

    Desertification in dryland ecosystems is considered to be a major environmental threat that may lead to devastating consequences. The concern increases when the system admits two alternative steady states and the transition is abrupt and irreversible (catastrophic shift). However, recent studies show that the inherent stochasticity of the birth-death process, when superimposed on the presence of an absorbing state, may lead to a continuous (second order) transition even if the deterministic dynamics supports a catastrophic transition. Following these works we present here a numerical study of a one-dimensional stochastic desertification model, where the deterministic predictions are confronted with the observed dynamics. Our results suggest that a stochastic spatial system allows for a propagating front only when its active phase invades the inactive (desert) one. In the extinction phase one observes transient front propagation followed by a global collapse. In the presence of a seed bank the vegetation state is shown to be more robust against demographic stochasticity, but the transition in that case still belongs to the directed percolation equivalence class.

  19. Debates—Stochastic subsurface hydrology from theory to practice: The relevance of stochastic subsurface hydrology to practical problems of contaminant transport and remediation. What is characterization and stochastic theory good for?

    NASA Astrophysics Data System (ADS)

    Fiori, A.; Cvetkovic, V.; Dagan, G.; Attinger, S.; Bellin, A.; Dietrich, P.; Zech, A.; Teutsch, G.

    2016-12-01

    The emergence of stochastic subsurface hydrology stemmed from the realization that the random spatial variability of aquifer properties has a profound impact on solute transport. The last four decades witnessed a tremendous expansion of the discipline, many fundamental processes and principal mechanisms being identified. However, the research findings have not impacted significantly the application in practice, for several reasons which are discussed. The paper discusses the current status of stochastic subsurface hydrology, the relevance of the scientific results for applications and it also provides a perspective to a few possible future directions. In particular, we discuss how the transfer of knowledge can be facilitated by identifying clear goals for characterization and modeling application, relying on recent recent advances in research in these areas.

  20. Modelling and simulation techniques for membrane biology.

    PubMed

    Burrage, Kevin; Hancock, John; Leier, André; Nicolau, Dan V

    2007-07-01

    One of the most important aspects of Computational Cell Biology is the understanding of the complicated dynamical processes that take place on plasma membranes. These processes are often so complicated that purely temporal models cannot always adequately capture the dynamics. On the other hand, spatial models can have large computational overheads. In this article, we review some of these issues with respect to chemistry, membrane microdomains and anomalous diffusion and discuss how to select appropriate modelling and simulation paradigms based on some or all the following aspects: discrete, continuous, stochastic, delayed and complex spatial processes.

  1. Characterization and reconstruction of 3D stochastic microstructures via supervised learning.

    PubMed

    Bostanabad, R; Chen, W; Apley, D W

    2016-12-01

    The need for computational characterization and reconstruction of volumetric maps of stochastic microstructures for understanding the role of material structure in the processing-structure-property chain has been highlighted in the literature. Recently, a promising characterization and reconstruction approach has been developed where the essential idea is to convert the digitized microstructure image into an appropriate training dataset to learn the stochastic nature of the morphology by fitting a supervised learning model to the dataset. This compact model can subsequently be used to efficiently reconstruct as many statistically equivalent microstructure samples as desired. The goal of this paper is to build upon the developed approach in three major directions by: (1) extending the approach to characterize 3D stochastic microstructures and efficiently reconstruct 3D samples, (2) improving the performance of the approach by incorporating user-defined predictors into the supervised learning model, and (3) addressing potential computational issues by introducing a reduced model which can perform as effectively as the full model. We test the extended approach on three examples and show that the spatial dependencies, as evaluated via various measures, are well preserved in the reconstructed samples. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  2. Sources and Sinks: A Stochastic Model of Evolution in Heterogeneous Environments

    NASA Astrophysics Data System (ADS)

    Hermsen, Rutger; Hwa, Terence

    2010-12-01

    We study evolution driven by spatial heterogeneity in a stochastic model of source-sink ecologies. A sink is a habitat where mortality exceeds reproduction so that a local population persists only due to immigration from a source. Immigrants can, however, adapt to conditions in the sink by mutation. To characterize the adaptation rate, we derive expressions for the first arrival time of adapted mutants. The joint effects of migration, mutation, birth, and death result in two distinct parameter regimes. These results may pertain to the rapid evolution of drug-resistant pathogens and insects.

  3. Discrete-State Stochastic Models of Calcium-Regulated Calcium Influx and Subspace Dynamics Are Not Well-Approximated by ODEs That Neglect Concentration Fluctuations

    PubMed Central

    Weinberg, Seth H.; Smith, Gregory D.

    2012-01-01

    Cardiac myocyte calcium signaling is often modeled using deterministic ordinary differential equations (ODEs) and mass-action kinetics. However, spatially restricted “domains” associated with calcium influx are small enough (e.g., 10−17 liters) that local signaling may involve 1–100 calcium ions. Is it appropriate to model the dynamics of subspace calcium using deterministic ODEs or, alternatively, do we require stochastic descriptions that account for the fundamentally discrete nature of these local calcium signals? To address this question, we constructed a minimal Markov model of a calcium-regulated calcium channel and associated subspace. We compared the expected value of fluctuating subspace calcium concentration (a result that accounts for the small subspace volume) with the corresponding deterministic model (an approximation that assumes large system size). When subspace calcium did not regulate calcium influx, the deterministic and stochastic descriptions agreed. However, when calcium binding altered channel activity in the model, the continuous deterministic description often deviated significantly from the discrete stochastic model, unless the subspace volume is unrealistically large and/or the kinetics of the calcium binding are sufficiently fast. This principle was also demonstrated using a physiologically realistic model of calmodulin regulation of L-type calcium channels introduced by Yue and coworkers. PMID:23509597

  4. Multiscale finite element modeling of sheet molding compound (SMC) composite structure based on stochastic mesostructure reconstruction

    DOE PAGES

    Chen, Zhangxing; Huang, Tianyu; Shao, Yimin; ...

    2018-03-15

    Predicting the mechanical behavior of the chopped carbon fiber Sheet Molding Compound (SMC) due to spatial variations in local material properties is critical for the structural performance analysis but is computationally challenging. Such spatial variations are induced by the material flow in the compression molding process. In this work, a new multiscale SMC modeling framework and the associated computational techniques are developed to provide accurate and efficient predictions of SMC mechanical performance. The proposed multiscale modeling framework contains three modules. First, a stochastic algorithm for 3D chip-packing reconstruction is developed to efficiently generate the SMC mesoscale Representative Volume Element (RVE)more » model for Finite Element Analysis (FEA). A new fiber orientation tensor recovery function is embedded in the reconstruction algorithm to match reconstructions with the target characteristics of fiber orientation distribution. Second, a metamodeling module is established to improve the computational efficiency by creating the surrogates of mesoscale analyses. Third, the macroscale behaviors are predicted by an efficient multiscale model, in which the spatially varying material properties are obtained based on the local fiber orientation tensors. Our approach is further validated through experiments at both meso- and macro-scales, such as tensile tests assisted by Digital Image Correlation (DIC) and mesostructure imaging.« less

  5. Multiscale finite element modeling of sheet molding compound (SMC) composite structure based on stochastic mesostructure reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Zhangxing; Huang, Tianyu; Shao, Yimin

    Predicting the mechanical behavior of the chopped carbon fiber Sheet Molding Compound (SMC) due to spatial variations in local material properties is critical for the structural performance analysis but is computationally challenging. Such spatial variations are induced by the material flow in the compression molding process. In this work, a new multiscale SMC modeling framework and the associated computational techniques are developed to provide accurate and efficient predictions of SMC mechanical performance. The proposed multiscale modeling framework contains three modules. First, a stochastic algorithm for 3D chip-packing reconstruction is developed to efficiently generate the SMC mesoscale Representative Volume Element (RVE)more » model for Finite Element Analysis (FEA). A new fiber orientation tensor recovery function is embedded in the reconstruction algorithm to match reconstructions with the target characteristics of fiber orientation distribution. Second, a metamodeling module is established to improve the computational efficiency by creating the surrogates of mesoscale analyses. Third, the macroscale behaviors are predicted by an efficient multiscale model, in which the spatially varying material properties are obtained based on the local fiber orientation tensors. Our approach is further validated through experiments at both meso- and macro-scales, such as tensile tests assisted by Digital Image Correlation (DIC) and mesostructure imaging.« less

  6. Stochastic simulation of reaction-diffusion systems: A fluctuating-hydrodynamics approach

    NASA Astrophysics Data System (ADS)

    Kim, Changho; Nonaka, Andy; Bell, John B.; Garcia, Alejandro L.; Donev, Aleksandar

    2017-03-01

    We develop numerical methods for stochastic reaction-diffusion systems based on approaches used for fluctuating hydrodynamics (FHD). For hydrodynamic systems, the FHD formulation is formally described by stochastic partial differential equations (SPDEs). In the reaction-diffusion systems we consider, our model becomes similar to the reaction-diffusion master equation (RDME) description when our SPDEs are spatially discretized and reactions are modeled as a source term having Poisson fluctuations. However, unlike the RDME, which becomes prohibitively expensive for an increasing number of molecules, our FHD-based description naturally extends from the regime where fluctuations are strong, i.e., each mesoscopic cell has few (reactive) molecules, to regimes with moderate or weak fluctuations, and ultimately to the deterministic limit. By treating diffusion implicitly, we avoid the severe restriction on time step size that limits all methods based on explicit treatments of diffusion and construct numerical methods that are more efficient than RDME methods, without compromising accuracy. Guided by an analysis of the accuracy of the distribution of steady-state fluctuations for the linearized reaction-diffusion model, we construct several two-stage (predictor-corrector) schemes, where diffusion is treated using a stochastic Crank-Nicolson method, and reactions are handled by the stochastic simulation algorithm of Gillespie or a weakly second-order tau leaping method. We find that an implicit midpoint tau leaping scheme attains second-order weak accuracy in the linearized setting and gives an accurate and stable structure factor for a time step size of an order of magnitude larger than the hopping time scale of diffusing molecules. We study the numerical accuracy of our methods for the Schlögl reaction-diffusion model both in and out of thermodynamic equilibrium. We demonstrate and quantify the importance of thermodynamic fluctuations to the formation of a two-dimensional Turing-like pattern and examine the effect of fluctuations on three-dimensional chemical front propagation. By comparing stochastic simulations to deterministic reaction-diffusion simulations, we show that fluctuations accelerate pattern formation in spatially homogeneous systems and lead to a qualitatively different disordered pattern behind a traveling wave.

  7. Stochastic simulation of reaction-diffusion systems: A fluctuating-hydrodynamics approach

    DOE PAGES

    Kim, Changho; Nonaka, Andy; Bell, John B.; ...

    2017-03-24

    Here, we develop numerical methods for stochastic reaction-diffusion systems based on approaches used for fluctuating hydrodynamics (FHD). For hydrodynamic systems, the FHD formulation is formally described by stochastic partial differential equations (SPDEs). In the reaction-diffusion systems we consider, our model becomes similar to the reaction-diffusion master equation (RDME) description when our SPDEs are spatially discretized and reactions are modeled as a source term having Poisson fluctuations. However, unlike the RDME, which becomes prohibitively expensive for an increasing number of molecules, our FHD-based description naturally extends from the regime where fluctuations are strong, i.e., each mesoscopic cell has few (reactive) molecules,more » to regimes with moderate or weak fluctuations, and ultimately to the deterministic limit. By treating diffusion implicitly, we avoid the severe restriction on time step size that limits all methods based on explicit treatments of diffusion and construct numerical methods that are more efficient than RDME methods, without compromising accuracy. Guided by an analysis of the accuracy of the distribution of steady-state fluctuations for the linearized reaction-diffusion model, we construct several two-stage (predictor-corrector) schemes, where diffusion is treated using a stochastic Crank-Nicolson method, and reactions are handled by the stochastic simulation algorithm of Gillespie or a weakly second-order tau leaping method. We find that an implicit midpoint tau leaping scheme attains second-order weak accuracy in the linearized setting and gives an accurate and stable structure factor for a time step size of an order of magnitude larger than the hopping time scale of diffusing molecules. We study the numerical accuracy of our methods for the Schlögl reaction-diffusion model both in and out of thermodynamic equilibrium. We demonstrate and quantify the importance of thermodynamic fluctuations to the formation of a two-dimensional Turing-like pattern and examine the effect of fluctuations on three-dimensional chemical front propagation. Furthermore, by comparing stochastic simulations to deterministic reaction-diffusion simulations, we show that fluctuations accelerate pattern formation in spatially homogeneous systems and lead to a qualitatively different disordered pattern behind a traveling wave.« less

  8. Laws of Large Numbers and Langevin Approximations for Stochastic Neural Field Equations

    PubMed Central

    2013-01-01

    In this study, we consider limit theorems for microscopic stochastic models of neural fields. We show that the Wilson–Cowan equation can be obtained as the limit in uniform convergence on compacts in probability for a sequence of microscopic models when the number of neuron populations distributed in space and the number of neurons per population tend to infinity. This result also allows to obtain limits for qualitatively different stochastic convergence concepts, e.g., convergence in the mean. Further, we present a central limit theorem for the martingale part of the microscopic models which, suitably re-scaled, converges to a centred Gaussian process with independent increments. These two results provide the basis for presenting the neural field Langevin equation, a stochastic differential equation taking values in a Hilbert space, which is the infinite-dimensional analogue of the chemical Langevin equation in the present setting. On a technical level, we apply recently developed law of large numbers and central limit theorems for piecewise deterministic processes taking values in Hilbert spaces to a master equation formulation of stochastic neuronal network models. These theorems are valid for processes taking values in Hilbert spaces, and by this are able to incorporate spatial structures of the underlying model. Mathematics Subject Classification (2000): 60F05, 60J25, 60J75, 92C20. PMID:23343328

  9. Stochastic output error vibration-based damage detection and assessment in structures under earthquake excitation

    NASA Astrophysics Data System (ADS)

    Sakellariou, J. S.; Fassois, S. D.

    2006-11-01

    A stochastic output error (OE) vibration-based methodology for damage detection and assessment (localization and quantification) in structures under earthquake excitation is introduced. The methodology is intended for assessing the state of a structure following potential damage occurrence by exploiting vibration signal measurements produced by low-level earthquake excitations. It is based upon (a) stochastic OE model identification, (b) statistical hypothesis testing procedures for damage detection, and (c) a geometric method (GM) for damage assessment. The methodology's advantages include the effective use of the non-stationary and limited duration earthquake excitation, the handling of stochastic uncertainties, the tackling of the damage localization and quantification subproblems, the use of "small" size, simple and partial (in both the spatial and frequency bandwidth senses) identified OE-type models, and the use of a minimal number of measured vibration signals. Its feasibility and effectiveness are assessed via Monte Carlo experiments employing a simple simulation model of a 6 storey building. It is demonstrated that damage levels of 5% and 20% reduction in a storey's stiffness characteristics may be properly detected and assessed using noise-corrupted vibration signals.

  10. Spatial Moran models, II: cancer initiation in spatially structured tissue

    PubMed Central

    Foo, J; Leder, K

    2016-01-01

    We study the accumulation and spread of advantageous mutations in a spatial stochastic model of cancer initiation on a lattice. The parameters of this general model can be tuned to study a variety of cancer types and genetic progression pathways. This investigation contributes to an understanding of how the selective advantage of cancer cells together with the rates of mutations driving cancer, impact the process and timing of carcinogenesis. These results can be used to give insights into tumor heterogeneity and the “cancer field effect,” the observation that a malignancy is often surrounded by cells that have undergone premalignant transformation. PMID:26126947

  11. Multi-Algorithm Particle Simulations with Spatiocyte.

    PubMed

    Arjunan, Satya N V; Takahashi, Koichi

    2017-01-01

    As quantitative biologists get more measurements of spatially regulated systems such as cell division and polarization, simulation of reaction and diffusion of proteins using the data is becoming increasingly relevant to uncover the mechanisms underlying the systems. Spatiocyte is a lattice-based stochastic particle simulator for biochemical reaction and diffusion processes. Simulations can be performed at single molecule and compartment spatial scales simultaneously. Molecules can diffuse and react in 1D (filament), 2D (membrane), and 3D (cytosol) compartments. The implications of crowded regions in the cell can be investigated because each diffusing molecule has spatial dimensions. Spatiocyte adopts multi-algorithm and multi-timescale frameworks to simulate models that simultaneously employ deterministic, stochastic, and particle reaction-diffusion algorithms. Comparison of light microscopy images to simulation snapshots is supported by Spatiocyte microscopy visualization and molecule tagging features. Spatiocyte is open-source software and is freely available at http://spatiocyte.org .

  12. The advantage of being slow: The quasi-neutral contact process.

    PubMed

    de Oliveira, Marcelo Martins; Dickman, Ronald

    2017-01-01

    According to the competitive exclusion principle, in a finite ecosystem, extinction occurs naturally when two or more species compete for the same resources. An important question that arises is: when coexistence is not possible, which mechanisms confer an advantage to a given species against the other(s)? In general, it is expected that the species with the higher reproductive/death ratio will win the competition, but other mechanisms, such as asymmetry in interspecific competition or unequal diffusion rates, have been found to change this scenario dramatically. In this work, we examine competitive advantage in the context of quasi-neutral population models, including stochastic models with spatial structure as well as macroscopic (mean-field) descriptions. We employ a two-species contact process in which the "biological clock" of one species is a factor of α slower than that of the other species. Our results provide new insights into how stochasticity and competition interact to determine extinction in finite spatial systems. We find that a species with a slower biological clock has an advantage if resources are limited, winning the competition against a species with a faster clock, in relatively small systems. Periodic or stochastic environmental variations also favor the slower species, even in much larger systems.

  13. High-resolution stochastic generation of extreme rainfall intensity for urban drainage modelling applications

    NASA Astrophysics Data System (ADS)

    Peleg, Nadav; Blumensaat, Frank; Molnar, Peter; Fatichi, Simone; Burlando, Paolo

    2016-04-01

    Urban drainage response is highly dependent on the spatial and temporal structure of rainfall. Therefore, measuring and simulating rainfall at a high spatial and temporal resolution is a fundamental step to fully assess urban drainage system reliability and related uncertainties. This is even more relevant when considering extreme rainfall events. However, the current space-time rainfall models have limitations in capturing extreme rainfall intensity statistics for short durations. Here, we use the STREAP (Space-Time Realizations of Areal Precipitation) model, which is a novel stochastic rainfall generator for simulating high-resolution rainfall fields that preserve the spatio-temporal structure of rainfall and its statistical characteristics. The model enables a generation of rain fields at 102 m and minute scales in a fast and computer-efficient way matching the requirements for hydrological analysis of urban drainage systems. The STREAP model was applied successfully in the past to generate high-resolution extreme rainfall intensities over a small domain. A sub-catchment in the city of Luzern (Switzerland) was chosen as a case study to: (i) evaluate the ability of STREAP to disaggregate extreme rainfall intensities for urban drainage applications; (ii) assessing the role of stochastic climate variability of rainfall in flow response and (iii) evaluate the degree of non-linearity between extreme rainfall intensity and system response (i.e. flow) for a small urban catchment. The channel flow at the catchment outlet is simulated by means of a calibrated hydrodynamic sewer model.

  14. Simultaneous stochastic inversion for geomagnetic main field and secular variation. I - A large-scale inverse problem

    NASA Technical Reports Server (NTRS)

    Bloxham, Jeremy

    1987-01-01

    The method of stochastic inversion is extended to the simultaneous inversion of both main field and secular variation. In the present method, the time dependency is represented by an expansion in Legendre polynomials, resulting in a simple diagonal form for the a priori covariance matrix. The efficient preconditioned Broyden-Fletcher-Goldfarb-Shanno algorithm is used to solve the large system of equations resulting from expansion of the field spatially to spherical harmonic degree 14 and temporally to degree 8. Application of the method to observatory data spanning the 1900-1980 period results in a data fit of better than 30 nT, while providing temporally and spatially smoothly varying models of the magnetic field at the core-mantle boundary.

  15. Bounded noise induced first-order phase transitions in a baseline non-spatial model of gene transcription

    NASA Astrophysics Data System (ADS)

    d'Onofrio, Alberto; Caravagna, Giulio; de Franciscis, Sebastiano

    2018-02-01

    In this work we consider, from a statistical mechanics point of view, the effects of bounded stochastic perturbations of the protein decay rate for a bistable biomolecular network module. Namely, we consider the perturbations of the protein decay/binding rate constant (DBRC) in a circuit modeling the positive feedback of a transcription factor (TF) on its own synthesis. The DBRC models both the spontaneous degradation of the TF and its linking to other unknown biomolecular factors or drugs. We show that bounded perturbations of the DBRC preserve the positivity of the parameter value (and also its limited variation), and induce effects of interest. First, the noise amplitude induces a first-order phase transition. This is of interest since the system in study has neither spatial components nor it is composed by multiple interacting networks. In particular, we observe that the system passes from two to a unique stochastic attractor, and vice-versa. This behavior is different from noise-induced transitions (also termed phenomenological bifurcations), where a unique stochastic attractor changes its shape depending on the values of a parameter. Moreover, we observe irreversible jumps as a consequence of the above-mentioned phase transition. We show that the illustrated mechanism holds for general models with the same deterministic hysteresis bifurcation structure. Finally, we illustrate the possible implications of our findings to the intracellular pharmacodynamics of drugs delivered in continuous infusion.

  16. Deterministic ripple-spreading model for complex networks.

    PubMed

    Hu, Xiao-Bing; Wang, Ming; Leeson, Mark S; Hines, Evor L; Di Paolo, Ezequiel

    2011-04-01

    This paper proposes a deterministic complex network model, which is inspired by the natural ripple-spreading phenomenon. The motivations and main advantages of the model are the following: (i) The establishment of many real-world networks is a dynamic process, where it is often observed that the influence of a few local events spreads out through nodes, and then largely determines the final network topology. Obviously, this dynamic process involves many spatial and temporal factors. By simulating the natural ripple-spreading process, this paper reports a very natural way to set up a spatial and temporal model for such complex networks. (ii) Existing relevant network models are all stochastic models, i.e., with a given input, they cannot output a unique topology. Differently, the proposed ripple-spreading model can uniquely determine the final network topology, and at the same time, the stochastic feature of complex networks is captured by randomly initializing ripple-spreading related parameters. (iii) The proposed model can use an easily manageable number of ripple-spreading related parameters to precisely describe a network topology, which is more memory efficient when compared with traditional adjacency matrix or similar memory-expensive data structures. (iv) The ripple-spreading model has a very good potential for both extensions and applications.

  17. Stochastic simulation of multiscale complex systems with PISKaS: A rule-based approach.

    PubMed

    Perez-Acle, Tomas; Fuenzalida, Ignacio; Martin, Alberto J M; Santibañez, Rodrigo; Avaria, Rodrigo; Bernardin, Alejandro; Bustos, Alvaro M; Garrido, Daniel; Dushoff, Jonathan; Liu, James H

    2018-03-29

    Computational simulation is a widely employed methodology to study the dynamic behavior of complex systems. Although common approaches are based either on ordinary differential equations or stochastic differential equations, these techniques make several assumptions which, when it comes to biological processes, could often lead to unrealistic models. Among others, model approaches based on differential equations entangle kinetics and causality, failing when complexity increases, separating knowledge from models, and assuming that the average behavior of the population encompasses any individual deviation. To overcome these limitations, simulations based on the Stochastic Simulation Algorithm (SSA) appear as a suitable approach to model complex biological systems. In this work, we review three different models executed in PISKaS: a rule-based framework to produce multiscale stochastic simulations of complex systems. These models span multiple time and spatial scales ranging from gene regulation up to Game Theory. In the first example, we describe a model of the core regulatory network of gene expression in Escherichia coli highlighting the continuous model improvement capacities of PISKaS. The second example describes a hypothetical outbreak of the Ebola virus occurring in a compartmentalized environment resembling cities and highways. Finally, in the last example, we illustrate a stochastic model for the prisoner's dilemma; a common approach from social sciences describing complex interactions involving trust within human populations. As whole, these models demonstrate the capabilities of PISKaS providing fertile scenarios where to explore the dynamics of complex systems. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Coupled Effects of non-Newtonian Rheology and Aperture Variability on Flow in a Single Fracture

    NASA Astrophysics Data System (ADS)

    Di Federico, V.; Felisa, G.; Lauriola, I.; Longo, S.

    2017-12-01

    Modeling of non-Newtonian flow in fractured media is essential in hydraulic fracturing and drilling operations, EOR, environmental remediation, and to understand magma intrusions. An important step in the modeling effort is a detailed understanding of flow in a single fracture, as the fracture aperture is spatially variable. A large bibliography exists on Newtonian and non-Newtonian flow in variable aperture fractures. Ultimately, stochastic or deterministic modeling leads to the flowrate under a given pressure gradient as a function of the parameters describing the aperture variability and the fluid rheology. Typically, analytical or numerical studies are performed adopting a power-law (Oswald-de Waele) model. Yet the power-law model, routinely used e.g. for hydro-fracturing modeling, does not characterize real fluids at low and high shear rates. A more appropriate rheological model is provided by e.g. the four-parameter Carreau constitutive equation, which is in turn approximated by the more tractable truncated power-law model. Moreover, fluids of interest may exhibit yield stress, which requires the Bingham or Herschel-Bulkely model. This study employs different rheological models in the context of flow in variable aperture fractures, with the aim of understanding the coupled effect of rheology and aperture spatial variability with a simplified model. The aperture variation, modeled within a stochastic or deterministic framework, is taken to be one-dimensional and i) perpendicular; ii) parallel to the flow direction; for stochastic modeling, the influence of different distribution functions is examined. Results for the different rheological models are compared with those obtained for the pure power-law. The adoption of the latter model leads to overestimation of the flowrate, more so for large aperture variability. The presence of yield stress also induces significant changes in the resulting flowrate for assigned external pressure gradient.

  19. An agent-based stochastic Occupancy Simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yixing; Hong, Tianzhen; Luo, Xuan

    Occupancy has significant impacts on building performance. However, in current building performance simulation programs, occupancy inputs are static and lack diversity, contributing to discrepancies between the simulated and actual building performance. This work presents an Occupancy Simulator that simulates the stochastic behavior of occupant presence and movement in buildings, capturing the spatial and temporal occupancy diversity. Each occupant and each space in the building are explicitly simulated as an agent with their profiles of stochastic behaviors. The occupancy behaviors are represented with three types of models: (1) the status transition events (e.g., first arrival in office) simulated with probability distributionmore » model, (2) the random moving events (e.g., from one office to another) simulated with a homogeneous Markov chain model, and (3) the meeting events simulated with a new stochastic model. A hierarchical data model was developed for the Occupancy Simulator, which reduces the amount of data input by using the concepts of occupant types and space types. Finally, a case study of a small office building is presented to demonstrate the use of the Simulator to generate detailed annual sub-hourly occupant schedules for individual spaces and the whole building. The Simulator is a web application freely available to the public and capable of performing a detailed stochastic simulation of occupant presence and movement in buildings. Future work includes enhancements in the meeting event model, consideration of personal absent days, verification and validation of the simulated occupancy results, and expansion for use with residential buildings.« less

  20. An agent-based stochastic Occupancy Simulator

    DOE PAGES

    Chen, Yixing; Hong, Tianzhen; Luo, Xuan

    2017-06-01

    Occupancy has significant impacts on building performance. However, in current building performance simulation programs, occupancy inputs are static and lack diversity, contributing to discrepancies between the simulated and actual building performance. This work presents an Occupancy Simulator that simulates the stochastic behavior of occupant presence and movement in buildings, capturing the spatial and temporal occupancy diversity. Each occupant and each space in the building are explicitly simulated as an agent with their profiles of stochastic behaviors. The occupancy behaviors are represented with three types of models: (1) the status transition events (e.g., first arrival in office) simulated with probability distributionmore » model, (2) the random moving events (e.g., from one office to another) simulated with a homogeneous Markov chain model, and (3) the meeting events simulated with a new stochastic model. A hierarchical data model was developed for the Occupancy Simulator, which reduces the amount of data input by using the concepts of occupant types and space types. Finally, a case study of a small office building is presented to demonstrate the use of the Simulator to generate detailed annual sub-hourly occupant schedules for individual spaces and the whole building. The Simulator is a web application freely available to the public and capable of performing a detailed stochastic simulation of occupant presence and movement in buildings. Future work includes enhancements in the meeting event model, consideration of personal absent days, verification and validation of the simulated occupancy results, and expansion for use with residential buildings.« less

  1. Stochastic simulation in systems biology

    PubMed Central

    Székely, Tamás; Burrage, Kevin

    2014-01-01

    Natural systems are, almost by definition, heterogeneous: this can be either a boon or an obstacle to be overcome, depending on the situation. Traditionally, when constructing mathematical models of these systems, heterogeneity has typically been ignored, despite its critical role. However, in recent years, stochastic computational methods have become commonplace in science. They are able to appropriately account for heterogeneity; indeed, they are based around the premise that systems inherently contain at least one source of heterogeneity (namely, intrinsic heterogeneity). In this mini-review, we give a brief introduction to theoretical modelling and simulation in systems biology and discuss the three different sources of heterogeneity in natural systems. Our main topic is an overview of stochastic simulation methods in systems biology. There are many different types of stochastic methods. We focus on one group that has become especially popular in systems biology, biochemistry, chemistry and physics. These discrete-state stochastic methods do not follow individuals over time; rather they track only total populations. They also assume that the volume of interest is spatially homogeneous. We give an overview of these methods, with a discussion of the advantages and disadvantages of each, and suggest when each is more appropriate to use. We also include references to software implementations of them, so that beginners can quickly start using stochastic methods for practical problems of interest. PMID:25505503

  2. A neutral model of low-severity fire regimes

    Treesearch

    Don McKenzie; Amy E. Hessl

    2008-01-01

    Climate, topography, fuel loadings, and human activities all affect spatial and temporal patterns of fire occurrence. Because fire occurrence is a stochastic process, an understanding of baseline variability is necessary in order to identify constraints on surface fire regimes. With a suitable null, or neutral, model, characteristics of natural fire regimes estimated...

  3. Using neutral models to identify constraints on low-severity fire regimes.

    Treesearch

    Donald McKenzie; Amy E. Hessl; Lara-Karena B. Kellogg

    2006-01-01

    Climate, topography, fuel loadings, and human activities all affect spatial and temporal patterns of fire occurrence. Because fire is modeled as a stochastic process, for which each fire history is only one realization, a simulation approach is necessary to understand baseline variability, thereby identifying constraints, or forcing functions, that affect fire regimes...

  4. Robust Spatial Autoregressive Modeling for Hardwood Log Inspection

    Treesearch

    Dongping Zhu; A.A. Beex

    1994-01-01

    We explore the application of a stochastic texture modeling method toward a machine vision system for log inspection in the forest products industry. This machine vision system uses computerized tomography (CT) imaging to locate and identify internal defects in hardwood logs. The application of CT to such industrial vision problems requires efficient and robust image...

  5. Ensemble modeling of stochastic unsteady open-channel flow in terms of its time-space evolutionary probability distribution - Part 1: theoretical development

    NASA Astrophysics Data System (ADS)

    Dib, Alain; Kavvas, M. Levent

    2018-03-01

    The Saint-Venant equations are commonly used as the governing equations to solve for modeling the spatially varied unsteady flow in open channels. The presence of uncertainties in the channel or flow parameters renders these equations stochastic, thus requiring their solution in a stochastic framework in order to quantify the ensemble behavior and the variability of the process. While the Monte Carlo approach can be used for such a solution, its computational expense and its large number of simulations act to its disadvantage. This study proposes, explains, and derives a new methodology for solving the stochastic Saint-Venant equations in only one shot, without the need for a large number of simulations. The proposed methodology is derived by developing the nonlocal Lagrangian-Eulerian Fokker-Planck equation of the characteristic form of the stochastic Saint-Venant equations for an open-channel flow process, with an uncertain roughness coefficient. A numerical method for its solution is subsequently devised. The application and validation of this methodology are provided in a companion paper, in which the statistical results computed by the proposed methodology are compared against the results obtained by the Monte Carlo approach.

  6. Statistical Compression of Wind Speed Data

    NASA Astrophysics Data System (ADS)

    Tagle, F.; Castruccio, S.; Crippa, P.; Genton, M.

    2017-12-01

    In this work we introduce a lossy compression approach that utilizes a stochastic wind generator based on a non-Gaussian distribution to reproduce the internal climate variability of daily wind speed as represented by the CESM Large Ensemble over Saudi Arabia. Stochastic wind generators, and stochastic weather generators more generally, are statistical models that aim to match certain statistical properties of the data on which they are trained. They have been used extensively in applications ranging from agricultural models to climate impact studies. In this novel context, the parameters of the fitted model can be interpreted as encoding the information contained in the original uncompressed data. The statistical model is fit to only 3 of the 30 ensemble members and it adequately captures the variability of the ensemble in terms of seasonal internannual variability of daily wind speed. To deal with such a large spatial domain, it is partitioned into 9 region, and the model is fit independently to each of these. We further discuss a recent refinement of the model, which relaxes this assumption of regional independence, by introducing a large-scale component that interacts with the fine-scale regional effects.

  7. Recent topographic evolution and erosion of the deglaciated Washington Cascades inferred from a stochastic landscape evolution model

    NASA Astrophysics Data System (ADS)

    Moon, S.; Shelef, E.; Hilley, G. E.

    2013-12-01

    The Washington Cascades is currently in topographic and erosional disequilibrium after deglaciation occurred around 11- 17 ka ago. The topography still shows the features inherited from prior alpine glacial processes (e.g., cirques, steep side-valleys, and flat valley bottoms), though postglacial processes are currently denuding this landscape. Our previous study in this area calculated the thousand-year-timescale denudation rates using cosmogenic 10Be concentration (CRN-denudation rates), and showed that they were ~ four times higher than million-year-timescale uplift rates. In addition, the spatial distribution of denudation rates showed a good correlation with a factor-of-ten variation in precipitation. We interpreted this correlation as reflecting the sensitivity of landslide triggering in over-steepened deglaciated topography to precipitation, which produced high denudation rates in wet areas that experienced frequent landsliding. We explored this interpretation using a model of postglacial surface processes that predicts the evolution of the topography and denudation rates within the deglaciated Washington Cascades. Specifically, we used the model to understand the controls on and timescales of landscape response to changes in the surface process regime after deglaciation. The postglacial adjustment of this landscape is modeled using a geomorphic-transport-law-based numerical model that includes processes of river incision, hillslope diffusion, and stochastic landslides. The surface lowering due to landslides is parameterized using a physically-based slope stability model coupled to a stochastic model of the generation of landslides. The model parameters of river incision and stochastic landslides are calibrated based on the rates and distribution of thousand-year-timescale denudation rates measured from cosmogenic 10Be isotopes. The probability distribution of model parameters required to fit the observed denudation rates shows comparable ranges from previous studies in similar rock types and climatic conditions. The calibrated parameters suggest that the dominant sediment source of river sediments originates from stochastic landslides. The magnitude of landslide denudation rates is determined by failure density (similar to landslide frequency), while their spatial distribution is largely controlled by precipitation and slope angles. Simulation results show that denudation rates decay over time and take approximately 130-180 ka to reach steady-state rates. This response timescale is longer than glacial/interglacial cycles, suggesting that frequent climatic perturbations during the Quaternary may prevent these types of landscapes from reaching a dynamic equilibrium with postglacial processes.

  8. Impact of correlated magnetic noise on the detection of stochastic gravitational waves: Estimation based on a simple analytical model

    NASA Astrophysics Data System (ADS)

    Himemoto, Yoshiaki; Taruya, Atsushi

    2017-07-01

    After the first direct detection of gravitational waves (GW), detection of the stochastic background of GWs is an important next step, and the first GW event suggests that it is within the reach of the second-generation ground-based GW detectors. Such a GW signal is typically tiny and can be detected by cross-correlating the data from two spatially separated detectors if the detector noise is uncorrelated. It has been advocated, however, that the global magnetic fields in the Earth-ionosphere cavity produce the environmental disturbances at low-frequency bands, known as Schumann resonances, which potentially couple with GW detectors. In this paper, we present a simple analytical model to estimate its impact on the detection of stochastic GWs. The model crucially depends on the geometry of the detector pair through the directional coupling, and we investigate the basic properties of the correlated magnetic noise based on the analytic expressions. The model reproduces the major trend of the recently measured global correlation between the GW detectors via magnetometer. The estimated values of the impact of correlated noise also match those obtained from the measurement. Finally, we give an implication to the detection of stochastic GWs including upcoming detectors, KAGRA and LIGO India. The model suggests that LIGO Hanford-Virgo and Virgo-KAGRA pairs are possibly less sensitive to the correlated noise and can achieve a better sensitivity to the stochastic GW signal in the most pessimistic case.

  9. Anomalous sea surface structures as an object of statistical topography

    NASA Astrophysics Data System (ADS)

    Klyatskin, V. I.; Koshel, K. V.

    2015-06-01

    By exploiting ideas of statistical topography, we analyze the stochastic boundary problem of emergence of anomalous high structures on the sea surface. The kinematic boundary condition on the sea surface is assumed to be a closed stochastic quasilinear equation. Applying the stochastic Liouville equation, and presuming the stochastic nature of a given hydrodynamic velocity field within the diffusion approximation, we derive an equation for a spatially single-point, simultaneous joint probability density of the surface elevation field and its gradient. An important feature of the model is that it accounts for stochastic bottom irregularities as one, but not a single, perturbation. Hence, we address the assumption of the infinitely deep ocean to obtain statistic features of the surface elevation field and the squared elevation gradient field. According to the calculations, we show that clustering in the absolute surface elevation gradient field happens with the unit probability. It results in the emergence of rare events such as anomalous high structures and deep gaps on the sea surface almost in every realization of a stochastic velocity field.

  10. Formulating Spatially Varying Performance in the Statistical Fusion Framework

    PubMed Central

    Landman, Bennett A.

    2012-01-01

    To date, label fusion methods have primarily relied either on global (e.g. STAPLE, globally weighted vote) or voxelwise (e.g. locally weighted vote) performance models. Optimality of the statistical fusion framework hinges upon the validity of the stochastic model of how a rater errs (i.e., the labeling process model). Hitherto, approaches have tended to focus on the extremes of potential models. Herein, we propose an extension to the STAPLE approach to seamlessly account for spatially varying performance by extending the performance level parameters to account for a smooth, voxelwise performance level field that is unique to each rater. This approach, Spatial STAPLE, provides significant improvements over state-of-the-art label fusion algorithms in both simulated and empirical data sets. PMID:22438513

  11. Quasi-dynamic earthquake fault systems with rheological heterogeneity

    NASA Astrophysics Data System (ADS)

    Brietzke, G. B.; Hainzl, S.; Zoeller, G.; Holschneider, M.

    2009-12-01

    Seismic risk and hazard estimates mostly use pure empirical, stochastic models of earthquake fault systems tuned specifically to the vulnerable areas of interest. Although such models allow for reasonable risk estimates, such models cannot allow for physical statements of the described seismicity. In contrary such empirical stochastic models, physics based earthquake fault systems models allow for a physical reasoning and interpretation of the produced seismicity and system dynamics. Recently different fault system earthquake simulators based on frictional stick-slip behavior have been used to study effects of stress heterogeneity, rheological heterogeneity, or geometrical complexity on earthquake occurrence, spatial and temporal clustering of earthquakes, and system dynamics. Here we present a comparison of characteristics of synthetic earthquake catalogs produced by two different formulations of quasi-dynamic fault system earthquake simulators. Both models are based on discretized frictional faults embedded in an elastic half-space. While one (1) is governed by rate- and state-dependent friction with allowing three evolutionary stages of independent fault patches, the other (2) is governed by instantaneous frictional weakening with scheduled (and therefore causal) stress transfer. We analyze spatial and temporal clustering of events and characteristics of system dynamics by means of physical parameters of the two approaches.

  12. Analytical approximation of a stochastic, spatial simulation model of fire and forest landscape dynamics

    Treesearch

    A.J. Tepley; E.A. Thomann

    2012-01-01

    Recent increases in computation power have prompted enormous growth in the use of simulation models in ecological research. These models are valued for their ability to account for much of the ecological complexity found in field studies, but this ability usually comes at the cost of losing transparency into how the models work. In order to foster greater understanding...

  13. Estimating the Spatial Extent of Unsaturated Zones in Heterogeneous River-Aquifer Systems

    NASA Astrophysics Data System (ADS)

    Schilling, Oliver S.; Irvine, Dylan J.; Hendricks Franssen, Harrie-Jan; Brunner, Philip

    2017-12-01

    The presence of unsaturated zones at the river-aquifer interface has large implications on numerous hydraulic and chemical processes. However, the hydrological and geological controls that influence the development of unsaturated zones have so far only been analyzed with simplified conceptualizations of flow processes, or homogeneous conceptualizations of the hydraulic conductivity in either the aquifer or the riverbed. We systematically investigated the influence of heterogeneous structures in both the riverbed and the aquifer on the development of unsaturated zones. A stochastic 1-D criterion that takes both riverbed and aquifer heterogeneity into account was developed using a Monte Carlo sampling technique. The approach allows the reliable estimation of the upper bound of the spatial extent of unsaturated areas underneath a riverbed. Through systematic numerical modeling experiments, we furthermore show that horizontal capillary forces can reduce the spatial extent of unsaturated zones under clogged areas. This analysis shows how the spatial structure of clogging layers and aquifers influence the propensity for unsaturated zones to develop: In riverbeds where clogged areas are made up of many small, spatially disconnected patches with a diameter in the order of 1 m, unsaturated areas are less likely to develop compared to riverbeds where large clogged areas exist adjacent to unclogged areas. A combination of the stochastic 1-D criterion with an analysis of the spatial structure of the clogging layers and the potential for resaturation can help develop an appropriate conceptual model and inform the choice of a suitable numerical simulator for river-aquifer systems.

  14. Modeling the spatial spread of infectious diseases: the GLobal Epidemic and Mobility computational model

    PubMed Central

    Balcan, Duygu; Gonçalves, Bruno; Hu, Hao; Ramasco, José J.; Colizza, Vittoria

    2010-01-01

    Here we present the Global Epidemic and Mobility (GLEaM) model that integrates sociodemographic and population mobility data in a spatially structured stochastic disease approach to simulate the spread of epidemics at the worldwide scale. We discuss the flexible structure of the model that is open to the inclusion of different disease structures and local intervention policies. This makes GLEaM suitable for the computational modeling and anticipation of the spatio-temporal patterns of global epidemic spreading, the understanding of historical epidemics, the assessment of the role of human mobility in shaping global epidemics, and the analysis of mitigation and containment scenarios. PMID:21415939

  15. Stochastic calculus of protein filament formation under spatial confinement

    NASA Astrophysics Data System (ADS)

    Michaels, Thomas C. T.; Dear, Alexander J.; Knowles, Tuomas P. J.

    2018-05-01

    The growth of filamentous aggregates from precursor proteins is a process of central importance to both normal and aberrant biology, for instance as the driver of devastating human disorders such as Alzheimer's and Parkinson's diseases. The conventional theoretical framework for describing this class of phenomena in bulk is based upon the mean-field limit of the law of mass action, which implicitly assumes deterministic dynamics. However, protein filament formation processes under spatial confinement, such as in microdroplets or in the cellular environment, show intrinsic variability due to the molecular noise associated with small-volume effects. To account for this effect, in this paper we introduce a stochastic differential equation approach for investigating protein filament formation processes under spatial confinement. Using this framework, we study the statistical properties of stochastic aggregation curves, as well as the distribution of reaction lag-times. Moreover, we establish the gradual breakdown of the correlation between lag-time and normalized growth rate under spatial confinement. Our results establish the key role of spatial confinement in determining the onset of stochasticity in protein filament formation and offer a formalism for studying protein aggregation kinetics in small volumes in terms of the kinetic parameters describing the aggregation dynamics in bulk.

  16. Stochasticity and Spatial Interaction Govern Stem Cell Differentiation Dynamics

    NASA Astrophysics Data System (ADS)

    Smith, Quinton; Stukalin, Evgeny; Kusuma, Sravanti; Gerecht, Sharon; Sun, Sean X.

    2015-07-01

    Stem cell differentiation underlies many fundamental processes such as development, tissue growth and regeneration, as well as disease progression. Understanding how stem cell differentiation is controlled in mixed cell populations is an important step in developing quantitative models of cell population dynamics. Here we focus on quantifying the role of cell-cell interactions in determining stem cell fate. Toward this, we monitor stem cell differentiation in adherent cultures on micropatterns and collect statistical cell fate data. Results show high cell fate variability and a bimodal probability distribution of stem cell fraction on small (80-140 μm diameter) micropatterns. On larger (225-500 μm diameter) micropatterns, the variability is also high but the distribution of the stem cell fraction becomes unimodal. Using a stochastic model, we analyze the differentiation dynamics and quantitatively determine the differentiation probability as a function of stem cell fraction. Results indicate that stem cells can interact and sense cellular composition in their immediate neighborhood and adjust their differentiation probability accordingly. Blocking epithelial cadherin (E-cadherin) can diminish this cell-cell contact mediated sensing. For larger micropatterns, cell motility adds a spatial dimension to the picture. Taken together, we find stochasticity and cell-cell interactions are important factors in determining cell fate in mixed cell populations.

  17. Relativistic analysis of stochastic kinematics

    NASA Astrophysics Data System (ADS)

    Giona, Massimiliano

    2017-10-01

    The relativistic analysis of stochastic kinematics is developed in order to determine the transformation of the effective diffusivity tensor in inertial frames. Poisson-Kac stochastic processes are initially considered. For one-dimensional spatial models, the effective diffusion coefficient measured in a frame Σ moving with velocity w with respect to the rest frame of the stochastic process is inversely proportional to the third power of the Lorentz factor γ (w ) =(1-w2/c2) -1 /2 . Subsequently, higher-dimensional processes are analyzed and it is shown that the diffusivity tensor in a moving frame becomes nonisotropic: The diffusivities parallel and orthogonal to the velocity of the moving frame scale differently with respect to γ (w ) . The analysis of discrete space-time diffusion processes permits one to obtain a general transformation theory of the tensor diffusivity, confirmed by several different simulation experiments. Several implications of the theory are also addressed and discussed.

  18. Bayesian methods for characterizing unknown parameters of material models

    DOE PAGES

    Emery, J. M.; Grigoriu, M. D.; Field Jr., R. V.

    2016-02-04

    A Bayesian framework is developed for characterizing the unknown parameters of probabilistic models for material properties. In this framework, the unknown parameters are viewed as random and described by their posterior distributions obtained from prior information and measurements of quantities of interest that are observable and depend on the unknown parameters. The proposed Bayesian method is applied to characterize an unknown spatial correlation of the conductivity field in the definition of a stochastic transport equation and to solve this equation by Monte Carlo simulation and stochastic reduced order models (SROMs). As a result, the Bayesian method is also employed tomore » characterize unknown parameters of material properties for laser welds from measurements of peak forces sustained by these welds.« less

  19. Bayesian methods for characterizing unknown parameters of material models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emery, J. M.; Grigoriu, M. D.; Field Jr., R. V.

    A Bayesian framework is developed for characterizing the unknown parameters of probabilistic models for material properties. In this framework, the unknown parameters are viewed as random and described by their posterior distributions obtained from prior information and measurements of quantities of interest that are observable and depend on the unknown parameters. The proposed Bayesian method is applied to characterize an unknown spatial correlation of the conductivity field in the definition of a stochastic transport equation and to solve this equation by Monte Carlo simulation and stochastic reduced order models (SROMs). As a result, the Bayesian method is also employed tomore » characterize unknown parameters of material properties for laser welds from measurements of peak forces sustained by these welds.« less

  20. How big and how close? Habitat patch size and spacing to conserve a threatened species

    Treesearch

    Bruce G. Marcot; Martin G. Raphael; Nathan H. Schumaker; Beth Galleher

    2013-01-01

    We present results of a spatially explicit, individual-based stochastic dispersal model (HexSim) to evaluate effects of size and spacing of patches of habitat of Northern Spotted Owls (NSO; Strix occidentalis caurina) in Pacific Northwest, USA, to help advise recovery planning efforts. We modeled 31 artificial landscape scenarios representing...

  1. A Stochastic Fractional Dynamics Model of Rainfall Statistics

    NASA Astrophysics Data System (ADS)

    Kundu, Prasun; Travis, James

    2013-04-01

    Rainfall varies in space and time in a highly irregular manner and is described naturally in terms of a stochastic process. A characteristic feature of rainfall statistics is that they depend strongly on the space-time scales over which rain data are averaged. A spectral model of precipitation has been developed based on a stochastic differential equation of fractional order for the point rain rate, that allows a concise description of the second moment statistics of rain at any prescribed space-time averaging scale. The model is designed to faithfully reflect the scale dependence and is thus capable of providing a unified description of the statistics of both radar and rain gauge data. The underlying dynamical equation can be expressed in terms of space-time derivatives of fractional orders that are adjusted together with other model parameters to fit the data. The form of the resulting spectrum gives the model adequate flexibility to capture the subtle interplay between the spatial and temporal scales of variability of rain but strongly constrains the predicted statistical behavior as a function of the averaging length and times scales. The main restriction is the assumption that the statistics of the precipitation field is spatially homogeneous and isotropic and stationary in time. We test the model with radar and gauge data collected contemporaneously at the NASA TRMM ground validation sites located near Melbourne, Florida and in Kwajalein Atoll, Marshall Islands in the tropical Pacific. We estimate the parameters by tuning them to the second moment statistics of the radar data. The model predictions are then found to fit the second moment statistics of the gauge data reasonably well without any further adjustment. Some data sets containing periods of non-stationary behavior that involves occasional anomalously correlated rain events, present a challenge for the model.

  2. SPAGETTA: a Multi-Purpose Gridded Stochastic Weather Generator

    NASA Astrophysics Data System (ADS)

    Dubrovsky, M.; Huth, R.; Rotach, M. W.; Dabhi, H.

    2017-12-01

    SPAGETTA is a new multisite/gridded multivariate parametric stochastic weather generator (WG). Site-specific precipitation occurrence and amount are modelled by Markov chain and Gamma distribution, the non-precipitation variables are modelled by an autoregressive (AR) model conditioned on precipitation occurrence, and the spatial coherence of all variables is modelled following the Wilks' (2009) approach. SPAGETTA may be run in two modes. Mode 1: it is run as a classical WG, which is calibrated using weather series from multiple sites, and only then it may produce arbitrarily long synthetic series mimicking the spatial and temporal structure of the calibration data. To generate the weather series representing the future climate, the WG parameters are modified according to the climate change scenario, typically derived from GCM or RCM simulations. Mode 2: the user provides only basic information (not necessarily to be realistic) on the temporal and spatial auto-correlation structure of the weather variables and their mean annual cycle; the generator itself derives the parameters of the underlying AR model, which produces the multi-site weather series. Optionally, the user may add the spatially varying trend, which is superimposed to the synthetic series. The contribution consists of following parts: (a) Model of the WG. (b) Validation of WG in terms of the spatial temperature and precipitation characteristics, including characteristics of spatial hot/cold/dry/wet spells. (c) Results of the climate change impact experiment, in which the WG parameters representing the spatial and temporal variability are modified using the climate change scenarios and the effect on the above spatial validation indices is analysed. In this experiment, the WG is calibrated using the E-OBS gridded daily weather data for several European regions, and the climate change scenarios are derived from the selected RCM simulations (CORDEX database). (d) The second mode of operation will be demonstrated by results obtained while developing the methodology for assessing collective significance of trends in multi-site weather series. The performance of the proposed test statistics is assessed based on large number of realisations of synthetic series produced by WG assuming a given statistical structure and trend of the weather series.

  3. Potential and flux field landscape theory. I. Global stability and dynamics of spatially dependent non-equilibrium systems.

    PubMed

    Wu, Wei; Wang, Jin

    2013-09-28

    We established a potential and flux field landscape theory to quantify the global stability and dynamics of general spatially dependent non-equilibrium deterministic and stochastic systems. We extended our potential and flux landscape theory for spatially independent non-equilibrium stochastic systems described by Fokker-Planck equations to spatially dependent stochastic systems governed by general functional Fokker-Planck equations as well as functional Kramers-Moyal equations derived from master equations. Our general theory is applied to reaction-diffusion systems. For equilibrium spatially dependent systems with detailed balance, the potential field landscape alone, defined in terms of the steady state probability distribution functional, determines the global stability and dynamics of the system. The global stability of the system is closely related to the topography of the potential field landscape in terms of the basins of attraction and barrier heights in the field configuration state space. The effective driving force of the system is generated by the functional gradient of the potential field alone. For non-equilibrium spatially dependent systems, the curl probability flux field is indispensable in breaking detailed balance and creating non-equilibrium condition for the system. A complete characterization of the non-equilibrium dynamics of the spatially dependent system requires both the potential field and the curl probability flux field. While the non-equilibrium potential field landscape attracts the system down along the functional gradient similar to an electron moving in an electric field, the non-equilibrium flux field drives the system in a curly way similar to an electron moving in a magnetic field. In the small fluctuation limit, the intrinsic potential field as the small fluctuation limit of the potential field for spatially dependent non-equilibrium systems, which is closely related to the steady state probability distribution functional, is found to be a Lyapunov functional of the deterministic spatially dependent system. Therefore, the intrinsic potential landscape can characterize the global stability of the deterministic system. The relative entropy functional of the stochastic spatially dependent non-equilibrium system is found to be the Lyapunov functional of the stochastic dynamics of the system. Therefore, the relative entropy functional quantifies the global stability of the stochastic system with finite fluctuations. Our theory offers an alternative general approach to other field-theoretic techniques, to study the global stability and dynamics of spatially dependent non-equilibrium field systems. It can be applied to many physical, chemical, and biological spatially dependent non-equilibrium systems.

  4. Epidemic patch models applied to pandemic influenza: contact matrix, stochasticity, robustness of predictions.

    PubMed

    Lunelli, Antonella; Pugliese, Andrea; Rizzo, Caterina

    2009-07-01

    Due to the recent emergence of H5N1 virus, the modelling of pandemic influenza has become a relevant issue. Here we present an SEIR model formulated to simulate a possible outbreak in Italy, analysing its structure and, more generally, the effect of including specific details into a model. These details regard population heterogeneities, such as age and spatial distribution, as well as stochasticity, that regulates the epidemic dynamics when the number of infectives is low. We discuss and motivate the specific modelling choices made when building the model and investigate how the model details influence the predicted dynamics. Our analysis may help in deciding which elements of complexity are worth including in the design of a deterministic model for pandemic influenza, in a balance between, on the one hand, keeping the model computationally efficient and the number of parameters low and, on the other hand, maintaining the necessary realistic features.

  5. A Coupled Approach with Stochastic Rainfall-Runoff Simulation and Hydraulic Modeling for Extreme Flood Estimation on Large Watersheds

    NASA Astrophysics Data System (ADS)

    Paquet, E.

    2015-12-01

    The SCHADEX method aims at estimating the distribution of peak and daily discharges up to extreme quantiles. It couples a precipitation probabilistic model based on weather patterns, with a stochastic rainfall-runoff simulation process using a conceptual lumped model. It allows exploring an exhaustive set of hydrological conditions and watershed responses to intense rainfall events. Since 2006, it has been widely applied in France to about one hundred watersheds for dam spillway design, and also aboard (Norway, Canada and central Europe among others). However, its application to large watersheds (above 10 000 km²) faces some significant issues: spatial heterogeneity of rainfall and hydrological processes and flood peak damping due to hydraulic effects (flood plains, natural or man-made embankment) being the more important. This led to the development of an extreme flood simulation framework for large and heterogeneous watersheds, based on the SCHADEX method. Its main features are: Division of the large (or main) watershed into several smaller sub-watersheds, where the spatial homogeneity of the hydro-meteorological processes can reasonably be assumed, and where the hydraulic effects can be neglected. Identification of pilot watersheds where discharge data are available, thus where rainfall-runoff models can be calibrated. They will be parameters donors to non-gauged watersheds. Spatially coherent stochastic simulations for all the sub-watersheds at the daily time step. Identification of a selection of simulated events for a given return period (according to the distribution of runoff volumes at the scale of the main watershed). Generation of the complete hourly hydrographs at each of the sub-watersheds outlets. Routing to the main outlet with hydraulic 1D or 2D models. The presentation will be illustrated with the case-study of the Isère watershed (9981 km), a French snow-driven watershed. The main novelties of this method will be underlined, as well as its perspectives and future improvements.

  6. 3D aquifer characterization using stochastic streamline calibration

    NASA Astrophysics Data System (ADS)

    Jang, Minchul

    2007-03-01

    In this study, a new inverse approach, stochastic streamline calibration is proposed. Using both a streamline concept and a stochastic technique, stochastic streamline calibration optimizes an identified field to fit in given observation data in a exceptionally fast and stable fashion. In the stochastic streamline calibration, streamlines are adopted as basic elements not only for describing fluid flow but also for identifying the permeability distribution. Based on the streamline-based inversion by Agarwal et al. [Agarwal B, Blunt MJ. Streamline-based method with full-physics forward simulation for history matching performance data of a North sea field. SPE J 2003;8(2):171-80], Wang and Kovscek [Wang Y, Kovscek AR. Streamline approach for history matching production data. SPE J 2000;5(4):353-62], permeability is modified rather along streamlines than at the individual gridblocks. Permeabilities in the gridblocks which a streamline passes are adjusted by being multiplied by some factor such that we can match flow and transport properties of the streamline. This enables the inverse process to achieve fast convergence. In addition, equipped with a stochastic module, the proposed technique supportively calibrates the identified field in a stochastic manner, while incorporating spatial information into the field. This prevents the inverse process from being stuck in local minima and helps search for a globally optimized solution. Simulation results indicate that stochastic streamline calibration identifies an unknown permeability exceptionally quickly. More notably, the identified permeability distribution reflected realistic geological features, which had not been achieved in the original work by Agarwal et al. with the limitations of the large modifications along streamlines for matching production data only. The constructed model by stochastic streamline calibration forecasted transport of plume which was similar to that of a reference model. By this, we can expect the proposed approach to be applied to the construction of an aquifer model and forecasting of the aquifer performances of interest.

  7. Kalman filter parameter estimation for a nonlinear diffusion model of epithelial cell migration using stochastic collocation and the Karhunen-Loeve expansion.

    PubMed

    Barber, Jared; Tanase, Roxana; Yotov, Ivan

    2016-06-01

    Several Kalman filter algorithms are presented for data assimilation and parameter estimation for a nonlinear diffusion model of epithelial cell migration. These include the ensemble Kalman filter with Monte Carlo sampling and a stochastic collocation (SC) Kalman filter with structured sampling. Further, two types of noise are considered -uncorrelated noise resulting in one stochastic dimension for each element of the spatial grid and correlated noise parameterized by the Karhunen-Loeve (KL) expansion resulting in one stochastic dimension for each KL term. The efficiency and accuracy of the four methods are investigated for two cases with synthetic data with and without noise, as well as data from a laboratory experiment. While it is observed that all algorithms perform reasonably well in matching the target solution and estimating the diffusion coefficient and the growth rate, it is illustrated that the algorithms that employ SC and KL expansion are computationally more efficient, as they require fewer ensemble members for comparable accuracy. In the case of SC methods, this is due to improved approximation in stochastic space compared to Monte Carlo sampling. In the case of KL methods, the parameterization of the noise results in a stochastic space of smaller dimension. The most efficient method is the one combining SC and KL expansion. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. HRSSA - Efficient hybrid stochastic simulation for spatially homogeneous biochemical reaction networks

    NASA Astrophysics Data System (ADS)

    Marchetti, Luca; Priami, Corrado; Thanh, Vo Hong

    2016-07-01

    This paper introduces HRSSA (Hybrid Rejection-based Stochastic Simulation Algorithm), a new efficient hybrid stochastic simulation algorithm for spatially homogeneous biochemical reaction networks. HRSSA is built on top of RSSA, an exact stochastic simulation algorithm which relies on propensity bounds to select next reaction firings and to reduce the average number of reaction propensity updates needed during the simulation. HRSSA exploits the computational advantage of propensity bounds to manage time-varying transition propensities and to apply dynamic partitioning of reactions, which constitute the two most significant bottlenecks of hybrid simulation. A comprehensive set of simulation benchmarks is provided for evaluating performance and accuracy of HRSSA against other state of the art algorithms.

