Sample records for spatial structure stabilizes

  1. Spatially dependent responses of a large-river fish assemblage to bank stabilization and side channels

    USGS Publications Warehouse

    Reinhold, Ann Marie; Bramblett, Robert G.; Zale, Alexander V.; Poole, Geoffrey C.; Roberts, David W.

    2017-01-01

    The alteration of rivers by anthropogenic bank stabilization to prevent the erosion of economically valuable lands and structures has become commonplace. However, such alteration has ambiguous consequences for fish assemblages, especially in large rivers. Because most large, temperate rivers have impoundments, it can be difficult to separate the influences of bank stabilization structures from those of main-stem impoundments, especially because both stabilization structures and impoundments can cause side-channel loss. Few large rivers are free flowing and retain extensive side channels, but the Yellowstone River (our study area) is one such river. We hypothesized that in this river (1) bank stabilization has changed fish assemblage structure by altering habitats, (2) side-channel availability has influenced fish assemblage structure by providing habitat heterogeneity, and (3) the influences of bank stabilization and side channels on fish assemblages were spatially scale dependent. We developed a spatially explicit framework to test these hypotheses. Fish assemblage structure varied with the extent of bank stabilization and the availability of side channels; however, not all assemblage subsets were influenced. Nevertheless, bank stabilization and side channels had different and sometimes opposite influences on the fish assemblage. The effects of side channels on fish were more consistent and widespread than those of bank stabilization; the catches of more fishes were positively correlated with side-channel availability than with the extent of bank stabilization. The influences of bank stabilization and side channels on the relative abundances of fish also varied, depending on species and river bend geomorphology. The variation in river morphology probably contributed to the assemblage differences between stabilized and reference river bends; stabilized alluvial pools were deeper than reference alluvial pools, but the depths of stabilized and reference bluff pools did not differ. The strengths of the relationships among fish assemblages, bank stabilization, and side channels were spatially scale dependent; optimum spatial scales ranged from less than 200 m to 3,200 m up- and downstream, suggesting that bank stabilization and side channels influenced fish assemblages across multiple spatial scales.

  2. Synchronisation and stability in river metapopulation networks.

    PubMed

    Yeakel, J D; Moore, J W; Guimarães, P R; de Aguiar, M A M

    2014-03-01

    Spatial structure in landscapes impacts population stability. Two linked components of stability have large consequences for persistence: first, statistical stability as the lack of temporal fluctuations; second, synchronisation as an aspect of dynamic stability, which erodes metapopulation rescue effects. Here, we determine the influence of river network structure on the stability of riverine metapopulations. We introduce an approach that converts river networks to metapopulation networks, and analytically show how fluctuation magnitude is influenced by interaction structure. We show that river metapopulation complexity (in terms of branching prevalence) has nonlinear dampening effects on population fluctuations, and can also buffer against synchronisation. We conclude by showing that river transects generally increase synchronisation, while the spatial scale of interaction has nonlinear effects on synchronised dynamics. Our results indicate that this dual stability - conferred by fluctuation and synchronisation dampening - emerges from interaction structure in rivers, and this may strongly influence the persistence of river metapopulations. © 2013 John Wiley & Sons Ltd/CNRS.

  3. Soil-Structural Stability as Affected by Clay Mineralogy, Soil Texture and Polyacrylamide Application

    USDA-ARS?s Scientific Manuscript database

    Soil-structural stability (expressed in terms of aggregate stability and pore size distribution) depends on (i) soil inherent properties, (ii) extrinsic condition prevailing in the soil that may vary temporally and spatially, and (iii) addition of soil amendments. Different soil management practices...

  4. Spatial localization in heterogeneous systems

    NASA Astrophysics Data System (ADS)

    Kao, Hsien-Ching; Beaume, Cédric; Knobloch, Edgar

    2014-01-01

    We study spatial localization in the generalized Swift-Hohenberg equation with either quadratic-cubic or cubic-quintic nonlinearity subject to spatially heterogeneous forcing. Different types of forcing (sinusoidal or Gaussian) with different spatial scales are considered and the corresponding localized snaking structures are computed. The results indicate that spatial heterogeneity exerts a significant influence on the location of spatially localized structures in both parameter space and physical space, and on their stability properties. The results are expected to assist in the interpretation of experiments on localized structures where departures from spatial homogeneity are generally unavoidable.

  5. Strategy Diversity Stabilizes Mutualism through Investment Cycles, Phase Polymorphism, and Spatial Bubbles

    PubMed Central

    Boza, Gergely; Kun, Ádám; Scheuring, István; Dieckmann, Ulf

    2012-01-01

    There is continuing interest in understanding factors that facilitate the evolution and stability of cooperation within and between species. Such interactions will often involve plasticity in investment behavior, in response to the interacting partner's investments. Our aim here is to investigate the evolution and stability of reciprocal investment behavior in interspecific interactions, a key phenomenon strongly supported by experimental observations. In particular, we present a comprehensive analysis of a continuous reciprocal investment game between mutualists, both in well-mixed and spatially structured populations, and we demonstrate a series of novel mechanisms for maintaining interspecific mutualism. We demonstrate that mutualistic partners invariably follow investment cycles, during which mutualism first increases, before both partners eventually reduce their investments to zero, so that these cycles always conclude with full defection. We show that the key mechanism for stabilizing mutualism is phase polymorphism along the investment cycle. Although mutualistic partners perpetually change their strategies, the community-level distribution of investment levels becomes stationary. In spatially structured populations, the maintenance of polymorphism is further facilitated by dynamic mosaic structures, in which mutualistic partners form expanding and collapsing spatial bubbles or clusters. Additionally, we reveal strategy-diversity thresholds, both for well-mixed and spatially structured mutualistic communities, and discuss factors for meeting these thresholds, and thus maintaining mutualism. Our results demonstrate that interspecific mutualism, when considered as plastic investment behavior, can be unstable, and, in agreement with empirical observations, may involve a polymorphism of investment levels, varying both in space and in time. Identifying the mechanisms maintaining such polymorphism, and hence mutualism in natural communities, provides a significant step towards understanding the coevolution and population dynamics of mutualistic interactions. PMID:23166478

  6. Strategy diversity stabilizes mutualism through investment cycles, phase polymorphism, and spatial bubbles.

    PubMed

    Boza, Gergely; Kun, Adám; Scheuring, István; Dieckmann, Ulf

    2012-01-01

    There is continuing interest in understanding factors that facilitate the evolution and stability of cooperation within and between species. Such interactions will often involve plasticity in investment behavior, in response to the interacting partner's investments. Our aim here is to investigate the evolution and stability of reciprocal investment behavior in interspecific interactions, a key phenomenon strongly supported by experimental observations. In particular, we present a comprehensive analysis of a continuous reciprocal investment game between mutualists, both in well-mixed and spatially structured populations, and we demonstrate a series of novel mechanisms for maintaining interspecific mutualism. We demonstrate that mutualistic partners invariably follow investment cycles, during which mutualism first increases, before both partners eventually reduce their investments to zero, so that these cycles always conclude with full defection. We show that the key mechanism for stabilizing mutualism is phase polymorphism along the investment cycle. Although mutualistic partners perpetually change their strategies, the community-level distribution of investment levels becomes stationary. In spatially structured populations, the maintenance of polymorphism is further facilitated by dynamic mosaic structures, in which mutualistic partners form expanding and collapsing spatial bubbles or clusters. Additionally, we reveal strategy-diversity thresholds, both for well-mixed and spatially structured mutualistic communities, and discuss factors for meeting these thresholds, and thus maintaining mutualism. Our results demonstrate that interspecific mutualism, when considered as plastic investment behavior, can be unstable, and, in agreement with empirical observations, may involve a polymorphism of investment levels, varying both in space and in time. Identifying the mechanisms maintaining such polymorphism, and hence mutualism in natural communities, provides a significant step towards understanding the coevolution and population dynamics of mutualistic interactions.

  7. Spatial Distribution of a Large Herbivore Community at Waterholes: An Assessment of Its Stability over Years in Hwange National Park, Zimbabwe.

    PubMed

    Chamaillé-Jammes, Simon; Charbonnel, Anaïs; Dray, Stéphane; Madzikanda, Hillary; Fritz, Hervé

    2016-01-01

    The spatial structuring of populations or communities is an important driver of their functioning and their influence on ecosystems. Identifying the (in)stability of the spatial structure of populations is a first step towards understanding the underlying causes of these structures. Here we studied the relative importance of spatial vs. interannual variability in explaining the patterns of abundance of a large herbivore community (8 species) at waterholes in Hwange National Park (Zimbabwe). We analyzed census data collected over 13 years using multivariate methods. Our results showed that variability in the census data was mostly explained by the spatial structure of the community, as some waterholes had consistently greater herbivore abundance than others. Some temporal variability probably linked to Park-scale migration dependent on annual rainfall was noticeable, however. Once this was accounted for, little temporal variability remained to be explained, suggesting that other factors affecting herbivore abundance over time had a negligible effect at the scale of the study. The extent of spatial and temporal variability in census data was also measured for each species. This study could help in projecting the consequences of surface water management, and more generally presents a methodological framework to simultaneously address the relative importance of spatial vs. temporal effects in driving the distribution of organisms across landscapes.

  8. Spatial Distribution of a Large Herbivore Community at Waterholes: An Assessment of Its Stability over Years in Hwange National Park, Zimbabwe

    PubMed Central

    Chamaillé-Jammes, Simon; Charbonnel, Anaïs; Dray, Stéphane; Madzikanda, Hillary; Fritz, Hervé

    2016-01-01

    The spatial structuring of populations or communities is an important driver of their functioning and their influence on ecosystems. Identifying the (in)stability of the spatial structure of populations is a first step towards understanding the underlying causes of these structures. Here we studied the relative importance of spatial vs. interannual variability in explaining the patterns of abundance of a large herbivore community (8 species) at waterholes in Hwange National Park (Zimbabwe). We analyzed census data collected over 13 years using multivariate methods. Our results showed that variability in the census data was mostly explained by the spatial structure of the community, as some waterholes had consistently greater herbivore abundance than others. Some temporal variability probably linked to Park-scale migration dependent on annual rainfall was noticeable, however. Once this was accounted for, little temporal variability remained to be explained, suggesting that other factors affecting herbivore abundance over time had a negligible effect at the scale of the study. The extent of spatial and temporal variability in census data was also measured for each species. This study could help in projecting the consequences of surface water management, and more generally presents a methodological framework to simultaneously address the relative importance of spatial vs. temporal effects in driving the distribution of organisms across landscapes. PMID:27074044

  9. Phase Synchronization and Desynchronization of Structural Response Induced by Turbulent and External Sound

    NASA Technical Reports Server (NTRS)

    Maestrello, Lucio

    2002-01-01

    Acoustic and turbulent boundary layer flow loadings over a flexible structure are used to study the spatial-temporal dynamics of the response of the structure. The stability of the spatial synchronization and desynchronization by an active external force is investigated with an array of coupled transducers on the structure. In the synchronous state, the structural phase is locked, which leads to the formation of spatial patterns while the amplitude peaks exhibit chaotic behaviors. Large amplitude, spatially symmetric loading is superimposed on broadband, but in the desynchronized state, the spectrum broadens and the phase space is lost. The resulting pattern bears a striking resemblance to phase turbulence. The transition is achieved by using a low power external actuator to trigger broadband behaviors from the knowledge of the external acoustic load inducing synchronization. The changes are made favorably and efficiently to alter the frequency distribution of power, not the total power level. Before synchronization effects are seen, the panel response to the turbulent boundary layer loading is discontinuously spatio-temporally correlated. The stability develops from different competing wavelengths; the spatial scale is significantly shorter than when forced with the superimposed external sound. When the external sound level decreases and the synchronized phases are lost, changes in the character of the spectra can be linked to the occurrence of spatial phase transition. These changes can develop broadband response. Synchronized responses of fuselage structure panels have been observed in subsonic and supersonic aircraft; results from two flights tests are discussed.

  10. Submarine slope failures due to pipe structure formation.

    PubMed

    Elger, Judith; Berndt, Christian; Rüpke, Lars; Krastel, Sebastian; Gross, Felix; Geissler, Wolfram H

    2018-02-19

    There is a strong spatial correlation between submarine slope failures and the occurrence of gas hydrates. This has been attributed to the dynamic nature of gas hydrate systems and the potential reduction of slope stability due to bottom water warming or sea level drop. However, 30 years of research into this process found no solid supporting evidence. Here we present new reflection seismic data from the Arctic Ocean and numerical modelling results supporting a different link between hydrates and slope stability. Hydrates reduce sediment permeability and cause build-up of overpressure at the base of the gas hydrate stability zone. Resulting hydro-fracturing forms pipe structures as pathways for overpressured fluids to migrate upward. Where these pipe structures reach shallow permeable beds, this overpressure transfers laterally and destabilises the slope. This process reconciles the spatial correlation of submarine landslides and gas hydrate, and it is independent of environmental change and water depth.

  11. Probing the Complexities of Structural Changes in Layered Oxide Cathode Materials for Li-Ion Batteries during Fast Charge-Discharge Cycling and Heating.

    PubMed

    Hu, Enyuan; Wang, Xuelong; Yu, Xiqian; Yang, Xiao-Qing

    2018-02-20

    The rechargeable lithium-ion battery (LIB) is the most promising energy storage system to power electric vehicles with high energy density and long cycling life. However, in order to meet customers' demands for fast charging, the power performances of current LIBs need to be improved. From the cathode aspect, layer-structured cathode materials are widely used in today's market and will continue to play important roles in the near future. The high rate capability of layered cathode materials during charging and discharging is critical to the power performance of the whole cell and the thermal stability is closely related to the safety issues. Therefore, the in-depth understanding of structural changes of layered cathode materials during high rate charging/discharging and the thermal stability during heating are essential in developing new materials and improving current materials. Since structural changes take place from the atomic level to the whole electrode level, combination of characterization techniques covering multilength scales is quite important. In many cases, this means using comprehensive tools involving diffraction, spectroscopy, and imaging to differentiate the surface from the bulk and to obtain structural/chemical information with different levels of spatial resolution. For example, hard X-ray spectroscopy can yield the bulk information and soft X-ray spectroscopy can give the surface information; X-ray based imaging techniques can obtain spatial resolution of tens of nanometers, and electron-based microcopy can go to angstroms. In addition to challenges associated with different spatial resolution, the dynamic nature of structural changes during high rate cycling and heating requires characterization tools to have the capability of collecting high quality data in a time-resolved fashion. Thanks to the advancement in synchrotron based techniques and high-resolution electron microscopy, high temporal and spatial resolutions can now be achieved. In this Account, we focus on the recent works studying kinetic and thermal properties of layer-structured cathode materials, especially the structural changes during high rate cycling and the thermal stability during heating. Advanced characterization techniques relating to the rate capability and thermal stability will be introduced. The different structure evolution behavior of cathode materials cycled at high rate will be compared with that cycled at low rate. Different response of individual transition metals and the inhomogeneity in chemical distribution will be discussed. For the thermal stability, the relationship between structural changes and oxygen release will be emphatically pointed out. In all these studies being reviewed, advanced characterization techniques are critically applied to reveal complexities at multiscale in layer-structured cathode materials.

  12. Meta-ecosystem dynamics and functioning on finite spatial networks

    PubMed Central

    Marleau, Justin N.; Guichard, Frédéric; Loreau, Michel

    2014-01-01

    The addition of spatial structure to ecological concepts and theories has spurred integration between sub-disciplines within ecology, including community and ecosystem ecology. However, the complexity of spatial models limits their implementation to idealized, regular landscapes. We present a model meta-ecosystem with finite and irregular spatial structure consisting of local nutrient–autotrophs–herbivores ecosystems connected through spatial flows of materials and organisms. We study the effect of spatial flows on stability and ecosystem functions, and provide simple metrics of connectivity that can predict these effects. Our results show that high rates of nutrient and herbivore movement can destabilize local ecosystem dynamics, leading to spatially heterogeneous equilibria or oscillations across the meta-ecosystem, with generally increased meta-ecosystem primary and secondary production. However, the onset and the spatial scale of these emergent dynamics depend heavily on the spatial structure of the meta-ecosystem and on the relative movement rate of the autotrophs. We show how this strong dependence on finite spatial structure eludes commonly used metrics of connectivity, but can be predicted by the eigenvalues and eigenvectors of the connectivity matrix that describe the spatial structure and scale. Our study indicates the need to consider finite-size ecosystems in meta-ecosystem theory. PMID:24403323

  13. Spatio-temporal patterns of key exploited marine species in the Northwestern Mediterranean Sea.

    PubMed

    Morfin, Marie; Fromentin, Jean-Marc; Jadaud, Angélique; Bez, Nicolas

    2012-01-01

    This study analyzes the temporal variability/stability of the spatial distributions of key exploited species in the Gulf of Lions (Northwestern Mediterranean Sea). To do so, we analyzed data from the MEDITS bottom-trawl scientific surveys from 1994 to 2010 at 66 fixed stations and selected 12 key exploited species. We proposed a geostatistical approach to handle zero-inflated and non-stationary distributions and to test for the temporal stability of the spatial structures. Empirical Orthogonal Functions and other descriptors were then applied to investigate the temporal persistence and the characteristics of the spatial patterns. The spatial structure of the distribution (i.e. the pattern of spatial autocorrelation) of the 12 key species studied remained highly stable over the time period sampled. The spatial distributions of all species obtained through kriging also appeared to be stable over time, while each species displayed a specific spatial distribution. Furthermore, adults were generally more densely concentrated than juveniles and occupied areas included in the distribution of juveniles. Despite the strong persistence of spatial distributions, we also observed that the area occupied by each species was correlated to its abundance: the more abundant the species, the larger the occupation area. Such a result tends to support MacCall's basin theory, according to which density-dependence responses would drive the expansion of those 12 key species in the Gulf of Lions. Further analyses showed that these species never saturated their habitats, suggesting that they are below their carrying capacity; an assumption in agreement with the overexploitation of several of these species. Finally, the stability of their spatial distributions over time and their potential ability to diffuse outside their main habitats give support to Marine Protected Areas as a potential pertinent management tool.

  14. Acoustical stability of a sonoluminescing bubble

    NASA Astrophysics Data System (ADS)

    Holzfuss, Joachim; Rüggeberg, Matthias; Holt, R. Glynn

    2002-10-01

    In the parameter region for sonoluminescence of a single levitated bubble in a water-filled resonator it is observed that the bubble may have an enormous spatial stability leaving it ``pinned'' in the fluid and allowing it to emit light pulses of picosecond accuracy. We report here observations of a complex harmonic structure in the acoustic field surrounding a sonoluminescing bubble. We show that this complex sound field determines the position of the bubble and may either increase or decrease its spatial stability. The acoustic environment of the bubble is the result of the excitation of high-order normal modes of the resonator by the outgoing shock wave generated by the bubble collapse.

  15. Revisiting the Stability of Spatially Heterogeneous Predator-Prey Systems Under Eutrophication.

    PubMed

    Farkas, J Z; Morozov, A Yu; Arashkevich, E G; Nikishina, A

    2015-10-01

    We employ partial integro-differential equations to model trophic interaction in a spatially extended heterogeneous environment. Compared to classical reaction-diffusion models, this framework allows us to more realistically describe the situation where movement of individuals occurs on a faster time scale than on the demographic (population) time scale, and we cannot determine population growth based on local density. However, most of the results reported so far for such systems have only been verified numerically and for a particular choice of model functions, which obviously casts doubts about these findings. In this paper, we analyse a class of integro-differential predator-prey models with a highly mobile predator in a heterogeneous environment, and we reveal the main factors stabilizing such systems. In particular, we explore an ecologically relevant case of interactions in a highly eutrophic environment, where the prey carrying capacity can be formally set to 'infinity'. We investigate two main scenarios: (1) the spatial gradient of the growth rate is due to abiotic factors only, and (2) the local growth rate depends on the global density distribution across the environment (e.g. due to non-local self-shading). For an arbitrary spatial gradient of the prey growth rate, we analytically investigate the possibility of the predator-prey equilibrium in such systems and we explore the conditions of stability of this equilibrium. In particular, we demonstrate that for a Holling type I (linear) functional response, the predator can stabilize the system at low prey density even for an 'unlimited' carrying capacity. We conclude that the interplay between spatial heterogeneity in the prey growth and fast displacement of the predator across the habitat works as an efficient stabilizing mechanism. These results highlight the generality of the stabilization mechanisms we find in spatially structured predator-prey ecological systems in a heterogeneous environment.

  16. Spatial Working Memory Capacity Predicts Bias in Estimates of Location

    ERIC Educational Resources Information Center

    Crawford, L. Elizabeth; Landy, David; Salthouse, Timothy A.

    2016-01-01

    Spatial memory research has attributed systematic bias in location estimates to a combination of a noisy memory trace with a prior structure that people impose on the space. Little is known about intraindividual stability and interindividual variation in these patterns of bias. In the current work, we align recent empirical and theoretical work on…

  17. Tailoring Magnetic Skyrmions by Geometric Confinement of Magnetic Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Steven S.-L.; Phatak, C.; Petford-Long, A K

    Nanoscale magnetic skyrmions have interesting static and transport properties that make them candidates for future spintronic devices. Control and manipulation of the size and behavior of skyrmions is thus of crucial importance. Here, using a Ginzburg-Landau approach, we show theoretically that skyrmions and skyrmion lattices can be stabilized by a spatial modulation of the uniaxial magnetic anisotropy in a thin film of a centro-symmetric ferromagnet. Remarkably, the skyrmion size is determined by the ratio of the exchange length and the period of the spatial modulation of the anisotropy, at variance with conventional skyrmions stabilized by dipolar and Dzyaloshinskii–Moriya interactions.

  18. Tailoring Magnetic Skyrmions by Geometric Confinement of Magnetic Structures

    DOE PAGES

    Zhang, Steven S.-L.; Phatak, C.; Petford-Long, A K; ...

    2017-12-12

    Nanoscale magnetic skyrmions have interesting static and transport properties that make them candidates for future spintronic devices. Control and manipulation of the size and behavior of skyrmions is thus of crucial importance. Here, using a Ginzburg-Landau approach, we show theoretically that skyrmions and skyrmion lattices can be stabilized by a spatial modulation of the uniaxial magnetic anisotropy in a thin film of a centro-symmetric ferromagnet. Remarkably, the skyrmion size is determined by the ratio of the exchange length and the period of the spatial modulation of the anisotropy, at variance with conventional skyrmions stabilized by dipolar and Dzyaloshinskii–Moriya interactions.

  19. Structural Stability of Light-harvesting Protein LH2 Adsorbed on Mesoporous Silica Supports.

    PubMed

    Shibuya, Yuuta; Itoh, Tetsuji; Matsuura, Shun-ichi; Yamaguchi, Akira

    2015-01-01

    In the present study, we examined the reversible thermal deformation of the membrane protein light-harvesting complex LH2 adsorbed on mesoporous silica (MPS) supports. The LH2 complex from Thermochromatium tepidum cells was conjugated to MPS supports with a series of pore diameter (2.4 to 10.6 nm), and absorption spectra of the resulting LH2/MPS conjugates were observed over a temperature range of 273 - 313 K in order to examine the structure of the LH2 adsorbed on the MPS support. The experimental results confirmed that a slight ellipsoidal deformation of LH2 was induced by adsorption on the MPS supports. On the other hand, the structural stability of LH2 was not perturbed by the adsorption. Since the pore diameter of MPS support did not influence the structural stability of LH2, it could be considered that the spatial confinement of LH2 in size-matches pore did not improve the structural stability of LH2.

  20. Atomic force microscopy investigation of chemically stabilized pericardium tissue.

    PubMed

    Jastrzebska, M; Barwinski, B; Mróz, I; Turek, A; Zalewska-Rejdak, J; Cwalina, B

    2005-04-01

    Native and chemically stabilized porcine pericardium tissue was imaged by the contact mode atomic force microscopy (AFM), in air. Chemically stabilized pericardium is used as a tissue-derived biomaterial in various fields of the reconstructive and replacement surgery. Collagen type I is the main component of the fibrous layer of the pericardium tissue. In this study, the surface topography of collagen fibrils in their native state in tissue and after chemical stabilization with different cross-linking reagents: glutaraldehyde (GA), dimethyl suberimidate (DMS) and tannic acid (TA) was investigated. It has been found that chemical stabilization causes considerable changes in the surface topography of collagen fibrils as well as in the spatial organization of the fibrils within the tissue. The observed changes in the D-spacing pattern of the collagen fibril correspond to the formation of intrafibrilar cross-links, whereas formation of interfibrilar cross-links is mainly responsible for the observed tangled spatial arrangement of fibrils and crimp structure of the tissue surface. The crimp structure was distinctly seen for the GA cross-linked tissue. Surface heterogeneity of the cross-linking process was observed for the DMS-stabilized tissue. SDS-PAGE electrophoresis was performed in order to evaluate the stabilization effect of the tissues treated with the cross-linking reagents. It has been found that stabilization with DMS, GA or TA enhances significantly the tissue resistance to SDS/NaCl extraction. The relation between the tissue stability and changes in the topography of the tissue surface was interpreted in terms of different nature of cross-links formed by DMS, GA and TA with collagen.

  1. Proceedings of the Workshop on Applications of Distributed System Theory to the Control of Large Space Structures

    NASA Technical Reports Server (NTRS)

    Rodriguez, G. (Editor)

    1983-01-01

    Two general themes in the control of large space structures are addressed: control theory for distributed parameter systems and distributed control for systems requiring spatially-distributed multipoint sensing and actuation. Topics include modeling and control, stabilization, and estimation and identification.

  2. Conversion of methanol to propylene over hierarchical HZSM-5: the effect of Al spatial distribution.

    PubMed

    Li, Jianwen; Ma, Hongfang; Chen, Yan; Xu, Zhiqiang; Li, Chunzhong; Ying, Weiyong

    2018-06-08

    Different silicon sources caused diverse Al spatial distribution in HZSM-5, and this affected the hierarchical structures and catalytic performance of desilicated zeolites. After being treated with 0.1 M NaOH, HZSM-5 zeolites synthesized with silica sol exhibited relatively widely distributed mesopores and channels, and possessed highly improved propylene selectivity and activity stability.

  3. Protection Enhances Community and Habitat Stability: Evidence from a Mediterranean Marine Protected Area

    PubMed Central

    Fraschetti, Simonetta; Guarnieri, Giuseppe; Bevilacqua, Stanislao; Terlizzi, Antonio; Boero, Ferdinando

    2013-01-01

    Rare evidences support that Marine Protected Areas (MPAs) enhance the stability of marine habitats and assemblages. Based on nine years of observation (2001–2009) inside and outside a well managed MPA, we assessed the potential of conservation and management actions to modify patterns of spatial and/or temporal variability of Posidonia oceanica meadows, the lower midlittoral and the shallow infralittoral rock assemblages. Significant differences in both temporal variations and spatial patterns were observed between protected and unprotected locations. A lower temporal variability in the protected vs. unprotected assemblages was found in the shallow infralittoral, demonstrating that, at least at local scale, protection can enhance community stability. Macrobenthos with long-lived and relatively slow-growing invertebrates and structurally complex algal forms were homogeneously distributed in space and went through little fluctuations in time. In contrast, a mosaic of disturbed patches featured unprotected locations, with small-scale shifts from macroalgal stands to barrens, and harsh temporal variations between the two states. Opposite patterns of spatial and temporal variability were found for the midlittoral assemblages. Despite an overall clear pattern of seagrass regression through time, protected meadows showed a significantly higher shoot density than unprotected ones, suggesting a higher resistance to local human activities. Our results support the assumption that the exclusion/management of human activities within MPAs enhance the stability of the structural components of protected marine systems, reverting or arresting threat-induced trajectories of change. PMID:24349135

  4. Nogo-A regulates spatial learning as well as memory formation and modulates structural plasticity in the adult mouse hippocampus.

    PubMed

    Zagrebelsky, Marta; Lonnemann, Niklas; Fricke, Steffen; Kellner, Yves; Preuß, Eike; Michaelsen-Preusse, Kristin; Korte, Martin

    2017-02-01

    Behavioral learning has been shown to involve changes in the function and structure of synaptic connections of the central nervous system (CNS). On the other hand, the neuronal circuitry in the mature brain is characterized by a high degree of stability possibly providing a correlate for long-term storage of information. This observation indicates the requirement for a set of molecules inhibiting plasticity and promoting stability thereby providing temporal and spatial specificity to plastic processes. Indeed, signaling of Nogo-A via its receptors has been shown to play a crucial role in restricting activity-dependent functional and structural plasticity in the adult CNS. However, whether Nogo-A controls learning and memory formation and what are the cellular and molecular mechanisms underlying this function is still unclear. Here we show that Nogo-A signaling controls spatial learning and reference memory formation upon training in the Morris water maze and negatively modulates structural changes at spines in the mouse hippocampus. Learning processes and the correlated structural plasticity have been shown to involve changes in excitatory as well as in inhibitory neuronal connections. We show here that Nogo-A is highly expressed not only in excitatory, but also in inhibitory, Parvalbumin positive neurons in the adult hippocampus. By this means our current and previous data indicate that Nogo-A loss-of-function positively influences spatial learning by priming the neuronal structure to a higher plasticity level. Taken together our results link the role of Nogo-A in negatively regulating plastic processes to a physiological function in controlling learning and memory processes in the mature hippocampus and open the interesting possibility that it might mainly act by controlling the function of the hippocampal inhibitory circuitry. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Spatial extent of analysis influences observed patterns of population genetic structure in a widespread darter species (Percidae)

    USGS Publications Warehouse

    Argentina, Jane E.; Angermeier, Paul L.; Hallerman, Eric M.; Welsh, Stuart A.

    2018-01-01

    Connectivity among stream fish populations allows for exchange of genetic material and helps maintain genetic diversity, adaptive potential and population stability over time. Changes in species demographics and population connectivity have the potential to permanently alter the genetic patterns of stream fish, although these changes through space and time are variable and understudied in small‐bodied freshwater fish.As a spatially widespread, common species of benthic freshwater fish, the variegate darter (Etheostoma variatum) is a model species for documenting how patterns of genetic structure and diversity respond to increasing isolation due to large dams and how scale of study may shape our understanding of these patterns. We sampled variegate darters from 34 sites across their range in the North American Ohio River basin and examined how patterns of genetic structure and diversity within and between populations responded to historical population changes and dams within and between populations.Spatial scale and configuration of genetic structure varied across the eight identified populations, from tributaries within a watershed, to a single watershed, to multiple watersheds that encompass Ohio River mainstem habitats. This multiwatershed pattern of population structuring suggests genetic dispersal across large distances was and may continue to be common, although some populations remain isolated despite no apparent structural dispersal barriers. Populations with low effective population sizes and evidence of past population bottlenecks showed low allelic richness, but diversity patterns were not related to watershed size, a surrogate for habitat availability. Pairwise genetic differentiation (FST) increased with fluvial distance and was related to both historic and contemporary processes. Genetic diversity changes were influenced by underlying population size and stability, and while instream barriers were not strong determinants of genetic structuring or loss of genetic diversity, they reduce population connectivity and may impact long‐term population persistence.The broad spatial scale of this study demonstrated the large spatial extent of some variegate darter populations and indicated that dispersal is more extensive than expected given the movement patterns typically observed for small‐bodied, benthic fish. Dam impacts depended on underlying population size and stability, with larger populations more resilient to genetic drift and allelic richness loss than smaller populations.Other darters that inhabit large river habitats may show similar patterns in landscape‐scale studies, and large river barriers may impact populations of small‐bodied fish more than previously expected. Estimation of dispersal rates and behaviours is critical to conservation of imperilled riverine species such as darters.

  6. Population-based 3D genome structure analysis reveals driving forces in spatial genome organization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tjong, Harianto; Li, Wenyuan; Kalhor, Reza

    Conformation capture technologies (e.g., Hi-C) chart physical interactions between chromatin regions on a genome-wide scale. However, the structural variability of the genome between cells poses a great challenge to interpreting ensemble-averaged Hi-C data, particularly for long-range and interchromosomal interactions. Here, we present a probabilistic approach for deconvoluting Hi-C data into a model population of distinct diploid 3D genome structures, which facilitates the detection of chromatin interactions likely to co-occur in individual cells. Here, our approach incorporates the stochastic nature of chromosome conformations and allows a detailed analysis of alternative chromatin structure states. For example, we predict and experimentally confirm themore » presence of large centromere clusters with distinct chromosome compositions varying between individual cells. The stability of these clusters varies greatly with their chromosome identities. We show that these chromosome-specific clusters can play a key role in the overall chromosome positioning in the nucleus and stabilizing specific chromatin interactions. By explicitly considering genome structural variability, our population-based method provides an important tool for revealing novel insights into the key factors shaping the spatial genome organization.« less

  7. Population-based 3D genome structure analysis reveals driving forces in spatial genome organization

    DOE PAGES

    Tjong, Harianto; Li, Wenyuan; Kalhor, Reza; ...

    2016-03-07

    Conformation capture technologies (e.g., Hi-C) chart physical interactions between chromatin regions on a genome-wide scale. However, the structural variability of the genome between cells poses a great challenge to interpreting ensemble-averaged Hi-C data, particularly for long-range and interchromosomal interactions. Here, we present a probabilistic approach for deconvoluting Hi-C data into a model population of distinct diploid 3D genome structures, which facilitates the detection of chromatin interactions likely to co-occur in individual cells. Here, our approach incorporates the stochastic nature of chromosome conformations and allows a detailed analysis of alternative chromatin structure states. For example, we predict and experimentally confirm themore » presence of large centromere clusters with distinct chromosome compositions varying between individual cells. The stability of these clusters varies greatly with their chromosome identities. We show that these chromosome-specific clusters can play a key role in the overall chromosome positioning in the nucleus and stabilizing specific chromatin interactions. By explicitly considering genome structural variability, our population-based method provides an important tool for revealing novel insights into the key factors shaping the spatial genome organization.« less

  8. Can the functional stability of forest ecosystems be evaluated from the spatial analysis of stands? A case study from the Bialowieza Primeval Forest (Poland)

    Treesearch

    Andrzej Bobiec

    2000-01-01

    Variability of external and internal factors entails specific spatial patterns and functional dynamics of communities. The study of the oak-lime-hornbeam (Quercus robur-Tilia cordata-Carpimus) forest in the Bialowieza Primeval Forest supports the concept of silvatic unit, determining the minimal structural area. To find out if the dynamics of a stand...

  9. Plasticity and stability of visual field maps in adult primary visual cortex

    PubMed Central

    Wandell, Brian A.; Smirnakis, Stelios M.

    2010-01-01

    Preface It is important to understand the balance between cortical plasticity and stability in various systems and spatial scales in the adult brain. We review measurements of adult plasticity in primary visual cortex (V1), a structure that has a key role in distributing visual information. There are claims of plasticity at multiple spatial scales in adult V1, but many inconsistencies in the data raise questions about the extent and nature of such plasticity. Understanding is further limited by a lack of quantitative models to guide the interpretation of the data. These problems limit efforts to translate research findings about adult cortical plasticity into significant clinical, educational and policy applications. PMID:19904279

  10. Modeling the Spatial Dynamics of Regional Land Use: The CLUE-S Model

    NASA Astrophysics Data System (ADS)

    Verburg, Peter H.; Soepboer, Welmoed; Veldkamp, A.; Limpiada, Ramil; Espaldon, Victoria; Mastura, Sharifah S. A.

    2002-09-01

    Land-use change models are important tools for integrated environmental management. Through scenario analysis they can help to identify near-future critical locations in the face of environmental change. A dynamic, spatially explicit, land-use change model is presented for the regional scale: CLUE-S. The model is specifically developed for the analysis of land use in small regions (e.g., a watershed or province) at a fine spatial resolution. The model structure is based on systems theory to allow the integrated analysis of land-use change in relation to socio-economic and biophysical driving factors. The model explicitly addresses the hierarchical organization of land use systems, spatial connectivity between locations and stability. Stability is incorporated by a set of variables that define the relative elasticity of the actual land-use type to conversion. The user can specify these settings based on expert knowledge or survey data. Two applications of the model in the Philippines and Malaysia are used to illustrate the functioning of the model and its validation.

  11. Modeling the spatial dynamics of regional land use: the CLUE-S model.

    PubMed

    Verburg, Peter H; Soepboer, Welmoed; Veldkamp, A; Limpiada, Ramil; Espaldon, Victoria; Mastura, Sharifah S A

    2002-09-01

    Land-use change models are important tools for integrated environmental management. Through scenario analysis they can help to identify near-future critical locations in the face of environmental change. A dynamic, spatially explicit, land-use change model is presented for the regional scale: CLUE-S. The model is specifically developed for the analysis of land use in small regions (e.g., a watershed or province) at a fine spatial resolution. The model structure is based on systems theory to allow the integrated analysis of land-use change in relation to socio-economic and biophysical driving factors. The model explicitly addresses the hierarchical organization of land use systems, spatial connectivity between locations and stability. Stability is incorporated by a set of variables that define the relative elasticity of the actual land-use type to conversion. The user can specify these settings based on expert knowledge or survey data. Two applications of the model in the Philippines and Malaysia are used to illustrate the functioning of the model and its validation.

  12. Spatial and temporal structure of a mesocarnivore guild in midwestern north America

    Treesearch

    Damon B. Lesmeister; Clayton K. Nielsen; Eric M. Schauber; Eric C. Hellgren

    2015-01-01

    Carnivore guilds play a vital role in ecological communities by cascading trophic effects, energy and nutrient transfer, and stabilizing or destabilizing food webs. Consequently, the structure of carnivore guilds can be critical to ecosystem patterns. Body size is a crucial influence on intraguild interactions, because it affects access to prey resources, effectiveness...

  13. Temporal and spatial influences incur reconfiguration of Arctic heathland soil bacterial community structure.

    PubMed

    Hill, Richard; Saetnan, Eli R; Scullion, John; Gwynn-Jones, Dylan; Ostle, Nick; Edwards, Arwyn

    2016-06-01

    Microbial responses to Arctic climate change could radically alter the stability of major stores of soil carbon. However, the sensitivity of plot-scale experiments simulating climate change effects on Arctic heathland soils to potential confounding effects of spatial and temporal changes in soil microbial communities is unknown. Here, the variation in heathland soil bacterial communities at two survey sites in Sweden between spring and summer 2013 and at scales between 0-1 m and, 1-100 m and between sites (> 100 m) were investigated in parallel using 16S rRNA gene T-RFLP and amplicon sequencing. T-RFLP did not reveal spatial structuring of communities at scales < 100 m in any site or season. However, temporal changes were striking. Amplicon sequencing corroborated shifts from r- to K-selected taxon-dominated communities, influencing in silico predictions of functional potential. Network analyses reveal temporal keystone taxa, with a spring betaproteobacterial sub-network centred upon a Burkholderia operational taxonomic unit (OTU) and a reconfiguration to a summer sub-network centred upon an alphaproteobacterial OTU. Although spatial structuring effects may not confound comparison between plot-scale treatments, temporal change is a significant influence. Moreover, the prominence of two temporally exclusive keystone taxa suggests that the stability of Arctic heathland soil bacterial communities could be disproportionally influenced by seasonal perturbations affecting individual taxa. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. Spatial structure favors cooperative behavior in the snowdrift game with multiple interactive dynamics

    NASA Astrophysics Data System (ADS)

    Su, Qi; Li, Aming; Wang, Long

    2017-02-01

    Spatial reciprocity is generally regarded as a positive rule facilitating the evolution of cooperation. However, a few recent studies show that, in the snowdrift game, spatial structure still could be detrimental to cooperation. Here we propose a model of multiple interactive dynamics, where each individual can cooperate and defect simultaneously against different neighbors. We realize individuals' multiple interactions simply by endowing them with strategies relevant to probabilities, and every one decides to cooperate or defect with a probability. With multiple interactive dynamics, the cooperation level in square lattices is higher than that in the well-mixed case for a wide range of cost-to-benefit ratio r, implying that spatial structure favors cooperative behavior in the snowdrift game. Moreover, in square lattices, the most favorable strategy follows a simple relation of r, which confers theoretically the average evolutionary frequency of cooperative behavior. We further extend our study to various homogeneous and heterogeneous networks, which demonstrates the robustness of our results. Here multiple interactive dynamics stabilizes the positive role of spatial structure on the evolution of cooperation and individuals' distinct reactions to different neighbors can be a new line in understanding the emergence of cooperation.

  15. Figure–ground discrimination behavior in Drosophila. I. Spatial organization of wing-steering responses

    PubMed Central

    Fox, Jessica L.; Aptekar, Jacob W.; Zolotova, Nadezhda M.; Shoemaker, Patrick A.; Frye, Mark A.

    2014-01-01

    The behavioral algorithms and neural subsystems for visual figure–ground discrimination are not sufficiently described in any model system. The fly visual system shares structural and functional similarity with that of vertebrates and, like vertebrates, flies robustly track visual figures in the face of ground motion. This computation is crucial for animals that pursue salient objects under the high performance requirements imposed by flight behavior. Flies smoothly track small objects and use wide-field optic flow to maintain flight-stabilizing optomotor reflexes. The spatial and temporal properties of visual figure tracking and wide-field stabilization have been characterized in flies, but how the two systems interact spatially to allow flies to actively track figures against a moving ground has not. We took a systems identification approach in flying Drosophila and measured wing-steering responses to velocity impulses of figure and ground motion independently. We constructed a spatiotemporal action field (STAF) – the behavioral analog of a spatiotemporal receptive field – revealing how the behavioral impulse responses to figure tracking and concurrent ground stabilization vary for figure motion centered at each location across the visual azimuth. The figure tracking and ground stabilization STAFs show distinct spatial tuning and temporal dynamics, confirming the independence of the two systems. When the figure tracking system is activated by a narrow vertical bar moving within the frontal field of view, ground motion is essentially ignored despite comprising over 90% of the total visual input. PMID:24198267

  16. Enhancing synchronization stability in a multi-area power grid

    PubMed Central

    Wang, Bing; Suzuki, Hideyuki; Aihara, Kazuyuki

    2016-01-01

    Maintaining a synchronous state of generators is of central importance to the normal operation of power grids, in which many networks are generally interconnected. In order to understand the condition under which the stability can be optimized, it is important to relate network stability with feedback control strategies as well as network structure. Here, we present a stability analysis on a multi-area power grid by relating it with several control strategies and topological design of network structure. We clarify the minimal feedback gain in the self-feedback control, and build the optimal communication network for the local and global control strategies. Finally, we consider relationship between the interconnection pattern and the synchronization stability; by optimizing the network interlinks, the obtained network shows better synchronization stability than the original network does, in particular, at a high power demand. Our analysis shows that interlinks between spatially distant nodes will improve the synchronization stability. The results seem unfeasible to be implemented in real systems but provide a potential guide for the design of stable power systems. PMID:27225708

  17. Simulation of Vortex Structure in Supersonic Free Shear Layer Using Pse Method

    NASA Astrophysics Data System (ADS)

    Guo, Xin; Wang, Qiang

    The method of parabolized stability equations (PSE) are applied in the analysis of nonlinear stability and the simulation of flow structure in supersonic free shear layer. High accuracy numerical techniques including self-similar basic flow, high order differential method, appropriate transformation and decomposition of nonlinear terms are adopted and developed to solve the PSE effectively for free shear layer. The spatial evolving unstable waves which dominate the flow structure are investigated through nonlinear coupling spatial marching methods. The nonlinear interactions between harmonic waves are further analyzed and instantaneous flow field are obtained by adding the harmonic waves into basic flow. Relevant data agree well with that of DNS. The results demonstrate that T-S wave does not keeping growing exponential as the linear evolution, the energy transfer to high order harmonic modes and finally all harmonic modes get saturation due to the nonlinear interaction; Mean flow distortion is produced by the nonlinear interaction between the harmonic and its conjugate harmonic, makes great change to the average flow and increases the thickness of shear layer; PSE methods can well capture the large scale nonlinear flow structure in the supersonic free shear layer such as vortex roll-up, vortex pairing and nonlinear saturation.

  18. In-situ high-resolution visualization of laser-induced periodic nanostructures driven by optical feedback.

    PubMed

    Aguilar, Alberto; Mauclair, Cyril; Faure, Nicolas; Colombier, Jean-Philippe; Stoian, Razvan

    2017-11-28

    Optical feedback is often evoked in laser-induced periodic nanostructures. Visualizing the coupling between surfaces and light requires highly-resolved imaging methods. We propose in-situ structured-illumination-microscopy to observe ultrafast-laser-induced nanostructures during fabrication on metallic glass surfaces. This resolves the pulse-to-pulse development of periodic structures on a single irradiation site and indicates the optical feedback on surface topographies. Firstly, the quasi-constancy of the ripples pattern and the reinforcement of the surface relief with the same spatial positioning indicates a phase-locking mechanism that stabilizes and amplifies the ordered corrugation. Secondly, on sites with uncorrelated initial corrugation, we observe ripple patterns spatially in-phase. These feedback aspects rely on the electromagnetic interplay between the laser pulse and the surface relief, stabilizing the pattern in period and position. They are critically dependent on the space-time coherence of the exciting pulse. This suggests a modulation of energy according to the topography of the surface with a pattern phase imposed by the driving pulse. A scattering and interference model for ripple formation on surfaces supports the experimental observations. This relies on self-phase-stabilized far-field interaction between surface scattered wavelets and the incoming pulse front.

  19. Directional reflectance factors for monitoring spatial changes in soil surface structure and soil organic matter erosion in agricultural systems

    NASA Astrophysics Data System (ADS)

    Croft, H.; Anderson, K.

    2012-04-01

    Soils can experience rapid structural degradation in response to land cover changes, resulting in reduced soil productivity, increased erodibility and a loss of soil organic matter (SOM). The breakdown of soil aggregates through slaking and raindrop impact is linked to organic matter turnover, with subsequently eroded material often displaying proportionally more SOM. A reduction in aggregate stability is reflected in a decline in soil surface roughness (SSR), indicating that a soil structural change can be used to highlight soil vulnerability to SOM loss through mineralisation or erosion. Accurate, spatially-continuous measurements of SSR are therefore needed at a variety of spatial and temporal scales to understand the spatial nature of SOM erosion and deposition. Remotely-sensed data can provide a cost-effective means of monitoring changes in soil surface condition over broad spatial extents. Previous work has demonstrated the ability of directional reflectance factors to monitor soil crusting within a controlled laboratory experiment, due to changes in the levels of self-shadowing effects by soil aggregates. However, further research is needed to test this approach in situ, where other soil variables may affect measured reflectance factors and to investigate the use of directional reflectance factors for monitoring soil erosion processes. This experiment assesses the potential of using directional reflectance factors to monitor changes in SSR, aggregate stability and soil organic carbon (SOC) content for two agricultural conditions. Five soil plots representing tilled and seedbed soils were subjected to different durations of natural rainfall, producing a range of different levels of SSR. Directional reflectance factors were measured concomitantly with sampling for soil structural and biochemical tests at each soil plot. Soil samples were taken to measure aggregate stability (wet sieving), SOC (loss on ignition) and soil moisture (gravimetric method). SSM values varied from 8.70 to 20.05% and SOC from 1.33 to 1.05%, across all soil plots. Each plot was characterised using a close-range laser scanning device with a 2 mm sampling interval. The point laser data were geostatistically analysed to provide a spatially-distributed measure of SSR, giving sill variance values from 3.15 to 22.99. Reflectance factors from the soil states were measured using a ground-based hyperspectral spectroradiometer (400-2500 nm) attached to an A-frame device. This method allowed measurement at a range of viewing zenith angles from extreme forwardscatter (-60°) to extreme backscatter (+60°) at a 10° sampling resolution in the solar principal plane. Reflectance measurements were compared to geostatistically-derived indicators of SSR from the laser profile data. Forward-scattered reflectance factors exhibited a very strong relationship to SSR (R2 = 0.84 at -60°; p< 0.05), demonstrating the operational potential of directional reflectance for providing SSR measurements, despite conflicting variation in SSM. SSM also presented an interesting directional signal (R2 = 0.99 at +20°; p< 0.01). Furthermore, the results showed an important link between SRR decline as measured using directional reflectance, with a decline in aggregate stability and SOC content. These findings provide an empirical and theoretical basis for the future retrieval of spatially-continuous assessments of soil surface structure and carbon turnover within a landscape context.

  20. Computed Energetics of Nucleotides in Spatial Ribozyme Structures: An Accurate Identification of Functional Regions from Structure

    PubMed Central

    Torshin, Ivan Y.

    2004-01-01

    Ribozymes are functionally diverse RNA molecules with intrinsic catalytic activity. Multiple structural and biochemical studies are required to establish which nucleotide bases are involved in the catalysis. The relative energetic properties of the nucleotide bases have been analyzed in a set of the known ribozyme structures. It was found that many of the known catalytic nucleotides can be identified using only the structure without any additional biochemical data. The results of the calculations compare well with the available biochemical data on RNA stability. Extensive in silico mutagenesis suggests that most of the nucleotides in ribozymes stabilize the RNA. The calculations show that relative contribution of the catalytic bases to RNA stability observably differs from contributions of the noncatalytic bases. Distinction between the concepts of “relative stability” and “mutational stability” is suggested. As results of prediction for several models of ribozymes appear to be in agreement with the published data on the potential active site regions, the method can potentially be used for prediction of functional nucleotides from nucleic sequence. PMID:15105962

  1. An experimental test of a fundamental food web motif.

    PubMed

    Rip, Jason M K; McCann, Kevin S; Lynn, Denis H; Fawcett, Sonia

    2010-06-07

    Large-scale changes to the world's ecosystem are resulting in the deterioration of biostructure-the complex web of species interactions that make up ecological communities. A difficult, yet crucial task is to identify food web structures, or food web motifs, that are the building blocks of this baroque network of interactions. Once identified, these food web motifs can then be examined through experiments and theory to provide mechanistic explanations for how structure governs ecosystem stability. Here, we synthesize recent ecological research to show that generalist consumers coupling resources with different interaction strengths, is one such motif. This motif amazingly occurs across an enormous range of spatial scales, and so acts to distribute coupled weak and strong interactions throughout food webs. We then perform an experiment that illustrates the importance of this motif to ecological stability. We find that weak interactions coupled to strong interactions by generalist consumers dampen strong interaction strengths and increase community stability. This study takes a critical step by isolating a common food web motif and through clear, experimental manipulation, identifies the fundamental stabilizing consequences of this structure for ecological communities.

  2. Internal consistency and stability of the CANTAB neuropsychological test battery in children.

    PubMed

    Syväoja, Heidi J; Tammelin, Tuija H; Ahonen, Timo; Räsänen, Pekka; Tolvanen, Asko; Kankaanpää, Anna; Kantomaa, Marko T

    2015-06-01

    The Cambridge Neuropsychological Test Automated Battery (CANTAB) is a computer-assessed test battery widely use in different populations. The internal consistency and 1-year stability of CANTAB tests were examined in school-age children. Two hundred-thirty children (57% girls) from five schools in the Jyväskylä school district in Finland participated in the study in spring 2011. The children completed the following CANTAB tests: (a) visual memory (pattern recognition memory [PRM] and spatial recognition memory [SRM]), (b) executive function (spatial span [SSP], Stockings of Cambridge [SOC], and intra-extra dimensional set shift [IED]), and (c) attention (reaction time [RTI] and rapid visual information processing [RVP]). Seventy-four children participated in the follow-up measurements (64% girls) in spring 2012. Cronbach's alpha reliability coefficient was used to estimate the internal consistency of the nonhampering test, and structural equation models were applied to examine the stability of these tests. The reliability and the stability could not be determined for IED or SSP because of the nature of these tests. The internal consistency was acceptable only in the RTI task. The 1-year stability was moderate-to-good for the PRM, RTI, and RVP. The SSP and IED showed a moderate correlation between the two measurement points. The SRM and the SOC tasks were not reliable or stable measures in this study population. For research purposes, we recommend using structural equation modeling to improve reliability. The results suggest that the reliability and the stability of computer-based test batteries should be confirmed in the target population before using them for clinical or research purposes. (c) 2015 APA, all rights reserved).

  3. Spatial transferring of ecosystem services and property rights allocation of ecological compensation

    NASA Astrophysics Data System (ADS)

    Wen, Wujun; Xu, Geng; Wang, Xingjie

    2011-09-01

    Ecological compensation is an important means to maintain the sustainability and stability of ecosystem services. The property rights analysis of ecosystem services is indispensable when we implement ecological compensation. In this paper, ecosystem services are evaluated via spatial transferring and property rights analysis. Take the Millennium Ecosystem Assessment (MA) as an example, we attempt to classify the spatial structure of 31 categories of ecosystem services into four dimensions, i.e., local, regional, national and global ones, and divide the property rights structure into three types, i.e., private property rights, common property rights and state-owned property rights. Through the case study of forestry, farming industry, drainage area, development of mineral resources, nature reserves, functional areas, agricultural land expropriation, and international cooperation on ecological compensation, the feasible ecological compensation mechanism is illustrated under the spatial structure and property rights structure of the concerned ecosystem services. For private property rights, the ecological compensation mode mainly depends on the market mechanism. If the initial common property rights are "hidden," the implementation of ecological compensation mainly relies on the quota market transactions and the state investment under the state-owned property rights, and the fairness of property rights is thereby guaranteed through central administration.

  4. Variability in oak forest herb layer communities

    Treesearch

    J. R. McClenahen; R. P. Long

    1995-01-01

    This study evaluates forest herb-layer sensitivity to annual-scale environmental fluctuation. Specific objectives were to determine the between-year variation in herb-layer community biomass, and to contrast and evaluate the temporal stability of spatial relationships in herb-layer community structure and composition between successive years. Aboveground dry weights of...

  5. Discrete elliptic solitons in two-dimensional waveguide arrays

    NASA Astrophysics Data System (ADS)

    Ye, Fangwei; Dong, Liangwei; Wang, Jiandong; Cai, Tian; Li, Yong-Ping

    2005-04-01

    The fundamental properties of discrete elliptic solitons (DESs) in the two-dimensional waveguide arrays were studied. The DESs show nontrivial spatial structures in their parameters space due to the introduction of the new freedom of ellipticity, and their stability is closely linked to their propagation directions in the transverse plane.

  6. Spatial and Temporal Dynamics of Pacific Oyster Hemolymph Microbiota across Multiple Scales

    PubMed Central

    Lokmer, Ana; Goedknegt, M. Anouk; Thieltges, David W.; Fiorentino, Dario; Kuenzel, Sven; Baines, John F.; Wegner, K. Mathias

    2016-01-01

    Unveiling the factors and processes that shape the dynamics of host associated microbial communities (microbiota) under natural conditions is an important part of understanding and predicting an organism's response to a changing environment. The microbiota is shaped by host (i.e., genetic) factors as well as by the biotic and abiotic environment. Studying natural variation of microbial community composition in multiple host genetic backgrounds across spatial as well as temporal scales represents a means to untangle this complex interplay. Here, we combined a spatially-stratified with a longitudinal sampling scheme within differentiated host genetic backgrounds by reciprocally transplanting Pacific oysters between two sites in the Wadden Sea (Sylt and Texel). To further differentiate contingent site from host genetic effects, we repeatedly sampled the same individuals over a summer season to examine structure, diversity and dynamics of individual hemolymph microbiota following experimental removal of resident microbiota by antibiotic treatment. While a large proportion of microbiome variation could be attributed to immediate environmental conditions, we observed persistent effects of antibiotic treatment and translocation suggesting that hemolymph microbial community dynamics is subject to within-microbiome interactions and host population specific factors. In addition, the analysis of spatial variation revealed that the within-site microenvironmental heterogeneity resulted in high small-scale variability, as opposed to large-scale (between-site) stability. Similarly, considerable within-individual temporal variability was in contrast with the overall temporal stability at the site level. Overall, our longitudinal, spatially-stratified sampling design revealed that variation in hemolymph microbiota is strongly influenced by site and immediate environmental conditions, whereas internal microbiome dynamics and oyster-related factors add to their long-term stability. The combination of small and large scale resolution of spatial and temporal observations therefore represents a crucial but underused tool to study host-associated microbiome dynamics. PMID:27630625

  7. Spatial scale of similarity as an indicator of metacommunity stability in exploited marine systems.

    PubMed

    Shackell, Nancy L; Fisher, Jonathan A D; Frank, Kenneth T; Lawton, Peter

    2012-01-01

    The spatial scale of similarity among fish communities is characteristically large in temperate marine systems: connectivity is enhanced by high rates of dispersal during the larval/juvenile stages and the increased mobility of large-bodied fish. A larger spatial scale of similarity (low beta diversity) is advantageous in heavily exploited systems because locally depleted populations are more likely to be "rescued" by neighboring areas. We explored whether the spatial scale of similarity changed from 1970 to 2006 due to overfishing of dominant, large-bodied groundfish across a 300 000-km2 region of the Northwest Atlantic. Annually, similarities among communities decayed slowly with increasing geographic distance in this open system, but through time the decorrelation distance declined by 33%, concomitant with widespread reductions in biomass, body size, and community evenness. The decline in connectivity stemmed from an erosion of community similarity among local subregions separated by distances as small as 100 km. Larger fish, of the same species, contribute proportionally more viable offspring, so observed body size reductions will have affected maternal output. The cumulative effect of nonlinear maternal influences on egg/larval quality may have compromised the spatial scale of effective larval dispersal, which may account for the delayed recovery of certain member species. Our study adds strong support for using the spatial scale of similarity as an indicator of metacommunity stability both to understand the spatial impacts of exploitation and to refine how spatial structure is used in management plans.

  8. Polymer-stabilized liquid crystalline topological defect network for micro-pixelated optical devices

    NASA Astrophysics Data System (ADS)

    Araoka, Fumito; Le, Khoa V.; Fujii, Shuji; Orihara, Hiroshi; Sasaki, Yuji

    2018-02-01

    Spatially and temporally controlled topological defects in nematic liquid crystals (NLCs) are promising for its potential in optical applications. Utilization of self-organization is a key to fabricate complex micro- and nano-structures which are often difficult to obtain by conventional lithographic tools. Using photo-polymerization technique, here we show a polymer-stabilized NLC having a micro-pixelated structure of regularly ordered umbilical defects which are induced by an electric field. Due to the formation of polymer network, the self-organized pattern is kept stable without deterioration. Moreover, the polymer network allows to template other LCs whose optical properties can be tuned with external stimuli such as temperature and electric fields.

  9. The relationship between the spatial scaling of biodiversity and ecosystem stability

    PubMed Central

    Delsol, Robin; Loreau, Michel; Haegeman, Bart

    2018-01-01

    Aim Ecosystem stability and its link with biodiversity have mainly been studied at the local scale. Here we present a simple theoretical model to address the joint dependence of diversity and stability on spatial scale, from local to continental. Methods The notion of stability we use is based on the temporal variability of an ecosystem-level property, such as primary productivity. In this way, our model integrates the well-known species–area relationship (SAR) with a recent proposal to quantify the spatial scaling of stability, called the invariability–area relationship (IAR). Results We show that the link between the two relationships strongly depends on whether the temporal fluctuations of the ecosystem property of interest are more correlated within than between species. If fluctuations are correlated within species but not between them, then the IAR is strongly constrained by the SAR. If instead individual fluctuations are only correlated by spatial proximity, then the IAR is unrelated to the SAR. We apply these two correlation assumptions to explore the effects of species loss and habitat destruction on stability, and find a rich variety of multi-scale spatial dependencies, with marked differences between the two assumptions. Main conclusions The dependence of ecosystem stability on biodiversity across spatial scales is governed by the spatial decay of correlations within and between species. Our work provides a point of reference for mechanistic models and data analyses. More generally, it illustrates the relevance of macroecology for ecosystem functioning and stability. PMID:29651225

  10. Exploring space-time structure of human mobility in urban space

    NASA Astrophysics Data System (ADS)

    Sun, J. B.; Yuan, J.; Wang, Y.; Si, H. B.; Shan, X. M.

    2011-03-01

    Understanding of human mobility in urban space benefits the planning and provision of municipal facilities and services. Due to the high penetration of cell phones, mobile cellular networks provide information for urban dynamics with a large spatial extent and continuous temporal coverage in comparison with traditional approaches. The original data investigated in this paper were collected by cellular networks in a southern city of China, recording the population distribution by dividing the city into thousands of pixels. The space-time structure of urban dynamics is explored by applying Principal Component Analysis (PCA) to the original data, from temporal and spatial perspectives between which there is a dual relation. Based on the results of the analysis, we have discovered four underlying rules of urban dynamics: low intrinsic dimensionality, three categories of common patterns, dominance of periodic trends, and temporal stability. It implies that the space-time structure can be captured well by remarkably few temporal or spatial predictable periodic patterns, and the structure unearthed by PCA evolves stably over time. All these features play a critical role in the applications of forecasting and anomaly detection.

  11. Stability and Interaction of Coherent Structure in Supersonic Reactive Wakes

    NASA Technical Reports Server (NTRS)

    Menon, Suresh

    1983-01-01

    A theoretical formulation and analysis is presented for a study of the stability and interaction of coherent structure in reacting free shear layers. The physical problem under investigation is a premixed hydrogen-oxygen reacting shear layer in the wake of a thin flat plate. The coherent structure is modeled as a periodic disturbance and its stability is determined by the application of linearized hydrodynamic stability theory which results in a generalized eigenvalue problem for reactive flows. Detailed stability analysis of the reactive wake for neutral, symmetrical and antisymmetrical disturbance is presented. Reactive stability criteria is shown to be quite different from classical non-reactive stability. The interaction between the mean flow, coherent structure and fine-scale turbulence is theoretically formulated using the von-Kaman integral technique. Both time-averaging and conditional phase averaging are necessary to separate the three types of motion. The resulting integro-differential equations can then be solved subject to initial conditions with appropriate shape functions. In the laminar flow transition region of interest, the spatial interaction between the mean motion and coherent structure is calculated for both non-reactive and reactive conditions and compared with experimental data wherever available. The fine-scale turbulent motion determined by the application of integral analysis to the fluctuation equations. Since at present this turbulence model is still untested, turbulence is modeled in the interaction problem by a simple algebraic eddy viscosity model. The applicability of the integral turbulence model formulated here is studied parametrically by integrating these equations for the simple case of self-similar mean motion with assumed shape functions. The effect of the motion of the coherent structure is studied and very good agreement is obtained with previous experimental and theoretical works for non-reactive flow. For the reactive case, lack of experimental data made direct comparison difficult. It was determined that the growth rate of the disturbance amplitude is lower for reactive case. The results indicate that the reactive flow stability is in qualitative agreement with experimental observation.

  12. Decadal stability in genetic variation and structure in the intertidal seaweed Fucus serratus (Heterokontophyta: Fucaceae).

    PubMed

    Jueterbock, Alexander; Coyer, James A; Olsen, Jeanine L; Hoarau, Galice

    2018-06-15

    The spatial distribution of genetic diversity and structure has important implications for conservation as it reveals a species' strong and weak points with regard to stability and evolutionary capacity. Temporal genetic stability is rarely tested in marine species other than commercially important fishes, but is crucial for the utility of temporal snapshots in conservation management. High and stable diversity can help to mitigate the predicted northward range shift of seaweeds under the impact of climate change. Given the key ecological role of fucoid seaweeds along rocky shores, the positive effect of genetic diversity may reach beyond the species level to stabilize the entire intertidal ecosystem along the temperate North Atlantic. In this study, we estimated the effective population size, as well as temporal changes in genetic structure and diversity of the seaweed F. serratus using 22 microsatellite markers. Samples were taken across latitudes and a range of temperature regimes at seven locations with decadal sampling (2000 and 2010). Across latitudes, genetic structure and diversity remained stable over 5-10 generations. Stable small-scale structure enhanced regional diversity throughout the species' range. In accordance with its biogeographic history, effective population size and diversity peaked in the species' mid-range in Brittany (France), and declined towards its leading and trailing edge to the north and south. At the species' southern edge, multi-locus-heterozygosity displayed a strong decline from 1999 to 2010. Temporally stable genetic structure over small spatial scales is a potential driver for local adaptation and species radiation in the genus Fucus. Survival and adaptation of the low-diversity leading edge of F. serratus may be enhanced by regional gene flow and 'surfing' of favorable mutations or impaired by the accumulation of deleterious mutations. Our results have clear implications for the conservation of F. serratus at its genetically unique southern edge in Northwest Iberia, where increasing temperatures are likely the major cause for the decline not only of F. serratus, but also other intertidal and subtidal macroalgae. We expect that F. serratus will disappear from Northwest Iberia by 2100 if genetic rescue is not induced by the influx of genetic variation from Brittany.

  13. Nonequilibrium stabilization of an RNA/protein droplet emulsion by nuclear actin

    NASA Astrophysics Data System (ADS)

    Brangwynne, Clifford

    2013-03-01

    Actin plays a structural role in the cytoplasm. However, actin takes on new functions and structures in the nucleus that are poorly understood. The nuclei of the large oocytes of the frog X. laevisspecifically accumulate actin to reach high concentrations; however, it remains unclear if this actin polymerizes into a network, and what, if any, structural role such an actin network might play. Here, we use microrheological and confocal imaging techniques to probe the local architecture and mechanics of the nucleus. Our data show that actin forms a weak network that spatially organizes the nucleus by kinetically stabilizing embedded liquid-like RNA/protein bodies which are important for cell growth. In actin-disrupted nuclei this RNA/protein droplet emulsion is destabilized leading to homotypic coalescence into single large droplets. Our data provide intriguing new insights into why large cell nuclei require an actin-based structural scaffold.

  14. Spatial and temporal variability of microgeographic genetic structure in white-tailed deer

    USGS Publications Warehouse

    Scribner, Kim T.; Smith, Michael H.; Chesser, Ronald K.

    1997-01-01

    Techniques are described that define contiguous genetic subpopulations of white-tailed deer (Odocoileus virginianus) based on the spatial dispersion of 4,749 individuals that possessed discrete character values (alleles or genotypes) during each of 6 years (1974-1979). White-tailed deer were not uniformly distributed in space, but exhibited considerable spatial genetic structuring. Significant non-random clusters of individuals were documented during each year based on specific alleles and genotypes at the Sdh locus. Considerable temporal variation was observed in the position and genetic composition of specific clusters, which reflected changes in allele frequency in small geographic areas. The position of clusters did not consistently correspond with traditional management boundaries based on major discontinuities in habitat (swamp versus upland) and hunt compartments that were defined by roads and streams. Spatio-temporal stability of observed genetic contiguous clusters was interpreted relative to method and intensity of harvest, movements, and breeding ecology.

  15. Snow depth spatial structure from hillslope to basin scale

    NASA Astrophysics Data System (ADS)

    Deems, J. S.

    2017-12-01

    Knowledge of spatial patterns of snow accumulation is required for understanding the hydrology, climatology, and ecology of mountain regions. Spatial structure in snow accumulation patterns changes with the scale of observation, a feature that has been characterized using fractal dimensions calculated from lidar-derived snow depth maps: fractal scaling structure at short length scales, with a `scale break' transition to more stochastic patterns at longer separation distances. Previous work has shown that this fractal structure of snow depth distributions differs between sites with different vegetation and terrain characteristics. Forested areas showed a transition to a nearly random spatial distribution at a much shorter lag distance than do unforested sites, enabling a statistical characterization. Alpine areas, however, showed strong spatial structure for a much wider scale range, and were the source of the dominant spatial pattern observable over a wider area. These spatial structure characteristics suggest that the choice of measurement or model resolution (satellite sensor, DEM, field survey point spacing, etc.) will strongly affect the estimates of snow volume or mass, as well as the magnitude of spatial variability. These prior efforts used data sets that were high resolution ( 1 m laser point spacing) but of limited extent ( 1 km2), constraining detection of scale features such as fractal dimension or scale breaks to areas of relatively similar characteristics and to lag distances of under 500 m. New datasets available from the NASA JPL Airborne Snow Observatory (ASO) provide similar resolution but over large areas, enabling assessment of snow spatial structure across an entire watershed, or in similar vegetation or physiography but in different parts of the basin. Additionally, the multi-year ASO time series allows an investigation into the temporal stability of these scale characteristics, within a single snow season and between seasons of strongly varying accumulation totals and patterns. This presentation will explore initial results from this study, using data from the Tuolumne River Basin in California, USA. Fractal scaling characteristics derived from ASO lidar snow depth measurements are examined at the basin scale, as well as in varying topographic and forest cover environments.

  16. Spatial and Temporal Patterns of Throughfall Amounts and Solutes in a Tropical Montane Forest - Comparisons with Findings From Lowland Rain Forests

    NASA Astrophysics Data System (ADS)

    Zimmermann, A.

    2007-05-01

    The diverse tree species composition, irregular shaped tree crowns and a multi-layered forest structure affect the redistribution of rainfall in lower montane rain forests. In addition, abundant epiphyte biomass and associated canopy humus influence spatial patterns of throughfall. The spatial variability of throughfall amounts controls spatial patterns of solute concentrations and deposition. Moreover, the living and dead biomass interacts with the rainwater during the passage through the canopy and creates a chemical variability of its own. Since spatial and temporal patterns are intimately linked, the analysis of temporal solute concentration dynamics is an important step to understand the emerging spatial patterns. I hypothesized that: (1) the spatial variability of volumes and chemical composition of throughfall is particularly high compared with other forests because of the high biodiversity and epiphytism, (2) the temporal stability of the spatial pattern is high because of stable structures in the canopy (e.g. large epiphytes) that show only minor changes during the short term observation period, and (3) the element concentrations decrease with increasing rainfall because of exhausting element pools in the canopy. The study area at 1950 m above sea level is located in the south Ecuadorian Andes far away from anthropogenic emission sources and marine influences. Rain and throughfall were collected from August to October 2005 on an event and within-event basis for five precipitation periods and analyzed for pH, K, Na, Ca, Mg, NH4+, Cl-, NO3-, PO43-, TN, TP and TOC. Throughfall amounts and most of the solutes showed a high spatial variability, thereby the variability of H+, K, Ca, Mg, Cl- and NO3- exceeded those from a Brazilian tropical rain forest. The temporal persistence of the spatial patterns was high for throughfall amounts and varied depending on the solute. Highly persistent time stability patterns were detected for K, Mg and TOC concentrations. Time stability patterns of solute deposition were somewhat weaker than for concentrations for most of the solutes. Epiphytes strongly affected time stability patterns in that collectors situated below thick moss mats or arboreal bromeliads were in large part responsible for the extreme persistence with low throughfall amounts and high ion concentrations (H+ showed low concentrations). Rainfall solute concentrations were low compared with a variety of other tropical lowland and montane forest sites and showed a small temporal variability during the study period for both between and within-event dynamics, respectively. Throughfall solute concentrations were more within the range when compared with other sites and showed highly variable within-event dynamics. For most of the solutes, within-event concentrations did not reach low, constant concentrations in later event stages, rather concentrations fluctuated (e.g. Cl-) or increased (e.g. K and TOC). The within-event throughfall solute concentration dynamics in this lower montane rain forest contrast to recent observations from lowland tropical rain forests in Panama and Brazil. The observed within-event patterns are attributed (1) to the influence of epiphytes and associated canopy humus, and (2) to low rainfall intensities.

  17. Spontaneous Polariton Currents in Periodic Lateral Chains.

    PubMed

    Nalitov, A V; Liew, T C H; Kavokin, A V; Altshuler, B L; Rubo, Y G

    2017-08-11

    We predict spontaneous generation of superfluid polariton currents in planar microcavities with lateral periodic modulation of both the potential and decay rate. A spontaneous breaking of spatial inversion symmetry of a polariton condensate emerges at a critical pumping, and the current direction is stochastically chosen. We analyze the stability of the current with respect to the fluctuations of the condensate. A peculiar spatial current domain structure emerges, where the current direction is switched at the domain walls, and the characteristic domain size and lifetime scale with the pumping power.

  18. Spatial and temporal analysis of DIII-D 3D magnetic diagnostic data

    DOE PAGES

    Strait, E. J.; King, J. D.; Hanson, J. M.; ...

    2016-08-11

    An extensive set of magnetic diagnostics in DIII-D is aimed at measuring non-axisymmetric "3D" features of tokamak plasmas, with typical amplitudes ~10 -3 to 10 -5 of the total magnetic field. We describe hardware and software techniques used at DIII-D to condition the individual signals and analysis to estimate the spatial structure from an ensemble of discrete measurements. Lastly, applications of the analysis include detection of non-rotating MHD instabilities, plasma control, and validation of MHD stability and 3D equilibrium models.

  19. Monolithic solid-state lasers for spaceflight

    NASA Astrophysics Data System (ADS)

    Krainak, Michael A.; Yu, Anthony W.; Stephen, Mark A.; Merritt, Scott; Glebov, Leonid; Glebova, Larissa; Ryasnyanskiy, Aleksandr; Smirnov, Vadim; Mu, Xiaodong; Meissner, Stephanie; Meissner, Helmuth

    2015-02-01

    A new solution for building high power, solid state lasers for space flight is to fabricate the whole laser resonator in a single (monolithic) structure or alternatively to build a contiguous diffusion bonded or welded structure. Monolithic lasers provide numerous advantages for space flight solid-state lasers by minimizing misalignment concerns. The closed cavity is immune to contamination. The number of components is minimized thus increasing reliability. Bragg mirrors serve as the high reflector and output coupler thus minimizing optical coatings and coating damage. The Bragg mirrors also provide spectral and spatial mode selection for high fidelity. The monolithic structure allows short cavities resulting in short pulses. Passive saturable absorber Q-switches provide a soft aperture for spatial mode filtering and improved pointing stability. We will review our recent commercial and in-house developments toward fully monolithic solid-state lasers.

  20. The impact of resource dependence of the mechanisms of life on the spatial population dynamics of an in silico microbial community

    NASA Astrophysics Data System (ADS)

    Daly, Aisling J.; Baetens, Jan M.; De Baets, Bernard

    2016-12-01

    Biodiversity has a critical impact on ecosystem functionality and stability, and thus the current biodiversity crisis has motivated many studies of the mechanisms that sustain biodiversity, a notable example being non-transitive or cyclic competition. We therefore extend existing microscopic models of communities with cyclic competition by incorporating resource dependence in demographic processes, characteristics of natural systems often oversimplified or overlooked by modellers. The spatially explicit nature of our individual-based model of three interacting species results in the formation of stable spatial structures, which have significant effects on community functioning, in agreement with experimental observations of pattern formation in microbial communities.

  1. Scale dependence of the diversity-stability relationship in a temperate grassland.

    PubMed

    Zhang, Yunhai; He, Nianpeng; Loreau, Michel; Pan, Qingmin; Han, Xingguo

    2018-05-01

    A positive relationship between biodiversity and ecosystem stability has been reported in many ecosystems; however, it has yet to be determined whether and how spatial scale affects this relationship. Here, for the first time, we assessed the effects of alpha, beta and gamma diversity on ecosystem stability and the scale dependence of the slope of the diversity-stability relationship.By employing a long-term (33 years) dataset from a temperate grassland, northern China, we calculated the all possible spatial scales with the complete combination from the basic 1-m 2 plots.Species richness was positively associated with ecosystem stability through species asynchrony and overyielding at all spatial scales (1, 2, 3, 4 and 5 m 2 ). Both alpha and beta diversity were positively associated with gamma stability.Moreover, the slope of the diversity-area relationship was significantly higher than that of the stability-area relationship, resulting in a decline of the slope of the diversity-stability relationship with increasing area. Synthesis. With the positive species diversity effect on ecosystem stability from small to large spatial scales, our findings demonstrate the need to maintain a high biodiversity and biotic heterogeneity as insurance against the risks incurred by ecosystems in the face of global environmental changes.

  2. Optical patterning and dynamics of torons and hopfions in a chiral nematic with photo-tunable equilibrium pitch

    NASA Astrophysics Data System (ADS)

    Sohn, Hayley; Ackerman, Paul; Smalyukh, Ivan

    Three-dimensional (3D) topological solitons arise in field theories ranging from particle physics to condensed matter and cosmology. They are the 3D counterparts of 2D skyrmions (often called ``baby skyrmions''), which attract a great deal of interest in studies of chiral ferromagnets and enable the emerging field of skyrmionics. In chiral nematic liquid crystals, the stability of such solitons is enhanced by the chiral medium's tendency to twist the director field describing the 3D spatial patterns of molecular alignment. However, their experimental realization, control and detailed studies remain limited. We combine experimental realization and numerical modeling of such light-responsive solitonic structures, including elementary torons and hopfions, in confined chiral nematic liquid crystals with photo-tunable cholesteric pitch. We show that the optical tunability of the pitch allows for using low-intensity light to control the soliton stability, dimensions, spatial patterning and dynamics.

  3. Exact states in waveguides with periodically modulated nonlinearity

    NASA Astrophysics Data System (ADS)

    Ding, E.; Chan, H. N.; Chow, K. W.; Nakkeeran, K.; Malomed, B. A.

    2017-09-01

    We introduce a one-dimensional model based on the nonlinear Schrödinger/Gross-Pitaevskii equation where the local nonlinearity is subject to spatially periodic modulation in terms of the Jacobi {dn} function, with three free parameters including the period, amplitude, and internal form-factor. An exact periodic solution is found for each set of parameters and, which is more important for physical realizations, we solve the inverse problem and predict the period and amplitude of the modulation that yields a particular exact spatially periodic state. A numerical stability analysis demonstrates that the periodic states become modulationally unstable for large periods, and regain stability in the limit of an infinite period, which corresponds to a bright soliton pinned to a localized nonlinearity-modulation pattern. The exact dark-bright soliton complex in a coupled system with a localized modulation structure is also briefly considered. The system can be realized in planar optical waveguides and cigar-shaped atomic Bose-Einstein condensates.

  4. Asynchrony among local communities stabilises ecosystem function of metacommunities.

    PubMed

    Wilcox, Kevin R; Tredennick, Andrew T; Koerner, Sally E; Grman, Emily; Hallett, Lauren M; Avolio, Meghan L; La Pierre, Kimberly J; Houseman, Gregory R; Isbell, Forest; Johnson, David Samuel; Alatalo, Juha M; Baldwin, Andrew H; Bork, Edward W; Boughton, Elizabeth H; Bowman, William D; Britton, Andrea J; Cahill, James F; Collins, Scott L; Du, Guozhen; Eskelinen, Anu; Gough, Laura; Jentsch, Anke; Kern, Christel; Klanderud, Kari; Knapp, Alan K; Kreyling, Juergen; Luo, Yiqi; McLaren, Jennie R; Megonigal, Patrick; Onipchenko, Vladimir; Prevéy, Janet; Price, Jodi N; Robinson, Clare H; Sala, Osvaldo E; Smith, Melinda D; Soudzilovskaia, Nadejda A; Souza, Lara; Tilman, David; White, Shannon R; Xu, Zhuwen; Yahdjian, Laura; Yu, Qiang; Zhang, Pengfei; Zhang, Yunhai

    2017-12-01

    Temporal stability of ecosystem functioning increases the predictability and reliability of ecosystem services, and understanding the drivers of stability across spatial scales is important for land management and policy decisions. We used species-level abundance data from 62 plant communities across five continents to assess mechanisms of temporal stability across spatial scales. We assessed how asynchrony (i.e. different units responding dissimilarly through time) of species and local communities stabilised metacommunity ecosystem function. Asynchrony of species increased stability of local communities, and asynchrony among local communities enhanced metacommunity stability by a wide range of magnitudes (1-315%); this range was positively correlated with the size of the metacommunity. Additionally, asynchronous responses among local communities were linked with species' populations fluctuating asynchronously across space, perhaps stemming from physical and/or competitive differences among local communities. Accordingly, we suggest spatial heterogeneity should be a major focus for maintaining the stability of ecosystem services at larger spatial scales. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  5. Uniform functional structure across spatial scales in an intertidal benthic assemblage.

