Nguyen, Ngan; Mulla, Ali; Nelson, Andrew J; Wilson, Timothy D
2014-01-01
The present study explored the problem-solving strategies of high- and low-spatial visualization ability learners on a novel spatial anatomy task to determine whether differences in strategies contribute to differences in task performance. The results of this study provide further insights into the processing commonalities and differences among learners beyond the classification of spatial visualization ability alone, and help elucidate what, if anything, high- and low-spatial visualization ability learners do differently while solving spatial anatomy task problems. Forty-two students completed a standardized measure of spatial visualization ability, a novel spatial anatomy task, and a questionnaire involving personal self-analysis of the processes and strategies used while performing the spatial anatomy task. Strategy reports revealed that there were different ways students approached answering the spatial anatomy task problems. However, chi-square test analyses established that differences in problem-solving strategies did not contribute to differences in task performance. Therefore, underlying spatial visualization ability is the main source of variation in spatial anatomy task performance, irrespective of strategy. In addition to scoring higher and spending less time on the anatomy task, participants with high spatial visualization ability were also more accurate when solving the task problems. © 2013 American Association of Anatomists.
Rosenthal, Rachel; Hamel, Christian; Oertli, Daniel; Demartines, Nicolas; Gantert, Walter A
2010-08-01
The aim of the present study was to investigate whether trainees' performance on a virtual reality angled laparoscope navigation task correlates with scores obtained on a validated conventional test of spatial ability. 56 participants of a surgery workshop performed an angled laparoscope navigation task on the Xitact LS 500 virtual reality Simulator. Performance parameters were correlated with the score of a validated paper-and-pencil test of spatial ability. Performance at the conventional spatial ability test significantly correlated with performance at the virtual reality task for overall task score (p < 0.001), task completion time (p < 0.001) and economy of movement (p = 0.035), not for endoscope travel speed (p = 0.947). In conclusion, trainees' performance in a standardized virtual reality camera navigation task correlates with their innate spatial ability. This VR session holds potential to serve as an assessment tool for trainees.
Effect of Spatial Titration on Task Performance
ERIC Educational Resources Information Center
Glowacki, Lawrence
1976-01-01
A reinforcement schedule and spatial titration method were used to determine task-reinforcement area separation most preferred and effective in two third-grade boys. Errors in task performance decreased task-reinforcement area separation, while correct responses in task performance increased task-reinforcement area separation. (Author)
An fMRI study of sex differences in regional activation to a verbal and a spatial task.
Gur, R C; Alsop, D; Glahn, D; Petty, R; Swanson, C L; Maldjian, J A; Turetsky, B I; Detre, J A; Gee, J; Gur, R E
2000-09-01
Sex differences in cognitive performance have been documented, women performing better on some phonological tasks and men on spatial tasks. An earlier fMRI study suggested sex differences in distributed brain activation during phonological processing, with bilateral activation seen in women while men showed primarily left-lateralized activation. This blood oxygen level-dependent fMRI study examined sex differences (14 men, 13 women) in activation for a spatial task (judgment of line orientation) compared to a verbal-reasoning task (analogies) that does not typically show sex differences. Task difficulty was manipulated. Hypothesized ROI-based analysis documented the expected left-lateralized changes for the verbal task in the inferior parietal and planum temporal regions in both men and women, but only men showed right-lateralized increase for the spatial task in these regions. Image-based analysis revealed a distributed network of cortical regions activated by the tasks, which consisted of the lateral frontal, medial frontal, mid-temporal, occipitoparietal, and occipital regions. The activation was more left lateralized for the verbal and more right for the spatial tasks, but men also showed some left activation for the spatial task, which was not seen in women. Increased task difficulty produced more distributed activation for the verbal and more circumscribed activation for the spatial task. The results suggest that failure to activate the appropriate hemisphere in regions directly involved in task performance may explain certain sex differences in performance. They also extend, for a spatial task, the principle that bilateral activation in a distributed cognitive system underlies sex differences in performance. Copyright 2000 Academic Press.
Spatial-sequential and spatial-simultaneous working memory in individuals with Williams syndrome.
Lanfranchi, Silvia; De Mori, Letizia; Mammarella, Irene C; Carretti, Barbara; Vianello, Renzo
2015-05-01
The aim of the present study was to compare visuospatial working memory performance in 18 individuals with Williams syndrome (WS) and 18 typically developing (TD) children matched for nonverbal mental age. Two aspects were considered: task presentation format (i.e., spatial-sequential or spatial-simultaneous), and level of attentional control (i.e., passive or active tasks). Our results showed that individuals with WS performed less well than TD children in passive spatial-simultaneous tasks, but not in passive spatial-sequential tasks. The former's performance was also worse in both active tasks. These findings suggest an impairment in the spatial-simultaneous working memory of individuals with WS, together with a more generalized difficulty in tasks requiring information storage and concurrent processing, as seen in other etiologies of intellectual disability.
Visual scanning with or without spatial uncertainty and time-sharing performance
NASA Technical Reports Server (NTRS)
Liu, Yili; Wickens, Christopher D.
1989-01-01
An experiment is reported that examines the pattern of task interference between visual scanning as a sequential and selective attention process and other concurrent spatial or verbal processing tasks. A distinction is proposed between visual scanning with or without spatial uncertainty regarding the possible differential effects of these two types of scanning on interference with other concurrent processes. The experiment required the subject to perform a simulated primary tracking task, which was time-shared with a secondary spatial or verbal decision task. The relevant information that was needed to perform the decision tasks were displayed with or without spatial uncertainty. The experiment employed a 2 x 2 x 2 design with types of scanning (with or without spatial uncertainty), expected scanning distance (low/high), and codes of concurrent processing (spatial/verbal) as the three experimental factors. The results provide strong evidence that visual scanning as a spatial exploratory activity produces greater task interference with concurrent spatial tasks than with concurrent verbal tasks. Furthermore, spatial uncertainty in visual scanning is identified to be the crucial factor in producing this differential effect.
Guigueno, Mélanie F.; MacDougall-Shackleton, Scott A.; Sherry, David F.
2015-01-01
Spatial cognition in females and males can differ in species in which there are sex-specific patterns in the use of space. Brown-headed cowbirds are brood parasites that show a reversal of sex-typical space use often seen in mammals. Female cowbirds, search for, revisit and parasitize hosts nests, have a larger hippocampus than males and have better memory than males for a rewarded location in an open spatial environment. In the current study, we tested female and male cowbirds in breeding and non-breeding conditions on a touchscreen delayed-match-to-sample task using both spatial and colour stimuli. Our goal was to determine whether sex differences in spatial memory in cowbirds generalizes to all spatial tasks or is task-dependant. Both sexes performed better on the spatial than on the colour touchscreen task. On the spatial task, breeding males outperformed breeding females. On the colour task, females and males did not differ, but females performed better in breeding condition than in non-breeding condition. Although female cowbirds were observed to outperform males on a previous larger-scale spatial task, males performed better than females on a task testing spatial memory in the cowbirds’ immediate visual field. Spatial abilities in cowbirds can favour males or females depending on the type of spatial task, as has been observed in mammals, including humans. PMID:26083573
Kline, Julia E.; Poggensee, Katherine; Ferris, Daniel P.
2014-01-01
When humans walk in everyday life, they typically perform a range of cognitive tasks while they are on the move. Past studies examining performance changes in dual cognitive-motor tasks during walking have produced a variety of results. These discrepancies may be related to the type of cognitive task chosen, differences in the walking speeds studied, or lack of controlling for walking speed. The goal of this study was to determine how young, healthy subjects performed a spatial working memory task over a range of walking speeds. We used high-density electroencephalography to determine if electrocortical activity mirrored changes in cognitive performance across speeds. Subjects stood (0.0 m/s) and walked (0.4, 0.8, 1.2, and 1.6 m/s) with and without performing a Brooks spatial working memory task. We hypothesized that performance of the spatial working memory task and the associated electrocortical activity would decrease significantly with walking speed. Across speeds, the spatial working memory task caused subjects to step more widely compared with walking without the task. This is typically a sign that humans are adapting their gait dynamics to increase gait stability. Several cortical areas exhibited power fluctuations time-locked to memory encoding during the cognitive task. In the somatosensory association cortex, alpha power increased prior to stimulus presentation and decreased during memory encoding. There were small significant reductions in theta power in the right superior parietal lobule and the posterior cingulate cortex around memory encoding. However, the subjects did not show a significant change in cognitive task performance or electrocortical activity with walking speed. These findings indicate that in young, healthy subjects walking speed does not affect performance of a spatial working memory task. These subjects can devote adequate cortical resources to spatial cognition when needed, regardless of walking speed. PMID:24847239
Age-Related Effects of Study Time Allocation on Memory Performance in a Verbal and a Spatial Task
ERIC Educational Resources Information Center
Krueger, Lacy E.
2012-01-01
Past studies have suggested that study time allocation partially mediates age relations on memory performance in a verbal task. To identify whether this applied to a different material modality, participants ages 20-87 completed a spatial task in addition to a traditional verbal task. In both the verbal and the spatial task, increased age was…
Non-visual spatial tasks reveal increased interactions with stance postural control.
Woollacott, Marjorie; Vander Velde, Timothy
2008-05-07
The current investigation aimed to contrast the level and quality of dual-task interactions resulting from the combined performance of a challenging primary postural task and three specific, yet categorically dissociated, secondary central executive tasks. Experiments determined the extent to which modality (visual vs. auditory) and code (non-spatial vs. spatial) specific cognitive resources contributed to postural interference in young adults (n=9) in a dual-task setting. We hypothesized that the different forms of executive n-back task processing employed (visual-object, auditory-object and auditory-spatial) would display contrasting levels of interactions with tandem Romberg stance postural control, and that interactions within the spatial domain would be revealed as most vulnerable to dual-task interactions. Across all cognitive tasks employed, including auditory-object (aOBJ), auditory-spatial (aSPA), and visual-object (vOBJ) tasks, increasing n-back task complexity produced correlated increases in verbal reaction time measures. Increasing cognitive task complexity also resulted in consistent decreases in judgment accuracy. Postural performance was significantly influenced by the type of cognitive loading delivered. At comparable levels of cognitive task difficulty (n-back demands and accuracy judgments) the performance of challenging auditory-spatial tasks produced significantly greater levels of postural sway than either the auditory-object or visual-object based tasks. These results suggest that it is the employment of limited non-visual spatially based coding resources that may underlie previously observed visual dual-task interference effects with stance postural control in healthy young adults.
Peña, Daniel; Contreras, María José; Shih, Pei Chun; Santacreu, José
2008-05-01
When individuals perform spatial tasks, individual differences emerge in accuracy and speed as well as in the response patterns used to cope with the task. The purpose of this study is to identify, through empirical criteria, the different response patterns or strategies used by individuals when performing the dynamic spatial task presented in the Spatial Orientation Dynamic Test-Revised (SODT-R). Results show that participants can be classified according to their response patterns. Three different ways of solving a task are described, and their relation to (a) performance factors (response latency, response frequency, and invested time) and (b) ability tests (analytical reasoning, verbal reasoning, and spatial estimation) are investigated. Sex differences in response patterns and performance are also analyzed. It is found that the frequency with which men and women employ each one of the strategies described here, is different and statistically significant. Thus, employed strategy plays an important role when interpreting sex differences on dynamic spatial tasks.
A Correlational Study of Seven Projective Spatial Structures with Regard to the Phases of the MOON^
NASA Astrophysics Data System (ADS)
Wellner, Karen Linette
1995-01-01
This study investigated the relationship between projective spatial structures and the ability to construct a scientific model. In addition, gender-related performance and the influence of prior astronomy experience on task success were evaluated. Sixty-one college science undergraduates were individually administered Piagetian tasks to assess for projective spatial structures and the ability to set up a phases of the moon model. The spatial tasks included: (a) Mountains task (coordination of perspectives); (b) Railroad task (size and intervals of objects with increasing distance); (c) Telephone Poles task (masking and ordering objects); and (d) Shadows task (spatial relationships between an object and its shadow, dependent upon the object's orientation). Cramer coefficient analyses indicated that significant relationships existed between Moon task and spatial task success. In particular, the Shadows task, requiring subjects to draw shadows of objects in different orientations, proved most difficult and was most strongly associated with with a subject's understanding of lunar phases. Chi-square tests for two independent samples were used to analyze gender performance differences on each of the Ave tasks. Males performed significantly better at a.05 significance level in regard to the Shadows task and the Moon task. Chi-square tests for two independent samples showed no significant difference in Moon task performance between subjects with astronomy or Earth science coursework, and those without such science classroom experience. Overall, only six subjects passed all seven projective spatial structure tasks. Piaget (1967) contends that concrete -operational spatial structures must be established before an individual is able to develop formal-operational patterns of thinking. The results of this study indicate that 90% of the interviewed science majors are still operating at the concrete-operational level. Several educational implications were drawn from this study: (1) The teaching of spatially dependent content to students without prerequisite spatial structures results in understanding no further beyond that which can be memorized; (2) assessment for projective spatial structures should precede science lessons dealing with time-space relationships, and (3) a student's level of spatial ability may directly impact upon interpretation of three-dimensional models.
Wahn, Basil; König, Peter
2015-01-01
Humans continuously receive and integrate information from several sensory modalities. However, attentional resources limit the amount of information that can be processed. It is not yet clear how attentional resources and multisensory processing are interrelated. Specifically, the following questions arise: (1) Are there distinct spatial attentional resources for each sensory modality? and (2) Does attentional load affect multisensory integration? We investigated these questions using a dual task paradigm: participants performed two spatial tasks (a multiple object tracking task and a localization task), either separately (single task condition) or simultaneously (dual task condition). In the multiple object tracking task, participants visually tracked a small subset of several randomly moving objects. In the localization task, participants received either visual, auditory, or redundant visual and auditory location cues. In the dual task condition, we found a substantial decrease in participants' performance relative to the results of the single task condition. Importantly, participants performed equally well in the dual task condition regardless of the location cues' modality. This result suggests that having spatial information coming from different modalities does not facilitate performance, thereby indicating shared spatial attentional resources for the auditory and visual modality. Furthermore, we found that participants integrated redundant multisensory information similarly even when they experienced additional attentional load in the dual task condition. Overall, findings suggest that (1) visual and auditory spatial attentional resources are shared and that (2) audiovisual integration of spatial information occurs in an pre-attentive processing stage.
Age-Related Differences in Multiple Task Monitoring
Todorov, Ivo; Del Missier, Fabio; Mäntylä, Timo
2014-01-01
Coordinating multiple tasks with narrow deadlines is particularly challenging for older adults because of age related decline in cognitive control functions. We tested the hypothesis that multiple task performance reflects age- and gender-related differences in executive functioning and spatial ability. Young and older adults completed a multitasking session with four monitoring tasks as well as separate tasks measuring executive functioning and spatial ability. For both age groups, men exceeded women in multitasking, measured as monitoring accuracy. Individual differences in executive functioning and spatial ability were independent predictors of young adults' monitoring accuracy, but only spatial ability was related to sex differences. For older adults, age and executive functioning, but not spatial ability, predicted multitasking performance. These results suggest that executive functions contribute to multiple task performance across the adult life span and that reliance on spatial skills for coordinating deadlines is modulated by age. PMID:25215609
Age-related differences in multiple task monitoring.
Todorov, Ivo; Del Missier, Fabio; Mäntylä, Timo
2014-01-01
Coordinating multiple tasks with narrow deadlines is particularly challenging for older adults because of age related decline in cognitive control functions. We tested the hypothesis that multiple task performance reflects age- and gender-related differences in executive functioning and spatial ability. Young and older adults completed a multitasking session with four monitoring tasks as well as separate tasks measuring executive functioning and spatial ability. For both age groups, men exceeded women in multitasking, measured as monitoring accuracy. Individual differences in executive functioning and spatial ability were independent predictors of young adults' monitoring accuracy, but only spatial ability was related to sex differences. For older adults, age and executive functioning, but not spatial ability, predicted multitasking performance. These results suggest that executive functions contribute to multiple task performance across the adult life span and that reliance on spatial skills for coordinating deadlines is modulated by age.
Oudman, Erik; Van der Stigchel, Stefan; Nijboer, Tanja C W; Wijnia, Jan W; Seekles, Maaike L; Postma, Albert
2016-03-01
Korsakoff's syndrome (KS) is characterized by explicit amnesia, but relatively spared implicit memory. The aim of this study was to assess to what extent KS patients can acquire spatial information while performing a spatial navigation task. Furthermore, we examined whether residual spatial acquisition in KS was based on automatic or effortful coding processes. Therefore, 20 KS patients and 20 matched healthy controls performed six tasks on spatial navigation after they navigated through a residential area. Ten participants per group were instructed to pay close attention (intentional condition), while 10 received mock instructions (incidental condition). KS patients showed hampered performance on a majority of tasks, yet their performance was superior to chance level on a route time and distance estimation tasks, a map drawing task and a route walking task. Performance was relatively spared on the route distance estimation task, but there were large variations between participants. Acquisition in KS was automatic rather than effortful, since no significant differences were obtained between the intentional and incidental condition on any task, whereas for the healthy controls, the intention to learn was beneficial for the map drawing task and the route walking task. The results of this study suggest that KS patients are still able to acquire spatial information during navigation on multiple domains despite the presence of the explicit amnesia. Residual acquisition is most likely based on automatic coding processes. © 2014 The British Psychological Society.
Central executive involvement in children's spatial memory.
Ang, Su Yin; Lee, Kerry
2008-11-01
Previous research with adults found that spatial short-term and working memory tasks impose similar demands on executive resources. We administered spatial short-term and working memory tasks to 8- and 11-year-olds in three separate experiments. In Experiments 1 and 2 an executive suppression task (random number generation) was found to impair performances on a short-term memory task (Corsi blocks), a working memory task (letter rotation), and a spatial visualisation task (paper folding). In Experiment 3 an articulatory suppression task only impaired performance on the working memory task. These results suggest that short-term and working memory performances are dependent on executive resources. The degree to which the short-term memory task was dependent on executive resources was expected to be related to the amount of experience children have had with such tasks. Yet we found no significant age-related suppression effects. This was attributed to differences in employment of cognitive strategies by the older children.
García-Montes, José Manuel; Noguera, Carmen; Alvarez, Dolores; Ruiz, Marina; Cimadevilla Redondo, José Manuel
2014-01-01
Schizotypy is a psychological construct related to schizophrenia. The exact relationship between both entities is not clear. In recent years, schizophrenia has been associated with hippocampal abnormalities and spatial memory problems. The aim of this study was to determine possible links between high schizotypy (HS) and low schizotypy (LS) and spatial abilities, using virtual reality tasks. We hypothesised that the HS group would exhibit a lower performance in spatial memory tasks than the LS group. Two groups of female students were formed according to their score on the ESQUIZO-Q-A questionnaire. HS and LS subjects were tested on two different tasks: the Boxes Room task, a spatial memory task sensitive to hippocampal alterations and a spatial recognition task. Data showed that both groups mastered both tasks. Groups differed in personality features but not in spatial performance. These results provide valuable information about the schizotypy-schizophrenia connections. Schizotypal subjects are not impaired on spatial cognition and, accordingly, the schizotypy-schizophrenia relationship is not straightforward.
The Importance of Gesture in Children's Spatial Reasoning
ERIC Educational Resources Information Center
Ehrlich, Stacy B.; Levine, Susan C.; Goldin-Meadow, Susan
2006-01-01
On average, men outperform women on mental rotation tasks. Even boys as young as 4 1/2 perform better than girls on simplified spatial transformation tasks. The goal of our study was to explore ways of improving 5-year-olds' performance on a spatial transformation task and to examine the strategies children use to solve this task. We found that…
Evaluation of a conceptual framework for predicting navigation performance in virtual reality.
Grübel, Jascha; Thrash, Tyler; Hölscher, Christoph; Schinazi, Victor R
2017-01-01
Previous research in spatial cognition has often relied on simple spatial tasks in static environments in order to draw inferences regarding navigation performance. These tasks are typically divided into categories (e.g., egocentric or allocentric) that reflect different two-systems theories. Unfortunately, this two-systems approach has been insufficient for reliably predicting navigation performance in virtual reality (VR). In the present experiment, participants were asked to learn and navigate towards goal locations in a virtual city and then perform eight simple spatial tasks in a separate environment. These eight tasks were organised along four orthogonal dimensions (static/dynamic, perceived/remembered, egocentric/allocentric, and distance/direction). We employed confirmatory and exploratory analyses in order to assess the relationship between navigation performance and performances on these simple tasks. We provide evidence that a dynamic task (i.e., intercepting a moving object) is capable of predicting navigation performance in a familiar virtual environment better than several categories of static tasks. These results have important implications for studies on navigation in VR that tend to over-emphasise the role of spatial memory. Given that our dynamic tasks required efficient interaction with the human interface device (HID), they were more closely aligned with the perceptuomotor processes associated with locomotion than wayfinding. In the future, researchers should consider training participants on HIDs using a dynamic task prior to conducting a navigation experiment. Performances on dynamic tasks should also be assessed in order to avoid confounding skill with an HID and spatial knowledge acquisition.
Evaluation of a conceptual framework for predicting navigation performance in virtual reality
Thrash, Tyler; Hölscher, Christoph; Schinazi, Victor R.
2017-01-01
Previous research in spatial cognition has often relied on simple spatial tasks in static environments in order to draw inferences regarding navigation performance. These tasks are typically divided into categories (e.g., egocentric or allocentric) that reflect different two-systems theories. Unfortunately, this two-systems approach has been insufficient for reliably predicting navigation performance in virtual reality (VR). In the present experiment, participants were asked to learn and navigate towards goal locations in a virtual city and then perform eight simple spatial tasks in a separate environment. These eight tasks were organised along four orthogonal dimensions (static/dynamic, perceived/remembered, egocentric/allocentric, and distance/direction). We employed confirmatory and exploratory analyses in order to assess the relationship between navigation performance and performances on these simple tasks. We provide evidence that a dynamic task (i.e., intercepting a moving object) is capable of predicting navigation performance in a familiar virtual environment better than several categories of static tasks. These results have important implications for studies on navigation in VR that tend to over-emphasise the role of spatial memory. Given that our dynamic tasks required efficient interaction with the human interface device (HID), they were more closely aligned with the perceptuomotor processes associated with locomotion than wayfinding. In the future, researchers should consider training participants on HIDs using a dynamic task prior to conducting a navigation experiment. Performances on dynamic tasks should also be assessed in order to avoid confounding skill with an HID and spatial knowledge acquisition. PMID:28915266
Spatial task performance, sex differences, and motion sickness susceptibility.
Levine, Max E; Stern, Robert M
2002-10-01
There are substantial individual differences in susceptibility to motion sickness, yet little is known about what mediates these differences. Spatial ability and sex have been suggested as possible factors in this relationship. 89 participants (57 women) were administered a Motion Sickness Questionnaire that assesses motion sickness susceptibility, a Water-level Task that gauges sensitivity to gravitational upright, and a Mental Rotation Task that tests an individual's awareness of how objects typically move in space. Significant sex differences were observed in performance of both the Water-level Task (p<.01), and the Mental Rotation Task (p<.005), with women performing less accurately than men. Women also had significantly higher scores on the Motion Sickness Questionnaire (p<.005). Among men, but not women, significant negative relationships were observed between Water-level Task performance and Motion Sickness Questionnaire score (p<.001) and between Mental Rotation Task performance and Motion Sickness Questionnaire score (p<.005). In conclusion, women performed significantly more poorly than men did on the spatial ability tasks and reported significantly more bouts of motion sickness. In addition, men showed a significant negative relationship between spatial ability and motion sickness susceptibility.
Merrill, Edward C; Yang, Yingying; Roskos, Beverly; Steele, Sara
2016-01-01
Previous studies have reported sex differences in wayfinding performance among adults. Men are typically better at using Euclidean information and survey strategies while women are better at using landmark information and route strategies. However, relatively few studies have examined sex differences in wayfinding in children. This research investigated relationships between route learning performance and two general abilities: spatial ability and verbal memory in 153 boys and girls between 6- to 12-years-old. Children completed a battery of spatial ability tasks (a two-dimension mental rotation task, a paper folding task, a visuo-spatial working memory task, and a Piagetian water level task) and a verbal memory task. In the route learning task, they had to learn a route through a series of hallways presented via computer. Boys had better overall route learning performance than did girls. In fact, the difference between boys and girls was constant across the age range tested. Structural equation modeling of the children's performance revealed that spatial abilities and verbal memory were significant contributors to route learning performance. However, there were different patterns of correlates for boys and girls. For boys, spatial abilities contributed to route learning while verbal memory did not. In contrast, for girls both spatial abilities and verbal memory contributed to their route learning performance. This difference may reflect the precursor of a strategic difference between boys and girls in wayfinding that is commonly observed in adults.
Spatial language facilitates spatial cognition: Evidence from children who lack language input
Gentner, Dedre; Özyürek, Asli; Gürcanli, Özge; Goldin-Meadow, Susan
2013-01-01
Does spatial language influence how people think about space? To address this question, we observed children who did not know a conventional language, and tested their performance on nonlinguistic spatial tasks. We studied deaf children living in Istanbul whose hearing losses prevented them from acquiring speech and whose hearing parents had not exposed them to sign. Lacking a conventional language, the children used gestures, called homesigns, to communicate. In Study 1, we asked whether homesigners used gesture to convey spatial relations, and found that they did not. In Study 2, we tested a new group of homesigners on a spatial mapping task, and found that they performed significantly worse than hearing Turkish children who were matched to the deaf children on another cognitive task. The absence of spatial language thus went hand-in-hand with poor performance on the nonlinguistic spatial task, pointing to the importance of spatial language in thinking about space. PMID:23542409
The stability of working memory: do previous tasks influence complex span?
Healey, M Karl; Hasher, Lynn; Danilova, Elena
2011-11-01
Schmeichel (2007) reported that performing an initial task before completing a working memory span task can lower span scores and suggested that the effect was due to depleted cognitive resources. We showed that the detrimental effect of prior tasks depends on a match between the stimuli used in the span task and the preceding task. A task requiring participants to ignore words reduced performance on a subsequent word-based verbal span task but not on an arrow-based spatial span task. Ignoring arrows had the opposite pattern of effects: reducing performance on the spatial span task but not on the word-based span task. Finally, we showed that antisaccade, a nonverbal task that taxes domain-general processes implicated in working memory, did not influence subsequent performance of either a verbal or a spatial span task. Together these results suggest that while span is sensitive to prior tasks, that sensitivity does not stem from depleted resources. (PsycINFO Database Record (c) 2011 APA, all rights reserved).
How Are Bodies Special? Effects Of Body Features On Spatial Reasoning
Yu, Alfred B.; Zacks, Jeffrey M.
2015-01-01
Embodied views of cognition argue that cognitive processes are influenced by bodily experience. This implies that when people make spatial judgments about human bodies, they bring to bear embodied knowledge that affects spatial reasoning performance. Here, we examined the specific contribution to spatial reasoning of visual features associated with the human body. We used two different tasks to elicit distinct visuospatial transformations: object-based transformations, as elicited in typical mental rotation tasks, and perspective transformations, used in tasks in which people deliberately adopt the egocentric perspective of another person. Body features facilitated performance in both tasks. This result suggests that observers are particularly sensitive to the presence of a human head and body, and that these features allow observers to quickly recognize and encode the spatial configuration of a figure. Contrary to prior reports, this facilitation was not related to the transformation component of task performance. These results suggest that body features facilitate task components other than spatial transformation, including the encoding of stimulus orientation. PMID:26252072
Ivanoff, Jason; Blagdon, Ryan; Feener, Stefanie; McNeil, Melanie; Muir, Paul H.
2014-01-01
The Simon effect refers to the performance (response time and accuracy) advantage for responses that spatially correspond to the task-irrelevant location of a stimulus. It has been attributed to a natural tendency to respond toward the source of stimulation. When location is task-relevant, however, and responses are intentionally directed away (incompatible) or toward (compatible) the source of the stimulation, there is also an advantage for spatially compatible responses over spatially incompatible responses. Interestingly, a number of studies have demonstrated a reversed, or reduced, Simon effect following practice with a spatial incompatibility task. One interpretation of this finding is that practicing a spatial incompatibility task disables the natural tendency to respond toward stimuli. Here, the temporal dynamics of this stimulus-response (S-R) transfer were explored with speed-accuracy trade-offs (SATs). All experiments used the mixed-task paradigm in which Simon and spatial compatibility/incompatibility tasks were interleaved across blocks of trials. In general, bidirectional S-R transfer was observed: while the spatial incompatibility task had an influence on the Simon effect, the task-relevant S-R mapping of the Simon task also had a small impact on congruency effects within the spatial compatibility and incompatibility tasks. These effects were generally greater when the task contexts were similar. Moreover, the SAT analysis of performance in the Simon task demonstrated that the tendency to respond to the location of the stimulus was not eliminated because of the spatial incompatibility task. Rather, S-R transfer from the spatial incompatibility task appeared to partially mask the natural tendency to respond to the source of stimulation with a conflicting inclination to respond away from it. These findings support the use of SAT methodology to quantitatively describe rapid response tendencies. PMID:25191217
Executive Function, Visual Attention and the Cocktail Party Problem in Musicians and Non-Musicians.
Clayton, Kameron K; Swaminathan, Jayaganesh; Yazdanbakhsh, Arash; Zuk, Jennifer; Patel, Aniruddh D; Kidd, Gerald
2016-01-01
The goal of this study was to investigate how cognitive factors influence performance in a multi-talker, "cocktail-party" like environment in musicians and non-musicians. This was achieved by relating performance in a spatial hearing task to cognitive processing abilities assessed using measures of executive function (EF) and visual attention in musicians and non-musicians. For the spatial hearing task, a speech target was presented simultaneously with two intelligible speech maskers that were either colocated with the target (0° azimuth) or were symmetrically separated from the target in azimuth (at ±15°). EF assessment included measures of cognitive flexibility, inhibition control and auditory working memory. Selective attention was assessed in the visual domain using a multiple object tracking task (MOT). For the MOT task, the observers were required to track target dots (n = 1,2,3,4,5) in the presence of interfering distractor dots. Musicians performed significantly better than non-musicians in the spatial hearing task. For the EF measures, musicians showed better performance on measures of auditory working memory compared to non-musicians. Furthermore, across all individuals, a significant correlation was observed between performance on the spatial hearing task and measures of auditory working memory. This result suggests that individual differences in performance in a cocktail party-like environment may depend in part on cognitive factors such as auditory working memory. Performance in the MOT task did not differ between groups. However, across all individuals, a significant correlation was found between performance in the MOT and spatial hearing tasks. A stepwise multiple regression analysis revealed that musicianship and performance on the MOT task significantly predicted performance on the spatial hearing task. Overall, these findings confirm the relationship between musicianship and cognitive factors including domain-general selective attention and working memory in solving the "cocktail party problem".
Executive Function, Visual Attention and the Cocktail Party Problem in Musicians and Non-Musicians
Clayton, Kameron K.; Swaminathan, Jayaganesh; Yazdanbakhsh, Arash; Zuk, Jennifer; Patel, Aniruddh D.; Kidd, Gerald
2016-01-01
The goal of this study was to investigate how cognitive factors influence performance in a multi-talker, “cocktail-party” like environment in musicians and non-musicians. This was achieved by relating performance in a spatial hearing task to cognitive processing abilities assessed using measures of executive function (EF) and visual attention in musicians and non-musicians. For the spatial hearing task, a speech target was presented simultaneously with two intelligible speech maskers that were either colocated with the target (0° azimuth) or were symmetrically separated from the target in azimuth (at ±15°). EF assessment included measures of cognitive flexibility, inhibition control and auditory working memory. Selective attention was assessed in the visual domain using a multiple object tracking task (MOT). For the MOT task, the observers were required to track target dots (n = 1,2,3,4,5) in the presence of interfering distractor dots. Musicians performed significantly better than non-musicians in the spatial hearing task. For the EF measures, musicians showed better performance on measures of auditory working memory compared to non-musicians. Furthermore, across all individuals, a significant correlation was observed between performance on the spatial hearing task and measures of auditory working memory. This result suggests that individual differences in performance in a cocktail party-like environment may depend in part on cognitive factors such as auditory working memory. Performance in the MOT task did not differ between groups. However, across all individuals, a significant correlation was found between performance in the MOT and spatial hearing tasks. A stepwise multiple regression analysis revealed that musicianship and performance on the MOT task significantly predicted performance on the spatial hearing task. Overall, these findings confirm the relationship between musicianship and cognitive factors including domain-general selective attention and working memory in solving the “cocktail party problem”. PMID:27384330
Age- and sex-related disturbance in a battery of sensorimotor and cognitive tasks in Kunming mice.
Chen, Gui-Hai; Wang, Yue-Ju; Zhang, Li-Qun; Zhou, Jiang-Ning
2004-12-15
A battery of tasks, i.e. beam walking, open field, tightrope, radial six-arm water maze (RAWM), novel-object recognition and olfactory discrimination, was used to determine whether there was age- and sex-related memory deterioration in Kunming (KM) mice, and whether these tasks are independent or correlated with each other. Two age groups of KM mice were used: a younger group (7-8 months old, 12 males and 11 females) and an older group (17-18 months old, 12 males and 12 females). The results showed that the spatial learning ability and memory in the RAWM were lower in older female KM mice relative to younger female mice and older male mice. Consistent with this, in the novel-object recognition task, a non-spatial cognitive task, older female mice but not older male mice had impairment of short-term memory. In olfactory discrimination, another non-spatial task, the older mice retained this ability. Interestingly, female mice performed better than males, especially in the younger group. The older females exhibited sensorimotor impairment in the tightrope task and low locomotor activity in the open-field task. Moreover, older mice spent a longer time in the peripheral squares of the open-field than younger ones. The non-spatial cognitive performance in the novel-object recognition and olfactory discrimination tasks was related to performance in the open-field, whereas the spatial cognitive performance in the RAWM was not related to performance in any of the three sensorimotor tasks. These results suggest that disturbance of spatial learning and memory, as well as selective impairment of non-spatial learning and memory, existed in older female KM mice.
Merrill, Edward C.; Yang, Yingying; Roskos, Beverly; Steele, Sara
2016-01-01
Previous studies have reported sex differences in wayfinding performance among adults. Men are typically better at using Euclidean information and survey strategies while women are better at using landmark information and route strategies. However, relatively few studies have examined sex differences in wayfinding in children. This research investigated relationships between route learning performance and two general abilities: spatial ability and verbal memory in 153 boys and girls between 6- to 12-years-old. Children completed a battery of spatial ability tasks (a two-dimension mental rotation task, a paper folding task, a visuo-spatial working memory task, and a Piagetian water level task) and a verbal memory task. In the route learning task, they had to learn a route through a series of hallways presented via computer. Boys had better overall route learning performance than did girls. In fact, the difference between boys and girls was constant across the age range tested. Structural equation modeling of the children’s performance revealed that spatial abilities and verbal memory were significant contributors to route learning performance. However, there were different patterns of correlates for boys and girls. For boys, spatial abilities contributed to route learning while verbal memory did not. In contrast, for girls both spatial abilities and verbal memory contributed to their route learning performance. This difference may reflect the precursor of a strategic difference between boys and girls in wayfinding that is commonly observed in adults. PMID:26941701
Strategy generalization across orientation tasks: testing a computational cognitive model.
Gunzelmann, Glenn
2008-07-08
Humans use their spatial information processing abilities flexibly to facilitate problem solving and decision making in a variety of tasks. This article explores the question of whether a general strategy can be adapted for performing two different spatial orientation tasks by testing the predictions of a computational cognitive model. Human performance was measured on an orientation task requiring participants to identify the location of a target either on a map (find-on-map) or within an egocentric view of a space (find-in-scene). A general strategy instantiated in a computational cognitive model of the find-on-map task, based on the results from Gunzelmann and Anderson (2006), was adapted to perform both tasks and used to generate performance predictions for a new study. The qualitative fit of the model to the human data supports the view that participants were able to tailor a general strategy to the requirements of particular spatial tasks. The quantitative differences between the predictions of the model and the performance of human participants in the new experiment expose individual differences in sample populations. The model provides a means of accounting for those differences and a framework for understanding how human spatial abilities are applied to naturalistic spatial tasks that involve reasoning with maps. 2008 Cognitive Science Society, Inc.
Rosenthal, Rachel; Geuss, Steffen; Dell-Kuster, Salome; Schäfer, Juliane; Hahnloser, Dieter; Demartines, Nicolas
2011-06-01
In children, video game experience improves spatial performance, a predictor of surgical performance. This study aims at comparing laparoscopic virtual reality (VR) task performance of children with different levels of experience in video games and residents. A total of 32 children (8.4 to 12.1 years), 20 residents, and 14 board-certified surgeons (total n = 66) performed several VR and 2 conventional tasks (cube/spatial and pegboard/fine motor). Performance between the groups was compared (primary outcome). VR performance was correlated with conventional task performance (secondary outcome). Lowest VR performance was found in children with low video game experience, followed by those with high video game experience, residents, and board-certified surgeons. VR performance correlated well with the spatial test and moderately with the fine motor test. The use of computer games can be considered not only as pure entertainment but may also contribute to the development of skills relevant for adequate performance in VR laparoscopic tasks. Spatial skills are relevant for VR laparoscopic task performance.
Age-related similarities and differences in monitoring spatial cognition.
Ariel, Robert; Moffat, Scott D
2018-05-01
Spatial cognitive performance is impaired in later adulthood but it is unclear whether the metacognitive processes involved in monitoring spatial cognitive performance are also compromised. Inaccurate monitoring could affect whether people choose to engage in tasks that require spatial thinking and also the strategies they use in spatial domains such as navigation. The current experiment examined potential age differences in monitoring spatial cognitive performance in a variety of spatial domains including visual-spatial working memory, spatial orientation, spatial visualization, navigation, and place learning. Younger and older adults completed a 2D mental rotation test, 3D mental rotation test, paper folding test, spatial memory span test, two virtual navigation tasks, and a cognitive mapping test. Participants also made metacognitive judgments of performance (confidence judgments, judgments of learning, or navigation time estimates) on each trial for all spatial tasks. Preference for allocentric or egocentric navigation strategies was also measured. Overall, performance was poorer and confidence in performance was lower for older adults than younger adults. In most spatial domains, the absolute and relative accuracy of metacognitive judgments was equivalent for both age groups. However, age differences in monitoring accuracy (specifically relative accuracy) emerged in spatial tasks involving navigation. Confidence in navigating for a target location also mediated age differences in allocentric navigation strategy use. These findings suggest that with the possible exception of navigation monitoring, spatial cognition may be spared from age-related decline even though spatial cognition itself is impaired in older age.
The Structure of Working Memory Abilities across the Adult Life Span
Hale, Sandra; Rose, Nathan S.; Myerson, Joel; Strube, Michael J; Sommers, Mitchell; Tye-Murray, Nancy; Spehar, Brent
2010-01-01
The present study addresses three questions regarding age differences in working memory: (1) whether performance on complex span tasks decreases as a function of age at a faster rate than performance on simple span tasks; (2) whether spatial working memory decreases at a faster rate than verbal working memory; and (3) whether the structure of working memory abilities is different for different age groups. Adults, ages 20–89 (n=388), performed three simple and three complex verbal span tasks and three simple and three complex spatial memory tasks. Performance on the spatial tasks decreased at faster rates as a function of age than performance on the verbal tasks, but within each domain, performance on complex and simple span tasks decreased at the same rates. Confirmatory factor analyses revealed that domain-differentiated models yielded better fits than models involving domain-general constructs, providing further evidence of the need to distinguish verbal and spatial working memory abilities. Regardless of which domain-differentiated model was examined, and despite the faster rates of decrease in the spatial domain, age group comparisons revealed that the factor structure of working memory abilities was highly similar in younger and older adults and showed no evidence of age-related dedifferentiation. PMID:21299306
Richardson, Miles; Hunt, Thomas E; Richardson, Cassandra
2014-12-01
This paper presents a methodology to control construction task complexity and examined the relationships between construction performance and spatial and mathematical abilities in children. The study included three groups of children (N = 96); ages 7-8, 10-11, and 13-14 years. Each group constructed seven pre-specified objects. The study replicated and extended previous findings that indicated that the extent of component symmetry and variety, and the number of components for each object and available for selection, significantly predicted construction task difficulty. Results showed that this methodology is a valid and reliable technique for assessing and predicting construction play task difficulty. Furthermore, construction play performance predicted mathematical attainment independently of spatial ability.
Liu, Yung-Ching; Jhuang, Jing-Wun
2012-07-01
A driving simulator study was conducted to evaluate the effects of five in-vehicle warning information displays upon drivers' emergent response and decision performance. These displays include visual display, auditory displays with and without spatial compatibility, hybrid displays in both visual and auditory format with and without spatial compatibility. Thirty volunteer drivers were recruited to perform various tasks that involved driving, stimulus-response, divided attention and stress rating. Results show that for displays of single-modality, drivers benefited more when coping with visual display of warning information than auditory display with or without spatial compatibility. However, auditory display with spatial compatibility significantly improved drivers' performance in reacting to the divided attention task and making accurate S-R task decision. Drivers' best performance results were obtained for hybrid display with spatial compatibility. Hybrid displays enabled drivers to respond the fastest and achieve the best accuracy in both S-R and divided attention tasks. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Attention Modifies Spatial Resolution According to Task Demands.
Barbot, Antoine; Carrasco, Marisa
2017-03-01
How does visual attention affect spatial resolution? In texture-segmentation tasks, exogenous (involuntary) attention automatically increases resolution at the attended location, which improves performance where resolution is too low (at the periphery) but impairs performance where resolution is already too high (at central locations). Conversely, endogenous (voluntary) attention improves performance at all eccentricities, which suggests a more flexible mechanism. Here, using selective adaptation to spatial frequency, we investigated the mechanism by which endogenous attention benefits performance in resolution tasks. Participants detected a texture target that could appear at several eccentricities. Adapting to high or low spatial frequencies selectively affected performance in a manner consistent with changes in resolution. Moreover, adapting to high, but not low, frequencies mitigated the attentional benefit at central locations where resolution was too high; this shows that attention can improve performance by decreasing resolution. Altogether, our results indicate that endogenous attention benefits performance by modulating the contribution of high-frequency information in order to flexibly adjust spatial resolution according to task demands.
Attention Modifies Spatial Resolution According to Task Demands
Barbot, Antoine; Carrasco, Marisa
2017-01-01
How does visual attention affect spatial resolution? In texture-segmentation tasks, exogenous (involuntary) attention automatically increases resolution at the attended location, which improves performance where resolution is too low (at the periphery) but impairs performance where resolution is already too high (at central locations). Conversely, endogenous (voluntary) attention improves performance at all eccentricities, which suggests a more flexible mechanism. Here, using selective adaptation to spatial frequency, we investigated the mechanism by which endogenous attention benefits performance in resolution tasks. Participants detected a texture target that could appear at several eccentricities. Adapting to high or low spatial frequencies selectively affected performance in a manner consistent with changes in resolution. Moreover, adapting to high, but not low, frequencies mitigated the attentional benefit at central locations where resolution was too high; this shows that attention can improve performance by decreasing resolution. Altogether, our results indicate that endogenous attention benefits performance by modulating the contribution of high-frequency information in order to flexibly adjust spatial resolution according to task demands. PMID:28118103
Chen, J Y C; Terrence, P I
2008-08-01
This study examined the concurrent performance of military gunnery, robotics control and communication tasks in a simulated environment. More specifically, the study investigated how aided target recognition (AiTR) capabilities (delivered either through tactile or tactile + visual cueing) for the gunnery task might benefit overall performance. Results showed that AiTR benefited not only the gunnery task, but also the concurrent robotics and communication tasks. The participants' spatial ability was found to be a good indicator of their gunnery and robotics task performance. However, when AiTR was available to assist their gunnery task, those participants of lower spatial ability were able to perform their robotics tasks as well as those of higher spatial ability. Finally, participants' workload assessment was significantly higher when they teleoperated (i.e. remotely operated) a robot and when their gunnery task was unassisted. These results will further understanding of multitasking performance in military tasking environments. These results will also facilitate the implementation of robots in military settings and will provide useful data to military system designs.
Tong, Jonathan; Mao, Oliver; Goldreich, Daniel
2013-01-01
Two-point discrimination is widely used to measure tactile spatial acuity. The validity of the two-point threshold as a spatial acuity measure rests on the assumption that two points can be distinguished from one only when the two points are sufficiently separated to evoke spatially distinguishable foci of neural activity. However, some previous research has challenged this view, suggesting instead that two-point task performance benefits from an unintended non-spatial cue, allowing spuriously good performance at small tip separations. We compared the traditional two-point task to an equally convenient alternative task in which participants attempt to discern the orientation (vertical or horizontal) of two points of contact. We used precision digital readout calipers to administer two-interval forced-choice versions of both tasks to 24 neurologically healthy adults, on the fingertip, finger base, palm, and forearm. We used Bayesian adaptive testing to estimate the participants’ psychometric functions on the two tasks. Traditional two-point performance remained significantly above chance levels even at zero point separation. In contrast, two-point orientation discrimination approached chance as point separation approached zero, as expected for a valid measure of tactile spatial acuity. Traditional two-point performance was so inflated at small point separations that 75%-correct thresholds could be determined on all tested sites for fewer than half of participants. The 95%-correct thresholds on the two tasks were similar, and correlated with receptive field spacing. In keeping with previous critiques, we conclude that the traditional two-point task provides an unintended non-spatial cue, resulting in spuriously good performance at small spatial separations. Unlike two-point discrimination, two-point orientation discrimination rigorously measures tactile spatial acuity. We recommend the use of two-point orientation discrimination for neurological assessment. PMID:24062677
Spatial working memory load affects counting but not subitizing in enumeration.
Shimomura, Tomonari; Kumada, Takatsune
2011-08-01
The present study investigated whether subitizing reflects capacity limitations associated with two types of working memory tasks. Under a dual-task situation, participants performed an enumeration task in conjunction with either a spatial (Experiment 1) or a nonspatial visual (Experiment 2) working memory task. Experiment 1 showed that spatial working memory load affected the slope of a counting function but did not affect subitizing performance or subitizing range. Experiment 2 showed that nonspatial visual working memory load affected neither enumeration efficiency nor subitizing range. Furthermore, in both spatial and nonspatial memory tasks, neither subitizing efficiency nor subitizing range was affected by amount of imposed memory load. In all the experiments, working memory load failed to influence slope, subitizing range, or overall reaction time. These findings suggest that subitizing is performed without either spatial or nonspatial working memory. A possible mechanism of subitizing with independent capacity of working memory is discussed.
Vytal, Katherine E.; Cornwell, Brian R.; Letkiewicz, Allison M.; Arkin, Nicole E.; Grillon, Christian
2013-01-01
Anxiety can be distracting, disruptive, and incapacitating. Despite problems with empirical replication of this phenomenon, one fruitful avenue of study has emerged from working memory (WM) experiments where a translational method of anxiety induction (risk of shock) has been shown to disrupt spatial and verbal WM performance. Performance declines when resources (e.g., spatial attention, executive function) devoted to goal-directed behaviors are consumed by anxiety. Importantly, it has been shown that anxiety-related impairments in verbal WM depend on task difficulty, suggesting that cognitive load may be an important consideration in the interaction between anxiety and cognition. Here we use both spatial and verbal WM paradigms to probe the effect of cognitive load on anxiety-induced WM impairment across task modality. Subjects performed a series of spatial and verbal n-back tasks of increasing difficulty (1, 2, and 3-back) while they were safe or at risk for shock. Startle reflex was used to probe anxiety. Results demonstrate that induced-anxiety differentially impacts verbal and spatial WM, such that low and medium-load verbal WM is more susceptible to anxiety-related disruption relative to high-load, and spatial WM is disrupted regardless of task difficulty. Anxiety impacts both verbal and spatial processes, as described by correlations between anxiety and performance impairment, albeit the effect on spatial WM is consistent across load. Demanding WM tasks may exert top-down control over higher-order cortical resources engaged by anxious apprehension, however high-load spatial WM may continue to experience additional competition from anxiety-related changes in spatial attention, resulting in impaired performance. By describing this disruption across task modalities, these findings inform current theories of emotion–cognition interactions and may facilitate development of clinical interventions that seek to target cognitive impairments associated with anxiety. PMID:23542914
Interference between a fast-paced spatial puzzle task and verbal memory demands.