  9. Soil Erosion as a stochastic process

    NASA Astrophysics Data System (ADS)

    Casper, Markus C.

    2015-04-01

    The main tools to provide estimations concerning risk and amount of erosion are different types of soil erosion models: on the one hand, there are empirically based model concepts on the other hand there are more physically based or process based models. However, both types of models have substantial weak points. All empirical model concepts are only capable of providing rough estimates over larger temporal and spatial scales, they do not account for many driving factors that are in the scope of scenario related analysis. In addition, the physically based models contain important empirical parts and hence, the demand for universality and transferability is not given. As a common feature, we find, that all models rely on parameters and input variables, which are to certain, extend spatially and temporally averaged. A central question is whether the apparent heterogeneity of soil properties or the random nature of driving forces needs to be better considered in our modelling concepts. Traditionally, researchers have attempted to remove spatial and temporal variability through homogenization. However, homogenization has been achieved through physical manipulation of the system, or by statistical averaging procedures. The price for obtaining this homogenized (average) model concepts of soils and soil related processes has often been a failure to recognize the profound importance of heterogeneity in many of the properties and processes that we study. Especially soil infiltrability and the resistance (also called "critical shear stress" or "critical stream power") are the most important empirical factors of physically based erosion models. The erosion resistance is theoretically a substrate specific parameter, but in reality, the threshold where soil erosion begins is determined experimentally. The soil infiltrability is often calculated with empirical relationships (e.g. based on grain size distribution). Consequently, to better fit reality, this value needs to be corrected experimentally. To overcome this disadvantage of our actual models, soil erosion models are needed that are able to use stochastic directly variables and parameter distributions. There are only some minor approaches in this direction. The most advanced is the model "STOSEM" proposed by Sidorchuk in 2005. In this model, only a small part of the soil erosion processes is described, the aggregate detachment and the aggregate transport by flowing water. The concept is highly simplified, for example, many parameters are temporally invariant. Nevertheless, the main problem is that our existing measurements and experiments are not geared to provide stochastic parameters (e.g. as probability density functions); in the best case they deliver a statistical validation of the mean values. Again, we get effective parameters, spatially and temporally averaged. There is an urgent need for laboratory and field experiments on overland flow structure, raindrop effects and erosion rate, which deliver information on spatial and temporal structure of soil and surface properties and processes.

  10. Mesoscopic-microscopic spatial stochastic simulation with automatic system partitioning.

    PubMed

    Hellander, Stefan; Hellander, Andreas; Petzold, Linda

    2017-12-21

    The reaction-diffusion master equation (RDME) is a model that allows for efficient on-lattice simulation of spatially resolved stochastic chemical kinetics. Compared to off-lattice hard-sphere simulations with Brownian dynamics or Green's function reaction dynamics, the RDME can be orders of magnitude faster if the lattice spacing can be chosen coarse enough. However, strongly diffusion-controlled reactions mandate a very fine mesh resolution for acceptable accuracy. It is common that reactions in the same model differ in their degree of diffusion control and therefore require different degrees of mesh resolution. This renders mesoscopic simulation inefficient for systems with multiscale properties. Mesoscopic-microscopic hybrid methods address this problem by resolving the most challenging reactions with a microscale, off-lattice simulation. However, all methods to date require manual partitioning of a system, effectively limiting their usefulness as "black-box" simulation codes. In this paper, we propose a hybrid simulation algorithm with automatic system partitioning based on indirect a priori error estimates. We demonstrate the accuracy and efficiency of the method on models of diffusion-controlled networks in 3D.

  11. Exploring the effect of drought extent and interval on the Florida snail kite: Interplay between spatial and temporal scales

    USGS Publications Warehouse

    Mooij, Wolf M.; Bennetts, Robert E.; Kitchens, Wiley M.; DeAngelis, Donald L.

    2002-01-01

    The paper aims at exploring the viability of the Florida snail kite population under various drought regimes in its wetland habitat. The population dynamics of snail kites are strongly linked with the hydrology of the system due to the dependence of this bird species on one exclusive prey species, the apple snail, which is negatively affected by a drying out of habitat. Based on empirical evidence, it has been hypothesised that the viability of the snail kite population critically depends not only on the time interval between droughts, but also on the spatial extent of these droughts. A system wide drought is likely to result in reduced reproduction and increased mortality, whereas the birds can respond to local droughts by moving to sites where conditions are still favourable. This paper explores the implications of this hypothesis by means of a spatially-explicit individual-based model. The specific aim of the model is to study in a factorial design the dynamics of the kite population in relation to two scale parameters, the temporal interval between droughts and the spatial correlation between droughts. In the model high drought frequencies led to reduced numbers of kites. Also, habitat degradation due to prolonged periods of inundation led to lower predicted numbers of kites. Another main result was that when the spatial correlation between droughts was low, the model showed little variability in the predicted numbers of kites. But when droughts occurred mostly on a system wide level, environmental stochasticity strongly increased the stochasticity in kite numbers and in the worst case the viability of the kite population was seriously threatened.

  12. Smoldyn on graphics processing units: massively parallel Brownian dynamics simulations.

    PubMed

    Dematté, Lorenzo

    2012-01-01

    Space is a very important aspect in the simulation of biochemical systems; recently, the need for simulation algorithms able to cope with space is becoming more and more compelling. Complex and detailed models of biochemical systems need to deal with the movement of single molecules and particles, taking into consideration localized fluctuations, transportation phenomena, and diffusion. A common drawback of spatial models lies in their complexity: models can become very large, and their simulation could be time consuming, especially if we want to capture the systems behavior in a reliable way using stochastic methods in conjunction with a high spatial resolution. In order to deliver the promise done by systems biology to be able to understand a system as whole, we need to scale up the size of models we are able to simulate, moving from sequential to parallel simulation algorithms. In this paper, we analyze Smoldyn, a widely diffused algorithm for stochastic simulation of chemical reactions with spatial resolution and single molecule detail, and we propose an alternative, innovative implementation that exploits the parallelism of Graphics Processing Units (GPUs). The implementation executes the most computational demanding steps (computation of diffusion, unimolecular, and bimolecular reaction, as well as the most common cases of molecule-surface interaction) on the GPU, computing them in parallel on each molecule of the system. The implementation offers good speed-ups and real time, high quality graphics output

  13. Efficient Stochastic Inversion Using Adjoint Models and Kernel-PCA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thimmisetty, Charanraj A.; Zhao, Wenju; Chen, Xiao

    2017-10-18

    Performing stochastic inversion on a computationally expensive forward simulation model with a high-dimensional uncertain parameter space (e.g. a spatial random field) is computationally prohibitive even when gradient information can be computed efficiently. Moreover, the ‘nonlinear’ mapping from parameters to observables generally gives rise to non-Gaussian posteriors even with Gaussian priors, thus hampering the use of efficient inversion algorithms designed for models with Gaussian assumptions. In this paper, we propose a novel Bayesian stochastic inversion methodology, which is characterized by a tight coupling between the gradient-based Langevin Markov Chain Monte Carlo (LMCMC) method and a kernel principal component analysis (KPCA). Thismore » approach addresses the ‘curse-of-dimensionality’ via KPCA to identify a low-dimensional feature space within the high-dimensional and nonlinearly correlated parameter space. In addition, non-Gaussian posterior distributions are estimated via an efficient LMCMC method on the projected low-dimensional feature space. We will demonstrate this computational framework by integrating and adapting our recent data-driven statistics-on-manifolds constructions and reduction-through-projection techniques to a linear elasticity model.« less

  14. Species Associations in a Species-Rich Subtropical Forest Were Not Well-Explained by Stochastic Geometry of Biodiversity

    PubMed Central

    Wang, Qinggang; Bao, Dachuan; Guo, Yili; Lu, Junmeng; Lu, Zhijun; Xu, Yaozhan; Zhang, Kuihan; Liu, Haibo; Meng, Hongjie; Jiang, Mingxi; Qiao, Xiujuan; Huang, Handong

    2014-01-01

    The stochastic dilution hypothesis has been proposed to explain species coexistence in species-rich communities. The relative importance of the stochastic dilution effects with respect to other effects such as competition and habitat filtering required to be tested. In this study, using data from a 25-ha species-rich subtropical forest plot with a strong topographic structure at Badagongshan in central China, we analyzed overall species associations and fine-scale species interactions between 2,550 species pairs. The result showed that: (1) the proportion of segregation in overall species association analysis at 2 m neighborhood in this plot followed the prediction of the stochastic dilution hypothesis that segregations should decrease with species richness but that at 10 m neighborhood was higher than the prediction. (2) The proportion of no association type was lower than the expectation of stochastic dilution hypothesis. (3) Fine-scale species interaction analyses using Heterogeneous Poisson processes as null models revealed a high proportion (47%) of significant species effects. However, the assumption of separation of scale of this method was not fully met in this plot with a strong fine-scale topographic structure. We also found that for species within the same families, fine-scale positive species interactions occurred more frequently and negative ones occurred less frequently than expected by chance. These results suggested effects of environmental filtering other than species interaction in this forest. (4) We also found that arbor species showed a much higher proportion of significant fine-scale species interactions (66%) than shrub species (18%). We concluded that the stochastic dilution hypothesis only be partly supported and environmental filtering left discernible spatial signals in the spatial associations between species in this species-rich subtropical forest with a strong topographic structure. PMID:24824996

  15. Species associations in a species-rich subtropical forest were not well-explained by stochastic geometry of biodiversity.

    PubMed

    Wang, Qinggang; Bao, Dachuan; Guo, Yili; Lu, Junmeng; Lu, Zhijun; Xu, Yaozhan; Zhang, Kuihan; Liu, Haibo; Meng, Hongjie; Jiang, Mingxi; Qiao, Xiujuan; Huang, Handong

    2014-01-01

    The stochastic dilution hypothesis has been proposed to explain species coexistence in species-rich communities. The relative importance of the stochastic dilution effects with respect to other effects such as competition and habitat filtering required to be tested. In this study, using data from a 25-ha species-rich subtropical forest plot with a strong topographic structure at Badagongshan in central China, we analyzed overall species associations and fine-scale species interactions between 2,550 species pairs. The result showed that: (1) the proportion of segregation in overall species association analysis at 2 m neighborhood in this plot followed the prediction of the stochastic dilution hypothesis that segregations should decrease with species richness but that at 10 m neighborhood was higher than the prediction. (2) The proportion of no association type was lower than the expectation of stochastic dilution hypothesis. (3) Fine-scale species interaction analyses using Heterogeneous Poisson processes as null models revealed a high proportion (47%) of significant species effects. However, the assumption of separation of scale of this method was not fully met in this plot with a strong fine-scale topographic structure. We also found that for species within the same families, fine-scale positive species interactions occurred more frequently and negative ones occurred less frequently than expected by chance. These results suggested effects of environmental filtering other than species interaction in this forest. (4) We also found that arbor species showed a much higher proportion of significant fine-scale species interactions (66%) than shrub species (18%). We concluded that the stochastic dilution hypothesis only be partly supported and environmental filtering left discernible spatial signals in the spatial associations between species in this species-rich subtropical forest with a strong topographic structure.

  16. Assessment and visualization of uncertainty for countrywide soil organic matter map of Hungary using local entropy

    NASA Astrophysics Data System (ADS)

    Szatmári, Gábor; Pásztor, László

    2016-04-01

    Uncertainty is a general term expressing our imperfect knowledge in describing an environmental process and we are aware of it (Bárdossy and Fodor, 2004). Sampling, laboratory measurements, models and so on are subject to uncertainty. Effective quantification and visualization of uncertainty would be indispensable to stakeholders (e.g. policy makers, society). Soil related features and their spatial models should be stressfully targeted to uncertainty assessment because their inferences are further used in modelling and decision making process. The aim of our present study was to assess and effectively visualize the local uncertainty of the countrywide soil organic matter (SOM) spatial distribution model of Hungary using geostatistical tools and concepts. The Hungarian Soil Information and Monitoring System's SOM data (approximately 1,200 observations) and environmental related, spatially exhaustive secondary information (i.e. digital elevation model, climatic maps, MODIS satellite images and geological map) were used to model the countrywide SOM spatial distribution by regression kriging. It would be common to use the calculated estimation (or kriging) variance as a measure of uncertainty, however the normality and homoscedasticity hypotheses have to be refused according to our preliminary analysis on the data. Therefore, a normal score transformation and a sequential stochastic simulation approach was introduced to be able to model and assess the local uncertainty. Five hundred equally probable realizations (i.e. stochastic images) were generated. The number of the stochastic images is fairly enough to provide a model of uncertainty at each location, which is a complete description of uncertainty in geostatistics (Deutsch and Journel, 1998). Furthermore, these models can be applied e.g. to contour the probability of any events, which can be regarded as goal oriented digital soil maps and are of interest for agricultural management and decision making as well. A standardized measure of the local entropy was used to visualize uncertainty, where entropy values close to 1 correspond to high uncertainty, whilst values close to 0 correspond low uncertainty. The advantage of the usage of local entropy in this context is that it combines probabilities from multiple members into a single number for each location of the model. In conclusion, it is straightforward to use a sequential stochastic simulation approach to the assessment of uncertainty, when normality and homoscedasticity are violated. The visualization of uncertainty using the local entropy is effective and communicative to stakeholders because it represents the uncertainty through a single number within a [0, 1] scale. References: Bárdossy, Gy. & Fodor, J., 2004. Evaluation of Uncertainties and Risks in Geology. Springer-Verlag, Berlin Heidelberg. Deutsch, C.V. & Journel, A.G., 1998. GSLIB: geostatistical software library and user's guide. Oxford University Press, New York. Acknowledgement: Our work was supported by the Hungarian National Scientific Research Foundation (OTKA, Grant No. K105167).

  17. Modelling uncertainty in incompressible flow simulation using Galerkin based generalized ANOVA

    NASA Astrophysics Data System (ADS)

    Chakraborty, Souvik; Chowdhury, Rajib

    2016-11-01

    This paper presents a new algorithm, referred to here as Galerkin based generalized analysis of variance decomposition (GG-ANOVA) for modelling input uncertainties and its propagation in incompressible fluid flow. The proposed approach utilizes ANOVA to represent the unknown stochastic response. Further, the unknown component functions of ANOVA are represented using the generalized polynomial chaos expansion (PCE). The resulting functional form obtained by coupling the ANOVA and PCE is substituted into the stochastic Navier-Stokes equation (NSE) and Galerkin projection is employed to decompose it into a set of coupled deterministic 'Navier-Stokes alike' equations. Temporal discretization of the set of coupled deterministic equations is performed by employing Adams-Bashforth scheme for convective term and Crank-Nicolson scheme for diffusion term. Spatial discretization is performed by employing finite difference scheme. Implementation of the proposed approach has been illustrated by two examples. In the first example, a stochastic ordinary differential equation has been considered. This example illustrates the performance of proposed approach with change in nature of random variable. Furthermore, convergence characteristics of GG-ANOVA has also been demonstrated. The second example investigates flow through a micro channel. Two case studies, namely the stochastic Kelvin-Helmholtz instability and stochastic vortex dipole, have been investigated. For all the problems results obtained using GG-ANOVA are in excellent agreement with benchmark solutions.

  18. A hybrid algorithm for coupling partial differential equation and compartment-based dynamics.

    PubMed

    Harrison, Jonathan U; Yates, Christian A

    2016-09-01

    Stochastic simulation methods can be applied successfully to model exact spatio-temporally resolved reaction-diffusion systems. However, in many cases, these methods can quickly become extremely computationally intensive with increasing particle numbers. An alternative description of many of these systems can be derived in the diffusive limit as a deterministic, continuum system of partial differential equations (PDEs). Although the numerical solution of such PDEs is, in general, much more efficient than the full stochastic simulation, the deterministic continuum description is generally not valid when copy numbers are low and stochastic effects dominate. Therefore, to take advantage of the benefits of both of these types of models, each of which may be appropriate in different parts of a spatial domain, we have developed an algorithm that can be used to couple these two types of model together. This hybrid coupling algorithm uses an overlap region between the two modelling regimes. By coupling fluxes at one end of the interface and using a concentration-matching condition at the other end, we ensure that mass is appropriately transferred between PDE- and compartment-based regimes. Our methodology gives notable reductions in simulation time in comparison with using a fully stochastic model, while maintaining the important stochastic features of the system and providing detail in appropriate areas of the domain. We test our hybrid methodology robustly by applying it to several biologically motivated problems including diffusion and morphogen gradient formation. Our analysis shows that the resulting error is small, unbiased and does not grow over time. © 2016 The Authors.

  19. A hybrid algorithm for coupling partial differential equation and compartment-based dynamics

    PubMed Central

    Yates, Christian A.

    2016-01-01

    Stochastic simulation methods can be applied successfully to model exact spatio-temporally resolved reaction–diffusion systems. However, in many cases, these methods can quickly become extremely computationally intensive with increasing particle numbers. An alternative description of many of these systems can be derived in the diffusive limit as a deterministic, continuum system of partial differential equations (PDEs). Although the numerical solution of such PDEs is, in general, much more efficient than the full stochastic simulation, the deterministic continuum description is generally not valid when copy numbers are low and stochastic effects dominate. Therefore, to take advantage of the benefits of both of these types of models, each of which may be appropriate in different parts of a spatial domain, we have developed an algorithm that can be used to couple these two types of model together. This hybrid coupling algorithm uses an overlap region between the two modelling regimes. By coupling fluxes at one end of the interface and using a concentration-matching condition at the other end, we ensure that mass is appropriately transferred between PDE- and compartment-based regimes. Our methodology gives notable reductions in simulation time in comparison with using a fully stochastic model, while maintaining the important stochastic features of the system and providing detail in appropriate areas of the domain. We test our hybrid methodology robustly by applying it to several biologically motivated problems including diffusion and morphogen gradient formation. Our analysis shows that the resulting error is small, unbiased and does not grow over time. PMID:27628171

  20. Acceleration of discrete stochastic biochemical simulation using GPGPU.

    PubMed

    Sumiyoshi, Kei; Hirata, Kazuki; Hiroi, Noriko; Funahashi, Akira

    2015-01-01

    For systems made up of a small number of molecules, such as a biochemical network in a single cell, a simulation requires a stochastic approach, instead of a deterministic approach. The stochastic simulation algorithm (SSA) simulates the stochastic behavior of a spatially homogeneous system. Since stochastic approaches produce different results each time they are used, multiple runs are required in order to obtain statistical results; this results in a large computational cost. We have implemented a parallel method for using SSA to simulate a stochastic model; the method uses a graphics processing unit (GPU), which enables multiple realizations at the same time, and thus reduces the computational time and cost. During the simulation, for the purpose of analysis, each time course is recorded at each time step. A straightforward implementation of this method on a GPU is about 16 times faster than a sequential simulation on a CPU with hybrid parallelization; each of the multiple simulations is run simultaneously, and the computational tasks within each simulation are parallelized. We also implemented an improvement to the memory access and reduced the memory footprint, in order to optimize the computations on the GPU. We also implemented an asynchronous data transfer scheme to accelerate the time course recording function. To analyze the acceleration of our implementation on various sizes of model, we performed SSA simulations on different model sizes and compared these computation times to those for sequential simulations with a CPU. When used with the improved time course recording function, our method was shown to accelerate the SSA simulation by a factor of up to 130.

  1. Acceleration of discrete stochastic biochemical simulation using GPGPU

    PubMed Central

    Sumiyoshi, Kei; Hirata, Kazuki; Hiroi, Noriko; Funahashi, Akira

    2015-01-01

    For systems made up of a small number of molecules, such as a biochemical network in a single cell, a simulation requires a stochastic approach, instead of a deterministic approach. The stochastic simulation algorithm (SSA) simulates the stochastic behavior of a spatially homogeneous system. Since stochastic approaches produce different results each time they are used, multiple runs are required in order to obtain statistical results; this results in a large computational cost. We have implemented a parallel method for using SSA to simulate a stochastic model; the method uses a graphics processing unit (GPU), which enables multiple realizations at the same time, and thus reduces the computational time and cost. During the simulation, for the purpose of analysis, each time course is recorded at each time step. A straightforward implementation of this method on a GPU is about 16 times faster than a sequential simulation on a CPU with hybrid parallelization; each of the multiple simulations is run simultaneously, and the computational tasks within each simulation are parallelized. We also implemented an improvement to the memory access and reduced the memory footprint, in order to optimize the computations on the GPU. We also implemented an asynchronous data transfer scheme to accelerate the time course recording function. To analyze the acceleration of our implementation on various sizes of model, we performed SSA simulations on different model sizes and compared these computation times to those for sequential simulations with a CPU. When used with the improved time course recording function, our method was shown to accelerate the SSA simulation by a factor of up to 130. PMID:25762936

  2. Groundwater management under uncertainty using a stochastic multi-cell model

    NASA Astrophysics Data System (ADS)

    Joodavi, Ata; Zare, Mohammad; Ziaei, Ali Naghi; Ferré, Ty P. A.

    2017-08-01

    The optimization of spatially complex groundwater management models over long time horizons requires the use of computationally efficient groundwater flow models. This paper presents a new stochastic multi-cell lumped-parameter aquifer model that explicitly considers uncertainty in groundwater recharge. To achieve this, the multi-cell model is combined with the constrained-state formulation method. In this method, the lower and upper bounds of groundwater heads are incorporated into the mass balance equation using indicator functions. This provides expressions for the means, variances and covariances of the groundwater heads, which can be included in the constraint set in an optimization model. This method was used to formulate two separate stochastic models: (i) groundwater flow in a two-cell aquifer model with normal and non-normal distributions of groundwater recharge; and (ii) groundwater management in a multiple cell aquifer in which the differences between groundwater abstractions and water demands are minimized. The comparison between the results obtained from the proposed modeling technique with those from Monte Carlo simulation demonstrates the capability of the proposed models to approximate the means, variances and covariances. Significantly, considering covariances between the heads of adjacent cells allows a more accurate estimate of the variances of the groundwater heads. Moreover, this modeling technique requires no discretization of state variables, thus offering an efficient alternative to computationally demanding methods.

  3. Deploying initial attack resources for wildfire suppression: spatial coordination, budget constraints, and capacity constraints

    Treesearch

    Yohan Lee; Jeremy S. Fried; Heidi J. Albers; Robert G. Haight

    2013-01-01

    We combine a scenario-based, standard-response optimization model with stochastic simulation to improve the efficiency of resource deployment for initial attack on wildland fires in three planning units in California. The optimization model minimizes the expected number of fires that do not receive a standard response--defined as the number of resources by type that...

  4. A stochastic-geometric model of soil variation in Pleistocene patterned ground

    NASA Astrophysics Data System (ADS)

    Lark, Murray; Meerschman, Eef; Van Meirvenne, Marc

    2013-04-01

    In this paper we examine the spatial variability of soil in parent material with complex spatial structure which arises from complex non-linear geomorphic processes. We show that this variability can be better-modelled by a stochastic-geometric model than by a standard Gaussian random field. The benefits of the new model are seen in the reproduction of features of the target variable which influence processes like water movement and pollutant dispersal. Complex non-linear processes in the soil give rise to properties with non-Gaussian distributions. Even under a transformation to approximate marginal normality, such variables may have a more complex spatial structure than the Gaussian random field model of geostatistics can accommodate. In particular the extent to which extreme values of the variable are connected in spatially coherent regions may be misrepresented. As a result, for example, geostatistical simulation generally fails to reproduce the pathways for preferential flow in an environment where coarse infill of former fluvial channels or coarse alluvium of braided streams creates pathways for rapid movement of water. Multiple point geostatistics has been developed to deal with this problem. Multiple point methods proceed by sampling from a set of training images which can be assumed to reproduce the non-Gaussian behaviour of the target variable. The challenge is to identify appropriate sources of such images. In this paper we consider a mode of soil variation in which the soil varies continuously, exhibiting short-range lateral trends induced by local effects of the factors of soil formation which vary across the region of interest in an unpredictable way. The trends in soil variation are therefore only apparent locally, and the soil variation at regional scale appears random. We propose a stochastic-geometric model for this mode of soil variation called the Continuous Local Trend (CLT) model. We consider a case study of soil formed in relict patterned ground with pronounced lateral textural variations arising from the presence of infilled ice-wedges of Pleistocene origin. We show how knowledge of the pedogenetic processes in this environment, along with some simple descriptive statistics, can be used to select and fit a CLT model for the apparent electrical conductivity (ECa) of the soil. We use the model to simulate realizations of the CLT process, and compare these with realizations of a fitted Gaussian random field. We show how statistics that summarize the spatial coherence of regions with small values of ECa, which are expected to have coarse texture and so larger saturated hydraulic conductivity, are better reproduced by the CLT model than by the Gaussian random field. This suggests that the CLT model could be used to generate an unlimited supply of training images to allow multiple point geostatistical simulation or prediction of this or similar variables.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jager, Yetta; Efroymson, Rebecca Ann; Sublette, K.

    Quantitative tools are needed to evaluate the ecological effects of increasing petroleum production. In this article, we describe two stochastic models for simulating the spatial distribution of brine spills on a landscape. One model uses general assumptions about the spatial arrangement of spills and their sizes; the second model distributes spills by siting rectangular well complexes and conditioning spill probabilities on the configuration of pipes. We present maps of landscapes with spills produced by the two methods and compare the ability of the models to reproduce a specified spill area. A strength of the models presented here is their abilitymore » to extrapolate from the existing landscape to simulate landscapes with a higher (or lower) density of oil wells.« less

  6. Integrating discrete stochastic models and single-cell experiments to infer predictive models of MAPK-induced transcription dynamics

    NASA Astrophysics Data System (ADS)

    Munsky, Brian

    2015-03-01

    MAPK signal-activated transcription plays central roles in myriad biological processes including stress adaptation responses and cell fate decisions. Recent single-cell and single-molecule experiments have advanced our ability to quantify the spatial, temporal, and stochastic fluctuations for such signals and their downstream effects on transcription regulation. This talk explores how integrating such experiments with discrete stochastic computational analyses can yield quantitative and predictive understanding of transcription regulation in both space and time. We use single-molecule mRNA fluorescence in situ hybridization (smFISH) experiments to reveal locations and numbers of multiple endogenous mRNA species in 100,000's of individual cells, at different times and under different genetic and environmental perturbations. We use finite state projection methods to precisely and efficiently compute the full joint probability distributions of these mRNA, which capture measured spatial, temporal and correlative fluctuations. By combining these experimental and computational tools with uncertainty quantification, we systematically compare models of varying complexity and select those which give optimally precise and accurate predictions in new situations. We use these tools to explore two MAPK-activated gene regulation pathways. In yeast adaptation to osmotic shock, we analyze Hog1 kinase activation of transcription for three different genes STL1 (osmotic stress), CTT1 (oxidative stress) and HSP12 (heat shock). In human osteosarcoma cells under serum induction, we analyze ERK activation of c-Fos transcription.

  7. HRSSA – Efficient hybrid stochastic simulation for spatially homogeneous biochemical reaction networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchetti, Luca, E-mail: marchetti@cosbi.eu; Priami, Corrado, E-mail: priami@cosbi.eu; University of Trento, Department of Mathematics

    This paper introduces HRSSA (Hybrid Rejection-based Stochastic Simulation Algorithm), a new efficient hybrid stochastic simulation algorithm for spatially homogeneous biochemical reaction networks. HRSSA is built on top of RSSA, an exact stochastic simulation algorithm which relies on propensity bounds to select next reaction firings and to reduce the average number of reaction propensity updates needed during the simulation. HRSSA exploits the computational advantage of propensity bounds to manage time-varying transition propensities and to apply dynamic partitioning of reactions, which constitute the two most significant bottlenecks of hybrid simulation. A comprehensive set of simulation benchmarks is provided for evaluating performance andmore » accuracy of HRSSA against other state of the art algorithms.« less

  8. State-and-transition simulation models: a framework for forecasting landscape change

    USGS Publications Warehouse

    Daniel, Colin; Frid, Leonardo; Sleeter, Benjamin M.; Fortin, Marie-Josée

    2016-01-01

    SummaryA wide range of spatially explicit simulation models have been developed to forecast landscape dynamics, including models for projecting changes in both vegetation and land use. While these models have generally been developed as separate applications, each with a separate purpose and audience, they share many common features.We present a general framework, called a state-and-transition simulation model (STSM), which captures a number of these common features, accompanied by a software product, called ST-Sim, to build and run such models. The STSM method divides a landscape into a set of discrete spatial units and simulates the discrete state of each cell forward as a discrete-time-inhomogeneous stochastic process. The method differs from a spatially interacting Markov chain in several important ways, including the ability to add discrete counters such as age and time-since-transition as state variables, to specify one-step transition rates as either probabilities or target areas, and to represent multiple types of transitions between pairs of states.We demonstrate the STSM method using a model of land-use/land-cover (LULC) change for the state of Hawai'i, USA. Processes represented in this example include expansion/contraction of agricultural lands, urbanization, wildfire, shrub encroachment into grassland and harvest of tree plantations; the model also projects shifts in moisture zones due to climate change. Key model output includes projections of the future spatial and temporal distribution of LULC classes and moisture zones across the landscape over the next 50 years.State-and-transition simulation models can be applied to a wide range of landscapes, including questions of both land-use change and vegetation dynamics. Because the method is inherently stochastic, it is well suited for characterizing uncertainty in model projections. When combined with the ST-Sim software, STSMs offer a simple yet powerful means for developing a wide range of models of landscape dynamics.

  9. How big and how close? Habitat patch size and spacing to conserve a threatened species

    EPA Science Inventory

    We present results of a spatially-explicit, individual-based stochastic dispersal model (HexSim) to evaluate effects of size and spacing of patches of habitat of Northern Spotted Owls (NSO; Strix occidentalis caurina) in Pacific Northwest, USA, to help advise USDI Fish and Wildli...

  10. Prediction of nonlinear evolution character of energetic-particle-driven instabilities

    DOE PAGES

    Duarte, Vinicius N.; Berk, H. L.; Gorelenkov, N. N.; ...

    2017-03-17

    A general criterion is proposed and found to successfully predict the emergence of chirping oscillations of unstable Alfvénic eigenmodes in tokamak plasma experiments. The model includes realistic eigenfunction structure, detailed phase-space dependences of the instability drive, stochastic scattering and the Coulomb drag. The stochastic scattering combines the effects of collisional pitch angle scattering and micro-turbulence spatial diffusion. Furthermore, the latter mechanism is essential to accurately identify the transition between the fixed-frequency mode behavior and rapid chirping in tokamaks and to resolve the disparity with respect to chirping observation in spherical and conventional tokamaks.

  11. Prediction of nonlinear evolution character of energetic-particle-driven instabilities

    NASA Astrophysics Data System (ADS)

    Duarte, V. N.; Berk, H. L.; Gorelenkov, N. N.; Heidbrink, W. W.; Kramer, G. J.; Nazikian, R.; Pace, D. C.; Podestà, M.; Tobias, B. J.; Van Zeeland, M. A.

    2017-05-01

    A general criterion is proposed and found to successfully predict the emergence of chirping oscillations of unstable Alfvénic eigenmodes in tokamak plasma experiments. The model includes realistic eigenfunction structure, detailed phase-space dependences of the instability drive, stochastic scattering and the Coulomb drag. The stochastic scattering combines the effects of collisional pitch angle scattering and micro-turbulence spatial diffusion. The latter mechanism is essential to accurately identify the transition between the fixed-frequency mode behavior and rapid chirping in tokamaks and to resolve the disparity with respect to chirping observation in spherical and conventional tokamaks.

  12. A comparison of two- and three-dimensional stochastic models of regional solute movement

    USGS Publications Warehouse

    Shapiro, A.M.; Cvetkovic, V.D.

    1990-01-01

    Recent models of solute movement in porous media that are based on a stochastic description of the porous medium properties have been dedicated primarily to a three-dimensional interpretation of solute movement. In many practical problems, however, it is more convenient and consistent with measuring techniques to consider flow and solute transport as an areal, two-dimensional phenomenon. The physics of solute movement, however, is dependent on the three-dimensional heterogeneity in the formation. A comparison of two- and three-dimensional stochastic interpretations of solute movement in a porous medium having a statistically isotropic hydraulic conductivity field is investigated. To provide an equitable comparison between the two- and three-dimensional analyses, the stochastic properties of the transmissivity are defined in terms of the stochastic properties of the hydraulic conductivity. The variance of the transmissivity is shown to be significantly reduced in comparison to that of the hydraulic conductivity, and the transmissivity is spatially correlated over larger distances. These factors influence the two-dimensional interpretations of solute movement by underestimating the longitudinal and transverse growth of the solute plume in comparison to its description as a three-dimensional phenomenon. Although this analysis is based on small perturbation approximations and the special case of a statistically isotropic hydraulic conductivity field, it casts doubt on the use of a stochastic interpretation of the transmissivity in describing regional scale movement. However, by assuming the transmissivity to be the vertical integration of the hydraulic conductivity field at a given position, the stochastic properties of the hydraulic conductivity can be estimated from the stochastic properties of the transmissivity and applied to obtain a more accurate interpretation of solute movement. ?? 1990 Kluwer Academic Publishers.

  13. Proper orthogonal decomposition-based spectral higher-order stochastic estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baars, Woutijn J., E-mail: wbaars@unimelb.edu.au; Tinney, Charles E.

    A unique routine, capable of identifying both linear and higher-order coherence in multiple-input/output systems, is presented. The technique combines two well-established methods: Proper Orthogonal Decomposition (POD) and Higher-Order Spectra Analysis. The latter of these is based on known methods for characterizing nonlinear systems by way of Volterra series. In that, both linear and higher-order kernels are formed to quantify the spectral (nonlinear) transfer of energy between the system's input and output. This reduces essentially to spectral Linear Stochastic Estimation when only first-order terms are considered, and is therefore presented in the context of stochastic estimation as spectral Higher-Order Stochastic Estimationmore » (HOSE). The trade-off to seeking higher-order transfer kernels is that the increased complexity restricts the analysis to single-input/output systems. Low-dimensional (POD-based) analysis techniques are inserted to alleviate this void as POD coefficients represent the dynamics of the spatial structures (modes) of a multi-degree-of-freedom system. The mathematical framework behind this POD-based HOSE method is first described. The method is then tested in the context of jet aeroacoustics by modeling acoustically efficient large-scale instabilities as combinations of wave packets. The growth, saturation, and decay of these spatially convecting wave packets are shown to couple both linearly and nonlinearly in the near-field to produce waveforms that propagate acoustically to the far-field for different frequency combinations.« less

  14. Stochastic generators of multi-site daily temperature: comparison of performances in various applications

    NASA Astrophysics Data System (ADS)

    Evin, Guillaume; Favre, Anne-Catherine; Hingray, Benoit

    2018-02-01

    We present a multi-site stochastic model for the generation of average daily temperature, which includes a flexible parametric distribution and a multivariate autoregressive process. Different versions of this model are applied to a set of 26 stations located in Switzerland. The importance of specific statistical characteristics of the model (seasonality, marginal distributions of standardized temperature, spatial and temporal dependence) is discussed. In particular, the proposed marginal distribution is shown to improve the reproduction of extreme temperatures (minima and maxima). We also demonstrate that the frequency and duration of cold spells and heat waves are dramatically underestimated when the autocorrelation of temperature is not taken into account in the model. An adequate representation of these characteristics can be crucial depending on the field of application, and we discuss potential implications in different contexts (agriculture, forestry, hydrology, human health).

  15. Hierarchical stochastic modeling of large river ecosystems and fish growth across spatio-temporal scales and climate models: the Missouri River endangered pallid sturgeon example

    USGS Publications Warehouse

    Wildhaber, Mark L.; Wikle, Christopher K.; Moran, Edward H.; Anderson, Christopher J.; Franz, Kristie J.; Dey, Rima

    2017-01-01

    We present a hierarchical series of spatially decreasing and temporally increasing models to evaluate the uncertainty in the atmosphere – ocean global climate model (AOGCM) and the regional climate model (RCM) relative to the uncertainty in the somatic growth of the endangered pallid sturgeon (Scaphirhynchus albus). For effects on fish populations of riverine ecosystems, cli- mate output simulated by coarse-resolution AOGCMs and RCMs must be downscaled to basins to river hydrology to population response. One needs to transfer the information from these climate simulations down to the individual scale in a way that minimizes extrapolation and can account for spatio-temporal variability in the intervening stages. The goal is a framework to determine whether, given uncertainties in the climate models and the biological response, meaningful inference can still be made. The non-linear downscaling of climate information to the river scale requires that one realistically account for spatial and temporal variability across scale. Our down- scaling procedure includes the use of fixed/calibrated hydrological flow and temperature models coupled with a stochastically parameterized sturgeon bioenergetics model. We show that, although there is a large amount of uncertainty associated with both the climate model output and the fish growth process, one can establish significant differences in fish growth distributions between models, and between future and current climates for a given model.

  16. Roles of dispersal, stochasticity, and nonlinear dynamics in the spatial structuring of seasonal natural enemy-victim populations

    Treesearch

    Patrick C. Tobin; Ottar N. Bjornstad

    2005-01-01

    Natural enemy-victim systems may exhibit a range of dynamic space-time patterns. We used a theoretical framework to study spatiotemporal structuring in a transient natural enemy-victim system subject to differential rates of dispersal, stochastic forcing, and nonlinear dynamics. Highly mobile natural enemies that attacked less mobile victims were locally spatially...

  17. Goal-oriented sensitivity analysis for lattice kinetic Monte Carlo simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arampatzis, Georgios, E-mail: garab@math.uoc.gr; Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003; Katsoulakis, Markos A., E-mail: markos@math.umass.edu

    2014-03-28

    In this paper we propose a new class of coupling methods for the sensitivity analysis of high dimensional stochastic systems and in particular for lattice Kinetic Monte Carlo (KMC). Sensitivity analysis for stochastic systems is typically based on approximating continuous derivatives with respect to model parameters by the mean value of samples from a finite difference scheme. Instead of using independent samples the proposed algorithm reduces the variance of the estimator by developing a strongly correlated-“coupled”- stochastic process for both the perturbed and unperturbed stochastic processes, defined in a common state space. The novelty of our construction is that themore » new coupled process depends on the targeted observables, e.g., coverage, Hamiltonian, spatial correlations, surface roughness, etc., hence we refer to the proposed method as goal-oriented sensitivity analysis. In particular, the rates of the coupled Continuous Time Markov Chain are obtained as solutions to a goal-oriented optimization problem, depending on the observable of interest, by considering the minimization functional of the corresponding variance. We show that this functional can be used as a diagnostic tool for the design and evaluation of different classes of couplings. Furthermore, the resulting KMC sensitivity algorithm has an easy implementation that is based on the Bortz–Kalos–Lebowitz algorithm's philosophy, where events are divided in classes depending on level sets of the observable of interest. Finally, we demonstrate in several examples including adsorption, desorption, and diffusion Kinetic Monte Carlo that for the same confidence interval and observable, the proposed goal-oriented algorithm can be two orders of magnitude faster than existing coupling algorithms for spatial KMC such as the Common Random Number approach. We also provide a complete implementation of the proposed sensitivity analysis algorithms, including various spatial KMC examples, in a supplementary MATLAB source code.« less

  18. Reduced basis ANOVA methods for partial differential equations with high-dimensional random inputs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Qifeng, E-mail: liaoqf@shanghaitech.edu.cn; Lin, Guang, E-mail: guanglin@purdue.edu

    2016-07-15

    In this paper we present a reduced basis ANOVA approach for partial deferential equations (PDEs) with random inputs. The ANOVA method combined with stochastic collocation methods provides model reduction in high-dimensional parameter space through decomposing high-dimensional inputs into unions of low-dimensional inputs. In this work, to further reduce the computational cost, we investigate spatial low-rank structures in the ANOVA-collocation method, and develop efficient spatial model reduction techniques using hierarchically generated reduced bases. We present a general mathematical framework of the methodology, validate its accuracy and demonstrate its efficiency with numerical experiments.

  19. Recent topographic evolution and erosion of the deglaciated Washington Cascades inferred from a stochastic landscape evolution model

    NASA Astrophysics Data System (ADS)

    Moon, Seulgi; Shelef, Eitan; Hilley, George E.

    2015-05-01

    In this study, we model postglacial surface processes and examine the evolution of the topography and denudation rates within the deglaciated Washington Cascades to understand the controls on and time scales of landscape response to changes in the surface process regime after deglaciation. The postglacial adjustment of this landscape is modeled using a geomorphic-transport-law-based numerical model that includes processes of river incision, hillslope diffusion, and stochastic landslides. The surface lowering due to landslides is parameterized using a physically based slope stability model coupled to a stochastic model of the generation of landslides. The model parameters of river incision and stochastic landslides are calibrated based on the rates and distribution of thousand-year-time scale denudation rates measured from cosmogenic 10Be isotopes. The probability distributions of those model parameters calculated based on a Bayesian inversion scheme show comparable ranges from previous studies in similar rock types and climatic conditions. The magnitude of landslide denudation rates is determined by failure density (similar to landslide frequency), whereas precipitation and slopes affect the spatial variation in landslide denudation rates. Simulation results show that postglacial denudation rates decay over time and take longer than 100 kyr to reach time-invariant rates. Over time, the landslides in the model consume the steep slopes characteristic of deglaciated landscapes. This response time scale is on the order of or longer than glacial/interglacial cycles, suggesting that frequent climatic perturbations during the Quaternary may produce a significant and prolonged impact on denudation and topography.

  20. Impacts of rainfall spatial variability on hydrogeological response

    NASA Astrophysics Data System (ADS)

    Sapriza-Azuri, Gonzalo; Jódar, Jorge; Navarro, Vicente; Slooten, Luit Jan; Carrera, Jesús; Gupta, Hoshin V.

    2015-02-01

    There is currently no general consensus on how the spatial variability of rainfall impacts and propagates through complex hydrogeological systems. Most studies to date have focused on the effects of rainfall spatial variability (RSV) on river discharge, while paying little attention to other important aspects of system response. Here, we study the impacts of RSV on several responses of a hydrological model of an overexploited system. To this end, we drive a spatially distributed hydrogeological model for the semiarid Upper Guadiana basin in central Spain with stochastic daily rainfall fields defined at three different spatial resolutions (fine → 2.5 km × 2.5 km, medium → 50 km × 50 km, large → lumped). This enables us to investigate how (i) RSV at different spatial resolutions, and (ii) rainfall uncertainty, are propagated through the hydrogeological model of the system. Our results demonstrate that RSV has a significant impact on the modeled response of the system, by specifically affecting groundwater recharge and runoff generation, and thereby propagating through to various other related hydrological responses (river discharge, river-aquifer exchange, groundwater levels). These results call into question the validity of management decisions made using hydrological models calibrated or forced with spatially lumped rainfall.

  1. Transversal Fluctuations of the ASEP, Stochastic Six Vertex Model, and Hall-Littlewood Gibbsian Line Ensembles

    NASA Astrophysics Data System (ADS)

    Corwin, Ivan; Dimitrov, Evgeni

    2018-05-01

    We consider the ASEP and the stochastic six vertex model started with step initial data. After a long time, T, it is known that the one-point height function fluctuations for these systems are of order T 1/3. We prove the KPZ prediction of T 2/3 scaling in space. Namely, we prove tightness (and Brownian absolute continuity of all subsequential limits) as T goes to infinity of the height function with spatial coordinate scaled by T 2/3 and fluctuations scaled by T 1/3. The starting point for proving these results is a connection discovered recently by Borodin-Bufetov-Wheeler between the stochastic six vertex height function and the Hall-Littlewood process (a certain measure on plane partitions). Interpreting this process as a line ensemble with a Gibbsian resampling invariance, we show that the one-point tightness of the top curve can be propagated to the tightness of the entire curve.

  2. Chaos and Forecasting - Proceedings of the Royal Society Discussion Meeting

    NASA Astrophysics Data System (ADS)

    Tong, Howell

    1995-04-01

    The Table of Contents for the full book PDF is as follows: * Preface * Orthogonal Projection, Embedding Dimension and Sample Size in Chaotic Time Series from a Statistical Perspective * A Theory of Correlation Dimension for Stationary Time Series * On Prediction and Chaos in Stochastic Systems * Locally Optimized Prediction of Nonlinear Systems: Stochastic and Deterministic * A Poisson Distribution for the BDS Test Statistic for Independence in a Time Series * Chaos and Nonlinear Forecastability in Economics and Finance * Paradigm Change in Prediction * Predicting Nonuniform Chaotic Attractors in an Enzyme Reaction * Chaos in Geophysical Fluids * Chaotic Modulation of the Solar Cycle * Fractal Nature in Earthquake Phenomena and its Simple Models * Singular Vectors and the Predictability of Weather and Climate * Prediction as a Criterion for Classifying Natural Time Series * Measuring and Characterising Spatial Patterns, Dynamics and Chaos in Spatially-Extended Dynamical Systems and Ecologies * Non-Linear Forecasting and Chaos in Ecology and Epidemiology: Measles as a Case Study

  3. Radiation Transport in Random Media With Large Fluctuations

    NASA Astrophysics Data System (ADS)

    Olson, Aaron; Prinja, Anil; Franke, Brian

    2017-09-01

    Neutral particle transport in media exhibiting large and complex material property spatial variation is modeled by representing cross sections as lognormal random functions of space and generated through a nonlinear memory-less transformation of a Gaussian process with covariance uniquely determined by the covariance of the cross section. A Karhunen-Loève decomposition of the Gaussian process is implemented to effciently generate realizations of the random cross sections and Woodcock Monte Carlo used to transport particles on each realization and generate benchmark solutions for the mean and variance of the particle flux as well as probability densities of the particle reflectance and transmittance. A computationally effcient stochastic collocation method is implemented to directly compute the statistical moments such as the mean and variance, while a polynomial chaos expansion in conjunction with stochastic collocation provides a convenient surrogate model that also produces probability densities of output quantities of interest. Extensive numerical testing demonstrates that use of stochastic reduced-order modeling provides an accurate and cost-effective alternative to random sampling for particle transport in random media.

  4. The structure of red-infrared scattergrams of semivegetated landscapes

    NASA Technical Reports Server (NTRS)

    Jasinski, Michael F.; Eagleson, Peter S.

    1988-01-01

    A physically based linear stochastic geometric canopy soil reflectance model is presented for characterizing spatial variability of semivegetated landscapes at subpixel and regional scales. Landscapes are conceptualized as stochastic geometric surfaces, incorporating not only the variability in geometric elements, but also the variability in vegetation and soil background reflectance which can be important in some scenes. The model is used to investigate several possible mechanisms which contribute to the often observed characteristic triangular shape of red-infrared scattergrams of semivegetated landscapes. Scattergrams of simulated and semivegetated scenes are analyzed with respect to the scales of the satellite pixel and subpixel components. Analysis of actual aerial radiometric data of a pecan orchard is presented in comparison with ground observations as preliminary confirmation of the theoretical results.

  5. The structure of red-infrared scattergrams of semivegetated landscapes

    NASA Technical Reports Server (NTRS)

    Jasinski, Michael F.; Eagleson, Peter S.

    1989-01-01

    A physically based linear stochastic geometric canopy soil reflectance model is presented for characterizing spatial variability of semivegetated landscapes at subpixel and regional scales. Landscapes are conceptualized as stochastic geometric surfaces, incorporating not only the variability in geometric elements, but also the variability in vegetation and soil background reflectance which can be important in some scenes. The model is used to investigate several possible mechanisms which contribute to the often observed characteristic triangular shape of red-infrared scattergrams of semivegetated landscapes. Scattergrams of simulated semivegetated scenes are analyzed with respect to the scales of the satellite pixel and subpixel components. Analysis of actual aerial radiometric data of a pecan orchard is presented in comparison with ground observations as preliminary confirmation of the theoretical results.

  6. Spatial scale affects the relative role of stochasticity versus determinism in soil bacterial communities in wheat fields across the North China Plain.

    PubMed

    Shi, Yu; Li, Yuntao; Xiang, Xingjia; Sun, Ruibo; Yang, Teng; He, Dan; Zhang, Kaoping; Ni, Yingying; Zhu, Yong-Guan; Adams, Jonathan M; Chu, Haiyan

    2018-02-05

    The relative importance of stochasticity versus determinism in soil bacterial communities is unclear, as are the possible influences that alter the balance between these. Here, we investigated the influence of spatial scale on the relative role of stochasticity and determinism in agricultural monocultures consisting only of wheat, thereby minimizing the influence of differences in plant species cover and in cultivation/disturbance regime, extending across a wide range of soils and climates of the North China Plain (NCP). We sampled 243 sites across 1092 km and sequenced the 16S rRNA bacterial gene using MiSeq. We hypothesized that determinism would play a relatively stronger role at the broadest scales, due to the strong influence of climate and soil differences in selecting many distinct OTUs of bacteria adapted to the different environments. In order to test the more general applicability of the hypothesis, we also compared with a natural ecosystem on the Tibetan Plateau. Our results revealed that the relative importance of stochasticity vs. determinism did vary with spatial scale, in the direction predicted. On the North China Plain, stochasticity played a dominant role from 150 to 900 km (separation between pairs of sites) and determinism dominated at more than 900 km (broad scale). On the Tibetan Plateau, determinism played a dominant role from 130 to 1200 km and stochasticity dominated at less than 130 km. Among the identifiable deterministic factors, soil pH showed the strongest influence on soil bacterial community structure and diversity across the North China Plain. Together, 23.9% of variation in soil microbial community composition could be explained, with environmental factors accounting for 19.7% and spatial parameters 4.1%. Our findings revealed that (1) stochastic processes are relatively more important on the North China Plain, while deterministic processes are more important on the Tibetan Plateau; (2) soil pH was the major factor in shaping soil bacterial community structure of the North China Plain; and (3) most variation in soil microbial community composition could not be explained with existing environmental and spatial factors. Further studies are needed to dissect the influence of stochastic factors (e.g., mutations or extinctions) on soil microbial community distribution, which might make it easier to predictably manipulate the microbial community to produce better yield and soil sustainability outcomes.

  7. Modeling when, where, and how to manage a forest epidemic, motivated by sudden oak death in California

    Treesearch

    Nik J. Cunniffe; Richard C. Cobb; Ross K. Meentemeyer; David M. Rizzo; Christopher A. Gilligan

    2016-01-01

    Sudden oak death, caused by Phytophthora ramorum, has killed millions of oak and tanoak in California since its first detection in 1995. Despite some localized small-scale management, there has been no large-scale attempt to slow the spread of the pathogen in California. Here we use a stochastic spatially-explicit model parameterized using data on...

  8. Using a stochastic model and cross-scale analysis to evaluate controls on historical low-severity fire regimes

    Treesearch

    Maureen C. Kennedy; Donald McKenzie

    2010-01-01

    Fire-scarred trees provide a deep temporal record of historical fire activity, but identifying the mechanisms therein that controlled landscape fire patterns is not straightforward. We use a spatially correlated metric for fire co-occurrence between pairs of trees (the Sørensen distance variogram), with output from a neutral model for fire history, to infer the...

  9. A probabilistic approach to quantifying spatial patterns of flow regimes and network-scale connectivity

    NASA Astrophysics Data System (ADS)

    Garbin, Silvia; Alessi Celegon, Elisa; Fanton, Pietro; Botter, Gianluca

    2017-04-01

    The temporal variability of river flow regime is a key feature structuring and controlling fluvial ecological communities and ecosystem processes. In particular, streamflow variability induced by climate/landscape heterogeneities or other anthropogenic factors significantly affects the connectivity between streams with notable implication for river fragmentation. Hydrologic connectivity is a fundamental property that guarantees species persistence and ecosystem integrity in riverine systems. In riverine landscapes, most ecological transitions are flow-dependent and the structure of flow regimes may affect ecological functions of endemic biota (i.e., fish spawning or grazing of invertebrate species). Therefore, minimum flow thresholds must be guaranteed to support specific ecosystem services, like fish migration, aquatic biodiversity and habitat suitability. In this contribution, we present a probabilistic approach aiming at a spatially-explicit, quantitative assessment of hydrologic connectivity at the network-scale as derived from river flow variability. Dynamics of daily streamflows are estimated based on catchment-scale climatic and morphological features, integrating a stochastic, physically based approach that accounts for the stochasticity of rainfall with a water balance model and a geomorphic recession flow model. The non-exceedance probability of ecologically meaningful flow thresholds is used to evaluate the fragmentation of individual stream reaches, and the ensuing network-scale connectivity metrics. A multi-dimensional Poisson Process for the stochastic generation of rainfall is used to evaluate the impact of climate signature on reach-scale and catchment-scale connectivity. The analysis shows that streamflow patterns and network-scale connectivity are influenced by the topology of the river network and the spatial variability of climatic properties (rainfall, evapotranspiration). The framework offers a robust basis for the prediction of the impact of land-use/land-cover changes and river regulation on network-scale connectivity.

  10. Regional frequency analysis of extreme rainfall for the Baltimore Metropolitan region based on stochastic storm transposition

    NASA Astrophysics Data System (ADS)

    Zhou, Z.; Smith, J. A.; Yang, L.; Baeck, M. L.; Wright, D.; Liu, S.

    2017-12-01

    Regional frequency analyses of extreme rainfall are critical for development of engineering hydrometeorology procedures. In conventional approaches, the assumptions that `design storms' have specified time profiles and are uniform in space are commonly applied but often not appropriate, especially over regions with heterogeneous environments (due to topography, water-land boundaries and land surface properties). In this study, we present regional frequency analyses of extreme rainfall for Baltimore study region combining storm catalogs of rainfall fields derived from weather radar and stochastic storm transposition (SST, developed by Wright et al., 2013). The study region is Dead Run, a small (14.3 km2) urban watershed, in the Baltimore Metropolitan region. Our analyses build on previous empirical and modeling studies showing pronounced spatial heterogeneities in rainfall due to the complex terrain, including the Chesapeake Bay to the east, mountainous terrain to the west and urbanization in this region. We expand the original SST approach by applying a multiplier field that accounts for spatial heterogeneities in extreme rainfall. We also characterize the spatial heterogeneities of extreme rainfall distribution through analyses of rainfall fields in the storm catalogs. We examine the characteristics of regional extreme rainfall and derive intensity-duration-frequency (IDF) curves using the SST approach for heterogeneous regions. Our results highlight the significant heterogeneity of extreme rainfall in this region. Estimates of IDF show the advantages of SST in capturing the space-time structure of extreme rainfall. We also illustrate application of SST analyses for flood frequency analyses using a distributed hydrological model. Reference: Wright, D. B., J. A. Smith, G. Villarini, and M. L. Baeck (2013), Estimating the frequency of extreme rainfall using weather radar and stochastic storm transposition, J. Hydrol., 488, 150-165.

  11. Towards a minimal stochastic model for a large class of diffusion-reactions on biological membranes.

    PubMed

    Chevalier, Michael W; El-Samad, Hana

    2012-08-28

    Diffusion of biological molecules on 2D biological membranes can play an important role in the behavior of stochastic biochemical reaction systems. Yet, we still lack a fundamental understanding of circumstances where explicit accounting of the diffusion and spatial coordinates of molecules is necessary. In this work, we illustrate how time-dependent, non-exponential reaction probabilities naturally arise when explicitly accounting for the diffusion of molecules. We use the analytical expression of these probabilities to derive a novel algorithm which, while ignoring the exact position of the molecules, can still accurately capture diffusion effects. We investigate the regions of validity of the algorithm and show that for most parameter regimes, it constitutes an accurate framework for studying these systems. We also document scenarios where large spatial fluctuation effects mandate explicit consideration of all the molecules and their positions. Taken together, our results derive a fundamental understanding of the role of diffusion and spatial fluctuations in these systems. Simultaneously, they provide a general computational methodology for analyzing a broad class of biological networks whose behavior is influenced by diffusion on membranes.

  12. An improved method to represent DEM uncertainty in glacial lake outburst flood propagation using stochastic simulations

    NASA Astrophysics Data System (ADS)

    Watson, Cameron S.; Carrivick, Jonathan; Quincey, Duncan

    2015-10-01

    Modelling glacial lake outburst floods (GLOFs) or 'jökulhlaups', necessarily involves the propagation of large and often stochastic uncertainties throughout the source to impact process chain. Since flood routing is primarily a function of underlying topography, communication of digital elevation model (DEM) uncertainty should accompany such modelling efforts. Here, a new stochastic first-pass assessment technique was evaluated against an existing GIS-based model and an existing 1D hydrodynamic model, using three DEMs with different spatial resolution. The analysis revealed the effect of DEM uncertainty and model choice on several flood parameters and on the prediction of socio-economic impacts. Our new model, which we call MC-LCP (Monte Carlo Least Cost Path) and which is distributed in the supplementary information, demonstrated enhanced 'stability' when compared to the two existing methods, and this 'stability' was independent of DEM choice. The MC-LCP model outputs an uncertainty continuum within its extent, from which relative socio-economic risk can be evaluated. In a comparison of all DEM and model combinations, the Shuttle Radar Topography Mission (SRTM) DEM exhibited fewer artefacts compared to those with the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM), and were comparable to those with a finer resolution Advanced Land Observing Satellite Panchromatic Remote-sensing Instrument for Stereo Mapping (ALOS PRISM) derived DEM. Overall, we contend that the variability we find between flood routing model results suggests that consideration of DEM uncertainty and pre-processing methods is important when assessing flow routing and when evaluating potential socio-economic implications of a GLOF event. Incorporation of a stochastic variable provides an illustration of uncertainty that is important when modelling and communicating assessments of an inherently complex process.

  13. Use of artificial landscapes to isolate controls on burn probability

    Treesearch

    Marc-Andre Parisien; Carol Miller; Alan A. Ager; Mark A. Finney

    2010-01-01

    Techniques for modeling burn probability (BP) combine the stochastic components of fire regimes (ignitions and weather) with sophisticated fire growth algorithms to produce high-resolution spatial estimates of the relative likelihood of burning. Despite the numerous investigations of fire patterns from either observed or simulated sources, the specific influence of...

  14. An electrophysiological validation of stochastic DCM for fMRI

    PubMed Central

    Daunizeau, J.; Lemieux, L.; Vaudano, A. E.; Friston, K. J.; Stephan, K. E.

    2013-01-01

    In this note, we assess the predictive validity of stochastic dynamic causal modeling (sDCM) of functional magnetic resonance imaging (fMRI) data, in terms of its ability to explain changes in the frequency spectrum of concurrently acquired electroencephalography (EEG) signal. We first revisit the heuristic model proposed in Kilner et al. (2005), which suggests that fMRI activation is associated with a frequency modulation of the EEG signal (rather than an amplitude modulation within frequency bands). We propose a quantitative derivation of the underlying idea, based upon a neural field formulation of cortical activity. In brief, dense lateral connections induce a separation of time scales, whereby fast (and high spatial frequency) modes are enslaved by slow (low spatial frequency) modes. This slaving effect is such that the frequency spectrum of fast modes (which dominate EEG signals) is controlled by the amplitude of slow modes (which dominate fMRI signals). We then use conjoint empirical EEG-fMRI data—acquired in epilepsy patients—to demonstrate the electrophysiological underpinning of neural fluctuations inferred from sDCM for fMRI. PMID:23346055

  15. Limiting similarity and functional diversity along environmental gradients

    USGS Publications Warehouse

    Schwilk, D.W.; Ackerly, D.D.