    PubMed

    Barnes, R S K; Hamylton, Sarah

    2015-05-01

    To investigate the causes of the remarkable similarity of emergent assemblage properties that has been demonstrated across disparate intertidal seagrass sites and assemblages, this study examined whether their emergent functional-group metrics are scale related by testing the null hypothesis that functional diversity and the suite of dominant functional groups in seagrass-associated macrofauna are robust structural features of such assemblages and do not vary spatially across nested scales within a 0.4 ha area. This was carried out via a lattice of 64 spatially referenced stations. Although densities of individual components were patchily dispersed across the locality, rank orders of importance of the 14 functional groups present, their overall functional diversity and evenness, and the proportions of the total individuals contained within each showed, in contrast, statistically significant spatial uniformity, even at areal scales <2 m(2). Analysis of the proportional importance of the functional groups in their geospatial context also revealed weaker than expected levels of spatial autocorrelation, and then only at the smaller scales and amongst the most dominant groups, and only a small number of negative correlations occurred between the proportional importances of the individual groups. In effect, such patterning was a surface veneer overlying remarkable stability of assemblage functional composition across all spatial scales. Although assemblage species composition is known to be homogeneous in some soft-sediment marine systems over equivalent scales, this combination of patchy individual components yet basically constant functional-group structure seems as yet unreported. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Disulfide-stabilized Helical Hairpin Structure and Activity of a Novel Antifungal Peptide EcAMP1 from Seeds of Barnyard Grass (Echinochloa crus-galli)*

    PubMed Central

    Nolde, Svetlana B.; Vassilevski, Alexander A.; Rogozhin, Eugene A.; Barinov, Nikolay A.; Balashova, Tamara A.; Samsonova, Olga V.; Baranov, Yuri V.; Feofanov, Alexey V.; Egorov, Tsezi A.; Arseniev, Alexander S.; Grishin, Eugene V.

    2011-01-01

    This study presents purification, activity characterization, and 1H NMR study of the novel antifungal peptide EcAMP1 from kernels of barnyard grass Echinochloa crus-galli. The peptide adopts a disulfide-stabilized α-helical hairpin structure in aqueous solution and thus represents a novel fold among naturally occurring antimicrobial peptides. Micromolar concentrations of EcAMP1 were shown to inhibit growth of several fungal phytopathogens. Confocal microscopy revealed intensive EcAMP1 binding to the surface of fungal conidia followed by internalization and accumulation in the cytoplasm without disturbance of membrane integrity. Close spatial structure similarity between EcAMP1, the trypsin inhibitor VhTI from seeds of Veronica hederifolia, and some scorpion and cone snail toxins suggests natural elaboration of different functions on a common fold. PMID:21561864

  7. Investigating plasma viscosity with fast framing photography in the ZaP-HD Flow Z-Pinch experiment

    NASA Astrophysics Data System (ADS)

    Weed, Jonathan Robert

    The ZaP-HD Flow Z-Pinch experiment investigates the stabilizing effect of sheared axial flows while scaling toward a high-energy-density laboratory plasma (HEDLP > 100 GPa). Stabilizing flows may persist until viscous forces dissipate a sheared flow profile. Plasma viscosity is investigated by measuring scale lengths in turbulence intentionally introduced in the plasma flow. A boron nitride turbulence-tripping probe excites small scale length turbulence in the plasma, and fast framing optical cameras are used to study time-evolved turbulent structures and viscous dissipation. A Hadland Imacon 790 fast framing camera is modified for digital image capture, but features insufficient resolution to study turbulent structures. A Shimadzu HPV-X camera captures the evolution of turbulent structures with great spatial and temporal resolution, but is unable to resolve the anticipated Kolmogorov scale in ZaP-HD as predicted by a simplified pinch model.

  8. Breaking the icosahedra in boron carbide

    PubMed Central

    Xie, Kelvin Y.; An, Qi; Sato, Takanori; Breen, Andrew J.; Ringer, Simon P.; Goddard, William A.; Cairney, Julie M.; Hemker, Kevin J.

    2016-01-01

    Findings of laser-assisted atom probe tomography experiments on boron carbide elucidate an approach for characterizing the atomic structure and interatomic bonding of molecules associated with extraordinary structural stability. The discovery of crystallographic planes in these boron carbide datasets substantiates that crystallinity is maintained to the point of field evaporation, and characterization of individual ionization events gives unexpected evidence of the destruction of individual icosahedra. Statistical analyses of the ions created during the field evaporation process have been used to deduce relative atomic bond strengths and show that the icosahedra in boron carbide are not as stable as anticipated. Combined with quantum mechanics simulations, this result provides insight into the structural instability and amorphization of boron carbide. The temporal, spatial, and compositional information provided by atom probe tomography makes it a unique platform for elucidating the relative stability and interactions of primary building blocks in hierarchically crystalline materials. PMID:27790982

  9. A Euclidean Perspective on the Unfolding of Azurin: Spatial Correlations

    PubMed Central

    Warren, Jeffrey J.; Gray, Harry B.; Winkler, Jay R.; Kozak, John J.

    2013-01-01

    We investigate the stability to structural perturbation of Pseudomonas aeruginosa azurin using a previously developed geometric model. Our analysis considers Ru(2,2′,6′,2″-terpyridine)(1,10-phenanthroline)(His83)-labeled wild-type azurin and five variants with mutations to Cu-ligating residues. We find that in the early stages of unfolding, the β-strands exhibit the most structural stability. The conserved residues comprising the hydrophobic core are dislocated only after nearly complete unfolding of the β-barrel. Attachment of the Ru-complex at His83 does not destabilize the protein fold, despite causing some degree of structural rearrangement. Notably, replacing the Cys112 and/or Met121 Cu ligands does not affect the conformational integrity of the protein. Notably, these results are in accord with experimental evidence, as well as molecular dynamics simulations of the denaturation of azurin. PMID:23853392

  10. A computer-assisted study of pulse dynamics in anisotropic media

    NASA Astrophysics Data System (ADS)

    Krishnan, J.; Engelborghs, K.; Bär, M.; Lust, K.; Roose, D.; Kevrekidis, I. G.

    2001-06-01

    This study focuses on the computer-assisted stability analysis of travelling pulse-like structures in spatially periodic heterogeneous reaction-diffusion media. The physical motivation comes from pulse propagation in thin annular domains on a diffusionally anisotropic catalytic surface. The study was performed by computing the travelling pulse-like structures as limit cycles of the spatially discretized PDE, which in turn is performed in two ways: a Newton method based on a pseudospectral discretization of the PDE, and a Newton-Picard method based on a finite difference discretization. Details about the spectra of these modulated pulse-like structures are discussed, including how they may be compared with the spectra of pulses in homogeneous media. The effects of anisotropy on the dynamics of pulses and pulse pairs are studied. Beyond shifting the location of bifurcations present in homogeneous media, anisotropy can also introduce certain new instabilities.

  11. Mean intensity of the vortex Bessel-Gaussian beam in turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Lukin, Igor P.

    2017-11-01

    In this work the question of stability of the vortex Bessel-Gaussian optical beams formed in turbulent atmosphere is theoretically considered. The detailed analysis of features of spatial structure of distribution of mean intensity of vortex Bessel-Gaussian optical beams in turbulent atmosphere are analyzed. The quantitative criterion of possibility of formation of vortex Bessel-Gaussian optical beams in turbulent atmosphere is derived. It is shown that stability of the form of a vortex Bessel-Gaussian optical beam during propagation in turbulent atmosphere increases with increase of value of a topological charge of this optical beam.

  12. Determining Selection across Heterogeneous Landscapes: A Perturbation-Based Method and Its Application to Modeling Evolution in Space.

    PubMed

    Wickman, Jonas; Diehl, Sebastian; Blasius, Bernd; Klausmeier, Christopher A; Ryabov, Alexey B; Brännström, Åke

    2017-04-01

    Spatial structure can decisively influence the way evolutionary processes unfold. To date, several methods have been used to study evolution in spatial systems, including population genetics, quantitative genetics, moment-closure approximations, and individual-based models. Here we extend the study of spatial evolutionary dynamics to eco-evolutionary models based on reaction-diffusion equations and adaptive dynamics. Specifically, we derive expressions for the strength of directional and stabilizing/disruptive selection that apply both in continuous space and to metacommunities with symmetrical dispersal between patches. For directional selection on a quantitative trait, this yields a way to integrate local directional selection across space and determine whether the trait value will increase or decrease. The robustness of this prediction is validated against quantitative genetics. For stabilizing/disruptive selection, we show that spatial heterogeneity always contributes to disruptive selection and hence always promotes evolutionary branching. The expression for directional selection is numerically very efficient and hence lends itself to simulation studies of evolutionary community assembly. We illustrate the application and utility of the expressions for this purpose with two examples of the evolution of resource utilization. Finally, we outline the domain of applicability of reaction-diffusion equations as a modeling framework and discuss their limitations.

  13. Toward understanding the structural heterogeneity and ion pair stability in dicationic ionic liquids.

    PubMed

    Li, Song; Bañuelos, José Leobardo; Zhang, Pengfei; Feng, Guang; Dai, Sheng; Rother, Gernot; Cummings, Peter T

    2014-12-07

    The structural and dynamical properties of dicationic ionic liquids (DILs) [Cn(mim)2](Tf2N)2, that is, 3-methylimidazolium dications separated by an alkyl chain and with bis(trifluoromethylsulfonyl)amide as the anion, were investigated by molecular dynamics (MD) simulation in combination with small/wide-angle X-ray scattering (SWAXS) measurements. Enhanced spatial heterogeneity is observed as the DIL chain length is increased, characterized by the changes in the scattering and the increased heterogeneity order parameter (HOP). Temperature variation imposes only slight influences on the local structures of DILs compared to monocationic ionic liquids (MILs). The peaks at 0.9 Å(-1) and 1.4 Å(-1) of the structure function shift towards low Q as the temperature increases, in a similar manner to MILs, and changes in peak positions in response to temperature changes are reflected in HOP variations. However, the prepeak shift with increasing temperature is ∼3 times smaller in DILs compared to MILs, and both MD and SWAXS indicate a DIL-specific prepeak shifting. Furthermore, the high ion pair/ion cage stability in DILs is indicative of high thermal stability and relative insensitivity of structural heterogeneity to temperature variation, which might be caused by the stronger Coulombic interactions in DILs.

  14. Laser-assisted formation of micropores and nanobubbles in sclera promote stable normalization of intraocular pressure

    NASA Astrophysics Data System (ADS)

    Baum, Olga; Wachsmann-Hogiu, Sebastian; Milner, Thomas; Sobol, Emil

    2017-06-01

    Pores in sclera enhance uveoscleral water outflow and can normalize intraocular pressure in glaucomatous eyes. The aims of this study are to demonstrate laser-induced formation of pores with a dendritic structure and to answer the questions: How is a pore system stable and can laser treatment provide a long-lasting pressure stabilization effect? Effect of 1.56 µm laser radiation on porcine eye sclera was studied using atomic force microscopy and super resolution structured irradiation microscopy with fluorescent markers. Results suggest that the pores with a complex spatial configuration can arise as a result of laser irradiation and that laser-generated stable gas nanobubbles coated with calcium ions allow pore stabilization in the sclera. Our results support a laser based approach for treatment of glaucoma.

  15. Estimating Vegetation Structure in African Savannas using High Spatial Resolution Imagery

    NASA Astrophysics Data System (ADS)

    Axelsson, C.; Hanan, N. P.

    2016-12-01

    High spatial resolution satellite imagery allows for detailed mapping of trees in savanna landscapes, including estimates of woody cover, tree densities, crown sizes, and the spatial pattern of trees. By linking these vegetation parameters to rainfall and soil properties we gain knowledge of how the local environment influences vegetation. A thorough understanding of the underlying ecosystem processes is key to assessing the future productivity and stability of these ecosystems. In this study, we have processed and analyzed hundreds of sites sampled from African savannas across a wide range of rainfall and soil conditions. The vegetation at each site is classified using unsupervised classification with manual assignment into woody, herbaceous and bare cover classes. A crown delineation method further divides the woody areas into individual tree crowns. The results show that rainfall, soil, and topography interactively influence vegetation structure. We see that both total rainfall and rainfall seasonality play important roles and that soil type influences woody cover and the sizes of tree crowns.

  16. Concept of a self-associated multimer structure of coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gagarin, S.G.; Krichko, A.A.

    1984-01-01

    The paper examines the role of donor-acceptor reaction in the binding of the individual components forming the structure of the organic coal mass, and analyses the manifestations of this reaction during liquefaction. The authors put forward the concept of self-associated polymers in the coal structure, in accordance with which the organic coal mass has spatial and energetic distribution of the donor and acceptor sectors of structure. It is the specific reaction between these which produces the necessary stability to the polymer system under normal conditions. The authors propose a mechanism for the action of solvents and various additives in themore » liquefaction of coal.« less

  17. The Japanese Space Program (Le Programme Spatial Japonais),

    DTIC Science & Technology

    1982-04-22

    three-axis stabilization, study of vertical * structure of the earth); --series of probes for exploration of the moon and the planets. Future Missions...in foreground and 7 rr IArk j I, I *151 Fig. 9. Structural detail of the MU 3S (rear skirt) Fi. 1. St u tu a de ai of MU 3S..’’ ’ -, t r-’ ,’ s:,ru...ture) The total l t of te M I is 2-8. 2 m, - . The Fig. i. Structural detail of tU S (ri er sit)ctre 1.65 mthiamr. ach bfotitaniu wll have a

  18. The Effect of Symmetry on the Hydrodynamic Stability of and Bifurcation from Planar Shear Flows

    DTIC Science & Technology

    1990-12-01

    Effect of Symmetry on the Hydrodynamic Stability of ant Bifurcation from Planar Shear Flows AFOSR-88-0196 6. AUTHOR(S) 61102F 2304/A4 Thomas J. Bridges 7...December 1990 The Effect of Symmetry on the Hydrodynamic Stability of and Bifurcation from Planar Shear Flows TIIhOMAS J. BIUDGES MATl EM ATIc(AL...spatial stabili’.y into the nonlinear regime and a theory for spa- tial Hopf bifurcation , spatial Floquet theory, wavelength doubling and spatially quasi

  19. Perspectives on the geographic stability and mobility of people in cities

    PubMed Central

    Hanson, Susan

    2005-01-01

    A class of questions in the human environment sciences focuses on the relationship between individual or household behavior and local geographic context. Central to these questions is the nature of people's geographic mobility as well as the duration of their locational stability at varying spatial and temporal scales. The problem for researchers is that the processes of mobility/stability are temporally and spatially dynamic and therefore difficult to measure. Whereas time and space are continuous, analysts must select levels of aggregation for both length of time in place and spatial scale of place that fit with the problem in question. Previous work has emphasized mobility and suppressed stability as an analytic category. I focus here on stability and show how analyzing individuals' stability requires also analyzing their mobility. Through an empirical example centered on the relationship between entrepreneurship and place, I demonstrate how a spotlight on stability illuminates a resolution to the measurement problem by highlighting the interdependence between the time and space dimensions of stability/mobility. PMID:16230616

  20. Ecosystem Processes at the Watershed Scale: Stability and Resilience of Catchment Spatial Structure and Function to Disturbance

    NASA Astrophysics Data System (ADS)

    Baron, J.; Mast, A.; Clow, D. W.; Wetherbee, G. A.

    2014-12-01

    Ecohydrological systems evolve spontaneously in response to geologic, hydroclimate and biodiversity drivers. The stability and resilience of these systems to multiple disturbances can be addressed over specific temporal extents, potentially embedded within long term transience in response to geologic or climate change. The limits of ecohydrological resilience of system state in terms of vegetation canopy and soil catenae and the space/time distribution of water, carbon and nutrient cycling is determined by a set of critical feedbacks and potential substitutions of plant functional forms in response to disturbance. The ability of forest systems to return to states functionally similar to states prior to major disturbance, or combinations of multiple disturbances, is a critical question given increasing hydroclimate extremes, biological invasions, and human disturbance. Over the past century, forest landscape ecological patterns appear to have the ability to recover from significant disturbance and re-establish similar hydrological and ecological function in humid, biodiverse regions such as the southern Appalachians, and potentially drier forest ecosystems. Understanding and prediction of past and future long term dynamics requires explicit representation of spatial and temporal feedbacks and dependencies between hydrological, ecosystem and geomorphic processes, and the spatial pattern of species or plant functional type (PFT). Comprehensive models of watershed ecohydrological resilience requires careful balance between the level of process and parameter detail between the interacting components, relative to the structure, organization, space and time scales of the landscape.

  1. Scale dependence of the diversity–stability relationship in a temperate grassland

    PubMed Central

    Zhang, Yunhai; He, Nianpeng; Loreau, Michel; Pan, Qingmin; Han, Xingguo

    2018-01-01

    A positive relationship between biodiversity and ecosystem stability has been reported in many ecosystems; however, it has yet to be determined whether and how spatial scale affects this relationship. Here, for the first time, we assessed the effects of alpha, beta and gamma diversity on ecosystem stability and the scale dependence of the slope of the diversity–stability relationship.By employing a long-term (33 years) dataset from a temperate grassland, northern China, we calculated the all possible spatial scales with the complete combination from the basic 1-m2 plots.Species richness was positively associated with ecosystem stability through species asynchrony and overyielding at all spatial scales (1, 2, 3, 4 and 5 m2). Both alpha and beta diversity were positively associated with gamma stability.Moreover, the slope of the diversity–area relationship was significantly higher than that of the stability–area relationship, resulting in a decline of the slope of the diversity–stability relationship with increasing area.Synthesis. With the positive species diversity effect on ecosystem stability from small to large spatial scales, our findings demonstrate the need to maintain a high biodiversity and biotic heterogeneity as insurance against the risks incurred by ecosystems in the face of global environmental changes. PMID:29725139

  2. Mapping fields of 137Cs contamination in soils in the context of their stability and hierarchical spatial structure

    NASA Astrophysics Data System (ADS)

    Korobova, E.; Romanov, S.

    2009-04-01

    Technogenic radioisotopes now dispersed in the environment are involved in natural and technogenic processes forming specific geochemical fields and serving as tracers of modern mass migration and geofield transformation. Cs-137 radioisotopes having a comparatively long life time are known for a fast fixation by the top soil layer; radiocesium activity can be measured in the surface layer in field conditions. This makes 137Cs rather convenient for the study and modeling a behavior of toxic elements in soils [1-3, 5] and for the investigation of relative stability and hierarchical fractal structures of the soil contamination of the atmospheric origin [2]. The objective of the experimental study performed on the test site in Bryansk region was to find and prove polycentric regularities in the structure of 137Cs contamination field formed after the Chernobyl accident in natural conditions. Such a character of spatial variability can be seen on the maps showing different soil parameters and chemical element distribution measured in grids [3-5]. The research was undertaken to support our idea of the regular patterns in the contamination field structure that enables to apply a mathematical theory of the field to the geochemical fields modeling on the basis of a limited number of direct measurements sufficient to reproduce the configuration and main parameters of the geochemical field structure on the level of the elementary landscape geochemical system (top-slope-bottom). Cs-137 field measurements were verified by a direct soil sampling. Soil cores dissected into subsamples with increments of 2, 5 and 10 cm, were taken to the depth of 40 cm at points with various surface activity located at different elements of relief. According to laboratory measurements 137Cs inventory in soils varied from 344 to 3448 kBq/m2 (983 kBq/m2 on the average). From 95,1% to 98,0% to of the total inventory was retained in the top 20-cm soil layer. This confirmed that field gamma spectrometry could be used to investigate patterns of 137Cs spatial redistribution in the top soil layers. The portion of 137Cs conserved in top layers corresponded to the meso- and micro relief elements. The character and stability of 137Cs spatial structure was studied by measuring its activity within nested plots with different steps of 5, 2, 1 and 0,2 m (the latter was a minimum resolution step for the field NaI detector). Performed measurements showed that the contamination field of 137Cs had a regular structure of polycentric character and exhibited a decrease in spatial variability of contamination with the decrease of the measured area. Repeated measurements of soil contamination in successive years of 2005-2008 along and cross the slopes provided with topographic survey proved the stability of contamination field (r=0, 915, n=121, r=0,912, n=30) and its relation to the meso- and microrelief features. Variation 137Cs activity in lateral direction (along the slopes and thalweg of the hollow)showed a regular character also. In our opinion the regularity in 137Cs spatial structure in the soil cover may result from radionuclide redistribution with the surface and subsurface water flow highly sensitive to the changes in elevation of different scale, and to the slope length and inclination. Cs-137 lateral distribution pattern was likely to reflect alternation of lateral and vertical water mass migration along the slopes. The performed study showing regularity in 137Cs redistribution seems to open new possibilities to develop the deterministic strategy in the study of contamination fields and modeling toxic elements spatial distribution in the soil cover on different scales. The authors are much obliged to Dr. V. Samsonov and Dr. F. Moiseenko for participation in the field work and to S. Kirov for the performance of the laboratory measurement of the soil and plant samples. References 1. Khomutinin, Yu.V., Kashparov, V.A., Zhebrovskaya, E.I., 2001. Optimization of sampling and measurement of the specimen for radioecological monitoring. UkrNIISKHR, Kiev. 2. Korobova, E.M., Romanov, S.L., Samsonov, V.L., Kirov, S.S., 2006. Experimental study of spatial 137Cs redistribution in paragenetic elementary landscapes, in: Kasimov, N.S. et al (Eds.), Geochemistry of biosphere (devoted to 90-th anniversary of A.I. Perelman), MSU, IGEM, RFFI, Moscow-Smolensk, pp.157-159. 3. Linnik, V.G., Saveliev, A.A., Govorun, A.P., Ivanitsky, O.M., Sokolov, A.V., 2006. Analysis of the Cs-137 contamination field on micro-landscape scale within the virgin meadows in the western part of the Bryansk region, in: Kasimov, N.S. et al (Eds.), Geochemistry of biosphere (devoted to 90-th anniversary of A.I. Perelman), MSU, IGEM, RFFI, Moscow-Smolensk, pp. 201-204. 4. Samsonova V.P. Spatial variability of the soil parameters. On example of soddy-podozolic soils. Moscow, LKI, 2008, 156 p. 5.Shcheglov, A.I., Tsvetnova, O.B., Klyashtorin, A.I., 2001. Biogeochemical migration of technogenic radionuclides in forest ecosystems. Nauka, Moscow.

  3. On the consistency of Reynolds stress turbulence closures with hydrodynamic stability theory

    NASA Technical Reports Server (NTRS)

    Speziale, Charles G.; Abid, Ridha; Blaisdell, Gregory A.

    1995-01-01

    The consistency of second-order closure models with results from hydrodynamic stability theory is analyzed for the simplified case of homogeneous turbulence. In a recent study, Speziale, Gatski, and MacGiolla Mhuiris showed that second-order closures are capable of yielding results that are consistent with hydrodynamic stability theory for the case of homogeneous shear flow in a rotating frame. It is demonstrated in this paper that this success is due to the fact that the stability boundaries for rotating homogeneous shear flow are not dependent on the details of the spatial structure of the disturbances. For those instances where they are -- such as in the case of elliptical flows where the instability mechanism is more subtle -- the results are not so favorable. The origins and extent of this modeling problem are examined in detail along with a possible resolution based on rapid distortion theory (RDT) and its implications for turbulence modeling.

  4. An invariability-area relationship sheds new light on the spatial scaling of ecological stability.

    PubMed

    Wang, Shaopeng; Loreau, Michel; Arnoldi, Jean-Francois; Fang, Jingyun; Rahman, K Abd; Tao, Shengli; de Mazancourt, Claire

    2017-05-19

    The spatial scaling of stability is key to understanding ecological sustainability across scales and the sensitivity of ecosystems to habitat destruction. Here we propose the invariability-area relationship (IAR) as a novel approach to investigate the spatial scaling of stability. The shape and slope of IAR are largely determined by patterns of spatial synchrony across scales. When synchrony decays exponentially with distance, IARs exhibit three phases, characterized by steeper increases in invariability at both small and large scales. Such triphasic IARs are observed for primary productivity from plot to continental scales. When synchrony decays as a power law with distance, IARs are quasilinear on a log-log scale. Such quasilinear IARs are observed for North American bird biomass at both species and community levels. The IAR provides a quantitative tool to predict the effects of habitat loss on population and ecosystem stability and to detect regime shifts in spatial ecological systems, which are goals of relevance to conservation and policy.

  5. A Dynamic Hydrology-Critical Zone Framework for Rainfall-triggered Landslide Hazard Prediction

    NASA Astrophysics Data System (ADS)

    Dialynas, Y. G.; Foufoula-Georgiou, E.; Dietrich, W. E.; Bras, R. L.

    2017-12-01

    Watershed-scale coupled hydrologic-stability models are still in their early stages, and are characterized by important limitations: (a) either they assume steady-state or quasi-dynamic watershed hydrology, or (b) they simulate landslide occurrence based on a simple one-dimensional stability criterion. Here we develop a three-dimensional landslide prediction framework, based on a coupled hydrologic-slope stability model and incorporation of the influence of deep critical zone processes (i.e., flow through weathered bedrock and exfiltration to the colluvium) for more accurate prediction of the timing, location, and extent of landslides. Specifically, a watershed-scale slope stability model that systematically accounts for the contribution of driving and resisting forces in three-dimensional hillslope segments was coupled with a spatially-explicit and physically-based hydrologic model. The landslide prediction framework considers critical zone processes and structure, and explicitly accounts for the spatial heterogeneity of surface and subsurface properties that control slope stability, including soil and weathered bedrock hydrological and mechanical characteristics, vegetation, and slope morphology. To test performance, the model was applied in landslide-prone sites in the US, the hydrology of which has been extensively studied. Results showed that both rainfall infiltration in the soil and groundwater exfiltration exert a strong control on the timing and magnitude of landslide occurrence. We demonstrate the extent to which three-dimensional slope destabilizing factors, which are modulated by dynamic hydrologic conditions in the soil-bedrock column, control landslide initiation at the watershed scale.

  6. A new approach in space-time analysis of multivariate hydrological data: Application to Brazil's Nordeste region rainfall

    NASA Astrophysics Data System (ADS)

    Sicard, Emeline; Sabatier, Robert; Niel, HéLèNe; Cadier, Eric

    2002-12-01

    The objective of this paper is to implement an original method for spatial and multivariate data, combining a method of three-way array analysis (STATIS) with geostatistical tools. The variables of interest are the monthly amounts of rainfall in the Nordeste region of Brazil, recorded from 1937 to 1975. The principle of the technique is the calculation of a linear combination of the initial variables, containing a large part of the initial variability and taking into account the spatial dependencies. It is a promising method that is able to analyze triple variability: spatial, seasonal, and interannual. In our case, the first component obtained discriminates a group of rain gauges, corresponding approximately to the Agreste, from all the others. The monthly variables of July and August strongly influence this separation. Furthermore, an annual study brings out the stability of the spatial structure of components calculated for each year.

  7. Characterization of nano-porosity in molecular layer deposited films.

    PubMed

    Perrotta, Alberto; Poodt, Paul; van den Bruele, F J Fieke; Kessels, W M M Erwin; Creatore, Mariadriana

    2018-06-12

    Molecular layer deposition (MLD) delivers (ultra-) thin organic and hybrid materials, with atomic-level thickness control. However, such layers are often reported to be unstable under ambient conditions, due to the interaction of water and oxygen with the hybrid structure, consequently limiting their applications. In this contribution, we investigate the impact of porosity in MLD layers on their degradation. Alucone layers were deposited by means of trimethylaluminium and ethylene glycol, adopting both temporal and spatial MLD and characterized by means of FT-IR spectroscopy, spectroscopic ellipsometry, and ellipsometric porosimetry. The highest growth per cycle (GPC) achieved by spatial MLD resulted in alucone layers with very low stability in ambient air, leading to their conversion to AlOx. Alucones deposited by means of temporal MLD, instead, showed a lower GPC and a higher ambient stability. Ellipsometric porosimetry showed the presence of open nano-porosity in pristine alucone layers. Pores with a diameter in the range of 0.42-2 nm were probed, with a relative content between 1.5% and 5%, respectively, which are attributed to the temporal and spatial MLD layers. We concluded that a correlation exists between the process GPC, the open-porosity relative content, and the degradation of alucone layers.

  8. Synchrony, waves and ripple in spatially coupled Kuramoto oscillators with Mexican hat connectivity.

    PubMed

    Heitmann, Stewart; Ermentrout, G Bard

    2015-06-01

    Spatiotemporal waves of synchronized activity are known to arise in oscillatory neural networks with lateral inhibitory coupling. How such patterns respond to dynamic changes in coupling strength is largely unexplored. The present study uses analysis and simulation to investigate the evolution of wave patterns when the strength of lateral inhibition is varied dynamically. Neural synchronization was modeled by a spatial ring of Kuramoto oscillators with Mexican hat lateral coupling. Broad bands of coexisting stable wave solutions were observed at all levels of inhibition. The stability of these waves was formally analyzed in both the infinite ring and the finite ring. The broad range of multi-stability predicted hysteresis in transitions between neighboring wave solutions when inhibition is slowly varied. Numerical simulation confirmed the predicted transitions when inhibition was ramped down from a high initial value. However, non-wave solutions emerged from the uniform solution when inhibition was ramped upward from zero. These solutions correspond to spatially periodic deviations of phase that we call ripple states. Numerical continuation showed that stable ripple states emerge from synchrony via a supercritical pitchfork bifurcation. The normal form of this bifurcation was derived analytically, and its predictions compared against the numerical results. Ripple states were also found to bifurcate from wave solutions, but these were locally unstable. Simulation also confirmed the existence of hysteresis and ripple states in two spatial dimensions. Our findings show that spatial synchronization patterns can remain structurally stable despite substantial changes in network connectivity.

  9. Measuring the iron spectral opacity in solar conditions using a double ablation front scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colaitis, A.; Ducret, J. E.; Turck-Chieze, S

    We propose a new method to achieve hydrodynamic conditions relevant for the investigation of the radiation transport properties of the plasma at the base of the solar convection zone. The method is designed in the framework of opacity measurements with high-power lasers and exploits the temporal and spatial stability of hydrodynamic parameters in counter-propagating Double Ablation Front (DAF) structures.

  10. High spatial resolution PEELS characterization of FeAl nanograins prepared by mechanical alloying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valdre, G.; Botton, G.A.; Brown, L.M.

    The authors investigate the nanograin ``chemical`` structure in a nanostructured material of possible industrial application (Fe-Al system) prepared by conventional mechanical alloying via ball milling in argon atmosphere. They restrict themselves to the structural and nanochemical behavior of ball-milled nanocrystalline Fe-Al powders with atomic composition Fe{sub 3}Al, corresponding to a well-known intermetallic compound of the Fe-Al system. Scanning transmission electron microscopy (STEM) equipped with a parallel detection electron energy loss spectrometer (PEELS) has provided an insight on the ``chemical`` structure of both nanograins and their surface at a spatial resolution of better than 1 nm. The energy loss near edgemore » structure of the Al L loss reveals that the Al coordination is similar to a B2 compound and the oxidation of the powder during processing may play a significant role in the stabilization of the intermetallic phases. Conventional transmission electron microscopy (TEM) was used for the structural characterization of the material after the ball milling; powder X-ray diffraction (XRD) aided the investigation.« less

  11. Potential and flux field landscape theory. I. Global stability and dynamics of spatially dependent non-equilibrium systems.

    PubMed

    Wu, Wei; Wang, Jin

    2013-09-28

    We established a potential and flux field landscape theory to quantify the global stability and dynamics of general spatially dependent non-equilibrium deterministic and stochastic systems. We extended our potential and flux landscape theory for spatially independent non-equilibrium stochastic systems described by Fokker-Planck equations to spatially dependent stochastic systems governed by general functional Fokker-Planck equations as well as functional Kramers-Moyal equations derived from master equations. Our general theory is applied to reaction-diffusion systems. For equilibrium spatially dependent systems with detailed balance, the potential field landscape alone, defined in terms of the steady state probability distribution functional, determines the global stability and dynamics of the system. The global stability of the system is closely related to the topography of the potential field landscape in terms of the basins of attraction and barrier heights in the field configuration state space. The effective driving force of the system is generated by the functional gradient of the potential field alone. For non-equilibrium spatially dependent systems, the curl probability flux field is indispensable in breaking detailed balance and creating non-equilibrium condition for the system. A complete characterization of the non-equilibrium dynamics of the spatially dependent system requires both the potential field and the curl probability flux field. While the non-equilibrium potential field landscape attracts the system down along the functional gradient similar to an electron moving in an electric field, the non-equilibrium flux field drives the system in a curly way similar to an electron moving in a magnetic field. In the small fluctuation limit, the intrinsic potential field as the small fluctuation limit of the potential field for spatially dependent non-equilibrium systems, which is closely related to the steady state probability distribution functional, is found to be a Lyapunov functional of the deterministic spatially dependent system. Therefore, the intrinsic potential landscape can characterize the global stability of the deterministic system. The relative entropy functional of the stochastic spatially dependent non-equilibrium system is found to be the Lyapunov functional of the stochastic dynamics of the system. Therefore, the relative entropy functional quantifies the global stability of the stochastic system with finite fluctuations. Our theory offers an alternative general approach to other field-theoretic techniques, to study the global stability and dynamics of spatially dependent non-equilibrium field systems. It can be applied to many physical, chemical, and biological spatially dependent non-equilibrium systems.

  12. Throughfall and its spatial variability beneath xerophytic shrub canopies within water-limited arid desert ecosystems

    NASA Astrophysics Data System (ADS)

    Zhang, Ya-feng; Wang, Xin-ping; Hu, Rui; Pan, Yan-xia

    2016-08-01

    Throughfall is known to be a critical component of the hydrological and biogeochemical cycles of forested ecosystems with inherently temporal and spatial variability. Yet little is understood concerning the throughfall variability of shrubs and the associated controlling factors in arid desert ecosystems. Here we systematically investigated the variability of throughfall of two morphological distinct xerophytic shrubs (Caragana korshinskii and Artemisia ordosica) within a re-vegetated arid desert ecosystem, and evaluated the effects of shrub structure and rainfall characteristics on throughfall based on heavily gauged throughfall measurements at the event scale. We found that morphological differences were not sufficient to generate significant difference (P < 0.05) in throughfall between two studied shrub species under the same rainfall and meteorological conditions in our study area, with a throughfall percentage of 69.7% for C. korshinskii and 64.3% for A. ordosica. We also observed a highly variable patchy pattern of throughfall beneath individual shrub canopies, but the spatial patterns appeared to be stable among rainfall events based on time stability analysis. Throughfall linearly increased with the increasing distance from the shrub base for both shrubs, and radial direction beneath shrub canopies had a pronounced impact on throughfall. Throughfall variability, expressed as the coefficient of variation (CV) of throughfall, tended to decline with the increase in rainfall amount, intensity and duration, and stabilized passing a certain threshold. Our findings highlight the great variability of throughfall beneath the canopies of xerophytic shrubs and the time stability of throughfall pattern among rainfall events. The spatially heterogeneous and temporally stable throughfall is expected to generate a dynamic patchy distribution of soil moisture beneath shrub canopies within arid desert ecosystems.

  13. Click-On-Diagram Questions: a New Tool to Study Conceptions Using Classroom Response Systems

    NASA Astrophysics Data System (ADS)

    LaDue, Nicole D.; Shipley, Thomas F.

    2018-06-01

    Geoscience instructors depend upon photos, diagrams, and other visualizations to depict geologic structures and processes that occur over a wide range of temporal and spatial scales. This proof-of-concept study tests click-on-diagram (COD) questions, administered using a classroom response system (CRS), as a research tool for identifying spatial misconceptions. First, we propose a categorization of spatial conceptions associated with geoscience concepts. Second, we implemented the COD questions in an undergraduate introductory geology course. Each question was implemented three times: pre-instruction, post-instruction, and at the end of the course to evaluate the stability of students' conceptual understanding. We classified each instance as (1) a false belief that was easily remediated, (2) a flawed mental model that was not fully transformed, or (3) a robust misconception that persisted despite targeted instruction. Geographic Information System (GIS) software facilitated spatial analysis of students' answers. The COD data confirmed known misconceptions about Earth's structure, geologic time, and base level and revealed a novel robust misconception about hot spot formation. Questions with complex spatial attributes were less likely to change following instruction and more likely to be classified as a robust misconception. COD questions provided efficient access to students' conceptual understanding. CRS-administered COD questions present an opportunity to gather spatial conceptions with large groups of students, immediately, building the knowledge base about students' misconceptions and providing feedback to guide instruction.

  14. Migration in a segmented labour market.

    PubMed

    Gordon, I

    1995-01-01

    "Current research in migration is moving on from neo-classical and behavioural perspectives to a more structural approach relating to wider processes, issues of power and the particular role of employers. Within this programme a key issue for investigation is the interaction between spatial mobility and the structuring of labour markets. This paper focuses on the significance of labour market segmentation--in terms both of job stability and gender--for migration, both theoretically and through an empirical analysis of data from the UK Labour Force Survey on sponsored and unsponsored moves." excerpt

  15. Asynchronous variational integration using continuous assumed gradient elements.

    PubMed

    Wolff, Sebastian; Bucher, Christian

    2013-03-01

    Asynchronous variational integration (AVI) is a tool which improves the numerical efficiency of explicit time stepping schemes when applied to finite element meshes with local spatial refinement. This is achieved by associating an individual time step length to each spatial domain. Furthermore, long-term stability is ensured by its variational structure. This article presents AVI in the context of finite elements based on a weakened weak form (W2) Liu (2009) [1], exemplified by continuous assumed gradient elements Wolff and Bucher (2011) [2]. The article presents the main ideas of the modified AVI, gives implementation notes and a recipe for estimating the critical time step.

  16. Delineating ecological regions in marine systems: Integrating physical structure and community composition to inform spatial management in the eastern Bering Sea

    NASA Astrophysics Data System (ADS)

    Baker, Matthew R.; Hollowed, Anne B.

    2014-11-01

    Characterizing spatial structure and delineating meaningful spatial boundaries have useful applications to understanding regional dynamics in marine systems, and are integral to ecosystem approaches to fisheries management. Physical structure and drivers combine with biological responses and interactions to organize marine systems in unique ways at multiple scales. We apply multivariate statistical methods to define spatially coherent ecological units or ecoregions in the eastern Bering Sea. We also illustrate a practical approach to integrate data on species distribution, habitat structure and physical forcing mechanisms to distinguish areas with distinct biogeography as one means to define management units in large marine ecosystems. We use random forests to quantify the relative importance of habitat and environmental variables to the distribution of individual species, and to quantify shifts in multispecies assemblages or community composition along environmental gradients. Threshold shifts in community composition are used to identify regions with distinct physical and biological attributes, and to evaluate the relative importance of predictor variables to determining regional boundaries. Depth, bottom temperature and frontal boundaries were dominant factors delineating distinct biological communities in this system, with a latitudinal divide at approximately 60°N. Our results indicate that distinct climatic periods will shift habitat gradients and that dynamic physical variables such as temperature and stratification are important to understanding temporal stability of ecoregion boundaries. We note distinct distribution patterns among functional guilds and also evidence for resource partitioning among individual species within each guild. By integrating physical and biological data to determine spatial patterns in community composition, we partition ecosystems along ecologically significant gradients. This may provide a basis for defining spatial management units or serve as a baseline index for analyses of structural shifts in the physical environment, species abundance and distribution, and community dynamics over time.

  17. Stabilization of a spatially uniform steady state in two systems exhibiting Turing patterns

    NASA Astrophysics Data System (ADS)

    Konishi, Keiji; Hara, Naoyuki

    2018-05-01

    This paper deals with the stabilization of a spatially uniform steady state in two coupled one-dimensional reaction-diffusion systems with Turing instability. This stabilization corresponds to amplitude death that occurs in a coupled system with Turing instability. Stability analysis of the steady state shows that stabilization does not occur if the two reaction-diffusion systems are identical. We derive a sufficient condition for the steady state to be stable for any length of system and any boundary conditions. Our analytical results are supported with numerical examples.

  18. Biodiversity and ecosystem stability across scales in metacommunities

    PubMed Central

    Wang, Shaopeng; Loreau, Michel

    2016-01-01

    Although diversity-stability relationships have been extensively studied in local ecosystems, the global biodiversity crisis calls for an improved understanding of these relationships in a spatial context. Here we use a dynamical model of competitive metacommunities to study the relationships between species diversity and ecosystem variability across scales. We derive analytic relationships under a limiting case; these results are extended to more general cases with numerical simulations. Our model shows that, while alpha diversity decreases local ecosystem variability, beta diversity generally contributes to increasing spatial asynchrony among local ecosystems. Consequently, both alpha and beta diversity provide stabilizing effects for regional ecosystems, through local and spatial insurance effects, respectively. We further show that at the regional scale, the stabilizing effect of biodiversity increases as spatial environmental correlation increases. Our findings have important implications for understanding the interactive effects of global environmental changes (e.g. environmental homogenization) and biodiversity loss on ecosystem sustainability at large scales. PMID:26918536

  19. A structural equation model relating impaired sensorimotor function, fear of falling and gait patterns in older people.

    PubMed

    Menz, Hylton B; Lord, Stephen R; Fitzpatrick, Richard C

    2007-02-01

    Many falls in older people occur while walking, however the mechanisms responsible for gait instability are poorly understood. Therefore, the aim of this study was to develop a plausible model describing the relationships between impaired sensorimotor function, fear of falling and gait patterns in older people. Temporo-spatial gait parameters and acceleration patterns of the head and pelvis were obtained from 100 community-dwelling older people aged between 75 and 93 years while walking on an irregular walkway. A theoretical model was developed to explain the relationships between these variables, assuming that head stability is a primary output of the postural control system when walking. This model was then tested using structural equation modeling, a statistical technique which enables the testing of a set of regression equations simultaneously. The structural equation model indicated that: (i) reduced step length has a significant direct and indirect association with reduced head stability; (ii) impaired sensorimotor function is significantly associated with reduced head stability, but this effect is largely indirect, mediated by reduced step length, and; (iii) fear of falling is significantly associated with reduced step length, but has little direct influence on head stability. These findings provide useful insights into the possible mechanisms underlying gait characteristics and risk of falling in older people. Particularly important is the indication that fear-related step length shortening may be maladaptive.

  20. Controllable Spatial Configuration on Cathode Interface for Enhanced Photovoltaic Performance and Device Stability.

    PubMed

    Li, Jiangsheng; Duan, Chenghao; Wang, Ning; Zhao, Chengjie; Han, Wei; Jiang, Li; Wang, Jizheng; Zhao, Yingjie; Huang, Changshui; Jiu, Tonggang

    2018-05-08

    The molecular structure of cathode interface modification materials can affect the surface morphology of the active layer and key electron transfer processes occurring at the interface of polymer solar cells in inverted structures mostly due to the change of molecular configuration. To investigate the effects of spatial configuration of the cathode interfacial modification layer on polymer solar cells device performances, we introduced two novel organic ionic salts (linear NS2 and three-dimensional (3D) NS4) combined with the ZnO film to fabricate highly efficient inverted solar cells. Both organic ionic salts successfully decreased the surface traps of the ZnO film and made its work function more compatible. Especially NS4 in three-dimensional configuration increased the electron mobility and extraction efficiency of the interfacial film, leading to a significant improvement of device performance. Power conversion efficiency (PCE) of 10.09% based on NS4 was achieved. Moreover, 3D interfacial modification could retain about 92% of its initial PCE over 160 days. It is proposed that 3D interfacial modification retards the element penetration-induced degradation without impeding the electron transfer from the active layer to the ZnO film, which significantly improves device stability. This indicates that inserting three-dimensional organic ionic salt is an efficient strategy to enhance device performance.

  1. Density Functional Studies of Stoichiometric Surfaces of Orthorhombic Hybrid Perovskite CH3NH3PbI3

    DOE PAGES

    Wang, Yun; Huang, Jingsong; Sumpter, Bobby G.; ...

    2014-12-19

    Organic/inorganic hybrid perovskite materials are highly attractive for dye-sensitized solar cells as demonstrated by their rapid advances in energy conversion efficiency. In this work, the structures, energetics, and electronic properties for a range of stoichiometric surfaces of the orthorhombic perovskite CH3NH3PbI3 are theoretically studied using density functional theory. Various possible spatially and constitutionally isomeric surfaces are considered by diversifying the spatial orientations and connectivities of surface Pb-I bonds. The comparison of the surface energies for the most stable configurations identified for various surfaces shows that the stabilities of stoichiometric surfaces are mainly dictated by the coordination numbers of surface atoms,more » which are directly correlated with the numbers of broken bonds. Additionally, Coulombic interactions between I anions and organic countercations on the surface also contribute to the stabilization. Electronic properties are compared between the most stable (100) surface and the bulk phase, showing generally similar features except for the lifted band degeneracy and the enhanced bandgap energy for the surface. These studies on the stoichiometric surfaces serve as the first step toward gaining a fundamental understanding of the interfacial properties in the current structural design of perovskite based solar cells, in order to achieve further breakthroughs in solar conversion efficiencies.« less

  2. Stabilization and control of distributed systems with time-dependent spatial domains

    NASA Technical Reports Server (NTRS)

    Wang, P. K. C.

    1990-01-01

    This paper considers the problem of the stabilization and control of distributed systems with time-dependent spatial domains. The evolution of the spatial domains with time is described by a finite-dimensional system of ordinary differential equations, while the distributed systems are described by first-order or second-order linear evolution equations defined on appropriate Hilbert spaces. First, results pertaining to the existence and uniqueness of solutions of the system equations are presented. Then, various optimal control and stabilization problems are considered. The paper concludes with some examples which illustrate the application of the main results.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Enyuan; Wang, Xuelong; Yu, Xiqian

    The rechargeable lithium-ion battery (LIB) is the most promising energy storage system to power electric vehicles with high energy density and long cycling life. However, in order to meet customers’ demands for fast charging, the power performances of current LIBs need to be improved. From the cathode aspect, layer-structured cathode materials are widely used in today’s market and will continue to play important roles in the near future. The high rate capability of layered cathode materials during charging and discharging is critical to the power performance of the whole cell and the thermal stability is closely related to the safetymore » issues. Therefore, the in-depth understanding of structural changes of layered cathode materials during high rate charging/discharging and the thermal stability during heating are essential in developing new materials and improving current materials. Since structural changes take place from the atomic level to the whole electrode level, combination of characterization techniques covering multilength scales is quite important. Finally, in many cases, this means using comprehensive tools involving diffraction, spectroscopy, and imaging to differentiate the surface from the bulk and to obtain structural/chemical information with different levels of spatial resolution.« less

  4. A spatiotemporal structure: common to subatomic systems, biological processes, and economic cycles

    NASA Astrophysics Data System (ADS)

    Naitoh, Ken

    2012-03-01

    A theoretical model derived based on a quasi-stability concept applied to momentum conservation (Naitoh, JJIAM, 2001, Artificial Life Robotics, 2008, 2010) has revealed the spatial structure of various systems. This model explains the reason why particles such as biological cells, nitrogenous bases, and liquid droplets have bimodal size ratios of about 2:3 and 1:1. This paper shows that the same theory holds true for several levels of parcels from baryons to stars in the cosmos: specifically, at the levels of nuclear force, van der Waals force, surface tension, and the force of gravity. A higher order of analysis clarifies other asymmetric ratios related to the halo structure seen in atoms and amino acids. We will also show that our minimum hypercycle theory for explaining the morphogenetic cycle (Naitoh, Artificial Life Robotics, 2008) reveals other temporal cycles such as those of economic systems and the circadian clock as well as the fundamental neural network pattern (topological pattern). Finally, a universal equation describing the spatiotemporal structure of several systems will be derived, which also leads to a general concept of quasi-stability.

  5. Temporal and spatial correlation patterns of air pollutants in Chinese cities

    PubMed Central

    Dai, Yue-Hua

    2017-01-01

    As a huge threat to the public health, China’s air pollution has attracted extensive attention and continues to grow in tandem with the economy. Although the real-time air quality report can be utilized to update our knowledge on air quality, questions about how pollutants evolve across time and how pollutants are spatially correlated still remain a puzzle. In view of this point, we adopt the PMFG network method to analyze the six pollutants’ hourly data in 350 Chinese cities in an attempt to find out how these pollutants are correlated temporally and spatially. In terms of time dimension, the results indicate that, except for O3, the pollutants have a common feature of the strong intraday patterns of which the daily variations are composed of two contraction periods and two expansion periods. Besides, all the time series of the six pollutants possess strong long-term correlations, and this temporal memory effect helps to explain why smoggy days are always followed by one after another. In terms of space dimension, the correlation structure shows that O3 is characterized by the highest spatial connections. The PMFGs reveal the relationship between this spatial correlation and provincial administrative divisions by filtering the hierarchical structure in the correlation matrix and refining the cliques as the tinny spatial clusters. Finally, we check the stability of the correlation structure and conclude that, except for PM10 and O3, the other pollutants have an overall stable correlation, and all pollutants have a slight trend to become more divergent in space. These results not only enhance our understanding of the air pollutants’ evolutionary process, but also shed lights on the application of complex network methods into geographic issues. PMID:28832599

  6. Corrections to the Eckhaus' stability criterion for one-dimensional stationary structures

    NASA Astrophysics Data System (ADS)

    Malomed, B. A.; Staroselsky, I. E.; Konstantinov, A. B.

    1989-01-01

    Two amendments to the well-known Eckhaus' stability criterion for small-amplitude non-linear structures generated by weak instability of a spatially uniform state of a non-equilibrium one-dimensional system against small perturbations with finite wavelengths are obtained. Firstly, we evaluate small corrections to the main Eckhaus' term which, on the contrary so that term, do not have a universal form. Comparison of those non-universal corrections with experimental or numerical results gives a possibility to select a more relevant form of an effective nonlinear evolution equation. In particular, the comparison with such results for convective rolls and Taylor vortices gives arguments in favor of the Swift-Hohenberg equation. Secondly, we derive an analog of the Eckhaus criterion for systems degenerate in the sense that in an expansion of their non-linear parts in powers of dynamical variables, the second and third degree terms are absent.

  7. Dimensional metrology of micro structure based on modulation depth in scanning broadband light interferometry

    NASA Astrophysics Data System (ADS)

    Zhou, Yi; Tang, Yan; Deng, Qinyuan; Zhao, Lixin; Hu, Song

    2017-08-01

    Three-dimensional measurement and inspection is an area with growing needs and interests in many domains, such as integrated circuits (IC), medical cure, and chemistry. Among the methods, broadband light interferometry is widely utilized due to its large measurement range, noncontact and high precision. In this paper, we propose a spatial modulation depth-based method to retrieve the surface topography through analyzing the characteristics of both frequency and spatial domains in the interferogram. Due to the characteristics of spatial modulation depth, the technique could effectively suppress the negative influences caused by light fluctuations and external disturbance. Both theory and experiments are elaborated to confirm that the proposed method can greatly improve the measurement stability and sensitivity with high precision. This technique can achieve a superior robustness with the potential to be applied in online topography measurement.

  8. The Relationship Between Postural and Movement Stability.

    PubMed

    Feldman, Anatol G

    2016-01-01

    Postural stabilization is provided by stretch reflexes, intermuscular reflexes, and intrinsic muscle properties. Taken together, these posture-stabilizing mechanisms resist deflections from the posture at which balance of muscle and external forces is maintained. Empirical findings suggest that for each muscle, these mechanisms become functional at a specific, spatial threshold-the muscle length or respective joint angle at which motor units begin to be recruited. Empirical data suggest that spinal and supraspinal centers can shift the spatial thresholds for a group of muscles that stabilized the initial posture. As a consequence, the same stabilizing mechanisms, instead of resisting motion from the initial posture, drive the body to another stable posture. In other words by shifting spatial thresholds, the nervous system converts movement resisting to movement-producing mechanisms. It is illustrated that, contrary to conventional view, this control strategy allows the system to transfer body balance to produce locomotion and other actions without loosing stability at any point of them. It also helps orient posture and movement with the direction of gravity. It is concluded that postural and movement stability is provided by a common mechanism.

  9. Flow environment and matrix structure interact to determine spatial competition in Pseudomonas aeruginosa biofilms.

    PubMed

    Nadell, Carey D; Ricaurte, Deirdre; Yan, Jing; Drescher, Knut; Bassler, Bonnie L

    2017-01-13

    Bacteria often live in biofilms, which are microbial communities surrounded by a secreted extracellular matrix. Here, we demonstrate that hydrodynamic flow and matrix organization interact to shape competitive dynamics in Pseudomonas aeruginosa biofilms. Irrespective of initial frequency, in competition with matrix mutants, wild-type cells always increase in relative abundance in planar microfluidic devices under simple flow regimes. By contrast, in microenvironments with complex, irregular flow profiles - which are common in natural environments - wild-type matrix-producing and isogenic non-producing strains can coexist. This result stems from local obstruction of flow by wild-type matrix producers, which generates regions of near-zero shear that allow matrix mutants to locally accumulate. Our findings connect the evolutionary stability of matrix production with the hydrodynamics and spatial structure of the surrounding environment, providing a potential explanation for the variation in biofilm matrix secretion observed among bacteria in natural environments.

  10. Mirror trends of plasticity and stability indicators in primate prefrontal cortex.

    PubMed

    García-Cabezas, Miguel Á; Joyce, Mary Kate P; John, Yohan J; Zikopoulos, Basilis; Barbas, Helen

    2017-10-01

    Research on plasticity markers in the cerebral cortex has largely focused on their timing of expression and role in shaping circuits during critical and normal periods. By contrast, little attention has been focused on the spatial dimension of plasticity-stability across cortical areas. The rationale for this analysis is based on the systematic variation in cortical structure that parallels functional specialization and raises the possibility of varying levels of plasticity. Here, we investigated in adult rhesus monkeys the expression of markers related to synaptic plasticity or stability in prefrontal limbic and eulaminate areas that vary in laminar structure. Our findings revealed that limbic areas are impoverished in three markers of stability: intracortical myelin, the lectin Wisteria floribunda agglutinin, which labels perineuronal nets, and parvalbumin, which is expressed in a class of strong inhibitory neurons. By contrast, prefrontal limbic areas were enriched in the enzyme calcium/calmodulin-dependent protein kinase II (CaMKII), known to enhance plasticity. Eulaminate areas have more elaborate laminar architecture than limbic areas and showed the opposite trend: they were enriched in markers of stability and had lower expression of the plasticity-related marker CaMKII. The expression of glial fibrillary acidic protein (GFAP), a marker of activated astrocytes, was also higher in limbic areas, suggesting that cellular stress correlates with the rate of circuit reshaping. Elevated markers of plasticity may endow limbic areas with flexibility necessary for learning and memory within an affective context, but may also render them vulnerable to abnormal structural changes, as seen in neurologic and psychiatric diseases. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  11. Intrinsic energy localization through discrete gap breathers in one-dimensional diatomic granular crystals.

    PubMed

    Theocharis, G; Boechler, N; Kevrekidis, P G; Job, S; Porter, Mason A; Daraio, C

    2010-11-01

    We present a systematic study of the existence and stability of discrete breathers that are spatially localized in the bulk of a one-dimensional chain of compressed elastic beads that interact via Hertzian contact. The chain is diatomic, consisting of a periodic arrangement of heavy and light spherical particles. We examine two families of discrete gap breathers: (1) an unstable discrete gap breather that is centered on a heavy particle and characterized by a symmetric spatial energy profile and (2) a potentially stable discrete gap breather that is centered on a light particle and is characterized by an asymmetric spatial energy profile. We investigate their existence, structure, and stability throughout the band gap of the linear spectrum and classify them into four regimes: a regime near the lower optical band edge of the linear spectrum, a moderately discrete regime, a strongly discrete regime that lies deep within the band gap of the linearized version of the system, and a regime near the upper acoustic band edge. We contrast discrete breathers in anharmonic Fermi-Pasta-Ulam (FPU)-type diatomic chains with those in diatomic granular crystals, which have a tensionless interaction potential between adjacent particles, and note that the asymmetric nature of the tensionless interaction potential can lead to hybrid bulk-surface localized solutions.

  12. Intrinsic energy localization through discrete gap breathers in one-dimensional diatomic granular crystals

    NASA Astrophysics Data System (ADS)

    Theocharis, G.; Boechler, N.; Kevrekidis, P. G.; Job, S.; Porter, Mason A.; Daraio, C.

    2010-11-01

    We present a systematic study of the existence and stability of discrete breathers that are spatially localized in the bulk of a one-dimensional chain of compressed elastic beads that interact via Hertzian contact. The chain is diatomic, consisting of a periodic arrangement of heavy and light spherical particles. We examine two families of discrete gap breathers: (1) an unstable discrete gap breather that is centered on a heavy particle and characterized by a symmetric spatial energy profile and (2) a potentially stable discrete gap breather that is centered on a light particle and is characterized by an asymmetric spatial energy profile. We investigate their existence, structure, and stability throughout the band gap of the linear spectrum and classify them into four regimes: a regime near the lower optical band edge of the linear spectrum, a moderately discrete regime, a strongly discrete regime that lies deep within the band gap of the linearized version of the system, and a regime near the upper acoustic band edge. We contrast discrete breathers in anharmonic Fermi-Pasta-Ulam (FPU)-type diatomic chains with those in diatomic granular crystals, which have a tensionless interaction potential between adjacent particles, and note that the asymmetric nature of the tensionless interaction potential can lead to hybrid bulk-surface localized solutions.

  13. The importance of spatial heterogeneity and self-restraint on mutualism stability - a quantitative review

    NASA Astrophysics Data System (ADS)

    Wang, Rui-Wu; Dunn, Derek W.; Luo, Jun; He, Jun-Zhou; Shi, Lei

    2015-10-01

    Understanding the factors that enable mutualisms to evolve and to subsequently remain stable over time, is essential to fully understand patterns of global biodiversity and for evidence based conservation policy. Theoretically, spatial heterogeneity of mutualists, through increased likelihood of fidelity between cooperative partners in structured populations, and ‘self-restraint’ of symbionts, due to selection against high levels of virulence leading to short-term host overexploitation, will result in either a positive correlation between the reproductive success of both mutualists prior to the total exploitation of any host resource or no correlation after any host resource has been fully exploited. A quantitative review by meta-analysis on the results of 96 studies from 35 papers, showed no evidence of a significant fitness correlation between mutualists across a range of systems that captured much taxonomic diversity. However, when the data were split according to four categories of host: 1) cnidarian corals, 2) woody plants, 3) herbaceous plants, and 4) insects, a significantly positive effect in corals was revealed. The trends for the remaining three categories did not significantly differ to zero. Our results suggest that stability in mutualisms requires alternative processes, or mechanisms in addition to, spatial heterogeneity of hosts and/or ‘self-restraint’ of symbionts.

  14. Spatial Guilds in the Serengeti Food Web Revealed by a Bayesian Group Model

    PubMed Central

    Baskerville, Edward B.; Dobson, Andy P.; Bedford, Trevor; Allesina, Stefano; Anderson, T. Michael; Pascual, Mercedes

    2011-01-01

    Food webs, networks of feeding relationships in an ecosystem, provide fundamental insights into mechanisms that determine ecosystem stability and persistence. A standard approach in food-web analysis, and network analysis in general, has been to identify compartments, or modules, defined by many links within compartments and few links between them. This approach can identify large habitat boundaries in the network but may fail to identify other important structures. Empirical analyses of food webs have been further limited by low-resolution data for primary producers. In this paper, we present a Bayesian computational method for identifying group structure using a flexible definition that can describe both functional trophic roles and standard compartments. We apply this method to a newly compiled plant-mammal food web from the Serengeti ecosystem that includes high taxonomic resolution at the plant level, allowing a simultaneous examination of the signature of both habitat and trophic roles in network structure. We find that groups at the plant level reflect habitat structure, coupled at higher trophic levels by groups of herbivores, which are in turn coupled by carnivore groups. Thus the group structure of the Serengeti web represents a mixture of trophic guild structure and spatial pattern, in contrast to the standard compartments typically identified. The network topology supports recent ideas on spatial coupling and energy channels in ecosystems that have been proposed as important for persistence. Furthermore, our Bayesian approach provides a powerful, flexible framework for the study of network structure, and we believe it will prove instrumental in a variety of biological contexts. PMID:22219719

  15. Rheology Gradients at the Base of the Lithosphere and the Stabilization of Deep Mantle Plumes in Stagnant-Lid Planets

    NASA Astrophysics Data System (ADS)

    King, S. D.

    2017-12-01

    In high-Rayleigh-number, spherical-shell convection, such as one expects to find in the interiors of large silicate planetary bodies, plumes will migrate unless they are anchored to fixed structures. Within the Earth LLSVPs or core-mantle boundary topography have been proposed to anchor deep mantle plumes, fixing the location of hotspots. The relative stability of volcanic features on Mars and Venus, which are thought to be related to mantle plumes, have not be satisfactorily explained. Thus, it is surprising to see high-Rayleigh-number, stagnant-lid, spherical-shell convection calculations where plumes seeded by the structure of the initial condition persist in a stable configuration for more than 1 Gyr. By comparing calculations with a fixed lithospheric rheology structure with a lithosphere rheology determined by temperature and pressure, I show that in these calculations, topography on the base of the stagnant lid (i.e., the lithosphere-asthenosphere boundary) is responsible for the spatial stability of the plumes. If there is symmetry in the plume distribution, this symmetry can prevent the lithosphere becoming unstable and overturning, leading to a significantly over-thickened lithosphere relative to predictions based on scaling laws. This is confirmed by considering an identical calculation where the symmetry in the plume distribution is broken. I discuss geological and geophysical implications for planetary bodies resulting of long-lived, stable, mantle structures.

  16. Retrosplenial Cortex Indexes Stability beyond the Spatial Domain

    PubMed Central

    2018-01-01

    Retrosplenial cortex (RSC) is highly responsive to landmarks in the environment that remain fixed in a permanent location, and this has been linked with its known involvement in scene and spatial processing. However, it is unclear whether RSC representations of permanence are a purely spatial phenomenon or whether they extend into behavioral and conceptual domains. To test this, during functional MRI scanning, we had people (males and females) read three different types of sentences that described either something permanent or transient. The first two sentence types were imageable, with a focus either on a spatial landmark or on an action. The third type of sentence involved non-imageable abstract concepts. We found that, in addition to being more active for sentences describing landmarks with a permanent location in space, RSC was also significantly engaged by sentences describing stable and consistent behaviors or actions, as long as they were rooted within a concrete imageable setting. RSC was not responsive to abstract concepts, even those that embodied the notion of stability. Similarly, it was not engaged by imageable sentences with transient contents. In contrast, parahippocampal cortex was more engaged by imageable sentences describing landmarks, whereas the hippocampus was active for all imageable sentences. In addition, for imageable sentences describing permanence, there was bidirectional functional coupling between RSC and these medial temporal lobe structures. It appears, therefore, that RSC-mediated permanence representations could be helpful for more than spatially mapping environments and may also provide information about the reliability of events occurring within them. SIGNIFICANCE STATEMENT The retrosplenial cortex (RSC) is known to process information about landmarks in the environment that have a fixed, permanent location. Here we tested whether this permanence response was apparent beyond the spatial domain, which could have implications for understanding the role of the RSC more widely across cognition. We found that the RSC was engaged not only by permanent landmarks but also by stable and consistent actions. It was not responsive to transient landmarks or actions or to abstract concepts, even those that embodied the notion of stability. We conclude that the RSC might do more than help to map spatial environments, by possibly also providing information about the reliability of events occurring within them. PMID:29311139

  17. Four millennia of woodland structure and dynamics at the Arctic treeline of eastern Canada.

    PubMed

    Auger, Sarah; Payette, Serge

    2010-05-01

    Paleoecological analysis using complementary indicators of vegetation and soil can provide spatially explicit information on ecological processes influencing trajectories of long-term ecosystem change. Here we document the structure and dynamics of an old-growth woodland before and after its inception 1000 years ago. We infer vegetation and soil characteristics from size and age distributions of black spruce (Picea mariana (Mill.) B.S.P.), soil properties, plant fossils, and paleosols. Radiocarbon ages of charcoal on the ground and in the soil indicate that the fire return interval was approximately 300 years between 2750 and 1000 cal. yr BP. No fire evidence was found before and after this period despite the presence of spruce since 4200 cal. yr BP. The size structures of living and dead spruce suggest that the woodland is in equilibrium with present climate in absence of fire. Tree establishment and mortality occurred regularly since the last fire event around 950 cal. yr BP. Both layering and occasional seeding have contributed to stabilize the spatial distribution of spruce over the past 1000 years. Since initial afforestation, soil development has been homogenized by the changing spatial distribution of spruce following each fire. We conclude that the history of the woodland is characterized by vegetation shifts associated with fire and soil disturbances and by millennial-scale maintenance of the woodland's structure despite changing climatic conditions.

  18. Structural covariance networks across healthy young adults and their consistency.

    PubMed

    Guo, Xiaojuan; Wang, Yan; Guo, Taomei; Chen, Kewei; Zhang, Jiacai; Li, Ke; Jin, Zhen; Yao, Li

    2015-08-01

    To investigate structural covariance networks (SCNs) as measured by regional gray matter volumes with structural magnetic resonance imaging (MRI) from healthy young adults, and to examine their consistency and stability. Two independent cohorts were included in this study: Group 1 (82 healthy subjects aged 18-28 years) and Group 2 (109 healthy subjects aged 20-28 years). Structural MRI data were acquired at 3.0T and 1.5T using a magnetization prepared rapid-acquisition gradient echo sequence for these two groups, respectively. We applied independent component analysis (ICA) to construct SCNs and further applied the spatial overlap ratio and correlation coefficient to evaluate the spatial consistency of the SCNs between these two datasets. Seven and six independent components were identified for Group 1 and Group 2, respectively. Moreover, six SCNs including the posterior default mode network, the visual and auditory networks consistently existed across the two datasets. The overlap ratios and correlation coefficients of the visual network reached the maximums of 72% and 0.71. This study demonstrates the existence of consistent SCNs corresponding to general functional networks. These structural covariance findings may provide insight into the underlying organizational principles of brain anatomy. © 2014 Wiley Periodicals, Inc.

  19. Taxonomic and functional patterns of macrobenthic communities on a high-Arctic shelf: A case study from the Laptev Sea

    NASA Astrophysics Data System (ADS)

    Kokarev, V. N.; Vedenin, A. A.; Basin, A. B.; Azovsky, A. I.

    2017-11-01

    The studies of functional structure of high-Arctic Ecosystems are scarce. We used data on benthic macrofauna from 500-km latitudinal transect in the eastern Laptev Sea, from the Lena delta to the continental shelf break, to describe spatial patterns in species composition, taxonomic and functional structure in relation to environmental factors. Both taxonomy-based approach and Biological Trait analysis yielded similar results and showed general depth-related gradient in benthic diversity and composition. This congruence between taxonomical and functional dimensions of community organization suggests that the same environmental factors (primarily riverine input and regime of sedimentation) have similar effect on both community structure and functioning. BTA also revealed a distinct functional structure of stations situated at the Eastern Lena valley, with dominance of motile, burrowing sub-surface deposit-feeders and absence of sedentary tube-dwelling forms. The overall spatial distribution of benthic assemblages corresponds well to that described there in preceding decades, evidencing the long-term stability of bottom ecosystem. Strong linear relationship between species and traits diversity, however, indicates low functional redundancy, which potentially makes the ecosystem susceptible to a species loss or structural shifts.

  20. Regulation of the demographic structure in isomorphic biphasic life cycles at the spatial fine scale.

    PubMed

    Vieira, Vasco Manuel Nobre de Carvalho da Silva; Mateus, Marcos Duarte

    2014-01-01

    Isomorphic biphasic algal life cycles often occur in the environment at ploidy abundance ratios (Haploid:Diploid) different from 1. Its spatial variability occurs within populations related to intertidal height and hydrodynamic stress, possibly reflecting the niche partitioning driven by their diverging adaptation to the environment argued necessary for their prevalence (evolutionary stability). Demographic models based in matrix algebra were developed to investigate which vital rates may efficiently generate an H:D variability at a fine spatial resolution. It was also taken into account time variation and type of life strategy. Ploidy dissimilarities in fecundity rates set an H:D spatial structure miss-fitting the ploidy fitness ratio. The same happened with ploidy dissimilarities in ramet growth whenever reproductive output dominated the population demography. Only through ploidy dissimilarities in looping rates (stasis, breakage and clonal growth) did the life cycle respond to a spatially heterogeneous environment efficiently creating a niche partition. Marginal locations were more sensitive than central locations. Related results have been obtained experimentally and numerically for widely different life cycles from the plant and animal kingdoms. Spore dispersal smoothed the effects of ploidy dissimilarities in fertility and enhanced the effects of ploidy dissimilarities looping rates. Ploidy dissimilarities in spore dispersal could also create the necessary niche partition, both over the space and time dimensions, even in spatial homogeneous environments and without the need for conditional differentiation of the ramets. Fine scale spatial variability may be the key for the prevalence of isomorphic biphasic life cycles, which has been neglected so far.

  1. Regulation of the Demographic Structure in Isomorphic Biphasic Life Cycles at the Spatial Fine Scale

    PubMed Central

    Vieira, Vasco Manuel Nobre de Carvalho da Silva; Mateus, Marcos Duarte

    2014-01-01

    Isomorphic biphasic algal life cycles often occur in the environment at ploidy abundance ratios (Haploid:Diploid) different from 1. Its spatial variability occurs within populations related to intertidal height and hydrodynamic stress, possibly reflecting the niche partitioning driven by their diverging adaptation to the environment argued necessary for their prevalence (evolutionary stability). Demographic models based in matrix algebra were developed to investigate which vital rates may efficiently generate an H:D variability at a fine spatial resolution. It was also taken into account time variation and type of life strategy. Ploidy dissimilarities in fecundity rates set an H:D spatial structure miss-fitting the ploidy fitness ratio. The same happened with ploidy dissimilarities in ramet growth whenever reproductive output dominated the population demography. Only through ploidy dissimilarities in looping rates (stasis, breakage and clonal growth) did the life cycle respond to a spatially heterogeneous environment efficiently creating a niche partition. Marginal locations were more sensitive than central locations. Related results have been obtained experimentally and numerically for widely different life cycles from the plant and animal kingdoms. Spore dispersal smoothed the effects of ploidy dissimilarities in fertility and enhanced the effects of ploidy dissimilarities looping rates. Ploidy dissimilarities in spore dispersal could also create the necessary niche partition, both over the space and time dimensions, even in spatial homogeneous environments and without the need for conditional differentiation of the ramets. Fine scale spatial variability may be the key for the prevalence of isomorphic biphasic life cycles, which has been neglected so far. PMID:24658603

  2. Stability and spatial arrangement of the 2,4-dichlorophenoxyacetic acid and β-cyclodextrin inclusion compound: A theoretical study

    NASA Astrophysics Data System (ADS)

    Pereira, Robson A.; Anconi, Cleber P. A.; Nascimento, Clebio S.; De Almeida, Wagner B.; Dos Santos, Hélio F.

    2015-07-01

    The present letter reports results from a comprehensive theoretical analysis of the inclusion process involving 2,4-dichlorophenoxyacetic acid (2,4-D) and β-cyclodextrin (β-CD) for which the experimental data of formation is available. Spatial arrangement and stabilization energies were evaluated in gas phase and aqueous solution through density functional theory (DFT) and through the use of SMD implicit solvation approach. The discussed methodology was applied to predict the stability and identify the most favorable form (deprotonated or neutral) as well as the most probable spatial arrangement of the studied inclusion compound.

  3. Modulating the physicochemical and structural properties of gold-functionalized protein nanotubes through thiol surface modification.

    PubMed

    Carreño-Fuentes, Liliana; Plascencia-Villa, Germán; Palomares, Laura A; Moya, Sergio E; Ramírez, Octavio T

    2014-12-16

    Biomolecules are advantageous scaffolds for the synthesis and ordering of metallic nanoparticles. Rotavirus VP6 nanotubes possess intrinsic affinity to metal ions, a property that has been exploited to synthesize gold nanoparticles over them. The resulting nanobiomaterials have unique properties useful for novel applications. However, the formed nanobiomaterials lack of colloidal stability and flocculate, limiting their functionality. Here we demonstrate that it is possible to synthesize thiol-protected gold nanoparticles over VP6 nanotubes, which resulted in soluble nanobiomaterials. With this strategy, it was possible to modulate the size, colloidal stability, and surface plasmon resonance of the synthesized nanoparticles by controlling the content of the thiolated ligands. Two types of water-soluble ligands were tested, a small linear ligand, sodium 3-mercapto-1-propanesulfonate (MPS), and a bulky ligand, 5-mercaptopentyl β-D-glucopyranoside (GlcC5SH). The synthesized nanobiomaterials had a higher stability in suspension, as determined by Z-potential measurements. To the extent of our knowledge, this is the first time that a rational strategy is developed to modulate the particular properties of metal nanoparticles in situ synthesized over a protein bioscaffold through thiol coating, achieving a high spatial and structural organization of nanoparticles in a single integrative hybrid structure.

  4. Binding polarity of RPA to telomeric sequences and influence of G-quadruplex stability.

    PubMed

    Safa, Layal; Delagoutte, Emmanuelle; Petruseva, Irina; Alberti, Patrizia; Lavrik, Olga; Riou, Jean-François; Saintomé, Carole

    2014-08-01

    Replication protein A (RPA) is a single-stranded DNA binding protein that plays an essential role in telomere maintenance. RPA binds to and unfolds G-quadruplex (G4) structures formed in telomeric DNA, thus facilitating lagging strand DNA replication and telomerase activity. To investigate the effect of G4 stability on the interactions with human RPA (hRPA), we used a combination of biochemical and biophysical approaches. Our data revealed an inverse relationship between G4 stability and ability of hRPA to bind to telomeric DNA; notably small G4 ligands that enhance G4 stability strongly impaired G4 unfolding by hRPA. To gain more insight into the mechanism of binding and unfolding of telomeric G4 structures by RPA, we carried out photo-crosslinking experiments to elucidate the spatial arrangement of the RPA subunits along the DNA strands. Our results showed that RPA1 and RPA2 are arranged from 5' to 3' along the unfolded telomeric G4, as already described for unstructured single-stranded DNA, while no contact is possible with RPA3 on this short oligonucleotide. In addition, these data are compatible with a 5' to 3' directionality in G4 unfolding by hRPA. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  5. Spatial working memory capacity predicts bias in estimates of location.

    PubMed

    Crawford, L Elizabeth; Landy, David; Salthouse, Timothy A

    2016-09-01

    Spatial memory research has attributed systematic bias in location estimates to a combination of a noisy memory trace with a prior structure that people impose on the space. Little is known about intraindividual stability and interindividual variation in these patterns of bias. In the current work, we align recent empirical and theoretical work on working memory capacity limits and spatial memory bias to generate the prediction that those with lower working memory capacity will show greater bias in memory of the location of a single item. Reanalyzing data from a large study of cognitive aging, we find support for this prediction. Fitting separate models to individuals' data revealed a surprising variety of strategies. Some were consistent with Bayesian models of spatial category use, however roughly half of participants biased estimates outward in a way not predicted by current models and others seemed to combine these strategies. These analyses highlight the importance of studying individuals when developing general models of cognition. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  6. Spatial Working Memory Capacity Predicts Bias in Estimates of Location

    PubMed Central

    Crawford, L. Elizabeth; Landy, David H.; Salthouse, Timothy A.

    2016-01-01

    Spatial memory research has attributed systematic bias in location estimates to a combination of a noisy memory trace with a prior structure that people impose on the space. Little is known about intra-individual stability and inter-individual variation in these patterns of bias. In the current work we align recent empirical and theoretical work on working memory capacity limits and spatial memory bias to generate the prediction that those with lower working memory capacity will show greater bias in memory of the location of a single item. Reanalyzing data from a large study of cognitive aging, we find support for this prediction. Fitting separate models to individuals’ data revealed a surprising variety of strategies. Some were consistent with Bayesian models of spatial category use, however roughly half of participants biased estimates outward in a way not predicted by current models and others seemed to combine these strategies. These analyses highlight the importance of studying individuals when developing general models of cognition. PMID:26900708

  7. Spatial Cues Provided by Sound Improve Postural Stabilization: Evidence of a Spatial Auditory Map?

    PubMed Central

    Gandemer, Lennie; Parseihian, Gaetan; Kronland-Martinet, Richard; Bourdin, Christophe

    2017-01-01

    It has long been suggested that sound plays a role in the postural control process. Few studies however have explored sound and posture interactions. The present paper focuses on the specific impact of audition on posture, seeking to determine the attributes of sound that may be useful for postural purposes. We investigated the postural sway of young, healthy blindfolded subjects in two experiments involving different static auditory environments. In the first experiment, we compared effect on sway in a simple environment built from three static sound sources in two different rooms: a normal vs. an anechoic room. In the second experiment, the same auditory environment was enriched in various ways, including the ambisonics synthesis of a immersive environment, and subjects stood on two different surfaces: a foam vs. a normal surface. The results of both experiments suggest that the spatial cues provided by sound can be used to improve postural stability. The richer the auditory environment, the better this stabilization. We interpret these results by invoking the “spatial hearing map” theory: listeners build their own mental representation of their surrounding environment, which provides them with spatial landmarks that help them to better stabilize. PMID:28694770

  8. Ionic wave propagation and collision in an excitable circuit model of microtubules

    NASA Astrophysics Data System (ADS)

    Guemkam Ghomsi, P.; Tameh Berinyoh, J. T.; Moukam Kakmeni, F. M.