Epling, Samantha L; Blakely, Megan J; Russell, Paul N; Helton, William S
2017-06-01
Research continues to provide evidence that people are poor multi-taskers. Cognitive resource theory is a common explanation for the inability to efficiently perform multiple tasks at the same time. This theory proposes that one's limited supply of cognitive resources can be utilized faster than it is replenished, which results in a performance decline, particularly when these limited resources must be allocated among multiple tasks. Researchers have proposed both domain-specific, for example, spatial versus verbal processing resources, and domain general cognitive resources. In the present research, we investigated whether a spatial puzzle task performed simultaneously with a verbal recall task would impair performance in either task or both tasks, compared to performance on the tasks individually. As hypothesized, a reduction in word recall was found when dual-tasking, though performance on the puzzle task did not significantly differ between the single- and dual-task conditions. This is consistent, in part, with both a general resource theory and a Multiple Resource Theory, but further work is required to better understand the cognitive processing system. The employment of the recall task in the dual-task paradigm with a variety of secondary tasks will help to continue mapping out the specificity (or lack thereof) of cognitive resources utilized in various mental and physical tasks.
Wallet, Grégory; Sauzéon, Hélène; Pala, Prashant Arvind; Larrue, Florian; Zheng, Xia; N'Kaoua, Bernard
2011-01-01
The purpose of this study was to evaluate the effect the visual fidelity of a virtual environment (VE) (undetailed vs. detailed) has on the transfer of spatial knowledge based on the navigation mode (passive vs. active) for three different spatial recall tasks (wayfinding, sketch mapping, and picture sorting). Sixty-four subjects (32 men and 32 women) participated in the experiment. Spatial learning was evaluated by these three tasks in the context of the Bordeaux district. In the wayfinding task, the results indicated that the detailed VE helped subjects to transfer their spatial knowledge from the VE to the real world, irrespective of the navigation mode. In the sketch-mapping task, the detailed VE increased performances compared to the undetailed VE condition, and allowed subjects to benefit from the active navigation. In the sorting task, performances were better in the detailed VE; however, in the undetailed version of the VE, active learning either did not help the subjects or it even deteriorated their performances. These results are discussed in terms of appropriate perceptive-motor and/or spatial representations for each spatial recall task.
Paladini, Rebecca E.; Diana, Lorenzo; Zito, Giuseppe A.; Nyffeler, Thomas; Wyss, Patric; Mosimann, Urs P.; Müri, René M.; Nef, Tobias
2018-01-01
Cross-modal spatial cueing can affect performance in a visual search task. For example, search performance improves if a visual target and an auditory cue originate from the same spatial location, and it deteriorates if they originate from different locations. Moreover, it has recently been postulated that multisensory settings, i.e., experimental settings, in which critical stimuli are concurrently presented in different sensory modalities (e.g., visual and auditory), may trigger asymmetries in visuospatial attention. Thereby, a facilitation has been observed for visual stimuli presented in the right compared to the left visual space. However, it remains unclear whether auditory cueing of attention differentially affects search performance in the left and the right hemifields in audio-visual search tasks. The present study investigated whether spatial asymmetries would occur in a search task with cross-modal spatial cueing. Participants completed a visual search task that contained no auditory cues (i.e., unimodal visual condition), spatially congruent, spatially incongruent, and spatially non-informative auditory cues. To further assess participants’ accuracy in localising the auditory cues, a unimodal auditory spatial localisation task was also administered. The results demonstrated no left/right asymmetries in the unimodal visual search condition. Both an additional incongruent, as well as a spatially non-informative, auditory cue resulted in lateral asymmetries. Thereby, search times were increased for targets presented in the left compared to the right hemifield. No such spatial asymmetry was observed in the congruent condition. However, participants’ performance in the congruent condition was modulated by their tone localisation accuracy. The findings of the present study demonstrate that spatial asymmetries in multisensory processing depend on the validity of the cross-modal cues, and occur under specific attentional conditions, i.e., when visual attention has to be reoriented towards the left hemifield. PMID:29293637
Piccardi, L; Nori, R; Boccia, M; Barbetti, S; Verde, P; Guariglia, C; Ferlazzo, F
2015-08-01
In the present study, we used single- and dual-task conditions to investigate the nature of topographical working memory to better understand what type of task can hamper performance during navigation. During dual-task conditions, we considered four different sources of interference: motor (M), spatial motor (SM), verbal (i.e. articulatory suppression AS) and spatial environmental (SE). In order to assess the nature of topographical working memory, we used the Walking Corsi Test, asking the participants to perform two tasks simultaneously (M, SM, AS and SE). Our results showed that only spatial-environmental interference hampers the execution of a topographical working memory task, suggesting a task-domain-specific effect. We also found general gender differences in the topographical working memory capabilities: men were more proficient than women, regardless of the type of interferences. However, like men, women performed worse when a spatial-environmental interference was present.
McKendrick, Ryan; Shaw, Tyler; de Visser, Ewart; Saqer, Haneen; Kidwell, Brian; Parasuraman, Raja
2014-05-01
Assess team performance within a net-worked supervisory control setting while manipulating automated decision aids and monitoring team communication and working memory ability. Networked systems such as multi-unmanned air vehicle (UAV) supervision have complex properties that make prediction of human-system performance difficult. Automated decision aid can provide valuable information to operators, individual abilities can limit or facilitate team performance, and team communication patterns can alter how effectively individuals work together. We hypothesized that reliable automation, higher working memory capacity, and increased communication rates of task-relevant information would offset performance decrements attributed to high task load. Two-person teams performed a simulated air defense task with two levels of task load and three levels of automated aid reliability. Teams communicated and received decision aid messages via chat window text messages. Task Load x Automation effects were significant across all performance measures. Reliable automation limited the decline in team performance with increasing task load. Average team spatial working memory was a stronger predictor than other measures of team working memory. Frequency of team rapport and enemy location communications positively related to team performance, and word count was negatively related to team performance. Reliable decision aiding mitigated team performance decline during increased task load during multi-UAV supervisory control. Team spatial working memory, communication of spatial information, and team rapport predicted team success. An automated decision aid can improve team performance under high task load. Assessment of spatial working memory and the communication of task-relevant information can help in operator and team selection in supervisory control systems.
Miller, Hilary E; Simmering, Vanessa R
2018-08-01
Children's spatial language reliably predicts their spatial skills, but the nature of this relation is a source of debate. This investigation examined whether the mechanisms accounting for such relations are specific to language use or reflect a domain-general mechanism of selective attention. Experiment 1 examined whether 4-year-olds' spatial skills were predicted by their selective attention or their adaptive language use. Children completed (a) an attention task assessing attention to task-relevant color, size, and location cues; (b) a description task assessing adaptive language use to describe scenes varying in color, size, and location; and (c) three spatial tasks. There was correspondence between the cue types that children attended to and produced across description and attention tasks. Adaptive language use was predicted by both children's attention and task-related language production, suggesting that selective attention underlies skills in using language adaptively. After controlling for age, gender, receptive vocabulary, and adaptive language use, spatial skills were predicted by children's selective attention. The attention score predicted variance in spatial performance previously accounted for by adaptive language use. Experiment 2 followed up on the attention task (Experiment 2a) and description task (Experiment 2b) from Experiment 1 to assess whether performance in the tasks related to selective attention or task-specific demands. Performance in Experiments 2a and 2b paralleled that in Experiment 1, suggesting that the effects in Experiment 1 reflected children's selective attention skills. These findings show that selective attention is a central factor supporting spatial skill development that could account for many effects previously attributed to children's language use. Copyright © 2018 Elsevier Inc. All rights reserved.
Congruency sequence effect in cross-task context: evidence for dimension-specific modulation.
Lee, Jaeyong; Cho, Yang Seok
2013-11-01
The congruency sequence effect refers to a reduced congruency effect after incongruent trials relative to congruent trials. This modulation is thought to be, at least in part, due to the control mechanisms resolving conflict. The present study examined the nature of the control mechanisms by having participants perform two different tasks in an alternating way. When participants performed horizontal and vertical Simon tasks in Experiment 1A, and horizontal and vertical spatial Stroop task in Experiment 1B, no congruency sequence effect was obtained between the task congruencies. When the Simon task and spatial Stroop task were performed with different response sets in Experiment 2, no congruency sequence effect was obtained. However, in Experiment 3, in which the participants performed the horizontal Simon and spatial Stroop tasks with an identical response set, a significant congruency sequence effect was obtained between the task congruencies. In Experiment 4, no congruency sequence effect was obtained when participants performed two tasks having different task-irrelevant dimensions with the identical response set. The findings suggest inhibitory processing between the task-irrelevant dimension and response mode after conflict. © 2013 Elsevier B.V. All rights reserved.
Dual Tasking and Working Memory in Alcoholism: Relation to Frontocerebellar Circuitry
Chanraud, Sandra; Pitel, Anne-Lise; Rohlfing, Torsten; Pfefferbaum, Adolf; Sullivan, Edith V
2010-01-01
Controversy exists regarding the role of cerebellar systems in cognition and whether working memory compromise commonly marking alcoholism can be explained by compromise of nodes of corticocerebellar circuitry. We tested 17 alcoholics and 31 age-matched controls with dual-task, working memory paradigms. Interference tasks competed with verbal and spatial working memory tasks using low (three item) or high (six item) memory loads. Participants also underwent structural MRI to obtain volumes of nodes of the frontocerebellar system. On the verbal working memory task, both groups performed equally. On the spatial working memory with the high-load task, the alcoholic group was disproportionately more affected by the arithmetic distractor than were controls. In alcoholics, volumes of the left thalamus and left cerebellar Crus I volumes were more robust predictors of performance in the spatial working memory task with the arithmetic distractor than the left frontal superior cortex. In controls, volumes of the right middle frontal gyrus and right cerebellar Crus I were independent predictors over the left cerebellar Crus I, left thalamus, right superior parietal cortex, or left middle frontal gyrus of spatial working memory performance with tracking interference. The brain–behavior correlations suggest that alcoholics and controls relied on the integrity of certain nodes of corticocerebellar systems to perform these verbal and spatial working memory tasks, but that the specific pattern of relationships differed by group. The resulting brain structure–function patterns provide correlational support that components of this corticocerebellar system not typically related to normal performance in dual-task conditions may be available to augment otherwise dampened performance by alcoholics. PMID:20410871
Testing domain general learning in an Australian lizard.
Qi, Yin; Noble, Daniel W A; Fu, Jinzhong; Whiting, Martin J
2018-06-02
A key question in cognition is whether animals that are proficient in a specific cognitive domain (domain specific hypothesis), such as spatial learning, are also proficient in other domains (domain general hypothesis) or whether there is a trade-off. Studies testing among these hypotheses are biased towards mammals and birds. To understand constraints on the evolution of cognition more generally, we need broader taxonomic and phylogenetic coverage. We used Australian eastern water skinks (Eulamprus quoyii) with known spatial learning ability in three additional tasks: an instrumental and two discrimination tasks. Under domain specific learning we predicted that lizards that were good at spatial learning would perform less well in the discrimination tasks. Conversely, we predicted that lizards that did not meet our criterion for spatial learning would likewise perform better in discrimination tasks. Lizards with domain general learning should perform approximately equally well (or poorly) in these tasks. Lizards classified as spatial learners performed no differently to non-spatial learners in both the instrumental and discrimination learning tasks. Nevertheless, lizards were proficient in all tasks. Our results reveal two patterns: domain general learning in spatial learners and domain specific learning in non-spatial learners. We suggest that delineating learning into domain general and domain specific may be overly simplistic and we need to instead focus on individual variation in learning ability, which ultimately, is likely to play a key role in fitness. These results, in combination with previously published work on this species, suggests that this species has behavioral flexibility because they are competent across multiple cognitive domains and are capable of reversal learning.
Improving balance by performing a secondary cognitive task.
Swan, Laurie; Otani, Hajime; Loubert, Peter V; Sheffert, Sonya M; Dunbar, Gary L
2004-02-01
Contrary to general findings in the attention and memory literature, some studies have shown that performing a secondary cognitive task produces an improvement in balance performance. The purpose of the present experiment was to investigate under what condition such an improvement would occur. Young and older adults were asked to hold as still as possible on a platform that measured sway while performing or not performing the encoding phase of the Brooks' (1967) spatial or non-spatial memory task. The difficulty of maintaining balance was manipulated by varying the availability of visual input and sway-referenced motion of the platform. Sway scores were computed based on the distance between the individual pressure centres and the average centre of pressure during each 20-s trial. The results indicated that both the spatial and non-spatial memory tasks improved balance for older adults under the most difficult balance condition.
The influence of cue-task association and location on switch cost and alternating-switch cost.
Arbuthnott, Katherine D; Woodward, Todd S
2002-03-01
Task-switching performance is strongly influenced by whether the imperative stimulus uniquely specifies which task to perform: Switch cost is substantial with bivalent stimuli but is greatly reduced with univalent stimuli, suggesting that available contextual information influences processing in task-switching situations. The present study examined whether task-relevant information provided by task cues influences the magnitude of switch cost in a parallel manner. Cues presented 500 ms prior to a trivalent stimulus indicated which of three tasks to perform. These cues either had a preexisting association with the to-be-performed task (verbal cues), or a recently learned association with the task (spatial and shape cues). The results paralleled the effects of stimulus bivalence: substantial switch cost with recently learned cue-task associations and greatly reduced switch cost with preexisting cue-task associations. This suggests that both stimulus-based and cue-based information can activate the relevant task set, possibly providing external support to endogenous control processes. Alternating-switch cost, a greater cost for switching back to a recently abandoned task, was also observed with both preexisting and recently learned cue-task associations, but only when all tasks were presented in a consistent spatial location. When spatial location was used to cue the to-be-performed tasks, no alternating-switch cost was observed, suggesting that different processes may be involved when tasks are uniquely located in space. Specification of the nature of these processes may prove to be complex, as post-hoc inspection of the data suggested that for the spatial cue condition, the alternating-switch cost may oscillate between cost and benefit, depending on the relevant task.
Music and Spatial Task Performance: A Causal Relationship.
ERIC Educational Resources Information Center
Rauscher, Frances H.; And Others
This research paper reports on testing the hypothesis that music and spatial task performance are causally related. Two complementary studies are presented that replicate and explore previous findings. One study of college students showed that listening to a Mozart sonata induces subsequent short-term spatial reasoning facilitation and tested the…
Effects of speech intelligibility level on concurrent visual task performance.
Payne, D G; Peters, L J; Birkmire, D P; Bonto, M A; Anastasi, J S; Wenger, M J
1994-09-01
Four experiments were performed to determine if changes in the level of speech intelligibility in an auditory task have an impact on performance in concurrent visual tasks. The auditory task used in each experiment was a memory search task in which subjects memorized a set of words and then decided whether auditorily presented probe items were members of the memorized set. The visual tasks used were an unstable tracking task, a spatial decision-making task, a mathematical reasoning task, and a probability monitoring task. Results showed that performance on the unstable tracking and probability monitoring tasks was unaffected by the level of speech intelligibility on the auditory task, whereas accuracy in the spatial decision-making and mathematical processing tasks was significantly worse at low speech intelligibility levels. The findings are interpreted within the framework of multiple resource theory.
Spatial effects, sampling errors, and task specialization in the honey bee.
Johnson, B R
2010-05-01
Task allocation patterns should depend on the spatial distribution of work within the nest, variation in task demand, and the movement patterns of workers, however, relatively little research has focused on these topics. This study uses a spatially explicit agent based model to determine whether such factors alone can generate biases in task performance at the individual level in the honey bees, Apis mellifera. Specialization (bias in task performance) is shown to result from strong sampling error due to localized task demand, relatively slow moving workers relative to nest size, and strong spatial variation in task demand. To date, specialization has been primarily interpreted with the response threshold concept, which is focused on intrinsic (typically genotypic) differences between workers. Response threshold variation and sampling error due to spatial effects are not mutually exclusive, however, and this study suggests that both contribute to patterns of task bias at the individual level. While spatial effects are strong enough to explain some documented cases of specialization; they are relatively short term and not explanatory for long term cases of specialization. In general, this study suggests that the spatial layout of tasks and fluctuations in their demand must be explicitly controlled for in studies focused on identifying genotypic specialists.
Developmental Trends for Object and Spatial Working Memory: A Psychophysiological Analysis
ERIC Educational Resources Information Center
Van Leijenhorst, Linda; Crone, Eveline A.; Van der Molen, Maurits W.
2007-01-01
This study examined developmental trends in object and spatial working memory (WM) using heart rate (HR) to provide an index of covert cognitive processes. Participants in 4 age groups (6-7, 9-10, 11-12, 18-26, n=20 each) performed object and spatial WM tasks, in which each trial was followed by feedback. Spatial WM task performance reached adult…
Preparatory neural activity predicts performance on a conflict task.
Stern, Emily R; Wager, Tor D; Egner, Tobias; Hirsch, Joy; Mangels, Jennifer A
2007-10-24
Advance preparation has been shown to improve the efficiency of conflict resolution. Yet, with little empirical work directly linking preparatory neural activity to the performance benefits of advance cueing, it is not clear whether this relationship results from preparatory activation of task-specific networks, or from activity associated with general alerting processes. Here, fMRI data were acquired during a spatial Stroop task in which advance cues either informed subjects of the upcoming relevant feature of conflict stimuli (spatial or semantic) or were neutral. Informative cues decreased reaction time (RT) relative to neutral cues, and cues indicating that spatial information would be task-relevant elicited greater activity than neutral cues in multiple areas, including right anterior prefrontal and bilateral parietal cortex. Additionally, preparatory activation in bilateral parietal cortex and right dorsolateral prefrontal cortex predicted faster RT when subjects responded to spatial location. No regions were found to be specific to semantic cues at conventional thresholds, and lowering the threshold further revealed little overlap between activity associated with spatial and semantic cueing effects, thereby demonstrating a single dissociation between activations related to preparing a spatial versus semantic task-set. This relationship between preparatory activation of spatial processing networks and efficient conflict resolution suggests that advance information can benefit performance by leading to domain-specific biasing of task-relevant information.
Brown, Louise A.
2016-01-01
Working memory is vulnerable to age-related decline, but there is debate regarding the age-sensitivity of different forms of spatial-sequential working memory task, depending on their passive or active nature. The functional architecture of spatial working memory was therefore explored in younger (18–40 years) and older (64–85 years) adults, using passive and active recall tasks. Spatial working memory was assessed using a modified version of the Spatial Span subtest of the Wechsler Memory Scale – Third Edition (WMS-III; Wechsler, 1998). Across both age groups, the effects of interference (control, visual, or spatial), and recall type (forward and backward), were investigated. There was a clear effect of age group, with younger adults demonstrating a larger spatial working memory capacity than the older adults overall. There was also a specific effect of interference, with the spatial interference task (spatial tapping) reliably reducing performance relative to both the control and visual interference (dynamic visual noise) conditions in both age groups and both recall types. This suggests that younger and older adults have similar dependence upon active spatial rehearsal, and that both forward and backward recall require this processing capacity. Linear regression analyses were then carried out within each age group, to assess the predictors of performance in each recall format (forward and backward). Specifically the backward recall task was significantly predicted by age, within both the younger and older adult groups. This finding supports previous literature showing lifespan linear declines in spatial-sequential working memory, and in working memory tasks from other domains, but contrasts with previous evidence that backward spatial span is no more sensitive to aging than forward span. The study suggests that backward spatial span is indeed more processing-intensive than forward span, even when both tasks include a retention period, and that age predicts backward spatial span performance across the adult lifespan, within both younger and older adulthood. PMID:27757096
Brown, Louise A
2016-01-01
Working memory is vulnerable to age-related decline, but there is debate regarding the age-sensitivity of different forms of spatial-sequential working memory task, depending on their passive or active nature. The functional architecture of spatial working memory was therefore explored in younger (18-40 years) and older (64-85 years) adults, using passive and active recall tasks. Spatial working memory was assessed using a modified version of the Spatial Span subtest of the Wechsler Memory Scale - Third Edition (WMS-III; Wechsler, 1998). Across both age groups, the effects of interference (control, visual, or spatial), and recall type (forward and backward), were investigated. There was a clear effect of age group, with younger adults demonstrating a larger spatial working memory capacity than the older adults overall. There was also a specific effect of interference, with the spatial interference task (spatial tapping) reliably reducing performance relative to both the control and visual interference (dynamic visual noise) conditions in both age groups and both recall types. This suggests that younger and older adults have similar dependence upon active spatial rehearsal, and that both forward and backward recall require this processing capacity. Linear regression analyses were then carried out within each age group, to assess the predictors of performance in each recall format (forward and backward). Specifically the backward recall task was significantly predicted by age, within both the younger and older adult groups. This finding supports previous literature showing lifespan linear declines in spatial-sequential working memory, and in working memory tasks from other domains, but contrasts with previous evidence that backward spatial span is no more sensitive to aging than forward span. The study suggests that backward spatial span is indeed more processing-intensive than forward span, even when both tasks include a retention period, and that age predicts backward spatial span performance across the adult lifespan, within both younger and older adulthood.
Early Life Manipulations Alter Learning and Memory in Rats
Kosten, Therese A; Kim, Jeansok J; Lee, Hongjoo J.
2012-01-01
Much research shows early life manipulations have enduring behavioral, neural, and hormonal effects. However, findings of learning and memory performance vary widely across studies. We reviewed studies in which pre-weaning rat pups were exposed to stressors and tested on learning and memory tasks in adulthood. Tasks were classified as aversive conditioning, inhibitory learning, or spatial/relational memory. Variables of duration, type, and timing of neonatal manipulation and sex and strain of animals were examined to determine if any predict enhanced or impaired performance. Brief separations enhanced and prolonged separations impaired performance on spatial/relational tasks. Performance was impaired in aversive conditioning and enhanced in inhibitory learning tasks regardless of manipulation duration. Opposing effects on performance for spatial/relational memory also depended upon timing of manipulation. Enhanced performance was likely if the manipulation occurred during postnatal week 3 but performance was impaired if it was confined to the first two postnatal weeks. Thus, the relationship between early life experiences and adulthood learning and memory performance is multifaceted and decidedly task-dependent. PMID:22819985
Sex and cultural differences in spatial performance between Japanese and North Americans.
Sakamoto, Maiko; Spiers, Mary V
2014-04-01
Previous studies have suggested that Asians perform better than North Americans on spatial tasks but show smaller sex differences. In this study, we evaluated the relationship between long-term experience with a pictorial written language and spatial performance. It was hypothesized that native Japanese Kanji (a complex pictorial written language) educated adults would show smaller sex differences on spatial tasks than Japanese Americans or North Americans without Kanji education. A total of 80 young healthy participants (20 native Japanese speakers, 20 Japanese Americans-non Japanese speaking, and 40 North Americans-non Japanese speaking) completed the Rey Complex Figure Test (RCFT), the Mental Rotations Test (MRT), and customized 2D and 3D spatial object location memory tests. As predicted, main effects revealed men performed better on the MRT and RCFT and women performed better on the spatial object location memory tests. Also, as predicted, native Japanese performed better on all tests than the other groups. In contrast to the other groups, native Japanese showed a decreased magnitude of sex differences on aspects of the RCFT (immediate and delayed recall) and no significant sex difference on the efficiency of the strategy used to copy and encode the RCFT figure. This study lends support to the idea that intensive experience over time with a pictorial written language (i.e., Japanese Kanji) may contribute to increased spatial performance on some spatial tasks as well as diminish sex differences in performance on tasks that most resemble Kanji.
Clark, Kelsey L; Noudoost, Behrad; Moore, Tirin
2014-06-01
We previously reported the existence of a persistent spatial signal in the FEF during object-based STM. This persistent activity reflected the location at which the sample appeared, irrespective of the location of upcoming targets. We hypothesized that such a spatial signal could be used to maintain or enhance object-selective memory activity elsewhere in cortex, analogous to the role of a spatial signal during attention. Here, we inactivated a portion of the FEF with GABAa agonist muscimol to test whether the observed activity contributes to object memory performance. We found that, although RTs were slowed for saccades into the inactivated portion of retinotopic space, performance for samples appearing in that region was unimpaired. This contrasts with the devastating effects of the same FEF inactivation on purely spatial working memory, as assessed with the memory-guided saccade task. Thus, in a task in which a significant fraction of FEF neurons displayed persistent, sample location-based activity, disrupting this activity had no impact on task performance.
I believe I'm good at orienting myself… But is that true?
Nori, Raffaella; Piccardi, Laura
2015-08-01
The present study aimed to analyse beliefs that men and women have with respect to their sense of direction (SOD) and whether they correlate with spatial environmental task performance. Eighty-four students filled in the short version of the Familiarity and Spatial Cognitive Style Scale to evaluate beliefs on their SOD, knowledge of the city (TK), spatial ability (SA) and wayfinding (WA) and performed three spatial environmental tasks. Results showed that gender did not predict the performance on the spatial environmental tasks, whereas it can be predicted by participants' beliefs related to their SOD and TK. The findings point out the need to identify specific training aimed at improving women's metacognitive skills in order to delete or reduce gender differences in SA.
Distinct roles of hippocampus and medial prefrontal cortex in spatial and nonspatial memory.
Sapiurka, Maya; Squire, Larry R; Clark, Robert E
2016-12-01
In earlier work, patients with hippocampal damage successfully path integrated, apparently by maintaining spatial information in working memory. In contrast, rats with hippocampal damage were unable to path integrate, even when the paths were simple and working memory might have been expected to support performance. We considered possible ways to understand these findings. We tested rats with either hippocampal lesions or lesions of medial prefrontal cortex (mPFC) on three tasks of spatial or nonspatial memory: path integration, spatial alternation, and a nonspatial alternation task. Rats with mPFC lesions were impaired on both spatial and nonspatial alternation but performed normally on path integration. By contrast, rats with hippocampal lesions were impaired on path integration and spatial alternation but performed normally on nonspatial alternation. We propose that rodent neocortex is limited in its ability to construct a coherent spatial working memory of complex environments. Accordingly, in tasks such as path integration and spatial alternation, working memory cannot depend on neocortex alone. Rats may accomplish many spatial memory tasks by relying on long-term memory. Alternatively, they may accomplish these tasks within working memory through sustained coordination between hippocampus and other cortical brain regions such as mPFC, in the case of spatial alternation, or parietal cortex in the case of path integration. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Haptic spatial matching in near peripersonal space.
Kaas, Amanda L; Mier, Hanneke I van
2006-04-01
Research has shown that haptic spatial matching at intermanual distances over 60 cm is prone to large systematic errors. The error pattern has been explained by the use of reference frames intermediate between egocentric and allocentric coding. This study investigated haptic performance in near peripersonal space, i.e. at intermanual distances of 60 cm and less. Twelve blindfolded participants (six males and six females) were presented with two turn bars at equal distances from the midsagittal plane, 30 or 60 cm apart. Different orientations (vertical/horizontal or oblique) of the left bar had to be matched by adjusting the right bar to either a mirror symmetric (/ \\) or parallel (/ /) position. The mirror symmetry task can in principle be performed accurately in both an egocentric and an allocentric reference frame, whereas the parallel task requires an allocentric representation. Results showed that parallel matching induced large systematic errors which increased with distance. Overall error was significantly smaller in the mirror task. The task difference also held for the vertical orientation at 60 cm distance, even though this orientation required the same response in both tasks, showing a marked effect of task instruction. In addition, men outperformed women on the parallel task. Finally, contrary to our expectations, systematic errors were found in the mirror task, predominantly at 30 cm distance. Based on these findings, we suggest that haptic performance in near peripersonal space might be dominated by different mechanisms than those which come into play at distances over 60 cm. Moreover, our results indicate that both inter-individual differences and task demands affect task performance in haptic spatial matching. Therefore, we conclude that the study of haptic spatial matching in near peripersonal space might reveal important additional constraints for the specification of adequate models of haptic spatial performance.
Moehler, Tobias; Fiehler, Katja
2014-12-01
The present study investigated the coupling of selection-for-perception and selection-for-action during saccadic eye movement planning in three dual-task experiments. We focused on the effects of spatial congruency of saccade target (ST) location and discrimination target (DT) location and the time between ST-cue and Go-signal (SOA) on saccadic eye movement performance. In two experiments, participants performed a visual discrimination task at a cued location while programming a saccadic eye movement to a cued location. In the third experiment, the discrimination task was not cued and appeared at a random location. Spatial congruency of ST-location and DT-location resulted in enhanced perceptual performance irrespective of SOA. Perceptual performance in spatially incongruent trials was above chance, but only when the DT-location was cued. Saccade accuracy and precision were also affected by spatial congruency showing superior performance when the ST- and DT-location coincided. Saccade latency was only affected by spatial congruency when the DT-cue was predictive of the ST-location. Moreover, saccades consistently curved away from the incongruent DT-locations. Importantly, the effects of spatial congruency on saccade parameters only occurred when the DT-location was cued; therefore, results from experiments 1 and 2 are due to the endogenous allocation of attention to the DT-location and not caused by the salience of the probe. The SOA affected saccade latency showing decreasing latencies with increasing SOA. In conclusion, our results demonstrate that visuospatial attention can be voluntarily distributed upon spatially distinct perceptual and motor goals in dual-task situations, resulting in a decline of visual discrimination and saccade performance.
MnemoCity Task: Assessment of Childrens Spatial Memory Using Stereoscopy and Virtual Environments.
Rodríguez-Andrés, David; Juan, M-Carmen; Méndez-López, Magdalena; Pérez-Hernández, Elena; Lluch, Javier
2016-01-01
This paper presents the MnemoCity task, which is a 3D application that introduces the user into a totally 3D virtual environment to evaluate spatial short-term memory. A study has been carried out to validate the MnemoCity task for the assessment of spatial short-term memory in children, by comparing the children's performance in the developed task with current approaches. A total of 160 children participated in the study. The task incorporates two types of interaction: one based on standard interaction and another one based on natural interaction involving physical movement by the user. There were no statistically significant differences in the results of the task using the two types of interaction. Furthermore, statistically significant differences were not found in relation to gender. The correlations between scores were obtained using the MnemoCity task and a traditional procedure for assessing spatial short-term memory. Those results revealed that the type of interaction used did not affect the performance of children in the MnemoCity task.
ERIC Educational Resources Information Center
Meneghetti, Chiara; Gyselinck, Valerie; Pazzaglia, Francesca; De Beni, Rossana
2009-01-01
The present study investigates the relation between spatial ability and visuo-spatial and verbal working memory in spatial text processing. In two experiments, participants listened to a spatial text (Experiments 1 and 2) and a non-spatial text (Experiment 1), at the same time performing a spatial or a verbal concurrent task, or no secondary task.…
Berney, Sandra; Bétrancourt, Mireille; Molinari, Gaëlle; Hoyek, Nady
2015-01-01
The emergence of dynamic visualizations of three-dimensional (3D) models in anatomy curricula may be an adequate solution for spatial difficulties encountered with traditional static learning, as they provide direct visualization of change throughout the viewpoints. However, little research has explored the interplay between learning material presentation formats, spatial abilities, and anatomical tasks. First, to understand the cognitive challenges a novice learner would be faced with when first exposed to 3D anatomical content, a six-step cognitive task analysis was developed. Following this, an experimental study was conducted to explore how presentation formats (dynamic vs. static visualizations) support learning of functional anatomy, and affect subsequent anatomical tasks derived from the cognitive task analysis. A second aim was to investigate the interplay between spatial abilities (spatial visualization and spatial relation) and presentation formats when the functional anatomy of a 3D scapula and the associated shoulder flexion movement are learned. Findings showed no main effect of the presentation formats on performances, but revealed the predictive influence of spatial visualization and spatial relation abilities on performance. However, an interesting interaction between presentation formats and spatial relation ability for a specific anatomical task was found. This result highlighted the influence of presentation formats when spatial abilities are involved as well as the differentiated influence of spatial abilities on anatomical tasks. © 2015 American Association of Anatomists.
Habacha, Hamdi; Molinaro, Corinne; Dosseville, Fabrice
2014-01-01
Mental rotation is one of the main spatial abilities necessary in the spatial transformation of mental images and the manipulation of spatial parameters. Researchers have shown that mental rotation abilities differ between populations depending on several variables. This study uses a mental rotation task to investigate effects of several factors on the spatial abilities of 277 volunteers. The results demonstrate that high and low imagers performed equally well on this tasks. Athletes outperformed nonathletes regardless of their discipline, and athletes with greater expertise outperformed those with less experience. The results replicate the previously reported finding that men exhibit better spatial abilities than women. However, with high amounts of practice, the women in the current study were able to perform as well as men.
The role of memory representation in the vigilance decrement.
Caggiano, Daniel M; Parasuraman, Raja
2004-10-01
Working memory load is critically important for the overall level of performance on vigilance tasks. However, its role in a key aspect of vigilance-sensitivity decrement over time-is unclear. We used a dual-task procedure in which either a spatial or a nonspatial working memory task was performed simultaneously with a spatial vigilance task for 20 min. Sensitivity in the vigilance task declined over time when the concurrent task involved spatial working memory. In contrast, there was no sensitivity decrement with a nonspatial working memory task. The results provide the first evidence of a specific role for working memory representation in vigilance decrement. The findings are also consistent with a multiple resource theory in which separate resources for memory representation and cognitive control operations are differentially susceptible to depletion over time, depending on the demands of the task at hand.
Object versus spatial visual mental imagery in patients with schizophrenia
Aleman, André; de Haan, Edward H.F.; Kahn, René S.
2005-01-01
Objective Recent research has revealed a larger impairment of object perceptual discrimination than of spatial perceptual discrimination in patients with schizophrenia. It has been suggested that mental imagery may share processing systems with perception. We investigated whether patients with schizophrenia would show greater impairment regarding object imagery than spatial imagery. Methods Forty-four patients with schizophrenia and 20 healthy control subjects were tested on a task of object visual mental imagery and on a task of spatial visual mental imagery. Both tasks included a condition in which no imagery was needed for adequate performance, but which was in other respects identical to the imagery condition. This allowed us to adjust for nonspecific differences in individual performance. Results The results revealed a significant difference between patients and controls on the object imagery task (F1,63 = 11.8, p = 0.001) but not on the spatial imagery task (F1,63 = 0.14, p = 0.71). To test for a differential effect, we conducted a 2 (patients v. controls) х 2 (object task v. spatial task) analysis of variance. The interaction term was statistically significant (F1,62 = 5.2, p = 0.026). Conclusions Our findings suggest a differential dysfunction of systems mediating object and spatial visual mental imagery in schizophrenia. PMID:15644999
Spatial cognition in autism spectrum disorders: superior, impaired, or just intact?
Edgin, Jamie O; Pennington, Bruce F
2005-12-01
The profile of spatial ability is of interest across autism spectrum disorders (ASD) because of reported spatial strengths in ASD and due to the recent association of Asperger's syndrome with Nonverbal Learning Disability. Spatial functions were examined in relation to two cognitive theories in autism: the central coherence and executive function (EF) theories. Performance on spatial tasks, EFs, and global/local processing was compared in children with ASD and controls. While the ASD group had faster reaction times on the Embedded Figures task, spatial performance was intact, but not superior, on other tasks. There was no evidence for impairments in EF or in processing global/local information, therefore contradicting these two theories. The implications of these results for these two theories are discussed.
Padula, Claudia B.; Schweinsburg, Alecia D.; Tapert, Susan F.
2008-01-01
Previous studies have suggested neural disruption and reorganization in adult marijuana users. However, it remains unclear whether these effects persist in adolescents after 28 days of abstinence and, if they do, what Performance × Brain Response interactions occur. Adolescent marijuana users (n = 17) and controls (n = 17) aged 16–18 years were recruited from local schools. Functional magnetic resonance imaging data were collected after 28 days’ monitored abstinence as participants performed a spatial working memory task. Marijuana users show Performance × Brain Response interactions in the bilateral temporal lobes, left anterior cingulate, left parahippocampal gyrus, and right thalamus (clusters ≥ 1358 μl; p <.05), although groups do not differ on behavioral measures of task performance. Marijuana users show differences in brain response to a spatial working memory task despite adequate performance, suggesting a different approach to the task via altered neural pathways. PMID:18072830
Spatial-simultaneous working memory and selective interference in Down syndrome.
Lanfranchi, Silvia; Mammarella, Irene C; Carretti, Barbara
2015-01-01
Several studies have suggested that individuals with Down syndrome (DS) have impairments in some aspects of the visuospatial domain. It has been reported that they are particularly impaired in the spatial-simultaneous working memory (WM) even in advantageous conditions such as when information is grouped to form a configuration. This study aimed to assess the performance of individuals with DS carrying out a spatial-simultaneous WM task in single and dual selective interference conditions in order to better explore the characteristics of their impairment in this area. Groups of individuals with DS and mentally age-matched typically developing (TD) children were asked to carry out a spatial-simultaneous WM task in a single- and in two dual-task conditions. In the single condition, the participants were required to recall an increasing number of positions of red squares presented simultaneously in a matrix. In the dual-task conditions, together with the spatial-simultaneous WM task, the participants were asked to carry out an articulatory suppression task or a tapping task. As has already been shown in other studies, individuals with DS were found to be impaired in carrying out a spatial-simultaneous WM task and showed a worse performance with respect to the TD group in both the conditions. These findings indicate that individuals with DS use the same coding modality as TD children of the same mental age. Just as the TD children, they performed lower in the dual- than in the single-task condition and there was no difference between the verbal and visuospatial conditions.
NASA Astrophysics Data System (ADS)
Price, Aaron; Lee, Hee-Sun
2010-02-01
We investigated whether and how student performance on three types of spatial cognition tasks differs when worked with two-dimensional or stereoscopic representations. We recruited nineteen middle school students visiting a planetarium in a large Midwestern American city and analyzed their performance on a series of spatial cognition tasks in terms of response accuracy and task completion time. Results show that response accuracy did not differ between the two types of representations while task completion time was significantly greater with the stereoscopic representations. The completion time increased as the number of mental manipulations of 3D objects increased in the tasks. Post-interviews provide evidence that some students continued to think of stereoscopic representations as two-dimensional. Based on cognitive load and cue theories, we interpret that, in the absence of pictorial depth cues, students may need more time to be familiar with stereoscopic representations for optimal performance. In light of these results, we discuss potential uses of stereoscopic representations for science learning.
Huang, Anna S.; Klein, Daniel N.; Leung, Hoi-Chung
2015-01-01
Spatial working memory is a central cognitive process that matures through adolescence in conjunction with major changes in brain function and anatomy. Here we focused on late childhood and early adolescence to more closely examine the neural correlates of performance variability during this important transition period. Using a modified spatial 1-back task with two memory load conditions in an fMRI study, we examined the relationship between load-dependent neural responses and task performance in a sample of 39 youth aged 9–12 years. Our data revealed that between-subject differences in task performance was predicted by load-dependent deactivation in default network regions, including the ventral anterior cingulate cortex (vACC) and posterior cingulate cortex (PCC). Although load-dependent increases in activation in prefrontal and posterior parietal regions were only weakly correlated with performance, increased prefrontal-parietal coupling was associated with better performance. Furthermore, behavioral measures of executive function from as early as age 3 predicted current load-dependent deactivation in vACC and PCC. These findings suggest that both task positive and task negative brain activation during spatial working memory contributed to successful task performance in late childhood/early adolescence. This may serve as a good model for studying executive control deficits in developmental disorders. PMID:26562059
Huang, Anna S; Klein, Daniel N; Leung, Hoi-Chung
2016-02-01
Spatial working memory is a central cognitive process that matures through adolescence in conjunction with major changes in brain function and anatomy. Here we focused on late childhood and early adolescence to more closely examine the neural correlates of performance variability during this important transition period. Using a modified spatial 1-back task with two memory load conditions in an fMRI study, we examined the relationship between load-dependent neural responses and task performance in a sample of 39 youth aged 9-12 years. Our data revealed that between-subject differences in task performance was predicted by load-dependent deactivation in default network regions, including the ventral anterior cingulate cortex (vACC) and posterior cingulate cortex (PCC). Although load-dependent increases in activation in prefrontal and posterior parietal regions were only weakly correlated with performance, increased prefrontal-parietal coupling was associated with better performance. Furthermore, behavioral measures of executive function from as early as age 3 predicted current load-dependent deactivation in vACC and PCC. These findings suggest that both task positive and task negative brain activation during spatial working memory contributed to successful task performance in late childhood/early adolescence. This may serve as a good model for studying executive control deficits in developmental disorders. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Surgical simulation tasks challenge visual working memory and visual-spatial ability differently.
Schlickum, Marcus; Hedman, Leif; Enochsson, Lars; Henningsohn, Lars; Kjellin, Ann; Felländer-Tsai, Li
2011-04-01
New strategies for selection and training of physicians are emerging. Previous studies have demonstrated a correlation between visual-spatial ability and visual working memory with surgical simulator performance. The aim of this study was to perform a detailed analysis on how these abilities are associated with metrics in simulator performance with different task content. The hypothesis is that the importance of visual-spatial ability and visual working memory varies with different task contents. Twenty-five medical students participated in the study that involved testing visual-spatial ability using the MRT-A test and visual working memory using the RoboMemo computer program. Subjects were also trained and tested for performance in three different surgical simulators. The scores from the psychometric tests and the performance metrics were then correlated using multivariate analysis. MRT-A score correlated significantly with the performance metrics Efficiency of screening (p = 0.006) and Total time (p = 0.01) in the GI Mentor II task and Total score (p = 0.02) in the MIST-VR simulator task. In the Uro Mentor task, both the MRT-A score and the visual working memory 3-D cube test score as presented in the RoboMemo program (p = 0.02) correlated with Total score (p = 0.004). In this study we have shown that some differences exist regarding the impact of visual abilities and task content on simulator performance. When designing future cognitive training programs and testing regimes, one might have to consider that the design must be adjusted in accordance with the specific surgical task to be trained in mind.
Spatial perception predicts laparoscopic skills on virtual reality laparoscopy simulator.
Hassan, I; Gerdes, B; Koller, M; Dick, B; Hellwig, D; Rothmund, M; Zielke, A
2007-06-01
This study evaluates the influence of visual-spatial perception on laparoscopic performance of novices with a virtual reality simulator (LapSim(R)). Twenty-four novices completed standardized tests of visual-spatial perception (Lameris Toegepaste Natuurwetenschappelijk Onderzoek [TNO] Test(R) and Stumpf-Fay Cube Perspectives Test(R)) and laparoscopic skills were assessed objectively, while performing 1-h practice sessions on the LapSim(R), comprising of coordination, cutting, and clip application tasks. Outcome variables included time to complete the tasks, economy of motion as well as total error scores, respectively. The degree of visual-spatial perception correlated significantly with laparoscopic performance on the LapSim(R) scores. Participants with a high degree of spatial perception (Group A) performed the tasks faster than those (Group B) who had a low degree of spatial perception (p = 0.001). Individuals with a high degree of spatial perception also scored better for economy of motion (p = 0.021), tissue damage (p = 0.009), and total error (p = 0.007). Among novices, visual-spatial perception is associated with manual skills performed on a virtual reality simulator. This result may be important for educators to develop adequate training programs that can be individually adapted.
Caloric restriction and spatial learning in old mice.
Bellush, L L; Wright, A M; Walker, J P; Kopchick, J; Colvin, R A
1996-08-01
Spatial learning in old mice (19 or 24 months old), some of which had been calorically restricted beginning at 14 weeks of age, was compared to that of young mice, in two separate experiments using a Morris water maze. In the first experiment, only old mice reaching criterion performance on a cued learning task were tested in a subsequent spatial task. Thus, all old mice tested for spatial learning had achieved escape latencies equivalent to those of young controls. Despite equivalent swimming speeds, only about half the old mice in each diet group achieved criterion performance in the spatial task. In the second experiment, old and young mice all received the same number of training trials in a cued task and then in a spatial task. Immediately following spatial training, they were given a 60-s probe trial, with no platform in the pool. Both groups of old mice spent significantly less time in the quadrant where the platform had been and made significantly fewer direct crosses over the previous platform location than did the young control group. As in Experiment 1, calorie restriction failed to provide protection against aging-related deficits. However, in both experiments, some individual old mice evidenced performance in spatial learning indistinguishable from that of young controls. Separate comparisons of "age-impaired" and "age-unimpaired" old mice with young controls may facilitate the identification of neurobiological mechanisms underlying age-related cognitive decline.
FMRI to probe sex-related differences in brain function with multitasking
Tschernegg, Melanie; Neuper, Christa; Schmidt, Reinhold; Wood, Guilherme; Kronbichler, Martin; Fazekas, Franz; Enzinger, Christian
2017-01-01
Background Although established as a general notion in society, there is no solid scientific foundation for the existence of sex-differences in multitasking. Reaction time and accuracy in dual task conditions have an inverse relationship relative to single task, independently from sex. While a more disseminated network, parallel to decreasing accuracy and reaction time has been demonstrated in dual task fMRI studies, little is known so far whether there exist respective sex-related differences in activation. Methods We subjected 20 women (mean age = 25.45; SD = 5.23) and 20 men (mean age = 27.55; SD = 4.00) to a combined verbal and spatial fMRI paradigm at 3.0T to assess sex-related skills, based on the assumption that generally women better perform in verbal tasks while men do better in spatial tasks. We also obtained behavioral tests for verbal and spatial intelligence, attention, executive functions, and working memory. Results No differences between women and men were observed in behavioral measures of dual-tasking or cognitive performance. Generally, brain activation increased with higher task load, mainly in the bilateral inferior and prefrontal gyri, the anterior cingulum, thalamus, putamen and occipital areas. Comparing sexes, women showed increased activation in the inferior frontal gyrus in the verbal dual-task while men demonstrated increased activation in the precuneus and adjacent visual areas in the spatial task. Conclusion Against the background of equal cognitive and behavioral dual-task performance in both sexes, we provide first evidence for sex-related activation differences in functional networks for verbal and spatial dual-tasking. PMID:28759619
FMRI to probe sex-related differences in brain function with multitasking.
Tschernegg, Melanie; Neuper, Christa; Schmidt, Reinhold; Wood, Guilherme; Kronbichler, Martin; Fazekas, Franz; Enzinger, Christian; Koini, Marisa
2017-01-01
Although established as a general notion in society, there is no solid scientific foundation for the existence of sex-differences in multitasking. Reaction time and accuracy in dual task conditions have an inverse relationship relative to single task, independently from sex. While a more disseminated network, parallel to decreasing accuracy and reaction time has been demonstrated in dual task fMRI studies, little is known so far whether there exist respective sex-related differences in activation. We subjected 20 women (mean age = 25.45; SD = 5.23) and 20 men (mean age = 27.55; SD = 4.00) to a combined verbal and spatial fMRI paradigm at 3.0T to assess sex-related skills, based on the assumption that generally women better perform in verbal tasks while men do better in spatial tasks. We also obtained behavioral tests for verbal and spatial intelligence, attention, executive functions, and working memory. No differences between women and men were observed in behavioral measures of dual-tasking or cognitive performance. Generally, brain activation increased with higher task load, mainly in the bilateral inferior and prefrontal gyri, the anterior cingulum, thalamus, putamen and occipital areas. Comparing sexes, women showed increased activation in the inferior frontal gyrus in the verbal dual-task while men demonstrated increased activation in the precuneus and adjacent visual areas in the spatial task. Against the background of equal cognitive and behavioral dual-task performance in both sexes, we provide first evidence for sex-related activation differences in functional networks for verbal and spatial dual-tasking.
Online and offline awareness deficits: Anosognosia for spatial neglect.
Chen, Peii; Toglia, Joan
2018-04-12
Anosognosia for spatial neglect (ASN) can be offline or online. Offline ASN is general unawareness of having experienced spatial deficits. Online ASN is an awareness deficit of underestimating spatial difficulties that likely to occur in an upcoming task (anticipatory ASN) or have just occurred during the task (emergent ASN). We explored the relationships among spatial neglect, offline ASN, anticipatory ASN, and emergent ASN. Research Method/Design: Forty-four survivors of stroke answered questionnaires assessing offline and online self-awareness of spatial problems. The online questionnaire was asked immediately before and after each of 4 tests for spatial neglect, including shape cancellation, address and sentence copying, telephone dialing, and indented paragraph reading. Participants were certain they had difficulties in daily spatial tasks (offline awareness), in the task they were about to perform (anticipatory awareness) and had just performed (emergent awareness). Nonetheless, they consistently overestimated their spatial abilities, indicating ASN. Offline and online ASN appeared independent. Online ASN improved after task execution. Neglect severity was not positively correlated with offline ASN. Greater neglect severity correlated with both greater anticipatory and emergent ASN. Regardless of neglect severity, we found task-specific differences in emergent ASN but not in anticipatory ASN. Individuals with spatial neglect acknowledge their spatial difficulty (certainty of error occurrence) but may not necessarily recognize the extent of their difficulty (accuracy of error estimation). Our findings suggest that offline and online ASN are independent. A potential implication from the study is that familiar and challenging tasks may facilitate emergence of self-awareness. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Visuospatial deficits in schizophrenia: central executive and memory subsystems impairments.