    2005-01-01

    Recent developments in community models emphasize the importance of incorporating stochastic processes (e.g. ecological drift) in models of niche-structured community assembly. We constructed a finite, spatially explicit, lottery model to simulate the distribution of species in a one-dimensional landscape with an underlying gradient in environmental conditions. Our framework combines the potential for ecological drift with environmentally-mediated competition for space in a heterogeneous environment. We examined the influence of niche breadth, dispersal distances, community size (total number of individuals) and the breadth of the environmental gradient on levels of species and functional trait diversity (i.e. differences in niche optima). Three novel results emerge from this model: (1) niche differences between adjacent species (e.g. limiting similarity) increase in smaller communities, because of the interaction of competitive effects and finite population sizes; (2) immigration from a regional species pool, stochasticity and niche-assembly generate a bimodal distribution of species residence times ('transient' and 'resident') under a heterogeneous environment; and (3) the magnitude of environmental heterogeneity has a U-shaped effect on diversity, because of shifts in species richness of resident vs. transient species. These predictions illustrate the potential importance of stochastic (although not necessarily neutral) processes in community assembly. ??2005 Blackwell Publishing Ltd/CNRS.

  16. A study of the effect of space-dependent neutronics on stochastically-induced bifurcations in BWR dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Analytis, G.T.

    1995-09-01

    A non-linear one-group space-dependent neutronic model for a finite one-dimensional core is coupled with a simple BWR feed-back model. In agreement with results obtained by the authors who originally developed the point-kinetics version of this model, we shall show numerically that stochastic reactivity excitations may result in limit-cycles and eventually in a chaotic behaviour, depending on the magnitude of the feed-back coefficient K. In the framework of this simple space-dependent model, the effect of the non-linearities on the different spatial harmonics is studied and the importance of the space-dependent effects is exemplified and assessed in terms of the importance ofmore » the higher harmonics. It is shown that under certain conditions, when the limit-cycle-type develop, the neutron spectra may exhibit strong space-dependent effects.« less

  17. Influence of spatial variability of hydraulic characteristics of soils on surface parameters obtained from remote sensing data in infrared and microwaves

    NASA Technical Reports Server (NTRS)

    Brunet, Y.; Vauclin, M.

    1985-01-01

    The correct interpretation of thermal and hydraulic soil parameters infrared from remotely sensed data (thermal infrared, microwaves) implies a good understanding of the causes of their temporal and spatial variability. Given this necessity, the sensitivity of the surface variables (temperature, moisture) to the spatial variability of hydraulic soil properties is tested with a numerical model of heat and mass transfer between bare soil and atmosphere. The spatial variability of hydraulic soil properties is taken into account in terms of the scaling factor. For a given soil, the knowledge of its frequency distribution allows a stochastic use of the model. The results are treated statistically, and the part of the variability of soil surface parameters due to that of soil hydraulic properties is evaluated quantitatively.

  18. Pan-European stochastic flood event set

    NASA Astrophysics Data System (ADS)

    Kadlec, Martin; Pinto, Joaquim G.; He, Yi; Punčochář, Petr; Kelemen, Fanni D.; Manful, Desmond; Palán, Ladislav

    2017-04-01

    Impact Forecasting (IF), the model development center of Aon Benfield, has been developing a large suite of catastrophe flood models on probabilistic bases for individual countries in Europe. Such natural catastrophes do not follow national boundaries: for example, the major flood in 2016 was responsible for the Europe's largest insured loss of USD3.4bn and affected Germany, France, Belgium, Austria and parts of several other countries. Reflecting such needs, IF initiated a pan-European flood event set development which combines cross-country exposures with country based loss distributions to provide more insightful data to re/insurers. Because the observed discharge data are not available across the whole Europe in sufficient quantity and quality to permit a detailed loss evaluation purposes, a top-down approach was chosen. This approach is based on simulating precipitation from a GCM/RCM model chain followed by a calculation of discharges using rainfall-runoff modelling. IF set up this project in a close collaboration with Karlsruhe Institute of Technology (KIT) regarding the precipitation estimates and with University of East Anglia (UEA) in terms of the rainfall-runoff modelling. KIT's main objective is to provide high resolution daily historical and stochastic time series of key meteorological variables. A purely dynamical downscaling approach with the regional climate model COSMO-CLM (CCLM) is used to generate the historical time series, using re-analysis data as boundary conditions. The resulting time series are validated against the gridded observational dataset E-OBS, and different bias-correction methods are employed. The generation of the stochastic time series requires transfer functions between large-scale atmospheric variables and regional temperature and precipitation fields. These transfer functions are developed for the historical time series using reanalysis data as predictors and bias-corrected CCLM simulated precipitation and temperature as predictands. Finally, the transfer functions are applied to a large ensemble of GCM simulations with forcing corresponding to present day climate conditions to generate highly resolved stochastic time series of precipitation and temperature for several thousand years. These time series form the input for the rainfall-runoff model developed by the UEA team. It is a spatially distributed model adapted from the HBV model and will be calibrated for individual basins using historical discharge data. The calibrated model will be driven by the precipitation time series generated by the KIT team to simulate discharges at a daily time step. The uncertainties in the simulated discharges will be analysed using multiple model parameter sets. A number of statistical methods will be used to assess return periods, changes in the magnitudes, changes in the characteristics of floods such as time base and time to peak, and spatial correlations of large flood events. The Pan-European flood stochastic event set will permit a better view of flood risk for market applications.

  19. Global climate impacts of stochastic deep convection parameterization in the NCAR CAM5

    DOE PAGES

    Wang, Yong; Zhang, Guang J.

    2016-09-29

    In this paper, the stochastic deep convection parameterization of Plant and Craig (PC) is implemented in the Community Atmospheric Model version 5 (CAM5) to incorporate the stochastic processes of convection into the Zhang-McFarlane (ZM) deterministic deep convective scheme. Its impacts on deep convection, shallow convection, large-scale precipitation and associated dynamic and thermodynamic fields are investigated. Results show that with the introduction of the PC stochastic parameterization, deep convection is decreased while shallow convection is enhanced. The decrease in deep convection is mainly caused by the stochastic process and the spatial averaging of input quantities for the PC scheme. More detrainedmore » liquid water associated with more shallow convection leads to significant increase in liquid water and ice water paths, which increases large-scale precipitation in tropical regions. Specific humidity, relative humidity, zonal wind in the tropics, and precipitable water are all improved. The simulation of shortwave cloud forcing (SWCF) is also improved. The PC stochastic parameterization decreases the global mean SWCF from -52.25 W/m 2 in the standard CAM5 to -48.86 W/m 2, close to -47.16 W/m 2 in observations. The improvement in SWCF over the tropics is due to decreased low cloud fraction simulated by the stochastic scheme. Sensitivity tests of tuning parameters are also performed to investigate the sensitivity of simulated climatology to uncertain parameters in the stochastic deep convection scheme.« less

  20. Global climate impacts of stochastic deep convection parameterization in the NCAR CAM5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yong; Zhang, Guang J.

    In this paper, the stochastic deep convection parameterization of Plant and Craig (PC) is implemented in the Community Atmospheric Model version 5 (CAM5) to incorporate the stochastic processes of convection into the Zhang-McFarlane (ZM) deterministic deep convective scheme. Its impacts on deep convection, shallow convection, large-scale precipitation and associated dynamic and thermodynamic fields are investigated. Results show that with the introduction of the PC stochastic parameterization, deep convection is decreased while shallow convection is enhanced. The decrease in deep convection is mainly caused by the stochastic process and the spatial averaging of input quantities for the PC scheme. More detrainedmore » liquid water associated with more shallow convection leads to significant increase in liquid water and ice water paths, which increases large-scale precipitation in tropical regions. Specific humidity, relative humidity, zonal wind in the tropics, and precipitable water are all improved. The simulation of shortwave cloud forcing (SWCF) is also improved. The PC stochastic parameterization decreases the global mean SWCF from -52.25 W/m 2 in the standard CAM5 to -48.86 W/m 2, close to -47.16 W/m 2 in observations. The improvement in SWCF over the tropics is due to decreased low cloud fraction simulated by the stochastic scheme. Sensitivity tests of tuning parameters are also performed to investigate the sensitivity of simulated climatology to uncertain parameters in the stochastic deep convection scheme.« less

  1. Demographic inference under the coalescent in a spatial continuum.

    PubMed

    Guindon, Stéphane; Guo, Hongbin; Welch, David

    2016-10-01

    Understanding population dynamics from the analysis of molecular and spatial data requires sound statistical modeling. Current approaches assume that populations are naturally partitioned into discrete demes, thereby failing to be relevant in cases where individuals are scattered on a spatial continuum. Other models predict the formation of increasingly tight clusters of individuals in space, which, again, conflicts with biological evidence. Building on recent theoretical work, we introduce a new genealogy-based inference framework that alleviates these issues. This approach effectively implements a stochastic model in which the distribution of individuals is homogeneous and stationary, thereby providing a relevant null model for the fluctuation of genetic diversity in time and space. Importantly, the spatial density of individuals in a population and their range of dispersal during the course of evolution are two parameters that can be inferred separately with this method. The validity of the new inference framework is confirmed with extensive simulations and the analysis of influenza sequences collected over five seasons in the USA. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Stochastic modelling of infectious diseases for heterogeneous populations.

    PubMed

    Ming, Rui-Xing; Liu, Ji-Ming; W Cheung, William K; Wan, Xiang

    2016-12-22

    Infectious diseases such as SARS and H1N1 can significantly impact people's lives and cause severe social and economic damages. Recent outbreaks have stressed the urgency of effective research on the dynamics of infectious disease spread. However, it is difficult to predict when and where outbreaks may emerge and how infectious diseases spread because many factors affect their transmission, and some of them may be unknown. One feasible means to promptly detect an outbreak and track the progress of disease spread is to implement surveillance systems in regional or national health and medical centres. The accumulated surveillance data, including temporal, spatial, clinical, and demographic information can provide valuable information that can be exploited to better understand and model the dynamics of infectious disease spread. The aim of this work is to develop and empirically evaluate a stochastic model that allows the investigation of transmission patterns of infectious diseases in heterogeneous populations. We test the proposed model on simulation data and apply it to the surveillance data from the 2009 H1N1 pandemic in Hong Kong. In the simulation experiment, our model achieves high accuracy in parameter estimation (less than 10.0 % mean absolute percentage error). In terms of the forward prediction of case incidence, the mean absolute percentage errors are 17.3 % for the simulation experiment and 20.0 % for the experiment on the real surveillance data. We propose a stochastic model to study the dynamics of infectious disease spread in heterogeneous populations from temporal-spatial surveillance data. The proposed model is evaluated using both simulated data and the real data from the 2009 H1N1 epidemic in Hong Kong and achieves acceptable prediction accuracy. We believe that our model can provide valuable insights for public health authorities to predict the effect of disease spread and analyse its underlying factors and to guide new control efforts.

  3. On the use of a PM2.5 exposure simulator to explain birthweight

    PubMed Central

    Berrocal, Veronica J.; Gelfand, Alan E.; Holland, David M.; Burke, Janet; Miranda, Marie Lynn

    2010-01-01

    In relating pollution to birth outcomes, maternal exposure has usually been described using monitoring data. Such characterization provides a misrepresentation of exposure as it (i) does not take into account the spatial misalignment between an individual’s residence and monitoring sites, and (ii) it ignores the fact that individuals spend most of their time indoors and typically in more than one location. In this paper, we break with previous studies by using a stochastic simulator to describe personal exposure (to particulate matter) and then relate simulated exposures at the individual level to the health outcome (birthweight) rather than aggregating to a selected spatial unit. We propose a hierarchical model that, at the first stage, specifies a linear relationship between birthweight and personal exposure, adjusting for individual risk factors and introduces random spatial effects for the census tract of maternal residence. At the second stage, our hierarchical model specifies the distribution of each individual’s personal exposure using the empirical distribution yielded by the stochastic simulator as well as a model for the spatial random effects. We have applied our framework to analyze birthweight data from 14 counties in North Carolina in years 2001 and 2002. We investigate whether there are certain aspects and time windows of exposure that are more detrimental to birthweight by building different exposure metrics which we incorporate, one by one, in our hierarchical model. To assess the difference in relating ambient exposure to birthweight versus personal exposure to birthweight, we compare estimates of the effect of air pollution obtained from hierarchical models that linearly relate ambient exposure and birthweight versus those obtained from our modeling framework. Our analysis does not show a significant effect of PM2.5 on birthweight for reasons which we discuss. However, our modeling framework serves as a template for analyzing the relationship between personal exposure and longer term health endpoints. PMID:21691413

  4. Multiple-Point statistics for stochastic modeling of aquifers, where do we stand?

    NASA Astrophysics Data System (ADS)

    Renard, P.; Julien, S.

    2017-12-01

    In the last 20 years, multiple-point statistics have been a focus of much research, successes and disappointments. The aim of this geostatistical approach was to integrate geological information into stochastic models of aquifer heterogeneity to better represent the connectivity of high or low permeability structures in the underground. Many different algorithms (ENESIM, SNESIM, SIMPAT, CCSIM, QUILTING, IMPALA, DEESSE, FILTERSIM, HYPPS, etc.) have been and are still proposed. They are all based on the concept of a training data set from which spatial statistics are derived and used in a further step to generate conditional realizations. Some of these algorithms evaluate the statistics of the spatial patterns for every pixel, other techniques consider the statistics at the scale of a patch or a tile. While the method clearly succeeded in enabling modelers to generate realistic models, several issues are still the topic of debate both from a practical and theoretical point of view, and some issues such as training data set availability are often hindering the application of the method in practical situations. In this talk, the aim is to present a review of the status of these approaches both from a theoretical and practical point of view using several examples at different scales (from pore network to regional aquifer).

  5. Stochastic simulation of spatially correlated geo-processes

    USGS Publications Warehouse

    Christakos, G.

    1987-01-01

    In this study, developments in the theory of stochastic simulation are discussed. The unifying element is the notion of Radon projection in Euclidean spaces. This notion provides a natural way of reconstructing the real process from a corresponding process observable on a reduced dimensionality space, where analysis is theoretically easier and computationally tractable. Within this framework, the concept of space transformation is defined and several of its properties, which are of significant importance within the context of spatially correlated processes, are explored. The turning bands operator is shown to follow from this. This strengthens considerably the theoretical background of the geostatistical method of simulation, and some new results are obtained in both the space and frequency domains. The inverse problem is solved generally and the applicability of the method is extended to anisotropic as well as integrated processes. Some ill-posed problems of the inverse operator are discussed. Effects of the measurement error and impulses at origin are examined. Important features of the simulated process as described by geomechanical laws, the morphology of the deposit, etc., may be incorporated in the analysis. The simulation may become a model-dependent procedure and this, in turn, may provide numerical solutions to spatial-temporal geologic models. Because the spatial simu??lation may be technically reduced to unidimensional simulations, various techniques of generating one-dimensional realizations are reviewed. To link theory and practice, an example is computed in detail. ?? 1987 International Association for Mathematical Geology.

  6. Quantifying geological uncertainty for flow and transport modeling in multi-modal heterogeneous formations

    NASA Astrophysics Data System (ADS)

    Feyen, Luc; Caers, Jef

    2006-06-01

    In this work, we address the problem of characterizing the heterogeneity and uncertainty of hydraulic properties for complex geological settings. Hereby, we distinguish between two scales of heterogeneity, namely the hydrofacies structure and the intrafacies variability of the hydraulic properties. We employ multiple-point geostatistics to characterize the hydrofacies architecture. The multiple-point statistics are borrowed from a training image that is designed to reflect the prior geological conceptualization. The intrafacies variability of the hydraulic properties is represented using conventional two-point correlation methods, more precisely, spatial covariance models under a multi-Gaussian spatial law. We address the different levels and sources of uncertainty in characterizing the subsurface heterogeneity, and explore their effect on groundwater flow and transport predictions. Typically, uncertainty is assessed by way of many images, termed realizations, of a fixed statistical model. However, in many cases, sampling from a fixed stochastic model does not adequately represent the space of uncertainty. It neglects the uncertainty related to the selection of the stochastic model and the estimation of its input parameters. We acknowledge the uncertainty inherent in the definition of the prior conceptual model of aquifer architecture and in the estimation of global statistics, anisotropy, and correlation scales. Spatial bootstrap is used to assess the uncertainty of the unknown statistical parameters. As an illustrative example, we employ a synthetic field that represents a fluvial setting consisting of an interconnected network of channel sands embedded within finer-grained floodplain material. For this highly non-stationary setting we quantify the groundwater flow and transport model prediction uncertainty for various levels of hydrogeological uncertainty. Results indicate the importance of accurately describing the facies geometry, especially for transport predictions.

  7. Seasonal change of topology and resilience of ecological networks in wetlandscapes

    NASA Astrophysics Data System (ADS)

    Bin, Kim; Park, Jeryang

    2017-04-01

    Wetlands distributed in a landscape provide various ecosystem services including habitat for flora and fauna, hydrologic controls, and biogeochemical processes. Hydrologic regime of each wetland at a given landscape varies by hydro-climatic and geological conditions as well as the bathymetry, forming a certain pattern in the wetland area distribution and spatial organization. However, its large-scale pattern also changes over time as this wetland complex is subject to stochastic hydro-climatic forcing in various temporal scales. Consequently, temporal variation in the spatial structure of wetlands inevitably affects the dispersal ability of species depending on those wetlands as habitat. Here, we numerically show (1) the spatiotemporal variation of wetlandscapes by forcing seasonally changing stochastic rainfall and (2) the corresponding ecological networks which either deterministically or stochastically forming the dispersal ranges. We selected four vernal pool regions with distinct climate conditions in California. The results indicate that the spatial structure of wetlands in a landscape by measuring the wetland area frequency distribution changes by seasonal hydro-climatic condition but eventually recovers to the initial state. However, the corresponding ecological networks, which the structure and function change by the change of distances between wetlands, and measured by degree distribution and network efficiency, may not recover to the initial state especially in the regions with high seasonal dryness index. Moreover, we observed that the changes in both the spatial structure of wetlands in a landscape and the corresponding ecological networks exhibit hysteresis over seasons. Our analysis indicates that the hydrologic and ecological resilience of a wetlandcape may be low in a dry region with seasonal hydro-climatic forcing. Implications of these results for modelling ecological networks depending on hydrologic systems especially for conservation purposes are discussed.

  8. Geotechnical parameter spatial distribution stochastic analysis based on multi-precision information assimilation

    NASA Astrophysics Data System (ADS)

    Wang, C.; Rubin, Y.

    2014-12-01

    Spatial distribution of important geotechnical parameter named compression modulus Es contributes considerably to the understanding of the underlying geological processes and the adequate assessment of the Es mechanics effects for differential settlement of large continuous structure foundation. These analyses should be derived using an assimilating approach that combines in-situ static cone penetration test (CPT) with borehole experiments. To achieve such a task, the Es distribution of stratum of silty clay in region A of China Expo Center (Shanghai) is studied using the Bayesian-maximum entropy method. This method integrates rigorously and efficiently multi-precision of different geotechnical investigations and sources of uncertainty. Single CPT samplings were modeled as a rational probability density curve by maximum entropy theory. Spatial prior multivariate probability density function (PDF) and likelihood PDF of the CPT positions were built by borehole experiments and the potential value of the prediction point, then, preceding numerical integration on the CPT probability density curves, the posterior probability density curve of the prediction point would be calculated by the Bayesian reverse interpolation framework. The results were compared between Gaussian Sequential Stochastic Simulation and Bayesian methods. The differences were also discussed between single CPT samplings of normal distribution and simulated probability density curve based on maximum entropy theory. It is shown that the study of Es spatial distributions can be improved by properly incorporating CPT sampling variation into interpolation process, whereas more informative estimations are generated by considering CPT Uncertainty for the estimation points. Calculation illustrates the significance of stochastic Es characterization in a stratum, and identifies limitations associated with inadequate geostatistical interpolation techniques. This characterization results will provide a multi-precision information assimilation method of other geotechnical parameters.

  9. A simple stochastic rainstorm generator for simulating spatially and temporally varying rainfall

    NASA Astrophysics Data System (ADS)

    Singer, M. B.; Michaelides, K.; Nichols, M.; Nearing, M. A.

    2016-12-01

    In semi-arid to arid drainage basins, rainstorms often control both water supply and flood risk to marginal communities of people. They also govern the availability of water to vegetation and other ecological communities, as well as spatial patterns of sediment, nutrient, and contaminant transport and deposition on local to basin scales. All of these landscape responses are sensitive to changes in climate that are projected to occur throughout western North America. Thus, it is important to improve characterization of rainstorms in a manner that enables statistical assessment of rainfall at spatial scales below that of existing gauging networks and the prediction of plausible manifestations of climate change. Here we present a simple, stochastic rainstorm generator that was created using data from a rich and dense network of rain gauges at the Walnut Gulch Experimental Watershed (WGEW) in SE Arizona, but which is applicable anywhere. We describe our methods for assembling pdfs of relevant rainstorm characteristics including total annual rainfall, storm area, storm center location, and storm duration. We also generate five fitted intensity-duration curves and apply a spatial rainfall gradient to generate precipitation at spatial scales below gauge spacing. The model then runs by Monte Carlo simulation in which a total annual rainfall is selected before we generate rainstorms until the annual precipitation total is reached. The procedure continues for decadal simulations. Thus, we keep track of the hydrologic impact of individual storms and the integral of precipitation over multiple decades. We first test the model using ensemble predictions until we reach statistical similarity to the input data from WGEW. We then employ the model to assess decadal precipitation under simulations of climate change in which we separately vary the distribution of total annual rainfall (trend in moisture) and the intensity-duration curves used for simulation (trends in storminess). We demonstrate the model output through spatial maps of rainfall and through statistical comparisons of relevant parameters and distributions. Finally, discuss how the model can be used to understand basin-scale hydrology in terms of soil moisture, runoff, and erosion.

  10. Spreading speeds for plant populations in landscapes with low environmental variation.

    PubMed

    Gilbert, Mark A; Gaffney, Eamonn A; Bullock, James M; White, Steven M

    2014-12-21

    Characterising the spread of biological populations is crucial in responding to both biological invasions and the shifting of habitat under climate change. Spreading speeds can be studied through mathematical models such as the discrete-time integro-difference equation (IDE) framework. The usual approach in implementing IDE models has been to ignore spatial variation in the demographic and dispersal parameters and to assume that these are spatially homogeneous. On the other hand, real landscapes are rarely spatially uniform with environmental variation being very important in determining biological spread. This raises the question of under what circumstances spatial structure need not be modelled explicitly. Recent work has shown that spatial variation can be ignored for the specific case where the scale of landscape variation is much smaller than the spreading population׳s dispersal scale. We consider more general types of landscape, where the spatial scales of environmental variation are arbitrarily large, but the maximum change in environmental parameters is relatively small. We find that the difference between the wave-speeds of populations spreading in a spatially structured periodic landscape and its homogenisation is, in general, proportional to ϵ(2), where ϵ governs the degree of environmental variation. For stochastically generated landscapes we numerically demonstrate that the error decays faster than ϵ. In both cases, this means that for sufficiently small ϵ, the homogeneous approximation is better than might be expected. Hence, in many situations, the precise details of the landscape can be ignored in favour of spatially homogeneous parameters. This means that field ecologists can use the homogeneous IDE as a relatively simple modelling tool--in terms of both measuring parameter values and doing the modelling itself. However, as ϵ increases, this homogeneous approximation loses its accuracy. The change in wave-speed due to the extrinsic (landscape) variation can be positive or negative, which is in contrast to the reduction in wave-speed caused by intrinsic stochasticity. To deal with the loss of accuracy as ϵ increases, we formulate a second-order approximation to the wave-speed for periodic landscapes and compare both approximations against the results of numerical simulation and show that they are both accurate for the range of landscapes considered. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. A model for a spatially structured metapopulation accounting for within patch dynamics.

    PubMed

    Smith, Andrew G; McVinish, Ross; Pollett, Philip K

    2014-01-01

    We develop a stochastic metapopulation model that accounts for spatial structure as well as within patch dynamics. Using a deterministic approximation derived from a functional law of large numbers, we develop conditions for extinction and persistence of the metapopulation in terms of the birth, death and migration parameters. Interestingly, we observe the Allee effect in a metapopulation comprising two patches of greatly different sizes, despite there being decreasing patch specific per-capita birth rates. We show that the Allee effect is due to the way the migration rates depend on the population density of the patches. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. A statistical approach to quasi-extinction forecasting.

    PubMed

    Holmes, Elizabeth Eli; Sabo, John L; Viscido, Steven Vincent; Fagan, William Fredric

    2007-12-01

    Forecasting population decline to a certain critical threshold (the quasi-extinction risk) is one of the central objectives of population viability analysis (PVA), and such predictions figure prominently in the decisions of major conservation organizations. In this paper, we argue that accurate forecasting of a population's quasi-extinction risk does not necessarily require knowledge of the underlying biological mechanisms. Because of the stochastic and multiplicative nature of population growth, the ensemble behaviour of population trajectories converges to common statistical forms across a wide variety of stochastic population processes. This paper provides a theoretical basis for this argument. We show that the quasi-extinction surfaces of a variety of complex stochastic population processes (including age-structured, density-dependent and spatially structured populations) can be modelled by a simple stochastic approximation: the stochastic exponential growth process overlaid with Gaussian errors. Using simulated and real data, we show that this model can be estimated with 20-30 years of data and can provide relatively unbiased quasi-extinction risk with confidence intervals considerably smaller than (0,1). This was found to be true even for simulated data derived from some of the noisiest population processes (density-dependent feedback, species interactions and strong age-structure cycling). A key advantage of statistical models is that their parameters and the uncertainty of those parameters can be estimated from time series data using standard statistical methods. In contrast for most species of conservation concern, biologically realistic models must often be specified rather than estimated because of the limited data available for all the various parameters. Biologically realistic models will always have a prominent place in PVA for evaluating specific management options which affect a single segment of a population, a single demographic rate, or different geographic areas. However, for forecasting quasi-extinction risk, statistical models that are based on the convergent statistical properties of population processes offer many advantages over biologically realistic models.

  13. Surrogate modelling for the prediction of spatial fields based on simultaneous dimensionality reduction of high-dimensional input/output spaces.

    PubMed

    Crevillén-García, D

    2018-04-01

    Time-consuming numerical simulators for solving groundwater flow and dissolution models of physico-chemical processes in deep aquifers normally require some of the model inputs to be defined in high-dimensional spaces in order to return realistic results. Sometimes, the outputs of interest are spatial fields leading to high-dimensional output spaces. Although Gaussian process emulation has been satisfactorily used for computing faithful and inexpensive approximations of complex simulators, these have been mostly applied to problems defined in low-dimensional input spaces. In this paper, we propose a method for simultaneously reducing the dimensionality of very high-dimensional input and output spaces in Gaussian process emulators for stochastic partial differential equation models while retaining the qualitative features of the original models. This allows us to build a surrogate model for the prediction of spatial fields in such time-consuming simulators. We apply the methodology to a model of convection and dissolution processes occurring during carbon capture and storage.

  14. Approximate reduction of linear population models governed by stochastic differential equations: application to multiregional models.

    PubMed

    Sanz, Luis; Alonso, Juan Antonio

    2017-12-01

    In this work we develop approximate aggregation techniques in the context of slow-fast linear population models governed by stochastic differential equations and apply the results to the treatment of populations with spatial heterogeneity. Approximate aggregation techniques allow one to transform a complex system involving many coupled variables and in which there are processes with different time scales, by a simpler reduced model with a fewer number of 'global' variables, in such a way that the dynamics of the former can be approximated by that of the latter. In our model we contemplate a linear fast deterministic process together with a linear slow process in which the parameters are affected by additive noise, and give conditions for the solutions corresponding to positive initial conditions to remain positive for all times. By letting the fast process reach equilibrium we build a reduced system with a lesser number of variables, and provide results relating the asymptotic behaviour of the first- and second-order moments of the population vector for the original and the reduced system. The general technique is illustrated by analysing a multiregional stochastic system in which dispersal is deterministic and the rate growth of the populations in each patch is affected by additive noise.

  15. Hierarchical relaxation methods for multispectral pixel classification as applied to target identification

    NASA Astrophysics Data System (ADS)

    Cohen, E. A., Jr.

    1985-02-01

    This report provides insights into the approaches toward image modeling as applied to target detection. The approach is that of examining the energy in prescribed wave-bands which emanate from a target and correlating the emissions. Typically, one might be looking at two or three infrared bands, possibly together with several visual bands. The target is segmented, using both first and second order modeling, into a set of interesting components and these components are correlated so as to enhance the classification process. A Markov-type model is used to provide an a priori assessment of the spatial relationships among critical parts of the target, and a stochastic model using the output of an initial probabilistic labeling is invoked. The tradeoff between this stochastic model and the Markov model is then optimized to yield a best labeling for identification purposes. In an identification of friend or foe (IFF) context, this methodology could be of interest, for it provides the ingredients for such a higher level of understanding.

  16. The social costs of homeowner decisions in fire-prone communities: information, insurance, and amenities

    Treesearch

    Gwenlyn Busby; Gregory S. Amacher; Robert G. Haight

    2013-01-01

    In this article, we consider wildfire risk management decisions using a dynamic stochastic model of homeowner interaction in a setting where spatial externalities arise. Our central objective is to apply observations from the social science literature about homeowner preferences to this economic externality problem and determine how assumptions about insurance,...

  17. Robust lane detection and tracking using multiple visual cues under stochastic lane shape conditions

    NASA Astrophysics Data System (ADS)

    Huang, Zhi; Fan, Baozheng; Song, Xiaolin

    2018-03-01

    As one of the essential components of environment perception techniques for an intelligent vehicle, lane detection is confronted with challenges including robustness against the complicated disturbance and illumination, also adaptability to stochastic lane shapes. To overcome these issues, we proposed a robust lane detection method named classification-generation-growth-based (CGG) operator to the detected lines, whereby the linear lane markings are identified by synergizing multiple visual cues with the a priori knowledge and spatial-temporal information. According to the quality of linear lane fitting, the linear and linear-parabolic models are dynamically switched to describe the actual lane. The Kalman filter with adaptive noise covariance and the region of interests (ROI) tracking are applied to improve the robustness and efficiency. Experiments were conducted with images covering various challenging scenarios. The experimental results evaluate the effectiveness of the presented method for complicated disturbances, illumination, and stochastic lane shapes.

  18. Diffusion with stochastic resetting at power-law times.

    PubMed

    Nagar, Apoorva; Gupta, Shamik

    2016-06-01

    What happens when a continuously evolving stochastic process is interrupted with large changes at random intervals τ distributed as a power law ∼τ^{-(1+α)};α>0? Modeling the stochastic process by diffusion and the large changes as abrupt resets to the initial condition, we obtain exact closed-form expressions for both static and dynamic quantities, while accounting for strong correlations implied by a power law. Our results show that the resulting dynamics exhibits a spectrum of rich long-time behavior, from an ever-spreading spatial distribution for α<1, to one that is time independent for α>1. The dynamics has strong consequences on the time to reach a distant target for the first time; we specifically show that there exists an optimal α that minimizes the mean time to reach the target, thereby offering a step towards a viable strategy to locate targets in a crowded environment.

  19. The Stochastic Multicloud Model as part of an operational convection parameterisation in a comprehensive GCM

    NASA Astrophysics Data System (ADS)

    Peters, Karsten; Jakob, Christian; Möbis, Benjamin

    2015-04-01

    An adequate representation of convective processes in numerical models of the atmospheric circulation (general circulation models, GCMs) remains one of the grand challenges in atmospheric science. In particular, the models struggle with correctly representing the spatial distribution and high variability of tropical convection. It is thought that this model deficiency partly results from formulating current convection parameterisation schemes in a purely deterministic manner. Here, we use observations of tropical convection to inform the design of a novel convection parameterisation with stochastic elements. The novel scheme is built around the Stochastic MultiCloud Model (SMCM, Khouider et al 2010). We present the progress made in utilising SMCM-based estimates of updraft area fractions at cloud base as part of the deep convection scheme of a GCM. The updraft area fractions are used to yield one part of the cloud base mass-flux used in the closure assumption of convective mass-flux schemes. The closure thus receives a stochastic component, potentially improving modeled convective variability and coherence. For initial investigations, we apply the above methodology to the operational convective parameterisation of the ECHAM6 GCM. We perform 5-year AMIP simulations, i.e. with prescribed observed SSTs. We find that with the SMCM, convection is weaker and more coherent and continuous from timestep to timestep compared to the standard model. Total global precipitation is reduced in the SMCM run, but this reduces i) the overall error compared to observed global precipitation (GPCP) and ii) middle tropical tropospheric temperature biases compared to ERA-Interim. Hovmoeller diagrams indicate a slightly higher degree of convective organisation compared to the base case and Wheeler-Kiladis frequency wavenumber diagrams indicate slightly more spectral power in the MJO range.

  20. The Time Dependent Propensity Function for Acceleration of Spatial Stochastic Simulation of Reaction-Diffusion Systems

    PubMed Central

    Wu, Sheng; Li, Hong; Petzold, Linda R.

    2015-01-01

    The inhomogeneous stochastic simulation algorithm (ISSA) is a fundamental method for spatial stochastic simulation. However, when diffusion events occur more frequently than reaction events, simulating the diffusion events by ISSA is quite costly. To reduce this cost, we propose to use the time dependent propensity function in each step. In this way we can avoid simulating individual diffusion events, and use the time interval between two adjacent reaction events as the simulation stepsize. We demonstrate that the new algorithm can achieve orders of magnitude efficiency gains over widely-used exact algorithms, scales well with increasing grid resolution, and maintains a high level of accuracy. PMID:26609185

  1. A stochastic multi-scale method for turbulent premixed combustion

    NASA Astrophysics Data System (ADS)

    Cha, Chong M.

    2002-11-01

    The stochastic chemistry algorithm of Bunker et al. and Gillespie is used to perform the chemical reactions in a transported probability density function (PDF) modeling approach of turbulent combustion. Recently, Kraft & Wagner have demonstrated a 100-fold gain in computational speed (for a 100 species mechanism) using the stochastic approach over the conventional, direct integration method of solving for the chemistry. Here, the stochastic chemistry algorithm is applied to develop a new transported PDF model of turbulent premixed combustion. The methodology relies on representing the relevant spatially dependent physical processes as queuing events. The canonical problem of a one-dimensional premixed flame is used for validation. For the laminar case, molecular diffusion is described by a random walk. For the turbulent case, one of two different material transport submodels can provide the necessary closure: Taylor dispersion or Kerstein's one-dimensional turbulence approach. The former exploits ``eddy diffusivity'' and hence would be much more computationally tractable for practical applications. Various validation studies are performed. Results from the Monte Carlo simulations compare well to asymptotic solutions of laminar premixed flames, both with and without high activation temperatures. The correct scaling of the turbulent burning velocity is predicted in both Damköhler's small- and large-scale turbulence limits. The effect of applying the eddy diffusivity concept in the various regimes is discussed.

  2. Pair and triplet approximation of a spatial lattice population model with multiscale dispersal using Markov chains for estimating spatial autocorrelation.

    PubMed

    Hiebeler, David E; Millett, Nicholas E

    2011-06-21

    We investigate a spatial lattice model of a population employing dispersal to nearest and second-nearest neighbors, as well as long-distance dispersal across the landscape. The model is studied via stochastic spatial simulations, ordinary pair approximation, and triplet approximation. The latter method, which uses the probabilities of state configurations of contiguous blocks of three sites as its state variables, is demonstrated to be greatly superior to pair approximations for estimating spatial correlation information at various scales. Correlations between pairs of sites separated by arbitrary distances are estimated by constructing spatial Markov processes using the information from both approximations. These correlations demonstrate why pair approximation misses basic qualitative features of the model, such as decreasing population density as a large proportion of offspring are dropped on second-nearest neighbors, and why triplet approximation is able to include them. Analytical and numerical results show that, excluding long-distance dispersal, the initial growth rate of an invading population is maximized and the equilibrium population density is also roughly maximized when the population spreads its offspring evenly over nearest and second-nearest neighboring sites. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. From AWE-GEN to AWE-GEN-2d: a high spatial and temporal resolution weather generator

    NASA Astrophysics Data System (ADS)

    Peleg, Nadav; Fatichi, Simone; Paschalis, Athanasios; Molnar, Peter; Burlando, Paolo

    2016-04-01

    A new weather generator, AWE-GEN-2d (Advanced WEather GENerator for 2-Dimension grid) is developed following the philosophy of combining physical and stochastic approaches to simulate meteorological variables at high spatial and temporal resolution (e.g. 2 km x 2 km and 5 min for precipitation and cloud cover and 100 m x 100 m and 1 h for other variables variable (temperature, solar radiation, vapor pressure, atmospheric pressure and near-surface wind). The model is suitable to investigate the impacts of climate variability, temporal and spatial resolutions of forcing on hydrological, ecological, agricultural and geomorphological impacts studies. Using appropriate parameterization the model can be used in the context of climate change. Here we present the model technical structure of AWE-GEN-2d, which is a substantial evolution of four preceding models (i) the hourly-point scale Advanced WEather GENerator (AWE-GEN) presented by Fatichi et al. (2011, Adv. Water Resour.) (ii) the Space-Time Realizations of Areal Precipitation (STREAP) model introduced by Paschalis et al. (2013, Water Resour. Res.), (iii) the High-Resolution Synoptically conditioned Weather Generator developed by Peleg and Morin (2014, Water Resour. Res.), and (iv) the Wind-field Interpolation by Non Divergent Schemes presented by Burlando et al. (2007, Boundary-Layer Meteorol.). The AWE-GEN-2d is relatively parsimonious in terms of computational demand and allows generating many stochastic realizations of current and projected climates in an efficient way. An example of model application and testing is presented with reference to a case study in the Wallis region, a complex orography terrain in the Swiss Alps.

  4. Stochastic modeling of mode interactions via linear parabolized stability equations

    NASA Astrophysics Data System (ADS)

    Ran, Wei; Zare, Armin; Hack, M. J. Philipp; Jovanovic, Mihailo

    2017-11-01

    Low-complexity approximations of the Navier-Stokes equations have been widely used in the analysis of wall-bounded shear flows. In particular, the parabolized stability equations (PSE) and Floquet theory have been employed to capture the evolution of primary and secondary instabilities in spatially-evolving flows. We augment linear PSE with Floquet analysis to formally treat modal interactions and the evolution of secondary instabilities in the transitional boundary layer via a linear progression. To this end, we leverage Floquet theory by incorporating the primary instability into the base flow and accounting for different harmonics in the flow state. A stochastic forcing is introduced into the resulting linear dynamics to model the effect of nonlinear interactions on the evolution of modes. We examine the H-type transition scenario to demonstrate how our approach can be used to model nonlinear effects and capture the growth of the fundamental and subharmonic modes observed in direct numerical simulations and experiments.

  5. Topology-selective jamming of fully-connected, code-division random-access networks

    NASA Technical Reports Server (NTRS)

    Polydoros, Andreas; Cheng, Unjeng

    1990-01-01

    The purpose is to introduce certain models of topology selective stochastic jamming and examine its impact on a class of fully-connected, spread-spectrum, slotted ALOHA-type random access networks. The theory covers dedicated as well as half-duplex units. The dominant role of the spatial duty factor is established, and connections with the dual concept of time selective jamming are discussed. The optimal choices of coding rate and link access parameters (from the users' side) and the jamming spatial fraction are numerically established for DS and FH spreading.

  6. Stochastic analysis of multiphase flow in porous media: II. Numerical simulations

    NASA Astrophysics Data System (ADS)

    Abin, A.; Kalurachchi, J. J.; Kemblowski, M. W.; Chang, C.-M.

    1996-08-01

    The first paper (Chang et al., 1995b) of this two-part series described the stochastic analysis using spectral/perturbation approach to analyze steady state two-phase (water and oil) flow in a, liquid-unsaturated, three fluid-phase porous medium. In this paper, the results between the numerical simulations and closed-form expressions obtained using the perturbation approach are compared. We present the solution to the one-dimensional, steady-state oil and water flow equations. The stochastic input processes are the spatially correlated logk where k is the intrinsic permeability and the soil retention parameter, α. These solutions are subsequently used in the numerical simulations to estimate the statistical properties of the key output processes. The comparison between the results of the perturbation analysis and numerical simulations showed a good agreement between the two methods over a wide range of logk variability with three different combinations of input stochastic processes of logk and soil parameter α. The results clearly demonstrated the importance of considering the spatial variability of key subsurface properties under a variety of physical scenarios. The variability of both capillary pressure and saturation is affected by the type of input stochastic process used to represent the spatial variability. The results also demonstrated the applicability of perturbation theory in predicting the system variability and defining effective fluid properties through the ergodic assumption.

  7. Modeling delay in genetic networks: From delay birth-death processes to delay stochastic differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Chinmaya; López, José Manuel; Azencott, Robert

    Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay plays a central role in the dynamics of genetic regulatory networks as it stems from the sequential assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently modeled as stochastic birth-death processes with delay. Here, we examine the relationship between delay birth-death processes and their appropriate approximating delay chemical Langevin equations. We prove a quantitative bound on the error between the pathwise realizations of these two processes. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the delay chemicalmore » Langevin approximation is accurate even at moderate system sizes. It captures dynamical features such as the oscillatory behavior in negative feedback circuits, cross-correlations between nodes in a network, and spatial and temporal information in two commonly studied motifs of metastability in biochemical systems. Overall, these results provide a foundation for using delay stochastic differential equations to approximate the dynamics of birth-death processes with delay.« less

  8. Generalization of one-dimensional solute transport: A stochastic-convective flow conceptualization

    NASA Astrophysics Data System (ADS)

    Simmons, C. S.

    1986-04-01

    A stochastic-convective representation of one-dimensional solute transport is derived. It is shown to conceptually encompass solutions of the conventional convection-dispersion equation. This stochastic approach, however, does not rely on the assumption that dispersive flux satisfies Fick's diffusion law. Observable values of solute concentration and flux, which together satisfy a conservation equation, are expressed as expectations over a flow velocity ensemble, representing the inherent random processess that govern dispersion. Solute concentration is determined by a Lagrangian pdf for random spatial displacements, while flux is determined by an equivalent Eulerian pdf for random travel times. A condition for such equivalence is derived for steady nonuniform flow, and it is proven that both Lagrangian and Eulerian pdfs are required to account for specified initial and boundary conditions on a global scale. Furthermore, simplified modeling of transport is justified by proving that an ensemble of effectively constant velocities always exists that constitutes an equivalent representation. An example of how a two-dimensional transport problem can be reduced to a single-dimensional stochastic viewpoint is also presented to further clarify concepts.

  9. Predicting extinction risks under climate change: coupling stochastic population models with dynamic bioclimatic habitat models.

    PubMed

    Keith, David A; Akçakaya, H Resit; Thuiller, Wilfried; Midgley, Guy F; Pearson, Richard G; Phillips, Steven J; Regan, Helen M; Araújo, Miguel B; Rebelo, Tony G

    2008-10-23

    Species responses to climate change may be influenced by changes in available habitat, as well as population processes, species interactions and interactions between demographic and landscape dynamics. Current methods for assessing these responses fail to provide an integrated view of these influences because they deal with habitat change or population dynamics, but rarely both. In this study, we linked a time series of habitat suitability models with spatially explicit stochastic population models to explore factors that influence the viability of plant species populations under stable and changing climate scenarios in South African fynbos, a global biodiversity hot spot. Results indicate that complex interactions between life history, disturbance regime and distribution pattern mediate species extinction risks under climate change. Our novel mechanistic approach allows more complete and direct appraisal of future biotic responses than do static bioclimatic habitat modelling approaches, and will ultimately support development of more effective conservation strategies to mitigate biodiversity losses due to climate change.

  10. Synchronous parallel spatially resolved stochastic cluster dynamics

    DOE PAGES

    Dunn, Aaron; Dingreville, Rémi; Martínez, Enrique; ...

    2016-04-23

    In this work, a spatially resolved stochastic cluster dynamics (SRSCD) model for radiation damage accumulation in metals is implemented using a synchronous parallel kinetic Monte Carlo algorithm. The parallel algorithm is shown to significantly increase the size of representative volumes achievable in SRSCD simulations of radiation damage accumulation. Additionally, weak scaling performance of the method is tested in two cases: (1) an idealized case of Frenkel pair diffusion and annihilation, and (2) a characteristic example problem including defect cluster formation and growth in α-Fe. For the latter case, weak scaling is tested using both Frenkel pair and displacement cascade damage.more » To improve scaling of simulations with cascade damage, an explicit cascade implantation scheme is developed for cases in which fast-moving defects are created in displacement cascades. For the first time, simulation of radiation damage accumulation in nanopolycrystals can be achieved with a three dimensional rendition of the microstructure, allowing demonstration of the effect of grain size on defect accumulation in Frenkel pair-irradiated α-Fe.« less

  11. Approximate Bayesian computation for spatial SEIR(S) epidemic models.

    PubMed

    Brown, Grant D; Porter, Aaron T; Oleson, Jacob J; Hinman, Jessica A

    2018-02-01

    Approximate Bayesia n Computation (ABC) provides an attractive approach to estimation in complex Bayesian inferential problems for which evaluation of the kernel of the posterior distribution is impossible or computationally expensive. These highly parallelizable techniques have been successfully applied to many fields, particularly in cases where more traditional approaches such as Markov chain Monte Carlo (MCMC) are impractical. In this work, we demonstrate the application of approximate Bayesian inference to spatially heterogeneous Susceptible-Exposed-Infectious-Removed (SEIR) stochastic epidemic models. These models have a tractable posterior distribution, however MCMC techniques nevertheless become computationally infeasible for moderately sized problems. We discuss the practical implementation of these techniques via the open source ABSEIR package for R. The performance of ABC relative to traditional MCMC methods in a small problem is explored under simulation, as well as in the spatially heterogeneous context of the 2014 epidemic of Chikungunya in the Americas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Spatial delineation, fluid-lithology characterization, and petrophysical modeling of deepwater Gulf of Mexico reservoirs though joint AVA deterministic and stochastic inversion of three-dimensional partially-stacked seismic amplitude data and well logs

    NASA Astrophysics Data System (ADS)

    Contreras, Arturo Javier

    This dissertation describes a novel Amplitude-versus-Angle (AVA) inversion methodology to quantitatively integrate pre-stack seismic data, well logs, geologic data, and geostatistical information. Deterministic and stochastic inversion algorithms are used to characterize flow units of deepwater reservoirs located in the central Gulf of Mexico. A detailed fluid/lithology sensitivity analysis was conducted to assess the nature of AVA effects in the study area. Standard AVA analysis indicates that the shale/sand interface represented by the top of the hydrocarbon-bearing turbidite deposits generate typical Class III AVA responses. Layer-dependent Biot-Gassmann analysis shows significant sensitivity of the P-wave velocity and density to fluid substitution, indicating that presence of light saturating fluids clearly affects the elastic response of sands. Accordingly, AVA deterministic and stochastic inversions, which combine the advantages of AVA analysis with those of inversion, have provided quantitative information about the lateral continuity of the turbidite reservoirs based on the interpretation of inverted acoustic properties and fluid-sensitive modulus attributes (P-Impedance, S-Impedance, density, and LambdaRho, in the case of deterministic inversion; and P-velocity, S-velocity, density, and lithotype (sand-shale) distributions, in the case of stochastic inversion). The quantitative use of rock/fluid information through AVA seismic data, coupled with the implementation of co-simulation via lithotype-dependent multidimensional joint probability distributions of acoustic/petrophysical properties, provides accurate 3D models of petrophysical properties such as porosity, permeability, and water saturation. Pre-stack stochastic inversion provides more realistic and higher-resolution results than those obtained from analogous deterministic techniques. Furthermore, 3D petrophysical models can be more accurately co-simulated from AVA stochastic inversion results. By combining AVA sensitivity analysis techniques with pre-stack stochastic inversion, geologic data, and awareness of inversion pitfalls, it is possible to substantially reduce the risk in exploration and development of conventional and non-conventional reservoirs. From the final integration of deterministic and stochastic inversion results with depositional models and analogous examples, the M-series reservoirs have been interpreted as stacked terminal turbidite lobes within an overall fan complex (the Miocene MCAVLU Submarine Fan System); this interpretation is consistent with previous core data interpretations and regional stratigraphic/depositional studies.

  13. A Stochastic Framework for Modeling the Population Dynamics of Convective Clouds

    DOE PAGES

    Hagos, Samson; Feng, Zhe; Plant, Robert S.; ...

    2018-02-20

    A stochastic prognostic framework for modeling the population dynamics of convective clouds and representing them in climate models is proposed. The framework follows the nonequilibrium statistical mechanical approach to constructing a master equation for representing the evolution of the number of convective cells of a specific size and their associated cloud-base mass flux, given a large-scale forcing. In this framework, referred to as STOchastic framework for Modeling Population dynamics of convective clouds (STOMP), the evolution of convective cell size is predicted from three key characteristics of convective cells: (i) the probability of growth, (ii) the probability of decay, and (iii)more » the cloud-base mass flux. STOMP models are constructed and evaluated against CPOL radar observations at Darwin and convection permitting model (CPM) simulations. Multiple models are constructed under various assumptions regarding these three key parameters and the realisms of these models are evaluated. It is shown that in a model where convective plumes prefer to aggregate spatially and the cloud-base mass flux is a nonlinear function of convective cell area, the mass flux manifests a recharge-discharge behavior under steady forcing. Such a model also produces observed behavior of convective cell populations and CPM simulated cloud-base mass flux variability under diurnally varying forcing. Finally, in addition to its use in developing understanding of convection processes and the controls on convective cell size distributions, this modeling framework is also designed to serve as a nonequilibrium closure formulations for spectral mass flux parameterizations.« less

  14. A Stochastic Framework for Modeling the Population Dynamics of Convective Clouds

    NASA Astrophysics Data System (ADS)

    Hagos, Samson; Feng, Zhe; Plant, Robert S.; Houze, Robert A.; Xiao, Heng

    2018-02-01

    A stochastic prognostic framework for modeling the population dynamics of convective clouds and representing them in climate models is proposed. The framework follows the nonequilibrium statistical mechanical approach to constructing a master equation for representing the evolution of the number of convective cells of a specific size and their associated cloud-base mass flux, given a large-scale forcing. In this framework, referred to as STOchastic framework for Modeling Population dynamics of convective clouds (STOMP), the evolution of convective cell size is predicted from three key characteristics of convective cells: (i) the probability of growth, (ii) the probability of decay, and (iii) the cloud-base mass flux. STOMP models are constructed and evaluated against CPOL radar observations at Darwin and convection permitting model (CPM) simulations. Multiple models are constructed under various assumptions regarding these three key parameters and the realisms of these models are evaluated. It is shown that in a model where convective plumes prefer to aggregate spatially and the cloud-base mass flux is a nonlinear function of convective cell area, the mass flux manifests a recharge-discharge behavior under steady forcing. Such a model also produces observed behavior of convective cell populations and CPM simulated cloud-base mass flux variability under diurnally varying forcing. In addition to its use in developing understanding of convection processes and the controls on convective cell size distributions, this modeling framework is also designed to serve as a nonequilibrium closure formulations for spectral mass flux parameterizations.

  15. A Stochastic Framework for Modeling the Population Dynamics of Convective Clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagos, Samson; Feng, Zhe; Plant, Robert S.

    A stochastic prognostic framework for modeling the population dynamics of convective clouds and representing them in climate models is proposed. The approach used follows the non-equilibrium statistical mechanical approach through a master equation. The aim is to represent the evolution of the number of convective cells of a specific size and their associated cloud-base mass flux, given a large-scale forcing. In this framework, referred to as STOchastic framework for Modeling Population dynamics of convective clouds (STOMP), the evolution of convective cell size is predicted from three key characteristics: (i) the probability of growth, (ii) the probability of decay, and (iii)more » the cloud-base mass flux. STOMP models are constructed and evaluated against CPOL radar observations at Darwin and convection permitting model (CPM) simulations. Multiple models are constructed under various assumptions regarding these three key parameters and the realisms of these models are evaluated. It is shown that in a model where convective plumes prefer to aggregate spatially and mass flux is a non-linear function of convective cell area, mass flux manifests a recharge-discharge behavior under steady forcing. Such a model also produces observed behavior of convective cell populations and CPM simulated mass flux variability under diurnally varying forcing. Besides its use in developing understanding of convection processes and the controls on convective cell size distributions, this modeling framework is also designed to be capable of providing alternative, non-equilibrium, closure formulations for spectral mass flux parameterizations.« less

  16. A Stochastic Framework for Modeling the Population Dynamics of Convective Clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagos, Samson; Feng, Zhe; Plant, Robert S.

    A stochastic prognostic framework for modeling the population dynamics of convective clouds and representing them in climate models is proposed. The framework follows the nonequilibrium statistical mechanical approach to constructing a master equation for representing the evolution of the number of convective cells of a specific size and their associated cloud-base mass flux, given a large-scale forcing. In this framework, referred to as STOchastic framework for Modeling Population dynamics of convective clouds (STOMP), the evolution of convective cell size is predicted from three key characteristics of convective cells: (i) the probability of growth, (ii) the probability of decay, and (iii)more » the cloud-base mass flux. STOMP models are constructed and evaluated against CPOL radar observations at Darwin and convection permitting model (CPM) simulations. Multiple models are constructed under various assumptions regarding these three key parameters and the realisms of these models are evaluated. It is shown that in a model where convective plumes prefer to aggregate spatially and the cloud-base mass flux is a nonlinear function of convective cell area, the mass flux manifests a recharge-discharge behavior under steady forcing. Such a model also produces observed behavior of convective cell populations and CPM simulated cloud-base mass flux variability under diurnally varying forcing. Finally, in addition to its use in developing understanding of convection processes and the controls on convective cell size distributions, this modeling framework is also designed to serve as a nonequilibrium closure formulations for spectral mass flux parameterizations.« less

  17. Probabilistic models and uncertainty quantification for the ionization reaction rate of atomic Nitrogen

    NASA Astrophysics Data System (ADS)

    Miki, K.; Panesi, M.; Prudencio, E. E.; Prudhomme, S.

    2012-05-01

    The objective in this paper is to analyze some stochastic models for estimating the ionization reaction rate constant of atomic Nitrogen (N + e- → N+ + 2e-). Parameters of the models are identified by means of Bayesian inference using spatially resolved absolute radiance data obtained from the Electric Arc Shock Tube (EAST) wind-tunnel. The proposed methodology accounts for uncertainties in the model parameters as well as physical model inadequacies, providing estimates of the rate constant that reflect both types of uncertainties. We present four different probabilistic models by varying the error structure (either additive or multiplicative) and by choosing different descriptions of the statistical correlation among data points. In order to assess the validity of our methodology, we first present some calibration results obtained with manufactured data and then proceed by using experimental data collected at EAST experimental facility. In order to simulate the radiative signature emitted in the shock-heated air plasma, we use a one-dimensional flow solver with Park's two-temperature model that simulates non-equilibrium effects. We also discuss the implications of the choice of the stochastic model on the estimation of the reaction rate and its uncertainties. Our analysis shows that the stochastic models based on correlated multiplicative errors are the most plausible models among the four models proposed in this study. The rate of the atomic Nitrogen ionization is found to be (6.2 ± 3.3) × 1011 cm3 mol-1 s-1 at 10,000 K.

  18. Mathematical issues in eternal inflation

    NASA Astrophysics Data System (ADS)

    Singh Kohli, Ikjyot; Haslam, Michael C.

    2015-04-01

    In this paper, we consider the problem of the existence and uniqueness of solutions to the Einstein field equations for a spatially flat Friedmann-Lemaître-Robertson-Walker universe in the context of stochastic eternal inflation, where the stochastic mechanism is modelled by adding a stochastic forcing term representing Gaussian white noise to the Klein-Gordon equation. We show that under these considerations, the Klein-Gordon equation actually becomes a stochastic differential equation. Therefore, the existence and uniqueness of solutions to Einstein’s equations depend on whether the coefficients of this stochastic differential equation obey Lipschitz continuity conditions. We show that for any choice of V(φ ), the Einstein field equations are not globally well-posed, hence, any solution found to these equations is not guaranteed to be unique. Instead, the coefficients are at best locally Lipschitz continuous in the physical state space of the dynamical variables, which only exist up to a finite explosion time. We further perform Feller’s explosion test for an arbitrary power-law inflaton potential and prove that all solutions to the Einstein field equations explode in a finite time with probability one. This implies that the mechanism of stochastic inflation thus considered cannot be described to be eternal, since the very concept of eternal inflation implies that the process continues indefinitely. We therefore argue that stochastic inflation based on a stochastic forcing term would not produce an infinite number of universes in some multiverse ensemble. In general, since the Einstein field equations in both situations are not well-posed, we further conclude that the existence of a multiverse via the stochastic eternal inflation mechanism considered in this paper is still very much an open question that will require much deeper investigation.

  19. A well-posed and stable stochastic Galerkin formulation of the incompressible Navier–Stokes equations with random data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pettersson, Per, E-mail: per.pettersson@uib.no; Nordström, Jan, E-mail: jan.nordstrom@liu.se; Doostan, Alireza, E-mail: alireza.doostan@colorado.edu

    2016-02-01

    We present a well-posed stochastic Galerkin formulation of the incompressible Navier–Stokes equations with uncertainty in model parameters or the initial and boundary conditions. The stochastic Galerkin method involves representation of the solution through generalized polynomial chaos expansion and projection of the governing equations onto stochastic basis functions, resulting in an extended system of equations. A relatively low-order generalized polynomial chaos expansion is sufficient to capture the stochastic solution for the problem considered. We derive boundary conditions for the continuous form of the stochastic Galerkin formulation of the velocity and pressure equations. The resulting problem formulation leads to an energy estimatemore » for the divergence. With suitable boundary data on the pressure and velocity, the energy estimate implies zero divergence of the velocity field. Based on the analysis of the continuous equations, we present a semi-discretized system where the spatial derivatives are approximated using finite difference operators with a summation-by-parts property. With a suitable choice of dissipative boundary conditions imposed weakly through penalty terms, the semi-discrete scheme is shown to be stable. Numerical experiments in the laminar flow regime corroborate the theoretical results and we obtain high-order accurate results for the solution variables and the velocity divergence converges to zero as the mesh is refined.« less

  20. Invasive advance of an advantageous mutation: nucleation theory.

    PubMed

    O'Malley, Lauren; Basham, James; Yasi, Joseph A; Korniss, G; Allstadt, Andrew; Caraco, Thomas

    2006-12-01

    For sedentary organisms with localized reproduction, spatially clustered growth drives the invasive advance of a favorable mutation. We model competition between two alleles where recurrent mutation introduces a genotype with a rate of local propagation exceeding the resident's rate. We capture ecologically important properties of the rare invader's stochastic dynamics by assuming discrete individuals and local neighborhood interactions. To understand how individual-level processes may govern population patterns, we invoke the physical theory for nucleation of spatial systems. Nucleation theory discriminates between single-cluster and multi-cluster dynamics. A sufficiently low mutation rate, or a sufficiently small environment, generates single-cluster dynamics, an inherently stochastic process; a favorable mutation advances only if the invader cluster reaches a critical radius. For this mode of invasion, we identify the probability distribution of waiting times until the favored allele advances to competitive dominance, and we ask how the critical cluster size varies as propagation or mortality rates vary. Increasing the mutation rate or system size generates multi-cluster invasion, where spatial averaging produces nearly deterministic global dynamics. For this process, an analytical approximation from nucleation theory, called Avrami's Law, describes the time-dependent behavior of the genotype densities with remarkable accuracy.

  1. Stochastic Downscaling of Digital Elevation Models

    NASA Astrophysics Data System (ADS)

    Rasera, Luiz Gustavo; Mariethoz, Gregoire; Lane, Stuart N.