    2018-02-01

    In this paper, we report the propensity to excitability of the internal structure of cellular microtubules, modelled as a relatively large one-dimensional spatial array of electrical units with nonlinear resistive features. We propose a model mimicking the dynamics of a large set of such intracellular dynamical entities as an excitable medium. We show that the behavior of such lattices can be described by a complex Ginzburg-Landau equation, which admits several wave solutions, including the plane waves paradigm. A stability analysis of the plane waves solutions of our dynamical system is conducted both analytically and numerically. It is observed that perturbed plane waves will always evolve toward promoting the generation of localized periodic waves trains. These modes include both stationary and travelling spatial excitations. They encompass, on one hand, localized structures such as solitary waves embracing bright solitons, dark solitons, and bisolitonic impulses with head-on collisions phenomena, and on the other hand, the appearance of both spatially homogeneous and spatially inhomogeneous stationary patterns. This ability exhibited by our array of proteinic elements to display several states of excitability exposes their stunning biological and physical complexity and is of high relevance in the description of the developmental and informative processes occurring on the subcellular scale.

  9. Ionic wave propagation and collision in an excitable circuit model of microtubules.

    PubMed

    Guemkam Ghomsi, P; Tameh Berinyoh, J T; Moukam Kakmeni, F M

    2018-02-01

    In this paper, we report the propensity to excitability of the internal structure of cellular microtubules, modelled as a relatively large one-dimensional spatial array of electrical units with nonlinear resistive features. We propose a model mimicking the dynamics of a large set of such intracellular dynamical entities as an excitable medium. We show that the behavior of such lattices can be described by a complex Ginzburg-Landau equation, which admits several wave solutions, including the plane waves paradigm. A stability analysis of the plane waves solutions of our dynamical system is conducted both analytically and numerically. It is observed that perturbed plane waves will always evolve toward promoting the generation of localized periodic waves trains. These modes include both stationary and travelling spatial excitations. They encompass, on one hand, localized structures such as solitary waves embracing bright solitons, dark solitons, and bisolitonic impulses with head-on collisions phenomena, and on the other hand, the appearance of both spatially homogeneous and spatially inhomogeneous stationary patterns. This ability exhibited by our array of proteinic elements to display several states of excitability exposes their stunning biological and physical complexity and is of high relevance in the description of the developmental and informative processes occurring on the subcellular scale.

  10. Related Structure Characters and Stability of Structural Defects in a Metallic Glass

    PubMed Central

    Niu, Xiaofeng; Feng, Shidong; Pan, Shaopeng

    2018-01-01

    Structural defects were investigated by a recently proposed structural parameter, quasi-nearest atom (QNA), in a modeled Zr50Cu50 metallic glass through molecular dynamics simulations. More QNAs around an atom usually means that more defects are located near the atom. Structural analysis reveals that the spatial distribution of the numbers of QNAs displays to be clearly heterogeneous. Furthermore, QNA is closely correlated with cluster connections, especially four-atom cluster connections. Atoms with larger coordination numbers usually have less QNAs. When two atoms have the same coordination number, the atom with larger five-fold symmetry has less QNAs. The number of QNAs around an atom changes rather frequently and the change of QNAs might be correlated with the fast relaxation metallic glasses. PMID:29565298

  11. Species dispersal rates alter diversity and ecosystem stability in pond metacommunities.

    PubMed

    Howeth, Jennifer G; Leibold, Mathew A

    2010-09-01

    Metacommunity theory suggests that relationships between diversity and ecosystem stability can be determined by the rate of species dispersal among local communities. The predicted relationships, however, may depend upon the relative strength of local environmental processes and disturbance. Here we evaluate the role of dispersal frequency and local predation perturbations in affecting patterns of diversity and stability in pond plankton metacommunities. Pond metacommunities were composed of three mesocosm communities: one of the three communities maintained constant "press" predation from a selective predator, bluegill sunfish (Lepomis macrochirus); the second community maintained "press" conditions without predation; and the third community experienced recurrent "pulsed" predation from bluegill sunfish. The triads of pond communities were connected at either no, low (0.7%/d), or high (20%/d) planktonic dispersal. Richness and composition of zooplankton and stability of plankton biomass and ecosystem productivity were measured at local and regional spatial scales. Dispersal significantly affected diversity such that local and regional biotas at the low dispersal rate maintained the greatest number of species. The unimodal local dispersal-diversity relationship was predator-dependent, however, as selective press predation excluded species regardless of dispersal. Further, there was no effect of dispersal on beta diversity because predation generated local conditions that selected for distinct community assemblages. Spatial and temporal ecosystem stability responded to dispersal frequency but not predation. Low dispersal destabilized the spatial stability of producer biomass but stabilized temporal ecosystem productivity. The results indicate that selective predation can prevent species augmentation from mass effects but has no apparent influence on stability. Dispersal rates, in contrast, can have significant effects on both species diversity and ecosystem stability at multiple spatial scales in metacommunities.

  12. Influence of atmospheric stability on wind-turbine wakes: A large-eddy simulation study

    NASA Astrophysics Data System (ADS)

    Abkar, Mahdi; Porté-Agel, Fernando

    2014-05-01

    In this study, large-eddy simulation is combined with a turbine model to investigate the influence of atmospheric stability on wind-turbine wakes. In the simulations, subgrid-scale turbulent fluxes are parameterized using tuning-free Lagrangian scale-dependent dynamic models. These models optimize the local value of the model coefficients based on the dynamics of the resolved scales. The turbine-induced forces are parameterized with an actuator-disk model with rotation. In this technique, blade-element theory is used to calculate the lift and drag forces acting on the blades. Emphasis is placed on the structure and characteristics of wind-turbine wakes in the cases where the incident flows to the turbine have the same mean velocity at the hub height but different stability conditions. The simulation results show that atmospheric stability has a significant effect on the spatial distribution of the mean velocity deficit and turbulent fluxes in the wake region. In particular, the magnitude of the velocity deficit increases with increasing stability in the atmosphere. In addition, the locations of the maximum turbulence intensity and turbulent stresses are closer to the turbine in convective boundary layer compared with neutral and stable ones. Detailed analysis of the resolved turbulent kinetic energy (TKE) budget inside the wake reveals also that the thermal stratification of the incoming wind considerably affects the magnitude and spatial distribution of the turbulent production, transport term and dissipation rate (transfer of energy to the subgrid scales). It is also shown that the near-wake region can be extended to a farther distance downstream in stable condition compared with neutral and unstable counterparts. In order to isolate the effect of atmospheric stability, additional simulations of neutrally-stratified atmospheric boundary layers are performed with the same turbulence intensity at hub height as convective and stable ones. The results show that the turbulence intensity alone is not sufficient to describe the impact of atmospheric stability on the wind-turbine wakes.

  13. Physical effects of mechanical design parameters on photon sensitivity and spatial resolution performance of a breast-dedicated PET system.

    PubMed

    Spanoudaki, V C; Lau, F W Y; Vandenbroucke, A; Levin, C S

    2010-11-01

    This study aims to address design considerations of a high resolution, high sensitivity positron emission tomography scanner dedicated to breast imaging. The methodology uses a detailed Monte Carlo model of the system structures to obtain a quantitative evaluation of several performance parameters. Special focus was given to the effect of dense mechanical structures designed to provide mechanical robustness and thermal regulation to the minuscule and temperature sensitive detectors. For the energies of interest around the photopeak (450-700 keV energy window), the simulation results predict a 6.5% reduction in the single photon detection efficiency and a 12.5% reduction in the coincidence photon detection efficiency in the case that the mechanical structures are interspersed between the detectors. However for lower energies, a substantial increase in the number of detected events (approximately 14% and 7% for singles at a 100-200 keV energy window and coincidences at a lower energy threshold of 100 keV, respectively) was observed with the presence of these structures due to backscatter. The number of photon events that involve multiple interactions in various crystal elements is also affected by the presence of the structures. For photon events involving multiple interactions among various crystal elements, the coincidence photon sensitivity is reduced by as much as 20% for a point source at the center of the field of view. There is no observable effect on the intrinsic and the reconstructed spatial resolution and spatial resolution uniformity. Mechanical structures can have a considerable effect on system sensitivity, especially for systems processing multi-interaction photon events. This effect, however, does not impact the spatial resolution. Various mechanical structure designs are currently under evaluation in order to achieve optimum trade-off between temperature stability, accurate detector positioning, and minimum influence on system performance.

  14. Physical effects of mechanical design parameters on photon sensitivity and spatial resolution performance of a breast-dedicated PET system

    PubMed Central

    Spanoudaki, V. C.; Lau, F. W. Y.; Vandenbroucke, A.; Levin, C. S.

    2010-01-01

    Purpose: This study aims to address design considerations of a high resolution, high sensitivity positron emission tomography scanner dedicated to breast imaging. Methods: The methodology uses a detailed Monte Carlo model of the system structures to obtain a quantitative evaluation of several performance parameters. Special focus was given to the effect of dense mechanical structures designed to provide mechanical robustness and thermal regulation to the minuscule and temperature sensitive detectors. Results: For the energies of interest around the photopeak (450–700 keV energy window), the simulation results predict a 6.5% reduction in the single photon detection efficiency and a 12.5% reduction in the coincidence photon detection efficiency in the case that the mechanical structures are interspersed between the detectors. However for lower energies, a substantial increase in the number of detected events (approximately 14% and 7% for singles at a 100–200 keV energy window and coincidences at a lower energy threshold of 100 keV, respectively) was observed with the presence of these structures due to backscatter. The number of photon events that involve multiple interactions in various crystal elements is also affected by the presence of the structures. For photon events involving multiple interactions among various crystal elements, the coincidence photon sensitivity is reduced by as much as 20% for a point source at the center of the field of view. There is no observable effect on the intrinsic and the reconstructed spatial resolution and spatial resolution uniformity. Conclusions: Mechanical structures can have a considerable effect on system sensitivity, especially for systems processing multi-interaction photon events. This effect, however, does not impact the spatial resolution. Various mechanical structure designs are currently under evaluation in order to achieve optimum trade-off between temperature stability, accurate detector positioning, and minimum influence on system performance. PMID:21158296

  15. Patterns induced by super cross-diffusion in a predator-prey system with Michaelis-Menten type harvesting.

    PubMed

    Liu, Biao; Wu, Ranchao; Chen, Liping

    2018-04-01

    Turing instability and pattern formation in a super cross-diffusion predator-prey system with Michaelis-Menten type predator harvesting are investigated. Stability of equilibrium points is first explored with or without super cross-diffusion. It is found that cross-diffusion could induce instability of equilibria. To further derive the conditions of Turing instability, the linear stability analysis is carried out. From theoretical analysis, note that cross-diffusion is the key mechanism for the formation of spatial patterns. By taking cross-diffusion rate as bifurcation parameter, we derive amplitude equations near the Turing bifurcation point for the excited modes by means of weakly nonlinear theory. Dynamical analysis of the amplitude equations interprets the structural transitions and stability of various forms of Turing patterns. Furthermore, the theoretical results are illustrated via numerical simulations. Copyright © 2018. Published by Elsevier Inc.

  16. The study of the antimicrobial activity of colloidal solutions of silver nanoparticles prepared using food stabilizers.

    PubMed

    Balandin, G V; Suvorov, O A; Shaburova, L N; Podkopaev, D O; Frolova, Yu V; Ermolaeva, G A

    2015-06-01

    The bactericidal effect of colloidal solutions of silver nanoparticles based on food stabilizers, gum arabic and chitosan, against bacterial cultures of microorganisms in food production is described. The antibacterial activity of nanotechnology products containing different amounts of stabilizing additives when applied to solid pH-neutral substrates is studied. For its evaluation a method making it possible to take into account the capability of nanoparticles to diffuse in solid media was applied. Minimal inhibitory concentrations of nanoparticles used against Erwinia herbicola, Pseudomonas fluorescens, Bacillus subtilis, Sarcina flava were found. A suggestion was made concerning the influence of the spatial structure of bacteria on the antibacterial activity of colloidal solutions of silver nanoparticles. The data concerning the antibacterial activity and minimal inhibiting concentrations of nanoparticles may be used for development of products suppressing activity of microorganisms hazardous for food production.

  17. Mitigating Uncertainty from Vegetation Spatial Complexity with Highly Portable Lidar

    NASA Astrophysics Data System (ADS)

    Paynter, I.; Schaaf, C.; Peri, F.; Saenz, E. J.; Genest, D.; Strahler, A. H.; Li, Z.

    2015-12-01

    To fully utilize the excellent spatial coverage and temporal resolution offered by satellite resources for estimating ecological variables, fine-scale observations are required for comparison, calibration and validation. Lidar instruments have proved effective in estimating the properties of vegetation components of ecosystems, but they are often challenged by occlusion, especially in structurally complex and spatially fragmented ecosystems such as tropical forests. Increasing the range of view angles, both horizontally and vertically, by increasing the number of scans, can mitigate occlusion. However these scans must occur within the window of temporal stability for the ecosystem and vegetation property being measured. The Compact Biomass Lidar (CBL) is a TLS optimized for portability and scanning speed, developed and operated by University of Massachusetts Boston. This 905nm wavelength scanner achieves an angular resolution of 0.25 degrees at a rate of 33 seconds per scan. The ability to acquire many scans within narrow windows of temporal stability for ecological variables has facilitated the more complete investigation of ecosystem structural characteristics, and their expression as a function of view angle. The lightweight CBL has facilitated the use of alternative deployment platforms including towers, trams and masts, allowing analysis of the vertical structure of ecosystems, even in highly enclosed environments such as the sub-canopy of tropical forests where aerial vehicles cannot currently operate. We will present results from view angle analyses of lidar surveys of tropical rainforest in La Selva, Costa Rica where the CBL was deployed at heights up to 10m in Carbono long-term research plots utilizing a portable mast, and on a 25m stationary tower; and temperate forest at Harvard Forest, Massachusetts, USA, where the CBL has been deployed biannually at long-term research plots of hardwood and hemlock, as well as at heights of up to 25m utilizing a stationary tower.

  18. Limited gene dispersal and spatial genetic structure as stabilizing factors in an ant-plant mutualism.

    PubMed

    Malé, P-J G; Leroy, C; Humblot, P; Dejean, A; Quilichini, A; Orivel, J

    2016-12-01

    Comparative studies of the population genetics of closely associated species are necessary to properly understand the evolution of these relationships because gene flow between populations affects the partners' evolutionary potential at the local scale. As a consequence (at least for antagonistic interactions), asymmetries in the strength of the genetic structures of the partner populations can result in one partner having a co-evolutionary advantage. Here, we assess the population genetic structure of partners engaged in a species-specific and obligatory mutualism: the Neotropical ant-plant, Hirtella physophora, and its ant associate, Allomerus decemarticulatus. Although the ant cannot complete its life cycle elsewhere than on H. physophora and the plant cannot live for long without the protection provided by A. decemarticulatus, these species also have antagonistic interactions: the ants have been shown to benefit from castrating their host plant and the plant is able to retaliate against too virulent ant colonies. We found similar short dispersal distances for both partners, resulting in the local transmission of the association and, thus, inbred populations in which too virulent castrating ants face the risk of local extinction due to the absence of H. physophora offspring. On the other hand, we show that the plant populations probably experienced greater gene flow than did the ant populations, thus enhancing the evolutionary potential of the plants. We conclude that such levels of spatial structure in the partners' populations can increase the stability of the mutualistic relationship. Indeed, the local transmission of the association enables partial alignments of the partners' interests, and population connectivity allows the plant retaliation mechanisms to be locally adapted to the castration behaviour of their symbionts. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  19. Modified symplectic schemes with nearly-analytic discrete operators for acoustic wave simulations

    NASA Astrophysics Data System (ADS)

    Liu, Shaolin; Yang, Dinghui; Lang, Chao; Wang, Wenshuai; Pan, Zhide

    2017-04-01

    Using a structure-preserving algorithm significantly increases the computational efficiency of solving wave equations. However, only a few explicit symplectic schemes are available in the literature, and the capabilities of these symplectic schemes have not been sufficiently exploited. Here, we propose a modified strategy to construct explicit symplectic schemes for time advance. The acoustic wave equation is transformed into a Hamiltonian system. The classical symplectic partitioned Runge-Kutta (PRK) method is used for the temporal discretization. Additional spatial differential terms are added to the PRK schemes to form the modified symplectic methods and then two modified time-advancing symplectic methods with all of positive symplectic coefficients are then constructed. The spatial differential operators are approximated by nearly-analytic discrete (NAD) operators, and we call the fully discretized scheme modified symplectic nearly analytic discrete (MSNAD) method. Theoretical analyses show that the MSNAD methods exhibit less numerical dispersion and higher stability limits than conventional methods. Three numerical experiments are conducted to verify the advantages of the MSNAD methods, such as their numerical accuracy, computational cost, stability, and long-term calculation capability.

  20. Cancer heterogeneity: converting a limitation into a source of biologic information.

    PubMed

    Rübben, Albert; Araujo, Arturo

    2017-09-08

    Analysis of spatial and temporal genetic heterogeneity in human cancers has revealed that somatic cancer evolution in most cancers is not a simple linear process composed of a few sequential steps of mutation acquisitions and clonal expansions. Parallel evolution has been observed in many early human cancers resulting in genetic heterogeneity as well as multilineage progression. Moreover, aneuploidy as well as structural chromosomal aberrations seems to be acquired in a non-linear, punctuated mode where most aberrations occur at early stages of somatic cancer evolution. At later stages, the cancer genomes seem to get stabilized and acquire only few additional rearrangements. While parallel evolution suggests positive selection of driver mutations at early stages of somatic cancer evolution, stabilization of structural aberrations at later stages suggests that negative selection takes effect when cancer cells progressively lose their tolerance towards additional mutation acquisition. Mixing of genetically heterogeneous subclones in cancer samples reduces sensitivity of mutation detection. Moreover, driver mutations present only in a fraction of cancer cells are more likely to be mistaken for passenger mutations. Therefore, genetic heterogeneity may be considered a limitation negatively affecting detection sensitivity of driver mutations. On the other hand, identification of subclones and subclone lineages in human cancers may lead to a more profound understanding of the selective forces which shape somatic cancer evolution in human cancers. Identification of parallel evolution by analyzing spatial heterogeneity may hint to driver mutations which might represent additional therapeutic targets besides driver mutations present in a monoclonal state. Likewise, stabilization of cancer genomes which can be identified by analyzing temporal genetic heterogeneity might hint to genes and pathways which have become essential for survival of cancer cell lineages at later stages of cancer evolution. These genes and pathways might also constitute patient specific therapeutic targets.

  1. A generalized reaction diffusion model for spatial structure formed by motile cells.

    PubMed

    Ochoa, F L

    1984-01-01

    A non-linear stability analysis using a multi-scale perturbation procedure is carried out on a model of a generalized reaction diffusion mechanism which involves only a single equation but which nevertheless exhibits bifurcation to non-uniform states. The patterns generated by this model by variation in a parameter related to the scalar dimensions of domain of definition, indicate its capacity to represent certain key morphogenetic features of multicellular systems formed by motile cells.

  2. Shape of the growing front of biofilms

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Stone, Howard A.; Golestanian, Ramin

    2017-12-01

    The spatial organization of bacteria in dense biofilms is key to their collective behaviour, and understanding it will be important for medical and technological applications. Here we study the morphology of a compact biofilm that undergoes unidirectional growth, and determine the condition for the stability of the growing interface as a function of the nutrient concentration and mechanical tension. Our study suggests that transient behaviour may play an important role in shaping the structure of a biofilm.

  3. A tale of two seas: contrasting patterns of population structure in the small-spotted catshark across Europe

    PubMed Central

    Gubili, Chrysoula; Sims, David W.; Veríssimo, Ana; Domenici, Paolo; Ellis, Jim; Grigoriou, Panagiotis; Johnson, Andrew F.; McHugh, Matthew; Neat, Francis; Satta, Andrea; Scarcella, Giuseppe; Serra-Pereira, Bárbara; Soldo, Alen; Genner, Martin J.; Griffiths, Andrew M.

    2014-01-01

    Elasmobranchs represent important components of marine ecosystems, but they can be vulnerable to overexploitation. This has driven investigations into the population genetic structure of large-bodied pelagic sharks, but relatively little is known of population structure in smaller demersal taxa, which are perhaps more representative of the biodiversity of the group. This study explores spatial population genetic structure of the small-spotted catshark (Scyliorhinus canicula), across European seas. The results show significant genetic differences among most of the Mediterranean sample collections, but no significant structure among Atlantic shelf areas. The data suggest the Mediterranean populations are likely to have persisted in a stable and structured environment during Pleistocene sea-level changes. Conversely, the Northeast Atlantic populations would have experienced major changes in habitat availability during glacial cycles, driving patterns of population reduction and expansion. The data also provide evidence of male-biased dispersal and female philopatry over large spatial scales, implying complex sex-determined differences in the behaviour of elasmobranchs. On the basis of this evidence, we suggest that patterns of connectivity are determined by trends of past habitat stability that provides opportunity for local adaptation in species exhibiting philopatric behaviour, implying that resilience of populations to fisheries and other stressors may differ across the range of species. PMID:26064555

  4. In situ probing of doping- and stress-mediated phase transitions in a single-crystalline VO2 nanobeam by spatially resolved Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Chang, Sung-Jin; Park, Jong Bae; Lee, Gaehang; Kim, Hae Jin; Lee, Jin-Bae; Bae, Tae-Sung; Han, Young-Kyu; Park, Tae Jung; Huh, Yun Suk; Hong, Woong-Ki

    2014-06-01

    We demonstrate an experimental in situ observation of the temperature-dependent evolution of doping- and stress-mediated structural phase transitions in an individual single-crystalline VO2 nanobeam on a Au-coated substrate under exposure to hydrogen gas using spatially resolved Raman spectroscopy. The nucleation temperature of the rutile R structural phase in the VO2 nanobeam upon heating under hydrogen gas was lower than that under air. The spatial structural phase evolution behavior along the length of the VO2 nanobeam under hydrogen gas upon heating was much more inhomogeneous than that along the length of the same nanobeam under air. The triclinic T phase of the VO2 nanobeam upon heating under hydrogen gas transformed to the R phase and this R phase was stabilized even at room temperature in air after sample cooling. In particular, after the VO2 nanobeam with the R phase was annealed at approximately 250 °C in air, it exhibited the monoclinic M1 phase (not the T phase) at room temperature during heating and cooling cycles. These results were attributed to the interplay between hydrogen doping and stress associated with nanobeam-substrate interactions. Our study has important implications for engineering metal-insulator transition properties and developing functional devices based on VO2 nanostructures through doping and stress.We demonstrate an experimental in situ observation of the temperature-dependent evolution of doping- and stress-mediated structural phase transitions in an individual single-crystalline VO2 nanobeam on a Au-coated substrate under exposure to hydrogen gas using spatially resolved Raman spectroscopy. The nucleation temperature of the rutile R structural phase in the VO2 nanobeam upon heating under hydrogen gas was lower than that under air. The spatial structural phase evolution behavior along the length of the VO2 nanobeam under hydrogen gas upon heating was much more inhomogeneous than that along the length of the same nanobeam under air. The triclinic T phase of the VO2 nanobeam upon heating under hydrogen gas transformed to the R phase and this R phase was stabilized even at room temperature in air after sample cooling. In particular, after the VO2 nanobeam with the R phase was annealed at approximately 250 °C in air, it exhibited the monoclinic M1 phase (not the T phase) at room temperature during heating and cooling cycles. These results were attributed to the interplay between hydrogen doping and stress associated with nanobeam-substrate interactions. Our study has important implications for engineering metal-insulator transition properties and developing functional devices based on VO2 nanostructures through doping and stress. Electronic supplementary information (ESI) available: Illustration, photograph, Raman data, and EDX spectra. See DOI: 10.1039/c4nr01118j

  5. Stabilized high-accuracy correction of ocular aberrations with liquid crystal on silicon spatial light modulator in adaptive optics retinal imaging system.

    PubMed

    Huang, Hongxin; Inoue, Takashi; Tanaka, Hiroshi

    2011-08-01

    We studied the long-term optical performance of an adaptive optics scanning laser ophthalmoscope that uses a liquid crystal on silicon spatial light modulator to correct ocular aberrations. The system achieved good compensation of aberrations while acquiring images of fine retinal structures, excepting during sudden eye movements. The residual wavefront aberrations collected over several minutes in several situations were statistically analyzed. The mean values of the root-mean-square residual wavefront errors were 23-30 nm, and for around 91-94% of the effective time the errors were below the Marechal criterion for diffraction limited imaging. The ability to axially shift the imaging plane to different retinal depths was also demonstrated.

  6. Non Lyapunov stability of a constant spatially developing 2-D gas flow

    NASA Astrophysics Data System (ADS)

    Balint, Agneta M.; Balint, Stefan; Tanasie, Loredana

    2017-01-01

    Different types of stabilities (global, local) and instabilities (global absolute, local convective) of the constant spatially developing 2-D gas flow are analyzed in a particular phase space of continuously differentiable functions, endowed with the usual algebraic operations and the topology generated by the uniform convergence on the plane. For this purpose the Euler equations linearized at the constant flow are used. The Lyapunov stability analysis was presented in [1] and this paper is a continuation of [1].

  7. Existence and Stability of Spatial Plane Waves for the Incompressible Navier-Stokes in R^3

    NASA Astrophysics Data System (ADS)

    Correia, Simão; Figueira, Mário

    2018-03-01

    We consider the three-dimensional incompressible Navier-Stokes equation on the whole space. We observe that this system admits a L^∞ family of global spatial plane wave solutions, which are connected with the two-dimensional equation. We then proceed to prove local well-posedness over a space which includes L^3(R^3) and these solutions. Finally, we prove L^3-stability of spatial plane waves, with no condition on their size.

  8. Analysis of the ceramic layer microstructure influence on plasma spray thermal barrier coating performance

    NASA Astrophysics Data System (ADS)

    Bogdanovich, V. I.; Giorbelidze, M. G.

    2017-12-01

    This paper outlines the results of analysis and describes the structure of the thermal protection coatings formed by atomic ion stream deposition in vacuum, and plasma thermal spraying method. Crystallite structure features are considered along with the crystallite dimensions, spatial orientation, and position of the boundaries between separate crystallites. Discontinuity, volume, and morphology of the pores has been evaluated. Experimental studies have been accomplished using various fractions of the powder-like material ZrO2 - 8%Y2O3. The influence of the coating microstructure on the coating performance has been analyzed, such as adhesive strength, thermal stability, and thermal conductivity.

  9. Organic Matter Stabilization in Soil Microaggregates: Implications from Spatial Heterogeneity of Organic Carbon Contents and Carbon Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmann,J.; Kinyangi, J.; Solomon, D.

    2007-01-01

    This study investigates the spatial distribution of organic carbon (C) in free stable microaggregates (20-250 {mu}m; not encapsulated within macroaggregates) from one Inceptisol and two Oxisols in relation to current theories of the mechanisms of their formation. Two-dimensional micro- and nano-scale observations using synchrotron-based Fourier-transform infrared (FTIR) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy yielded maps of the distribution of C amounts and chemical forms. Carbon deposits were unevenly distributed within microaggregates and did not show any discernable gradients between interior and exterior of aggregates. Rather, C deposits appeared to be patchy within the microaggregates. In contrast to themore » random location of C, there were micron-scale patterns in the spatial distribution of aliphatic C-H (2922 cm-1), aromatic C=C and N-H (1589 cm-1) and polysaccharide C-O (1035 cm-1). Aliphatic C forms and the ratio of aliphatic C/aromatic C were positively correlated (r 2 of 0.66-0.75 and 0.27-0.59, respectively) to the amount of O-H on kaolinite surfaces (3695 cm-1), pointing at a strong role for organo-mineral interactions in C stabilization within microaggregates and at a possible role for molecules containing aliphatic C-H groups in such interactions. This empirical relationship was supported by nanometer-scale observations using NEXAFS which showed that the organic matter in coatings on mineral surfaces had more aliphatic and carboxylic C with spectral characteristics resembling microbial metabolites than the organic matter of the entire microaggregate. Our observations thus support models of C stabilization in which the initially dominant process is adsorption of organics on mineral surfaces rather than occlusion of organic debris by adhering clay particles.« less

  10. Electron-hole liquid in semiconductors and low-dimensional structures

    NASA Astrophysics Data System (ADS)

    Sibeldin, N. N.

    2017-11-01

    The condensation of excitons into an electron-hole liquid (EHL) and the main EHL properties in bulk semiconductors and low-dimensional structures are considered. The EHL properties in bulk materials are discussed primarily in qualitative terms based on the experimental results obtained for germanium and silicon. Some of the experiments in which the main EHL thermodynamic parameters (density and binding energy) have been obtained are described and the basic factors that determine these parameters are considered. Topics covered include the effect of external perturbations (uniaxial strain and magnetic field) on EHL stability; phase diagrams for a nonequilibrium exciton-gas-EHL system; information on the size and concentration of electron-hole drops (EHDs) under various experimental conditions; the kinetics of exciton condensation and of recombination in the exciton-gas-EHD system; dynamic EHD properties and the motion of EHDs under the action of external forces; the properties of giant EHDs that form in potential wells produced by applying an inhomogeneous strain to the crystal; and effects associated with the drag of EHDs by nonequilibrium phonons (phonon wind), including the dynamics and formation of an anisotropic spatial structure of the EHD cloud. In discussing EHLs in low-dimensional structures, a number of studies are reviewed on the observation and experimental investigation of phenomena such as spatially indirect (dipolar) electron-hole and exciton (dielectric) liquids in GaAs/AlGaAs structures with double quantum wells (QWs), EHDs containing only a few electron-hole pairs (dropletons), EHLs in type-I silicon QWs, and spatially direct and dipolar EHLs in type-II silicon-germanium heterostructures.

  11. Polarization of the interference field during reflection of electromagnetic waves from an intermedia boundary

    NASA Astrophysics Data System (ADS)

    Bulakhov, M. G.; Buyanov, Yu. I.; Yakubov, V. P.

    1996-10-01

    It has been shown that a full vector measurement of the total field allows one to uniquely distinguish the incident and reflected waves at each observation point without the use of a spatial difference based on an analysis of the polarization structure of the interference pattern which arises during reflection of electromagnetic waves from an intermedia boundary. We have investigated the stability of these procedures with respect to measurement noise by means of numerical modeling.

  12. Genomic control of patterning

    PubMed Central

    Peter, Isabelle S.; Davidson, Eric H.

    2014-01-01

    The development of multicellular organisms involves the partitioning of the organism into territories of cells of specific structure and function. The information for spatial patterning processes is directly encoded in the genome. The genome determines its own usage depending on stage and position, by means of interactions that constitute gene regulatory networks (GRNs). The GRN driving endomesoderm development in sea urchin embryos illustrates different regulatory strategies by which developmental programs are initiated, orchestrated, stabilized or excluded to define the pattern of specified territories in the developing embryo. PMID:19378258

  13. Probing the Complexities of Structural Changes in Layered Oxide Cathode Materials for Li-Ion Batteries during Fast Charge–Discharge Cycling and Heating

    DOE PAGES

    Hu, Enyuan; Wang, Xuelong; Yu, Xiqian; ...

    2018-01-19

    The rechargeable lithium-ion battery (LIB) is the most promising energy storage system to power electric vehicles with high energy density and long cycling life. However, in order to meet customers’ demands for fast charging, the power performances of current LIBs need to be improved. From the cathode aspect, layer-structured cathode materials are widely used in today’s market and will continue to play important roles in the near future. The high rate capability of layered cathode materials during charging and discharging is critical to the power performance of the whole cell and the thermal stability is closely related to the safetymore » issues. Therefore, the in-depth understanding of structural changes of layered cathode materials during high rate charging/discharging and the thermal stability during heating are essential in developing new materials and improving current materials. Since structural changes take place from the atomic level to the whole electrode level, combination of characterization techniques covering multilength scales is quite important. Finally, in many cases, this means using comprehensive tools involving diffraction, spectroscopy, and imaging to differentiate the surface from the bulk and to obtain structural/chemical information with different levels of spatial resolution.« less

  14. Dynamical modeling and free vibration analysis of spinning pipes conveying fluid with axial deployment

    NASA Astrophysics Data System (ADS)

    Liang, Feng; Yang, Xiao-Dong; Zhang, Wei; Qian, Ying-Jing

    2018-03-01

    In this paper, a dynamical model of simply-supported spinning pipes conveying fluid with axial deployment is proposed and the transverse free vibration and stability for such a doubly gyroscopic system involving time-dependent parameters are investigated. The partial differential equations of motion are derived by the extended Hamilton principle and then truncated by the Galerkin technique. The time-variant frequencies, mode shapes and responses to initial conditions are comprehensively investigated to reveal the dynamical essence of the system. It is indicated that the qualitative stability evolution of the system mainly depends on the effect of fluid-structure interaction (FSI), while the spinning motion will enhance the pipe rigidity and eliminate the buckling instability. The dynamical evolution of a retracting pipe is almost inverse to that of the deploying one. The pipe possesses different mode configurations of spatial curves as the pipe length increases and some modal and response characteristics of the present system are found rather distinct from those of deploying cantilevered structures.

  15. New Disulfide-Stabilized Fold Provides Sea Anemone Peptide to Exhibit Both Antimicrobial and TRPA1 Potentiating Properties.

    PubMed

    Logashina, Yulia A; Solstad, Runar Gjerp; Mineev, Konstantin S; Korolkova, Yuliya V; Mosharova, Irina V; Dyachenko, Igor A; Palikov, Victor A; Palikova, Yulia A; Murashev, Arkadii N; Arseniev, Alexander S; Kozlov, Sergey A; Stensvåg, Klara; Haug, Tor; Andreev, Yaroslav A

    2017-04-29

    A novel bioactive peptide named τ-AnmTx Ueq 12-1 (short name Ueq 12-1) was isolated and characterized from the sea anemone Urticina eques. Ueq 12-1 is unique among the variety of known sea anemone peptides in terms of its primary and spatial structure. It consists of 45 amino acids including 10 cysteine residues with an unusual distribution and represents a new group of sea anemone peptides. The 3D structure of Ueq 12-1, determined by NMR spectroscopy, represents a new disulfide-stabilized fold partly similar to the defensin-like fold. Ueq 12-1 showed the dual activity of both a moderate antibacterial activity against Gram-positive bacteria and a potentiating activity on the transient receptor potential ankyrin 1 (TRPA1). Ueq 12-1 is a unique peptide potentiator of the TRPA1 receptor that produces analgesic and anti-inflammatory effects in vivo . The antinociceptive properties allow us to consider Ueq 12-1 as a potential analgesic drug lead with antibacterial properties.

  16. An unsupervised two-stage clustering approach for forest structure classification based on X-band InSAR data - A case study in complex temperate forest stands

    NASA Astrophysics Data System (ADS)

    Abdullahi, Sahra; Schardt, Mathias; Pretzsch, Hans

    2017-05-01

    Forest structure at stand level plays a key role for sustainable forest management, since the biodiversity, productivity, growth and stability of the forest can be positively influenced by managing its structural diversity. In contrast to field-based measurements, remote sensing techniques offer a cost-efficient opportunity to collect area-wide information about forest stand structure with high spatial and temporal resolution. Especially Interferometric Synthetic Aperture Radar (InSAR), which facilitates worldwide acquisition of 3d information independent from weather conditions and illumination, is convenient to capture forest stand structure. This study purposes an unsupervised two-stage clustering approach for forest structure classification based on height information derived from interferometric X-band SAR data which was performed in complex temperate forest stands of Traunstein forest (South Germany). In particular, a four dimensional input data set composed of first-order height statistics was non-linearly projected on a two-dimensional Self-Organizing Map, spatially ordered according to similarity (based on the Euclidean distance) in the first stage and classified using the k-means algorithm in the second stage. The study demonstrated that X-band InSAR data exhibits considerable capabilities for forest structure classification. Moreover, the unsupervised classification approach achieved meaningful and reasonable results by means of comparison to aerial imagery and LiDAR data.

  17. Spatio-temporal evolution of perturbations in ensembles initialized by bred, Lyapunov and singular vectors

    NASA Astrophysics Data System (ADS)

    Pazó, Diego; Rodríguez, Miguel A.; López, Juan M.

    2010-05-01

    We study the evolution of finite perturbations in the Lorenz ‘96 model, a meteorological toy model of the atmosphere. The initial perturbations are chosen to be aligned along different dynamic vectors: bred, Lyapunov, and singular vectors. Using a particular vector determines not only the amplification rate of the perturbation but also the spatial structure of the perturbation and its stability under the evolution of the flow. The evolution of perturbations is systematically studied by means of the so-called mean-variance of logarithms diagram that provides in a very compact way the basic information to analyse the spatial structure. We discuss the corresponding advantages of using those different vectors for preparing initial perturbations to be used in ensemble prediction systems, focusing on key properties: dynamic adaptation to the flow, robustness, equivalence between members of the ensemble, etc. Among all the vectors considered here, the so-called characteristic Lyapunov vectors are possibly optimal, in the sense that they are both perfectly adapted to the flow and extremely robust.

  18. Spatio-temporal evolution of perturbations in ensembles initialized by bred, Lyapunov and singular vectors

    NASA Astrophysics Data System (ADS)

    Pazó, Diego; Rodríguez, Miguel A.; López, Juan M.

    2010-01-01

    We study the evolution of finite perturbations in the Lorenz `96 model, a meteorological toy model of the atmosphere. The initial perturbations are chosen to be aligned along different dynamic vectors: bred, Lyapunov, and singular vectors. Using a particular vector determines not only the amplification rate of the perturbation but also the spatial structure of the perturbation and its stability under the evolution of the flow. The evolution of perturbations is systematically studied by means of the so-called mean-variance of logarithms diagram that provides in a very compact way the basic information to analyse the spatial structure. We discuss the corresponding advantages of using those different vectors for preparing initial perturbations to be used in ensemble prediction systems, focusing on key properties: dynamic adaptation to the flow, robustness, equivalence between members of the ensemble, etc. Among all the vectors considered here, the so-called characteristic Lyapunov vectors are possibly optimal, in the sense that they are both perfectly adapted to the flow and extremely robust.

  19. Micro-precision control/structure interaction technology for large optical space systems

    NASA Technical Reports Server (NTRS)

    Sirlin, Samuel W.; Laskin, Robert A.

    1993-01-01

    The CSI program at JPL is chartered to develop the structures and control technology needed for sub-micron level stabilization of future optical space systems. The extreme dimensional stability required for such systems derives from the need to maintain the alignment and figure of critical optical elements to a small fraction (typically 1/20th to 1/50th) of the wavelength of detected radiation. The wavelength is about 0.5 micron for visible light and 0.1 micron for ultra-violet light. This lambda/50 requirement is common to a broad class of optical systems including filled aperture telescopes (with monolithic or segmented primary mirrors), sparse aperture telescopes, and optical interferometers. The challenge for CSI arises when such systems become large, with spatially distributed optical elements mounted on a lightweight, flexible structure. In order to better understand the requirements for micro-precision CSI technology, a representative future optical system was identified and developed as an analytical testbed for CSI concepts and approaches. An optical interferometer was selected as a stressing example of the relevant mission class. The system that emerged was termed the Focus Mission Interferometer (FMI). This paper will describe the multi-layer control architecture used to address the FMI's nanometer level stabilization requirements. In addition the paper will discuss on-going and planned experimental work aimed at demonstrating that multi-layer CSI can work in practice in the relevant performance regime.

  20. Theoretical studies on the possible sensitizers of DSSC: Nanocomposites of graphene quantum dot hybrid phthalocyanine/tetrabenzoporphyrin/tetrabenzotriazaporphyrins/cis-tetrabenzodiazaporphyrins/tetrabenzomonoazaporphyrins and their Cu-metallated macrocycles

    NASA Astrophysics Data System (ADS)

    Gao, Feng; Yang, Chuan-Lu; Wang, Mei-Shan; Ma, Xiao-Guang; Liu, Wen-Wang

    2018-04-01

    The feasibility of nanocomposites of cir-coronene graphene quantum dot (GQD) with phthalocyanine, tetrabenzoporphyrin, tetrabenzotriazaporphyrins, cis-tetrabenzodiazaporphyrins, tetrabenzomonoazaporphyrins and their Cu-metallated macrocycles as a sensitizer of dye-sensitized solar cells (DSSC) are investigated. Based on the first principles density functional theory (DFT), the geometrical structures of the separate GQD and 10 macrocycles, and their hybridized nanocomposites are fully optimized. The energy stabilities of the obtained structures are confirmed by harmonic frequency analysis. The optical absorptions of the optimized structures are calculated with time-dependent DFT. The feasibility of the nanocomposites as the sensitizer of DSSC is examined by the charge spatial separation, the electron transfer, the molecular orbital energy levels of the nanocomposites and the electrolyte, and the conduction band minimum of TiO2 electrode. The results demonstrate that all the nanocomposites have enhanced absorptions in the visible light range, and their molecular orbital energies satisfy the requirement of sensitizers. However, only two of the ten considered nanocomposites demonstrate significantly charge spatial separation. The GQD-Cu-TBP is identified as the most favorable candidate sensitizer of DSSC by the most enhanced in optical absorption, obvious charge spatial separation, suitable LUMO energy levels and driving force for electron transfer, and low recombination rate of electron and hole.

  1. Multidecadal stability in tropical rain forest structure and dynamics across an old-growth landscape

    PubMed Central

    Clark, Deborah A.; Oberbauer, Steven F.; Kellner, James R.

    2017-01-01

    Have tropical rain forest landscapes changed directionally through recent decades? To answer this question requires tracking forest structure and dynamics through time and across within-forest environmental heterogeneity. While the impacts of major environmental gradients in soil nutrients, climate and topography on lowland tropical rain forest (TRF) structure and function have been extensively analyzed, the effects of the shorter environmental gradients typical of mesoscale TRF landscapes remain poorly understood. To evaluate multi-decadal performance of an old-growth TRF at the La Selva Biological Station, Costa Rica, we established 18 0.5-ha annually-censused forest inventory plots in a stratified-random design across major landscape edaphic gradients. Over the 17-year study period, there were moderate differences in stand dynamics and structure across these gradients but no detectable difference in woody productivity. We found large effects on forest structure and dynamics from the mega-Niño event at the outset of the study, with subdecadal recovery and subsequent stabilization. To extend the timeline to >40 years, we combined our findings with those from earlier studies at this site. While there were annual to multiannual variations in the structure and dynamics, particularly in relation to local disturbances and the mega-Niño event, at the longer temporal scale and broader spatial scale this landscape was remarkably stable. This stability contrasts notably with a current hypothesis of increasing biomass and dynamics of TRF, which we term the Bigger and Faster Hypothesis (B&FHo). We consider possible reasons for the contradiction and conclude that it is currently not possible to independently assess the vast majority of previously published B&FHo evidence due to restricted data access. PMID:28981502

  2. Spatial solitons and stability in the one-dimensional and the two-dimensional generalized nonlinear Schrödinger equation with fourth-order diffraction and parity-time-symmetric potentials

    NASA Astrophysics Data System (ADS)

    Tiofack, C. G. L.; Ndzana, F., II; Mohamadou, A.; Kofane, T. C.

    2018-03-01

    We investigate the existence and stability of solitons in parity-time (PT )-symmetric optical media characterized by a generic complex hyperbolic refractive index distribution and fourth-order diffraction (FOD). For the linear case, we demonstrate numerically that the FOD parameter can alter the PT -breaking points. For nonlinear cases, the exact analytical expressions of the localized modes are obtained both in one- and two-dimensional nonlinear Schrödinger equations with self-focusing and self-defocusing Kerr nonlinearity. The effect of FOD on the stability structure of these localized modes is discussed with the help of linear stability analysis followed by the direct numerical simulation of the governing equation. Examples of stable and unstable solutions are given. The transverse power flow density associated with these localized modes is also discussed. It is found that the relative strength of the FOD coefficient can utterly change the direction of the power flow, which may be used to control the energy exchange among gain or loss regions.

  3. Coexistence of fraternity and egoism for spatial social dilemmas.

    PubMed

    Szabó, György; Szolnoki, Attila; Czakó, Lilla

    2013-01-21

    We have studied an evolutionary game with spatially arranged players who can choose one of the two strategies (named cooperation and defection for social dilemmas) when playing with their neighbors. In addition to the application of the usual strategies in the present model the players are also characterized by one of the two extreme personal features representing the egoist or fraternal behavior. During the evolution each player can modify both her own strategy and/or personal feature via a myopic update process in order to improve her utility. The results of numerical simulations and stability analysis are summarized in phase diagrams representing a wide scale of spatially ordered distribution of strategies and personal features when varying the payoff parameters. In most of the cases only two of the four possible options prevail and may form sublattice ordered spatial structure. The evolutionary advantage of the fraternal attitude is demonstrated within a large range of payoff parameters including the region of prisoner's dilemma where egoist defectors and fraternal cooperators form a role-separating chessboard like pattern. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Non Lyapunov stability of the constant spatially developing 1-D gas flow in presence of solutions having strictly positive exponential growth rate

    NASA Astrophysics Data System (ADS)

    Balint, Stefan; Balint, Agneta M.

    2017-01-01

    Different types of stabilities (global, local) and instabilities (global absolute, local convective) of the constant spatially developing 1-D gas flow are analyzed in the phase space of continuously differentiable functions, endowed with the usual algebraic operations and the topology generated by the uniform convergence on the real axis. For this purpose the Euler equations linearized at the constant flow are used. The Lyapunov stability analysis was presented in [1] and this paper is a continuation of [1].

  5. Stabilization of flow past a rounded cylinder

    NASA Astrophysics Data System (ADS)

    Samtaney, Ravi; Zhang, Wei

    2016-11-01

    We perform global linear stability analysis on low-Re flow past a rounded cylinder. The cylinder corners are rounded with a radius R, normalized as R+ = R / D where D is the cylinder diameter, and its effect on the flow stability characteristics is investigated. We compute the critical Reynolds number (Recr) for the onset of first instability, and quantify the perturbation growth rate for the super-critical flows. It is found that the flow can be stabilized by partially rounding the cylinder. Compared with the square and circular cylinders, the partially rounded cylinder has a higher Recr , attaining a maximum at around R+ = 0 . 30 , and the perturbation growth rate of the super-critical flows is reduced for Re <= 100 . We perform sensitivity analysis to explore the source of the stabilization. The growth rate sensitivity to base flow modification has two different spatial structures: the growth rate is sensitive to the wake backflow in a large region for square-like cylinders (R+ -> 0 . 00), while only the near-wake backflow is crucial for circular-like cylinders (R+ -> 0 . 50). The stability analysis results are also verified with those of the direct simulations and very good agreement is achieved. Supported by the KAUST Office of Competitive Research Funds under Award No. URF/1/1394-01. The supercomputer Shaheen at KAUST was utilized for the simulations.

  6. Multiscale responses of soil stability and invasive plants to removal of non-native grazers from an arid conservation reserve

    USGS Publications Warehouse

    Beever, E.A.; Huso, M.; Pyke, D.A.

    2006-01-01

    Disturbances and ecosystem recovery from disturbance both involve numerous processes that operate on multiple spatial and temporal scales. Few studies have investigated how gradients of disturbance intensity and ecosystem responses are distributed across multiple spatial resolutions and also how this relationship changes through time during recovery. We investigated how cover of non-native species and soil-aggregate stability (a measure of vulnerability to erosion by water) in surface and subsurface soils varied spatially during grazing by burros and cattle and whether patterns in these variables changed after grazer removal from Mojave National Preserve, California, USA. We compared distance from water and number of ungulate defecations - metrics of longer-term and recent grazing intensity, respectively, - as predictors of our response variables. We used information-theoretic analyses to compare hierarchical linear models that accounted for important covariates and allowed for interannual variation in the disturbance-response relationship at local and landscape scales. Soil stability was greater under perennial vegetation than in bare interspaces, and surface soil stability decreased with increasing numbers of ungulate defecations. Stability of surface samples was more affected by time since removal of grazers than was stability of subsurface samples, and subsurface soil stability in bare spaces was not related to grazing intensity, time since removal, or any of our other predictors. In the high rainfall year (2003) after cattle had been removed for 1-2 years, cover of all non-native plants averaged nine times higher than in the low-rainfall year (2002). Given the heterogeneity in distribution of large-herbivore impacts that we observed at several resolutions, hierarchical analyses provided a more complete understanding of the spatial and temporal complexities of disturbance and recovery processes in arid ecosystems. ?? 2006 Blackwell Publishing Ltd.

  7. Multi-scale responses of soil stability and invasive plants to removal of non-native grazers from an arid conservation reserve

    USGS Publications Warehouse

    Beever, Erik A.; Huso, Manuela M. P.; Pyke, David A.

    2006-01-01

    Disturbances and ecosystem recovery from disturbance both involve numerous processes that operate on multiple spatial and temporal scales. Few studies have investigated how gradients of disturbance intensity and ecosystem responses are distributed across multiple spatial resolutions and also how this relationship changes through time during recovery. We investigated how cover of non-native species and soil-aggregate stability (a measure of vulnerability to erosion by water) in surface and subsurface soils varied spatially during grazing by burros and cattle and whether patterns in these variables changed after grazer removal from Mojave National Preserve, California, USA. We compared distance from water and number of ungulate defecations — metrics of longer-term and recent grazing intensity, respectively, — as predictors of our response variables. We used information-theoretic analyses to compare hierarchical linear models that accounted for important covariates and allowed for interannual variation in the disturbance–response relationship at local and landscape scales. Soil stability was greater under perennial vegetation than in bare interspaces, and surface soil stability decreased with increasing numbers of ungulate defecations. Stability of surface samples was more affected by time since removal of grazers than was stability of subsurface samples, and subsurface soil stability in bare spaces was not related to grazing intensity, time since removal, or any of our other predictors. In the high rainfall year (2003) after cattle had been removed for 1–2 years, cover of all non-native plants averaged nine times higher than in the low-rainfall year (2002). Given the heterogeneity in distribution of large-herbivore impacts that we observed at several resolutions, hierarchical analyses provided a more complete understanding of the spatial and temporal complexities of disturbance and recovery processes in arid ecosystems.

  8. Special methods for aerodynamic-moment calculations from parachute FSI modeling

    NASA Astrophysics Data System (ADS)

    Takizawa, Kenji; Tezduyar, Tayfun E.; Boswell, Cody; Tsutsui, Yuki; Montel, Kenneth

    2015-06-01

    The space-time fluid-structure interaction (STFSI) methods for 3D parachute modeling are now at a level where they can bring reliable, practical analysis to some of the most complex parachute systems, such as spacecraft parachutes. The methods include the Deforming-Spatial-Domain/Stabilized ST method as the core computational technology, and a good number of special FSI methods targeting parachutes. Evaluating the stability characteristics of a parachute based on how the aerodynamic moment varies as a function of the angle of attack is one of the practical analyses that reliable parachute FSI modeling can deliver. We describe the special FSI methods we developed for this specific purpose and present the aerodynamic-moment data obtained from FSI modeling of NASA Orion spacecraft parachutes and Japan Aerospace Exploration Agency (JAXA) subscale parachutes.

  9. Unstable spiral waves and local Euclidean symmetry in a model of cardiac tissue.

    PubMed

    Marcotte, Christopher D; Grigoriev, Roman O

    2015-06-01

    This paper investigates the properties of unstable single-spiral wave solutions arising in the Karma model of two-dimensional cardiac tissue. In particular, we discuss how such solutions can be computed numerically on domains of arbitrary shape and study how their stability, rotational frequency, and spatial drift depend on the size of the domain as well as the position of the spiral core with respect to the boundaries. We also discuss how the breaking of local Euclidean symmetry due to finite size effects as well as the spatial discretization of the model is reflected in the structure and dynamics of spiral waves. This analysis allows identification of a self-sustaining process responsible for maintaining the state of spiral chaos featuring multiple interacting spirals.

  10. Dissipative structures induced by spin-transfer torques in nanopillars

    NASA Astrophysics Data System (ADS)

    León, Alejandro O.; Clerc, Marcel G.; Coulibaly, Saliya

    2014-02-01

    Macroscopic magnetic systems subjected to external forcing exhibit complex spatiotemporal behaviors as result of dissipative self-organization. Pattern formation from a uniform magnetization state, induced by the combination of a spin-polarized current and an external magnetic field, is studied for spin-transfer nano-oscillator devices. The system is described in the continuous limit by the Landau-Lifshitz-Gilbert equation. The bifurcation diagram of the quintessence parallel state, as a function of the external field and current, is elucidated. We have shown analytically that this state exhibits a spatial supercritical quintic bifurcation, which generates in two spatial dimensions a family of stationary stripes, squares, and superlattice states. Analytically, we have characterized their respective stabilities and bifurcations, which are controlled by a single dimensionless parameter. This scenario is confirmed numerically.

  11. Stability and complexity in model meta-ecosystems

    PubMed Central

    Gravel, Dominique; Massol, François; Leibold, Mathew A.

    2016-01-01

    The diversity of life and its organization in networks of interacting species has been a long-standing theoretical puzzle for ecologists. Ever since May's provocative paper challenging whether ‘large complex systems [are] stable' various hypotheses have been proposed to explain when stability should be the rule, not the exception. Spatial dynamics may be stabilizing and thus explain high community diversity, yet existing theory on spatial stabilization is limited, preventing comparisons of the role of dispersal relative to species interactions. Here we incorporate dispersal of organisms and material into stability–complexity theory. We find that stability criteria from classic theory are relaxed in direct proportion to the number of ecologically distinct patches in the meta-ecosystem. Further, we find the stabilizing effect of dispersal is maximal at intermediate intensity. Our results highlight how biodiversity can be vulnerable to factors, such as landscape fragmentation and habitat loss, that isolate local communities. PMID:27555100

  12. Effect of surface texture and structure on the development of stable fluvial armors

    NASA Astrophysics Data System (ADS)

    Bertin, Stephane; Friedrich, Heide

    2018-04-01

    Stable fluvial armors are found in river systems under conditions of partial sediment transport and limited sediment supply, a common occurrence in nature. Stable armoring is also readily recreated in experimental flumes. Initially, this bed stabilizing phenomenon was examined for different flow discharges and solely related to surface coarsening and bedload transport reduction. The models developed suggest a specific armor composition (i.e., texture) dependent on the parent bed material and formative discharge. Following developments in topographic remote sensing, recent research suggests that armor structure is an important control on bed stability and roughness. In this paper, replicated flume runs during which digital elevation models (DEMs) were collected from both exposed and flooded gravel beds are used to interpret armoring manifestations and to assess their replicability. A range of methodologies was used for the analysis, providing information on (i) surface grain size and orientation, (ii) bed-elevation distributions, (iii) the spatial coherence of the elevations at the grain-scale, (iv) surface slope and aspect, (v) grain imbrication and (vi) the spatial variability in DEM properties. The bed-surface topography was found to be more responsive than bed-material size to changes in flow strength. Our experimental results also provide convincing evidence that gravel-beds' response to water-work during parallel degradation is unique (i.e., replicable) given the formative parameters. Based on this finding, relationships between the armors' properties and formative parameters are proposed, and are supported by adding extensive data from previous research.

  13. Development and Sizing of the JWST Integrated Science Instrument Module (ISIM) Metering Structure

    NASA Technical Reports Server (NTRS)

    Johnston, John; Kunt, Cengiz; Bartoszyk, Andrew; Hendricks, Steve; Cofie, Emmanuel

    2006-01-01

    The JWST Integrated Science Instrument Module (ISIM) includes a large metering structure (approx. 2m x 2m x 1.5m) that houses the science instruments and guider. Stringent dimensional stability and repeatability requirements combined with mass limitations led to the selection of a composite bonded frame design comprised of biased laminate tubes. Even with the superb material specific stiffness, achieving the required frequency for the given mass allocations in conjunction with severe spatial limitations imposed by the instrument complement has proven challenging. In response to the challenge, the ISIM structure team considered literally over 100 primary structure topology and kinematic mount configurations, and settled on a concept comprised of over 70 m of tubes, over 50 bonded joint assemblies, and a "split bi-pod" kinematic mount configuration. In this paper, we review the evolution of the ISIM primary structure topology and kinematic mount configuration to the current baseline concept.

  14. Three-dimensional distribution of gas hydrate beneath southern Hydrate Ridge: Constraints from ODP Leg 204

    USGS Publications Warehouse

    Trehu, A.M.; Long, P.E.; Torres, M.E.; Bohrmann, G.; Rack, F.R.; Collett, T.S.; Goldberg, D.S.; Milkov, A.V.; Riedel, M.; Schultheiss, P.; Bangs, N.L.; Barr, S.R.; Borowski, W.S.; Claypool, G.E.; Delwiche, M.E.; Dickens, G.R.; Gracia, E.; Guerin, G.; Holland, M.; Johnson, J.E.; Lee, Y.-J.; Liu, C.-S.; Su, X.; Teichert, B.; Tomaru, H.; Vanneste, M.; Watanabe, M. E.; Weinberger, J.L.

    2004-01-01

    Large uncertainties about the energy resource potential and role in global climate change of gas hydrates result from uncertainty about how much hydrate is contained in marine sediments. During Leg 204 of the Ocean Drilling Program (ODP) to the accretionary complex of the Cascadia subduction zone, we sampled the gas hydrate stability zone (GHSZ) from the seafloor to its base in contrasting geological settings defined by a 3D seismic survey. By integrating results from different methods, including several new techniques developed for Leg 204, we overcome the problem of spatial under-sampling inherent in robust methods traditionally used for estimating the hydrate content of cores and obtain a high-resolution, quantitative estimate of the total amount and spatial variability of gas hydrate in this structural system. We conclude that high gas hydrate content (30-40% of pore space or 20-26% of total volume) is restricted to the upper tens of meters below the seafloor near the summit of the structure, where vigorous fluid venting occurs. Elsewhere, the average gas hydrate content of the sediments in the gas hydrate stability zone is generally <2% of the pore space, although this estimate may increase by a factor of 2 when patchy zones of locally higher gas hydrate content are included in the calculation. These patchy zones are structurally and stratigraphically controlled, contain up to 20% hydrate in the pore space when averaged over zones ???10 m thick, and may occur in up to ???20% of the region imaged by 3D seismic data. This heterogeneous gas hydrate distribution is an important constraint on models of gas hydrate formation in marine sediments and the response of the sediments to tectonic and environmental change. ?? 2004 Published by Elsevier B.V.

  15. Master stability functions reveal diffusion-driven pattern formation in networks

    NASA Astrophysics Data System (ADS)

    Brechtel, Andreas; Gramlich, Philipp; Ritterskamp, Daniel; Drossel, Barbara; Gross, Thilo

    2018-03-01

    We study diffusion-driven pattern formation in networks of networks, a class of multilayer systems, where different layers have the same topology, but different internal dynamics. Agents are assumed to disperse within a layer by undergoing random walks, while they can be created or destroyed by reactions between or within a layer. We show that the stability of homogeneous steady states can be analyzed with a master stability function approach that reveals a deep analogy between pattern formation in networks and pattern formation in continuous space. For illustration, we consider a generalized model of ecological meta-food webs. This fairly complex model describes the dispersal of many different species across a region consisting of a network of individual habitats while subject to realistic, nonlinear predator-prey interactions. In this example, the method reveals the intricate dependence of the dynamics on the spatial structure. The ability of the proposed approach to deal with this fairly complex system highlights it as a promising tool for ecology and other applications.

  16. The balance between keystone clustering and bed roughness in experimental step-pool stabilization

    NASA Astrophysics Data System (ADS)

    Johnson, J. P.

    2016-12-01

    Predicting how mountain channels will respond to environmental perturbations such as floods requires an improved quantitative understanding of morphodynamic feedbacks among bed topography, surface grain size and sediment sorting. In boulder-rich gravel streams, transport and sorting often lead to the development of step pool morphologies, which are expressed both in bed topography and coarse grain clustering. Bed stability is difficult to measure, and is sometimes inferred from the presence of step pools. I use scaled flume experiments to explore feedbacks among surface grain sizes, coarse grain clustering, bed roughness and hydraulic roughness during progressive bed stabilization and over a range of sediment transport rates. While grain clusters are sometimes identified by subjective interpretation, I quantify the degree of coarse surface grain clustering using spatial statistics, including a novel normalization of Ripley's K function. This approach is objective and provides information on the strength of clustering over a range of length scales. Flume experiments start with an initial bed surface with a broad grain size distribution and spatially random positions. Flow causes the bed surface to progressively stabilize in response to erosion, surface coarsening, roughening and grain reorganization. At 95% confidence, many but not all beds stabilized with coarse grains becoming more clustered than complete spatial randomness (CSR). I observe a tradeoff between topographic roughness and clustering. Beds that stabilized with higher degrees of coarse-grain clustering were topographically smoother, and vice-versa. Initial conditions influenced the degree of clustering at stability: Beds that happened to have fewer initial coarse grains had more coarse grain reorganization during stabilization, leading to more clustering. Finally, regressions demonstrate that clustering statistics actually predict hydraulic roughness significantly better than does D84 (the size at which 84% of grains are smaller). In the experimental data, the spatial organization of surface grains is a stronger control on flow characteristics than the size of surface grains.

  17. Grid scale drives the scale and long-term stability of place maps

    PubMed Central

    Mallory, Caitlin S; Hardcastle, Kiah; Bant, Jason S; Giocomo, Lisa M

    2018-01-01

    Medial entorhinal cortex (MEC) grid cells fire at regular spatial intervals and project to the hippocampus, where place cells are active in spatially restricted locations. One feature of the grid population is the increase in grid spatial scale along the dorsal-ventral MEC axis. However, the difficulty in perturbing grid scale without impacting the properties of other functionally-defined MEC cell types has obscured how grid scale influences hippocampal coding and spatial memory. Here, we use a targeted viral approach to knock out HCN1 channels selectively in MEC, causing grid scale to expand while leaving other MEC spatial and velocity signals intact. Grid scale expansion resulted in place scale expansion in fields located far from environmental boundaries, reduced long-term place field stability and impaired spatial learning. These observations, combined with simulations of a grid-to-place cell model and position decoding of place cells, illuminate how grid scale impacts place coding and spatial memory. PMID:29335607

  18. Stability of DNA Origami Nanoarrays in Cell Lysate

    PubMed Central

    Mei, Qian; Wei, Xixi; Su, Fengyu; Liu, Yan; Youngbull, Cody; Johnson, Roger; Lindsay, Stuart; Yan, Hao; Meldrum, Deirdre

    2012-01-01

    Scaffolded DNA origami, a method to create self-assembled nanostructures with spatially addressable features, has recently been used to develop water-soluble molecular chips for label-free RNA detection, platforms for deterministic protein positioning, and single molecule reaction observatories. These applications highlight the possibility of exploiting the unique properties and biocompatibility of DNA nanostructures in live, cellular systems. Herein, we assembled several DNA origami nanostructures of differing shape, size and probes, and investigated their interaction with lysate obtained from various normal and cancerous cell lines. We separated and analyzed the origami–lysate mixtures using agarose gel electrophoresis and recovered the DNA structures for functional assay and subsequent microscopic examination. Our results demonstrate that DNA origami nanostructures are stable in cell lysate and can be easily separated from lysate mixtures, in contrast to natural, single- and double-stranded DNA. Atomic force microscope (AFM) and transmission electron microscope (TEM) images show that the DNA origami structures are fully intact after separation from cell lysates and hybridize to their targets, verifying the superior structural integrity and functionality of self-assembled DNA origami nanostructures relative to conventional oligonucleotides. The stability and functionality of DNA origami structures in cell lysate validate their use for biological applications, for example, as programmable molecular rafts or disease detection platforms. PMID:21366226

  19. Hydrodynamic structures generated by a rotating magnetic field in a cylindrical vessel

    NASA Astrophysics Data System (ADS)

    Zibold, A. F.

    2015-02-01

    The hydrodynamic structures arising in a cylinder under the influence of a rotating magnetic field were considered, and the stability of a primary stationary flow in an infinitely long cylinder was investigated by linear approximation. The curves of neutral stability were obtained for a wide range of flow parameters and the calculations generated a single-vortex (in the radial direction) structure of Taylor’s vortices. The flow stability in the infinitely long cylinder was evaluated based on energy balance. The problem of three-dimensional stationary flow of a viscous incompressible conducting liquid induced by a rotating magnetic field in a cylindrical vessel of limited length was solved using an iteration method. The values of the parameters were found for which the iterative process still converges. Numerical experiment made it possible to investigate the arising spatial flow patterns and to track their evolution with changes in the flow parameters. Results of modelling showed the appearance of a three-dimensional structure of Taylor-type vortices in the middle portion of a sufficiently long vessel. The appearance of a double laminar boundary layer was demonstrated under certain conditions of azimuthal velocity distribution along the vessel height at the location of the end-wave vortex. This article was accepted for publication in Fluid Dynamics Research 2014 Vol 46, No 4; which was a special issue consisting of papers from the 5th International Symposium on Bifurcations in Fluid Dynamics. Due to an unfortunate error on the part of the journal, this article was not published with the other articles from this issue.

  20. Ducks in space: from nonlinear absolute instability to noise-sustained structures in a pattern-forming system

    NASA Astrophysics Data System (ADS)

    Avitabile, D.; Desroches, M.; Knobloch, E.; Krupa, M.

    2017-11-01

    A subcritical pattern-forming system with nonlinear advection in a bounded domain is recast as a slow-fast system in space and studied using a combination of geometric singular perturbation theory and numerical continuation. Two types of solutions describing the possible location of stationary fronts are identified, whose origin is traced to the onset of convective and absolute instability when the system is unbounded. The former are present only for non-zero upstream boundary conditions and provide a quantitative understanding of noise-sustained structures in systems of this type. The latter correspond to the onset of a global mode and are present even with zero upstream boundary conditions. The role of canard trajectories in the nonlinear transition between these states is clarified and the stability properties of the resulting spatial structures are determined. Front location in the convective regime is highly sensitive to the upstream boundary condition, and its dependence on this boundary condition is studied using a combination of numerical continuation and Monte Carlo simulations of the partial differential equation. Statistical properties of the system subjected to random or stochastic boundary conditions at the inlet are interpreted using the deterministic slow-fast spatial dynamical system.

  1. Ducks in space: from nonlinear absolute instability to noise-sustained structures in a pattern-forming system.

    PubMed

    Avitabile, D; Desroches, M; Knobloch, E; Krupa, M

    2017-11-01

    A subcritical pattern-forming system with nonlinear advection in a bounded domain is recast as a slow-fast system in space and studied using a combination of geometric singular perturbation theory and numerical continuation. Two types of solutions describing the possible location of stationary fronts are identified, whose origin is traced to the onset of convective and absolute instability when the system is unbounded. The former are present only for non-zero upstream boundary conditions and provide a quantitative understanding of noise-sustained structures in systems of this type. The latter correspond to the onset of a global mode and are present even with zero upstream boundary conditions. The role of canard trajectories in the nonlinear transition between these states is clarified and the stability properties of the resulting spatial structures are determined. Front location in the convective regime is highly sensitive to the upstream boundary condition, and its dependence on this boundary condition is studied using a combination of numerical continuation and Monte Carlo simulations of the partial differential equation. Statistical properties of the system subjected to random or stochastic boundary conditions at the inlet are interpreted using the deterministic slow-fast spatial dynamical system.

  2. Peptide models XLV: conformational properties of N-formyl-L-methioninamide and its relevance to methionine in proteins.

    PubMed

    Láng, András; Csizmadia, Imre G; Perczel, András

    2005-02-15

    The conformational space of the most biologically significant backbone folds of a suitable methionine peptide model was explored by density functional computational method. Using a medium [6-31G(d)] and a larger basis set [6-311++G(2d,2p)], the systematic exploration of low-energy backbone structures restricted for the "L-region" in the Ramachandran map of N-formyl-L-methioninamide results in conformers corresponding to the building units of an extended backbone structure (betaL), an inverse gamma-turn (gammaL), or a right-handed helical structure (alphaL). However, no poly-proline II type (epsilonL) fold was found, indicating that this conformer has no intrinsic stability, and highlighting the effect of molecular environment in stabilizing this backbone structure. This is in agreement with the abundance of the epsilonL-type backbone conformation of methionine found in proteins. Stability properties (DeltaE) and distinct backbone-side-chain interactions support the idea that specific intramolecular contacts are operative in the selection of the lowest energy conformers. Apart from the number of different folds, all stable conformers are within a 10 kcal x mol(-1) energy range, indicating the highly flexible behavior of methionine. This conformational feature can be important in supporting catalytic processes, facilitating protein folding and dimerization via metal ion binding. In both of the biological examples discussed (HIV-1 reverse transcriptase and PcoC copper-resistant protein), the conformational properties of Met residues were found to be of key importance. Spatial proximity to other types of residues or the same type of residue seems to be crucial for the structural integrity of a protein, whether Met is buried or exposed.

  3. Supramolecular structure of the casein micelle.

    PubMed

    McMahon, D J; Oommen, B S

    2008-05-01

    The supramolecular structure of colloidal casein micelles in milk was investigated by using a sample preparation protocol based on adsorption of proteins onto a poly-l-lysine and parlodion-coated copper grid, staining of proteins and calcium phosphate by uranyl oxalate, instantaneous freezing, and drying under a high vacuum. High-resolution transmission electron microscopy stereo-images were obtained showing the interior structure of casein micelles. On the basis of our interpretation of these images, an interlocked lattice model was developed in which both casein-calcium phosphate aggregates and casein polymer chains act together to maintain casein micelle integrity. The caseins form linear and branched chains (2 to 5 proteins long) interlocked by the casein-stabilized calcium phosphate nanoclusters. This model suggests that stabilization of calcium phosphate nanoclusters by phosphoserine domains of alpha(s1)-, alpha(s2)-, or beta-casein, or their combination, would orient their hydrophobic domains outward, allowing interaction and binding to other casein molecules. Other interactions between the caseins, such as calcium bridging, could also occur and further stabilize the supramolecule. The combination of having an interlocked lattice structure and multiple interactions results in an open, sponge-like colloidal supramolecule that is resistant to spatial changes and disintegration. Hydrophobic interactions between caseins surrounding a calcium phosphate nanocluster would prevent complete dissociation of casein micelles when the calcium phosphate nanoclusters are solubilized. Likewise, calcium bridging and other electrostatic interactions between caseins would prevent dissociation of the casein micelles into casein-calcium phosphate nanocluster aggregates when milk is cooled or urea is added to milk, and hydrophobic interactions are reduced. The appearance of both polymer chains and small aggregate particles during milk synthesis would also be expected based on this interlocked lattice model of casein micelles, and its supramolecule structure thus exhibits the principles of self-aggregation, interdependence, and diversity observed in nature.

  4. Rainfall-induced landslide vulnerability Assessment in urban area reflecting Urban structure and building characteristics

    NASA Astrophysics Data System (ADS)

    Park, C.; Cho, M.; Lee, D.

    2017-12-01

    Landslide vulnerability assessment methodology of urban area is proposed with urban structure and building charateristics which can consider total damage cost of climate impacts. We used probabilistic analysis method for modeling rainfall-induced shallow landslide susceptibility by slope stability analysis and Monte Carlo simulations. And We combined debris flows with considering spatial movements under topographical condition and built environmental condition. Urban vulnerability of landslide is assessed by two categories: physical demages and urban structure aspect. Physical vulnerability is related to buildings, road, other ubran infra. Urban structure vulnerability is considered a function of the socio-economic factors, trigger factor of secondary damage, and preparedness level of the local government. An index-based model is developed to evaluate the life and indirect damage under landslide as well as the resilience ability against disasters. The analysis was performed in a geographic information system (GIS) environment because GIS can deal efficiently with a large volume of spatial data. The results of the landslide susceptibility assessment were compared with the landslide inventory, and the proposed approach demonstrated good predictive performance. The general trend found in this study indicates that the higher population density areas under a weaker fiscal condition that are located at the downstream of mountainous areas are more vulnerable than the areas in opposite conditions.

  5. In situ evidence of mineral physical protection and carbon stabilization revealed by nanoscale 3-D tomography

    NASA Astrophysics Data System (ADS)

    Weng, Yi-Tse; Wang, Chun-Chieh; Chiang, Cheng-Cheng; Tsai, Heng; Song, Yen-Fang; Huang, Shiuh-Tsuen; Liang, Biqing

    2018-05-01

    An approach for nanoscale 3-D tomography of organic carbon (OC) and associated mineral nanoparticles was developed to illustrate their spatial distribution and boundary interplay, using synchrotron-based transmission X-ray microscopy (TXM). The proposed 3-D tomography technique was first applied to in situ observation of a laboratory-made consortium of black carbon (BC) and nanomineral (TiO2, 15 nm), and its performance was evaluated using dual-scan (absorption contrast and phase contrast) modes. This novel tool was then successfully applied to a natural OC-mineral consortium from mountain soil at a spatial resolution of 60 nm, showing the fine structure and boundary of OC, the distribution of abundant nano-sized minerals, and the 3-D organo-mineral association in situ. The stabilization of 3500-year-old natural OC was mainly attributed to the physical protection of nano-sized iron (Fe)-containing minerals (Fe oxyhydroxides including ferrihydrite, goethite, and lepidocrocite), and the strong organo-mineral complexation. In situ evidence revealed an abundance of mineral nanoparticles, in dense thin layers or nano-aggregates/clusters, instead of crystalline clay-sized minerals on or near OC surfaces. The key working minerals for C stabilization were reactive short-range-order (SRO) mineral nanoparticles and poorly crystalline submicron-sized clay minerals. Spectroscopic analyses demonstrated that the studied OC was not merely in crisscross co-localization with reactive SRO minerals; there could be a significant degree of binding between OC and the minerals. The ubiquity and abundance of mineral nanoparticles on the OC surface, and their heterogeneity in the natural environment may have been severely underestimated by traditional research approaches. Our in situ description of organo-mineral interplay at the nanoscale provides direct evidence to substantiate the importance of mineral physical protection for the long-term stabilization of OC. This high-resolution 3-D tomography approach is a promising tool for generating new insight into the interior 3-D structure of micro-aggregates, the in situ interplay between OC and minerals, and the fate of mineral nanoparticles (including heavy metals) in natural environments.

  6. Stability of spatially developing boundary layers

    NASA Astrophysics Data System (ADS)

    Govindarajan, Rama

    1993-07-01

    A new formulation of the stability of boundary-layer flows in pressure gradients is presented, taking into account the spatial development of the flow. The formulation assumes that disturbance wavelength and eigenfunction vary downstream no more rapidly than the boundary-layer thickness, and includes all terms of O(1) and O(R(exp -1)) in the boundary-layer Reynolds number R. Although containing the Orr-Sommerfeld operator, the present approach does not yield the Orr-Sommerfeld equation in any rational limit. In Blasius flow, the present stability equation is consistent with that of Bertolotti et al. (1992) to terms of O(R(exp -1)). For the Falkner-Skan similarity solutions neutral boundaries are computed without the necessity of having to march in space. Results show that the effects of spatial growth are striking in flows subjected to adverse pressure gradients.

  7. Titin domains progressively unfolded by force are homogenously distributed along the molecule.

    PubMed

    Bianco, Pasquale; Mártonfalvi, Zsolt; Naftz, Katalin; Kőszegi, Dorina; Kellermayer, Miklós

    2015-07-21

    Titin is a giant filamentous protein of the muscle sarcomere in which stretch induces the unfolding of its globular domains. However, the mechanisms of how domains are progressively selected for unfolding and which domains eventually unfold have for long been elusive. Based on force-clamp optical tweezers experiments we report here that, in a paradoxical violation of mechanically driven activation kinetics, neither the global domain unfolding rate, nor the folded-state lifetime distributions of full-length titin are sensitive to force. This paradox is reconciled by a gradient of mechanical stability so that domains are gradually selected for unfolding as the magnitude of the force field increases. Atomic force microscopic screening of extended titin molecules revealed that the unfolded domains are distributed homogenously along the entire length of titin, and this homogeneity is maintained with increasing overstretch. Although the unfolding of domains with progressively increasing mechanical stability makes titin a variable viscosity damper, the spatially randomized variation of domain stability ensures that the induced structural changes are not localized but are distributed along the molecule's length. Titin may thereby provide complex safety mechanims for protecting the sarcomere against structural disintegration under excessive mechanical conditions. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Effects of Dissolved Organic Matter Properties on Formation and Composition of Mineral-Organic Co-Precipitates at the Nanometer Scale

    NASA Astrophysics Data System (ADS)

    Possinger, A. R.; Zachman, M.; Lehmann, J.

    2016-12-01

    An important, yet largely overlooked case of soil organic carbon (SOC) stabilization through mineral-organic associations is the co-precipitation of dissolved organic matter (DOM) into mineral precipitates as they form. The contribution of co-precipitated DOM to the mineral-stabilized SOC pool is expected to be greatest in soil environments with frequent mineral dissolution and precipitation processes. Compared to surface adsorption, properties of mineral-organic co-precipitates are expected to differ at both the particle scale (e.g., total carbon (C) content and composition) and the molecular scale (e.g., impurities in mineral structure), with potential implications for stability and C turnover; additionally, these properties vary across C sources, amounts, and forms. Consequently, high-resolution visualization and characterization combined with bulk chemical measurements is needed to provide a more complete understanding of co-precipitate formation processes and properties, especially as a function of C co-precipitant characteristics. In this study, we evaluate the effect of model C compound and DOM chemical properties (e.g., iron-binding affinity) on the formation, structure, and chemical properties of ferrihydrite (Fh) (Fe3+3O2 •0.5H2O) co-precipitates. Salicylic acid (SA), sucrose and water-extractable DOM from coniferous or deciduous-dominated organic soils were either adsorbed to pre-formed Fh or co-precipitated with Fh. At a C/Fe ratio 10, the amount of co-precipitated C differed among all organic compounds, and for DOM, was more than 2X greater for co-precipitation than adsorption, suggesting a greater capacity for C retention. To probe the molecular-scale C spatial distribution of Fh-SA particles, we obtained Scanning Transmission Electron Microscopy with Electron Energy Loss Spectroscopy (STEM-EELS) maps at a nanometer-scale spatial pixel resolution. Additionally, we will present chemical characteristics of organic-Fh co-precipitates and adsorption complexes investigated in bulk using C Near-Edge X-ray Absorption Fine Structure (NEXAFS) and Fourier Transform Infrared (FT-IR) spectroscopy. Ultimately, these observations of model co-precipitation systems will be used to better interpret observations of putative co-precipitated OM in natural soils.