Leiderman, Eduardo A; Strejilevich, Sergio A
2004-06-01
Object and spatial visual working memory are impaired in schizophrenic patients. It is not clear if the impairments reside in each memory subsystem alone or also in the central executive component that coordinates these processes. In order to elucidate which memory component is impaired, we developed a paradigm with single spatial and object working memory tasks and dual ones with two different delays (5 and 30 s). Fifteen schizophrenic patients and 14 control subjects performed these tests. Schizophrenic patients had a poorer performance compared to normal controls in all tasks and in all time delays. Both schizophrenics and controls performed significantly worse in the object task than in the spatial task. The performance was even worse in the dual task compared to the singles ones in schizophrenic patients but not in controls. These data suggest that visuospatial performance deficits in schizophrenia are due to both visuospatial memory subsystems impairments and central executive ones. The pattern of deficits observed points to a codification or evocation deficit and not to a maintenance one.
How Attention Affects Spatial Resolution
Carrasco, Marisa; Barbot, Antoine
2015-01-01
We summarize and discuss a series of psychophysical studies on the effects of spatial covert attention on spatial resolution, our ability to discriminate fine patterns. Heightened resolution is beneficial in most, but not all, visual tasks. We show how endogenous attention (voluntary, goal driven) and exogenous attention (involuntary, stimulus driven) affect performance on a variety of tasks mediated by spatial resolution, such as visual search, crowding, acuity, and texture segmentation. Exogenous attention is an automatic mechanism that increases resolution regardless of whether it helps or hinders performance. In contrast, endogenous attention flexibly adjusts resolution to optimize performance according to task demands. We illustrate how psychophysical studies can reveal the underlying mechanisms of these effects and allow us to draw linking hypotheses with known neurophysiological effects of attention. PMID:25948640
The role of memory representation in the vigilance decrement
CAGGIANO, DANIEL M.; PARASURAMAN, RAJA
2005-01-01
Working memory load is critically important for the overall level of performance on vigilance tasks. However, its role in a key aspect of vigilance—sensitivity decrement over time—is unclear. We used a dual-task procedure in which either a spatial or a nonspatial working memory task was performed simultaneously with a spatial vigilance task for 20 min. Sensitivity in the vigilance task declined over time when the concurrent task involved spatial working memory. In contrast, there was no sensitivity decrement with a nonspatial working memory task. The results provide the first evidence of a specific role for working memory representation in vigilance decrement. The findings are also consistent with a multiple resource theory in which separate resources for memory representation and cognitive control operations are differentially susceptible to depletion over time, depending on the demands of the task at hand. PMID:15732706
Baumann, Oliver; Skilleter, Ashley J.; Mattingley, Jason B.
2011-01-01
The goal of the present study was to examine the extent to which working memory supports the maintenance of object locations during active spatial navigation. Participants were required to navigate a virtual environment and to encode the location of a target object. In the subsequent maintenance period they performed one of three secondary tasks that were designed to selectively load visual, verbal or spatial working memory subsystems. Thereafter participants re-entered the environment and navigated back to the remembered location of the target. We found that while navigation performance in participants with high navigational ability was impaired only by the spatial secondary task, navigation performance in participants with poor navigational ability was impaired equally by spatial and verbal secondary tasks. The visual secondary task had no effect on navigation performance. Our results extend current knowledge by showing that the differential engagement of working memory subsystems is determined by navigational ability. PMID:21629686
Boyle, Gregory J; Neumann, David L; Furedy, John J; Westbury, H Rae
2010-04-01
This paper reports sex differences in cognitive task performance that emerged when 39 Australian university undergraduates (19 men, 20 women) were asked to solve verbal (lexical) and visual-spatial cognitive matching tasks which varied in difficulty and visual field of presentation. Sex significantly interacted with task type, task difficulty, laterality, and changes in performance across trials. The results revealed that the significant individual-differences' variable of sex does not always emerge as a significant main effect, but instead in terms of significant interactions with other variables manipulated experimentally. Our results show that sex differences must be taken into account when conducting experiments into human cognitive-task performance.
D'Antuono, Giovanni; La Torre, Francesca Romana; Marin, Dario; Antonucci, Gabriella; Piccardi, Laura; Guariglia, Cecilia
2017-01-01
We investigated the relationship between verbal and visuo-spatial measures of working memory, inhibition, fluid intelligence and the performance on the Tower of London (ToL) task in a large sample of 830 healthy participants aged between 18 and 71 years. We found that fluid intelligence and visuo-spatial working memory accounted for a significant variance in the ToL task, while performances on verbal working memory and on the Stroop Test were not predictive for performance on the ToL. The present results confirm that fluid intelligence has a fundamental role on planning tests, but also show that visuo-spatial working memory plays a crucial role in ToL performance.
Developmental gender differences in children in a virtual spatial memory task.
León, Irene; Cimadevilla, José Manuel; Tascón, Laura
2014-07-01
Behavioral achievements are the product of brain maturation. During postnatal development, the medial temporal lobe completes its maturation, and children acquire new memory abilities. In recent years, virtual reality-based tasks have been introduced in the neuropsychology field to assess different cognitive functions. In this work, desktop virtual reality tasks are combined with classic psychometric tests to assess spatial abilities in 4- to 10-year-old children. Fifty boys and 50 girls 4-10-years of age participated in this study. Spatial reference memory and spatial working memory were assessed using a desktop virtual reality-based task. Other classic psychometric tests were also included in this work (e.g., the Corsi Block Tapping Test, digit tests, 10/36 Spatial Recall Test). In general terms, 4- and 5-year-old groups showed poorer performance than the older groups. However, 5-year-old children showed basic spatial navigation abilities with little difficulty. In addition, boys outperformed girls from the 6-8-year-old groups. Gender differences only emerged in the reference-memory version of the spatial task, whereas both sexes displayed similar performances in the working-memory version. There was general improvement in the performance of different tasks in children older than 5 years. However, results also suggest that brain regions involved in allocentric memory are functional even at the age of 5. In addition, the brain structures underlying reference memory mature later in girls than those required for the working memory.
Effects of cue types on sex differences in human spatial memory.
Chai, Xiaoqian J; Jacobs, Lucia F
2010-04-02
We examined the effects of cue types on human spatial memory in 3D virtual environments adapted from classical animal and human tasks. Two classes of cues of different functions were investigated: those that provide directional information, and those that provide positional information. Adding a directional cue (geographical slant) to the spatial delayed-match-to-sample task improved performance in males but not in females. When the slant directional cue was removed in a hidden-target location task, male performance was impaired but female performance was unaffected. The removal of positional cues, on the other hand, impaired female performance but not male performance. These results are consistent with results from laboratory rodents and thus support the hypothesis that sex differences in spatial memory arise from the dissociation between a preferential reliance on directional cues in males and on positional cues in females. Copyright 2009 Elsevier B.V. All rights reserved.
MnemoCity Task: Assessment of Childrens Spatial Memory Using Stereoscopy and Virtual Environments
Rodríguez-Andrés, David; Méndez-López, Magdalena; Pérez-Hernández, Elena; Lluch, Javier
2016-01-01
This paper presents the MnemoCity task, which is a 3D application that introduces the user into a totally 3D virtual environment to evaluate spatial short-term memory. A study has been carried out to validate the MnemoCity task for the assessment of spatial short-term memory in children, by comparing the children’s performance in the developed task with current approaches. A total of 160 children participated in the study. The task incorporates two types of interaction: one based on standard interaction and another one based on natural interaction involving physical movement by the user. There were no statistically significant differences in the results of the task using the two types of interaction. Furthermore, statistically significant differences were not found in relation to gender. The correlations between scores were obtained using the MnemoCity task and a traditional procedure for assessing spatial short-term memory. Those results revealed that the type of interaction used did not affect the performance of children in the MnemoCity task. PMID:27579715
Galea, L A; Ossenkopp, K P; Kavaliers, M
1994-01-31
Spatial learning in pre- and postweaning meadow voles, (Microtus pennsylvanicus) was examined in a Morris water-maze task. The learning performance of 10-day-old (preweaning) and 15-, 20- and 25-day-old (postweaning) male and female voles was assessed by measuring the latency to reach a hidden platform by each animal twice a day for 5 days. Voles of all age groups were able to learn the spatial task with Day 10 and Day 15 voles acquiring the task more slowly than did Day 20 and Day 25 voles. There were no significant sex differences in task acquisition in any of the four age groups. In addition, although swimming speed was related to age, with older animals swimming faster than younger ones, differences in swim speed did not account for the faster acquisition by the older animals. These results show that both preweaning and postweaning voles can successfully learn a spatial task. This is in contrast to preweaning laboratory rats which cannot successfully acquire a similar spatial task. These findings indicate that there are species differences in the ontogeny of spatial learning, which are likely related to the ecological and behavioural developmental characteristics of the species. Furthermore, in contrast to the sex difference in water-maze performance obtained in adult, breeding meadow voles who demonstrate a sex difference, there were no significant sex differences in the spatial performance of the juvenile voles. This suggests that sex differences in spatial learning in the meadow vole do not appear until voles reach reproductive adulthood.
Magnuson, Matthew Evan; Thompson, Garth John; Schwarb, Hillary; Pan, Wen-Ju; McKinley, Andy; Schumacher, Eric H; Keilholz, Shella Dawn
2015-12-01
The brain is organized into networks composed of spatially separated anatomical regions exhibiting coherent functional activity over time. Two of these networks (the default mode network, DMN, and the task positive network, TPN) have been implicated in the performance of a number of cognitive tasks. To directly examine the stable relationship between network connectivity and behavioral performance, high temporal resolution functional magnetic resonance imaging (fMRI) data were collected during the resting state, and behavioral data were collected from 15 subjects on different days, exploring verbal working memory, spatial working memory, and fluid intelligence. Sustained attention performance was also evaluated in a task interleaved between resting state scans. Functional connectivity within and between the DMN and TPN was related to performance on these tasks. Decreased TPN resting state connectivity was found to significantly correlate with fewer errors on an interrupter task presented during a spatial working memory paradigm and decreased DMN/TPN anti-correlation was significantly correlated with fewer errors on an interrupter task presented during a verbal working memory paradigm. A trend for increased DMN resting state connectivity to correlate to measures of fluid intelligence was also observed. These results provide additional evidence of the relationship between resting state networks and behavioral performance, and show that such results can be observed with high temporal resolution fMRI. Because cognitive scores and functional connectivity were collected on nonconsecutive days, these results highlight the stability of functional connectivity/cognitive performance coupling.
Early Puzzle Play: A predictor of preschoolers’ spatial transformation skill
Levine, S.C.; Ratliff, K.R.; Huttenlocher, J.; Cannon, J.
2011-01-01
Individual differences in spatial skill emerge prior to kindergarten entry. However, little is known about the early experiences that may contribute to these differences. The current study examines the relation between children’s early puzzle play and their spatial skill. Children and parents (n = 53) were observed at home for 90 minutes every four months (six times) between 2 and 4 years of age (26 to 46 months). When children were 4 years 6 months old, they completed a spatial task involving mental transformations of 2D shapes. Children who were observed playing with puzzles performed better on this task than those who did not, controlling for parent education, income, and overall parent word types. Moreover, among those children who played with puzzles, frequency of puzzle play predicted performance on the spatial transformation task. Although the frequency of puzzle play did not differ for boys and girls, the quality of puzzle play (a composite of puzzle difficulty, parent engagement, and parent spatial language) was higher for boys than girls. In addition, variation in puzzle play quality predicted performance on the spatial transformation task for girls but not boys. Implications of these findings as well as future directions for research on the role of the role of puzzle play in the development of spatial skill are discussed. PMID:22040312
Brain activations during bimodal dual tasks depend on the nature and combination of component tasks
Salo, Emma; Rinne, Teemu; Salonen, Oili; Alho, Kimmo
2015-01-01
We used functional magnetic resonance imaging to investigate brain activations during nine different dual tasks in which the participants were required to simultaneously attend to concurrent streams of spoken syllables and written letters. They performed a phonological, spatial or “simple” (speaker-gender or font-shade) discrimination task within each modality. We expected to find activations associated specifically with dual tasking especially in the frontal and parietal cortices. However, no brain areas showed systematic dual task enhancements common for all dual tasks. Further analysis revealed that dual tasks including component tasks that were according to Baddeley's model “modality atypical,” that is, the auditory spatial task or the visual phonological task, were not associated with enhanced frontal activity. In contrast, for other dual tasks, activity specifically associated with dual tasking was found in the left or bilateral frontal cortices. Enhanced activation in parietal areas, however, appeared not to be specifically associated with dual tasking per se, but rather with intermodal attention switching. We also expected effects of dual tasking in left frontal supramodal phonological processing areas when both component tasks required phonological processing and in right parietal supramodal spatial processing areas when both tasks required spatial processing. However, no such effects were found during these dual tasks compared with their component tasks performed separately. Taken together, the current results indicate that activations during dual tasks depend in a complex manner on specific demands of component tasks. PMID:25767443
Gomez-Cardona, Daniel; Hayes, John W; Zhang, Ran; Li, Ke; Cruz-Bastida, Juan Pablo; Chen, Guang-Hong
2018-05-01
Different low-signal correction (LSC) methods have been shown to efficiently reduce noise streaks and noise level in CT to provide acceptable images at low-radiation dose levels. These methods usually result in CT images with highly shift-variant and anisotropic spatial resolution and noise, which makes the parameter optimization process highly nontrivial. The purpose of this work was to develop a local task-based parameter optimization framework for LSC methods. Two well-known LSC methods, the adaptive trimmed mean (ATM) filter and the anisotropic diffusion (AD) filter, were used as examples to demonstrate how to use the task-based framework to optimize filter parameter selection. Two parameters, denoted by the set P, for each LSC method were included in the optimization problem. For the ATM filter, these parameters are the low- and high-signal threshold levels p l and p h ; for the AD filter, the parameters are the exponents δ and γ in the brightness gradient function. The detectability index d' under the non-prewhitening (NPW) mathematical observer model was selected as the metric for parameter optimization. The optimization problem was formulated as an unconstrained optimization problem that consisted of maximizing an objective function d'(P), where i and j correspond to the i-th imaging task and j-th spatial location, respectively. Since there is no explicit mathematical function to describe the dependence of d' on the set of parameters P for each LSC method, the optimization problem was solved via an experimentally measured d' map over a densely sampled parameter space. In this work, three high-contrast-high-frequency discrimination imaging tasks were defined to explore the parameter space of each of the LSC methods: a vertical bar pattern (task I), a horizontal bar pattern (task II), and a multidirectional feature (task III). Two spatial locations were considered for the analysis, a posterior region-of-interest (ROI) located within the noise streaks region and an anterior ROI, located further from the noise streaks region. Optimal results derived from the task-based detectability index metric were compared to other operating points in the parameter space with different noise and spatial resolution trade-offs. The optimal operating points determined through the d' metric depended on the interplay between the major spatial frequency components of each imaging task and the highly shift-variant and anisotropic noise and spatial resolution properties associated with each operating point in the LSC parameter space. This interplay influenced imaging performance the most when the major spatial frequency component of a given imaging task coincided with the direction of spatial resolution loss or with the dominant noise spatial frequency component; this was the case of imaging task II. The performance of imaging tasks I and III was influenced by this interplay in a smaller scale than imaging task II, since the major frequency component of task I was perpendicular to imaging task II, and because imaging task III did not have strong directional dependence. For both LSC methods, there was a strong dependence of the overall d' magnitude and shape of the contours on the spatial location within the phantom, particularly for imaging tasks II and III. The d' value obtained at the optimal operating point for each spatial location and imaging task was similar when comparing the LSC methods studied in this work. A local task-based detectability framework to optimize the selection of parameters for LSC methods was developed. The framework takes into account the potential shift-variant and anisotropic spatial resolution and noise properties to maximize the imaging performance of the CT system. Optimal parameters for a given LSC method depend strongly on the spatial location within the image object. © 2018 American Association of Physicists in Medicine.
Plasticity of human spatial cognition: spatial language and cognition covary across cultures.
Haun, Daniel B M; Rapold, Christian J; Janzen, Gabriele; Levinson, Stephen C
2011-04-01
The present paper explores cross-cultural variation in spatial cognition by comparing spatial reconstruction tasks by Dutch and Namibian elementary school children. These two communities differ in the way they predominantly express spatial relations in language. Four experiments investigate cognitive strategy preferences across different levels of task-complexity and instruction. Data show a correlation between dominant linguistic spatial frames of reference and performance patterns in non-linguistic spatial memory tasks. This correlation is shown to be stable across an increase of complexity in the spatial array. When instructed to use their respective non-habitual cognitive strategy, participants were not easily able to switch between strategies and their attempts to do so impaired their performance. These results indicate a difference not only in preference but also in competence and suggest that spatial language and non-linguistic preferences and competences in spatial cognition are systematically aligned across human populations. Copyright © 2011 Elsevier B.V. All rights reserved.
Encouraging Spatial Talk: Using Children's Museums to Bolster Spatial Reasoning
ERIC Educational Resources Information Center
Polinsky, Naomi; Perez, Jasmin; Grehl, Mora; McCrink, Koleen
2017-01-01
Longitudinal spatial language intervention studies have shown that greater exposure to spatial language improves children's performance on spatial tasks. Can short naturalistic, spatial language interactions also evoke improved spatial performance? In this study, parents were asked to interact with their child at a block wall exhibit in a…
NASA Technical Reports Server (NTRS)
Payne, David G.; Gunther, Virginia A. L.
1988-01-01
Subjects performed short term memory tasks, involving both spatial and verbal components, and a visual monitoring task involving either analog or digital display formats. These two tasks (memory vs. monitoring) were performed both singly and in conjunction. Contrary to expectations derived from multiple resource theories of attentional processes, there was no evidence that when the two tasks involved the same cognitive codes (i.e., either both spatial or both verbal/linguistics) there was more of a dual task performance decrement than when the two tasks employed different cognitive codes/processes. These results are discussed in terms of their implications for theories of attentional processes and also for research in mental state estimation.
Korthauer, L E; Nowak, N T; Frahmand, M; Driscoll, I
2017-01-15
Although effective spatial navigation requires memory for objects and locations, navigating a novel environment may also require considerable executive resources. The present study investigated associations between performance on the virtual Morris Water Task (vMWT), an analog version of a nonhuman spatial navigation task, and neuropsychological tests of executive functioning and spatial performance in 75 healthy young adults. More effective vMWT performance (e.g., lower latency and distance to reach hidden platform, greater distance in goal quadrant on a probe trial, fewer path intersections) was associated with better verbal fluency, set switching, response inhibition, and ability to mentally rotate objects. Findings also support a male advantage in spatial navigation, with sex moderating several associations between vMWT performance and executive abilities. Overall, we report a robust relationship between executive functioning and navigational skill, with some evidence that men and women may differentially recruit cognitive abilities when navigating a novel environment. Copyright © 2016 Elsevier B.V. All rights reserved.
Age, gesture span, and dissociations among component subsystems of working memory.
Dolman, R; Roy, E A; Dimeck, P T; Hall, C R
2000-01-01
Working memory was examined in old and young adults using a series of span tasks, including the forward versions of the visual-spatial and digit span tasks from the Wechsler Memory Scale-Revised, and comparable hand gesture and visual design span tasks. The observation that the young participants performed significantly better on all the tasks except digit span suggested that aging has an impact on some component subsystems of working memory but not others. Analyses of intercorrelations in span performance supports the dissociation among three component subsystems, one for auditory verbal information (the articulatory loop), one for visual-spatial information (visual-spatial scratch-pad), and one for hand/body postural configuration.
The role of physical content in piagetian spatial tasks: Sex differences in spatial knowledge?
NASA Astrophysics Data System (ADS)
Golbeck, Susan L.
Sex-related differences on Piagetian horizontality (water level) and verticality (plumb line) tasks were examined in 64 college students. It was hypothesized that females' difficulties on these Euclidean spatial problems are due not to differences in underlying spatial competence, but rather to differences in knowledge of task specific information about the physical properties of water levels and plumb lines. This was tested by presenting subjects with the standard water level and plumb line problems and also modified problems not requiring knowledge of physical principles (i.e., drawing straight up and down or straight across lines inside tipped rectangles). While males were expected to outperform females on the standard tasks, no sex differences were expected on the modified tasks. Results of an ANOVA on scores for horizontality and verticality each showed main effects for sex and task version but failed to reveal the hypothesized interaction. However, performance on the Euclidean spatial tasks was also considered in terms of overall success versus failure. While males were more successful than females in the standard format, males and females were equally successful in the modified, nonphysical, format. Hence, college aged males and females generally do not differ in spatial competence although they may be differentially influenced by task content. Findings are discussed in terms of their implications for theory and practice. It is emphasized that science educators must be especially aware of such task influences for females so that performance deficits are not mistaken for competence deficits.
Carretti, Barbara; Lanfranchi, Silvia; Mammarella, Irene C
2013-01-01
Earlier research showed that visuospatial working memory (VSWM) is better preserved in Down syndrome (DS) than verbal WM. Some differences emerged, however, when VSWM performance was broken down into its various components, and more recent studies revealed that the spatial-simultaneous component of VSWM is more impaired than the spatial-sequential one. The difficulty of managing more than one item at a time is also evident when the information to be recalled is structured. To further analyze this issue, we investigated the advantage of material being structured in spatial-simultaneous and spatial-sequential tasks by comparing the performance of a group of individuals with DS and a group of typically-developing children matched for mental age. Both groups were presented with VSWM tasks in which both the presentation format (simultaneous vs. sequential) and the type of configuration (pattern vs. random) were manipulated. Findings indicated that individuals with DS took less advantage of the pattern configuration in the spatial-simultaneous task than TD children; in contrast, the two groups' performance did not differ in the pattern configuration of the spatial-sequential task. Taken together, these results confirmed difficulties relating to the spatial-simultaneous component of VSWM in individuals with DS, supporting the importance of distinguishing between different components within this system. The findings are discussed in terms of factors influencing this specific deficit. Copyright © 2012 Elsevier Ltd. All rights reserved.
A Twin Study of Spatial and Non-Spatial Delayed Response Performance in Middle Age
ERIC Educational Resources Information Center
Kremen, William S.; Mai, Tuan; Panizzon, Matthew S.; Franz, Carol E.; Blankfeld, Howard M.; Xian, Hong; Eisen, Seth A.; Tsuang, Ming T.; Lyons, Michael J.
2011-01-01
Delayed alternation and object alternation are classic spatial and non-spatial delayed response tasks. We tested 632 middle-aged male veteran twins on variants of these tasks in order to compare test difficulty, measure their inter-correlation, test order effects, and estimate heritabilities (proportion of observed variance due to genetic…
Shiels, Keri; Hawk, Larry W; Lysczek, Cynthia L; Tannock, Rosemary; Pelham, William E; Spencer, Sarah V; Gangloff, Brian P; Waschbusch, Daniel A
2008-08-01
Working memory is one of several putative core neurocognitive processes in attention-deficit/hyperactivity disorder (ADHD). The present work seeks to determine whether visual-spatial working memory is sensitive to motivational incentives, a laboratory analogue of behavioral treatment. Participants were 21 children (ages 7-10) with a diagnosis of ADHD-combined type. Participants completed a computerized spatial span task designed to assess storage of visual-spatial information (forward span) and manipulation of the stored information (backward span). The spatial span task was completed twice on the same day, once with a performance-based incentive (trial-wise feedback and points redeemable for prizes) and once without incentives. Participants performed significantly better on the backward span when rewarded for correct responses, compared to the no incentive condition. However, incentives had no effect on performance during the forward span. These findings may suggest the use of motivational incentives improved manipulation, but not storage, of visual-spatial information among children with ADHD. Possible explanations for the differential incentive effects are discussed, including the possibility that incentives prevented a vigilance decrement as task difficulty and time on task increased.
NASA Astrophysics Data System (ADS)
Everett, Susan Ann
1999-09-01
In this study the relationships among the topological spatial structures were examined in students in kindergarten, second, and fourth grades. These topological spatial structures are part of the three major types of spatial thinking: topological, projective, and Euclidean (as defined by Jean Piaget and associates). According to Piaget's model of spatial thinking, the spatial structures enable humans to think about spatial relationships at a conceptual or representational level rather than only at a simpler, perceptual level. The clinical interview technique was used to interact individually with 72 children to assess the presence of each of the different topological spatial structures. This was accomplished through the use of seven task protocols and simple objects which are familiar to young children. These task protocols allowed the investigator to interact with each child in a consistent manner. The results showed that most of the children in this study (97.2%) had not developed all of the topological spatial structures. The task scores, were analyzed using non-parametric statistical tests due to the ordinal nature of the data. From the data the following results were obtained: (1) the spatial structures did not develop in random order based on the task scores but developed in the sequence expected from Piaget's model, (2) task performance improved with grade level with fourth grade students outperforming second graders and kindergartners on each of the seven tasks, and (3) no significant differences on task performance due to gender were found. Based on these results, young elementary children are beginning to develop topological spatial thinking. This is critical since it provides the foundation for the other types of spatial thinking, projective and Euclidean. Since spatial thinking is not a "gift" but can be developed, educators need to provide more opportunities for students to increase their level of spatial thinking since it is necessary for conceptual understanding of many different topics in math and science.
When Content Matters: The Role of Processing Code in Tactile Display Design.
Ferris, Thomas K; Sarter, Nadine
2010-01-01
The distribution of tasks and stimuli across multiple modalities has been proposed as a means to support multitasking in data-rich environments. Recently, the tactile channel and, more specifically, communication via the use of tactile/haptic icons have received considerable interest. Past research has examined primarily the impact of concurrent task modality on the effectiveness of tactile information presentation. However, it is not well known to what extent the interpretation of iconic tactile patterns is affected by another attribute of information: the information processing codes of concurrent tasks. In two driving simulation studies (n = 25 for each), participants decoded icons composed of either spatial or nonspatial patterns of vibrations (engaging spatial and nonspatial processing code resources, respectively) while concurrently interpreting spatial or nonspatial visual task stimuli. As predicted by Multiple Resource Theory, performance was significantly worse (approximately 5-10 percent worse) when the tactile icons and visual tasks engaged the same processing code, with the overall worst performance in the spatial-spatial task pairing. The findings from these studies contribute to an improved understanding of information processing and can serve as input to multidimensional quantitative models of timesharing performance. From an applied perspective, the results suggest that competition for processing code resources warrants consideration, alongside other factors such as the naturalness of signal-message mapping, when designing iconic tactile displays. Nonspatially encoded tactile icons may be preferable in environments which already rely heavily on spatial processing, such as car cockpits.
Modality dependence and intermodal transfer in the Corsi Spatial Sequence Task: Screen vs. Floor.
Röser, Andrea; Hardiess, Gregor; Mallot, Hanspeter A
2016-07-01
Four versions of the Corsi Spatial Sequence Task (CSST) were tested in a complete within-subject design, investigating whether participants' performance depends on the modality of task presentation and reproduction that put different demands on spatial processing. Presentation of the sequence (encoding phase) and the reproduction (recall phase) were each carried out either on a computer screen or on the floor of a room, involving actual walking in the recall phase. Combinations of the two different encoding and recall procedures result in the modality conditions Screen-Screen, Screen-Floor, Floor-Screen, and Floor-Floor. Results show the expected decrease in performance with increasing sequence length, which is likely due to processing limitations of working memory. We also found differences in performance between the modality conditions indicating different involvements of spatial working memory processes. Participants performed best in the Screen-Screen modality condition. Floor-Screen and Floor-Floor modality conditions require additional working memory resources for reference frame transformation and spatial updating, respectively; the resulting impairment of the performance was about the same in these two conditions. Finally, the Screen-Floor modality condition requires both types of additional spatial demands and led to the poorest performance. Therefore, we suggest that besides the well-known spatial requirements of CSST, additional working memory resources are demanded in walking CSST supporting processes such as spatial updating, mental rotation, reference frame transformation, and the control of walking itself.
Beyond Conceptual Knowledge: The Impact of Children’s Theory-of-Mind on Dyadic Spatial Tasks
Viana, Karine M. P.; Zambrana, Imac M.; Karevold, Evalill B.; Pons, Francisco
2016-01-01
Recent studies show that Theory of Mind (ToM) has implications for children’s social competences and psychological well-being. Nevertheless, although it is well documented that children overall take advantage when they have to resolve cognitive problems together with a partner, whether individual difference in ToM is one of the mechanisms that could explain cognitive performances produced in social interaction has received little attention. This study examines to what extent ToM explains children’s spatial performances in a dyadic situation. The sample includes 66 boys and girls between the ages of 5–9 years, who were tested for their ToM and for their competence to resolve a Spatial task involving mental rotation and spatial perspective taking, first individually and then in a dyadic condition. Results showed, in accordance with previous research, that children performed better on the Spatial task when they resolved it with a partner. Specifically, children’s ToM was a better predictor of their spatial performances in the dyadic condition than their age, gender, and spatial performances in the individual setting. The findings are discussed in terms of the relation between having a conceptual understanding of the mind and the practical implications of this knowledge for cognitive performances in social interaction regarding mental rotation and spatial perspective taking. PMID:27812344
Louridas, Marisa; Quinn, Lauren E; Grantcharov, Teodor P
2016-03-01
Emerging evidence suggests that despite dedicated practice, not all surgical trainees have the ability to reach technical competency in minimally invasive techniques. While selecting residents that have the ability to reach technical competence is important, evidence to guide the incorporation of technical ability into selection processes is limited. Therefore, the purpose of the present study was to evaluate whether background experiences and 2D-3D visual spatial test results are predictive of baseline laparoscopic skill for the novice surgical trainee. First-year residents were studied. Demographic data and background surgical and non-surgical experiences were obtained using a questionnaire. Visual spatial ability was evaluated using the PicSOr, cube comparison (CC) and card rotation (CR) tests. Technical skill was assessed using the camera navigation (LCN) task and laparoscopic circle cut (LCC) task. Resident performance on these technical tasks was compared and correlated with the questionnaire and visual spatial findings. Previous experience in observing laparoscopic procedures was associated with significantly better LCN performance, and experience in navigating the laparoscopic camera was associated with significantly better LCC task results. Residents who scored higher on the CC test demonstrated a more accurate LCN path length score (r s(PL) = -0.36, p = 0.03) and angle path (r s(AP) = -0.426, p = 0.01) score when completing the LCN task. No other significant correlations were found between the visual spatial tests (PicSOr, CC or CR) and LCC performance. While identifying selection tests for incoming surgical trainees that predict technical skill performance is appealing, the surrogate markers evaluated correlate with specific metrics of surgical performance related to a single task but do not appear to reliably predict technical performance of different laparoscopic tasks. Predicting the acquisition of technical skills will require the development of a series of evidence-based tests that measure a number of innate abilities as well as their inherent interactions.
Music experience influences laparoscopic skills performance.
Boyd, Tanner; Jung, Inkyung; Van Sickle, Kent; Schwesinger, Wayne; Michalek, Joel; Bingener, Juliane
2008-01-01
Music education affects the mathematical and visuo-spatial skills of school-age children. Visuo-spatial abilities have a significant effect on laparoscopic suturing performance. We hypothesize that prior music experience influences the performance of laparoscopic suturing tasks. Thirty novices observed a laparoscopic suturing task video. Each performed 3 timed suturing task trials. Demographics were recorded. A repeated measures linear mixed model was used to examine the effects of prior music experience on suturing task time. Twelve women and 18 men completed the tasks. When adjusted for video game experience, participants who currently played an instrument performed significantly faster than those who did not (P<0.001). The model showed a significant sex by instrument interaction. Men who had never played an instrument or were currently playing an instrument performed better than women in the same group (P=0.002 and P<0.001). There was no sex difference in the performance of participants who had played an instrument in the past (P=0.29). This study attempted to investigate the effect of music experience on the laparoscopic suturing abilities of surgical novices. The visuo-spatial abilities used in laparoscopic suturing may be enhanced in those involved in playing an instrument.
Effects of spatially displaced feedback on remote manipulation tasks
NASA Technical Reports Server (NTRS)
Manahan, Meera K.; Stuart, Mark A.; Bierschwale, John M.; Hwang, Ellen Y.; Legendre, A. J.
1992-01-01
Several studies have been performed to determine the effects on computer and direct manipulation task performance when viewing conditions are spatially displaced. Whether results from these studies can be directly applied to remote manipulation tasks is quenstionable. The objective of this evaluation was to determine the effects of reversed, inverted, and inverted/reversed views on remote manipulation task performance using two 3-Degree of Freedom (DOF) hand controllers and a replica position hand controller. Results showed that trials using the inverted viewing condition showed the worst performance, followed by the inverted/reversed view and the reversed view when using the 2x3 DOF. However, these differences were not significant. The inverted and inverted/reversed viewing conditions were significantly worse than the normal and reversed viewing conditions when using the Kraft Replica. A second evaluation was conducted in which additional trials were performed with each viewing condition to determine the long term effects of spatially displaced views on task performance for the hand controllers. Results of the second evaluation indicated that there was more of a difference in performance between the perturbed viewing conditions and the normal viewing condition with the Kraft Replica than with the 2x3 DOF.
Cameron, E Leslie; Tai, Joanna C; Eckstein, Miguel P; Carrasco, Marisa
2004-01-01
Adding distracters to a display impairs performance on visual tasks (i.e. the set-size effect). While keeping the display characteristics constant, we investigated this effect in three tasks: 2 target identification, yes-no detection with 2 targets, and 8-alternative localization. A Signal Detection Theory (SDT) model, tailored for each task, accounts for the set-size effects observed in identification and localization tasks, and slightly under-predicts the set-size effect in a detection task. Given that sensitivity varies as a function of spatial frequency (SF), we measured performance in each of these three tasks in neutral and peripheral precue conditions for each of six spatial frequencies (0.5-12 cpd). For all spatial frequencies tested, performance on the three tasks decreased as set size increased in the neutral precue condition, and the peripheral precue reduced the effect. Larger set-size effects were observed at low SFs in the identification and localization tasks. This effect can be described using the SDT model, but was not predicted by it. For each of these tasks we also established the extent to which covert attention modulates performance across a range of set sizes. A peripheral precue substantially diminished the set-size effect and improved performance, even at set size 1. These results provide support for distracter exclusion, and suggest that signal enhancement may also be a mechanism by which covert attention can impose its effect.
Woodman, Geoffrey F.; Vogel, Edward K.; Luck, Steven J.
2012-01-01
Many recent studies of visual working memory have used change-detection tasks in which subjects view sequential displays and are asked to report whether they are identical or if one object has changed. A key question is whether the memory system used to perform this task is sufficiently flexible to detect changes in object identity independent of spatial transformations, but previous research has yielded contradictory results. To address this issue, the present study compared standard change-detection tasks with tasks in which the objects varied in size or position between successive arrays. Performance was nearly identical across the standard and transformed tasks unless the task implicitly encouraged spatial encoding. These results resolve the discrepancies in prior studies and demonstrate that the visual working memory system can detect changes in object identity across spatial transformations. PMID:22287933
Primacy Performance of Normal and Retarded Children: Stimulus Familiarity or Spatial Memory?
ERIC Educational Resources Information Center
Swanson, Lee
1978-01-01
Explores the effect of stimulus familiarity on the spatial primacy performance of normal and retarded children. Assumes that serial recall tasks reflect spatial memory rather than verbal rehearsal. (BD)
Early puzzle play: a predictor of preschoolers' spatial transformation skill.
Levine, Susan C; Ratliff, Kristin R; Huttenlocher, Janellen; Cannon, Joanna
2012-03-01
Individual differences in spatial skill emerge prior to kindergarten entry. However, little is known about the early experiences that may contribute to these differences. The current study examined the relation between children's early puzzle play and their spatial skill. Children and parents (n = 53) were observed at home for 90 min every 4 months (6 times) between 2 and 4 years of age (26 to 46 months). When children were 4 years 6 months old, they completed a spatial task involving mental transformations of 2-dimensional shapes. Children who were observed playing with puzzles performed better on this task than those who did not, controlling for parent education, income, and overall parent word types. Moreover, among those children who played with puzzles, frequency of puzzle play predicted performance on the spatial transformation task. Although the frequency of puzzle play did not differ for boys and girls, the quality of puzzle play (a composite of puzzle difficulty, parent engagement, and parent spatial language) was higher for boys than for girls. In addition, variation in puzzle play quality predicted performance on the spatial transformation task for girls but not for boys. Implications of these findings as well as future directions for research on the role of puzzle play in the development of spatial skill are discussed. PsycINFO Database Record (c) 2012 APA, all rights reserved.
Taillade, Mathieu; N'Kaoua, Bernard; Sauzéon, Hélène
2016-01-01
The present study investigated the effect of aging on direct navigation measures and self-reported ones according to the real-virtual test manipulation. Navigation (wayfinding tasks) and spatial memory (paper-pencil tasks) performances, obtained either in real-world or in virtual-laboratory test conditions, were compared between young (n = 32) and older (n = 32) adults who had self-rated their everyday navigation behavior (SBSOD scale). Real age-related differences were observed in navigation tasks as well as in paper-pencil tasks, which investigated spatial learning relative to the distinction between survey-route knowledge. The manipulation of test conditions (real vs. virtual) did not change these age-related differences, which are mostly explained by age-related decline in both spatial abilities and executive functioning (measured with neuropsychological tests). In contrast, elderly adults did not differ from young adults in their self-reporting relative to everyday navigation, suggesting some underestimation of navigation difficulties by elderly adults. Also, spatial abilities in young participants had a mediating effect on the relations between actual and self-reported navigation performance, but not for older participants. So, it is assumed that the older adults carried out the navigation task with fewer available spatial abilities compared to young adults, resulting in inaccurate self-estimates. PMID:26834666
Taillade, Mathieu; N'Kaoua, Bernard; Sauzéon, Hélène
2015-01-01
The present study investigated the effect of aging on direct navigation measures and self-reported ones according to the real-virtual test manipulation. Navigation (wayfinding tasks) and spatial memory (paper-pencil tasks) performances, obtained either in real-world or in virtual-laboratory test conditions, were compared between young (n = 32) and older (n = 32) adults who had self-rated their everyday navigation behavior (SBSOD scale). Real age-related differences were observed in navigation tasks as well as in paper-pencil tasks, which investigated spatial learning relative to the distinction between survey-route knowledge. The manipulation of test conditions (real vs. virtual) did not change these age-related differences, which are mostly explained by age-related decline in both spatial abilities and executive functioning (measured with neuropsychological tests). In contrast, elderly adults did not differ from young adults in their self-reporting relative to everyday navigation, suggesting some underestimation of navigation difficulties by elderly adults. Also, spatial abilities in young participants had a mediating effect on the relations between actual and self-reported navigation performance, but not for older participants. So, it is assumed that the older adults carried out the navigation task with fewer available spatial abilities compared to young adults, resulting in inaccurate self-estimates.
To speak or not to speak - A multiple resource perspective
NASA Technical Reports Server (NTRS)
Tsang, P. S.; Hartzell, E. J.; Rothschild, R. A.
1985-01-01
The desirability of employing speech response in a dynamic dual task situation was discussed from a multiple resource perspective. A secondary task technique was employed to examine the time-sharing performance of five dual tasks with various degrees of resource overlap according to the structure-specific resource model of Wickens (1980). The primary task was a visual/manual tracking task which required spatial processing. The secondary task was either another tracking task or a spatial transformation task with one of four input (visual or auditory) and output (manual or speech) configurations. The results show that the dual task performance was best when the primary tracking task was paired with the visual/speech transformation task. This finding was explained by an interaction of the stimulus-central processing-response compatibility of the transformation task and the degree of resource competition between the time-shared tasks. Implications on the utility of speech response were discussed.
Strategy Generalization across Orientation Tasks: Testing a Computational Cognitive Model
ERIC Educational Resources Information Center
Gunzelmann, Glenn
2008-01-01
Humans use their spatial information processing abilities flexibly to facilitate problem solving and decision making in a variety of tasks. This article explores the question of whether a general strategy can be adapted for performing two different spatial orientation tasks by testing the predictions of a computational cognitive model. Human…
Erickson, Kirk I.; Prakash, Ruchika Shaurya; Kim, Jennifer S.; Sutton, Bradley P.; Colcombe, Stanley J.; Kramer, Arthur F.
2010-01-01
Models of selective attention predict that focused attention to spatially contiguous stimuli may result in enhanced activity in areas of cortex specialized for processing task-relevant and task-irrelevant information. We examined this hypothesis by localizing color-sensitive areas (CSA) and word and letter sensitive areas of cortex and then examining modulation of these regions during performance of a modified version of the Stroop task in which target and distractors are spatially coincident. We report that only the incongruent condition with the highest cognitive demand showed increased activity in CSA relative to other conditions, indicating an attentional enhancement in target processing areas. We also found an enhancement of activity in one region sensitive to word/letter processing during the most cognitively demanding incongruent condition indicating greater processing of the distractor dimension. Correlations with performance revealed that top-down modulation during the task was critical for effective filtering of irrelevant information in conflict conditions. These results support predictions made by models of selective attention and suggest an important mechanism of top-down attentional control in spatially contiguous stimuli. PMID:18804123
An information theory analysis of spatial decisions in cognitive development
Scott, Nicole M.; Sera, Maria D.; Georgopoulos, Apostolos P.
2015-01-01
Performance in a cognitive task can be considered as the outcome of a decision-making process operating across various knowledge domains or aspects of a single domain. Therefore, an analysis of these decisions in various tasks can shed light on the interplay and integration of these domains (or elements within a single domain) as they are associated with specific task characteristics. In this study, we applied an information theoretic approach to assess quantitatively the gain of knowledge across various elements of the cognitive domain of spatial, relational knowledge, as a function of development. Specifically, we examined changing spatial relational knowledge from ages 5 to 10 years. Our analyses consisted of a two-step process. First, we performed a hierarchical clustering analysis on the decisions made in 16 different tasks of spatial relational knowledge to determine which tasks were performed similarly at each age group as well as to discover how the tasks clustered together. We next used two measures of entropy to capture the gradual emergence of order in the development of relational knowledge. These measures of “cognitive entropy” were defined based on two independent aspects of chunking, namely (1) the number of clusters formed at each age group, and (2) the distribution of tasks across the clusters. We found that both measures of entropy decreased with age in a quadratic fashion and were positively and linearly correlated. The decrease in entropy and, therefore, gain of information during development was accompanied by improved performance. These results document, for the first time, the orderly and progressively structured “chunking” of decisions across the development of spatial relational reasoning and quantify this gain within a formal information-theoretic framework. PMID:25698915
Gingins, Simon; Marcadier, Fanny; Wismer, Sharon; Krattinger, Océane; Quattrini, Fausto; Bshary, Redouan; Binning, Sandra A
2018-01-01
Testing performance in controlled laboratory experiments is a powerful tool for understanding the extent and evolution of cognitive abilities in non-human animals. However, cognitive testing is prone to a number of potential biases, which, if unnoticed or unaccounted for, may affect the conclusions drawn. We examined whether slight modifications to the experimental procedure and apparatus used in a spatial task and reversal learning task affected performance outcomes in the bluestreak cleaner wrasse, Labroides dimidiatus (hereafter "cleaners"). Using two-alternative forced-choice tests, fish had to learn to associate a food reward with a side (left or right) in their holding aquarium. Individuals were tested in one of four experimental treatments that differed slightly in procedure and/or physical set-up. Cleaners from all four treatment groups were equally able to solve the initial spatial task. However, groups differed in their ability to solve the reversal learning task: no individuals solved the reversal task when tested in small tanks with a transparent partition separating the two options, whereas over 50% of individuals solved the task when performed in a larger tank, or with an opaque partition. These results clearly show that seemingly insignificant details to the experimental set-up matter when testing performance in a spatial task and might significantly influence the outcome of experiments. These results echo previous calls for researchers to exercise caution when designing methodologies for cognition tasks to avoid misinterpretations.
Visual spatial cue use for guiding orientation in two-to-three-year-old children
van den Brink, Danielle; Janzen, Gabriele
2013-01-01
In spatial development representations of the environment and the use of spatial cues change over time. To date, the influence of individual differences in skills relevant for orientation and navigation has not received much attention. The current study investigated orientation abilities on the basis of visual spatial cues in 2–3-year-old children, and assessed factors that possibly influence spatial task performance. Thirty-month and 35-month-olds performed an on-screen Virtual Reality (VR) orientation task searching for an animated target in the presence of visual self-movement cues and landmark information. Results show that, in contrast to 30-month-old children, 35-month-olds were successful in using visual spatial cues for maintaining orientation. Neither age group benefited from landmarks present in the environment, suggesting that successful task performance relied on the use of optic flow cues, rather than object-to-object relations. Analysis of individual differences revealed that 2-year-olds who were relatively more independent in comparison to their peers, as measured by the daily living skills scale of the parental questionnaire Vineland-Screener were most successful at the orientation task. These results support previous findings indicating that the use of various spatial cues gradually improves during early childhood. Our data show that a developmental transition in spatial cue use can be witnessed within a relatively short period of 5 months only. Furthermore, this study indicates that rather than chronological age, individual differences may play a role in successful use of visual cues for spatial updating in an orientation task. Future studies are necessary to assess the exact nature of these individual differences. PMID:24368903
Visual spatial cue use for guiding orientation in two-to-three-year-old children.
van den Brink, Danielle; Janzen, Gabriele
2013-01-01
In spatial development representations of the environment and the use of spatial cues change over time. To date, the influence of individual differences in skills relevant for orientation and navigation has not received much attention. The current study investigated orientation abilities on the basis of visual spatial cues in 2-3-year-old children, and assessed factors that possibly influence spatial task performance. Thirty-month and 35-month-olds performed an on-screen Virtual Reality (VR) orientation task searching for an animated target in the presence of visual self-movement cues and landmark information. Results show that, in contrast to 30-month-old children, 35-month-olds were successful in using visual spatial cues for maintaining orientation. Neither age group benefited from landmarks present in the environment, suggesting that successful task performance relied on the use of optic flow cues, rather than object-to-object relations. Analysis of individual differences revealed that 2-year-olds who were relatively more independent in comparison to their peers, as measured by the daily living skills scale of the parental questionnaire Vineland-Screener were most successful at the orientation task. These results support previous findings indicating that the use of various spatial cues gradually improves during early childhood. Our data show that a developmental transition in spatial cue use can be witnessed within a relatively short period of 5 months only. Furthermore, this study indicates that rather than chronological age, individual differences may play a role in successful use of visual cues for spatial updating in an orientation task. Future studies are necessary to assess the exact nature of these individual differences.
The Effect of Configuration on VSWM Performance of Down Syndrome Individuals
ERIC Educational Resources Information Center
Carretti, B.; Lanfranchi, S.
2010-01-01
Background: Recent studies have demonstrated that individuals with Down syndrome (DS) are poorer than controls in spatial-simultaneous tasks, but not in spatial-sequential tasks. To explain this finding, it has been suggested that the simultaneous visuo-spatial working memory deficit of individuals with DS could be due to the request for…
ERIC Educational Resources Information Center
Nguyen, Ngan; Mulla, Ali; Nelson, Andrew J.; Wilson, Timothy D.
2014-01-01
The present study explored the problem-solving strategies of high- and low-spatial visualization ability learners on a novel spatial anatomy task to determine whether differences in strategies contribute to differences in task performance. The results of this study provide further insights into the processing commonalities and differences among…
Spatial Orienting of Attention in Dyslexic Adults Using Directional and Alphabetic Cues
ERIC Educational Resources Information Center
Judge, Jeannie; Knox, Paul C.; Caravolas, Marketa
2013-01-01
Spatial attention performance was investigated in adults with dyslexia. Groups with and without dyslexia completed literacy/phonological tasks as well as two spatial cueing tasks, in which attention was oriented in response to a centrally presented pictorial (arrow) or alphabetic (letter) cue. Cued response times and orienting effects were largely…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trumbo, Michael C.; Matzen, Laura E.; Coffman, Brian A.
Although working memory (WM) training programs consistently result in improvement on the trained task, benefit is typically short-lived and extends only to tasks very similar to the trained task (i.e., near transfer). It is possible that pairing repeated performance of a WM task with brain stimulation encourages plasticity in brain networks involved in WM task performance, thereby improving the training benefit. In the current study, transcranial direct current stimulation (tDCS) was paired with performance of a WM task (n-back). In Experiment 1, participants performed a spatial location-monitoring n-back during stimulation, while Experiment 2 used a verbal identity-monitoring n-back. In eachmore » experiment, participants received either active (2.0 mA) or sham (0.1 mA) stimulation with the anode placed over either the right or the left dorsolateral prefrontal cortex (DLPFC) and the cathode placed extracephalically. In Experiment 1, only participants receiving active stimulation with the anode placed over the right DLPFC showed marginal improvement on the trained spatial n-back, which did not extend to a near transfer (verbal n-back) or far transfer task (a matrix-reasoning task designed to measure fluid intelligence). Here, in Experiment 2, both left and right anode placements led to improvement, and right DLPFC stimulation resulted in numerical (though not sham-adjusted) improvement on the near transfer (spatial n-back) and far transfer (fluid intelligence) task. Results suggest that WM training paired with brain stimulation may result in cognitive enhancement that transfers to performance on other tasks, depending on the combination of training task and tDCS parameters used.« less
Trumbo, Michael C.; Matzen, Laura E.; Coffman, Brian A.; ...