    2016-04-01

    High-resolution digital elevation models (HR-DEMs) are extremely important for the understanding of small-scale geomorphic processes in Alpine environments. In the last decade, remote sensing techniques have experienced a major technological evolution, enabling fast and precise acquisition of HR-DEMs. However, sensors designed to measure elevation data still feature different spatial resolution and coverage capabilities. Terrestrial altimetry allows the acquisition of HR-DEMs with centimeter to millimeter-level precision, but only within small spatial extents and often with dead ground problems. Conversely, satellite radiometric sensors are able to gather elevation measurements over large areas but with limited spatial resolution. In the present study, we propose an algorithm to downscale low-resolution satellite-based DEMs using topographic patterns extracted from HR-DEMs derived for example from ground-based and airborne altimetry. The method consists of a multiple-point geostatistical simulation technique able to generate high-resolution elevation data from low-resolution digital elevation models (LR-DEMs). Initially, two collocated DEMs with different spatial resolutions serve as an input to construct a database of topographic patterns, which is also used to infer the statistical relationships between the two scales. High-resolution elevation patterns are then retrieved from the database to downscale a LR-DEM through a stochastic simulation process. The output of the simulations are multiple equally probable DEMs with higher spatial resolution that also depict the large-scale geomorphic structures present in the original LR-DEM. As these multiple models reflect the uncertainty related to the downscaling, they can be employed to quantify the uncertainty of phenomena that are dependent on fine topography, such as catchment hydrological processes. The proposed methodology is illustrated for a case study in the Swiss Alps. A swissALTI3D HR-DEM (with 5 m resolution) and a SRTM-derived LR-DEM from the Western Alps are used to downscale a SRTM-based LR-DEM from the eastern part of the Alps. The results show that the method is capable of generating multiple high-resolution synthetic DEMs that reproduce the spatial structure and statistics of the original DEM.

  2. Insight into nuclear body formation of phytochromes through stochastic modelling and experiment.

    PubMed

    Grima, Ramon; Sonntag, Sebastian; Venezia, Filippo; Kircher, Stefan; Smith, Robert W; Fleck, Christian

    2018-05-01

    Spatial relocalization of proteins is crucial for the correct functioning of living cells. An interesting example of spatial ordering is the light-induced clustering of plant photoreceptor proteins. Upon irradiation by white or red light, the red light-active phytochrome, phytochrome B, enters the nucleus and accumulates in large nuclear bodies. The underlying physical process of nuclear body formation remains unclear, but phytochrome B is thought to coagulate via a simple protein-protein binding process. We measure, for the first time, the distribution of the number of phytochrome B-containing nuclear bodies as well as their volume distribution. We show that the experimental data cannot be explained by a stochastic model of nuclear body formation via simple protein-protein binding processes using physically meaningful parameter values. Rather modelling suggests that the data is consistent with a two step process: a fast nucleation step leading to macroparticles followed by a subsequent slow step in which the macroparticles bind to form the nuclear body. An alternative explanation for the observed nuclear body distribution is that the phytochromes bind to a so far unknown molecular structure. We believe it is likely this result holds more generally for other nuclear body-forming plant photoreceptors and proteins. Creative Commons Attribution license.

  3. Pluviometric characterization of the Coca river basin by using a stochastic rainfall model

    NASA Astrophysics Data System (ADS)

    González-Zeas, Dunia; Chávez-Jiménez, Adriadna; Coello-Rubio, Xavier; Correa, Ángel; Martínez-Codina, Ángela

    2014-05-01

    An adequate design of the hydraulic infrastructures, as well as, the prediction and simulation of a river basin require historical records with a greater temporal and spatial resolution. However, the lack of an extensive network of precipitation data, the short time scale data and the incomplete information provided by the available rainfall stations limit the analysis and design of complex hydraulic engineering systems. As a consequence, it is necessary to develop new quantitative tools in order to face this obstacle imposed by ungauged or poorly gauged basins. In this context, the use of a spatial-temporal rainfall model allows to simulate the historical behavior of the precipitation and at the same time, to obtain long-term synthetic series that preserve the extremal behavior. This paper provides a characterization of the precipitation in the Coca river basin located in Ecuador by using RainSim V3, a robust and well tested stochastic rainfall model based on a spatial-temporal Neyman-Scott rectangular pulses process. A preliminary consistency analysis of the historical rainfall data available has been done in order to identify climatic regions with similar precipitation behavior patterns. Mean and maximum yearly and monthly fields of precipitation of high resolution spaced grids have been obtained through the use of interpolation techniques. According to the climatological similarity, long time series of daily temporal resolution of precipitation have been generated in order to evaluate the model skill in capturing the structure of daily observed precipitation. The results show a good performance of the model in reproducing very well the gross statistics, including the extreme values of rainfall at daily scale. The spatial pattern represented by the observed and simulated precipitation fields highlights the existence of two important regions characterized by different pluviometric comportment, with lower precipitation in the upper part of the basin and higher precipitation in the lower part of the basin.

  4. Image Discrimination Models With Stochastic Channel Selection

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J., Jr.; Beard, Bettina L.; Null, Cynthia H. (Technical Monitor)

    1995-01-01

    Many models of human image processing feature a large fixed number of channels representing cortical units varying in spatial position (visual field direction and eccentricity) and spatial frequency (radial frequency and orientation). The values of these parameters are usually sampled at fixed values selected to ensure adequate overlap considering the bandwidth and/or spread parameters, which are usually fixed. Even high levels of overlap does not always ensure that the performance of the model will vary smoothly with image translation or scale changes. Physiological measurements of bandwidth and/or spread parameters result in a broad distribution of estimated parameter values and the prediction of some psychophysical results are facilitated by the assumption that these parameters also take on a range of values. Selecting a sample of channels from a continuum of channels rather than using a fixed set can make model performance vary smoothly with changes in image position, scale, and orientation. It also facilitates the addition of spatial inhomogeneity, nonlinear feature channels, and focus of attention to channel models.

  5. Stochastic Inversion of 2D Magnetotelluric Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jinsong

    2010-07-01

    The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function is explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, itmore » provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows« less

  6. Mapping invasive species risks with stochastic models: a cross-border United States-Canada application for Sirex noctilio fabricius

    Treesearch

    Denys Yemshanov; Frank H. Koch; Daniel W. McKenney; Marla C. Downing; Frank Sapio

    2009-01-01

    Nonindigenous species have caused significant impacts to North American forests despite past and present international phytosanitary efforts. Though broadly acknowledged, the risks of pest invasions are difficult to quantify as they involve interactions between many factors that operate across a range of spatial and temporal scales: the transmission of invading...

  7. Are Public Master's Institutions Cost Efficient? A Stochastic Frontier and Spatial Analysis

    ERIC Educational Resources Information Center

    Titus, Marvin A.; Vamosiu, Adriana; McClure, Kevin R.

    2017-01-01

    The current study examines costs, measured by educational and general (E&G) spending, and cost efficiency at 252 public master's institutions in the United States over a nine-year (2004-2012) period. We use a multi-product quadratic cost function and results from a random-effects model with a first-order autoregressive (AR1) disturbance term…

  8. Debates—Stochastic subsurface hydrology from theory to practice: A geologic perspective

    NASA Astrophysics Data System (ADS)

    Fogg, Graham E.; Zhang, Yong

    2016-12-01

    A geologic perspective on stochastic subsurface hydrology offers insights on representativeness of prominent field experiments and their general relevance to other hydrogeologic settings. Although the gains in understanding afforded by some 30 years of research in stochastic hydrogeology have been important and even essential, adoption of the technologies and insights by practitioners has been limited, due in part to a lack of geologic context in both the field and theoretical studies. In general, unintentional, biased sampling of hydraulic conductivity (K) using mainly hydrologic, well-based methods has resulted in the tacit assumption by many in the community that the subsurface is much less heterogeneous than in reality. Origins of the bias range from perspectives that are limited by scale and the separation of disciplines (geology, soils, aquifer hydrology, groundwater hydraulics, etc.). Consequences include a misfit between stochastic hydrogeology research results and the needs of, for example, practitioners who are dealing with local plume site cleanup that is often severely hampered by very low velocities in the very aquitard facies that are commonly overlooked or missing from low-variance stochastic models or theories. We suggest that answers to many of the problems exposed by stochastic hydrogeology research can be found through greater geologic integration into the analyses, including the recognition of not only the nearly ubiquitously high variances of K but also the strong tendency for the good connectivity of the high-K facies when spatially persistent geologic unconformities are absent. We further suggest that although such integration may appear to make the contaminant transport problem more complex, expensive and intractable, it may in fact lead to greater simplification and more reliable, less expensive site characterizations and models.

  9. A comparative study of mixed exponential and Weibull distributions in a stochastic model replicating a tropical rainfall process

    NASA Astrophysics Data System (ADS)

    Abas, Norzaida; Daud, Zalina M.; Yusof, Fadhilah

    2014-11-01

    A stochastic rainfall model is presented for the generation of hourly rainfall data in an urban area in Malaysia. In view of the high temporal and spatial variability of rainfall within the tropical rain belt, the Spatial-Temporal Neyman-Scott Rectangular Pulse model was used. The model, which is governed by the Neyman-Scott process, employs a reasonable number of parameters to represent the physical attributes of rainfall. A common approach is to attach each attribute to a mathematical distribution. With respect to rain cell intensity, this study proposes the use of a mixed exponential distribution. The performance of the proposed model was compared to a model that employs the Weibull distribution. Hourly and daily rainfall data from four stations in the Damansara River basin in Malaysia were used as input to the models, and simulations of hourly series were performed for an independent site within the basin. The performance of the models was assessed based on how closely the statistical characteristics of the simulated series resembled the statistics of the observed series. The findings obtained based on graphical representation revealed that the statistical characteristics of the simulated series for both models compared reasonably well with the observed series. However, a further assessment using the AIC, BIC and RMSE showed that the proposed model yields better results. The results of this study indicate that for tropical climates, the proposed model, using a mixed exponential distribution, is the best choice for generation of synthetic data for ungauged sites or for sites with insufficient data within the limit of the fitted region.

  10. Stochastic estimation of human arm impedance under nonlinear friction in robot joints: a model study.

    PubMed

    Chang, Pyung Hun; Kang, Sang Hoon

    2010-05-30

    The basic assumption of stochastic human arm impedance estimation methods is that the human arm and robot behave linearly for small perturbations. In the present work, we have identified the degree of influence of nonlinear friction in robot joints to the stochastic human arm impedance estimation. Internal model based impedance control (IMBIC) is then proposed as a means to make the estimation accurate by compensating for the nonlinear friction. From simulations with a nonlinear Lugre friction model, it is observed that the reliability and accuracy of the estimation are severely degraded with nonlinear friction: below 2 Hz, multiple and partial coherence functions are far less than unity; estimated magnitudes and phases are severely deviated from that of a real human arm throughout the frequency range of interest; and the accuracy is not enhanced with an increase of magnitude of the force perturbations. In contrast, the combined use of stochastic estimation and IMBIC provides with accurate estimation results even with large friction: the multiple coherence functions are larger than 0.9 throughout the frequency range of interest and the estimated magnitudes and phases are well matched with that of a real human arm. Furthermore, the performance of suggested method is independent of human arm and robot posture, and human arm impedance. Therefore, the IMBIC will be useful in measuring human arm impedance with conventional robot, as well as in designing a spatial impedance measuring robot, which requires gearing. (c) 2010 Elsevier B.V. All rights reserved.

  11. URDME: a modular framework for stochastic simulation of reaction-transport processes in complex geometries.

    PubMed

    Drawert, Brian; Engblom, Stefan; Hellander, Andreas

    2012-06-22

    Experiments in silico using stochastic reaction-diffusion models have emerged as an important tool in molecular systems biology. Designing computational software for such applications poses several challenges. Firstly, realistic lattice-based modeling for biological applications requires a consistent way of handling complex geometries, including curved inner- and outer boundaries. Secondly, spatiotemporal stochastic simulations are computationally expensive due to the fast time scales of individual reaction- and diffusion events when compared to the biological phenomena of actual interest. We therefore argue that simulation software needs to be both computationally efficient, employing sophisticated algorithms, yet in the same time flexible in order to meet present and future needs of increasingly complex biological modeling. We have developed URDME, a flexible software framework for general stochastic reaction-transport modeling and simulation. URDME uses Unstructured triangular and tetrahedral meshes to resolve general geometries, and relies on the Reaction-Diffusion Master Equation formalism to model the processes under study. An interface to a mature geometry and mesh handling external software (Comsol Multiphysics) provides for a stable and interactive environment for model construction. The core simulation routines are logically separated from the model building interface and written in a low-level language for computational efficiency. The connection to the geometry handling software is realized via a Matlab interface which facilitates script computing, data management, and post-processing. For practitioners, the software therefore behaves much as an interactive Matlab toolbox. At the same time, it is possible to modify and extend URDME with newly developed simulation routines. Since the overall design effectively hides the complexity of managing the geometry and meshes, this means that newly developed methods may be tested in a realistic setting already at an early stage of development. In this paper we demonstrate, in a series of examples with high relevance to the molecular systems biology community, that the proposed software framework is a useful tool for both practitioners and developers of spatial stochastic simulation algorithms. Through the combined efforts of algorithm development and improved modeling accuracy, increasingly complex biological models become feasible to study through computational methods. URDME is freely available at http://www.urdme.org.

  12. Integrating continuous stocks and flows into state-and-transition simulation models of landscape change

    USGS Publications Warehouse

    Daniel, Colin J.; Sleeter, Benjamin M.; Frid, Leonardo; Fortin, Marie-Josée

    2018-01-01

    State-and-transition simulation models (STSMs) provide a general framework for forecasting landscape dynamics, including projections of both vegetation and land-use/land-cover (LULC) change. The STSM method divides a landscape into spatially-referenced cells and then simulates the state of each cell forward in time, as a discrete-time stochastic process using a Monte Carlo approach, in response to any number of possible transitions. A current limitation of the STSM method, however, is that all of the state variables must be discrete.Here we present a new approach for extending a STSM, in order to account for continuous state variables, called a state-and-transition simulation model with stocks and flows (STSM-SF). The STSM-SF method allows for any number of continuous stocks to be defined for every spatial cell in the STSM, along with a suite of continuous flows specifying the rates at which stock levels change over time. The change in the level of each stock is then simulated forward in time, for each spatial cell, as a discrete-time stochastic process. The method differs from the traditional systems dynamics approach to stock-flow modelling in that the stocks and flows can be spatially-explicit, and the flows can be expressed as a function of the STSM states and transitions.We demonstrate the STSM-SF method by integrating a spatially-explicit carbon (C) budget model with a STSM of LULC change for the state of Hawai'i, USA. In this example, continuous stocks are pools of terrestrial C, while the flows are the possible fluxes of C between these pools. Importantly, several of these C fluxes are triggered by corresponding LULC transitions in the STSM. Model outputs include changes in the spatial and temporal distribution of C pools and fluxes across the landscape in response to projected future changes in LULC over the next 50 years.The new STSM-SF method allows both discrete and continuous state variables to be integrated into a STSM, including interactions between them. With the addition of stocks and flows, STSMs provide a conceptually simple yet powerful approach for characterizing uncertainties in projections of a wide range of questions regarding landscape change.

  13. Dynamically Consistent Parameterization of Mesoscale Eddies This work aims at parameterization of eddy effects for use in non-eddy-resolving ocean models and focuses on the effect of the stochastic part of the eddy forcing that backscatters and induces eastward jet extension of the western boundary currents and its adjacent recirculation zones.

    NASA Astrophysics Data System (ADS)

    Berloff, P. S.

    2016-12-01

    This work aims at developing a framework for dynamically consistent parameterization of mesoscale eddy effects for use in non-eddy-resolving ocean circulation models. The proposed eddy parameterization framework is successfully tested on the classical, wind-driven double-gyre model, which is solved both with explicitly resolved vigorous eddy field and in the non-eddy-resolving configuration with the eddy parameterization replacing the eddy effects. The parameterization focuses on the effect of the stochastic part of the eddy forcing that backscatters and induces eastward jet extension of the western boundary currents and its adjacent recirculation zones. The parameterization locally approximates transient eddy flux divergence by spatially localized and temporally periodic forcing, referred to as the plunger, and focuses on the linear-dynamics flow solution induced by it. The nonlinear self-interaction of this solution, referred to as the footprint, characterizes and quantifies the induced eddy forcing exerted on the large-scale flow. We find that spatial pattern and amplitude of each footprint strongly depend on the underlying large-scale flow, and the corresponding relationships provide the basis for the eddy parameterization and its closure on the large-scale flow properties. Dependencies of the footprints on other important parameters of the problem are also systematically analyzed. The parameterization utilizes the local large-scale flow information, constructs and scales the corresponding footprints, and then sums them up over the gyres to produce the resulting eddy forcing field, which is interactively added to the model as an extra forcing. Thus, the assumed ensemble of plunger solutions can be viewed as a simple model for the cumulative effect of the stochastic eddy forcing. The parameterization framework is implemented in the simplest way, but it provides a systematic strategy for improving the implementation algorithm.

  14. Transition probability-based stochastic geological modeling using airborne geophysical data and borehole data

    NASA Astrophysics Data System (ADS)

    He, Xin; Koch, Julian; Sonnenborg, Torben O.; Jørgensen, Flemming; Schamper, Cyril; Christian Refsgaard, Jens

    2014-04-01

    Geological heterogeneity is a very important factor to consider when developing geological models for hydrological purposes. Using statistically based stochastic geological simulations, the spatial heterogeneity in such models can be accounted for. However, various types of uncertainties are associated with both the geostatistical method and the observation data. In the present study, TProGS is used as the geostatistical modeling tool to simulate structural heterogeneity for glacial deposits in a head water catchment in Denmark. The focus is on how the observation data uncertainty can be incorporated in the stochastic simulation process. The study uses two types of observation data: borehole data and airborne geophysical data. It is commonly acknowledged that the density of the borehole data is usually too sparse to characterize the horizontal heterogeneity. The use of geophysical data gives an unprecedented opportunity to obtain high-resolution information and thus to identify geostatistical properties more accurately especially in the horizontal direction. However, since such data are not a direct measurement of the lithology, larger uncertainty of point estimates can be expected as compared to the use of borehole data. We have proposed a histogram probability matching method in order to link the information on resistivity to hydrofacies, while considering the data uncertainty at the same time. Transition probabilities and Markov Chain models are established using the transformed geophysical data. It is shown that such transformation is in fact practical; however, the cutoff value for dividing the resistivity data into facies is difficult to determine. The simulated geological realizations indicate significant differences of spatial structure depending on the type of conditioning data selected. It is to our knowledge the first time that grid-to-grid airborne geophysical data including the data uncertainty are used in conditional geostatistical simulations in TProGS. Therefore, it provides valuable insights regarding the advantages and challenges of using such comprehensive data.

  15. Stochastic weighted particle methods for population balance equations with coagulation, fragmentation and spatial inhomogeneity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kok Foong; Patterson, Robert I.A.; Wagner, Wolfgang

    2015-12-15

    Graphical abstract: -- Highlights: •Problems concerning multi-compartment population balance equations are studied. •A class of fragmentation weight transfer functions is presented. •Three stochastic weighted algorithms are compared against the direct simulation algorithm. •The numerical errors of the stochastic solutions are assessed as a function of fragmentation rate. •The algorithms are applied to a multi-dimensional granulation model. -- Abstract: This paper introduces stochastic weighted particle algorithms for the solution of multi-compartment population balance equations. In particular, it presents a class of fragmentation weight transfer functions which are constructed such that the number of computational particles stays constant during fragmentation events. Themore » weight transfer functions are constructed based on systems of weighted computational particles and each of it leads to a stochastic particle algorithm for the numerical treatment of population balance equations. Besides fragmentation, the algorithms also consider physical processes such as coagulation and the exchange of mass with the surroundings. The numerical properties of the algorithms are compared to the direct simulation algorithm and an existing method for the fragmentation of weighted particles. It is found that the new algorithms show better numerical performance over the two existing methods especially for systems with significant amount of large particles and high fragmentation rates.« less

  16. Emergent Archetype Hydrological-Biogeochemical Response Patterns in Heterogeneous Catchments

    NASA Astrophysics Data System (ADS)

    Jawitz, J. W.; Gall, H. E.; Rao, P.

    2013-12-01

    What can spatiotemporally integrated patterns observed in stream hydrologic and biogeochemical signals generated in response to transient hydro-climatic and anthropogenic forcing tell us about the interactions between spatially heterogeneous soil-mediated hydrological and biogeochemical processes? We seek to understand how the spatial structure of solute sources coupled with hydrologic responses affect observed concentration-discharge (C-Q) patterns. These patterns are expressions of the spatiotemporal structure of solute loads exported from managed catchments, and their likely ecological consequences manifested in receiving water bodies (e.g., wetlands, rivers, lakes, and coastal waters). We investigated the following broad questions: (1) How does the correlation between flow-generating areas and biogeochemical source areas across a catchment evolve under stochastic hydro-climatic forcing? (2) What are the feasible hydrologic and biogeochemical responses that lead to the emergence of the observed archetype C-Q patterns? and; (3) What implications do these coupled dynamics have for catchment monitoring and implementation of management practices? We categorize the observed temporal signals into three archetypical C-Q patterns: dilution; accretion, and constant concentration. We introduce a parsimonious stochastic model of heterogeneous catchments, which act as hydrologic and biogeochemical filters, to examine the relationship between spatial heterogeneity and temporal history of solute export signals. The core concept of the modeling framework is considering the types and degree of spatial correlation between solute source zones and flow generating zones, and activation of different portions of the catchments during rainfall events. Our overarching hypothesis is that each of the archetype C-Q patterns can be generated by explicitly linking landscape-scale hydrologic responses and spatial distributions of solute source properties within a catchment. The model simulations reproduce the three major C-Q patterns observed in published data, offering valuable insight into coupled catchment processes. The findings have important implications for effective catchment management for water quality improvement, and stream monitoring strategies.

  17. Emergence of diversity in homogeneous coupled Boolean networks

    NASA Astrophysics Data System (ADS)

    Kang, Chris; Aguilar, Boris; Shmulevich, Ilya

    2018-05-01

    The origin of multicellularity in metazoa is one of the fundamental questions of evolutionary biology. We have modeled the generic behaviors of gene regulatory networks in isogenic cells as stochastic nonlinear dynamical systems—coupled Boolean networks with perturbation. Model simulations under a variety of dynamical regimes suggest that the central characteristic of multicellularity, permanent spatial differentiation (diversification), indeed can arise. Additionally, we observe that diversification is more likely to occur near the critical regime of Lyapunov stability.

  18. Bayesian parameter estimation for stochastic models of biological cell migration

    NASA Astrophysics Data System (ADS)

    Dieterich, Peter; Preuss, Roland

    2013-08-01

    Cell migration plays an essential role under many physiological and patho-physiological conditions. It is of major importance during embryonic development and wound healing. In contrast, it also generates negative effects during inflammation processes, the transmigration of tumors or the formation of metastases. Thus, a reliable quantification and characterization of cell paths could give insight into the dynamics of these processes. Typically stochastic models are applied where parameters are extracted by fitting models to the so-called mean square displacement of the observed cell group. We show that this approach has several disadvantages and problems. Therefore, we propose a simple procedure directly relying on the positions of the cell's trajectory and the covariance matrix of the positions. It is shown that the covariance is identical with the spatial aging correlation function for the supposed linear Gaussian models of Brownian motion with drift and fractional Brownian motion. The technique is applied and illustrated with simulated data showing a reliable parameter estimation from single cell paths.

  19. The diffusive finite state projection algorithm for efficient simulation of the stochastic reaction-diffusion master equation.

    PubMed

    Drawert, Brian; Lawson, Michael J; Petzold, Linda; Khammash, Mustafa

    2010-02-21

    We have developed a computational framework for accurate and efficient simulation of stochastic spatially inhomogeneous biochemical systems. The new computational method employs a fractional step hybrid strategy. A novel formulation of the finite state projection (FSP) method, called the diffusive FSP method, is introduced for the efficient and accurate simulation of diffusive transport. Reactions are handled by the stochastic simulation algorithm.

  20. Employing Eigenvalue Ratios to Generate Prior Fracture-like Features for Stochastic Hydrogeophysical Characterization of a Fractured Aquifer System

    NASA Astrophysics Data System (ADS)

    Brewster, J.; Oware, E. K.

    2017-12-01

    Groundwater hosted in fractured rocks constitutes almost 65% of the principal aquifers in the US. The exploitation and contaminant management of fractured aquifers require fracture flow and transport modeling, which in turn requires a detailed understanding of the structure of the aquifer. The widely used equivalent porous medium approach to modeling fractured aquifer systems is inadequate to accurately predict fracture transport processes due to the averaging of the sharp lithological contrast between the matrix and the fractures. The potential of geophysical imaging (GI) to estimate spatially continuous subsurface profiles in a minimally invasive fashion is well proven. Conventional deterministic GI strategies, however, produce geologically unrealistic, smoothed-out results due to commonly enforced smoothing constraints. Stochastic GI of fractured aquifers is becoming increasing appealing due to its ability to recover realistic fracture features while providing multiple likely realizations that enable uncertainty assessment. Generating prior spatial features consistent with the expected target structures is crucial in stochastic imaging. We propose to utilize eigenvalue ratios to resolve the elongated fracture features expected in a fractured aquifer system. Eigenvalues capture the major and minor directions of variability in a region, which can be employed to evaluate shape descriptors, such as eccentricity (elongation) and orientation of features in the region. Eccentricity ranges from zero to one, representing a circularly sharped to a line feature, respectively. Here, we apply eigenvalue ratios to define a joint objective parameter consisting of eccentricity (shape) and direction terms to guide the generation of prior fracture-like features in some predefined principal directions for stochastic GI. Preliminary unconditional, synthetic experiments reveal the potential of the algorithm to simulate prior fracture-like features. We illustrate the strategy with a 2D, cross-borehole electrical resistivity tomography (ERT) in a fractured aquifer at the UB Environmental Geophysics Imaging Site, with tomograms validated with gamma and caliper logs obtained from the two ERT wells.

  1. Novel patch modelling method for efficient simulation and prediction uncertainty analysis of multi-scale groundwater flow and transport processes

    NASA Astrophysics Data System (ADS)

    Sreekanth, J.; Moore, Catherine

    2018-04-01

    The application of global sensitivity and uncertainty analysis techniques to groundwater models of deep sedimentary basins are typically challenged by large computational burdens combined with associated numerical stability issues. The highly parameterized approaches required for exploring the predictive uncertainty associated with the heterogeneous hydraulic characteristics of multiple aquifers and aquitards in these sedimentary basins exacerbate these issues. A novel Patch Modelling Methodology is proposed for improving the computational feasibility of stochastic modelling analysis of large-scale and complex groundwater models. The method incorporates a nested groundwater modelling framework that enables efficient simulation of groundwater flow and transport across multiple spatial and temporal scales. The method also allows different processes to be simulated within different model scales. Existing nested model methodologies are extended by employing 'joining predictions' for extrapolating prediction-salient information from one model scale to the next. This establishes a feedback mechanism supporting the transfer of information from child models to parent models as well as parent models to child models in a computationally efficient manner. This feedback mechanism is simple and flexible and ensures that while the salient small scale features influencing larger scale prediction are transferred back to the larger scale, this does not require the live coupling of models. This method allows the modelling of multiple groundwater flow and transport processes using separate groundwater models that are built for the appropriate spatial and temporal scales, within a stochastic framework, while also removing the computational burden associated with live model coupling. The utility of the method is demonstrated by application to an actual large scale aquifer injection scheme in Australia.

  2. Stochastic Simulation of Dopamine Neuromodulation for Implementation of Fluorescent Neurochemical Probes in the Striatal Extracellular Space.

    PubMed

    Beyene, Abraham G; McFarlane, Ian R; Pinals, Rebecca L; Landry, Markita P

    2017-10-18

    Imaging the dynamic behavior of neuromodulatory neurotransmitters in the extracelluar space that arise from individual quantal release events would constitute a major advance in neurochemical imaging. Spatial and temporal resolution of these highly stochastic neuromodulatory events requires concurrent advances in the chemical development of optical nanosensors selective for neuromodulators in concert with advances in imaging methodologies to capture millisecond neurotransmitter release. Herein, we develop and implement a stochastic model to describe dopamine dynamics in the extracellular space (ECS) of the brain dorsal striatum to guide the design and implementation of fluorescent neurochemical probes that record neurotransmitter dynamics in the ECS. Our model is developed from first-principles and simulates release, diffusion, and reuptake of dopamine in a 3D simulation volume of striatal tissue. We find that in vivo imaging of neuromodulation requires simultaneous optimization of dopamine nanosensor reversibility and sensitivity: dopamine imaging in the striatum or nucleus accumbens requires nanosensors with an optimal dopamine dissociation constant (K d ) of 1 μM, whereas K d s above 10 μM are required for dopamine imaging in the prefrontal cortex. Furthermore, as a result of the probabilistic nature of dopamine terminal activity in the striatum, our model reveals that imaging frame rates of 20 Hz are optimal for recording temporally resolved dopamine release events. Our work provides a modeling platform to probe how complex neuromodulatory processes can be studied with fluorescent nanosensors and enables direct evaluation of nanosensor chemistry and imaging hardware parameters. Our stochastic model is generic for evaluating fluorescent neurotransmission probes, and is broadly applicable to the design of other neurotransmitter fluorophores and their optimization for implementation in vivo.

  3. Stochastic genome-nuclear lamina interactions: modulating roles of Lamin A and BAF.

    PubMed

    Kind, Jop; van Steensel, Bas

    2014-01-01

    The nuclear lamina (NL) is thought to aid in the spatial organization of interphase chromosomes by providing an anchoring platform for hundreds of large genomic regions named lamina associated domains (LADs). Recently, a new live-cell imaging approach demonstrated directly that LAD-NL interactions are dynamic and in part stochastic. Here we discuss implications of these new findings and introduce Lamin A and BAF as potential modulators of stochastic LAD positioning.

  4. Density behavior of spatial birth-and-death stochastic evolution of mutating genotypes under selection rates

    NASA Astrophysics Data System (ADS)

    Finkelshtein, D.; Kondratiev, Yu.; Kutoviy, O.; Molchanov, S.; Zhizhina, E.

    2014-10-01

    We consider birth-and-death stochastic evolution of genotypes with different lengths. The genotypes might mutate, which provides a stochastic changing of lengths by a free diffusion law. The birth and death rates are length dependent, which corresponds to a selection effect. We study an asymptotic behavior of a density for an infinite collection of genotypes. The cases of space homogeneous and space heterogeneous densities are considered.

  5. A Stochastic Fractional Dynamics Model of Space-time Variability of Rain

    NASA Technical Reports Server (NTRS)

    Kundu, Prasun K.; Travis, James E.

    2013-01-01

    Rainfall varies in space and time in a highly irregular manner and is described naturally in terms of a stochastic process. A characteristic feature of rainfall statistics is that they depend strongly on the space-time scales over which rain data are averaged. A spectral model of precipitation has been developed based on a stochastic differential equation of fractional order for the point rain rate, that allows a concise description of the second moment statistics of rain at any prescribed space-time averaging scale. The model is thus capable of providing a unified description of the statistics of both radar and rain gauge data. The underlying dynamical equation can be expressed in terms of space-time derivatives of fractional orders that are adjusted together with other model parameters to fit the data. The form of the resulting spectrum gives the model adequate flexibility to capture the subtle interplay between the spatial and temporal scales of variability of rain but strongly constrains the predicted statistical behavior as a function of the averaging length and times scales. We test the model with radar and gauge data collected contemporaneously at the NASA TRMM ground validation sites located near Melbourne, Florida and in Kwajalein Atoll, Marshall Islands in the tropical Pacific. We estimate the parameters by tuning them to the second moment statistics of radar data. The model predictions are then found to fit the second moment statistics of the gauge data reasonably well without any further adjustment.

  6. Predictability of the Lagrangian Motion in the Upper Ocean

    NASA Astrophysics Data System (ADS)

    Piterbarg, L. I.; Griffa, A.; Griffa, A.; Mariano, A. J.; Ozgokmen, T. M.; Ryan, E. H.

    2001-12-01

    The complex non-linear dynamics of the upper ocean leads to chaotic behavior of drifter trajectories in the ocean. Our study is focused on estimating the predictability limit for the position of an individual Lagrangian particle or a particle cluster based on the knowledge of mean currents and observations of nearby particles (predictors). The Lagrangian prediction problem, besides being a fundamental scientific problem, is also of great importance for practical applications such as search and rescue operations and for modeling the spread of fish larvae. A stochastic multi-particle model for the Lagrangian motion has been rigorously formulated and is a generalization of the well known "random flight" model for a single particle. Our model is mathematically consistent and includes a few easily interpreted parameters, such as the Lagrangian velocity decorrelation time scale, the turbulent velocity variance, and the velocity decorrelation radius, that can be estimated from data. The top Lyapunov exponent for an isotropic version of the model is explicitly expressed as a function of these parameters enabling us to approximate the predictability limit to first order. Lagrangian prediction errors for two new prediction algorithms are evaluated against simple algorithms and each other and are used to test the predictability limits of the stochastic model for isotropic turbulence. The first algorithm is based on a Kalman filter and uses the developed stochastic model. Its implementation for drifter clusters in both the Tropical Pacific and Adriatic Sea, showed good prediction skill over a period of 1-2 weeks. The prediction error is primarily a function of the data density, defined as the number of predictors within a velocity decorrelation spatial scale from the particle to be predicted. The second algorithm is model independent and is based on spatial regression considerations. Preliminary results, based on simulated, as well as, real data, indicate that it performs better than the Kalman-based algorithm in strong shear flows. An important component of our research is the optimal predictor location problem; Where should floats be launched in order to minimize the Lagrangian prediction error? Preliminary Lagrangian sampling results for different flow scenarios will be presented.

  7. Universal Stochastic Multiscale Image Fusion: An Example Application for Shale Rock.

    PubMed

    Gerke, Kirill M; Karsanina, Marina V; Mallants, Dirk

    2015-11-02

    Spatial data captured with sensors of different resolution would provide a maximum degree of information if the data were to be merged into a single image representing all scales. We develop a general solution for merging multiscale categorical spatial data into a single dataset using stochastic reconstructions with rescaled correlation functions. The versatility of the method is demonstrated by merging three images of shale rock representing macro, micro and nanoscale spatial information on mineral, organic matter and porosity distribution. Merging multiscale images of shale rock is pivotal to quantify more reliably petrophysical properties needed for production optimization and environmental impacts minimization. Images obtained by X-ray microtomography and scanning electron microscopy were fused into a single image with predefined resolution. The methodology is sufficiently generic for implementation of other stochastic reconstruction techniques, any number of scales, any number of material phases, and any number of images for a given scale. The methodology can be further used to assess effective properties of fused porous media images or to compress voluminous spatial datasets for efficient data storage. Practical applications are not limited to petroleum engineering or more broadly geosciences, but will also find their way in material sciences, climatology, and remote sensing.

  8. Universal Stochastic Multiscale Image Fusion: An Example Application for Shale Rock

    PubMed Central

    Gerke, Kirill M.; Karsanina, Marina V.; Mallants, Dirk

    2015-01-01

    Spatial data captured with sensors of different resolution would provide a maximum degree of information if the data were to be merged into a single image representing all scales. We develop a general solution for merging multiscale categorical spatial data into a single dataset using stochastic reconstructions with rescaled correlation functions. The versatility of the method is demonstrated by merging three images of shale rock representing macro, micro and nanoscale spatial information on mineral, organic matter and porosity distribution. Merging multiscale images of shale rock is pivotal to quantify more reliably petrophysical properties needed for production optimization and environmental impacts minimization. Images obtained by X-ray microtomography and scanning electron microscopy were fused into a single image with predefined resolution. The methodology is sufficiently generic for implementation of other stochastic reconstruction techniques, any number of scales, any number of material phases, and any number of images for a given scale. The methodology can be further used to assess effective properties of fused porous media images or to compress voluminous spatial datasets for efficient data storage. Practical applications are not limited to petroleum engineering or more broadly geosciences, but will also find their way in material sciences, climatology, and remote sensing. PMID:26522938

  9. Detecting, anticipating, and predicting critical transitions in spatially extended systems.

    PubMed

    Kwasniok, Frank

    2018-03-01

    A data-driven linear framework for detecting, anticipating, and predicting incipient bifurcations in spatially extended systems based on principal oscillation pattern (POP) analysis is discussed. The dynamics are assumed to be governed by a system of linear stochastic differential equations which is estimated from the data. The principal modes of the system together with corresponding decay or growth rates and oscillation frequencies are extracted as the eigenvectors and eigenvalues of the system matrix. The method can be applied to stationary datasets to identify the least stable modes and assess the proximity to instability; it can also be applied to nonstationary datasets using a sliding window approach to track the changing eigenvalues and eigenvectors of the system. As a further step, a genuinely nonstationary POP analysis is introduced. Here, the system matrix of the linear stochastic model is time-dependent, allowing for extrapolation and prediction of instabilities beyond the learning data window. The methods are demonstrated and explored using the one-dimensional Swift-Hohenberg equation as an example, focusing on the dynamics of stochastic fluctuations around the homogeneous stable state prior to the first bifurcation. The POP-based techniques are able to extract and track the least stable eigenvalues and eigenvectors of the system; the nonstationary POP analysis successfully predicts the timing of the first instability and the unstable mode well beyond the learning data window.

  10. Detecting, anticipating, and predicting critical transitions in spatially extended systems

    NASA Astrophysics Data System (ADS)

    Kwasniok, Frank

    2018-03-01

    A data-driven linear framework for detecting, anticipating, and predicting incipient bifurcations in spatially extended systems based on principal oscillation pattern (POP) analysis is discussed. The dynamics are assumed to be governed by a system of linear stochastic differential equations which is estimated from the data. The principal modes of the system together with corresponding decay or growth rates and oscillation frequencies are extracted as the eigenvectors and eigenvalues of the system matrix. The method can be applied to stationary datasets to identify the least stable modes and assess the proximity to instability; it can also be applied to nonstationary datasets using a sliding window approach to track the changing eigenvalues and eigenvectors of the system. As a further step, a genuinely nonstationary POP analysis is introduced. Here, the system matrix of the linear stochastic model is time-dependent, allowing for extrapolation and prediction of instabilities beyond the learning data window. The methods are demonstrated and explored using the one-dimensional Swift-Hohenberg equation as an example, focusing on the dynamics of stochastic fluctuations around the homogeneous stable state prior to the first bifurcation. The POP-based techniques are able to extract and track the least stable eigenvalues and eigenvectors of the system; the nonstationary POP analysis successfully predicts the timing of the first instability and the unstable mode well beyond the learning data window.

  11. A stochastic differential equations approach for the description of helium bubble size distributions in irradiated metals

    NASA Astrophysics Data System (ADS)

    Seif, Dariush; Ghoniem, Nasr M.

    2014-12-01

    A rate theory model based on the theory of nonlinear stochastic differential equations (SDEs) is developed to estimate the time-dependent size distribution of helium bubbles in metals under irradiation. Using approaches derived from Itô's calculus, rate equations for the first five moments of the size distribution in helium-vacancy space are derived, accounting for the stochastic nature of the atomic processes involved. In the first iteration of the model, the distribution is represented as a bivariate Gaussian distribution. The spread of the distribution about the mean is obtained by white-noise terms in the second-order moments, driven by fluctuations in the general absorption and emission of point defects by bubbles, and fluctuations stemming from collision cascades. This statistical model for the reconstruction of the distribution by its moments is coupled to a previously developed reduced-set, mean-field, rate theory model. As an illustrative case study, the model is applied to a tungsten plasma facing component under irradiation. Our findings highlight the important role of stochastic atomic fluctuations on the evolution of helium-vacancy cluster size distributions. It is found that when the average bubble size is small (at low dpa levels), the relative spread of the distribution is large and average bubble pressures may be very large. As bubbles begin to grow in size, average bubble pressures decrease, and stochastic fluctuations have a lessened effect. The distribution becomes tighter as it evolves in time, corresponding to a more uniform bubble population. The model is formulated in a general way, capable of including point defect drift due to internal temperature and/or stress gradients. These arise during pulsed irradiation, and also during steady irradiation as a result of externally applied or internally generated non-homogeneous stress fields. Discussion is given into how the model can be extended to include full spatial resolution and how the implementation of a path-integral approach may proceed if the distribution is known experimentally to significantly stray from a Gaussian description.

  12. Perspectives on scaling and multiscaling in passive scalar turbulence

    NASA Astrophysics Data System (ADS)

    Banerjee, Tirthankar; Basu, Abhik

    2018-05-01

    We revisit the well-known problem of multiscaling in substances passively advected by homogeneous and isotropic turbulent flows or passive scalar turbulence. To that end we propose a two-parameter continuum hydrodynamic model for an advected substance concentration θ , parametrized jointly by y and y ¯, that characterize the spatial scaling behavior of the variances of the advecting stochastic velocity and the stochastic additive driving force, respectively. We analyze it within a one-loop dynamic renormalization group method to calculate the multiscaling exponents of the equal-time structure functions of θ . We show how the interplay between the advective velocity and the additive force may lead to simple scaling or multiscaling. In one limit, our results reduce to the well-known results from the Kraichnan model for passive scalar. Our framework of analysis should be of help for analytical approaches for the still intractable problem of fluid turbulence itself.

  13. First-passage dynamics of linear stochastic interface models: weak-noise theory and influence of boundary conditions

    NASA Astrophysics Data System (ADS)

    Gross, Markus

    2018-03-01

    We consider a one-dimensional fluctuating interfacial profile governed by the Edwards–Wilkinson or the stochastic Mullins-Herring equation for periodic, standard Dirichlet and Dirichlet no-flux boundary conditions. The minimum action path of an interfacial fluctuation conditioned to reach a given maximum height M at a finite (first-passage) time T is calculated within the weak-noise approximation. Dynamic and static scaling functions for the profile shape are obtained in the transient and the equilibrium regime, i.e. for first-passage times T smaller or larger than the characteristic relaxation time, respectively. In both regimes, the profile approaches the maximum height M with a universal algebraic time dependence characterized solely by the dynamic exponent of the model. It is shown that, in the equilibrium regime, the spatial shape of the profile depends sensitively on boundary conditions and conservation laws, but it is essentially independent of them in the transient regime.

  14. Breaking the theoretical scaling limit for predicting quasiparticle energies: the stochastic GW approach.

    PubMed

    Neuhauser, Daniel; Gao, Yi; Arntsen, Christopher; Karshenas, Cyrus; Rabani, Eran; Baer, Roi

    2014-08-15

    We develop a formalism to calculate the quasiparticle energy within the GW many-body perturbation correction to the density functional theory. The occupied and virtual orbitals of the Kohn-Sham Hamiltonian are replaced by stochastic orbitals used to evaluate the Green function G, the polarization potential W, and, thereby, the GW self-energy. The stochastic GW (sGW) formalism relies on novel theoretical concepts such as stochastic time-dependent Hartree propagation, stochastic matrix compression, and spatial or temporal stochastic decoupling techniques. Beyond the theoretical interest, the formalism enables linear scaling GW calculations breaking the theoretical scaling limit for GW as well as circumventing the need for energy cutoff approximations. We illustrate the method for silicon nanocrystals of varying sizes with N_{e}>3000 electrons.

  15. Representation of spatial cross correlations in large stochastic seasonal streamflow models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveira, G.C.; Kelman, J.; Pereira, M.V.F.

    1988-05-01

    Pereira et al. (1984) presented a special disaggregation procedure for generating cross-correlated monthly flows at many sites while using what are essentially univariate disaggregation models for the flows at each site. This was done by using a nonparametric procedure for constructing residual innovations or noise vectors with cross-correlated components. This note considers the theoretical underpinnings of that streamflow disaggregation procedure and a proposed variation and their ability to reproduce the observed historical cross correlations among concurrent monthly flows at nine Brazilian stations.

  16. On spatial mutation-selection models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondratiev, Yuri, E-mail: kondrat@math.uni-bielefeld.de; Kutoviy, Oleksandr, E-mail: kutoviy@math.uni-bielefeld.de, E-mail: kutovyi@mit.edu; Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139

    2013-11-15

    We discuss the selection procedure in the framework of mutation models. We study the regulation for stochastically developing systems based on a transformation of the initial Markov process which includes a cost functional. The transformation of initial Markov process by cost functional has an analytic realization in terms of a Kimura-Maruyama type equation for the time evolution of states or in terms of the corresponding Feynman-Kac formula on the path space. The state evolution of the system including the limiting behavior is studied for two types of mutation-selection models.

  17. Use of LANDSAT images of vegetation cover to estimate effective hydraulic properties of soils

    NASA Technical Reports Server (NTRS)

    Eagleson, Peter S.; Jasinski, Michael F.

    1988-01-01

    This work focuses on the characterization of natural, spatially variable, semivegetated landscapes using a linear, stochastic, canopy-soil reflectance model. A first application of the model was the investigation of the effects of subpixel and regional variability of scenes on the shape and structure of red-infrared scattergrams. Additionally, the model was used to investigate the inverse problem, the estimation of subpixel vegetation cover, given only the scattergrams of simulated satellite scale multispectral scenes. The major aspects of that work, including recent field investigations, are summarized.

  18. Active motion assisted by correlated stochastic torques.

    PubMed

    Weber, Christian; Radtke, Paul K; Schimansky-Geier, Lutz; Hänggi, Peter

    2011-07-01

    The stochastic dynamics of an active particle undergoing a constant speed and additionally driven by an overall fluctuating torque is investigated. The random torque forces are expressed by a stochastic differential equation for the angular dynamics of the particle determining the orientation of motion. In addition to a constant torque, the particle is supplemented by random torques, which are modeled as an Ornstein-Uhlenbeck process with given correlation time τ(c). These nonvanishing correlations cause a persistence of the particles' trajectories and a change of the effective spatial diffusion coefficient. We discuss the mean square displacement as a function of the correlation time and the noise intensity and detect a nonmonotonic dependence of the effective diffusion coefficient with respect to both correlation time and noise strength. A maximal diffusion behavior is obtained if the correlated angular noise straightens the curved trajectories, interrupted by small pirouettes, whereby the correlated noise amplifies a straightening of the curved trajectories caused by the constant torque.

  19. Estimation of Kubo number and correlation length of fluctuating magnetic fields and pressure in BOUT + + edge pedestal collapse simulation

    NASA Astrophysics Data System (ADS)

    Kim, Jaewook; Lee, W.-J.; Jhang, Hogun; Kaang, H. H.; Ghim, Y.-C.

    2017-10-01

    Stochastic magnetic fields are thought to be as one of the possible mechanisms for anomalous transport of density, momentum and heat across the magnetic field lines. Kubo number and Chirikov parameter are quantifications of the stochasticity, and previous studies show that perpendicular transport strongly depends on the magnetic Kubo number (MKN). If MKN is smaller than one, diffusion process will follow Rechester-Rosenbluth model; whereas if it is larger than one, percolation theory dominates the diffusion process. Thus, estimation of Kubo number plays an important role to understand diffusion process caused by stochastic magnetic fields. However, spatially localized experimental measurement of fluctuating magnetic fields in a tokamak is difficult, and we attempt to estimate MKNs using BOUT + + simulation data with pedestal collapse. In addition, we calculate correlation length of fluctuating pressures and Chirikov parameters to investigate variation correlation lengths in the simulation. We, then, discuss how one may experimentally estimate MKNs.

  20. Aboveground and belowground arthropods experience different relative influences of stochastic versus deterministic community assembly processes following disturbance

    PubMed Central

    Martinez, Alexander S.; Faist, Akasha M.

    2016-01-01

    Background Understanding patterns of biodiversity is a longstanding challenge in ecology. Similar to other biotic groups, arthropod community structure can be shaped by deterministic and stochastic processes, with limited understanding of what moderates the relative influence of these processes. Disturbances have been noted to alter the relative influence of deterministic and stochastic processes on community assembly in various study systems, implicating ecological disturbances as a potential moderator of these forces. Methods Using a disturbance gradient along a 5-year chronosequence of insect-induced tree mortality in a subalpine forest of the southern Rocky Mountains, Colorado, USA, we examined changes in community structure and relative influences of deterministic and stochastic processes in the assembly of aboveground (surface and litter-active species) and belowground (species active in organic and mineral soil layers) arthropod communities. Arthropods were sampled for all years of the chronosequence via pitfall traps (aboveground community) and modified Winkler funnels (belowground community) and sorted to morphospecies. Community structure of both communities were assessed via comparisons of morphospecies abundance, diversity, and composition. Assembly processes were inferred from a mixture of linear models and matrix correlations testing for community associations with environmental properties, and from null-deviation models comparing observed vs. expected levels of species turnover (Beta diversity) among samples. Results Tree mortality altered community structure in both aboveground and belowground arthropod communities, but null models suggested that aboveground communities experienced greater relative influences of deterministic processes, while the relative influence of stochastic processes increased for belowground communities. Additionally, Mantel tests and linear regression models revealed significant associations between the aboveground arthropod communities and vegetation and soil properties, but no significant association among belowground arthropod communities and environmental factors. Discussion Our results suggest context-dependent influences of stochastic and deterministic community assembly processes across different fractions of a spatially co-occurring ground-dwelling arthropod community following disturbance. This variation in assembly may be linked to contrasting ecological strategies and dispersal rates within above- and below-ground communities. Our findings add to a growing body of evidence indicating concurrent influences of stochastic and deterministic processes in community assembly, and highlight the need to consider potential variation across different fractions of biotic communities when testing community ecology theory and considering conservation strategies. PMID:27761333

  1. Molecular finite-size effects in stochastic models of equilibrium chemical systems.

    PubMed

    Cianci, Claudia; Smith, Stephen; Grima, Ramon

    2016-02-28

    The reaction-diffusion master equation (RDME) is a standard modelling approach for understanding stochastic and spatial chemical kinetics. An inherent assumption is that molecules are point-like. Here, we introduce the excluded volume reaction-diffusion master equation (vRDME) which takes into account volume exclusion effects on stochastic kinetics due to a finite molecular radius. We obtain an exact closed form solution of the RDME and of the vRDME for a general chemical system in equilibrium conditions. The difference between the two solutions increases with the ratio of molecular diameter to the compartment length scale. We show that an increase in the fraction of excluded space can (i) lead to deviations from the classical inverse square root law for the noise-strength, (ii) flip the skewness of the probability distribution from right to left-skewed, (iii) shift the equilibrium of bimolecular reactions so that more product molecules are formed, and (iv) strongly modulate the Fano factors and coefficients of variation. These volume exclusion effects are found to be particularly pronounced for chemical species not involved in chemical conservation laws. Finally, we show that statistics obtained using the vRDME are in good agreement with those obtained from Brownian dynamics with excluded volume interactions.

  2. Collective stochastic coherence in recurrent neuronal networks

    NASA Astrophysics Data System (ADS)

    Sancristóbal, Belén; Rebollo, Beatriz; Boada, Pol; Sanchez-Vives, Maria V.; Garcia-Ojalvo, Jordi

    2016-09-01

    Recurrent networks of dynamic elements frequently exhibit emergent collective oscillations, which can show substantial regularity even when the individual elements are considerably noisy. How noise-induced dynamics at the local level coexists with regular oscillations at the global level is still unclear. Here we show that a combination of stochastic recurrence-based initiation with deterministic refractoriness in an excitable network can reconcile these two features, leading to maximum collective coherence for an intermediate noise level. We report this behaviour in the slow oscillation regime exhibited by a cerebral cortex network under dynamical conditions resembling slow-wave sleep and anaesthesia. Computational analysis of a biologically realistic network model reveals that an intermediate level of background noise leads to quasi-regular dynamics. We verify this prediction experimentally in cortical slices subject to varying amounts of extracellular potassium, which modulates neuronal excitability and thus synaptic noise. The model also predicts that this effectively regular state should exhibit noise-induced memory of the spatial propagation profile of the collective oscillations, which is also verified experimentally. Taken together, these results allow us to construe the high regularity observed experimentally in the brain as an instance of collective stochastic coherence.

  3. Dissecting the multi-scale spatial relationship of earthworm assemblages with soil environmental variability.

    PubMed

    Jiménez, Juan J; Decaëns, Thibaud; Lavelle, Patrick; Rossi, Jean-Pierre

    2014-12-05

    Studying the drivers and determinants of species, population and community spatial patterns is central to ecology. The observed structure of community assemblages is the result of deterministic abiotic (environmental constraints) and biotic factors (positive and negative species interactions), as well as stochastic colonization events (historical contingency). We analyzed the role of multi-scale spatial component of soil environmental variability in structuring earthworm assemblages in a gallery forest from the Colombian "Llanos". We aimed to disentangle the spatial scales at which species assemblages are structured and determine whether these scales matched those expressed by soil environmental variables. We also tested the hypothesis of the "single tree effect" by exploring the spatial relationships between root-related variables and soil nutrient and physical variables in structuring earthworm assemblages. Multivariate ordination techniques and spatially explicit tools were used, namely cross-correlograms, Principal Coordinates of Neighbor Matrices (PCNM) and variation partitioning analyses. The relationship between the spatial organization of earthworm assemblages and soil environmental parameters revealed explicitly multi-scale responses. The soil environmental variables that explained nested population structures across the multi-spatial scale gradient differed for earthworms and assemblages at the very-fine- (<10 m) to medium-scale (10-20 m). The root traits were correlated with areas of high soil nutrient contents at a depth of 0-5 cm. Information on the scales of PCNM variables was obtained using variogram modeling. Based on the size of the plot, the PCNM variables were arbitrarily allocated to medium (>30 m), fine (10-20 m) and very fine scales (<10 m). Variation partitioning analysis revealed that the soil environmental variability explained from less than 1% to as much as 48% of the observed earthworm spatial variation. A large proportion of the spatial variation did not depend on the soil environmental variability for certain species. This finding could indicate the influence of contagious biotic interactions, stochastic factors, or unmeasured relevant soil environmental variables.

  4. `spup' - An R Package for Analysis of Spatial Uncertainty Propagation and Application to Trace Gas Emission Simulations

    NASA Astrophysics Data System (ADS)

    Sawicka, K.; Breuer, L.; Houska, T.; Santabarbara Ruiz, I.; Heuvelink, G. B. M.

    2016-12-01

    Computer models have become a crucial tool in engineering and environmental sciences for simulating the behaviour of complex static and dynamic systems. However, while many models are deterministic, the uncertainty in their predictions needs to be estimated before they are used for decision support. Advances in uncertainty propagation analysis and assessment have been paralleled by a growing number of software tools for uncertainty analysis, but none has gained recognition for a universal applicability, including case studies with spatial models and spatial model inputs. Due to the growing popularity and applicability of the open source R programming language we undertook a project to develop an R package that facilitates uncertainty propagation analysis in spatial environmental modelling. In particular, the `spup' package provides functions for examining the uncertainty propagation starting from input data and model parameters, via the environmental model onto model predictions. The functions include uncertainty model specification, stochastic simulation and propagation of uncertainty using Monte Carlo techniques, as well as several uncertainty visualization functions. Here we will demonstrate that the 'spup' package is an effective and easy-to-use tool to be applied even in a very complex study case, and that it can be used in multi-disciplinary research and model-based decision support. As an example, we use the ecological LandscapeDNDC model to analyse propagation of uncertainties associated with spatial variability of the model driving forces such as rainfall, nitrogen deposition and fertilizer inputs. The uncertainty propagation is analysed for the prediction of emissions of N2O and CO2 for a German low mountainous, agriculturally developed catchment. The study tests the effect of spatial correlations on spatially aggregated model outputs, and could serve as an advice for developing best management practices and model improvement strategies.

  5. Unbiased Rare Event Sampling in Spatial Stochastic Systems Biology Models Using a Weighted Ensemble of Trajectories

    PubMed Central

    Donovan, Rory M.; Tapia, Jose-Juan; Sullivan, Devin P.; Faeder, James R.; Murphy, Robert F.; Dittrich, Markus; Zuckerman, Daniel M.

    2016-01-01

    The long-term goal of connecting scales in biological simulation can be facilitated by scale-agnostic methods. We demonstrate that the weighted ensemble (WE) strategy, initially developed for molecular simulations, applies effectively to spatially resolved cell-scale simulations. The WE approach runs an ensemble of parallel trajectories with assigned weights and uses a statistical resampling strategy of replicating and pruning trajectories to focus computational effort on difficult-to-sample regions. The method can also generate unbiased estimates of non-equilibrium and equilibrium observables, sometimes with significantly less aggregate computing time than would be possible using standard parallelization. Here, we use WE to orchestrate particle-based kinetic Monte Carlo simulations, which include spatial geometry (e.g., of organelles, plasma membrane) and biochemical interactions among mobile molecular species. We study a series of models exhibiting spatial, temporal and biochemical complexity and show that although WE has important limitations, it can achieve performance significantly exceeding standard parallel simulation—by orders of magnitude for some observables. PMID:26845334

  6. Bayesian inference for the spatio-temporal invasion of alien species.

    PubMed

    Cook, Alex; Marion, Glenn; Butler, Adam; Gibson, Gavin

    2007-08-01

    In this paper we develop a Bayesian approach to parameter estimation in a stochastic spatio-temporal model of the spread of invasive species across a landscape. To date, statistical techniques, such as logistic and autologistic regression, have outstripped stochastic spatio-temporal models in their ability to handle large numbers of covariates. Here we seek to address this problem by making use of a range of covariates describing the bio-geographical features of the landscape. Relative to regression techniques, stochastic spatio-temporal models are more transparent in their representation of biological processes. They also explicitly model temporal change, and therefore do not require the assumption that the species' distribution (or other spatial pattern) has already reached equilibrium as is often the case with standard statistical approaches. In order to illustrate the use of such techniques we apply them to the analysis of data detailing the spread of an invasive plant, Heracleum mantegazzianum, across Britain in the 20th Century using geo-referenced covariate information describing local temperature, elevation and habitat type. The use of Markov chain Monte Carlo sampling within a Bayesian framework facilitates statistical assessments of differences in the suitability of different habitat classes for H. mantegazzianum, and enables predictions of future spread to account for parametric uncertainty and system variability. Our results show that ignoring such covariate information may lead to biased estimates of key processes and implausible predictions of future distributions.

  7. Investigations on indoor Radon in Austria, part 2: Geological classes as categorical external drift for spatial modelling of the Radon potential.

    PubMed

    Bossew, Peter; Dubois, Grégoire; Tollefsen, Tore

    2008-01-01

    Geological classes are used to model the deterministic (drift or trend) component of the Radon potential (Friedmann's RP) in Austria. It is shown that the RP can be grouped according to geological classes, but also according to individual geological units belonging to the same class. Geological classes can thus serve as predictors for mean RP within the classes. Variability of the RP within classes or units is interpreted as the stochastic part of the regionalized variable RP; however, there does not seem to exist a smallest unit which would naturally divide the RP into a deterministic and a stochastic part. Rather, this depends on the scale of the geological maps used, down to which size of geological units is used for modelling the trend. In practice, there must be a sufficient number of data points (measurements) distributed as uniformly as possible within one unit to allow reasonable determination of the trend component.