  9. Causal Inference for Spatial Constancy across Saccades

    PubMed Central

    Atsma, Jeroen; Maij, Femke; Koppen, Mathieu; Irwin, David E.; Medendorp, W. Pieter

    2016-01-01

    Our ability to interact with the environment hinges on creating a stable visual world despite the continuous changes in retinal input. To achieve visual stability, the brain must distinguish the retinal image shifts caused by eye movements and shifts due to movements of the visual scene. This process appears not to be flawless: during saccades, we often fail to detect whether visual objects remain stable or move, which is called saccadic suppression of displacement (SSD). How does the brain evaluate the memorized information of the presaccadic scene and the actual visual feedback of the postsaccadic visual scene in the computations for visual stability? Using a SSD task, we test how participants localize the presaccadic position of the fixation target, the saccade target or a peripheral non-foveated target that was displaced parallel or orthogonal during a horizontal saccade, and subsequently viewed for three different durations. Results showed different localization errors of the three targets, depending on the viewing time of the postsaccadic stimulus and its spatial separation from the presaccadic location. We modeled the data through a Bayesian causal inference mechanism, in which at the trial level an optimal mixing of two possible strategies, integration vs. separation of the presaccadic memory and the postsaccadic sensory signals, is applied. Fits of this model generally outperformed other plausible decision strategies for producing SSD. Our findings suggest that humans exploit a Bayesian inference process with two causal structures to mediate visual stability. PMID:26967730

  10. First-impression bias effects on mismatch negativity to auditory spatial deviants.

    PubMed

    Fitzgerald, Kaitlin; Provost, Alexander; Todd, Juanita

    2018-04-01

    Internal models of regularities in the world serve to facilitate perception as redundant input can be predicted and neural resources conserved for that which is new or unexpected. In the auditory system, this is reflected in an evoked potential component known as mismatch negativity (MMN). MMN is elicited by the violation of an established regularity to signal the inaccuracy of the current model and direct resources to the unexpected event. Prevailing accounts suggest that MMN amplitude will increase with stability in regularity; however, observations of first-impression bias contradict stability effects. If tones rotate probabilities as a rare deviant (p = .125) and common standard (p = .875), MMN elicited to the initial deviant tone reaches maximal amplitude faster than MMN to the first standard when later encountered as deviant-a differential pattern that persists throughout rotations. Sensory inference is therefore biased by longer-term contextual information beyond local probability statistics. Using the same multicontext sequence structure, we examined whether this bias generalizes to MMN elicited by spatial sound cues using monaural sounds (n = 19, right first deviant and n = 22, left first deviant) and binaural sounds (n = 19, right first deviant). The characteristic differential modulation of MMN to the two tones was observed in two of three groups, providing partial support for the generalization of first-impression bias to spatially deviant sounds. We discuss possible explanations for its absence when the initial deviant was delivered monaurally to the right ear. © 2017 Society for Psychophysiological Research.

  11. Direct Imaging of Lipid-Ion Network Formation under Physiological Conditions by Frequency Modulation Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Fukuma, Takeshi; Higgins, Michael J.; Jarvis, Suzanne P.

    2007-03-01

    Various metal cations in physiological solutions interact with lipid headgroups in biological membranes, having an impact on their structure and stability, yet little is known about the molecular-scale dynamics of the lipid-ion interactions. Here we directly investigate the extensive lipid-ion interaction networks and their transient formation between headgroups in a dipalmitoylphosphatidylcholine bilayer under physiological conditions. The spatial distribution of ion occupancy is imaged in real space by frequency modulation atomic force microscopy with sub-Ångstrom resolution.

  12. A simple photoionization scheme for characterizing electron and ion spectrometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wituschek, A.; Vangerow, J. von; Grzesiak, J.

    We present a simple diode laser-based photoionization scheme for generating electrons and ions with well-defined spatial and energetic (≲2 eV) structures. This scheme can easily be implemented in ion or electron imaging spectrometers for the purpose of off-line characterization and calibration. The low laser power ∼1 mW needed from a passively stabilized diode laser and the low flux of potassium atoms in an effusive beam make our scheme a versatile source of ions and electrons for applications in research and education.

  13. Vibroacoustic Tailoring of a Rod-Stiffened Composite Fuselage Panel with Multidisciplinary Considerations

    NASA Technical Reports Server (NTRS)

    Allen, Albert R.; Przekop, Adam

    2015-01-01

    An efficient multi-objective design tailoring procedure seeking to improve the vibroacoustic performance of a fuselage panel while maintaining or reducing weight is presented. The structure considered is the pultruded rod stitched efficient unitized structure, a highly integrated composite structure concept designed for a noncylindrical, next-generation flight vehicle fuselage. Modifications to a baseline design are evaluated within a six-parameter design space including spacing, flange width, and web height for both frame and stringer substructure components. The change in sound power radiation attributed to a design change is predicted using finite-element models sized and meshed for analyses in the 500 Hz, 1 kHz, and 2 kHz octave bands. Three design studies are carried out in parallel while considering a diffuse acoustic field excitation and two types of turbulent boundary-layer excitation. Kriging surrogate models are used to reduce the computational costs of resolving the vibroacoustic and weight objective Pareto fronts. The resulting Pareto optimal designs are then evaluated under a static pressurization ultimate load to assess structural strength and stability. Results suggest that choosing alternative configurations within the considered design space can reduce weight and improve vibroacoustic performance without compromising strength and stability of the structure under the static load condition considered, but the tradeoffs are significantly influenced by the spatial characteristics of the assumed excitation field.

  14. Effect of Ni content on the morphological evolution of Ni-YSZ solid oxide fuel cell electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen-Wiegart, Yu-chen Karen; Kennouche, David; Scott Cronin, J.

    2016-02-22

    The coarsening of Ni in Ni–yttria-stabilized zirconia (YSZ) anodes is a potential cause of long term solid oxide fuel cells (SOFC) performance degradation. The specifics of the Ni-YSZ structure—including Ni/YSZ ratio, porosity, and particle size distributions—are normally selected to minimize anode polarization resistance, but they also impact long-term stability. A better understanding of how these factors influence long-term stability is important for designing more durable anodes. The effect of structural details, e.g., Ni-YSZ ratio, on Ni coarsening has not been quantified. Furthermore, prior measurements have been done by comparing evolved structures with control samples, such that sample-to-sample variations introduce errors.more » Here, we report a four dimensional (three spatial dimensions and time) study of Ni coarsening in Ni-YSZ anode functional layers with different Ni/YSZ ratios, using synchrotron x-ray nano-tomography. The continuous structural evolution was observed and analyzed at sub-100 nm resolution. It is shown quantitatively that increasing the Ni/YSZ ratio increases the Ni coarsening rate. This is due to both increased pore volume and a decrease in the YSZ volume fraction, such that there is more free volume and a less obtrusive YSZ network, both of which allow greater Ni coarsening. The results are shown to be in good agreement with a power-law coarsening model. The finding is critical for informing the design of SOFC electrode microstructures that limit coarsening and performance degradation.« less

  15. Effect of Ni content on the morphological evolution of Ni-YSZ solid oxide fuel cell electrodes

    NASA Astrophysics Data System (ADS)

    Chen-Wiegart, Yu-chen Karen; Kennouche, David; Scott Cronin, J.; Barnett, Scott A.; Wang, Jun

    2016-02-01

    The coarsening of Ni in Ni-yttria-stabilized zirconia (YSZ) anodes is a potential cause of long term solid oxide fuel cells (SOFC) performance degradation. The specifics of the Ni-YSZ structure—including Ni/YSZ ratio, porosity, and particle size distributions—are normally selected to minimize anode polarization resistance, but they also impact long-term stability. A better understanding of how these factors influence long-term stability is important for designing more durable anodes. The effect of structural details, e.g., Ni-YSZ ratio, on Ni coarsening has not been quantified. Furthermore, prior measurements have been done by comparing evolved structures with control samples, such that sample-to-sample variations introduce errors. Here, we report a four dimensional (three spatial dimensions and time) study of Ni coarsening in Ni-YSZ anode functional layers with different Ni/YSZ ratios, using synchrotron x-ray nano-tomography. The continuous structural evolution was observed and analyzed at sub-100 nm resolution. It is shown quantitatively that increasing the Ni/YSZ ratio increases the Ni coarsening rate. This is due to both increased pore volume and a decrease in the YSZ volume fraction, such that there is more free volume and a less obtrusive YSZ network, both of which allow greater Ni coarsening. The results are shown to be in good agreement with a power-law coarsening model. The finding is critical for informing the design of SOFC electrode microstructures that limit coarsening and performance degradation.

  16. Spatial and temporal analyses for multiscale monitoring of landslides: Examples from Northern Ireland

    NASA Astrophysics Data System (ADS)

    Bell, Andrew; McKinley, Jennifer; Hughes, David

    2013-04-01

    Landslides in the form of debris flows, large scale rotational features and composite mudflows impact transport corridors cutting off local communities and in some instances result in loss of life. This study presents landslide monitoring methods used for predicting and characterising landslide activity along transport corridors. A variety of approaches are discussed: desk based risk assessment of slopes using Geographical Information Systems (GIS); Aerial LiDAR surveys and Terrestrial LiDAR monitoring and field instrumentation of selected sites. A GIS based case study is discussed which provides risk assessment for the potential of slope stability issues. Layers incorporated within the system include Digital Elevation Model (DEM), slope, aspect, solid and drift geology and groundwater conditions. Additional datasets include consequence of failure. These are combined within a risk model, presented as likelihoods of failure. This integrated spatial approach for slope risk assessment provides the user with a preliminary risk assessment of sites. An innovative "Flexviewer" web-based server interface allows users to view data without needing advanced GIS techniques to gather information about selected areas. On a macro landscape scale, Aerial LiDAR (ALS) surveys are used for the characterisation of landslides from the surrounding terrain. DEMs are generated along with terrain derivatives: slope, curvature and various measures of terrain roughness. Spatial analysis of terrain morphological parameters allow characterisation of slope stability issues and are used to predict areas of potential failure or recently failure terrain. On a local scale ground monitoring approaches are employed for the monitoring of changes in selected slopes using ALS and risk assessment approaches. Results are shown from on-going bimonthly Terrestrial LiDAR (TLS) monitoring of the slope within a site specific geodectically referenced network. This has allowed a classification of changes in the slopes with DEMs of difference showing areas of recent movement, erosion and deposition. In addition, changes in the structure of the slope characterised by DEM of difference and morphological parameters in the form of roughness, slope and curvature measures are progressively linked to failures indicated from temporal DEM monitoring. Preliminary results are presented for a case site at Straidkilly Point, Glenarm, Co. Antrim, Northern Ireland, illustrating multiple approaches to the spatial and temporal monitoring of landslides. These indicate how spatial morphological approaches and risk assessment frameworks coupled with TLS monitoring and field instrumentation enable characterisation and prediction of potential areas of slope stability issues. On site weather instrumentation and piezometers document changes in pore water pressures resulting in site-specific information with geotechnical observations parameterised within the temporal LiDAR monitoring. This provides a multifaceted approach to the characterisation and analysis of slope stability issues. The presented methodology of multiscale datasets and surveying approaches utilising spatial parameters and risk index mapping enables a more comprehensive and effective prediction of landslides resulting in effective characterisation and remediation strategies.

  17. Temporal, thermal, and light stability of continuously tunable cholesteric liquid crystal laser array.

    PubMed

    Jeong, Mi-Yun; Chung, Ki Soo; Wu, Jeong Weon

    2014-11-01

    Fine-structured polymerized cholesteric liquid crystal (PCLC) wedge laser devices have been realized, with high fine spatial tunability of the lasing wavelength. With resolution less than 0.3 nm in a broad spectral range, more than one hundred laser lines could be obtained in a PCLC cell without extra devices. For practical device application, we studied the stability of the device in detail over time, and in response to strong external light sources, and thermal perturbation. The PCLC wedge cells had good temporal stability for 1 year and showed good stability for strong perturbations, with the lasing wavelength shifting less than 1 nm, while the laser peak intensities decreased by up to 34%, and the high energy band edge of the photonic band gap (PBG) was red shifted 3 nm by temperature perturbation. However, when we consider the entire lasing spectrum for the PCLC cell, the 1-nm wavelength shift may not matter. Although the laser peak intensities were decreased by up to 34% in total for all of the perturbation cases, the remaining 34% laser peak intensity is considerable extent to make use. This good stability of the PCLC laser device is due to the polymerization of the CLC by UV curing. This study will be helpful for practical CLC laser device development.

  18. Influence of the stretch wrapping process on the mechanical behavior of a stretch film

    NASA Astrophysics Data System (ADS)

    Klein, Daniel; Stommel, Markus; Zimmer, Johannes

    2018-05-01

    Lightweight construction is an ongoing task in packaging development. Consequently, the stability of packages during transport is gaining importance. This study contributes to the optimization of lightweight packaging concepts regarding their stability. A very widespread packaging concept is the distribution of goods on a pallet whereas a Polyethylene (PE) stretch film stabilizes the lightweight structure during the shipment. Usually, a stretch wrapping machine applies this stretch film to the pallet. The objective of this study is to support packaging development with a method that predicts the result of the wrapping process, based on the mechanical characterization of the stretch film. This result is not only defined by the amount of stretch film, its spatial distribution on the pallet and its internal stresses that result in a containment force. More accurate, this contribution also considers the influence of the deformation history of the stretch film during the wrapping process. By focusing on similarities of stretch wrappers rather than on differences, the influence of generalized process parameters on stretch film mechanics and thereby on pallet stability can be determined experimentally. For a practical use, the predictive method is accumulated in an analytic model of the wrapping process that can be verified experimentally. This paves the way for experimental and numerical approaches regarding the optimization of pallet stability.

  19. Spatial impacts of inorganic ligand availability and localized microbial community structure on mitigation of zinc laden mine water in sulfate-reducing bioreactors.

    PubMed

    Drennan, Dina M; Almstrand, Robert; Ladderud, Jeffrey; Lee, Ilsu; Landkamer, Lee; Figueroa, Linda; Sharp, Jonathan O

    2017-05-15

    Sulfate-reducing bioreactors (SRBRs) represent a passive, sustainable, and long-term option for mitigating mining influenced water (MIW) during release. Here we investigate spatial zinc precipitation profiles as influenced by substrate differentiation, inorganic ligand availability (inorganic carbon and sulfide), and microbial community structure in pilot-scale SRBR columns fed with sulfate and zinc-rich MIW. Through a combination of aqueous sampling, geochemical digests, electron microscopy and energy-dispersive x-ray spectroscopy, we were able to delineate zones of enhanced zinc removal, identify precipitates of varying stability, and discern the temporal and spatial evolution of zinc, sulfur, and calcium associations. These geochemical insights revealed spatially variable immobilization regimes between SRBR columns that could be further contrasted as a function of labile (alfalfa-dominated) versus recalcitrant (woodchip-dominated) solid-phase substrate content. Both column subsets exhibited initial zinc removal as carbonates; however precipitation in association with labile substrates was more pronounced and dominated by metal-sulfide formation in the upper portions of the down flow columns with micrographs visually suggestive of sphalerite (ZnS). In contrast, a more diffuse and lower mass of zinc precipitation in the presence of gypsum-like precipitates occurred within the more recalcitrant column systems. While removal and sulfide-associated precipitation were spatially variable, whole bacterial community structure (ANOSIM) and diversity estimates were comparatively homogeneous. However, two phyla exhibited a potentially selective relationship with a significant positive correlation between the ratio of Firmicutes to Bacteroidetes and sulfide-bound zinc. Collectively these biogeochemical insights indicate that depths of maximal zinc sulfide precipitation are temporally dynamic, influenced by substrate composition and broaden our understanding of bio-immobilized zinc species, microbial interactions and potential operational and monitoring tools in these types of passive bioreactors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Measure the spatial distribution of corneal elasticity by combining femtosecond laser induced breakdown spectroscopy and acoustic radiation force elasticity microscope

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Li, Xin; Hu, Mingyong

    2017-08-01

    The unique spatial distribution of corneal elasticity is shown by the nonhomogeneous structure of the cornea. It is critical to understanding how biomechanics control corneal stability and refraction and one way to do this job is non-invasive measurement of this distribution. Femtosecond laser pulses have the ability to induce optical breakdown and produced cavitation in the anterior and posterior cornea. A confocal ultrasonic transducer applied 6.5 ms acoustic radiation forcechirp bursts to the bubble at 1.5 MHz while monitoring bubble position using pulse-echoes at 20 MHz. The laser induced breakdown spectroscopy (LIBS) were measured in the anterior and posterior cornea with the plasmas that induced by the same femtosecond laser to see whether the laser induced plasmas signals will show relationship to Young's modulus.

  1. Fast spatial beam shaping by acousto-optic diffraction for 3D non-linear microscopy.

    PubMed

    Akemann, Walther; Léger, Jean-François; Ventalon, Cathie; Mathieu, Benjamin; Dieudonné, Stéphane; Bourdieu, Laurent

    2015-11-02

    Acousto-optic deflection (AOD) devices offer unprecedented fast control of the entire spatial structure of light beams, most notably their phase. AOD light modulation of ultra-short laser pulses, however, is not straightforward to implement because of intrinsic chromatic dispersion and non-stationarity of acousto-optic diffraction. While schemes exist to compensate chromatic dispersion, non-stationarity remains an obstacle. In this work we demonstrate an efficient AOD light modulator for stable phase modulation using time-locked generation of frequency-modulated acoustic waves at the full repetition rate of a high power laser pulse amplifier of 80 kHz. We establish the non-local relationship between the optical phase and the generating acoustic frequency function and verify the system for temporal stability, phase accuracy and generation of non-linear two-dimensional phase functions.

  2. Thin-film Faraday patterns in three dimensions

    NASA Astrophysics Data System (ADS)

    Richter, Sebastian; Bestehorn, Michael

    2017-04-01

    We investigate the long time evolution of a thin fluid layer in three spatial dimensions located on a horizontal planar substrate. The substrate is subjected to time-periodic external vibrations in normal and in tangential direction with respect to the plane surface. The governing partial differential equation system of our model is obtained from the incompressible Navier-Stokes equations considering the limit of a thin fluid geometry and using the long wave lubrication approximation. It includes inertia and viscous friction. Numerical simulations evince the existence of persistent spatially complex surface patterns (periodic and quasiperiodic) for certain superpositions of two vertical excitations and initial conditions. Additional harmonic lateral excitations cause deformations but retain the basic structure of the patterns. Horizontal ratchet-shaped forces lead to a controllable lateral movement of the fluid. A Floquet analysis is used to determine the stability of the linearized system.

  3. Conservation Genetics of Threatened Hippocampus guttulatus in Vulnerable Habitats in NW Spain: Temporal and Spatial Stability of Wild Populations with Flexible Polygamous Mating System in Captivity

    PubMed Central

    López, Almudena; Vera, Manuel; Planas, Miquel; Bouza, Carmen

    2015-01-01

    This study was focused on conservation genetics of threatened Hippocampus guttulatus on the Atlantic coast of NW Iberian Peninsula. Information about spatial structure and temporal stability of wild populations was obtained based on microsatellite markers, and used for monitoring a captive breeding program firstly initiated in this zone at the facilities of the Institute of Marine Research (Vigo, Spain). No significant major genetic structure was observed regarding the biogeographical barrier of Cape Finisterre. However, two management units under continuous gene flow are proposed based on the allelic differentiation between South-Atlantic and Cantabrian subpopulations, with small to moderate contemporary effective size based on single-sample methods. Temporal stability was observed in South-Atlantic population samples of H. guttulatus for the six-year period studied, suggesting large enough effective population size to buffer the effects of genetic drift within the time frame of three generations. Genetic analysis of wild breeders and offspring in captivity since 2009 allowed us to monitor the breeding program founded in 2006 in NW Spain for this species. Similar genetic diversity in the renewed and founder broodstock, regarding the wild population of origin, supports suitable renewal and rearing processes to maintain genetic variation in captivity. Genetic parentage proved single-brood monogamy in the wild and in captivity, but flexible short- and long-term mating system under captive conditions, from strict monogamy to polygamy within and/or among breeding seasons. Family analysis showed high reproductive success in captivity under genetic management assisted by molecular relatedness estimates to avoid inbreeding. This study provides genetic information about H. guttulatus in the wild and captivity within an uncovered geographical range for this data deficient species, to be taken into account for management and conservation purposes. PMID:25646777

  4. Advances in optical structure systems; Proceedings of the Meeting, Orlando, FL, Apr. 16-19, 1990

    NASA Astrophysics Data System (ADS)

    Breakwell, John; Genberg, Victor L.; Krumweide, Gary C.

    Various papers on advances in optical structure systems are presented. Individual topics addressed include: beam pathlength optimization, thermal stress in glass/metal bond with PR 1578 adhesive, structural and optical properties for typical solid mirror shapes, parametric study of spinning polygon mirror deformations, simulation of small structures-optics-controls system, spatial PSDs of optical structures due to random vibration, mountings for a four-meter glass mirror, fast-steering mirrors in optical control systems, adaptive state estimation for control of flexible structures, surface control techniques for large segmented mirrors, two-time-scale control designs for large flexible structures, closed-loop dynamic shape control of a flexible beam. Also discussed are: inertially referenced pointing for body-fixed payloads, sensor blending line-of-sight stabilization, controls/optics/structures simulation development, transfer functions for piezoelectric control of a flexible beam, active control experiments for large-optics vibration alleviation, composite structures for a large-optical test bed, graphite/epoxy composite mirror for beam-steering applications, composite structures for optical-mirror applications, thin carbon-fiber prepregs for dimensionally critical structures.

  5. Direct numerical simulation of turbulent plane Couette flow under neutral and stable stratification

    NASA Astrophysics Data System (ADS)

    Mortikov, Evgeny

    2017-11-01

    Direct numerical simulation (DNS) approach was used to study turbulence dynamics in plane Couette flow under conditions ranging from neutral stability to the case of extreme stable stratification, where intermittency is observed. Simulations were performed for Reynolds numbers, based on the channel height and relative wall speed, up to 2 ×105 . Using DNS data, which covers a wide range of stability conditions, parameterizations of pressure correlation terms used in second-order closure turbulence models are discussed. Particular attention is also paid to the sustainment of intermittent turbulence under strong stratification. Intermittent regime is found to be associated with the formation of secondary large-scale structures elongated in the spanwise direction, which define spatially confined alternating regions of laminar and turbulent flow. The spanwise length of this structures increases with the increase in the bulk Richardson number and defines and additional constraint on the computational box size. In this work DNS results are presented in extended computational domains, where the intermittent turbulence is sustained for sufficiently higher Richardson numbers than previously reported.

  6. Interfacial effects in ZnO nanotubes/needle-structured graphitic diamond nanohybrid for detecting dissolved acetone at room temperature

    NASA Astrophysics Data System (ADS)

    Kathiravan, Deepa; Huang, Bohr-Ran; Saravanan, Adhimoorthy; Yeh, Chien-Jui; Leou, Keh-Chyang; Lin, I.-Nan

    2017-12-01

    A high-performance ZnO nanotubes (ZNTs)/needle-structured graphitic diamond (NGD) nanohybrid material was prepared and observed the electrochemical sensing properties of liquid acetone in water. Initially, we synthesized NGD film using bias-enhanced growth (BEG) process. Afterwards, a well-etched ZNTs were spatially grown on the NGD film using simple hydrothermal method, and utilized as sensing material for assemble an electrochemical sensor (via EGFET configuration) operating at room temperature. The systematic investigations depict the ultra-high sensing properties attained from ZNTs grown on NGD film. The NGD film mostly have needle or wire shaped diamond grains, which contributes extremely high electrical conductivity. Furthermore, needle shaped diamond grains cover with multi-layer graphitic material generates conduction channels for ZNTs and leads to enhance the oxygen residuals and species. The material stability and conductivity of NGD as well the defects exist with oxygen vacancies in ZNTs offers superior sensing properties. Thus, the interesting combination of these wide band gap semiconductor materials exhibit high sensor response (89 mV/mL), high stability and long-term reliability (tested after 60 days).

  7. Electronic Structure and Stability of [B 12 X 12 ] 2– (X = F–At): A Combined Photoelectron Spectroscopic and Theoretical Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warneke, Jonas; Hou, Gao-Lei; Aprà, Edoardo

    2017-10-09

    The relative stability and electron loss process of Multiply Charged Anions have been traditionally explained in terms of the classical Coulomb interaction between spatially separated charges. In this study we report the surprising properties of [B12X12]2-, X = F – At, that are counterintuitive compared to the prevailing classical description and justify their classification into a new class of MCAs. In this new class of MCAs, comprising of a “Boron core” surrounded by a “Halogen shell”, the sign of the total charge in these two regions changes along the halogen series from F to At. With the aid of photoelectronmore » spectroscopy and electronic structure calculations we demonstrate that the behavior of these MCAs is largely determined by quantum effects rather than classical electrostatics. The second excess electron is always taken from the most positively charged region, viz. the “Boron core” for F – Br and the surrounding “Halogen shell” for I, At.« less

  8. Palmitoylation of LIM Kinase-1 ensures spine-specific actin polymerization and morphological plasticity

    PubMed Central

    George, Joju; Soares, Cary; Montersino, Audrey; Beique, Jean-Claude; Thomas, Gareth M

    2015-01-01

    Precise regulation of the dendritic spine actin cytoskeleton is critical for neurodevelopment and neuronal plasticity, but how neurons spatially control actin dynamics is not well defined. Here, we identify direct palmitoylation of the actin regulator LIM kinase-1 (LIMK1) as a novel mechanism to control spine-specific actin dynamics. A conserved palmitoyl-motif is necessary and sufficient to target LIMK1 to spines and to anchor LIMK1 in spines. ShRNA knockdown/rescue experiments reveal that LIMK1 palmitoylation is essential for normal spine actin polymerization, for spine-specific structural plasticity and for long-term spine stability. Palmitoylation is critical for LIMK1 function because this modification not only controls LIMK1 targeting, but is also essential for LIMK1 activation by its membrane-localized upstream activator PAK. These novel roles for palmitoylation in the spatial control of actin dynamics and kinase signaling provide new insights into structural plasticity mechanisms and strengthen links between dendritic spine impairments and neuropathological conditions. DOI: http://dx.doi.org/10.7554/eLife.06327.001 PMID:25884247

  9. Resolvent analysis of shear flows using One-Way Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Rigas, Georgios; Schmidt, Oliver; Towne, Aaron; Colonius, Tim

    2017-11-01

    For three-dimensional flows, questions of stability, receptivity, secondary flows, and coherent structures require the solution of large partial-derivative eigenvalue problems. Reduced-order approximations are thus required for engineering prediction since these problems are often computationally intractable or prohibitively expensive. For spatially slowly evolving flows, such as jets and boundary layers, the One-Way Navier-Stokes (OWNS) equations permit a fast spatial marching procedure that results in a huge reduction in computational cost. Here, an adjoint-based optimization framework is proposed and demonstrated for calculating optimal boundary conditions and optimal volumetric forcing. The corresponding optimal response modes are validated against modes obtained in terms of global resolvent analysis. For laminar base flows, the optimal modes reveal modal and non-modal transition mechanisms. For turbulent base flows, they predict the evolution of coherent structures in a statistical sense. Results from the application of the method to three-dimensional laminar wall-bounded flows and turbulent jets will be presented. This research was supported by the Office of Naval Research (N00014-16-1-2445) and Boeing Company (CT-BA-GTA-1).

  10. Dimensional metrology of smooth micro structures utilizing the spatial modulation of white-light interference fringes

    NASA Astrophysics Data System (ADS)

    Zhou, Yi; Tang, Yan; Deng, Qinyuan; Liu, Junbo; Wang, Jian; Zhao, Lixin

    2017-08-01

    Dimensional metrology for micro structure plays an important role in addressing quality issues and observing the performance of micro-fabricated products. In white light interferometry, the proposed method is expected to measure three-dimensional topography through modulation depth in spatial frequency domain. A normalized modulation depth is first obtained in the xy plane (image plane) for each CCD image individually. After that, the modulation depth of each pixel is analyzed along the scanning direction (z-axis) to reshape the topography of micro samples. Owing to the characteristics of modulation depth in broadband light interferometry, the method could effectively suppress the negative influences caused by light fluctuations and external irradiance disturbance. Both theory and experiments are elaborated in detail to verify that the modulation depth-based method can greatly level up the stability and sensitivity with satisfied precision in the measurement system. This technique can achieve an improved robustness in a complex measurement environment with the potential to be applied in online topography measurement such as chemistry and medical domains.

  11. Comparative analysis of spatial organization of laccases from Cerrena maxima and Coriolus zonatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhukova, Yu. N.; Zhukhlistova, N. E.; Lyashenko, A. V.

    2007-09-15

    Laccase (oxygen oxidoreductase, EC 1.10.3.2) belongs to the multicopper oxidase family. The main function of this enzyme is to perform electron transfer from the oxidized substrate through the mononuclear copper-containing site T1 to the oxygen molecule bound to the site T3 in the trinuclear T2/T3 cluster. The structures of two new fungal laccases from C. maxima and C. zonatus were solved on the basis of synchrotron X-ray diffraction data. Both laccases show high structural homology with laccases from other sources. The role of the carbohydrate component of laccases in structure stabilization and formation of ordered protein crystals was demonstrated. Inmore » the structures of C. maxima and C. zonatus laccases, two water channels of functional importance were found and characterized. The structural results reported in the present study characterize one of the functional states of the enzyme fixed in the crystal structure.« less

  12. Spatial complexity reduces interaction strengths in the meta-food web of a river floodplain mosaic

    USGS Publications Warehouse

    Bellmore, James Ryan; Baxter, Colden Vance; Connolly, Patrick J.

    2015-01-01

    Theory states that both the spatial complexity of landscapes and the strength of interactions between consumers and their resources are important for maintaining biodiversity and the 'balance of nature.' Spatial complexity is hypothesized to promote biodiversity by reducing potential for competitive exclusion; whereas, models show weak trophic interactions can enhance stability and maintain biodiversity by dampening destabilizing oscillations associated with strong interactions. Here we show that spatial complexity can reduce the strength of consumer-resource interactions in natural food webs. By sequentially aggregating food webs of individual aquatic habitat patches across a floodplain mosaic, we found that increasing spatial complexity resulted in decreases in the strength of interactions between predators and prey, owing to a greater proportion of weak interactions and a reduced proportion of strong interactions in the meta-food web. The main mechanism behind this pattern was that some patches provided predation refugia for species which were often strongly preyed upon in other patches. If weak trophic interactions do indeed promote stability, then our findings may signal an additional mechanism by which complexity and stability are linked in nature. In turn, this may have implications for how the values of landscape complexity, and the costs of biophysical homogenization, are assessed.

  13. Structural stability and chaotic solutions of perturbed Benjamin-Ono equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birnir, B.; Morrison, P.J.

    1986-11-01

    A method for proving chaos in partial differential equations is discussed and applied to the Benjamin-Ono equation subject to perturbations. The perturbations are of two types: one that corresponds to viscous dissipation, the so-called Burger's term, and one that involves the Hilbert transform and has been used to model Landau damping. The method proves chaos in the PDE by proving temporal chaos in its pole solutions. The spatial structure of the pole solutions remains intact, but their positions are chaotic in time. Melnikov's method is invoked to show this temporal chaos. It is discovered that the pole behavior is verymore » sensitive to the Burger's perturbation, but is quite insensitive to the perturbation involving the Hilbert transform.« less

  14. Hard template synthesis of metal nanowires

    PubMed Central

    Kawamura, Go; Muto, Hiroyuki; Matsuda, Atsunori

    2014-01-01

    Metal nanowires (NWs) have attracted much attention because of their high electron conductivity, optical transmittance, and tunable magnetic properties. Metal NWs have been synthesized using soft templates such as surface stabilizing molecules and polymers, and hard templates such as anodic aluminum oxide, mesoporous oxide, carbon nanotubes. NWs prepared from hard templates are composites of metals and the oxide/carbon matrix. Thus, selecting appropriate elements can simplify the production of composite devices. The resulting NWs are immobilized and spatially arranged, as dictated by the ordered porous structure of the template. This avoids the NWs from aggregating, which is common for NWs prepared with soft templates in solution. Herein, the hard template synthesis of metal NWs is reviewed, and the resulting structures, properties and potential applications are discussed. PMID:25453031

  15. Hard template synthesis of metal nanowires

    NASA Astrophysics Data System (ADS)

    Kawamura, Go; Muto, Hiroyuki; Matsuda, Atsunori

    2014-11-01

    Metal nanowires (NWs) have attracted much attention because of their high electron conductivity, optical transmittance and tunable magnetic properties. Metal NWs have been synthesized using soft templates such as surface stabilizing molecules and polymers, and hard templates such as anodic aluminum oxide, mesoporous oxide, carbon nanotubes. NWs prepared from hard templates are composites of metals and the oxide/carbon matrix. Thus, selecting appropriate elements can simplify the production of composite devices. The resulting NWs are immobilized and spatially arranged, as dictated by the ordered porous structure of the template. This avoids the NWs from aggregating, which is common for NWs prepared with soft templates in solution. Herein, the hard template synthesis of metal NWs is reviewed, and the resulting structures, properties and potential applications are discussed.

  16. Hard template synthesis of metal nanowires.

    PubMed

    Kawamura, Go; Muto, Hiroyuki; Matsuda, Atsunori

    2014-01-01

    Metal nanowires (NWs) have attracted much attention because of their high electron conductivity, optical transmittance, and tunable magnetic properties. Metal NWs have been synthesized using soft templates such as surface stabilizing molecules and polymers, and hard templates such as anodic aluminum oxide, mesoporous oxide, carbon nanotubes. NWs prepared from hard templates are composites of metals and the oxide/carbon matrix. Thus, selecting appropriate elements can simplify the production of composite devices. The resulting NWs are immobilized and spatially arranged, as dictated by the ordered porous structure of the template. This avoids the NWs from aggregating, which is common for NWs prepared with soft templates in solution. Herein, the hard template synthesis of metal NWs is reviewed, and the resulting structures, properties and potential applications are discussed.

  17. Bed Surface Adjustments to Spatially Variable Flow in Low Relative Submergence Regimes

    NASA Astrophysics Data System (ADS)

    Monsalve, A.; Yager, E. M.

    2017-11-01

    In mountainous rivers, large relatively immobile grains partly control the local and reach-averaged flow hydraulics and sediment fluxes. When the flow depth is similar to the size of these grains (low relative submergence), heterogeneous flow structures and plunging flow cause spatial distributions of bed surface elevations, textures, and sedimentation rates. To explore how the bed surface responds to these flow variations we conducted a set of experiments in which we varied the relative submergence of staggered hemispheres (simulated large boulders) between runs. All experiments had the same average sediment transport capacity, upstream sediment supply, and initial bed thickness and grain size distribution. We combined our laboratory measurements with a 3-D flow model to obtain the detailed flow structure around the hemispheres. The local bed shear stress field displayed substantial variability and controlled the bed load transport rates and direction in which sediment moved. The divergence in bed shear stress caused by the hemispheres promoted size-selective bed load deposition, which formed patches of coarse sediment upstream of the hemisphere. Sediment deposition caused a decrease in local bed shear stress, which combined with the coarser grain size, enhanced the stability of this patch. The region downstream of the hemispheres was largely controlled by a recirculation zone and had little to no change in grain size, bed elevation, and bed shear stress. The formation, development, and stability of sediment patches in mountain streams is controlled by the bed shear stress divergence and magnitude and direction of the local bed shear stress field.

  18. A Case-study on Turbulence in a Stratocumulus Topped Marine Boundary Layer Observed during VOCALS-Rex

    NASA Astrophysics Data System (ADS)

    Ghate, V. P.; Albrecht, B. A.; Fairall, C. W.; Miller, M. A.; Brewer, A.

    2010-12-01

    Turbulence in the stratocumulus topped marine boundary layer (BL) is an important factor that is closely connected to both the cloud macro- and micro-physical characteristics, which can substantially affect their radiaitve properties. Data collected by ship borne instruments on the R/V Ronald H. Brown on November 27, 2008 as a part of the VAMOS Ocean-Cloud-Atmosphere-Land-Study Regional Experiment (VOCALS-Rex) are analyzed to study the turbulence structure of a stratocumulus topped marine BL. The first half of the analyzed 24 hour period was characterized by a coupled BL topped by a precipitating stratocumulus cloud; the second half had clear sky conditions with a decoupled BL. The motion stabilized vertically pointing W-band Doppler cloud radar reported the full Doppler spectrum at a temporal and spatial resolution of 3 Hz and 25 m respectively. The collocated motion stabilized Doppler lidar was operating at 2 micron wavelength and reported the Signal to Noise Ratio (SNR) and Doppler velocity at temporal and spatial resolution of 2 Hz and 30 m respectively. Data from the cloud Doppler radar and Doppler lidar were combined to yield the turbulence structure of entire BL in both cloudy and clear sky conditions. Retrievals were performed to remove the contribution of precipitating drizzle drops to the mean Doppler velocity measured by the radar. Hourly profiles of vertical velocity variance suggested high BL variance during coupled BL conditions and low variance during decoupled BL conditions. Some of the terms in second and third moment budget of vertical velocity are calculated and their diurnal evolution is explored.

  19. (Poly)cation-induced protection of conventional and wireframe DNA origami nanostructures.

    PubMed

    Ahmadi, Yasaman; De Llano, Elisa; Barišić, Ivan

    2018-04-26

    DNA nanostructures hold immense potential to be used for biological and medical applications. However, they are extremely vulnerable towards salt depletion and nucleases, which are common under physiological conditions. In this contribution, we used chitosan and linear polyethyleneimine for coating and long-term stabilization of several three-dimensional DNA origami nanostructures. The impact of the degree of polymerization and the charge density of the polymer together with the N/P charge ratio (ratio of the amines in polycations to the phosphates in DNA) on the stability of encapsulated DNA origami nanostructures in the presence of nucleases and in low-salt media was examined. The polycation shells were compatible with enzyme- and aptamer-based functionalization of the DNA nanostructures. Additionally, we showed that despite being highly vulnerable to salt depletion and nucleolytic digestion, self-assembled DNA nanostructures are stable in cell culture media up to a week. This was contrary to unassembled DNA scaffolds that degraded in one hour, showing that placing DNA strands into a spatially designed configuration crucially affect the structural integrity. The stability of naked DNA nanostructures in cell culture was shown to be mediated by growth media. DNA origami nanostructures kept in growth media were significantly more resistant towards low-salt denaturation, DNase I and serum-mediated digestion than when in a conventional buffer. Moreover, we confirmed that DNA origami nanostructures remain not only structurally intact but also fully functional after exposure to cell media. Agarose gel electrophoresis and negative stain transmission electron microscopy analysis revealed the hybridization of DNA origami nanostructures to their targets in the presence of serum proteins and nucleases. The structural integrity and functionality of DNA nanostructures in physiological fluids validate their use particularly for short-time biological applications in which the shape and structural details of DNA nanodevices are functionally critical.

  20. Spatial Patterns of Plant Litter and Sedimentation in a Tidal Freshwater Marsh and Implications for Marsh Persistence

    NASA Astrophysics Data System (ADS)

    Elmore, A. J.; Cadol, D. D.; Palinkas, C. M.; Engelhardt, K. A.

    2014-12-01

    The maintenance of marsh platform elevation under sea level rise is dependent on sedimentation and biomass conversion to soil organic material. These physical and biological processes interact within the tidal zone, resulting in elevation-dependent processes contributing to marsh accretion. Here we explore spatial pattern in plant litter, a variable related to productivity, to understand its role in physical and biological interactions in a freshwater marsh. Plant litter that persists through the dormant season has an extended period of influence on ecosystem processes. We conducted a field and remote sensing analysis of plant litter height, biomass, vertical cover, and stem density (collectively termed plant litter structure) at a tidal freshwater marsh located along the Potomac River estuary. We completed two years of repeat RTK GPS surveys with corresponding measurements of litter height (over 2000 observations) to train a non-parametric random forest decision tree to predict litter height. LiDAR and field observations show that plant litter height increases with increasing elevation, although important deviations from this relationship are apparent. These spatial patterns exhibit stability from year to year and lead to corresponding patterns in soil organic matter content, revealed by loss on ignition of surface sediments. The amount of mineral material embedded within plant litter decreases with increasing elevation, representing an important trade-off with litter structure. Therefore, at low elevations where litter structure is short and sparse, the role of plant litter is to capture sediment; at high elevations where litter structure is tall and dense, litter contributes organic matter to soil development. Despite these tradeoffs, changes in elevation over time are consistent across elevation, with only small positive differences in elevation gain over time at elevations where the most sediment is deposited or where litter exhibits the most biomass.

  1. Delay-induced depinning of localized structures in a spatially inhomogeneous Swift-Hohenberg model

    NASA Astrophysics Data System (ADS)

    Tabbert, Felix; Schelte, Christian; Tlidi, Mustapha; Gurevich, Svetlana V.

    2017-03-01

    We report on the dynamics of localized structures in an inhomogeneous Swift-Hohenberg model describing pattern formation in the transverse plane of an optical cavity. This real order parameter equation is valid close to the second-order critical point associated with bistability. The optical cavity is illuminated by an inhomogeneous spatial Gaussian pumping beam and subjected to time-delayed feedback. The Gaussian injection beam breaks the translational symmetry of the system by exerting an attracting force on the localized structure. We show that the localized structure can be pinned to the center of the inhomogeneity, suppressing the delay-induced drift bifurcation that has been reported in the particular case where the injection is homogeneous, assuming a continuous wave operation. Under an inhomogeneous spatial pumping beam, we perform the stability analysis of localized solutions to identify different instability regimes induced by time-delayed feedback. In particular, we predict the formation of two-arm spirals, as well as oscillating and depinning dynamics caused by the interplay of an attracting inhomogeneity and destabilizing time-delayed feedback. The transition from oscillating to depinning solutions is investigated by means of numerical continuation techniques. Analytically, we use an order parameter approach to derive a normal form of the delay-induced Hopf bifurcation leading to an oscillating solution. Additionally we model the interplay of an attracting inhomogeneity and destabilizing time delay by describing the localized solution as an overdamped particle in a potential well generated by the inhomogeneity. In this case, the time-delayed feedback acts as a driving force. Comparing results from the later approach with the full Swift-Hohenberg model, we show that the approach not only provides an instructive description of the depinning dynamics, but also is numerically accurate throughout most of the parameter regime.

  2. One- and two-dimensional gap solitons and dynamics in the PT-symmetric lattice potential and spatially-periodic momentum modulation

    NASA Astrophysics Data System (ADS)

    Chen, Yong; Yan, Zhenya; Li, Xin

    2018-02-01

    The influence of spatially-periodic momentum modulation on beam dynamics in parity-time (PT) symmetric optical lattice is systematically investigated in the one- and two-dimensional nonlinear Schrödinger equations. In the linear regime, we demonstrate that the momentum modulation can alter the first and second PT thresholds of the classical lattice, periodically or regularly change the shapes of the band structure, rotate and split the diffraction patterns of beams leading to multiple refraction and emissions. In the Kerr-nonlinear regime for one-dimension (1D) case, a large family of fundamental solitons within the semi-infinite gap can be found to be stable, even beyond the second PT threshold; it is shown that the momentum modulation can shrink the existing range of fundamental solitons and not change their stability. For two-dimension (2D) case, most solitons with higher intensities are relatively unstable in their existing regions which are narrower than those in 1D case, but we also find stable fundamental solitons corroborated by linear stability analysis and direct beam propagation. More importantly, the momentum modulation can also utterly change the direction of the transverse power flow and control the energy exchange among gain or loss regions.

  3. Are polynuclear superhalogens without halogen atoms probable? A high-level ab initio case study on triple-bridged binuclear anions with cyanide ligands

    NASA Astrophysics Data System (ADS)

    Yin, Bing; Li, Teng; Li, Jin-Feng; Yu, Yang; Li, Jian-Li; Wen, Zhen-Yi; Jiang, Zhen-Yi

    2014-03-01

    The first theoretical exploration of superhalogen properties of polynuclear structures based on pseudohalogen ligand is reported here via a case study on eight triply-bridged [Mg2(CN)5]- clusters. From our high-level ab initio results, all these clusters are superhalogens due to their high vertical electron detachment energies (VDE), of which the largest value is 8.67 eV at coupled-cluster single double triple (CCSD(T)) level. Although outer valence Green's function results are consistent with CCSD(T) in most cases, it overestimates the VDEs of three anions dramatically by more than 1 eV. Therefore, the combined usage of several theoretical methods is important for the accuracy of purely theoretical prediction of superhalogen properties of new structures. Spatial distribution of the extra electron of high-VDE anions here indicates two features: remarkable aggregation on bridging CN units and non-negligible distribution on every CN unit. These two features lower the potential and kinetic energies of the extra electron respectively and thus lead to high VDE. Besides superhalogen properties, the structures, relative stabilities and thermodynamic stabilities with respect to detachment of CN-1 were also investigated for these anions. The collection of these results indicates that polynuclear structures based on pseudohalogen ligand are promising candidates for new superhalogens with enhanced properties.

  4. Are polynuclear superhalogens without halogen atoms probable? A high-level ab initio case study on triple-bridged binuclear anions with cyanide ligands.

    PubMed

    Yin, Bing; Li, Teng; Li, Jin-Feng; Yu, Yang; Li, Jian-Li; Wen, Zhen-Yi; Jiang, Zhen-Yi

    2014-03-07

    The first theoretical exploration of superhalogen properties of polynuclear structures based on pseudohalogen ligand is reported here via a case study on eight triply-bridged [Mg2(CN)5](-) clusters. From our high-level ab initio results, all these clusters are superhalogens due to their high vertical electron detachment energies (VDE), of which the largest value is 8.67 eV at coupled-cluster single double triple (CCSD(T)) level. Although outer valence Green's function results are consistent with CCSD(T) in most cases, it overestimates the VDEs of three anions dramatically by more than 1 eV. Therefore, the combined usage of several theoretical methods is important for the accuracy of purely theoretical prediction of superhalogen properties of new structures. Spatial distribution of the extra electron of high-VDE anions here indicates two features: remarkable aggregation on bridging CN units and non-negligible distribution on every CN unit. These two features lower the potential and kinetic energies of the extra electron respectively and thus lead to high VDE. Besides superhalogen properties, the structures, relative stabilities and thermodynamic stabilities with respect to detachment of CN(-1) were also investigated for these anions. The collection of these results indicates that polynuclear structures based on pseudohalogen ligand are promising candidates for new superhalogens with enhanced properties.

  5. Food-web complexity, meta-community complexity and community stability.

    PubMed

    Mougi, A; Kondoh, M

    2016-04-13

    What allows interacting, diverse species to coexist in nature has been a central question in ecology, ever since the theoretical prediction that a complex community should be inherently unstable. Although the role of spatiality in species coexistence has been recognized, its application to more complex systems has been less explored. Here, using a meta-community model of food web, we show that meta-community complexity, measured by the number of local food webs and their connectedness, elicits a self-regulating, negative-feedback mechanism and thus stabilizes food-web dynamics. Moreover, the presence of meta-community complexity can give rise to a positive food-web complexity-stability effect. Spatiality may play a more important role in stabilizing dynamics of complex, real food webs than expected from ecological theory based on the models of simpler food webs.

  6. Investigating the performance of LiDAR-derived biomass information in hydromechanic slope stability modelling

    NASA Astrophysics Data System (ADS)

    Schmaltz, Elmar; Steger, Stefan; Bogaard, Thom; Van Beek, Rens; Glade, Thomas

    2017-04-01

    Hydromechanic slope stability models are often used to assess the landslide susceptibility of hillslopes. Some of these models are able to account for vegetation related effects when assessing slope stability. However, spatial information of required vegetation parameters (especially of woodland) that are defined by land cover type, tree species and stand density are mostly underrepresented compared to hydropedological and geomechanical parameters. The aim of this study is to assess how LiDAR-derived biomass information can help to distinguish distinct tree stand-immanent properties (e.g. stand density and diversity) and further improve the performance of hydromechanic slope stability models. We used spatial vegetation data produced from sophisticated algorithms that are able to separate single trees within a stand based on LiDAR point clouds and thus allow an extraordinary detailed determination of the aboveground biomass. Further, this information is used to estimate the species- and stand-related distribution of the subsurface biomass using an innovative approach to approximate root system architecture and development. The hydrological tree-soil interactions and their impact on the geotechnical stability of the soil mantle are then reproduced in the dynamic and spatially distributed slope stability model STARWARS/PROBSTAB. This study highlights first advances in the approximation of biomechanical reinforcement potential of tree root systems in tree stands. Based on our findings, we address the advantages and limitations of highly detailed biomass information in hydromechanic modelling and physically based slope failure prediction.

  7. Market-based control strategy for long-span structures considering the multi-time delay issue

    NASA Astrophysics Data System (ADS)

    Li, Hongnan; Song, Jianzhu; Li, Gang

    2017-01-01

    To solve the different time delays that exist in the control device installed on spatial structures, in this study, discrete analysis using a 2 N precise algorithm was selected to solve the multi-time-delay issue for long-span structures based on the market-based control (MBC) method. The concept of interval mixed energy was introduced from computational structural mechanics and optimal control research areas, and it translates the design of the MBC multi-time-delay controller into a solution for the segment matrix. This approach transforms the serial algorithm in time to parallel computing in space, greatly improving the solving efficiency and numerical stability. The designed controller is able to consider the issue of time delay with a linear controlling force combination and is especially effective for large time-delay conditions. A numerical example of a long-span structure was selected to demonstrate the effectiveness of the presented controller, and the time delay was found to have a significant impact on the results.

  8. Crystal structure of a transcribing RNA Polymerase II complex reveals a complete transcription bubble

    PubMed Central

    Barnes, Christopher O.; Calero, Monica; Malik, Indranil; Graham, Brian W.; Spahr, Henrik; Lin, Guowu; Cohen, Aina; Brown, Ian S.; Zhang, Qiangmin; Pullara, Filippo; Trakselis, Michael A.; Kaplan, Craig D.; Calero, Guillermo

    2015-01-01

    Summary Notwithstanding numerous published structures of RNA Polymerase II (Pol II), structural details of Pol II engaging a complete nucleic acid scaffold have been lacking. Here, we report the structures of TFIIF stabilized transcribing Pol II complexes, revealing the upstream duplex and full transcription bubble. The upstream duplex lies over a wedge-shaped loop from Rpb2 that engages its minor groove, providing part of the structural framework for DNA tracking during elongation. At the upstream transcription bubble fork, rudder and fork loop-1 residues spatially coordinate strand annealing and the nascent RNA transcript. At the downstream fork, a network of Pol II interactions with the non-template strand forms a rigid domain with the Trigger Loop (TL), allowing visualization of its open state. Overall, our observations suggest that “open/closed” conformational transitions of the TL may be linked to interactions with the non-template strand, possibly in a synchronized ratcheting manner conducive to polymerase translocation. PMID:26186291

  9. Quantification of the Spatial Organization of the Nuclear Lamina as a Tool for Cell Classification

    PubMed Central

    Righolt, Christiaan H.; Zatreanu, Diana A.; Raz, Vered

    2013-01-01

    The nuclear lamina is the structural scaffold of the nuclear envelope that plays multiple regulatory roles in chromatin organization and gene expression as well as a structural role in nuclear stability. The lamina proteins, also referred to as lamins, determine nuclear lamina organization and define the nuclear shape and the structural integrity of the cell nucleus. In addition, lamins are connected with both nuclear and cytoplasmic structures forming a dynamic cellular structure whose shape changes upon external and internal signals. When bound to the nuclear lamina, the lamins are mobile, have an impact on the nuclear envelop structure, and may induce changes in their regulatory functions. Changes in the nuclear lamina shape cause changes in cellular functions. A quantitative description of these structural changes could provide an unbiased description of changes in cellular function. In this review, we describe how changes in the nuclear lamina can be measured from three-dimensional images of lamins at the nuclear envelope, and we discuss how structural changes of the nuclear lamina can be used for cell classification. PMID:27335676

  10. Quantification of the Spatial Organization of the Nuclear Lamina as a Tool for Cell Classification.

    PubMed

    Righolt, Christiaan H; Zatreanu, Diana A; Raz, Vered

    2013-01-01

    The nuclear lamina is the structural scaffold of the nuclear envelope that plays multiple regulatory roles in chromatin organization and gene expression as well as a structural role in nuclear stability. The lamina proteins, also referred to as lamins, determine nuclear lamina organization and define the nuclear shape and the structural integrity of the cell nucleus. In addition, lamins are connected with both nuclear and cytoplasmic structures forming a dynamic cellular structure whose shape changes upon external and internal signals. When bound to the nuclear lamina, the lamins are mobile, have an impact on the nuclear envelop structure, and may induce changes in their regulatory functions. Changes in the nuclear lamina shape cause changes in cellular functions. A quantitative description of these structural changes could provide an unbiased description of changes in cellular function. In this review, we describe how changes in the nuclear lamina can be measured from three-dimensional images of lamins at the nuclear envelope, and we discuss how structural changes of the nuclear lamina can be used for cell classification.

  11. Muscle Co-activation: Definitions, Mechanisms, and Functions.

    PubMed

    Latash, Mark L

    2018-03-28

    The phenomenon of agonist-antagonist muscle co-activation is discussed with respect to its consequences for movement mechanics (such as increasing joint apparent stiffness, facilitating faster movements, and effects on action stability), implication for movement optimization, and involvement of different neurophysiological structures. Effects of co-activation on movement stability are ambiguous and depend on the effector representing a kinematic chain with a fixed origin or free origin. Further, co-activation is discussed within the framework of the equilibrium-point hypothesis and the idea of hierarchical control with spatial referent coordinates. Relations of muscle co-activation to changes in one of the basic commands, the c-command, are discussed and illustrated. A hypothesis is suggested that agonist-antagonist co-activation reflects a deliberate neural control strategy to preserve effector-level control and avoid making it degenerate and facing the necessity to control at the level of signals to individual muscles. This strategy, in particular, allows stabilizing motor actions by co-varied adjustments in spaces of control variables. This hypothesis is able to account for higher levels of co-activation in young healthy persons performing challenging tasks and across various populations with movement impairments.

  12. Bioorthogonal layer-by-layer encapsulation of pancreatic islets via hyperbranched polymers

    PubMed Central

    Gattás-Asfura, Kerim M.; Stabler, Cherie L.

    2013-01-01

    The encapsulation of viable tissues via layer-by-layer polymer assembly provides a versatile platform for cell surface engineering, with nanoscale control over capsule properties. Herein, we report the development of a hyperbranched polymer-based, ultrathin capsule architecture expressing bioorthogonal functionality and tailored physiochemical properties. Random carbodiimide-based condensation of 3,5-dicarboxyphenyl glycineamide on alginate yielded a highly branched polysaccharide with multiple, spatially restricted, and readily functionalizable terminal carboxylate moieties. Poly(ethylene glycol) (PEG) was utilized to link azido end groups to the structured alginate. Together with phosphine functionalized poly(amido amine) (PAMAM) dendrimer, nanoscale layer-by-layer coatings, covalently stabilized via Staudinger ligation, were assembled onto solid surfaces and pancreatic islets. The effects of electrostatic and/or bioorthogonal covalent interlayer interactions on the resulting coating efficiency and stability, as well as pancreatic islet viability and function, were studied. These hyperbranched polymers provide a flexible platform for the formation of covalently stabilized ultrathin coatings on viable cells and tissues. In addition, the hyperbranched nature of the polymers presents a highly functionalized surface capable of bioorthogonal conjugation of additional bioactive or labeling motifs. PMID:24063764

  13. Experimental investigation of detonation waves instabilities in liquid high explosives

    NASA Astrophysics Data System (ADS)

    Sosikov, V. A.; Torunov, S. I.; Utkin, A. V.; Mochalova, V. M.; Rapota, D. Yu

    2018-01-01

    Experimental investigation of unstable detonation front structure in mixtures of liquid high explosives (nitromethane and FEFO—bis-(2-fluor-2.2-dinitroethyl)-formal) with inert diluents (acetone, methanol, DETA—diethylene triamine) has been carried out. Inhomogeneities have been registered by electro-optical camera NANOGATE 4BP allowing to make 4 frames with the exposure time 10 ns. According to experimental results the detonation front in nitromethane-acetone mixture is unstable. It is evident that pulsations on detonation front do not form spatial periodic structure and their dimensions differ several times. But mean longitudinal size of pulsation is about 500 μm at 20 wt% of acetone concentration. This means that the typical size of cell equals to reaction zone width. The same structure of cellular front have been registered in 70/30 FEFO-methanol mixture. Second kind of instability, failure waves, was observed in neat nitromethane at the free surface. In this case the stability loss result in turbulent flow which is clearly detected in the shots obtained. Adding small amount of DETA (0.5 wt%) results in disappearance of the failure waves and flow stabilization. The effect is caused by the fact that DETA sharply accelerates initial rate of chemical reaction because it is sensitizer for nitromethane.

  14. Stabilization of Model Membrane Systems by Disaccharides. Quasielastic Neutron Scattering Experiments and Atomistic Simulations

    NASA Astrophysics Data System (ADS)

    Doxastakis, Emmanouil; Garcia Sakai, Victoria; Ohtake, Satoshi; Maranas, Janna K.; de Pablo, Juan J.

    2006-03-01

    Trehalose, a disaccharide of glucose, is often used for the stabilization of cell membranes in the absence of water. This work studies the effects of trehalose on model membrane systems as they undergo a melting transition using a combination of experimental methods and atomistic molecular simulations. Quasielastic neutron scattering experiments on selectively deuterated samples provide the incoherent dynamic structure over a wide time range. Elastic scans probing the lipid tail dynamics display clear evidence of a main melting transition that is significantly lowered in the presence of trehalose. Lipid headgroup mobility is considerably restricted at high temperatures and directly associated with the dynamics of the sugar in the mixture. Molecular simulations provide a detailed overview of the dynamics and their spatial and time dependence. The combined simulation and experimental methodology offers a unique, molecular view of the physics of systems commonly employed in cryopreservation and lyophilization processes.

  15. Estimating life expectancies for US small areas: a regression framework

    NASA Astrophysics Data System (ADS)

    Congdon, Peter

    2014-01-01

    Analysis of area mortality variations and estimation of area life tables raise methodological questions relevant to assessing spatial clustering, and socioeconomic inequalities in mortality. Existing small area analyses of US life expectancy variation generally adopt ad hoc amalgamations of counties to alleviate potential instability of mortality rates involved in deriving life tables, and use conventional life table analysis which takes no account of correlated mortality for adjacent areas or ages. The alternative strategy here uses structured random effects methods that recognize correlations between adjacent ages and areas, and allows retention of the original county boundaries. This strategy generalizes to include effects of area category (e.g. poverty status, ethnic mix), allowing estimation of life tables according to area category, and providing additional stabilization of estimated life table functions. This approach is used here to estimate stabilized mortality rates, derive life expectancies in US counties, and assess trends in clustering and in inequality according to county poverty category.

  16. Affluent Neighborhood Persistence and Change in U.S. Cities

    PubMed Central

    Solari, Claudia D.

    2014-01-01

    Places are stratified along a hierarchy, with the affluent occupying the most resource-rich neighborhoods. Affluent neighborhood advantages include safety, high quality schools, and proximity to jobs. An additional benefit may be local economic stability over time. In a national context of rising interpersonal income inequality since 1970 and of the Great Recession, trends in neighborhood persistence and change expose this spatial advantage of the affluent. Using census data from 1970 to 2010, I find increasing rates of stability in the affluence and poverty of neighborhoods through 2000, with declines during the last decade. I also find that rates of chronic poverty and persistent affluence are high, ranging between 30 and 35 percent of neighborhoods across the 40-year period. This study highlights the structural persistence of affluence and poverty of neighborhoods as a vehicle for perpetuating social inequality and economic segregation. PMID:24790545

  17. Self-organized pseudo-graphene on grain boundaries in topological band insulators

    NASA Astrophysics Data System (ADS)

    Slager, Robert-Jan; Juričić, Vladimir; Lahtinen, Ville; Zaanen, Jan

    2016-06-01

    Semimetals are characterized by nodal band structures that give rise to exotic electronic properties. The stability of Dirac semimetals, such as graphene in two spatial dimensions, requires the presence of lattice symmetries, while akin to the surface states of topological band insulators, Weyl semimetals in three spatial dimensions are protected by band topology. Here we show that in the bulk of topological band insulators, self-organized topologically protected semimetals can emerge along a grain boundary, a ubiquitous extended lattice defect in any crystalline material. In addition to experimentally accessible electronic transport measurements, these states exhibit a valley anomaly in two dimensions influencing edge spin transport, whereas in three dimensions they appear as graphenelike states that may exhibit an odd-integer quantum Hall effect. The general mechanism underlying these semimetals—the hybridization of spinon modes bound to the grain boundary—suggests that topological semimetals can emerge in any topological material where lattice dislocations bind localized topological modes.

  18. Effect of Ni content on the morphological evolution of Ni-YSZ solid oxide fuel cell electrodes

    DOE PAGES

    Chen-Wiegart, Yu-chen Karen; Kennouche, David; Scott Cronin, J.; ...

    2016-02-25

    The coarsening of Ni in Ni–yttria-stabilized zirconia (YSZ) anodes is a potential cause of long term solid oxide fuel cells (SOFC) performance degradation. The specifics of the Ni-YSZ structure—including Ni/YSZ ratio, porosity, and particle size distributions—are normally selected to minimize anode polarization resistance, but they also impact long-term stability. A better understanding of how these factors influence long-term stability is important for designing more durable anodes. The effect of structural details, e.g., Ni-YSZ ratio, on Ni coarsening has not been quantified. Furthermore, prior measurements have been done by comparing evolved structures with control samples, such that sample-to-sample variations introduce errors.more » Here in this paper, we report a four dimensional (three spatial dimensions and time) study of Ni coarsening in Ni-YSZ anode functional layers with different Ni/YSZ ratios, using synchrotron x-ray nano-tomography. The continuous structural evolution was observed and analyzed at sub-100 nm resolution. It is shown quantitatively that increasing the Ni/YSZ ratio increases the Ni coarsening rate. This is due to both increased pore volume and a decrease in the YSZ volume fraction, such that there is more free volume and a less obtrusive YSZ network, both of which allow greater Ni coarsening. The results are shown to be in good agreement with a power-law coarsening model. In conclusion, the finding is critical for informing the design of SOFC electrode microstructures that limit coarsening and performance degradation.« less

  19. Effect of Ni content on the morphological evolution of Ni-YSZ solid oxide fuel cell electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen-Wiegart, Yu-chen Karen; Kennouche, David; Scott Cronin, J.

    The coarsening of Ni in Ni–yttria-stabilized zirconia (YSZ) anodes is a potential cause of long term solid oxide fuel cells (SOFC) performance degradation. The specifics of the Ni-YSZ structure—including Ni/YSZ ratio, porosity, and particle size distributions—are normally selected to minimize anode polarization resistance, but they also impact long-term stability. A better understanding of how these factors influence long-term stability is important for designing more durable anodes. The effect of structural details, e.g., Ni-YSZ ratio, on Ni coarsening has not been quantified. Furthermore, prior measurements have been done by comparing evolved structures with control samples, such that sample-to-sample variations introduce errors.more » Here in this paper, we report a four dimensional (three spatial dimensions and time) study of Ni coarsening in Ni-YSZ anode functional layers with different Ni/YSZ ratios, using synchrotron x-ray nano-tomography. The continuous structural evolution was observed and analyzed at sub-100 nm resolution. It is shown quantitatively that increasing the Ni/YSZ ratio increases the Ni coarsening rate. This is due to both increased pore volume and a decrease in the YSZ volume fraction, such that there is more free volume and a less obtrusive YSZ network, both of which allow greater Ni coarsening. The results are shown to be in good agreement with a power-law coarsening model. In conclusion, the finding is critical for informing the design of SOFC electrode microstructures that limit coarsening and performance degradation.« less

  20. Anchoring TGF-β1 on biomaterial surface via affinitive interactions: Effects on spatial structures and bioactivity.

    PubMed

    Xiao, Meng; Xiao, Jiangwei; Wu, Gang; Ke, Yu; Fang, Liming; Deng, Chunlin; Liao, Hua

    2018-06-01

    Protein adsorption on biomaterial surfaces is clinically applied to increase therapeutic effects; however, this adsorption is possibly accompanied by conformational changes and results in loss of protein bioactivity or adverse reactions. In this research, a transforming growth factor β1 (TGF-β1) affinitive peptide HSNGLPL was grafted onto biopolymer surface to stabilize TGF-β1 spatial conformation after adhesion. The peptide with azide end group was combined with the propynyl pendant group on polyurethane via copper-catalyzed azide-alkyne cycloaddition (CuAAC) click reaction. The final polymer was characterized by Fourier transform infrared spectroscopy and proton nuclear magnetic resonance spectroscopy, which indicated that the affinitive peptide was introduced to the polymer. Quartz crystal microbalance with dissipation (QCM-D) was performed to monitor TGF-β1 adsorption and desorption on the surfaces coated with polyurethane with and without peptide combination. Results showed that TGF-β1 adhered on polyurethane surface and formed a compact and rigid layer. This layer showed spatial structural change but presented a loose and diffuse layer on the peptide-grafted polyurethane surface, indicating stable spatial conformation after adherence. Similar regulations were observed on the two surfaces where BSA layer was coated in advance. In vivo animal experiments revealed that immune reactions and tissue regenerations occurred earlier on peptide-modified polyurethane than on polyurethane, which did not undergo peptide grafting. This finding confirmed that affinitive interactions may preserve TGF-β1 bioactivity on polymer surface after adsorption. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Structural architecture of prothrombin in solution revealed by single molecule spectroscopy

    DOE PAGES

    Pozzi, Nicola; Bystranowska, Dominika; Zuo, Xiaobing; ...

    2016-07-19

    The coagulation factor prothrombin has a complex spatial organization of its modular assembly that comprises the N-terminal Gla domain, kringle-1, kringle-2, and the C-terminal protease domain connected by three intervening linkers. Here we use single molecule Förster resonance energy transfer to access the conformational landscape of prothrombin in solution and uncover structural features of functional significance that extend recent x-ray crystallographic analysis. Prothrombin exists in equilibrium between two alternative conformations, open and closed. The closed conformation predominates (70%) and features an unanticipated intramolecular collapse of Tyr 93 in kringle-1 onto Trp 547 in the protease domain that obliterates access tomore » the active site and protects the zymogen from autoproteolytic conversion to thrombin. The open conformation (30%) is more susceptible to chymotrypsin digestion and autoactivation, and features a shape consistent with recent x-ray crystal structures. Small angle x-ray scattering measurements of prothrombin wild type stabilized 70% in the closed conformation and of the mutant Y93A stabilized 80% in the open conformation directly document two envelopes that differ 50 Å in length. These findings reveal important new details on the conformational plasticity of prothrombin in solution and the drastic structural difference between its alternative conformations. Prothrombin uses the intramolecular collapse of kringle-1 onto the active site in the closed form to prevent autoactivation. As a result, the open-closed equilibrium also defines a new structural framework for the mechanism of activation of prothrombin by prothrombinase.« less

  2. Bubble and skyrmion crystals in frustrated magnets with easy-axis anisotropy

    DOE PAGES

    Hayami, Satoru; Lin, Shi-Zeng; Batista, Cristian D.

    2016-05-12

    We clarify the conditions for the emergence of multiple-Q structures out of lattice and easy-axis spin anisotropy in frustrated magnets. By considering magnets whose exchange interaction has multiple global minima in momentum space, we find that both types of anisotropy stabilize triple-Q orderings. Moderate anisotropy leads to a magnetic field-induced skyrmion crystal, which evolves into a bubble crystal for increasing spatial and spin anisotropy. Finally, the bubble crystal exhibits a quasi-continuous (devil’s staircase) temperature dependent ordering wave-vector, characteristic of the competition between frustrated exchange and strong easy-axis anisotropy.

  3. Multicomponent 'dark' cnoidal waves: stability and soliton asymptotes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vysloukh, Victor A; Petnikova, V M; Rudenko, K V

    1999-07-31

    The problem of steady-state propagation of several mutually incoherent optical waves - components of 'dark' multicomponent solitons and cnoidal waves - through a photorefractive crystal with a drift nonlinearity of the defocusing type is considered and solved. Analytical expressions are obtained for the distributions of the optical field between the components of the resulting solutions, containing up to three self-consistent components inclusive. It is shown that these solutions are stable and that their spatial structure is retained in mutual collisions and after stochastic perturbations of the intensity distributions. (this issue is dedicated to the memory of s a akhmanov)

  4. Influence of magnetic field strength and image registration strategy on voxel-based morphometry in a study of Alzheimer's disease.

    PubMed

    Marchewka, Artur; Kherif, Ferath; Krueger, Gunnar; Grabowska, Anna; Frackowiak, Richard; Draganski, Bogdan

    2014-05-01

    Multi-centre data repositories like the Alzheimer's Disease Neuroimaging Initiative (ADNI) offer a unique research platform, but pose questions concerning comparability of results when using a range of imaging protocols and data processing algorithms. The variability is mainly due to the non-quantitative character of the widely used structural T1-weighted magnetic resonance (MR) images. Although the stability of the main effect of Alzheimer's disease (AD) on brain structure across platforms and field strength has been addressed in previous studies using multi-site MR images, there are only sparse empirically-based recommendations for processing and analysis of pooled multi-centre structural MR data acquired at different magnetic field strengths (MFS). Aiming to minimise potential systematic bias when using ADNI data we investigate the specific contributions of spatial registration strategies and the impact of MFS on voxel-based morphometry in AD. We perform a whole-brain analysis within the framework of Statistical Parametric Mapping, testing for main effects of various diffeomorphic spatial registration strategies, of MFS and their interaction with disease status. Beyond the confirmation of medial temporal lobe volume loss in AD, we detect a significant impact of spatial registration strategy on estimation of AD related atrophy. Additionally, we report a significant effect of MFS on the assessment of brain anatomy (i) in the cerebellum, (ii) the precentral gyrus and (iii) the thalamus bilaterally, showing no interaction with the disease status. We provide empirical evidence in support of pooling data in multi-centre VBM studies irrespective of disease status or MFS. Copyright © 2013 Wiley Periodicals, Inc.

  5. Calculating the wind energy input to a system using a spatially explicit method that considers atmospheric stability

    EPA Science Inventory

    Atmospheric stability has a major effect in determining the wind energy doing work in the atmospheric boundary layer (ABL); however, it is seldom considered in determining this value in emergy analyses. One reason that atmospheric stability is not usually considered is that a sui...

  6. Designing a porous-crystalline structure of β-Ga2O3: a potential approach to tune its opto-electronic properties.

    PubMed

    Banerjee, Swastika; Jiang, Xiangwei; Wang, Lin-Wang

    2018-04-04

    β-Ga2O3 has drawn recent attention as a state-of-the-art electronic material due to its stability, optical transparency and appealing performance in power devices. However, it has also found a wider range of opto-electronic applications including photocatalysis, especially in its porous form. For such applications, a lower band gap must be obtained and an electron-hole spatial separation would be beneficial. Like many other metal oxides (e.g. Al2O3), Ga2O3 can also form various types of porous structure. In the present study, we investigate how its optical and electronic properties can be changed in a particular porous structure with stoichiometrically balanced and extended vacancy channels. We apply a set of first principles computational methods to investigate the formation and the structural, dynamic, and opto-electronic properties. We find that such an extended vacancy channel is mechanically stable and has relatively low formation energy. We also find that this results in a spatial separation of the electron and hole, forming a long-lived charge transfer state that has desirable characteristics for a photocatalyst. In addition, the electronic band gap reduces to the vis-region unlike the transparency in the pure β-Ga2O3 crystal. Thus, our systematic study is promising for the application of such a porous structure of β-Ga2O3 as a versatile electronic material.

  7. Decentralized Fuzzy MPC on Spatial Power Control of a Large PHWR

    NASA Astrophysics Data System (ADS)

    Liu, Xiangjie; Jiang, Di; Lee, Kwang Y.

    2016-08-01

    Reliable power control for stabilizing the spatial oscillations is quite important for ensuring the safe operation of a modern pressurized heavy water reactor (PHWR), since these spatial oscillations can cause “flux tilting” in the reactor core. In this paper, a decentralized fuzzy model predictive control (DFMPC) is proposed for spatial control of PHWR. Due to the load dependent dynamics of the nuclear power plant, fuzzy modeling is used to approximate the nonlinear process. A fuzzy Lyapunov function and “quasi-min-max” strategy is utilized in designing the DFMPC, to reduce the conservatism. The plant-wide stability is achieved by the asymptotically positive realness constraint (APRC) for this decentralized MPC. The solving optimization problem is based on a receding horizon scheme involving the linear matrix inequalities (LMIs) technique. Through dynamic simulations, it is demonstrated that the designed DFMPC can effectively suppress spatial oscillations developed in PHWR, and further, shows the advantages over the typical parallel distributed compensation (PDC) control scheme.

  8. Sharp wave ripples during learning stabilize hippocampal spatial map

    PubMed Central

    Roux, Lisa; Hu, Bo; Eichler, Ronny; Stark, Eran; Buzsáki, György

    2017-01-01

    Cognitive representation of the environment requires a stable hippocampal map but the mechanisms maintaining map representation are unknown. Because sharp wave-ripples (SPW-R) orchestrate both retrospective and prospective spatial information, we hypothesized that disrupting neuronal activity during SPW-Rs affects spatial representation. Mice learned daily a new set of three goal locations on a multi-well maze. We used closed-loop SPW-R detection at goal locations to trigger optogenetic silencing of a subset of CA1 pyramidal neurons. Control place cells (non-silenced or silenced outside SPW-Rs) largely maintained the location of their place fields after learning and showed increased spatial information content. In contrast, the place fields of SPW-R-silenced place cells remapped, and their spatial information remained unaltered. SPW-R silencing did not impact the firing rates or the proportions of place cells. These results suggest that interference with SPW-R-associated activity during learning prevents the stabilization and refinement of the hippocampal map. PMID:28394323

  9. Computational models of spatial updating in peri-saccadic perception

    PubMed Central

    Hamker, Fred H.; Zirnsak, Marc; Ziesche, Arnold; Lappe, Markus

    2011-01-01

    Perceptual phenomena that occur around the time of a saccade, such as peri-saccadic mislocalization or saccadic suppression of displacement, have often been linked to mechanisms of spatial stability. These phenomena are usually regarded as errors in processes of trans-saccadic spatial transformations and they provide important tools to study these processes. However, a true understanding of the underlying brain processes that participate in the preparation for a saccade and in the transfer of information across it requires a closer, more quantitative approach that links different perceptual phenomena with each other and with the functional requirements of ensuring spatial stability. We review a number of computational models of peri-saccadic spatial perception that provide steps in that direction. Although most models are concerned with only specific phenomena, some generalization and interconnection between them can be obtained from a comparison. Our analysis shows how different perceptual effects can coherently be brought together and linked back to neuronal mechanisms on the way to explaining vision across saccades. PMID:21242143

  10. Topological transformations of Hopf solitons in chiral ferromagnets and liquid crystals.

    PubMed

    Tai, Jung-Shen B; Ackerman, Paul J; Smalyukh, Ivan I

    2018-01-30

    Liquid crystals are widely known for their facile responses to external fields, which forms a basis of the modern information display technology. However, switching of molecular alignment field configurations typically involves topologically trivial structures, although singular line and point defects often appear as short-lived transient states. Here, we demonstrate electric and magnetic switching of nonsingular solitonic structures in chiral nematic and ferromagnetic liquid crystals. These topological soliton structures are characterized by Hopf indices, integers corresponding to the numbers of times that closed-loop-like spatial regions (dubbed "preimages") of two different single orientations of rod-like molecules or magnetization are linked with each other. We show that both dielectric and ferromagnetic response of the studied material systems allow for stabilizing a host of topological solitons with different Hopf indices. The field transformations during such switching are continuous when Hopf indices remain unchanged, even when involving transformations of preimages, but discontinuous otherwise.

  11. EIT: Solar corona synoptic observations from SOHO with an Extreme-ultraviolet Imaging Telescope

    NASA Technical Reports Server (NTRS)

    Delaboudiniere, J. P.; Gabriel, A. H.; Artzner, G. E.; Michels, D. J.; Dere, K. P.; Howard, R. A.; Catura, R.; Stern, R.; Lemen, J.; Neupert, W.

    1988-01-01

    The Extreme-ultraviolet Imaging Telescope (EIT) of SOHO (solar and heliospheric observatory) will provide full disk images in emission lines formed at temperatures that map solar structures ranging from the chromospheric network to the hot magnetically confined plasma in the corona. Images in four narrow bandpasses will be obtained using normal incidence multilayered optics deposited on quadrants of a Ritchey-Chretien telescope. The EIT is capable of providing a uniform one arc second resolution over its entire 50 by 50 arc min field of view. Data from the EIT will be extremely valuable for identifying and interpreting the spatial and temperature fine structures of the solar atmosphere. Temporal analysis will provide information on the stability of these structures and identify dynamical processes. EIT images, issued daily, will provide the global corona context for aid in unifying the investigations and in forming the observing plans for SOHO coronal instruments.

  12. Flexibility and rigidity of cross-linked Straight Fibrils under axial motion constraints.

    PubMed

    Nagy Kem, Gyula

    2016-09-01

    The Straight Fibrils are stiff rod-like filaments and play a significant role in cellular processes as structural stability and intracellular transport. Introducing a 3D mechanical model for the motion of braced cylindrical fibrils under axial motion constraint; we provide some mechanism and a graph theoretical model for fibril structures and give the characterization of the flexibility and the rigidity of this bar-and-joint spatial framework. The connectedness and the circuit of the bracing graph characterize the flexibility of these structures. In this paper, we focus on the kinematical properties of hierarchical levels of fibrils and evaluate the number of the bracing elements for the rigidity and its computational complexity. The presented model is a good characterization of the frameworks of bio-fibrils such as microtubules, cellulose, which inspired this work. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Spatial optimal disturbances in swept-wing boundary layers

    NASA Astrophysics Data System (ADS)

    Chen, Cheng

    2018-04-01

    With the use of the adjoint-based optimization method proposed by Tempelmann et al. (J. Fluid Mech., vol. 704, 2012, pp. 251-279), in which the parabolized stability equation (PSE) and so-called adjoint parabolized stability equation (APSE) are solved iteratively, we obtain the spatial optimal disturbance shape and investigate its dependence on the parameters of disturbance wave and wall condition, such as radial frequency ω and wall temperature Twall, in a swept-wing boundary layer flow. Further, the non-modal growth mechanism of this optimal disturbance has been also discussed, regarding its spatial evolution way in the streamwise direction. The results imply that the spanwise wavenumber, disturbance frequency and wall cooling do not change the physical mechanism of perturbation growth, just with a substantial effect on the magnitude of perturbation growth. Further, wall cooling may have enhancing or suppressing effect on spatial optimal disturbance growth, depending on the streamwise location.

  14. Granular Rayleigh-Taylor instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinningland, Jan Ludvig; Johnsen, Oistein; Flekkoey, Eirik G.