2016-10-15
Although working memory (WM) training programs consistently result in improvement on the trained task, benefit is typically short-lived and extends only to tasks very similar to the trained task (i.e., near transfer). It is possible that pairing repeated performance of a WM task with brain stimulation encourages plasticity in brain networks involved in WM task performance, thereby improving the training benefit. In the current study, transcranial direct current stimulation (tDCS) was paired with performance of a WM task (n-back). In Experiment 1, participants performed a spatial location-monitoring n-back during stimulation, while Experiment 2 used a verbal identity-monitoring n-back. In eachmore » experiment, participants received either active (2.0 mA) or sham (0.1 mA) stimulation with the anode placed over either the right or the left dorsolateral prefrontal cortex (DLPFC) and the cathode placed extracephalically. In Experiment 1, only participants receiving active stimulation with the anode placed over the right DLPFC showed marginal improvement on the trained spatial n-back, which did not extend to a near transfer (verbal n-back) or far transfer task (a matrix-reasoning task designed to measure fluid intelligence). Here, in Experiment 2, both left and right anode placements led to improvement, and right DLPFC stimulation resulted in numerical (though not sham-adjusted) improvement on the near transfer (spatial n-back) and far transfer (fluid intelligence) task. Results suggest that WM training paired with brain stimulation may result in cognitive enhancement that transfers to performance on other tasks, depending on the combination of training task and tDCS parameters used.« less
Trumbo, Michael C; Matzen, Laura E; Coffman, Brian A; Hunter, Michael A; Jones, Aaron P; Robinson, Charles S H; Clark, Vincent P
2016-12-01
Although working memory (WM) training programs consistently result in improvement on the trained task, benefit is typically short-lived and extends only to tasks very similar to the trained task (i.e., near transfer). It is possible that pairing repeated performance of a WM task with brain stimulation encourages plasticity in brain networks involved in WM task performance, thereby improving the training benefit. In the current study, transcranial direct current stimulation (tDCS) was paired with performance of a WM task (n-back). In Experiment 1, participants performed a spatial location-monitoring n-back during stimulation, while Experiment 2 used a verbal identity-monitoring n-back. In each experiment, participants received either active (2.0mA) or sham (0.1mA) stimulation with the anode placed over either the right or the left dorsolateral prefrontal cortex (DLPFC) and the cathode placed extracephalically. In Experiment 1, only participants receiving active stimulation with the anode placed over the right DLPFC showed marginal improvement on the trained spatial n-back, which did not extend to a near transfer (verbal n-back) or far transfer task (a matrix-reasoning task designed to measure fluid intelligence). In Experiment 2, both left and right anode placements led to improvement, and right DLPFC stimulation resulted in numerical (though not sham-adjusted) improvement on the near transfer (spatial n-back) and far transfer (fluid intelligence) task. Results suggest that WM training paired with brain stimulation may result in cognitive enhancement that transfers to performance on other tasks, depending on the combination of training task and tDCS parameters used. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rand, Kristina M.; Creem-Regehr, Sarah H.; Thompson, William B.
2015-01-01
The ability to navigate without getting lost is an important aspect of quality of life. In five studies, we evaluated how spatial learning is affected by the increased demands of keeping oneself safe while walking with degraded vision (mobility monitoring). We proposed that safe low-vision mobility requires attentional resources, providing competition for those needed to learn a new environment. In Experiments 1 and 2 participants navigated along paths in a real-world indoor environment with simulated degraded vision or normal vision. Memory for object locations seen along the paths was better with normal compared to degraded vision. With degraded vision, memory was better when participants were guided by an experimenter (low monitoring demands) versus unguided (high monitoring demands). In Experiments 3 and 4, participants walked while performing an auditory task. Auditory task performance was superior with normal compared to degraded vision. With degraded vision, auditory task performance was better when guided compared to unguided. In Experiment 5, participants performed both the spatial learning and auditory tasks under degraded vision. Results showed that attention mediates the relationship between mobility-monitoring demands and spatial learning. These studies suggest that more attention is required and spatial learning is impaired when navigating with degraded viewing. PMID:25706766
Cheng, Kenneth C.; Pratt, Jay; Maki, Brian E.
2013-01-01
A recent study involving young adults showed that rapid perturbation-evoked reach-to-grasp balance-recovery reactions can be guided successfully with visuospatial-information (VSI) retained in memory despite: 1) a reduction in endpoint accuracy due to recall-delay (time between visual occlusion and perturbation-onset, PO) and 2) slowing of the reaction when performing a concurrent cognitive task during the recall-delay interval. The present study aimed to determine whether this capacity is compromised by effects of aging. Ten healthy older adults were tested with the previous protocol and compared with the previously-tested young adults. Reactions to recover balance by grasping a small handhold were evoked by unpredictable antero-posterior platform-translation (barriers deterred stepping reactions), while using liquid-crystal goggles to occlude vision post-PO and for varying recall-delay times (0-10s) prior to PO (the handhold was moved unpredictably to one of four locations 2s prior to vision-occlusion). Subjects also performed a spatial- or non-spatial-memory cognitive task during the delay-time in a subset of trials. Results showed that older adults had slower reactions than the young across all experimental conditions. Both age groups showed similar reduction in medio-lateral end-point accuracy when recall-delay was longest (10s), but differed in the effect of recall delay on vertical hand elevation. For both age groups, engaging in either the non-spatial or spatial-memory task had similar (slowing) effects on the arm reactions; however, the older adults also showed a dual-task interference effect (poorer cognitive-task performance) that was specific to the spatial-memory task. This provides new evidence that spatial working memory plays a role in the control of perturbation-evoked balance-recovery reactions. The delays in completing the reaction that occurred when performing either cognitive task suggest that such dual-task situations in daily life could increase risk of falling in seniors, particularly when combined with the general age-related slowing that was observed across all experimental conditions. PMID:24223942
Xia, Jing; Nooraei, Nazanin; Kalluri, Sridhar; Edwards, Brent
2015-04-01
This study investigated whether spatial separation between talkers helps reduce cognitive processing load, and how hearing impairment interacts with the cognitive load of individuals listening in multi-talker environments. A dual-task paradigm was used in which performance on a secondary task (visual tracking) served as a measure of the cognitive load imposed by a speech recognition task. Visual tracking performance was measured under four conditions in which the target and the interferers were distinguished by (1) gender and spatial location, (2) gender only, (3) spatial location only, and (4) neither gender nor spatial location. Results showed that when gender cues were available, a 15° spatial separation between talkers reduced the cognitive load of listening even though it did not provide further improvement in speech recognition (Experiment I). Compared to normal-hearing listeners, large individual variability in spatial release of cognitive load was observed among hearing-impaired listeners. Cognitive load was lower when talkers were spatially separated by 60° than when talkers were of different genders, even though speech recognition was comparable in these two conditions (Experiment II). These results suggest that a measure of cognitive load might provide valuable insight into the benefit of spatial cues in multi-talker environments.
Singing numbers…in cognitive space--a dual-task study of the link between pitch, space, and numbers.
Fischer, Martin H; Riello, Marianna; Giordano, Bruno L; Rusconi, Elena
2013-04-01
We assessed the automaticity of spatial-numerical and spatial-musical associations by testing their intentionality and load sensitivity in a dual-task paradigm. In separate sessions, 16 healthy adults performed magnitude and pitch comparisons on sung numbers with variable pitch. Stimuli and response alternatives were identical, but the relevant stimulus attribute (pitch or number) differed between tasks. Concomitant tasks required retention of either color or location information. Results show that spatial associations of both magnitude and pitch are load sensitive and that the spatial association for pitch is more powerful than that for magnitude. These findings argue against the automaticity of spatial mappings in either stimulus dimension. Copyright © 2013 Cognitive Science Society, Inc.
Schwibbe, Anja; Kothe, Christian; Hampe, Wolfgang; Konradt, Udo
2016-10-01
Sixty years of research have not added up to a concordant evaluation of the influence of spatial and manual abilities on dental skill acquisition. We used Ackerman's theory of ability determinants of skill acquisition to explain the influence of spatial visualization and manual dexterity on the task performance of dental students in two consecutive preclinical technique courses. We measured spatial and manual abilities of applicants to Hamburg Dental School by means of a multiple choice test on Technical Aptitude and a wire-bending test, respectively. Preclinical dental technique tasks were categorized as consistent-simple and inconsistent-complex based on their contents. For analysis, we used robust regression to circumvent typical limitations in dental studies like small sample size and non-normal residual distributions. We found that manual, but not spatial ability exhibited a moderate influence on the performance in consistent-simple tasks during dental skill acquisition in preclinical dentistry. Both abilities revealed a moderate relation with the performance in inconsistent-complex tasks. These findings support the hypotheses which we had postulated on the basis of Ackerman's work. Therefore, spatial as well as manual ability are required for the acquisition of dental skills in preclinical technique courses. These results support the view that both abilities should be addressed in dental admission procedures in addition to cognitive measures.
Cappagli, Giulia; Finocchietti, Sara; Cocchi, Elena; Gori, Monica
2017-01-01
The specific role of early visual deprivation on spatial hearing is still unclear, mainly due to the difficulty of comparing similar spatial skills at different ages and to the difficulty in recruiting young blind children from birth. In this study, the effects of early visual deprivation on the development of auditory spatial localization have been assessed in a group of seven 3–5 years old children with congenital blindness (n = 2; light perception or no perception of light) or low vision (n = 5; visual acuity range 1.1–1.7 LogMAR), with the main aim to understand if visual experience is fundamental to the development of specific spatial skills. Our study led to three main findings: firstly, totally blind children performed overall more poorly compared sighted and low vision children in all the spatial tasks performed; secondly, low vision children performed equally or better than sighted children in the same auditory spatial tasks; thirdly, higher residual levels of visual acuity are positively correlated with better spatial performance in the dynamic condition of the auditory localization task indicating that the more residual vision the better spatial performance. These results suggest that early visual experience has an important role in the development of spatial cognition, even when the visual input during the critical period of visual calibration is partially degraded like in the case of low vision children. Overall these results shed light on the importance of early assessment of spatial impairments in visually impaired children and early intervention to prevent the risk of isolation and social exclusion. PMID:28443040
Eramudugolla, Ranmalee; Mattingley, Jason B
2008-01-01
Patients with unilateral spatial neglect following right hemisphere damage are impaired in detecting contralesional targets in both visual and haptic search tasks, and often show a graded improvement in detection performance for more ipsilesional spatial locations. In audition, multiple simultaneous sounds are most effectively perceived if they are distributed along the frequency dimension. Thus, attention to spectro-temporal features alone can allow detection of a target sound amongst multiple simultaneous distracter sounds, regardless of whether these sounds are spatially separated. Spatial bias in attention associated with neglect should not affect auditory search based on spectro-temporal features of a sound target. We report that a right brain damaged patient with neglect demonstrated a significant gradient favouring the ipsilesional side on a visual search task as well as an auditory search task in which the target was a frequency modulated tone amongst steady distractor tones. No such asymmetry was apparent in the auditory search performance of a control patient with a right hemisphere lesion but no neglect. The results suggest that the spatial bias in attention exhibited by neglect patients affects stimulus processing even when spatial information is irrelevant to the task.
The role of working memory in spatial S-R correspondence effects.
Wühr, Peter; Biebl, Rupert
2011-04-01
This study investigates the impact of working memory (WM) load on response conflicts arising from spatial (non) correspondence between irrelevant stimulus location and response location (Simon effect). The dominant view attributes the Simon effect to automatic processes of location-based response priming. The automaticity view predicts insensitivity of the Simon effect to manipulations of processing load. Four experiments investigated the role of spatial and verbal WM in horizontal and vertical Simon tasks by using a dual-task approach. Participants maintained different amounts of spatial or verbal information in WM while performing a horizontal or vertical Simon task. Results showed that high load generally decreased, and sometimes eliminated, the Simon effect. It is interesting to note that spatial load had a larger impact than verbal load on the horizontal Simon effect, whereas verbal load had a larger impact than spatial load on the vertical Simon effect. The results highlight the role of WM as the perception-action interface in choice-response tasks. Moreover, the results suggest spatial coding of horizontal stimulus-response (S-R) tasks, and verbal coding of vertical S-R tasks.
Motor expertise and performance in spatial tasks: A meta-analysis.
Voyer, Daniel; Jansen, Petra
2017-08-01
The present study aimed to provide a summary of findings relevant to the influence of motor expertise on performance in spatial tasks and to examine potential moderators of this effect. Studies of relevance were those in which individuals involved in activities presumed to require motor expertise were compared to non-experts in such activities. A final set of 62 effect sizes from 33 samples was included in a multilevel meta-analysis. The results showed an overall advantage in favor of motor experts in spatial tasks (d=0.38). However, the magnitude of that effect was moderated by expert type (athlete, open skills/ball sports, runner/cyclist, gymnast/dancers, musicians), stimulus type (2D, blocks, bodies, others), test category (mental rotation, spatial perception, spatial visualization), specific test (Mental Rotations Test, generic mental rotation, disembedding, rod-and-frame test, other), and publication status. These findings are discussed in the context of embodied cognition and the potential role of activities requiring motor expertise in promoting good spatial performance. Copyright © 2017 Elsevier B.V. All rights reserved.
Chen, J Y C; Terrence, P I
2009-08-01
This study investigated the performance and workload of the combined position of gunner and robotics operator in a simulated military multitasking environment. Specifically, the study investigated how aided target recognition (AiTR) capabilities for the gunnery task with imperfect reliability (false-alarm-prone vs. miss-prone) might affect the concurrent robotics and communication tasks. Additionally, the study examined whether performance was affected by individual differences in spatial ability and attentional control. Results showed that when the robotics task was simply monitoring the video, participants had the best performance in their gunnery and communication tasks and the lowest perceived workload, compared with the other robotics tasking conditions. There was a strong interaction between the type of AiTR unreliability and participants' perceived attentional control. Overall, for participants with higher perceived attentional control, false-alarm-prone alerts were more detrimental; for low attentional control participants, conversely, miss-prone automation was more harmful. Low spatial ability participants preferred visual cueing and high spatial ability participants favoured tactile cueing. Potential applications of the findings include personnel selection for robotics operation, robotics user interface designs and training development. The present results will provide further understanding of the interplays among automation reliability, multitasking performance and individual differences in military tasking environments. These results will also facilitate the implementation of robots in military settings and will provide useful data to military system designs.
Meneghetti, Chiara; Borella, Erika; Carbone, Elena; Martinelli, Massimiliano; De Beni, Rossana
2016-05-01
This study examined age-related differences between young and older adults in the involvement of verbal and visuo-spatial components of working memory (WM) when paths are learned from verbal and visuo-spatial inputs. A sample of 60 young adults (20-30 years old) and 58 older adults (60-75 years old) learned two paths from the person's point of view, one displayed in the form of a video showing the path, the other presenting the path in a verbal description. During the learning phase, participants concurrently performed a verbal task (articulatory suppression, AS group), or a visuo-spatial task (spatial tapping, ST group), or no secondary task (control, C group). After learning each path, participants completed tasks that involved the following: (1) recalling the sequential order and the location of landmarks; and (2) judging spatial sentences as true or false (verification test). The results showed that young adults outperformed older adults in all recall tasks. In both age groups performance in all types of task was worse in the AS and ST groups than in the C group, irrespective of the type of input. Overall, these findings suggest that verbal and visuo-spatial components of WM underpin the processing of environmental information in both young and older adults. The results are discussed in terms of age-related differences and according to the spatial cognition framework. © 2015 The British Psychological Society.
Influence of acute stress on spatial tasks in humans.
Richardson, Anthony E; VanderKaay Tomasulo, Melissa M
2011-07-06
Few studies have investigated the relationship between stress and spatial performance in humans. In this study, participants were exposed to an acute laboratory stressor (Star Mirror Tracing Task) or a control condition (watching a nature video) and then performed two spatial tasks. In the first task, participants navigated through a virtual reality (VR) environment and then returned to the environment to make directional judgments relating to the learned targets. In the second task, perspective taking, participants made directional judgments to targets after imagined body rotations with respect to a map. Compared to the control condition, participants in the Stress condition showed increases in heart rate and systolic and diastolic blood pressure indicating sympathetic adrenal medulla (SAM) axis activation. Participants in the Stress condition also reported being more anxious, angry, frustrated, and irritated than participants in the Non-Stress condition. Salivary cortisol did not differ between conditions, indicating no significant hypothalamic-pituitary-adrenocortical (HPA) axis involvement. In the VR task, memory encoding was unaffected as directional error was similar in both conditions; however, participants in the Stress condition responded more slowly, which may be due to increases in negative affect, SAM disruption in spatial memory retrieval through catecholamine release, or a combination of both factors. In the perspective taking task, participants were also slower to respond after stress, suggesting interference in the ability to adopt new spatial orientations. Additionally, sex differences were observed in that men had greater accuracy on both spatial tasks, but no significant Sex by Stress condition interactions were demonstrated. Copyright © 2011 Elsevier Inc. All rights reserved.
Differentiating Spatial Memory from Spatial Transformations
ERIC Educational Resources Information Center
Street, Whitney N.; Wang, Ranxiao Frances
2014-01-01
The perspective-taking task is one of the most common paradigms used to study the nature of spatial memory, and better performance for certain orientations is generally interpreted as evidence of spatial representations using these reference directions. However, performance advantages can also result from the relative ease in certain…
Spatial Reasoning Influences Students' Performance on Mathematics Tasks
ERIC Educational Resources Information Center
Lowrie, Tom; Logan, Tracy; Ramful, Ajay
2016-01-01
Although the psychological literature has demonstrated that spatial reasoning and mathematics performance are correlated, there is scant research on these relationships in the middle years. The current study examined the commonalities and differences in students' performance on instruments that measured three spatial reasoning constructs and two…
Patterned-string tasks: relation between fine motor skills and visual-spatial abilities in parrots.
Krasheninnikova, Anastasia
2013-01-01
String-pulling and patterned-string tasks are often used to analyse perceptual and cognitive abilities in animals. In addition, the paradigm can be used to test the interrelation between visual-spatial and motor performance. Two Australian parrot species, the galah (Eolophus roseicapilla) and the cockatiel (Nymphicus hollandicus), forage on the ground, but only the galah uses its feet to manipulate food. I used a set of string pulling and patterned-string tasks to test whether usage of the feet during foraging is a prerequisite for solving the vertical string pulling problem. Indeed, the two species used techniques that clearly differed in the extent of beak-foot coordination but did not differ in terms of their success in solving the string pulling task. However, when the visual-spatial skills of the subjects were tested, the galahs outperformed the cockatiels. This supports the hypothesis that the fine motor skills needed for advanced beak-foot coordination may be interrelated with certain visual-spatial abilities needed for solving patterned-string tasks. This pattern was also found within each of the two species on the individual level: higher motor abilities positively correlated with performance in patterned-string tasks. This is the first evidence of an interrelation between visual-spatial and motor abilities in non-mammalian animals.
On the role of working memory in spatial contextual cueing.
Travis, Susan L; Mattingley, Jason B; Dux, Paul E
2013-01-01
The human visual system receives more information than can be consciously processed. To overcome this capacity limit, we employ attentional mechanisms to prioritize task-relevant (target) information over less relevant (distractor) information. Regularities in the environment can facilitate the allocation of attention, as demonstrated by the spatial contextual cueing paradigm. When observers are exposed repeatedly to a scene and invariant distractor information, learning from earlier exposures enhances the search for the target. Here, we investigated whether spatial contextual cueing draws on spatial working memory resources and, if so, at what level of processing working memory load has its effect. Participants performed 2 tasks concurrently: a visual search task, in which the spatial configuration of some search arrays occasionally repeated, and a spatial working memory task. Increases in working memory load significantly impaired contextual learning. These findings indicate that spatial contextual cueing utilizes working memory resources.
Christie, Lori-Ann; Saunders, Richard C.; Kowalska, Danuta, M.; MacKay, William A.; Head, Elizabeth; Cotman, Carl W.; Milgram, Norton W.
2014-01-01
To examine the effects of rhinal and dorsolateral prefrontal cortex lesions on object and spatial recognition memory in canines, we used a protocol in which both an object (delayed non-matching to sample, or DNMS) and a spatial (delayed non-matching to position or DNMP) recognition task were administered daily. The tasks used similar procedures such that only the type of stimulus information to be remembered differed. Rhinal cortex (RC) lesions produced a selective deficit on the DNMS task, both in retention of the task rules at short delays and in object recognition memory. By contrast, performance on the DNMP task remained intact at both short and long delay intervals in RC animals. Subjects who received dorsolateral prefrontal cortex (dlPFC) lesions were impaired on a spatial task at a short, 5-sec delay, suggesting disrupted retention of the general task rules, however, this impairment was transient; long-term spatial memory performance was unaffected in dlPFC subjects. The present results provide support for the involvement of the RC in object, but not visuospatial, processing and recognition memory, whereas the dlPFC appears to mediate retention of a non-matching rule. These findings support theories of functional specialization within the medial temporal lobe and frontal cortex and suggest that rhinal and dorsolateral prefrontal cortices in canines are functionally similar to analogous regions in other mammals. PMID:18792072
Spatial parameters at the basis of social transfer of learning.
Lugli, Luisa; Iani, Cristina; Milanese, Nadia; Sebanz, Natalie; Rubichi, Sandro
2015-06-01
Recent research indicates that practicing on a joint spatial compatibility task with an incompatible stimulus-response mapping affects subsequent joint Simon task performance, eliminating the social Simon effect. It has been well established that in individual contexts, for transfer of learning to occur, participants need to practice an incompatible association between stimulus and response positions. The mechanisms underlying transfer of learning in joint task performance are, however, less well understood. The present study was aimed at assessing the relative contribution of 3 different spatial relations characterizing the joint practice context: stimulus-response, stimulus-participant, and participant-response relations. In 3 experiments, the authors manipulated the stimulus-response, stimulus-participant, and response-participant associations. We found that learning from the practice task did not transfer to the subsequent task when during practice stimulus-response associations were spatially incompatible and stimulus-participant associations were compatible (Experiment 1). However, a transfer of learning was evident when stimulus-participant associations were spatially incompatible. This occurred both when response-participant associations were incompatible (Experiment 2) and when they were compatible (Experiment 3). These results seem to support an agent corepresentation account of correspondence effects emerging in joint settings since they suggest that, in social contexts, critical to obtain transfer-of-learning effects is the spatial relation between stimulus and participant positions while the spatial relation between stimulus and response positions is irrelevant. (c) 2015 APA, all rights reserved).
Spatial working memory in heavy cannabis users: a functional magnetic resonance imaging study.
Kanayama, Gen; Rogowska, Jadwiga; Pope, Harrison G; Gruber, Staci A; Yurgelun-Todd, Deborah A
2004-11-01
Many neuropsychological studies have documented deficits in working memory among recent heavy cannabis users. However, little is known about the effects of cannabis on brain activity. We assessed brain function among recent heavy cannabis users while they performed a working memory task. Functional magnetic resonance imaging was used to examine brain activity in 12 long-term heavy cannabis users, 6-36 h after last use, and in 10 control subjects while they performed a spatial working memory task. Regional brain activation was analyzed and compared using statistical parametric mapping techniques. Compared with controls, cannabis users exhibited increased activation of brain regions typically used for spatial working memory tasks (such as prefrontal cortex and anterior cingulate). Users also recruited additional regions not typically used for spatial working memory (such as regions in the basal ganglia). These findings remained essentially unchanged when re-analyzed using subjects' ages as a covariate. Brain activation showed little or no significant correlation with subjects' years of education, verbal IQ, lifetime episodes of cannabis use, or urinary cannabinoid levels at the time of scanning. Recent cannabis users displayed greater and more widespread brain activation than normal subjects when attempting to perform a spatial working memory task. This observation suggests that recent cannabis users may experience subtle neurophysiological deficits, and that they compensate for these deficits by "working harder"-calling upon additional brain regions to meet the demands of the task.
Age and automation interact to influence performance of a simulated luggage screening task.
Wiegmann, Douglas; McCarley, Jason S; Kramer, Arthur F; Wickens, Christopher D
2006-08-01
An experiment examined the impact of automation on young and old adults' abilities to detect threat objects in a simulated baggage-screening task. Younger and older adult participants viewed X-ray images of cluttered baggage, 20% of which contained a hidden knife. Some participants were provided an automated aid with a hit rate of 0.90 and a false alarm rate of 0.25. The aid provided assistance to participants in one of three forms: a text message that appeared before the stimulus image; a text message that appeared following the stimulus image; or a spatial cue concurrent with the stimulus image. Control participants performed the task with no assistance from an aid. Spatial cuing improved performance for both age groups. Text cuing improved young adults' performance, but had no benefit for older participants. Effects were similar whether the text cue preceded or followed the search stimulus itself. Results indicate that spatial cuing rather than text alerts may be more effective in aiding performance during a baggage screening task and such benefits are likely to occur regardless of operator age.
Du, Xiaoping; Zhang, Yijing; Tian, Yu; Huang, Weifen; Wu, Bin; Zhang, Jingyu
2015-01-01
Manual rendezvous and docking (manual RVD) is a challenging space task for astronauts. Previous research showed a correlation between spatial ability and manual RVD skills among participants at early stages of training, but paid less attention to experts. Therefore, this study tried to explore the role of spatial ability in manual RVD skills in two groups of trainees, one relatively inexperienced and the other experienced operators. Additionally, mental rotation has been proven essential in RVD and was tested in this study among 27 male participants, 15 novices, and 12 experts. The participants performed manual RVD tasks in a high fidelity simulator. Results showed that experience moderated the relation between mental rotation ability and manual RVD performance. On one hand, novices with high mental rotation ability tended to perform that RVD task more successfully; on the other hand, experts with high mental rotation ability showed not only no performance advantage in the final stage of the RVD task, but had certain disadvantages in their earlier processes. Both theoretical and practical implications were discussed.
Du, Xiaoping; Zhang, Yijing; Tian, Yu; Huang, Weifen; Wu, Bin; Zhang, Jingyu
2015-01-01
Manual rendezvous and docking (manual RVD) is a challenging space task for astronauts. Previous research showed a correlation between spatial ability and manual RVD skills among participants at early stages of training, but paid less attention to experts. Therefore, this study tried to explore the role of spatial ability in manual RVD skills in two groups of trainees, one relatively inexperienced and the other experienced operators. Additionally, mental rotation has been proven essential in RVD and was tested in this study among 27 male participants, 15 novices, and 12 experts. The participants performed manual RVD tasks in a high fidelity simulator. Results showed that experience moderated the relation between mental rotation ability and manual RVD performance. On one hand, novices with high mental rotation ability tended to perform that RVD task more successfully; on the other hand, experts with high mental rotation ability showed not only no performance advantage in the final stage of the RVD task, but had certain disadvantages in their earlier processes. Both theoretical and practical implications were discussed. PMID:26236252
Local Use-Dependent Sleep in Wakefulness Links Performance Errors to Learning
Quercia, Angelica; Zappasodi, Filippo; Committeri, Giorgia; Ferrara, Michele
2018-01-01
Sleep and wakefulness are no longer to be considered as discrete states. During wakefulness brain regions can enter a sleep-like state (off-periods) in response to a prolonged period of activity (local use-dependent sleep). Similarly, during nonREM sleep the slow-wave activity, the hallmark of sleep plasticity, increases locally in brain regions previously involved in a learning task. Recent studies have demonstrated that behavioral performance may be impaired by off-periods in wake in task-related regions. However, the relation between off-periods in wake, related performance errors and learning is still untested in humans. Here, by employing high density electroencephalographic (hd-EEG) recordings, we investigated local use-dependent sleep in wake, asking participants to repeat continuously two intensive spatial navigation tasks. Critically, one task relied on previous map learning (Wayfinding) while the other did not (Control). Behaviorally awake participants, who were not sleep deprived, showed progressive increments of delta activity only during the learning-based spatial navigation task. As shown by source localization, delta activity was mainly localized in the left parietal and bilateral frontal cortices, all regions known to be engaged in spatial navigation tasks. Moreover, during the Wayfinding task, these increments of delta power were specifically associated with errors, whose probability of occurrence was significantly higher compared to the Control task. Unlike the Wayfinding task, during the Control task neither delta activity nor the number of errors increased progressively. Furthermore, during the Wayfinding task, both the number and the amplitude of individual delta waves, as indexes of neuronal silence in wake (off-periods), were significantly higher during errors than hits. Finally, a path analysis linked the use of the spatial navigation circuits undergone to learning plasticity to off periods in wake. In conclusion, local sleep regulation in wakefulness, associated with performance failures, could be functionally linked to learning-related cortical plasticity. PMID:29666574
A Tale of Two Types of Perspective Taking: Sex Differences in Spatial Ability.
Tarampi, Margaret R; Heydari, Nahal; Hegarty, Mary
2016-11-01
Sex differences in favor of males have been documented in measures of spatial perspective taking. In this research, we examined whether social factors (i.e., stereotype threat and the inclusion of human figures in tasks) account for these differences. In Experiment 1, we evaluated performance when perspective-taking tests were framed as measuring either spatial or social (empathetic) perspective-taking abilities. In the spatial condition, tasks were framed as measures of spatial ability on which males have an advantage. In the social condition, modified tasks contained human figures and were framed as measures of empathy on which females have an advantage. Results showed a sex difference in favor of males in the spatial condition but not the social condition. Experiments 2 and 3 indicated that both stereotype threat and including human figures contributed to these effects. Results suggest that females may underperform on spatial tests in part because of negative performance expectations and the character of the spatial tests rather than because of actual lack of abilities. © The Author(s) 2016.
Visuo-spatial processing and executive functions in children with specific language impairment
Marton, Klara
2007-01-01
Background Individual differences in complex working memory tasks reflect simultaneous processing, executive functions, and attention control. Children with specific language impairment (SLI) show a deficit in verbal working memory tasks that involve simultaneous processing of information. Aims The purpose of the study was to examine executive functions and visuo-spatial processing and working memory in children with SLI and in their typically developing peers (TLD). Experiment 1 included 40 children with SLI (age=5;3–6;10) and 40 children with TLD (age=5;3–6;7); Experiment 2 included 25 children with SLI (age=8;2–11;2) and 25 children with TLD (age=8;3–11;0). It was examined whether the difficulties that children with SLI show in verbal working memory tasks are also present in visuo-spatial working memory. Methods & Procedures In Experiment 1, children's performance was measured with three visuo-spatial processing tasks: space visualization, position in space, and design copying. The stimuli in Experiment 2 were two widely used neuropsychological tests: the Wisconsin Card Sorting Test — 64 (WCST-64) and the Tower of London test (TOL). Outcomes & Results In Experiment 1, children with SLI performed more poorly than their age-matched peers in all visuo-spatial working memory tasks. There was a subgroup within the SLI group that included children whose parents and teachers reported a weakness in the child's attention control. These children showed particular difficulties in the tasks of Experiment 1. The results support Engle's attention control theory: individuals need good attention control to perform well in visuo-spatial working memory tasks. In Experiment 2, the children with SLI produced more perseverative errors and more rule violations than their peers. Conclusions Executive functions have a great impact on SLI children's working memory performance, regardless of domain. Tasks that require an increased amount of attention control and executive functions are more difficult for the children with SLI than for their peers. Most children with SLI scored either below average or in the low average range on the neuropsychological tests that measured executive functions. PMID:17852522
Task-set inertia and memory-consolidation bottleneck in dual tasks.
Koch, Iring; Rumiati, Raffaella I
2006-11-01
Three dual-task experiments examined the influence of processing a briefly presented visual object for deferred verbal report on performance in an unrelated auditory-manual reaction time (RT) task. RT was increased at short stimulus-onset asynchronies (SOAs) relative to long SOAs, showing that memory consolidation processes can produce a functional processing bottleneck in dual-task performance. In addition, the experiments manipulated the spatial compatibility of the orientation of the visual object and the side of the speeded manual response. This cross-task compatibility produced relative RT benefits only when the instruction for the visual task emphasized overlap at the level of response codes across the task sets (Experiment 1). However, once the effective task set was in place, it continued to produce cross-task compatibility effects even in single-task situations ("ignore" trials in Experiment 2) and when instructions for the visual task did not explicitly require spatial coding of object orientation (Experiment 3). Taken together, the data suggest a considerable degree of task-set inertia in dual-task performance, which is also reinforced by finding costs of switching task sequences (e.g., AC --> BC vs. BC --> BC) in Experiment 3.
Domain-Specific Interference Tests on Navigational Working Memory in Military Pilots.
Verde, Paola; Boccia, Maddalena; Colangeli, Stefano; Barbetti, Sonia; Nori, Raffaella; Ferlazzo, Fabio; Piccolo, Francesco; Vitalone, Roberto; Lucertini, Elena; Piccardi, Laura
2016-06-01
Human navigation is a very complex ability that encompasses all four stages of human information processing (sensory input, perception/cognition, selection, and execution of an action), involving both cognitive and physical requirements. During flight, the pilot uses all of these stages and one of the most critical aspect is interference. In fact, spatial tasks competing for the same cognitive resource cause greater distraction from a concurrent task than another task that uses different resource modalities. Here we compared and contrasted the performance of pilots and nonpilots of both genders performing increasingly complex navigational memory tasks while exposed to various forms of interference. We investigated the effects of four different sources of interference: motor, spatial motor, verbal, and spatial environment, focusing on gender differences. We found that flight experts perform better than controls (Pilots: 6.50 ± 1.29; Nonpilots: 5.45 ± 1.41). Furthermore, in the general population, navigational working memory is compromised only by spatial environmental interference (Nonpilots: 4.52 ± 1.50); female nonpilots were less able than male nonpilots. Also, the flight expert group showed the same interference, even if reduced (Pilots: 5.24 ± 0.92); moreover, we highlighted a complete absence of gender-related effects. Spatial environmental interference is the only interference producing a decrease in performance. Nevertheless, pilots are less affected than the general population. This is probably a consequence of the need to commit substantial cognitive resources to process spatial information during flight.
Memory Updating and Mental Arithmetic
Han, Cheng-Ching; Yang, Tsung-Han; Lin, Chia-Yuan; Yen, Nai-Shing
2016-01-01
Is domain-general memory updating ability predictive of calculation skills or are such skills better predicted by the capacity for updating specifically numerical information? Here, we used multidigit mental multiplication (MMM) as a measure for calculating skill as this operation requires the accurate maintenance and updating of information in addition to skills needed for arithmetic more generally. In Experiment 1, we found that only individual differences with regard to a task updating numerical information following addition (MUcalc) could predict the performance of MMM, perhaps owing to common elements between the task and MMM. In Experiment 2, new updating tasks were designed to clarify this: a spatial updating task with no numbers, a numerical task with no calculation, and a word task. The results showed that both MUcalc and the spatial task were able to predict the performance of MMM but only with the more difficult problems, while other updating tasks did not predict performance. It is concluded that relevant processes involved in updating the contents of working memory support mental arithmetic in adults. PMID:26869971
Esfahani-Bayerl, Nazli; Finke, Carsten; Braun, Mischa; Düzel, Emrah; Heekeren, Hauke R; Holtkamp, Martin; Hasper, Dietrich; Storm, Christian; Ploner, Christoph J
2016-01-29
The contributions of the hippocampal formation and adjacent regions of the medial temporal lobe (MTL) to memory are still a matter of debate. It is currently unclear, to what extent discrepancies between previous human lesion studies may have been caused by the choice of distinct patient models of MTL dysfunction, as disorders affecting this region differ in selectivity, laterality and mechanisms of post-lesional compensation. Here, we investigated the performance of three distinct patient groups with lesions to the MTL with a battery of visuo-spatial short-term memory tasks. Thirty-one subjects with either unilateral damage to the MTL (postsurgical lesions following resection of a benign brain tumor, 6 right-sided lesions, 5 left) or bilateral damage (10 post-encephalitic lesions, 10 post-anoxic lesions) performed a series of tasks requiring short-term memory of colors, locations or color-location associations. We have shown previously that performance in the association task critically depends on hippocampal integrity. Patients with postsurgical damage of the MTL showed deficient performance in the association task, but performed normally in color and location tasks. Patients with left-sided lesions were almost as impaired as patients with right-sided lesions. Patients with bilateral post-encephalitic lesions showed comparable damage to MTL sub-regions and performed similarly to patients with postsurgical lesions in the association task. However, post-encephalitic patients showed additional impairments in the non-associative color and location tasks. A strikingly similar pattern of deficits was observed in post-anoxic patients. These results suggest a distinct cerebral organization of associative and non-associative short-term memory that was differentially affected in the three patient groups. Thus, while all patient groups may provide appropriate models of medial temporal lobe dysfunction in associative visuo-spatial short-term memory, additional deficits in non-associative memory tasks likely reflect damage of regions outside the MTL. Importantly, the choice of a patient model in human lesion studies of the MTL significantly influences overall performance patterns in visuo-spatial memory tasks. Copyright © 2015 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Broadbent, Nicola J.; Squire, Larry R.; Clark, Robert E.
2006-01-01
Conventional lesion methods have shown that damage to the rodent hippocampus can impair previously acquired spatial memory in tasks such as the water maze. In contrast, work with reversible lesion methods using a different spatial task has found remote memory to be spared. To determine whether the finding of spared remote spatial memory depends on…
The Impact of Residual Vision in Spatial Skills of Individuals with Visual Impairments
ERIC Educational Resources Information Center
Papadopoulos, Konstantinos; Koustriava, Eleni; Kartasidou, Lefkothea
2011-01-01
Loss of vision is believed to have a great impact on the acquisition of spatial knowledge. The aims of the present study are to examine the performance of individuals with visual impairments on spatial tasks and the impact of residual vision on processing these tasks. In all, 28 individuals with visual impairments--blindness or low…
Memory under pressure: secondary-task effects on contextual cueing of visual search.
Annac, Efsun; Manginelli, Angela A; Pollmann, Stefan; Shi, Zhuanghua; Müller, Hermann J; Geyer, Thomas
2013-11-04
Repeated display configurations improve visual search. Recently, the question has arisen whether this contextual cueing effect (Chun & Jiang, 1998) is itself mediated by attention, both in terms of selectivity and processing resources deployed. While it is accepted that selective attention modulates contextual cueing (Jiang & Leung, 2005), there is an ongoing debate whether the cueing effect is affected by a secondary working memory (WM) task, specifically at which stage WM influences the cueing effect: the acquisition of configural associations (e.g., Travis, Mattingley, & Dux, 2013) versus the expression of learned associations (e.g., Manginelli, Langer, Klose, & Pollmann, 2013). The present study re-investigated this issue. Observers performed a visual search in combination with a spatial WM task. The latter was applied on either early or late search trials--so as to examine whether WM load hampers the acquisition of or retrieval from contextual memory. Additionally, the WM and search tasks were performed either temporally in parallel or in succession--so as to permit the effects of spatial WM load to be dissociated from those of executive load. The secondary WM task was found to affect cueing in late, but not early, experimental trials--though only when the search and WM tasks were performed in parallel. This pattern suggests that contextual cueing involves a spatial WM resource, with spatial WM providing a workspace linking the current search array with configural long-term memory; as a result, occupying this workspace by a secondary WM task hampers the expression of learned configural associations.
The neural correlates of age effects on verbal-spatial binding in working memory.
Meier, Timothy B; Nair, Veena A; Meyerand, Mary E; Birn, Rasmus M; Prabhakaran, Vivek
2014-06-01
In this study, we investigated the neural correlates of age-related differences in the binding of verbal and spatial information utilizing event-related working memory tasks. Twenty-one right handed younger adults and twenty-one right handed older adults performed two versions of a dual task of verbal and spatial working memory. In the unbound dual task version letters and locations were presented simultaneously in separate locations, while in the bound dual task version each letter was paired with a specific location. In order to identify binding-specific differences, mixed-effects ANOVAs were run with the interaction of age and task as the effect of interest. Although older adults performed worse in the bound task than younger adults, there was no significant interaction between task and age on working memory performance. However, interactions of age and task were observed in brain activity analyses. Older adults did not display the greater unbound than bound task activity that younger adults did at the encoding phase in bilateral inferior parietal lobule, right putamen, and globus pallidus as well as at the maintenance phase in the cerebellum. We conclude that the binding of letters and locations in working memory is not as efficient in older adults as it is in younger adults, possibly due to the decline of cognitive control processes that are specific to working memory binding. Copyright © 2014 Elsevier B.V. All rights reserved.
Statistical Mechanics Model of the Speed - Accuracy Tradeoff in Spatial and Lexical Memory
NASA Astrophysics Data System (ADS)
Kaufman, Miron; Allen, Philip
2000-03-01
The molar neural network model of P. Allen, M. Kaufman, A. F. Smith, R. E. Popper, Psychology and Aging 13, 501 (1998) and Experimental Aging Research, 24, 307 (1998) is extended to incorporate reaction times. In our model the entropy associated with a particular task determines the reaction time. We use this molar neural model to directly analyze experimental data on episodic (spatial) memory and semantic (lexical) memory tasks. In particular we are interested in the effect of aging on the two types of memory. We find that there is no difference in performance levels for lexical memory tasks between younger and older adults. In the case spatial memory tasks we find that aging has a detrimental effect on the performance level. This work is supported by NIH/NIA grant AG09282-06.
Oculomotor responses and visuospatial perceptual judgments compete for common limited resources
Tibber, Marc S.; Grant, Simon; Morgan, Michael J.
2010-01-01
While there is evidence for multiple spatial and attentional maps in the brain it is not clear to what extent visuoperceptual and oculomotor tasks rely on common neural representations and attentional mechanisms. Using a dual-task interference paradigm we tested the hypothesis that eye movements and perceptual judgments made to simultaneously presented visuospatial information compete for shared limited resources. Observers undertook judgments of stimulus collinearity (perceptual extrapolation) using a pointer and Gabor patch and/or performed saccades to a peripheral dot target while their eye movements were recorded. In addition, observers performed a non-spatial control task (contrast discrimination), matched for task difficulty and stimulus structure, which on the basis of previous studies was expected to represent a lesser load on putative shared resources. Greater mutual interference was indeed found between the saccade and extrapolation task pair than between the saccade and contrast discrimination task pair. These data are consistent with visuoperceptual and oculomotor responses competing for common limited resources as well as spatial tasks incurring a relatively high attentional cost. PMID:20053112
Murphy, Philip N; Bruno, Raimondo; Ryland, Ida; Wareing, Michele; Fisk, John E; Montgomery, Catharine; Hilton, Joanne
2012-03-01
To review, with meta-analyses where appropriate, performance differences between ecstasy (3,4-methylenedioxymethamphetamine) users and non-users on a wider range of visuospatial tasks than previously reviewed. Such tasks have been shown to draw upon working memory executive resources. Abstract databases were searched using the United Kingdom National Health Service Evidence Health Information Resource. Inclusion criteria were publication in English language peer-reviewed journals and the reporting of new findings regarding human ecstasy-users' performance on visuospatial tasks. Data extracted included specific task requirements to provide a basis for meta-analyses for categories of tasks with similar requirements. Fifty-two studies were identified for review, although not all were suitable for meta-analysis. Significant weighted mean effect sizes indicating poorer performance by ecstasy users compared with matched controls were found for tasks requiring recall of spatial stimulus elements, recognition of figures and production/reproduction of figures. There was no evidence of a linear relationship between estimated ecstasy consumption and effect sizes. Given the networked nature of processing for spatial and non-spatial visual information, future scanning and imaging studies should focus on brain activation differences between ecstasy users and non-users in the context of specific tasks to facilitate identification of loci of potentially compromised activity in users. Copyright © 2012 John Wiley & Sons, Ltd.
Effects of verbal and nonverbal interference on spatial and object visual working memory.
Postle, Bradley R; Desposito, Mark; Corkin, Suzanne
2005-03-01
We tested the hypothesis that a verbal coding mechanism is necessarily engaged by object, but not spatial, visual working memory tasks. We employed a dual-task procedure that paired n-back working memory tasks with domain-specific distractor trials inserted into each interstimulus interval of the n-back tasks. In two experiments, object n-back performance demonstrated greater sensitivity to verbal distraction, whereas spatial n-back performance demonstrated greater sensitivity to motion distraction. Visual object and spatial working memory may differ fundamentally in that the mnemonic representation of featural characteristics of objects incorporates a verbal (perhaps semantic) code, whereas the mnemonic representation of the location of objects does not. Thus, the processes supporting working memory for these two types of information may differ in more ways than those dictated by the "what/where" organization of the visual system, a fact more easily reconciled with a component process than a memory systems account of working memory function.
Effects of verbal and nonverbal interference on spatial and object visual working memory
POSTLE, BRADLEY R.; D’ESPOSITO, MARK; CORKIN, SUZANNE
2005-01-01
We tested the hypothesis that a verbal coding mechanism is necessarily engaged by object, but not spatial, visual working memory tasks. We employed a dual-task procedure that paired n-back working memory tasks with domain-specific distractor trials inserted into each interstimulus interval of the n-back tasks. In two experiments, object n-back performance demonstrated greater sensitivity to verbal distraction, whereas spatial n-back performance demonstrated greater sensitivity to motion distraction. Visual object and spatial working memory may differ fundamentally in that the mnemonic representation of featural characteristics of objects incorporates a verbal (perhaps semantic) code, whereas the mnemonic representation of the location of objects does not. Thus, the processes supporting working memory for these two types of information may differ in more ways than those dictated by the “what/where” organization of the visual system, a fact more easily reconciled with a component process than a memory systems account of working memory function. PMID:16028575
Enhancing Allocentric Spatial Recall in Pre-schoolers through Navigational Training Programme
Boccia, Maddalena; Rosella, Michela; Vecchione, Francesca; Tanzilli, Antonio; Palermo, Liana; D'Amico, Simonetta; Guariglia, Cecilia; Piccardi, Laura
2017-01-01
Unlike for other abilities, children do not receive systematic spatial orientation training at school, even though navigational training during adulthood improves spatial skills. We investigated whether navigational training programme (NTP) improved spatial orientation skills in pre-schoolers. We administered 12-week NTP to seventeen 4- to 5-year-old children (training group, TG). The TG children and 17 age-matched children (control group, CG) who underwent standard didactics were tested twice before (T0) and after (T1) the NTP using tasks that tap into landmark, route and survey representations. We determined that the TG participants significantly improved their performances in the most demanding navigational task, which is the task that taps into survey representation. This improvement was significantly higher than that observed in the CG, suggesting that NTP fostered the acquisition of survey representation. Such representation is typically achieved by age seven. This finding suggests that NTP improves performance on higher-level navigational tasks in pre-schoolers. PMID:29085278
Short-term memory stores organized by information domain.
Noyce, Abigail L; Cestero, Nishmar; Shinn-Cunningham, Barbara G; Somers, David C
2016-04-01
Vision and audition have complementary affinities, with vision excelling in spatial resolution and audition excelling in temporal resolution. Here, we investigated the relationships among the visual and auditory modalities and spatial and temporal short-term memory (STM) using change detection tasks. We created short sequences of visual or auditory items, such that each item within a sequence arose at a unique spatial location at a unique time. On each trial, two successive sequences were presented; subjects attended to either space (the sequence of locations) or time (the sequence of inter item intervals) and reported whether the patterns of locations or intervals were identical. Each subject completed blocks of unimodal trials (both sequences presented in the same modality) and crossmodal trials (Sequence 1 visual, Sequence 2 auditory, or vice versa) for both spatial and temporal tasks. We found a strong interaction between modality and task: Spatial performance was best on unimodal visual trials, whereas temporal performance was best on unimodal auditory trials. The order of modalities on crossmodal trials also mattered, suggesting that perceptual fidelity at encoding is critical to STM. Critically, no cost was attributable to crossmodal comparison: In both tasks, performance on crossmodal trials was as good as or better than on the weaker unimodal trials. STM representations of space and time can guide change detection in either the visual or the auditory modality, suggesting that the temporal or spatial organization of STM may supersede sensory-specific organization.