  8. A stochastically forced time delay solar dynamo model: Self-consistent recovery from a maunder-like grand minimum necessitates a mean-field alpha effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazra, Soumitra; Nandy, Dibyendu; Passos, Dário, E-mail: s.hazra@iiserkol.ac.in, E-mail: dariopassos@ist.utl.pt, E-mail: dnandi@iiserkol.ac.in

    Fluctuations in the Sun's magnetic activity, including episodes of grand minima such as the Maunder minimum have important consequences for space and planetary environments. However, the underlying dynamics of such extreme fluctuations remain ill-understood. Here, we use a novel mathematical model based on stochastically forced, non-linear delay differential equations to study solar cycle fluctuations in which time delays capture the physics of magnetic flux transport between spatially segregated dynamo source regions in the solar interior. Using this model, we explicitly demonstrate that the Babcock-Leighton poloidal field source based on dispersal of tilted bipolar sunspot flux, alone, cannot recover the sunspotmore » cycle from a grand minimum. We find that an additional poloidal field source effective on weak fields—e.g., the mean-field α effect driven by helical turbulence—is necessary for self-consistent recovery of the sunspot cycle from grand minima episodes.« less

  9. Stochastic simulation of karst conduit networks

    NASA Astrophysics Data System (ADS)

    Pardo-Igúzquiza, Eulogio; Dowd, Peter A.; Xu, Chaoshui; Durán-Valsero, Juan José

    2012-01-01

    Karst aquifers have very high spatial heterogeneity. Essentially, they comprise a system of pipes (i.e., the network of conduits) superimposed on rock porosity and on a network of stratigraphic surfaces and fractures. This heterogeneity strongly influences the hydraulic behavior of the karst and it must be reproduced in any realistic numerical model of the karst system that is used as input to flow and transport modeling. However, the directly observed karst conduits are only a small part of the complete karst conduit system and knowledge of the complete conduit geometry and topology remains spatially limited and uncertain. Thus, there is a special interest in the stochastic simulation of networks of conduits that can be combined with fracture and rock porosity models to provide a realistic numerical model of the karst system. Furthermore, the simulated model may be of interest per se and other uses could be envisaged. The purpose of this paper is to present an efficient method for conditional and non-conditional stochastic simulation of karst conduit networks. The method comprises two stages: generation of conduit geometry and generation of topology. The approach adopted is a combination of a resampling method for generating conduit geometries from templates and a modified diffusion-limited aggregation method for generating the network topology. The authors show that the 3D karst conduit networks generated by the proposed method are statistically similar to observed karst conduit networks or to a hypothesized network model. The statistical similarity is in the sense of reproducing the tortuosity index of conduits, the fractal dimension of the network, the direction rose of directions, the Z-histogram and Ripley's K-function of the bifurcation points (which differs from a random allocation of those bifurcation points). The proposed method (1) is very flexible, (2) incorporates any experimental data (conditioning information) and (3) can easily be modified when implemented in a hydraulic inverse modeling procedure. Several synthetic examples are given to illustrate the methodology and real conduit network data are used to generate simulated networks that mimic real geometries and topology.

  10. Role of translational entropy in spatially inhomogeneous, coarse-grained models

    NASA Astrophysics Data System (ADS)

    Langenberg, Marcel; Jackson, Nicholas E.; de Pablo, Juan J.; Müller, Marcus

    2018-03-01

    Coarse-grained models of polymer and biomolecular systems have enabled the computational study of cooperative phenomena, e.g., self-assembly, by lumping multiple atomistic degrees of freedom along the backbone of a polymer, lipid, or DNA molecule into one effective coarse-grained interaction center. Such a coarse-graining strategy leaves the number of molecules unaltered. In order to treat the surrounding solvent or counterions on the same coarse-grained level of description, one can also stochastically group several of those small molecules into an effective, coarse-grained solvent bead or "fluid element." Such a procedure reduces the number of molecules, and we discuss how to compensate the concomitant loss of translational entropy by density-dependent interactions in spatially inhomogeneous systems.

  11. Utilizing remote sensing of Thematic Mapper data to improve our understanding of estuarine processes and their influence on the productivity of estuarine-dependent fisheries

    NASA Technical Reports Server (NTRS)

    Browder, J. A.; May, L. N., Jr.; Rosenthal, A.; Baumann, R. H.; Gosselink, J. G.

    1986-01-01

    LANDSAT thematic mapper (TM) data are being used to refine and validate a stochastic spatial computer model to be applied to coastal resource management problems in Louisiana. Two major aspects of the research are: (1) the measurement of area of land (or emergent vegetation) and water and the length of the interface between land and water in TM imagery of selected coastal wetlands (sample marshes); and (2) the comparison of spatial patterns of land and water in the sample marshes of the imagery to that in marshes simulated by a computer model. In addition to activities in these two areas, the potential use of a published autocorrelation statistic is analyzed.

  12. Detecting seasonal variations of soil parameters via field measurements and stochastic simulations in the hillslope

    NASA Astrophysics Data System (ADS)

    Noh, Seong Jin; An, Hyunuk; Kim, Sanghyun

    2015-04-01

    Soil moisture, a critical factor in hydrologic systems, plays a key role in synthesizing interactions among soil, climate, hydrological response, solute transport and ecosystem dynamics. The spatial and temporal distribution of soil moisture at a hillslope scale is essential for understanding hillslope runoff generation processes. In this study, we implement Monte Carlo simulations in the hillslope scale using a three-dimensional surface-subsurface integrated model (3D model). Numerical simulations are compared with multiple soil moistures which had been measured using TDR(Mini_TRASE) for 22 locations in 2 or 3 depths during a whole year at a hillslope (area: 2100 square meters) located in Bongsunsa Watershed, South Korea. In stochastic simulations via Monte Carlo, uncertainty of the soil parameters and input forcing are considered and model ensembles showing good performance are selected separately for several seasonal periods. The presentation will be focused on the characterization of seasonal variations of model parameters based on simulations with field measurements. In addition, structural limitations of the contemporary modeling method will be discussed.

  13. Conditional Stochastic Models in Reduced Space: Towards Efficient Simulation of Tropical Cyclone Precipitation Patterns

    NASA Astrophysics Data System (ADS)

    Dodov, B.

    2017-12-01

    Stochastic simulation of realistic and statistically robust patterns of Tropical Cyclone (TC) induced precipitation is a challenging task. It is even more challenging in a catastrophe modeling context, where tens of thousands of typhoon seasons need to be simulated in order to provide a complete view of flood risk. Ultimately, one could run a coupled global climate model and regional Numerical Weather Prediction (NWP) model, but this approach is not feasible in the catastrophe modeling context and, most importantly, may not provide TC track patterns consistent with observations. Rather, we propose to leverage NWP output for the observed TC precipitation patterns (in terms of downscaled reanalysis 1979-2015) collected on a Lagrangian frame along the historical TC tracks and reduced to the leading spatial principal components of the data. The reduced data from all TCs is then grouped according to timing, storm evolution stage (developing, mature, dissipating, ETC transitioning) and central pressure and used to build a dictionary of stationary (within a group) and non-stationary (for transitions between groups) covariance models. Provided that the stochastic storm tracks with all the parameters describing the TC evolution are already simulated, a sequence of conditional samples from the covariance models chosen according to the TC characteristics at a given moment in time are concatenated, producing a continuous non-stationary precipitation pattern in a Lagrangian framework. The simulated precipitation for each event is finally distributed along the stochastic TC track and blended with a non-TC background precipitation using a data assimilation technique. The proposed framework provides means of efficient simulation (10000 seasons simulated in a couple of days) and robust typhoon precipitation patterns consistent with observed regional climate and visually undistinguishable from high resolution NWP output. The framework is used to simulate a catalog of 10000 typhoon seasons implemented in a flood risk model for Japan.

  14. Turbulent dispersal promotes species coexistence

    PubMed Central

    Berkley, Heather A; Kendall, Bruce E; Mitarai, Satoshi; Siegel, David A

    2010-01-01

    Several recent advances in coexistence theory emphasize the importance of space and dispersal, but focus on average dispersal rates and require spatial heterogeneity, spatio-temporal variability or dispersal-competition tradeoffs to allow coexistence. We analyse a model with stochastic juvenile dispersal (driven by turbulent flow in the coastal ocean) and show that a low-productivity species can coexist with a high-productivity species by having dispersal patterns sufficiently uncorrelated from those of its competitor, even though, on average, dispersal statistics are identical and subsequent demography and competition is spatially homogeneous. This produces a spatial storage effect, with an ephemeral partitioning of a ‘spatial niche’, and is the first demonstration of a physical mechanism for a pure spatiotemporal environmental response. ‘Turbulent coexistence’ is widely applicable to marine species with pelagic larval dispersal and relatively sessile adult life stages (and perhaps some wind-dispersed species) and complements other spatial and temporal storage effects previously documented for such species. PMID:20455921

  15. Stochastic models for inferring genetic regulation from microarray gene expression data.

    PubMed

    Tian, Tianhai

    2010-03-01

    Microarray expression profiles are inherently noisy and many different sources of variation exist in microarray experiments. It is still a significant challenge to develop stochastic models to realize noise in microarray expression profiles, which has profound influence on the reverse engineering of genetic regulation. Using the target genes of the tumour suppressor gene p53 as the test problem, we developed stochastic differential equation models and established the relationship between the noise strength of stochastic models and parameters of an error model for describing the distribution of the microarray measurements. Numerical results indicate that the simulated variance from stochastic models with a stochastic degradation process can be represented by a monomial in terms of the hybridization intensity and the order of the monomial depends on the type of stochastic process. The developed stochastic models with multiple stochastic processes generated simulations whose variance is consistent with the prediction of the error model. This work also established a general method to develop stochastic models from experimental information. 2009 Elsevier Ireland Ltd. All rights reserved.

  16. Origin of Pareto-like spatial distributions in ecosystems.

    PubMed

    Manor, Alon; Shnerb, Nadav M

    2008-12-31

    Recent studies of cluster distribution in various ecosystems revealed Pareto statistics for the size of spatial colonies. These results were supported by cellular automata simulations that yield robust criticality for endogenous pattern formation based on positive feedback. We show that this patch statistics is a manifestation of the law of proportionate effect. Mapping the stochastic model to a Markov birth-death process, the transition rates are shown to scale linearly with cluster size. This mapping provides a connection between patch statistics and the dynamics of the ecosystem; the "first passage time" for different colonies emerges as a powerful tool that discriminates between endogenous and exogenous clustering mechanisms. Imminent catastrophic shifts (such as desertification) manifest themselves in a drastic change of the stability properties of spatial colonies.

  17. Plant toxins and trophic cascades alter fire regime and succession on a boral forest landscape

    USGS Publications Warehouse

    Feng, Zhilan; Alfaro-Murillo, Jorge A.; DeAngelis, Donald L.; Schmidt, Jennifer; Barga, Matthew; Zheng, Yiqiang; Ahmad Tamrin, Muhammad Hanis B.; Olson, Mark; Glaser, Tim; Kielland, Knut; Chapin, F. Stuart; Bryant, John

    2012-01-01

    Two models were integrated in order to study the effect of plant toxicity and a trophic cascade on forest succession and fire patterns across a boreal landscape in central Alaska. One of the models, ALFRESCO, is a cellular automata model that stochastically simulates transitions from spruce dominated 1 km2 spatial cells to deciduous woody vegetation based on stochastic fires, and from deciduous woody vegetation to spruce based on age of the cell with some stochastic variation. The other model, the ‘toxin-dependent functional response’ model (TDFRM) simulates woody vegetation types with different levels of toxicity, an herbivore browser (moose) that can forage selectively on these types, and a carnivore (wolf) that preys on the herbivore. Here we replace the simple succession rules in each ALFRESCO cell by plant–herbivore–carnivore dynamics from TDFRM. The central hypothesis tested in the integrated model is that the herbivore, by feeding selectively on low-toxicity deciduous woody vegetation, speeds succession towards high-toxicity evergreens, like spruce. Wolves, by keeping moose populations down, can help slow the succession. Our results confirmed this hypothesis for the model calibrated to the Tanana floodplain of Alaska. We used the model to estimate the effects of different levels of wolf control. Simulations indicated that management reductions in wolf densities could reduce the mean time to transition from deciduous to spruce by more than 15 years, thereby increasing landscape flammability. The integrated model can be useful in estimating ecosystem impacts of wolf control and moose harvesting in central Alaska.

  18. Spatial averaging of a dissipative particle dynamics model for active suspensions

    NASA Astrophysics Data System (ADS)

    Panchenko, Alexander; Hinz, Denis F.; Fried, Eliot

    2018-03-01

    Starting from a fine-scale dissipative particle dynamics (DPD) model of self-motile point particles, we derive meso-scale continuum equations by applying a spatial averaging version of the Irving-Kirkwood-Noll procedure. Since the method does not rely on kinetic theory, the derivation is valid for highly concentrated particle systems. Spatial averaging yields stochastic continuum equations similar to those of Toner and Tu. However, our theory also involves a constitutive equation for the average fluctuation force. According to this equation, both the strength and the probability distribution vary with time and position through the effective mass density. The statistics of the fluctuation force also depend on the fine scale dissipative force equation, the physical temperature, and two additional parameters which characterize fluctuation strengths. Although the self-propulsion force entering our DPD model contains no explicit mechanism for aligning the velocities of neighboring particles, our averaged coarse-scale equations include the commonly encountered cubically nonlinear (internal) body force density.

  19. Integrating pixel- and polygon-based approaches to wildfire risk assessment: Application to a high-value watershed on the Pike and San Isabel National Forests, Colorado, USA

    Treesearch

    Matthew P. Thompson; Julie W. Gilbertson-Day; Joe H. Scott

    2015-01-01

    We develop a novel risk assessment approach that integrates complementary, yet distinct, spatial modeling approaches currently used in wildfire risk assessment. Motivation for this work stems largely from limitations of existing stochastic wildfire simulation systems, which can generate pixel-based outputs of fire behavior as well as polygon-based outputs of simulated...

  20. Quantifying spatial scaling patterns and their local and regional correlates in headwater streams: Implications for resilience

    USGS Publications Warehouse

    Gothe, Emma; Sandin, Leonard; Allen, Craig R.; Angeler, David G.

    2014-01-01

    The distribution of functional traits within and across spatiotemporal scales has been used to quantify and infer the relative resilience across ecosystems. We use explicit spatial modeling to evaluate within- and cross-scale redundancy in headwater streams, an ecosystem type with a hierarchical and dendritic network structure. We assessed the cross-scale distribution of functional feeding groups of benthic invertebrates in Swedish headwater streams during two seasons. We evaluated functional metrics, i.e., Shannon diversity, richness, and evenness, and the degree of redundancy within and across modeled spatial scales for individual feeding groups. We also estimated the correlates of environmental versus spatial factors of both functional composition and the taxonomic composition of functional groups for each spatial scale identified. Measures of functional diversity and within-scale redundancy of functions were similar during both seasons, but both within- and cross-scale redundancy were low. This apparent low redundancy was partly attributable to a few dominant taxa explaining the spatial models. However, rare taxa with stochastic spatial distributions might provide additional information and should therefore be considered explicitly for complementing future resilience assessments. Otherwise, resilience may be underestimated. Finally, both environmental and spatial factors correlated with the scale-specific functional and taxonomic composition. This finding suggests that resilience in stream networks emerges as a function of not only local conditions but also regional factors such as habitat connectivity and invertebrate dispersal.

  1. Pan-Antarctic analysis aggregating spatial estimates of Adélie penguin abundance reveals robust dynamics despite stochastic noise.

    PubMed

    Che-Castaldo, Christian; Jenouvrier, Stephanie; Youngflesh, Casey; Shoemaker, Kevin T; Humphries, Grant; McDowall, Philip; Landrum, Laura; Holland, Marika M; Li, Yun; Ji, Rubao; Lynch, Heather J

    2017-10-10

    Colonially-breeding seabirds have long served as indicator species for the health of the oceans on which they depend. Abundance and breeding data are repeatedly collected at fixed study sites in the hopes that changes in abundance and productivity may be useful for adaptive management of marine resources, but their suitability for this purpose is often unknown. To address this, we fit a Bayesian population dynamics model that includes process and observation error to all known Adélie penguin abundance data (1982-2015) in the Antarctic, covering >95% of their population globally. We find that process error exceeds observation error in this system, and that continent-wide "year effects" strongly influence population growth rates. Our findings have important implications for the use of Adélie penguins in Southern Ocean feedback management, and suggest that aggregating abundance across space provides the fastest reliable signal of true population change for species whose dynamics are driven by stochastic processes.Adélie penguins are a key Antarctic indicator species, but data patchiness has challenged efforts to link population dynamics to key drivers. Che-Castaldo et al. resolve this issue using a pan-Antarctic Bayesian model to infer missing data, and show that spatial aggregation leads to more robust inference regarding dynamics.

  2. Stochastic seismic inversion based on an improved local gradual deformation method

    NASA Astrophysics Data System (ADS)

    Yang, Xiuwei; Zhu, Peimin

    2017-12-01

    A new stochastic seismic inversion method based on the local gradual deformation method is proposed, which can incorporate seismic data, well data, geology and their spatial correlations into the inversion process. Geological information, such as sedimentary facies and structures, could provide significant a priori information to constrain an inversion and arrive at reasonable solutions. The local a priori conditional cumulative distributions at each node of model to be inverted are first established by indicator cokriging, which integrates well data as hard data and geological information as soft data. Probability field simulation is used to simulate different realizations consistent with the spatial correlations and local conditional cumulative distributions. The corresponding probability field is generated by the fast Fourier transform moving average method. Then, optimization is performed to match the seismic data via an improved local gradual deformation method. Two improved strategies are proposed to be suitable for seismic inversion. The first strategy is that we select and update local areas of bad fitting between synthetic seismic data and real seismic data. The second one is that we divide each seismic trace into several parts and obtain the optimal parameters for each part individually. The applications to a synthetic example and a real case study demonstrate that our approach can effectively find fine-scale acoustic impedance models and provide uncertainty estimations.

  3. An integrated assessment of soil erosion dynamics with special emphasis on gully erosion: Case studies from South Africa and Iran

    NASA Astrophysics Data System (ADS)

    Maerker, Michael; Sommer, Christian; Zakerinejad, Reza; Cama, Elena

    2017-04-01

    Soil erosion by water is a significant problem in arid and semi arid areas of large parts of Iran. Water erosion is one of the most effective phenomena that leads to decreasing soil productivity and pollution of water resources. Especially in semiarid areas like in the Mazayjan watershed in the Southwestern Fars province as well as in the Mkomazi catchment in Kwa Zulu Natal, South Africa, gully erosion contributes to the sediment dynamics in a significant way. Consequently, the intention of this research is to identify the different types of soil erosion processes acting in the area with a stochastic approach and to assess the process dynamics in an integrative way. Therefore, we applied GIS, and satellite image analysis techniques to derive input information for the numeric models. For sheet and rill erosion the Unit Stream Power-based Erosion Deposition Model (USPED) was utilized. The spatial distribution of gully erosion was assessed using a statistical approach which used three variables (stream power index, slope, and flow accumulation) to predict the spatial distribution of gullies in the study area. The eroded gully volumes were estimated for a multiple years period by fieldwork and Google Earth high resolution images as well as with structure for motion algorithm. Finally, the gully retreat rates were integrated into the USPED model. The results show that the integration of the SPI approach to quantify gully erosion with the USPED model is a suitable method to qualitatively and quantitatively assess water erosion processes in data scarce areas. The application of GIS and stochastic model approaches to spatialize the USPED model input yield valuable results for the prediction of soil erosion in the test areas. The results of this research help to develop an appropriate management of soil and water resources in the study areas.

  4. Compressing random microstructures via stochastic Wang tilings.

    PubMed

    Novák, Jan; Kučerová, Anna; Zeman, Jan

    2012-10-01

    This Rapid Communication presents a stochastic Wang tiling-based technique to compress or reconstruct disordered microstructures on the basis of given spatial statistics. Unlike the existing approaches based on a single unit cell, it utilizes a finite set of tiles assembled by a stochastic tiling algorithm, thereby allowing to accurately reproduce long-range orientation orders in a computationally efficient manner. Although the basic features of the method are demonstrated for a two-dimensional particulate suspension, the present framework is fully extensible to generic multidimensional media.

  5. Scattering theory of stochastic electromagnetic light waves.

    PubMed

    Wang, Tao; Zhao, Daomu

    2010-07-15

    We generalize scattering theory to stochastic electromagnetic light waves. It is shown that when a stochastic electromagnetic light wave is scattered from a medium, the properties of the scattered field can be characterized by a 3 x 3 cross-spectral density matrix. An example of scattering of a spatially coherent electromagnetic light wave from a deterministic medium is discussed. Some interesting phenomena emerge, including the changes of the spectral degree of coherence and of the spectral degree of polarization of the scattered field.

  6. Spatial Selection and Local Adaptation Jointly Shape Life-History Evolution during Range Expansion.

    PubMed

    Van Petegem, Katrien H P; Boeye, Jeroen; Stoks, Robby; Bonte, Dries

    2016-11-01

    In the context of climate change and species invasions, range shifts increasingly gain attention because the rates at which they occur in the Anthropocene induce rapid changes in biological assemblages. During range shifts, species experience multiple selection pressures. For poleward expansions in particular, it is difficult to interpret observed evolutionary dynamics because of the joint action of evolutionary processes related to spatial selection and to adaptation toward local climatic conditions. To disentangle the effects of these two processes, we integrated stochastic modeling and data from a common garden experiment, using the spider mite Tetranychus urticae as a model species. By linking the empirical data with those derived form a highly parameterized individual-based model, we infer that both spatial selection and local adaptation contributed to the observed latitudinal life-history divergence. Spatial selection best described variation in dispersal behavior, while variation in development was best explained by adaptation to the local climate. Divergence in life-history traits in species shifting poleward could consequently be jointly determined by contemporary evolutionary dynamics resulting from adaptation to the environmental gradient and from spatial selection. The integration of modeling with common garden experiments provides a powerful tool to study the contribution of these evolutionary processes on life-history evolution during range expansion.

  7. Quantitative characterization and modeling of lithologic heterogeneity

    NASA Astrophysics Data System (ADS)

    Deshpande, Anil

    The fundamental goal of this thesis is to gain a better understanding of the vertical and lateral stratigraphic heterogeneities in sedimentary deposits. Two approaches are taken: Statistical characterization of lithologic variation recorded by geophysical data such as reflection seismic and wireline logs, and stochastic forward modeling of sediment accumulation in basins. Analysis of reflection seismic and wireline log data from Pleistocene fluvial and deltaic deposits in the Eugene Island 330 field, offshore Gulf of Mexico reveal scale-invariant statistics and strong anisotropy in rock properties. Systematic quantification of lateral lithologic heterogeneity within a stratigraphic framework, using reflection seismic data, indicates that fluvial and deltaic depositional systems exhibit statistical behavior related to stratigraphic fabric. Well log and seismic data profiles show a decay in power spectra with wavenumber, k, according to ksp{-beta} with beta between 1 and 2.3. The question of how surface processes are recorded in bed thickness distributions as a function of basin accommodation space is addressed with stochastic sedimentation model. In zones of high accommodation, random, uncorrelated, driving events produce a range of spatially correlated lithology fields. In zones of low accommodation, bed thickness distributions deviate from the random forcing imposed (an exponential thickness distribution). Model results are similar to that of a shallowing upward parasequence recorded in 15 meters of offshore Gulf of Mexico Pleistocene core. These data record a deviation from exponentially distributed bed thicknesses from the deeper water part of the cycle to the shallow part of the cycle where bed amalgamation dominates. Finally, a stochastic basin-fill model is used to explore the primary controls on stratigraphic architecture of turbidite channel-fill in the South Timbalier 295 field, offshore Louisiana Gulf Coast. Spatial and temporal changes in topography and subsidence rate are shown to be the main controls on turbidite channel stacking pattern within this basin. The model predicts the deposition of thick, amalgamated turbidite channel sands in the basin during a period of high initial subsidence followed by deposition of thinner, less connected sands when basin subsidence rate and accommodation space are low.

  8. Space-time modeling of soil moisture

    NASA Astrophysics Data System (ADS)

    Chen, Zijuan; Mohanty, Binayak P.; Rodriguez-Iturbe, Ignacio

    2017-11-01

    A physically derived space-time mathematical representation of the soil moisture field is carried out via the soil moisture balance equation driven by stochastic rainfall forcing. The model incorporates spatial diffusion and in its original version, it is shown to be unable to reproduce the relative fast decay in the spatial correlation functions observed in empirical data. This decay resulting from variations in local topography as well as in local soil and vegetation conditions is well reproduced via a jitter process acting multiplicatively over the space-time soil moisture field. The jitter is a multiplicative noise acting on the soil moisture dynamics with the objective to deflate its correlation structure at small spatial scales which are not embedded in the probabilistic structure of the rainfall process that drives the dynamics. These scales of order of several meters to several hundred meters are of great importance in ecohydrologic dynamics. Properties of space-time correlation functions and spectral densities of the model with jitter are explored analytically, and the influence of the jitter parameters, reflecting variabilities of soil moisture at different spatial and temporal scales, is investigated. A case study fitting the derived model to a soil moisture dataset is presented in detail.

  9. Stochastic simulation and decadal prediction of hydroclimate in the Western Himalayas

    NASA Astrophysics Data System (ADS)

    Robertson, A. W.; Chekroun, M. D.; Cook, E.; D'Arrigo, R.; Ghil, M.; Greene, A. M.; Holsclaw, T.; Kondrashov, D. A.; Lall, U.; Lu, M.; Smyth, P.

    2012-12-01

    Improved estimates of climate over the next 10 to 50 years are needed for long-term planning in water resource and flood management. However, the task of effectively incorporating the results of climate change research into decision-making face a ``double conflict of scales'': the temporal scales of climate model projections are too long, while their usable spatial scales (global to planetary) are much larger than those needed for actual decision making (at the regional to local level). This work is designed to help tackle this ``double conflict'' in the context of water management over monsoonal Asia, based on dendroclimatic multi-century reconstructions of drought indices and river flows. We identify low-frequency modes of variability with time scales from interannual to interdecadal based on these series, and then generate future scenarios based on (a) empirical model decadal predictions, and (b) stochastic simulations generated with autoregressive models that reproduce the power spectrum of the data. Finally, we consider how such scenarios could be used to develop reservoir optimization models. Results will be presented based on multi-century Upper Indus river discharge reconstructions that exhibit a strong periodicity near 27 years that is shown to yield some retrospective forecasting skill over the 1700-2000 period, at a 15-yr yield time. Stochastic simulations of annual PDSI drought index values over the Upper Indus basin are constructed using Empirical Model Reduction; their power spectra are shown to be quite realistic, with spectral peaks near 5--8 years.

  10. Stochastic, goal-oriented rapid impact modeling of uncertainty and environmental impacts in poorly-sampled sites using ex-situ priors

    NASA Astrophysics Data System (ADS)

    Li, Xiaojun; Li, Yandong; Chang, Ching-Fu; Tan, Benjamin; Chen, Ziyang; Sege, Jon; Wang, Changhong; Rubin, Yoram

    2018-01-01

    Modeling of uncertainty associated with subsurface dynamics has long been a major research topic. Its significance is widely recognized for real-life applications. Despite the huge effort invested in the area, major obstacles still remain on the way from theory and applications. Particularly problematic here is the confusion between modeling uncertainty and modeling spatial variability, which translates into a (mis)conception, in fact an inconsistency, in that it suggests that modeling of uncertainty and modeling of spatial variability are equivalent, and as such, requiring a lot of data. This paper investigates this challenge against the backdrop of a 7 km, deep underground tunnel in China, where environmental impacts are of major concern. We approach the data challenge by pursuing a new concept for Rapid Impact Modeling (RIM), which bypasses altogether the need to estimate posterior distributions of model parameters, focusing instead on detailed stochastic modeling of impacts, conditional to all information available, including prior, ex-situ information and in-situ measurements as well. A foundational element of RIM is the construction of informative priors for target parameters using ex-situ data, relying on ensembles of well-documented sites, pre-screened for geological and hydrological similarity to the target site. The ensembles are built around two sets of similarity criteria: a physically-based set of criteria and an additional set covering epistemic criteria. In another variation to common Bayesian practice, we update the priors to obtain conditional distributions of the target (environmental impact) dependent variables and not the hydrological variables. This recognizes that goal-oriented site characterization is in many cases more useful in applications compared to parameter-oriented characterization.

  11. Geographic variation in density-dependent dynamics impacts the synchronizing effect of dispersal and regional stochasticity

    Treesearch

    Andrew M. Liebhold; Derek M. Johnson; Ottar N. Bj& #248rnstad

    2006-01-01

    Explanations for the ubiquitous presence of spatially synchronous population dynamics have assumed that density-dependent processes governing the dynamics of local populations are identical among disjunct populations, and low levels of dispersal or small amounts of regionalized stochasticity ("Moran effect") can act to synchronize populations. In this study...

  12. Seed availability constrains plant species sorting along a soil fertility gradient

    Treesearch

    Bryan L. Foster; Erin J. Questad; Cathy D. Collins; Cheryl A. Murphy; Timothy L. Dickson; Val H. Smith

    2011-01-01

    1. Spatial variation in species composition within and among communities may be caused by deterministic, niche-based species sorting in response to underlying environmental heterogeneity as well as by stochastic factors such as dispersal limitation and variable species pools. An important goal in ecology is to reconcile deterministic and stochastic perspectives of...

  13. High-Dimensional Bayesian Geostatistics

    PubMed Central

    Banerjee, Sudipto

    2017-01-01

    With the growing capabilities of Geographic Information Systems (GIS) and user-friendly software, statisticians today routinely encounter geographically referenced data containing observations from a large number of spatial locations and time points. Over the last decade, hierarchical spatiotemporal process models have become widely deployed statistical tools for researchers to better understand the complex nature of spatial and temporal variability. However, fitting hierarchical spatiotemporal models often involves expensive matrix computations with complexity increasing in cubic order for the number of spatial locations and temporal points. This renders such models unfeasible for large data sets. This article offers a focused review of two methods for constructing well-defined highly scalable spatiotemporal stochastic processes. Both these processes can be used as “priors” for spatiotemporal random fields. The first approach constructs a low-rank process operating on a lower-dimensional subspace. The second approach constructs a Nearest-Neighbor Gaussian Process (NNGP) that ensures sparse precision matrices for its finite realizations. Both processes can be exploited as a scalable prior embedded within a rich hierarchical modeling framework to deliver full Bayesian inference. These approaches can be described as model-based solutions for big spatiotemporal datasets. The models ensure that the algorithmic complexity has ~ n floating point operations (flops), where n the number of spatial locations (per iteration). We compare these methods and provide some insight into their methodological underpinnings. PMID:29391920

  14. High-Dimensional Bayesian Geostatistics.

    PubMed

    Banerjee, Sudipto

    2017-06-01

    With the growing capabilities of Geographic Information Systems (GIS) and user-friendly software, statisticians today routinely encounter geographically referenced data containing observations from a large number of spatial locations and time points. Over the last decade, hierarchical spatiotemporal process models have become widely deployed statistical tools for researchers to better understand the complex nature of spatial and temporal variability. However, fitting hierarchical spatiotemporal models often involves expensive matrix computations with complexity increasing in cubic order for the number of spatial locations and temporal points. This renders such models unfeasible for large data sets. This article offers a focused review of two methods for constructing well-defined highly scalable spatiotemporal stochastic processes. Both these processes can be used as "priors" for spatiotemporal random fields. The first approach constructs a low-rank process operating on a lower-dimensional subspace. The second approach constructs a Nearest-Neighbor Gaussian Process (NNGP) that ensures sparse precision matrices for its finite realizations. Both processes can be exploited as a scalable prior embedded within a rich hierarchical modeling framework to deliver full Bayesian inference. These approaches can be described as model-based solutions for big spatiotemporal datasets. The models ensure that the algorithmic complexity has ~ n floating point operations (flops), where n the number of spatial locations (per iteration). We compare these methods and provide some insight into their methodological underpinnings.

  15. Spatial dependence and correlation of rainfall in the Danube catchment and its role in flood risk assessment.

    NASA Astrophysics Data System (ADS)

    Martina, M. L. V.; Vitolo, R.; Todini, E.; Stephenson, D. B.; Cook, I. M.

    2009-04-01

    The possibility that multiple catastrophic events occur within a given timespan and affect the same portfolio of insured properties may induce enhanced risk. For this reason, in the insurance industry it is of interest to characterise not only the point probability of catastrophic events, but also their spatial structure. As far as floods are concerned it is important to determine the probability of having multiple simultaneous events in different parts of the same basin: in this case, indeed, the loss in a portfolio can be significantly different. Understanding the spatial structure of the precipitation field is a necessary step for the proper modelling of the spatial dependence and correlation of river discharge. Several stochastic models are available in the scientific literature for the multi-site generation of precipitation. Although most models achieve good performance in modelling mean values, temporal variability and inter-site dependence of extremes are still delicate issues. In this work we aim at identifying the main spatial characteristics of the precipitation structure and then at analysing them in a real case. We consider data from a large network of raingauges in the Danube catchment. This catchment is a good example of a large-scale catchment where the spatial correlation of flood events can radically change the effect in term of flood damage.

  16. Use of LANDSAT images of vegetation cover to estimate effective hydraulic properties of soils

    NASA Technical Reports Server (NTRS)

    Eagleson, Peter S.; Jasinski, Michael F.

    1988-01-01

    The estimation of the spatially variable surface moisture and heat fluxes of natural, semivegetated landscapes is difficult due to the highly random nature of the vegetation (e.g., plant species, density, and stress) and the soil (e.g., moisture content, and soil hydraulic conductivity). The solution to that problem lies, in part, in the use of satellite remotely sensed data, and in the preparation of those data in terms of the physical properties of the plant and soil. The work was focused on the development and testing of a stochastic geometric canopy-soil reflectance model, which can be applied to the physically-based interpretation of LANDSAT images. The model conceptualizes the landscape as a stochastic surface with bulk plant and soil reflective properties. The model is particularly suited for regional scale investigations where the quantification of the bulk landscape properties, such as fractional vegetation cover, is important on a pixel by pixel basis. A summary of the theoretical analysis and the preliminary testing of the model with actual aerial radiometric data is provided.

  17. Irregular synchronous activity in stochastically-coupled networks of integrate-and-fire neurons.

    PubMed

    Lin, J K; Pawelzik, K; Ernst, U; Sejnowski, T J

    1998-08-01

    We investigate the spatial and temporal aspects of firing patterns in a network of integrate-and-fire neurons arranged in a one-dimensional ring topology. The coupling is stochastic and shaped like a Mexican hat with local excitation and lateral inhibition. With perfect precision in the couplings, the attractors of activity in the network occur at every position in the ring. Inhomogeneities in the coupling break the translational invariance of localized attractors and lead to synchronization within highly active as well as weakly active clusters. The interspike interval variability is high, consistent with recent observations of spike time distributions in visual cortex. The robustness of our results is demonstrated with more realistic simulations on a network of McGregor neurons which model conductance changes and after-hyperpolarization potassium currents.

  18. A stochastic wind turbine wake model based on new metrics for wake characterization: A stochastic wind turbine wake model based on new metrics for wake characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doubrawa, Paula; Barthelmie, Rebecca J.; Wang, Hui

    Understanding the detailed dynamics of wind turbine wakes is critical to predicting the performance and maximizing the efficiency of wind farms. This knowledge requires atmospheric data at a high spatial and temporal resolution, which are not easily obtained from direct measurements. Therefore, research is often based on numerical models, which vary in fidelity and computational cost. The simplest models produce axisymmetric wakes and are only valid beyond the near wake. Higher-fidelity results can be obtained by solving the filtered Navier-Stokes equations at a resolution that is sufficient to resolve the relevant turbulence scales. This work addresses the gap between thesemore » two extremes by proposing a stochastic model that produces an unsteady asymmetric wake. The model is developed based on a large-eddy simulation (LES) of an offshore wind farm. Because there are several ways of characterizing wakes, the first part of this work explores different approaches to defining global wake characteristics. From these, a model is developed that captures essential features of a LES-generated wake at a small fraction of the cost. The synthetic wake successfully reproduces the mean characteristics of the original LES wake, including its area and stretching patterns, and statistics of the mean azimuthal radius. The mean and standard deviation of the wake width and height are also reproduced. This preliminary study focuses on reproducing the wake shape, while future work will incorporate velocity deficit and meandering, as well as different stability scenarios.« less

  19. A stochastic fractional dynamics model of space-time variability of rain

    NASA Astrophysics Data System (ADS)

    Kundu, Prasun K.; Travis, James E.

    2013-09-01

    varies in space and time in a highly irregular manner and is described naturally in terms of a stochastic process. A characteristic feature of rainfall statistics is that they depend strongly on the space-time scales over which rain data are averaged. A spectral model of precipitation has been developed based on a stochastic differential equation of fractional order for the point rain rate, which allows a concise description of the second moment statistics of rain at any prescribed space-time averaging scale. The model is thus capable of providing a unified description of the statistics of both radar and rain gauge data. The underlying dynamical equation can be expressed in terms of space-time derivatives of fractional orders that are adjusted together with other model parameters to fit the data. The form of the resulting spectrum gives the model adequate flexibility to capture the subtle interplay between the spatial and temporal scales of variability of rain but strongly constrains the predicted statistical behavior as a function of the averaging length and time scales. We test the model with radar and gauge data collected contemporaneously at the NASA TRMM ground validation sites located near Melbourne, Florida and on the Kwajalein Atoll, Marshall Islands in the tropical Pacific. We estimate the parameters by tuning them to fit the second moment statistics of radar data at the smaller spatiotemporal scales. The model predictions are then found to fit the second moment statistics of the gauge data reasonably well at these scales without any further adjustment.

  20. Genetic patterns of habitat fragmentation and past climate-change effects in the Mediterranean high-mountain plant Armeria caespitosa (Plumbaginaceae).

    PubMed

    García-Fernández, Alfredo; Iriondo, Jose M; Escudero, Adrián; Aguilar, Javier Fuertes; Feliner, Gonzalo Nieto

    2013-08-01

    Mountain plants are among the species most vulnerable to global warming, because of their isolation, narrow geographic distribution, and limited geographic range shifts. Stochastic and selective processes can act on the genome, modulating genetic structure and diversity. Fragmentation and historical processes also have a great influence on current genetic patterns, but the spatial and temporal contexts of these processes are poorly known. We aimed to evaluate the microevolutionary processes that may have taken place in Mediterranean high-mountain plants in response to changing historical environmental conditions. Genetic structure, diversity, and loci under selection were analyzed using AFLP markers in 17 populations distributed over the whole geographic range of Armeria caespitosa, an endemic plant that inhabits isolated mountains (Sierra de Guadarrama, Spain). Differences in altitude, geographic location, and climate conditions were considered in the analyses, because they may play an important role in selective and stochastic processes. Bayesian clustering approaches identified nine genetic groups, although some discrepancies in assignment were found between alternative analyses. Spatially explicit analyses showed a weak relationship between genetic parameters and spatial or environmental distances. However, a large proportion of outlier loci were detected, and some outliers were related to environmental variables. A. caespitosa populations exhibit spatial patterns of genetic structure that cannot be explained by the isolation-by-distance model. Shifts along the altitude gradient in response to Pleistocene climatic oscillations and environmentally mediated selective forces might explain the resulting structure and genetic diversity values found.

  1. Non-Gaussian Multi-resolution Modeling of Magnetosphere-Ionosphere Coupling Processes

    NASA Astrophysics Data System (ADS)

    Fan, M.; Paul, D.; Lee, T. C. M.; Matsuo, T.

    2016-12-01

    The most dynamic coupling between the magnetosphere and ionosphere occurs in the Earth's polar atmosphere. Our objective is to model scale-dependent stochastic characteristics of high-latitude ionospheric electric fields that originate from solar wind magnetosphere-ionosphere interactions. The Earth's high-latitude ionospheric electric field exhibits considerable variability, with increasing non-Gaussian characteristics at decreasing spatio-temporal scales. Accurately representing the underlying stochastic physical process through random field modeling is crucial not only for scientific understanding of the energy, momentum and mass exchanges between the Earth's magnetosphere and ionosphere, but also for modern technological systems including telecommunication, navigation, positioning and satellite tracking. While a lot of efforts have been made to characterize the large-scale variability of the electric field in the context of Gaussian processes, no attempt has been made so far to model the small-scale non-Gaussian stochastic process observed in the high-latitude ionosphere. We construct a novel random field model using spherical needlets as building blocks. The double localization of spherical needlets in both spatial and frequency domains enables the model to capture the non-Gaussian and multi-resolutional characteristics of the small-scale variability. The estimation procedure is computationally feasible due to the utilization of an adaptive Gibbs sampler. We apply the proposed methodology to the computational simulation output from the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamics (MHD) magnetosphere model. Our non-Gaussian multi-resolution model results in characterizing significantly more energy associated with the small-scale ionospheric electric field variability in comparison to Gaussian models. By accurately representing unaccounted-for additional energy and momentum sources to the Earth's upper atmosphere, our novel random field modeling approach will provide a viable remedy to the current numerical models' systematic biases resulting from the underestimation of high-latitude energy and momentum sources.

  2. A simplified model to evaluate the effect of fluid rheology on non-Newtonian flow in variable aperture fractures

    NASA Astrophysics Data System (ADS)

    Felisa, Giada; Ciriello, Valentina; Longo, Sandro; Di Federico, Vittorio

    2017-04-01

    Modeling of non-Newtonian flow in fractured media is essential in hydraulic fracturing operations, largely used for optimal exploitation of oil, gas and thermal reservoirs. Complex fluids interact with pre-existing rock fractures also during drilling operations, enhanced oil recovery, environmental remediation, and other natural phenomena such as magma and sand intrusions, and mud volcanoes. A first step in the modeling effort is a detailed understanding of flow in a single fracture, as the fracture aperture is typically spatially variable. A large bibliography exists on Newtonian flow in single, variable aperture fractures. Ultimately, stochastic modeling of aperture variability at the single fracture scale leads to determination of the flowrate under a given pressure gradient as a function of the parameters describing the variability of the aperture field and the fluid rheological behaviour. From the flowrate, a flow, or 'hydraulic', aperture can then be derived. The equivalent flow aperture for non-Newtonian fluids of power-law nature in single, variable aperture fractures has been obtained in the past both for deterministic and stochastic variations. Detailed numerical modeling of power-law fluid flow in a variable aperture fracture demonstrated that pronounced channelization effects are associated to a nonlinear fluid rheology. The availability of an equivalent flow aperture as a function of the parameters describing the fluid rheology and the aperture variability is enticing, as it allows taking their interaction into account when modeling flow in fracture networks at a larger scale. A relevant issue in non-Newtonian fracture flow is the rheological nature of the fluid. The constitutive model routinely used for hydro-fracturing modeling is the simple, two-parameter power-law. Yet this model does not characterize real fluids at low and high shear rates, as it implies, for shear-thinning fluids, an apparent viscosity which becomes unbounded for zero shear rate and tends to zero for infinite shear rate. On the contrary, the four-parameter Carreau constitutive equation includes asymptotic values of the apparent viscosity at those limits; in turn, the Carreau rheological equation is well approximated by the more tractable truncated power-law model. Results for flow of such fluids between parallel walls are already available. This study extends the adoption of the truncated power-law model to variable aperture fractures, with the aim of understanding the joint influence of rheology and aperture spatial variability. The aperture variation, modeled within a stochastic or deterministic framework, is taken to be one-dimensional and perpendicular to the flow direction; for stochastic modeling, the influence of different distribution functions is examined. Results are then compared with those obtained for pure power-law fluids for different combinations of model parameters. It is seen that the adoption of the pure power law model leads to significant overestimation of the flowrate with respect to the truncated model, more so for large external pressure gradient and/or aperture variability.

  3. Spatially inhomogeneous acceleration of electrons in solar flares

    NASA Astrophysics Data System (ADS)

    Stackhouse, Duncan J.; Kontar, Eduard P.

    2018-04-01

    The imaging spectroscopy capabilities of the Reuven Ramaty high energy solar spectroscopic imager (RHESSI) enable the examination of the accelerated electron distribution throughout a solar flare region. In particular, it has been revealed that the energisation of these particles takes place over a region of finite size, sometimes resolved by RHESSI observations. In this paper, we present, for the first time, a spatially distributed acceleration model and investigate the role of inhomogeneous acceleration on the observed X-ray emission properties. We have modelled transport explicitly examining scatter-free and diffusive transport within the acceleration region and compare with the analytic leaky-box solution. The results show the importance of including this spatial variation when modelling electron acceleration in solar flares. The presence of an inhomogeneous, extended acceleration region produces a spectral index that is, in most cases, different from the simple leaky-box prediction. In particular, it results in a generally softer spectral index than predicted by the leaky-box solution, for both scatter-free and diffusive transport, and thus should be taken into account when modelling stochastic acceleration in solar flares.

  4. GARCH modelling of covariance in dynamical estimation of inverse solutions

    NASA Astrophysics Data System (ADS)

    Galka, Andreas; Yamashita, Okito; Ozaki, Tohru

    2004-12-01

    The problem of estimating unobserved states of spatially extended dynamical systems poses an inverse problem, which can be solved approximately by a recently developed variant of Kalman filtering; in order to provide the model of the dynamics with more flexibility with respect to space and time, we suggest to combine the concept of GARCH modelling of covariance, well known in econometrics, with Kalman filtering. We formulate this algorithm for spatiotemporal systems governed by stochastic diffusion equations and demonstrate its feasibility by presenting a numerical simulation designed to imitate the situation of the generation of electroencephalographic recordings by the human cortex.

  5. Image Understanding and Information Extraction\\

    DTIC Science & Technology

    1977-11-01

    mentation and generalization of DeCarlo’s Nyquist-like stability test [15,161. The last step of the procedure is to check whether this zero ...Several general sta- bility theorems which relate stability to the zero set of B(w,z) have been presented. These theorems led to the conclusion that...Spatial Stochastic Model for Contextual Pattern Recognition . ° . .............. 88 T. S. Yu and K. S. Fu V. PREPROCESSING 1. Stability of General Two

  6. Benefits of an ultra large and multiresolution ensemble for estimating available wind power

    NASA Astrophysics Data System (ADS)

    Berndt, Jonas; Hoppe, Charlotte; Elbern, Hendrik

    2016-04-01

    In this study we investigate the benefits of an ultra large ensemble with up to 1000 members including multiple nesting with a target horizontal resolution of 1 km. The ensemble shall be used as a basis to detect events of extreme errors in wind power forecasting. Forecast value is the wind vector at wind turbine hub height (~ 100 m) in the short range (1 to 24 hour). Current wind power forecast systems rest already on NWP ensemble models. However, only calibrated ensembles from meteorological institutions serve as input so far, with limited spatial resolution (˜10 - 80 km) and member number (˜ 50). Perturbations related to the specific merits of wind power production are yet missing. Thus, single extreme error events which are not detected by such ensemble power forecasts occur infrequently. The numerical forecast model used in this study is the Weather Research and Forecasting Model (WRF). Model uncertainties are represented by stochastic parametrization of sub-grid processes via stochastically perturbed parametrization tendencies and in conjunction via the complementary stochastic kinetic-energy backscatter scheme already provided by WRF. We perform continuous ensemble updates by comparing each ensemble member with available observations using a sequential importance resampling filter to improve the model accuracy while maintaining ensemble spread. Additionally, we use different ensemble systems from global models (ECMWF and GFS) as input and boundary conditions to capture different synoptic conditions. Critical weather situations which are connected to extreme error events are located and corresponding perturbation techniques are applied. The demanding computational effort is overcome by utilising the supercomputer JUQUEEN at the Forschungszentrum Juelich.

  7. Simulation of spatially evolving turbulence and the applicability of Taylor's hypothesis in compressible flow

    NASA Technical Reports Server (NTRS)

    Lee, Sangsan; Lele, Sanjiva K.; Moin, Parviz

    1992-01-01

    For the numerical simulation of inhomogeneous turbulent flows, a method is developed for generating stochastic inflow boundary conditions with a prescribed power spectrum. Turbulence statistics from spatial simulations using this method with a low fluctuation Mach number are in excellent agreement with the experimental data, which validates the procedure. Turbulence statistics from spatial simulations are also compared to those from temporal simulations using Taylor's hypothesis. Statistics such as turbulence intensity, vorticity, and velocity derivative skewness compare favorably with the temporal simulation. However, the statistics of dilatation show a significant departure from those obtained in the temporal simulation. To directly check the applicability of Taylor's hypothesis, space-time correlations of fluctuations in velocity, vorticity, and dilatation are investigated. Convection velocities based on vorticity and velocity fluctuations are computed as functions of the spatial and temporal separations. The profile of the space-time correlation of dilatation fluctuations is explained via a wave propagation model.

  8. Optimizing information flow in small genetic networks. IV. Spatial coupling

    NASA Astrophysics Data System (ADS)

    Sokolowski, Thomas R.; Tkačik, Gašper

    2015-06-01

    We typically think of cells as responding to external signals independently by regulating their gene expression levels, yet they often locally exchange information and coordinate. Can such spatial coupling be of benefit for conveying signals subject to gene regulatory noise? Here we extend our information-theoretic framework for gene regulation to spatially extended systems. As an example, we consider a lattice of nuclei responding to a concentration field of a transcriptional regulator (the input) by expressing a single diffusible target gene. When input concentrations are low, diffusive coupling markedly improves information transmission; optimal gene activation functions also systematically change. A qualitatively different regulatory strategy emerges where individual cells respond to the input in a nearly steplike fashion that is subsequently averaged out by strong diffusion. While motivated by early patterning events in the Drosophila embryo, our framework is generically applicable to spatially coupled stochastic gene expression models.

  9. Langevin Dynamics with Spatial Correlations as a Model for Electron-Phonon Coupling

    NASA Astrophysics Data System (ADS)

    Tamm, A.; Caro, M.; Caro, A.; Samolyuk, G.; Klintenberg, M.; Correa, A. A.

    2018-05-01

    Stochastic Langevin dynamics has been traditionally used as a tool to describe nonequilibrium processes. When utilized in systems with collective modes, traditional Langevin dynamics relaxes all modes indiscriminately, regardless of their wavelength. We propose a generalization of Langevin dynamics that can capture a differential coupling between collective modes and the bath, by introducing spatial correlations in the random forces. This allows modeling the electronic subsystem in a metal as a generalized Langevin bath endowed with a concept of locality, greatly improving the capabilities of the two-temperature model. The specific form proposed here for the spatial correlations produces a physical wave-vector and polarization dependency of the relaxation produced by the electron-phonon coupling in a solid. We show that the resulting model can be used for describing the path to equilibration of ions and electrons and also as a thermostat to sample the equilibrium canonical ensemble. By extension, the family of models presented here can be applied in general to any dense system, solids, alloys, and dense plasmas. As an example, we apply the model to study the nonequilibrium dynamics of an electron-ion two-temperature Ni crystal.

  10. Modelling and Computation in the Valuation of Carbon Derivatives with Stochastic Convenience Yields

    PubMed Central

    Chang, Shuhua; Wang, Xinyu

    2015-01-01

    The anthropogenic greenhouse gas (GHG) emission has risen dramatically during the last few decades, which mainstream researchers believe to be the main cause of climate change, especially the global warming. The mechanism of market-based carbon emission trading is regarded as a policy instrument to deal with global climate change. Although several empirical researches about the carbon allowance and its derivatives price have been made, theoretical results seem to be sparse. In this paper, we theoretically develop a mathematical model to price the CO2 emission allowance derivatives with stochastic convenience yields by the principle of absence of arbitrage opportunities. In the case of American options, we formulate the pricing problem to a linear parabolic variational inequality (VI) in two spatial dimensions and develop a power penalty method to solve it. Then, a fitted finite volume method is designed to solve the nonlinear partial differential equation (PDE) resulting from the power penalty method and governing the futures, European and American option valuation. Moreover, some numerical results are performed to illustrate the efficiency and usefulness of this method. We find that the stochastic convenience yield does effect the valuation of carbon emission derivatives. In addition, some sensitivity analyses are also made to examine the effects of some parameters on the valuation results. PMID:26010900

  11. Modelling and computation in the valuation of carbon derivatives with stochastic convenience yields.

    PubMed

    Chang, Shuhua; Wang, Xinyu

    2015-01-01

    The anthropogenic greenhouse gas (GHG) emission has risen dramatically during the last few decades, which mainstream researchers believe to be the main cause of climate change, especially the global warming. The mechanism of market-based carbon emission trading is regarded as a policy instrument to deal with global climate change. Although several empirical researches about the carbon allowance and its derivatives price have been made, theoretical results seem to be sparse. In this paper, we theoretically develop a mathematical model to price the CO2 emission allowance derivatives with stochastic convenience yields by the principle of absence of arbitrage opportunities. In the case of American options, we formulate the pricing problem to a linear parabolic variational inequality (VI) in two spatial dimensions and develop a power penalty method to solve it. Then, a fitted finite volume method is designed to solve the nonlinear partial differential equation (PDE) resulting from the power penalty method and governing the futures, European and American option valuation. Moreover, some numerical results are performed to illustrate the efficiency and usefulness of this method. We find that the stochastic convenience yield does effect the valuation of carbon emission derivatives. In addition, some sensitivity analyses are also made to examine the effects of some parameters on the valuation results.

  12. Tuning Spatial Profiles of Selection Pressure to Modulate the Evolution of Drug Resistance

    NASA Astrophysics Data System (ADS)

    De Jong, Maxwell G.; Wood, Kevin B.

    2018-06-01

    Spatial heterogeneity plays an important role in the evolution of drug resistance. While recent studies have indicated that spatial gradients of selection pressure can accelerate resistance evolution, much less is known about evolution in more complex spatial profiles. Here we use a stochastic toy model of drug resistance to investigate how different spatial profiles of selection pressure impact the time to fixation of a resistant allele. Using mean first passage time calculations, we show that spatial heterogeneity accelerates resistance evolution when the rate of spatial migration is sufficiently large relative to mutation but slows fixation for small migration rates. Interestingly, there exists an intermediate regime—characterized by comparable rates of migration and mutation—in which the rate of fixation can be either accelerated or decelerated depending on the spatial profile, even when spatially averaged selection pressure remains constant. Finally, we demonstrate that optimal tuning of the spatial profile can dramatically slow the spread and fixation of resistant subpopulations, even in the absence of a fitness cost for resistance. Our results may lay the groundwork for optimized, spatially resolved drug dosing strategies for mitigating the effects of drug resistance.

  13. MOAB: a spatially explicit, individual-based expert system for creating animal foraging models

    USGS Publications Warehouse

    Carter, J.; Finn, John T.

    1999-01-01

    We describe the development, structure, and corroboration process of a simulation model of animal behavior (MOAB). MOAB can create spatially explicit, individual-based animal foraging models. Users can create or replicate heterogeneous landscape patterns, and place resources and individual animals of a goven species on that landscape to simultaneously simulate the foraging behavior of multiple species. The heuristic rules for animal behavior are maintained in a user-modifiable expert system. MOAB can be used to explore hypotheses concerning the influence of landscape patttern on animal movement and foraging behavior. A red fox (Vulpes vulpes L.) foraging and nest predation model was created to test MOAB's capabilities. Foxes were simulated for 30-day periods using both expert system and random movement rules. Home range size, territory formation and other available simulation studies. A striped skunk (Mephitis mephitis L.) model also was developed. The expert system model proved superior to stochastic in respect to territory formation, general movement patterns and home range size.

  14. Natural Human Mobility Patterns and Spatial Spread of Infectious Diseases

    NASA Astrophysics Data System (ADS)

    Belik, Vitaly; Geisel, Theo; Brockmann, Dirk

    2011-08-01

    We investigate a model for spatial epidemics explicitly taking into account bidirectional movements between base and destination locations on individual mobility networks. We provide a systematic analysis of generic dynamical features of the model on regular and complex metapopulation network topologies and show that significant dynamical differences exist to ordinary reaction-diffusion and effective force of infection models. On a lattice we calculate an expression for the velocity of the propagating epidemic front and find that, in contrast to the diffusive systems, our model predicts a saturation of the velocity with an increasing traveling rate. Furthermore, we show that a fully stochastic system exhibits a novel threshold for the attack ratio of an outbreak that is absent in diffusion and force of infection models. These insights not only capture natural features of human mobility relevant for the geographical epidemic spread, they may serve as a starting point for modeling important dynamical processes in human and animal epidemiology, population ecology, biology, and evolution.

  15. Rare events in finite and infinite dimensions

    NASA Astrophysics Data System (ADS)

    Reznikoff, Maria G.

    Thermal noise introduces stochasticity into deterministic equations and makes possible events which are never seen in the zero temperature setting. The driving force behind the thesis work is a desire to bring analysis and probability to bear on a class of relevant and intriguing physical problems, and in so doing, to allow applications to drive the development of new mathematical theory. The unifying theme is the study of rare events under the influence of small, random perturbations, and the manifold mathematical problems which ensue. In the first part, we apply large deviation theory and prefactor estimates to a coherent rotation micromagnetic model in order to analyze thermally activated magnetic switching. We consider recent physical experiments and the mathematical questions "asked" by them. A stochastic resonance type phenomenon is discovered, leading to the definition of finite temperature astroids. Non-Arrhenius behavior is discussed. The analysis is extended to ramped astroids. In addition, we discover that for low damping and ultrashort pulses, deterministic effects can override thermal effects, in accord with very recent ultrashort pulse experiments. Even more interesting, perhaps, is the study of large deviations in the infinite dimensional context, i.e. in spatially extended systems. Inspired by recent numerical investigations, we study the stochastically perturbed Allen Cahn and Cahn Hilliard equations. For the Allen Cahn equation, we study the action minimization problem (a deterministic variational problem) and prove the action scaling in four parameter regimes, via upper and lower bounds. The sharp interface limit is studied. We formally derive a reduced action functional which lends insight into the connection between action minimization and curvature flow. For the Cahn Hilliard equation, we prove upper and lower bounds for the scaling of the energy barrier in the nucleation and growth regime. Finally, we consider rare events in large or infinite domains, in one spatial dimension. We introduce a natural reference measure through which to analyze the invariant measure of stochastically perturbed, nonlinear partial differential equations. Also, for noisy reaction diffusion equations with an asymmetric potential, we discover how to rescale space and time in order to map the dynamics in the zero temperature limit to the Poisson Model, a simple version of the Johnson-Mehl-Avrami-Kolmogorov model for nucleation and growth.

  16. First Test of Stochastic Growth Theory for Langmuir Waves in Earth's Foreshock

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.; Robinson, P. A.

    1997-01-01

    This paper presents the first test of whether stochastic growth theory (SGT) can explain the detailed characteristics of Langmuir-like waves in Earth's foreshock. A period with unusually constant solar wind magnetic field is analyzed. The observed distributions P(logE) of wave fields E for two intervals with relatively constant spacecraft location (DIFF) are shown to agree well with the fundamental prediction of SGT, that P(logE) is Gaussian in log E. This stochastic growth can be accounted for semi-quantitatively in terms of standard foreshock beam parameters and a model developed for interplanetary type III bursts. Averaged over the entire period with large variations in DIFF, the P(logE) distribution is a power-law with index approximately -1; this is interpreted in terms of convolution of intrinsic, spatially varying P(logE) distributions with a probability function describing ISEE's residence time at a given DIFF. Wave data from this interval thus provide good observational evidence that SGT can sometimes explain the clumping, burstiness, persistence, and highly variable fields of the foreshock Langmuir-like waves.

  17. First test of stochastic growth theory for Langmuir waves in Earth's foreshock

    NASA Astrophysics Data System (ADS)

    Cairns, Iver H.; Robinson, P. A.

    This paper presents the first test of whether stochastic growth theory (SGT) can explain the detailed characteristics of Langmuir-like waves in Earth's foreshock. A period with unusually constant solar wind magnetic field is analyzed. The observed distributions P(log E) of wave fields E for two intervals with relatively constant spacecraft location (DIFF) are shown to agree well with the fundamental prediction of SGT, that P(log E) is Gaussian in log E. This stochastic growth can be accounted for semi-quantitatively in terms of standard foreshock beam parameters and a model developed for interplanetary type III bursts. Averaged over the entire period with large variations in DIFF, the P(log E) distribution is a power-law with index ˜ -1 this is interpreted in terms of convolution of intrinsic, spatially varying P(log E) distributions with a probability function describing ISEE's residence time at a given DIFF. Wave data from this interval thus provide good observational evidence that SGT can sometimes explain the clumping, burstiness, persistence, and highly variable fields of the foreshock Langmuir-like waves.

  18. Multivariate Non-Symmetric Stochastic Models for Spatial Dependence Models

    NASA Astrophysics Data System (ADS)

    Haslauer, C. P.; Bárdossy, A.