    2009-06-18

    A granular instability driven by gravity is studied experimentally and numerically. The instability arises as grains fall in a closed Hele-Shaw cell where a layer of dense granular material is positioned above a layer of air. The initially flat front defined by the grains subsequently develops into a pattern of falling granular fingers separated by rising bubbles of air. A transient coarsening of the front is observed right from the start by a finger merging process. The coarsening is later stabilized by new fingers growing from the center of the rising bubbles. The structures are quantified by means of Fouriermore » analysis and quantitative agreement between experiment and computation is shown. This analysis also reveals scale invariance of the flow structures under overall change of spatial scale.« less

  15. Time-dependent spectral analysis of interactions within groups of walking pedestrians and vertical structural motion using wavelets

    NASA Astrophysics Data System (ADS)

    Bocian, M.; Brownjohn, J. M. W.; Racic, V.; Hester, D.; Quattrone, A.; Gilbert, L.; Beasley, R.

    2018-05-01

    A multi-scale and multi-object interaction phenomena can arise when a group of walking pedestrians crosses a structure capable of exhibiting dynamic response. This is because each pedestrian is an autonomous dynamic system capable of displaying intricate behaviour affected by social, psychological, biomechanical and environmental factors, including adaptations to the structural motion. Despite a wealth of mathematical models attempting to describe and simulate coupled crowd-structure system, their applicability can generally be considered uncertain. This can be assigned to a number of assumptions made in their development and the scarcity or unavailability of data suitable for their validation, in particular those associated with pedestrian-pedestrian and pedestrian-structure interaction. To alleviate this problem, data on behaviour of individual pedestrians within groups of six walkers with different spatial arrangements are gathered simultaneously with data on dynamic structural response of a footbridge, from a series of measurements utilising wireless motion monitors. Unlike in previous studies on coordination of pedestrian behaviour, the collected data can serve as a proxy for pedestrian vertical force, which is of critical importance from the point of view of structural stability. A bivariate analysis framework is proposed and applied to these data, encompassing wavelet transform, synchronisation measures based on Shannon entropy and circular statistics. A topological pedestrian map is contrived showing the strength and directionality of between-subjects interactions. It is found that the coordination in pedestrians' vertical force depends on the spatial collocation within a group, but it is generally weak. The relationship between the bridge and pedestrian behaviour is also analysed, revealing stronger propensity for pedestrians to coordinate their force with the structural motion rather than with each other.

  16. DNA methylation regulates neurophysiological spatial representation in memory formation

    PubMed Central

    Roth, Eric D.; Roth, Tania L.; Money, Kelli M.; SenGupta, Sonda; Eason, Dawn E.; Sweatt, J. David

    2015-01-01

    Epigenetic mechanisms including altered DNA methylation are critical for altered gene transcription subserving synaptic plasticity and the retention of learned behavior. Here we tested the idea that one role for activity-dependent altered DNA methylation is stabilization of cognition-associated hippocampal place cell firing in response to novel place learning. We observed that a behavioral protocol (spatial exploration of a novel environment) known to induce hippocampal place cell remapping resulted in alterations of hippocampal Bdnf DNA methylation. Further studies using neurophysiological in vivo single unit recordings revealed that pharmacological manipulations of DNA methylation decreased long-term but not short-term place field stability. Together our data highlight a role for DNA methylation in regulating neurophysiological spatial representation and memory formation. PMID:25960947

  17. Loss of conformational stability in calmodulin upon methionine oxidation.

    PubMed Central

    Gao, J; Yin, D H; Yao, Y; Sun, H; Qin, Z; Schöneich, C; Williams, T D; Squier, T C

    1998-01-01

    We have used electrospray ionization mass spectrometry (ESI-MS), circular dichroism (CD), and fluorescence spectroscopy to investigate the secondary and tertiary structural consequences that result from oxidative modification of methionine residues in wheat germ calmodulin (CaM), and prevent activation of the plasma membrane Ca-ATPase. Using ESI-MS, we have measured rates of modification and molecular mass distributions of oxidatively modified CaM species (CaMox) resulting from exposure to H2O2. From these rates, we find that oxidative modification of methionine to the corresponding methionine sulfoxide does not predispose CaM to further oxidative modification. These results indicate that methionine oxidation results in no large-scale alterations in the tertiary structure of CaMox, because the rates of oxidative modification of individual methionines are directly related to their solvent exposure. Likewise, CD measurements indicate that methionine oxidation results in little change in the apparent alpha-helical content at 28 degrees C, and only a small (0.3 +/- 0.1 kcal mol(-1)) decrease in thermal stability, suggesting the disruption of a limited number of specific noncovalent interactions. Fluorescence lifetime, anisotropy, and quenching measurements of N-(1-pyrenyl)-maleimide (PMal) covalently bound to Cys26 indicate local structural changes around PMal in the amino-terminal domain in response to oxidative modification of methionine residues in the carboxyl-terminal domain. Because the opposing globular domains remain spatially distant in both native and oxidatively modified CaM, the oxidative modification of methionines in the carboxyl-terminal domain are suggested to modify the conformation of the amino-terminal domain through alterations in the structural features involving the interdomain central helix. The structural basis for the linkage between oxidative modification and these global conformational changes is discussed in terms of possible alterations in specific noncovalent interactions that have previously been suggested to stabilize the central helix in CaM. PMID:9512014

  18. Agent Based Modeling of Human Gut Microbiome Interactions and Perturbations.

    PubMed

    Shashkova, Tatiana; Popenko, Anna; Tyakht, Alexander; Peskov, Kirill; Kosinsky, Yuri; Bogolubsky, Lev; Raigorodskii, Andrei; Ischenko, Dmitry; Alexeev, Dmitry; Govorun, Vadim

    2016-01-01

    Intestinal microbiota plays an important role in the human health. It is involved in the digestion and protects the host against external pathogens. Examination of the intestinal microbiome interactions is required for understanding of the community influence on host health. Studies of the microbiome can provide insight on methods of improving health, including specific clinical procedures for individual microbial community composition modification and microbiota correction by colonizing with new bacterial species or dietary changes. In this work we report an agent-based model of interactions between two bacterial species and between species and the gut. The model is based on reactions describing bacterial fermentation of polysaccharides to acetate and propionate and fermentation of acetate to butyrate. Antibiotic treatment was chosen as disturbance factor and used to investigate stability of the system. System recovery after antibiotic treatment was analyzed as dependence on quantity of feedback interactions inside the community, therapy duration and amount of antibiotics. Bacterial species are known to mutate and acquire resistance to the antibiotics. The ability to mutate was considered to be a stochastic process, under this suggestion ratio of sensitive to resistant bacteria was calculated during antibiotic therapy and recovery. The model confirms a hypothesis of feedbacks mechanisms necessity for providing functionality and stability of the system after disturbance. High fraction of bacterial community was shown to mutate during antibiotic treatment, though sensitive strains could become dominating after recovery. The recovery of sensitive strains is explained by fitness cost of the resistance. The model demonstrates not only quantitative dynamics of bacterial species, but also gives an ability to observe the emergent spatial structure and its alteration, depending on various feedback mechanisms. Visual version of the model shows that spatial structure is a key factor, which helps bacteria to survive and to adapt to changed environmental conditions.

  19. The structural analysis and modelling of ring substituent effect for the ortho-derivatives of 1-hydroxynaphthalene-2-carboxanilides and 2-hydroxynaphthalene-1-carboxanilides

    NASA Astrophysics Data System (ADS)

    Škorňa, Peter; Michalík, Martin; Lukeš, Vladimír; Klein, Erik

    2017-09-01

    The quantum chemical DFT study of 1-hydroxynaphthalene-2-carboxanilide (A-H) and 2-hydroxynaphthalene-1-carboxanilide (B-H) and their selected ortho-derivatives (A-R, B-R) is presented. The structural analysis showed that the energetically preferred conformation is stabilized via the intramolecular hydrogen bonds occurring between the Cdbnd O⋯H-O1 of A-H molecule and Cdbnd O⋯H-O2 groups of B-H molecule. The A-R derivatives are practically planar, while the B-R derivatives are slightly distorted due to the spatial repulsion of hydrogen atoms. The conformation analysis of molecules with deprotonated hydroxyl group supports the concept of existence of two conformer types with respect to the sbnd NHsbnd COsbnd bridge orientation. Stabilization of the naphtholate moiety by a hydrogen bond to the amide sbnd NHsbnd group may allow the compound to cross the membrane to the extracellular space. The ortho substitution effect on the selected calculated properties was analyzed and the theoretical data were correlated with the substituent constants. For the B-R derivatives, the antitubercular activity concentrations were correlated and predicted by the calculated quantities.

  20. Skeletal assessment with finite element analysis: relevance, pitfalls and interpretation.

    PubMed

    Campbell, Graeme Michael; Glüer, Claus-C

    2017-07-01

    Finite element models simulate the mechanical response of bone under load, enabling noninvasive assessment of strength. Models generated from quantitative computed tomography (QCT) incorporate the geometry and spatial distribution of bone mineral density (BMD) to simulate physiological and traumatic loads as well as orthopaedic implant behaviour. The present review discusses the current strengths and weakness of finite element models for application to skeletal biomechanics. In cadaver studies, finite element models provide better estimations of strength compared to BMD. Data from clinical studies are encouraging; however, the superiority of finite element models over BMD measures for fracture prediction has not been shown conclusively, and may be sex and site dependent. Therapeutic effects on bone strength are larger than for BMD; however, model validation has only been performed on untreated bone. High-resolution modalities and novel image processing methods may enhance the structural representation and predictive ability. Despite extensive use of finite element models to study orthopaedic implant stability, accurate simulation of the bone-implant interface and fracture progression remains a significant challenge. Skeletal finite element models provide noninvasive assessments of strength and implant stability. Improved structural representation and implant surface interaction may enable more accurate models of fragility in the future.

  1. Observations of upper ocean stability and heat fluxes in the Antarctic from under-ice Argo float profile data.

    NASA Astrophysics Data System (ADS)

    Wilson, E. A.; Riser, S.

    2016-12-01

    Sea ice growth around Antarctica is intimately linked to the stability and thermohaline structure of the underlying ocean. As sea ice grows, the resulting brine triggers convective instabilities that deepen the mixed layer and entrain warm water from the weakly stratified pycnocline. The heat released from this process acts as a strong negative feedback to ice growth which, under the right scenarios, can exceed the initial atmospheric heat loss. Much of our current understanding of this ice-ocean interaction comes from a handful of relatively short field campaigns in the Weddell Sea. Here, we supplement those observations with an analysis of over 9000 under-ice Argo float profiles, collected between 2006-2015. These profiles provide an unprecedented view of the temporal and spatial variability of the upper ocean structure throughout the Antarctic region. With these observations and a theoretical understanding of the coupled ice-ocean system, we assess the ocean's potential to limit thermodynamic ice growth as well as its susceptibility to deep convection in different regions. Using these results, we infer how recent climatic changes may influence Antarctic sea ice growth and deep ocean ventilation in the near future.

  2. Biophysics of protein evolution and evolutionary protein biophysics

    PubMed Central

    Sikosek, Tobias; Chan, Hue Sun

    2014-01-01

    The study of molecular evolution at the level of protein-coding genes often entails comparing large datasets of sequences to infer their evolutionary relationships. Despite the importance of a protein's structure and conformational dynamics to its function and thus its fitness, common phylogenetic methods embody minimal biophysical knowledge of proteins. To underscore the biophysical constraints on natural selection, we survey effects of protein mutations, highlighting the physical basis for marginal stability of natural globular proteins and how requirement for kinetic stability and avoidance of misfolding and misinteractions might have affected protein evolution. The biophysical underpinnings of these effects have been addressed by models with an explicit coarse-grained spatial representation of the polypeptide chain. Sequence–structure mappings based on such models are powerful conceptual tools that rationalize mutational robustness, evolvability, epistasis, promiscuous function performed by ‘hidden’ conformational states, resolution of adaptive conflicts and conformational switches in the evolution from one protein fold to another. Recently, protein biophysics has been applied to derive more accurate evolutionary accounts of sequence data. Methods have also been developed to exploit sequence-based evolutionary information to predict biophysical behaviours of proteins. The success of these approaches demonstrates a deep synergy between the fields of protein biophysics and protein evolution. PMID:25165599

  3. Stability of steady hand force production explored across spaces and methods of analysis.

    PubMed

    de Freitas, Paulo B; Freitas, Sandra M S F; Lewis, Mechelle M; Huang, Xuemei; Latash, Mark L

    2018-06-01

    We used the framework of the uncontrolled manifold (UCM) hypothesis and explored the reliability of several outcome variables across different spaces of analysis during a very simple four-finger accurate force production task. Fourteen healthy, young adults performed the accurate force production task with each hand on 3 days. Small spatial finger perturbations were generated by the "inverse piano" device three times per trial (lifting the fingers 1 cm/0.5 s and lowering them). The data were analyzed using the following main methods: (1) computation of indices of the structure of inter-trial variance and motor equivalence in the space of finger forces and finger modes, and (2) analysis of referent coordinates and apparent stiffness values for the hand. Maximal voluntary force and the index of enslaving (unintentional finger force production) showed good to excellent reliability. Strong synergies stabilizing total force were reflected in both structure of variance and motor equivalence indices. Variance within the UCM and the index of motor equivalent motion dropped over the trial duration and showed good to excellent reliability. Variance orthogonal to the UCM and the index of non-motor equivalent motion dropped over the 3 days and showed poor to moderate reliability. Referent coordinate and apparent stiffness indices co-varied strongly and both showed good reliability. In contrast, the computed index of force stabilization showed poor reliability. The findings are interpreted within the scheme of neural control with referent coordinates involving the hierarchy of two basic commands, the r-command and c-command. The data suggest natural drifts in the finger force space, particularly within the UCM. We interpret these drifts as reflections of a trade-off between stability and optimization of action. The implications of these findings for the UCM framework and future clinical applications are explored in the discussion. Indices of the structure of variance and motor equivalence show good reliability and can be recommended for applied studies.

  4. Non-normality and classification of amplification mechanisms in stability and resolvent analysis

    NASA Astrophysics Data System (ADS)

    Symon, Sean; Rosenberg, Kevin; Dawson, Scott T. M.; McKeon, Beverley J.

    2018-05-01

    Eigenspectra and pseudospectra of the mean-linearized Navier-Stokes operator are used to characterize amplification mechanisms in laminar and turbulent flows in which linear mechanisms are important. Success of mean flow (linear) stability analysis for a particular frequency is shown to depend on whether two scalar measures of non-normality agree: (1) the product between the resolvent norm and the distance from the imaginary axis to the closest eigenvalue and (2) the inverse of the inner product between the most amplified resolvent forcing and response modes. If they agree, the resolvent operator can be rewritten in its dyadic representation to reveal that the adjoint and forward stability modes are proportional to the forcing and response resolvent modes at that frequency. Hence the real parts of the eigenvalues are important since they are responsible for resonant amplification and the resolvent operator is low rank when the eigenvalues are sufficiently separated in the spectrum. If the amplification is pseudoresonant, then resolvent analysis is more suitable to understand the origin of observed flow structures. Two test cases are studied: low Reynolds number cylinder flow and turbulent channel flow. The first deals mainly with resonant mechanisms, hence the success of both classical and mean stability analysis with respect to predicting the critical Reynolds number and global frequency of the saturated flow. Both scalar measures of non-normality agree for the base and mean flows, and the region where the forcing and response modes overlap scales with the length of the recirculation bubble. In the case of turbulent channel flow, structures result from both resonant and pseudoresonant mechanisms, suggesting that both are necessary elements to sustain turbulence. Mean shear is exploited most efficiently by stationary disturbances while bounds on the pseudospectra illustrate how pseudoresonance is responsible for the most amplified disturbances at spatial wavenumbers and temporal frequencies corresponding to well-known turbulent structures. Some implications for flow control are discussed.

  5. A new capacitive long-range displacement nanometer sensor with differential sensing structure based on time-grating

    NASA Astrophysics Data System (ADS)

    Yu, Zhicheng; Peng, Kai; Liu, Xiaokang; Pu, Hongji; Chen, Ziran

    2018-05-01

    High-precision displacement sensors, which can measure large displacements with nanometer resolution, are key components in many ultra-precision fabrication machines. In this paper, a new capacitive nanometer displacement sensor with differential sensing structure is proposed for long-range linear displacement measurements based on an approach denoted time grating. Analytical models established using electric field coupling theory and an area integral method indicate that common-mode interference will result in a first-harmonic error in the measurement results. To reduce the common-mode interference, the proposed sensor design employs a differential sensing structure, which adopts a second group of induction electrodes spatially separated from the first group of induction electrodes by a half-pitch length. Experimental results based on a prototype sensor demonstrate that the measurement accuracy and the stability of the sensor are substantially improved after adopting the differential sensing structure. Finally, a prototype sensor achieves a measurement accuracy of  ±200 nm over the full 200 mm measurement range of the sensor.

  6. An effective immunization strategy for airborne epidemics in modular and hierarchical social contact network

    NASA Astrophysics Data System (ADS)

    Song, Zhichao; Ge, Yuanzheng; Luo, Lei; Duan, Hong; Qiu, Xiaogang

    2015-12-01

    Social contact between individuals is the chief factor for airborne epidemic transmission among the crowd. Social contact networks, which describe the contact relationships among individuals, always exhibit overlapping qualities of communities, hierarchical structure and spatial-correlated. We find that traditional global targeted immunization strategy would lose its superiority in controlling the epidemic propagation in the social contact networks with modular and hierarchical structure. Therefore, we propose a hierarchical targeted immunization strategy to settle this problem. In this novel strategy, importance of the hierarchical structure is considered. Transmission control experiments of influenza H1N1 are carried out based on a modular and hierarchical network model. Results obtained indicate that hierarchical structure of the network is more critical than the degrees of the immunized targets and the modular network layer is the most important for the epidemic propagation control. Finally, the efficacy and stability of this novel immunization strategy have been validated as well.

  7. Synthesis of TiC Nanoparticles Anchored on Hollow Carbon Nanospheres for Enhanced Polysulfide Adsorption in Li-S Batteries.

    PubMed

    Cao, Bokai; Chen, Yong; Li, De; Yin, Lihong; Mo, Yan

    2016-12-08

    A novel spatial confinement strategy based on a carbon/TiO 2 /carbon sandwich structure is proposed to synthesize TiC nanoparticles anchored on hollow carbon nanospheres (TiC@C) through a carbothermal reduction reaction. During the synthesis process, two carbon layers not only serve as reductant to convert TiO 2 into TiC nanoparticles, but also create a spatial confinement to suppress the aggregation of TiO 2 , resulting in the formation of well-dispersed TiC nanoparticles. This unique TiC@C structure shows an outstanding long-term cycling stability at high rates owing to the strong physical and chemical adsorption of lithium polysulfides (i.e., a high capacity of 732.6 mA h g -1 at 1600 mA g -1 ) and it retains a capacity of 443.2 mA h g -1 after 1000 cycles, corresponding to a decay rate of only 0.0395 % per cycle. Therefore, this unique TiC@C composite could be considered as an important candidate for the cathode material in Li-S batteries. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Negative stiffness and modulated states in active nematics.

    PubMed

    Srivastava, Pragya; Mishra, Prashant; Marchetti, M Cristina

    2016-10-04

    We examine the dynamics of an active nematic liquid crystal on a frictional substrate. When frictional damping dominates over viscous dissipation, we eliminate flow in favor of active stresses to obtain a minimal dynamical model for the nematic order parameter, with elastic constants renormalized by activity. The renormalized elastic constants can become negative at large activity, leading to the selection of spatially inhomogeneous patterns via a mechanism analogous to that responsible for modulated phases arising at an equilibrium Lifshitz point. Tuning activity and the degree of nematic order in the passive system, we obtain a linear stability phase diagram that exhibits a nonequilibrium tricritical point where ordered, modulated and disordered phases meet. Numerical solution of the nonlinear equations yields a succession of spatial structures of increasing complexity with increasing activity, including kink walls and active turbulence, as observed in experiments on microtubule bundles confined at an oil-water interface. Our work provides a minimal model for an overdamped active nematic that reproduces all the nonequilibrium structures seen in simulations of the full active nematic hydrodynamics and provides a framework for understanding some of the mechanisms for selection of the nonequilibrium patterns in the language of equilibrium critical phenomena.

  9. Onset of natural convection in a continuously perturbed system

    NASA Astrophysics Data System (ADS)

    Ghorbani, Zohreh; Riaz, Amir

    2017-11-01

    The convective mixing triggered by gravitational instability plays an important role in CO2 sequestration in saline aquifers. The linear stability analysis and the numerical simulation concerning convective mixing in porous media requires perturbations of small amplitude to be imposed on the concentration field in the form of an initial shape function. In aquifers, however, the instability is triggered by local porosity and permeability. In this work, we consider a canonical 2D homogeneous system where perturbations arise due to spatial variation of porosity in the system. The advantage of this approach is not only the elimination of the required initial shape function, but it also serves as a more realistic approach. Using a reduced nonlinear method, we first explore the effect of harmonic variations of porosity in the transverse and streamwise direction on the onset time of convection and late time behavior. We then obtain the optimal porosity structure that minimizes the convection onset. We further examine the effect of a random porosity distribution, that is independent of the spatial mode of porosity structure, on the convection onset. Using high-order pseudospectral DNS, we explore how the random distribution differs from the modal approach in predicting the onset time.

  10. Chromatin Structure and Replication Origins: Determinants Of Chromosome Replication And Nuclear Organization

    PubMed Central

    Smith, Owen K.; Aladjem, Mirit I.

    2014-01-01

    The DNA replication program is, in part, determined by the epigenetic landscape that governs local chromosome architecture and directs chromosome duplication. Replication must coordinate with other biochemical processes occurring concomitantly on chromatin, such as transcription and remodeling, to insure accurate duplication of both genetic and epigenetic features and to preserve genomic stability. The importance of genome architecture and chromatin looping in coordinating cellular processes on chromatin is illustrated by two recent sets of discoveries. First, chromatin-associated proteins that are not part of the core replication machinery were shown to affect the timing of DNA replication. These chromatin-associated proteins could be working in concert, or perhaps in competition, with the transcriptional machinery and with chromatin modifiers to determine the spatial and temporal organization of replication initiation events. Second, epigenetic interactions are mediated by DNA sequences that determine chromosomal replication. In this review we summarize recent findings and current models linking spatial and temporal regulation of the replication program with epigenetic signaling. We discuss these issues in the context of the genome’s three-dimensional structure with an emphasis on events occurring during the initiation of DNA replication. PMID:24905010

  11. Compartments in a marine food web associated with phylogeny, body mass, and habitat structure.

    PubMed

    Rezende, Enrico L; Albert, Eva M; Fortuna, Miguel A; Bascompte, Jordi

    2009-08-01

    A long-standing question in community ecology is whether food webs are organized in compartments, where species within the same compartment interact frequently among themselves, but show fewer interactions with species from other compartments. Finding evidence for this community organization is important since compartmentalization may strongly affect food web robustness to perturbation. However, few studies have found unequivocal evidence of compartments, and none has quantified the suite of mechanisms generating such a structure. Here, we combine computational tools from the physics of complex networks with phylogenetic statistical methods to show that a large marine food web is organized in compartments, and that body size, phylogeny, and spatial structure are jointly associated with such a compartmentalized structure. Sharks account for the majority of predatory interactions within their compartments. Phylogenetically closely related shark species tend to occupy different compartments and have divergent trophic levels, suggesting that competition may play an important role structuring some of these compartments. Current overfishing of sharks has the potential to change the structural properties, which might eventually affect the stability of the food web.

  12. The stability and slow dynamics of spot patterns in the 2D Brusselator model: The effect of open systems and heterogeneities

    NASA Astrophysics Data System (ADS)

    Tzou, J. C.; Ward, M. J.

    2018-06-01

    Spot patterns, whereby the activator field becomes spatially localized near certain dynamically-evolving discrete spatial locations in a bounded multi-dimensional domain, is a common occurrence for two-component reaction-diffusion (RD) systems in the singular limit of a large diffusivity ratio. In previous studies of 2-D localized spot patterns for various specific well-known RD systems, the domain boundary was assumed to be impermeable to both the activator and inhibitor, and the reaction-kinetics were assumed to be spatially uniform. As an extension of this previous theory, we use formal asymptotic methods to study the existence, stability, and slow dynamics of localized spot patterns for the singularly perturbed 2-D Brusselator RD model when the domain boundary is only partially impermeable, as modeled by an inhomogeneous Robin boundary condition, or when there is an influx of inhibitor across the domain boundary. In our analysis, we will also allow for the effect of a spatially variable bulk feed term in the reaction kinetics. By applying our extended theory to the special case of one-spot patterns and ring patterns of spots inside the unit disk, we provide a detailed analysis of the effect on spot patterns of these three different sources of heterogeneity. In particular, when there is an influx of inhibitor across the boundary of the unit disk, a ring pattern of spots can become pinned to a ring-radius closer to the domain boundary. Under a Robin condition, a quasi-equilibrium ring pattern of spots is shown to exhibit a novel saddle-node bifurcation behavior in terms of either the inhibitor diffusivity, the Robin constant, or the ambient background concentration. A spatially variable bulk feed term, with a concentrated source of "fuel" inside the domain, is shown to yield a saddle-node bifurcation structure of spot equilibria, which leads to qualitatively new spot-pinning behavior. Results from our asymptotic theory are validated from full numerical simulations of the Brusselator model.

  13. Insights into the fold organization of TIM barrel from interaction energy based structure networks.

    PubMed

    Vijayabaskar, M S; Vishveshwara, Saraswathi

    2012-01-01

    There are many well-known examples of proteins with low sequence similarity, adopting the same structural fold. This aspect of sequence-structure relationship has been extensively studied both experimentally and theoretically, however with limited success. Most of the studies consider remote homology or "sequence conservation" as the basis for their understanding. Recently "interaction energy" based network formalism (Protein Energy Networks (PENs)) was developed to understand the determinants of protein structures. In this paper we have used these PENs to investigate the common non-covalent interactions and their collective features which stabilize the TIM barrel fold. We have also developed a method of aligning PENs in order to understand the spatial conservation of interactions in the fold. We have identified key common interactions responsible for the conservation of the TIM fold, despite high sequence dissimilarity. For instance, the central beta barrel of the TIM fold is stabilized by long-range high energy electrostatic interactions and low-energy contiguous vdW interactions in certain families. The other interfaces like the helix-sheet or the helix-helix seem to be devoid of any high energy conserved interactions. Conserved interactions in the loop regions around the catalytic site of the TIM fold have also been identified, pointing out their significance in both structural and functional evolution. Based on these investigations, we have developed a novel network based phylogenetic analysis for remote homologues, which can perform better than sequence based phylogeny. Such an analysis is more meaningful from both structural and functional evolutionary perspective. We believe that the information obtained through the "interaction conservation" viewpoint and the subsequently developed method of structure network alignment, can shed new light in the fields of fold organization and de novo computational protein design.

  14. Atomic Resolution Structural and Chemical Imaging Revealing the Sequential Migration of Ni, Co, and Mn upon the Battery Cycling of Layered Cathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Pengfei; Zheng, Jianming; Zhang, Ji-Guang

    Layered lithium transition metal oxides (LTMO) are promising candidate cathode materials for next generation high energy density lithium ion battery. The challenge for using this category of cathode is the capacity and voltage fading, which is believed to be associated with the layered structure disordering, a process that is initiated from the surface or solid-electrolyte interface and facilitated by transition metal (TM) reduction and oxygen vacancy formation. However, the atomic level dynamic mechanism of such a layered structure disordering is still not fully clear. In this work, utilizing atomic resolution electron energy loss spectroscopy (EELS), we map, for the firstmore » time at atomic scale, the spatial evolution of Ni, Co and Mn in a cycled LiNi1/3M1/3Co1/3O2 layered cathode. In combination with atomic level structural imaging, we discovered the direct correlation of TM ions migration behavior with lattice disordering, featuring the residing of TM ions in the tetrahedral site and a sequential migration of Ni, Co, and Mn upon the increased lattice disordering of the layered structure. This work highlights that Ni ions, though acting as the dominant redox species in many LTMO, are labile to migrate to cause lattice disordering upon battery cycling; while the Mn ions are more stable as compared with Ni and Co and can act as pillar to stabilize layered structure. Direct visualization of the behavior of TM ions during the battery cycling provides insight for designing of cathode with structural stability and correspondingly a superior performance.« less

  15. Spatio-temporal variability of soil water content on the local scale in a Mediterranean mountain area (Vallcebre, North Eastern Spain). How different spatio-temporal scales reflect mean soil water content

    NASA Astrophysics Data System (ADS)

    Molina, Antonio J.; Latron, Jérôme; Rubio, Carles M.; Gallart, Francesc; Llorens, Pilar

    2014-08-01

    As a result of complex human-land interactions and topographic variability, many Mediterranean mountain catchments are covered by agricultural terraces that have locally modified the soil water content dynamic. Understanding these local-scale dynamics helps us grasp better how hydrology behaves on the catchment scale. Thus, this study examined soil water content variability in the upper 30 cm of the soil on a Mediterranean abandoned terrace in north-east Spain. Using a dataset of high spatial (regular grid of 128 automatic TDR probes at 2.5 m intervals) and temporal (20-min time step) resolution, gathered throughout a 84-day period, the spatio-temporal variability of soil water content at the local scale and the way that different spatio-temporal scales reflect the mean soil water content were investigated. Soil water content spatial variability and its relation to wetness conditions were examined, along with the spatial structuring of the soil water content within the terrace. Then, the ability of single probes and of different combinations of spatial measurements (transects and grids) to provide a good estimate of mean soil water content on the terrace scale was explored by means of temporal stability analyses. Finally, the effect of monitoring frequency on the magnitude of detectable daily soil water content variations was studied. Results showed that soil water content spatial variability followed a bimodal pattern of increasing absolute variability with increasing soil water content. In addition, a linear trend of decreasing soil water content as the distance from the inner part of the terrace increased was identified. Once this trend was subtracted, resulting semi-variograms suggested that the spatial resolution examined was too high to appreciate spatial structuring in the data. Thus, the spatial pattern should be considered as random. Of all the spatial designs tested, the 10 × 10 m mesh grid (9 probes) was considered the most suitable option for a good, time-stable estimate of mean soil water content, as no improvement was obtained with the 5 × 5 m mesh grid (30 probes). Finally, the results of temporal aggregation showed that decreasing the monitoring frequency down to 8 h during wetting-up periods and to 1 day during drying-down ones did not result in a loss of information on daily soil water content variations.

  16. Integrating spatial and numerical structure in mathematical patterning

    NASA Astrophysics Data System (ADS)

    Ni’mah, K.; Purwanto; Irawan, E. B.; Hidayanto, E.

    2018-03-01

    This paper reports a study monitoring the integrating spatial and numerical structure in mathematical patterning skills of 30 students grade 7th of junior high school. The purpose of this research is to clarify the processes by which learners construct new knowledge in mathematical patterning. Findings indicate that: (1) students are unable to organize the structure of spatial and numerical, (2) students were only able to organize the spatial structure, but the numerical structure is still incorrect, (3) students were only able to organize numerical structure, but its spatial structure is still incorrect, (4) students were able to organize both of the spatial and numerical structure.

  17. Stability of semidiscrete approximations for hyperbolic initial-boundary-value problems: An eigenvalue analysis

    NASA Technical Reports Server (NTRS)

    Warming, Robert F.; Beam, Richard M.

    1986-01-01

    A hyperbolic initial-boundary-value problem can be approximated by a system of ordinary differential equations (ODEs) by replacing the spatial derivatives by finite-difference approximations. The resulting system of ODEs is called a semidiscrete approximation. A complication is the fact that more boundary conditions are required for the spatially discrete approximation than are specified for the partial differential equation. Consequently, additional numerical boundary conditions are required and improper treatment of these additional conditions can lead to instability. For a linear initial-boundary-value problem (IBVP) with homogeneous analytical boundary conditions, the semidiscrete approximation results in a system of ODEs of the form du/dt = Au whose solution can be written as u(t) = exp(At)u(O). Lax-Richtmyer stability requires that the matrix norm of exp(At) be uniformly bounded for O less than or = t less than or = T independent of the spatial mesh size. Although the classical Lax-Richtmyer stability definition involves a conventional vector norm, there is no known algebraic test for the uniform boundedness of the matrix norm of exp(At) for hyperbolic IBVPs. An alternative but more complicated stability definition is used in the theory developed by Gustafsson, Kreiss, and Sundstrom (GKS). The two methods are compared.

  18. Food-web dynamics in a large river discontinuum

    USGS Publications Warehouse

    Cross, Wyatt F.; Baxter, Colden V.; Rosi-Marshall, Emma J.; Hall, Robert O.; Kennedy, Theodore A.; Donner, Kevin C.; Kelly, Holly A. Wellard; Seegert, Sarah E.Z.; Behn, Kathrine E.; Yard, Michael D.

    2013-01-01

    Nearly all ecosystems have been altered by human activities, and most communities are now composed of interacting species that have not co-evolved. These changes may modify species interactions, energy and material flows, and food-web stability. Although structural changes to ecosystems have been widely reported, few studies have linked such changes to dynamic food-web attributes and patterns of energy flow. Moreover, there have been few tests of food-web stability theory in highly disturbed and intensely managed freshwater ecosystems. Such synthetic approaches are needed for predicting the future trajectory of ecosystems, including how they may respond to natural or anthropogenic perturbations. We constructed flow food webs at six locations along a 386-km segment of the Colorado River in Grand Canyon (Arizona, USA) for three years. We characterized food-web structure and production, trophic basis of production, energy efficiencies, and interaction-strength distributions across a spatial gradient of perturbation (i.e., distance from Glen Canyon Dam), as well as before and after an experimental flood. We found strong longitudinal patterns in food-web characteristics that strongly correlated with the spatial position of large tributaries. Above tributaries, food webs were dominated by nonnative New Zealand mudsnails (62% of production) and nonnative rainbow trout (100% of fish production). The simple structure of these food webs led to few dominant energy pathways (diatoms to few invertebrate taxa to rainbow trout), large energy inefficiencies (i.e., Below large tributaries, invertebrate production declined ∼18-fold, while fish production remained similar to upstream sites and comprised predominately native taxa (80–100% of production). Sites below large tributaries had increasingly reticulate and detritus-based food webs with a higher prevalence of omnivory, as well as interaction strength distributions more typical of theoretically stable food webs (i.e., nearly twofold higher proportion of weak interactions). Consistent with theory, downstream food webs were less responsive to the experimental flood than sites closest to the dam. We show how human-induced shifts to food-web structure can affect energy flow and interaction strengths, and we show that these changes have consequences for food-web function and response to perturbations.

  19. Temporal and spatial stability of red-tailed hawk territories in the Luquillo Experimental Forest, Puerto Rico

    USGS Publications Warehouse

    Boal, C.W.; Snyder, H.A.; Bibles, Brent D.; Estabrook, T.S.

    2003-01-01

    We mapped Red-tailed Hawk (Buteo jamaicensis) territories in the Luquillo Experimental Forest (LEF) of Puerto Rico in 1998. We combined our 1998 data with that collected during previous studies of Red-tailed Hawks in the LEF to examine population numbers and spatial stability of territorial boundaries over a 26-yr period. We also investigated potential relationships between Red-tailed Hawk territory sizes and topographic and climatic factors. Mean size of 16 defended territories during 1998 was 124.3 ?? 12.0 ha, which was not significantly different from our calculations of mean territory sizes derived from data collected in 1974 and 1984. Aspect and slope influenced territory size with the smallest territories having high slope and easterly aspects. Territory size was small compared to that reported for other parts of the species' range. In addition, there was remarkably little temporal change in the spatial distribution, area, and boundaries of Red-tailed Hawk territories among the study periods. Further, there was substantial boundary overlap (21-27%) between defended territories among the different study periods. The temporal stability of the spatial distribution of Red-tailed Hawk territories in the study area leads us to believe the area might be at or near saturation.

  20. Wide-Band Spatially Tunable Photonic Bandgap in Visible Spectral Range and Laser based on a Polymer Stabilized Blue Phase

    PubMed Central

    Lin, Jia-De; Wang, Tsai-Yen; Mo, Ting-Shan; Huang, Shuan-Yu; Lee, Chia-Rong

    2016-01-01

    This work successfully develops a largely-gradient-pitched polymer-stabilized blue phase (PSBP) photonic bandgap (PBG) device with a wide-band spatial tunability in nearly entire visible region within a wide blue phase (BP) temperature range including room temperature. The device is fabricated based on the reverse diffusion of two injected BP-monomer mixtures with a low and a high chiral concentrations and afterwards through UV-curing. This gradient-pitched PSBP can show a rainbow-like reflection appearance in which the peak wavelength of the PBG can be spatially tuned from the blue to the red regions at room temperature. The total tuning spectral range for the cell is as broad as 165 nm and covers almost the entire visible region. Based on the gradient-pitched PSBP, a spatially tunable laser is also demonstrated in this work. The temperature sensitivity of the lasing wavelength for the laser is negatively linear and approximately −0.26 nm/°C. The two devices have a great potential for use in applications of photonic devices and displays because of their multiple advantages, such as wide-band tunability, wide operated temperature range, high stability and reliability, no issue of hysteresis, no need of external controlling sources, and not slow tuning speed (mechanically). PMID:27456475

  1. Spatial patterns of plant litter in a tidal freshwater marsh and implications for marsh persistence.

    PubMed

    Elmore, Andrew J; Engelhardt, Katharina A M; Cadol, Daniel; Palinkas, Cindy M

    2016-04-01

    The maintenance of marsh platform elevation under conditions of sea level rise is dependent on mineral sediment supply to marsh surfaces and conversion of above- and belowground plant biomass to soil organic material. These physical and biological processes interact within the tidal zone, resulting in elevation-dependent processes contributing to marsh accretion. Here, we explore spatial pattern in a variable related to aboveground biomass, plant litter, to reveal its role in the maintenance of marsh surfaces. Plant litter persisting through the dormant season represents the more recalcitrant portion of plant biomass, and as such has an extended period of influence on ecosystem processes. We conducted a field and remote sensing analysis of plant litter height, aboveground biomass, vertical cover, and stem density (collectively termed plant litter structure) at a tidal freshwater marsh located within the Potomac River estuary, USA. LiDAR and field observations show that plant litter structure becomes more prominent with increasing elevation. Spatial patterns in litter structure exhibit stability from year to year and correlate with patterns in soil organic matter content, revealed by measuring the loss on ignition of surface sediments. The amount of mineral material embedded within plant litter decreases with increasing elevation, representing an important tradeoff with litter structure. Therefore, at low elevations where litter structure is short and sparse, the role of plant litter is to capture sediment; at high elevations where litter structure is tall and dense, aboveground litter contributes organic matter to soil development. This organic matter contribution has the potential to eclipse that of belowground biomass as the root:shoot ratio of dominant species at high elevations is low compared to that of dominant species at low elevations. Because of these tradeoffs in mineral and organic matter incorporation into soil across elevation gradients, the rate of marsh surface elevation change is remarkably consistent across elevation. Because of the role of plant litter in marsh ecosystem processes, monitoring and assessment of these dynamic geomorphic marsh landscapes might be streamlined through the measurement of plant litter structure, either via LiDAR technologies or field observation.

  2. Interfacial Stability of Li Metal-Solid Electrolyte Elucidated via in Situ Electron Microscopy.

    PubMed

    Ma, Cheng; Cheng, Yongqiang; Yin, Kuibo; Luo, Jian; Sharafi, Asma; Sakamoto, Jeff; Li, Juchuan; More, Karren L; Dudney, Nancy J; Chi, Miaofang

    2016-11-09

    Despite their different chemistries, novel energy-storage systems, e.g., Li-air, Li-S, all-solid-state Li batteries, etc., face one critical challenge of forming a conductive and stable interface between Li metal and a solid electrolyte. An accurate understanding of the formation mechanism and the exact structure and chemistry of the rarely existing benign interfaces, such as the Li-cubic-Li 7-3x Al x La 3 Zr 2 O 12 (c-LLZO) interface, is crucial for enabling the use of Li metal anodes. Due to spatial confinement and structural and chemical complications, current investigations are largely limited to theoretical calculations. Here, through an in situ formation of Li-c-LLZO interfaces inside an aberration-corrected scanning transmission electron microscope, we successfully reveal the interfacial chemical and structural progression. Upon contact with Li metal, the LLZO surface is reduced, which is accompanied by the simultaneous implantation of Li + , resulting in a tetragonal-like LLZO interphase that stabilizes at an extremely small thickness of around five unit cells. This interphase effectively prevented further interfacial reactions without compromising the ionic conductivity. Although the cubic-to-tetragonal transition is typically undesired during LLZO synthesis, the similar structural change was found to be the likely key to the observed benign interface. These insights provide a new perspective for designing Li-solid electrolyte interfaces that can enable the use of Li metal anodes in next-generation batteries.

  3. Morphological classification and spatial distribution of Philippine volcanoes

    NASA Astrophysics Data System (ADS)

    Paguican, E. M. R.; Kervyn, M.; Grosse, P.

    2016-12-01

    The Philippines is an island arc composed of two major blocks: the aseismic Palawan microcontinental block and the Philippine mobile belt. It is bounded by opposing subduction zones, with the left-lateral Philippine Fault running north-south. This setting is ideal for volcano formation and growth, making it one of the best places to study the controls on island arc volcano morphometry and evolution. In this study, we created a database of volcanic edifices and structures identified on the SRTM 30 m digital elevation models (DEM). We computed the morphometry of each edifice using MORVOLC, an IDL code for generating quantitative parameters based on a defined volcano base and DEM. Morphometric results illustrate the large range of sizes and volumes of Philippine volcanoes. Heirarchical classification by principal component analysis distinguishes between large massifs, large cones/sub-cones, small shields/sub-cones, and small cones, based mainly on size (volume, basal width) and steepness (height/basal width ratio, average slopes). Poisson Nearest Neighbor analysis was used to examine the spatial distribution of volcano centroids. Spatial distribution of the different types of volcanoes suggests that large volcanic massifs formed on thickened crust. Although all the volcanic fields and arcs are a response to tectonic activity such as subduction or rifting, only West Luzon, North and South Mindanao, and Eastern Philippines volcanic arcs and Basilan, Macolod, and Maramag volcanic fields present a statistical clustering of volcanic centers. Spatial distribution and preferential alignment of edifices in all volcanic fields confirm that regional structures had some control on their formation. Volcanoes start either as steep cones or as less steep sub-cones and shields. They then grow into large cones, sub-cones and eventually into massifs as eruption focus shifts within the volcano and new eruptive material is deposited on the slopes. Examination of the directions of volcano collapse scars and erosional amphitheater valleys suggests that, during their development, volcano growth is affected by movement of underlying tectonic structures, weight and stability of the growing edifice, structure and composition of the substrata, and intense erosion associated with tropical rainfall.

  4. 3D Rheological Modeling of NW Intraplate Europe, Deciphering Spatial Integrated strength patterns, Mechanical Strong Layering and EET

    NASA Astrophysics Data System (ADS)

    Beekman, F.; Hardebol, N.; Cloetingh, S.; Tesauro, M.

    2006-12-01

    Better understanding of 3D rheological heterogeneity of the European Lithosphere provide the key to tie the recorded intraplate deformation pattern to stress fields transmitted into plate interior from plate boundary forces. The first order strain patterns result from stresses transmitted through the European lithosphere that is marked by a patchwork of high strength variability from inherited structural and compositional heterogeneities and upper mantle thermal perturbations. As the lithospheric rheology depends primarily on its spatial structure, composition and thermal estate, the 3D strength model for the European lithosphere relies on a 3D compositional model that yields the compositional heterogeneities and an iteratively calculated thermal cube using Fouriers law for heat conduction. The accurate appraisal of spatial strength variability results from proper mapping and integration of the geophysical compositional and thermal input parameters. Therefore, much attention has been paid to a proper description of first order structural and tectonic features that facilitate compilation of the compositional and thermal input models. As such, the 3D strength model reflects the thermo-mechanical structure inherited from the Europeans polyphase deformation history. Major 3D spatial mechanical strength variability has been revealed. The East-European and Fennoscandian Craton to the NE exhibit high strength (30-50 1012 N/m) from low mantle temperatures and surface heatflow of 35-60 mW/m2 while central and western Europe reflect a polyphase Phanerozoic thermo- tectonic history. Here, regions with high rigidity are formed primarily by patches of thermally stabilized Variscan Massifs (e.g. Rhenish, Armorican, Bohemian, and Iberian Massif) with low heatflow and lithospheric thickness values (50-65 mW/m2; 110-150 km) yielding strengths of ~15-25 1012 N/m. In contrast, major axis of weakened lithosphere coincides with Cenozoic Rift System (e.g. Upper and Lower Rhine Grabens, Pannonian Basin and Massif Central) attributed to the presence of tomographically imaged plumes. This study has elucidated the memory of the present-days Europeans lithosphere induced by compositional and thermal heterogeneities. The resulting lateral strength variations has a clear signature of the pst lithospheres polyphase deformation and also entails active tectonics, tectonically induced topography and surface processes.

  5. THCOBRA X-ray imaging detector operating in pure Kr

    NASA Astrophysics Data System (ADS)

    Carramate, L. F. N. D.; Silva, A. L. M.; Azevedo, C. D. R.; Fortes, I.; Monteiro, S. G.; Sousa, S.; Ribeiro, F. M.; De Francesco, S.; Covita, D. S.; Veloso, J. F. C. A.

    2017-05-01

    MicroPattern Gaseous Detectors (MPGD) have been explored for X-ray imaging, namely for photon counting imaging which allows the improvement of image quality and the collection of more information than the conventional commercial systems. A 2D-THCOBRA based detector was developed, studied and used to acquire X-ray transmission images. The 2D-THCOBRA structure used has an active area of 2.8 × 2.8 cm2 and allows obtaining the position and energy information of each single photon that interacts with the detector. It is filled with pure Kr at 1 bar operating in a sealed mode. Within this work the performance of the detector is evaluated in terms of charge gain, count rate, time stability, energy and spatial resolutions. The detector presents a charge gain of 2 × 104 and an energy resolution of 23% for 5.9 keV, showing gain stability along time for a count rate of about 1 × 105 Hz/mm2. It presents a spatial resolution of 600 μm (σ = 255 μm) and 500 μm (σ = 213 μm) for x and y directions, respectively, and, considering energy bins about 650 μm (σ = 277 μm) for approximately 16.5 keV. X-ray transmission images of some samples presented here show good prospects for X-ray imaging applications.

  6. Slope stability radar for monitoring mine walls

    NASA Astrophysics Data System (ADS)

    Reeves, Bryan; Noon, David A.; Stickley, Glen F.; Longstaff, Dennis

    2001-11-01

    Determining slope stability in a mining operation is an important task. This is especially true when the mine workings are close to a potentially unstable slope. A common technique to determine slope stability is to monitor the small precursory movements, which occur prior to collapse. The slope stability radar has been developed to remotely scan a rock slope to continuously monitor the spatial deformation of the face. Using differential radar interferometry, the system can detect deformation movements of a rough wall with sub-millimeter accuracy, and with high spatial and temporal resolution. The effects of atmospheric variations and spurious signals can be reduced via signal processing means. The advantage of radar over other monitoring techniques is that it provides full area coverage without the need for mounted reflectors or equipment on the wall. In addition, the radar waves adequately penetrate through rain, dust and smoke to give reliable measurements, twenty-four hours a day. The system has been trialed at three open-cut coal mines in Australia, which demonstrated the potential for real-time monitoring of slope stability during active mining operations.

  7. The roll-up and merging of coherent structures in shallow mixing layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, M. Y., E-mail: celmy@connect.ust.hk; Ghidaoui, M. S.; Kolyshkin, A. A.

    2016-09-15

    The current study seeks a fundamental explanation to the development of two-dimensional coherent structures (2DCSs) in shallow mixing layers. A nonlinear numerical model based on the depth-averaged shallow water equations is used to investigate the temporal evolution of shallow mixing layers, where the mapping from temporal to spatial results is made using the velocity at the center of the mixing layers. The flow is periodic in the streamwise direction. Transmissive boundary conditions are used in the cross-stream boundaries to prevent reflections. Numerical results are compared to linear stability analysis, mean-field theory, and secondary stability analysis. Results suggest that the onsetmore » and development of 2DCS in shallow mixing layers are the result of a sequence of instabilities governed by linear theory, mean-field theory, and secondary stability theory. The linear instability of the shearing velocity gradient gives the onset of 2DCS. When the perturbations reach a certain amplitude, the flow field of the perturbations changes from a wavy shape to a vortical (2DCS) structure because of nonlinearity. The development of the vertical 2DCS does not appear to follow weakly nonlinear theory; instead, it follows mean-field theory. After the formation of 2DCS, separate 2DCSs merge to form larger 2DCS. In this way, 2DCSs grow and shallow mixing layers develop and grow in scale. The merging of 2DCS in shallow mixing layers is shown to be caused by the secondary instability of the 2DCS. Eventually 2DCSs are dissipated by bed friction. The sequence of instabilities can cause the upscaling of the turbulent kinetic energy in shallow mixing layers.« less

  8. Instabilities and subharmonic resonances of subsonic heated round jets, volume 2. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Ng, Lian Lai

    1990-01-01

    When a jet is perturbed by a periodic excitation of suitable frequency, a large-scale coherent structure develops and grows in amplitude as it propagates downstream. The structure eventually rolls up into vortices at some downstream location. The wavy flow associated with the roll-up of a coherent structure is approximated by a parallel mean flow and a small, spatially periodic, axisymmetric wave whose phase velocity and mode shape are given by classical (primary) stability theory. The periodic wave acts as a parametric excitation in the differential equations governing the secondary instability of a subharmonic disturbance. The (resonant) conditions for which the periodic flow can strongly destabilize a subharmonic disturbance are derived. When the resonant conditions are met, the periodic wave plays a catalytic role to enhance the growth rate of the subharmonic. The stability characteristics of the subharmonic disturbance, as a function of jet Mach number, jet heating, mode number and the amplitude of the periodic wave, are studied via a secondary instability analysis using two independent but complementary methods: (1) method of multiple scales, and (2) normal mode analysis. It is found that the growth rates of the subharmonic waves with azimuthal numbers beta = 0 and beta = 1 are enhanced strongly, but comparably, when the amplitude of the periodic wave is increased. Furthermore, compressibility at subsonic Mach numbers has a moderate stabilizing influence on the subharmonic instability modes. Heating suppresses moderately the subharmonic growth rate of an axisymmetric mode, and it reduces more significantly the corresponding growth rate for the first spinning mode. Calculations also indicate that while the presence of a finite-amplitude periodic wave enhances the growth rates of subharmonic instability modes, it minimally distorts the mode shapes of the subharmonic waves.

  9. Do more hospital beds lead to higher hospitalization rates? a spatial examination of Roemer's Law.

    PubMed

    Delamater, Paul L; Messina, Joseph P; Grady, Sue C; WinklerPrins, Vince; Shortridge, Ashton M

    2013-01-01

    Roemer's Law, a widely cited principle in health care policy, states that hospital beds that are built tend to be used. This simple but powerful expression has been invoked to justify Certificate of Need regulation of hospital beds in an effort to contain health care costs. Despite its influence, a surprisingly small body of empirical evidence supports its content. Furthermore, known geographic factors influencing health services use and the spatial structure of the relationship between hospital bed availability and hospitalization rates have not been sufficiently explored in past examinations of Roemer's Law. We pose the question, "Accounting for space in health care access and use, is there an observable association between the availability of hospital beds and hospital utilization?" We employ an ecological research design based upon the Anderson behavioral model of health care utilization. This conceptual model is implemented in an explicitly spatial context. The effect of hospital bed availability on the utilization of hospital services is evaluated, accounting for spatial structure and controlling for other known determinants of hospital utilization. The stability of this relationship is explored by testing across numerous geographic scales of analysis. The case study comprises an entire state system of hospitals and population, evaluating over one million inpatient admissions. We find compelling evidence that a positive, statistically significant relationship exists between hospital bed availability and inpatient hospitalization rates. Additionally, the observed relationship is invariant with changes in the geographic scale of analysis. This study provides evidence for the effects of Roemer's Law, thus suggesting that variations in hospitalization rates have origins in the availability of hospital beds. This relationship is found to be robust across geographic scales of analysis. These findings suggest continued regulation of hospital bed supply to assist in controlling hospital utilization is justified.

  10. Temporal acceleration of spatially distributed kinetic Monte Carlo simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Abhijit; Vlachos, Dionisios G.

    The computational intensity of kinetic Monte Carlo (KMC) simulation is a major impediment in simulating large length and time scales. In recent work, an approximate method for KMC simulation of spatially uniform systems, termed the binomial {tau}-leap method, was introduced [A. Chatterjee, D.G. Vlachos, M.A. Katsoulakis, Binomial distribution based {tau}-leap accelerated stochastic simulation, J. Chem. Phys. 122 (2005) 024112], where molecular bundles instead of individual processes are executed over coarse-grained time increments. This temporal coarse-graining can lead to significant computational savings but its generalization to spatially lattice KMC simulation has not been realized yet. Here we extend the binomial {tau}-leapmore » method to lattice KMC simulations by combining it with spatially adaptive coarse-graining. Absolute stability and computational speed-up analyses for spatial systems along with simulations provide insights into the conditions where accuracy and substantial acceleration of the new spatio-temporal coarse-graining method are ensured. Model systems demonstrate that the r-time increment criterion of Chatterjee et al. obeys the absolute stability limit for values of r up to near 1.« less

  11. Comparison of spatially and temporally resolved diffuse transillumination measurement systems for extraction of optical properties of scattering media.

    PubMed

    Ortiz-Rascón, E; Bruce, N C; Garduño-Mejía, J; Carrillo-Torres, R; Hernández-Paredes, J; Álvarez-Ramos, M E

    2017-11-20

    This paper discusses the main differences between two different methods for determining the optical properties of tissue optical phantoms by fitting the spatial and temporal intensity distribution functions to the diffusion approximation theory. The consistency in the values of the optical properties is verified by changing the width of the recipient containing the turbid medium; as the optical properties are an intrinsic value of the scattering medium, independently of the recipient width, the stability in these values for different widths implies a better measurement system for the acquisition of the optical properties. It is shown that the temporal fitting method presents higher stability than the spatial fitting method; this is probably due to the addition of the time of flight parameter into the diffusion theory.

  12. Spin Structures and Phase Diagrams of Extended Spatially Completely Anisotropic Triangular Lattice Antiferromagnets

    NASA Astrophysics Data System (ADS)

    Sakakida, Keishiro; Shimahara, Hiroshi

    2017-12-01

    Motivated by recently discovered organic antiferromagnets, we examine an extended triangular lattice that consists of two types of triangles of bonds with exchange coupling constants Jℓ and J'ℓ (ℓ= 1, 2, and 3), respectively. The simplified system with Jℓ = J'ℓ > 0 is the spatially completely anisotropic triangular lattice (SCATL) antiferromagnet examined previously. The extended system, which we call an extended SCATL (ESCATL), has two different spatial anisotropy parameters J3/J2 and J'3/J'2 when J1 = J'1 is assumed. We derive classical phase diagrams and spin structures. It is found that the ESCATL antiferromagnet exhibits two up-up-down-down (uudd) phases when the imbalance of the anisotropy parameters is significant, in addition to the three Néel phases that occur in the SCATL. When the model parameters vary, these collinear phases are continuously connected by the spiral-spin phase. Using the available model parameters for the organic compounds λ-(BETS)2XCl4 (X = Fe and Ga), we examine the stabilities of the spin structures of the independent π-electron system, which is considered to primarily sustain the magnetic order, where BETS represents bis(ethylenedithio)tetraselenafulvalene. It is found that one of the uudd phases has an energy close to the ground-state energy for λ-(BETS)2FeCl4. We discuss the relevance of the magnetic anion FeCl4 and the quantum fluctuation to the magnetism of these compounds. When J'3 = 0, the system is reduced to a trellis lattice antiferromagnet. The system exhibits a stripe spiral-spin phase, which comprises one-dimensional spiral-spin states stacked alternately.

  13. Structural Architecture of Prothrombin in Solution Revealed by Single Molecule Spectroscopy.

    PubMed

    Pozzi, Nicola; Bystranowska, Dominika; Zuo, Xiaobing; Di Cera, Enrico

    2016-08-26

    The coagulation factor prothrombin has a complex spatial organization of its modular assembly that comprises the N-terminal Gla domain, kringle-1, kringle-2, and the C-terminal protease domain connected by three intervening linkers. Here we use single molecule Förster resonance energy transfer to access the conformational landscape of prothrombin in solution and uncover structural features of functional significance that extend recent x-ray crystallographic analysis. Prothrombin exists in equilibrium between two alternative conformations, open and closed. The closed conformation predominates (70%) and features an unanticipated intramolecular collapse of Tyr(93) in kringle-1 onto Trp(547) in the protease domain that obliterates access to the active site and protects the zymogen from autoproteolytic conversion to thrombin. The open conformation (30%) is more susceptible to chymotrypsin digestion and autoactivation, and features a shape consistent with recent x-ray crystal structures. Small angle x-ray scattering measurements of prothrombin wild type stabilized 70% in the closed conformation and of the mutant Y93A stabilized 80% in the open conformation directly document two envelopes that differ 50 Å in length. These findings reveal important new details on the conformational plasticity of prothrombin in solution and the drastic structural difference between its alternative conformations. Prothrombin uses the intramolecular collapse of kringle-1 onto the active site in the closed form to prevent autoactivation. The open-closed equilibrium also defines a new structural framework for the mechanism of activation of prothrombin by prothrombinase. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Advanced computational techniques for incompressible/compressible fluid-structure interactions

    NASA Astrophysics Data System (ADS)

    Kumar, Vinod

    2005-07-01

    Fluid-Structure Interaction (FSI) problems are of great importance to many fields of engineering and pose tremendous challenges to numerical analyst. This thesis addresses some of the hurdles faced for both 2D and 3D real life time-dependent FSI problems with particular emphasis on parachute systems. The techniques developed here would help improve the design of parachutes and are of direct relevance to several other FSI problems. The fluid system is solved using the Deforming-Spatial-Domain/Stabilized Space-Time (DSD/SST) finite element formulation for the Navier-Stokes equations of incompressible and compressible flows. The structural dynamics solver is based on a total Lagrangian finite element formulation. Newton-Raphson method is employed to linearize the otherwise nonlinear system resulting from the fluid and structure formulations. The fluid and structural systems are solved in decoupled fashion at each nonlinear iteration. While rigorous coupling methods are desirable for FSI simulations, the decoupled solution techniques provide sufficient convergence in the time-dependent problems considered here. In this thesis, common problems in the FSI simulations of parachutes are discussed and possible remedies for a few of them are presented. Further, the effects of the porosity model on the aerodynamic forces of round parachutes are analyzed. Techniques for solving compressible FSI problems are also discussed. Subsequently, a better stabilization technique is proposed to efficiently capture and accurately predict the shocks in supersonic flows. The numerical examples simulated here require high performance computing. Therefore, numerical tools using distributed memory supercomputers with message passing interface (MPI) libraries were developed.

  15. Optical Rogue Waves in Vortex Turbulence.

    PubMed

    Gibson, Christopher J; Yao, Alison M; Oppo, Gian-Luca

    2016-01-29

    We present a spatiotemporal mechanism for producing 2D optical rogue waves in the presence of a turbulent state with creation, interaction, and annihilation of optical vortices. Spatially periodic structures with bound phase lose stability to phase unbound turbulent states in complex Ginzburg-Landau and Swift-Hohenberg models with external driving. When the pumping is high and the external driving is low, synchronized oscillations are unstable and lead to spatiotemporal vortex-mediated turbulence with high excursions in amplitude. Nonlinear amplification leads to rogue waves close to turbulent optical vortices, where the amplitude tends to zero, and to probability density functions (PDFs) with long tails typical of extreme optical events.

  16. Binding energies and spatial structures of small carrier complexes in monolayer transition-metal dichalcogenides via diffusion Monte Carlo

    DOE PAGES

    Mayers, Matthew Z.; Berkelbach, Timothy C.; Hybertsen, Mark S.; ...

    2015-10-09

    Ground-state diffusion Monte Carlo is used to investigate the binding energies and intercarrier radial probability distributions of excitons, trions, and biexcitons in a variety of two-dimensional transition-metal dichalcogenide materials. We compare these results to approximate variational calculations, as well as to analogous Monte Carlo calculations performed with simplified carrier interaction potentials. Our results highlight the successes and failures of approximate approaches as well as the physical features that determine the stability of small carrier complexes in monolayer transition-metal dichalcogenide materials. In conclusion, we discuss points of agreement and disagreement with recent experiments.

  17. SPATIAL AGGREGATION IN A FOREST FLOOR INSECT DEPENDS ON SEASONAL CONGREGATION AND SCATTERING EFFECTS OF PREDATORS

    EPA Science Inventory

    Spatial aggregations arising from gregarious behavior are common in nature and have important implications for population dynamics, community stability, and conservation. However, the translation of aggregation behaviors into emergent properties of populations and communities de...

  18. Porous Fe2O3 Nanoframeworks Encapsulated within Three-Dimensional Graphene as High-Performance Flexible Anode for Lithium-Ion Battery.

    PubMed

    Jiang, Tiancai; Bu, Fanxing; Feng, Xiaoxiang; Shakir, Imran; Hao, Guolin; Xu, Yuxi

    2017-05-23

    Integrating nanoscale porous metal oxides into three-dimensional graphene (3DG) with encapsulated structure is a promising route but remains challenging to develop high-performance electrodes for lithium-ion battery. Herein, we design 3DG/metal organic framework composite by an excessive metal-ion-induced combination and spatially confined Ostwald ripening strategy, which can be transformed into 3DG/Fe 2 O 3 aerogel with porous Fe 2 O 3 nanoframeworks well encapsulated within graphene. The hierarchical structure offers highly interpenetrated porous conductive network and intimate contact between graphene and porous Fe 2 O 3 as well as abundant stress buffer nanospace for effective charge transport and robust structural stability during electrochemical processes. The obtained free-standing 3DG/Fe 2 O 3 aerogel was directly used as highly flexible anode upon mechanical pressing for lithium-ion battery and showed an ultrahigh capacity of 1129 mAh/g at 0.2 A/g after 130 cycles and outstanding cycling stability with a capacity retention of 98% after 1200 cycles at 5 A/g, which is the best results that have been reported so far. This study offers a promising route to greatly enhance the electrochemical properties of metal oxides and provides suggestive insights for developing high-performance electrode materials for electrochemical energy storage.

  19. How the cerebellum may monitor sensory information for spatial representation

    PubMed Central

    Rondi-Reig, Laure; Paradis, Anne-Lise; Lefort, Julie M.; Babayan, Benedicte M.; Tobin, Christine

    2014-01-01

    The cerebellum has already been shown to participate in the navigation function. We propose here that this structure is involved in maintaining a sense of direction and location during self-motion by monitoring sensory information and interacting with navigation circuits to update the mental representation of space. To better understand the processing performed by the cerebellum in the navigation function, we have reviewed: the anatomical pathways that convey self-motion information to the cerebellum; the computational algorithm(s) thought to be performed by the cerebellum from these multi-source inputs; the cerebellar outputs directed toward navigation circuits and the influence of self-motion information on space-modulated cells receiving cerebellar outputs. This review highlights that the cerebellum is adequately wired to combine the diversity of sensory signals to be monitored during self-motion and fuel the navigation circuits. The direct anatomical projections of the cerebellum toward the head-direction cell system and the parietal cortex make those structures possible relays of the cerebellum influence on the hippocampal spatial map. We describe computational models of the cerebellar function showing that the cerebellum can filter out the components of the sensory signals that are predictable, and provides a novelty output. We finally speculate that this novelty output is taken into account by the navigation structures, which implement an update over time of position and stabilize perception during navigation. PMID:25408638

  20. Robust flow stability: Theory, computations and experiments in near wall turbulence

    NASA Astrophysics Data System (ADS)

    Bobba, Kumar Manoj

    Helmholtz established the field of hydrodynamic stability with his pioneering work in 1868. From then on, hydrodynamic stability became an important tool in understanding various fundamental fluid flow phenomena in engineering (mechanical, aeronautics, chemical, materials, civil, etc.) and science (astrophysics, geophysics, biophysics, etc.), and turbulence in particular. However, there are many discrepancies between classical hydrodynamic stability theory and experiments. In this thesis, the limitations of traditional hydrodynamic stability theory are shown and a framework for robust flow stability theory is formulated. A host of new techniques like gramians, singular values, operator norms, etc. are introduced to understand the role of various kinds of uncertainty. An interesting feature of this framework is the close interplay between theory and computations. It is shown that a subset of Navier-Stokes equations are globally, non-nonlinearly stable for all Reynolds number. Yet, invoking this new theory, it is shown that these equations produce structures (vortices and streaks) as seen in the experiments. The experiments are done in zero pressure gradient transiting boundary layer on a flat plate in free surface tunnel. Digital particle image velocimetry, and MEMS based laser Doppler velocimeter and shear stress sensors have been used to make quantitative measurements of the flow. Various theoretical and computational predictions are in excellent agreement with the experimental data. A closely related topic of modeling, simulation and complexity reduction of large mechanics problems with multiple spatial and temporal scales is also studied. A nice method that rigorously quantifies the important scales and automatically gives models of the problem to various levels of accuracy is introduced. Computations done using spectral methods are presented.

  1. Dynamic stability and bifurcation analysis in fractional thermodynamics

    NASA Astrophysics Data System (ADS)

    Béda, Péter B.

    2018-02-01

    In mechanics, viscoelasticity was the first field of applications in studying geomaterials. Further possibilities arise in spatial non-locality. Non-local materials were already studied in the 1960s by several authors as a part of continuum mechanics and are still in focus of interest because of the rising importance of materials with internal micro- and nano-structure. When material instability gained more interest, non-local behavior appeared in a different aspect. The problem was concerned to numerical analysis, because then instability zones exhibited singular properties for local constitutive equations. In dynamic stability analysis, mathematical aspects of non-locality were studied by using the theory of dynamic systems. There the basic set of equations describing the behavior of continua was transformed to an abstract dynamic system consisting of differential operators acting on the perturbation field variables. Such functions should satisfy homogeneous boundary conditions and act as indicators of stability of a selected state of the body under consideration. Dynamic systems approach results in conditions for cases, when the differential operators have critical eigenvalues of zero real parts (dynamic stability or instability conditions). When the critical eigenvalues have non-trivial eigenspace, the way of loss of stability is classified as a typical (or generic) bifurcation. Our experiences show that material non-locality and the generic nature of bifurcation at instability are connected, and the basic functions of the non-trivial eigenspace can be used to determine internal length quantities of non-local mechanics. Fractional calculus is already successfully used in thermo-elasticity. In the paper, non-locality is introduced via fractional strain into the constitutive relations of various conventional types. Then, by defining dynamic systems, stability and bifurcation are studied for states of thermo-mechanical solids. Stability conditions and genericity conditions are presented for constitutive relations under consideration.

  2. Enhancement of oxidative stability of the subtilisin nattokinase by site-directed mutagenesis expressed in Escherichia coli.

    PubMed

    Weng, MeiZhi; Zheng, ZhongLiang; Bao, Wei; Cai, YongJun; Yin, Yan; Zou, GuoLin; Zou, GouLin

    2009-11-01

    Nattokinase (subtilisin NAT, NK) is a bacterial serine protease with strong fibrinolytic activity and it is a potent cardiovascular drug. In medical and commercial applications, however, it is susceptible to chemical oxidation, and subsequent inactivation or denaturation. Here we show that the oxidative stability of NK was substantially increased by optimizing the amino acid residues Thr(220) and Met(222), which were in the vicinity of the catalytic residue Ser(221) of the enzyme. Two nonoxidative amino acids (Ser and Ala) were introduced at these sites using site-directed mutagenesis. Active enzymes were successfully expressed in Escherichia coli with periplasmic secretion and enzymes were purified to homogeneity. The purified enzymes were analyzed with respect to oxidative stability, kinetic parameters, fibrinolytic activity and thermal stability. M222A mutant was found to have a greatly increased oxidative stability compared with wild-type enzyme and it was resistant to inactivation by more than 1 M H(2)O(2), whereas the wild-type enzyme was inactivated by 0.1 M H(2)O(2) (t(1/2) approximately 11.6 min). The other mutant (T220S) also showed an obvious increase in antioxidative ability. Molecular dynamic simulations on wild-type and T220S mutant proteins suggested that a hydrogen bond was formed between Ser(220) and Asn(155), and the spatial structure of Met(222) was changed compared with the wild-type. The present study demonstrates the feasibility of improving oxidative stability of NK by site-directed mutagenesis and shows successful protein engineering cases to improve stability of NK as a potent therapeutic agent.

  3. Cross-Diffusion Induced Turing Instability and Amplitude Equation for a Toxic-Phytoplankton-Zooplankton Model with Nonmonotonic Functional Response

    NASA Astrophysics Data System (ADS)

    Han, Renji; Dai, Binxiang

    2017-06-01

    The spatiotemporal pattern induced by cross-diffusion of a toxic-phytoplankton-zooplankton model with nonmonotonic functional response is investigated in this paper. The linear stability analysis shows that cross-diffusion is the key mechanism for the formation of spatial patterns. By taking cross-diffusion rate as bifurcation parameter, we derive amplitude equations near the Turing bifurcation point for the excited modes in the framework of a weakly nonlinear theory, and the stability analysis of the amplitude equations interprets the structural transitions and stability of various forms of Turing patterns. Furthermore, we illustrate the theoretical results via numerical simulations. It is shown that the spatiotemporal distribution of the plankton is homogeneous in the absence of cross-diffusion. However, when the cross-diffusivity is greater than the critical value, the spatiotemporal distribution of all the plankton species becomes inhomogeneous in spaces and results in different kinds of patterns: spot, stripe, and the mixture of spot and stripe patterns depending on the cross-diffusivity. Simultaneously, the impact of toxin-producing rate of toxic-phytoplankton (TPP) species and natural death rate of zooplankton species on pattern selection is also explored.

  4. Spatial and temporal variability of throughfall and soil moisture in a deciduous forest in the low mountain ranges (Hesse, Germany)

    NASA Astrophysics Data System (ADS)

    Chifflard, Peter; Weishaupt, Philipp; Reiss, Martin

    2017-04-01

    Spatial and temporal patterns of throughfall can affect the heterogeneity of ecological, biogeochemical and hydrological processes at a forest floor and further the underlying soil. Previous research suggests different factors controlling the spatial and temporal patterns of throughfall, but most studies focus on coniferous forest, where the vegetation coverage is more or less constant over time. In deciduous forests the leaf area index varies due to the leaf fall in autumn which implicates a specific spatial and temporal variability of throughfall and furthermore of the soil moisture. Therefore, in the present study, the measurements of throughfall and soil moisture in a deciduous forest in the low mountain ranges focused especially on the period of leaf fall. The aims of this study were: 1) to detect the spatial and temporal variability of both the throughfall and the soil moisture, 2) to examine the temporal stability of the spatial patterns of the throughfall and soil moisture and 3) relate the soil moisture patterns to the throughfall patterns and further to the canopy characteristics. The study was carried out in a small catchment on middle Hesse (Germany) which is covered by beech forest. Annual mean air temperature is 9.4°C (48.9˚F) and annual mean precipitation is 650 mm. Base materials for soil genesis is greywacke and clay shale from Devonian deposits. The soil type at the study plot is a shallow cambisol. The study plot covers an area of about 150 m2 where 77 throughfall samplers where installed. The throughfall and the soil moisture (FDR-method, 20 cm depth) was measured immediately after every rainfall event at the 77 measurement points. During the period of October to December 2015 altogether 7 events were investigated. The geostatistical method kriging was used to interpolate between the measurements points to visualize the spatial patterns of each investigated parameter. Time-stability-plots were applied to examine temporal scatters of each investigated parameter. The spearmen and pearson correlation coefficients were applied to detect the relationship between the different investigated parameters. First results show that the spatial variability of throughfall decreases if the total amount of the throughfall increases. The soil moisture shows a similar behavior. It`s spatial variability decreases if higher soil moisture values were measured. Concerning the temporal stability of throughfall it can be shown that it is very high during the leaf-free period, although the rainfall events have different total througfall amounts. The soil moisture patterns consists of a low temporal stability and additionally only during one event a significant correlations between throughfall and soil moisture patterns exists. This implies that other factors than the throughfall patterns control the spatial patterns of soil moisture.

  5. A DNS study on the stabilization mechanism of a turbulent lifted ethylene jet flame in highly-heated coflow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Chun S

    2011-01-01

    Direct numerical simulation (DNS) of the near-field of a three-dimensional spatially-developing turbulent ethylene jet flame in highly-heated coflow is performed with a reduced mechanism to determine the stabilization mechanism. The DNS was performed at a jet Reynolds number of 10,000 with over 1.29 billion grid points. The results show that auto-ignition in a fuel-lean mixture at the flame base is the main source of stabilization of the lifted jet flame. The Damkoehler number and chemical explosive mode (CEM) analysis also verify that auto-ignition occurs at the flame base. In addition to auto-ignition, Lagrangian tracking of the flame base reveals themore » passage of large-scale flow structures and their correlation with the fluctuations of the flame base similar to a previous study (Yoo et al., J. Fluid Mech. 640 (2009) 453-481) with hydrogen/air jet flames. It is also observed that the present lifted flame base exhibits a cyclic 'saw-tooth' shaped movement marked by rapid movement upstream and slower movement downstream. This is a consequence of the lifted flame being stabilized by a balance between consecutive auto-ignition events in hot fuel-lean mixtures and convection induced by the high-speed jet and coflow velocities. This is confirmed by Lagrangian tracking of key variables including the flame-normal velocity, displacement speed, scalar dissipation rate, and mixture fraction at the stabilization point.« less

  6. A DNS study on the stabilization mechanism of a turbulent lifted ethylene jet flame in highly-heated coflow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, C. S.; Richardson, E.; Sankaran, R.

    2011-01-01

    Direct numerical simulation (DNS) of the near-field of a three-dimensional spatially-developing turbulent ethylene jet flame in highly-heated coflow is performed with a reduced mechanism to determine the stabilization mechanism. The DNS was performed at a jet Reynolds number of 10,000 with over 1.29 billion grid points. The results show that auto-ignition in a fuel-lean mixture at the flame base is the main source of stabilization of the lifted jet flame. The Damköhler number and chemical explosive mode (CEM) analysis also verify that auto-ignition occurs at the flame base. In addition to auto-ignition, Lagrangian tracking of the flame base reveals themore » passage of large-scale flow structures and their correlation with the fluctuations of the flame base similar to a previous study (Yoo et al., J. Fluid Mech. 640 (2009) 453–481) with hydrogen/air jet flames. It is also observed that the present lifted flame base exhibits a cyclic ‘saw-tooth’ shaped movement marked by rapid movement upstream and slower movement downstream. This is a consequence of the lifted flame being stabilized by a balance between consecutive auto-ignition events in hot fuel-lean mixtures and convection induced by the high-speed jet and coflow velocities. This is confirmed by Lagrangian tracking of key variables including the flame-normal velocity, displacement speed, scalar dissipation rate, and mixture fraction at the stabilization point.« less

  7. Deformation twinning induced decomposition of lamellar LPSO structure and its re-precipitation in an Mg-Zn-Y alloy

    NASA Astrophysics Data System (ADS)

    Shao, X. H.; Zheng, S. J.; Chen, D.; Jin, Q. Q.; Peng, Z. Z.; Ma, X. L.

    2016-07-01

    The high hardness or yield strength of an alloy is known to benefit from the presence of small-scale precipitation, whose hardening effect is extensively applied in various engineering materials. Stability of the precipitates is of critical importance in maintaining the high performance of a material under mechanical loading. The long period stacking ordered (LPSO) structures play an important role in tuning the mechanical properties of an Mg-alloy. Here, we report deformation twinning induces decomposition of lamellar LPSO structures and their re-precipitation in an Mg-Zn-Y alloy. Using atomic resolution scanning transmission electron microscopy (STEM), we directly illustrate that the misfit dislocations at the interface between the lamellar LPSO structure and the deformation twin is corresponding to the decomposition and re-precipitation of LPSO structure, owing to dislocation effects on redistribution of Zn/Y atoms. This finding demonstrates that deformation twinning could destabilize complex precipitates. An occurrence of decomposition and re-precipitation, leading to a variant spatial distribution of the precipitates under plastic loading, may significantly affect the precipitation strengthening.

  8. Deformation twinning induced decomposition of lamellar LPSO structure and its re-precipitation in an Mg-Zn-Y alloy

    PubMed Central

    Shao, X. H.; Zheng, S. J.; Chen, D.; Jin, Q. Q.; Peng, Z. Z.; Ma, X. L.

    2016-01-01

    The high hardness or yield strength of an alloy is known to benefit from the presence of small-scale precipitation, whose hardening effect is extensively applied in various engineering materials. Stability of the precipitates is of critical importance in maintaining the high performance of a material under mechanical loading. The long period stacking ordered (LPSO) structures play an important role in tuning the mechanical properties of an Mg-alloy. Here, we report deformation twinning induces decomposition of lamellar LPSO structures and their re-precipitation in an Mg-Zn-Y alloy. Using atomic resolution scanning transmission electron microscopy (STEM), we directly illustrate that the misfit dislocations at the interface between the lamellar LPSO structure and the deformation twin is corresponding to the decomposition and re-precipitation of LPSO structure, owing to dislocation effects on redistribution of Zn/Y atoms. This finding demonstrates that deformation twinning could destabilize complex precipitates. An occurrence of decomposition and re-precipitation, leading to a variant spatial distribution of the precipitates under plastic loading, may significantly affect the precipitation strengthening. PMID:27435638

  9. Combustion stability with baffles, absorbers and velocity sensitive combustion. [liquid propellant rocket combustors

    NASA Technical Reports Server (NTRS)

    Mitchell, C. E.

    1980-01-01

    Analytical and computational techniques were developed to predict the stability behavior of liquid propellant rocket combustors using damping devices such as acoustic liners, slot absorbers, and injector face baffles. Models were developed to determine the frequency and decay rate of combustor oscillations, the spatial and temporal pressure waveforms, and the stability limits in terms of combustion response model parameters.