Xue, Linyan; Huang, Dan; Wang, Tong; Hu, Qiyi; Chai, Xinyu; Li, Liming; Chen, Yao
2017-11-28
Selective spatial attention enhances task performance at restricted regions within the visual field. The magnitude of this effect depends on the level of attentional load, which determines the efficiency of distractor rejection. Mechanisms of attentional load include perceptual selection and/or cognitive control involving working memory. Recent studies have provided evidence that microsaccades are influenced by spatial attention. Therefore, microsaccade activities may be exploited to help understand the dynamic control of selective attention under different load levels. However, previous reports in humans on the effect of attentional load on microsaccades are inconsistent, and it is not clear to what extent these results and the dynamic changes of microsaccade activities are similar in monkeys. We trained monkeys to perform a color detection task in which the perceptual load was manipulated by task difficulty with limited involvement of working memory. Our results indicate that during the task with high perceptual load, the rate and amplitude of microsaccades immediately before the target color change were significantly suppressed. We also found that the occurrence of microsaccades before the monkeys' detection response deteriorated their performance, especially in the hard task. We propose that the activity of microsaccades might be an efficacious indicator of the perceptual load.
Dual-task results and the lateralization of spatial orientation: artifact of test selection?
Bowers, C A; Milham, L M; Price, C
1998-01-01
An investigation was conducted to identify the degree to which results regarding the lateralization of spatial orientation among men and women are artifacts of test selection. A dual-task design was used to study possible lateralization differences, providing baseline and dual-task measures of spatial-orientation performance, right- and left-hand tapping, and vocalization of "cat, dog, horse." The Guilford-Zimmerman Test (Guilford & Zimmerman, 1953), the Eliot-Price Test (Eliot & Price, 1976), and the Stumpf-Fay Cube Perspectives Test (Stumpf & Fay, 1983) were the three spatial-orientation tests used to investigate possible artifacts of test selection. Twenty-eight right-handed male and 39 right-handed female undergraduates completed random baseline and dual-task sessions. Analyses indicated no significant sex-related differences in spatial-orientation ability for all three tests. Furthermore, there was no evidence of differential lateralization of spatial orientation between the sexes.
Bosen, Adam K.; Fleming, Justin T.; Brown, Sarah E.; Allen, Paul D.; O'Neill, William E.; Paige, Gary D.
2016-01-01
Vision typically has better spatial accuracy and precision than audition, and as a result often captures auditory spatial perception when visual and auditory cues are presented together. One determinant of visual capture is the amount of spatial disparity between auditory and visual cues: when disparity is small visual capture is likely to occur, and when disparity is large visual capture is unlikely. Previous experiments have used two methods to probe how visual capture varies with spatial disparity. First, congruence judgment assesses perceived unity between cues by having subjects report whether or not auditory and visual targets came from the same location. Second, auditory localization assesses the graded influence of vision on auditory spatial perception by having subjects point to the remembered location of an auditory target presented with a visual target. Previous research has shown that when both tasks are performed concurrently they produce similar measures of visual capture, but this may not hold when tasks are performed independently. Here, subjects alternated between tasks independently across three sessions. A Bayesian inference model of visual capture was used to estimate perceptual parameters for each session, which were compared across tasks. Results demonstrated that the range of audio-visual disparities over which visual capture was likely to occur were narrower in auditory localization than in congruence judgment, which the model indicates was caused by subjects adjusting their prior expectation that targets originated from the same location in a task-dependent manner. PMID:27815630
Using spatialized sound cues in an auditorily rich environment
NASA Astrophysics Data System (ADS)
Brock, Derek; Ballas, James A.; Stroup, Janet L.; McClimens, Brian
2004-05-01
Previous Navy research has demonstrated that spatialized sound cues in an otherwise quiet setting are useful for directing attention and improving performance by 16.8% or more in the decision component of a complex dual-task. To examine whether the benefits of this technique are undermined in the presence of additional, unrelated sounds, a background recording of operations in a Navy command center and a voice communications response task [Bolia et al., J. Acoust. Soc. Am. 107, 1065-1066 (2000)] were used to simulate the conditions of an auditorily rich military environment. Without the benefit of spatialized sound cues, performance in the presence of this extraneous auditory information, as measured by decision response times, was an average of 13.6% worse than baseline performance in an earlier study. Performance improved when the cues were present by an average of 18.3%, but this improvement remained below the improvement observed in the baseline study by an average of 11.5%. It is concluded that while the two types of extraneous sound information used in this study degrade performance in the decision task, there is no interaction with the relative performance benefit provided by the use of spatialized auditory cues. [Work supported by ONR.
Kray, Jutta; Gaspard, Hanna; Karbach, Julia; Blaye, Agnès
2013-01-01
In this study we examined whether developmental changes in using verbal self-cueing for task-goal maintenance are dependent on the amount of task practice and task-sequencing demands. To measure task-goal maintenance we applied a switching paradigm in which children either performed only task A or B in single-task blocks or switched between them on every second trial in mixed-task blocks. Task-goal maintenance was determined by comparing the performance between both blocks (mixing costs). The influence of verbal self-cueing was measured by instructing children to either name the next task aloud or not to verbalize during task preparation. Task-sequencing demands were varied between groups whereas one group received spatial task cues to support keeping track of the task sequence, while the other group did not. We also varied by the amount of prior practice in task switching while one group of participants practiced task switching first, before performing the task naming in addition, and the other group did it vice versa. Results of our study investigating younger (8-10 years) and older children (11-13 years) revealed no age differences in beneficial effects of verbal self-cueing. In line with previous findings, children showed reduced mixing costs under task-naming instructions and under conditions of low task-sequence demands (with the presence of spatial task cues). Our results also indicated that these benefits were only obtained for those groups of children that first received practice in task switching alone with no additional verbalization instruction. These findings suggest that internal task-cueing strategies can be efficiently used in children but only if they received prior practice in the underlying task so that demands on keeping and coordinating various instructions are reduced. Moreover, children benefitted from spatial task cues for better task-goal maintenance only if no verbal task-cueing strategy was introduced first.
Vicens, Paloma; Carrasco, M. Carmen; Redolat, Rosa
2003-01-01
This research aimed to evaluate the effect of nicotine treatment and prior training on a spatial learning task in differently aged NMRI male mice. In a longitudinal study, mice were randomly assigned to one of 14 experimental groups receiving different combinations of chronically injected nicotine (0.35 mg/kg) administered for 10 days (5 days before and during 5 days acquisition of task) or control treatments and training in the water maze at different ages. The mice displayed shorter escape latencies when evaluated at 6 and 10 months than when tested in this task at 2 months for the first time, demonstrating that early training preserves performance in the water maze up to 8 months after the initial experience. Nicotine treatment did not significantly change performance in the water maze at any age tested. Early practice in a spatial reference memory task appears to have lasting consequences and can potentially contribute to preventing some age-related spatial learning deficits. PMID:15152984
Taffe, Michael A.; Taffe, William J.
2011-01-01
Several nonhuman primate species have been reported to employ a distance-minimizing, traveling salesman-like, strategy during foraging as well as in experimental spatial search tasks involving lesser amounts of locomotion. Spatial sequencing may optimize performance by reducing reference or episodic memory loads, locomotor costs, competition or other demands. A computerized self-ordered spatial search (SOSS) memory task has been adapted from a human neuropsychological testing battery (CANTAB, Cambridge Cognition, Ltd) for use in monkeys. Accurate completion of a trial requires sequential responses to colored boxes in two or more spatial locations without repetition of a previous location. Marmosets have been reported to employ a circling pattern of search, suggesting spontaneous adoption of a strategy to reduce working memory load. In this study the SOSS performance of rhesus monkeys was assessed to determine if the use of a distance-minimizing search path enhances accuracy. A novel strategy score, independent of the trial difficulty and arrangement of boxes, has been devised. Analysis of the performance of 21 monkeys trained on SOSS over two years shows that a distance-minimizing search strategy is associated with improved accuracy. This effect is observed within individuals as they improve over many cumulative sessions of training on the task and across individuals at any given level of training. Erroneous trials were associated with a failure to deploy the strategy. It is concluded that the effect of utilizing the strategy on this locomotion-free, laboratory task is to enhance accuracy by reducing demands on spatial working memory resources. PMID:21840507
Attentional enhancement of spatial resolution: linking behavioural and neurophysiological evidence
Anton-Erxleben, Katharina; Carrasco, Marisa
2014-01-01
Attention allows us to select relevant sensory information for preferential processing. Behaviourally, it improves performance in various visual tasks. One prominent effect of attention is the modulation of performance in tasks that involve the visual system’s spatial resolution. Physiologically, attention modulates neuronal responses and alters the profile and position of receptive fields near the attended location. Here, we develop a hypothesis linking the behavioural and electrophysiological evidence. The proposed framework seeks to explain how these receptive field changes enhance the visual system’s effective spatial resolution and how the same mechanisms may also underlie attentional effects on the representation of spatial information. PMID:23422910
The carry-over effect of competition in task-sharing: evidence from the joint Simon task.
Iani, Cristina; Anelli, Filomena; Nicoletti, Roberto; Rubichi, Sandro
2014-01-01
The Simon effect, that is the advantage of the spatial correspondence between stimulus and response locations when stimulus location is a task-irrelevant dimension, occurs even when the task is performed together by two participants, each performing a go/no-go task. Previous studies showed that this joint Simon effect, considered by some authors as a measure of self-other integration, does not emerge when during task performance co-actors are required to compete. The present study investigated whether and for how long competition experienced during joint performance of one task can affect performance in a following joint Simon task. In two experiments, we required pairs of participants to perform together a joint Simon task, before and after jointly performing together an unrelated non-spatial task (the Eriksen flanker task). In Experiment 1, participants always performed the joint Simon task under neutral instructions, before and after performing the joint flanker task in which they were explicitly required either to cooperate with (i.e., cooperative condition) or to compete against a co-actor (i.e., competitive condition). In Experiment 2, they were required to compete during the joint flanker task and to cooperate during the subsequent joint Simon task. Competition experienced in one task affected the way the subsequent joint task was performed, as revealed by the lack of the joint Simon effect, even though, during the Simon task participants were not required to compete (Experiment 1). However, prior competition no longer affected subsequent performance if a new goal that created positive interdependence between the two agents was introduced (Experiment 2). These results suggest that the emergence of the joint Simon effect is significantly influenced by how the goals of the co-acting individuals are related, with the effect of competition extending beyond the specific competitive setting and affecting subsequent interactions.
Understanding Language, Hearing Status, and Visual-Spatial Skills
Marschark, Marc; Spencer, Linda J.; Durkin, Andreana; Borgna, Georgianna; Convertino, Carol; Machmer, Elizabeth; Kronenberger, William G.; Trani, Alexandra
2015-01-01
It is frequently assumed that deaf individuals have superior visual-spatial abilities relative to hearing peers and thus, in educational settings, they are often considered visual learners. There is some empirical evidence to support the former assumption, although it is inconsistent, and apparently none to support the latter. Three experiments examined visual-spatial and related cognitive abilities among deaf individuals who varied in their preferred language modality and use of cochlear implants (CIs) and hearing individuals who varied in their sign language skills. Sign language and spoken language assessments accompanied tasks involving visual-spatial processing, working memory, nonverbal logical reasoning, and executive function. Results were consistent with other recent studies indicating no generalized visual-spatial advantage for deaf individuals and suggested that their performance in that domain may be linked to the strength of their preferred language skills regardless of modality. Hearing individuals performed more strongly than deaf individuals on several visual-spatial and self-reported executive functioning measures, regardless of sign language skills or use of CIs. Findings are inconsistent with assumptions that deaf individuals are visual learners or are superior to hearing individuals across a broad range of visual-spatial tasks. Further, performance of deaf and hearing individuals on the same visual-spatial tasks was associated with differing cognitive abilities, suggesting that different cognitive processes may be involved in visual-spatial processing in these groups. PMID:26141071
Group social rank is associated with performance on a spatial learning task.
Langley, Ellis J G; van Horik, Jayden O; Whiteside, Mark A; Madden, Joah R
2018-02-01
Dominant individuals differ from subordinates in their performances on cognitive tasks across a suite of taxa. Previous studies often only consider dyadic relationships, rather than the more ecologically relevant social hierarchies or networks, hence failing to account for how dyadic relationships may be adjusted within larger social groups. We used a novel statistical method: randomized Elo-ratings, to infer the social hierarchy of 18 male pheasants, Phasianus colchicus , while in a captive, mixed-sex group with a linear hierarchy. We assayed individual learning performance of these males on a binary spatial discrimination task to investigate whether inter-individual variation in performance is associated with group social rank. Task performance improved with increasing trial number and was positively related to social rank, with higher ranking males showing greater levels of success. Motivation to participate in the task was not related to social rank or task performance, thus indicating that these rank-related differences are not a consequence of differences in motivation to complete the task. Our results provide important information about how variation in cognitive performance relates to an individual's social rank within a group. Whether the social environment causes differences in learning performance or instead, inherent differences in learning ability predetermine rank remains to be tested.
Keys and seats: Spatial response coding underlying the joint spatial compatibility effect.
Dittrich, Kerstin; Dolk, Thomas; Rothe-Wulf, Annelie; Klauer, Karl Christoph; Prinz, Wolfgang
2013-11-01
Spatial compatibility effects (SCEs) are typically observed when participants have to execute spatially defined responses to nonspatial stimulus features (e.g., the color red or green) that randomly appear to the left and the right. Whereas a spatial correspondence of stimulus and response features facilitates response execution, a noncorrespondence impairs task performance. Interestingly, the SCE is drastically reduced when a single participant responds to one stimulus feature (e.g., green) by operating only one response key (individual go/no-go task), whereas a full-blown SCE is observed when the task is distributed between two participants (joint go/no-go task). This joint SCE (a.k.a. the social Simon effect) has previously been explained by action/task co-representation, whereas alternative accounts ascribe joint SCEs to spatial components inherent in joint go/no-go tasks that allow participants to code their responses spatially. Although increasing evidence supports the idea that spatial rather than social aspects are responsible for joint SCEs emerging, it is still unclear to which component(s) the spatial coding refers to: the spatial orientation of response keys, the spatial orientation of responding agents, or both. By varying the spatial orientation of the responding agents (Exp. 1) and of the response keys (Exp. 2), independent of the spatial orientation of the stimuli, in the present study we found joint SCEs only when both the seating and the response key alignment matched the stimulus alignment. These results provide evidence that spatial response coding refers not only to the response key arrangement, but also to the-often neglected-spatial orientation of the responding agents.
Deadlines in space: Selective effects of coordinate spatial processing in multitasking.
Todorov, Ivo; Del Missier, Fabio; Konke, Linn Andersson; Mäntylä, Timo
2015-11-01
Many everyday activities require coordination and monitoring of multiple deadlines. One way to handle these temporal demands might be to represent future goals and deadlines as a pattern of spatial relations. We examined the hypothesis that spatial ability, in addition to executive functioning, contributes to individual differences in multitasking. In two studies, participants completed a multitasking session in which they monitored four digital clocks running at different rates. In Study 1, we found that individual differences in spatial ability and executive functions were independent predictors of multiple-task performance. In Study 2, we found that individual differences in specific spatial abilities were selectively related to multiple-task performance, as only coordinate spatial processing, but not categorical, predicted multitasking, even beyond executive functioning and numeracy. In both studies, males outperformed females in spatial ability and multitasking and in Study 2 these sex differences generalized to a simulation of everyday multitasking. Menstrual changes moderated the effects on multitasking, in that sex differences in coordinate spatial processing and multitasking were observed between males and females in the luteal phase of the menstrual cycle, but not between males and females at menses. Overall, these findings suggest that multiple-task performance reflects independent contributions of spatial ability and executive functioning. Furthermore, our results support the distinction of categorical versus coordinate spatial processing, and suggest that these two basic relational processes are selectively affected by female sex hormones and differentially effective in transforming and handling temporal patterns as spatial relations in the context of multitasking.
Spatial frequency dependence of target signature for infrared performance modeling
NASA Astrophysics Data System (ADS)
Du Bosq, Todd; Olson, Jeffrey
2011-05-01
The standard model used to describe the performance of infrared imagers is the U.S. Army imaging system target acquisition model, based on the targeting task performance metric. The model is characterized by the resolution and sensitivity of the sensor as well as the contrast and task difficulty of the target set. The contrast of the target is defined as a spatial average contrast. The model treats the contrast of the target set as spatially white, or constant, over the bandlimit of the sensor. Previous experiments have shown that this assumption is valid under normal conditions and typical target sets. However, outside of these conditions, the treatment of target signature can become the limiting factor affecting model performance accuracy. This paper examines target signature more carefully. The spatial frequency dependence of the standard U.S. Army RDECOM CERDEC Night Vision 12 and 8 tracked vehicle target sets is described. The results of human perception experiments are modeled and evaluated using both frequency dependent and independent target signature definitions. Finally the function of task difficulty and its relationship to a target set is discussed.
Fetterman, J. Gregor; Killeen, Peter R.; Hall, Scott
2008-01-01
Four rats and four pigeons were monitored while performing retrospective timing tasks. All animals displayed collateral behaviors which could have mediated their temporal judgements. Statistical analysis made a good case for such mediation in the case of two pigeons performing on a spatially-differentiated response, but not for the two responding on a color-differentiated response. For the rats, all of which performed on a spatially-differentiated task, prediction of their temporal judgements was always better if based on collateral activity than if based on the passage of time. PMID:19701487
An investigation of immune system disorder as a "marker" for anomalous dominance.
Rich, D A; McKeever, W F
1990-01-01
Geschwind and Galaburda (1987) proposed that immune disorder (ID) susceptibility, along with left handedness and familial sinistrality (FS), is a "marker" for anomalous dominance. The theory predicts lesser left lateralization for language processes, lessened left hemisphere abilities, and enhanced right hemisphere abilities. We assessed language laterality (dichotic consonant vowel task) and performances on spatial and verbal tasks. Subjects were 128 college students. The factors of handedness, sex, FS, and immune disorder history (negative or positive) were perfectly counterbalanced. Left-handers were significantly less lateralized for language and scored lower than right-handers on the spatial tasks. Females scored lower on mental rotation than males, but performed comparably to males on the spatial relations task. The only effect of ID was by way of interaction with FS on both spatial tasks--subjects who were either negative or positive on both FS and ID status factors scored significantly higher than subjects negative for one but positive for the other factor. A speculative explanatory model for this interaction was proposed. The model incorporates the notion that FS and ID factors are comparably correlated, but in opposite directions, with hormonal factors implicated by other research as relevant for spatial ability differences. Finally, no support for the "anomalous dominance" hypothesis predictions was found.
Hawkes, Teresa D; Siu, Ka-Chun; Silsupadol, Patima; Woollacott, Marjorie H.
2011-01-01
Previous research using dual-task paradigms indicates balance-impaired older adults (BIOA) are less able to flexibly shift attentional focus between a cognitive and motor task than healthy older adults (HOA). Shifting attention is a component of executive function. Task switch tests assess executive attention function. This multivariate study asked if BIOAs demonstrate greater task switching deficits than HOAs. A group of 39 HOA (65–80 yrs) and BIOA (65–87 yrs) subjects performed a visuo-spatial task switch. A sub-group of subjects performed a dual-task obstacle avoidance paradigm. All participants completed the Berg Balance Scale (BBS) and Timed Up and Go (TUG). We assessed differences by group for: 1) visuo-spatial task switch reaction times (switch/no-switch), and performance on the BBS and TUG. Our balance groups differed significantly on BBS score (p < .001) and switch reaction time (p = .032), but not the TUG. This confirmed our hypothesis that neuromuscular and executive attention function differs between these two groups. For our BIOA sub-group, gait velocity correlated negatively with performance on the switch condition (p=.036). This suggests that BIOA efficiency of attentional allocation in dual task settings should be further explored. PMID:21964051
Zancada-Menendez, C; Alvarez-Suarez, P; Sampedro-Piquero, P; Cuesta, M; Begega, A
2017-04-01
Ageing is characterized by a decline in the processes of retention and storage of spatial information. We have examined the behavioural performance of adult rats (3months old) and aged rats (18months old) in a spatial complex task (delayed match to sample). The spatial task was performed in the Morris water maze and consisted of three sessions per day over a period of three consecutive days. Each session consisted of two trials (one sample and retention) and inter-session intervals of 5min. Behavioural results showed that the spatial task was difficult for middle aged group. This worse execution could be associated with impairments of processing speed and spatial information retention. We examined the changes in the neuronal metabolic activity of different brain regions through cytochrome C oxidase histochemistry. Then, we performed MANOVA and Discriminant Function Analyses to determine the functional profile of the brain networks that are involved in the spatial learning of the adult and middle-aged groups. This multivariate analysis showed two principal functional networks that necessarily participate in this spatial learning. The first network was composed of the supramammillary nucleus, medial mammillary nucleus, CA3, and CA1. The second one included the anterior cingulate, prelimbic, and infralimbic areas of the prefrontal cortex, dentate gyrus, and amygdala complex (basolateral l and central subregions). There was a reduction in the hippocampal-supramammilar network in both learning groups, whilst there was an overactivation in the executive network, especially in the aged group. This response could be due to a higher requirement of the executive control in a complex spatial memory task in older animals. Copyright © 2017 Elsevier Inc. All rights reserved.
Yamazaki, Yudai; Sato, Daisuke; Yamashiro, Koya; Tsubaki, Atsuhiro; Yamaguchi, Yui; Takehara, Nana; Maruyama, Atsuo
2017-01-01
Acute aerobic exercise at a mild intensity improves cognitive function. However, the response to exercise exhibits inter-individual differences, and the mechanisms underlying these differences remain unclear. The objective of this study was to determine potential factors in the brain that underlie differential responses to exercise in terms of cognitive improvement using functional near-infrared spectroscopy. Fourteen healthy subjects participated in these experiments. Participants performed a low intensity cycling exercise at 30% maximal oxygen uptake (VO 2peak ) for 10 min and performed a spatial memory task before and after exercising (5 and 30 min). The spatial memory task comprised two levels of difficulty (low: 1-dot EXERCISE, high: 3-dot EXERCISE). Cortical oxy-hemoglobin (O 2 Hb) levels were recorded using near-infrared spectroscopy during both the exercise and the spatial memory task phases. Regions of interests included the dorsolateral prefrontal cortex (DLPFC), ventrolateral prefrontal cortex (VLPFC), and frontopolar area (FPA). The participants were divided into two groups depending on whether they were responders (improved task reaction time) or non-responders (no improvement). Subsequently, we analyzed the group characteristics and differences in the change in O 2 Hb levels during exercise and spatial working memory tasks. Acute mild exercise significantly improved mean reaction times in the 1-dot memory task but not in the 3-dot task across the participants. In the 1-dot EXERCISE, 10 subjects were responders and four subjects were non-responders, whereas in the 3-dot EXERCISE, seven subjects were non-responders. In responders, during exercise, we found higher O 2 Hb levels in the right VLPFC response for the 1-dot memory task. Acute mild exercise caused inter-individual differences in spatial memory improvement, which were associated with changes in O 2 Hb activity in the prefrontal area during the exercise phase but not during the actual spatial memory task. Therefore, individuals who respond with higher reactivity to mild intensity exercise in the VLPFC might obtain larger spatial working memory improvements following exercise than non-responders.
Dissociation of spatial memory systems in Williams syndrome.
Bostelmann, Mathilde; Fragnière, Emilie; Costanzo, Floriana; Di Vara, Silvia; Menghini, Deny; Vicari, Stefano; Lavenex, Pierre; Lavenex, Pamela Banta
2017-11-01
Williams syndrome (WS), a genetic deletion syndrome, is characterized by severe visuospatial deficits affecting performance on both tabletop spatial tasks and on tasks which assess orientation and navigation. Nevertheless, previous studies of WS spatial capacities have ignored the fact that two different spatial memory systems are believed to contribute parallel spatial representations supporting navigation. The place learning system depends on the hippocampal formation and creates flexible relational representations of the environment, also known as cognitive maps. The spatial response learning system depends on the striatum and creates fixed stimulus-response representations, also known as habits. Indeed, no study assessing WS spatial competence has used tasks which selectively target these two spatial memory systems. Here, we report that individuals with WS exhibit a dissociation in their spatial abilities subserved by these two memory systems. As compared to typically developing (TD) children in the same mental age range, place learning performance was impaired in individuals with WS. In contrast, their spatial response learning performance was facilitated. Our findings in individuals with WS and TD children suggest that place learning and response learning interact competitively to control the behavioral strategies normally used to support human spatial navigation. Our findings further suggest that the neural pathways supporting place learning may be affected by the genetic deletion that characterizes WS, whereas those supporting response learning may be relatively preserved. The dissociation observed between these two spatial memory systems provides a coherent theoretical framework to characterize the spatial abilities of individuals with WS, and may lead to the development of new learning strategies based on their facilitated response learning abilities. © 2017 Wiley Periodicals, Inc.
The Fleeting Nature of Sex Differences in Spatial Ability.
ERIC Educational Resources Information Center
Alderton, David L.
Gender differences were examined on three computer-administered spatial processing tasks: (1) the Intercept task, requiring processing dynamic or moving figures; (2) the mental rotation test, employing rotated asymmetric polygons; and (3) the integrating details test, in which subjects performed a complex visual synthesis. Participants were about…
What aspects of vision facilitate haptic processing?
Millar, Susanna; Al-Attar, Zainab
2005-12-01
We investigate how vision affects haptic performance when task-relevant visual cues are reduced or excluded. The task was to remember the spatial location of six landmarks that were explored by touch in a tactile map. Here, we use specially designed spectacles that simulate residual peripheral vision, tunnel vision, diffuse light perception, and total blindness. Results for target locations differed, suggesting additional effects from adjacent touch cues. These are discussed. Touch with full vision was most accurate, as expected. Peripheral and tunnel vision, which reduce visuo-spatial cues, differed in error pattern. Both were less accurate than full vision, and significantly more accurate than touch with diffuse light perception, and touch alone. The important finding was that touch with diffuse light perception, which excludes spatial cues, did not differ from touch without vision in performance accuracy, nor in location error pattern. The contrast between spatially relevant versus spatially irrelevant vision provides new, rather decisive, evidence against the hypothesis that vision affects haptic processing even if it does not add task-relevant information. The results support optimal integration theories, and suggest that spatial and non-spatial aspects of vision need explicit distinction in bimodal studies and theories of spatial integration.
Qu, Xingda
2014-10-27
Though it is well recognized that gait characteristics are affected by concurrent cognitive tasks, how different working memory components contribute to dual task effects on gait is still unknown. The objective of the present study was to investigate dual-task effects on gait characteristics, specifically the application of cognitive tasks involving different working memory components. In addition, we also examined age-related differences in such dual-task effects. Three cognitive tasks (i.e. 'Random Digit Generation', 'Brooks' Spatial Memory', and 'Counting Backward') involving different working memory components were examined. Twelve young (6 males and 6 females, 20 ~ 25 years old) and 12 older participants (6 males and 6 females, 60 ~ 72 years old) took part in two phases of experiments. In the first phase, each cognitive task was defined at three difficulty levels, and perceived difficulty was compared across tasks. The cognitive tasks perceived to be equally difficult were selected for the second phase. In the second phase, four testing conditions were defined, corresponding to a baseline and the three equally difficult cognitive tasks. Participants walked on a treadmill at their self-selected comfortable speed in each testing condition. Body kinematics were collected during treadmill walking, and gait characteristics were assessed using spatial-temporal gait parameters. Application of the concurrent Brooks' Spatial Memory task led to longer step times compared to the baseline condition. Larger step width variability was observed in both the Brooks' Spatial Memory and Counting Backward dual-task conditions than in the baseline condition. In addition, cognitive task effects on step width variability differed between two age groups. In particular, the Brooks' Spatial Memory task led to significantly larger step width variability only among older adults. These findings revealed that cognitive tasks involving the visuo-spatial sketchpad interfered with gait more severely in older versus young adults. Thus, dual-task training, in which a cognitive task involving the visuo-spatial sketchpad (e.g. the Brooks' Spatial Memory task) is concurrently performed with walking, could be beneficial to mitigate impairments in gait among older adults.
Same task, different strategies: How brain networks can be influenced by memory strategy
Sanfratello, Lori; Caprihan, Arvind; Stephen, Julia M.; Knoefel, Janice E.; Adair, John C.; Qualls, Clifford; Lundy, S. Laura; Aine, Cheryl J.
2015-01-01
Previous functional neuroimaging studies demonstrated that different neural networks underlie different types of cognitive processing by engaging participants in particular tasks, such as verbal or spatial working memory (WM) tasks. However, we report here that even when a working memory task is defined as verbal or spatial, different types of memory strategies may be employed to complete it, with concomitant variations in brain activity. We developed a questionnaire to characterize the type of strategy used by individual members in a group of 28 young healthy participants (18–25 years) during a spatial WM task. A cluster analysis was performed to differentiate groups. We acquired functional magnetoencephalography (MEG) and structural diffusion tensor imaging (DTI) measures to characterize the brain networks associated with the use of different strategies. We found two types of strategies were utilized during the spatial WM task, a visuospatial and a verbal strategy, and brain regions and timecourses of activation differed between participants who used each. Task performance also varied by type of strategy used, with verbal strategies showing an advantage. In addition, performance on neuropsychological tests (indices from WAIS-IV, REY-D Complex Figure) correlated significantly with fractional anisotropy (FA) measures for the visuospatial strategy group in white matter tracts implicated in other WM/attention studies. We conclude that differences in memory strategy can have a pronounced effect on the locations and timing of brain activation, and that these differences need further investigation as a possible confounding factor for studies using group averaging as a means for summarizing results. PMID:24931401
Same task, different strategies: how brain networks can be influenced by memory strategy.
Sanfratello, Lori; Caprihan, Arvind; Stephen, Julia M; Knoefel, Janice E; Adair, John C; Qualls, Clifford; Lundy, S Laura; Aine, Cheryl J
2014-10-01
Previous functional neuroimaging studies demonstrated that different neural networks underlie different types of cognitive processing by engaging participants in particular tasks, such as verbal or spatial working memory (WM) tasks. However, we report here that even when a WM task is defined as verbal or spatial, different types of memory strategies may be used to complete it, with concomitant variations in brain activity. We developed a questionnaire to characterize the type of strategy used by individual members in a group of 28 young healthy participants (18-25 years) during a spatial WM task. A cluster analysis was performed to differentiate groups. We acquired functional magnetoencephalography and structural diffusion tensor imaging measures to characterize the brain networks associated with the use of different strategies. We found two types of strategies were used during the spatial WM task, a visuospatial and a verbal strategy, and brain regions and time courses of activation differed between participants who used each. Task performance also varied by type of strategy used with verbal strategies showing an advantage. In addition, performance on neuropsychological tests (indices from Wechsler Adult Intelligence Scale-IV, Rey Complex Figure Test) correlated significantly with fractional anisotropy measures for the visuospatial strategy group in white matter tracts implicated in other WM and attention studies. We conclude that differences in memory strategy can have a pronounced effect on the locations and timing of brain activation and that these differences need further investigation as a possible confounding factor for studies using group averaging as a means for summarizing results. Copyright © 2014 Wiley Periodicals, Inc.
Roijendijk, Linsey; Farquhar, Jason; van Gerven, Marcel; Jensen, Ole; Gielen, Stan
2013-01-01
Objective Covert visual spatial attention is a relatively new task used in brain computer interfaces (BCIs) and little is known about the characteristics which may affect performance in BCI tasks. We investigated whether eccentricity and task difficulty affect alpha lateralization and BCI performance. Approach We conducted a magnetoencephalography study with 14 participants who performed a covert orientation discrimination task at an easy or difficult stimulus contrast at either a near (3.5°) or far (7°) eccentricity. Task difficulty was manipulated block wise and subjects were aware of the difficulty level of each block. Main Results Grand average analyses revealed a significantly larger hemispheric lateralization of posterior alpha power in the difficult condition than in the easy condition, while surprisingly no difference was found for eccentricity. The difference between task difficulty levels was significant in the interval between 1.85 s and 2.25 s after cue onset and originated from a stronger decrease in the contralateral hemisphere. No significant effect of eccentricity was found. Additionally, single-trial classification analysis revealed a higher classification rate in the difficult (65.9%) than in the easy task condition (61.1%). No effect of eccentricity was found in classification rate. Significance Our results indicate that manipulating the difficulty of a task gives rise to variations in alpha lateralization and that using a more difficult task improves covert visual spatial attention BCI performance. The variations in the alpha lateralization could be caused by different factors such as an increased mental effort or a higher visual attentional demand. Further research is necessary to discriminate between them. We did not discover any effect of eccentricity in contrast to results of previous research. PMID:24312477
Roijendijk, Linsey; Farquhar, Jason; van Gerven, Marcel; Jensen, Ole; Gielen, Stan
2013-01-01
Covert visual spatial attention is a relatively new task used in brain computer interfaces (BCIs) and little is known about the characteristics which may affect performance in BCI tasks. We investigated whether eccentricity and task difficulty affect alpha lateralization and BCI performance. We conducted a magnetoencephalography study with 14 participants who performed a covert orientation discrimination task at an easy or difficult stimulus contrast at either a near (3.5°) or far (7°) eccentricity. Task difficulty was manipulated block wise and subjects were aware of the difficulty level of each block. Grand average analyses revealed a significantly larger hemispheric lateralization of posterior alpha power in the difficult condition than in the easy condition, while surprisingly no difference was found for eccentricity. The difference between task difficulty levels was significant in the interval between 1.85 s and 2.25 s after cue onset and originated from a stronger decrease in the contralateral hemisphere. No significant effect of eccentricity was found. Additionally, single-trial classification analysis revealed a higher classification rate in the difficult (65.9%) than in the easy task condition (61.1%). No effect of eccentricity was found in classification rate. Our results indicate that manipulating the difficulty of a task gives rise to variations in alpha lateralization and that using a more difficult task improves covert visual spatial attention BCI performance. The variations in the alpha lateralization could be caused by different factors such as an increased mental effort or a higher visual attentional demand. Further research is necessary to discriminate between them. We did not discover any effect of eccentricity in contrast to results of previous research.
A lateralization of function approach to sex differences in spatial ability: a reexamination.
Rilea, Stacy L
2008-07-01
The current study assessed the lateralization of function hypothesis (Rilea, S. L., Roskos-Ewoldsen, B., & Boles, D. (2004). Sex differences in spatial ability: A lateralization of function approach. Brain and Cognition, 56, 332-343) which suggested that it was the interaction of brain organization and the type of spatial task that led to sex differences in spatial ability. A second purpose was to evaluate explanations for their unexpected findings on the mental rotation task. In Experiment 1, participants completed the Water Level, Paper Folding, and mental rotation tasks (using an object-based or self-based perspective), presented bilaterally. Sex differences were only observed on the Water Level Task; a right hemisphere advantage was observed on Water Level and mental rotation tasks. In Experiment 2, a human stick figure or a polygon was mentally rotated. Men outperformed women when rotating polygons, but not when rotating stick figures. Men demonstrated a right hemisphere advantage when rotating polygons; women showed no hemisphere differences for either stimulus. Thus, hemisphere processing, task complexity, and stimulus type may influence performance for men and women across different spatial measures.
Jeunet, Camille; Jahanpour, Emilie; Lotte, Fabien
2016-06-01
While promising, electroencephaloraphy based brain-computer interfaces (BCIs) are barely used due to their lack of reliability: 15% to 30% of users are unable to control a BCI. Standard training protocols may be partly responsible as they do not satisfy recommendations from psychology. Our main objective was to determine in practice to what extent standard training protocols impact users' motor imagery based BCI (MI-BCI) control performance. We performed two experiments. The first consisted in evaluating the efficiency of a standard BCI training protocol for the acquisition of non-BCI related skills in a BCI-free context, which enabled us to rule out the possible impact of BCIs on the training outcome. Thus, participants (N = 54) were asked to perform simple motor tasks. The second experiment was aimed at measuring the correlations between motor tasks and MI-BCI performance. The ten best and ten worst performers of the first study were recruited for an MI-BCI experiment during which they had to learn to perform two MI tasks. We also assessed users' spatial ability and pre-training μ rhythm amplitude, as both have been related to MI-BCI performance in the literature. Around 17% of the participants were unable to learn to perform the motor tasks, which is close to the BCI illiteracy rate. This suggests that standard training protocols are suboptimal for skill teaching. No correlation was found between motor tasks and MI-BCI performance. However, spatial ability played an important role in MI-BCI performance. In addition, once the spatial ability covariable had been controlled for, using an ANCOVA, it appeared that participants who faced difficulty during the first experiment improved during the second while the others did not. These studies suggest that (1) standard MI-BCI training protocols are suboptimal for skill teaching, (2) spatial ability is confirmed as impacting on MI-BCI performance, and (3) when faced with difficult pre-training, subjects seemed to explore more strategies and therefore learn better.
ERIC Educational Resources Information Center
Obadaki, Yusuf Yakubu; Omowumi, Yakubu Kabirat
2013-01-01
Although, male superiority over females in tasks measuring spatial ability is an accepted truism which has been dominated by many authors, in recent days females claim to be equal to the males in all fields of life. It will be interesting to note that this gender difference in performance on spatial tasks does not appear in all cultures. In order…
Augmented Reality as a Countermeasure for Sleep Deprivation.
Baumeister, James; Dorrlan, Jillian; Banks, Siobhan; Chatburn, Alex; Smith, Ross T; Carskadon, Mary A; Lushington, Kurt; Thomas, Bruce H
2016-04-01
Sleep deprivation is known to have serious deleterious effects on executive functioning and job performance. Augmented reality has an ability to place pertinent information at the fore, guiding visual focus and reducing instructional complexity. This paper presents a study to explore how spatial augmented reality instructions impact procedural task performance on sleep deprived users. The user study was conducted to examine performance on a procedural task at six time points over the course of a night of total sleep deprivation. Tasks were provided either by spatial augmented reality-based projections or on an adjacent monitor. The results indicate that participant errors significantly increased with the monitor condition when sleep deprived. The augmented reality condition exhibited a positive influence with participant errors and completion time having no significant increase when sleep deprived. The results of our study show that spatial augmented reality is an effective sleep deprivation countermeasure under laboratory conditions.
Anodal tDCS applied during multitasking training leads to transferable performance gains.
Filmer, Hannah L; Lyons, Maxwell; Mattingley, Jason B; Dux, Paul E
2017-10-11
Cognitive training can lead to performance improvements that are specific to the tasks trained. Recent research has suggested that transcranial direct current stimulation (tDCS) applied during training of a simple response-selection paradigm can broaden performance benefits to an untrained task. Here we assessed the impact of combined tDCS and training on multitasking, stimulus-response mapping specificity, response-inhibition, and spatial attention performance in a cohort of healthy adults. Participants trained over four days with concurrent tDCS - anodal, cathodal, or sham - applied to the left prefrontal cortex. Immediately prior to, 1 day after, and 2 weeks after training, performance was assessed on the trained multitasking paradigm, an untrained multitasking paradigm, a go/no-go inhibition task, and a visual search task. Training combined with anodal tDCS, compared with training plus cathodal or sham stimulation, enhanced performance for the untrained multitasking paradigm and visual search tasks. By contrast, there were no training benefits for the go/no-go task. Our findings demonstrate that anodal tDCS combined with multitasking training can extend to untrained multitasking paradigms as well as spatial attention, but with no extension to the domain of response inhibition.
Castañer, Marta; Andueza, Juan; Hileno, Raúl; Puigarnau, Silvia; Prat, Queralt; Camerino, Oleguer
2018-01-01
Laterality is a key aspect of the analysis of basic and specific motor skills. It is relevant to sports because it involves motor laterality profiles beyond left-right preference and spatial orientation of the body. The aim of this study was to obtain the laterality profiles of young athletes, taking into account the synergies between the support and precision functions of limbs and body parts in the performance of complex motor skills. We applied two instruments: (a) MOTORLAT, a motor laterality inventory comprising 30 items of basic, specific, and combined motor skills, and (b) the Precision and Agility Tapping over Hoops (PATHoops) task, in which participants had to perform a path by stepping in each of 14 hoops arranged on the floor, allowing the observation of their feet, left-right preference and spatial orientation. A total of 96 young athletes performed the PATHoops task and the 30 MOTORLAT items, allowing us to obtain data about limb dominance and spatial orientation of the body in the performance of complex motor skills. Laterality profiles were obtained by means of a cluster analysis and a correlational analysis and a contingency analysis were applied between the motor skills and spatial orientation actions performed. The results obtained using MOTORLAT show that the combined motor skills criterion (for example, turning while jumping) differentiates athletes' uses of laterality, showing a clear tendency toward mixed laterality profiles in the performance of complex movements. In the PATHoops task, the best spatial orientation strategy was “same way” (same foot and spatial wing) followed by “opposite way” (opposite foot and spatial wing), in keeping with the research assumption that actions unfolding in a horizontal direction in front of an observer's eyes are common in a variety of sports. PMID:29930527
Capruso, Daniel X; Hamsher, Kerry deS
2011-06-01
Clinical evaluation and research on constructional ability have come to rely almost exclusively on two-dimensional tasks such as graphomotor copying or mosaic Block Design (BD). A return to the inclusion of a third dimension in constructional tests may increase the spatial demands of the task, and improve understanding of the relationship between visual perception and constructional ability in patients with cerebral disease. Subjects were patients (n=43) with focal or multifocal cerebrovascular lesions as determined by CT or MRI. Tests of temporal orientation, verbal intelligence, language, object vision and spatial vision were used to determine which factors were predictive of performance on two-dimensional BD and Three-Dimensional Block Construction (3-DBC) tasks. Stepwise linear regression indicated that spatial vision predicted BD performance, and was even more strongly predictive of 3-DBC. Other cognitive domains did not account for significant additional variance in performance of either BD or 3-DBC. Bilateral cerebral lesions produced more severe deficits on BD than did unilateral cerebral lesions. The presence of a posterior cerebral lesion was the significant factor in producing deficits in 3-DBC. The spatial aspect of a constructional task is enhanced when the patient is required to assemble an object in all three dimensions of space. In the typical patient with cerebrovascular disease, constructional deficits typically occur in the context of a wider syndrome of deficits in spatial vision. Copyright © 2010 Elsevier Srl. All rights reserved.
Pasqualotto, Achille; Esenkaya, Tayfun
2016-01-01
Visual-to-auditory sensory substitution is used to convey visual information through audition, and it was initially created to compensate for blindness; it consists of software converting the visual images captured by a video-camera into the equivalent auditory images, or "soundscapes". Here, it was used by blindfolded sighted participants to learn the spatial position of simple shapes depicted in images arranged on the floor. Very few studies have used sensory substitution to investigate spatial representation, while it has been widely used to investigate object recognition. Additionally, with sensory substitution we could study the performance of participants actively exploring the environment through audition, rather than passively localizing sound sources. Blindfolded participants egocentrically learnt the position of six images by using sensory substitution and then a judgment of relative direction task (JRD) was used to determine how this scene was represented. This task consists of imagining being in a given location, oriented in a given direction, and pointing towards the required image. Before performing the JRD task, participants explored a map that provided allocentric information about the scene. Although spatial exploration was egocentric, surprisingly we found that performance in the JRD task was better for allocentric perspectives. This suggests that the egocentric representation of the scene was updated. This result is in line with previous studies using visual and somatosensory scenes, thus supporting the notion that different sensory modalities produce equivalent spatial representation(s). Moreover, our results have practical implications to improve training methods with sensory substitution devices (SSD).
Aging and the Effects of Exploratory Behavior on Spatial Memory.
Varner, Kaitlin M; Dopkins, Stephen; Philbeck, John W
2016-03-01
The present research examined the effect of encoding from multiple viewpoints on scene recall in a group of younger (18-22 years) and older (65-80 years) adults. Participants completed a visual search task, during which they were given the opportunity to examine a room using two sets of windows that partitioned the room differently. Their choice of window set was recorded, to determine whether an association between these choices and spatial memory performance existed. Subsequently, participants were tested for spatial memory of the domain in which the search task was completed. Relative to younger adults, older adults demonstrated an increased tendency to use a single set of windows as well as decreased spatial memory for the domain. Window-set usage was associated with spatial memory, such that older adults who relied more heavily on a single set of windows also had better performance on the spatial memory task. These findings suggest that, in older adults, moderation in exploratory behavior may have a positive effect on memory for the domain of exploration. © The Author(s) 2016.
The development of visuo-spatial working memory.
Pickering, S J
2001-01-01
Children's performance on tests of visuo-spatial working memory improves with age, although relatively little is known about why this happens. One explanation concerns the development of the ability to recode visually presented information into phonological form. This process appears to be used from around 8 years of age and is a major contributor to tasks in which stimuli can be verbally labelled. However, evidence suggests that phonological recoding cannot account for all of the age-related change in performance on visuo-spatial working memory tasks. In this review, four other mechanisms (knowledge, processing strategies, processing speed, and attentional capacity) are considered in terms of their contribution to children's visuo-spatial working memory development.
Hutchings, Elizabeth J; Waller, Jennifer L; Terry, Alvin V
2013-12-01
A common feature of the neuropsychiatric disorders for which antipsychotic drugs are prescribed is cognitive dysfunction, yet the effects of long-term antipsychotic treatment on cognition are largely unknown. In the current study, we evaluated the effects of long-term oral treatment with the first-generation antipsychotic haloperidol (1.0 and 2.0 mg/kg daily) and the second-generation antipsychotic risperidone (1.25 and 2.5 mg/kg daily) on the acquisition and performance of two radial-arm maze (RAM) tasks and a five-choice serial reaction-time task (5C-SRTT) in rats during days 15-60 and 84-320 days of treatment, respectively. In the RAM, neither antipsychotic significantly affected the acquisition or performance of a spatial win shift or a delayed non-match-to-position task. Conversely, in the rats administered 5C-SRTT, haloperidol was associated with profound deficits in performance, and the subjects were not able to progress through all stages of task acquisition. Depending on the dose, risperidone was associated with a greater number of trials to meet specific performance criteria during task acquisition compared with vehicle-treated controls; however, most subjects were eventually able to achieve all levels of task acquisition. Both haloperidol and risperidone also increased the number of perseverative and time-out responses during certain stages of task acquisition, and the response and reward latencies were slightly higher than controls during several stages of the study. These results in rats suggest that while long-term treatment with haloperidol or risperidone may not significantly affect spatial working or short-term memory, both antipsychotics can (depending on dose) impair sustained attention, decrease psychomotor speed, increase compulsive-type behaviors, and impair cognitive flexibility.
Hutchings, Elizabeth J.; Waller, Jennifer L.
2013-01-01
A common feature of the neuropsychiatric disorders for which antipsychotic drugs are prescribed is cognitive dysfunction, yet the effects of long-term antipsychotic treatment on cognition are largely unknown. In the current study, we evaluated the effects of long-term oral treatment with the first-generation antipsychotic haloperidol (1.0 and 2.0 mg/kg daily) and the second-generation antipsychotic risperidone (1.25 and 2.5 mg/kg daily) on the acquisition and performance of two radial-arm maze (RAM) tasks and a five-choice serial reaction-time task (5C-SRTT) in rats during days 15–60 and 84–320 days of treatment, respectively. In the RAM, neither antipsychotic significantly affected the acquisition or performance of a spatial win shift or a delayed non–match-to-position task. Conversely, in the rats administered 5C-SRTT, haloperidol was associated with profound deficits in performance, and the subjects were not able to progress through all stages of task acquisition. Depending on the dose, risperidone was associated with a greater number of trials to meet specific performance criteria during task acquisition compared with vehicle-treated controls; however, most subjects were eventually able to achieve all levels of task acquisition. Both haloperidol and risperidone also increased the number of perseverative and time-out responses during certain stages of task acquisition, and the response and reward latencies were slightly higher than controls during several stages of the study. These results in rats suggest that while long-term treatment with haloperidol or risperidone may not significantly affect spatial working or short-term memory, both antipsychotics can (depending on dose) impair sustained attention, decrease psychomotor speed, increase compulsive-type behaviors, and impair cognitive flexibility. PMID:24042161
Astur, R S; Ortiz, M L; Sutherland, R J
1998-06-01
In many mammalian species, it is known that males and females differ in place learning ability. The performance by men and women is commonly reported to also differ, despite a large amount of variability and ambiguity in measuring spatial abilities. In the non-human literature, the gold standard for measuring place learning ability in mammals is the Morris water task. This task requires subjects to use the spatial arrangement of cues outside of a circular pool to swim to a hidden goal platform located in a fixed location. We used a computerized version of the Morris water task to assess whether this task will generalize into the human domain and to examine whether sex differences exist in this domain of topographical learning and memory. Across three separate experiments, varying in attempts to maximize spatial performance, we consistently found males navigate to the hidden platform better than females across a variety of measures. The effect sizes of these differences are some of the largest ever reported and are robust and replicable across experiments. These results are the first to demonstrate the effectiveness and utility of the virtual Morris water task for humans and show a robust sex difference in virtual place learning.
Sex, estradiol, and spatial memory in a food-caching corvid.