    2017-12-01

    A copula based multivariate framework allows more flexibility to describe different kind of dependences than what is possible using models relying on the confining assumption of symmetric Gaussian models: different quantiles can be modelled with a different degree of dependence; it will be demonstrated how this can be expected given process understanding. maximum likelihood based multivariate quantitative parameter estimation yields stable and reliable results; not only improved results in cross-validation based measures of uncertainty are obtained but also a more realistic spatial structure of uncertainty compared to second order models of dependence; as much information as is available is included in the parameter estimation: incorporation of censored measurements (e.g., below detection limit, or ones that are above the sensitive range of the measurement device) yield to more realistic spatial models; the proportion of true zeros can be jointly estimated with and distinguished from censored measurements which allow estimates about the age of a contaminant in the system; secondary information (categorical and on the rational scale) has been used to improve the estimation of the primary variable; These copula based multivariate statistical techniques are demonstrated based on hydraulic conductivity observations at the Borden (Canada) site, the MADE site (USA), and a large regional groundwater quality data-set in south-west Germany. Fields of spatially distributed K were simulated with identical marginal simulation, identical second order spatial moments, yet substantially differing solute transport characteristics when numerical tracer tests were performed. A statistical methodology is shown that allows the delineation of a boundary layer separating homogenous parts of a spatial data-set. The effects of this boundary layer (macro structure) and the spatial dependence of K (micro structure) on solute transport behaviour is shown.

  19. Stochastic downscaling of numerically simulated spatial rain and cloud fields using a transient multifractal approach

    NASA Astrophysics Data System (ADS)

    Nogueira, M.; Barros, A. P.; Miranda, P. M.

    2012-04-01

    Atmospheric fields can be extremely variable over wide ranges of spatial scales, with a scale ratio of 109-1010 between largest (planetary) and smallest (viscous dissipation) scale. Furthermore atmospheric fields with strong variability over wide ranges in scale most likely should not be artificially split apart into large and small scales, as in reality there is no scale separation between resolved and unresolved motions. Usually the effects of the unresolved scales are modeled by a deterministic bulk formula representing an ensemble of incoherent subgrid processes on the resolved flow. This is a pragmatic approach to the problem and not the complete solution to it. These models are expected to underrepresent the small-scale spatial variability of both dynamical and scalar fields due to implicit and explicit numerical diffusion as well as physically based subgrid scale turbulent mixing, resulting in smoother and less intermittent fields as compared to observations. Thus, a fundamental change in the way we formulate our models is required. Stochastic approaches equipped with a possible realization of subgrid processes and potentially coupled to the resolved scales over the range of significant scale interactions range provide one alternative to address the problem. Stochastic multifractal models based on the cascade phenomenology of the atmosphere and its governing equations in particular are the focus of this research. Previous results have shown that rain and cloud fields resulting from both idealized and realistic numerical simulations display multifractal behavior in the resolved scales. This result is observed even in the absence of scaling in the initial conditions or terrain forcing, suggesting that multiscaling is a general property of the nonlinear solutions of the Navier-Stokes equations governing atmospheric dynamics. Our results also show that the corresponding multiscaling parameters for rain and cloud fields exhibit complex nonlinear behavior depending on large scale parameters such as terrain forcing and mean atmospheric conditions at each location, particularly mean wind speed and moist stability. A particularly robust behavior found is the transition of the multiscaling parameters between stable and unstable cases, which has a clear physical correspondence to the transition from stratiform to organized (banded) convective regime. Thus multifractal diagnostics of moist processes are fundamentally transient and should provide a physically robust basis for the downscaling and sub-grid scale parameterizations of moist processes. Here, we investigate the possibility of using a simplified computationally efficient multifractal downscaling methodology based on turbulent cascades to produce statistically consistent fields at scales higher than the ones resolved by the model. Specifically, we are interested in producing rainfall and cloud fields at spatial resolutions necessary for effective flash flood and earth flows forecasting. The results are examined by comparing downscaled field against observations, and tendency error budgets are used to diagnose the evolution of transient errors in the numerical model prediction which can be attributed to aliasing.

  20. Analysis of fluid flow and solute transport through a single fracture with variable apertures intersecting a canister: Comparison between fractal and Gaussian fractures

    NASA Astrophysics Data System (ADS)

    Liu, L.; Neretnieks, I.

    Canisters with spent nuclear fuel will be deposited in fractured crystalline rock in the Swedish concept for a final repository. The fractures intersect the canister holes at different angles and they have variable apertures and therefore locally varying flowrates. Our previous model with fractures with a constant aperture and a 90° intersection angle is now extended to arbitrary intersection angles and stochastically variable apertures. It is shown that the previous basic model can be simply amended to account for these effects. More importantly, it has been found that the distributions of the volumetric and the equivalent flow rates are all close to the Normal for both fractal and Gaussian fractures, with the mean of the distribution of the volumetric flow rate being determined solely by the hydraulic aperture, and that of the equivalent flow rate being determined by the mechanical aperture. Moreover, the standard deviation of the volumetric flow rates of the many realizations increases with increasing roughness and spatial correlation length of the aperture field, and so does that of the equivalent flow rates. Thus, two simple statistical relations can be developed to describe the stochastic properties of fluid flow and solute transport through a single fracture with spatially variable apertures. This obviates, then, the need to simulate each fracture that intersects a canister in great detail, and allows the use of complex fractures also in very large fracture network models used in performance assessment.

  1. From medium heterogeneity to flow and transport: A time-domain random walk approach

    NASA Astrophysics Data System (ADS)

    Hakoun, V.; Comolli, A.; Dentz, M.

    2017-12-01

    The prediction of flow and transport processes in heterogeneous porous media is based on the qualitative and quantitative understanding of the interplay between 1) spatial variability of hydraulic conductivity, 2) groundwater flow and 3) solute transport. Using a stochastic modeling approach, we study this interplay through direct numerical simulations of Darcy flow and advective transport in heterogeneous media. First, we study flow in correlated hydraulic permeability fields and shed light on the relationship between the statistics of log-hydraulic conductivity, a medium attribute, and the flow statistics. Second, we determine relationships between Eulerian and Lagrangian velocity statistics, this means, between flow and transport attributes. We show how Lagrangian statistics and thus transport behaviors such as late particle arrival times are influenced by the medium heterogeneity on one hand and the initial particle velocities on the other. We find that equidistantly sampled Lagrangian velocities can be described by a Markov process that evolves on the characteristic heterogeneity length scale. We employ a stochastic relaxation model for the equidistantly sampled particle velocities, which is parametrized by the velocity correlation length. This description results in a time-domain random walk model for the particle motion, whose spatial transitions are characterized by the velocity correlation length and temporal transitions by the particle velocities. This approach relates the statistical medium and flow properties to large scale transport, and allows for conditioning on the initial particle velocities and thus to the medium properties in the injection region. The approach is tested against direct numerical simulations.

  2. A Modeling Framework for Inference of Surface Emissions Using Mobile Observations

    NASA Astrophysics Data System (ADS)

    Fasoli, B.; Mitchell, L.; Crosman, E.; Mendoza, D. L.; Lin, J. C.

    2016-12-01

    Our ability to quantify surface emissions depends on the precision of observations and the spatial density of measurement networks. Mobile measurement techniques offer a cost effective strategy for quantifying atmospheric conditions over space without requiring a dense network of in-situ sites. However, interpretation of these data and inversion of dispersed measurements to estimate surface emissions can be difficult. We introduce a framework using the Stochastic Time-Inverted Lagrangian Transport (STILT) model that assimilates both spatially resolved observations and an emissions inventory to better estimate surface fluxes. Salt Lake City is a unique laboratory for the study of urban carbon emissions. It is the only U.S. city that utilizes light-rail trains to continuously measure high frequency carbon dioxide (CO2) and methane (CH4); it is home to one of the longest and most spatially resolved high precision CO2 measurement networks (air.utah.edu); and it is one of four cities in the world for which the Hestia anthropogenic emissions inventory has been produced which characterizes CO2 emissions at the scale of individual buildings and roadways. Using these data and modeling resources, we evaluate spatially resolved CO2 measurements and transported CO2 emissions on hourly timescales at a dense spatial resolution across Salt Lake City.

  3. An evaluation of sex-age-kill (SAK) model performance

    USGS Publications Warehouse

    Millspaugh, Joshua J.; Skalski, John R.; Townsend, Richard L.; Diefenbach, Duane R.; Boyce, Mark S.; Hansen, Lonnie P.; Kammermeyer, Kent

    2009-01-01

    The sex-age-kill (SAK) model is widely used to estimate abundance of harvested large mammals, including white-tailed deer (Odocoileus virginianus). Despite a long history of use, few formal evaluations of SAK performance exist. We investigated how violations of the stable age distribution and stationary population assumption, changes to male or female harvest, stochastic effects (i.e., random fluctuations in recruitment and survival), and sampling efforts influenced SAK estimation. When the simulated population had a stable age distribution and λ > 1, the SAK model underestimated abundance. Conversely, when λ < 1, the SAK overestimated abundance. When changes to male harvest were introduced, SAK estimates were opposite the true population trend. In contrast, SAK estimates were robust to changes in female harvest rates. Stochastic effects caused SAK estimates to fluctuate about their equilibrium abundance, but the effect dampened as the size of the surveyed population increased. When we considered both stochastic effects and sampling error at a deer management unit scale the resultant abundance estimates were within ±121.9% of the true population level 95% of the time. These combined results demonstrate extreme sensitivity to model violations and scale of analysis. Without changes to model formulation, the SAK model will be biased when λ ≠ 1. Furthermore, any factor that alters the male harvest rate, such as changes to regulations or changes in hunter attitudes, will bias population estimates. Sex-age-kill estimates may be precise at large spatial scales, such as the state level, but less so at the individual management unit level. Alternative models, such as statistical age-at-harvest models, which require similar data types, might allow for more robust, broad-scale demographic assessments.

  4. Relative risk estimation for malaria disease mapping based on stochastic SIR-SI model in Malaysia

    NASA Astrophysics Data System (ADS)

    Samat, Nor Azah; Ma'arof, Syafiqah Husna Mohd Imam

    2016-10-01

    Disease mapping is a study on the geographical distribution of a disease to represent the epidemiology data spatially. The production of maps is important to identify areas that deserve closer scrutiny or more attention. In this study, a mosquito-borne disease called Malaria is the focus of our application. Malaria disease is caused by parasites of the genus Plasmodium and is transmitted to people through the bites of infected female Anopheles mosquitoes. Precautionary steps need to be considered in order to avoid the malaria virus from spreading around the world, especially in the tropical and subtropical countries, which would subsequently increase the number of Malaria cases. Thus, the purpose of this paper is to discuss a stochastic model employed to estimate the relative risk of malaria disease in Malaysia. The outcomes of the analysis include a Malaria risk map for all 16 states in Malaysia, revealing the high and low risk areas of Malaria occurrences.

  5. A stochastic atmospheric model for remote sensing applications

    NASA Technical Reports Server (NTRS)

    Turner, R. E.

    1983-01-01

    There are many factors which reduce the accuracy of classification of objects in the satellite remote sensing of Earth's surface. One important factor is the variability in the scattering and absorptive properties of the atmospheric components such as particulates and the variable gases. For multispectral remote sensing of the Earth's surface in the visible and infrared parts of the spectrum the atmospheric particulates are a major source of variability in the received signal. It is difficult to design a sensor which will determine the unknown atmospheric components by remote sensing methods, at least to the accuracy needed for multispectral classification. The problem of spatial and temporal variations in the atmospheric quantities which can affect the measured radiances are examined. A method based upon the stochastic nature of the atmospheric components was developed, and, using actual data the statistical parameters needed for inclusion into a radiometric model was generated. Methods are then described for an improved correction of radiances. These algorithms will then result in a more accurate and consistent classification procedure.

  6. Neutral Community Dynamics and the Evolution of Species Interactions.

    PubMed

    Coelho, Marco Túlio P; Rangel, Thiago F

    2018-04-01

    A contemporary goal in ecology is to determine the ecological and evolutionary processes that generate recurring structural patterns in mutualistic networks. One of the great challenges is testing the capacity of neutral processes to replicate observed patterns in ecological networks, since the original formulation of the neutral theory lacks trophic interactions. Here, we develop a stochastic-simulation neutral model adding trophic interactions to the neutral theory of biodiversity. Without invoking ecological differences among individuals of different species, and assuming that ecological interactions emerge randomly, we demonstrate that a spatially explicit multitrophic neutral model is able to capture the recurrent structural patterns of mutualistic networks (i.e., degree distribution, connectance, nestedness, and phylogenetic signal of species interactions). Nonrandom species distribution, caused by probabilistic events of migration and speciation, create nonrandom network patterns. These findings have broad implications for the interpretation of niche-based processes as drivers of ecological networks, as well as for the integration of network structures with demographic stochasticity.

  7. Using animation quality metric to improve efficiency of global illumination computation for dynamic environments

    NASA Astrophysics Data System (ADS)

    Myszkowski, Karol; Tawara, Takehiro; Seidel, Hans-Peter

    2002-06-01

    In this paper, we consider applications of perception-based video quality metrics to improve the performance of global lighting computations for dynamic environments. For this purpose we extend the Visible Difference Predictor (VDP) developed by Daly to handle computer animations. We incorporate into the VDP the spatio-velocity CSF model developed by Kelly. The CSF model requires data on the velocity of moving patterns across the image plane. We use the 3D image warping technique to compensate for the camera motion, and we conservatively assume that the motion of animated objects (usually strong attractors of the visual attention) is fully compensated by the smooth pursuit eye motion. Our global illumination solution is based on stochastic photon tracing and takes advantage of temporal coherence of lighting distribution, by processing photons both in the spatial and temporal domains. The VDP is used to keep noise inherent in stochastic methods below the sensitivity level of the human observer. As a result a perceptually-consistent quality across all animation frames is obtained.

  8. Autocorrelation structure of convective rainfall in semiarid-arid climate derived from high-resolution X-Band radar estimates

    NASA Astrophysics Data System (ADS)

    Marra, Francesco; Morin, Efrat

    2018-02-01

    Small scale rainfall variability is a key factor driving runoff response in fast responding systems, such as mountainous, urban and arid catchments. In this paper, the spatial-temporal autocorrelation structure of convective rainfall is derived with extremely high resolutions (60 m, 1 min) using estimates from an X-Band weather radar recently installed in a semiarid-arid area. The 2-dimensional spatial autocorrelation of convective rainfall fields and the temporal autocorrelation of point-wise and distributed rainfall fields are examined. The autocorrelation structures are characterized by spatial anisotropy, correlation distances 1.5-2.8 km and rarely exceeding 5 km, and time-correlation distances 1.8-6.4 min and rarely exceeding 10 min. The observed spatial variability is expected to negatively affect estimates from rain gauges and microwave links rather than satellite and C-/S-Band radars; conversely, the temporal variability is expected to negatively affect remote sensing estimates rather than rain gauges. The presented results provide quantitative information for stochastic weather generators, cloud-resolving models, dryland hydrologic and agricultural models, and multi-sensor merging techniques.

  9. Emergence of chaos in a spatially confined reactive system

    NASA Astrophysics Data System (ADS)

    Voorsluijs, Valérie; De Decker, Yannick

    2016-11-01

    In spatially restricted media, interactions between particles and local fluctuations of density can lead to important deviations of the dynamics from the unconfined, deterministic picture. In this context, we investigated how molecular crowding can affect the emergence of chaos in small reactive systems. We developed to this end an amended version of the Willamowski-Rössler model, where we account for the impenetrability of the reactive species. We analyzed the deterministic kinetics of this model and studied it with spatially-extended stochastic simulations in which the mobility of particles is included explicitly. We show that homogeneous fluctuations can lead to a destruction of chaos through a fluctuation-induced collision between chaotic trajectories and absorbing states. However, an interplay between the size of the system and the mobility of particles can counterbalance this effect so that chaos can indeed be found when particles diffuse slowly. This unexpected effect can be traced back to the emergence of spatial correlations which strongly affect the dynamics. The mobility of particles effectively acts as a new bifurcation parameter, enabling the system to switch from stationary states to absorbing states, oscillations or chaos.

  10. Modelling the spread of American foulbrood in honeybees

    PubMed Central

    Datta, Samik; Bull, James C.; Budge, Giles E.; Keeling, Matt J.

    2013-01-01

    We investigate the spread of American foulbrood (AFB), a disease caused by the bacterium Paenibacillus larvae, that affects bees and can be extremely damaging to beehives. Our dataset comes from an inspection period carried out during an AFB epidemic of honeybee colonies on the island of Jersey during the summer of 2010. The data include the number of hives of honeybees, location and owner of honeybee apiaries across the island. We use a spatial SIR model with an underlying owner network to simulate the epidemic and characterize the epidemic using a Markov chain Monte Carlo (MCMC) scheme to determine model parameters and infection times (including undetected ‘occult’ infections). Likely methods of infection spread can be inferred from the analysis, with both distance- and owner-based transmissions being found to contribute to the spread of AFB. The results of the MCMC are corroborated by simulating the epidemic using a stochastic SIR model, resulting in aggregate levels of infection that are comparable to the data. We use this stochastic SIR model to simulate the impact of different control strategies on controlling the epidemic. It is found that earlier inspections result in smaller epidemics and a higher likelihood of AFB extinction. PMID:24026473

  11. Random-walk enzymes.

    PubMed

    Mak, Chi H; Pham, Phuong; Afif, Samir A; Goodman, Myron F

    2015-09-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C→U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics.

  12. Random-walk enzymes

    PubMed Central

    Mak, Chi H.; Pham, Phuong; Afif, Samir A.; Goodman, Myron F.

    2015-01-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C → U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics. PMID:26465508

  13. Random-walk enzymes

    NASA Astrophysics Data System (ADS)

    Mak, Chi H.; Pham, Phuong; Afif, Samir A.; Goodman, Myron F.

    2015-09-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C →U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics.

  14. Mesoscale Thermodynamically motivated Statistical Mechanics based Kinetic Model for Sintering monoliths

    NASA Astrophysics Data System (ADS)

    Mohan, Nisha

    Modeling the evolution of microstructure during sintering is a persistent challenge in ceramics science, although needed as the microstructure impacts properties of an engineered material. Bridging the gap between microscopic and continuum models, kinetic Monte Carlo (kMC) methods provide a stochastic approach towards sintering and microstructure evolution. These kMC models work at the mesoscale, with length and time-scales between those of atomistic and continuum approaches. We develop a sintering/compacting model for the two-phase sintering of boron nitride ceramics and allotropes alike. Our formulation includes mechanisms for phase transformation between h-BN and c-BN and takes into account thermodynamics of pressure and temperature on interaction energies and mechanism rates. In addition to replicating the micro-structure evolution observed in experiments, it also captures the phase diagram of Boron Nitride materials. Results have been analyzed in terms of phase diagrams and crystal growth. It also serves with insights to guide the choice of additives and conditions for the sintering process.While detailed time and spatial resolutions are lost in any MC, the progression of stochastic events still captures plausible local energy minima and long-time temporal developments. DARPA.

  15. Combining Individual-Based Modeling and Food Microenvironment Descriptions To Predict the Growth of Listeria monocytogenes on Smear Soft Cheese

    PubMed Central

    Ferrier, Rachel; Hezard, Bernard; Lintz, Adrienne; Stahl, Valérie

    2013-01-01

    An individual-based modeling (IBM) approach was developed to describe the behavior of a few Listeria monocytogenes cells contaminating smear soft cheese surface. The IBM approach consisted of assessing the stochastic individual behaviors of cells on cheese surfaces and knowing the characteristics of their surrounding microenvironments. We used a microelectrode for pH measurements and micro-osmolality to assess the water activity of cheese microsamples. These measurements revealed a high variability of microscale pH compared to that of macroscale pH. A model describing the increase in pH from approximately 5.0 to more than 7.0 during ripening was developed. The spatial variability of the cheese surface characterized by an increasing pH with radius and higher pH on crests compared to that of hollows on cheese rind was also modeled. The microscale water activity ranged from approximately 0.96 to 0.98 and was stable during ripening. The spatial variability on cheese surfaces was low compared to between-cheese variability. Models describing the microscale variability of cheese characteristics were combined with the IBM approach to simulate the stochastic growth of L. monocytogenes on cheese, and these simulations were compared to bacterial counts obtained from irradiated cheeses artificially contaminated at different ripening stages. The simulated variability of L. monocytogenes counts with the IBM/microenvironmental approach was consistent with the observed one. Contrasting situations corresponding to no growth or highly contaminated foods could be deduced from these models. Moreover, the IBM approach was more effective than the traditional population/macroenvironmental approach to describe the actual bacterial behavior variability. PMID:23872572

  16. Genome Informed Trait-Based Models

    NASA Astrophysics Data System (ADS)

    Karaoz, U.; Cheng, Y.; Bouskill, N.; Tang, J.; Beller, H. R.; Brodie, E.; Riley, W. J.

    2013-12-01

    Trait-based approaches are powerful tools for representing microbial communities across both spatial and temporal scales within ecosystem models. Trait-based models (TBMs) represent the diversity of microbial taxa as stochastic assemblages with a distribution of traits constrained by trade-offs between these traits. Such representation with its built-in stochasticity allows the elucidation of the interactions between the microbes and their environment by reducing the complexity of microbial community diversity into a limited number of functional ';guilds' and letting them emerge across spatio-temporal scales. From the biogeochemical/ecosystem modeling perspective, the emergent properties of the microbial community could be directly translated into predictions of biogeochemical reaction rates and microbial biomass. The accuracy of TBMs depends on the identification of key traits of the microbial community members and on the parameterization of these traits. Current approaches to inform TBM parameterization are empirical (i.e., based on literature surveys). Advances in omic technologies (such as genomics, metagenomics, metatranscriptomics, and metaproteomics) pave the way to better-initialize models that can be constrained in a generic or site-specific fashion. Here we describe the coupling of metagenomic data to the development of a TBM representing the dynamics of metabolic guilds from an organic carbon stimulated groundwater microbial community. Illumina paired-end metagenomic data were collected from the community as it transitioned successively through electron-accepting conditions (nitrate-, sulfate-, and Fe(III)-reducing), and used to inform estimates of growth rates and the distribution of metabolic pathways (i.e., aerobic and anaerobic oxidation, fermentation) across a spatially resolved TBM. We use this model to evaluate the emergence of different metabolisms and predict rates of biogeochemical processes over time. We compare our results to observational outputs.

  17. A Stochastic Polygons Model for Glandular Structures in Colon Histology Images.

    PubMed

    Sirinukunwattana, Korsuk; Snead, David R J; Rajpoot, Nasir M

    2015-11-01

    In this paper, we present a stochastic model for glandular structures in histology images of tissue slides stained with Hematoxylin and Eosin, choosing colon tissue as an example. The proposed Random Polygons Model (RPM) treats each glandular structure in an image as a polygon made of a random number of vertices, where the vertices represent approximate locations of epithelial nuclei. We formulate the RPM as a Bayesian inference problem by defining a prior for spatial connectivity and arrangement of neighboring epithelial nuclei and a likelihood for the presence of a glandular structure. The inference is made via a Reversible-Jump Markov chain Monte Carlo simulation. To the best of our knowledge, all existing published algorithms for gland segmentation are designed to mainly work on healthy samples, adenomas, and low grade adenocarcinomas. One of them has been demonstrated to work on intermediate grade adenocarcinomas at its best. Our experimental results show that the RPM yields favorable results, both quantitatively and qualitatively, for extraction of glandular structures in histology images of normal human colon tissues as well as benign and cancerous tissues, excluding undifferentiated carcinomas.

  18. STOCHASTICITY AND EFFICIENCY IN SIMPLIFIED MODELS OF CORE-COLLAPSE SUPERNOVA EXPLOSIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardall, Christian Y.; Budiardja, Reuben D., E-mail: cardallcy@ornl.gov, E-mail: reubendb@utk.edu

    2015-11-01

    We present an initial report on 160 simulations of a highly simplified model of the post-bounce core-collapse supernova environment in three spatial dimensions (3D). We set different values of a parameter characterizing the impact of nuclear dissociation at the stalled shock in order to regulate the post-shock fluid velocity, thereby determining the relative importance of convection and the stationary accretion shock instability (SASI). While our convection-dominated runs comport with the paradigmatic notion of a “critical neutrino luminosity” for explosion at a given mass accretion rate (albeit with a nontrivial spread in explosion times just above threshold), the outcomes of ourmore » SASI-dominated runs are much more stochastic: a sharp threshold critical luminosity is “smeared out” into a rising probability of explosion over a ∼20% range of luminosity. We also find that the SASI-dominated models are able to explode with 3–4 times less efficient neutrino heating, indicating that progenitor properties, and fluid and neutrino microphysics, conducive to the SASI would make the neutrino-driven explosion mechanism more robust.« less

  19. A Stochastic Multi-Media Model of Microbial Transport in Watersheds

    NASA Astrophysics Data System (ADS)

    Yeghiazarian, L.; Safwat, A.; Whiteaker, T.; Teklitz, A.; Nietch, C.; Maidment, D. R.; Best, E. P.

    2012-12-01

    Fecal contamination is the leading cause of surface-water impairment in the US, and fecal pathogens are capable of triggering massive outbreaks of gastrointestinal disease. The difficulty in prediction of water contamination has its roots in the stochastic variability of fecal pathogens in the environment, and in the complexity of microbial dynamics and interactions on the soil surface and in water. To address these challenges, we have developed a stochastic model whereby the transport of microorganisms in watersheds is considered in two broad categories: microorganisms that are attached to mineral or organic substrates in suspended sediment; and unattached microorganisms suspended in overland flow. The interactions of microorganisms with soil particles on the soil surface and in the overland flow lead to transitions of microorganisms between solid and aqueous media. The strength of attachment of microorganisms to soil particles is determined by the chemical characteristics of soils which are highly correlated with the particle size. The particle size class distribution in the suspended sediment is predicted by the Water Erosion Prediction Project (WEPP). The model is integrated with ArcGIS, resulting in a general transport-modeling framework applicable to a variety of biological and chemical surface water contaminants. Simulations are carried out for a case study of contaminant transport in the East Fork Little Miami River Watershed in Ohio. Model results include the spatial probability distribution of microbes in the watershed and can be used for assessment of (1) mechanisms dominating microbial transport, and (2) time and location of highest likelihood of microbial occurrence, thus yielding information on best water sampling strategies.

  20. Combining cellular automata and Lattice Boltzmann method to model multiscale avascular tumor growth coupled with nutrient diffusion and immune competition.

    PubMed

    Alemani, Davide; Pappalardo, Francesco; Pennisi, Marzio; Motta, Santo; Brusic, Vladimir

    2012-02-28

    In the last decades the Lattice Boltzmann method (LB) has been successfully used to simulate a variety of processes. The LB model describes the microscopic processes occurring at the cellular level and the macroscopic processes occurring at the continuum level with a unique function, the probability distribution function. Recently, it has been tried to couple deterministic approaches with probabilistic cellular automata (probabilistic CA) methods with the aim to model temporal evolution of tumor growths and three dimensional spatial evolution, obtaining hybrid methodologies. Despite the good results attained by CA-PDE methods, there is one important issue which has not been completely solved: the intrinsic stochastic nature of the interactions at the interface between cellular (microscopic) and continuum (macroscopic) level. CA methods are able to cope with the stochastic phenomena because of their probabilistic nature, while PDE methods are fully deterministic. Even if the coupling is mathematically correct, there could be important statistical effects that could be missed by the PDE approach. For such a reason, to be able to develop and manage a model that takes into account all these three level of complexity (cellular, molecular and continuum), we believe that PDE should be replaced with a statistic and stochastic model based on the numerical discretization of the Boltzmann equation: The Lattice Boltzmann (LB) method. In this work we introduce a new hybrid method to simulate tumor growth and immune system, by applying Cellular Automata Lattice Boltzmann (CA-LB) approach. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. An Approach to Stochastic Peridynamic Theory.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demmie, Paul N.

    In many material systems, man-made or natural, we have an incomplete knowledge of geometric or material properties, which leads to uncertainty in predicting their performance under dynamic loading. Given the uncertainty and a high degree of spatial variability in properties of materials subjected to impact, a stochastic theory of continuum mechanics would be useful for modeling dynamic response of such systems. Peridynamic theory is such a theory. It is formulated as an integro- differential equation that does not employ spatial derivatives, and provides for a consistent formulation of both deformation and failure of materials. We discuss an approach to stochasticmore » peridynamic theory and illustrate the formulation with examples of impact loading of geological materials with uncorrelated or correlated material properties. We examine wave propagation and damage to the material. The most salient feature is the absence of spallation, referred to as disorder toughness, which generalizes similar results from earlier quasi-static damage mechanics. Acknowledgements This research was made possible by the support from DTRA grant HDTRA1-08-10-BRCWM. I thank Dr. Martin Ostoja-Starzewski for introducing me to the mechanics of random materials and collaborating with me throughout and after this DTRA project.« less

  2. Hybrid Optimal Design of the Eco-Hydrological Wireless Sensor Network in the Middle Reach of the Heihe River Basin, China

    PubMed Central

    Kang, Jian; Li, Xin; Jin, Rui; Ge, Yong; Wang, Jinfeng; Wang, Jianghao

    2014-01-01

    The eco-hydrological wireless sensor network (EHWSN) in the middle reaches of the Heihe River Basin in China is designed to capture the spatial and temporal variability and to estimate the ground truth for validating the remote sensing productions. However, there is no available prior information about a target variable. To meet both requirements, a hybrid model-based sampling method without any spatial autocorrelation assumptions is developed to optimize the distribution of EHWSN nodes based on geostatistics. This hybrid model incorporates two sub-criteria: one for the variogram modeling to represent the variability, another for improving the spatial prediction to evaluate remote sensing productions. The reasonability of the optimized EHWSN is validated from representativeness, the variogram modeling and the spatial accuracy through using 15 types of simulation fields generated with the unconditional geostatistical stochastic simulation. The sampling design shows good representativeness; variograms estimated by samples have less than 3% mean error relative to true variograms. Then, fields at multiple scales are predicted. As the scale increases, estimated fields have higher similarities to simulation fields at block sizes exceeding 240 m. The validations prove that this hybrid sampling method is effective for both objectives when we do not know the characteristics of an optimized variables. PMID:25317762

  3. Hybrid optimal design of the eco-hydrological wireless sensor network in the middle reach of the Heihe River Basin, China.

    PubMed

    Kang, Jian; Li, Xin; Jin, Rui; Ge, Yong; Wang, Jinfeng; Wang, Jianghao

    2014-10-14

    The eco-hydrological wireless sensor network (EHWSN) in the middle reaches of the Heihe River Basin in China is designed to capture the spatial and temporal variability and to estimate the ground truth for validating the remote sensing productions. However, there is no available prior information about a target variable. To meet both requirements, a hybrid model-based sampling method without any spatial autocorrelation assumptions is developed to optimize the distribution of EHWSN nodes based on geostatistics. This hybrid model incorporates two sub-criteria: one for the variogram modeling to represent the variability, another for improving the spatial prediction to evaluate remote sensing productions. The reasonability of the optimized EHWSN is validated from representativeness, the variogram modeling and the spatial accuracy through using 15 types of simulation fields generated with the unconditional geostatistical stochastic simulation. The sampling design shows good representativeness; variograms estimated by samples have less than 3% mean error relative to true variograms. Then, fields at multiple scales are predicted. As the scale increases, estimated fields have higher similarities to simulation fields at block sizes exceeding 240 m. The validations prove that this hybrid sampling method is effective for both objectives when we do not know the characteristics of an optimized variables.

  4. Genetic Algorithm Based Framework for Automation of Stochastic Modeling of Multi-Season Streamflows

    NASA Astrophysics Data System (ADS)

    Srivastav, R. K.; Srinivasan, K.; Sudheer, K.

    2009-05-01

    Synthetic streamflow data generation involves the synthesis of likely streamflow patterns that are statistically indistinguishable from the observed streamflow data. The various kinds of stochastic models adopted for multi-season streamflow generation in hydrology are: i) parametric models which hypothesize the form of the periodic dependence structure and the distributional form a priori (examples are PAR, PARMA); disaggregation models that aim to preserve the correlation structure at the periodic level and the aggregated annual level; ii) Nonparametric models (examples are bootstrap/kernel based methods), which characterize the laws of chance, describing the stream flow process, without recourse to prior assumptions as to the form or structure of these laws; (k-nearest neighbor (k-NN), matched block bootstrap (MABB)); non-parametric disaggregation model. iii) Hybrid models which blend both parametric and non-parametric models advantageously to model the streamflows effectively. Despite many of these developments that have taken place in the field of stochastic modeling of streamflows over the last four decades, accurate prediction of the storage and the critical drought characteristics has been posing a persistent challenge to the stochastic modeler. This is partly because, usually, the stochastic streamflow model parameters are estimated by minimizing a statistically based objective function (such as maximum likelihood (MLE) or least squares (LS) estimation) and subsequently the efficacy of the models is being validated based on the accuracy of prediction of the estimates of the water-use characteristics, which requires large number of trial simulations and inspection of many plots and tables. Still accurate prediction of the storage and the critical drought characteristics may not be ensured. In this study a multi-objective optimization framework is proposed to find the optimal hybrid model (blend of a simple parametric model, PAR(1) model and matched block bootstrap (MABB) ) based on the explicit objective functions of minimizing the relative bias and relative root mean square error in estimating the storage capacity of the reservoir. The optimal parameter set of the hybrid model is obtained based on the search over a multi- dimensional parameter space (involving simultaneous exploration of the parametric (PAR(1)) as well as the non-parametric (MABB) components). This is achieved using the efficient evolutionary search based optimization tool namely, non-dominated sorting genetic algorithm - II (NSGA-II). This approach helps in reducing the drudgery involved in the process of manual selection of the hybrid model, in addition to predicting the basic summary statistics dependence structure, marginal distribution and water-use characteristics accurately. The proposed optimization framework is used to model the multi-season streamflows of River Beaver and River Weber of USA. In case of both the rivers, the proposed GA-based hybrid model yields a much better prediction of the storage capacity (where simultaneous exploration of both parametric and non-parametric components is done) when compared with the MLE-based hybrid models (where the hybrid model selection is done in two stages, thus probably resulting in a sub-optimal model). This framework can be further extended to include different linear/non-linear hybrid stochastic models at other temporal and spatial scales as well.

  5. Planning a Target Renewable Portfolio using Atmospheric Modeling and Stochastic Optimization

    NASA Astrophysics Data System (ADS)

    Hart, E.; Jacobson, M. Z.

    2009-12-01

    A number of organizations have suggested that an 80% reduction in carbon emissions by 2050 is a necessary step to mitigate climate change and that decarbonization of the electricity sector is a crucial component of any strategy to meet this target. Integration of large renewable and intermittent generators poses many new problems in power system planning. In this study, we attempt to determine an optimal portfolio of renewable resources to meet best the fluctuating California load while also meeting an 80% carbon emissions reduction requirement. A stochastic optimization scheme is proposed that is based on a simplified model of the California electricity grid. In this single-busbar power system model, the load is met with generation from wind, solar thermal, photovoltaic, hydroelectric, geothermal, and natural gas plants. Wind speeds and insolation are calculated using GATOR-GCMOM, a global-through-urban climate-weather-air pollution model. Fields were produced for California and Nevada at 21km SN by 14 km WE spatial resolution every 15 minutes for the year 2006. Load data for 2006 were obtained from the California ISO OASIS database. Maximum installed capacities for wind and solar thermal generation were determined using a GIS analysis of potential development sites throughout the state. The stochastic optimization scheme requires that power balance be achieved in a number of meteorological and load scenarios that deviate from the forecasted (or modeled) data. By adjusting the error distributions of the forecasts, the model describes how improvements in wind speed and insolation forecasting may affect the optimal renewable portfolio. Using a simple model, we describe the diversity, size, and sensitivities of a renewable portfolio that is best suited to the resources and needs of California and that contributes significantly to reduction of the state’s carbon emissions.

  6. Water erosion susceptibility mapping by applying Stochastic Gradient Treeboost to the Imera Meridionale River Basin (Sicily, Italy)

    NASA Astrophysics Data System (ADS)

    Angileri, Silvia Eleonora; Conoscenti, Christian; Hochschild, Volker; Märker, Michael; Rotigliano, Edoardo; Agnesi, Valerio

    2016-06-01

    Soil erosion by water constitutes a serious problem affecting various countries. In the last few years, a number of studies have adopted statistical approaches for erosion susceptibility zonation. In this study, the Stochastic Gradient Treeboost (SGT) was tested as a multivariate statistical tool for exploring, analyzing and predicting the spatial occurrence of rill-interrill erosion and gully erosion. This technique implements the stochastic gradient boosting algorithm with a tree-based method. The study area is a 9.5 km2 river catchment located in central-northern Sicily (Italy), where water erosion processes are prevalent, and affect the agricultural productivity of local communities. In order to model soil erosion by water, the spatial distribution of landforms due to rill-interrill and gully erosion was mapped and 12 environmental variables were selected as predictors. Four calibration and four validation subsets were obtained by randomly extracting sets of negative cases, both for rill-interrill erosion and gully erosion models. The results of validation, based on receiving operating characteristic (ROC) curves, showed excellent to outstanding accuracies of the models, and thus a high prediction skill. Moreover, SGT allowed us to explore the relationships between erosion landforms and predictors. A different suite of predictor variables was found to be important for the two models. Elevation, aspect, landform classification and land-use are the main controlling factors for rill-interrill erosion, whilst the stream power index, plan curvature and the topographic wetness index were the most important independent variables for gullies. Finally, an ROC plot analysis made it possible to define a threshold value to classify cells according to the presence/absence of the two erosion processes. Hence, by heuristically combining the resulting rill-interrill erosion and gully erosion susceptibility maps, an integrated water erosion susceptibility map was created. The adopted method offers the advantages of an objective and repeatable procedure, whose result is useful for local administrators to identify the areas that are most susceptible to water erosion and best allocate resources for soil conservation strategies.

  7. A Spatial Allocation Procedure to Downscale Regional Crop Production Estimates from an Integrated Assessment Model

    NASA Astrophysics Data System (ADS)

    Moulds, S.; Djordjevic, S.; Savic, D.

    2017-12-01

    The Global Change Assessment Model (GCAM), an integrated assessment model, provides insight into the interactions and feedbacks between physical and human systems. The land system component of GCAM, which simulates land use activities and the production of major crops, produces output at the subregional level which must be spatially downscaled in order to use with gridded impact assessment models. However, existing downscaling routines typically consider cropland as a homogeneous class and do not provide information about land use intensity or specific management practices such as irrigation and multiple cropping. This paper presents a spatial allocation procedure to downscale crop production data from GCAM to a spatial grid, producing a time series of maps which show the spatial distribution of specific crops (e.g. rice, wheat, maize) at four input levels (subsistence, low input rainfed, high input rainfed and high input irrigated). The model algorithm is constrained by available cropland at each time point and therefore implicitly balances extensification and intensification processes in order to meet global food demand. It utilises a stochastic approach such that an increase in production of a particular crop is more likely to occur in grid cells with a high biophysical suitability and neighbourhood influence, while a fall in production will occur more often in cells with lower suitability. User-supplied rules define the order in which specific crops are downscaled as well as allowable transitions. A regional case study demonstrates the ability of the model to reproduce historical trends in India by comparing the model output with district-level agricultural inventory data. Lastly, the model is used to predict the spatial distribution of crops globally under various GCAM scenarios.

  8. Stochastic model simulation using Kronecker product analysis and Zassenhaus formula approximation.

    PubMed

    Caglar, Mehmet Umut; Pal, Ranadip

    2013-01-01

    Probabilistic Models are regularly applied in Genetic Regulatory Network modeling to capture the stochastic behavior observed in the generation of biological entities such as mRNA or proteins. Several approaches including Stochastic Master Equations and Probabilistic Boolean Networks have been proposed to model the stochastic behavior in genetic regulatory networks. It is generally accepted that Stochastic Master Equation is a fundamental model that can describe the system being investigated in fine detail, but the application of this model is computationally enormously expensive. On the other hand, Probabilistic Boolean Network captures only the coarse-scale stochastic properties of the system without modeling the detailed interactions. We propose a new approximation of the stochastic master equation model that is able to capture the finer details of the modeled system including bistabilities and oscillatory behavior, and yet has a significantly lower computational complexity. In this new method, we represent the system using tensors and derive an identity to exploit the sparse connectivity of regulatory targets for complexity reduction. The algorithm involves an approximation based on Zassenhaus formula to represent the exponential of a sum of matrices as product of matrices. We derive upper bounds on the expected error of the proposed model distribution as compared to the stochastic master equation model distribution. Simulation results of the application of the model to four different biological benchmark systems illustrate performance comparable to detailed stochastic master equation models but with considerably lower computational complexity. The results also demonstrate the reduced complexity of the new approach as compared to commonly used Stochastic Simulation Algorithm for equivalent accuracy.

  9. Use of behavioural stochastic resonance by paddle fish for feeding

    NASA Astrophysics Data System (ADS)

    Russell, David F.; Wilkens, Lon A.; Moss, Frank

    1999-11-01

    Stochastic resonance is the phenomenon whereby the addition of an optimal level of noise to a weak information-carrying input to certain nonlinear systems can enhance the information content at their outputs. Computer analysis of spike trains has been needed to reveal stochastic resonance in the responses of sensory receptors except for one study on human psychophysics. But is an animal aware of, and can it make use of, the enhanced sensory information from stochastic resonance? Here, we show that stochastic resonance enhances the normal feeding behaviour of paddlefish (Polyodon spathula), which use passive electroreceptors to detect electrical signals from planktonic prey. We demonstrate significant broadening of the spatial range for the detection of plankton when a noisy electric field of optimal amplitude is applied in the water. We also show that swarms of Daphnia plankton are a natural source of electrical noise. Our demonstration of stochastic resonance at the level of a vital animal behaviour, feeding, which has probably evolved for functional success, provides evidence that stochastic resonance in sensory nervous systems is an evolutionary adaptation.

  10. Stability analysis of multi-group deterministic and stochastic epidemic models with vaccination rate

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Gang; Gao, Rui-Mei; Fan, Xiao-Ming; Han, Qi-Xing

    2014-09-01

    We discuss in this paper a deterministic multi-group MSIR epidemic model with a vaccination rate, the basic reproduction number ℛ0, a key parameter in epidemiology, is a threshold which determines the persistence or extinction of the disease. By using Lyapunov function techniques, we show if ℛ0 is greater than 1 and the deterministic model obeys some conditions, then the disease will prevail, the infective persists and the endemic state is asymptotically stable in a feasible region. If ℛ0 is less than or equal to 1, then the infective disappear so the disease dies out. In addition, stochastic noises around the endemic equilibrium will be added to the deterministic MSIR model in order that the deterministic model is extended to a system of stochastic ordinary differential equations. In the stochastic version, we carry out a detailed analysis on the asymptotic behavior of the stochastic model. In addition, regarding the value of ℛ0, when the stochastic system obeys some conditions and ℛ0 is greater than 1, we deduce the stochastic system is stochastically asymptotically stable. Finally, the deterministic and stochastic model dynamics are illustrated through computer simulations.

  11. Bias and uncertainty in regression-calibrated models of groundwater flow in heterogeneous media

    USGS Publications Warehouse

    Cooley, R.L.; Christensen, S.

    2006-01-01

    Groundwater models need to account for detailed but generally unknown spatial variability (heterogeneity) of the hydrogeologic model inputs. To address this problem we replace the large, m-dimensional stochastic vector ?? that reflects both small and large scales of heterogeneity in the inputs by a lumped or smoothed m-dimensional approximation ????*, where ?? is an interpolation matrix and ??* is a stochastic vector of parameters. Vector ??* has small enough dimension to allow its estimation with the available data. The consequence of the replacement is that model function f(????*) written in terms of the approximate inputs is in error with respect to the same model function written in terms of ??, ??,f(??), which is assumed to be nearly exact. The difference f(??) - f(????*), termed model error, is spatially correlated, generates prediction biases, and causes standard confidence and prediction intervals to be too small. Model error is accounted for in the weighted nonlinear regression methodology developed to estimate ??* and assess model uncertainties by incorporating the second-moment matrix of the model errors into the weight matrix. Techniques developed by statisticians to analyze classical nonlinear regression methods are extended to analyze the revised method. The analysis develops analytical expressions for bias terms reflecting the interaction of model nonlinearity and model error, for correction factors needed to adjust the sizes of confidence and prediction intervals for this interaction, and for correction factors needed to adjust the sizes of confidence and prediction intervals for possible use of a diagonal weight matrix in place of the correct one. If terms expressing the degree of intrinsic nonlinearity for f(??) and f(????*) are small, then most of the biases are small and the correction factors are reduced in magnitude. Biases, correction factors, and confidence and prediction intervals were obtained for a test problem for which model error is large to test robustness of the methodology. Numerical results conform with the theoretical analysis. ?? 2005 Elsevier Ltd. All rights reserved.

  12. Discriminative Random Field Models for Subsurface Contamination Uncertainty Quantification

    NASA Astrophysics Data System (ADS)

    Arshadi, M.; Abriola, L. M.; Miller, E. L.; De Paolis Kaluza, C.

    2017-12-01

    Application of flow and transport simulators for prediction of the release, entrapment, and persistence of dense non-aqueous phase liquids (DNAPLs) and associated contaminant plumes is a computationally intensive process that requires specification of a large number of material properties and hydrologic/chemical parameters. Given its computational burden, this direct simulation approach is particularly ill-suited for quantifying both the expected performance and uncertainty associated with candidate remediation strategies under real field conditions. Prediction uncertainties primarily arise from limited information about contaminant mass distributions, as well as the spatial distribution of subsurface hydrologic properties. Application of direct simulation to quantify uncertainty would, thus, typically require simulating multiphase flow and transport for a large number of permeability and release scenarios to collect statistics associated with remedial effectiveness, a computationally prohibitive process. The primary objective of this work is to develop and demonstrate a methodology that employs measured field data to produce equi-probable stochastic representations of a subsurface source zone that capture the spatial distribution and uncertainty associated with key features that control remediation performance (i.e., permeability and contamination mass). Here we employ probabilistic models known as discriminative random fields (DRFs) to synthesize stochastic realizations of initial mass distributions consistent with known, and typically limited, site characterization data. Using a limited number of full scale simulations as training data, a statistical model is developed for predicting the distribution of contaminant mass (e.g., DNAPL saturation and aqueous concentration) across a heterogeneous domain. Monte-Carlo sampling methods are then employed, in conjunction with the trained statistical model, to generate realizations conditioned on measured borehole data. Performance of the statistical model is illustrated through comparisons of generated realizations with the `true' numerical simulations. Finally, we demonstrate how these realizations can be used to determine statistically optimal locations for further interrogation of the subsurface.

  13. Development of a Sediment Transport Component for DHSVM

    NASA Astrophysics Data System (ADS)

    Doten, C. O.; Bowling, L. C.; Maurer, E. P.; Voisin, N.; Lettenmaier, D. P.

    2003-12-01

    The effect of forest management and disturbance on aquatic resources is a problem of considerable, contemporary, scientific and public concern in the West. Sediment generation is one of the factors linking land surface conditions with aquatic systems, with implications for fisheries protection and enhancement. Better predictive techniques that allow assessment of the effects of fire and logging, in particular, on sediment transport could help to provide a more scientific basis for the management of forests in the West. We describe the development of a sediment transport component for the Distributed Hydrology Soil Vegetation Model (DHSVM), a spatially distributed hydrologic model that was developed specifically for assessment of the hydrologic consequences of forest management. The sediment transport module extends the hydrologic dynamics of DHSVM to predict sediment generation in response to dynamic meteorological inputs and hydrologic conditions via mass wasting and surface erosion from forest roads and hillslopes. The mass wasting component builds on existing stochastic slope stability models, by incorporating distributed basin hydrology (from DHSVM), and post-failure, rule-based redistribution of sediment downslope. The stochastic nature of the mass wasting component allows specification of probability distributions that describe the spatial variability of soil and vegetation characteristics used in the infinite slope model. The forest roads and hillslope surface erosion algorithms account for erosion from rain drop impact and overland erosion. A simple routing scheme is used to transport eroded sediment from mass wasting and forest roads surface erosion that reaches the channel system to the basin outlet. A sensitivity analysis of the model input parameters and forest cover conditions is described for the Little Wenatchee River basin in the northeastern Washington Cascades.

  14. Statistical Techniques Complement UML When Developing Domain Models of Complex Dynamical Biosystems.

    PubMed

    Williams, Richard A; Timmis, Jon; Qwarnstrom, Eva E

    2016-01-01

    Computational modelling and simulation is increasingly being used to complement traditional wet-lab techniques when investigating the mechanistic behaviours of complex biological systems. In order to ensure computational models are fit for purpose, it is essential that the abstracted view of biology captured in the computational model, is clearly and unambiguously defined within a conceptual model of the biological domain (a domain model), that acts to accurately represent the biological system and to document the functional requirements for the resultant computational model. We present a domain model of the IL-1 stimulated NF-κB signalling pathway, which unambiguously defines the spatial, temporal and stochastic requirements for our future computational model. Through the development of this model, we observe that, in isolation, UML is not sufficient for the purpose of creating a domain model, and that a number of descriptive and multivariate statistical techniques provide complementary perspectives, in particular when modelling the heterogeneity of dynamics at the single-cell level. We believe this approach of using UML to define the structure and interactions within a complex system, along with statistics to define the stochastic and dynamic nature of complex systems, is crucial for ensuring that conceptual models of complex dynamical biosystems, which are developed using UML, are fit for purpose, and unambiguously define the functional requirements for the resultant computational model.

  15. Statistical Techniques Complement UML When Developing Domain Models of Complex Dynamical Biosystems

    PubMed Central

    Timmis, Jon; Qwarnstrom, Eva E.

    2016-01-01

    Computational modelling and simulation is increasingly being used to complement traditional wet-lab techniques when investigating the mechanistic behaviours of complex biological systems. In order to ensure computational models are fit for purpose, it is essential that the abstracted view of biology captured in the computational model, is clearly and unambiguously defined within a conceptual model of the biological domain (a domain model), that acts to accurately represent the biological system and to document the functional requirements for the resultant computational model. We present a domain model of the IL-1 stimulated NF-κB signalling pathway, which unambiguously defines the spatial, temporal and stochastic requirements for our future computational model. Through the development of this model, we observe that, in isolation, UML is not sufficient for the purpose of creating a domain model, and that a number of descriptive and multivariate statistical techniques provide complementary perspectives, in particular when modelling the heterogeneity of dynamics at the single-cell level. We believe this approach of using UML to define the structure and interactions within a complex system, along with statistics to define the stochastic and dynamic nature of complex systems, is crucial for ensuring that conceptual models of complex dynamical biosystems, which are developed using UML, are fit for purpose, and unambiguously define the functional requirements for the resultant computational model. PMID:27571414

  16. Stochastic simulation of Venice land uplift by seawater injection in deep heterogeneous aquifers

    NASA Astrophysics Data System (ADS)

    Ferronato, M.; Gambolati, G.; Teatini, P.; Bau, D. A.; Putti, M.

    2010-12-01

    In recent years, several geo-mechanical modeling studies have indicated that seawater injection into deep formations underneath the city of Venice, Italy, may produce a land uplift sufficient to significantly mitigate the effects of the acqua alta, that is, the exceptional tide peaks that periodically occur in the northern Adriatic Sea. However, of major concern is the differential vertical displacement at the ground surface, which must not exceed prescribed regulatory thresholds to guarantee structural preservation of the city historical buildings. In this work, we focus on the hydraulic conductivity, K, which - due to its inherent spatial heterogeneity - is often one of the most difficult hydrogeological parameters to characterize, and analyze the effects that spatially heterogeneous aquifer K distributions may have on the uniformity of the induced land uplift. This study relies on a series of stochastic geomechanical simulations performed using an uncoupled 3D finite-element model poro-elastic model and refers to a pilot project devised to address the feasibility and sustainability of an actual full-scale injection program. The pilot project considers the recharge of about 3,100 m3/day seawater over three years from three injection wells installed into six aquifers comprised between depths of 600 and 800 meters. The K field is modeled geostatistically according to an unconditional, second-order, stationary random process characterized by an exponential covariance function. The stochastic geomechanical simulations are structured into a sensitivity analysis in order to investigate the impact of the variance, σ2, and the horizontal correlation scale, λ, of the K field on the spatial distributions of the ground surface uplift and its horizontal gradient ρz. The results indicate that, irrespective of the σ2 and λ values, properly selected within the ranges 0.2-1.0 and 20-1000 m, respectively, typical of normally consolidated sedimentary basins, the predicted uplift is substantially regular with negligible differential displacements. Even under the most pessimistic scenario (σ2=1.0 and λ=1000 m) the maximum ρz results from two to three times smaller than that experienced by the city over the 1960’s due to ground water pumping (10×10-5), one order of magnitude less than the maximum limit allowed for masonry buildings (50×10-55), and about 20 times smaller than the values that restricted portions of the city are currently experiencing due to surficial loads and to possible heterogeneities of the upper Holocene deposits upon which the city is founded.

  17. Unification theory of optimal life histories and linear demographic models in internal stochasticity.

    PubMed

    Oizumi, Ryo

    2014-01-01

    Life history of organisms is exposed to uncertainty generated by internal and external stochasticities. Internal stochasticity is generated by the randomness in each individual life history, such as randomness in food intake, genetic character and size growth rate, whereas external stochasticity is due to the environment. For instance, it is known that the external stochasticity tends to affect population growth rate negatively. It has been shown in a recent theoretical study using path-integral formulation in structured linear demographic models that internal stochasticity can affect population growth rate positively or negatively. However, internal stochasticity has not been the main subject of researches. Taking account of effect of internal stochasticity on the population growth rate, the fittest organism has the optimal control of life history affected by the stochasticity in the habitat. The study of this control is known as the optimal life schedule problems. In order to analyze the optimal control under internal stochasticity, we need to make use of "Stochastic Control Theory" in the optimal life schedule problem. There is, however, no such kind of theory unifying optimal life history and internal stochasticity. This study focuses on an extension of optimal life schedule problems to unify control theory of internal stochasticity into linear demographic models. First, we show the relationship between the general age-states linear demographic models and the stochastic control theory via several mathematical formulations, such as path-integral, integral equation, and transition matrix. Secondly, we apply our theory to a two-resource utilization model for two different breeding systems: semelparity and iteroparity. Finally, we show that the diversity of resources is important for species in a case. Our study shows that this unification theory can address risk hedges of life history in general age-states linear demographic models.

  18. Unification Theory of Optimal Life Histories and Linear Demographic Models in Internal Stochasticity

    PubMed Central

    Oizumi, Ryo

    2014-01-01

    Life history of organisms is exposed to uncertainty generated by internal and external stochasticities. Internal stochasticity is generated by the randomness in each individual life history, such as randomness in food intake, genetic character and size growth rate, whereas external stochasticity is due to the environment. For instance, it is known that the external stochasticity tends to affect population growth rate negatively. It has been shown in a recent theoretical study using path-integral formulation in structured linear demographic models that internal stochasticity can affect population growth rate positively or negatively. However, internal stochasticity has not been the main subject of researches. Taking account of effect of internal stochasticity on the population growth rate, the fittest organism has the optimal control of life history affected by the stochasticity in the habitat. The study of this control is known as the optimal life schedule problems. In order to analyze the optimal control under internal stochasticity, we need to make use of “Stochastic Control Theory” in the optimal life schedule problem. There is, however, no such kind of theory unifying optimal life history and internal stochasticity. This study focuses on an extension of optimal life schedule problems to unify control theory of internal stochasticity into linear demographic models. First, we show the relationship between the general age-states linear demographic models and the stochastic control theory via several mathematical formulations, such as path–integral, integral equation, and transition matrix. Secondly, we apply our theory to a two-resource utilization model for two different breeding systems: semelparity and iteroparity. Finally, we show that the diversity of resources is important for species in a case. Our study shows that this unification theory can address risk hedges of life history in general age-states linear demographic models. PMID:24945258

  19. Stochastic model for gene transcription on Drosophila melanogaster embryos

    NASA Astrophysics Data System (ADS)

    Prata, Guilherme N.; Hornos, José Eduardo M.; Ramos, Alexandre F.

    2016-02-01

    We examine immunostaining experimental data for the formation of stripe 2 of even-skipped (eve) transcripts on D. melanogaster embryos. An estimate of the factor converting immunofluorescence intensity units into molecular numbers is given. The analysis of the eve dynamics at the region of stripe 2 suggests that the promoter site of the gene has two distinct regimes: an earlier phase when it is predominantly activated until a critical time when it becomes mainly repressed. That suggests proposing a stochastic binary model for gene transcription on D. melanogaster embryos. Our model has two random variables: the transcripts number and the state of the source of mRNAs given as active or repressed. We are able to reproduce available experimental data for the average number of transcripts. An analysis of the random fluctuations on the number of eves and their consequences on the spatial precision of stripe 2 is presented. We show that the position of the anterior or posterior borders fluctuate around their average position by ˜1 % of the embryo length, which is similar to what is found experimentally. The fitting of data by such a simple model suggests that it can be useful to understand the functions of randomness during developmental processes.

  20. Predicting laser weld reliability with stochastic reduced-order models. Predicting laser weld reliability

    DOE PAGES

    Emery, John M.; Field, Richard V.; Foulk, James W.; ...

    2015-05-26

    Laser welds are prevalent in complex engineering systems and they frequently govern failure. The weld process often results in partial penetration of the base metals, leaving sharp crack-like features with a high degree of variability in the geometry and material properties of the welded structure. Furthermore, accurate finite element predictions of the structural reliability of components containing laser welds requires the analysis of a large number of finite element meshes with very fine spatial resolution, where each mesh has different geometry and/or material properties in the welded region to address variability. We found that traditional modeling approaches could not bemore » efficiently employed. Consequently, a method is presented for constructing a surrogate model, based on stochastic reduced-order models, and is proposed to represent the laser welds within the component. Here, the uncertainty in weld microstructure and geometry is captured by calibrating plasticity parameters to experimental observations of necking as, because of the ductility of the welds, necking – and thus peak load – plays the pivotal role in structural failure. The proposed method is exercised for a simplified verification problem and compared with the traditional Monte Carlo simulation with rather remarkable results.« less

  1. Particle-based simulations of polarity establishment reveal stochastic promotion of Turing pattern formation

    PubMed Central

    Ramirez, Samuel A.; Elston, Timothy C.