  10. Sensitivity of Offshore Surface Fluxes and Sea Breezes to the Spatial Distribution of Sea-Surface Temperature

    NASA Astrophysics Data System (ADS)

    Lombardo, Kelly; Sinsky, Eric; Edson, James; Whitney, Michael M.; Jia, Yan

    2018-03-01

    A series of numerical sensitivity experiments is performed to quantify the impact of sea-surface temperature (SST) distribution on offshore surface fluxes and simulated sea-breeze dynamics. The SST simulations of two mid-latitude sea-breeze events over coastal New England are performed using a spatially-uniform SST, as well as spatially-varying SST datasets of 32- and 1-km horizontal resolutions. Offshore surface heat and buoyancy fluxes vary in response to the SST distribution. Local sea-breeze circulations are relatively insensitive, with minimal differences in vertical structure and propagation speed among the experiments. The largest thermal perturbations are confined to the lowest 10% of the sea-breeze column due to the relatively high stability of the mid-Atlantic marine atmospheric boundary layer (ABL) suppressing vertical mixing, resulting in the depth of the marine layer remaining unchanged. Minimal impacts on the column-averaged virtual potential temperature and sea-breeze depth translates to small changes in sea-breeze propagation speed. This indicates that the use of datasets with a fine-scale SST may not produce more accurate sea-breeze simulations in highly stable marine ABL regimes, though may prove more beneficial in less stable sub-tropical environments.

  11. The development and evolution of landform based on neotectonic movement: The Sancha river catchment in the southwestern China

    NASA Astrophysics Data System (ADS)

    Zhong, Lingmin; Xu, Mo; Yang, Yanna; Wang, Xingbing

    2018-02-01

    Neotectonics has changed the coupled process of endogenic and exogenic geological dynamics, which mold the modern landform. Geomorphologic analysis is essential for identifying and understanding the tectonic activity and indicates the responsive mechanism of the landform to tectonic activity. At first, this research reconstructed the twisted Shanpen period planation surface, computed the valley floor width-to-height ratio of Sancha river and extracted the cross sections marking the river terraces to analyze the characteristics of the neotectonics. And then, the relation between neotectonic movement and landform development was analyzed by dividing the landform types. At last, the spatial variation of landform evolution was analyzed by extracting the Hypsometric Integral of sub-catchments. The Sancha river catchment's neotectonic movement presents the tilt-lift of earth's crust from NW to SE, which is characterized by the posthumous activity of Yanshan tectonic deformation. The spatial distribution of river terraces indicates that Sancha river catchment has experienced at least four intermittent uplifts and the fault blocks at both the sides of Liuzhi-Zhijin basement fault have differentially uplifted since the late Pleistocene. As the resurgence of Liuzhi-Zhijin basement fault, the Sancha river catchment was broken into two relative independent landform units. The spatial variations of the landform types near the Sancha river and the sub-catchments' landform evolution are characterized by periodic replacement. The styles of geological structure have controlled the development of landform far away from the Sancha River and influenced the landform evolution. The posthumous activities of the secondary structure have resulted in the spatial variation of sub-catchments' landform evolution, which presents periodic replacement with local exceptions. The present study suggests that spatial variations of the development and evolution of modern landform of Sancha River catchment owe their genesis to the interplay between the hydrodynamic force and tectonic activity in the neotectonic period. Likewise, the application of geomorphic indicators also provides a new way to assess the regional crustal stability.

  12. Stability and Hopf Bifurcation in a Reaction-Diffusion Model with Chemotaxis and Nonlocal Delay Effect

    NASA Astrophysics Data System (ADS)

    Li, Dong; Guo, Shangjiang

    Chemotaxis is an observed phenomenon in which a biological individual moves preferentially toward a relatively high concentration, which is contrary to the process of natural diffusion. In this paper, we study a reaction-diffusion model with chemotaxis and nonlocal delay effect under Dirichlet boundary condition by using Lyapunov-Schmidt reduction and the implicit function theorem. The existence, multiplicity, stability and Hopf bifurcation of spatially nonhomogeneous steady state solutions are investigated. Moreover, our results are illustrated by an application to the model with a logistic source, homogeneous kernel and one-dimensional spatial domain.

  13. Postural stability changes in the elderly with cataract simulation and refractive blur.

    PubMed

    Anand, Vijay; Buckley, John G; Scally, Andy; Elliott, David B

    2003-11-01

    To determine the influence of cataractous and refractive blur on postural stability and limb-load asymmetry (LLA) and to establish how postural stability changes with the spatial frequency and contrast of the visual stimulus. Thirteen elderly subjects (mean age, 70.76 +/- 4.14 [SD] years) with no history of falls and normal vision were recruited. Postural stability was determined as the root mean square [RMS] of the center of pressure (COP) signal in the anterior-posterior (A-P) and medial-lateral directions and LLA was determined as the ratio of the average body weight placed on the more-loaded limb to the less-loaded limb, recorded during a 30-second period. Data were collected under normal standing conditions and with somatosensory system input disrupted. Measurements were repeated with four visual targets with high (8 cyc/deg) or low (2 cyc/deg) spatial frequency and high (Weber contrast, approximately 95%) or low (Weber contrast, approximately 25%) contrast. Postural stability was measured under conditions of binocular refractive blur of 0, 1, 2, 4, and 8 D and with cataract simulation. The data were analyzed in a population-averaged linear model. The cataract simulation caused significant increases in postural instability equivalent to that caused by 8-D blur conditions, and its effect was greater when the input from the somatosensory system was disrupted. High spatial frequency targets increased postural instability. Refractive blur, cataract simulation, or eye closure had no effect on LLA. Findings indicate that cataractous and refractive blur increase postural instability, and show why the elderly, many of whom have poor vision along with musculoskeletal and central nervous system degeneration, are at greater risk of falling. Findings also highlight that changes in contrast sensitivity rather than resolution changes are responsible for increasing postural instability. Providing low spatial frequency information in certain environments may be useful in maintaining postural stability. Correcting visual impairment caused by uncorrected refractive error and cataracts could be a useful intervention strategy to help prevent falls and fall-related injuries in the elderly.

  14. Spatial and temporal structure of typhoid outbreaks in Washington, D.C., 1906–1909: evaluating local clustering with the Gi* statistic

    PubMed Central

    Hinman, Sarah E; Blackburn, Jason K; Curtis, Andrew

    2006-01-01

    Background To better understand the distribution of typhoid outbreaks in Washington, D.C., the U.S. Public Health Service (PHS) conducted four investigations of typhoid fever. These studies included maps of cases reported between 1 May – 31 October 1906 – 1909. These data were entered into a GIS database and analyzed using Ripley's K-function followed by the Gi* statistic in yearly intervals to evaluate spatial clustering, the scale of clustering, and the temporal stability of these clusters. Results The Ripley's K-function indicated no global spatial autocorrelation. The Gi* statistic indicated clustering of typhoid at multiple scales across the four year time period, refuting the conclusions drawn in all four PHS reports concerning the distribution of cases. While the PHS reports suggested an even distribution of the disease, this study quantified both areas of localized disease clustering, as well as mobile larger regions of clustering. Thus, indicating both highly localized and periodic generalized sources of infection within the city. Conclusion The methodology applied in this study was useful for evaluating the spatial distribution and annual-level temporal patterns of typhoid outbreaks in Washington, D.C. from 1906 to 1909. While advanced spatial analyses of historical data sets must be interpreted with caution, this study does suggest that there is utility in these types of analyses and that they provide new insights into the urban patterns of typhoid outbreaks during the early part of the twentieth century. PMID:16566830

  15. Spatial and temporal structure of typhoid outbreaks in Washington, D.C., 1906-1909: evaluating local clustering with the Gi* statistic.

    PubMed

    Hinman, Sarah E; Blackburn, Jason K; Curtis, Andrew

    2006-03-27

    To better understand the distribution of typhoid outbreaks in Washington, D.C., the U.S. Public Health Service (PHS) conducted four investigations of typhoid fever. These studies included maps of cases reported between 1 May - 31 October 1906 - 1909. These data were entered into a GIS database and analyzed using Ripley's K-function followed by the Gi* statistic in yearly intervals to evaluate spatial clustering, the scale of clustering, and the temporal stability of these clusters. The Ripley's K-function indicated no global spatial autocorrelation. The Gi* statistic indicated clustering of typhoid at multiple scales across the four year time period, refuting the conclusions drawn in all four PHS reports concerning the distribution of cases. While the PHS reports suggested an even distribution of the disease, this study quantified both areas of localized disease clustering, as well as mobile larger regions of clustering. Thus, indicating both highly localized and periodic generalized sources of infection within the city. The methodology applied in this study was useful for evaluating the spatial distribution and annual-level temporal patterns of typhoid outbreaks in Washington, D.C. from 1906 to 1909. While advanced spatial analyses of historical data sets must be interpreted with caution, this study does suggest that there is utility in these types of analyses and that they provide new insights into the urban patterns of typhoid outbreaks during the early part of the twentieth century.

  16. Spatial and temporal stability of temperature in the first-level basins of China during 1951-2013

    NASA Astrophysics Data System (ADS)

    Cheng, Yuting; Li, Peng; Xu, Guoce; Li, Zhanbin; Cheng, Shengdong; Wang, Bin; Zhao, Binhua

    2018-05-01

    In recent years, global warming has attracted great attention around the world. Temperature change is not only involved in global climate change but also closely linked to economic development, the ecological environment, and agricultural production. In this study, based on temperature data recorded by 756 meteorological stations in China during 1951-2013, the spatial and temporal stability characteristics of annual temperature in China and its first-level basins were investigated using the rank correlation coefficient method, the relative difference method, rescaled range (R/S) analysis, and wavelet transforms. The results showed that during 1951-2013, the spatial variation of annual temperature belonged to moderate variability in the national level. Among the first-level basins, the largest variation coefficient was 114% in the Songhuajiang basin and the smallest variation coefficient was 10% in the Huaihe basin. During 1951-2013, the spatial distribution pattern of annual temperature presented extremely strong spatial and temporal stability characteristics in the national level. The variation range of Spearman's rank correlation coefficient was 0.97-0.99, and the spatial distribution pattern of annual temperature showed an increasing trend. In the national level, the Liaohe basin, the rivers in the southwestern region, the Haihe basin, the Yellow River basin, the Yangtze River basin, the Huaihe basin, the rivers in the southeastern region, and the Pearl River basin all had representative meteorological stations for annual temperature. In the Songhuajiang basin and the rivers in the northwestern region, there was no representative meteorological station. R/S analysis, the Mann-Kendall test, and the Morlet wavelet analysis of annual temperature showed that the best representative meteorological station could reflect the variation trend and the main periodic changes of annual temperature in the region. Therefore, strong temporal stability characteristics exist for annual temperature in China and its first-level basins. It was therefore feasible to estimate the annual average temperature by the annual temperature recorded by the representative meteorological station in the region. Moreover, it was of great significance to assess average temperature changes quickly and forecast future change tendencies in the region.

  17. On the axisymmetric stability of heated supersonic round jets

    PubMed Central

    2016-01-01

    We perform an inviscid, spatial stability analysis of supersonic, heated round jets with the mean properties assumed uniform on either side of the jet shear layer, modelled here via a cylindrical vortex sheet. Apart from the hydrodynamic Kelvin–Helmholtz (K–H) wave, the spatial growth rates of the acoustically coupled supersonic and subsonic instability waves are computed for axisymmetric conditions (m=0) to analyse their role on the jet stability, under increased heating and compressibility. With the ambient stationary, supersonic instability waves may exist for any jet Mach number Mj≥2, whereas the subsonic instability waves, in addition, require the core-to-ambient flow temperature ratio Tj/To>1. We show, for moderately heated jets at Tj/To>2, the acoustically coupled instability modes, once cut on, to govern the overall jet stability with the K–H wave having disappeared into the cluster of acoustic modes. Sufficiently high heating makes the subsonic modes dominate the jet near-field dynamics, whereas the supersonic instability modes form the primary Mach radiation at far field. PMID:27274691

  18. Beyond the plot: technology extrapolation domains for scaling out agronomic science

    NASA Astrophysics Data System (ADS)

    Rattalino Edreira, Juan I.; Cassman, Kenneth G.; Hochman, Zvi; van Ittersum, Martin K.; van Bussel, Lenny; Claessens, Lieven; Grassini, Patricio

    2018-05-01

    Ensuring an adequate food supply in systems that protect environmental quality and conserve natural resources requires productive and resource-efficient cropping systems on existing farmland. Meeting this challenge will be difficult without a robust spatial framework that facilitates rapid evaluation and scaling-out of currently available and emerging technologies. Here we develop a global spatial framework to delineate ‘technology extrapolation domains’ based on key climate and soil factors that govern crop yields and yield stability in rainfed crop production. The proposed framework adequately represents the spatial pattern of crop yields and stability when evaluated over the data-rich US Corn Belt. It also facilitates evaluation of cropping system performance across continents, which can improve efficiency of agricultural research that seeks to intensify production on existing farmland. Populating this biophysical spatial framework with appropriate socio-economic attributes provides the potential to amplify the return on investments in agricultural research and development by improving the effectiveness of research prioritization and impact assessment.

  19. Biodiversity and ecosystem stability across scales in metacommunities.

    PubMed

    Wang, Shaopeng; Loreau, Michel

    2016-05-01

    Although diversity-stability relationships have been extensively studied in local ecosystems, the global biodiversity crisis calls for an improved understanding of these relationships in a spatial context. Here, we use a dynamical model of competitive metacommunities to study the relationships between species diversity and ecosystem variability across scales. We derive analytic relationships under a limiting case; these results are extended to more general cases with numerical simulations. Our model shows that, while alpha diversity decreases local ecosystem variability, beta diversity generally contributes to increasing spatial asynchrony among local ecosystems. Consequently, both alpha and beta diversity provide stabilising effects for regional ecosystems, through local and spatial insurance effects respectively. We further show that at the regional scale, the stabilising effect of biodiversity increases as spatial environmental correlation increases. Our findings have important implications for understanding the interactive effects of global environmental changes (e.g. environmental homogenisation) and biodiversity loss on ecosystem sustainability at large scales. © 2016 John Wiley & Sons Ltd/CNRS.

  20. Spatial filter with volume gratings for high-peak-power multistage laser amplifiers

    NASA Astrophysics Data System (ADS)

    Tan, Yi-zhou; Yang, Yi-sheng; Zheng, Guang-wei; Shen, Ben-jian; Pan, Heng-yue; Liu, Li

    2010-08-01

    The regular spatial filters comprised of lens and pinhole are essential component in high power laser systems, such as lasers for inertial confinement fusion, nonlinear optical technology and directed-energy weapon. On the other hand the pinhole is treated as a bottleneck of high power laser due to harmful plasma created by the focusing beam. In this paper we present a spatial filter based on angular selectivity of Bragg diffraction grating to avoid the harmful focusing effect in the traditional pinhole filter. A spatial filter consisted of volume phase gratings in two-pass amplifier cavity were reported. Two-dimensional filter was proposed by using single Pi-phase-shifted Bragg grating, numerical simulation results shown that its angular spectrum bandwidth can be less than 160urad. The angular selectivity of photo-thermorefractive glass and RUGATE film filters, construction stability, thermal stability and the effects of misalignments of gratings on the diffraction efficiencies under high-pulse-energy laser operating condition are discussed.

  1. The Relative Importance of Spatial Versus Temporal Structure in the Perception of Biological Motion: An Event-Related Potential Study

    ERIC Educational Resources Information Center

    Hirai, Masahiro; Hiraki, Kazuo

    2006-01-01

    We investigated how the spatiotemporal structure of animations of biological motion (BM) affects brain activity. We measured event-related potentials (ERPs) during the perception of BM under four conditions: normal spatial and temporal structure; scrambled spatial and normal temporal structure; normal spatial and scrambled temporal structure; and…

  2. Growth of equilibrium structures built from a large number of distinct component types.

    PubMed

    Hedges, Lester O; Mannige, Ranjan V; Whitelam, Stephen

    2014-09-14

    We use simple analytic arguments and lattice-based computer simulations to study the growth of structures made from a large number of distinct component types. Components possess 'designed' interactions, chosen to stabilize an equilibrium target structure in which each component type has a defined spatial position, as well as 'undesigned' interactions that allow components to bind in a compositionally-disordered way. We find that high-fidelity growth of the equilibrium target structure can happen in the presence of substantial attractive undesigned interactions, as long as the energy scale of the set of designed interactions is chosen appropriately. This observation may help explain why equilibrium DNA 'brick' structures self-assemble even if undesigned interactions are not suppressed [Ke et al. Science, 338, 1177, (2012)]. We also find that high-fidelity growth of the target structure is most probable when designed interactions are drawn from a distribution that is as narrow as possible. We use this result to suggest how to choose complementary DNA sequences in order to maximize the fidelity of multicomponent self-assembly mediated by DNA. We also comment on the prospect of growing macroscopic structures in this manner.

  3. Temporal variation in bat-fruit interactions: Foraging strategies influence network structure over time

    NASA Astrophysics Data System (ADS)

    Zapata-Mesa, Natalya; Montoya-Bustamante, Sebastián; Murillo-García, Oscar E.

    2017-11-01

    Mutualistic interactions, such as seed dispersal, are important for the maintenance of structure and stability of tropical communities. However, there is a lack of information about spatial and temporal variation in plant-animal interaction networks. Thus, our goal was to assess the effect of bat's foraging strategies on temporal variation in the structure and robustness of bat-fruit networks in both a dry and a rain tropical forest. We evaluated monthly variation in bat-fruit networks by using seven structure metrics: network size, average path length, nestedness, modularity, complementary specialization, normalized degree and betweenness centrality. Seed dispersal networks showed variations in size, species composition and modularity; did not present nested structures and their complementary specialization was high compared to other studies. Both networks presented short path lengths, and a constantly high robustness, despite their monthly variations. Sedentary bat species were recorded during all the study periods and occupied more central positions than nomadic species. We conclude that foraging strategies are important structuring factors that affect the dynamic of networks by determining the functional roles of frugivorous bats over time; thus sedentary bats are more important than nomadic species for the maintenance of the network structure, and their conservation is a must.

  4. Three-dimensional modelling of slope stability using the Local Factor of Safety concept

    NASA Astrophysics Data System (ADS)

    Moradi, Shirin; Huisman, Sander; Beck, Martin; Vereecken, Harry; Class, Holger

    2017-04-01

    Slope stability is governed by coupled hydrological and mechanical processes. The slope stability depends on the effective stress, which in turn depends on the weight of the soil and the matrix potential. Therefore, changes in water content and matrix potential associated with infiltration will affect slope stability. Most available models describing these coupled hydro-mechanical processes either rely on a one- or two-dimensional representation of hydrological and mechanical properties and processes, which obviously is a strong simplification in many applications. Therefore, the aim of this work is to develop a three-dimensional hydro-mechanical model that is able to capture the effect of spatial and temporal variability of both mechanical and hydrological parameters on slope stability. For this, we rely on DuMux, which is a free and open-source simulator for flow and transport processes in porous media that facilitates coupling of different model approaches and offers flexibility for model development. We use the Richards equation to model unsaturated water flow. The simulated water content and matrix potential distribution is used to calculate the effective stress. We only consider linear elasticity and solve for statically admissible fields of stress and displacement without invoking failure or the redistribution of post-failure stress or displacement. The Local Factor of Safety concept is used to evaluate slope stability in order to overcome some of the main limitations of commonly used methods based on limit equilibrium considerations. In a first step, we compared our model implementation with a 2D benchmark model that was implemented in COMSOL Multiphysics. In a second step, we present in-silico experiments with the newly developed 3D model to show the effect of slope morphology, spatial variability in hydraulic and mechanical material properties, and spatially variable soil depth on simulated slope stability. It is expected that this improved physically-based three-dimensional hydro-mechanical model is able to provide more reliable slope instability predictions in more complex situations.

  5. Optimal exploitation of spatially distributed trophic resources and population stability

    USGS Publications Warehouse

    Basset, A.; Fedele, M.; DeAngelis, D.L.

    2002-01-01

    The relationships between optimal foraging of individuals and population stability are addressed by testing, with a spatially explicit model, the effect of patch departure behaviour on individual energetics and population stability. A factorial experimental design was used to analyse the relevance of the behavioural factor in relation to three factors that are known to affect individual energetics; i.e. resource growth rate (RGR), assimilation efficiency (AE), and body size of individuals. The factorial combination of these factors produced 432 cases, and 1000 replicate simulations were run for each case. Net energy intake rates of the modelled consumers increased with increasing RGR, consumer AE, and consumer body size, as expected. Moreover, through their patch departure behaviour, by selecting the resource level at which they departed from the patch, individuals managed to substantially increase their net energy intake rates. Population stability was also affected by the behavioural factors and by the other factors, but with highly non-linear responses. Whenever resources were limiting for the consumers because of low RGR, large individual body size or low AE, population density at the equilibrium was directly related to the patch departure behaviour; on the other hand, optimal patch departure behaviour, which maximised the net energy intake at the individual level, had a negative influence on population stability whenever resource availability was high for the consumers. The consumer growth rate (r) and numerical dynamics, as well as the spatial and temporal fluctuations of resource density, which were the proximate causes of population stability or instability, were affected by the behavioural factor as strongly or even more strongly than by the others factors considered here. Therefore, patch departure behaviour can act as a feedback control of individual energetics, allowing consumers to optimise a potential trade-off between short-term individual fitness and long-term population stability. ?? 2002 Elsevier Science B.V. All rights reserved.

  6. Low-energy Cathodoluminescence for (Oxy)Nitride Phosphors

    PubMed Central

    Cho, Yujin; Dierre, Benjamin; Sekiguchi, Takashi; Suehiro, Takayuki; Takahashi, Kohsei; Takeda, Takashi; Xie, Rong-Jun; Yamamoto, Yoshinobu; Hirosaki, Naoto

    2016-01-01

    Nitride and oxynitride (Sialon) phosphors are good candidates for the ultraviolet and visible emission applications. High performance, good stability and flexibility of their emission properties can be achieved by controlling their composition and dopants. However, a lot of work is still required to improve their properties and to reduce the production cost. A possible approach is to correlate the luminescence properties of the Sialon particles with their local structural and chemical environment in order to optimize their growth parameters and find novel phosphors. For such a purpose, the low-voltage cathodoluminescence (CL) microscopy is a powerful technique. The use of electron as an excitation source allows detecting most of the luminescence centers, revealing their luminescence distribution spatially and in depth, directly comparing CL results with the other electron-based techniques, and investigating the stability of their luminescence properties under stress. Such advantages for phosphors characterization will be highlighted through examples of investigation on several Sialon phosphors by low-energy CL. PMID:27911365

  7. A GRAPH PARTITIONING APPROACH TO PREDICTING PATTERNS IN LATERAL INHIBITION SYSTEMS

    PubMed Central

    RUFINO FERREIRA, ANA S.; ARCAK, MURAT

    2017-01-01

    We analyze spatial patterns on networks of cells where adjacent cells inhibit each other through contact signaling. We represent the network as a graph where each vertex represents the dynamics of identical individual cells and where graph edges represent cell-to-cell signaling. To predict steady-state patterns we find equitable partitions of the graph vertices and assign them into disjoint classes. We then use results from monotone systems theory to prove the existence of patterns that are structured in such a way that all the cells in the same class have the same final fate. To study the stability properties of these patterns, we rely on the graph partition to perform a block decomposition of the system. Then, to guarantee stability, we provide a small-gain type criterion that depends on the input-output properties of each cell in the reduced system. Finally, we discuss pattern formation in stochastic models. With the help of a modal decomposition we show that noise can enhance the parameter region where patterning occurs. PMID:29225552

  8. Directional Solidification of a Binary Alloy into a Cellular Convective Flow: Localized Morphologies

    NASA Technical Reports Server (NTRS)

    Chen, Y.- J.; Davis, S. H.

    1999-01-01

    A steady, two dimensional cellular convection modifies the morphological instability of a binary alloy that undergoes directional solidification. When the convection wavelength is far longer than that of the morphological cells, the behavior of the moving front is described by a slow, spatial-temporal dynamics obtained through a multiple-scale analysis. The resulting system has a "parametric-excitation" structure in space, with complex parameters characterizing the interactions between flow, solute diffusion, and rejection. The convection stabilizes two dimensional disturbances oriented with the flow, but destabilizes three dimensional disturbances in general. When the flow is weak, the morphological instability behaves incommensurably to the flow wavelength, but becomes quantized and forced to fit into the flow-box as the flow gets stronger. At large flow magnitudes the instability is localized, confined in narrow envelopes with cells traveling with the flow. In this case the solutions are discrete eigenstates in an unbounded space. Their stability boundary and asymptotics are obtained by the WKB analysis.

  9. Spatial arrangement of organic compounds on a model mineral surface: implications for soil organic matter stabilization.

    PubMed

    Petridis, Loukas; Ambaye, Haile; Jagadamma, Sindhu; Kilbey, S Michael; Lokitz, Bradley S; Lauter, Valeria; Mayes, Melanie A

    2014-01-01

    The complexity of the mineral-organic carbon interface may influence the extent of stabilization of organic carbon compounds in soils, which is important for global climate futures. The nanoscale structure of a model interface was examined here by depositing films of organic carbon compounds of contrasting chemical character, hydrophilic glucose and amphiphilic stearic acid, onto a soil mineral analogue (Al2O3). Neutron reflectometry, a technique which provides depth-sensitive insight into the organization of the thin films, indicates that glucose molecules reside in a layer between Al2O3 and stearic acid, a result that was verified by water contact angle measurements. Molecular dynamics simulations reveal the thermodynamic driving force behind glucose partitioning on the mineral interface: The entropic penalty of confining the less mobile glucose on the mineral surface is lower than for stearic acid. The fundamental information obtained here helps rationalize how complex arrangements of organic carbon on soil mineral surfaces may arise.

  10. Symmetry-enforced stability of interacting Weyl and Dirac semimetals

    NASA Astrophysics Data System (ADS)

    Carlström, Johan; Bergholtz, Emil J.

    2018-04-01

    The nodal and effectively relativistic dispersion featuring in a range of novel materials including two-dimensional graphene and three-dimensional Dirac and Weyl semimetals has attracted enormous interest during the past decade. Here, by studying the structure and symmetry of the diagrammatic expansion, we show that these nodal touching points are in fact perturbatively stable to all orders with respect to generic two-body interactions. For effective low-energy theories relevant for single and multilayer graphene, type-I and type-II Weyl and Dirac semimetals, as well as Weyl points with higher topological charge, this stability is shown to be a direct consequence of a spatial symmetry that anticommutes with the effective Hamiltonian while leaving the interaction invariant. A more refined argument is applied to the honeycomb lattice model of graphene showing that its Dirac points are also perturbatively stable to all orders. We also give examples of nodal Hamiltonians that acquire a gap from interactions as a consequence of symmetries different from those of Weyl and Dirac materials.

  11. Cavity-induced artificial gauge field in a Bose-Hubbard ladder

    NASA Astrophysics Data System (ADS)

    Halati, Catalin-Mihai; Sheikhan, Ameneh; Kollath, Corinna

    2017-12-01

    We consider theoretically ultracold interacting bosonic atoms confined to quasi-one-dimensional ladder structures formed by optical lattices and coupled to the field of an optical cavity. The atoms can collect a spatial phase imprint during a cavity-assisted tunneling along a rung via Raman transitions employing a cavity mode and a transverse running wave pump beam. By adiabatic elimination of the cavity field we obtain an effective Hamiltonian for the bosonic atoms, with a self-consistency condition. Using the numerical density-matrix renormalization-group method, we obtain a rich steady-state diagram of self-organized steady states. Transitions between superfluid to Mott-insulating states occur, on top of which we can have Meissner, vortex liquid, and vortex lattice phases. Also a state that explicitly breaks the symmetry between the two legs of the ladder, namely, the biased-ladder phase, is dynamically stabilized. We investigate the influence that a trapping potential has on the stability of the self-organized phases.

  12. A volumetric three-dimensional digital light photoactivatable dye display

    NASA Astrophysics Data System (ADS)

    Patel, Shreya K.; Cao, Jian; Lippert, Alexander R.

    2017-07-01

    Volumetric three-dimensional displays offer spatially accurate representations of images with a 360° view, but have been difficult to implement due to complex fabrication requirements. Herein, a chemically enabled volumetric 3D digital light photoactivatable dye display (3D Light PAD) is reported. The operating principle relies on photoactivatable dyes that become reversibly fluorescent upon illumination with ultraviolet light. Proper tuning of kinetics and emission wavelengths enables the generation of a spatial pattern of fluorescent emission at the intersection of two structured light beams. A first-generation 3D Light PAD was fabricated using the photoactivatable dye N-phenyl spirolactam rhodamine B, a commercial picoprojector, an ultraviolet projector and a custom quartz imaging chamber. The system displays a minimum voxel size of 0.68 mm3, 200 μm resolution and good stability over repeated `on-off' cycles. A range of high-resolution 3D images and animations can be projected, setting the foundation for widely accessible volumetric 3D displays.

  13. Single-cell Hi-C bridges microscopy and genome-wide sequencing approaches to study 3D chromatin organization.

    PubMed

    Ulianov, Sergey V; Tachibana-Konwalski, Kikue; Razin, Sergey V

    2017-10-01

    Recent years have witnessed an explosion of the single-cell biochemical toolbox including chromosome conformation capture (3C)-based methods that provide novel insights into chromatin spatial organization in individual cells. The observations made with these techniques revealed that topologically associating domains emerge from cell population averages and do not exist as static structures in individual cells. Stochastic nature of the genome folding is likely to be biologically relevant and may reflect the ability of chromatin fibers to adopt a number of alternative configurations, some of which could be transiently stabilized and serve regulatory purposes. Single-cell Hi-C approaches provide an opportunity to analyze chromatin folding in rare cell types such as stem cells, tumor progenitors, oocytes, and totipotent cells, contributing to a deeper understanding of basic mechanisms in development and disease. Here, we review key findings of single-cell Hi-C and discuss possible biological reasons and consequences of the inferred dynamic chromatin spatial organization. © 2017 WILEY Periodicals, Inc.

  14. A Preferentially Segregated Recycling Vesicle Pool of Limited Size Supports Neurotransmission in Native Central Synapses

    PubMed Central

    Marra, Vincenzo; Burden, Jemima J.; Thorpe, Julian R.; Smith, Ikuko T.; Smith, Spencer L.; Häusser, Michael; Branco, Tiago; Staras, Kevin

    2012-01-01

    Summary At small central synapses, efficient turnover of vesicles is crucial for stimulus-driven transmission, but how the structure of this recycling pool relates to its functional role remains unclear. Here we characterize the organizational principles of functional vesicles at native hippocampal synapses with nanoscale resolution using fluorescent dye labeling and electron microscopy. We show that the recycling pool broadly scales with the magnitude of the total vesicle pool, but its average size is small (∼45 vesicles), highly variable, and regulated by CDK5/calcineurin activity. Spatial analysis demonstrates that recycling vesicles are preferentially arranged near the active zone and this segregation is abolished by actin stabilization, slowing the rate of activity-driven exocytosis. Our approach reveals a similarly biased recycling pool distribution at synapses in visual cortex activated by sensory stimulation in vivo. We suggest that in small native central synapses, efficient release of a limited pool of vesicles relies on their favored spatial positioning within the terminal. PMID:23141069

  15. The site, size, spatial stability, and energetics of an X-ray flare kernel

    NASA Technical Reports Server (NTRS)

    Petrasso, R.; Gerassimenko, M.; Nolte, J.

    1979-01-01

    The site, size evolution, and energetics of an X-ray kernel that dominated a solar flare during its rise and somewhat during its peak are investigated. The position of the kernel remained stationary to within about 3 arc sec over the 30-min interval of observations, despite pulsations in the kernel X-ray brightness in excess of a factor of 10. This suggests a tightly bound, deeply rooted magnetic structure, more plausibly associated with the near chromosphere or low corona rather than with the high corona. The H-alpha flare onset coincided with the appearance of the kernel, again suggesting a close spatial and temporal coupling between the chromospheric H-alpha event and the X-ray kernel. At the first kernel brightness peak its size was no larger than about 2 arc sec, when it accounted for about 40% of the total flare flux. In the second rise phase of the kernel, a source power input of order 2 times 10 to the 24th ergs/sec is minimally required.

  16. A volumetric three-dimensional digital light photoactivatable dye display

    PubMed Central

    Patel, Shreya K.; Cao, Jian; Lippert, Alexander R.

    2017-01-01

    Volumetric three-dimensional displays offer spatially accurate representations of images with a 360° view, but have been difficult to implement due to complex fabrication requirements. Herein, a chemically enabled volumetric 3D digital light photoactivatable dye display (3D Light PAD) is reported. The operating principle relies on photoactivatable dyes that become reversibly fluorescent upon illumination with ultraviolet light. Proper tuning of kinetics and emission wavelengths enables the generation of a spatial pattern of fluorescent emission at the intersection of two structured light beams. A first-generation 3D Light PAD was fabricated using the photoactivatable dye N-phenyl spirolactam rhodamine B, a commercial picoprojector, an ultraviolet projector and a custom quartz imaging chamber. The system displays a minimum voxel size of 0.68 mm3, 200 μm resolution and good stability over repeated ‘on-off’ cycles. A range of high-resolution 3D images and animations can be projected, setting the foundation for widely accessible volumetric 3D displays. PMID:28695887

  17. Concurrent temporal stability of the apparent electrical conductivity and soil water content

    USDA-ARS?s Scientific Manuscript database

    Knowledge of spatio-temporal soil water content (SWC) variability within agricultural fields is useful to improve crop management. Spatial patterns of soil water contents can be characterized using the temporal stability analysis, however high density sampling is required. Soil apparent electrical c...

  18. Induced matter brane gravity and Einstein static universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heydarzade, Y.; Darabi, F., E-mail: heydarzade@azaruniv.edu, E-mail: f.darabi@azaruniv.edu

    We investigate stability of the Einstein static universe against the scalar, vector and tensor perturbations in the context of induced matter brane gravity. It is shown that in the framework of this model, the Einstein static universe has a positive spatial curvature. In contrast to the classical general relativity, it is found that a stable Einstein static universe against the scalar perturbations does exist provided that the variation of time dependent geometrical equation of state parameter is proportional to the minus of the variation of the scale factor, δ ω{sub g}(t) = −Cδ a(t). We obtain neutral stability against the vector perturbations, and themore » stability against the tensor perturbations is guaranteed due to the positivity of the spatial curvature of the Einstein static universe in induced matter brane gravity.« less

  19. Stability of spatial distributions of stink bugs, boll injury, and NDVI in cotton

    USDA-ARS?s Scientific Manuscript database

    A two-year study was conducted to determine the degree of aggregation of thrips, stink bugs, and aphids in cotton, Gossypium hirsutum L., and their spatial association with soil apparent electrical conductivity (ECa), a multispectral vegetation index (Normalized Difference Vegetation Index [NDVI]), ...

  20. Postural stabilization from fingertip contact II. Relationships between age, tactile sensibility and magnitude of contact forces.

    PubMed

    Tremblay, François; Mireault, Annie-Claude; Dessureault, Liam; Manning, Hélène; Sveistrup, Heidi

    2005-07-01

    In the present report, we extend our previous observations on the effect of age on postural stabilization from fingertip contact (Exp Brain Res 157 (2004) 275) to examine the possible influence of sensory thresholds measured at the fingertip on the magnitude of contact forces. Participants (young, n=25, 19-32 years; old, n=35, 60-86 years) underwent psychophysical testing of the right index finger to determine thresholds for spatial acuity, pressure sensitivity and kinesthetic acuity. Spatial acuity was determined from the ability to detect gaps of different widths, while Semmes-Weinstein monofilaments were used for pressure sensitivity. Kinesthetic acuity was determined by asking participants to discriminate plates of different thicknesses using a thumb-index precision grip. These tests were selected on the basis that each reflected different sensory coding mechanisms (resolution of spatial stimuli, detection of mechanical forces and integration of multi-sensory inputs for hand conformation) and thus provided specific information about the integrity and function of mechanoreceptive afferents innervating the hand. After log transformation, thresholds were first examined to determine the influence of age (young and old) and gender (male, female) on tactile acuity. Sensory thresholds were then entered into multiple linear regression models to examine their ability to predict fingertip contact forces (normal and tangential) applied to a smooth surface when subjects stood with eyes closed on either a firm or a compliant support surface. As expected, age exerted a significant effect (p<0.01) on all three thresholds, but its impact was greater on spatial acuity than on pressure sensitivity or kinesthetic acuity. Gender had a marginal impact on pressure sensitivity thresholds only. The regression analyses revealed that tactile thresholds determined at the index fingertip accounted for a substantial proportion of the variance (up to 30%) seen in the contact forces deployed on the touch-plate, especially those exerted in the normal direction. The same analyses further revealed that much of the variance explained by the models arose from inter-individual differences in tactile spatial acuity and not from differences in pressure sensitivity or in kinesthetic acuity. Thus, of all three tests, the spatial acuity task was the most sensitive at detecting differences in hand sensibility both within and between age groups and, accordingly, was also better at predicting the magnitude of fingertip forces deployed for postural stabilization. Since spatial acuity is critically dependent upon innervation density, we conclude that the degree of functional innervation at the fingertip was likely an important factor in determining the capacity of older participants to use contact cues for stability purposes, forcing the most affected individuals to exert unusually high pressures in order to achieve stabilization in the presence of reduced tactile inputs arising from contact with the touched surface.

  1. 46 CFR 45.103 - Structural stress and stability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Structural stress and stability. 45.103 Section 45.103... Conditions of Assignment § 45.103 Structural stress and stability. (a) The nature and stowage of the cargo... structural stress. (b) The vessel must meet all applicable stability and subdivision requirements of this...

  2. 46 CFR 45.103 - Structural stress and stability.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Structural stress and stability. 45.103 Section 45.103... Conditions of Assignment § 45.103 Structural stress and stability. (a) The nature and stowage of the cargo... structural stress. (b) The vessel must meet all applicable stability and subdivision requirements of this...

  3. 46 CFR 45.103 - Structural stress and stability.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Structural stress and stability. 45.103 Section 45.103... Conditions of Assignment § 45.103 Structural stress and stability. (a) The nature and stowage of the cargo... structural stress. (b) The vessel must meet all applicable stability and subdivision requirements of this...

  4. 46 CFR 45.103 - Structural stress and stability.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Structural stress and stability. 45.103 Section 45.103... Conditions of Assignment § 45.103 Structural stress and stability. (a) The nature and stowage of the cargo... structural stress. (b) The vessel must meet all applicable stability and subdivision requirements of this...

  5. 46 CFR 45.103 - Structural stress and stability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Structural stress and stability. 45.103 Section 45.103... Conditions of Assignment § 45.103 Structural stress and stability. (a) The nature and stowage of the cargo... structural stress. (b) The vessel must meet all applicable stability and subdivision requirements of this...

  6. Spin stability of sounding rocket secondary payloads following high velocity ejections

    NASA Astrophysics Data System (ADS)

    Nelson, Weston M.

    The Auroral Spatial Structures Probe (ASSP) mission is a sounding rocket mission studying solar energy input to space weather. ASSP requires the high velocity ejection (up to 50 m/s) of 6 secondary payloads, spin stabilized perpendicular to the ejection velocity. The proposed scientific instrumentation depends on a high degree of spin stability, requiring a maximum coning angle of less than 5°. It also requires that the spin axis be aligned within 25° of the local magnetic field lines. The maximum velocities of current ejection methods are typically less than 10m/s, and often produce coning angles in excess of 20°. Because of this they do not meet the ASSP mission requirements. To meet these requirements a new ejection method is being developed by NASA Wallops Flight Facility. Success of the technique in meeting coning angle and B-field alignment requirements is evaluated herein by modeling secondary payload dynamic behavior using a 6-DOF dynamic simulation employing state space integration written in MATLAB. Simulation results showed that secondary payload mass balancing is the most important factor in meeting stability requirements. Secondary mass payload properties will be measured using an inverted torsion pendulum. If moment of inertia measurement errors can be reduced to 0.5%, it is possible to achieve mean coning and B-field alignment angles of 2.16° and 2.71°, respectively.

  7. Biodiveristy and Stability of Aboriginal Salmon Fisheries in the Fraser River Watershed

    NASA Astrophysics Data System (ADS)

    Nesbitt, H. K.; Moore, J.

    2015-12-01

    Natural watersheds are hierarchical networks that may confer stability to ecosystem functions through integration of upstream biodiversity, whereby upstream asset diversification stabilizes the aggregate downstream through the portfolio effect. Here we show that riverine structure and its associated diversity confer stability of salmon catch and lengthened fishing seasons for Aboriginal fisheries on the Fraser River (1370km) in BC, Canada, the second longest dam-free salmon migration route in North America. In Canada, Aboriginal people have rights to fish for food, social, and ceremonial (FSC) purposes. FSC fisheries are located throughout the Fraser watershed and have access to varying levels of salmon diversity based on their location. For instance, fisheries at the mouth of the river have access to all of the salmon that spawn throughout the entire watershed, thus integrating across the complete diversity profile of the entire river. In contrast, fisheries in the headwaters have access to fewer salmon species and populations and thus fish from a much less diverse portfolio. These spatial gradients of diversity within watersheds provide a natural contrast for quantifying the effects of different types of diversity on interannual resource stability and seasonal availability. We acquired weekly and yearly catch totals from 1983 to 2012 (30 years) for Chinook, chum, coho, pink, and sockeye salmon for 21 FSC fishing sites throughout the Fraser River watershed from Fisheries and Oceans Canada. We examined how both population- and species-level diversity affects catch stability and season length at each site by quantifying year-to-year variability and within-year season length respectively. Salmon species diversity made fisheries up to 28% more stable in their catch than predicted with 3.7 more weeks to fish on average. Fisheries with access to high population diversity had up to 3.8 times more stable catch and 3 times longer seasons than less diverse fisheries. We show that both species- and population-level diversity support food security in First Nations fisheries. These data indicate that protecting multiple dimensions of biodiversity, such as through preserving the natural structure of watersheds, will promote food security of Aboriginal people.

  8. Predator attack rate evolution in space: the role of ecology mediated by complex emergent spatial structure and self-shading.

    PubMed

    Messinger, Susanna M; Ostling, Annette

    2013-11-01

    Predation interactions are an important element of ecological communities. Population spatial structure has been shown to influence predator evolution, resulting in the evolution of a reduced predator attack rate; however, the evolutionary role of traits governing predator and prey ecology is unknown. The evolutionary effect of spatial structure on a predator's attack rate has primarily been explored assuming a fixed metapopulation spatial structure, and understood in terms of group selection. But endogenously generated, emergent spatial structure is common in nature. Furthermore, the evolutionary influence of ecological traits may be mediated through the spatial self-structuring process. Drawing from theory on pathogens, the evolutionary effect of emergent spatial structure can be understood in terms of self-shading, where a voracious predator limits its long-term invasion potential by reducing local prey availability. Here we formalize the effects of self-shading for predators using spatial moment equations. Then, through simulations, we show that in a spatial context self-shading leads to relationships between predator-prey ecology and the predator's attack rate that are not expected in a non-spatial context. Some relationships are analogous to relationships already shown for host-pathogen interactions, but others represent new trait dimensions. Finally, since understanding the effects of ecology using existing self-shading theory requires simplifications of the emergent spatial structure that do not apply well here, we also develop metrics describing the complex spatial structure of the predator and prey populations to help us explain the evolutionary effect of predator and prey ecology in the context of self-shading. The identification of these metrics may provide a step towards expansion of the predictive domain of self-shading theory to more complex spatial dynamics. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Stability of Two Piagetian Scales with Severely and Profoundly Retarded Children.

    ERIC Educational Resources Information Center

    Silverstein, A. B.; And Others

    1981-01-01

    Corman and Escalona's scales for Object Permanence and Spatial Relationships were administered to 98 severely and profoundly retarded children on three occasions, with intervals of six months between successive administrations. The findings demonstrated the high stability of the scales when environmental conditions are themselves highly stable.…

  10. Bacterial communities in full-scale wastewater treatment systems.

    PubMed

    Cydzik-Kwiatkowska, Agnieszka; Zielińska, Magdalena

    2016-04-01

    Bacterial metabolism determines the effectiveness of biological treatment of wastewater. Therefore, it is important to define the relations between the species structure and the performance of full-scale installations. Although there is much laboratory data on microbial consortia, our understanding of dependencies between the microbial structure and operational parameters of full-scale wastewater treatment plants (WWTP) is limited. This mini-review presents the types of microbial consortia in WWTP. Information is given on extracellular polymeric substances production as factor that is key for formation of spatial structures of microorganisms. Additionally, we discuss data on microbial groups including nitrifiers, denitrifiers, Anammox bacteria, and phosphate- and glycogen-accumulating bacteria in full-scale aerobic systems that was obtained with the use of molecular techniques, including high-throughput sequencing, to shed light on dependencies between the microbial ecology of biomass and the overall efficiency and functional stability of wastewater treatment systems. Sludge bulking in WWTPs is addressed, as well as the microbial composition of consortia involved in antibiotic and micropollutant removal.

  11. G-quadruplex in animal development: Contribution to gene expression and genomic heterogeneity.

    PubMed

    Armas, Pablo; Calcaterra, Nora Beatriz

    2018-05-18

    During animal development, gene expression is orchestrated by specific and highly evolutionarily conserved mechanisms that take place accurately, both at spatial and temporal levels. The last decades have provided compelling evidence showing that chromatin state plays essential roles in orchestrating most of the stages of development. The DNA molecule can adopt alternative structures different from the helical duplex architecture. G-rich DNA sequences can fold as intrastrand quadruple helix structures called G-quadruplexes or G4-DNA. G4 can also be formed in RNA molecules, such as mRNA, lncRNA and pre-miRNA. Emerging evidences suggest that G4s have crucial roles in a variety of biological processes, including transcription, recombination, replication, translation and chromosome stability. In this review, we have collected recent information gathered by various laboratories showing the important role of G4 DNA and RNA structures in several steps of animal development. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Methyl Transfer by Substrate Signaling from a Knotted Protein Fold

    PubMed Central

    Christian, Thomas; Sakaguchi, Reiko; Perlinska, Agata P.; Lahoud, Georges; Ito, Takuhiro; Taylor, Erika A.; Yokoyama, Shigeyuki; Sulkowska, Joanna I.; Hou, Ya-Ming

    2017-01-01

    Proteins with knotted configurations are restricted in conformational space relative to unknotted proteins. Little is known if knotted proteins have sufficient dynamics to communicate between spatially separated substrate-binding sites. In bacteria, TrmD is a methyl transferase that uses a knotted protein fold to catalyze methyl transfer from S-adenosyl methionine (AdoMet) to G37-tRNA. The product m1G37-tRNA is essential for life as a determinant to maintain protein synthesis reading-frame. Using an integrated approach of structure, kinetic, and computational analysis, we show here that the structurally constrained TrmD knot is required for its catalytic activity. Unexpectedly, the TrmD knot has complex internal movements that respond to AdoMet binding and signaling. Most of the signaling propagates the free energy of AdoMet binding to stabilize tRNA binding and to assemble the active site. This work demonstrates new principles of knots as an organized structure that captures the free energies of substrate binding to facilitate catalysis. PMID:27571175

  13. Predictive polymer modeling reveals coupled fluctuations in chromosome conformation and transcription

    PubMed Central

    Giorgetti, Luca; Galupa, Rafael; Nora, Elphège P.; Piolot, Tristan; Lam, France; Dekker, Job; Tiana, Guido; Heard, Edith

    2015-01-01

    Summary A new level of chromosome organization, Topologically Associating Domains (TADs), was recently uncovered by chromosome-confirmation-capture (3C) techniques. To explore TAD structure and function, we developed a polymer model that can extract the full repertoire of chromatin conformations within TADs from population-based 3C data. This model predicts actual physical distances and to what extent chromosomal contacts vary between cells. It also identifies interactions within single TADs that stabilize boundaries between TADs and allows us to identify and genetically validate key structural elements within TADs. Combining the model’s predictions with high-resolution DNA FISH and quantitative RNA FISH for TADs within the X-inactivation center (Xic), we dissect the relationship between transcription and spatial proximity to cis-regulatory elements. We demonstrate that contacts between potential regulatory elements occur in the context of fluctuating structures rather than stable loops and propose that such fluctuations may contribute to asymmetric expression in the Xic during X inactivation. PMID:24813616

  14. Cellular Factors Shape 3D Genome Landscape

    Cancer.gov

    Researchers, using novel large-scale imaging technology, have mapped the spatial location of individual genes in the nucleus of human cells and identified 50 cellular factors required for the proper 3D positioning of genes. These spatial locations play important roles in gene expression, DNA repair, genome stability, and other cellular activities.

  15. Multi-scale geospatial agroecosystem modeling: A case study on the influence of soil data resolution on carbon budget estimates

    EPA Science Inventory

    The development of effective measures to stabilize atmospheric 22 CO2 concentration and mitigate negative impacts of climate change requires accurate quantification of the spatial variation and magnitude of the terrestrial carbon (C) flux. However, the spatial pattern and strengt...

  16. Influence of heating procedures on the surface structure of stabilized polyacrylonitrile fibers

    NASA Astrophysics Data System (ADS)

    Zhao, Rui-Xue; Sun, Peng-fei; Liu, Rui-jian; Ding, Zhan-hui; Li, Xiang-shan; Liu, Xiao-yang; Zhao, Xu-dong; Gao, Zhong-min

    2018-03-01

    The stabilized polyacrylonitrile (PAN) fibers were obtained after heating the precursor PAN fibers under air atmosphere by different procedures. The surface structures and compositions of as-prepared stabilized PAN fibers have been investigated by SEM, SSNMR, XPS and Raman spectroscopy. The results show that 200 °C, 220 °C, 250 °C, and 280 °C are key temperatures for the preparation of stabilized PAN fibers. The effect of heating gradient on the structure of stabilized PAN fibers has been studied. The possible chemical structural formulas for the PAN fibers is provided, which include the stable and unstable structure. The stable structure (α-type) could endure the strong chemical reactions and the unstable structure (β- or γ-type) could mitigate the drastic oxidation reactions. The inferences of chemical formula of stabilized PAN fibers are benefit to the design of appropriate surface structure for the production for high quality carbon fibers.

  17. Geostatistics for spatial genetic structures: study of wild populations of perennial ryegrass.

    PubMed

    Monestiez, P; Goulard, M; Charmet, G

    1994-04-01

    Methods based on geostatistics were applied to quantitative traits of agricultural interest measured on a collection of 547 wild populations of perennial ryegrass in France. The mathematical background of these methods, which resembles spatial autocorrelation analysis, is briefly described. When a single variable is studied, the spatial structure analysis is similar to spatial autocorrelation analysis, and a spatial prediction method, called "kriging", gives a filtered map of the spatial pattern over all the sampled area. When complex interactions of agronomic traits with different evaluation sites define a multivariate structure for the spatial analysis, geostatistical methods allow the spatial variations to be broken down into two main spatial structures with ranges of 120 km and 300 km, respectively. The predicted maps that corresponded to each range were interpreted as a result of the isolation-by-distance model and as a consequence of selection by environmental factors. Practical collecting methodology for breeders may be derived from such spatial structures.

  18. Dynamics of electronic transport in spatially-extended systems with negative differential conductivity

    NASA Astrophysics Data System (ADS)

    Xu, Huidong

    Negative differential conductivity (NDC) is a nonlinear property of electronic transport for high electric field strength found in materials and devices such as semiconductor superlattices, bulk GaAs and Gunn diodes. In spatially extended systems, NDC can cause rich dynamics such as static and mobile field domains and moving charge fronts. In this thesis, these phenomena are studied theoretically and numerically for semiconductor superlattices. Two classes of models are considered: a discrete model based on sequential resonant tunneling between neighboring quantum wells is used to described charge transport in weakly-coupled superlattices, and a continuum model based on the miniband transport is used to describe charge transport strongly-coupled superlattices. The superlattice is a spatially extended nonlinear system consisting a periodic arrangement of quantum wells (e.g., GaAs) and barriers (e.g., AlAs). Using a discrete model and only considering one spatial dimension, we find that the boundary condition at the injecting contact has a great influence on the dynamical behavior for both fixed voltage and transient response. Static or moving field domains are usually inevitable in this system. In order to suppress field domains, we add a side shunting layer parallel to the growth direction of the superlattice. In this case, the model includes both vertical and lateral spatial degrees of freedom. We first study a shunted weakly-coupled superlattice for a wide range of material parameters. The field domains are found to be suppressed for superlattices with small lateral size and good connection between the shunt and the quantum wells of the superlattice. As the lateral size of the superlattice increases, the uniform field configuration loses its stability to either static or dynamic field domains, regardless of shunt properties. A lower quality shunt generally leads to regular and chaotic current oscillations and complex spatio-temporal dynamics in the field profile. Bifurcations separating static and dynamic behaviors are characterized and found to be dependent on the shunt properties. Then we adopt the model to study the shunted strongly-coupled superlattice with the continuum model. Key structural parameters associated with both the shunt layer and SL are identified for which the shunt layer stabilizes a uniform electric field profile. These results support the possibility to realize a SL-based THz oscillator with a carefully designed structure. Another important behavior of the static field domains in the weakly-coupled superlattice is bistability, i.e., two possible states (i.e., electric field configurations) for a single voltage. Noise can drive the system from one of these states (the metastable state) to the other one (the globally stable state). The process of escape from the metastable state can be viewed as a stochastic first-passage process in a high-dimensional system that possesses complex stability eigenvalues and for which a global potential energy function does not exist. This process is simulated using a stochastic differential equation system which incorporates shot noise. The mean switching time tau is fitted to an exponential expression e1DVth -Va, where Vth denotes the voltage at the end of the current branch. The exponent alpha in the fitting curve deviates from 1.5 which is predicted for a generic one dimensional system. We develop an algorithm to determine an effective locally valid potential. Principal component analysis is applied to find the most probable path for switching from the metastable current state.

  19. Long-term spatiotemporal stability and dynamic changes in helminth infracommunities of bank voles (Myodes glareolus) in NE Poland.

    PubMed

    Grzybek, Maciej; Bajer, Anna; Bednarska, Małgorzata; Al-Sarraf, Mohammed; Behnke-Borowczyk, Jolanta; Harris, Philip D; Price, Stephen J; Brown, Gabrielle S; Osborne, Sarah-Jane; Siński, Edward; Behnke, Jerzy M

    2015-12-01

    Parasites are considered to be an important selective force in host evolution but ecological studies of host-parasite systems are usually short-term providing only snap-shots of what may be dynamic systems. We have conducted four surveys of helminths of bank voles at three ecologically similar woodland sites in NE Poland, spaced over a period of 11 years, to assess the relative importance of temporal and spatial effects on helminth infracommunities. Some measures of infracommunity structure maintained relative stability: the rank order of prevalence and abundance of Heligmosomum mixtum, Heligmosomoides glareoli and Mastophorus muris changed little between the four surveys. Other measures changed markedly: dynamic changes were evident in Syphacia petrusewiczi which declined to local extinction, while the capillariid Aonchotheca annulosa first appeared in 2002 and then increased in prevalence and abundance over the remaining three surveys. Some species are therefore dynamic and both introductions and extinctions can be expected in ecological time. At higher taxonomic levels and for derived measures, year and host-age effects and their interactions with site are important. Our surveys emphasize that the site of capture is the major determinant of the species contributing to helminth community structure, providing some predictability in these systems.

  20. Spatial and temporal task characteristics as stress: a test of the dynamic adaptability theory of stress, workload, and performance.

    PubMed

    Szalma, James L; Teo, Grace W L

    2012-03-01

    The goal for this study was to test assertions of the dynamic adaptability theory of stress, which proposes two fundamental task dimensions, information rate (temporal properties of a task) and information structure (spatial properties of a task). The theory predicts adaptive stability across stress magnitudes, with progressive and precipitous changes in adaptive response manifesting first as increases in perceived workload and stress and then as performance failure. Information structure was manipulated by varying the number of displays to be monitored (1, 2, 4 or 8 displays). Information rate was manipulated by varying stimulus presentation rate (8, 12, 16, or 20 events/min). A signal detection task was used in which critical signals were pairs of digits that differed by 0 or 1. Performance accuracy declined and workload and stress increased as a function of increased task demand, with a precipitous decline in accuracy at the highest demand levels. However, the form of performance change as well as the pattern of relationships between speed and accuracy and between performance and workload/stress indicates that some aspects of the theory need revision. Implications of the results for the theory and for future research are discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Super-Resolution Fluorescence Imaging of Spatial Organization of Proteins and Lipids in Natural Rubber.

    PubMed

    Wu, Jinrong; Qu, Wei; Huang, Guangsu; Wang, Siyuan; Huang, Cheng; Liu, Han

    2017-06-12

    Natural rubber (NR) with proteins and lipids has superior mechanical properties to its synthetic counterpart, polyisoprene rubber. However, it is a challenge to unravel the morphology of proteins and lipids. Here we used two-color stochastic optical reconstruction microscopy (STORM) to directly visualize the spatial organization of proteins and lipids in NR. We found that the proteins and lipids form an interdispersed stabilizing layer on the surface of NR latex particles. After drying, the proteins and lipids form aggregates of up to 300 nm in diameter. The aggregates physically interact with the terminal groups of polyisoprene chains, leading to the formation of a network, which contributes to the high elasticity and mechanical property of NR. If we remove proteins in NR, the large phospholipid aggregates disintegrate into small ones. However, it does not decompose the network but rather reduces the effective cross-linking density, thus the deproteinized NR is still elastic-like with decreased mechanical property. Removing both proteins and lipids wholly decomposes the network, thus, results in a liquid-like behavior of the rubber. The STORM measurements in this paper enable more insight into the structure-property relationship of NR, which also shows a great potential of STORM in studying the fine structure of polymeric materials and nanocomposites.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishchenko, L; Khan, M; Aizenberg, J

    Certain natural organisms use micro-patterned surface chemistry, or ice-nucleating species, to control water condensation and ice nucleation for survival under extreme conditions. As an analogy to these biological approaches, it is shown that functionalized, hydrophilic polymers and particles deposited on the tips of superhydrophobic posts induce precise topographical control over water condensation and freezing at the micrometer scale. A bottom-up deposition process is used to take advantage of the limited contact area of a non-wetting aqueous solution on a superhydrophobic surface. Hydrophilic polymer deposition on the tips of these geometrical structures allows spatial control over the nucleation, growth, and coalescencemore » of micrometer-scale water droplets. The hydrophilic tips nucleate water droplets with extremely uniform nucleation and growth rates, uniform sizes, an increased stability against coalescence, and asymmetric droplet morphologies. Control of freezing behavior is also demonstrated via deposition of ice-nucleating AgI nanoparticles on the tips of these structures. This combination of the hydrophilic polymer and AgI particles on the tips was used to achieve templating of ice nucleation at the micrometer scale. Preliminary results indicate that control over ice crystal size, spatial symmetry, and position might be possible with this method. This type of approach can serve as a platform for systematically analyzing micrometer-scale condensation and freezing phenomena, and as a model for natural systems.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishchenko, Lidiya; Khan, M.; Aizenberg, Joanna

    Certain natural organisms use micro-patterned surface chemistry, or ice-nucleating species, to control water condensation and ice nucleation for survival under extreme conditions. As an analogy to these biological approaches, it is shown that functionalized, hydrophilic polymers and particles deposited on the tips of superhydrophobic posts induce precise topographical control over water condensation and freezing at the micrometer scale. A bottom-up deposition process is used to take advantage of the limited contact area of a non-wetting aqueous solution on a superhydrophobic surface. Hydrophilic polymer deposition on the tips of these geometrical structures allows spatial control over the nucleation, growth, and coalescencemore » of micrometer-scale water droplets. The hydrophilic tips nucleate water droplets with extremely uniform nucleation and growth rates, uniform sizes, an increased stability against coalescence, and asymmetric droplet morphologies. Furthermore, control of freezing behavior is also demonstrated via deposition of ice-nucleating AgI nanoparticles on the tips of these structures. The combination of the hydrophilic polymer and AgI particles on the tips was used to achieve templating of ice nucleation at the micrometer scale. Preliminary results indicate that control over ice crystal size, spatial symmetry, and position might be possible with this method. This type of approach can serve as a platform for systematically analyzing micrometer-scale condensation and freezing phenomena, and as a model for natural systems.« less

  4. a Simple Spatially Weighted Measure of Temporal Stability for Data with Limited Temporal Observations

    NASA Astrophysics Data System (ADS)

    Piburn, J.; Stewart, R.; Morton, A.

    2017-10-01

    Identifying erratic or unstable time-series is an area of interest to many fields. Recently, there have been successful developments towards this goal. These new developed methodologies however come from domains where it is typical to have several thousand or more temporal observations. This creates a challenge when attempting to apply these methodologies to time-series with much fewer temporal observations such as for socio-cultural understanding, a domain where a typical time series of interest might only consist of 20-30 annual observations. Most existing methodologies simply cannot say anything interesting with so few data points, yet researchers are still tasked to work within in the confines of the data. Recently a method for characterizing instability in a time series with limitedtemporal observations was published. This method, Attribute Stability Index (ASI), uses an approximate entropy based method tocharacterize a time series' instability. In this paper we propose an explicitly spatially weighted extension of the Attribute StabilityIndex. By including a mechanism to account for spatial autocorrelation, this work represents a novel approach for the characterizationof space-time instability. As a case study we explore national youth male unemployment across the world from 1991-2014.

  5. Spatial and temporal patterns of neutral and adaptive genetic variation in the endangered African wild dog (Lycaon pictus).

    PubMed

    Marsden, Clare D; Woodroffe, Rosie; Mills, Michael G L; McNutt, J Weldon; Creel, Scott; Groom, Rosemary; Emmanuel, Masenga; Cleaveland, Sarah; Kat, Pieter; Rasmussen, Gregory S A; Ginsberg, Joshua; Lines, Robin; André, Jean-Marc; Begg, Colleen; Wayne, Robert K; Mable, Barbara K

    2012-03-01

    Deciphering patterns of genetic variation within a species is essential for understanding population structure, local adaptation and differences in diversity between populations. Whilst neutrally evolving genetic markers can be used to elucidate demographic processes and genetic structure, they are not subject to selection and therefore are not informative about patterns of adaptive variation. As such, assessments of pertinent adaptive loci, such as the immunity genes of the major histocompatibility complex (MHC), are increasingly being incorporated into genetic studies. In this study, we combined neutral (microsatellite, mtDNA) and adaptive (MHC class II DLA-DRB1 locus) markers to elucidate the factors influencing patterns of genetic variation in the African wild dog (Lycaon pictus); an endangered canid that has suffered extensive declines in distribution and abundance. Our genetic analyses found all extant wild dog populations to be relatively small (N(e)  < 30). Furthermore, through coalescent modelling, we detected a genetic signature of a recent and substantial demographic decline, which correlates with human expansion, but contrasts with findings in some other African mammals. We found strong structuring of wild dog populations, indicating the negative influence of extensive habitat fragmentation and loss of gene flow between habitat patches. Across populations, we found that the spatial and temporal structure of microsatellite diversity and MHC diversity were correlated and strongly influenced by demographic stability and population size, indicating the effects of genetic drift in these small populations. Despite this correlation, we detected signatures of selection at the MHC, implying that selection has not been completely overwhelmed by genetic drift. © 2012 Blackwell Publishing Ltd.

  6. Image Understanding and Information Extraction\\

    DTIC Science & Technology

    1977-11-01

    mentation and generalization of DeCarlo’s Nyquist-like stability test [15,161. The last step of the procedure is to check whether this zero ...Several general sta- bility theorems which relate stability to the zero set of B(w,z) have been presented. These theorems led to the conclusion that...Spatial Stochastic Model for Contextual Pattern Recognition . ° . .............. 88 T. S. Yu and K. S. Fu V. PREPROCESSING 1. Stability of General Two

  7. Probing quantum frustrated systems via factorization of the ground state.

    PubMed

    Giampaolo, Salvatore M; Adesso, Gerardo; Illuminati, Fabrizio

    2010-05-21

    The existence of definite orders in frustrated quantum systems is related rigorously to the occurrence of fully factorized ground states below a threshold value of the frustration. Ground-state separability thus provides a natural measure of frustration: strongly frustrated systems are those that cannot accommodate for classical-like solutions. The exact form of the factorized ground states and the critical frustration are determined for various classes of nonexactly solvable spin models with different spatial ranges of the interactions. For weak frustration, the existence of disentangling transitions determines the range of applicability of mean-field descriptions in biological and physical problems such as stochastic gene expression and the stability of long-period modulated structures.

  8. Effects of radial electric fields on linear ITG instabilities in W7-X and LHD

    NASA Astrophysics Data System (ADS)

    Riemann, J.; Kleiber, R.; Borchardt, M.

    2016-07-01

    The impact of radial electric fields on the properties of linear ion-temperature-gradient (ITG) modes in stellarators is studied. Numerical simulations have been carried out with the global particle-in-cell (PIC) code EUTERPE, modelling the behaviour of ITG modes in Wendelstein 7-X and an LHD-like configuration. In general, radial electric fields seem to lead to a reduction of ITG instability growth, which can be related to the action of an induced E× B -drift. Focus is set on the modification of mode properties (frequencies, power spectrum, spatial structure and localization) to understand the observed growth rates as the result of competing stabilizing mechanisms.

  9. Photostability of 2D Organic-Inorganic Hybrid Perovskites

    PubMed Central

    Wei, Yi; Audebert, Pierre; Galmiche, Laurent; Lauret, Jean-Sébastien; Deleporte, Emmanuelle

    2014-01-01

    We analyze the behavior of a series of newly synthesized (R-NH3)2PbX4 perovskites and, in particular, discuss the possible reasons which cause their degradation under UV illumination. Experimental results show that the degradation process depends a lot on their molecular components: not only the inorganic part, but also the chemical structure of the organic moieties play an important role in bleaching and photo-chemical reaction processes which tend to destroy perovskites luminescent framework. In addition, we find the spatial arrangement in crystal also influences the photostability course. Following these trends, we propose a plausible mechanism for the photodegradation of the films, and also introduced options for optimized stability. PMID:28788706

  10. Two-dimensional integrating matrices on rectangular grids. [solving differential equations associated with rotating structures

    NASA Technical Reports Server (NTRS)

    Lakin, W. D.

    1981-01-01

    The use of integrating matrices in solving differential equations associated with rotating beam configurations is examined. In vibration problems, by expressing the equations of motion of the beam in matrix notation, utilizing the integrating matrix as an operator, and applying the boundary conditions, the spatial dependence is removed from the governing partial differential equations and the resulting ordinary differential equations can be cast into standard eigenvalue form. Integrating matrices are derived based on two dimensional rectangular grids with arbitrary grid spacings allowed in one direction. The derivation of higher dimensional integrating matrices is the initial step in the generalization of the integrating matrix methodology to vibration and stability problems involving plates and shells.

  11. Internal strain drives spontaneous periodic buckling in collagen and regulates remodeling.

    PubMed

    Dittmore, Andrew; Silver, Jonathan; Sarkar, Susanta K; Marmer, Barry; Goldberg, Gregory I; Neuman, Keir C

    2016-07-26

    Fibrillar collagen, an essential structural component of the extracellular matrix, is remarkably resistant to proteolysis, requiring specialized matrix metalloproteinases (MMPs) to initiate its remodeling. In the context of native fibrils, remodeling is poorly understood; MMPs have limited access to cleavage sites and are inhibited by tension on the fibril. Here, single-molecule recordings of fluorescently labeled MMPs reveal cleavage-vulnerable binding regions arrayed periodically at ∼1-µm intervals along collagen fibrils. Binding regions remain periodic even as they migrate on the fibril, indicating a collective process of thermally activated and self-healing defect formation. An internal strain relief model involving reversible structural rearrangements quantitatively reproduces the observed spatial patterning and fluctuations of defects and provides a mechanism for tension-dependent stabilization of fibrillar collagen. This work identifies internal-strain-driven defects that may have general and widespread regulatory functions in self-assembled biological filaments.

  12. Low-energy planar magnetic defects in BaFe 2 As 2 : Nanotwins, twins, antiphase, and domain boundaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, S. N.; Alam, Aftab; Johnson, Duane D.

    2013-11-27

    In BaFe 2As 2, structural and magnetic planar defects begin to proliferate below the structural phase transition, affecting descriptions of magnetism and superconductivity. We study, using density-functional theory, the stability and magnetic properties of competing antiphase and domain boundaries, twins and isolated nanotwins (twin nuclei), and spin excitations proposed and/or observed. These nanoscale defects have a very low surface energy (22–210 m Jm -2), with twins favorable to the mesoscale. Defects exhibit smaller moments confined near their boundaries—making a uniform-moment picture inappropriate for long-range magnetic order in real samples. Nanotwins explain features in measured pair distribution functions so should bemore » considered when analyzing scattering data. All these defects can be weakly mobile and/or can have fluctuations that lower assessed “ordered” moments from longer spatial and/or time averaging and should be considered directly.« less

  13. Electron-doping by hydrogen in transition-metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Oh, Sehoon; Im, Seongil; Choi, Hyoung Joon

    Using first-principles calculations, we investigate the atomic and electronic structures of 2H-phase transition-metal dichalcogenides (TMDC), 2H-MX2, with and without defects, where M is Mo or W and X is S, Se or Te. We find that doping of atomic hydrogen on 2H-MX2 induces electron doping in the conduction band. To understand the mechanism of this electron doping, we analyze the electronic structures with and without impurities. We also calculate the diffusion energy barrier to discuss the spatial stability of the doping. Based on these results, we suggest a possible way to fabricate elaborately-patterned circuits by modulating the carrier type of 2H-MoTe2. We also discuss possible applications of this doping in designing nano-devices. This work was supported by NRF of Korea (Grant No. 2011-0018306) and KISTI supercomputing center (Project No. KSC-2016-C3-0052).

  14. Internal strain drives spontaneous periodic buckling in collagen and regulates remodeling

    PubMed Central

    Dittmore, Andrew; Silver, Jonathan; Sarkar, Susanta K.; Marmer, Barry; Goldberg, Gregory I.; Neuman, Keir C.

    2016-01-01

    Fibrillar collagen, an essential structural component of the extracellular matrix, is remarkably resistant to proteolysis, requiring specialized matrix metalloproteinases (MMPs) to initiate its remodeling. In the context of native fibrils, remodeling is poorly understood; MMPs have limited access to cleavage sites and are inhibited by tension on the fibril. Here, single-molecule recordings of fluorescently labeled MMPs reveal cleavage-vulnerable binding regions arrayed periodically at ∼1-µm intervals along collagen fibrils. Binding regions remain periodic even as they migrate on the fibril, indicating a collective process of thermally activated and self-healing defect formation. An internal strain relief model involving reversible structural rearrangements quantitatively reproduces the observed spatial patterning and fluctuations of defects and provides a mechanism for tension-dependent stabilization of fibrillar collagen. This work identifies internal–strain-driven defects that may have general and widespread regulatory functions in self-assembled biological filaments. PMID:27402741

  15. Solid Solution Characterization in Metal by Original Tomographic Scanning Microwave Microscopy Technique

    NASA Astrophysics Data System (ADS)

    Bourillot, Eric; Vitry, Pauline; Optasanu, Virgil; Plassard, Cédric; Lacroute, Yvon; Montessin, Tony; Lesniewska, Eric

    A general challenge in metallic components is the need for materials research to improve the service lifetime of the structural tanks or tubes subjected to harsh environments or the storage medium for the products. One major problem is the formation of lightest chemical elements bubbles or different chemical association, which can have a significant impact on the mechanical properties and structural stability of materials. The high migration mobility of these light chemical elements in solids presents a challenge for experimental characterization. Here, we present work relating to an original non-destructive, with high spatial resolution, tomographic technique based on Scanning Microwave Microscopy (SMM), which is used to visualize in-depth chemical composition of solid solution of a light chemical element in a metal. The experiments showed the capacity of SMM to detect volume. Measurements realized at different frequencies give access to a tomographic study of the sample.

  16. Waves on radial film flows

    NASA Astrophysics Data System (ADS)

    Cholemari, Murali R.; Arakeri, Jaywant H.

    2005-08-01

    We study the stability of surface waves on the radial film flow created by a vertical cylindrical water jet striking a horizontal plate. In such flows, surface waves have been found to be unstable and can cause transition to turbulence. This surface-wave-induced transition is different from the well-known Tollmien-Schlichting wave-induced transition. The present study aims at understanding the instability and the transition process. We do a temporal stability analysis by assuming the flow to be locally two-dimensional but including spatial variations to first order in the basic flow. The waves are found to be dispersive, mostly unstable, and faster than the mean flow. Spatial variation is the major destabilizing factor. Experiments are done to test the results of the linear stability analysis and to document the wave breakup and transition. Comparison between theory and experiments is fairly good and indicates the adequacy of the model.

  17. Structural Stability of Mathematical Models of National Economy

    NASA Astrophysics Data System (ADS)

    Ashimov, Abdykappar A.; Sultanov, Bahyt T.; Borovskiy, Yuriy V.; Adilov, Zheksenbek M.; Ashimov, Askar A.

    2011-12-01

    In the paper we test robustness of particular dynamic systems in a compact regions of a plane and a weak structural stability of one dynamic system of high order in a compact region of its phase space. The test was carried out based on the fundamental theory of dynamical systems on a plane and based on the conditions for weak structural stability of high order dynamic systems. A numerical algorithm for testing the weak structural stability of high order dynamic systems has been proposed. Based on this algorithm we assess the weak structural stability of one computable general equilibrium model.

  18. Global stability analysis of axisymmetric boundary layer over a circular cylinder

    NASA Astrophysics Data System (ADS)

    Bhoraniya, Ramesh; Vinod, Narayanan

    2018-05-01

    This paper presents a linear global stability analysis of the incompressible axisymmetric boundary layer on a circular cylinder. The base flow is parallel to the axis of the cylinder at inflow boundary. The pressure gradient is zero in the streamwise direction. The base flow velocity profile is fully non-parallel and non-similar in nature. The boundary layer grows continuously in the spatial directions. Linearized Navier-Stokes (LNS) equations are derived for the disturbance flow quantities in the cylindrical polar coordinates. The LNS equations along with homogeneous boundary conditions forms a generalized eigenvalues problem. Since the base flow is axisymmetric, the disturbances are periodic in azimuthal direction. Chebyshev spectral collocation method and Arnoldi's iterative algorithm is used for the solution of the general eigenvalues problem. The global temporal modes are computed for the range of Reynolds numbers and different azimuthal wave numbers. The largest imaginary part of the computed eigenmodes is negative, and hence, the flow is temporally stable. The spatial structure of the eigenmodes shows that the disturbance amplitudes grow in size and magnitude while they are moving towards downstream. The global modes of axisymmetric boundary layer are more stable than that of 2D flat-plate boundary layer at low Reynolds number. However, at higher Reynolds number they approach 2D flat-plate boundary layer. Thus, the damping effect of transverse curvature is significant at low Reynolds number. The wave-like nature of the disturbance amplitudes is found in the streamwise direction for the least stable eigenmodes.

  19. Dense tissue-like collagen matrices formed in cell-free conditions.

    PubMed

    Mosser, Gervaise; Anglo, Anny; Helary, Christophe; Bouligand, Yves; Giraud-Guille, Marie-Madeleine

    2006-01-01

    A new protocol was developed to produce dense organized collagen matrices hierarchically ordered on a large scale. It consists of a two stage process: (1) the organization of a collagen solution and (2) the stabilization of the organizations by a sol-gel transition that leads to the formation of collagen fibrils. This new protocol relies on the continuous injection of an acid-soluble collagen solution into glass microchambers. It leads to extended concentration gradients of collagen, ranging from 5 to 1000 mg/ml. The self-organization of collagen solutions into a wide array of spatial organizations was investigated. The final matrices obtained by this procedure varied in concentration, structure and density. Changes in the liquid state of the samples were followed by polarized light microscopy, and the final stabilized gel states obtained after fibrillogenesis were analyzed by both light and electron microscopy. Typical organizations extended homogeneously by up to three centimetres in one direction and several hundreds of micrometers in other directions. Fibrillogenesis of collagen solutions of high and low concentrations led to fibrils spatially arranged as has been described in bone and derm, respectively. Moreover, a relationship was revealed between the collagen concentration and the aggregation of and rotational angles between lateral fibrils. These results constitute a strong base from which to further develop highly enriched collagen matrices that could lead to substitutes that mimic connective tissues. The matrices thus obtained may also be good candidates for the study of the three-dimensional migration of cells.

  20. Spatially resolved heat release rate measurements in turbulent premixed flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayoola, B.O.; Kaminski, C.F.; Balachandran, R.

    Heat release rate is a fundamental property of great importance for the theoretical and experimental elucidation of unsteady flame behaviors such as combustion noise, combustion instabilities, and pulsed combustion. Investigations of such thermoacoustic interactions require a reliable indicator of heat release rate capable of resolving spatial structures in turbulent flames. Traditionally, heat release rate has been estimated via OH or CH radical chemiluminescence; however, chemiluminescence suffers from being a line-of-sight technique with limited capability for resolving small-scale structures. In this paper, we report spatially resolved two-dimensional measurements of a quantity closely related to heat release rate. The diagnostic technique usesmore » simultaneous OH and CH{sub 2}O planar laser-induced fluorescence (PLIF), and the pixel-by-pixel product of the OH and CH{sub 2}O PLIF signals has previously been shown to correlate well with local heat release rates. Results from this diagnostic technique, which we refer to as heat release rate imaging (HR imaging), are compared with traditional OH chemiluminescence measurements in several flames. Studies were performed in lean premixed ethylene flames stabilized between opposed jets and with a bluff body. Correlations between bulk strain rates and local heat release rates were obtained and the effects of curvature on heat release rate were investigated. The results show that the heat release rate tends to increase with increasing negative curvature for the flames investigated for which Lewis numbers are greater than unity. This correlation becomes more pronounced as the flame gets closer to global extinction.« less

  1. Core-shell silk hydrogels with spatially tuned conformations as drug-delivery system.

    PubMed

    Yan, Le-Ping; Oliveira, Joaquim M; Oliveira, Ana L; Reis, Rui L

    2017-11-01

    Hydrogels of spatially controlled physicochemical properties are appealing platforms for tissue engineering and drug delivery. In this study, core-shell silk fibroin (SF) hydrogels of spatially controlled conformation were developed. The core-shell structure in the hydrogels was formed by means of soaking the preformed (enzymatically crosslinked) random coil SF hydrogels in methanol. When increasing the methanol treatment time from 1 to 10 min, the thickness of the shell layer can be tuned from about 200 to about 850 μm as measured in wet status. After lyophilization of the rehydrated core-shell hydrogels, the shell layer displayed compact morphology and the core layer presented porous structure, when observed by scanning electron microscopy. The conformation of the hydrogels was evaluated by Fourier transform infrared spectroscopy in wet status. The results revealed that the shell layer possessed dominant β-sheet conformation and the core layer maintained mainly random coil conformation. Enzymatic degradation data showed that the shell layers presented superior stability to the core layer. The mechanical analysis displayed that the compressive modulus of the core-shell hydrogels ranged from about 25 kPa to about 1.1 MPa by increasing the immersion time in methanol. When incorporated with albumin, the core-shell SF hydrogels demonstrated slower and more controllable release profiles compared with the non-treated hydrogel. These core-shell SF hydrogels of highly tuned properties are useful systems as drug-delivery system and may be applied as cartilage substitute. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Nonlinear stability in reaction-diffusion systems via optimal Lyapunov functions

    NASA Astrophysics Data System (ADS)

    Lombardo, S.; Mulone, G.; Trovato, M.