Rensel, Michelle A; Ellis, Jesse M S; Harvey, Brigit; Schlinger, Barney A
2015-09-01
Estrogens significantly impact spatial memory function in mammalian species. Songbirds express the estrogen synthetic enzyme aromatase at relatively high levels in the hippocampus and there is evidence from zebra finches that estrogens facilitate performance on spatial learning and/or memory tasks. It is unknown, however, whether estrogens influence hippocampal function in songbirds that naturally exhibit memory-intensive behaviors, such as cache recovery observed in many corvid species. To address this question, we examined the impact of estradiol on spatial memory in non-breeding Western scrub-jays, a species that routinely participates in food caching and retrieval in nature and in captivity. We also asked if there were sex differences in performance or responses to estradiol. Utilizing a combination of an aromatase inhibitor, fadrozole, with estradiol implants, we found that while overall cache recovery rates were unaffected by estradiol, several other indices of spatial memory, including searching efficiency and efficiency to retrieve the first item, were impaired in the presence of estradiol. In addition, males and females differed in some performance measures, although these differences appeared to be a consequence of the nature of the task as neither sex consistently out-performed the other. Overall, our data suggest that a sustained estradiol elevation in a food-caching bird impairs some, but not all, aspects of spatial memory on an innate behavioral task, at times in a sex-specific manner. Copyright © 2015 Elsevier Inc. All rights reserved.
SEX, ESTRADIOL, AND SPATIAL MEMORY IN A FOOD-CACHING CORVID
Rensel, Michelle A.; Ellis, Jesse M.S.; Harvey, Brigit; Schlinger, Barney A.
2015-01-01
Estrogens significantly impact spatial memory function in mammalian species. Songbirds express the estrogen synthetic enzyme aromatase at relatively high levels in the hippocampus and there is evidence from zebra finches that estrogens facilitate performance on spatial learning and/or memory tasks. It is unknown, however, whether estrogens influence hippocampal function in songbirds that naturally exhibit memory-intensive behaviors, such as cache recovery observed in many corvid species. To address this question, we examined the impact of estradiol on spatial memory in non-breeding Western scrub-jays, a species that routinely participates in food caching and retrieval in nature and in captivity. We also asked if there were sex differences in performance or responses to estradiol. Utilizing a combination of an aromatase inhibitor, fadrozole, with estradiol implants, we found that while overall cache recovery rates were unaffected by estradiol, several other indices of spatial memory, including searching efficiency and efficiency to retrieve the first item, were impaired in the presence of estradiol. In addition, males and females differed in some performance measures, although these differences appeared to be a consequence of the nature of the task as neither sex consistently out-performed the other. Overall, our data suggest that a sustained estradiol elevation in a food-caching bird impairs some, but not all, aspects of spatial memory on an innate behavioral task, at times in a sex-specific manner. PMID:26232613
Top-down regulation of default mode activity in spatial visual attention
Wen, Xiaotong; Liu, Yijun; Yao, Li; Ding, Mingzhou
2013-01-01
Dorsal anterior cingulate and bilateral anterior insula form a task control network (TCN) whose primary function includes initiating and maintaining task-level cognitive set and exerting top-down regulation of sensorimotor processing. The default mode network (DMN), comprising an anatomically distinct set of cortical areas, mediates introspection and self-referential processes. Resting-state data show that TCN and DMN interact. The functional ramifications of their interaction remain elusive. Recording fMRI data from human subjects performing a visual spatial attention task and correlating Granger causal influences with behavioral performance and blood-oxygen-level-dependent (BOLD) activity we report three main findings. First, causal influences from TCN to DMN, i.e., TCN→DMN, are positively correlated with behavioral performance. Second, causal influences from DMN to TCN, i.e., DMN→TCN, are negatively correlated with behavioral performance. Third, stronger DMN→TCN are associated with less elevated BOLD activity in TCN, whereas the relationship between TCN→DMN and DMN BOLD activity is unsystematic. These results suggest that during visual spatial attention, top-down signals from TCN to DMN regulate the activity in DMN to enhance behavioral performance, whereas signals from DMN to TCN, acting possibly as internal noise, interfere with task control, leading to degraded behavioral performance. PMID:23575842
Direct Electrical Stimulation of the Human Entorhinal Region and Hippocampus Impairs Memory.
Jacobs, Joshua; Miller, Jonathan; Lee, Sang Ah; Coffey, Tom; Watrous, Andrew J; Sperling, Michael R; Sharan, Ashwini; Worrell, Gregory; Berry, Brent; Lega, Bradley; Jobst, Barbara C; Davis, Kathryn; Gross, Robert E; Sheth, Sameer A; Ezzyat, Youssef; Das, Sandhitsu R; Stein, Joel; Gorniak, Richard; Kahana, Michael J; Rizzuto, Daniel S
2016-12-07
Deep brain stimulation (DBS) has shown promise for treating a range of brain disorders and neurological conditions. One recent study showed that DBS in the entorhinal region improved the accuracy of human spatial memory. Based on this line of work, we performed a series of experiments to more fully characterize the effects of DBS in the medial temporal lobe on human memory. Neurosurgical patients with implanted electrodes performed spatial and verbal-episodic memory tasks. During the encoding periods of both tasks, subjects received electrical stimulation at 50 Hz. In contrast to earlier work, electrical stimulation impaired memory performance significantly in both spatial and verbal tasks. Stimulation in both the entorhinal region and hippocampus caused decreased memory performance. These findings indicate that the entorhinal region and hippocampus are causally involved in human memory and suggest that refined methods are needed to use DBS in these regions to improve memory. Copyright © 2016 Elsevier Inc. All rights reserved.
Language supports young children’s use of spatial relations to remember locations
Miller, Hilary E.; Patterson, Rebecca; Simmering, Vanessa R.
2016-01-01
Two experiments investigated the role of language in children’s spatial recall performance. In particular, we assessed whether selecting an intrinsic reference frame could be improved through verbal encoding. Selecting an intrinsic reference frame requires remembering locations relative to nearby objects independent of one’s body (egocentric) or distal environmental (allocentric) cues, and does not reliably occur in children under 5 years of age (Nardini, Burgess, Breckenridge, & Atkinson, 2006). The current studies tested the relation between spatial language and 4-year-olds’ selection of an intrinsic reference frame in spatial recall. Experiment 1 showed that providing 4-year-olds with location-descriptive cues during (Exp. 1a) or before (Exp. 1b) the recall task improved performance both overall and specifically on trials relying most on an intrinsic reference frame. Additionally, children’s recall performance was predicted by their verbal descriptions of the task space (Exp. 1a control condition). Non-verbally highlighting relations among objects during the recall task (Exp. 2) supported children’s performance relative to the control condition, but significantly less than the location-descriptive cues. These results suggest that the ability to verbally represent relations is a potential mechanism that could account for developmental changes in the selection of an intrinsic reference frame during spatial recall. PMID:26896902
Language supports young children's use of spatial relations to remember locations.
Miller, Hilary E; Patterson, Rebecca; Simmering, Vanessa R
2016-05-01
Two experiments investigated the role of language in children's spatial recall performance. In particular, we assessed whether selecting an intrinsic reference frame could be improved through verbal encoding. Selecting an intrinsic reference frame requires remembering locations relative to nearby objects independent of one's body (egocentric) or distal environmental (allocentric) cues, and does not reliably occur in children under 5 years of age (Nardini, Burgess, Breckenridge, & Atkinson, 2006). The current studies tested the relation between spatial language and 4-year-olds' selection of an intrinsic reference frame in spatial recall. Experiment 1 showed that providing 4-year-olds with location-descriptive cues during (Exp. 1a) or before (Exp. 1b) the recall task improved performance both overall and specifically on trials relying most on an intrinsic reference frame. Additionally, children's recall performance was predicted by their verbal descriptions of the task space (Exp. 1a control condition). Non-verbally highlighting relations among objects during the recall task (Exp. 2) supported children's performance relative to the control condition, but significantly less than the location-descriptive cues. These results suggest that the ability to verbally represent relations is a potential mechanism that could account for developmental changes in the selection of an intrinsic reference frame during spatial recall. Copyright © 2016 Elsevier B.V. All rights reserved.
Understanding Language, Hearing Status, and Visual-Spatial Skills.
Marschark, Marc; Spencer, Linda J; Durkin, Andreana; Borgna, Georgianna; Convertino, Carol; Machmer, Elizabeth; Kronenberger, William G; Trani, Alexandra
2015-10-01
It is frequently assumed that deaf individuals have superior visual-spatial abilities relative to hearing peers and thus, in educational settings, they are often considered visual learners. There is some empirical evidence to support the former assumption, although it is inconsistent, and apparently none to support the latter. Three experiments examined visual-spatial and related cognitive abilities among deaf individuals who varied in their preferred language modality and use of cochlear implants (CIs) and hearing individuals who varied in their sign language skills. Sign language and spoken language assessments accompanied tasks involving visual-spatial processing, working memory, nonverbal logical reasoning, and executive function. Results were consistent with other recent studies indicating no generalized visual-spatial advantage for deaf individuals and suggested that their performance in that domain may be linked to the strength of their preferred language skills regardless of modality. Hearing individuals performed more strongly than deaf individuals on several visual-spatial and self-reported executive functioning measures, regardless of sign language skills or use of CIs. Findings are inconsistent with assumptions that deaf individuals are visual learners or are superior to hearing individuals across a broad range of visual-spatial tasks. Further, performance of deaf and hearing individuals on the same visual-spatial tasks was associated with differing cognitive abilities, suggesting that different cognitive processes may be involved in visual-spatial processing in these groups. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Goodlett, C R; Hamre, K M; West, J R
1992-04-10
Spatial learning in rodents requires normal functioning of hippocampal and cortical structures. Recent data suggest that the cerebellum may also be essential. Neurological mutant mice with dysgenesis of the cerebellum provide useful models to examine the effects of abnormal cerebellar function. Mice with one such mutation, Purkinje cell degeneration (pcd), in which Purkinje cells degenerate between the third and fourth postnatal weeks, were evaluated for performance of spatial navigation learning and visual guidance learning in the Morris maze swim-escape task. Unaffected littermates and C57BL/6J mice served as controls. Separate groups of pcd and control mice were tested at 30, 50 and 110 days of age. At all ages, pcd mice had severe deficits in distal-cue (spatial) navigation, failing to decrease path lengths over training and failing to express appropriate spatial biases on probe trials. On the proximal-cue (visual guidance) task, whenever performance differences between groups did occur, they were limited to the initial trials. The ability of the pcd mice to perform the proximal-cue but not the distal-cue task indicates that the massive spatial navigation deficit was not due simply to motor dysfunction. Histological evaluations confirmed that the pcd mutation resulted in Purkinje cell loss without significant depletion of cells in the hippocampal formation. These data provide further evidence that the cerebellum is vital for the expression of behavior directed by spatial cognitive processes.
Detecting spatial memory deficits beyond blindness in tg2576 Alzheimer mice.
Yassine, Nour; Lazaris, Anelise; Dorner-Ciossek, Cornelia; Després, Olivier; Meyer, Laurence; Maitre, Michel; Mensah-Nyagan, Ayikoe Guy; Cassel, Jean-Christophe; Mathis, Chantal
2013-03-01
The retinal degeneration Pde6b(rd1) (rd) mutation can be a major pitfall in behavioral studies using tg2576 mice bred on a B6:SJL genetic background, 1 of the most widely used models of Alzheimer's disease. After a pilot study in wild type mice, performance of 8- and 16-month-old tg2576 mice were assessed in several behavioral tasks with the challenge of selecting 1 or more task(s) showing robust memory deficits on this genetic background. Water maze acquisition was impossible in rd homozygotes, whereas Y-maze alternation, object recognition, and olfactory discrimination were unaffected by both the transgene and the rd mutation. Spatial memory retention of 8- and 16-month-old tg2576 mice, however, was dramatically affected independently of the rd mutation when mice had to recognize a spatial configuration of objects or to perform the Barnes maze. Thus, the latter tasks appear extremely useful to evaluate spatial memory deficits and to test cognitive therapies in tg2576 mice and other mouse models bred on a background susceptible to visual impairment. Copyright © 2013 Elsevier Inc. All rights reserved.
Sex differences in spatial ability: a lateralization of function approach.
Rilea, Stacy L; Roskos-Ewoldsen, Beverly; Boles, David
2004-12-01
The current study was designed to examine whether the extent of the male advantage in performance on a spatial task was determined by the extent to which the task was right-hemisphere dependent. Participants included 108 right-handed men and women who completed the mental rotation, waterlevel, and paperfolding tasks, all of which were presented bilaterally. The results partially supported the hypothesis. On the mental rotation task, men showed a right-hemisphere advantage, whereas women showed no hemispheric differences; however, no overall sex differences were observed. On the waterlevel task, men outperformed women, and both men and women showed a right-hemisphere advantage. On the paperfolding task, no sex or hemispheric differences were observed. Although the findings of the current study were mixed, the study provides a framework for examining sex differences across different types of spatial ability.
Akiva-Kabiri, Lilach; Linkovski, Omer; Gertner, Limor; Henik, Avishai
2014-08-01
In musical-space synesthesia, musical pitches are perceived as having a spatially defined array. Previous studies showed that symbolic inducers (e.g., numbers, months) can modulate response according to the inducer's relative position on the synesthetic spatial form. In the current study we tested two musical-space synesthetes and a group of matched controls on three different tasks: musical-space mapping, spatial cue detection and a spatial Stroop-like task. In the free mapping task, both synesthetes exhibited a diagonal organization of musical pitch tones rising from bottom left to the top right. This organization was found to be consistent over time. In the subsequent tasks, synesthetes were asked to ignore an auditory or visually presented musical pitch (irrelevant information) and respond to a visual target (i.e., an asterisk) on the screen (relevant information). Compatibility between musical pitch and the target's spatial location was manipulated to be compatible or incompatible with the synesthetes' spatial representations. In the spatial cue detection task participants had to press the space key immediately upon detecting the target. In the Stroop-like task, they had to reach the target by using a mouse cursor. In both tasks, synesthetes' performance was modulated by the compatibility between irrelevant and relevant spatial information. Specifically, the target's spatial location conflicted with the spatial information triggered by the irrelevant musical stimulus. These results reveal that for musical-space synesthetes, musical information automatically orients attention according to their specific spatial musical-forms. The present study demonstrates the genuineness of musical-space synesthesia by revealing its two hallmarks-automaticity and consistency. In addition, our results challenge previous findings regarding an implicit vertical representation for pitch tones in non-synesthete musicians. Copyright © 2014 Elsevier Inc. All rights reserved.
Gender differences in multitasking reflect spatial ability.
Mäntylä, Timo
2013-04-01
Demands involving the scheduling and interleaving of multiple activities have become increasingly prevalent, especially for women in both their paid and unpaid work hours. Despite the ubiquity of everyday requirements to multitask, individual and gender-related differences in multitasking have gained minimal attention in past research. In two experiments, participants completed a multitasking session with four gender-fair monitoring tasks and separate tasks measuring executive functioning (working memory updating) and spatial ability (mental rotation). In both experiments, males outperformed females in monitoring accuracy. Individual differences in executive functioning and spatial ability were independent predictors of monitoring accuracy, but only spatial ability mediated gender differences in multitasking. Menstrual changes accentuated these effects, such that gender differences in multitasking (and spatial ability) were eliminated between males and females who were in the menstrual phase of the menstrual cycle but not between males and females who were in the luteal phase. These findings suggest that multitasking involves spatiotemporal task coordination and that gender differences in multiple-task performance reflect differences in spatial ability.
Hemispatial neglect and serial order in verbal working memory.
Antoine, Sophie; Ranzini, Mariagrazia; van Dijck, Jean-Philippe; Slama, Hichem; Bonato, Mario; Tousch, Ann; Dewulf, Myrtille; Bier, Jean-Christophe; Gevers, Wim
2018-01-09
Working memory refers to our ability to actively maintain and process a limited amount of information during a brief period of time. Often, not only the information itself but also its serial order is crucial for good task performance. It was recently proposed that serial order is grounded in spatial cognition. Here, we compared performance of a group of right hemisphere-damaged patients with hemispatial neglect to healthy controls in verbal working memory tasks. Participants memorized sequences of consonants at span level and had to judge whether a target consonant belonged to the memorized sequence (item task) or whether a pair of consonants were presented in the same order as in the memorized sequence (order task). In line with this idea that serial order is grounded in spatial cognition, we found that neglect patients made significantly more errors in the order task than in the item task compared to healthy controls. Furthermore, this deficit seemed functionally related to neglect severity and was more frequently observed following right posterior brain damage. Interestingly, this specific impairment for serial order in verbal working memory was not lateralized. We advance the hypotheses of a potential contribution to the deficit of serial order in neglect patients of either or both (1) reduced spatial working memory capacity that enables to keep track of the spatial codes that provide memorized items with a positional context, (2) a spatial compression of these codes in the intact representational space. © 2018 The British Psychological Society.
Spatial localization deficits and auditory cortical dysfunction in schizophrenia
Perrin, Megan A.; Butler, Pamela D.; DiCostanzo, Joanna; Forchelli, Gina; Silipo, Gail; Javitt, Daniel C.
2014-01-01
Background Schizophrenia is associated with deficits in the ability to discriminate auditory features such as pitch and duration that localize to primary cortical regions. Lesions of primary vs. secondary auditory cortex also produce differentiable effects on ability to localize and discriminate free-field sound, with primary cortical lesions affecting variability as well as accuracy of response. Variability of sound localization has not previously been studied in schizophrenia. Methods The study compared performance between patients with schizophrenia (n=21) and healthy controls (n=20) on sound localization and spatial discrimination tasks using low frequency tones generated from seven speakers concavely arranged with 30 degrees separation. Results For the sound localization task, patients showed reduced accuracy (p=0.004) and greater overall response variability (p=0.032), particularly in the right hemifield. Performance was also impaired on the spatial discrimination task (p=0.018). On both tasks, poorer accuracy in the right hemifield was associated with greater cognitive symptom severity. Better accuracy in the left hemifield was associated with greater hallucination severity on the sound localization task (p=0.026), but no significant association was found for the spatial discrimination task. Conclusion Patients show impairments in both sound localization and spatial discrimination of sounds presented free-field, with a pattern comparable to that of individuals with right superior temporal lobe lesions that include primary auditory cortex (Heschl’s gyrus). Right primary auditory cortex dysfunction may protect against hallucinations by influencing laterality of functioning. PMID:20619608
Reduced vision selectively impairs spatial updating in fall-prone older adults.
Barrett, Maeve M; Doheny, Emer P; Setti, Annalisa; Maguinness, Corrina; Foran, Timothy G; Kenny, Rose Anne; Newell, Fiona N
2013-01-01
The current study examined the role of vision in spatial updating and its potential contribution to an increased risk of falls in older adults. Spatial updating was assessed using a path integration task in fall-prone and healthy older adults. Specifically, participants conducted a triangle completion task in which they were guided along two sides of a triangular route and were then required to return, unguided, to the starting point. During the task, participants could either clearly view their surroundings (full vision) or visuo-spatial information was reduced by means of translucent goggles (reduced vision). Path integration performance was measured by calculating the distance and angular deviation from the participant's return point relative to the starting point. Gait parameters for the unguided walk were also recorded. We found equivalent performance across groups on all measures in the full vision condition. In contrast, in the reduced vision condition, where participants had to rely on interoceptive cues to spatially update their position, fall-prone older adults made significantly larger distance errors relative to healthy older adults. However, there were no other performance differences between fall-prone and healthy older adults. These findings suggest that fall-prone older adults, compared to healthy older adults, have greater difficulty in reweighting other sensory cues for spatial updating when visual information is unreliable.
Seeing ahead: experience and language in spatial perspective.
Alloway, Tracy Packiam; Corley, Martin; Ramscar, Michael
2006-03-01
Spatial perspective can be directed by various reference frames, as well as by the direction of motion. In the present study, we explored how ambiguity in spatial tasks can be resolved. Participants were presented with virtual reality environments in order to stimulate a spatialreference frame based on motion. They interacted with an ego-moving spatial system in Experiment 1 and an object-moving spatial system in Experiment 2. While interacting with the virtual environment, the participants were presented with either a question representing a motion system different from that of the virtual environment or a nonspatial question relating to physical features of the virtual environment. They then performed the target task assign the label front in an ambiguous spatial task. The findings indicate that the disambiguation of spatial terms can be influenced by embodied experiences, as represented by the virtual environment, as well as by linguistic context.
Vuontela, Virve; Steenari, Maija-Riikka; Aronen, Eeva T; Korvenoja, Antti; Aronen, Hannu J; Carlson, Synnöve
2009-02-01
Using functional magnetic resonance imaging (fMRI) and n-back tasks we investigated whether, in 11-13-year-old children, spatial (location) and nonspatial (color) information is differentially processed during visual attention (0-back) and working memory (WM) (2-back) tasks and whether such cognitive task performance, compared to a resting state, results in regional deactivation. The location 0-back task, compared to the color 0-back task, activated segregated areas in the frontal, parietal and occipital cortices whereas no differentially activated voxels were obtained when location and color 2-back tasks were directly contrasted. Several midline cortical areas were less active during 0- and 2-back task performance than resting state. The task-induced deactivation increased with task difficulty as demonstrated by larger deactivation during 2-back than 0-back tasks. The results suggest that, in 11-13-year-old children, the visual attentional network is differently recruited by spatial and nonspatial information processing, but the functional organization of cortical activation in WM in this age group is not based on the type of information processed. Furthermore, 11-13-year-old children exhibited a similar pattern of cortical deactivation that has been reported in adults during cognitive task performance compared to a resting state.
Effects of complete monocular deprivation in visuo-spatial memory.
Cattaneo, Zaira; Merabet, Lotfi B; Bhatt, Ela; Vecchi, Tomaso
2008-09-30
Monocular deprivation has been associated with both specific deficits and enhancements in visual perception and processing. In this study, performance on a visuo-spatial memory task was compared in congenitally monocular individuals and sighted control individuals viewing monocularly (i.e., patched) and binocularly. The task required the individuals to view and memorize a series of target locations on two-dimensional matrices. Overall, congenitally monocular individuals performed worse than sighted individuals (with a specific deficit in simultaneously maintaining distinct spatial representations in memory), indicating that the lack of binocular visual experience affects the way visual information is represented in visuo-spatial memory. No difference was observed between the monocular and binocular viewing control groups, suggesting that early monocular deprivation affects the development of cortical mechanisms mediating visuo-spatial cognition.
Rehearsal in serial memory for visual-spatial information: evidence from eye movements.
Tremblay, Sébastien; Saint-Aubin, Jean; Jalbert, Annie
2006-06-01
It is well established that rote rehearsal plays a key role in serial memory for lists of verbal items. Although a great deal of research has informed us about the nature of verbal rehearsal, much less attention has been devoted to rehearsal in serial memory for visual-spatial information. By using the dot task--a visual-spatial analogue of the classical verbal serial recall task--with delayed recall, performance and eyetracking data were recorded in order to establish whether visual-spatial rehearsal could be evidenced by eye movement. The use of eye movement as a form of rehearsal is detectable (Experiment 1), and it seems to contribute to serial memory performance over and above rehearsal based on shifts of spatial attention (Experiments 1 and 2).
Visual memory in unilateral spatial neglect: immediate recall versus delayed recognition.
Moreh, Elior; Malkinson, Tal Seidel; Zohary, Ehud; Soroker, Nachum
2014-09-01
Patients with unilateral spatial neglect (USN) often show impaired performance in spatial working memory tasks, apart from the difficulty retrieving "left-sided" spatial data from long-term memory, shown in the "piazza effect" by Bisiach and colleagues. This study's aim was to compare the effect of the spatial position of a visual object on immediate and delayed memory performance in USN patients. Specifically, immediate verbal recall performance, tested using a simultaneous presentation of four visual objects in four quadrants, was compared with memory in a later-provided recognition task, in which objects were individually shown at the screen center. Unlike healthy controls, USN patients showed a left-side disadvantage and a vertical bias in the immediate free recall task (69% vs. 42% recall for right- and left-sided objects, respectively). In the recognition task, the patients correctly recognized half of "old" items, and their correct rejection rate was 95.5%. Importantly, when the analysis focused on previously recalled items (in the immediate task), no statistically significant difference was found in the delayed recognition of objects according to their original quadrant of presentation. Furthermore, USN patients were able to recollect the correct original location of the recognized objects in 60% of the cases, well beyond chance level. This suggests that the memory trace formed in these cases was not only semantic but also contained a visuospatial tag. Finally, successful recognition of objects missed in recall trials points to formation of memory traces for neglected contralesional objects, which may become accessible to retrieval processes in explicit memory.
Blini, Elvio; Romeo, Zaira; Spironelli, Chiara; Pitteri, Marco; Meneghello, Francesca; Bonato, Mario; Zorzi, Marco
2016-11-01
Unilateral Spatial Neglect, the most dramatic manifestation of contralesional space unawareness, is a highly heterogeneous syndrome. The presence of neglect is related to core spatially lateralized deficits, but its severity is also modulated by several domain-general factors (such as alertness or sustained attention) and by task demands. We previously showed that a computer-based dual-task paradigm exploiting both lateralized and non-lateralized factors (i.e., attentional load/multitasking) better captures this complex scenario and exacerbates deficits for the contralesional space after right hemisphere damage. Here we asked whether multitasking would reveal contralesional spatial disorders in chronic left-hemisphere damaged (LHD) stroke patients, a population in which impaired spatial processing is thought to be uncommon. Ten consecutive LHD patients with no signs of right-sided neglect at standard neuropsychological testing performed a computerized spatial monitoring task with and without concurrent secondary tasks (i.e., multitasking). Severe contralesional (right) space unawareness emerged in most patients under attentional load in both the visual and auditory modalities. Multitasking affected the detection of contralesional stimuli both when presented concurrently with an ipsilesional one (i.e., extinction for bilateral targets) and when presented in isolation (i.e., left neglect for right-sided targets). No spatial bias emerged in a control group of healthy elderly participants, who performed at ceiling, as well as in a second control group composed of patients with Mild Cognitive Impairment. We conclude that the pathological spatial asymmetry in LHD patients cannot be attributed to a global reduction of cognitive resources but it is the consequence of unilateral brain damage. Clinical and theoretical implications of the load-dependent lack of awareness for contralesional hemispace following LHD are discussed. Copyright © 2016. Published by Elsevier Ltd.
Spatial short-term memory is impaired in dependent betel quid chewers.
Chiu, Meng-Chun; Shen, Bin; Li, Shuo-Heng; Ho, Ming-Chou
2016-08-01
Betel quid is regarded as a human carcinogen by the World Health Organization. It remains unknown whether chewing betel quid has a chronic effect on healthy betel quid chewers' memory. The present study aims to investigate whether chewing betel quid can affect short-term memory (STM). Three groups of participants (24 dependent chewers, 24 non-dependent chewers, and 24 non-chewers) were invited to carry out the matrix span task, the object span task, and the digit span task. All span tasks' results were adopted to assess spatial STM, visual STM, and verbal STM, respectively. Besides, there are three set sizes (small, medium, and large) in each span task. For the matrix span task, results showed that the dependent chewers had worse performances than the non-dependent chewers and the non-chewers at medium and large set sizes. For the object span task and digit span task, there were no differences in between groups. In each group, recognition performances were worse with the increasing set size and showing successful manipulation of memory load. The current study provided the first evidence that dependent betel quid chewing can selectively impair spatial STM rather than visual STM and verbal STM. Theoretical and practical implications of this result are discussed.
Task-based statistical image reconstruction for high-quality cone-beam CT
NASA Astrophysics Data System (ADS)
Dang, Hao; Webster Stayman, J.; Xu, Jennifer; Zbijewski, Wojciech; Sisniega, Alejandro; Mow, Michael; Wang, Xiaohui; Foos, David H.; Aygun, Nafi; Koliatsos, Vassilis E.; Siewerdsen, Jeffrey H.
2017-11-01
Task-based analysis of medical imaging performance underlies many ongoing efforts in the development of new imaging systems. In statistical image reconstruction, regularization is often formulated in terms to encourage smoothness and/or sharpness (e.g. a linear, quadratic, or Huber penalty) but without explicit formulation of the task. We propose an alternative regularization approach in which a spatially varying penalty is determined that maximizes task-based imaging performance at every location in a 3D image. We apply the method to model-based image reconstruction (MBIR—viz., penalized weighted least-squares, PWLS) in cone-beam CT (CBCT) of the head, focusing on the task of detecting a small, low-contrast intracranial hemorrhage (ICH), and we test the performance of the algorithm in the context of a recently developed CBCT prototype for point-of-care imaging of brain injury. Theoretical predictions of local spatial resolution and noise are computed via an optimization by which regularization (specifically, the quadratic penalty strength) is allowed to vary throughout the image to maximize local task-based detectability index ({{d}\\prime} ). Simulation studies and test-bench experiments were performed using an anthropomorphic head phantom. Three PWLS implementations were tested: conventional (constant) penalty; a certainty-based penalty derived to enforce constant point-spread function, PSF; and the task-based penalty derived to maximize local detectability at each location. Conventional (constant) regularization exhibited a fairly strong degree of spatial variation in {{d}\\prime} , and the certainty-based method achieved uniform PSF, but each exhibited a reduction in detectability compared to the task-based method, which improved detectability up to ~15%. The improvement was strongest in areas of high attenuation (skull base), where the conventional and certainty-based methods tended to over-smooth the data. The task-driven reconstruction method presents a promising regularization method in MBIR by explicitly incorporating task-based imaging performance as the objective. The results demonstrate improved ICH conspicuity and support the development of high-quality CBCT systems.
Wilkins, Leanne K; Girard, Todd A; Herdman, Katherine A; Christensen, Bruce K; King, Jelena; Kiang, Michael; Bohbot, Veronique D
2017-10-30
Different strategies may be spontaneously adopted to solve most navigation tasks. These strategies are associated with dissociable brain systems. Here, we use brain-imaging and cognitive tasks to test the hypothesis that individuals living with Schizophrenia Spectrum Disorders (SSD) have selective impairment using a hippocampal-dependent spatial navigation strategy. Brain activation and memory performance were examined using functional magnetic resonance imaging (fMRI) during the 4-on-8 virtual maze (4/8VM) task, a human analog of the rodent radial-arm maze that is amenable to both response-based (egocentric or landmark-based) and spatial (allocentric, cognitive mapping) strategies to remember and navigate to target objects. SSD (schizophrenia and schizoaffective disorder) participants who adopted a spatial strategy performed more poorly on the 4/8VM task and had less hippocampal activation than healthy comparison participants using either strategy as well as SSD participants using a response strategy. This study highlights the importance of strategy use in relation to spatial cognitive functioning in SSD. Consistent with a selective-hippocampal dependent deficit in SSD, these results support the further development of protocols to train impaired hippocampal-dependent abilities or harness non-hippocampal dependent intact abilities. Copyright © 2017 Elsevier B.V. All rights reserved.
What is 3D good for? A review of human performance on stereoscopic 3D displays
NASA Astrophysics Data System (ADS)
McIntire, John P.; Havig, Paul R.; Geiselman, Eric E.
2012-06-01
This work reviews the human factors-related literature on the task performance implications of stereoscopic 3D displays, in order to point out the specific performance benefits (or lack thereof) one might reasonably expect to observe when utilizing these displays. What exactly is 3D good for? Relative to traditional 2D displays, stereoscopic displays have been shown to enhance performance on a variety of depth-related tasks. These tasks include judging absolute and relative distances, finding and identifying objects (by breaking camouflage and eliciting perceptual "pop-out"), performing spatial manipulations of objects (object positioning, orienting, and tracking), and navigating. More cognitively, stereoscopic displays can improve the spatial understanding of 3D scenes or objects, improve memory/recall of scenes or objects, and improve learning of spatial relationships and environments. However, for tasks that are relatively simple, that do not strictly require depth information for good performance, where other strong cues to depth can be utilized, or for depth tasks that lie outside the effective viewing volume of the display, the purported performance benefits of 3D may be small or altogether absent. Stereoscopic 3D displays come with a host of unique human factors problems including the simulator-sickness-type symptoms of eyestrain, headache, fatigue, disorientation, nausea, and malaise, which appear to effect large numbers of viewers (perhaps as many as 25% to 50% of the general population). Thus, 3D technology should be wielded delicately and applied carefully; and perhaps used only as is necessary to ensure good performance.
Contextual determinants of the social-transfer-of-learning effect.
Milanese, Nadia; Iani, Cristina; Sebanz, Natalie; Rubichi, Sandro
2011-06-01
A recent study (Milanese et al. in Cogn 116(1):15-22, 2010) showed that performing a spatial compatibility task with incompatible S-R links (i.e., the practice task) alongside a co-actor eliminates the Simon effect in a subsequent joint Simon task (i.e., the transfer task). In the present study, we conducted three experiments to individuate which elements of the practice task need to remain constant for this social-transfer-of-learning to occur. In Experiment 1, participants performed the practice task alongside a co-actor and the Simon task with a different co-actor; in Experiment 2, they performed the practice task alongside a co-actor and the Simon task with the same co-actor after exchanging their seats. Results showed a modulation of the joint Simon effect in Experiment 1 only. In Experiment 2, we found a regular joint Simon effect. These results indicate that, while co-actor identity is not crucial, other elements of the context, such as keeping the same position across tasks, are necessary for the social-transfer-of-learning to occur. On the whole, our data suggest that the social-transfer-of-learning effect is not tuned to a specific co-actor and depends on spatial parameters of the practice and transfer tasks.
Enhancing cognition with video games: a multiple game training study.
Oei, Adam C; Patterson, Michael D
2013-01-01
Previous evidence points to a causal link between playing action video games and enhanced cognition and perception. However, benefits of playing other video games are under-investigated. We examined whether playing non-action games also improves cognition. Hence, we compared transfer effects of an action and other non-action types that required different cognitive demands. We instructed 5 groups of non-gamer participants to play one game each on a mobile device (iPhone/iPod Touch) for one hour a day/five days a week over four weeks (20 hours). Games included action, spatial memory, match-3, hidden- object, and an agent-based life simulation. Participants performed four behavioral tasks before and after video game training to assess for transfer effects. Tasks included an attentional blink task, a spatial memory and visual search dual task, a visual filter memory task to assess for multiple object tracking and cognitive control, as well as a complex verbal span task. Action game playing eliminated attentional blink and improved cognitive control and multiple-object tracking. Match-3, spatial memory and hidden object games improved visual search performance while the latter two also improved spatial working memory. Complex verbal span improved after match-3 and action game training. Cognitive improvements were not limited to action game training alone and different games enhanced different aspects of cognition. We conclude that training specific cognitive abilities frequently in a video game improves performance in tasks that share common underlying demands. Overall, these results suggest that many video game-related cognitive improvements may not be due to training of general broad cognitive systems such as executive attentional control, but instead due to frequent utilization of specific cognitive processes during game play. Thus, many video game training related improvements to cognition may be attributed to near-transfer effects.
Sex differences on a computerized mental rotation task disappear with computer familiarization.
Roberts, J E; Bell, M A
2000-12-01
The area of cognitive research that has produced the most consistent sex differences is spatial ability. Particularly, men consistently perform better on mental rotation tasks than do women. This study examined the effects of familiarization with a computer on performance of a computerized two-dimensional mental rotation task. Two groups of college students (N=44) performed the rotation task, with one group performing a color-matching task that allowed them to be familiarized with the computer prior to the rotation task. Among the participants who only performed the rotation task, the 11 men performed better than the 11 women. Among the participants who performed the computer familiarization task before the rotation task, how ever, there were no sex differences on the mental rotation task between the 10 men and 12 women. These data indicate that sex differences on this two-dimensional task may reflect familiarization with the computer, not the mental rotation component of the task. Further research with larger samples and increased range of task difficulty is encouraged.
NASA Technical Reports Server (NTRS)
Liu, Yili; Wickens, Christopher D.
1987-01-01
This paper reports on the first experiment of a series studying the effect of task structure and difficulty demand on time-sharing performance and workload in both automated and corresponding manual systems. The experimental task involves manual control time-shared with spatial and verbal decisions tasks of two levels of difficulty and two modes of response (voice or manual). The results provide strong evidence that tasks and processes competing for common processing resources are time shared less effecively and have higher workload than tasks competing for separate resources. Subjective measures and the structure of multiple resources are used in conjunction to predict dual task performance. The evidence comes from both single-task and from dual-task performance.
ERIC Educational Resources Information Center
Puerta Melguizo, Mari Carmen; Vidya, Uti; van Oostendorp, Herre
2012-01-01
We studied the effects of menu type, navigation path complexity and spatial ability on information retrieval performance and web disorientation or lostness. Two innovative aspects were included: (a) navigation path relevance and (b) information gathering tasks. As expected we found that, when measuring aspects directly related to navigation…
ERIC Educational Resources Information Center
Vanmarcke, Steven; Wagemans, Johan
2017-01-01
Adolescents with and without autism spectrum disorder (ASD) performed two priming experiments in which they implicitly processed a prime stimulus, containing high and/or low spatial frequency information, and then explicitly categorized a target face either as male/female (gender task) or as positive/negative (Valence task). Adolescents with ASD…
ERIC Educational Resources Information Center
Williams, Janet K.; And Others
1992-01-01
Thirteen females with Turner syndrome, 13 females with nonverbal learning disabilities, and 14 males with nonverbal learning disabilities, ages 7-14, were taught via a cognitive behavioral modification approach to verbally mediate a spatial matching task. All three groups showed significant task improvement after the training, with no significant…
ERIC Educational Resources Information Center
Keehner, Madeleine; Hegarty, Mary; Cohen, Cheryl; Khooshabeh, Peter; Montello, Daniel R.
2008-01-01
Three experiments examined the effects of interactive visualizations and spatial abilities on a task requiring participants to infer and draw cross sections of a three-dimensional (3D) object. The experiments manipulated whether participants could interactively control a virtual 3D visualization of the object while performing the task, and…
Verrico, Christopher D.; Gu, Hong; Peterson, Melanie L.; Sampson, Allan R.; Lewis, David A.
2014-01-01
Objective Epidemiological findings suggest that, relative to adults, adolescents are more vulnerable to the adverse persistent effects of cannabis on working memory. However, the potential confounds inherent in human studies preclude direct determination of a cause-and-effect relationship between adolescent cannabis use and heightened susceptibility to persistent working memory impairments. Consequently, the authors examined the effects of repeated exposure to Δ9-tetrahydrocannabinol (THC) on performance of spatial and object working memory tasks in adolescent monkeys. Method Seven pairs of male adolescent rhesus monkeys, matched for baseline cognitive performance, received vehicle or THC intravenously 5 days/week for 6 months. Performance on spatial and object memory tasks was assessed 23 or 71 hours after drug administration throughout the study. In addition, acute effects on working memory were also assessed at the beginning and end of the 6-month period. Results Relative to the vehicle-exposed control animals, those with repeated THC exposure had a blunted trajectory of accuracy improvements on the spatial working memory task in a delay-dependent manner. Accuracy improvements on the object working memory task did not differ between groups. Relative to the acute effects of THC on working memory at the beginning of the study, neither sensitivity nor tolerance was evident after 6 months of THC exposure. Conclusions Because maturation of performance is later for spatial than for object working memory, these findings suggest that persistent effects of THC on cognitive abilities are more evident when exposure coincides with the developmental stage during which the underlying neural circuits are actively maturing. PMID:24577206
Verrico, Christopher D; Gu, Hong; Peterson, Melanie L; Sampson, Allan R; Lewis, David A
2014-04-01
Epidemiological findings suggest that, relative to adults, adolescents are more vulnerable to the adverse persistent effects of cannabis on working memory. However, the potential confounds inherent in human studies preclude direct determination of a cause-and-effect relationship between adolescent cannabis use and heightened susceptibility to persistent working memory impairments. Consequently, the authors examined the effects of repeated exposure to Δ9-tetrahydrocannabinol (THC) on performance of spatial and object working memory tasks in adolescent monkeys. Seven pairs of male adolescent rhesus monkeys, matched for baseline cognitive performance, received vehicle or THC intravenously 5 days/week for 6 months. Performance on spatial and object memory tasks was assessed 23 or 71 hours after drug administration throughout the study. In addition, acute effects on working memory were also assessed at the beginning and end of the 6-month period. Relative to the vehicle-exposed control animals, those with repeated THC exposure had a blunted trajectory of accuracy improvements on the spatial working memory task in a delay-dependent manner. Accuracy improvements on the object working memory task did not differ between groups. Relative to the acute effects of THC on working memory at the beginning of the study, neither sensitivity nor tolerance was evident after 6 months of THC exposure. Because maturation of performance is later for spatial than for object working memory, these findings suggest that persistent effects of THC on cognitive abilities are more evident when exposure coincides with the developmental stage during which the underlying neural circuits are actively maturing.
Short-term and long-term memory in early temporal lobe dysfunction.
Hershey, T; Craft, S; Glauser, T A; Hale, S
1998-01-01
Following medial temporal damage, mature humans are impaired in retaining new information over long delays but not short delays. The question of whether a similar dissociation occurs in children was addressed by testing children (ages 7-16) with unilateral temporal lobe epilepsy (TLE) and controls on short- and long-term memory tasks, including a spatial delayed response task (SDR). Early-onset TLE did not affect performance on short delays on SDR, but it did impair performance at the longest delay (60 s), similar to adults with unilateral medial temporal damage. In addition, early-onset TLE affected performance on pattern recall, spatial span, and verbal span with rehearsal interference. No differences were found on story recall or on a response inhibition task.
Espy, K A; Kaufmann, P M; McDiarmid, M D; Glisky, M L
1999-11-01
The A-not-B (AB) task has been hypothesized to measure executive/frontal lobe function; however, the developmental and measurement characteristics of this task have not been investigated. Performances on AB and comparison tasks adapted from developmental and neuroscience literature was examined in 117 preschool children (ages 23-66 months). Age significantly predicted performance on AB, Delayed Alternation, Spatial Reversal, Color Reversal, and Self-Control tasks. A four-factor analytic model best fit task performance data. AB task indices loaded on two factors with measures from the Self-Control and Delayed Alternation tasks, respectively. AB indices did not load with those from the reversal tasks despite similarities in task administration and presumed cognitive demand (working memory). These results indicate that AB is sensitive to individual differences in age-related performance in preschool children and suggest that AB performance is related to both working memory and inhibition processes in this age range.
Gordon, Evan M.; Stollstorff, Melanie; Vaidya, Chandan J.
2012-01-01
Many researchers have noted that the functional architecture of the human brain is relatively invariant during task performance and the resting state. Indeed, intrinsic connectivity networks (ICNs) revealed by resting-state functional connectivity analyses are spatially similar to regions activated during cognitive tasks. This suggests that patterns of task-related activation in individual subjects may result from the engagement of one or more of these ICNs; however, this has not been tested. We used a novel analysis, spatial multiple regression, to test whether the patterns of activation during an N-back working memory task could be well described by a linear combination of ICNs delineated using Independent Components Analysis at rest. We found that across subjects, the cingulo-opercular Set Maintenance ICN, as well as right and left Frontoparietal Control ICNs, were reliably activated during working memory, while Default Mode and Visual ICNs were reliably deactivated. Further, involvement of Set Maintenance, Frontoparietal Control, and Dorsal Attention ICNs was sensitive to varying working memory load. Finally, the degree of left Frontoparietal Control network activation predicted response speed, while activation in both left Frontoparietal Control and Dorsal Attention networks predicted task accuracy. These results suggest that a close relationship between resting-state networks and task-evoked activation is functionally relevant for behavior, and that spatial multiple regression analysis is a suitable method for revealing that relationship. PMID:21761505
A novel computational model to probe visual search deficits during motor performance
Singh, Tarkeshwar; Fridriksson, Julius; Perry, Christopher M.; Tryon, Sarah C.; Ross, Angela; Fritz, Stacy
2016-01-01
Successful execution of many motor skills relies on well-organized visual search (voluntary eye movements that actively scan the environment for task-relevant information). Although impairments of visual search that result from brain injuries are linked to diminished motor performance, the neural processes that guide visual search within this context remain largely unknown. The first objective of this study was to examine how visual search in healthy adults and stroke survivors is used to guide hand movements during the Trail Making Test (TMT), a neuropsychological task that is a strong predictor of visuomotor and cognitive deficits. Our second objective was to develop a novel computational model to investigate combinatorial interactions between three underlying processes of visual search (spatial planning, working memory, and peripheral visual processing). We predicted that stroke survivors would exhibit deficits in integrating the three underlying processes, resulting in deteriorated overall task performance. We found that normal TMT performance is associated with patterns of visual search that primarily rely on spatial planning and/or working memory (but not peripheral visual processing). Our computational model suggested that abnormal TMT performance following stroke is associated with impairments of visual search that are characterized by deficits integrating spatial planning and working memory. This innovative methodology provides a novel framework for studying how the neural processes underlying visual search interact combinatorially to guide motor performance. NEW & NOTEWORTHY Visual search has traditionally been studied in cognitive and perceptual paradigms, but little is known about how it contributes to visuomotor performance. We have developed a novel computational model to examine how three underlying processes of visual search (spatial planning, working memory, and peripheral visual processing) contribute to visual search during a visuomotor task. We show that deficits integrating spatial planning and working memory underlie abnormal performance in stroke survivors with frontoparietal damage. PMID:27733596
Dovis, Sebastiaan; Van der Oord, Saskia; Wiers, Reinout W; Prins, Pier J M
2012-07-01
Visual-spatial Working Memory (WM) is the most impaired executive function in children with Attention-Deficit/Hyperactivity Disorder (ADHD). Some suggest that deficits in executive functioning are caused by motivational deficits. However, there are no studies that investigate the effects of motivation on the visual-spatial WM of children with- and without ADHD. Studies examining this in executive functions other than WM, show inconsistent results. These inconsistencies may be related to differences in the reinforcement used. The effects of different reinforcers on WM performance were investigated in 30 children with ADHD and 31 non-ADHD controls. A visual-spatial WM task was administered in four reinforcement conditions: Feedback-only, 1 euro, 10 euros, and a computer-game version of the task. In the Feedback-only condition, children with ADHD performed worse on the WM measure than controls. Although incentives significantly improved the WM performance of children with ADHD, even the strongest incentives (10 euros and Gaming) were unable to normalize their performance. Feedback-only provided sufficient reinforcement for controls to reach optimal performance, while children with ADHD required extra reinforcement. Only children with ADHD showed a decrease in performance over time. Importantly, the strongest incentives (10 euros and Gaming) normalized persistence of performance in these children, whereas 1 euro had no such effect. Both executive and motivational deficits give rise to visual-spatial WM deficits in ADHD. Problems with task-persistence in ADHD result from motivational deficits. In ADHD-reinforcement studies and clinical practice (e.g., assessment), reinforcement intensity can be a confounding factor and should be taken into account. Gaming can be a cost-effective way to maximize performance in ADHD.
How number line estimation skills relate to neural activations in single digit subtraction problems
Berteletti, I.; Man, G.; Booth, J.R.
2014-01-01
The Number Line (NL) task requires judging the relative numerical magnitude of a number and estimating its value spatially on a continuous line. Children's skill on this task has been shown to correlate with and predict future mathematical competence. Neurofunctionally, this task has been shown to rely on brain regions involved in numerical processing. However, there is no direct evidence that performance on the NL task is related to brain areas recruited during arithmetical processing and that these areas are domain-specific to numerical processing. In this study, we test whether 8- to 14-year-old's behavioral performance on the NL task is related to fMRI activation during small and large single-digit subtraction problems. Domain-specific areas for numerical processing were independently localized through a numerosity judgment task. Results show a direct relation between NL estimation performance and the amount of the activation in key areas for arithmetical processing. Better NL estimators showed a larger problem size effect than poorer NL estimators in numerical magnitude (i.e., intraparietal sulcus) and visuospatial areas (i.e., posterior superior parietal lobules), marked by less activation for small problems. In addition, the direction of the activation with problem size within the IPS was associated to differences in accuracies for small subtraction problems. This study is the first to show that performance in the NL task, i.e. estimating the spatial position of a number on an interval, correlates with brain activity observed during single-digit subtraction problem in regions thought to be involved numerical magnitude and spatial processes. PMID:25497398
Green, Matthew R; McCormick, Cheryl M
2013-11-01
There is evidence that exposure to stressors in adolescence leads to lasting deficits on hippocampal-dependent tasks, but whether medial prefrontal cortical function is also impaired is unknown. We previously found that rats exposed to social instability stress in adolescence (SS; daily 1h isolation and subsequent change of cage partner between postnatal days 30 and 45) had impaired memory performance on a Spatial Object Location test and in memory for fear conditioning context, tasks that depend on the integrity of the hippocampus. Here we investigated whether impaired performance would be evident after adolescent SS in male rats on a different test of hippocampal function, spatial learning and memory in the Morris water maze (MWM) and on a working memory task for which performance depends on the integrity of the medial prefrontal cortex, the Delayed Alternation task (DAT). During MWM testing, SS rats showed greater improvements in performance across trials within days compared to control (CTL) rats, but showed less retention of learning between days (48 h) compared to CTL rats. Similarly, SS rats had impaired long-term memory in the Spatial Object Location test after a long delay (240 min), but not after shorter delays (15 or 60 min) compared to CTL rats. No group differences were observed on the DAT, which assessed working memory across brief delays (5-90 s). Thus, deficits in memory performance after chronic social stress in adolescence may be limited to long-term memory. Copyright © 2013 Elsevier B.V. All rights reserved.