    2018-01-01

    Polarity establishment, the spontaneous generation of asymmetric molecular distributions, is a crucial component of many cellular functions. Saccharomyces cerevisiae (yeast) undergoes directed growth during budding and mating, and is an ideal model organism for studying polarization. In yeast and many other cell types, the Rho GTPase Cdc42 is the key molecular player in polarity establishment. During yeast polarization, multiple patches of Cdc42 initially form, then resolve into a single front. Because polarization relies on strong positive feedback, it is likely that the amplification of molecular-level fluctuations underlies the generation of multiple nascent patches. In the absence of spatial cues, these fluctuations may be key to driving polarization. Here we used particle-based simulations to investigate the role of stochastic effects in a Turing-type model of yeast polarity establishment. In the model, reactions take place either between two molecules on the membrane, or between a cytosolic and a membrane-bound molecule. Thus, we developed a computational platform that explicitly simulates molecules at and near the cell membrane, and implicitly handles molecules away from the membrane. To evaluate stochastic effects, we compared particle simulations to deterministic reaction-diffusion equation simulations. Defining macroscopic rate constants that are consistent with the microscopic parameters for this system is challenging, because diffusion occurs in two dimensions and particles exchange between the membrane and cytoplasm. We address this problem by empirically estimating macroscopic rate constants from appropriately designed particle-based simulations. Ultimately, we find that stochastic fluctuations speed polarity establishment and permit polarization in parameter regions predicted to be Turing stable. These effects can operate at Cdc42 abundances expected of yeast cells, and promote polarization on timescales consistent with experimental results. To our knowledge, our work represents the first particle-based simulations of a model for yeast polarization that is based on a Turing mechanism. PMID:29529021

  2. A Multilevel, Hierarchical Sampling Technique for Spatially Correlated Random Fields

    DOE PAGES

    Osborn, Sarah; Vassilevski, Panayot S.; Villa, Umberto

    2017-10-26

    In this paper, we propose an alternative method to generate samples of a spatially correlated random field with applications to large-scale problems for forward propagation of uncertainty. A classical approach for generating these samples is the Karhunen--Loève (KL) decomposition. However, the KL expansion requires solving a dense eigenvalue problem and is therefore computationally infeasible for large-scale problems. Sampling methods based on stochastic partial differential equations provide a highly scalable way to sample Gaussian fields, but the resulting parametrization is mesh dependent. We propose a multilevel decomposition of the stochastic field to allow for scalable, hierarchical sampling based on solving amore » mixed finite element formulation of a stochastic reaction-diffusion equation with a random, white noise source function. Lastly, numerical experiments are presented to demonstrate the scalability of the sampling method as well as numerical results of multilevel Monte Carlo simulations for a subsurface porous media flow application using the proposed sampling method.« less

  3. A Multilevel, Hierarchical Sampling Technique for Spatially Correlated Random Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osborn, Sarah; Vassilevski, Panayot S.; Villa, Umberto

    In this paper, we propose an alternative method to generate samples of a spatially correlated random field with applications to large-scale problems for forward propagation of uncertainty. A classical approach for generating these samples is the Karhunen--Loève (KL) decomposition. However, the KL expansion requires solving a dense eigenvalue problem and is therefore computationally infeasible for large-scale problems. Sampling methods based on stochastic partial differential equations provide a highly scalable way to sample Gaussian fields, but the resulting parametrization is mesh dependent. We propose a multilevel decomposition of the stochastic field to allow for scalable, hierarchical sampling based on solving amore » mixed finite element formulation of a stochastic reaction-diffusion equation with a random, white noise source function. Lastly, numerical experiments are presented to demonstrate the scalability of the sampling method as well as numerical results of multilevel Monte Carlo simulations for a subsurface porous media flow application using the proposed sampling method.« less

  4. WKB theory of large deviations in stochastic populations

    NASA Astrophysics Data System (ADS)

    Assaf, Michael; Meerson, Baruch

    2017-06-01

    Stochasticity can play an important role in the dynamics of biologically relevant populations. These span a broad range of scales: from intra-cellular populations of molecules to population of cells and then to groups of plants, animals and people. Large deviations in stochastic population dynamics—such as those determining population extinction, fixation or switching between different states—are presently in a focus of attention of statistical physicists. We review recent progress in applying different variants of dissipative WKB approximation (after Wentzel, Kramers and Brillouin) to this class of problems. The WKB approximation allows one to evaluate the mean time and/or probability of population extinction, fixation and switches resulting from either intrinsic (demographic) noise, or a combination of the demographic noise and environmental variations, deterministic or random. We mostly cover well-mixed populations, single and multiple, but also briefly consider populations on heterogeneous networks and spatial populations. The spatial setting also allows one to study large fluctuations of the speed of biological invasions. Finally, we briefly discuss possible directions of future work.

  5. An open and extensible framework for spatially explicit land use change modelling: the lulcc R package

    NASA Astrophysics Data System (ADS)

    Moulds, S.; Buytaert, W.; Mijic, A.

    2015-10-01

    We present the lulcc software package, an object-oriented framework for land use change modelling written in the R programming language. The contribution of the work is to resolve the following limitations associated with the current land use change modelling paradigm: (1) the source code for model implementations is frequently unavailable, severely compromising the reproducibility of scientific results and making it impossible for members of the community to improve or adapt models for their own purposes; (2) ensemble experiments to capture model structural uncertainty are difficult because of fundamental differences between implementations of alternative models; and (3) additional software is required because existing applications frequently perform only the spatial allocation of change. The package includes a stochastic ordered allocation procedure as well as an implementation of the CLUE-S algorithm. We demonstrate its functionality by simulating land use change at the Plum Island Ecosystems site, using a data set included with the package. It is envisaged that lulcc will enable future model development and comparison within an open environment.

  6. Stochastic Growth Theory of Spatially-Averaged Distributions of Langmuir Fields in Earth's Foreshock

    NASA Technical Reports Server (NTRS)

    Boshuizen, Christopher R.; Cairns, Iver H.; Robinson, P. A.

    2001-01-01

    Langmuir-like waves in the foreshock of Earth are characteristically bursty and irregular, and are the subject of a number of recent studies. Averaged over the foreshock, it is observed that the probability distribution is power-law P(bar)(log E) in the wave field E with the bar denoting this averaging over position, In this paper it is shown that stochastic growth theory (SGT) can explain a power-law spatially-averaged distributions P(bar)(log E), when the observed power-law variations of the mean and standard deviation of log E with position are combined with the log normal statistics predicted by SGT at each location.

  7. Clustering and optimal arrangement of enzymes in reaction-diffusion systems.

    PubMed

    Buchner, Alexander; Tostevin, Filipe; Gerland, Ulrich

    2013-05-17

    Enzymes within biochemical pathways are often colocalized, yet the consequences of specific spatial enzyme arrangements remain poorly understood. We study the impact of enzyme arrangement on reaction efficiency within a reaction-diffusion model. The optimal arrangement transitions from a cluster to a distributed profile as a single parameter, which controls the probability of reaction versus diffusive loss of pathway intermediates, is varied. We introduce the concept of enzyme exposure to explain how this transition arises from the stochastic nature of molecular reactions and diffusion.

  8. Stochastic Lanchester Air-to-Air Campaign Model: Model Description and Users Guides

    DTIC Science & Technology

    2009-01-01

    STOCHASTIC LANCHESTER AIR-TO-AIR CAMPAIGN MODEL MODEL DESCRIPTION AND USERS GUIDES—2009 REPORT PA702T1 Rober t V. Hemm Jr. Dav id A . Lee...LMI © 2009. ALL RIGHTS RESERVED. Stochastic Lanchester Air-to-Air Campaign Model: Model Description and Users Guides—2009 PA702T1/JANUARY...2009 Executive Summary This report documents the latest version of the Stochastic Lanchester Air-to-Air Campaign Model (SLAACM), developed by LMI for

  9. Stochastic Geomorphology: A Framework for Creating General Principles on Erosion and Sedimentation in River Basins (Invited)

    NASA Astrophysics Data System (ADS)

    Benda, L. E.

    2009-12-01

    Stochastic geomorphology refers to the interaction of the stochastic field of sediment supply with hierarchically branching river networks where erosion, sediment flux and sediment storage are described by their probability densities. There are a number of general principles (hypotheses) that stem from this conceptual and numerical framework that may inform the science of erosion and sedimentation in river basins. Rainstorms and other perturbations, characterized by probability distributions of event frequency and magnitude, stochastically drive sediment influx to channel networks. The frequency-magnitude distribution of sediment supply that is typically skewed reflects strong interactions among climate, topography, vegetation, and geotechnical controls that vary between regions; the distribution varies systematically with basin area and the spatial pattern of erosion sources. Probability densities of sediment flux and storage evolve from more to less skewed forms downstream in river networks due to the convolution of the population of sediment sources in a watershed that should vary with climate, network patterns, topography, spatial scale, and degree of erosion asynchrony. The sediment flux and storage distributions are also transformed downstream due to diffusion, storage, interference, and attrition. In stochastic systems, the characteristically pulsed sediment supply and transport can create translational or stationary-diffusive valley and channel depositional landforms, the geometries of which are governed by sediment flux-network interactions. Episodic releases of sediment to the network can also drive a system memory reflected in a Hurst Effect in sediment yields and thus in sedimentological records. Similarly, discreet events of punctuated erosion on hillslopes can lead to altered surface and subsurface properties of a population of erosion source areas that can echo through time and affect subsequent erosion and sediment flux rates. Spatial patterns of probability densities have implications for the frequency and magnitude of sediment transport and storage and thus for the formation of alluvial and colluvial landforms throughout watersheds. For instance, the combination and interference of probability densities of sediment flux at confluences creates patterns of riverine heterogeneity, including standing waves of sediment with associated age distributions of deposits that can vary from younger to older depending on network geometry and position. Although the watershed world of probability densities is rarified and typically confined to research endeavors, it has real world implications for the day-to-day work on hillslopes and in fluvial systems, including measuring erosion, sediment transport, mapping channel morphology and aquatic habitats, interpreting deposit stratigraphy, conducting channel restoration, and applying environmental regulations. A question for the geomorphology community is whether the stochastic framework is useful for advancing our understanding of erosion and sedimentation and whether it should stimulate research to further develop, refine and test these and other principles. For example, a changing climate should lead to shifts in probability densities of erosion, sediment flux, storage, and associated habitats and thus provide a useful index of climate change in earth science forecast models.

  10. Stochastic Multi-Timescale Power System Operations With Variable Wind Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Hongyu; Krad, Ibrahim; Florita, Anthony

    This paper describes a novel set of stochastic unit commitment and economic dispatch models that consider stochastic loads and variable generation at multiple operational timescales. The stochastic model includes four distinct stages: stochastic day-ahead security-constrained unit commitment (SCUC), stochastic real-time SCUC, stochastic real-time security-constrained economic dispatch (SCED), and deterministic automatic generation control (AGC). These sub-models are integrated together such that they are continually updated with decisions passed from one to another. The progressive hedging algorithm (PHA) is applied to solve the stochastic models to maintain the computational tractability of the proposed models. Comparative case studies with deterministic approaches are conductedmore » in low wind and high wind penetration scenarios to highlight the advantages of the proposed methodology, one with perfect forecasts and the other with current state-of-the-art but imperfect deterministic forecasts. The effectiveness of the proposed method is evaluated with sensitivity tests using both economic and reliability metrics to provide a broader view of its impact.« less

  11. Hybrid models for chemical reaction networks: Multiscale theory and application to gene regulatory systems.

    PubMed

    Winkelmann, Stefanie; Schütte, Christof

    2017-09-21

    Well-mixed stochastic chemical kinetics are properly modeled by the chemical master equation (CME) and associated Markov jump processes in molecule number space. If the reactants are present in large amounts, however, corresponding simulations of the stochastic dynamics become computationally expensive and model reductions are demanded. The classical model reduction approach uniformly rescales the overall dynamics to obtain deterministic systems characterized by ordinary differential equations, the well-known mass action reaction rate equations. For systems with multiple scales, there exist hybrid approaches that keep parts of the system discrete while another part is approximated either using Langevin dynamics or deterministically. This paper aims at giving a coherent overview of the different hybrid approaches, focusing on their basic concepts and the relation between them. We derive a novel general description of such hybrid models that allows expressing various forms by one type of equation. We also check in how far the approaches apply to model extensions of the CME for dynamics which do not comply with the central well-mixed condition and require some spatial resolution. A simple but meaningful gene expression system with negative self-regulation is analysed to illustrate the different approximation qualities of some of the hybrid approaches discussed. Especially, we reveal the cause of error in the case of small volume approximations.

  12. Hybrid models for chemical reaction networks: Multiscale theory and application to gene regulatory systems

    NASA Astrophysics Data System (ADS)

    Winkelmann, Stefanie; Schütte, Christof

    2017-09-01

    Well-mixed stochastic chemical kinetics are properly modeled by the chemical master equation (CME) and associated Markov jump processes in molecule number space. If the reactants are present in large amounts, however, corresponding simulations of the stochastic dynamics become computationally expensive and model reductions are demanded. The classical model reduction approach uniformly rescales the overall dynamics to obtain deterministic systems characterized by ordinary differential equations, the well-known mass action reaction rate equations. For systems with multiple scales, there exist hybrid approaches that keep parts of the system discrete while another part is approximated either using Langevin dynamics or deterministically. This paper aims at giving a coherent overview of the different hybrid approaches, focusing on their basic concepts and the relation between them. We derive a novel general description of such hybrid models that allows expressing various forms by one type of equation. We also check in how far the approaches apply to model extensions of the CME for dynamics which do not comply with the central well-mixed condition and require some spatial resolution. A simple but meaningful gene expression system with negative self-regulation is analysed to illustrate the different approximation qualities of some of the hybrid approaches discussed. Especially, we reveal the cause of error in the case of small volume approximations.

  13. Mixed Effects Modeling Using Stochastic Differential Equations: Illustrated by Pharmacokinetic Data of Nicotinic Acid in Obese Zucker Rats.

    PubMed

    Leander, Jacob; Almquist, Joachim; Ahlström, Christine; Gabrielsson, Johan; Jirstrand, Mats

    2015-05-01

    Inclusion of stochastic differential equations in mixed effects models provides means to quantify and distinguish three sources of variability in data. In addition to the two commonly encountered sources, measurement error and interindividual variability, we also consider uncertainty in the dynamical model itself. To this end, we extend the ordinary differential equation setting used in nonlinear mixed effects models to include stochastic differential equations. The approximate population likelihood is derived using the first-order conditional estimation with interaction method and extended Kalman filtering. To illustrate the application of the stochastic differential mixed effects model, two pharmacokinetic models are considered. First, we use a stochastic one-compartmental model with first-order input and nonlinear elimination to generate synthetic data in a simulated study. We show that by using the proposed method, the three sources of variability can be successfully separated. If the stochastic part is neglected, the parameter estimates become biased, and the measurement error variance is significantly overestimated. Second, we consider an extension to a stochastic pharmacokinetic model in a preclinical study of nicotinic acid kinetics in obese Zucker rats. The parameter estimates are compared between a deterministic and a stochastic NiAc disposition model, respectively. Discrepancies between model predictions and observations, previously described as measurement noise only, are now separated into a comparatively lower level of measurement noise and a significant uncertainty in model dynamics. These examples demonstrate that stochastic differential mixed effects models are useful tools for identifying incomplete or inaccurate model dynamics and for reducing potential bias in parameter estimates due to such model deficiencies.

  14. Replication Origins and Timing of Temporal Replication in Budding Yeast: How to Solve the Conundrum?

    PubMed Central

    Barberis, Matteo; Spiesser, Thomas W.; Klipp, Edda

    2010-01-01

    Similarly to metazoans, the budding yeast Saccharomyces cereviasiae replicates its genome with a defined timing. In this organism, well-defined, site-specific origins, are efficient and fire in almost every round of DNA replication. However, this strategy is neither conserved in the fission yeast Saccharomyces pombe, nor in Xenopus or Drosophila embryos, nor in higher eukaryotes, in which DNA replication initiates asynchronously throughout S phase at random sites. Temporal and spatial controls can contribute to the timing of replication such as Cdk activity, origin localization, epigenetic status or gene expression. However, a debate is going on to answer the question how individual origins are selected to fire in budding yeast. Two opposing theories were proposed: the “replicon paradigm” or “temporal program” vs. the “stochastic firing”. Recent data support the temporal regulation of origin activation, clustering origins into temporal blocks of early and late replication. Contrarily, strong evidences suggest that stochastic processes acting on origins can generate the observed kinetics of replication without requiring a temporal order. In mammalian cells, a spatiotemporal model that accounts for a partially deterministic and partially stochastic order of DNA replication has been proposed. Is this strategy the solution to reconcile the conundrum of having both organized replication timing and stochastic origin firing also for budding yeast? In this review we discuss this possibility in the light of our recent study on the origin activation, suggesting that there might be a stochastic component in the temporal activation of the replication origins, especially under perturbed conditions. PMID:21037857

  15. Stochastic modelling of microstructure formation in solidification processes

    NASA Astrophysics Data System (ADS)

    Nastac, Laurentiu; Stefanescu, Doru M.

    1997-07-01

    To relax many of the assumptions used in continuum approaches, a general stochastic model has been developed. The stochastic model can be used not only for an accurate description of the fraction of solid evolution, and therefore accurate cooling curves, but also for simulation of microstructure formation in castings. The advantage of using the stochastic approach is to give a time- and space-dependent description of solidification processes. Time- and space-dependent processes can also be described by partial differential equations. Unlike a differential formulation which, in most cases, has to be transformed into a difference equation and solved numerically, the stochastic approach is essentially a direct numerical algorithm. The stochastic model is comprehensive, since the competition between various phases is considered. Furthermore, grain impingement is directly included through the structure of the model. In the present research, all grain morphologies are simulated with this procedure. The relevance of the stochastic approach is that the simulated microstructures can be directly compared with microstructures obtained from experiments. The computer becomes a `dynamic metallographic microscope'. A comparison between deterministic and stochastic approaches has been performed. An important objective of this research was to answer the following general questions: (1) `Would fully deterministic approaches continue to be useful in solidification modelling?' and (2) `Would stochastic algorithms be capable of entirely replacing purely deterministic models?'

  16. Rapid simulation of spatial epidemics: a spectral method.

    PubMed

    Brand, Samuel P C; Tildesley, Michael J; Keeling, Matthew J

    2015-04-07

    Spatial structure and hence the spatial position of host populations plays a vital role in the spread of infection. In the majority of situations, it is only possible to predict the spatial spread of infection using simulation models, which can be computationally demanding especially for large population sizes. Here we develop an approximation method that vastly reduces this computational burden. We assume that the transmission rates between individuals or sub-populations are determined by a spatial transmission kernel. This kernel is assumed to be isotropic, such that the transmission rate is simply a function of the distance between susceptible and infectious individuals; as such this provides the ideal mechanism for modelling localised transmission in a spatial environment. We show that the spatial force of infection acting on all susceptibles can be represented as a spatial convolution between the transmission kernel and a spatially extended 'image' of the infection state. This representation allows the rapid calculation of stochastic rates of infection using fast-Fourier transform (FFT) routines, which greatly improves the computational efficiency of spatial simulations. We demonstrate the efficiency and accuracy of this fast spectral rate recalculation (FSR) method with two examples: an idealised scenario simulating an SIR-type epidemic outbreak amongst N habitats distributed across a two-dimensional plane; the spread of infection between US cattle farms, illustrating that the FSR method makes continental-scale outbreak forecasting feasible with desktop processing power. The latter model demonstrates which areas of the US are at consistently high risk for cattle-infections, although predictions of epidemic size are highly dependent on assumptions about the tail of the transmission kernel. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. A Rigorous Temperature-Dependent Stochastic Modelling and Testing for MEMS-Based Inertial Sensor Errors.

    PubMed

    El-Diasty, Mohammed; Pagiatakis, Spiros

    2009-01-01

    In this paper, we examine the effect of changing the temperature points on MEMS-based inertial sensor random error. We collect static data under different temperature points using a MEMS-based inertial sensor mounted inside a thermal chamber. Rigorous stochastic models, namely Autoregressive-based Gauss-Markov (AR-based GM) models are developed to describe the random error behaviour. The proposed AR-based GM model is initially applied to short stationary inertial data to develop the stochastic model parameters (correlation times). It is shown that the stochastic model parameters of a MEMS-based inertial unit, namely the ADIS16364, are temperature dependent. In addition, field kinematic test data collected at about 17 °C are used to test the performance of the stochastic models at different temperature points in the filtering stage using Unscented Kalman Filter (UKF). It is shown that the stochastic model developed at 20 °C provides a more accurate inertial navigation solution than the ones obtained from the stochastic models developed at -40 °C, -20 °C, 0 °C, +40 °C, and +60 °C. The temperature dependence of the stochastic model is significant and should be considered at all times to obtain optimal navigation solution for MEMS-based INS/GPS integration.

  18. Stochastic Optical Reconstruction Microscopy (STORM).

    PubMed

    Xu, Jianquan; Ma, Hongqiang; Liu, Yang

    2017-07-05

    Super-resolution (SR) fluorescence microscopy, a class of optical microscopy techniques at a spatial resolution below the diffraction limit, has revolutionized the way we study biology, as recognized by the Nobel Prize in Chemistry in 2014. Stochastic optical reconstruction microscopy (STORM), a widely used SR technique, is based on the principle of single molecule localization. STORM routinely achieves a spatial resolution of 20 to 30 nm, a ten-fold improvement compared to conventional optical microscopy. Among all SR techniques, STORM offers a high spatial resolution with simple optical instrumentation and standard organic fluorescent dyes, but it is also prone to image artifacts and degraded image resolution due to improper sample preparation or imaging conditions. It requires careful optimization of all three aspects-sample preparation, image acquisition, and image reconstruction-to ensure a high-quality STORM image, which will be extensively discussed in this unit. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  19. Demographic stochasticity in small remnant populations of the declining distylous plant Primula veris

    USGS Publications Warehouse

    Kery, M.; Matthies, D.; Schmid, B.

    2003-01-01

    We studied ecological consequences of distyly for the declining perennial plant Primula veris in the Swiss Jura. Distyly favours cross-fertilization and avoids inbreeding, but may lead to pollen limitation and reduced reproduction if morph frequencies deviate from 50 %. Disassortative mating is promoted by the reciprocal position of stigmas and anthers in the two morphs (pin and thrum) and by intramorph incompatibility and should result in equal frequencies of morphs at equilibrium. However, deviations could arise because of demographic stochasticity, the lower intra-morph incompatibility of the pin morph, and niche differentiation between morphs. Demographic stochasticity should result in symmetric deviations from an even morph frequency among populations and in increased deviations with decreasing population size. If crosses between pins occurred, these would only generate pins, and this could result in a pin-bias of morph frequencies in general and in small populations in particular. If the morphs have different niches, morph frequencies should be related to environmental factors, morphs might be spatially segregated, and morphological differences between morphs would be expected. We tested these hypotheses in the declining distylous P. veris. We studied morph frequencies in relation to environmental conditions and population size, spatial segregation in field populations, morphological differences between morphs, and growth responses to nutrient addition. Morph frequencies in 76 populations with 1 - 80000 flowering plants fluctuated symmetrically about 50 %. Deviations from 50 % were much larger in small populations, and sixof the smallest populations had lost one morph altogether. In contrast, morph frequencies were neither related to population size nor to 17 measures of environmental conditions. We found no spatial segregation or morphological differences in the field or in the common garden. The results suggest that demographic stochasticity caused deviations of the morph ratiofrom unity in small populations. Demographic stochasticity was probably caused by the random elimination of plants during the fragmentation of formerly large continuous populations. Biased morph frequencies may be one of the reasons for the strongly reduced reproduction in small populations of P. veris.

  20. Characteristics of broadband slow earthquakes explained by a Brownian model

    NASA Astrophysics Data System (ADS)

    Ide, S.; Takeo, A.

    2017-12-01

    Brownian slow earthquake (BSE) model (Ide, 2008; 2010) is a stochastic model for the temporal change of seismic moment release by slow earthquakes, which can be considered as a broadband phenomena including tectonic tremors, low frequency earthquakes, and very low frequency (VLF) earthquakes in the seismological frequency range, and slow slip events in geodetic range. Although the concept of broadband slow earthquake may not have been widely accepted, most of recent observations are consistent with this concept. Then, we review the characteristics of slow earthquakes and how they are explained by BSE model. In BSE model, the characteristic size of slow earthquake source is represented by a random variable, changed by a Gaussian fluctuation added at every time step. The model also includes a time constant, which divides the model behavior into short- and long-time regimes. In nature, the time constant corresponds to the spatial limit of tremor/SSE zone. In the long-time regime, the seismic moment rate is constant, which explains the moment-duration scaling law (Ide et al., 2007). For a shorter duration, the moment rate increases with size, as often observed for VLF earthquakes (Ide et al., 2008). The ratio between seismic energy and seismic moment is constant, as shown in Japan, Cascadia, and Mexico (Maury et al., 2017). The moment rate spectrum has a section of -1 slope, limited by two frequencies corresponding to the above time constant and the time increment of the stochastic process. Such broadband spectra have been observed for slow earthquakes near the trench axis (Kaneko et al., 2017). This spectrum also explains why we can obtain VLF signals by stacking broadband seismograms relative to tremor occurrence (e.g., Takeo et al., 2010; Ide and Yabe, 2014). The fluctuation in BSE model can be non-Gaussian, as far as the variance is finite, as supported by the central limit theorem. Recent observations suggest that tremors and LFEs are spatially characteristic, rather than random (Rubin and Armbruster, 2013; Bostock et al., 2015). Since even spatially characteristic source must be activated randomly in time, moment release from these sources are compatible to the fluctuation in BSE model. Therefore, BSE model contains the model of Gomberg et al. (2016), which suggests that the cluster of LFEs makes VLF signals, as a special case.

  1. Stochastic effects in a seasonally forced epidemic model

    NASA Astrophysics Data System (ADS)

    Rozhnova, G.; Nunes, A.

    2010-10-01

    The interplay of seasonality, the system’s nonlinearities and intrinsic stochasticity, is studied for a seasonally forced susceptible-exposed-infective-recovered stochastic model. The model is explored in the parameter region that corresponds to childhood infectious diseases such as measles. The power spectrum of the stochastic fluctuations around the attractors of the deterministic system that describes the model in the thermodynamic limit is computed analytically and validated by stochastic simulations for large system sizes. Size effects are studied through additional simulations. Other effects such as switching between coexisting attractors induced by stochasticity often mentioned in the literature as playing an important role in the dynamics of childhood infectious diseases are also investigated. The main conclusion is that stochastic amplification, rather than these effects, is the key ingredient to understand the observed incidence patterns.

  2. Beyond mean-field approximations for accurate and computationally efficient models of on-lattice chemical kinetics

    NASA Astrophysics Data System (ADS)

    Pineda, M.; Stamatakis, M.

    2017-07-01

    Modeling the kinetics of surface catalyzed reactions is essential for the design of reactors and chemical processes. The majority of microkinetic models employ mean-field approximations, which lead to an approximate description of catalytic kinetics by assuming spatially uncorrelated adsorbates. On the other hand, kinetic Monte Carlo (KMC) methods provide a discrete-space continuous-time stochastic formulation that enables an accurate treatment of spatial correlations in the adlayer, but at a significant computation cost. In this work, we use the so-called cluster mean-field approach to develop higher order approximations that systematically increase the accuracy of kinetic models by treating spatial correlations at a progressively higher level of detail. We further demonstrate our approach on a reduced model for NO oxidation incorporating first nearest-neighbor lateral interactions and construct a sequence of approximations of increasingly higher accuracy, which we compare with KMC and mean-field. The latter is found to perform rather poorly, overestimating the turnover frequency by several orders of magnitude for this system. On the other hand, our approximations, while more computationally intense than the traditional mean-field treatment, still achieve tremendous computational savings compared to KMC simulations, thereby opening the way for employing them in multiscale modeling frameworks.

  3. Compact stochastic models for multidimensional quasiballistic thermal transport

    NASA Astrophysics Data System (ADS)

    Vermeersch, Bjorn

    2016-11-01

    The Boltzmann transport equation (BTE) has proven indispensable in elucidating quasiballistic heat dynamics. The experimental observations of nondiffusive thermal transients, however, are interpreted almost exclusively through purely diffusive formalisms that merely extract "effective" Fourier conductivities. Here, we build upon stochastic transport theory to provide a characterisation framework that blends the rich physics contained within the BTE solutions with the convenience of conventional analyses. The multidimensional phonon dynamics are described in terms of an isotropic Poissonian flight process with a rigorous Fourier-Laplace single pulse response P (ξ → ,s )=1 /[s +ψ(∥ ξ → ∥ )] . The spatial propagator ψ(∥ ξ → ∥ ) , unlike commonly reconstructed mean free path spectra κΣ(Λ) , serves as a genuine thermal blueprint of the medium that can be identified in a compact form directly from the raw measurement signals. Practical illustrations for transient thermal grating and time domain thermoreflectance experiments on respectively GaAs and InGaAs are provided.

  4. Probabilistic measures of persistence and extinction in measles (meta)populations.

    PubMed

    Gunning, Christian E; Wearing, Helen J

    2013-08-01

    Persistence and extinction are fundamental processes in ecological systems that are difficult to accurately measure due to stochasticity and incomplete observation. Moreover, these processes operate on multiple scales, from individual populations to metapopulations. Here, we examine an extensive new data set of measles case reports and associated demographics in pre-vaccine era US cities, alongside a classic England & Wales data set. We first infer the per-population quasi-continuous distribution of log incidence. We then use stochastic, spatially implicit metapopulation models to explore the frequency of rescue events and apparent extinctions. We show that, unlike critical community size, the inferred distributions account for observational processes, allowing direct comparisons between metapopulations. The inferred distributions scale with population size. We use these scalings to estimate extinction boundary probabilities. We compare these predictions with measurements in individual populations and random aggregates of populations, highlighting the importance of medium-sized populations in metapopulation persistence. © 2013 John Wiley & Sons Ltd/CNRS.

  5. Stochastic Modelling, Analysis, and Simulations of the Solar Cycle Dynamic Process

    NASA Astrophysics Data System (ADS)

    Turner, Douglas C.; Ladde, Gangaram S.

    2018-03-01

    Analytical solutions, discretization schemes and simulation results are presented for the time delay deterministic differential equation model of the solar dynamo presented by Wilmot-Smith et al. In addition, this model is extended under stochastic Gaussian white noise parametric fluctuations. The introduction of stochastic fluctuations incorporates variables affecting the dynamo process in the solar interior, estimation error of parameters, and uncertainty of the α-effect mechanism. Simulation results are presented and analyzed to exhibit the effects of stochastic parametric volatility-dependent perturbations. The results generalize and extend the work of Hazra et al. In fact, some of these results exhibit the oscillatory dynamic behavior generated by the stochastic parametric additative perturbations in the absence of time delay. In addition, the simulation results of the modified stochastic models influence the change in behavior of the very recently developed stochastic model of Hazra et al.

  6. Agent based reasoning for the non-linear stochastic models of long-range memory

    NASA Astrophysics Data System (ADS)

    Kononovicius, A.; Gontis, V.

    2012-02-01

    We extend Kirman's model by introducing variable event time scale. The proposed flexible time scale is equivalent to the variable trading activity observed in financial markets. Stochastic version of the extended Kirman's agent based model is compared to the non-linear stochastic models of long-range memory in financial markets. The agent based model providing matching macroscopic description serves as a microscopic reasoning of the earlier proposed stochastic model exhibiting power law statistics.

  7. Regionalisation of a distributed method for flood quantiles estimation: Revaluation of local calibration hypothesis to enhance the spatial structure of the optimised parameter

    NASA Astrophysics Data System (ADS)

    Odry, Jean; Arnaud, Patrick

    2016-04-01

    The SHYREG method (Aubert et al., 2014) associates a stochastic rainfall generator and a rainfall-runoff model to produce rainfall and flood quantiles on a 1 km2 mesh covering the whole French territory. The rainfall generator is based on the description of rainy events by descriptive variables following probability distributions and is characterised by a high stability. This stochastic generator is fully regionalised, and the rainfall-runoff transformation is calibrated with a single parameter. Thanks to the stability of the approach, calibration can be performed against only flood quantiles associated with observated frequencies which can be extracted from relatively short time series. The aggregation of SHYREG flood quantiles to the catchment scale is performed using an areal reduction factor technique unique on the whole territory. Past studies demonstrated the accuracy of SHYREG flood quantiles estimation for catchments where flow data are available (Arnaud et al., 2015). Nevertheless, the parameter of the rainfall-runoff model is independently calibrated for each target catchment. As a consequence, this parameter plays a corrective role and compensates approximations and modelling errors which makes difficult to identify its proper spatial pattern. It is an inherent objective of the SHYREG approach to be completely regionalised in order to provide a complete and accurate flood quantiles database throughout France. Consequently, it appears necessary to identify the model configuration in which the calibrated parameter could be regionalised with acceptable performances. The revaluation of some of the method hypothesis is a necessary step before the regionalisation. Especially the inclusion or the modification of the spatial variability of imposed parameters (like production and transfer reservoir size, base flow addition and quantiles aggregation function) should lead to more realistic values of the only calibrated parameter. The objective of the work presented here is to develop a SHYREG evaluation scheme focusing on both local and regional performances. Indeed, it is necessary to maintain the accuracy of at site flood quantiles estimation while identifying a configuration leading to a satisfactory spatial pattern of the calibrated parameter. This ability to be regionalised can be appraised by the association of common regionalisation techniques and split sample validation tests on a set of around 1,500 catchments representing the whole diversity of France physiography. Also, the presence of many nested catchments and a size-based split sample validation make possible to assess the relevance of the calibrated parameter spatial structure inside the largest catchments. The application of this multi-objective evaluation leads to the selection of a version of SHYREG more suitable for regionalisation. References: Arnaud, P., Cantet, P., Aubert, Y., 2015. Relevance of an at-site flood frequency analysis method for extreme events based on stochastic simulation of hourly rainfall. Hydrological Sciences Journal: on press. DOI:10.1080/02626667.2014.965174 Aubert, Y., Arnaud, P., Ribstein, P., Fine, J.A., 2014. The SHYREG flow method-application to 1605 basins in metropolitan France. Hydrological Sciences Journal, 59(5): 993-1005. DOI:10.1080/02626667.2014.902061

  8. Persistence and extinction of a stochastic single-species model under regime switching in a polluted environment II.

    PubMed

    Liu, Meng; Wang, Ke

    2010-12-07

    This is a continuation of our paper [Liu, M., Wang, K., 2010. Persistence and extinction of a stochastic single-species model under regime switching in a polluted environment, J. Theor. Biol. 264, 934-944]. Taking both white noise and colored noise into account, a stochastic single-species model under regime switching in a polluted environment is studied. Sufficient conditions for extinction, stochastic nonpersistence in the mean, stochastic weak persistence and stochastic permanence are established. The threshold between stochastic weak persistence and extinction is obtained. The results show that a different type of noise has a different effect on the survival results. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Sustainable infrastructure system modeling under uncertainties and dynamics

    NASA Astrophysics Data System (ADS)

    Huang, Yongxi

    Infrastructure systems support human activities in transportation, communication, water use, and energy supply. The dissertation research focuses on critical transportation infrastructure and renewable energy infrastructure systems. The goal of the research efforts is to improve the sustainability of the infrastructure systems, with an emphasis on economic viability, system reliability and robustness, and environmental impacts. The research efforts in critical transportation infrastructure concern the development of strategic robust resource allocation strategies in an uncertain decision-making environment, considering both uncertain service availability and accessibility. The study explores the performances of different modeling approaches (i.e., deterministic, stochastic programming, and robust optimization) to reflect various risk preferences. The models are evaluated in a case study of Singapore and results demonstrate that stochastic modeling methods in general offers more robust allocation strategies compared to deterministic approaches in achieving high coverage to critical infrastructures under risks. This general modeling framework can be applied to other emergency service applications, such as, locating medical emergency services. The development of renewable energy infrastructure system development aims to answer the following key research questions: (1) is the renewable energy an economically viable solution? (2) what are the energy distribution and infrastructure system requirements to support such energy supply systems in hedging against potential risks? (3) how does the energy system adapt the dynamics from evolving technology and societal needs in the transition into a renewable energy based society? The study of Renewable Energy System Planning with Risk Management incorporates risk management into its strategic planning of the supply chains. The physical design and operational management are integrated as a whole in seeking mitigations against the potential risks caused by feedstock seasonality and demand uncertainty. Facility spatiality, time variation of feedstock yields, and demand uncertainty are integrated into a two-stage stochastic programming (SP) framework. In the study of Transitional Energy System Modeling under Uncertainty, a multistage stochastic dynamic programming is established to optimize the process of building and operating fuel production facilities during the transition. Dynamics due to the evolving technologies and societal changes and uncertainty due to demand fluctuations are the major issues to be addressed.

  10. Hybrid approaches for multiple-species stochastic reaction–diffusion models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spill, Fabian, E-mail: fspill@bu.edu; Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139; Guerrero, Pilar

    2015-10-15

    Reaction–diffusion models are used to describe systems in fields as diverse as physics, chemistry, ecology and biology. The fundamental quantities in such models are individual entities such as atoms and molecules, bacteria, cells or animals, which move and/or react in a stochastic manner. If the number of entities is large, accounting for each individual is inefficient, and often partial differential equation (PDE) models are used in which the stochastic behaviour of individuals is replaced by a description of the averaged, or mean behaviour of the system. In some situations the number of individuals is large in certain regions and smallmore » in others. In such cases, a stochastic model may be inefficient in one region, and a PDE model inaccurate in another. To overcome this problem, we develop a scheme which couples a stochastic reaction–diffusion system in one part of the domain with its mean field analogue, i.e. a discretised PDE model, in the other part of the domain. The interface in between the two domains occupies exactly one lattice site and is chosen such that the mean field description is still accurate there. In this way errors due to the flux between the domains are small. Our scheme can account for multiple dynamic interfaces separating multiple stochastic and deterministic domains, and the coupling between the domains conserves the total number of particles. The method preserves stochastic features such as extinction not observable in the mean field description, and is significantly faster to simulate on a computer than the pure stochastic model. - Highlights: • A novel hybrid stochastic/deterministic reaction–diffusion simulation method is given. • Can massively speed up stochastic simulations while preserving stochastic effects. • Can handle multiple reacting species. • Can handle moving boundaries.« less

  11. Confinement and diffusion modulate bistability and stochastic switching in a reaction network with positive feedback

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mlynarczyk, Paul J.; Pullen, Robert H.; Abel, Steven M., E-mail: abel@utk.edu

    2016-01-07

    Positive feedback is a common feature in signal transduction networks and can lead to phenomena such as bistability and signal propagation by domain growth. Physical features of the cellular environment, such as spatial confinement and the mobility of proteins, play important but inadequately understood roles in shaping the behavior of signaling networks. Here, we use stochastic, spatially resolved kinetic Monte Carlo simulations to explore a positive feedback network as a function of system size, system shape, and mobility of molecules. We show that these physical properties can markedly alter characteristics of bistability and stochastic switching when compared with well-mixed simulations.more » Notably, systems of equal volume but different shapes can exhibit qualitatively different behaviors under otherwise identical conditions. We show that stochastic switching to a state maintained by positive feedback occurs by cluster formation and growth. Additionally, the frequency at which switching occurs depends nontrivially on the diffusion coefficient, which can promote or suppress switching relative to the well-mixed limit. Taken together, the results provide a framework for understanding how confinement and protein mobility influence emergent features of the positive feedback network by modulating molecular concentrations, diffusion-influenced rate parameters, and spatiotemporal correlations between molecules.« less

  12. Generalized Accelerated Failure Time Spatial Frailty Model for Arbitrarily Censored Data

    PubMed Central

    Zhou, Haiming; Hanson, Timothy; Zhang, Jiajia

    2017-01-01

    Flexible incorporation of both geographical patterning and risk effects in cancer survival models is becoming increasingly important, due in part to the recent availability of large cancer registries. Most spatial survival models stochastically order survival curves from different subpopulations. However, it is common for survival curves from two subpopulations to cross in epidemiological cancer studies and thus interpretable standard survival models can not be used without some modification. Common fixes are the inclusion of time-varying regression effects in the proportional hazards model or fully non-parametric modeling, either of which destroys any easy interpretability from the fitted model. To address this issue, we develop a generalized accelerated failure time model which allows stratification on continuous or categorical covariates, as well as providing per-variable tests for whether stratification is necessary via novel approximate Bayes factors. The model is interpretable in terms of how median survival changes and is able to capture crossing survival curves in the presence of spatial correlation. A detailed Markov chain Monte Carlo algorithm is presented for posterior inference and a freely available function frailtyGAFT is provided to fit the model in the R package spBayesSurv. We apply our approach to a subset of the prostate cancer data gathered for Louisiana by the Surveillance, Epidemiology, and End Results program of the National Cancer Institute. PMID:26993982

  13. Modelling the cancer growth process by Stochastic Differential Equations with the effect of Chondroitin Sulfate (CS) as anticancer therapeutics

    NASA Astrophysics Data System (ADS)

    Syahidatul Ayuni Mazlan, Mazma; Rosli, Norhayati; Jauhari Arief Ichwan, Solachuddin; Suhaity Azmi, Nina

    2017-09-01

    A stochastic model is introduced to describe the growth of cancer affected by anti-cancer therapeutics of Chondroitin Sulfate (CS). The parameters values of the stochastic model are estimated via maximum likelihood function. The numerical method of Euler-Maruyama will be employed to solve the model numerically. The efficiency of the stochastic model is measured by comparing the simulated result with the experimental data.

  14. Joint space-time geostatistical model for air quality surveillance

    NASA Astrophysics Data System (ADS)

    Russo, A.; Soares, A.; Pereira, M. J.

    2009-04-01

    Air pollution and peoples' generalized concern about air quality are, nowadays, considered to be a global problem. Although the introduction of rigid air pollution regulations has reduced pollution from industry and power stations, the growing number of cars on the road poses a new pollution problem. Considering the characteristics of the atmospheric circulation and also the residence times of certain pollutants in the atmosphere, a generalized and growing interest on air quality issues led to research intensification and publication of several articles with quite different levels of scientific depth. As most natural phenomena, air quality can be seen as a space-time process, where space-time relationships have usually quite different characteristics and levels of uncertainty. As a result, the simultaneous integration of space and time is not an easy task to perform. This problem is overcome by a variety of methodologies. The use of stochastic models and neural networks to characterize space-time dispersion of air quality is becoming a common practice. The main objective of this work is to produce an air quality model which allows forecasting critical concentration episodes of a certain pollutant by means of a hybrid approach, based on the combined use of neural network models and stochastic simulations. A stochastic simulation of the spatial component with a space-time trend model is proposed to characterize critical situations, taking into account data from the past and a space-time trend from the recent past. To identify near future critical episodes, predicted values from neural networks are used at each monitoring station. In this paper, we describe the design of a hybrid forecasting tool for ambient NO2 concentrations in Lisbon, Portugal.

  15. Applications of stochastic models and geostatistical analyses to study sources and spatial patterns of soil heavy metals in a metalliferous industrial district of China.

    PubMed

    Zhong, Buqing; Liang, Tao; Wang, Lingqing; Li, Kexin

    2014-08-15

    An extensive soil survey was conducted to study pollution sources and delineate contamination of heavy metals in one of the metalliferous industrial bases, in the karst areas of southwest China. A total of 597 topsoil samples were collected and the concentrations of five heavy metals, namely Cd, As (metalloid), Pb, Hg and Cr were analyzed. Stochastic models including a conditional inference tree (CIT) and a finite mixture distribution model (FMDM) were applied to identify the sources and partition the contribution from natural and anthropogenic sources for heavy metal in topsoils of the study area. Regression trees for Cd, As, Pb and Hg were proved to depend mostly on indicators of anthropogenic activities such as industrial type and distance from urban area, while the regression tree for Cr was found to be mainly influenced by the geogenic characteristics. The FMDM analysis showed that the geometric means of modeled background values for Cd, As, Pb, Hg and Cr were close to their background values previously reported in the study area, while the contamination of Cd and Hg were widespread in the study area, imposing potentially detrimental effects on organisms through the food chain. Finally, the probabilities of single and multiple heavy metals exceeding the threshold values derived from the FMDM were estimated using indicator kriging (IK) and multivariate indicator kriging (MVIK). The high probabilities exceeding the thresholds of heavy metals were associated with metalliferous production and atmospheric deposition of heavy metals transported from the urban and industrial areas. Geostatistics coupled with stochastic models provide an effective way to delineate multiple heavy metal pollution to facilitate improved environmental management. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. The Transcriptional Regulator CBP Has Defined Spatial Associations within Interphase Nuclei

    PubMed Central

    McManus, Kirk J; Stephens, David A; Adams, Niall M; Islam, Suhail A; Freemont, Paul S; Hendzel, Michael J

    2006-01-01

    It is becoming increasingly clear that nuclear macromolecules and macromolecular complexes are compartmentalized through binding interactions into an apparent three-dimensionally ordered structure. This ordering, however, does not appear to be deterministic to the extent that chromatin and nonchromatin structures maintain a strict 3-D arrangement. Rather, spatial ordering within the cell nucleus appears to conform to stochastic rather than deterministic spatial relationships. The stochastic nature of organization becomes particularly problematic when any attempt is made to describe the spatial relationship between proteins involved in the regulation of the genome. The CREB–binding protein (CBP) is one such transcriptional regulator that, when visualised by confocal microscopy, reveals a highly punctate staining pattern comprising several hundred individual foci distributed within the nuclear volume. Markers for euchromatic sequences have similar patterns. Surprisingly, in most cases, the predicted one-to-one relationship between transcription factor and chromatin sequence is not observed. Consequently, to understand whether spatial relationships that are not coincident are nonrandom and potentially biologically important, it is necessary to develop statistical approaches. In this study, we report on the development of such an approach and apply it to understanding the role of CBP in mediating chromatin modification and transcriptional regulation. We have used nearest-neighbor distance measurements and probability analyses to study the spatial relationship between CBP and other nuclear subcompartments enriched in transcription factors, chromatin, and splicing factors. Our results demonstrate that CBP has an order of spatial association with other nuclear subcompartments. We observe closer associations between CBP and RNA polymerase II–enriched foci and SC35 speckles than nascent RNA or specific acetylated histones. Furthermore, we find that CBP has a significantly higher probability of being close to its known in vivo substrate histone H4 lysine 5 compared with the closely related H4 lysine 12. This study demonstrates that complex relationships not described by colocalization exist in the interphase nucleus and can be characterized and quantified. The subnuclear distribution of CBP is difficult to reconcile with a model where chromatin organization is the sole determinant of the nuclear organization of proteins that regulate transcription but is consistent with a close link between spatial associations and nuclear functions. PMID:17054391

  17. Dynamics of a stochastic tuberculosis model with constant recruitment and varying total population size

    NASA Astrophysics Data System (ADS)

    Liu, Qun; Jiang, Daqing; Shi, Ningzhong; Hayat, Tasawar; Alsaedi, Ahmed

    2017-03-01

    In this paper, we develop a mathematical model for a tuberculosis model with constant recruitment and varying total population size by incorporating stochastic perturbations. By constructing suitable stochastic Lyapunov functions, we establish sufficient conditions for the existence of an ergodic stationary distribution as well as extinction of the disease to the stochastic system.

  18. Opinion strength influences the spatial dynamics of opinion formation

    PubMed Central

    Baumgaertner, Bert O.; Tyson, Rebecca T.; Krone, Stephen M.

    2016-01-01

    Opinions are rarely binary; they can be held with different degrees of conviction, and this expanded attitude spectrum can affect the influence one opinion has on others. Our goal is to understand how different aspects of influence lead to recognizable spatio-temporal patterns of opinions and their strengths. To do this, we introduce a stochastic spatial agent-based model of opinion dynamics that includes a spectrum of opinion strengths and various possible rules for how the opinion strength of one individual affects the influence that this individual has on others. Through simulations, we find that even a small amount of amplification of opinion strength through interaction with like-minded neighbors can tip the scales in favor of polarization and deadlock. PMID:28529381

  19. Stochastic Analysis of Reaction–Diffusion Processes

    PubMed Central

    Hu, Jifeng; Kang, Hye-Won

    2013-01-01

    Reaction and diffusion processes are used to model chemical and biological processes over a wide range of spatial and temporal scales. Several routes to the diffusion process at various levels of description in time and space are discussed and the master equation for spatially discretized systems involving reaction and diffusion is developed. We discuss an estimator for the appropriate compartment size for simulating reaction–diffusion systems and introduce a measure of fluctuations in a discretized system. We then describe a new computational algorithm for implementing a modified Gillespie method for compartmental systems in which reactions are aggregated into equivalence classes and computational cells are searched via an optimized tree structure. Finally, we discuss several examples that illustrate the issues that have to be addressed in general systems. PMID:23719732

  20. Evaluation of the risk of classical swine fever (CSF) spread from backyard pigs to other domestic pigs by using the spatial stochastic disease spread model Be-FAST: the example of Bulgaria.

    PubMed

    Martínez-López, Beatriz; Ivorra, Benjamin; Ramos, Angel Manuel; Fernández-Carrión, Eduardo; Alexandrov, Tsviatko; Sánchez-Vizcaíno, José Manuel

    2013-07-26

    The study presented here is one of the very first aimed at exploring the potential spread of classical swine fever (CSF) from backyard pigs to other domestic pigs. Specifically, we used a spatial stochastic spread model, called Be-FAST, to evaluate the potential spread of CSF virus (CSFV) in Bulgaria, which holds a large number of backyards (96% of the total number of pig farms) and is one of the very few countries for which backyard pigs and farm counts are available. The model revealed that, despite backyard pigs being very likely to become infected, infections from backyard pigs to other domestic pigs were rare. In general, the magnitude and duration of the CSF simulated epidemics were small, with a median [95% PI] number of infected farms per epidemic of 1 [1,4] and a median [95% PI] duration of the epidemic of 44 [17,101] days. CSFV transmission occurs primarily (81.16%) due to indirect contacts (i.e. vehicles, people and local spread) whereas detection of infected premises was mainly (69%) associated with the observation of clinical signs on farm rather than with implementation of tracing or zoning. Methods and results of this study may support the implementation of risk-based strategies more cost-effectively to prevent, control and, ultimately, eradicate CSF from Bulgaria. The model may also be easily adapted to other countries in which the backyard system is predominant. It can also be used to simulate other similar diseases such as African swine fever. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Comment on “Models of stochastic, spatially varying stress in the crust compatible with focal‐mechanism data, and how stress inversions can be biased toward the stress rate” by Deborah Elaine Smith and Thomas H. Heaton

    USGS Publications Warehouse

    Hardebeck, Jeanne L.

    2015-01-01

    This model makes specific predictions about the orientations and heterogeneity of earthquake focal mechanisms. Smith and Heaton (2011) attempt to validate this heterogeneous stress model using observations of earthquake focal‐mechanism variability from Hardebeck (2006). They then demonstrate that the model predicts a bias in the orientations of earthquake focal mechanisms, which are biased away from the background stress and toward the stressing rate. They suggest the focal‐mechanism bias in this model invalidates the large body of work over the last several decades, that has inferred stress orientations from the inversion of earthquake focal mechanisms. The question of whether or not the Smith and Heaton (2011) model is applicable to the real Earth is therefore important not only for understanding spatial stress variability but also for evaluating the numerous studies that have inferred crustal stress orientations from earthquake focal mechanisms (e.g., as compiled by Heidbach et al., 2008).

  2. Individualism in plant populations: using stochastic differential equations to model individual neighbourhood-dependent plant growth.

    PubMed

    Lv, Qiming; Schneider, Manuel K; Pitchford, Jonathan W

    2008-08-01

    We study individual plant growth and size hierarchy formation in an experimental population of Arabidopsis thaliana, within an integrated analysis that explicitly accounts for size-dependent growth, size- and space-dependent competition, and environmental stochasticity. It is shown that a Gompertz-type stochastic differential equation (SDE) model, involving asymmetric competition kernels and a stochastic term which decreases with the logarithm of plant weight, efficiently describes individual plant growth, competition, and variability in the studied population. The model is evaluated within a Bayesian framework and compared to its deterministic counterpart, and to several simplified stochastic models, using distributional validation. We show that stochasticity is an important determinant of size hierarchy and that SDE models outperform the deterministic model if and only if structural components of competition (asymmetry; size- and space-dependence) are accounted for. Implications of these results are discussed in the context of plant ecology and in more general modelling situations.

  3. Preemptive spatial competition under a reproduction-mortality constraint.

    PubMed

    Allstadt, Andrew; Caraco, Thomas; Korniss, G

    2009-06-21

    Spatially structured ecological interactions can shape selection pressures experienced by a population's different phenotypes. We study spatial competition between phenotypes subject to antagonistic pleiotropy between reproductive effort and mortality rate. The constraint we invoke reflects a previous life-history analysis; the implied dependence indicates that although propagation and mortality rates both vary, their ratio is fixed. We develop a stochastic invasion approximation predicting that phenotypes with higher propagation rates will invade an empty environment (no biotic resistance) faster, despite their higher mortality rate. However, once population density approaches demographic equilibrium, phenotypes with lower mortality are favored, despite their lower propagation rate. We conducted a set of pairwise invasion analyses by simulating an individual-based model of preemptive competition. In each case, the phenotype with the lowest mortality rate and (via antagonistic pleiotropy) the lowest propagation rate qualified as evolutionarily stable among strategies simulated. This result, for a fixed propagation to mortality ratio, suggests that a selective response to spatial competition can extend the time scale of the population's dynamics, which in turn decelerates phenotypic evolution.

  4. Gompertzian stochastic model with delay effect to cervical cancer growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazlan, Mazma Syahidatul Ayuni binti; Rosli, Norhayati binti; Bahar, Arifah

    2015-02-03

    In this paper, a Gompertzian stochastic model with time delay is introduced to describe the cervical cancer growth. The parameters values of the mathematical model are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic model numerically. The efficiency of mathematical model is measured by comparing the simulated result and the clinical data of cervical cancer growth. Low values of Mean-Square Error (MSE) of Gompertzian stochastic model with delay effect indicate good fits.

  5. Failure models for textile composites

    NASA Technical Reports Server (NTRS)

    Cox, Brian

    1995-01-01

    The goals of this investigation were to: (1) identify mechanisms of failure and determine how the architecture of reinforcing fibers in 3D woven composites controlled stiffness, strength, strain to failure, work of fracture, notch sensitivity, and fatigue life; and (2) to model composite stiffness, strength, and fatigue life. A total of 11 different angle and orthogonal interlock woven composites were examined. Composite properties depended on the weave architecture, the tow size, and the spatial distributions and strength of geometrical flaws. Simple models were developed for elastic properties, strength, and fatigue life. A more complicated stochastic model, called the 'Binary Model,' was developed for damage tolerance and ultimate failure. These 3D woven composites possessed an extraordinary combination of strength, damage tolerance, and notch insensitivity.

  6. Microscopic Interpretation and Generalization of the Bloch-Torrey Equation for Diffusion Magnetic Resonance

    PubMed Central

    Seroussi, Inbar; Grebenkov, Denis S.; Pasternak, Ofer; Sochen, Nir

    2017-01-01

    In order to bridge microscopic molecular motion with macroscopic diffusion MR signal in complex structures, we propose a general stochastic model for molecular motion in a magnetic field. The Fokker-Planck equation of this model governs the probability density function describing the diffusion-magnetization propagator. From the propagator we derive a generalized version of the Bloch-Torrey equation and the relation to the random phase approach. This derivation does not require assumptions such as a spatially constant diffusion coefficient, or ad-hoc selection of a propagator. In particular, the boundary conditions that implicitly incorporate the microstructure into the diffusion MR signal can now be included explicitly through a spatially varying diffusion coefficient. While our generalization is reduced to the conventional Bloch-Torrey equation for piecewise constant diffusion coefficients, it also predicts scenarios in which an additional term to the equation is required to fully describe the MR signal. PMID:28242566

  7. Use of a stochastic approach for description of water balance and runoff production dynamics

    NASA Astrophysics Data System (ADS)

    Gioia, A.; Manfreda, S.; Iacobellis, V.; Fiorentino, M.

    2009-04-01

    The present study exploits an analytical model (Manfreda, NHESS [2008]) for the description of the probability density function of soil water balance and runoff generation over a set of river basins belonging to Southern Italy. The model is based on a stochastic differential equation where the rainfall forcing is interpreted as an additive noise in the soil water balance; the watershed heterogeneity is described exploiting the conceptual lumped watershed Xinanjiang model (widely used in China) that uses a parabolic curve for the distribution of the soil water storage capacity (Zhao et al. [1980]). The model, characterized by parameters that depend on soil, vegetation and basin morphology, allowed to derive the probability density function of the relative saturation and the surface runoff of a basin accounting for the spatial heterogeneity in soil water storage. Its application on some river basins belonging to regions of Southern Italy, gives interesting insights for the investigation of the role played by the dynamical interaction between climate, soil, and vegetation in soil moisture and runoff production dynamics. Manfreda, S., Runoff Generation Dynamics within a Humid River Basin, Natural Hazard and Earth System Sciences, 8, 1349-1357, 2008. Zhao, R. -J., Zhang, Y. L., and Fang, L. R.: The Xinanjiang model, Hydrological Forecasting Proceedings Oxford Symposium, IAHS Pub. 129, 351-356, 1980.

  8. Improved ensemble-mean forecasting of ENSO events by a zero-mean stochastic error model of an intermediate coupled model

    NASA Astrophysics Data System (ADS)

    Zheng, Fei; Zhu, Jiang

    2017-04-01

    How to design a reliable ensemble prediction strategy with considering the major uncertainties of a forecasting system is a crucial issue for performing an ensemble forecast. In this study, a new stochastic perturbation technique is developed to improve the prediction skills of El Niño-Southern Oscillation (ENSO) through using an intermediate coupled model. We first estimate and analyze the model uncertainties from the ensemble Kalman filter analysis results through assimilating the observed sea surface temperatures. Then, based on the pre-analyzed properties of model errors, we develop a zero-mean stochastic model-error model to characterize the model uncertainties mainly induced by the missed physical processes of the original model (e.g., stochastic atmospheric forcing, extra-tropical effects, Indian Ocean Dipole). Finally, we perturb each member of an ensemble forecast at each step by the developed stochastic model-error model during the 12-month forecasting process, and add the zero-mean perturbations into the physical fields to mimic the presence of missing processes and high-frequency stochastic noises. The impacts of stochastic model-error perturbations on ENSO deterministic predictions are examined by performing two sets of 21-yr hindcast experiments, which are initialized from the same initial conditions and differentiated by whether they consider the stochastic perturbations. The comparison results show that the stochastic perturbations have a significant effect on improving the ensemble-mean prediction skills during the entire 12-month forecasting process. This improvement occurs mainly because the nonlinear terms in the model can form a positive ensemble-mean from a series of zero-mean perturbations, which reduces the forecasting biases and then corrects the forecast through this nonlinear heating mechanism.

  9. Biodiversity, productivity, and the spatial insurance hypothesis revisited

    PubMed Central

    Shanafelt, David W.; Dieckmann, Ulf; Jonas, Matthias; Franklin, Oskar; Loreau, Michel; Perrings, Charles

    2015-01-01

    Accelerating rates of biodiversity loss have led ecologists to explore the effects of species richness on ecosystem functioning and the flow of ecosystem services. One explanation of the relationship between biodiversity and ecosystem functioning lies in the spatial insurance hypothesis, which centers on the idea that productivity and stability increase with biodiversity in a temporally varying, spatially heterogeneous environment. However, there has been little work on the impact of dispersal where environmental risks are more or less spatially correlated, or where dispersal rates are variable. In this paper, we extend the original Loreau model to consider stochastic temporal variation in resource availability, which we refer to as “environmental risk,” and heterogeneity in species dispersal rates. We find that asynchronies across communities and species provide community-level stabilizing effects on productivity, despite varying levels of species richness. Although intermediate dispersal rates play a role in mitigating risk, they are less effective in insuring productivity against global (metacommunity-level) than local (individual community-level) risks. These results are particularly interesting given the emergence of global sources of risk such as climate change or the closer integration of world markets. Our results offer deeper insights into the Loreau model and new perspectives on the effectiveness of spatial insurance in the face of environmental risks. PMID:26100182

  10. Biodiversity, productivity, and the spatial insurance hypothesis revisited.

    PubMed

    Shanafelt, David W; Dieckmann, Ulf; Jonas, Matthias; Franklin, Oskar; Loreau, Michel; Perrings, Charles

    2015-09-07

    Accelerating rates of biodiversity loss have led ecologists to explore the effects of species richness on ecosystem functioning and the flow of ecosystem services. One explanation of the relationship between biodiversity and ecosystem functioning lies in the spatial insurance hypothesis, which centers on the idea that productivity and stability increase with biodiversity in a temporally varying, spatially heterogeneous environment. However, there has been little work on the impact of dispersal where environmental risks are more or less spatially correlated, or where dispersal rates are variable. In this paper, we extend the original Loreau model to consider stochastic temporal variation in resource availability, which we refer to as "environmental risk", and heterogeneity in species dispersal rates. We find that asynchronies across communities and species provide community-level stabilizing effects on productivity, despite varying levels of species richness. Although intermediate dispersal rates play a role in mitigating risk, they are less effective in insuring productivity against global (metacommunity-level) than local (individual community-level) risks. These results are particularly interesting given the emergence of global sources of risk such as climate change or the closer integration of world markets. Our results offer deeper insights into the Loreau model and new perspectives on the effectiveness of spatial insurance in the face of environmental risks. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Anomalous transport in disordered fracture networks: Spatial Markov model for dispersion with variable injection modes

    NASA Astrophysics Data System (ADS)

    Kang, Peter K.; Dentz, Marco; Le Borgne, Tanguy; Lee, Seunghak; Juanes, Ruben

    2017-08-01

    We investigate tracer transport on random discrete fracture networks that are characterized by the statistics of the fracture geometry and hydraulic conductivity. While it is well known that tracer transport through fractured media can be anomalous and particle injection modes can have major impact on dispersion, the incorporation of injection modes into effective transport modeling has remained an open issue. The fundamental reason behind this challenge is that-even if the Eulerian fluid velocity is steady-the Lagrangian velocity distribution experienced by tracer particles evolves with time from its initial distribution, which is dictated by the injection mode, to a stationary velocity distribution. We quantify this evolution by a Markov model for particle velocities that are equidistantly sampled along trajectories. This stochastic approach allows for the systematic incorporation of the initial velocity distribution and quantifies the interplay between velocity distribution and spatial and temporal correlation. The proposed spatial Markov model is characterized by the initial velocity distribution, which is determined by the particle injection mode, the stationary Lagrangian velocity distribution, which is derived from the Eulerian velocity distribution, and the spatial velocity correlation length, which is related to the characteristic fracture length. This effective model leads to a time-domain random walk for the evolution of particle positions and velocities, whose joint distribution follows a Boltzmann equation. Finally, we demonstrate that the proposed model can successfully predict anomalous transport through discrete fracture networks with different levels of heterogeneity and arbitrary tracer injection modes.