    2008-06-01

    We define optimal Lyapunov functions to study nonlinear stability of constant solutions to reaction-diffusion systems. A computable and finite radius of attraction for the initial data is obtained. Applications are given to the well-known Brusselator model and a three-species model for the spatial spread of rabies among foxes.

  3. Spatio-temporal dynamics of a tree-killing beetle and its predator

    Treesearch

    Aaron S. Weed; Matthew P. Ayres; Andrew M. Liebhold; Ronald F. Billings

    2016-01-01

    Resolving linkages between local-scale processes and regional-scale patterns in abundance of interacting species is important for understanding long-term population stability across spatial scales. Landscape patterning in consumer population dynamics may be largely the result of interactions between consumers and their predators, or driven by spatial variation in basal...

  4. Urban population genetics of slum-dwelling rats (Rattus norvegicus) in Salvador, Brazil

    PubMed Central

    Kajdacsi, Brittney; Costa, Federico; Hyseni, Chaz; Porter, Fleur; Brown, Julia; Rodrigues, Gorete; Farias, Helena; Reis, Mitermeyer G.; Childs, James E.; Ko, Albert I.; Caccone, Adalgisa

    2013-01-01

    Throughout the developing world, urban centers with sprawling slum settlements are rapidly expanding and invading previously forested ecosystems. Slum communities are characterized by untended refuse, open sewers, and overgrown vegetation, which promote rodent infestation. Norway rats (Rattus norvegicus), are reservoirs for epidemic transmission of many zoonotic pathogens of public health importance. Understanding the population ecology of R. norvegicus is essential to formulate effective rodent control strategies, as this knowledge aids estimation of the temporal stability and spatial connectivity of populations. We screened for genetic variation, characterized the population genetic structure, and evaluated the extent and patterns of gene flow in the urban landscape using 17 microsatellite loci in 146 rats from 9 sites in the city of Salvador, Brazil. These sites were divided between three neighborhoods within the city spaced an average of 2.7 km apart. Surprisingly, we detected very little relatedness among animals trapped at the same site and found high levels of genetic diversity, as well as structuring across small geographic distances. Most FST comparisons among sites were statistically significant, including sites <400 m apart. Bayesian analyses grouped the samples in three genetic clusters, each associated with distinct sampling sites from different neighborhoods or valleys within neighborhoods. These data indicate the existence of complex genetic structure in R. norvegicus in Salvador, linked to the heterogeneous urban landscape. Future rodent control measures need to take into account the spatial and temporal linkage of rat populations in Salvador, as revealed by genetic data, to develop informed eradication strategies. PMID:24118116

  5. Local structure preserving sparse coding for infrared target recognition

    PubMed Central

    Han, Jing; Yue, Jiang; Zhang, Yi; Bai, Lianfa

    2017-01-01

    Sparse coding performs well in image classification. However, robust target recognition requires a lot of comprehensive template images and the sparse learning process is complex. We incorporate sparsity into a template matching concept to construct a local sparse structure matching (LSSM) model for general infrared target recognition. A local structure preserving sparse coding (LSPSc) formulation is proposed to simultaneously preserve the local sparse and structural information of objects. By adding a spatial local structure constraint into the classical sparse coding algorithm, LSPSc can improve the stability of sparse representation for targets and inhibit background interference in infrared images. Furthermore, a kernel LSPSc (K-LSPSc) formulation is proposed, which extends LSPSc to the kernel space to weaken the influence of the linear structure constraint in nonlinear natural data. Because of the anti-interference and fault-tolerant capabilities, both LSPSc- and K-LSPSc-based LSSM can implement target identification based on a simple template set, which just needs several images containing enough local sparse structures to learn a sufficient sparse structure dictionary of a target class. Specifically, this LSSM approach has stable performance in the target detection with scene, shape and occlusions variations. High performance is demonstrated on several datasets, indicating robust infrared target recognition in diverse environments and imaging conditions. PMID:28323824

  6. Effect of heat release on the spatial stability of a supersonic reacting mixing layer

    NASA Technical Reports Server (NTRS)

    Jackson, T. L.; Grosch, C. E.

    1988-01-01

    A numerical study of the stability of compressible mixing layers in which a diffusion flame is embedded is described. The mean velocity profile has been approximated by a hyperbolic tangent profile and the limit of infinite activation energy taken, which reduces the diffusion flame to a flame sheet. The addition of combustion in the form of a flame sheet was found to have important, and complex, effects on the flow stability.

  7. Cytokinin stabilizes WUSCHEL by acting on the protein domains required for nuclear enrichment and transcription.

    PubMed

    Snipes, Stephen A; Rodriguez, Kevin; DeVries, Aaron E; Miyawaki, Kaori N; Perales, Mariano; Xie, Mingtang; Reddy, G Venugopala

    2018-04-01

    Concentration-dependent transcriptional regulation and the spatial regulation of transcription factor levels are poorly studied in plant development. WUSCHEL, a stem cell-promoting homeodomain transcription factor, accumulates at a higher level in the rib meristem than in the overlying central zone, which harbors stem cells in the shoot apical meristems of Arabidopsis thaliana. The differential accumulation of WUSCHEL in adjacent cells is critical for the spatial regulation and levels of CLAVATA3, a negative regulator of WUSCHEL transcription. Earlier studies have revealed that DNA-dependent dimerization, subcellular partitioning and protein destabilization control WUSCHEL protein levels and spatial accumulation. Moreover, the destabilization of WUSCHEL may also depend on the protein concentration. However, the roles of extrinsic spatial cues in maintaining differential accumulation of WUS are not understood. Through transient manipulation of hormone levels, hormone response patterns and analysis of the receptor mutants, we show that cytokinin signaling in the rib meristem acts through the transcriptional regulatory domains, the acidic domain and the WUSCHEL-box, to stabilize the WUS protein. Furthermore, we show that the same WUSCHEL-box functions as a degron sequence in cytokinin deficient regions in the central zone, leading to the destabilization of WUSCHEL. The coupled functions of the WUSCHEL-box in nuclear retention as described earlier, together with cytokinin sensing, reinforce higher nuclear accumulation of WUSCHEL in the rib meristem. In contrast a sub-threshold level may expose the WUSCHEL-box to destabilizing signals in the central zone. Thus, the cytokinin signaling acts as an asymmetric spatial cue in stabilizing the WUSCHEL protein to lead to its differential accumulation in neighboring cells, which is critical for concentration-dependent spatial regulation of CLAVATA3 transcription and meristem maintenance. Furthermore, our work shows that cytokinin response is regulated independently of the WUSCHEL function which may provide robustness to the regulation of WUSCHEL concentration.

  8. Dikes under Pressure - Monitoring the Vulnerability of Dikes by Means of SAR Interferometry

    NASA Astrophysics Data System (ADS)

    Marzahn, Philip; Seidel, Moritz; Ludwig, Ralf

    2016-04-01

    Dikes are the main man made structures in flood protection systems for the protection of humans and economic values. Usually dikes are built with a sandy core and clay or concrete layer covering the core. Thus, dikes are prone to a vertical shrinkage due to soil physical processes such as reduction of pore space and gravity increasing the risk of a crevasse during floods. In addition, this vulnerability is amplified by a sea level rise due to climate change. To guarantee the stability of dikes, a labourer intensive program is carried out by national authorities monitoring the dikes by visual inspection. In the presented study, a quantitative approach is presented using SAR Interferometry for the monitoring of the stability of dikes from space. In particular, the vertical movement of dikes due to shrinkage is monitored using persistent scatterer interferometry. Therefore three different types of dikes have been investigated: a sea coast dike with a concrete cover, a sea coast dike with short grass cover and a smaller river dike with grass cover. All dikes are located in Germany. Results show the potential of the monitoring technique as well as spatial differences in the stability of dikes with subsidence rates in parts of a dike up to 7 mm/a.

  9. Stabilization of primary mobile radiation defects in MgF2 crystals

    NASA Astrophysics Data System (ADS)

    Lisitsyn, V. M.; Lisitsyna, L. A.; Popov, A. I.; Kotomin, E. A.; Abuova, F. U.; Akilbekov, A.; Maier, J.

    2016-05-01

    Non-radiative decay of the electronic excitations (excitons) into point defects (F-H pairs of Frenkel defects) is main radiation damage mechanism in many ionic (halide) solids. Typical time scale of the relaxation of the electronic excitation into a primary, short-lived defect pair is about 1-50 ps with the quantum yield up to 0.2-0.8. However, only a small fraction of these primary defects are spatially separated and survive after transformation into stable, long-lived defects. The survival probability (or stable defect accumulation efficiency) can differ by orders of magnitude, dependent on the material type; e.g. ∼10% in alkali halides with f.c.c. or b.c.c. structure, 0.1% in rutile MgF2 and <0.001% in fluorides MeF2 (Me: Ca, Sr, Ba). The key factor determining accumulation of stable radiation defects is stabilization of primary defects, first of all, highly mobile hole H centers, through their transformation into more complex immobile defects. In this talk, we present the results of theoretical calculations of the migration energies of the F and H centers in poorely studied MgF2 crystals with a focus on the H center stabilization in the form of the interstitial F2 molecules which is supported by presented experimental data.

  10. New insights into transcription fidelity: thermal stability of non-canonical structures in template DNA regulates transcriptional arrest, pause, and slippage.

    PubMed

    Tateishi-Karimata, Hisae; Isono, Noburu; Sugimoto, Naoki

    2014-01-01

    The thermal stability and topology of non-canonical structures of G-quadruplexes and hairpins in template DNA were investigated, and the effect of non-canonical structures on transcription fidelity was evaluated quantitatively. We designed ten template DNAs: A linear sequence that does not have significant higher-order structure, three sequences that form hairpin structures, and six sequences that form G-quadruplex structures with different stabilities. Templates with non-canonical structures induced the production of an arrested, a slipped, and a full-length transcript, whereas the linear sequence produced only a full-length transcript. The efficiency of production for run-off transcripts (full-length and slipped transcripts) from templates that formed the non-canonical structures was lower than that from the linear. G-quadruplex structures were more effective inhibitors of full-length product formation than were hairpin structure even when the stability of the G-quadruplex in an aqueous solution was the same as that of the hairpin. We considered that intra-polymerase conditions may differentially affect the stability of non-canonical structures. The values of transcription efficiencies of run-off or arrest transcripts were correlated with stabilities of non-canonical structures in the intra-polymerase condition mimicked by 20 wt% polyethylene glycol (PEG). Transcriptional arrest was induced when the stability of the G-quadruplex structure (-ΔG°37) in the presence of 20 wt% PEG was more than 8.2 kcal mol(-1). Thus, values of stability in the presence of 20 wt% PEG are an important indicator of transcription perturbation. Our results further our understanding of the impact of template structure on the transcription process and may guide logical design of transcription-regulating drugs.

  11. New Insights into Transcription Fidelity: Thermal Stability of Non-Canonical Structures in Template DNA Regulates Transcriptional Arrest, Pause, and Slippage

    PubMed Central

    Tateishi-Karimata, Hisae; Isono, Noburu; Sugimoto, Naoki

    2014-01-01

    The thermal stability and topology of non-canonical structures of G-quadruplexes and hairpins in template DNA were investigated, and the effect of non-canonical structures on transcription fidelity was evaluated quantitatively. We designed ten template DNAs: A linear sequence that does not have significant higher-order structure, three sequences that form hairpin structures, and six sequences that form G-quadruplex structures with different stabilities. Templates with non-canonical structures induced the production of an arrested, a slipped, and a full-length transcript, whereas the linear sequence produced only a full-length transcript. The efficiency of production for run-off transcripts (full-length and slipped transcripts) from templates that formed the non-canonical structures was lower than that from the linear. G-quadruplex structures were more effective inhibitors of full-length product formation than were hairpin structure even when the stability of the G-quadruplex in an aqueous solution was the same as that of the hairpin. We considered that intra-polymerase conditions may differentially affect the stability of non-canonical structures. The values of transcription efficiencies of run-off or arrest transcripts were correlated with stabilities of non-canonical structures in the intra-polymerase condition mimicked by 20 wt% polyethylene glycol (PEG). Transcriptional arrest was induced when the stability of the G-quadruplex structure (−ΔGo 37) in the presence of 20 wt% PEG was more than 8.2 kcal mol−1. Thus, values of stability in the presence of 20 wt% PEG are an important indicator of transcription perturbation. Our results further our understanding of the impact of template structure on the transcription process and may guide logical design of transcription-regulating drugs. PMID:24594642

  12. Stabilization of posture by precision touch of the index finger with rigid and flexible filaments

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.; Rabin, E.; DiZio, P.

    2001-01-01

    Light touch of the index finger with a stationary surface at non-mechanically supportive force levels (<100 g) greatly attenuates the body sway of standing subjects. In three experiments, we evaluated the properties of finger contact and of the contacted object necessary to produce postural stabilization in subjects standing heel-to-toe with eyes closed, as well as how accurately hand position can be controlled. Experiment 1 involved finger contact with flexible filaments of different bending strengths, a flat surface, and an imagined spatial position. Contact with the flat surface was most effective in attenuating sway; the flexible filaments were much less effective but still significantly better than imagined contact. Experiment 2 compared the effectiveness of finger contact with a flexible filament, a rigid filament of the same diameter, a flat surface, and an imagined spatial position. The rigid filament and flat surface conditions were equally effective in attenuating body sway and were greatly superior to contact with the flexible filament, which was superior to imagined contact. Experiment 3 included five conditions: arms by sides; finger "contact" with an imagined spatial position; finger contact with a flat surface; finger contact with a flexible filament attempting to maintain it bent; and contact with the flexible filament attempting not to bend it. The arms by sides and finger "contact" with an imagined position conditions did not differ significantly; all three conditions involving actual finger contact showed significantly less center of pressure and hand sway, but contact with the flat surface was most effective in attenuating both postural and hand displacement. In all three experiments, the level of force applied in fingertip contact conditions was far below that necessary to provide mechanical stabilization. Our findings indicate that: (1) stimulation of a small number of receptors in the fingertip is adequate to allow stabilization of sway, (2) fingertip force levels as low as 5-10 g provide some stabilization, (3) contact with a stationary spatial referent is most effective, and (4) independent control of arm and torso occurs when finger contact is allowed.

  13. Communities of Arbuscular Mycorrhizal Fungi Detected in Forest Soil Are Spatially Heterogeneous but Do Not Vary throughout the Growing Season

    PubMed Central

    Davison, John; Öpik, Maarja; Zobel, Martin; Vasar, Martti; Metsis, Madis; Moora, Mari

    2012-01-01

    Despite the important ecosystem role played by arbuscular mycorrhizal fungi (AMF), little is known about spatial and temporal variation in soil AMF communities. We used pyrosequencing to characterise AMF communities in soil samples (n = 44) from a natural forest ecosystem. Fungal taxa were identified by BLAST matching of reads against the MaarjAM database of AMF SSU rRNA gene diversity. Sub-sampling within our dataset and experimental shortening of a set of long reads indicated that our approaches to taxonomic identification and diversity analysis were robust to variations in pyrosequencing read length and numbers of reads per sample. Different forest plots (each 10×10 m and separated from one another by 30 m) contained significantly different soil AMF communities, and the pairwise similarity of communities decreased with distance up to 50 m. However, there were no significant changes in community composition between different time points in the growing season (May-September). Spatial structure in soil AMF communities may be related to the heterogeneous vegetation of the natural forest study system, while the temporal stability of communities suggests that AMF in soil represent a fairly constant local species pool from which mycorrhizae form and disband during the season. PMID:22879900

  14. Spatial patterns and broad-scale weather cues of beech mast seeding in Europe.

    PubMed

    Vacchiano, Giorgio; Hacket-Pain, Andrew; Turco, Marco; Motta, Renzo; Maringer, Janet; Conedera, Marco; Drobyshev, Igor; Ascoli, Davide

    2017-07-01

    Mast seeding is a crucial population process in many tree species, but its spatio-temporal patterns and drivers at the continental scale remain unknown . Using a large dataset (8000 masting observations across Europe for years 1950-2014) we analysed the spatial pattern of masting across the entire geographical range of European beech, how it is influenced by precipitation, temperature and drought, and the temporal and spatial stability of masting-weather correlations. Beech masting exhibited a general distance-dependent synchronicity and a pattern structured in three broad geographical groups consistent with continental climate regimes. Spearman's correlations and logistic regression revealed a general pattern of beech masting correlating negatively with temperature in the summer 2 yr before masting, and positively with summer temperature 1 yr before masting (i.e. 2T model). The temperature difference between the two previous summers (DeltaT model) was also a good predictor. Moving correlation analysis applied to the longest eight chronologies (74-114 yr) revealed stable correlations between temperature and masting, confirming consistency in weather cues across space and time. These results confirm widespread dependency of masting on temperature and lend robustness to the attempts to reconstruct and predict mast years using temperature data. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  15. Spatial Abilities of High-School Students in the Perception of Geologic Structures.

    ERIC Educational Resources Information Center

    Kali, Yael; Orion, Nir

    1996-01-01

    Characterizes specific spatial abilities required in geology studies through the examination of the performance of high school students in solving structural geology problems on the geologic spatial ability test (GeoSAT). Concludes that visual penetration ability and the ability to perceive the spatial configuration of the structure are…

  16. Shift of semimetal-semiconductor bond direction on “0 1 1” to “1 1 1” Bismuth quazi-two-dimension system

    NASA Astrophysics Data System (ADS)

    Yazdani, Ahmad; Hamreh, Sajad

    2018-03-01

    The electronic structure of the nanocrystallines and quasi-two-dimensional systems strongly impressed by the thermodynamic- behavior mainly due to excess of hidden surface free energy. Therefore, the stability of crystalline structure’s change could be related to band-offset of bond rupturing of atomic displacements. whereas for the electronic-structure of "Bi" it seams the competition of L.S and bond exchange should be effectively dominated. Besides all of the characters behave spatial like strong sensitive oxidation here it is supposed that strong correlated electronic structure in the absence of oxygen is resulted on direction of redistribution of surface chemical bond formation before any reconstructive structure. Where • The metallic direction of electronic structure “0 1 1” is changed to “1 1 1” semiconductor direction. • the effect of L.S is more evident on the local density of state while it is not observable around the fermi level. • Strong effect of spin-orbit interaction on splitting of the valance to nearly conduction band around the fermi level is more evident.

  17. Unfolding stabilities of two structurally similar proteins as probed by temperature-induced and force-induced molecular dynamics simulations.

    PubMed

    Gorai, Biswajit; Prabhavadhni, Arasu; Sivaraman, Thirunavukkarasu

    2015-09-01

    Unfolding stabilities of two homologous proteins, cardiotoxin III and short-neurotoxin (SNTX) belonging to three-finger toxin (TFT) superfamily, have been probed by means of molecular dynamics (MD) simulations. Combined analysis of data obtained from steered MD and all-atom MD simulations at various temperatures in near physiological conditions on the proteins suggested that overall structural stabilities of the two proteins were different from each other and the MD results are consistent with experimental data of the proteins reported in the literature. Rationalization for the differential structural stabilities of the structurally similar proteins has been chiefly attributed to the differences in the structural contacts between C- and N-termini regions in their three-dimensional structures, and the findings endorse the 'CN network' hypothesis proposed to qualitatively analyse the thermodynamic stabilities of proteins belonging to TFT superfamily of snake venoms. Moreover, the 'CN network' hypothesis has been revisited and the present study suggested that 'CN network' should be accounted in terms of 'structural contacts' and 'structural strengths' in order to precisely describe order of structural stabilities of TFTs.

  18. Investigating local controls on temporal stability of soil water content using sensor network data and an inverse modeling approach

    NASA Astrophysics Data System (ADS)

    Qu, W.; Bogena, H. R.; Huisman, J. A.; Martinez, G.; Pachepsky, Y. A.; Vereecken, H.

    2013-12-01

    Soil water content is a key variable in the soil, vegetation and atmosphere continuum with high spatial and temporal variability. Temporal stability of soil water content (SWC) has been observed in multiple monitoring studies and the quantification of controls on soil moisture variability and temporal stability presents substantial interest. The objective of this work was to assess the effect of soil hydraulic parameters on the temporal stability. The inverse modeling based on large observed time series SWC with in-situ sensor network was used to estimate the van Genuchten-Mualem (VGM) soil hydraulic parameters in a small grassland catchment located in western Germany. For the inverse modeling, the shuffled complex evaluation (SCE) optimization algorithm was coupled with the HYDRUS 1D code. We considered two cases: without and with prior information about the correlation between VGM parameters. The temporal stability of observed SWC was well pronounced at all observation depths. Both the spatial variability of SWC and the robustness of temporal stability increased with depth. Calibrated models both with and without prior information provided reasonable correspondence between simulated and measured time series of SWC. Furthermore, we found a linear relationship between the mean relative difference (MRD) of SWC and the saturated SWC (θs). Also, the logarithm of saturated hydraulic conductivity (Ks), the VGM parameter n and logarithm of α were strongly correlated with the MRD of saturation degree for the prior information case, but no correlation was found for the non-prior information case except at the 50cm depth. Based on these results we propose that establishing relationships between temporal stability and spatial variability of soil properties presents a promising research avenue for a better understanding of the controls on soil moisture variability. Correlation between Mean Relative Difference of soil water content (or saturation degree) and inversely estimated soil hydraulic parameters (log10(Ks), log10(α), n, and θs) at 5-cm, 20-cm and 50-cm depths. Solid circles represent parameters estimated by using prior information; open circles represent parameters estimated without using prior information.

  19. A field-validated model for in situ transport of polymer-stabilized nZVI and implications for subsurface injection.

    PubMed

    Krol, Magdalena M; Oleniuk, Andrew J; Kocur, Chris M; Sleep, Brent E; Bennett, Peter; Xiong, Zhong; O'Carroll, Denis M

    2013-07-02

    Nanoscale zerovalent iron (nZVI) particles have significant potential to remediate contaminated source zones. However, the transport of these particles through porous media is not well understood, especially at the field scale. This paper describes the simulation of a field injection of carboxylmethyl cellulose (CMC) stabilized nZVI using a 3D compositional simulator, modified to include colloidal filtration theory (CFT). The model includes composition dependent viscosity and spatially and temporally variable velocity, appropriate for the simulation of push-pull tests (PPTs) with CMC stabilized nZVI. Using only attachment efficiency as a fitting parameter, model results were in good agreement with field observations when spatially variable viscosity effects on collision efficiency were included in the transport modeling. This implies that CFT-modified transport equations can be used to simulate stabilized nZVI field transport. Model results show that an increase in solution viscosity, resulting from injection of CMC stabilized nZVI suspension, affects nZVI mobility by decreasing attachment as well as changing the hydraulics of the system. This effect is especially noticeable with intermittent pumping during PPTs. Results from this study suggest that careful consideration of nZVI suspension formulation is important for optimal delivery of nZVI which can be facilitated with the use of a compositional simulator.

  20. Crystal structure of Pseudomonas aeruginosa bacteriophytochrome: Photoconversion and signal transduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaojing; Kuk, Jane; Moffat, Keith

    2008-11-12

    Phytochromes are red-light photoreceptors that regulate light responses in plants, fungi, and bacteria via reversible photoconversion between red (Pr) and far-red (Pfr) light-absorbing states. Here we report the crystal structure at 2.9 {angstrom} resolution of a bacteriophytochrome from Pseudomonas aeruginosa with an intact, fully photoactive photosensory core domain in its dark-adapted Pfr state. This structure reveals how unusual interdomain interactions, including a knot and an 'arm' structure near the chromophore site, bring together the PAS (Per-ARNT-Sim), GAF (cGMP phosphodiesterase/adenyl cyclase/FhlA), and PHY (phytochrome) domains to achieve Pr/Pfr photoconversion. The PAS, GAF, and PHY domains have topologic elements in common andmore » may have a single evolutionary origin. We identify key interactions that stabilize the chromophore in the Pfr state and provide structural and mutational evidence to support the essential role of the PHY domain in efficient Pr/Pfr photoconversion. We also identify a pair of conserved residues that may undergo concerted conformational changes during photoconversion. Modeling of the full-length bacteriophytochrome structure, including its output histidine kinase domain, suggests how local structural changes originating in the photosensory domain modulate interactions between long, cross-domain signaling helices at the dimer interface and are transmitted to the spatially distant effector domain, thereby regulating its histidine kinase activity.« less

  1. Supramolecular structures of halogenated oligothiophenes on the Si(111)-√3 ×√3-Ag surface

    NASA Astrophysics Data System (ADS)

    Liu, R.; Fu, C.; Perepichka, D. F.; Gallagher, M. C.

    2016-05-01

    We have studied the adsorption of brominated tetrathienoanthracene (TBTTA) molecules onto the Si(111)-√3 × √ 3-Ag surface at room temperature. The two-dimensional √ 3 silver adlayer acts to passivate the silicon surface and provides a high-mobility template for TBTTA adsorption. Scanning tunneling microscopy (STM) images reveal that at low coverage, the molecules readily migrate to step edges and defects in the √ 3 overlayer. With increasing coverage, the molecules eventually form compact supramolecular structures. In terms of the hexagonal √ 3 lattice vectors (a√ 3 and b√ 3), the oblique unit cell of these structures can be defined by lattice vectors am = 3a√ 3 + 2b√ 3, and bm = - a√ 3 + b√ 3. The structures are quite fragile and can decompose under repeated STM imaging. This is particularly true at higher bias and suggests an electric field-induced dissociation in these instances. With increasing molecular dose, the size and stability of the structures increases. At higher coverage, the spatial extent of the supramolecular structures is often limited by defects in the underlying √ 3 layer. Our results suggest that the √ 3-Ag surface provides a relatively inert substrate for the adsorption of TBTTA molecules, and that the supramolecular structures are held together by relatively weak intermolecular forces.

  2. Biodiversity, productivity, and the spatial insurance hypothesis revisited

    PubMed Central

    Shanafelt, David W.; Dieckmann, Ulf; Jonas, Matthias; Franklin, Oskar; Loreau, Michel; Perrings, Charles

    2015-01-01

    Accelerating rates of biodiversity loss have led ecologists to explore the effects of species richness on ecosystem functioning and the flow of ecosystem services. One explanation of the relationship between biodiversity and ecosystem functioning lies in the spatial insurance hypothesis, which centers on the idea that productivity and stability increase with biodiversity in a temporally varying, spatially heterogeneous environment. However, there has been little work on the impact of dispersal where environmental risks are more or less spatially correlated, or where dispersal rates are variable. In this paper, we extend the original Loreau model to consider stochastic temporal variation in resource availability, which we refer to as “environmental risk,” and heterogeneity in species dispersal rates. We find that asynchronies across communities and species provide community-level stabilizing effects on productivity, despite varying levels of species richness. Although intermediate dispersal rates play a role in mitigating risk, they are less effective in insuring productivity against global (metacommunity-level) than local (individual community-level) risks. These results are particularly interesting given the emergence of global sources of risk such as climate change or the closer integration of world markets. Our results offer deeper insights into the Loreau model and new perspectives on the effectiveness of spatial insurance in the face of environmental risks. PMID:26100182

  3. Biodiversity, productivity, and the spatial insurance hypothesis revisited.

    PubMed

    Shanafelt, David W; Dieckmann, Ulf; Jonas, Matthias; Franklin, Oskar; Loreau, Michel; Perrings, Charles

    2015-09-07

    Accelerating rates of biodiversity loss have led ecologists to explore the effects of species richness on ecosystem functioning and the flow of ecosystem services. One explanation of the relationship between biodiversity and ecosystem functioning lies in the spatial insurance hypothesis, which centers on the idea that productivity and stability increase with biodiversity in a temporally varying, spatially heterogeneous environment. However, there has been little work on the impact of dispersal where environmental risks are more or less spatially correlated, or where dispersal rates are variable. In this paper, we extend the original Loreau model to consider stochastic temporal variation in resource availability, which we refer to as "environmental risk", and heterogeneity in species dispersal rates. We find that asynchronies across communities and species provide community-level stabilizing effects on productivity, despite varying levels of species richness. Although intermediate dispersal rates play a role in mitigating risk, they are less effective in insuring productivity against global (metacommunity-level) than local (individual community-level) risks. These results are particularly interesting given the emergence of global sources of risk such as climate change or the closer integration of world markets. Our results offer deeper insights into the Loreau model and new perspectives on the effectiveness of spatial insurance in the face of environmental risks. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. The Hall-induced stability of gravitating fluids

    NASA Astrophysics Data System (ADS)

    Karmakar, P. K.; Goutam, H. P.

    2018-05-01

    We analyze the stability behavior of low-density partially ionized self-gravitating magnetized unbounded dusty plasma fluid in the presence of the Hall diffusion effects (HDEs) in the non-ideal magnetohydrodynamic (MHD) equilibrium framework. The effects of inhomogeneous self-gravity are methodically included in the basic model tapestry. Application of the Fourier plane-wave perturbative treatment decouples the structuration representative parameters into a linear generalized dispersion relation (sextic) in a judicious mean-fluid approximation. The dispersion analysis shows that the normal mode, termed as the gravito-magneto-acoustic (GMA) mode, is drastically modified due to the HDEs. This mode is highly dispersive, and driven unstable by the Hall current resulting from the symmetry-breaking of electrons and ions relative to the magnetic field. The mode feature, which is derived from a modified induction with the positive Hall, is against the ideal MHD. It is further demonstrated that the HDEs play stabilizing roles by supporting the cloud against gravitational collapse. Provided that the HDEs are concurrently switched off, the collapse occurs on the global spatial scale due to enhanced inward accretion of the gravitating dust constituents. It is seen explicitly that the enhanced dust-charge leads to stabilizing effects. Besides, the Hall-induced fluctuations, as propagatory wave modes, exhibit both normal and anomalous dispersions. The reliability checkup of the entailed results as diverse corollaries and special cases are illustratively discussed in the panoptic light of the earlier paradigmatic predictions available in the literature.

  5. The Structural and Rank-Order Stability of Temperament in Young Children Based on a Laboratory-Observational Measure

    PubMed Central

    Dyson, Margaret W.; Olino, Thomas M.; Durbin, C. Emily; Goldsmith, H. Hill; Bufferd, Sara J.; Miller, Anna R.; Klein, Daniel N.

    2015-01-01

    It is generally assumed that temperament traits exhibit structural and rank-order stability over time. Most of the research on structural and rank-order stability has relied on parent-report measures. The present study used an alternative approach, a laboratory-observational measure (Laboratory Temperament Assessment Battery [Lab-TAB]), to examine the structural and rank-order stability of temperament traits in a community sample of young children (N = 447). Using structural equation modeling (SEM), we found that a similar five-factor structure consisting of the dimensions of Positive Affect/Interest, Sociability, Dysphoria, Fear/Inhibition, and Impulsivity vs. Constraint provided an adequate fit to the data at both age 3 and 6 years, suggesting good structural stability. Moreover, all five latent factors exhibited significant, albeit modest, rank-order stability from age 3 to 6. In addition, there were significant heterotypic associations of age 3 Sociability with age 6 PA/Interest, and age 3 Impulsivity vs. Constraint with age 6 Fear/Inhibition. PMID:25894709

  6. Evaluating a process-based model for use in streambank stabilization and stream restoration: insights on the bank stability and toe erosion model (BSTEM)

    USDA-ARS?s Scientific Manuscript database

    Streambank retreat is a complex cyclical process involving subaerial processes, fluvial erosion, seepage erosion, and geotechnical failures and is driven by several soil properties that themselves are temporally and spatially variable. Therefore, it can be extremely challenging to predict and model ...

  7. In silico selection of expression reference genes with demonstrated stability in barley among a diverse set of tissues and cultivars

    USDA-ARS?s Scientific Manuscript database

    Premise of the study: Reference genes are selected based on the assumption of temporal and spatial expression stability and on their widespread use in model species. They are often used in new target species without validation, presumed as stable. For barley, reference gene validation is lacking, bu...

  8. Spatial Patterns of Inshore Marine Soundscapes.

    PubMed

    McWilliam, Jamie

    2016-01-01

    Passive acoustic monitoring was employed to investigate spatial patterns of soundscapes within a marine reserve. High energy level broadband snaps dominated nearly all habitat soundscapes. Snaps, the principal acoustic feature of soundscapes, were primarily responsible for the observed spatial patterns, and soundscapes appeared to retain a level of compositional and configurational stability. In the presence of high-level broadband snaps, soundscape composition was more influenced by geographic location than habitat type. Future research should focus on investigating the spatial patterns of soundscapes across a wider range of coastal and offshore seascapes containing a variety of distinct ecosystems and habitats.

  9. Abstention in dynamical models of spatial voting

    NASA Astrophysics Data System (ADS)

    Stadler, B. M. R.

    2000-12-01

    We consider a model of platform adaptation in spatial voting focussing on the effect of abstention on the stability of the mean voter equilibrium. Two distinct approaches for modeling abstention are explored: (1) voters abstain if party platforms are very much similar to each other and (2) voters abstain if both party platforms are far away from their ideal points.

  10. Spatial complementarity of forests and farms: accounting for ecosystem services

    Treesearch

    Subhrendu K. Pattanayak; David T. Butry

    2006-01-01

    Our article considers the economic contributions of forest ecosystem services, using a case study from Flores, Indonesia, in which forest protection in upstream watersheds stabilize soil and hydrological flows in downstream farms. We focus on the demand for a weak complement to the ecosystem services--farm labor-- and account for spatial dependence due to economic...

  11. Nonparallel stability of three-dimensional compressible boundary layers. Part 1: Stability analysis

    NASA Technical Reports Server (NTRS)

    El-Hady, N. M.

    1980-01-01

    A compressible linear stability theory is presented for nonparallel three-dimensional boundary-layer flows, taking into account the normal velocity component as well as the streamwise and spanwise variations of the basic flow. The method of multiple scales is used to account for the nonparallelism of the basic flow, and equations are derived for the spatial evolution of the disturbance amplitude and wavenumber. The numerical procedure for obtaining the solution of the nonparallel problem is outlined.

  12. Phase stabilities at a glance: Stability diagrams of nickel dipnictides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bachhuber, F.; School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland; Rothballer, J.

    2013-12-07

    In the course of the recent advances in chemical structure prediction, a straightforward type of diagram to evaluate phase stabilities is presented based on an expedient example. Crystal structures and energetic stabilities of dipnictides NiPn{sub 2} (Pn = N, P, As, Sb, Bi) are systematically investigated by first principles calculations within the framework of density functional theory using the generalized gradient approximation to treat exchange and correlation. These dipnictides show remarkable polymorphism that is not yet understood systematically and offers room for the discovery of new phases. Relationships between the concerned structures including the marcasite, the pyrite, the arsenopyrite/CoSb{sub 2},more » and the NiAs{sub 2} types are highlighted by means of common structural fragments. Electronic stabilities of experimentally known and related AB{sub 2} structure types are presented graphically in so-called stability diagrams. Additionally, competing binary phases are taken into consideration in the diagrams to evaluate the stabilities of the title compounds with respect to decomposition. The main purpose of the stability diagrams is the introduction of an image that enables the estimation of phase stabilities at a single glance. Beyond that, some of the energetically favored structure types can be identified as potential new phases.« less

  13. Effect of long-term mechanical perturbation on intertidal soft-bottom meiofaunal community spatial structure

    NASA Astrophysics Data System (ADS)

    Boldina, Inna; Beninger, Peter G.; Le Coz, Maïwen

    2014-01-01

    Situated at the interface of the microbial and macrofaunal compartments, soft-bottom meiofauna accomplish important ecological functions. However, little is known of their spatial distribution in the benthic environment. To assess the effects of long-term mechanical disturbance on soft-bottom meiofaunal spatial distribution, we compared a site subjected to long-term clam digging to a nearby site untouched by such activities, in Bourgneuf Bay, on the Atlantic coast of France. Six patterned replicate samples were taken at 3, 6, 9, 12, 15, 18, 21 and 24 cm lags, all sampling stations being separated by 5 m. A combined correlogram-variogram approach was used to enhance interpretation of the meiofaunal spatial distribution; in particular, the definition of autocorrelation strength and its statistical significance, as well as the detailed characteristics of the periodic spatial structure of nematode assemblages, and the determination of the maximum distance of their spatial autocorrelation. At both sites, nematodes and copepods clearly exhibited aggregated spatial structure at the meso scale; this structure was attenuated at the impacted site. The nematode spatial distribution showed periodicity at the non-impacted site, but not at the impacted site. This is the first explicit report of a periodic process in meiofaunal spatial distribution. No such cyclic spatial process was observed for the more motile copepods at either site. This first study to indicate the impacts of long-term anthropogenic mechanical perturbation on meiofaunal spatial structure opens the door to a new dimension of mudflat ecology. Since macrofaunal predator search behaviour is known to be strongly influenced by prey spatial structure, the alteration of this structure may have important consequences for ecosystem functioning.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, E.W.

    A class of Projected Discrete-Ordinates (PDO) methods is described for obtaining iterative solutions of discrete-ordinates problems with convergence rates comparable to those observed using Diffusion Synthetic Acceleration (DSA). The spatially discretized PDO solutions are generally not equal to the DSA solutions, but unlike DSA, which requires great care in the use of spatial discretizations to preserve stability, the PDO solutions remain stable and rapidly convergent with essentially arbitrary spatial discretizations. Numerical results are presented which illustrate the rapid convergence and the accuracy of solutions obtained using PDO methods with commonplace differencing methods.

  15. Stability of a laminar premixed supersonic free shear layer with chemical reactions

    NASA Technical Reports Server (NTRS)

    Menon, S.; Anderson, J. D., Jr.; Pai, S. I.

    1984-01-01

    The stability of a two-dimensional compressible supersonic flow in the wake of a flat plate is discussed. The fluid is a multi-species mixture which is undergoing finite rate chemical reactions. The spatial stability of an infinitesimal disturbance in the fluid is considered. Numerical solutions of the eigenvalue stability equations for both reactive and nonreactive supersonic flows are presented and discussed. The chemical reactions have significant influence on the stability behavior. For instance, a neutral eigenvalue is observed near the freestream Mach number of 2.375 for the nonreactive case, but disappears when the reaction is turned on. For reactive flows, the eigenvalues are not very dependent on the free stream Mach number.

  16. Do More Hospital Beds Lead to Higher Hospitalization Rates? A Spatial Examination of Roemer’s Law

    PubMed Central

    Delamater, Paul L.; Messina, Joseph P.; Grady, Sue C.; WinklerPrins, Vince; Shortridge, Ashton M.

    2013-01-01

    Background Roemer’s Law, a widely cited principle in health care policy, states that hospital beds that are built tend to be used. This simple but powerful expression has been invoked to justify Certificate of Need regulation of hospital beds in an effort to contain health care costs. Despite its influence, a surprisingly small body of empirical evidence supports its content. Furthermore, known geographic factors influencing health services use and the spatial structure of the relationship between hospital bed availability and hospitalization rates have not been sufficiently explored in past examinations of Roemer’s Law. We pose the question, “Accounting for space in health care access and use, is there an observable association between the availability of hospital beds and hospital utilization?” Methods We employ an ecological research design based upon the Anderson behavioral model of health care utilization. This conceptual model is implemented in an explicitly spatial context. The effect of hospital bed availability on the utilization of hospital services is evaluated, accounting for spatial structure and controlling for other known determinants of hospital utilization. The stability of this relationship is explored by testing across numerous geographic scales of analysis. The case study comprises an entire state system of hospitals and population, evaluating over one million inpatient admissions. Results We find compelling evidence that a positive, statistically significant relationship exists between hospital bed availability and inpatient hospitalization rates. Additionally, the observed relationship is invariant with changes in the geographic scale of analysis. Conclusions This study provides evidence for the effects of Roemer’s Law, thus suggesting that variations in hospitalization rates have origins in the availability of hospital beds. This relationship is found to be robust across geographic scales of analysis. These findings suggest continued regulation of hospital bed supply to assist in controlling hospital utilization is justified. PMID:23418432

  17. Spatial Variability of Snowpack Properties On Small Slopes

    NASA Astrophysics Data System (ADS)

    Pielmeier, C.; Kronholm, K.; Schneebeli, M.; Schweizer, J.

    The spatial variability of alpine snowpacks is created by a variety of parameters like deposition, wind erosion, sublimation, melting, temperature, radiation and metamor- phism of the snow. Spatial variability is thought to strongly control the avalanche initi- ation and failure propagation processes. Local snowpack measurements are currently the basis for avalanche warning services and there exist contradicting hypotheses about the spatial continuity of avalanche active snow layers and interfaces. Very little about the spatial variability of the snowpack is known so far, therefore we have devel- oped a systematic and objective method to measure the spatial variability of snowpack properties, layering and its relation to stability. For a complete coverage, the analysis of the spatial variability has to entail all scales from mm to km. In this study the small to medium scale spatial variability is investigated, i.e. the range from centimeters to tenths of meters. During the winter 2000/2001 we took systematic measurements in lines and grids on a flat snow test field with grid distances from 5 cm to 0.5 m. Fur- thermore, we measured systematic grids with grid distances between 0.5 m and 2 m in undisturbed flat fields and on small slopes above the tree line at the Choerbschhorn, in the region of Davos, Switzerland. On 13 days we measured the spatial pattern of the snowpack stratigraphy with more than 110 snow micro penetrometer measure- ments at slopes and flat fields. Within this measuring grid we placed 1 rutschblock and 12 stuffblock tests to measure the stability of the snowpack. With the large num- ber of measurements we are able to use geostatistical methods to analyse the spatial variability of the snowpack. Typical correlation lengths are calculated from semivari- ograms. Discerning the systematic trends from random spatial variability is analysed using statistical models. Scale dependencies are shown and recurring scaling patterns are outlined. The importance of the small and medium scale spatial variability for the larger (kilometer) scale spatial variability as well as for the avalanche formation are discussed. Finally, an outlook on spatial models for the snowpack variability is given.

  18. An investigation of the development of the topological spatial structures in elementary school students

    NASA Astrophysics Data System (ADS)

    Everett, Susan Ann

    1999-09-01

    In this study the relationships among the topological spatial structures were examined in students in kindergarten, second, and fourth grades. These topological spatial structures are part of the three major types of spatial thinking: topological, projective, and Euclidean (as defined by Jean Piaget and associates). According to Piaget's model of spatial thinking, the spatial structures enable humans to think about spatial relationships at a conceptual or representational level rather than only at a simpler, perceptual level. The clinical interview technique was used to interact individually with 72 children to assess the presence of each of the different topological spatial structures. This was accomplished through the use of seven task protocols and simple objects which are familiar to young children. These task protocols allowed the investigator to interact with each child in a consistent manner. The results showed that most of the children in this study (97.2%) had not developed all of the topological spatial structures. The task scores, were analyzed using non-parametric statistical tests due to the ordinal nature of the data. From the data the following results were obtained: (1) the spatial structures did not develop in random order based on the task scores but developed in the sequence expected from Piaget's model, (2) task performance improved with grade level with fourth grade students outperforming second graders and kindergartners on each of the seven tasks, and (3) no significant differences on task performance due to gender were found. Based on these results, young elementary children are beginning to develop topological spatial thinking. This is critical since it provides the foundation for the other types of spatial thinking, projective and Euclidean. Since spatial thinking is not a "gift" but can be developed, educators need to provide more opportunities for students to increase their level of spatial thinking since it is necessary for conceptual understanding of many different topics in math and science.

  19. Simulating bank erosion over an extended natural sinuous river reach using a universal slope stability algorithm coupled with a morphodynamic model

    NASA Astrophysics Data System (ADS)

    Rousseau, Yannick Y.; Van de Wiel, Marco J.; Biron, Pascale M.

    2017-10-01

    Meandering river channels are often associated with cohesive banks. Yet only a few river modelling packages include geotechnical and plant effects. Existing packages are solely compatible with single-threaded channels, require a specific mesh structure, derive lateral migration rates from hydraulic properties, determine stability based on friction angle, rely on nonphysical assumptions to describe cutoffs, or exclude floodplain processes and vegetation. In this paper, we evaluate the accuracy of a new geotechnical module that was developed and coupled with Telemac-Mascaret to address these limitations. Innovatively, the newly developed module relies on a fully configurable, universal genetic algorithm with tournament selection that permits it (1) to assess geotechnical stability along potentially unstable slope profiles intersecting liquid-solid boundaries, and (2) to predict the shape and extent of slump blocks while considering mechanical plant effects, bank hydrology, and the hydrostatic pressure caused by flow. The profiles of unstable banks are altered while ensuring mass conservation. Importantly, the new stability module is independent of mesh structure and can operate efficiently along multithreaded channels, cutoffs, and islands. Data collected along a 1.5-km-long reach of the semialluvial Medway Creek, Canada, over a period of 3.5 years are used to evaluate the capacity of the coupled model to accurately predict bank retreat in meandering river channels and to evaluate the extent to which the new model can be applied to a natural river reach located in a complex environment. Our results indicate that key geotechnical parameters can indeed be adjusted to fit observations, even with a minimal calibration effort, and that the model correctly identifies the location of the most severely eroded bank regions. The combined use of genetic and spatial analysis algorithms, in particular for the evaluation of geotechnical stability independently of the hydrodynamic mesh, permits the consideration of biophysical conditions for an extended river reach with complex bank geometries, with only a minor increase in run time. Further improvements with respect to plant representation could assist scientists in better understanding channel-floodplain interactions and in evaluating channel designs in river management projects.

  20. The impact of fluid advection on gas hydrate stability: Investigations at sites of methane seepage offshore Costa Rica

    NASA Astrophysics Data System (ADS)

    Crutchley, G. J.; Klaeschen, D.; Planert, L.; Bialas, J.; Berndt, C.; Papenberg, C.; Hensen, C.; Hornbach, M. J.; Krastel, S.; Brueckmann, W.

    2014-09-01

    Fluid flow through marine sediments drives a wide range of processes, from gas hydrate formation and dissociation, to seafloor methane seepage including the development of chemosynthetic ecosystems, and ocean acidification. Here, we present new seismic data that reveal the 3D nature of focused fluid flow beneath two mound structures on the seafloor offshore Costa Rica. These mounds have formed as a result of ongoing seepage of methane-rich fluids. We show the spatial impact of advective heat flow on gas hydrate stability due to the channelled ascent of warm fluids towards the seafloor. The base of gas hydrate stability (BGHS) imaged in the seismic data constrains peak heat flow values to ∼60 mW m and ∼70 mW m beneath two separate seep sites known as Mound 11 and Mound 12, respectively. The initiation of pronounced fluid flow towards these structures was likely controlled by fault networks that acted as efficient pathways for warm fluids ascending from depth. Through the gas hydrate stability zone, fluid flow has been focused through vertical conduits that we suggest developed as migrating fluids generated their own secondary permeability by fracturing strata as they forced their way upwards towards the seafloor. We show that Mound 11 and Mound 12 (about 1 km apart on the seafloor) are sustained by independent fluid flow systems through the hydrate system, and that fluid flow rates across the BGHS are probably similar beneath both mounds. 2D seismic data suggest that these two flow systems might merge at approximately 1 km depth, i.e. much deeper than the BGHS. This study provides a new level of detail and understanding of how channelled, anomalously-high fluid flow towards the seafloor influences gas hydrate stability. Thus, gas hydrate systems have good potential for quantifying the upward flow of subduction system fluids to seafloor seep sites, since the fluids have to interact with and leave their mark on the hydrate system before reaching the seafloor.

  1. A probabilistic multidimensional approach to quantify large wood recruitment from hillslopes in mountainous-forested catchments

    NASA Astrophysics Data System (ADS)

    Cislaghi, Alessio; Rigon, Emanuel; Lenzi, Mario Aristide; Bischetti, Gian Battista

    2018-04-01

    Large wood (LW) plays a key role in physical, chemical, environmental, and biological processes in most natural and seminatural streams. However, it is also a source of hydraulic hazard in anthropised territories. Recruitment from fluvial processes has been the subject of many studies, whereas less attention has been given to hillslope recruitment, which is linked to episodic and spatially distributed events and requires a reliable and accurate slope stability model and a hillslope-channel transfer model. The purpose of this study is to develop an innovative LW hillslope-recruitment estimation approach that combines forest stand characteristics in a spatially distributed form, a probabilistic multidimensional slope stability model able to include the reinforcement exerted by roots, and a hillslope-channel transfer procedure. The approach was tested on a small mountain headwater catchment in the eastern Italian Alps that is prone to shallow landslide and debris flow phenomena. The slope stability model (that had not been calibrated) provided accurate performances, in terms of unstable areas identification according to the landslide inventory (AUC = 0.832) and of LW volume estimation in comparison with LW volume produced by inventoried landslides (7702 m3 corresponding to a recurrence time of about 30 years in the susceptibility curve). The results showed that most LW potentially mobilised by landslides does not reach the channel network (only about 16%), in agreement with the few data reported by other studies, as well as the data normalized for unit length of channel and unit length of channel per year (0-116 m3/km and 0-4 m3/km y-1). This study represents an important contribution to LW research. A rigorous and site-specific estimation of LW hillslope recruitment should, in fact, be an integral part of more general studies on LW dynamics, for forest planning and management, and positioning in-channel wood retention structures.

  2. Digital holographic interferometry employing Fresnel transform reconstruction for the study of flow shear stabilized Z-pinch plasmas.

    PubMed

    Ross, M P; Shumlak, U

    2016-10-01

    The ZaP-HD flow Z-pinch project provides a platform to explore how shear flow stabilized Z-pinches could scale to high-energy-density plasma (plasma with pressures exceeding 1 Mbar) and fusion reactor conditions. The Z-pinch is a linear plasma confinement geometry in which the plasma carries axial electric current and is confined by its self-induced magnetic field. ZaP-HD generates shear stabilized, axisymmetric Z-pinches with stable lifetimes approaching 60 μs. The goal of the project is to increase the plasma density and temperature compared to the previous ZaP project by compressing the plasma to smaller radii (≈1 mm). Radial and axial plasma electron density structure is measured using digital holographic interferometry (DHI), which provides the necessary fine spatial resolution. ZaP-HD's DHI system uses a 2 ns Nd:YAG laser pulse with a second harmonic generator (λ = 532 nm) to produce holograms recorded by a Nikon D3200 digital camera. The holograms are numerically reconstructed with the Fresnel transform reconstruction method to obtain the phase shift caused by the interaction of the laser beam with the plasma. This provides a two-dimensional map of line-integrated electron density, which can be Abel inverted to determine the local number density. The DHI resolves line-integrated densities down to 3 × 10 20 m -2 with spatial resolution near 10 μm. This paper presents the first application of Fresnel transform reconstruction as an analysis technique for a plasma diagnostic, and it analyzes the method's accuracy through study of synthetic data. It then presents an Abel inversion procedure that utilizes data on both sides of a Z-pinch local number density profile to maximize profile symmetry. Error estimation and Abel inversion are applied to the measured data.

  3. Stability of faults with heterogeneous friction properties and effective normal stress

    NASA Astrophysics Data System (ADS)

    Luo, Yingdi; Ampuero, Jean-Paul

    2018-05-01

    Abundant geological, seismological and experimental evidence of the heterogeneous structure of natural faults motivates the theoretical and computational study of the mechanical behavior of heterogeneous frictional fault interfaces. Fault zones are composed of a mixture of materials with contrasting strength, which may affect the spatial variability of seismic coupling, the location of high-frequency radiation and the diversity of slip behavior observed in natural faults. To develop a quantitative understanding of the effect of strength heterogeneity on the mechanical behavior of faults, here we investigate a fault model with spatially variable frictional properties and pore pressure. Conceptually, this model may correspond to two rough surfaces in contact along discrete asperities, the space in between being filled by compressed gouge. The asperities have different permeability than the gouge matrix and may be hydraulically sealed, resulting in different pore pressure. We consider faults governed by rate-and-state friction, with mixtures of velocity-weakening and velocity-strengthening materials and contrasts of effective normal stress. We systematically study the diversity of slip behaviors generated by this model through multi-cycle simulations and linear stability analysis. The fault can be either stable without spontaneous slip transients, or unstable with spontaneous rupture. When the fault is unstable, slip can rupture either part or the entire fault. In some cases the fault alternates between these behaviors throughout multiple cycles. We determine how the fault behavior is controlled by the proportion of velocity-weakening and velocity-strengthening materials, their relative strength and other frictional properties. We also develop, through heuristic approximations, closed-form equations to predict the stability of slip on heterogeneous faults. Our study shows that a fault model with heterogeneous materials and pore pressure contrasts is a viable framework to reproduce the full spectrum of fault behaviors observed in natural faults: from fast earthquakes, to slow transients, to stable sliding. In particular, this model constitutes a building block for models of episodic tremor and slow slip events.

  4. A positivity preserving and conservative variational scheme for phase-field modeling of two-phase flows

    NASA Astrophysics Data System (ADS)

    Joshi, Vaibhav; Jaiman, Rajeev K.

    2018-05-01

    We present a positivity preserving variational scheme for the phase-field modeling of incompressible two-phase flows with high density ratio. The variational finite element technique relies on the Allen-Cahn phase-field equation for capturing the phase interface on a fixed Eulerian mesh with mass conservative and energy-stable discretization. The mass conservation is achieved by enforcing a Lagrange multiplier which has both temporal and spatial dependence on the underlying solution of the phase-field equation. To make the scheme energy-stable in a variational sense, we discretize the spatial part of the Lagrange multiplier in the phase-field equation by the mid-point approximation. The proposed variational technique is designed to reduce the spurious and unphysical oscillations in the solution while maintaining the second-order accuracy of both spatial and temporal discretizations. We integrate the Allen-Cahn phase-field equation with the incompressible Navier-Stokes equations for modeling a broad range of two-phase flow and fluid-fluid interface problems. The coupling of the implicit discretizations corresponding to the phase-field and the incompressible flow equations is achieved via nonlinear partitioned iterative procedure. Comparison of results between the standard linear stabilized finite element method and the present variational formulation shows a remarkable reduction of oscillations in the solution while retaining the boundedness of the phase-indicator field. We perform a standalone test to verify the accuracy and stability of the Allen-Cahn two-phase solver. We examine the convergence and accuracy properties of the coupled phase-field solver through the standard benchmarks of the Laplace-Young law and a sloshing tank problem. Two- and three-dimensional dam break problems are simulated to assess the capability of the phase-field solver for complex air-water interfaces involving topological changes on unstructured meshes. Finally, we demonstrate the phase-field solver for a practical offshore engineering application of wave-structure interaction.

  5. First-order Probabilistic Analysis of the Effects of Heterogeneity on Pore-water Pressure in a Hillslope

    NASA Astrophysics Data System (ADS)

    Cai, J.; Yan, E.; Yeh, T. C. J.

    2015-12-01

    Pore-water pressure in a hillslope is a critical control of its stability. The main objective of this paper is to introduce a first-order moment analysis to investigate the pressure head variability within a hypothetical hillslope, induced by steady rainfall infiltration. This approach accounts for the uncertainties and spatial variation of the hydraulic conductivity, and is based on a first-order Taylor approximation of pressure perturbations calculated by a variably saturated, finite element flow model. Using this approach, the effects of variance (σ2lnKs) and spatial structure anisotropy (λh/λv) of natural logarithm of saturated hydraulic conductivity, and normalized vertical infiltration flux (q/ks) on the hillslope pore-water pressure are evaluated. We found that the responses of pressure head variability (σ2p) are quite different between unsaturated region and saturated region divided by the phreatic surface. Above the phreatic surface, a higher variability in pressure head is obtained from a higher σ2lnKs, a higher λh/λv and a smaller q/ks; while below the phreatic surface, a higher σ2lnKs, a lower λh/λv or a larger q/ks would lead to a higher variability in pressure head, and greater range of fluctuation of the phreatic surface within the hillslope. σ2lnKs has greatest impact on σ2p within the slope and λh/λv has smallest impact. All three variables have greater influence on maximum σ2p within the saturated region below the phreatic surface than that within the unsaturated region above the phreatic surface. The results obtained from this study are useful to understand the influence of hydraulic conductivity variations on slope seepage and stability under different slope conditions and material spatial distributions.

  6. Iron Redox Dynamics in Humid Tropical Forest Soils: Carbon Stabilization vs. Degradation?

    NASA Astrophysics Data System (ADS)

    Hall, S. J.; Silver, W. L.; Hammel, K.

    2015-12-01

    Most terrestrial soils exhibit a patchwork of oxygen (O2) availability that varies over spatial scales of microsites to catenas to landscapes, and over temporal scales of minutes to seasons. Oxygen fluctuations often drive microbial iron (Fe) reduction and abiotic/biotic Fe oxidation at the microsite scale, contributing to anaerobic carbon (C) mineralization and changes in soil physical and chemical characteristics, especially the dissolution and precipitation of short-range ordered Fe phases thought to stabilize C. Thus, O2 fluctuations and Fe redox cycling may have multiple nuanced and opposing impacts on different soil C pools, illustrated by recent findings from Fe-rich Oxisols and Ultisols in the Luquillo Experimental Forest, Puerto Rico. Spatial patterns in surface soil C stocks at the landscape scale correlated strongly (R2 = 0.98) with concentrations of reduced Fe (Fe(II)), reflecting constitutive differences in reducing conditions within and among sites that promote C accumulation in mineral soil horizons. Similarly, turnover times of a decadal-cycling pool of mineral-associated organic matter increased with Fe(II) across a catena, possibly reflecting the role of anaerobic microsites in long-term C stabilization. However, two different indices of short-range order Fe showed highly significant opposing relationships (positive and negative) with spatial variation in soil C concentrations, possibly reflecting a dual role of Fe in driving C stabilization via co-precipitation, and C solubilization and loss following dissimilatory Fe reduction. Consistent with the field data, laboratory incubations demonstrated that redox fluctuations can increase the contribution of biochemically recalcitrant C (lignin) to soil respiration, whereas addition of short-range order Fe dramatically suppressed lignin mineralization but had no impact on bulk soil respiration. Thus, understanding spatial and temporal patterns of Fe redox cycling may provide insight into explaining the relatively rapid turnover of biochemically recalcitrant and mineral-associated C in soils.

  7. Microbial Activity and Depositional System Dynamics: Linking Scales With The Aid of New Technology

    NASA Astrophysics Data System (ADS)

    Defew, E. C.; Hagerthey, S. E.; Honeywill, C.; Perkins, R. G.; Black, K. S.; Paterson, D. M.

    The dynamics of estuarine depositional systems are influenced by sediment-dwelling microphytobenthic assemblages. These assemblages produce extracellular polymeric substances (EPS), which are known to be important in the process of sediment biosta- bilisation. However, these communities are generally studied on very small spatial scales making the prediction of primary productivity and their importance in terms of sediment stability over large areas uncertain. Recent advances in our knowledge of the biostabilisation process have allowed the establishment of links between EPS produc- tion, spatial distribution of algal biomass and their primary productivity over much larger spatial scales. For example, during the multidisciplinary BIOPTIS project, re- mote sensing (RS) was combined with ground-truthing measurements of physical and biological parameters to produce synoptic maps leading to a better understanding of system dynamics and the potential effects of environmental perturbations such as cli- mate change. Recent work using low-temperature scanning electron microscopy (LT- SEM) and in-line laser holography has measured the influence of EPS on the erosional behaviour of sediment flocs and particles and has shown that an increase in the con- centration of EPS determines the nature of the eroded floc material and the critical threshold for sediment erosion. This provides the mechanistic link required between EPS concentration and sediment stability. Whilst it is not yet possible to discern EPS concentration directly by RS studies, we know that EPS concentrations in sediments co-vary with chlorophyll a content, and are closely related to algal productivity. There- fore, RS studies which provide large-scale spatial information of chlorophyll a distri- bution may be used to model the stability and productivity of intertidal depositional systems. This paper introduces the basis of these linkages from the cellular level (in situ chlorophyll fluorescence), the ground-truthing approach (sediment stability, struc- ture, pigment distribution, in situ chlorophyll fluorescence) and investigates the poten- tial of a RS approach in a case study of a Scottish Estuary.

  8. Stochastic population dynamics in spatially extended predator-prey systems

    NASA Astrophysics Data System (ADS)

    Dobramysl, Ulrich; Mobilia, Mauro; Pleimling, Michel; Täuber, Uwe C.

    2018-02-01

    Spatially extended population dynamics models that incorporate demographic noise serve as case studies for the crucial role of fluctuations and correlations in biological systems. Numerical and analytic tools from non-equilibrium statistical physics capture the stochastic kinetics of these complex interacting many-particle systems beyond rate equation approximations. Including spatial structure and stochastic noise in models for predator-prey competition invalidates the neutral Lotka-Volterra population cycles. Stochastic models yield long-lived erratic oscillations stemming from a resonant amplification mechanism. Spatially extended predator-prey systems display noise-stabilized activity fronts that generate persistent correlations. Fluctuation-induced renormalizations of the oscillation parameters can be analyzed perturbatively via a Doi-Peliti field theory mapping of the master equation; related tools allow detailed characterization of extinction pathways. The critical steady-state and non-equilibrium relaxation dynamics at the predator extinction threshold are governed by the directed percolation universality class. Spatial predation rate variability results in more localized clusters, enhancing both competing species’ population densities. Affixing variable interaction rates to individual particles and allowing for trait inheritance subject to mutations induces fast evolutionary dynamics for the rate distributions. Stochastic spatial variants of three-species competition with ‘rock-paper-scissors’ interactions metaphorically describe cyclic dominance. These models illustrate intimate connections between population dynamics and evolutionary game theory, underscore the role of fluctuations to drive populations toward extinction, and demonstrate how space can support species diversity. Two-dimensional cyclic three-species May-Leonard models are characterized by the emergence of spiraling patterns whose properties are elucidated by a mapping onto a complex Ginzburg-Landau equation. Multiple-species extensions to general ‘food networks’ can be classified on the mean-field level, providing both fundamental understanding of ensuing cooperativity and profound insight into the rich spatio-temporal features and coarsening kinetics in the corresponding spatially extended systems. Novel space-time patterns emerge as a result of the formation of competing alliances; e.g. coarsening domains that each incorporate rock-paper-scissors competition games.

  9. Characterization of the Structure and Function of the Normal Human Fovea Using Adaptive Optics Scanning Laser Ophthalmoscopy

    NASA Astrophysics Data System (ADS)

    Putnam, Nicole Marie

    In order to study the limits of spatial vision in normal human subjects, it is important to look at and near the fovea. The fovea is the specialized part of the retina, the light-sensitive multi-layered neural tissue that lines the inner surface of the human eye, where the cone photoreceptors are smallest (approximately 2.5 microns or 0.5 arcmin) and cone density reaches a peak. In addition, there is a 1:1 mapping from the photoreceptors to the brain in this central region of the retina. As a result, the best spatial sampling is achieved in the fovea and it is the retinal location used for acuity and spatial vision tasks. However, vision is typically limited by the blur induced by the normal optics of the eye and clinical tests of foveal vision and foveal imaging are both limited due to the blur. As a result, it is unclear what the perceptual benefit of extremely high cone density is. Cutting-edge imaging technology, specifically Adaptive Optics Scanning Laser Ophthalmoscopy (AOSLO), can be utilized to remove this blur, zoom in, and as a result visualize individual cone photoreceptors throughout the central fovea. This imaging combined with simultaneous image stabilization and targeted stimulus delivery expands our understanding of both the anatomical structure of the fovea on a microscopic scale and the placement of stimuli within this retinal area during visual tasks. The final step is to investigate the role of temporal variables in spatial vision tasks since the eye is in constant motion even during steady fixation. In order to learn more about the fovea, it becomes important to study the effect of this motion on spatial vision tasks. This dissertation steps through many of these considerations, starting with a model of the foveal cone mosaic imaged with AOSLO. We then use this high resolution imaging to compare anatomical and functional markers of the center of the normal human fovea. Finally, we investigate the role of natural and manipulated fixational eye movements in foveal vision, specifically looking at a motion detection task, contrast sensitivity, and image fading.

  10. The complex roles of space and environment in structuring functional, taxonomic and phylogenetic beta diversity of frogs in the Atlantic Forest

    PubMed Central

    Luiz, Amom Mendes; Sawaya, Ricardo J.

    2018-01-01

    Ecological communities are complex entities that can be maintained and structured by niche-based processes such as environmental conditions, and spatial processes such as dispersal. Thus, diversity patterns may be shaped simultaneously at different spatial scales by very distinct processes. Herein we assess whether and how functional, taxonomic, and phylogenetic beta diversities of frog tadpoles are explained by environmental and/or spatial predictors. We implemented a distance–based redundancy analysis to explore variation in components of beta diversity explained by pure environmental and pure spatial predictors, as well as their interactions, at both fine and broad spatial scales. Our results indicated important but complex roles of spatial and environmental predictors in structuring phylogenetic, taxonomic and functional beta diversities. The pure fine-scales spatial fraction was more important in structuring all beta diversity components, especially to functional and taxonomical spatial turnover. Environmental variables such as canopy cover and vegetation structure were important predictors of all components, but especially to functional and taxonomic beta diversity. We emphasize that distinct factors related to environment and space are affecting distinct components of beta diversity in different ways. Although weaker, phylogenetic beta diversity, which is structured more on biogeographical scales, and thus can be represented by spatially structured processes, was more related to broad spatial processes than other components. However, selected fine-scale spatial predictors denoted negative autocorrelation, which may be revealing the existence of differences in unmeasured habitat variables among samples. Although overall important, local environmental-based processes explained better functional and taxonomic beta diversity, as these diversity components carry an important ecological value. We highlight the importance of assessing different components of diversity patterns at different scales by spatially explicit models in order to improve our understanding of community structure and help to unravel the complex nature of biodiversity. PMID:29672575

  11. Advanced microscopy of star-shaped gold nanoparticles and their adsorption-uptake by macrophages

    PubMed Central

    Plascencia-Villa, Germán; Bahena, Daniel; Rodríguez, Annette R.; Ponce, Arturo; José-Yacamán, Miguel

    2013-01-01

    Metallic nanoparticles have diverse applications in biomedicine, as diagnostics, image contrast agents, nanosensors and drug delivery systems. Anisotropic metallic nanoparticles possess potential applications in cell imaging and therapy+diagnostics (theranostics), but controlled synthesis and growth of these anisotropic or branched nanostructures has been challenging and usually require use of high concentrations of surfactants. Star-shaped gold nanoparticles were synthesized in high yield through a seed mediated route using HEPES as a precise shape-directing capping agent. Characterization was performed using advanced electron microscopy techniques including atomic resolution TEM, obtaining a detailed characterization of nanostructure and atomic arrangement. Spectroscopy techniques showed that particles have narrow size distribution, monodispersity and high colloidal stability, with absorbance into NIR region and high efficiency for SERS applications. Gold nanostars showed to be biocompatible and efficiently adsorbed and internalized by macrophages, as revealed by advanced FE-SEM and backscattered electron imaging techniques of complete unstained uncoated cells. Additionally, low voltage STEM and X-ray microanalysis revealed the ultra-structural location and confirmed stability of nanoparticles after endocytosis with high spatial resolution. PMID:23443314

  12. Stable lattice Boltzmann model for Maxwell equations in media

    NASA Astrophysics Data System (ADS)

    Hauser, A.; Verhey, J. L.

    2017-12-01

    The present work shows a method for stable simulations via the lattice Boltzmann (LB) model for electromagnetic waves (EM) transiting homogeneous media. LB models for such media were already presented in the literature, but they suffer from numerical instability when the media transitions are sharp. We use one of these models in the limit of pure vacuum derived from Liu and Yan [Appl. Math. Model. 38, 1710 (2014), 10.1016/j.apm.2013.09.009] and apply an extension that treats the effects of polarization and magnetization separately. We show simulations of simple examples in which EM waves travel into media to quantify error scaling, stability, accuracy, and time scaling. For conductive media, we use the Strang splitting and check the simulations accuracy at the example of the skin effect. Like pure EM propagation, the error for the static limits, which are constructed with a current density added in a first-order scheme, can be less than 1 % . The presented method is an easily implemented alternative for the stabilization of simulation for EM waves propagating in spatially complex structured media properties and arbitrary transitions.

  13. Passively stabilized 215-W monolithic CW LMA-fiber laser with innovative transversal mode filter

    NASA Astrophysics Data System (ADS)

    Stutzki, Fabian; Jauregui, Cesar; Voigtländer, Christian; Thomas, Jens U.; Limpert, Jens; Nolte, Stefan; Tünnermann, Andreas

    2010-02-01

    We report on the development of a high power monolithic CW fiber oscillator with an output power of 215 W in a 20μm core diameter few-mode Large Mode Area fiber (LMA). The key parameters for stable operation are reviewed. With these optimizations the root mean square of the output power fluctuations can be reduced to less than 0.5 % on a timescale of 20 s, which represents an improvement of more than a factor 5 over a non-optimized fiber laser. With a real-time measurement of the mode content of the fiber laser it can be shown that the few-mode nature of LMA fibers is the main factor for the residual instability of our optimized fiber laser. The root of the problem is that Fiber Bragg Gratings (FBGs) written in multimode fibers exhibit a multi-peak reflexion spectrum in which each resonance corresponds to a different transversal mode. This reflectivity spectrum stimulates multimode laser operation, which results in power and pointing instabilities due to gain competition between the different transversal modes . To stabilize the temporal and spatial behavior of the laser output, we propose an innovative passive in-fiber transversal mode filter based on modified FBG-Fabry Perot structure. This structure provides different reflectivities to the different transversal modes according to the transversal distribution of their intensity profile. Furthermore, this structure can be completely written into the active fiber using fs-laser pulses. Moreover, this concept scales very well with the fiber core diameter, which implies that there is no performance loss in fibers with even larger cores. In consequence this structure is inherently power scalable and can, therefore, be used in kW-level fiber laser systems.

  14. a Diagnostic Study of Two Summer Depressions Over the Changjiang-Huaihe Valley

    NASA Astrophysics Data System (ADS)

    Dingchen, Hou

    1987-09-01

    Available from UMI in association with The British Library. Two summer depressions over the Changjiang-Huaihe Valley are investigated using data obtained from a synoptic observation network over East Asia and objectively analysed by applying a new scheme, which is mainly based on spline function interpolation. Detailed spatial structures and temporal evolution are documented in terms of pressure, temperature, moisture and wind fields. Vertical velocity fields are estimated using two independent methods, namely, the kinematic method and the quasi-geostrophic omega equation with consideration of stable and convective condensational heating. Quasi -Lagrangian budgets are computed for vorticity, kinetic energy, available potential energy, moisture and heat. The dynamic structures of the two depressions are analysed in terms of potential vorticity, moisture-related stabilities and geostrophic frontogenesis. Although their vertical structures and budget relations have some features typical of tropical disturbances, both depressions are closely related to a feeble Mei-yu front in the lower troposphere during their mature stage. Two different structures associated with the lower level frontal zone and a mid-upper layer warm belt are identified and related to the large scale circulation over East Asia. The adiabatic forcing under the quasi-geostrophic approximation is able to determine the general regions of ascent and descent associated with these depressions. On the other hand, the diabatic heating is the primary factor to account for the large magnitude of ascent, especially during the pre-storm and mature stages. Conditional symmetric instability and frontogenesis in the presence of small conditional symmetric stability are possible mechanisms in favour of the maintenance and development of the degressions. Based on these results, a conceptual model of the summer depressions over the Changjiang-Huaihe Valley is proposed.

  15. Spatial distribution of the Southeast Asian smoke plume over the Indian Ocean and its radiative heating in the atmosphere during the major fire event of 2006

    NASA Astrophysics Data System (ADS)

    Thampi, Bijoy V.; Rajeev, K.; Parameswaran, K.; Mishra, Manoj Kumar

    2009-08-01

    Smoke plumes originating from vegetation fires engulf Southeast Asia and East Equatorial Indian Ocean (EEIO) during October-November period in almost all the El Niño years. For the first time, observations of the vertical profiles of aerosol extinction coefficient using the Cloud Aerosol Lidar Pathfinder Satellite Observation (CALIPSO), along with the spatial distribution of aerosol optical depth (AOD) derived from NOAA-18-AVHRR provided an opportunity to study the 3-dimensional structure of the plume that spread over an area of ˜1 million km2 (0.532 Wm-2 over a wide area and the mean aerosol radiative heating rate in the atmosphere estimated over Singapore is 1.2 K/day between 0.6-2 km. This led to an increase in the lower tropospheric stability in this location.

  16. Comparison of cell centered and cell vertex scheme in the calculation of high speed compressible flows

    NASA Astrophysics Data System (ADS)

    Rahman, Syazila; Yusoff, Mohd. Zamri; Hasini, Hasril

    2012-06-01

    This paper describes the comparison between the cell centered scheme and cell vertex scheme in the calculation of high speed compressible flow properties. The calculation is carried out using Computational Fluid Dynamic (CFD) in which the mass, momentum and energy equations are solved simultaneously over the flow domain. The geometry under investigation consists of a Binnie and Green convergent-divergent nozzle and structured mesh scheme is implemented throughout the flow domain. The finite volume CFD solver employs second-order accurate central differencing scheme for spatial discretization. In addition, the second-order accurate cell-vertex finite volume spatial discretization is also introduced in this case for comparison. The multi-stage Runge-Kutta time integration is implemented for solving a set of non-linear governing equations with variables stored at the vertices. Artificial dissipations used second and fourth order terms with pressure switch to detect changes in pressure gradient. This is important to control the solution stability and capture shock discontinuity. The result is compared with experimental measurement and good agreement is obtained for both cases.

  17. A high-order Lagrangian-decoupling method for the incompressible Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Ho, Lee-Wing; Maday, Yvon; Patera, Anthony T.; Ronquist, Einar M.

    1989-01-01

    A high-order Lagrangian-decoupling method is presented for the unsteady convection-diffusion and incompressible Navier-Stokes equations. The method is based upon: (1) Lagrangian variational forms that reduce the convection-diffusion equation to a symmetric initial value problem; (2) implicit high-order backward-differentiation finite-difference schemes for integration along characteristics; (3) finite element or spectral element spatial discretizations; and (4) mesh-invariance procedures and high-order explicit time-stepping schemes for deducing function values at convected space-time points. The method improves upon previous finite element characteristic methods through the systematic and efficient extension to high order accuracy, and the introduction of a simple structure-preserving characteristic-foot calculation procedure which is readily implemented on modern architectures. The new method is significantly more efficient than explicit-convection schemes for the Navier-Stokes equations due to the decoupling of the convection and Stokes operators and the attendant increase in temporal stability. Numerous numerical examples are given for the convection-diffusion and Navier-Stokes equations for the particular case of a spectral element spatial discretization.

  18. An electron beam linear scanning mode for industrial limited-angle nano-computed tomography.

    PubMed

    Wang, Chengxiang; Zeng, Li; Yu, Wei; Zhang, Lingli; Guo, Yumeng; Gong, Changcheng

    2018-01-01

    Nano-computed tomography (nano-CT), which utilizes X-rays to research the inner structure of some small objects and has been widely utilized in biomedical research, electronic technology, geology, material sciences, etc., is a high spatial resolution and non-destructive research technique. A traditional nano-CT scanning model with a very high mechanical precision and stability of object manipulator, which is difficult to reach when the scanned object is continuously rotated, is required for high resolution imaging. To reduce the scanning time and attain a stable and high resolution imaging in industrial non-destructive testing, we study an electron beam linear scanning mode of nano-CT system that can avoid mechanical vibration and object movement caused by the continuously rotated object. Furthermore, to further save the scanning time and study how small the scanning range could be considered with acceptable spatial resolution, an alternating iterative algorithm based on ℓ 0 minimization is utilized to limited-angle nano-CT reconstruction problem with the electron beam linear scanning mode. The experimental results confirm the feasibility of the electron beam linear scanning mode of nano-CT system.

  19. An electron beam linear scanning mode for industrial limited-angle nano-computed tomography

    NASA Astrophysics Data System (ADS)

    Wang, Chengxiang; Zeng, Li; Yu, Wei; Zhang, Lingli; Guo, Yumeng; Gong, Changcheng

    2018-01-01

    Nano-computed tomography (nano-CT), which utilizes X-rays to research the inner structure of some small objects and has been widely utilized in biomedical research, electronic technology, geology, material sciences, etc., is a high spatial resolution and non-destructive research technique. A traditional nano-CT scanning model with a very high mechanical precision and stability of object manipulator, which is difficult to reach when the scanned object is continuously rotated, is required for high resolution imaging. To reduce the scanning time and attain a stable and high resolution imaging in industrial non-destructive testing, we study an electron beam linear scanning mode of nano-CT system that can avoid mechanical vibration and object movement caused by the continuously rotated object. Furthermore, to further save the scanning time and study how small the scanning range could be considered with acceptable spatial resolution, an alternating iterative algorithm based on ℓ0 minimization is utilized to limited-angle nano-CT reconstruction problem with the electron beam linear scanning mode. The experimental results confirm the feasibility of the electron beam linear scanning mode of nano-CT system.

  20. Smoothing effect for spatially distributed renewable resources and its impact on power grid robustness.

    PubMed

    Nagata, Motoki; Hirata, Yoshito; Fujiwara, Naoya; Tanaka, Gouhei; Suzuki, Hideyuki; Aihara, Kazuyuki

    2017-03-01

    In this paper, we show that spatial correlation of renewable energy outputs greatly influences the robustness of the power grids against large fluctuations of the effective power. First, we evaluate the spatial correlation among renewable energy outputs. We find that the spatial correlation of renewable energy outputs depends on the locations, while the influence of the spatial correlation of renewable energy outputs on power grids is not well known. Thus, second, by employing the topology of the power grid in eastern Japan, we analyze the robustness of the power grid with spatial correlation of renewable energy outputs. The analysis is performed by using a realistic differential-algebraic equations model. The results show that the spatial correlation of the energy resources strongly degrades the robustness of the power grid. Our results suggest that we should consider the spatial correlation of the renewable energy outputs when estimating the stability of power grids.