Mice lacking hippocampal left-right asymmetry show non-spatial learning deficits.
Shimbo, Akihiro; Kosaki, Yutaka; Ito, Isao; Watanabe, Shigeru
2018-01-15
Left-right asymmetry is known to exist at several anatomical levels in the brain and recent studies have provided further evidence to show that it also exists at a molecular level in the hippocampal CA3-CA1 circuit. The distribution of N-methyl-d-aspartate (NMDA) receptor NR2B subunits in the apical and basal synapses of CA1 pyramidal neurons is asymmetrical if the input arrives from the left or right CA3 pyramidal neurons. In the present study, we examined the role of hippocampal asymmetry in cognitive function using β2-microglobulin knock-out (β2m KO) mice, which lack hippocampal asymmetry. We tested β2m KO mice in a series of spatial and non-spatial learning tasks and compared the performances of β2m KO and C57BL6/J wild-type (WT) mice. The β2m KO mice appeared normal in both spatial reference memory and spatial working memory tasks but they took more time than WT mice in learning the two non-spatial learning tasks (i.e., a differential reinforcement of lower rates of behavior (DRL) task and a straight runway task). The β2m KO mice also showed less precision in their response timing in the DRL task and showed weaker spontaneous recovery during extinction in the straight runway task. These results indicate that hippocampal asymmetry is important for certain characteristics of non-spatial learning. Copyright © 2017 Elsevier B.V. All rights reserved.
Performance Enhancements Under Dual-task Conditions
NASA Technical Reports Server (NTRS)
Kramer, A. F.; Wickens, C. D.; Donchin, E.
1984-01-01
Research on dual-task performance has been concerned with delineating the antecedent conditions which lead to dual-task decrements. Capacity models of attention, which propose that a hypothetical resource structure underlies performance, have been employed as predictive devices. These models predict that tasks which require different processing resources can be more successfully time shared than tasks which require common resources. The conditions under which such dual-task integrality can be fostered were assessed in a study in which three factors likely to influence the integrality between tasks were manipulated: inter-task redundancy, the physical proximity of tasks and the task relevant objects. Twelve subjects participated in three experimental sessions in which they performed both single and dual-tasks. The primary task was a pursuit step tracking task. The secondary tasks required the discrimination between different intensities or different spatial positions of a stimulus. The results are discussed in terms of a model of dual-task integrality.
A Neurobehavioral Model of Flexible Spatial Language Behaviors
Lipinski, John; Schneegans, Sebastian; Sandamirskaya, Yulia; Spencer, John P.; Schöner, Gregor
2012-01-01
We propose a neural dynamic model that specifies how low-level visual processes can be integrated with higher level cognition to achieve flexible spatial language behaviors. This model uses real-word visual input that is linked to relational spatial descriptions through a neural mechanism for reference frame transformations. We demonstrate that the system can extract spatial relations from visual scenes, select items based on relational spatial descriptions, and perform reference object selection in a single unified architecture. We further show that the performance of the system is consistent with behavioral data in humans by simulating results from 2 independent empirical studies, 1 spatial term rating task and 1 study of reference object selection behavior. The architecture we present thereby achieves a high degree of task flexibility under realistic stimulus conditions. At the same time, it also provides a detailed neural grounding for complex behavioral and cognitive processes. PMID:21517224
Pasqualotto, Achille; Esenkaya, Tayfun
2016-01-01
Visual-to-auditory sensory substitution is used to convey visual information through audition, and it was initially created to compensate for blindness; it consists of software converting the visual images captured by a video-camera into the equivalent auditory images, or “soundscapes”. Here, it was used by blindfolded sighted participants to learn the spatial position of simple shapes depicted in images arranged on the floor. Very few studies have used sensory substitution to investigate spatial representation, while it has been widely used to investigate object recognition. Additionally, with sensory substitution we could study the performance of participants actively exploring the environment through audition, rather than passively localizing sound sources. Blindfolded participants egocentrically learnt the position of six images by using sensory substitution and then a judgment of relative direction task (JRD) was used to determine how this scene was represented. This task consists of imagining being in a given location, oriented in a given direction, and pointing towards the required image. Before performing the JRD task, participants explored a map that provided allocentric information about the scene. Although spatial exploration was egocentric, surprisingly we found that performance in the JRD task was better for allocentric perspectives. This suggests that the egocentric representation of the scene was updated. This result is in line with previous studies using visual and somatosensory scenes, thus supporting the notion that different sensory modalities produce equivalent spatial representation(s). Moreover, our results have practical implications to improve training methods with sensory substitution devices (SSD). PMID:27148000
Storbeck, Justin; Davidson, Nicole A; Dahl, Chelsea F; Blass, Sara; Yung, Edwin
2015-01-01
We examined whether positive and negative affect motivates verbal and spatial working memory processes, respectively, which have implications for the expenditure of mental effort. We argue that when emotion promotes cognitive tendencies that are goal incompatible with task demands, greater cognitive effort is required to perform well. We sought to investigate whether this increase in cognitive effort impairs behavioural control over a broad domain of self-control tasks. Moreover, we predicted that individuals with higher behavioural inhibition system (BIS) sensitivities would report more negative affect within the goal incompatible conditions because such individuals report higher negative affect during cognitive challenge. Positive or negative affective states were induced followed by completing a verbal or spatial 2-back working memory task. All participants then completed one of three self-control tasks. Overall, we observed that conditions of emotion and working memory incompatibility (positive/spatial and negative/verbal) performed worse on the self-control tasks, and within the incompatible conditions individuals with higher BIS sensitivities reported more negative affect at the end of the study. The combination of findings suggests that emotion and working memory compatibility reduces cognitive effort and impairs behavioural control.
Evidence of MAOA genotype involvement in spatial ability in males
Mueller, Sven C.; Cornwell, Brian R.; Grillon, Christian; MacIntyre, Jessica; Gorodetsky, Elena; Goldman, David; Pine, Daniel S.; Ernst, Monique
2014-01-01
Although the Monoamine Oxidase-A (MAOA) gene has been linked to spatial learning and memory in animal models, convincing evidence in humans is lacking. Performance on an ecologically-valid, virtual computer-based equivalent of the Morris Water Maze task was compared between 28 healthy males with the low MAOA transcriptional activity and 41 healthy age- and IQ-matched males with the high MAOA transcriptional activity. The results revealed consistently better performance (reduced heading error, shorter path length, and reduced failed trials) for the high MAOA activity individuals relative to the low activity individuals. By comparison, groups did not differ on pre-task variables or strategic measures such as first-move latency. The results provide novel evidence of MAOA gene involvement in human spatial navigation using a virtual analogue of the Morris Water Maze task. PMID:24671068
Heed, Tobias; Azañón, Elena
2014-01-01
To respond to a touch, it is often necessary to localize it in space, and not just on the skin. The computation of this external spatial location involves the integration of somatosensation with visual and proprioceptive information about current body posture. In the past years, the study of touch localization has received substantial attention and has become a central topic in the research field of multisensory integration. In this review, we will explore important findings from this research, zooming in on one specific experimental paradigm, the temporal order judgment (TOJ) task, which has proven particularly fruitful for the investigation of tactile spatial processing. In a typical TOJ task participants perform non-speeded judgments about the order of two tactile stimuli presented in rapid succession to different skin sites. This task could be solved without relying on external spatial coordinates. However, postural manipulations affect TOJ performance, indicating that external coordinates are in fact computed automatically. We show that this makes the TOJ task a reliable indicator of spatial remapping, and provide an overview over the versatile analysis options for TOJ. We introduce current theories of TOJ and touch localization, and then relate TOJ to behavioral and electrophysiological evidence from other paradigms, probing the benefit of TOJ for the study of spatial processing as well as related topics such as multisensory plasticity, body processing, and pain. PMID:24596561
Neural correlates of virtual route recognition in congenital blindness.
Kupers, Ron; Chebat, Daniel R; Madsen, Kristoffer H; Paulson, Olaf B; Ptito, Maurice
2010-07-13
Despite the importance of vision for spatial navigation, blind subjects retain the ability to represent spatial information and to move independently in space to localize and reach targets. However, the neural correlates of navigation in subjects lacking vision remain elusive. We therefore used functional MRI (fMRI) to explore the cortical network underlying successful navigation in blind subjects. We first trained congenitally blind and blindfolded sighted control subjects to perform a virtual navigation task with the tongue display unit (TDU), a tactile-to-vision sensory substitution device that translates a visual image into electrotactile stimulation applied to the tongue. After training, participants repeated the navigation task during fMRI. Although both groups successfully learned to use the TDU in the virtual navigation task, the brain activation patterns showed substantial differences. Blind but not blindfolded sighted control subjects activated the parahippocampus and visual cortex during navigation, areas that are recruited during topographical learning and spatial representation in sighted subjects. When the navigation task was performed under full vision in a second group of sighted participants, the activation pattern strongly resembled the one obtained in the blind when using the TDU. This suggests that in the absence of vision, cross-modal plasticity permits the recruitment of the same cortical network used for spatial navigation tasks in sighted subjects.
Rudebeck, Sarah R.; Bor, Daniel; Ormond, Angharad; O’Reilly, Jill X.; Lee, Andy C. H.
2012-01-01
One current challenge in cognitive training is to create a training regime that benefits multiple cognitive domains, including episodic memory, without relying on a large battery of tasks, which can be time-consuming and difficult to learn. By giving careful consideration to the neural correlates underlying episodic and working memory, we devised a computerized working memory training task in which neurologically healthy participants were required to monitor and detect repetitions in two streams of spatial information (spatial location and scene identity) presented simultaneously (i.e. a dual n-back paradigm). Participants’ episodic memory abilities were assessed before and after training using two object and scene recognition memory tasks incorporating memory confidence judgments. Furthermore, to determine the generalizability of the effects of training, we also assessed fluid intelligence using a matrix reasoning task. By examining the difference between pre- and post-training performance (i.e. gain scores), we found that the trainers, compared to non-trainers, exhibited a significant improvement in fluid intelligence after 20 days. Interestingly, pre-training fluid intelligence performance, but not training task improvement, was a significant predictor of post-training fluid intelligence improvement, with lower pre-training fluid intelligence associated with greater post-training gain. Crucially, trainers who improved the most on the training task also showed an improvement in recognition memory as captured by d-prime scores and estimates of recollection and familiarity memory. Training task improvement was a significant predictor of gains in recognition and familiarity memory performance, with greater training improvement leading to more marked gains. In contrast, lower pre-training recollection memory scores, and not training task improvement, led to greater recollection memory performance after training. Our findings demonstrate that practice on a single working memory task can potentially improve aspects of both episodic memory and fluid intelligence, and that an extensive training regime with multiple tasks may not be necessary. PMID:23209740
Rudebeck, Sarah R; Bor, Daniel; Ormond, Angharad; O'Reilly, Jill X; Lee, Andy C H
2012-01-01
One current challenge in cognitive training is to create a training regime that benefits multiple cognitive domains, including episodic memory, without relying on a large battery of tasks, which can be time-consuming and difficult to learn. By giving careful consideration to the neural correlates underlying episodic and working memory, we devised a computerized working memory training task in which neurologically healthy participants were required to monitor and detect repetitions in two streams of spatial information (spatial location and scene identity) presented simultaneously (i.e. a dual n-back paradigm). Participants' episodic memory abilities were assessed before and after training using two object and scene recognition memory tasks incorporating memory confidence judgments. Furthermore, to determine the generalizability of the effects of training, we also assessed fluid intelligence using a matrix reasoning task. By examining the difference between pre- and post-training performance (i.e. gain scores), we found that the trainers, compared to non-trainers, exhibited a significant improvement in fluid intelligence after 20 days. Interestingly, pre-training fluid intelligence performance, but not training task improvement, was a significant predictor of post-training fluid intelligence improvement, with lower pre-training fluid intelligence associated with greater post-training gain. Crucially, trainers who improved the most on the training task also showed an improvement in recognition memory as captured by d-prime scores and estimates of recollection and familiarity memory. Training task improvement was a significant predictor of gains in recognition and familiarity memory performance, with greater training improvement leading to more marked gains. In contrast, lower pre-training recollection memory scores, and not training task improvement, led to greater recollection memory performance after training. Our findings demonstrate that practice on a single working memory task can potentially improve aspects of both episodic memory and fluid intelligence, and that an extensive training regime with multiple tasks may not be necessary.
van der Waal, Marjolein; Farquhar, Jason; Fasotti, Luciano; Desain, Peter
2017-01-15
Healthy aging is associated with changes in many neurocognitive functions. While on the behavioral level, visual spatial attention capacities are relatively stable with increasing age, the underlying neural processes change. In this study, we investigated attention-related modulations of the stimulus-locked event-related potential (ERP) and occipital oscillations in the alpha band (8-14Hz) in young and elderly participants. Both groups performed a visual attention task equally well and the ERP showed comparable attention-related modulations in both age groups. However, in elderly subjects, oscillations in the alpha band were massively reduced both during the task and in the resting state and the typical task-related lateralized pattern of alpha activity was not observed. These differences between young and elderly participants were observed on the group level as well as on the single trial level. The results indicate that younger and older adults use different neural strategies to reach the same performance in a covert visual spatial attention task. Copyright © 2016 Elsevier B.V. All rights reserved.
Kim, Sanga; Lee, Sang Ho; Cho, Yang Seok
2015-11-01
The congruency sequence effect, one of the indices of cognitive control, refers to a smaller congruency effect after an incongruent than congruent trial. Although the effect has been found across a variety of conflict tasks, there is not yet agreement on the underlying mechanism. The present study investigated the mechanism underlying cognitive control by using a cross-task paradigm. In Experiments 1, 2, and 3, participants performed a modified Simon task and a spatial Stroop task alternately in a trial-by-trial manner. The task-irrelevant dimension of the two tasks was perceptually and conceptually identical in Experiment 1, whereas it was perceptually different but conceptually identical in Experiment 2. The response sets for both tasks were different in Experiment 3. In Experiment 4, participants performed two Simon tasks with different task-relevant dimensions. In all experiments in which the task-irrelevant dimension and response mode were shared, significant congruency sequence effects were found between the two different congruencies, indicating that Simon-type conflicts were resolved by a control mechanism, which is specific to an abstract task-irrelevant stimulus spatial dimension. Copyright © 2015 Elsevier B.V. All rights reserved.
Working memory subsystems and task complexity in young boys with Fragile X syndrome.
Baker, S; Hooper, S; Skinner, M; Hatton, D; Schaaf, J; Ornstein, P; Bailey, D
2011-01-01
Working memory problems have been targeted as core deficits in individuals with Fragile X syndrome (FXS); however, there have been few studies that have examined working memory in young boys with FXS, and even fewer studies that have studied the working memory performance of young boys with FXS across different degrees of complexity. The purpose of this study was to investigate the phonological loop and visual-spatial working memory in young boys with FXS, in comparison to mental age-matched typical boys, and to examine the impact of complexity of the working memory tasks on performance. The performance of young boys (7 to 13-years-old) with FXS (n = 40) was compared with that of mental age and race matched typically developing boys (n = 40) on measures designed to test the phonological loop and the visuospatial sketchpad across low, moderate and high degrees of complexity. Multivariate analyses were used to examine group differences across the specific working memory systems and degrees of complexity. Results suggested that boys with FXS showed deficits in phonological loop and visual-spatial working memory tasks when compared with typically developing mental age-matched boys. For the boys with FXS, the phonological loop was significantly lower than the visual-spatial sketchpad; however, there was no significant difference in performance across the low, moderate and high degrees of complexity in the working memory tasks. Reverse tasks from both the phonological loop and visual-spatial sketchpad appeared to be the most challenging for both groups, but particularly for the boys with FXS. These findings implicate a generalised deficit in working memory in young boys with FXS, with a specific disproportionate impairment in the phonological loop. Given the lack of differentiation on the low versus high complexity tasks, simple span tasks may provide an adequate estimate of working memory until greater involvement of the central executive is achieved. © 2010 The Authors. Journal of Intellectual Disability Research © 2010 Blackwell Publishing Ltd.
Working memory subsystems and task complexity in young boys with Fragile X syndrome
Baker, S.; Hooper, S.; Skinner, M.; Hatton, D.; Schaaf, J.; Ornstein, P.; Bailey, D.
2011-01-01
Background Working memory problems have been targeted as core deficits in individuals with Fragile X syndrome (FXS); however, there have been few studies that have examined working memory in young boys with FXS, and even fewer studies that have studied the working memory performance of young boys with FXS across different degrees of complexity. The purpose of this study was to investigate the phonological loop and visual–spatial working memory in young boys with FXS, in comparison to mental age-matched typical boys, and to examine the impact of complexity of the working memory tasks on performance. Methods The performance of young boys (7 to 13-years-old) with FXS (n = 40) was compared with that of mental age and race matched typically developing boys (n = 40) on measures designed to test the phonological loop and the visuospatial sketchpad across low, moderate and high degrees of complexity. Multivariate analyses were used to examine group differences across the specific working memory systems and degrees of complexity. Results Results suggested that boys with FXS showed deficits in phonological loop and visual–spatial working memory tasks when compared with typically developing mental age-matched boys. For the boys with FXS, the phonological loop was significantly lower than the visual–spatial sketchpad; however, there was no significant difference in performance across the low, moderate and high degrees of complexity in the working memory tasks. Reverse tasks from both the phonological loop and visual–spatial sketchpad appeared to be the most challenging for both groups, but particularly for the boys with FXS. Conclusions These findings implicate a generalised deficit in working memory in young boys with FXS, with a specific disproportionate impairment in the phonological loop. Given the lack of differentiation on the low versus high complexity tasks, simple span tasks may provide an adequate estimate of working memory until greater involvement of the central executive is achieved. PMID:21121991
Bour, Alexandra; Grootendorst, Jeannette; Vogel, Elise; Kelche, Christian; Dodart, Jean-Cosme; Bales, Kelly; Moreau, Pierre-Henri; Sullivan, Patrick M; Mathis, Chantal
2008-11-21
Apolipoprotein (apo) E4, one of three human apoE (h-apoE) isoforms, has been identified as a major genetic risk factor for Alzheimer's disease and for cognitive deficits associated with aging. However, the biological mechanisms involving apoE in learning and memory processes are unclear. A potential isoform-dependent role of apoE in cognitive processes was studied in human apoE targeted-replacement (TR) mice. These mice express either the human apoE3 or apoE4 gene under the control of endogenous murine apoE regulatory sequences, resulting in physiological expression of h-apoE in both a temporal and spatial pattern similar to humans. Male and female apoE3-TR, apoE4-TR, apoE-knockout and C57BL/6J mice (15-18 months) were tested with spatial memory and avoidance conditioning tasks. Compared to apoE3-TR mice, spatial memory in female apoE4-TR mice was impaired based on their poor performances in; (i) the probe test of the water-maze reference memory task, (ii) the water-maze working memory task and (iii) an active avoidance Y-maze task. Retention performance on a passive avoidance task was also impaired in apoE4-TR mice, but not in other genotypes. These deficits in both spatial and avoidance memory tasks may be related to the anatomical and functional abnormalities previously reported in the hippocampus and the amygdala of apoE4-TR mice. We conclude that the apoE4-TR mice provide an excellent model for understanding the mechanisms underlying apoE4-dependent susceptibility to cognitive decline.
ERIC Educational Resources Information Center
Foster, Erin R.; Black, Kevin J.; Antenor-Dorsey, Jo Ann V.; Perlmutter, Joel S.; Hershey, Tamara
2008-01-01
Studies suggest motor deficit asymmetry may help predict the pattern of cognitive impairment in individuals with Parkinson disease (PD). We tested this hypothesis using a highly validated and sensitive spatial memory task, spatial delayed response (SDR), and clinical and neuroimaging measures of PD asymmetry. We predicted SDR performance would be…
A localized model of spatial cognition in chemistry
NASA Astrophysics Data System (ADS)
Stieff, Mike
This dissertation challenges the assumption that spatial cognition, particularly visualization, is the key component to problem solving in chemistry. In contrast to this assumption, I posit a localized, or task-specific, model of spatial cognition in chemistry problem solving to locate the exact tasks in a traditional organic chemistry curriculum that require students to use visualization strategies to problem solve. Instead of assuming that visualization is required for most chemistry tasks simply because chemistry concerns invisible three-dimensional entities, I instead use the framework of the localized model to identify how students do and do not make use of visualization strategies on a wide variety of assessment tasks regardless of each task's explicit demand for spatial cognition. I establish the dimensions of the localized model with five studies. First, I designed two novel psychometrics to reveal how students selectively use visualization strategies to interpret and analyze molecular structures. The third study comprised a document analysis of the organic chemistry assessments that empirically determined only 12% of these tasks explicitly require visualization. The fourth study concerned a series of correlation analyses between measures of visuo-spatial ability and chemistry performance to clarify the impact of individual differences. Finally, I performed a series of micro-genetic analyses of student problem solving that confirmed the earlier findings and revealed students prefer to visualize molecules from alternative perspectives without using mental rotation. The results of each study reveal that occurrences of sophisticated spatial cognition are relatively infrequent in chemistry, despite instructors' ostensible emphasis on the visualization of three-dimensional structures. To the contrary, students eschew visualization strategies and instead rely on the use of molecular diagrams to scaffold spatial cognition. Visualization does play a key role, however, in problem solving on a select group of chemistry tasks that require students to translate molecular representations or fundamentally alter the morphology of a molecule. Ultimately, this dissertation calls into question the assumption that individual differences in visuo-spatial ability play a critical role in determining who succeeds in chemistry. The results of this work establish a foundation for defining the precise manner in which visualization tools can best support problem solving.
Mennenga, Sarah E; Gerson, Julia E; Dunckley, Travis; Bimonte-Nelson, Heather A
2015-01-01
Harmine is a naturally occurring monoamine oxidase inhibitor that has recently been shown to selectively inhibit the dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 1A (DYRK1A). We investigated the cognitive effects of 1mg (low) Harmine and 5mg (high) Harmine using the delayed-match-to-sample (DMS) asymmetrical 3-choice water maze task to evaluate spatial working and recent memory, and the Morris water maze task (MM) to test spatial reference memory. Animals were also tested on the visible platform task, a water-escape task with the same motor, motivational, and reinforcement components as the other tasks used to evaluate cognition, but differing in its greater simplicity and that the platform was visible above the surface of the water. A subset of the Harmine-high treated animals showed clear motor impairments on all behavioral tasks, and the visible platform task confirmed a lack of competence to perform the procedural components of water maze testing. After excluding animals from the high dose group that could not perform the procedural components of a swim task, it was revealed that both high- and low-dose treatment with Harmine enhanced performance on the latter portion of DMS testing, but had no effect on MM performance. Thus, this study demonstrates the importance of confirming motor and visual competence when studying animal cognition, and verifies the one-day visible platform task as a reliable measure of ability to perform the procedural components necessary for completion of a swim task. Copyright © 2014. Published by Elsevier Inc.
Piber, Dominique; Schultebraucks, Katharina; Mueller, Sven C; Deuter, Christian Eric; Wingenfeld, Katja; Otte, Christian
2016-12-01
Stress hormones such as cortisol are known to influence a wide range of cognitive functions, including hippocampal based spatial memory. In the brain, cortisol acts via two different receptors: the glucocorticoid (GR) and the mineralocorticoid receptor (MR). As the MR has a high density in the hippocampus, we examined the effects of pharmacological MR stimulation on spatial memory. Eighty healthy participants (40 women, 40 men, mean age=23.9years±SD=3.3) completed the virtual Morris Water Maze (vMWM) task to test spatial encoding and spatial memory retrieval after receiving 0.4mg fludrocortisone, a MR agonist, or placebo. There was no effect of MR stimulation on spatial encoding during the vMWM task. However, participants who received fludrocortisone exhibited improved spatial memory retrieval performance. There was neither a main effect of sex nor a sex-by-treatment interaction. In young healthy participants, MR stimulation improved hippocampal based spatial memory retrieval in a virtual Morris Water Maze task. Our study not only confirms the importance of MR function in spatial memory, but suggests beneficial effects of acute MR stimulation on spatial memory retrieval in humans. Copyright © 2016 Elsevier Inc. All rights reserved.
Gygi, Brian; Shafiro, Valeriy
2014-04-01
Speech perception in multitalker environments often requires listeners to divide attention among several concurrent talkers before focusing on one talker with pertinent information. Such attentionally demanding tasks are particularly difficult for older adults due both to age-related hearing loss (presbacusis) and general declines in attentional processing and associated cognitive abilities. This study investigated two signal-processing techniques that have been suggested as a means of improving speech perception accuracy of older adults: time stretching and spatial separation of target talkers. Stimuli in each experiment comprised 2-4 fixed-form utterances in which listeners were asked to consecutively 1) detect concurrently spoken keywords in the beginning of the utterance (divided attention); and, 2) identify additional keywords from only one talker at the end of the utterance (selective attention). In Experiment 1, the overall tempo of each utterance was unaltered or slowed down by 25%; in Experiment 2 the concurrent utterances were spatially coincident or separated across a 180-degree hemifield. Both manipulations improved performance for elderly adults with age-appropriate hearing on both tasks. Increasing the divided attention load by attending to more concurrent keywords had a marked negative effect on performance of the selective attention task only when the target talker was identified by a keyword, but not by spatial location. These findings suggest that the temporal and spatial modifications of multitalker speech improved perception of multitalker speech primarily by reducing competition among cognitive resources required to perform attentionally demanding tasks. Published by Elsevier B.V.
Task relevance modulates the behavioural and neural effects of sensory predictions
Friston, Karl J.; Nobre, Anna C.
2017-01-01
The brain is thought to generate internal predictions to optimize behaviour. However, it is unclear whether predictions signalling is an automatic brain function or depends on task demands. Here, we manipulated the spatial/temporal predictability of visual targets, and the relevance of spatial/temporal information provided by auditory cues. We used magnetoencephalography (MEG) to measure participants’ brain activity during task performance. Task relevance modulated the influence of predictions on behaviour: spatial/temporal predictability improved spatial/temporal discrimination accuracy, but not vice versa. To explain these effects, we used behavioural responses to estimate subjective predictions under an ideal-observer model. Model-based time-series of predictions and prediction errors (PEs) were associated with dissociable neural responses: predictions correlated with cue-induced beta-band activity in auditory regions and alpha-band activity in visual regions, while stimulus-bound PEs correlated with gamma-band activity in posterior regions. Crucially, task relevance modulated these spectral correlates, suggesting that current goals influence PE and prediction signalling. PMID:29206225
Weed, M R; Taffe, M A; Polis, I; Roberts, A C; Robbins, T W; Koob, G F; Bloom, F E; Gold, L H
1999-10-25
A computerized behavioral battery based upon human neuropsychological tests (CANTAB, CeNeS, Cambridge, UK) has been developed to assess cognitive behaviors of rhesus monkeys. Monkeys reliably performed multiple tasks, providing long-term assessment of changes in a number of behaviors for a given animal. The overall goal of the test battery is to characterize changes in cognitive behaviors following central nervous system (CNS) manipulations. The battery addresses memory (delayed non-matching to sample, DNMS; spatial working memory, using a self-ordered spatial search task, SOSS), attention (intra-/extra-dimensional shift, ID/ED), motivation (progressive-ratio, PR), reaction time (RT) and motor coordination (bimanual task). As with human neuropsychological batteries, different tasks are thought to involve different neural substrates, and therefore performance profiles should assess function in particular brain regions. Monkeys were tested in transport cages, and responding on a touch sensitive computer monitor was maintained by food reinforcement. Parametric manipulations of several tasks demonstrated the sensitivity of performance to increases in task difficulty. Furthermore, the factors influencing difficulty for rhesus monkeys were the same as those shown to affect human performance. Data from this study represent performance of a population of healthy normal monkeys that will be used for comparison in subsequent studies of performance following CNS manipulations such as infection with simian immunodeficiency virus (NeuroAIDS) or drug administration.
Brain activity during auditory and visual phonological, spatial and simple discrimination tasks.
Salo, Emma; Rinne, Teemu; Salonen, Oili; Alho, Kimmo
2013-02-16
We used functional magnetic resonance imaging to measure human brain activity during tasks demanding selective attention to auditory or visual stimuli delivered in concurrent streams. Auditory stimuli were syllables spoken by different voices and occurring in central or peripheral space. Visual stimuli were centrally or more peripherally presented letters in darker or lighter fonts. The participants performed a phonological, spatial or "simple" (speaker-gender or font-shade) discrimination task in either modality. Within each modality, we expected a clear distinction between brain activations related to nonspatial and spatial processing, as reported in previous studies. However, within each modality, different tasks activated largely overlapping areas in modality-specific (auditory and visual) cortices, as well as in the parietal and frontal brain regions. These overlaps may be due to effects of attention common for all three tasks within each modality or interaction of processing task-relevant features and varying task-irrelevant features in the attended-modality stimuli. Nevertheless, brain activations caused by auditory and visual phonological tasks overlapped in the left mid-lateral prefrontal cortex, while those caused by the auditory and visual spatial tasks overlapped in the inferior parietal cortex. These overlapping activations reveal areas of multimodal phonological and spatial processing. There was also some evidence for intermodal attention-related interaction. Most importantly, activity in the superior temporal sulcus elicited by unattended speech sounds was attenuated during the visual phonological task in comparison with the other visual tasks. This effect might be related to suppression of processing irrelevant speech presumably distracting the phonological task involving the letters. Copyright © 2012 Elsevier B.V. All rights reserved.
Correlates of individual, and age-related, differences in short-term learning.
Zhang, Zhiyong; Davis, Hasker P; Salthouse, Timothy A; Tucker-Drob, Elliot M
2007-07-01
Latent growth models were applied to data on multitrial verbal and spatial learning tasks from two independent studies. Although significant individual differences in both initial level of performance and subsequent learning were found in both tasks, age differences were found only in mean initial level, and not in mean learning. In neither task was fluid or crystallized intelligence associated with learning. Although there were moderate correlations among the level parameters across the verbal and spatial tasks, the learning parameters were not significantly correlated with one another across task modalities. These results are inconsistent with the existence of a general (e.g., material-independent) learning ability.
Feature singletons attract spatial attention independently of feature priming
Yashar, Amit; White, Alex L.; Fang, Wanghaoming; Carrasco, Marisa
2017-01-01
People perform better in visual search when the target feature repeats across trials (intertrial feature priming [IFP]). Here, we investigated whether repetition of a feature singleton's color modulates stimulus-driven shifts of spatial attention by presenting a probe stimulus immediately after each singleton display. The task alternated every two trials between a probe discrimination task and a singleton search task. We measured both stimulus-driven spatial attention (via the distance between the probe and singleton) and IFP (via repetition of the singleton's color). Color repetition facilitated search performance (IFP effect) when the set size was small. When the probe appeared at the singleton's location, performance was better than at the opposite location (stimulus-driven attention effect). The magnitude of this attention effect increased with the singleton's set size (which increases its saliency) but did not depend on whether the singleton's color repeated across trials, even when the previous singleton had been attended as a search target. Thus, our findings show that repetition of a salient singleton's color affects performance when the singleton is task relevant and voluntarily attended (as in search trials). However, color repetition does not affect performance when the singleton becomes irrelevant to the current task, even though the singleton does capture attention (as in probe trials). Therefore, color repetition per se does not make a singleton more salient for stimulus-driven attention. Rather, we suggest that IFP requires voluntary selection of color singletons in each consecutive trial. PMID:28800369
Feature singletons attract spatial attention independently of feature priming.
Yashar, Amit; White, Alex L; Fang, Wanghaoming; Carrasco, Marisa
2017-08-01
People perform better in visual search when the target feature repeats across trials (intertrial feature priming [IFP]). Here, we investigated whether repetition of a feature singleton's color modulates stimulus-driven shifts of spatial attention by presenting a probe stimulus immediately after each singleton display. The task alternated every two trials between a probe discrimination task and a singleton search task. We measured both stimulus-driven spatial attention (via the distance between the probe and singleton) and IFP (via repetition of the singleton's color). Color repetition facilitated search performance (IFP effect) when the set size was small. When the probe appeared at the singleton's location, performance was better than at the opposite location (stimulus-driven attention effect). The magnitude of this attention effect increased with the singleton's set size (which increases its saliency) but did not depend on whether the singleton's color repeated across trials, even when the previous singleton had been attended as a search target. Thus, our findings show that repetition of a salient singleton's color affects performance when the singleton is task relevant and voluntarily attended (as in search trials). However, color repetition does not affect performance when the singleton becomes irrelevant to the current task, even though the singleton does capture attention (as in probe trials). Therefore, color repetition per se does not make a singleton more salient for stimulus-driven attention. Rather, we suggest that IFP requires voluntary selection of color singletons in each consecutive trial.
Enhanced auditory spatial localization in blind echolocators.
Vercillo, Tiziana; Milne, Jennifer L; Gori, Monica; Goodale, Melvyn A
2015-01-01
Echolocation is the extraordinary ability to represent the external environment by using reflected sound waves from self-generated auditory pulses. Blind human expert echolocators show extremely precise spatial acuity and high accuracy in determining the shape and motion of objects by using echoes. In the current study, we investigated whether or not the use of echolocation would improve the representation of auditory space, which is severely compromised in congenitally blind individuals (Gori et al., 2014). The performance of three blind expert echolocators was compared to that of 6 blind non-echolocators and 11 sighted participants. Two tasks were performed: (1) a space bisection task in which participants judged whether the second of a sequence of three sounds was closer in space to the first or the third sound and (2) a minimum audible angle task in which participants reported which of two sounds presented successively was located more to the right. The blind non-echolocating group showed a severe impairment only in the space bisection task compared to the sighted group. Remarkably, the three blind expert echolocators performed both spatial tasks with similar or even better precision and accuracy than the sighted group. These results suggest that echolocation may improve the general sense of auditory space, most likely through a process of sensory calibration. Copyright © 2014 Elsevier Ltd. All rights reserved.
Visuo-spatial ability in colonoscopy simulator training.
Luursema, Jan-Maarten; Buzink, Sonja N; Verwey, Willem B; Jakimowicz, J J
2010-12-01
Visuo-spatial ability is associated with a quality of performance in a variety of surgical and medical skills. However, visuo-spatial ability is typically assessed using Visualization tests only, which led to an incomplete understanding of the involvement of visuo-spatial ability in these skills. To remedy this situation, the current study investigated the role of a broad range of visuo-spatial factors in colonoscopy simulator training. Fifteen medical trainees (no clinical experience in colonoscopy) participated in two psycho-metric test sessions to assess four visuo-spatial ability factors. Next, participants trained flexible endoscope manipulation, and navigation to the cecum on the GI Mentor II simulator, for four sessions within 1 week. Visualization, and to a lesser degree Spatial relations were the only visuo-spatial ability factors to correlate with colonoscopy simulator performance. Visualization additionally covaried with learning rate for time on task on both simulator tasks. High Visualization ability indicated faster exercise completion. Similar to other endoscopic procedures, performance in colonoscopy is positively associated with Visualization, a visuo-spatial ability factor characterized by the ability to mentally manipulate complex visuo-spatial stimuli. The complexity of the visuo-spatial mental transformations required to successfully perform colonoscopy is likely responsible for the challenging nature of this technique, and should inform training- and assessment design. Long term training studies, as well as studies investigating the nature of visuo-spatial complexity in this domain are needed to better understand the role of visuo-spatial ability in colonoscopy, and other endoscopic techniques.
Virtual navigation performance: the relationship to field of view and prior video gaming experience.
Richardson, Anthony E; Collaer, Marcia L
2011-04-01
Two experiments examined whether learning a virtual environment was influenced by field of view and how it related to prior video gaming experience. In the first experiment, participants (42 men, 39 women; M age = 19.5 yr., SD = 1.8) performed worse on a spatial orientation task displayed with a narrow field of view in comparison to medium and wide field-of-view displays. Counter to initial hypotheses, wide field-of-view displays did not improve performance over medium displays, and this was replicated in a second experiment (30 men, 30 women; M age = 20.4 yr., SD = 1.9) presenting a more complex learning environment. Self-reported video gaming experience correlated with several spatial tasks: virtual environment pointing and tests of Judgment of Line Angle and Position, mental rotation, and Useful Field of View (with correlations between .31 and .45). When prior video gaming experience was included as a covariate, sex differences in spatial tasks disappeared.
Hippocampal-prefrontal theta-gamma coupling during performance of a spatial working memory task.
Tamura, Makoto; Spellman, Timothy J; Rosen, Andrew M; Gogos, Joseph A; Gordon, Joshua A
2017-12-19
Cross-frequency coupling supports the organization of brain rhythms and is present during a range of cognitive functions. However, little is known about whether and how long-range cross-frequency coupling across distant brain regions subserves working memory. Here we report that theta-slow gamma coupling between the hippocampus and medial prefrontal cortex (mPFC) is augmented in a genetic mouse model of cognitive dysfunction. This increased cross-frequency coupling is observed specifically when the mice successfully perform a spatial working memory task. In wild-type mice, increasing task difficulty by introducing a long delay or by optogenetically interfering with encoding, also increases theta-gamma coupling during correct trials. Finally, epochs of high hippocampal theta-prefrontal slow gamma coupling are associated with increased synchronization of neurons within the mPFC. These findings suggest that enhancement of theta-slow gamma coupling reflects a compensatory mechanism to maintain spatial working memory performance in the setting of increased difficulty.
ERIC Educational Resources Information Center
Kastens, Kim A.; Pistolesi, Linda; Passow, Michael J.
2014-01-01
Research has shown that spatial thinking is important in science in general, and in Earth Science in particular, and that performance on spatially demanding tasks can be fostered through instruction. Because spatial thinking is rarely taught explicitly in the U.S. education system, improving spatial thinking may be "low-hanging fruit" as…
ERIC Educational Resources Information Center
Liu, Duo; Chen, Xi; Chung, Kevin K. H.
2015-01-01
This study examined the relation between the performance in a visual search task and reading ability in 92 third-grade Hong Kong Chinese children. The visual search task, which is considered a measure of visual-spatial attention, accounted for unique variance in Chinese character reading after controlling for age, nonverbal intelligence,…
Adolescent social defeat decreases spatial working memory performance in adulthood.
Novick, Andrew M; Miiller, Leah C; Forster, Gina L; Watt, Michael J
2013-10-17
Adolescent social stress is associated with increased incidence of mental illnesses in adulthood that are characterized by deficits in cognitive focus and flexibility. Such enhanced vulnerability may be due to psychosocial stress-induced disruption of the developing mesocortical dopamine system, which plays a fundamental role in facilitating complex cognitive processes such as spatial working memory. Adolescent rats exposed to repeated social defeat as a model of social stress develop dopaminergic hypofunction in the medial prefrontal cortex as adults. To evaluate a direct link between adolescent social stress and later deficits in cognitive function, the present study tested the effects of adolescent social defeat on two separate tests of spatial working memory performance. Adult rats exposed to adolescent social defeat and their controls were trained on either the delayed win-shift task or the delayed alternating T-Maze task and then challenged with various delay periods. To evaluate potential differences in motivation for the food reward used in memory tasks, consumption and conditioned place preference for sweetened condensed milk were tested in a separate cohort of previously defeated rats and controls. Compared to controls, adult rats defeated in adolescence showed a delay-dependent deficit in spatial working memory performance, committing more errors at a 90 s and 5 min delay period on the T-maze and win-shift tasks, respectively. Observed memory deficits were likely independent of differences in reward motivation, as conditioned place preference for the palatable food used on both tasks was similar between the adolescent social defeat group and control. The results demonstrate that severe social stressors during adolescence can produce long term deficits in aspects of cognitive function. Given the dependence of spatial working memory on prefrontal dopamine, pharmacologically reversing dopaminergic deficiencies caused by adolescent social stress has the potential to treat such cognitive deficits.
Neural basis of stereotype-induced shifts in women's mental rotation performance
Helt, Molly; Jacobs, Emily; Sullivan, Kerry
2007-01-01
Recent negative focus on women's academic abilities has fueled disputes over gender disparities in the sciences. The controversy derives, in part, from women's relatively poorer performance in aptitude tests, many of which require skills of spatial reasoning. We used functional magnetic imaging to examine the neural structure underlying shifts in women's performance of a spatial reasoning task induced by positive and negative stereotypes. Three groups of participants performed a task involving imagined rotations of the self. Prior to scanning, the positive stereotype group was exposed to a false but plausible stereotype of women's superior perspective-taking abilities; the negative stereotype group was exposed to the pervasive stereotype that men outperform women on spatial tasks; and the control group received neutral information. The significantly poorer performance we found in the negative stereotype group corresponded to increased activation in brain regions associated with increased emotional load. In contrast, the significantly improved performance we found in the positive stereotype group was associated with increased activation in visual processing areas and, to a lesser degree, complex working memory processes. These findings suggest that stereotype messages affect the brain selectively, with positive messages producing relatively more efficient neural strategies than negative messages. PMID:18985116
Neural basis of stereotype-induced shifts in women's mental rotation performance.
Wraga, Maryjane; Helt, Molly; Jacobs, Emily; Sullivan, Kerry
2007-03-01
Recent negative focus on women's academic abilities has fueled disputes over gender disparities in the sciences. The controversy derives, in part, from women's relatively poorer performance in aptitude tests, many of which require skills of spatial reasoning. We used functional magnetic imaging to examine the neural structure underlying shifts in women's performance of a spatial reasoning task induced by positive and negative stereotypes. Three groups of participants performed a task involving imagined rotations of the self. Prior to scanning, the positive stereotype group was exposed to a false but plausible stereotype of women's superior perspective-taking abilities; the negative stereotype group was exposed to the pervasive stereotype that men outperform women on spatial tasks; and the control group received neutral information. The significantly poorer performance we found in the negative stereotype group corresponded to increased activation in brain regions associated with increased emotional load. In contrast, the significantly improved performance we found in the positive stereotype group was associated with increased activation in visual processing areas and, to a lesser degree, complex working memory processes. These findings suggest that stereotype messages affect the brain selectively, with positive messages producing relatively more efficient neural strategies than negative messages.
Sex differences in effects of testing medium and response format on a visuospatial task.
Cherney, Isabelle D; Rendell, Jariel A
2010-06-01
Sex differences on visuospatial tests are among the most reliably replicated. It is unclear to what extent these performance differences reflect underlying differences in skills or testing factors. To assess whether testing medium and response format affect visuospatial sex differences, performances of introductory psychology students (100 men, 104 women) were examined on a visuospatial task presented in paper-and-pencil and tablet computer forms. Both sexes performed better when tested on paper, although men outperformed women. The introduction of an open-ended component to the visuospatial task eliminated sex differences when prior spatial experiences were controlled, but men outperformed women when prior spatial experiences were not considered. In general, the open-ended version and computerized format of the test diminished performance, suggesting that response format and medium are testing factors that influence visuospatial abilities.
Association of Individual Characteristics with Teleoperation Performance.
Pan, Dan; Zhang, Yijing; Li, Zhizhong; Tian, Zhiqiang
2016-09-01
A number of space activities (e.g., extravehicular astronaut rescue, cooperation in satellite services, space station supplies, and assembly) are implemented directly or assisted by remote robotic arms. Our study aimed to reveal those individual characteristics which could positively influence or even predict teleoperation performance of such a space robotic arm. There were 64 male volunteers without robot operation experience recruited for the study. Their individual characteristics were assessed, including spatial cognitive ability, cognitive style, and personality traits. The experimental tasks were three abstracted teleoperation tasks of a simulated space robotic arm: point aiming, line alignment, and obstacle avoidance. Teleoperation performance was measured from two aspects: task performance (completion time, extra distance moved, operation slips) and safety performance (collisions, joint limitations reached). The Pearson coefficients between individual characteristics and teleoperation performance were examined along with performance prediction models. It was found that the subjects with relatively high mental rotation ability or low neuroticism had both better task and safety performance (|r| = 0.212 ∼ 0.381). Subjects with relatively high perspective taking ability or high agreeableness had better task performance (r = -0.253; r = -0.249). Imagery subjects performed better than verbal subjects regarding both task and safety performance (|r| = 0.236 ∼ 0.290). Compared with analytic subjects, wholist subjects had better safety performance (r = 0.300). Additionally, extraverted subjects had better task performance (r = -0.259), but worse safety performance (r = 0.230). Those with high spatial cognitive ability, imagery and wholist cognitive style, low neuroticism, and high agreeableness were seen to have more advantages in working with the remote robotic arm. These results could be helpful to astronaut selection and training for space station missions. Pan D, Zhang Y, Li Z, Tian Z. Association of individual characteristics with teleoperation performance. Aerosp Med Hum Perform. 2016; 87(9):772-780.
Do Right- and Left-Handed Monkeys Differ on Cognitive Measures?
NASA Technical Reports Server (NTRS)
Hopkins, William D.; Washburn, David A.
1994-01-01
Twelve left- and 14 right-handed monkeys were compared on 6 measures of cognitive performance (2 maze-solving tasks, matching-to-sample, delayed matching-to-sample, delayed response using spatial cues, and delayed response using form cues). The dependent variable was trials-to-training criterion for each of the 6 tasks. Significant differences were found between left- and right-handed monkeys on the 2 versions of the delayed response task. Right-handed monkeys reached criterion significantly faster on the form cue version of the task, whereas left-handed monkeys reached criterion significantly faster on delayed response for spatial position (p less than .05). The results suggest that sensitive hand preference measures of laterality can reveal differences in cognitive performance, which in turn may reflect underlying laterality in functional organization of the nervous system.
A Facilitative Role for Corticosterone in the Acquisition of a Spatial Task under Moderate Stress
ERIC Educational Resources Information Center
Akirav, Irit; Kozenicky, Maya; Tal, Dadi; Sandi, Carmen; Venero, Cesar; Richter-Levin, Gal
2004-01-01
Emotionally charged experiences alter memory storage via the activation of hormonal systems. Previously, we have shown that compared with rats trained for a massed spatial learning task in the water maze in warm water (25 degrees C), animals that were trained in cold water (19 degrees C) performed better and showed higher levels of the stress…
ERIC Educational Resources Information Center
Reichelt, Amy C.; Morris, Margaret J.; Westbrook, Reginald Frederick
2016-01-01
High sugar diets reduce hippocampal neurogenesis, which is required for minimizing interference between memories, a process that involves "pattern separation." We provided rats with 2 h daily access to a sucrose solution for 28 d and assessed their performance on a spatial memory task. Sucrose consuming rats discriminated between objects…
Fajnerová, Iveta; Rodriguez, Mabel; Levčík, David; Konrádová, Lucie; Mikoláš, Pavol; Brom, Cyril; Stuchlík, Aleš; Vlček, Kamil; Horáček, Jiří
2014-01-01
Objectives: Cognitive deficit is considered to be a characteristic feature of schizophrenia disorder. A similar cognitive dysfunction was demonstrated in animal models of schizophrenia. However, the poor comparability of methods used to assess cognition in animals and humans could be responsible for low predictive validity of current animal models. In order to assess spatial abilities in schizophrenia and compare our results with the data obtained in animal models, we designed a virtual analog of the Morris water maze (MWM), the virtual Four Goals Navigation (vFGN) task. Methods: Twenty-nine patients after the first psychotic episode with schizophrenia symptoms and a matched group of healthy volunteers performed the vFGN task. They were required to find and remember four hidden goal positions in an enclosed virtual arena. The task consisted of two parts. The Reference memory (RM) session with a stable goal position was designed to test spatial learning. The Delayed-matching-to-place (DMP) session presented a modified working memory protocol designed to test the ability to remember a sequence of three hidden goal positions. Results: Data obtained in the RM session show impaired spatial learning in schizophrenia patients compared to the healthy controls in pointing and navigation accuracy. The DMP session showed impaired spatial memory in schizophrenia during the recall of spatial sequence and a similar deficit in spatial bias in the probe trials. The pointing accuracy and the quadrant preference showed higher sensitivity toward the cognitive deficit than the navigation accuracy. Direct navigation to the goal was affected by sex and age of the tested subjects. The age affected spatial performance only in healthy controls. Conclusions: Despite some limitations of the study, our results correspond well with the previous studies in animal models of schizophrenia and support the decline of spatial cognition in schizophrenia, indicating the usefulness of the vFGN task in comparative research. PMID:24904329
Co-speech iconic gestures and visuo-spatial working memory.