  12. Effects of stochastic sodium channels on extracellular excitation of myelinated nerve fibers.

    PubMed

    Mino, Hiroyuki; Grill, Warren M

    2002-06-01

    The effects of the stochastic gating properties of sodium channels on the extracellular excitation properties of mammalian nerve fibers was determined by computer simulation. To reduce computation time, a hybrid multicompartment cable model including five central nodes of Ranvier containing stochastic sodium channels and 16 flanking nodes containing detenninistic membrane dynamics was developed. The excitation properties of the hybrid cable model were comparable with those of a full stochastic cable model including 21 nodes of Ranvier containing stochastic sodium channels, indicating the validity of the hybrid cable model. The hybrid cable model was used to investigate whether or not the excitation properties of extracellularly activated fibers were influenced by the stochastic gating of sodium channels, including spike latencies, strength-duration (SD), current-distance (IX), and recruitment properties. The stochastic properties of the sodium channels in the hybrid cable model had the greatest impact when considering the temporal dynamics of nerve fibers, i.e., a large variability in latencies, while they did not influence the SD, IX, or recruitment properties as compared with those of the conventional deterministic cable model. These findings suggest that inclusion of stochastic nodes is not important for model-based design of stimulus waveforms for activation of motor nerve fibers. However, in cases where temporal fine structure is important, for example in sensory neural prostheses in the auditory and visual systems, the stochastic properties of the sodium channels may play a key role in the design of stimulus waveforms.

  13. Modeling stochasticity and robustness in gene regulatory networks.

    PubMed

    Garg, Abhishek; Mohanram, Kartik; Di Cara, Alessandro; De Micheli, Giovanni; Xenarios, Ioannis

    2009-06-15

    Understanding gene regulation in biological processes and modeling the robustness of underlying regulatory networks is an important problem that is currently being addressed by computational systems biologists. Lately, there has been a renewed interest in Boolean modeling techniques for gene regulatory networks (GRNs). However, due to their deterministic nature, it is often difficult to identify whether these modeling approaches are robust to the addition of stochastic noise that is widespread in gene regulatory processes. Stochasticity in Boolean models of GRNs has been addressed relatively sparingly in the past, mainly by flipping the expression of genes between different expression levels with a predefined probability. This stochasticity in nodes (SIN) model leads to over representation of noise in GRNs and hence non-correspondence with biological observations. In this article, we introduce the stochasticity in functions (SIF) model for simulating stochasticity in Boolean models of GRNs. By providing biological motivation behind the use of the SIF model and applying it to the T-helper and T-cell activation networks, we show that the SIF model provides more biologically robust results than the existing SIN model of stochasticity in GRNs. Algorithms are made available under our Boolean modeling toolbox, GenYsis. The software binaries can be downloaded from http://si2.epfl.ch/ approximately garg/genysis.html.

  14. Analysis of shifts in the spatial distribution of vegetation due to climate change

    NASA Astrophysics Data System (ADS)

    del Jesus, Manuel; Díez-Sierra, Javier; Rinaldo, Andrea; Rodríguez-Iturbe, Ignacio

    2017-04-01

    Climate change will modify the statistical regime of most climatological variables, inducing changes on average values and in the natural variability of environmental variables. These environmental variables may be used to explain the spatial distribution of functional types of vegetation in arid and semiarid watersheds through the use of plant optimization theories. Therefore, plant optimization theories may be used to approximate the response of the spatial distribution of vegetation to a changing climate. Predicting changes in these spatial distributions is important to understand how climate change may affect vegetated ecosystems, but it is also important for hydrological engineering applications where climate change effects on water availability are assessed. In this work, Maximum Entropy Production (MEP) is used as the plant optimization theory that describes the spatial distribution of functional types of vegetation. Current climatological conditions are obtained from direct observations from meteorological stations. Climate change effects are evaluated for different temporal horizons and different climate change scenarios using numerical model outputs from the CMIP5. Rainfall estimates are downscaled by means of a stochastic point process used to model rainfall. The study is carried out for the Rio Salado watershed, located within the Sevilleta LTER site, in New Mexico (USA). Results show the expected changes in the spatial distribution of vegetation and allow to evaluate the expected variability of the changes. The updated spatial distributions allow to evaluate the vegetated ecosystem health and its updated resilience. These results can then be used to inform the hydrological modeling part of climate change assessments analyzing water availability in arid and semiarid watersheds.

  15. Final Technical Report: Mathematical Foundations for Uncertainty Quantification in Materials Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plechac, Petr; Vlachos, Dionisios G.

    We developed path-wise information theory-based and goal-oriented sensitivity analysis and parameter identification methods for complex high-dimensional dynamics and in particular of non-equilibrium extended molecular systems. The combination of these novel methodologies provided the first methods in the literature which are capable to handle UQ questions for stochastic complex systems with some or all of the following features: (a) multi-scale stochastic models such as (bio)chemical reaction networks, with a very large number of parameters, (b) spatially distributed systems such as Kinetic Monte Carlo or Langevin Dynamics, (c) non-equilibrium processes typically associated with coupled physico-chemical mechanisms, driven boundary conditions, hybrid micro-macro systems,more » etc. A particular computational challenge arises in simulations of multi-scale reaction networks and molecular systems. Mathematical techniques were applied to in silico prediction of novel materials with emphasis on the effect of microstructure on model uncertainty quantification (UQ). We outline acceleration methods to make calculations of real chemistry feasible followed by two complementary tasks on structure optimization and microstructure-induced UQ.« less

  16. Strength statistics of single crystals and metallic glasses under small stressed volumes

    DOE PAGES

    Gao, Yanfei; Bei, Hongbin

    2016-05-13

    It has been well documented that plastic deformation of crystalline and amorphous metals/alloys shows a general trend of “smaller is stronger”. The majority of the experimental and modeling studies along this line have been focused on finding and reasoning the scaling slope or exponent in the logarithmic plot of strength versus size. In contrast to this view, here we show that the universal picture should be the thermally activated nucleation mechanisms in small stressed volume, the stochastic behavior as to find the weakest links in intermediate sizes of the stressed volume, and the convolution of these two mechanisms with respectmore » to variables such as indenter radius in nanoindentation pop-in, crystallographic orientation, pre-strain level, sample length as in uniaxial tests, and others. Furthermore, experiments that cover the entire spectrum of length scales and a unified model that treats both thermal activation and spatial stochasticity have discovered new perspectives in understanding and correlating the strength statistics in a vast of observations in nanoindentation, micro-pillar compression, and fiber/whisker tension tests of single crystals and metallic glasses.« less

  17. Experimental study and simulation of space charge stimulated discharge

    NASA Astrophysics Data System (ADS)

    Noskov, M. D.; Malinovski, A. S.; Cooke, C. M.; Wright, K. A.; Schwab, A. J.

    2002-11-01

    The electrical discharge of volume distributed space charge in poly(methylmethacrylate) (PMMA) has been investigated both experimentally and by computer simulation. The experimental space charge was implanted in dielectric samples by exposure to a monoenergetic electron beam of 3 MeV. Electrical breakdown through the implanted space charge region within the sample was initiated by a local electric field enhancement applied to the sample surface. A stochastic-deterministic dynamic model for electrical discharge was developed and used in a computer simulation of these breakdowns. The model employs stochastic rules to describe the physical growth of the discharge channels, and deterministic laws to describe the electric field, the charge, and energy dynamics within the discharge channels and the dielectric. Simulated spatial-temporal and current characteristics of the expanding discharge structure during physical growth are quantitatively compared with the experimental data to confirm the discharge model. It was found that a single fixed set of physically based dielectric parameter values was adequate to simulate the complete family of experimental space charge discharges in PMMA. It is proposed that such a set of parameters also provides a useful means to quantify the breakdown properties of other dielectrics.

  18. Analysis of a novel stochastic SIRS epidemic model with two different saturated incidence rates

    NASA Astrophysics Data System (ADS)

    Chang, Zhengbo; Meng, Xinzhu; Lu, Xiao

    2017-04-01

    This paper presents a stochastic SIRS epidemic model with two different nonlinear incidence rates and double epidemic asymmetrical hypothesis, and we devote to develop a mathematical method to obtain the threshold of the stochastic epidemic model. We firstly investigate the boundness and extinction of the stochastic system. Furthermore, we use Ito's formula, the comparison theorem and some new inequalities techniques of stochastic differential systems to discuss persistence in mean of two diseases on three cases. The results indicate that stochastic fluctuations can suppress the disease outbreak. Finally, numerical simulations about different noise disturbance coefficients are carried out to illustrate the obtained theoretical results.

  19. Temporal acceleration of spatially distributed kinetic Monte Carlo simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Abhijit; Vlachos, Dionisios G.

    The computational intensity of kinetic Monte Carlo (KMC) simulation is a major impediment in simulating large length and time scales. In recent work, an approximate method for KMC simulation of spatially uniform systems, termed the binomial {tau}-leap method, was introduced [A. Chatterjee, D.G. Vlachos, M.A. Katsoulakis, Binomial distribution based {tau}-leap accelerated stochastic simulation, J. Chem. Phys. 122 (2005) 024112], where molecular bundles instead of individual processes are executed over coarse-grained time increments. This temporal coarse-graining can lead to significant computational savings but its generalization to spatially lattice KMC simulation has not been realized yet. Here we extend the binomial {tau}-leapmore » method to lattice KMC simulations by combining it with spatially adaptive coarse-graining. Absolute stability and computational speed-up analyses for spatial systems along with simulations provide insights into the conditions where accuracy and substantial acceleration of the new spatio-temporal coarse-graining method are ensured. Model systems demonstrate that the r-time increment criterion of Chatterjee et al. obeys the absolute stability limit for values of r up to near 1.« less

  20. Modelling remediation scenarios in historical mining catchments.

    PubMed

    Gamarra, Javier G P; Brewer, Paul A; Macklin, Mark G; Martin, Katherine

    2014-01-01

    Local remediation measures, particularly those undertaken in historical mining areas, can often be ineffective or even deleterious because erosion and sedimentation processes operate at spatial scales beyond those typically used in point-source remediation. Based on realistic simulations of a hybrid landscape evolution model combined with stochastic rainfall generation, we demonstrate that similar remediation strategies may result in differing effects across three contrasting European catchments depending on their topographic and hydrologic regimes. Based on these results, we propose a conceptual model of catchment-scale remediation effectiveness based on three basic catchment characteristics: the degree of contaminant source coupling, the ratio of contaminated to non-contaminated sediment delivery, and the frequency of sediment transport events.

  1. Relevance of anisotropy and spatial variability of gas diffusivity for soil-gas transport

    NASA Astrophysics Data System (ADS)

    Schack-Kirchner, Helmer; Kühne, Anke; Lang, Friederike

    2017-04-01

    Models of soil gas transport generally do not consider neither direction dependence of gas diffusivity, nor its small-scale variability. However, in a recent study, we could provide evidence for anisotropy favouring vertical gas diffusion in natural soils. We hypothesize that gas transport models based on gas diffusion data measured with soil rings are strongly influenced by both, anisotropy and spatial variability and the use of averaged diffusivities could be misleading. To test this we used a 2-dimensional model of soil gas transport to under compacted wheel tracks to model the soil-air oxygen distribution in the soil. The model was parametrized with data obtained from soil-ring measurements with its central tendency and variability. The model includes vertical parameter variability as well as variation perpendicular to the elongated wheel track. Different parametrization types have been tested: [i)]Averaged values for wheel track and undisturbed. em [ii)]Random distribution of soil cells with normally distributed variability within the strata. em [iii)]Random distributed soil cells with uniformly distributed variability within the strata. All three types of small-scale variability has been tested for [j)] isotropic gas diffusivity and em [jj)]reduced horizontal gas diffusivity (constant factor), yielding in total six models. As expected the different parametrizations had an important influence to the aeration state under wheel tracks with the strongest oxygen depletion in case of uniformly distributed variability and anisotropy towards higher vertical diffusivity. The simple simulation approach clearly showed the relevance of anisotropy and spatial variability in case of identical central tendency measures of gas diffusivity. However, until now it did not consider spatial dependency of variability, that could even aggravate effects. To consider anisotropy and spatial variability in gas transport models we recommend a) to measure soil-gas transport parameters spatially explicit including different directions and b) to use random-field stochastic models to assess the possible effects for gas-exchange models.

  2. Biological signatures of dynamic river networks from a coupled landscape evolution and neutral community model

    NASA Astrophysics Data System (ADS)

    Stokes, M.; Perron, J. T.

    2017-12-01

    Freshwater systems host exceptionally species-rich communities whose spatial structure is dictated by the topology of the river networks they inhabit. Over geologic time, river networks are dynamic; drainage basins shrink and grow, and river capture establishes new connections between previously separated regions. It has been hypothesized that these changes in river network structure influence the evolution of life by exchanging and isolating species, perhaps boosting biodiversity in the process. However, no general model exists to predict the evolutionary consequences of landscape change. We couple a neutral community model of freshwater organisms to a landscape evolution model in which the river network undergoes drainage divide migration and repeated river capture. Neutral community models are macro-ecological models that include stochastic speciation and dispersal to produce realistic patterns of biodiversity. We explore the consequences of three modes of speciation - point mutation, time-protracted, and vicariant (geographic) speciation - by tracking patterns of diversity in time and comparing the final result to an equilibrium solution of the neutral model on the final landscape. Under point mutation, a simple model of stochastic and instantaneous speciation, the results are identical to the equilibrium solution and indicate the dominance of the species-area relationship in forming patterns of diversity. The number of species in a basin is proportional to its area, and regional species richness reaches its maximum when drainage area is evenly distributed among sub-basins. Time-protracted speciation is also modeled as a stochastic process, but in order to produce more realistic rates of diversification, speciation is not assumed to be instantaneous. Rather, each new species must persist for a certain amount of time before it is considered to be established. When vicariance (geographic speciation) is included, there is a transient signature of increased regional diversity after river capture. The results indicate that the mode of speciation and the rate of speciation relative to the rate of divide migration determine the evolutionary signature of river capture.

  3. Groundwater–surface water mixing shifts ecological assembly processes and stimulates organic carbon turnover

    DOE PAGES

    Stegen, James C.; Fredrickson, James K.; Wilkins, Michael J.; ...

    2016-04-07

    Environmental transition zones are associated with geochemical gradients that overcome energy limitations to microbial metabolism, resulting in biogeochemical hot spots and moments. Riverine systems where groundwater mixes with surface water (the hyporheic zone) are spatially complex and temporally dynamic, making development of predictive models challenging. Spatial and temporal variations in hyporheic zone microbial communities are a key, but understudied, component of riverine biogeochemical function. To investigate the coupling among groundwater-surface water mixing, microbial communities, and biogeochemistry we applied ecological theory, aqueous biogeochemistry, DNA sequencing, and ultra-high resolution organic carbon profiling to field samples collected across times and locations representing amore » broad range of mixing conditions. Mixing of groundwater and surface water resulted in a shift from transport-driven stochastic dynamics to a deterministic microbial structure associated with elevated biogeochemical rates. While the dynamics of the hyporheic make predictive modeling a challenge, we provide new knowledge that can improve the tractability of such models.« less

  4. Dual coding with STDP in a spiking recurrent neural network model of the hippocampus.

    PubMed

    Bush, Daniel; Philippides, Andrew; Husbands, Phil; O'Shea, Michael

    2010-07-01

    The firing rate of single neurons in the mammalian hippocampus has been demonstrated to encode for a range of spatial and non-spatial stimuli. It has also been demonstrated that phase of firing, with respect to the theta oscillation that dominates the hippocampal EEG during stereotype learning behaviour, correlates with an animal's spatial location. These findings have led to the hypothesis that the hippocampus operates using a dual (rate and temporal) coding system. To investigate the phenomenon of dual coding in the hippocampus, we examine a spiking recurrent network model with theta coded neural dynamics and an STDP rule that mediates rate-coded Hebbian learning when pre- and post-synaptic firing is stochastic. We demonstrate that this plasticity rule can generate both symmetric and asymmetric connections between neurons that fire at concurrent or successive theta phase, respectively, and subsequently produce both pattern completion and sequence prediction from partial cues. This unifies previously disparate auto- and hetero-associative network models of hippocampal function and provides them with a firmer basis in modern neurobiology. Furthermore, the encoding and reactivation of activity in mutually exciting Hebbian cell assemblies demonstrated here is believed to represent a fundamental mechanism of cognitive processing in the brain.

  5. Diffusive transport in the presence of stochastically gated absorption

    NASA Astrophysics Data System (ADS)

    Bressloff, Paul C.; Karamched, Bhargav R.; Lawley, Sean D.; Levien, Ethan

    2017-08-01

    We analyze a population of Brownian particles moving in a spatially uniform environment with stochastically gated absorption. The state of the environment at time t is represented by a discrete stochastic variable k (t )∈{0 ,1 } such that the rate of absorption is γ [1 -k (t )] , with γ a positive constant. The variable k (t ) evolves according to a two-state Markov chain. We focus on how stochastic gating affects the attenuation of particle absorption with distance from a localized source in a one-dimensional domain. In the static case (no gating), the steady-state attenuation is given by an exponential with length constant √{D /γ }, where D is the diffusivity. We show that gating leads to slower, nonexponential attenuation. We also explore statistical correlations between particles due to the fact that they all diffuse in the same switching environment. Such correlations can be determined in terms of moments of the solution to a corresponding stochastic Fokker-Planck equation.

  6. Stochastic Human Exposure and Dose Simulation Model for Pesticides

    EPA Science Inventory

    SHEDS-Pesticides (Stochastic Human Exposure and Dose Simulation Model for Pesticides) is a physically-based stochastic model developed to quantify exposure and dose of humans to multimedia, multipathway pollutants. Probabilistic inputs are combined in physical/mechanistic algorit...

  7. Approximation of Quantum Stochastic Differential Equations for Input-Output Model Reduction

    DTIC Science & Technology

    2016-02-25

    Approximation of Quantum Stochastic Differential Equations for Input-Output Model Reduction We have completed a short program of theoretical research...on dimensional reduction and approximation of models based on quantum stochastic differential equations. Our primary results lie in the area of...2211 quantum probability, quantum stochastic differential equations REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR

  8. Comparing Lagrangian and Eulerian models for CO2 transport - a step towards Bayesian inverse modeling using WRF/STILT-VPRM

    NASA Astrophysics Data System (ADS)

    Pillai, D.; Gerbig, C.; Kretschmer, R.; Beck, V.; Karstens, U.; Neininger, B.; Heimann, M.

    2012-10-01

    We present simulations of atmospheric CO2 concentrations provided by two modeling systems, run at high spatial resolution: the Eulerian-based Weather Research Forecasting (WRF) model and the Lagrangian-based Stochastic Time-Inverted Lagrangian Transport (STILT) model, both of which are coupled to a diagnostic biospheric model, the Vegetation Photosynthesis and Respiration Model (VPRM). The consistency of the simulations is assessed with special attention paid to the details of horizontal as well as vertical transport and mixing of CO2 concentrations in the atmosphere. The dependence of model mismatch (Eulerian vs. Lagrangian) on models' spatial resolution is further investigated. A case study using airborne measurements during which two models showed large deviations from each other is analyzed in detail as an extreme case. Using aircraft observations and pulse release simulations, we identified differences in the representation of details in the interaction between turbulent mixing and advection through wind shear as the main cause of discrepancies between WRF and STILT transport at a spatial resolution such as 2 and 6 km. Based on observations and inter-model comparisons of atmospheric CO2 concentrations, we show that a refinement of the parameterization of turbulent velocity variance and Lagrangian time-scale in STILT is needed to achieve a better match between the Eulerian and the Lagrangian transport at such a high spatial resolution (e.g. 2 and 6 km). Nevertheless, the inter-model differences in simulated CO2 time series for a tall tower observatory at Ochsenkopf in Germany are about a factor of two smaller than the model-data mismatch and about a factor of three smaller than the mismatch between the current global model simulations and the data.

  9. Phenomenology of stochastic exponential growth

    NASA Astrophysics Data System (ADS)

    Pirjol, Dan; Jafarpour, Farshid; Iyer-Biswas, Srividya

    2017-06-01

    Stochastic exponential growth is observed in a variety of contexts, including molecular autocatalysis, nuclear fission, population growth, inflation of the universe, viral social media posts, and financial markets. Yet literature on modeling the phenomenology of these stochastic dynamics has predominantly focused on one model, geometric Brownian motion (GBM), which can be described as the solution of a Langevin equation with linear drift and linear multiplicative noise. Using recent experimental results on stochastic exponential growth of individual bacterial cell sizes, we motivate the need for a more general class of phenomenological models of stochastic exponential growth, which are consistent with the observation that the mean-rescaled distributions are approximately stationary at long times. We show that this behavior is not consistent with GBM, instead it is consistent with power-law multiplicative noise with positive fractional powers. Therefore, we consider this general class of phenomenological models for stochastic exponential growth, provide analytical solutions, and identify the important dimensionless combination of model parameters, which determines the shape of the mean-rescaled distribution. We also provide a prescription for robustly inferring model parameters from experimentally observed stochastic growth trajectories.

  10. Dynamics of a stochastic multi-strain SIS epidemic model driven by Lévy noise

    NASA Astrophysics Data System (ADS)

    Chen, Can; Kang, Yanmei

    2017-01-01

    A stochastic multi-strain SIS epidemic model is formulated by introducing Lévy noise into the disease transmission rate of each strain. First, we prove that the stochastic model admits a unique global positive solution, and, by the comparison theorem, we show that the solution remains within a positively invariant set almost surely. Next we investigate stochastic stability of the disease-free equilibrium, including stability in probability and pth moment asymptotic stability. Then sufficient conditions for persistence in the mean of the disease are established. Finally, based on an Euler scheme for Lévy-driven stochastic differential equations, numerical simulations for a stochastic two-strain model are carried out to verify the theoretical results. Moreover, numerical comparison results of the stochastic two-strain model and the deterministic version are also given. Lévy noise can cause the two strains to become extinct almost surely, even though there is a dominant strain that persists in the deterministic model. It can be concluded that the introduction of Lévy noise reduces the disease extinction threshold, which indicates that Lévy noise may suppress the disease outbreak.

  11. Gaussian Processes for Prediction of Homing Pigeon Flight Trajectories

    NASA Astrophysics Data System (ADS)

    Mann, Richard; Freeman, Robin; Osborne, Michael; Garnett, Roman; Meade, Jessica; Armstrong, Chris; Biro, Dora; Guilford, Tim; Roberts, Stephen

    2009-12-01

    We construct and apply a stochastic Gaussian Process (GP) model of flight trajectory generation for pigeons trained to home from specific release sites. The model shows increasing predictive power as the birds become familiar with the sites, mirroring the animal's learning process. We show how the increasing similarity between successive flight trajectories can be used to infer, with increasing accuracy, an idealised route that captures the repeated spatial aspects of the bird's flight. We subsequently use techniques associated with reduced-rank GP approximations to objectively identify the key waypoints used by each bird to memorise its idiosyncratic habitual route between the release site and the home loft.

  12. Complex groundwater flow systems as traveling agent models

    PubMed Central

    Padilla, Pablo; Escolero, Oscar; González, Tomas; Morales-Casique, Eric; Osorio-Olvera, Luis

    2014-01-01

    Analyzing field data from pumping tests, we show that as with many other natural phenomena, groundwater flow exhibits complex dynamics described by 1/f power spectrum. This result is theoretically studied within an agent perspective. Using a traveling agent model, we prove that this statistical behavior emerges when the medium is complex. Some heuristic reasoning is provided to justify both spatial and dynamic complexity, as the result of the superposition of an infinite number of stochastic processes. Even more, we show that this implies that non-Kolmogorovian probability is needed for its study, and provide a set of new partial differential equations for groundwater flow. PMID:25337455

  13. Stochastic Modeling of Empirical Storm Loss in Germany

    NASA Astrophysics Data System (ADS)

    Prahl, B. F.; Rybski, D.; Kropp, J. P.; Burghoff, O.; Held, H.

    2012-04-01

    Based on German insurance loss data for residential property we derive storm damage functions that relate daily loss with maximum gust wind speed. Over a wide range of loss, steep power law relationships are found with spatially varying exponents ranging between approximately 8 and 12. Global correlations between parameters and socio-demographic data are employed to reduce the number of local parameters to 3. We apply a Monte Carlo approach to calculate German loss estimates including confidence bounds in daily and annual resolution. Our model reproduces the annual progression of winter storm losses and enables to estimate daily losses over a wide range of magnitude.

  14. Stochastic dynamics of melt ponds and sea ice-albedo climate feedback

    NASA Astrophysics Data System (ADS)

    Sudakov, Ivan

    Evolution of melt ponds on the Arctic sea surface is a complicated stochastic process. We suggest a low-order model with ice-albedo feedback which describes stochastic dynamics of melt ponds geometrical characteristics. The model is a stochastic dynamical system model of energy balance in the climate system. We describe the equilibria in this model. We conclude the transition in fractal dimension of melt ponds affects the shape of the sea ice albedo curve.

  15. Effects of Stochastic Traffic Flow Model on Expected System Performance

    DTIC Science & Technology

    2012-12-01

    NSWC-PCD has made considerable improvements to their pedestrian flow modeling . In addition to the linear paths, the 2011 version now includes...using stochastic paths. 2.2 Linear Paths vs. Stochastic Paths 2.2.1 Linear Paths and Direct Maximum Pd Calculation Modeling pedestrian traffic flow...as a stochastic process begins with the linear path model . Let the detec- tion area be R x C voxels. This creates C 2 total linear paths, path(Cs

  16. Tomographic reconstruction of atmospheric turbulence with the use of time-dependent stochastic inversion.

    PubMed

    Vecherin, Sergey N; Ostashev, Vladimir E; Ziemann, A; Wilson, D Keith; Arnold, K; Barth, M

    2007-09-01

    Acoustic travel-time tomography allows one to reconstruct temperature and wind velocity fields in the atmosphere. In a recently published paper [S. Vecherin et al., J. Acoust. Soc. Am. 119, 2579 (2006)], a time-dependent stochastic inversion (TDSI) was developed for the reconstruction of these fields from travel times of sound propagation between sources and receivers in a tomography array. TDSI accounts for the correlation of temperature and wind velocity fluctuations both in space and time and therefore yields more accurate reconstruction of these fields in comparison with algebraic techniques and regular stochastic inversion. To use TDSI, one needs to estimate spatial-temporal covariance functions of temperature and wind velocity fluctuations. In this paper, these spatial-temporal covariance functions are derived for locally frozen turbulence which is a more general concept than a widely used hypothesis of frozen turbulence. The developed theory is applied to reconstruction of temperature and wind velocity fields in the acoustic tomography experiment carried out by University of Leipzig, Germany. The reconstructed temperature and velocity fields are presented and errors in reconstruction of these fields are studied.

  17. Signal detection evidence for limited capacity in visual search

    PubMed Central

    Fencsik, David E.; Flusberg, Stephen J.; Horowitz, Todd S.; Wolfe, Jeremy M.

    2014-01-01

    The nature of capacity limits (if any) in visual search has been a topic of controversy for decades. In 30 years of work, researchers have attempted to distinguish between two broad classes of visual search models. Attention-limited models have proposed two stages of perceptual processing: an unlimited-capacity preattentive stage, and a limited-capacity selective attention stage. Conversely, noise-limited models have proposed a single, unlimited-capacity perceptual processing stage, with decision processes influenced only by stochastic noise. Here, we use signal detection methods to test a strong prediction of attention-limited models. In standard attention-limited models, performance of some searches (feature searches) should only be limited by a preattentive stage. Other search tasks (e.g., spatial configuration search for a “2” among “5”s) should be additionally limited by an attentional bottleneck. We equated average accuracies for a feature and a spatial configuration search over set sizes of 1–8 for briefly presented stimuli. The strong prediction of attention-limited models is that, given overall equivalence in performance, accuracy should be better on the spatial configuration search than on the feature search for set size 1, and worse for set size 8. We confirm this crossover interaction and show that it is problematic for at least one class of one-stage decision models. PMID:21901574

  18. A stochastic ensemble-based model to predict crop water requirements from numerical weather forecasts and VIS-NIR high resolution satellite images in Southern Italy

    NASA Astrophysics Data System (ADS)

    Pelosi, Anna; Falanga Bolognesi, Salvatore; De Michele, Carlo; Medina Gonzalez, Hanoi; Villani, Paolo; D'Urso, Guido; Battista Chirico, Giovanni

    2015-04-01

    Irrigation agriculture is one the biggest consumer of water in Europe, especially in southern regions, where it accounts for up to 70% of the total water consumption. The EU Common Agricultural Policy, combined with the Water Framework Directive, imposes to farmers and irrigation managers a substantial increase of the efficiency in the use of water in agriculture for the next decade. Ensemble numerical weather predictions can be valuable data for developing operational advisory irrigation services. We propose a stochastic ensemble-based model providing spatial and temporal estimates of crop water requirements, implemented within an advisory service offering detailed maps of irrigation water requirements and crop water consumption estimates, to be used by water irrigation managers and farmers. The stochastic model combines estimates of crop potential evapotranspiration retrieved from ensemble numerical weather forecasts (COSMO-LEPS, 16 members, 7 km resolution) and canopy parameters (LAI, albedo, fractional vegetation cover) derived from high resolution satellite images in the visible and near infrared wavelengths. The service provides users with daily estimates of crop water requirements for lead times up to five days. The temporal evolution of the crop potential evapotranspiration is simulated with autoregressive models. An ensemble Kalman filter is employed for updating model states by assimilating both ground based meteorological variables (where available) and numerical weather forecasts. The model has been applied in Campania region (Southern Italy), where a satellite assisted irrigation advisory service has been operating since 2006. This work presents the results of the system performance for one year of experimental service. The results suggest that the proposed model can be an effective support for a sustainable use and management of irrigation water, under conditions of water scarcity and drought. Since the evapotranspiration term represents a staple component in the water balance of a catchment, as outstanding future development, the model could also offer an advanced support for water resources management decisions at catchment scale.

  19. The relationship between stochastic and deterministic quasi-steady state approximations.

    PubMed

    Kim, Jae Kyoung; Josić, Krešimir; Bennett, Matthew R

    2015-11-23

    The quasi steady-state approximation (QSSA) is frequently used to reduce deterministic models of biochemical networks. The resulting equations provide a simplified description of the network in terms of non-elementary reaction functions (e.g. Hill functions). Such deterministic reductions are frequently a basis for heuristic stochastic models in which non-elementary reaction functions are used to define reaction propensities. Despite their popularity, it remains unclear when such stochastic reductions are valid. It is frequently assumed that the stochastic reduction can be trusted whenever its deterministic counterpart is accurate. However, a number of recent examples show that this is not necessarily the case. Here we explain the origin of these discrepancies, and demonstrate a clear relationship between the accuracy of the deterministic and the stochastic QSSA for examples widely used in biological systems. With an analysis of a two-state promoter model, and numerical simulations for a variety of other models, we find that the stochastic QSSA is accurate whenever its deterministic counterpart provides an accurate approximation over a range of initial conditions which cover the likely fluctuations from the quasi steady-state (QSS). We conjecture that this relationship provides a simple and computationally inexpensive way to test the accuracy of reduced stochastic models using deterministic simulations. The stochastic QSSA is one of the most popular multi-scale stochastic simulation methods. While the use of QSSA, and the resulting non-elementary functions has been justified in the deterministic case, it is not clear when their stochastic counterparts are accurate. In this study, we show how the accuracy of the stochastic QSSA can be tested using their deterministic counterparts providing a concrete method to test when non-elementary rate functions can be used in stochastic simulations.

  20. Integrating Sediment Connectivity into Water Resources Management Trough a Graph Theoretic, Stochastic Modeling Framework.

    NASA Astrophysics Data System (ADS)

    Schmitt, R. J. P.; Castelletti, A.; Bizzi, S.

    2014-12-01

    Understanding sediment transport processes at the river basin scale, their temporal spectra and spatial patterns is key to identify and minimize morphologic risks associated to channel adjustments processes. This work contributes a stochastic framework for modeling bed-load connectivity based on recent advances in the field (e.g., Bizzi & Lerner, 2013; Czubas & Foufoulas-Georgiu, 2014). It presents river managers with novel indicators from reach scale vulnerability to channel adjustment in large river networks with sparse hydrologic and sediment observations. The framework comprises three steps. First, based on a distributed hydrological model and remotely sensed information, the framework identifies a representative grain size class for each reach. Second, sediment residence time distributions are calculated for each reach in a Monte-Carlo approach applying standard sediment transport equations driven by local hydraulic conditions. Third, a network analysis defines the up- and downstream connectivity for various travel times resulting in characteristic up/downstream connectivity signatures for each reach. Channel vulnerability indicators quantify the imbalance between up/downstream connectivity for each travel time domain, representing process dependent latency of morphologic response. Last, based on the stochastic core of the model, a sensitivity analysis identifies drivers of change and major sources of uncertainty in order to target key detrimental processes and to guide effective gathering of additional data. The application, limitation and integration into a decision analytic framework is demonstrated for a major part of the Red River Basin in Northern Vietnam (179.000 km2). Here, a plethora of anthropic alterations ranging from large reservoir construction to land-use changes results in major downstream deterioration and calls for deriving concerted sediment management strategies to mitigate current and limit future morphologic alterations.

  1. Developing Stochastic Models as Inputs for High-Frequency Ground Motion Simulations

    NASA Astrophysics Data System (ADS)

    Savran, William Harvey

    High-frequency ( 10 Hz) deterministic ground motion simulations are challenged by our understanding of the small-scale structure of the earth's crust and the rupture process during an earthquake. We will likely never obtain deterministic models that can accurately describe these processes down to the meter scale length required for broadband wave propagation. Instead, we can attempt to explain the behavior, in a statistical sense, by including stochastic models defined by correlations observed in the natural earth and through physics based simulations of the earthquake rupture process. Toward this goal, we develop stochastic models to address both of the primary considerations for deterministic ground motion simulations: namely, the description of the material properties in the crust, and broadband earthquake source descriptions. Using borehole sonic log data recorded in Los Angeles basin, we estimate the spatial correlation structure of the small-scale fluctuations in P-wave velocities by determining the best-fitting parameters of a von Karman correlation function. We find that Hurst exponents, nu, between 0.0-0.2, vertical correlation lengths, az, of 15-150m, an standard deviation, sigma of about 5% characterize the variability in the borehole data. Usin these parameters, we generated a stochastic model of velocity and density perturbations and combined with leading seismic velocity models to perform a validation exercise for the 2008, Chino Hills, CA using heterogeneous media. We find that models of velocity and density perturbations can have significant effects on the wavefield at frequencies as low as 0.3 Hz, with ensemble median values of various ground motion metrics varying up to +/-50%, at certain stations, compared to those computed solely from the CVM. Finally, we develop a kinematic rupture generator based on dynamic rupture simulations on geometrically complex faults. We analyze 100 dynamic rupture simulations on strike-slip faults ranging from Mw 6.4-7.2. We find that our dynamic simulations follow empirical scaling relationships for inter-plate strike-slip events, and provide source spectra comparable with an o -2 model. Our rupture generator reproduces GMPE medians and intra-event standard deviations spectral accelerations for an ensemble of 10 Hz fully-deterministic ground motion simulations, as compared to NGA West2 GMPE relationships up to 0.2 seconds.

  2. The adaptation rate of a quantitative trait in an environmental gradient

    NASA Astrophysics Data System (ADS)

    Hermsen, R.

    2016-12-01

    The spatial range of a species habitat is generally determined by the ability of the species to cope with biotic and abiotic variables that vary in space. Therefore, the species range is itself an evolvable property. Indeed, environmental gradients permit a mode of evolution in which range expansion and adaptation go hand in hand. This process can contribute to rapid evolution of drug resistant bacteria and viruses, because drug concentrations in humans and livestock treated with antibiotics are far from uniform. Here, we use a minimal stochastic model of discrete, interacting organisms evolving in continuous space to study how the rate of adaptation of a quantitative trait depends on the steepness of the gradient and various population parameters. We discuss analytical results for the mean-field limit as well as extensive stochastic simulations. These simulations were performed using an exact, event-driven simulation scheme that can deal with continuous time-, density- and coordinate-dependent reaction rates and could be used for a wide variety of stochastic systems. The results reveal two qualitative regimes. If the gradient is shallow, the rate of adaptation is limited by dispersion and increases linearly with the gradient slope. If the gradient is steep, the adaptation rate is limited by mutation. In this regime, the mean-field result is highly misleading: it predicts that the adaptation rate continues to increase with the gradient slope, whereas stochastic simulations show that it in fact decreases with the square root of the slope. This discrepancy underscores the importance of discreteness and stochasticity even at high population densities; mean-field results, including those routinely used in quantitative genetics, should be interpreted with care.

  3. The adaptation rate of a quantitative trait in an environmental gradient.

    PubMed

    Hermsen, R

    2016-11-30

    The spatial range of a species habitat is generally determined by the ability of the species to cope with biotic and abiotic variables that vary in space. Therefore, the species range is itself an evolvable property. Indeed, environmental gradients permit a mode of evolution in which range expansion and adaptation go hand in hand. This process can contribute to rapid evolution of drug resistant bacteria and viruses, because drug concentrations in humans and livestock treated with antibiotics are far from uniform. Here, we use a minimal stochastic model of discrete, interacting organisms evolving in continuous space to study how the rate of adaptation of a quantitative trait depends on the steepness of the gradient and various population parameters. We discuss analytical results for the mean-field limit as well as extensive stochastic simulations. These simulations were performed using an exact, event-driven simulation scheme that can deal with continuous time-, density- and coordinate-dependent reaction rates and could be used for a wide variety of stochastic systems. The results reveal two qualitative regimes. If the gradient is shallow, the rate of adaptation is limited by dispersion and increases linearly with the gradient slope. If the gradient is steep, the adaptation rate is limited by mutation. In this regime, the mean-field result is highly misleading: it predicts that the adaptation rate continues to increase with the gradient slope, whereas stochastic simulations show that it in fact decreases with the square root of the slope. This discrepancy underscores the importance of discreteness and stochasticity even at high population densities; mean-field results, including those routinely used in quantitative genetics, should be interpreted with care.

  4. Stochastic Petri Net extension of a yeast cell cycle model.

    PubMed

    Mura, Ivan; Csikász-Nagy, Attila

    2008-10-21

    This paper presents the definition, solution and validation of a stochastic model of the budding yeast cell cycle, based on Stochastic Petri Nets (SPN). A specific family of SPNs is selected for building a stochastic version of a well-established deterministic model. We describe the procedure followed in defining the SPN model from the deterministic ODE model, a procedure that can be largely automated. The validation of the SPN model is conducted with respect to both the results provided by the deterministic one and the experimental results available from literature. The SPN model catches the behavior of the wild type budding yeast cells and a variety of mutants. We show that the stochastic model matches some characteristics of budding yeast cells that cannot be found with the deterministic model. The SPN model fine-tunes the simulation results, enriching the breadth and the quality of its outcome.

  5. Characterizing riverbed sediment using high-frequency acoustics 1: spectral properties of scattering

    USGS Publications Warehouse

    Buscombe, Daniel D.; Grams, Paul E.; Kaplinski, Matt A.

    2014-01-01

    Bed-sediment classification using high-frequency hydro-acoustic instruments is challenging when sediments are spatially heterogeneous, which is often the case in rivers. The use of acoustic backscatter to classify sediments is an attractive alternative to analysis of topography because it is potentially sensitive to grain-scale roughness. Here, a new method is presented which uses high-frequency acoustic backscatter from multibeam sonar to classify heterogeneous riverbed sediments by type (sand, gravel,rock) continuously in space and at small spatial resolution. In this, the first of a pair of papers that examine the scattering signatures from a heterogeneous riverbed, methods are presented to construct spatially explicit maps of spectral properties from geo-referenced point clouds of geometrically and radiometrically corrected echoes. Backscatter power spectra are computed to produce scale and amplitude metrics that collectively characterize the length scales of stochastic measures of riverbed scattering, termed ‘stochastic geometries’. Backscatter aggregated over small spatial scales have spectra that obey a power-law. This apparently self-affine behavior could instead arise from morphological- and grain-scale roughnesses over multiple overlapping scales, or riverbed scattering being transitional between Rayleigh and geometric regimes. Relationships exist between stochastic geometries of backscatter and areas of rough and smooth sediments. However, no one parameter can uniquely characterize a particular substrate, nor definitively separate the relative contributions of roughness and acoustic impedance (hardness). Combinations of spectral quantities do, however, have the potential to delineate riverbed sediment patchiness, in a data-driven approach comparing backscatter with bed-sediment observations (which is the subject of part two of this manuscript).

  6. Stochasticity and determinism in models of hematopoiesis.

    PubMed

    Kimmel, Marek

    2014-01-01

    This chapter represents a novel view of modeling in hematopoiesis, synthesizing both deterministic and stochastic approaches. Whereas the stochastic models work in situations where chance dominates, for example when the number of cells is small, or under random mutations, the deterministic models are more important for large-scale, normal hematopoiesis. New types of models are on the horizon. These models attempt to account for distributed environments such as hematopoietic niches and their impact on dynamics. Mixed effects of such structures and chance events are largely unknown and constitute both a challenge and promise for modeling. Our discussion is presented under the separate headings of deterministic and stochastic modeling; however, the connections between both are frequently mentioned. Four case studies are included to elucidate important examples. We also include a primer of deterministic and stochastic dynamics for the reader's use.

  7. Hybrid ODE/SSA methods and the cell cycle model

    NASA Astrophysics Data System (ADS)

    Wang, S.; Chen, M.; Cao, Y.

    2017-07-01

    Stochastic effect in cellular systems has been an important topic in systems biology. Stochastic modeling and simulation methods are important tools to study stochastic effect. Given the low efficiency of stochastic simulation algorithms, the hybrid method, which combines an ordinary differential equation (ODE) system with a stochastic chemically reacting system, shows its unique advantages in the modeling and simulation of biochemical systems. The efficiency of hybrid method is usually limited by reactions in the stochastic subsystem, which are modeled and simulated using Gillespie's framework and frequently interrupt the integration of the ODE subsystem. In this paper we develop an efficient implementation approach for the hybrid method coupled with traditional ODE solvers. We also compare the efficiency of hybrid methods with three widely used ODE solvers RADAU5, DASSL, and DLSODAR. Numerical experiments with three biochemical models are presented. A detailed discussion is presented for the performances of three ODE solvers.

  8. p-adic stochastic hidden variable model

    NASA Astrophysics Data System (ADS)

    Khrennikov, Andrew

    1998-03-01

    We propose stochastic hidden variables model in which hidden variables have a p-adic probability distribution ρ(λ) and at the same time conditional probabilistic distributions P(U,λ), U=A,A',B,B', are ordinary probabilities defined on the basis of the Kolmogorov measure-theoretical axiomatics. A frequency definition of p-adic probability is quite similar to the ordinary frequency definition of probability. p-adic frequency probability is defined as the limit of relative frequencies νn but in the p-adic metric. We study a model with p-adic stochastics on the level of the hidden variables description. But, of course, responses of macroapparatuses have to be described by ordinary stochastics. Thus our model describes a mixture of p-adic stochastics of the microworld and ordinary stochastics of macroapparatuses. In this model probabilities for physical observables are the ordinary probabilities. At the same time Bell's inequality is violated.

  9. Study on individual stochastic model of GNSS observations for precise kinematic applications

    NASA Astrophysics Data System (ADS)

    Próchniewicz, Dominik; Szpunar, Ryszard

    2015-04-01

    The proper definition of mathematical positioning model, which is defined by functional and stochastic models, is a prerequisite to obtain the optimal estimation of unknown parameters. Especially important in this definition is realistic modelling of stochastic properties of observations, which are more receiver-dependent and time-varying than deterministic relationships. This is particularly true with respect to precise kinematic applications which are characterized by weakening model strength. In this case, incorrect or simplified definition of stochastic model causes that the performance of ambiguity resolution and accuracy of position estimation can be limited. In this study we investigate the methods of describing the measurement noise of GNSS observations and its impact to derive precise kinematic positioning model. In particular stochastic modelling of individual components of the variance-covariance matrix of observation noise performed using observations from a very short baseline and laboratory GNSS signal generator, is analyzed. Experimental test results indicate that the utilizing the individual stochastic model of observations including elevation dependency and cross-correlation instead of assumption that raw measurements are independent with the same variance improves the performance of ambiguity resolution as well as rover positioning accuracy. This shows that the proposed stochastic assessment method could be a important part in complex calibration procedure of GNSS equipment.

  10. PROTECTED POLYMORPHISMS AND EVOLUTIONARY STABILITY OF PATCH-SELECTION STRATEGIES IN STOCHASTIC ENVIRONMENTS

    PubMed Central

    EVANS, STEVEN N.; HENING, ALEXANDRU; SCHREIBER, SEBASTIAN J.

    2015-01-01

    We consider a population living in a patchy environment that varies stochastically in space and time. The population is composed of two morphs (that is, individuals of the same species with different genotypes). In terms of survival and reproductive success, the associated phenotypes differ only in their habitat selection strategies. We compute invasion rates corresponding to the rates at which the abundance of an initially rare morph increases in the presence of the other morph established at equilibrium. If both morphs have positive invasion rates when rare, then there is an equilibrium distribution such that the two morphs coexist; that is, there is a protected polymorphism for habitat selection. Alternatively, if one morph has a negative invasion rate when rare, then it is asymptotically displaced by the other morph under all initial conditions where both morphs are present. We refine the characterization of an evolutionary stable strategy for habitat selection from [Schreiber, 2012] in a mathematically rigorous manner. We provide a necessary and sufficient condition for the existence of an ESS that uses all patches and determine when using a single patch is an ESS. We also provide an explicit formula for the ESS when there are two habitat types. We show that adding environmental stochasticity results in an ESS that, when compared to the ESS for the corresponding model without stochasticity, spends less time in patches with larger carrying capacities and possibly makes use of sink patches, thereby practicing a spatial form of bet hedging. PMID:25151369

  11. Characterization of the rat exploratory behavior in the elevated plus-maze with Markov chains.

    PubMed

    Tejada, Julián; Bosco, Geraldine G; Morato, Silvio; Roque, Antonio C

    2010-11-30

    The elevated plus-maze is an animal model of anxiety used to study the effect of different drugs on the behavior of the animal. It consists of a plus-shaped maze with two open and two closed arms elevated 50cm from the floor. The standard measures used to characterize exploratory behavior in the elevated plus-maze are the time spent and the number of entries in the open arms. In this work, we use Markov chains to characterize the exploratory behavior of the rat in the elevated plus-maze under three different conditions: normal and under the effects of anxiogenic and anxiolytic drugs. The spatial structure of the elevated plus-maze is divided into squares, which are associated with states of a Markov chain. By counting the frequencies of transitions between states during 5-min sessions in the elevated plus-maze, we constructed stochastic matrices for the three conditions studied. The stochastic matrices show specific patterns, which correspond to the observed behaviors of the rat under the three different conditions. For the control group, the stochastic matrix shows a clear preference for places in the closed arms. This preference is enhanced for the anxiogenic group. For the anxiolytic group, the stochastic matrix shows a pattern similar to a random walk. Our results suggest that Markov chains can be used together with the standard measures to characterize the rat behavior in the elevated plus-maze. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Portfolio Optimization with Stochastic Dividends and Stochastic Volatility

    ERIC Educational Resources Information Center

    Varga, Katherine Yvonne

    2015-01-01

    We consider an optimal investment-consumption portfolio optimization model in which an investor receives stochastic dividends. As a first problem, we allow the drift of stock price to be a bounded function. Next, we consider a stochastic volatility model. In each problem, we use the dynamic programming method to derive the Hamilton-Jacobi-Bellman…

  13. Accounting for Landscape Heterogeneity Improves Spatial Predictions of Tree Vulnerability to Drought

    NASA Astrophysics Data System (ADS)

    Schwantes, A. M.; Parolari, A.; Swenson, J. J.; Johnson, D. M.; Domec, J. C.; Jackson, R. B.; Pelak, N. F., III; Porporato, A. M.

    2017-12-01

    Globally, as climate change continues, forest vulnerability to droughts and heatwaves is increasing, but vulnerability differs regionally and locally depending on landscape position. However, most models used in forecasting forest responses to heatwaves and droughts do not incorporate relevant spatial processes. To improve predictions of spatial tree vulnerability, we employed a non-linear stochastic model of soil moisture dynamics across a landscape, accounting for spatial differences in aspect, topography, and soils. Our unique approach integrated plant hydraulics and landscape processes, incorporating effects from lateral redistribution of water using a topographic index and radiation and temperature differences attributable to aspect. Across a watershed in central Texas we modeled dynamic water stress for a dominant tree species, Juniperus ashei. We compared our results to a detailed spatial dataset of drought-impacted areas (>25% canopy loss) derived from remote sensing during the severe 2011 drought. We then projected future dynamic water stress through the 21st century using climate projections from 10 global climate models under two scenarios, and compared models with and without landscape heterogeneity. Within this watershed, 42% of J. ashei dominated systems were impacted by the 2011 drought. Modeled dynamic water stress tracked these spatial patterns of observed drought-impacted areas. Total accuracy increased from 59%, when accounting only for soil variability, to 73% when including lateral redistribution of water and radiation and temperature effects. Dynamic water stress was projected to increase through the 21st century, with only minimal buffering from the landscape. During the hotter and more severe droughts projected in the 21st century, up to 90% of the watershed crossed a dynamic water stress threshold associated with canopy loss in 2011. Favorable microsites may exist across a landscape where trees can persist; however, if future droughts are too severe, the buffering capacity of a heterogenous landscape could be overwhelmed. Incorporating spatial data will improve projections of future tree water stress and identification of potential resilient refugia.

  14. Some Stochastic-Duel Models of Combat.

    DTIC Science & Technology

    1983-03-01

    AD-R127 879 SOME STOCHASTIC- DUEL MODELS OF CONBAT(U) NAVAL - / POSTGRADUATE SCHOOL MONTEREY CA J S CHOE MAR 83 UNCLASSiIED FC1/Ehhh1; F/ 12/ ,iE...SCHOOL Monterey, California DTIC ELECTE :MAY 10 1983 "T !H ES IS SOME STOCHASTIC- DUEL MODELS OF COMBAT by Jum Soo Choe March 1983 Thesis Advisor: J. G...TYPE OF RETORT a PERIOD COVIOCe Master’s Thesis Some Stochastic- Duel Models of Combat March 1983 S. PERFORINGi *no. 44POOi umet 7. AUTHORW.) a

  15. Mathematics of Failures in Complex Systems: Characterization and Mitigation of Service Failures in Complex Dynamic Systems

    DTIC Science & Technology

    2007-06-30

    fractal dimensions and Lyapunov exponents . Fractal dimensions characterize geometri- cal complexity of dynamics (e.g., spatial distribution of points along...ant classi3ers (e.g., Lyapunov exponents , and fractal dimensions). The 3rst three steps show how chaotic systems may be separated from stochastic...correlated random walk in which a ¼ 2H, where H is the Hurst exponen interval 0pHp1 with the case H ¼ 0:5 corresponding to a simple rando This model has been

  16. Stochastic modeling of a lava-flow aquifer system

    USGS Publications Warehouse

    Cronkite-Ratcliff, Collin; Phelps, Geoffrey A.

    2014-01-01

    This report describes preliminary three-dimensional geostatistical modeling of a lava-flow aquifer system using a multiple-point geostatistical model. The purpose of this study is to provide a proof-of-concept for this modeling approach. An example of the method is demonstrated using a subset of borehole geologic data and aquifer test data from a portion of the Calico Hills Formation, a lava-flow aquifer system that partially underlies Pahute Mesa, Nevada. Groundwater movement in this aquifer system is assumed to be controlled by the spatial distribution of two geologic units—rhyolite lava flows and zeolitized tuffs. The configuration of subsurface lava flows and tuffs is largely unknown because of limited data. The spatial configuration of the lava flows and tuffs is modeled by using a multiple-point geostatistical simulation algorithm that generates a large number of alternative realizations, each honoring the available geologic data and drawn from a geologic conceptual model of the lava-flow aquifer system as represented by a training image. In order to demonstrate how results from the geostatistical model could be analyzed in terms of available hydrologic data, a numerical simulation of part of an aquifer test was applied to the realizations of the geostatistical model.

  17. A Bayesian Approach to Evaluating Consistency between Climate Model Output and Observations

    NASA Astrophysics Data System (ADS)

    Braverman, A. J.; Cressie, N.; Teixeira, J.

    2010-12-01

    Like other scientific and engineering problems that involve physical modeling of complex systems, climate models can be evaluated and diagnosed by comparing their output to observations of similar quantities. Though the global remote sensing data record is relatively short by climate research standards, these data offer opportunities to evaluate model predictions in new ways. For example, remote sensing data are spatially and temporally dense enough to provide distributional information that goes beyond simple moments to allow quantification of temporal and spatial dependence structures. In this talk, we propose a new method for exploiting these rich data sets using a Bayesian paradigm. For a collection of climate models, we calculate posterior probabilities its members best represent the physical system each seeks to reproduce. The posterior probability is based on the likelihood that a chosen summary statistic, computed from observations, would be obtained when the model's output is considered as a realization from a stochastic process. By exploring how posterior probabilities change with different statistics, we may paint a more quantitative and complete picture of the strengths and weaknesses of the models relative to the observations. We demonstrate our method using model output from the CMIP archive, and observations from NASA's Atmospheric Infrared Sounder.

  18. Spatial self-organization in hybrid models of multicellular adhesion

    NASA Astrophysics Data System (ADS)

    Bonforti, Adriano; Duran-Nebreda, Salva; Montañez, Raúl; Solé, Ricard

    2016-10-01

    Spatial self-organization emerges in distributed systems exhibiting local interactions when nonlinearities and the appropriate propagation of signals are at work. These kinds of phenomena can be modeled with different frameworks, typically cellular automata or reaction-diffusion systems. A different class of dynamical processes involves the correlated movement of agents over space, which can be mediated through chemotactic movement or minimization of cell-cell interaction energy. A classic example of the latter is given by the formation of spatially segregated assemblies when cells display differential adhesion. Here, we consider a new class of dynamical models, involving cell adhesion among two stochastically exchangeable cell states as a minimal model capable of exhibiting well-defined, ordered spatial patterns. Our results suggest that a whole space of pattern-forming rules is hosted by the combination of physical differential adhesion and the value of probabilities modulating cell phenotypic switching, showing that Turing-like patterns can be obtained without resorting to reaction-diffusion processes. If the model is expanded allowing cells to proliferate and die in an environment where diffusible nutrient and toxic waste are at play, different phases are observed, characterized by regularly spaced patterns. The analysis of the parameter space reveals that certain phases reach higher population levels than other modes of organization. A detailed exploration of the mean-field theory is also presented. Finally, we let populations of cells with different adhesion matrices compete for reproduction, showing that, in our model, structural organization can improve the fitness of a given cell population. The implications of these results for ecological and evolutionary models of pattern formation and the emergence of multicellularity are outlined.

  19. Capturing spatial and temporal patterns of widespread, extreme flooding across Europe

    NASA Astrophysics Data System (ADS)

    Busby, Kathryn; Raven, Emma; Liu, Ye

    2013-04-01

    Statistical characterisation of physical hazards is an integral part of probabilistic catastrophe models used by the reinsurance industry to estimate losses from large scale events. Extreme flood events are not restricted by country boundaries which poses an issue for reinsurance companies as their exposures often extend beyond them. We discuss challenges and solutions that allow us to appropriately capture the spatial and temporal dependence of extreme hydrological events on a continental-scale, which in turn enables us to generate an industry-standard stochastic event set for estimating financial losses for widespread flooding. By presenting our event set methodology, we focus on explaining how extreme value theory (EVT) and dependence modelling are used to account for short, inconsistent hydrological data from different countries, and how to make appropriate statistical decisions that best characterise the nature of flooding across Europe. The consistency of input data is of vital importance when identifying historical flood patterns. Collating data from numerous sources inherently causes inconsistencies and we demonstrate our robust approach to assessing the data and refining it to compile a single consistent dataset. This dataset is then extrapolated using a parameterised EVT distribution to estimate extremes. Our method then captures the dependence of flood events across countries using an advanced multivariate extreme value model. Throughout, important statistical decisions are explored including: (1) distribution choice; (2) the threshold to apply for extracting extreme data points; (3) a regional analysis; (4) the definition of a flood event, which is often linked with reinsurance industry's hour's clause; and (5) handling of missing values. Finally, having modelled the historical patterns of flooding across Europe, we sample from this model to generate our stochastic event set comprising of thousands of events over thousands of years. We then briefly illustrate how this is applied within a probabilistic model to estimate catastrophic loss curves used by the reinsurance industry.

  20. The role of internal climate variability for interpreting climate change scenarios

    NASA Astrophysics Data System (ADS)

    Maraun, Douglas

    2013-04-01

    When communicating information on climate change, the use of multi-model ensembles has been advocated to sample uncertainties over a range as wide as possible. To meet the demand for easily accessible results, the ensemble is often summarised by its multi-model mean signal. In rare cases, additional uncertainty measures are given to avoid loosing all information on the ensemble spread, e.g., the highest and lowest projected values. Such approaches, however, disregard the fundamentally different nature of the different types of uncertainties and might cause wrong interpretations and subsequently wrong decisions for adaptation. Whereas scenario and climate model uncertainties are of epistemic nature, i.e., caused by an in principle reducible lack of knowledge, uncertainties due to internal climate variability are aleatory, i.e., inherently stochastic and irreducible. As wisely stated in the proverb "climate is what you expect, weather is what you get", a specific region will experience one stochastic realisation of the climate system, but never exactly the expected climate change signal as given by a multi model mean. Depending on the meteorological variable, region and lead time, the signal might be strong or weak compared to the stochastic component. In cases of a low signal-to-noise ratio, even if the climate change signal is a well defined trend, no trends or even opposite trends might be experienced. Here I propose to use the time of emergence (TOE) to quantify and communicate when climate change trends will exceed the internal variability. The TOE provides a useful measure for end users to assess the time horizon for implementing adaptation measures. Furthermore, internal variability is scale dependent - the more local the scale, the stronger the influence of internal climate variability. Thus investigating the TOE as a function of spatial scale could help to assess the required spatial scale for implementing adaptation measures. I exemplify this proposal with a recently published study on the TOE for mean and heavy precipitation trends in Europe. In some regions trends emerge only late in the 21st century or even later, suggesting that in these regions adaptation to internal variability rather than to climate change is required. Yet in other regions the climate change signal is strong, urging for timely adaptation. Douglas Maraun, When at what scale will trends in European mean and heavy precipitation emerge? Env. Res. Lett., in press, 2013.

Top