  1. Power law analysis of the human microbiome.

    PubMed

    Ma, Zhanshan Sam

    2015-11-01

    Taylor's (1961, Nature, 189:732) power law, a power function (V = am(b) ) describing the scaling relationship between the mean and variance of population abundances of organisms, has been found to govern the population abundance distributions of single species in both space and time in macroecology. It is regarded as one of few generalities in ecology, and its parameter b has been widely applied to characterize spatial aggregation (i.e. heterogeneity) and temporal stability of single-species populations. Here, we test its applicability to bacterial populations in the human microbiome using extensive data sets generated by the US-NIH Human Microbiome Project (HMP). We further propose extending Taylor's power law from the population to the community level, and accordingly introduce four types of power-law extensions (PLEs): type I PLE for community spatial aggregation (heterogeneity), type II PLE for community temporal aggregation (stability), type III PLE for mixed-species population spatial aggregation (heterogeneity) and type IV PLE for mixed-species population temporal aggregation (stability). Our results show that fittings to the four PLEs with HMP data were statistically extremely significant and their parameters are ecologically sound, hence confirming the validity of the power law at both the population and community levels. These findings not only provide a powerful tool to characterize the aggregations of population and community in both time and space, offering important insights into community heterogeneity in space and/or stability in time, but also underscore the three general properties of power laws (scale invariance, no average and universality) and their specific manifestations in our four PLEs. © 2015 John Wiley & Sons Ltd.

  2. Spatial Atmospheric Pressure Atomic Layer Deposition of Tin Oxide as an Impermeable Electron Extraction Layer for Perovskite Solar Cells with Enhanced Thermal Stability.

    PubMed

    Hoffmann, Lukas; Brinkmann, Kai O; Malerczyk, Jessica; Rogalla, Detlef; Becker, Tim; Theirich, Detlef; Shutsko, Ivan; Görrn, Patrick; Riedl, Thomas

    2018-02-14

    Despite the notable success of hybrid halide perovskite-based solar cells, their long-term stability is still a key-issue. Aside from optimizing the photoactive perovskite, the cell design states a powerful lever to improve stability under various stress conditions. Dedicated electrically conductive diffusion barriers inside the cell stack, that counteract the ingress of moisture and prevent the migration of corrosive halogen species, can substantially improve ambient and thermal stability. Although atomic layer deposition (ALD) is excellently suited to prepare such functional layers, ALD suffers from the requirement of vacuum and only allows for a very limited throughput. Here, we demonstrate for the first time spatial ALD-grown SnO x at atmospheric pressure as impermeable electron extraction layers for perovskite solar cells. We achieve optical transmittance and electrical conductivity similar to those in SnO x grown by conventional vacuum-based ALD. A low deposition temperature of 80 °C and a high substrate speed of 2.4 m min -1 yield SnO x layers with a low water vapor transmission rate of ∼10 -4 gm -2 day -1 (at 60 °C/60% RH). Thereby, in perovskite solar cells, dense hybrid Al:ZnO/SnO x electron extraction layers are created that are the key for stable cell characteristics beyond 1000 h in ambient air and over 3000 h at 60 °C. Most notably, our work of introducing spatial ALD at atmospheric pressure paves the way to the future roll-to-roll manufacturing of stable perovskite solar cells.

  3. A review and guidance for pattern selection in spatiotemporal system

    NASA Astrophysics Data System (ADS)

    Wang, Chunni; Ma, Jun

    2018-03-01

    Pattern estimation and selection in media can give important clues to understand the collective response to external stimulus by detecting the observable variables. Both reaction-diffusion systems (RDs) and neuronal networks can be treated as multi-agent systems from molecular level, intrinsic cooperation, competition. An external stimulus or attack can cause collapse of spatial order and distribution, while appropriate noise can enhance the consensus in the spatiotemporal systems. Pattern formation and synchronization stability can bridge isolated oscillators and the network by coupling these nodes with appropriate connection types. As a result, the dynamical behaviors can be detected and discussed by developing different spatial patterns and realizing network synchronization. Indeed, the collective response of network and multi-agent system depends on the local kinetics of nodes and cells. It is better to know the standard bifurcation analysis and stability control schemes before dealing with network problems. In this review, dynamics discussion and synchronization control on low-dimensional systems, pattern formation and synchronization stability on network, wave stability in RDs and neuronal network are summarized. Finally, possible guidance is presented when some physical effects such as polarization field and electromagnetic induction are considered.

  4. Counteraction of antibiotic production and degradation stabilizes microbial communities

    PubMed Central

    Kelsic, Eric D.; Zhao, Jeffrey; Vetsigian, Kalin; Kishony, Roy

    2015-01-01

    Summary A major challenge in theoretical ecology is understanding how natural microbial communities support species diversity1-8, and in particular how antibiotic producing, sensitive and resistant species coexist9-15. While cyclic “rock-paper-scissors” interactions can stabilize communities in spatial environments9-11, coexistence in unstructured environments remains an enigma12,16. Here, using simulations and analytical models, we show that the opposing actions of antibiotic production and degradation enable coexistence even in well-mixed environments. Coexistence depends on 3-way interactions where an antibiotic degrading species attenuates the inhibitory interactions between two other species. These 3-way interactions enable coexistence that is robust to substantial differences in inherent species growth rates and to invasion by “cheating” species that cease producing or degrading antibiotics. At least two antibiotics are required for stability, with greater numbers of antibiotics enabling more complex communities and diverse dynamical behaviors ranging from stable fixed-points to limit cycles and chaos. Together, these results show how multi-species antibiotic interactions can generate ecological stability in both spatial and mixed microbial communities, suggesting strategies for engineering synthetic ecosystems and highlighting the importance of toxin production and degradation for microbial biodiversity. PMID:25992546

  5. Rehabilitation-triggered cortical plasticity after stroke: in vivo imaging at multiple scales (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Allegra Mascaro, Anna Letizia; Conti, Emilia; Lai, Stefano; Spalletti, Cristina; Di Giovanna, Antonino Paolo; Alia, Claudia; Panarese, Alessandro; Sacconi, Leonardo; Micera, Silvestro; Caleo, Matteo; Pavone, Francesco S.

    2017-02-01

    Neurorehabilitation protocols based on the use of robotic devices provide a highly repeatable therapy and have recently shown promising clinical results. Little is known about how rehabilitation molds the brain to promote motor recovery of the affected limb. We used a custom-made robotic platform that provides quantitative assessment of forelimb function in a retraction test. Complementary imaging techniques allowed us to access to the multiple facets of robotic rehabilitation-induced cortical plasticity after unilateral photothrombotic stroke in mice Primary Motor Cortex (Caudal Forelimb Area - CFA). First, we analyzed structural features of vasculature and dendritic reshaping in the peri-infarct area with two-photon fluorescence microscopy. Longitudinal analysis of dendritic branches and spines of pyramidal neurons suggests that robotic rehabilitation promotes the stabilization of peri-infarct cortical excitatory circuits, which is not accompanied by consistent vascular reorganization towards pre-stroke conditions. To investigate if this structural stabilization was linked to functional remapping, we performed mesoscale wide-field imaging on GCaMP6 mice while performing the motor task on the robotic platform. We revealed temporal and spatial features of the motor-triggered cortical activation, shining new light on rehabilitation-induced functional remapping of the ipsilesional cortex. Finally, by using an all-optical approach that combines optogenetic activation of the contralesional hemisphere and wide-field functional imaging of peri-infarct area, we dissected the effect of robotic rehabilitation on inter-hemispheric cortico-cortical connectivity.

  6. Hot-spot analysis to dissect the functional protein-protein interface of a tRNA-modifying enzyme.

    PubMed

    Jakobi, Stephan; Nguyen, Tran Xuan Phong; Debaene, François; Metz, Alexander; Sanglier-Cianférani, Sarah; Reuter, Klaus; Klebe, Gerhard

    2014-10-01

    Interference with protein-protein interactions of interfaces larger than 1500 Ų by small drug-like molecules is notoriously difficult, particularly if targeting homodimers. The tRNA modifying enzyme Tgt is only functionally active as a homodimer. Thus, blocking Tgt dimerization is a promising strategy for drug therapy as this protein is key to the development of Shigellosis. Our goal was to identify hot-spot residues which, upon mutation, result in a predominantly monomeric state of Tgt. The detailed understanding of the spatial location and stability contribution of the individual interaction hot-spot residues and the plasticity of motifs involved in the interface formation is a crucial prerequisite for the rational identification of drug-like inhibitors addressing the respective dimerization interface. Using computational analyses, we identified hot-spot residues that contribute particularly to dimer stability: a cluster of hydrophobic and aromatic residues as well as several salt bridges. This in silico prediction led to the identification of a promising double mutant, which was validated experimentally. Native nano-ESI mass spectrometry showed that the dimerization of the suggested mutant is largely prevented resulting in a predominantly monomeric state. Crystal structure analysis and enzyme kinetics of the mutant variant further support the evidence for enhanced monomerization and provide first insights into the structural consequences of the dimer destabilization. © 2014 Wiley Periodicals, Inc.

  7. Metastable dynamical patterns and their stabilization in arrays of bidirectionally coupled sigmoidal neurons

    NASA Astrophysics Data System (ADS)

    Horikawa, Yo

    2013-12-01

    Transient patterns in a bistable ring of bidirectionally coupled sigmoidal neurons were studied. When the system had a pair of spatially uniform steady solutions, the instability of unstable spatially nonuniform steady solutions decreased exponentially with the number of neurons because of the symmetry of the system. As a result, transient spatially nonuniform patterns showed dynamical metastability: Their duration increased exponentially with the number of neurons and the duration of randomly generated patterns obeyed a power-law distribution. However, these metastable dynamical patterns were easily stabilized in the presence of small variations in coupling strength. Metastable rotating waves and their pinning in the presence of asymmetry in the direction of coupling and the disappearance of metastable dynamical patterns due to asymmetry in the output function of a neuron were also examined. Further, in a two-dimensional array of neurons with nearest-neighbor coupling, intrinsically one-dimensional patterns were dominant in transients, and self-excitation in these neurons affected the metastable dynamical patterns.

  8. Similarity-based cooperation and spatial segregation

    NASA Astrophysics Data System (ADS)

    Traulsen, Arne; Claussen, Jens Christian

    2004-10-01

    We analyze a cooperative game, where the cooperative act is not based on the previous behavior of the coplayer, but on the similarity between the players. This system has been studied in a mean-field description recently [A. Traulsen and H. G. Schuster, Phys. Rev. E 68, 046129 (2003)]. Here, the spatial extension to a two-dimensional lattice is studied, where each player interacts with eight players in a Moore neighborhood. The system shows a strong segregation independent of parameters. The introduction of a local conversion mechanism towards tolerance allows for four-state cycles and the emergence of spiral waves in the spatial game. In the case of asymmetric costs of cooperation a rich variety of complex behavior is observed depending on both cooperation costs. Finally, we study the stabilization of a cooperative fixed point of a forecast rule in the symmetric game, which corresponds to cooperation across segregation borders. This fixed point becomes unstable for high cooperation costs, but can be stabilized by a linear feedback mechanism.

  9. Orbital Stability Results for Soliton Solutions to Nonlinear Schrodinger Equations with External Potentials

    NASA Astrophysics Data System (ADS)

    Lindgren, Joseph B.

    The Rosette nebula is a large, ring-shaped emission nebula with a distinctive central cavity excavated by its central cluster of OB stars. Toward understanding the three dimensional structure and fundamental physical processes of this object, we have acquired ux-calibrated, 4-degree field, deep exposures of the Rosette region through 3 nm bandwidth Halpha (656.3 nm) as well as Hbeta (486.1nm), [OIII] (500.7 nm) and [SII] (671.6 nm) filters with 4.5 nm bandwidth. The 4 arcsec/pixel images are supplemented with 4 degree field slit spectra and combined with archival data from the Galactic Evolution Explorer satellite (GALEX), Akari, the Infrared Astronomical Satellite (IRAS), the Midcourse Space Experiment (MSX), the Wide-field Infrared Survey Explorer (WISE), the Wilkinson Microwave Anisotropy Probe (WMAP) and the Planck mission, along with published single dish radio data of the hydrogen continuum at 1410, 2700, and 4750 MHz. These disparate sources have been converted to the same flux and spatial scale as our own wide field data to create a multispectral data cube which allows comparative analysis across the electromagnetic spectrum. Using ratios of data cube slices, spatial maps of extinction and ionization have been constructed to explore the spatial variation of these parameters across the nebula. Comparison of emission in different wavelengths across the data cube allows generation of a spectral energy distribution (SED) to probe dust temperature and geometry. A radial profile analysis of emission from the Rosette in each band supports a spherical shell model of three dimensional structure, and visual representations of this model have been generated in both Python and Javascript/GLSL. An investigation of anomalous dust emission in the center of the nebula via supplemental spectroscopy, conducted on the Anglo-Australian Telescope, is also presented.

  10. A Unified Picture of Mass Segregation in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Watkins, Laura

    2017-08-01

    The sensitivity, stability and longevity of HST have opened up an exciting new parameter space: we now have velocity measurements, in the form of proper motions (PMs), for stars from the tip of the red giant branch to a few magnitudes below the main-sequence turn off for a large sample of globular clusters (GCs). For the very first time, we have the opportunity to measure both kinematic and spatial dependences on stellar mass in GCs.The formation and evolution histories of GCs are poorly understood, so too are their intermediate-mass black hole populations and binary fractions. However, the current structure and dynamical state of a GC is directly determined by its past history and its components, so by understanding the former we can gain insight into the latter. Quantifying variations in spatial structure for stars of different mass is extremely difficult with photometry alone as datasets are inhomogenous and incomplete. We require kinematic data for stars that span a range of stellar masses, combined with proper dynamical modelling. We now have the data in hand, but still lack the models needed to maximise the scientific potential of our HST datasets.Here, we propose to extend existing single-mass discrete dynamical-modelling tools to include kinematic and spatial variations with stellar mass, and verify the upgrades using mock data generated from N-body models. We will then apply the models to HST PM data and directly quantify energy equipartition and mass segregation in the GCs. The theoretical phase of the project is vital for the success of the subsequent data analysis, and will serve as a benchmark for future observational campaigns with HST, JWST and beyond.

  11. Hopf Bifurcation Analysis of a Gene Regulatory Network Mediated by Small Noncoding RNA with Time Delays and Diffusion

    NASA Astrophysics Data System (ADS)

    Li, Chengxian; Liu, Haihong; Zhang, Tonghua; Yan, Fang

    2017-12-01

    In this paper, a gene regulatory network mediated by small noncoding RNA involving two time delays and diffusion under the Neumann boundary conditions is studied. Choosing the sum of delays as the bifurcation parameter, the stability of the positive equilibrium and the existence of spatially homogeneous and spatially inhomogeneous periodic solutions are investigated by analyzing the corresponding characteristic equation. It is shown that the sum of delays can induce Hopf bifurcation and the diffusion incorporated into the system can effect the amplitude of periodic solutions. Furthermore, the spatially homogeneous periodic solution always exists and the spatially inhomogeneous periodic solution will arise when the diffusion coefficients of protein and mRNA are suitably small. Particularly, the small RNA diffusion coefficient is more robust and its effect on model is much less than protein and mRNA. Finally, the explicit formulae for determining the direction of Hopf bifurcation and the stability of the bifurcating periodic solutions are derived by employing the normal form theory and center manifold theorem for partial functional differential equations. Finally, numerical simulations are carried out to illustrate our theoretical analysis.

  12. Economic agglomerations and spatio-temporal cycles in a spatial growth model with capital transport cost

    NASA Astrophysics Data System (ADS)

    Juchem Neto, J. P.; Claeyssen, J. C. R.; Pôrto Júnior, S. S.

    2018-03-01

    In this paper we introduce capital transport cost in a unidimensional spatial Solow-Swan model of economic growth with capital-induced labor migration, considered in an unbounded domain. Proceeding with a stability analysis, we show that there is a critical value for the capital transport cost where the dynamic behavior of the economy changes, provided that the intensity of capital-induced labor migration is strong enough. On the one hand, if the capital transport cost is higher than this critical value, the spatially homogeneous equilibrium of coexistence of the model is stable, and the economy converges to this spatially homogeneous state in the long run; on the other hand, if transport cost is lower than this critical value, the equilibrium is unstable, and the economy may develop different spatio-temporal dynamics, including the formation of stable economic agglomerations and spatio-temporal economic cycles, depending on the other parameters in the model. Finally, numerical simulations support the results of the stability analysis, and illustrate the spatio-temporal dynamics generated by the model, suggesting that the economy as a whole benefits from the formation of economic agglomerations and cycles, with a higher capital transport cost reducing this gain.

  13. Visual soil evaluation - future research requirements

    NASA Astrophysics Data System (ADS)

    Emmet-Booth, Jeremy; Forristal, Dermot; Fenton, Owen; Ball, Bruce; Holden, Nick

    2017-04-01

    A review of Visual Soil Evaluation (VSE) techniques (Emmet-Booth et al., 2016) highlighted their established utility for soil quality assessment, though some limitations were identified; (1) The examination of aggregate size, visible intra-porosity and shape forms a key assessment criterion in almost all methods, thus limiting evaluation to structural form. The addition of criteria that holistically examine structure may be desirable. For example, structural stability can be indicated using dispersion tests or examining soil surface crusting, while the assessment of soil colour may indirectly indicate soil organic matter content, a contributor to stability. Organic matter assessment may also indicate structural resilience, along with rooting, earthworm numbers or shrinkage cracking. (2) Soil texture may influence results or impeded method deployment. Modification of procedures to account for extreme texture variation is desirable. For example, evidence of compaction in sandy or single grain soils greatly differs to that in clayey soils. Some procedures incorporate separate classification systems or adjust deployment based on texture. (3) Research into impacts of soil moisture content on VSE evaluation criteria is required. Criteria such as rupture resistance and shape may be affected by moisture content. It is generally recommended that methods are deployed on moist soils and quantification of influences of moisture variation on results is necessary. (4) Robust sampling strategies for method deployment are required. Dealing with spatial variation differs between methods, but where methods can be deployed over large areas, clear instruction on sampling is required. Additionally, as emphasis has been placed on the agricultural production of soil, so the ability of VSE for exploring structural quality in terms of carbon storage, water purification and biodiversity support also requires research. References Emmet-Booth, J.P., Forristal. P.D., Fenton, O., Ball, B.C. & Holden, N.M. 2016. A review of visual soil evaluation techniques for soil structure. Soil Use and Management, 32, 623-634.

  14. Intraspecific functional diversity of common species enhances community stability

    USGS Publications Warehouse

    Wood, Connor M.; McKinney, Shawn T.; Loftin, Cynthia S.

    2017-01-01

    Common species are fundamental to the structure and function of their communities and may enhance community stability through intraspecific functional diversity (iFD). We measured among-habitat and within-habitat iFD (i.e., among- and within-plant community types) of two common small mammal species using stable isotopes and functional trait dendrograms, determined whether iFD was related to short-term population stability and small mammal community stability, and tested whether spatially explicit trait filters helped explain observed patterns of iFD. Southern red-backed voles (Myodes gapperi) had greater iFD than deer mice (Peromyscus maniculatus), both among habitats, and within the plant community in which they were most abundant (their “primary habitat”). Peromyscus maniculatus populations across habitats differed significantly between years and declined 78% in deciduous forests, their primary habitat, as did the overall deciduous forest small mammal community. Myodes gapperi populations were stable across habitats and within coniferous forest, their primary habitat, as was the coniferous forest small mammal community. Generalized linear models representing internal trait filters (e.g., competition), which increase within-habitat type iFD, best explained variation in M. gapperidiet, while models representing internal filters and external filters (e.g., climate), which suppress within-habitat iFD, best explained P. maniculatus diet. This supports the finding that M. gapperi had higher iFD than P. maniculatus and is consistent with the theory that internal trait filters are associated with higher iFD than external filters. Common species with high iFD can impart a stabilizing influence on their communities, information that can be important for conserving biodiversity under environmental change.

  15. Spiral arms and disc stability in the Andromeda galaxy

    NASA Astrophysics Data System (ADS)

    Tenjes, P.; Tuvikene, T.; Tamm, A.; Kipper, R.; Tempel, E.

    2017-04-01

    Aims: Density waves are often considered as the triggering mechanism of star formation in spiral galaxies. Our aim is to study relations between different star formation tracers (stellar UV and near-IR radiation and emission from H I, CO, and cold dust) in the spiral arms of M 31, to calculate stability conditions in the galaxy disc, and to draw conclusions about possible star formation triggering mechanisms. Methods: We selected fourteen spiral arm segments from the de-projected data maps and compared emission distributions along the cross sections of the segments in different datasets to each other, in order to detect spatial offsets between young stellar populations and the star-forming medium. By using the disc stability condition as a function of perturbation wavelength and distance from the galaxy centre, we calculated the effective disc stability parameters and the least stable wavelengths at different distances. For this we used a mass distribution model of M 31 with four disc components (old and young stellar discs, cold and warm gaseous discs) embedded within the external potential of the bulge, the stellar halo, and the dark matter halo. Each component is considered to have a realistic finite thickness. Results: No systematic offsets between the observed UV and CO/far-IR emission across the spiral segments are detected. The calculated effective stability parameter has a lowest value of Qeff ≃ 1.8 at galactocentric distances of 12-13 kpc. The least stable wavelengths are rather long, with the lowest values starting from ≃ 3 kpc at distances R > 11 kpc. Conclusions: The classical density wave theory is not a realistic explanation for the spiral structure of M 31. Instead, external causes should be considered, such as interactions with massive gas clouds or dwarf companions of M 31.

  16. High-Spatial-Resolution OH and CH2O PLIF Visualization in a Dual-Mode Scramjet Combustor

    NASA Technical Reports Server (NTRS)

    Geipel, Clayton M.

    2017-01-01

    A high-spatial-resolution planar laser-induced fluorescence (PLIF) imaging system was constructed and used to image a cavity-stabilized, premixed ethylene-air flame. The flame was created within a continuous flow, electrically-heated supersonic combustion facility consisting of a Mach 2 nozzle, an isolator with flush-wall fuel injectors, a combustor with a cavity flameholder of height 9 mm and optical access, and an extender. Tests were conducted at total temperature 1200 K, total pressure 300 kPa, equivalence ratio near 0.4 in the combustor, and Mach number near 0.6 in the combustor. A frequency-doubled Nd:YAG laser pumped a dye laser, which produced light at 283.55 nm. The beam was shaped into a light sheet with full width half-maximum 25 microns, which illuminated a streamwise plane that bisected the cavity. An intensified camera system imaged OH in this plane with a square 6.67 mm field of view and in-plane resolution 39 microns. Images were taken between the backward-facing step and 120 mm downstream of the step. OH structures as small as 110 microns were observed. CH2O was excited using 352.48 nm light; the smallest observed CH2O structures were approximately 200 microns wide. Approximately 15,000 images per species were processed and used to compute composite images.

  17. Illumination design for semiconductor backlight inspection and application extensions

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Rutherford, Todd; Hart, Darcy

    2013-09-01

    High speed strobe based illumination scheme is one of the most critical factors for high throughput semiconductor defect inspection applications. HB LEDs are always the first and best options for such applications due to numerous unique advantages such as excellent spatial and temporal stability, fast responding time, large and linear intensity dynamic range and no heat issue for the extremely low duty cycle applications. For some applications where a large area is required to be illuminated simultaneously, it remains a great challenge to efficiently package a large amount of HB-LEDs in a highly confined 3D space, to generate a seamless illuminated area with high luminance efficiency and spatial uniformity. A novel 3D structured collimation lens is presented in this paper. The non-circular edge shape reduces the intensity drop at the channel boundaries, while the secondary curvatures on the top of the collimator lens efficiently guides the light into desired angular space. The number of the edges and the radius of the top surface curvature are control parameters for the system level performance and the manufacture cost trade-off. The proposed 3D structured LED collimation lens also maintains the benefits of traditional LED collimation lens such as coupling efficiency and mold manufacture capability. The applications can be extended into other non-illumination area like parallelism measurement and solar panel concentrator etc.

  18. Can organic matter hide from decomposers in the labyrinth of soil aggregates? Micro-engineered Soil Chips challenging foraging fungi

    NASA Astrophysics Data System (ADS)

    Hammer, Edith C.; Aleklett, Kristin; Arellano Caicedo, Carlos G.; Bengtsson, Martin; Micaela Mafla Endara, Paola; Ohlsson, Pelle

    2017-04-01

    From the point of view of microorganisms, the soil environment is an enormously complex labyrinth with paths and dead-end streets, where resources and shelters are unevenly distributed. We study foraging strategies of soil organisms, especially fungi, and the possibility of physio-spatial stabilization of organic matter by "hiding" in occluded soil spaces. We manipulate growth habitat microstructure with lab-on-a-chip techniques, where we designed complex environments with channels and obstacle at dimensions of the size of hyphae, and construct them in the transparent, gas-permeable polymer PDMS. We fill those with different nutrient solutions or combine with mineral nutrient gradients, and inoculate them with soil organisms. We analyze organisms and substrates with microscopy, fluorescence microscopy and analytical chemistry. We compared different soil litter decomposers and an arbuscular mycorrhizal fungus for their ability to forage through complex air-gap structures and attempt to classify them into functional traits concerning their mycelium directionality, space-exploring approach and ability to grow through acute angles and narrow constrictions. We identified structures which are very difficult to penetrate for most species, and compounds located behind such features may thus be spatially unavailable for decomposers. We discuss our approach in comparison to soil pore space tomographic analyses and findings we made in the pore space of colonized wood biochar.

  19. Optimal design of tweezer control for chimera states

    NASA Astrophysics Data System (ADS)

    Omelchenko, Iryna; Omel'chenko, Oleh E.; Zakharova, Anna; Schöll, Eckehard

    2018-01-01

    Chimera states are complex spatio-temporal patterns which consist of coexisting domains of spatially coherent and incoherent dynamics in systems of coupled oscillators. In small networks, chimera states usually exhibit short lifetimes and erratic drifting of the spatial position of the incoherent domain. A tweezer feedback control scheme can stabilize and fix the position of chimera states. We analyze the action of the tweezer control in small nonlocally coupled networks of Van der Pol and FitzHugh-Nagumo oscillators, and determine the ranges of optimal control parameters. We demonstrate that the tweezer control scheme allows for stabilization of chimera states with different shapes, and can be used as an instrument for controlling the coherent domains size, as well as the maximum average frequency difference of the oscillators.

  20. Trapped Field Characteristics of Stacked YBCO Thin Plates for Compact NMR Magnets: Spatial Field Distribution and Temporal Stability

    PubMed Central

    Hahn, Seungyong; Kim, Seok Beom; Ahn, Min Cheol; Voccio, John; Bascuñán, Juan; Iwasa, Yukikazu

    2010-01-01

    This paper presents experimental and analytical results of trapped field characteristics of a stack of square YBCO thin film plates for compact NMR magnets. Each YBCO plate, 40 mm × 40 mm × 0.08 mm, has a 25-mm diameter hole at its center. A total of 500 stacked plates were used to build a 40-mm long magnet. Its trapped field, in a bath of liquid nitrogen, was measured for spatial field distribution and temporal stability. Comparison of measured and analytical results is presented: the effects on trapped field characteristics of the unsaturated nickel substrate and the non-uniform current distribution in the YBCO plate are discussed. PMID:20585463

  1. The effect of space flight on spatial orientation

    NASA Technical Reports Server (NTRS)

    Reschke, Millard F.; Bloomberg, Jacob J.; Harm, Deborah L.; Paloski, William H.; Satake, Hirotaka

    1992-01-01

    Both during and following early space missions, little neurosensory change in the astronauts was noted as a result of their exposure to microgravity. It is believed that this lack of in-flight adaptation in the spatial orientation and perceptual-motor system resulted from short exposure times and limited interaction with the new environment. Parker and Parker (1990) have suggested that while spatial orientation and motion information can be detected by a passive observer, adaptation to stimulus rearrangement is greatly enhanced when the observer moves through or acts on the environment. Experience with the actual consequences of action can be compared with those consequences expected on the basis of prior experience. Space flight today is of longer duration, and space craft volume has increased. These changes have forced the astronauts to interact with the new environment of microgravity, and as a result substantial changes occur in the perceptual and sensory-motor repsonses reflecting adaptation to the stimulus rearrangement of space flight. We are currently evaluating spatial orientation and the perceptual-motor systems' adaptation to microgravity by examining responses of postural control, head and gaze stability during locomotion, goal oriented vestibulo-ocular reflex (VOR), and structured quantitative perceptual reports. Evidence suggests that humans can successfully replace the gravitational reference available on Earth with cues available within the spacecraft or within themselves, but that adaptation to microgravity is not appropriate for a return to Earth. Countermeasures for optimal performance on-orbit and a successful return to earth will require development of preflight and in-flight training to help the astronauts acquire and maintain a dual adaptive state. An understanding of spatial orientation and motion perception, postural control, locomotion, and the VOR will aid in this process.

  2. Structure–function mapping of a heptameric module in the nuclear pore complex

    PubMed Central

    Fernandez-Martinez, Javier; Phillips, Jeremy; Sekedat, Matthew D.; Diaz-Avalos, Ruben; Velazquez-Muriel, Javier; Franke, Josef D.; Williams, Rosemary; Stokes, David L.; Chait, Brian T.

    2012-01-01

    The nuclear pore complex (NPC) is a multiprotein assembly that serves as the sole mediator of nucleocytoplasmic exchange in eukaryotic cells. In this paper, we use an integrative approach to determine the structure of an essential component of the yeast NPC, the ∼600-kD heptameric Nup84 complex, to a precision of ∼1.5 nm. The configuration of the subunit structures was determined by satisfaction of spatial restraints derived from a diverse set of negative-stain electron microscopy and protein domain–mapping data. Phenotypic data were mapped onto the complex, allowing us to identify regions that stabilize the NPC’s interaction with the nuclear envelope membrane and connect the complex to the rest of the NPC. Our data allow us to suggest how the Nup84 complex is assembled into the NPC and propose a scenario for the evolution of the Nup84 complex through a series of gene duplication and loss events. This work demonstrates that integrative approaches based on low-resolution data of sufficient quality can generate functionally informative structures at intermediate resolution. PMID:22331846

  3. Internal Structure of 15 nm 3-Helix Micelle Revealed by Small-Angle Neutron Scattering and Coarse-Grained MD Simulation.

    PubMed

    Ang, JooChuan; Ma, Dan; Lund, Reidar; Keten, Sinan; Xu, Ting

    2016-10-10

    3-Helix micelles (3HM) formed by self-assembly of peptide-polymer conjugate amphiphiles have shown promise as a nanocarrier platform due to their long-circulation, deep tumor penetration, selective accumulation in tumor, and ability to cross the blood-brain barrier (BBB) for glioblastoma therapy. There is a need to understand the structural contribution to the high in vivo stability and performance of 3HM. Using selective deuteration, the contrast variation technique in small-angle neutron scattering, and coarse-grained molecular dynamics simulation, we determined the spatial distribution of each component within 3HM. Our results show a slightly deformed polyethylene glycol (PEG) conformation within the micelle that is radially offset from its conjugation site toward the exterior of the micelle and a highly solvated shell. Surprisingly, ∼85 v/v % of 3HM is water, unusually higher than any micellar nanocarrier based on our knowledge. The result will provide important structural insights for future studies to uncover the molecular origin of 3HM's in vivo performance, and development of the nanocarriers.

  4. Human Impacts and Climate Change Influence Nestedness and Modularity in Food-Web and Mutualistic Networks.

    PubMed

    Takemoto, Kazuhiro; Kajihara, Kosuke

    2016-01-01

    Theoretical studies have indicated that nestedness and modularity-non-random structural patterns of ecological networks-influence the stability of ecosystems against perturbations; as such, climate change and human activity, as well as other sources of environmental perturbations, affect the nestedness and modularity of ecological networks. However, the effects of climate change and human activities on ecological networks are poorly understood. Here, we used a spatial analysis approach to examine the effects of climate change and human activities on the structural patterns of food webs and mutualistic networks, and found that ecological network structure is globally affected by climate change and human impacts, in addition to current climate. In pollination networks, for instance, nestedness increased and modularity decreased in response to increased human impacts. Modularity in seed-dispersal networks decreased with temperature change (i.e., warming), whereas food web nestedness increased and modularity declined in response to global warming. Although our findings are preliminary owing to data-analysis limitations, they enhance our understanding of the effects of environmental change on ecological communities.

  5. Label-free nanoscale characterization of red blood cell structure and dynamics using single-shot transport of intensity equation

    NASA Astrophysics Data System (ADS)

    Poola, Praveen Kumar; John, Renu

    2017-10-01

    We report the results of characterization of red blood cell (RBC) structure and its dynamics with nanometric sensitivity using transport of intensity equation microscopy (TIEM). Conventional transport of intensity technique requires three intensity images and hence is not suitable for studying real-time dynamics of live biological samples. However, assuming the sample to be homogeneous, phase retrieval using transport of intensity equation has been demonstrated with single defocused measurement with x-rays. We adopt this technique for quantitative phase light microscopy of homogenous cells like RBCs. The main merits of this technique are its simplicity, cost-effectiveness, and ease of implementation on a conventional microscope. The phase information can be easily merged with regular bright-field and fluorescence images to provide multidimensional (three-dimensional spatial and temporal) information without any extra complexity in the setup. The phase measurement from the TIEM has been characterized using polymeric microbeads and the noise stability of the system has been analyzed. We explore the structure and real-time dynamics of RBCs and the subdomain membrane fluctuations using this technique.

  6. An in situ USAXS-SAXS-WAXS study of precipitate size distribution evolution in a model Ni-based alloy.

    PubMed

    Andrews, Ross N; Serio, Joseph; Muralidharan, Govindarajan; Ilavsky, Jan

    2017-06-01

    Intermetallic γ' precipitates typically strengthen nickel-based superalloys. The shape, size and spatial distribution of strengthening precipitates critically influence alloy strength, while their temporal evolution characteristics determine the high-temperature alloy stability. Combined ultra-small-, small- and wide-angle X-ray scattering (USAXS-SAXS-WAXS) analysis can be used to evaluate the temporal evolution of an alloy's precipitate size distribution (PSD) and phase structure during in situ heat treatment. Analysis of PSDs from USAXS-SAXS data employs either least-squares fitting of a preordained PSD model or a maximum entropy (MaxEnt) approach, the latter avoiding a priori definition of a functional form of the PSD. However, strong low- q scattering from grain boundaries and/or structure factor effects inhibit MaxEnt analysis of typical alloys. This work describes the extension of Bayesian-MaxEnt analysis methods to data exhibiting structure factor effects and low- q power law slopes and demonstrates their use in an in situ study of precipitate size evolution during heat treatment of a model Ni-Al-Si alloy.

  7. Sensing Exocytosis and Triggering Endocytosis at Synapses: Synaptic Vesicle Exocytosis–Endocytosis Coupling

    PubMed Central

    Lou, Xuelin

    2018-01-01

    The intact synaptic structure is critical for information processing in neural circuits. During synaptic transmission, rapid vesicle exocytosis increases the size of never terminals and endocytosis counteracts the increase. Accumulating evidence suggests that SV exocytosis and endocytosis are tightly connected in time and space during SV recycling, and this process is essential for synaptic function and structural stability. Research in the past has illustrated the molecular details of synaptic vesicle (SV) exocytosis and endocytosis; however, the mechanisms that timely connect these two fundamental events are poorly understood at central synapses. Here we discuss recent progress in SV recycling and summarize several emerging mechanisms by which synapses can “sense” the occurrence of exocytosis and timely initiate compensatory endocytosis. They include Ca2+ sensing, SV proteins sensing, and local membrane stress sensing. In addition, the spatial organization of endocytic zones adjacent to active zones provides a structural basis for efficient coupling between SV exocytosis and endocytosis. Through linking different endocytosis pathways with SV fusion, these mechanisms ensure necessary plasticity and robustness of nerve terminals to meet diverse physiological needs. PMID:29593500

  8. An in situ USAXS–SAXS–WAXS study of precipitate size distribution evolution in a model Ni-based alloy1

    PubMed Central

    Andrews, Ross N.; Serio, Joseph; Muralidharan, Govindarajan; Ilavsky, Jan

    2017-01-01

    Intermetallic γ′ precipitates typically strengthen nickel-based superalloys. The shape, size and spatial distribution of strengthening precipitates critically influence alloy strength, while their temporal evolution characteristics determine the high-temperature alloy stability. Combined ultra-small-, small- and wide-angle X-ray scattering (USAXS–SAXS–WAXS) analysis can be used to evaluate the temporal evolution of an alloy’s precipitate size distribution (PSD) and phase structure during in situ heat treatment. Analysis of PSDs from USAXS–SAXS data employs either least-squares fitting of a preordained PSD model or a maximum entropy (MaxEnt) approach, the latter avoiding a priori definition of a functional form of the PSD. However, strong low-q scattering from grain boundaries and/or structure factor effects inhibit MaxEnt analysis of typical alloys. This work describes the extension of Bayesian–MaxEnt analysis methods to data exhibiting structure factor effects and low-q power law slopes and demonstrates their use in an in situ study of precipitate size evolution during heat treatment of a model Ni–Al–Si alloy. PMID:28656039

  9. Structure of 1-butylpyridinium tetrafluoroborate ionic liquid: quantum chemistry and molecular dynamic simulation studies.

    PubMed

    Sun, Hui; Qiao, Baofu; Zhang, Dongju; Liu, Chengbu

    2010-03-25

    Density functional theory (DFT) calculations combined with molecular dynamic (MD) simulations have been performed to show in detail the structure characteristic of 1-butylpyridinium tetrafluoroborate ([BPy(+)][BF(4)(-)]), a representative of pyridinium-based ionic liquids (ILs). It is found that the relative stability for ion pair configurations is synergically determined by the electrostatic attractions and the H-bond interactions between the ions of opposite charge. [BPy(+)][BF(4)(-)] IL possesses strong long-range ordered structure with cations and anions alternately arranging. The spatial distributions of anions and cations around the given cations are clearly shown, and T-shaped orientation is indicated to play a key role in the interaction between two pyridine rings. DFT calculations and MD simulations uniformly suggest that the H-bonds of the fluorine atoms with the hydrogen atoms on the pyridine rings are stronger than those of the fluorine atoms with the butyl chain hydrogens. The present results can offer useful information for understanding the physicochemical properties of [BPy(+)][BF(4)(-)] IL and further designing new pyridinium-based ILs.

  10. First-principles study of the solid solution of hydrogen in lanthanum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoellhammer, Gunther; Herzig, Peter; Wolf, Walter

    2011-09-01

    Results from first-principles investigations of the energetical, structural, electronic, and vibrational properties of model structures probing the metal-rich region of the lanthanum-hydrogen system, i.e., the region of the solid solution of hydrogen in lanthanum, are presented. We have studied the site preference and the ordering tendency of hydrogen atoms interstitially bonded in close-packed lanthanum. Spatially separated hydrogen atoms have turned out to exhibit an energetical preference for the occupation of octahedral interstitial sites at low temperature. Indications for a reversal of the site preference in favor of the occupation of tetrahedral interstitial sites at elevated temperature have been found. Linearmore » arrangements consisting of pairs of octahedrally and/or tetrahedrally coordinated hydrogen atoms collinearly bonded to a central lanthanum atom have turned out to be energetically favorable structure elements. Further stabilization is achieved if such hydrogen pairs are in turn linked together so that extended chains of La-H bonds are formed. Pair formation and chain linking counteract the energetical preference for octahedral coordination observed for separated hydrogen atoms.« less

  11. Fault zone hydrogeologic properties and processes revealed by borehole temperature monitoring

    NASA Astrophysics Data System (ADS)

    Fulton, P. M.; Brodsky, E. E.

    2015-12-01

    High-resolution borehole temperature monitoring can provide valuable insight into the hydrogeologic structure of fault zones and transient processes that affect fault zone stability. Here we report on results from a subseafloor temperature observatory within the Japan Trench plate boundary fault. In our efforts to interpret this unusual dataset, we have developed several new methods for probing hydrogeologic properties and processes. We illustrate how spatial variations in the thermal recovery of the borehole after drilling and other spectral characteristics provide a measure of the subsurface permeability architecture. More permeable zones allow for greater infiltration of cool drilling fluids, are more greatly thermally disturbed, and take longer to recover. The results from the JFAST (Japan Trench Fast Drilling Project) observatory are consistent with geophysical logs, core data, and other hydrologic observations and suggest a permeable damage zone consisting of steeply dipping faults and fractures overlays a low-permeability clay-rich plate boundary fault. Using high-resolution time series data, we have also developed methods to map out when and where fluid advection occurs in the subsurface over time. In the JFAST data, these techniques reveal dozens of transient earthquake-driven fluid pulses that are spatially correlated and consistently located around inferred permeable areas of the fault damage zone. These observations are suspected to reflect transient fluid flow driven by pore pressure changes in response to dynamic and/or static stresses associated with nearby earthquakes. This newly recognized hydrologic phenomenon has implications for understanding subduction zone heat and chemical transport as well as the redistribution of pore fluid pressure which influences fault stability and can trigger other earthquakes.

  12. Successional colonization of temporary streams: An experimental approach using aquatic insects

    NASA Astrophysics Data System (ADS)

    Godoy, Bruno Spacek; Queiroz, Luciano Lopes; Lodi, Sara; Nascimento de Jesus, Jhonathan Diego; Oliveira, Leandro Gonçalves

    2016-11-01

    The metacommunity concept studies the processes that structure communities on local and regional scales. This concept is useful to assess spatial variability. However, temporal patterns (e.g., ecological succession and colonization) are neglected in metacommunity studies, since such patterns require temporally extensive, and hard to execute studies. We used experimental habitats in temporary streams located within the Brazilian Cerrado to evaluate the importance of succession for the aquatic insect metacommunity. Five artificial habitats consisting of wrapped crushed rock were set transversally to the water flow in five streams. The habitats were sampled weekly to assess community composition, and replaced after sampling to identify new potential colonizers. We analyzed the accumulation of new colonizers after each week using a logistic model. We selected pairs of experimental habitats and estimated the Bray-Curtis dissimilarity index to assess the community composition trajectory during the experiment. We used the dissimilarity values in ANOVA tests, identifying the importance of time and space for the community. The number of new taxa stabilized in the third week, and we estimated a weekly increase of 1.61 new taxa in the community after stabilization. The overall pattern was a small change on community composition, but one stream had a higher weekly turnover. Our results showed a relevant influence of time in the initial communities of aquatic insects of temporary streams. However, we must observe the temporal pattern in a spatial context, once different streams have different successional history regarding number of taxa and community turnover. We highlight the importance of aerial dispersal and movement to seek oviposition sites as an important factor in determining colonization patterns.

  13. Ultrastructure and mineral composition of the cornea cuticle in the compound eyes of a supralittoral and a marine isopod.

    PubMed

    Alagboso, Francisca I; Reisecker, Christian; Hild, Sabine; Ziegler, Andreas

    2014-08-01

    The cuticle of the cornea in Crustacea is an interesting example of a composite material compromising between two distinct functions. As part of the dioptric apparatus of the ommatidia within the complex eye it forms transparent micro-lenses that should as well maintain the mechanical stability of the head capsule. We analyzed the ultrastructure and composition of the isopod cornea cuticle of the terrestrial species Ligia oceanica and the marine Sphaeroma serratum. We used a variety of tissue preparation methods, electron microscopic techniques as well as electron microprobe analysis and Raman spectroscopic imaging. The results reveal various structural adaptations that likely increase light transmission. These are an increase in the thickness of the epicuticle, a reduction of the thickness of the outer layer of calcite, a spatial restriction of pore canals to interommatidial regions, and, for S. serratum only, an increase in calcite crystal size. In both species protein-chitin fibrils within the proximal exocuticle form a peculiar reticular structure that does not occur within the cuticle of the head capsule. In L. oceanica differential mineralization results in a spherically shaped interface between mineralized and unmineralized endocuticle, likely an adaptation to increase the refractive power of the cornea maintaining the mechanical stability of the cuticle between the ommatidia. The results show that the habitat and differences in the general structure of the animal's cuticle affect the way in which the cornea is adapted to its optical function. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Solution 1H NMR investigation of the active site molecular and electronic structures of substrate-bound, cyanide-inhibited HmuO, a bacterial heme oxygenase from Corynebacterium diphtheriae.

    PubMed

    Li, Yiming; Syvitski, Ray T; Chu, Grace C; Ikeda-Saito, Masao; Mar, Gerd N La

    2003-02-28

    The molecular structure and dynamic properties of the active site environment of HmuO, a heme oxygenase (HO) from the pathogenic bacterium Corynebacterium diphtheriae, have been investigated by (1)H NMR spectroscopy using the human HO (hHO) complex as a homology model. It is demonstrated that not only the spatial contacts among residues and between residues and heme, but the magnetic axes that can be related to the direction and magnitude of the steric tilt of the FeCN unit are strongly conserved in the two HO complexes. The results indicate that very similar contributions of steric blockage of several meso positions and steric tilt of the attacking ligand are operative. A distal H-bond network that involves numerous very strong H-bonds and immobilized water molecules is identified in HmuO that is analogous to that previously identified in hHO (Li, Y., Syvitski, R. T., Auclair, K., Wilks, A., Ortiz de Montellano, P. R., and La Mar, G. N. (2002) J. Biol. Chem. 277, 33018-33031). The NMR results are completely consistent with the very recent crystal structure of the HmuO.substrate complex. The H-bond network/ordered water molecules are proposed to orient the distal water molecule near the catalytically key Asp(136) (Asp(140) in hHO) that stabilizes the hydroperoxy intermediate. The dynamic stability of this H-bond network in HmuO is significantly greater than in hHO and may account for the slower catalytic rate in bacterial HO compared with mammalian HO.

  15. Failure criterion for materials with spatially correlated mechanical properties

    NASA Astrophysics Data System (ADS)

    Faillettaz, J.; Or, D.

    2015-03-01

    The role of spatially correlated mechanical elements in the failure behavior of heterogeneous materials represented by fiber bundle models (FBMs) was evaluated systematically for different load redistribution rules. Increasing the range of spatial correlation for FBMs with local load sharing is marked by a transition from ductilelike failure characteristics into brittlelike failure. The study identified a global failure criterion based on macroscopic properties (external load and cumulative damage) that is independent of spatial correlation or load redistribution rules. This general metric could be applied to assess the mechanical stability of complex and heterogeneous systems and thus provide an important component for early warning of a class of geophysical ruptures.

  16. Mechanisms for increased soil C storage with increasing temporal and spatial plant diversity in Agroecosystems

    NASA Astrophysics Data System (ADS)

    Tiemann, L. K.; Grandy, S.; Marin-Spiotta, E.; Atkinson, E. E.

    2012-12-01

    Generally, there are positive relationships between plant species diversity and net primary production and other key ecosystem functions. However, the effects of aboveground diversity on soil microbial communities and ecosystem processes they mediate, such as soil C sequestration, remain unclear. In this study, we used an 11-y cropping diversity study where increases in diversity have increased crop yields. At the experimental site, temporal diversity is altered using combinations of annual crop rotations, while spatial diversity is altered using cover crop species. We used five treatments ranging in diversity from one to five species consisting of continuous corn with no cover crop or one cover crop and corn-soy-wheat rotations with no cover, one cover or two cover crop species. We collected soils from four replicate plots of each treatment and measured the distribution of mega- (>2 mm), macro- (0.25-2 mm), and micro- (0.053-0.25 mm) aggregates. Within each aggregate size class, we also measured total soil C and N, permanganate oxidizable C (POXC), extracellular enzyme activities (EEA), and microbial community structure with phospholipid fatty acid (PLFA) analysis. We use these data to address the impacts of both rotational and cover crop diversity on soil physical structure, associated microbial community structure and activity and soil C storage. As spatial diversity increased, we found concurrent increases in mega-aggregate abundance as well as increasing soil C in the mega- and micro-aggregates but not macro-aggregates. The proportion of total soil C in each aggregate size class that is relatively labile (POXC) was highest in the micro-aggregates, as was enzyme activity associated with labile C acquisition across all levels of diversity. Enzyme activity associated with more recalcitrant forms of soil C was highest in the mega-aggregate class, also across all diversity levels; however, the ratio of labile to recalcitrant EEA increased with increasing diversity in the mega- and micro-aggregates. In addition, soil N increased with diversity such that microbial C:N EEA simultaneously decreased in mega-aggregates. We also found that cropping diversity has created distinctive soil microbial communities, highlighted by variation in the abundance of gram positive bacteria and Actinomycetes. Further research will help us determine how these changes in community structure with increasing diversity are related to concomitant changes in aggregation and enzyme activities. We suggest that the additional organic matter inputs from cover crops in the high diversity treatments have increased aggregation processes and C pools. While microbial activity has also increased in association with this increased C availability, the activity of recalcitrant and N-acquiring enzymes has declined, suggesting an overall decrease in SOM mineralization with possible increased SOM stabilization. The addition of crop species in rotation (temporal diversity) had minimal influence on any of the measured parameters. We thus conclude that spatial diversity is a more important driver of soil structure and microbial activity, likely due to the high quality organic matter inputs derived from the leguminous cover crops; however, spatial diversity alone did not lead to the same level of C storage potential as mixtures of temporal and spatial diversity.

  17. Urban population genetics of slum-dwelling rats (Rattus norvegicus) in Salvador, Brazil.

    PubMed

    Kajdacsi, Brittney; Costa, Federico; Hyseni, Chaz; Porter, Fleur; Brown, Julia; Rodrigues, Gorete; Farias, Helena; Reis, Mitermayer G; Childs, James E; Ko, Albert I; Caccone, Adalgisa

    2013-10-01

    Throughout the developing world, urban centres with sprawling slum settlements are rapidly expanding and invading previously forested ecosystems. Slum communities are characterized by untended refuse, open sewers and overgrown vegetation, which promote rodent infestation. Norway rats (Rattus norvegicus) are reservoirs for epidemic transmission of many zoonotic pathogens of public health importance. Understanding the population ecology of R. norvegicus is essential to formulate effective rodent control strategies, as this knowledge aids estimation of the temporal stability and spatial connectivity of populations. We screened for genetic variation, characterized the population genetic structure and evaluated the extent and patterns of gene flow in the urban landscape using 17 microsatellite loci in 146 rats from nine sites in the city of Salvador, Brazil. These sites were divided between three neighbourhoods within the city spaced an average of 2.7 km apart. Surprisingly, we detected very little relatedness among animals trapped at the same site and found high levels of genetic diversity, as well as structuring across small geographical distances. Most F(ST) comparisons among sites were statistically significant, including sites <400 m apart. Bayesian analyses grouped the samples in three genetic clusters, each associated with distinct sampling sites from different neighbourhoods or valleys within neighbourhoods. These data indicate the existence of complex genetic structure in R. norvegicus in Salvador, linked to the heterogeneous urban landscape. Future rodent control measures need to take into account the spatial and temporal linkage of rat populations in Salvador, as revealed by genetic data, to develop informed eradication strategies. © 2013 John Wiley & Sons Ltd.

  18. Reversible Structural Swell-Shrink and Recoverable Optical Properties in Hybrid Inorganic-Organic Perovskite.

    PubMed

    Zhang, Yupeng; Wang, Yusheng; Xu, Zai-Quan; Liu, Jingying; Song, Jingchao; Xue, Yunzhou; Wang, Ziyu; Zheng, Jialu; Jiang, Liangcong; Zheng, Changxi; Huang, Fuzhi; Sun, Baoquan; Cheng, Yi-Bing; Bao, Qiaoliang

    2016-07-26

    Ion migration in hybrid organic-inorganic perovskites has been suggested to be an important factor for many unusual behaviors in perovskite-based optoelectronics, such as current-voltage hysteresis, low-frequency giant dielectric response, and the switchable photovoltaic effect. However, the role played by ion migration in the photoelectric conversion process of perovskites is still unclear. In this work, we provide microscale insights into the influence of ion migration on the microstructure, stability, and light-matter interaction in perovskite micro/nanowires by using spatially resolved optical characterization techniques. We observed that ion migration, especially the migration of MA(+) ions, will induce a reversible structural swell-shrink in perovskites and recoverably affect the reflective index, quantum efficiency, light-harvesting, and photoelectric properties. The maximum ion migration quantity in perovskites was as high as approximately 30%, resulting in lattice swell or shrink of approximately 4.4%. Meanwhile, the evidence shows that ion migration in perovskites could gradually accelerate the aging of perovskites because of lattice distortion in the reversible structural swell-shrink process. Knowledge regarding reversible structural swell-shrink and recoverable optical properties may shed light on the development of optoelectronic and converse piezoelectric devices based on perovskites.

  19. 3D Printing All-Aromatic Polyimides using Mask-Projection Stereolithography: Processing the Nonprocessable.

    PubMed

    Hegde, Maruti; Meenakshisundaram, Viswanath; Chartrain, Nicholas; Sekhar, Susheel; Tafti, Danesh; Williams, Christopher B; Long, Timothy E

    2017-08-01

    High-performance, all-aromatic, insoluble, engineering thermoplastic polyimides, such as pyromellitic dianhydride and 4,4'-oxydianiline (PMDA-ODA) (Kapton), exhibit exceptional thermal stability (up to ≈600 °C) and mechanical properties (Young's modulus exceeding 2 GPa). However, their thermal resistance, which is a consequence of the all-aromatic molecular structure, prohibits processing using conventional techniques. Previous reports describe an energy-intensive sintering technique as an alternative technique for processing polyimides with limited resolution and part fidelity. This study demonstrates the unprecedented 3D printing of PMDA-ODA using mask-projection stereolithography, and the preparation of high-resolution 3D structures without sacrificing bulk material properties. Synthesis of a soluble precursor polymer containing photo-crosslinkable acrylate groups enables light-induced, chemical crosslinking for spatial control in the gel state. Postprinting thermal treatment transforms the crosslinked precursor polymer to PMDA-ODA. The dimensional shrinkage is isotropic, and postprocessing preserves geometric integrity. Furthermore, large-area mask-projection scanning stereolithography demonstrates the scalability of 3D structures. These unique high-performance 3D structures offer potential in fields ranging from water filtration and gas separation to automotive and aerospace technologies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Fuselage Structure Response to Boundary Layer, Tonal Sound, and Jet Noise

    NASA Technical Reports Server (NTRS)

    Maestrello, L.

    2004-01-01

    Experiments have been conducted to study the response of curved aluminum and graphite-epoxy fuselage structures to flow and sound loads from turbulent boundary layer, tonal sound, and jet noise. Both structures were the same size. The aluminum structure was reinforced with tear stoppers, while the graphite-epoxy structure was not. The graphite-epoxy structure weighed half as much as the aluminum structure. Spatiotemporal intermittence and chaotic behavior of the structural response was observed, as jet noise and tonal sound interacted with the turbulent boundary layer. The fundamental tone distributed energy to other components via wave interaction with the turbulent boundary layer. The added broadband sound from the jet, with or without a shock, influenced the responses over a wider range of frequencies. Instantaneous spatial correlation indicates small localized spatiotemporal regions of convected waves, while uncorrelated patterns dominate the larger portion of the space. By modifying the geometry of the tear stoppers between panels and frame, the transmitted and reflected waves of the aluminum panels were significantly reduced. The response level of the graphite-epoxy structure was higher, but the noise transmitted was nearly equal to that of the aluminum structure. The fundamental shock mode is between 80 deg and 150 deg and the first harmonic is between 20 deg and 80 deg for the underexpanded supersonic jet impinging on the turbulent boundary layer influencing the structural response. The response of the graphite-epoxy structure due to the fundamental mode of the shock impingement was stabilized by an externally fixed oscillator.

  1. Digital Speckle Photography of Subpixel Displacements of Speckle Structures Based on Analysis of Their Spatial Spectra

    NASA Astrophysics Data System (ADS)

    Maksimova, L. A.; Ryabukho, P. V.; Mysina, N. Yu.; Lyakin, D. V.; Ryabukho, V. P.

    2018-04-01

    We have investigated the capabilities of the method of digital speckle interferometry for determining subpixel displacements of a speckle structure formed by a displaceable or deformable object with a scattering surface. An analysis of spatial spectra of speckle structures makes it possible to perform measurements with a subpixel accuracy and to extend the lower boundary of the range of measurements of displacements of speckle structures to the range of subpixel values. The method is realized on the basis of digital recording of the images of undisplaced and displaced speckle structures, their spatial frequency analysis using numerically specified constant phase shifts, and correlation analysis of spatial spectra of speckle structures. Transformation into the frequency range makes it possible to obtain quantities to be measured with a subpixel accuracy from the shift of the interference-pattern minimum in the diffraction halo by introducing an additional phase shift into the complex spatial spectrum of the speckle structure or from the slope of the linear plot of the function of accumulated phase difference in the field of the complex spatial spectrum of the displaced speckle structure. The capabilities of the method have been investigated in natural experiment.

  2. Spatial Query for Planetary Data

    NASA Technical Reports Server (NTRS)

    Shams, Khawaja S.; Crockett, Thomas M.; Powell, Mark W.; Joswig, Joseph C.; Fox, Jason M.

    2011-01-01

    Science investigators need to quickly and effectively assess past observations of specific locations on a planetary surface. This innovation involves a location-based search technology that was adapted and applied to planetary science data to support a spatial query capability for mission operations software. High-performance location-based searching requires the use of spatial data structures for database organization. Spatial data structures are designed to organize datasets based on their coordinates in a way that is optimized for location-based retrieval. The particular spatial data structure that was adapted for planetary data search is the R+ tree.

  3. Investigating homology between proteins using energetic profiles.

    PubMed

    Wrabl, James O; Hilser, Vincent J

    2010-03-26

    Accumulated experimental observations demonstrate that protein stability is often preserved upon conservative point mutation. In contrast, less is known about the effects of large sequence or structure changes on the stability of a particular fold. Almost completely unknown is the degree to which stability of different regions of a protein is generally preserved throughout evolution. In this work, these questions are addressed through thermodynamic analysis of a large representative sample of protein fold space based on remote, yet accepted, homology. More than 3,000 proteins were computationally analyzed using the structural-thermodynamic algorithm COREX/BEST. Estimated position-specific stability (i.e., local Gibbs free energy of folding) and its component enthalpy and entropy were quantitatively compared between all proteins in the sample according to all-vs.-all pairwise structural alignment. It was discovered that the local stabilities of homologous pairs were significantly more correlated than those of non-homologous pairs, indicating that local stability was indeed generally conserved throughout evolution. However, the position-specific enthalpy and entropy underlying stability were less correlated, suggesting that the overall regional stability of a protein was more important than the thermodynamic mechanism utilized to achieve that stability. Finally, two different types of statistically exceptional evolutionary structure-thermodynamic relationships were noted. First, many homologous proteins contained regions of similar thermodynamics despite localized structure change, suggesting a thermodynamic mechanism enabling evolutionary fold change. Second, some homologous proteins with extremely similar structures nonetheless exhibited different local stabilities, a phenomenon previously observed experimentally in this laboratory. These two observations, in conjunction with the principal conclusion that homologous proteins generally conserved local stability, may provide guidance for a future thermodynamically informed classification of protein homology.

  4. Cannibals in space: the coevolution of cannibalism and dispersal in spatially structured populations.

    PubMed

    Rudolf, Volker H W; Kamo, Masashi; Boots, Mike

    2010-05-01

    The propensity for cannibalism varies considerably both within and between species. Currently we have little understanding of both the causes of this variation and its evolutionary consequences for other life-history traits. We examine how different levels of spatial structure affect the evolution of cannibalism and how cannibalism in turn drives the evolution of dispersal. Using pair approximations and simulations, we show that cannibalism can easily evolve in spatially structured populations as long as some dispersal exists. Furthermore, for a wide range of intermediate levels of spatial structure, we find the possibility of evolutionary branching leading to polymorphism in cannibalism. We also show that cannibalism itself can have important evolutionary consequences and select for increased dispersal rates, thus helping to determine the spatial structure of populations. The coevolution of cannibalism and dispersal results in the evolution of various alternative life-history strategies with different dispersal and cannibalism regimes. Which strategy evolves depends on the environmental conditions that determine initial cannibalism rates. Our results therefore suggest that differences in spatial structure could explain variation in the propensity for cannibalism and cannibalistic polyphenism. Furthermore, results emphasize that cannibalism can drive the evolution of other life-history traits and determine the spatial structure of natural populations.

  5. On spatial coalescents with multiple mergers in two dimensions.

    PubMed

    Heuer, Benjamin; Sturm, Anja

    2013-08-01

    We consider the genealogy of a sample of individuals taken from a spatially structured population when the variance of the offspring distribution is relatively large. The space is structured into discrete sites of a graph G. If the population size at each site is large, spatial coalescents with multiple mergers, so called spatial Λ-coalescents, for which ancestral lines migrate in space and coalesce according to some Λ-coalescent mechanism, are shown to be appropriate approximations to the genealogy of a sample of individuals. We then consider as the graph G the two dimensional torus with side length 2L+1 and show that as L tends to infinity, and time is rescaled appropriately, the partition structure of spatial Λ-coalescents of individuals sampled far enough apart converges to the partition structure of a non-spatial Kingman coalescent. From a biological point of view this means that in certain circumstances both the spatial structure as well as larger variances of the underlying offspring distribution are harder to detect from the sample. However, supplemental simulations show that for moderately large L the different structure is still evident. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Exploring the Structure of Spatial Representations

    PubMed Central

    Madl, Tamas; Franklin, Stan; Chen, Ke; Trappl, Robert; Montaldi, Daniela

    2016-01-01

    It has been suggested that the map-like representations that support human spatial memory are fragmented into sub-maps with local reference frames, rather than being unitary and global. However, the principles underlying the structure of these ‘cognitive maps’ are not well understood. We propose that the structure of the representations of navigation space arises from clustering within individual psychological spaces, i.e. from a process that groups together objects that are close in these spaces. Building on the ideas of representational geometry and similarity-based representations in cognitive science, we formulate methods for learning dissimilarity functions (metrics) characterizing participants’ psychological spaces. We show that these learned metrics, together with a probabilistic model of clustering based on the Bayesian cognition paradigm, allow prediction of participants’ cognitive map structures in advance. Apart from insights into spatial representation learning in human cognition, these methods could facilitate novel computational tools capable of using human-like spatial concepts. We also compare several features influencing spatial memory structure, including spatial distance, visual similarity and functional similarity, and report strong correlations between these dimensions and the grouping probability in participants’ spatial representations, providing further support for clustering in spatial memory. PMID:27347681

  7. Phase stabilization of multidimensional amplification architectures for ultrashort pulses

    NASA Astrophysics Data System (ADS)

    Müller, M.; Kienel, M.; Klenke, A.; Eidam, T.; Limpert, J.; Tünnermann, A.

    2015-03-01

    The active phase stabilization of spatially and temporally combined ultrashort pulses is investigated theoretically and experimentally. Particularly, considering a combining scheme applying 2 amplifier channels and 4 divided-pulse replicas a bistable behavior is observed. The reason is mutual influence of the optical error signals that is intrinsic to temporal polarization beam combining. A successful mitigation strategy is proposed and is analyzed theoretically and experimentally.

  8. Stability of the thermodynamic equilibrium - A test of the validity of dynamic models as applied to gyroviscous perpendicular magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Faghihi, Mustafa; Scheffel, Jan; Spies, Guenther O.

    1988-05-01

    Stability of the thermodynamic equilibrium is put forward as a simple test of the validity of dynamic equations, and is applied to perpendicular gyroviscous magnetohydrodynamics (i.e., perpendicular magnetohydrodynamics with gyroviscosity added). This model turns out to be invalid because it predicts exponentially growing Alfven waves in a spatially homogeneous static equilibrium with scalar pressure.

  9. Coastal fog and low cloud spatial patterns: do they indicate potential biodiversity refugia?

    NASA Astrophysics Data System (ADS)

    Torregrosa, A.

    2016-12-01

    Marine fog and low clouds transfer water and nutrients to coastal ecosystems through advection from the ocean and reduce heat effects by reflecting incoming shortwave radiation. These effects are known to benefit many species, vegetation communities, and habitats such as coastal redwood trees and their understory, maritime chaparral, and coastal streams harboring endangered salmon species. The California floristic region is the highest ranked hotspot in the U.S. and ranked 7th of 35 biodiversity hotspots worldwide in terms of the percent of its plant species that are found nowhere else (endemic). Many environmental drivers have been identified as contributing to California's remarkably high endemism and biodiversity, however, coastal low clouds have not typically been included. This could be due to the lack of data such as high resolution maps of coastal low cloud occurrence or the lack of long term records. Using a recent analysis of hourly National Weather Service satellite data, a stability index (SI) for coastal fog and low cloud cover was derived using two measures of variation and average summertime cloud cover to quantify long term spatial stability trends. Several discrete spatial clumps were identified that had both high temporal stability and high coastal low cloud cover. These areas show a strong correlation with a specific topographic landscape configuration with respect to wind direction. Point occurrence distribution maps of endemic coastal species were overlain with the SI to explore spatial correlation. The federally endangered species that showed very high spatial correlation included Yadon's Rein-orchid (Piperia yadonii), Monterey Spineflower (Chorizanthe pungens var. pungens), and Seaside Bird's-beak (Cordylanthus rigidus ssp. littoralis). Current estimated range maps are not consistent with the SI results suggesting a need to update estimated ranges. Biodiversity measures are being investigated in these areas to explore the hypothesis that they can be considered paleorefugia for species that have persisted over millennia in spite of a general increase in the aridity and temperature of the California climate.

  10. Mathematics, Thermodynamics, and Modeling to Address Ten Common Misconceptions about Protein Structure, Folding, and Stability

    ERIC Educational Resources Information Center

    Robic, Srebrenka

    2010-01-01

    To fully understand the roles proteins play in cellular processes, students need to grasp complex ideas about protein structure, folding, and stability. Our current understanding of these topics is based on mathematical models and experimental data. However, protein structure, folding, and stability are often introduced as descriptive, qualitative…

  11. Structural stability of DNA origami nanostructures in the presence of chaotropic agents

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, Saminathan; Krainer, Georg; Grundmeier, Guido; Schlierf, Michael; Keller, Adrian

    2016-05-01

    DNA origami represent powerful platforms for single-molecule investigations of biomolecular processes. The required structural integrity of the DNA origami may, however, pose significant limitations regarding their applicability, for instance in protein folding studies that require strongly denaturing conditions. Here, we therefore report a detailed study on the stability of 2D DNA origami triangles in the presence of the strong chaotropic denaturing agents urea and guanidinium chloride (GdmCl) and its dependence on concentration and temperature. At room temperature, the DNA origami triangles are stable up to at least 24 h in both denaturants at concentrations as high as 6 M. At elevated temperatures, however, structural stability is governed by variations in the melting temperature of the individual staple strands. Therefore, the global melting temperature of the DNA origami does not represent an accurate measure of their structural stability. Although GdmCl has a stronger effect on the global melting temperature, its attack results in less structural damage than observed for urea under equivalent conditions. This enhanced structural stability most likely originates from the ionic nature of GdmCl. By rational design of the arrangement and lengths of the individual staple strands used for the folding of a particular shape, however, the structural stability of DNA origami may be enhanced even further to meet individual experimental requirements. Overall, their high stability renders DNA origami promising platforms for biomolecular studies in the presence of chaotropic agents, including single-molecule protein folding or structural switching.DNA origami represent powerful platforms for single-molecule investigations of biomolecular processes. The required structural integrity of the DNA origami may, however, pose significant limitations regarding their applicability, for instance in protein folding studies that require strongly denaturing conditions. Here, we therefore report a detailed study on the stability of 2D DNA origami triangles in the presence of the strong chaotropic denaturing agents urea and guanidinium chloride (GdmCl) and its dependence on concentration and temperature. At room temperature, the DNA origami triangles are stable up to at least 24 h in both denaturants at concentrations as high as 6 M. At elevated temperatures, however, structural stability is governed by variations in the melting temperature of the individual staple strands. Therefore, the global melting temperature of the DNA origami does not represent an accurate measure of their structural stability. Although GdmCl has a stronger effect on the global melting temperature, its attack results in less structural damage than observed for urea under equivalent conditions. This enhanced structural stability most likely originates from the ionic nature of GdmCl. By rational design of the arrangement and lengths of the individual staple strands used for the folding of a particular shape, however, the structural stability of DNA origami may be enhanced even further to meet individual experimental requirements. Overall, their high stability renders DNA origami promising platforms for biomolecular studies in the presence of chaotropic agents, including single-molecule protein folding or structural switching. Electronic supplementary information (ESI) available: Melting curves without baseline subtraction, AFM images of DNA origami after 24 h incubation, calculated melting temperatures of all staple strands. See DOI: 10.1039/c6nr00835f

  12. Predator-prey-subsidy population dynamics on stepping-stone domains with dispersal delays.

    PubMed

    Eide, Ragna M; Krause, Andrew L; Fadai, Nabil T; Van Gorder, Robert A

    2018-08-14

    We examine the role of the travel time of a predator along a spatial network on predator-prey population interactions, where the predator is able to partially or fully sustain itself on a resource subsidy. The impact of access to food resources on the stability and behaviour of the predator-prey-subsidy system is investigated, with a primary focus on how incorporating travel time changes the dynamics. The population interactions are modelled by a system of delay differential equations, where travel time is incorporated as discrete delay in the network diffusion term in order to model time taken to migrate between spatial regions. The model is motivated by the Arctic ecosystem, where the Arctic fox consumes both hunted lemming and scavenged seal carcass. The fox travels out on sea ice, in addition to quadrennially migrating over substantial distances. We model the spatial predator-prey-subsidy dynamics through a "stepping-stone" approach. We find that a temporal delay alone does not push species into extinction, but rather may stabilize or destabilize coexistence equilibria. We are able to show that delay can stabilize quasi-periodic or chaotic dynamics, and conclude that the incorporation of dispersal delay has a regularizing effect on dynamics, suggesting that dispersal delay can be proposed as a solution to the paradox of enrichment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. High-resolution topographic, bathymetric, and oceanographic data for the Pleasure Point Area, Santa Cruz County, California: 2005-2007

    USGS Publications Warehouse

    Storlazzi, Curt D.; Barnard, Patrick L.; Collins, Brian D.; Finlayson, David P.; Golden, Nadine E.; Hatcher, Gerry A.; Kayen, Robert E.; Ruggiero, Peter

    2007-01-01

    The County of Santa Cruz Department of Public Works and the County of Santa Cruz Redevelopment Agency requested the U.S. Geological Survey (USGS) Western Coastal and Marine Geology Team (WCMG) to provide baseline geologic and oceanographic information on the coast and inner shelf at Pleasure Point, Santa Cruz County, California. The rationale for this proposed work is a need to better understand the environmental consequences of a proposed bluff stabilization project on the beach, the nearshore and the surf at Pleasure Point, Santa Cruz County, California. To meet these information needs, the USGS-WCMG Team collected baseline scientific information on the morphology and waves at Pleasure Point. This study provided high-resolution topography of the coastal bluffs and bathymetry of the inner shelf off East Cliff Drive between 32nd Avenue and 41st Avenue. The spatial and temporal variation in waves and their breaking patterns at the study site were documented. Although this project did not actively investigate the impacts of the proposed bluff stabilization project, these data provide the baseline information required for future studies directed toward predicting the impacts of stabilization on the sea cliffs, beach and nearshore sediment profiles, natural rock reef structures, and offshore habitats and resources. They also provide a basis for calculating potential changes to wave transformations into the shore at Pleasure Point.

  14. Sensitivity of system stability to model structure

    USGS Publications Warehouse

    Hosack, G.R.; Li, H.W.; Rossignol, P.A.

    2009-01-01

    A community is stable, and resilient, if the levels of all community variables can return to the original steady state following a perturbation. The stability properties of a community depend on its structure, which is the network of direct effects (interactions) among the variables within the community. These direct effects form feedback cycles (loops) that determine community stability. Although feedback cycles have an intuitive interpretation, identifying how they form the feedback properties of a particular community can be intractable. Furthermore, determining the role that any specific direct effect plays in the stability of a system is even more daunting. Such information, however, would identify important direct effects for targeted experimental and management manipulation even in complex communities for which quantitative information is lacking. We therefore provide a method that determines the sensitivity of community stability to model structure, and identifies the relative role of particular direct effects, indirect effects, and feedback cycles in determining stability. Structural sensitivities summarize the degree to which each direct effect contributes to stabilizing feedback or destabilizing feedback or both. Structural sensitivities prove useful in identifying ecologically important feedback cycles within the community structure and for detecting direct effects that have strong, or weak, influences on community stability. The approach may guide the development of management intervention and research design. We demonstrate its value with two theoretical models and two empirical examples of different levels of complexity. ?? 2009 Elsevier B.V. All rights reserved.

  15. Baseline study of the spatio-temporal patterns of reef fish assemblages prior to a major mining project in New Caledonia (South Pacific).

    PubMed

    Chabanet, Pascale; Guillemot, Nicolas; Kulbicki, Michel; Vigliola, Laurent; Sarramegna, Sébastien

    2010-01-01

    From 2008 onwards, the coral reefs of Koné (New Caledonia) will be subjected to a major anthropogenic perturbation linked to development of a nickel mine. Dredging and sediment runoff may directly damage the reef environment whereas job creation should generate a large demographic increase and thus a rise in fishing activities. This study analyzed reef fish assemblages between 2002 and 2007 with a focus on spatio-temporal variability. Our results indicate strong spatial structure of fish assemblages through time. Total species richness, density and biomass were highly variable between years but temporal variations were consistent among biotopes. A remarkable spatio-temporal stability was observed for trophic (mean 4.6% piscivores, 53.1% carnivores, 30.8% herbivores and 11.4% planktivores) and home range structures of species abundance contributions. These results are discussed and compared with others sites of the South Pacific. For monitoring perspectives, some indicators related to expected disturbances are proposed. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  16. The temperature and density structures of an X-ray flare during the decay phase. [Skylab observations

    NASA Technical Reports Server (NTRS)

    Silk, J. K.; Kahler, S. W.; Krieger, A. S.; Vaiana, G. S.

    1976-01-01

    The X-ray flare of 9 August 1973 was characterized by a spatially small kernel structure which persisted throughout its duration. The decay phase of this flare was observed in the objective grating mode of the X-ray telescope aboard the Skylab. Data analysis was carried out by scanning the images with a microdensitometer, converting the density arrays to energy using laboratory film calibration data and taking cross sections of the energy images. The 9 August flare shows two distinct periods in its decay phase, involving both cooling and material loss. The objective grating observations reveal that the two phenomena are separated in time. During the earlier phase of the flare decay, the distribution of emission measure as a function of temperature is changing, the high temperature component of the distribution being depleted relative to the cooler body of plasma. As the decay continues, the emission measure distribution stabilizes and the flux diminishes as the amount of material at X-ray emitting temperatures decreases.

  17. Giant Stark effect in double-stranded porphyrin ladder polymers

    NASA Astrophysics Data System (ADS)

    Pramanik, Anup; Kang, Hong Seok

    2011-03-01

    Using the first-principles calculations, we have investigated the stability and the electronic structure of two types of recently synthesized one-dimensional nanoribbons, i.e., double-stranded zinc(II) porphyrin ladder polymer (LADDER) arrays. First, electronic structure calculations were used to show that the LADDER is a semiconductor. Most importantly, the application of a transverse electric field significantly reduces the band gap of the LADDER, ultimately converting the LADDER to a metal at a field strength of 0.1 V/Å. The giant Stark effect in this case is almost as strong as that in boron nitride nanotubes and nanoribbons. In the presence of an electric field, hole conduction and electronic conduction will occur entirely through spatially separated strands, rendering these materials useful for nanoelectronic devices. Second, the substitution of hydrogen atoms in the porphyrin units or that of zinc ions with other kinds of chemical species is found to increase the binding strength of the LADDER and reduce the band gap.

  18. Supratransmission in a metastable modular metastructure for tunable non-reciprocal wave transmission

    NASA Astrophysics Data System (ADS)

    Wu, Zhen; Wang, K. W.

    2018-03-01

    In this research, we numerically and analytically investigate the nonlinear energy transmission phenomenon in a metastable modular metastructure. Numerical studies on a 1D metastable chain provide clear evidence that when driving frequency is within the stopband of the periodic structure, there exists a threshold for the driving amplitude, above which sudden increase in the energy transmission can be observed. This onset of transmission is due to nonlinear instability and is known as supratransmission. We discover that due to spatial asymmetry of strategically configured constituents, such transmission thresholds are considerably different when structure is excited from different ends and this discrepancy creates a region of non-reciprocal energy transmission. We demonstrate that when the loss of stability is due to saddlenode bifurcation, the transmission threshold can be predicted analytically using a localized nonlinear-linear system model, and analyzed via combining harmonic balancing and transfer matrix methods. These investigations elucidate the rich and complex dynamics achievable by nonlinearity and metastabilities, and provide synthesize tools for tunable bandgaps and non-reciprocal wave transmissions.

  19. Long-lived monolithic micro-optics for multispectral GRIN applications.

    PubMed

    Lepicard, Antoine; Bondu, Flavie; Kang, Myungkoo; Sisken, Laura; Yadav, Anupama; Adamietz, Frederic; Rodriguez, Vincent; Richardson, Kathleen; Dussauze, Marc

    2018-05-09

    The potential for realizing robust, monolithic, near-surface refractive micro-optic elements with long-lived stability is demonstrated in visible and infrared transmitting glasses capable of use in dual band applications. Employing an enhanced understanding of glass chemistry and geometric control of mobile ion migration made possible with electrode patterning, flat, permanent, thermally-poled micro-optic structures have been produced and characterized. Sub-surface (t~5-10 µm) compositional and structural modification during the poling process results in formation of spatially-varying refractive index profiles, exhibiting induced Δn changes up to 5 × 10 -2 which remain stable for >15 months. The universality of this approach applied to monolithic vis-near infrared [NIR] oxide and NIR-midwave infrared [MIR] chalcogenide glass materials is demonstrated for the first time. Element size, shape and gradient profile variation possible through pattern design and fabrication is shown to enable a variety of design options not possible using other GRIN process methodologies.

  20. Magnetically-guided assembly of microfluidic fibers for ordered construction of diverse netlike modules

    NASA Astrophysics Data System (ADS)

    Li, Xingfu; Shi, Qing; Wang, Huaping; Sun, Tao; Huang, Qiang; Fukuda, Toshio

    2017-12-01

    In this paper, a magnetically-guided assembly method is proposed to methodically construct diverse modules with a microfiber-based network for promoting nutrient circulation and waste excretion of cell culture. The microfiber is smoothly spun from the microfluidic device via precise control of the volumetric flow rate, and superparamagnetic nanoparticles within the alginate solution of the microfluidic fiber enable its magnetic response. The magnetized device is used to effectively capture the microfiber using its powerful magnetic flux density and high magnetic field gradient. Subsequently, the dot-matrix magnetic flux density is used to distribute the microfibers in an orderly fashion that depends on the array structure of the magnetized device. Furthermore, the magnetic microfluidic fibers are spatially organized into desired locations and are cross-aligned to form highly interconnected netlike modules in a liquid environment. Therefore, the experimental results herein demonstrate the structural controllability and stability of various modules and establish the effectiveness of the proposed method.

Top