Wu, Ying Choon; Coulson, Seana
2014-11-01
Three experiments tested the role of verbal versus visuo-spatial working memory in the comprehension of co-speech iconic gestures. In Experiment 1, participants viewed congruent discourse primes in which the speaker's gestures matched the information conveyed by his speech, and incongruent ones in which the semantic content of the speaker's gestures diverged from that in his speech. Discourse primes were followed by picture probes that participants judged as being either related or unrelated to the preceding clip. Performance on this picture probe classification task was faster and more accurate after congruent than incongruent discourse primes. The effect of discourse congruency on response times was linearly related to measures of visuo-spatial, but not verbal, working memory capacity, as participants with greater visuo-spatial WM capacity benefited more from congruent gestures. In Experiments 2 and 3, participants performed the same picture probe classification task under conditions of high and low loads on concurrent visuo-spatial (Experiment 2) and verbal (Experiment 3) memory tasks. Effects of discourse congruency and verbal WM load were additive, while effects of discourse congruency and visuo-spatial WM load were interactive. Results suggest that congruent co-speech gestures facilitate multi-modal language comprehension, and indicate an important role for visuo-spatial WM in these speech-gesture integration processes. Copyright © 2014 Elsevier B.V. All rights reserved.
Fractionating spatial memory with glutamate receptor subunit-knockout mice.
Bannerman, David M
2009-12-01
In recent years, the contribution that different glutamate receptor subtypes and subunits make to spatial learning and memory has been studied extensively using genetically modified mice in which key proteins are knocked out. This has revealed dissociations between different aspects of spatial memory that were not previously apparent from lesion studies. For example, studies with GluA1 AMPAR [AMPA (alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid) receptor] subunit-knockout mice have revealed the presence of a GluA1-dependent, non-associative short-term memory mechanism that is important for performance on spatial working memory tasks, and a GluA1-independent, long-term associative memory mechanism which underlies performance on spatial reference memory tasks. Within this framework we have also studied the contributions of different GluN2-containing NMDARs [NMDA (N-methyl-D-aspartate) receptors] to spatial memory. Studies with GluN2 NMDAR mutants have revealed different contributions from GluN2A- and GluN2B-containing NMDARs to spatial learning. Furthermore, comparison of forebrain- and hippocampus-specific GluN2B-knockout mice has demonstrated that both hippocampal and extra-hippocampal NMDARs make important contributions to spatial memory performance.
NASA Astrophysics Data System (ADS)
Jeunet, Camille; Jahanpour, Emilie; Lotte, Fabien
2016-06-01
Objective. While promising, electroencephaloraphy based brain-computer interfaces (BCIs) are barely used due to their lack of reliability: 15% to 30% of users are unable to control a BCI. Standard training protocols may be partly responsible as they do not satisfy recommendations from psychology. Our main objective was to determine in practice to what extent standard training protocols impact users’ motor imagery based BCI (MI-BCI) control performance. Approach. We performed two experiments. The first consisted in evaluating the efficiency of a standard BCI training protocol for the acquisition of non-BCI related skills in a BCI-free context, which enabled us to rule out the possible impact of BCIs on the training outcome. Thus, participants (N = 54) were asked to perform simple motor tasks. The second experiment was aimed at measuring the correlations between motor tasks and MI-BCI performance. The ten best and ten worst performers of the first study were recruited for an MI-BCI experiment during which they had to learn to perform two MI tasks. We also assessed users’ spatial ability and pre-training μ rhythm amplitude, as both have been related to MI-BCI performance in the literature. Main results. Around 17% of the participants were unable to learn to perform the motor tasks, which is close to the BCI illiteracy rate. This suggests that standard training protocols are suboptimal for skill teaching. No correlation was found between motor tasks and MI-BCI performance. However, spatial ability played an important role in MI-BCI performance. In addition, once the spatial ability covariable had been controlled for, using an ANCOVA, it appeared that participants who faced difficulty during the first experiment improved during the second while the others did not. Significance. These studies suggest that (1) standard MI-BCI training protocols are suboptimal for skill teaching, (2) spatial ability is confirmed as impacting on MI-BCI performance, and (3) when faced with difficult pre-training, subjects seemed to explore more strategies and therefore learn better.
Asanowicz, Dariusz; Kruse, Lena; Śmigasiewicz, Kamila; Verleger, Rolf
2017-11-01
In bilateral rapid serial visual presentation (RSVP), the second of two targets, T1 and T2, is better identified in the left visual field (LVF) than in the right visual field (RVF). This LVF advantage may reflect hemispheric asymmetry in temporal attention or/and in spatial orienting of attention. Participants performed two tasks: the "standard" bilateral RSVP task (Exp.1) and its unilateral variant (Exp.1 & 2). In the bilateral task, spatial location was uncertain, thus target identification involved stimulus-driven spatial orienting. In the unilateral task, the targets were presented block-wise in the LVF or RVF only, such that no spatial orienting was needed for target identification. Temporal attention was manipulated in both tasks by varying the T1-T2 lag. The results showed that the LVF advantage disappeared when involvement of stimulus-driven spatial orienting was eliminated, whereas the manipulation of temporal attention had no effect on the asymmetry. In conclusion, the results do not support the hypothesis of hemispheric asymmetry in temporal attention, and provide further evidence that the LVF advantage reflects right hemisphere predominance in stimulus-driven orienting of spatial attention. These conclusions fit evidence that temporal attention is implemented by bilateral parietal areas and spatial attention by the right-lateralized ventral frontoparietal network. Copyright © 2017 Elsevier Inc. All rights reserved.
Place and direction learning in a spatial T-maze task by neonatal piglets
Elmore, Monica R. P.; Dilger, Ryan N.; Johnson, Rodney W.
2013-01-01
Pigs are a valuable animal model for studying neurodevelopment in humans due to similarities in brain structure and growth. The development and validation of behavioral tests to assess learning and memory in neonatal piglets are needed. The present study evaluated the capability of 2-wk old piglets to acquire a novel place and direction learning spatial T-maze task. Validity of the task was assessed by the administration of scopolamine, an anti-cholinergic drug that acts on the hippocampus and other related structures, to impair spatial memory. During acquisition, piglets were trained to locate a milk reward in a constant place in space, as well as direction (east or west), in a plus-shaped maze using extra-maze visual cues. Following acquisition, reward location was reversed and piglets were re-tested to assess learning and working memory. The performance of control piglets in the maze improved over time (P < 0.0001), reaching performance criterion (80% correct) on day 5 of acquisition. Correct choices decreased in the reversal phase (P < 0.0001), but improved over time. In a separate study, piglets were injected daily with either phosphate buffered saline (PBS; control) or scopolamine prior to testing. Piglets administered scopolamine showed impaired performance in the maze compared to controls (P = 0.03), failing to reach performance criterion after 6 days of acquisition testing. Collectively, these data demonstrate that neonatal piglets can be tested in a spatial T-maze task to assess hippocampal-dependent learning and memory. PMID:22526690
Brayda, Luca; Campus, Claudio; Memeo, Mariacarla; Lucagrossi, Laura
2015-01-01
Tactile maps are efficient tools to improve spatial understanding and mobility skills of visually impaired people. Their limited adaptability can be compensated with haptic devices which display graphical information, but their assessment is frequently limited to performance-based metrics only which can hide potential spatial abilities in O&M protocols. We assess a low-tech tactile mouse able to deliver three-dimensional content considering how performance, mental workload, behavior, and anxiety status vary with task difficulty and gender in congenitally blind, late blind, and sighted subjects. Results show that task difficulty coherently modulates the efficiency and difficulty to build mental maps, regardless of visual experience. Although exhibiting attitudes that were similar and gender-independent, the females had lower performance and higher cognitive load, especially when congenitally blind. All groups showed a significant decrease in anxiety after using the device. Tactile graphics with our device seems therefore to be applicable with different visual experiences, with no negative emotional consequences of mentally demanding spatial tasks. Going beyond performance-based assessment, our methodology can help with better targeting technological solutions in orientation and mobility protocols.
Spatial and temporal aspects of navigation in two neurological patients.
van der Ham, Ineke J M; van Zandvoort, Martine J E; Meilinger, Tobias; Bosch, Sander E; Kant, Neeltje; Postma, Albert
2010-07-14
We present two cases (A.C. and W.J.) with navigation problems resulting from parieto-occipital right hemisphere damage. For both the cases, performance on the neuropsychological tests did not indicate specific impairments in spatial processing, despite severe subjective complaints of spatial disorientation. Various aspects of navigation were tested in a new virtual reality task, the Virtual Tübingen task. A double dissociation between spatial and temporal deficits was found; A.C. was impaired in route ordering, a temporal test, whereas W.J. was impaired in scene recognition and route continuation, which are spatial in nature. These findings offer important insights in the functional and neural architecture of navigation.
Lambrey, Simon; Berthoz, Alain
2007-09-01
Numerous data in the literature provide evidence for gender differences in spatial orientation. In particular, it has been suggested that spatial representations of large-scale environments are more accurate in terms of metric information in men than in women but are richer in landmark information in women than in men. One explanatory hypothesis is that men and women differ in terms of navigational processes they used in daily life. The present study investigated this hypothesis by distinguishing two navigational processes: spatial updating by self-motion and landmark-based orientation. Subjects were asked to perform a pointing task in three experimental conditions, which differed in terms of reliability of the external landmarks that could be used. Two groups of subjects were distinguished, a mobile group and an immobile group, in which spatial updating of environmental locations did not have the same degree of importance for the correct performance of the pointing task. We found that men readily relied on an internal egocentric representation of where landmarks were expected to be in order to perform the pointing task, a representation that could be updated during self-motion (spatial updating). In contrast, women seemed to take their bearings more readily on the basis of the stable landmarks of the external world. We suggest that this gender difference in spatial orientation is not due to differences in information processing abilities but rather due to the differences in higher level strategies.
Thompson, Clarissa A; Morris, Bradley J; Sidney, Pooja G
2017-01-01
Do children spontaneously represent spatial-numeric features of a task, even when it does not include printed numbers (Mix et al., 2016)? Sixty first grade students completed a novel spatial estimation task by seeking and finding pages in a 100-page book without printed page numbers. Children were shown pages 1 through 6 and 100, and then were asked, "Can you find page X?" Children's precision of estimates on the page finder task and a 0-100 number line estimation task was calculated with the Percent Absolute Error (PAE) formula (Siegler and Booth, 2004), in which lower PAE indicated more precise estimates. Children's numerical knowledge was further assessed with: (1) numeral identification (e.g., What number is this: 57?), (2) magnitude comparison (e.g., Which is larger: 54 or 57?), and (3) counting on (e.g., Start counting from 84 and count up 5 more). Children's accuracy on these tasks was correlated with their number line PAE. Children's number line estimation PAE predicted their page finder PAE, even after controlling for age and accuracy on the other numerical tasks. Children's estimates on the page finder and number line tasks appear to tap a general magnitude representation. However, the page finder task did not correlate with numeral identification and counting-on performance, likely because these tasks do not measure children's magnitude knowledge. Our results suggest that the novel page finder task is a useful measure of children's magnitude knowledge, and that books have similar spatial-numeric affordances as number lines and numeric board games.
Cognitive features of psychotic states arising in late life (late paraphrenia).
Almeida, O P; Howard, R J; Levy, R; David, A S; Morris, R G; Sahakian, B J
1995-07-01
The cognitive performance of 47 elderly psychotic patients with onset of symptoms in late life (late paraphrenia) was compared to that of 33 controls matched for age, sex, ethnic origin, number of years of education, and pre-morbid IQ as measured by the NART. Neuropsychological indices of general cognitive functioning (MMSE, CAMCOG, WAIS-R verbal and performance scores) showed that patients were performing the tasks at a significantly lower level than controls. Patients also showed a trend to have a lower span capacity than controls, particularly at the spatial span subtest. There was no obvious impairment of learning as measured by the digit and spatial recurring span tasks nor of simultaneous matching-to-sample ability. However, patients' performance on a delayed-matching-to-sample procedure was significantly worse than that of controls. In addition, patients performed worse than controls on the Recognition Memory Test for Faces, but not for Words. Finally, the performance of patients on tests assessing executive functioning (Verbal Fluency Test, Computerized Extra and Intra-Dimensional Shift Task, Computerized Spatial Working Memory Task, and Computerized Tower of London Task) was consistently worse than that of controls. These results suggest that psychotic states arising in late life are predominantly associated with a decline on measures of general cognitive ability and executive functioning. The neuropsychological meaning of these findings is discussed in the light of cognitive models of psychotic symptoms, as well as of schizophrenia and dementia research. We concluded that the lack of a clear pattern of impairment among these patients may be the result of their clinical and cognitive diversity.
Mollion, Hélène; Dominey, Peter Ford; Broussolle, Emmanuel; Ventre-Dominey, Jocelyne
2011-09-01
Although the treatment of Parkinson's disease via subthalamic stimulation yields remarkable improvements in motor symptoms, its effects on memory function are less clear. In this context, we previously demonstrated dissociable effects of levodopa therapy on parkinsonian performance in spatial and nonspatial visual working memory. Here we used the same protocol with an additional, purely motor task to investigate visual memory and motor performance in 2 groups of patients with Parkinson's disease with or without subthalamic stimulation. In each stimulation condition, subjects performed a simple motor task and 3 successive cognitive tasks: 1 conditional color-response association task and 2 visual (spatial and nonspatial) working memory tasks. The Parkinson's groups were compared with a control group of age-matched healthy subjects. Our principal results demonstrated that (1) in the motor task, stimulated patients were significantly improved with respect to nonstimulated patients and did not differ significantly from healthy controls, and (2) in the cognitive tasks, stimulated patients were significantly improved with respect to nonstimulated patients, but both remained significantly impaired when compared with healthy controls. These results demonstrate selective effects of subthalamic stimulation on parkinsonian disorders of motor and visual memory functions, with clear motor improvement for stimulated patients and a partial improvement for their visual memory processing. Copyright © 2011 Movement Disorder Society.
Szalma, James L; Teo, Grace W L
2012-03-01
The goal for this study was to test assertions of the dynamic adaptability theory of stress, which proposes two fundamental task dimensions, information rate (temporal properties of a task) and information structure (spatial properties of a task). The theory predicts adaptive stability across stress magnitudes, with progressive and precipitous changes in adaptive response manifesting first as increases in perceived workload and stress and then as performance failure. Information structure was manipulated by varying the number of displays to be monitored (1, 2, 4 or 8 displays). Information rate was manipulated by varying stimulus presentation rate (8, 12, 16, or 20 events/min). A signal detection task was used in which critical signals were pairs of digits that differed by 0 or 1. Performance accuracy declined and workload and stress increased as a function of increased task demand, with a precipitous decline in accuracy at the highest demand levels. However, the form of performance change as well as the pattern of relationships between speed and accuracy and between performance and workload/stress indicates that some aspects of the theory need revision. Implications of the results for the theory and for future research are discussed. Copyright © 2011 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Day, Jeanne D.; And Others
1997-01-01
Relationships between pretraining skills, learning, and posttest performance were studied in spatial and verbal tasks for 84 preschool children. The measurement model that fit the data best maintained separate verbal and spatial domains. The best structural model included paths from pretest and learning assessments to posttest performance within…
Low elementary movement speed is associated with poor motor skill in Turner's syndrome.
Nijhuis-van der Sanden, Maria W G; Smits-Engelsman, Bouwien C M; Eling, Paul A T M; Nijhuis, Bianca J G; Van Galen, Gerard P
2002-01-01
The article aims to discriminate between 2 features that in principle both may be characteristic of the frequently observed poor motor performance in girls with Turner's syndrome (TS). On the one hand, a reduced movement speed that is independent of variations in spatial accuracy demands and therefore suggests a problem in motor execution. On the other hand, a disproportional slowing down of movement speed under spatial-accuracy demands, indicating a more central problem in motor programming. To assess their motor performance problems, 15 girls with TS (age 9.6-13.0 years) and 14 female controls (age 9.1-13.0 years) were tested using the Movement Assessment Battery for Children (MABC). In additionally, an experimental procedure using a variant of Fitts' graphic aiming task was used to try and disentangle the role of spatial-accuracy demands in different motor task conditions. The results of the MABC reestablish that overall motor performance in girls with TS is poor. The data from the Fitts' task reveal that TS girls move with the same accuracy as their normal peers but show a significantly lower speed independent of task difficulty. We conclude that a problem in motor execution is the main factor determining performance differences between girls with TS and controls.
Training of Visual-Spatial Working Memory in Preschool Children
Gade, Miriam; Zoelch, Christof; Seitz-Stein, Katja
2017-01-01
Working memory, the ability to store and manipulate information is of great importance for scholastic achievement in children. In this study, we report four studies in which preschoolers were trained on a visual-spatial working memory span task, namely the Corsi Block Task. Across all four studies, we found significant training effects for the intervention groups compared to active control groups. Confirming recent research, no transfer effects to other working memory tasks were found. Most importantly, our training effects were mainly brought about by children performing below the median in the pretest and those showing median performance, thereby closing the gap to children performing above the median (compensation effect). We consider this finding of great interest to ensure comparable starting conditions when entering school with a relatively short intervention. PMID:28713452
The role of the left hemisphere in verbal and spatial reasoning tasks.
Langdon, D; Warrington, E K
2000-12-01
Laterality of reasoning processes have long been a source of investigation. Differing formats of verbal and spatial reasoning tasks have meant it has not been possible to extricate true performance level from artefacts of input and output modalities. The Verbal and Spatial Reasoning Test (VESPAR) offers this opportunity, by virtue of matched sets of verbal and spatial inductive reasoning problems. Two series of 40 patients with unilateral left and right hemisphere lesions were tested on two verbal and two spatial subtests of the VESPAR, together with a battery of baseline tests. The performance of the left and right hemisphere lesion cases was compared with a normal standardisation sample. Whereas only the left hemisphere group failed the verbal sections, both left and right hemisphere groups failed the spatial sections. The influence of aphasia on spatial reasoning was considered to be an incomplete explanation for the failure of the left hemisphere group on the spatial sections. It is concluded that this investigation provides firmer evidence of a crucial role for the left hemisphere in both verbal and spatial abstract reasoning processes.
Vander Heyden, Karin M; Huizinga, Mariette; Jolles, Jelle
2017-02-01
Children practice their spatial skills when playing with spatial toys, such as construction materials, board games, and puzzles. Sex and SES differences are observed in the engagement in such spatial play activities at home, which relate to individual differences in spatial performance. The current study investigated the effects of explicitly providing spatial play activities in the school setting on different types of spatial ability. We presented 8- to 10-year-old children with a short and easy-to-adopt classroom intervention comprising a set of different spatial play materials. The design involved a pretest-posttest comparison between the intervention group (n = 70) and a control group without intervention (n = 70). Effects were examined on object transformation ability (i.e., a paper-and-pencil mental rotation and paper folding task) and viewer transformation ability (i.e., a hands-on 3D spatial perspective-taking task). Results showed specific effects: there were no differences between the intervention and control group in progress on the two object transformation tasks. Substantial improvements were found for the intervention group compared to the control group on the viewer transformation task. Training progress was not related to sex and socioeconomic background of the child. These findings support the value of spatial play in the classroom for the spatial development of children between 8 and 10 years of age. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
The Field of View is More Useful in Golfers than Regular Exercisers
Murphy, Karen
2017-01-01
Superior visual attention skills are vital for excellent sports performance. This study used a cognitive skills approach to examine expert and novice differences in a visual spatial attention task. Thirty-two males aged 18 to 42 years completed this study in return for course credit or monetary incentive. Participants were expert golfers (N = 18) or exercise controls (N = 14). Spatial attention was assessed using the useful field of view task which required participants to locate a target shown 10°, 20°, and 30° of eccentricity from centre in very brief presentations. At each degree of eccentricity, golfers were more accurate at locating the target than the exercise controls. These results provide support for the broad transfer hypothesis by demonstrating a link between golf expertise and better performance on an objective measure of spatial attention skills. Therefore, it appears that sports expertise can transfer to expertise in non-sport related tasks. PMID:28450973
Evidence of MAOA genotype involvement in spatial ability in males.
Mueller, Sven C; Cornwell, Brian R; Grillon, Christian; Macintyre, Jessica; Gorodetsky, Elena; Goldman, David; Pine, Daniel S; Ernst, Monique
2014-07-01
Although the monoamine oxidase-A (MAOA) gene has been linked to spatial learning and memory in animal models, convincing evidence in humans is lacking. Performance on an ecologically-valid, virtual computer-based equivalent of the Morris Water Maze task was compared between 28 healthy males with the low MAOA transcriptional activity and 41 healthy age- and IQ-matched males with the high MAOA transcriptional activity. The results revealed consistently better performance (reduced heading error, shorter path length, and reduced failed trials) for the high MAOA activity individuals relative to the low activity individuals. By comparison, groups did not differ on pre-task variables or strategic measures such as first-move latency. The results provide novel evidence of MAOA gene involvement in human spatial navigation using a virtual analogue of the Morris Water Maze task. Copyright © 2014 Elsevier B.V. All rights reserved.
Directional hypokinesia in spatial hemineglect: a case study.
Bottini, G; Sterzi, R; Vallar, G
1992-01-01
A patient with an ischaemic lesion involving the right frontal lobe and basal ganglia showed left spatial hemineglect in visuomotor exploratory tasks, requiring the use of the right unaffected hand. Her performance was, however, entirely preserved, with no evidence of neglect, when she was required to identify targets among distractors in both the left and right halves of space, and in the Wundt-Jastrow illusion test. The latter tasks do not require any arm movement in extrapersonal space. In this patient spatial hemineglect may be explained in terms of defective organisation of movements towards the left half-space (directional hypokinesia). The frontal lesion of the patient may be the neural correlate of this selective disorder. This pattern of impairment may be contrasted with the typical deficit found in patients with right brain damage with perceptual neglect. One case had a defective performance both in visuomotor and in purely perceptual tasks. Images PMID:1640231
Pravosudov, Vladimir V; Lavenex, Pierre; Omanska, Alicja
2005-10-01
Development rates vary among individuals, often as a result of direct competition for food. Survival of young might depend on their learning abilities, but it remains unclear whether learning abilities are affected by nutrition during development. The authors demonstrated that compared with controls, 1-year-old Western scrub jays (Aphelocoma californica) that experienced nutritional deficits during early posthatching development had smaller hippocampi with fewer neurons and performed worse in a cache recovery task and in a spatial version of an associative learning task. In contrast, performance of nutritionally deprived birds was similar to that of controls in 2 color versions of an associative learning task. These findings suggest that nutritional deficits during early development have long-term consequences for hippocampal structure and spatial memory, which, in turn, are likely to have a strong impact on animals' future fitness.
Musical expertise has minimal impact on dual task performance.
Cocchini, Gianna; Filardi, Maria Serena; Crhonkova, Marcela; Halpern, Andrea R
2017-05-01
Studies investigating effect of practice on dual task performance have yielded conflicting findings, thus supporting different theoretical accounts about the organisation of attentional resources when tasks are performed simultaneously. Because practice has been proven to reduce the demand of attention for the trained task, the impact of long-lasting training on one task is an ideal way to better understand the mechanisms underlying dual task decline in performance. Our study compared performance during dual task execution in expert musicians compared to controls with little if any musical experience. Participants performed a music recognition task and a visuo-spatial task separately (single task) or simultaneously (dual task). Both groups showed a significant but similar performance decline during dual tasks. In addition, the two groups showed a similar decline of dual task performance during encoding and retrieval of the musical information, mainly attributed to a decline in sensitivity. Our results suggest that attention during dual tasks is similarly distributed by expert and non-experts. These findings are in line with previous studies showing a lack of sensitivity to difficulty and lack of practice effect during dual tasks, supporting the idea that different tasks may rely on different and not-sharable attentional resources.
Visuo-spatial performance in autism: a meta-analysis.
Muth, Anne; Hönekopp, Johannes; Falter, Christine M
2014-12-01
Visuo-spatial skills are believed to be enhanced in autism spectrum disorders (ASDs). This meta-analysis tests the current state of evidence for Figure Disembedding, Block Design, Mental Rotation and Navon tasks in ASD and neurotypicals. Block Design (d = 0.32) and Figure Disembedding (d = 0.26) showed superior performance for ASD with large heterogeneity that is unaccounted for. No clear differences were found for Mental Rotation. ASD samples showed a stronger local processing preference for Navon tasks (d = 0.35); less clear evidence for performance differences of a similar magnitude emerged. We discuss the meta-analysis results together with other findings relating to visuo-spatial processing and three cognitive theories of ASD: Weak Central Coherence, Enhanced Perceptual Functioning and Extreme Male Brain theory.
Wilkins, Leanne K; Girard, Todd A; Konishi, Kyoko; King, Matthew; Herdman, Katherine A; King, Jelena; Christensen, Bruce; Bohbot, Veronique D
2013-11-01
Spatial memory is impaired among persons with schizophrenia (SCZ). However, different strategies may be used to solve most spatial memory and navigation tasks. This study investigated the hypothesis that participants with schizophrenia-spectrum disorders (SSD) would demonstrate differential impairment during acquisition and retrieval of target locations when using a hippocampal-dependent spatial strategy, but not a response strategy, which is more associated with caudate function. Healthy control (CON) and SSD participants were tested using the 4-on-8 virtual maze (4/8VM), a virtual navigation task designed to differentiate between participants' use of spatial and response strategies. Consistent with our predictions, SSD participants demonstrated a differential deficit such that those who navigated using a spatial strategy made more errors and took longer to locate targets. In contrast, SSD participants who spontaneously used a response strategy performed as well as CON participants. The differential pattern of spatial-memory impairment in SSD provides only indirect support for underlying hippocampal dysfunction. These findings emphasize the importance of considering individual strategies when investigating SSD-related memory and navigation performance. Future cognitive intervention protocols may harness SSD participants' intact ability to navigate using a response strategy and/or train the deficient ability to navigate using a spatial strategy to improve navigation and memory abilities in participants with SSD. Copyright © 2013 Wiley Periodicals, Inc.
The amusic brain: lost in music, but not in space.
Tillmann, Barbara; Jolicoeur, Pierre; Ishihara, Masami; Gosselin, Nathalie; Bertrand, Olivier; Rossetti, Yves; Peretz, Isabelle
2010-04-21
Congenital amusia is a neurogenetic disorder of music processing that is currently ascribed to a deficit in pitch processing. A recent study challenges this view and claims the disorder might arise as a consequence of a general spatial-processing deficit. Here, we assessed spatial processing abilities in two independent samples of individuals with congenital amusia by using line bisection tasks (Experiment 1) and a mental rotation task (Experiment 2). Both amusics and controls showed the classical spatial effects on bisection performance and on mental rotation performance, and amusics and controls did not differ from each other. These results indicate that the neurocognitive impairment of congenital amusia does not affect the processing of space.
Schubert, Jonathan T. W.; Badde, Stephanie; Röder, Brigitte
2017-01-01
Task demands modulate tactile localization in sighted humans, presumably through weight adjustments in the spatial integration of anatomical, skin-based, and external, posture-based information. In contrast, previous studies have suggested that congenitally blind humans, by default, refrain from automatic spatial integration and localize touch using only skin-based information. Here, sighted and congenitally blind participants localized tactile targets on the palm or back of one hand, while ignoring simultaneous tactile distractors at congruent or incongruent locations on the other hand. We probed the interplay of anatomical and external location codes for spatial congruency effects by varying hand posture: the palms either both faced down, or one faced down and one up. In the latter posture, externally congruent target and distractor locations were anatomically incongruent and vice versa. Target locations had to be reported either anatomically (“palm” or “back” of the hand), or externally (“up” or “down” in space). Under anatomical instructions, performance was more accurate for anatomically congruent than incongruent target-distractor pairs. In contrast, under external instructions, performance was more accurate for externally congruent than incongruent pairs. These modulations were evident in sighted and blind individuals. Notably, distractor effects were overall far smaller in blind than in sighted participants, despite comparable target-distractor identification performance. Thus, the absence of developmental vision seems to be associated with an increased ability to focus tactile attention towards a non-spatially defined target. Nevertheless, that blind individuals exhibited effects of hand posture and task instructions in their congruency effects suggests that, like the sighted, they automatically integrate anatomical and external information during tactile localization. Moreover, spatial integration in tactile processing is, thus, flexibly adapted by top-down information—here, task instruction—even in the absence of developmental vision. PMID:29228023
Indicators of suboptimal performance embedded in the Wechsler Memory Scale-Fourth Edition (WMS-IV).
Bouman, Zita; Hendriks, Marc P H; Schmand, Ben A; Kessels, Roy P C; Aldenkamp, Albert P
2016-01-01
Recognition and visual working memory tasks from the Wechsler Memory Scale-Fourth Edition (WMS-IV) have previously been documented as useful indicators for suboptimal performance. The present study examined the clinical utility of the Dutch version of the WMS-IV (WMS-IV-NL) for the identification of suboptimal performance using an analogue study design. The patient group consisted of 59 mixed-etiology patients; the experimental malingerers were 50 healthy individuals who were asked to simulate cognitive impairment as a result of a traumatic brain injury; the last group consisted of 50 healthy controls who were instructed to put forth full effort. Experimental malingerers performed significantly lower on all WMS-IV-NL tasks than did the patients and healthy controls. A binary logistic regression analysis was performed on the experimental malingerers and the patients. The first model contained the visual working memory subtests (Spatial Addition and Symbol Span) and the recognition tasks of the following subtests: Logical Memory, Verbal Paired Associates, Designs, Visual Reproduction. The results showed an overall classification rate of 78.4%, and only Spatial Addition explained a significant amount of variation (p < .001). Subsequent logistic regression analysis and receiver operating characteristic (ROC) analysis supported the discriminatory power of the subtest Spatial Addition. A scaled score cutoff of <4 produced 93% specificity and 52% sensitivity for detection of suboptimal performance. The WMS-IV-NL Spatial Addition subtest may provide clinically useful information for the detection of suboptimal performance.
Abu-Akel, A; Reniers, R L E P; Wood, S J
2016-09-01
Patients with schizophrenia show impairments in working-memory and visual-spatial processing, but little is known about the dynamic interplay between the two. To provide insight into this important question, we examined the effect of positive and negative symptom expressions in healthy adults on perceptual processing while concurrently performing a working-memory task that requires the allocations of various degrees of cognitive resources. The effect of positive and negative symptom expressions in healthy adults (N = 91) on perceptual processing was examined in a dual-task paradigm of visual-spatial working memory (VSWM) under three conditions of cognitive load: a baseline condition (with no concurrent working-memory demand), a low VSWM load condition, and a high VSWM load condition. Participants overall performed more efficiently (i.e., faster) with increasing cognitive load. This facilitation in performance was unrelated to symptom expressions. However, participants with high-negative, low-positive symptom expressions were less accurate in the low VSWM condition compared to the baseline and the high VSWM load conditions. Attenuated, subclinical expressions of psychosis affect cognitive performance that is impaired in schizophrenia. The "resource limitations hypothesis" may explain the performance of the participants with high-negative symptom expressions. The dual-task of visual-spatial processing and working memory may be beneficial to assessing the cognitive phenotype of individuals with high risk for schizophrenia spectrum disorders.
Mitolo, Micaela; Borella, Erika; Meneghetti, Chiara; Carbone, Elena; Pazzaglia, Francesca
2017-05-01
This study aimed to assess the efficacy of a route-learning training in a group of older adults living in a residential care home. We verified the presence of training-specific effects in tasks similar to those trained - route-learning tasks - as well as transfer effects on related cognitive processes - visuo-spatial short-term memory (VSSTM; Corsi Blocks Test (CBT), forward version), visuo-spatial working memory (VSWM; CBT, backward version; Pathway Span Tasks; Jigsaw Puzzle Test) - and in self-report measures. The maintenance of training benefits was examined after 3 months. Thirty 70-90-year-old residential care home residents were randomly assigned to the route-learning training group or to an active control group (involved in non-visuo-spatial activities). The trained group performed better than the control group in the route-learning tasks, retaining this benefit 3 months later. Immediate transfer effects were also seen in visuo-spatial span tasks (i.e., CBT forward and backward version and Pathway Span Task); these benefits had been substantially maintained at the 3-month follow-up. These findings suggest that a training on route learning is a promising approach to sustain older adults' environmental learning and some related abilities (e.g., VSSTM and VSWM), even in residential care home residents.
Effects of spatial cues on color-change detection in humans
Herman, James P.; Bogadhi, Amarender R.; Krauzlis, Richard J.
2015-01-01
Studies of covert spatial attention have largely used motion, orientation, and contrast stimuli as these features are fundamental components of vision. The feature dimension of color is also fundamental to visual perception, particularly for catarrhine primates, and yet very little is known about the effects of spatial attention on color perception. Here we present results using novel dynamic color stimuli in both discrimination and color-change detection tasks. We find that our stimuli yield comparable discrimination thresholds to those obtained with static stimuli. Further, we find that an informative spatial cue improves performance and speeds response time in a color-change detection task compared with an uncued condition, similar to what has been demonstrated for motion, orientation, and contrast stimuli. Our results demonstrate the use of dynamic color stimuli for an established psychophysical task and show that color stimuli are well suited to the study of spatial attention. PMID:26047359
Asymmetric Spatial Processing Under Cognitive Load.
Naert, Lien; Bonato, Mario; Fias, Wim
2018-01-01
Spatial attention allows us to selectively process information within a certain location in space. Despite the vast literature on spatial attention, the effect of cognitive load on spatial processing is still not fully understood. In this study we added cognitive load to a spatial processing task, so as to see whether it would differentially impact upon the processing of visual information in the left versus the right hemispace. The main paradigm consisted of a detection task that was performed during the maintenance interval of a verbal working memory task. We found that increasing cognitive working memory load had a more negative impact on detecting targets presented on the left side compared to those on the right side. The strength of the load effect correlated with the strength of the interaction on an individual level. The implications of an asymmetric attentional bias with a relative disadvantage for the left (vs the right) hemispace under high verbal working memory (WM) load are discussed.
Persistent spatial information in the frontal eye field during object-based short-term memory.
Clark, Kelsey L; Noudoost, Behrad; Moore, Tirin
2012-08-08
Spatial attention is known to gate entry into visual short-term memory, and some evidence suggests that spatial signals may also play a role in binding features or protecting object representations during memory maintenance. To examine the persistence of spatial signals during object short-term memory, the activity of neurons in the frontal eye field (FEF) of macaque monkeys was recorded during an object-based delayed match-to-sample task. In this task, monkeys were trained to remember an object image over a brief delay, regardless of the locations of the sample or target presentation. FEF neurons exhibited visual, delay, and target period activity, including selectivity for sample location and target location. Delay period activity represented the sample location throughout the delay, despite the irrelevance of spatial information for successful task completion. Furthermore, neurons continued to encode sample position in a variant of the task in which the matching stimulus never appeared in their response field, confirming that FEF maintains sample location independent of subsequent behavioral relevance. FEF neurons also exhibited target-position-dependent anticipatory activity immediately before target onset, suggesting that monkeys predicted target position within blocks. These results show that FEF neurons maintain spatial information during short-term memory, even when that information is irrelevant for task performance.
Astié, Andrea A; Scardamaglia, Romina C; Muzio, Rubén N; Reboreda, Juan C
2015-10-01
Females of avian brood parasites, like the shiny cowbird (Molothrus bonariensis), locate host nests and on subsequent days return to parasitize them. This ecological pressure for remembering the precise location of multiple host nests may have selected for superior spatial memory abilities. We tested the hypothesis that shiny cowbirds show sex differences in spatial memory abilities associated with sex differences in host nest searching behavior and relative hippocampus volume. We evaluated sex differences during acquisition, reversal and retention after extinction in a visual and a spatial discrimination learning task. Contrary to our prediction, females did not outperform males in the spatial task in either the acquisition or the reversal phases. Similarly, there were no sex differences in either phase in the visual task. During extinction, in both tasks the retention of females was significantly higher than expected by chance up to 50 days after the last rewarded session (∼85-90% of the trials with correct responses), but the performance of males at that time did not differ than that expected by chance. This last result shows a long-term memory capacity of female shiny cowbirds, which were able to remember information learned using either spatial or visual cues after a long retention interval. Copyright © 2015 Elsevier B.V. All rights reserved.
Mental rotation training: transfer and maintenance effects on spatial abilities.
Meneghetti, Chiara; Borella, Erika; Pazzaglia, Francesca
2016-01-01
One of the aims of research in spatial cognition is to examine whether spatial skills can be enhanced. The goal of the present study was thus to assess the benefit and maintenance effects of mental rotation training in young adults. Forty-eight females took part in the study: 16 were randomly assigned to receive the mental rotation training (based on comparing pairs of 2D or 3D objects and rotation games), 16 served as active controls (performing parallel non-spatial activities), and 16 as passive controls. Transfer effects to both untrained spatial tasks (testing both object rotation and perspective taking) and visual and verbal tasks were examined. Across the training sessions, the group given mental rotation training revealed benefits in the time it took to make judgments when comparing 3D and 2D objects, but their mental rotation speed did not improve. When compared with the other groups, the mental rotation training group did show transfer effects, however, in tasks other than those practiced (i.e., in object rotation and perspective-taking tasks), and these benefits persisted after 1 month. The training had no effect on visual or verbal tasks. These findings are discussed from the spatial cognition standpoint and with reference to the (rotation) training literature.
Identification of Resting State Networks Involved in Executive Function.
Connolly, Joanna; McNulty, Jonathan P; Boran, Lorraine; Roche, Richard A P; Delany, David; Bokde, Arun L W
2016-06-01
The structural networks in the human brain are consistent across subjects, and this is reflected also in that functional networks across subjects are relatively consistent. These findings are not only present during performance of a goal oriented task but there are also consistent functional networks during resting state. It suggests that goal oriented activation patterns may be a function of component networks identified using resting state. The current study examines the relationship between resting state networks measured and patterns of neural activation elicited during a Stroop task. The association between the Stroop-activated networks and the resting state networks was quantified using spatial linear regression. In addition, we investigated if the degree of spatial association of resting state networks with the Stroop task may predict performance on the Stroop task. The results of this investigation demonstrated that the Stroop activated network can be decomposed into a number of resting state networks, which were primarily associated with attention, executive function, visual perception, and the default mode network. The close spatial correspondence between the functional organization of the resting brain and task-evoked patterns supports the relevance of resting state networks in cognitive function.
Robin, Jessica; Hirshhorn, Marnie; Rosenbaum, R Shayna; Winocur, Gordon; Moscovitch, Morris; Grady, Cheryl L
2015-01-01
Several recent studies have compared episodic and spatial memory in neuroimaging paradigms in order to understand better the contribution of the hippocampus to each of these tasks. In the present study, we build on previous findings showing common neural activation in default network areas during episodic and spatial memory tasks based on familiar, real-world environments (Hirshhorn et al. (2012) Neuropsychologia 50:3094-3106). Following previous demonstrations of the presence of functionally connected sub-networks within the default network, we performed seed-based functional connectivity analyses to determine how, depending on the task, the hippocampus and prefrontal cortex differentially couple with one another and with distinct whole-brain networks. We found evidence for a medial prefrontal-parietal network and a medial temporal lobe network, which were functionally connected to the prefrontal and hippocampal seeds, respectively, regardless of the nature of the memory task. However, these two networks were functionally connected with one another during the episodic memory task, but not during spatial memory tasks. Replicating previous reports of fractionation of the default network into stable sub-networks, this study also shows how these sub-networks may flexibly couple and uncouple with one another based on task demands. These findings support the hypothesis that episodic memory and spatial memory share a common medial temporal lobe-based neural substrate, with episodic memory recruiting additional prefrontal sub-networks. © 2014 Wiley Periodicals, Inc.
Spatially Regularized Machine Learning for Task and Resting-state fMRI
Song, Xiaomu; Panych, Lawrence P.; Chen, Nan-kuei
2015-01-01
Background Reliable mapping of brain function across sessions and/or subjects in task- and resting-state has been a critical challenge for quantitative fMRI studies although it has been intensively addressed in the past decades. New Method A spatially regularized support vector machine (SVM) technique was developed for the reliable brain mapping in task- and resting-state. Unlike most existing SVM-based brain mapping techniques, which implement supervised classifications of specific brain functional states or disorders, the proposed method performs a semi-supervised classification for the general brain function mapping where spatial correlation of fMRI is integrated into the SVM learning. The method can adapt to intra- and inter-subject variations induced by fMRI nonstationarity, and identify a true boundary between active and inactive voxels, or between functionally connected and unconnected voxels in a feature space. Results The method was evaluated using synthetic and experimental data at the individual and group level. Multiple features were evaluated in terms of their contributions to the spatially regularized SVM learning. Reliable mapping results in both task- and resting-state were obtained from individual subjects and at the group level. Comparison with Existing Methods A comparison study was performed with independent component analysis, general linear model, and correlation analysis methods. Experimental results indicate that the proposed method can provide a better or comparable mapping performance at the individual and group level. Conclusions The proposed method can provide accurate and reliable mapping of brain function in task- and resting-state, and is applicable to a variety of quantitative fMRI studies. PMID:26470627
Spatial Scaling of the Profile of Selective Attention in the Visual Field.
Gannon, Matthew A; Knapp, Ashley A; Adams, Thomas G; Long, Stephanie M; Parks, Nathan A
2016-01-01
Neural mechanisms of selective attention must be capable of adapting to variation in the absolute size of an attended stimulus in the ever-changing visual environment. To date, little is known regarding how attentional selection interacts with fluctuations in the spatial expanse of an attended object. Here, we use event-related potentials (ERPs) to investigate the scaling of attentional enhancement and suppression across the visual field. We measured ERPs while participants performed a task at fixation that varied in its attentional demands (attentional load) and visual angle (1.0° or 2.5°). Observers were presented with a stream of task-relevant stimuli while foveal, parafoveal, and peripheral visual locations were probed by irrelevant distractor stimuli. We found two important effects in the N1 component of visual ERPs. First, N1 modulations to task-relevant stimuli indexed attentional selection of stimuli during the load task and further correlated with task performance. Second, with increased task size, attentional modulation of the N1 to distractor stimuli showed a differential pattern that was consistent with a scaling of attentional selection. Together, these results demonstrate that the size of an attended stimulus scales the profile of attentional selection across the visual field and provides insights into the attentional mechanisms associated with such spatial scaling.
Lateral Entorhinal Cortex Lesions Impair Local Spatial Frameworks
Kuruvilla, Maneesh V.; Ainge, James A.
2017-01-01
A prominent theory in the neurobiology of memory processing is that episodic memory is supported by contextually gated spatial representations in the hippocampus formed by combining spatial information from medial entorhinal cortex (MEC) with non-spatial information from lateral entorhinal cortex (LEC). However, there is a growing body of evidence from lesion and single-unit recording studies in rodents suggesting that LEC might have a role in encoding space, particularly the current and previous locations of objects within the local environment. Landmarks, both local and global, have been shown to control the spatial representations hypothesized to underlie cognitive maps. Consequently, it has recently been suggested that information processing within this network might be organized with reference to spatial scale with LEC and MEC providing information about local and global spatial frameworks respectively. In the present study, we trained animals to search for food using either a local or global spatial framework. Animals were re-tested on both tasks after receiving excitotoxic lesions of either the MEC or LEC. LEC lesioned animals were impaired in their ability to learn a local spatial framework task. LEC lesioned animals were also impaired on an object recognition (OR) task involving multiple local features but unimpaired at recognizing a single familiar object. Together, this suggests that LEC is involved in associating features of the local environment. However, neither LEC nor MEC lesions impaired performance on the global spatial framework task. PMID:28567006
Lyon, Louisa; Burnet, Philip WJ; Kew, James NC; Corti, Corrado; Rawlins, J Nicholas P; Lane, Tracy; De Filippis, Bianca; Harrison, Paul J; Bannerman, David M
2011-01-01
Group II metabotropic glutamate receptors (mGluR2 and mGluR3, encoded by GRM2 and GRM3) are implicated in hippocampal function and cognition, and in the pathophysiology and treatment of schizophrenia and other psychiatric disorders. However, pharmacological and behavioral studies with group II mGluR agonists and antagonists have produced complex results. Here, we studied hippocampus-dependent memory in GRM2/3 double knockout (GRM2/3−/−) mice in an iterative sequence of experiments. We found that they were impaired on appetitively motivated spatial reference and working memory tasks, and on a spatial novelty preference task that relies on animals' exploratory drive, but were unimpaired on aversively motivated spatial memory paradigms. GRM2/3−/− mice also performed normally on an appetitively motivated, non-spatial, visual discrimination task. These results likely reflect an interaction between GRM2/3 genotype and the arousal-inducing properties of the experimental paradigm. The deficit seen on appetitive and exploratory spatial memory tasks may be absent in aversive tasks because the latter induce higher levels of arousal, which rescue spatial learning. Consistent with an altered arousal–cognition relationship in GRM2/3−/− mice, injection stress worsened appetitively motivated, spatial working memory in wild-types, but enhanced performance in GRM2/3−/− mice. GRM2/3−/− mice were also hypoactive in response to amphetamine. This fractionation of hippocampus-dependent memory depending on the appetitive-aversive context is to our knowledge unique, and suggests a role for group II mGluRs at the interface of arousal and cognition. These arousal-dependent effects may explain apparently conflicting data from previous studies, and have translational relevance for the involvement of these receptors in schizophrenia and other disorders. PMID:21832989
Brunetti, Riccardo; Del Gatto, Claudia; Cavallina, Clarissa; Farina, Benedetto; Delogu, Franco
2018-05-01
The Corsi Block Tapping Task is a widespread test used to assess spatial working memory. Previous research hypothesized that the discrepancy found in some cases between the traditional and the digital (touchscreen) version of the Corsi block tapping task may be due to a direct motor resonance between the experimenter's and the participant's hand movements. However, we hypothesize that this discrepancy might be due to extra movement-related information included in the traditional version, lacking in the digital one. We investigated the effects of such task-irrelevant information using eCorsi, a touchscreen version of the task. In Experiment 1, we manipulate timing in sequence presentation, creating three conditions. In the Congruent condition, the inter-stimulus intervals reflected the physical distance in which the stimuli were spatially placed: The longer the spatial distance, the longer the temporal interval. In the Incongruent condition the timing changed randomly. Finally, in the Isochronous condition every stimulus appeared after a fixed interval, independently from its spatial position. The results showed a performance enhancement in the Congruent condition, suggesting an incidental spatio-temporal binding. In Experiment 2, we added straight lines between each location in the sequences: In the Trajectories condition participants saw trajectories from one spatial position to the other during sequence presentation, while a condition without such trajectories served as control. Results showed better performances in the Trajectories condition. We suggest that the timing and trajectories information play a significant role in the discrepancies found between the traditional and the touchscreen version of the Corsi Block Tapping Task, without the necessity of explanations involving direct motor resonance (e.g. seeing an actual hand moving) as a causal factor.
Nishimura, Akio; Yokosawa, Kazuhiko
2009-08-01
In the present article, we investigated the effects of pitch height and the presented ear (laterality) of an auditory stimulus, irrelevant to the ongoing visual task, on horizontal response selection. Performance was better when the response and the stimulated ear spatially corresponded (Simon effect), and when the spatial-musical association of response codes (SMARC) correspondence was maintained-that is, right (left) response with a high-pitched (low-pitched) tone. These findings reveal an automatic activation of spatially and musically associated responses by task-irrelevant auditory accessory stimuli. Pitch height is strong enough to influence the horizontal responses despite modality differences with task target.
Selective cognitive impairments associated with NMDA receptor blockade in humans.
Rowland, Laura M; Astur, Robert S; Jung, Rex E; Bustillo, Juan R; Lauriello, John; Yeo, Ronald A
2005-03-01
Hypofunction of the N-methyl-D-aspartate receptor (NMDAR) may be involved in the pathophysiology of schizophrenia. NMDAR antagonists like ketamine induce schizophrenia-like features in humans. In rodent studies, NMDAR antagonism impairs learning by disrupting long-term potentiation (LTP) in the hippocampus. This study investigated the effects of ketamine on spatial learning (acquisition) vs retrieval in a virtual Morris water task in humans. Verbal fluency, working memory, and learning and memory of verbal information were also assessed. Healthy human subjects participated in this double-blinded, placebo-controlled study. On two separate occasions, ketamine/placebo was administered and cognitive tasks were assessed in association with behavioral ratings. Ketamine impaired learning of spatial and verbal information but retrieval of information learned prior to drug administration was preserved. Schizophrenia-like symptoms were significantly related to spatial and verbal learning performance. Ketamine did not significantly impair attention, verbal fluency, or verbal working memory task performance. Spatial working memory was slightly impaired. In conclusion, these results provide evidence for ketamine's differential impairment of verbal and spatial learning vs retrieval. By using the Morris water task, which is hippocampal-dependent, this study helps bridge the gap between nonhuman animal and human NMDAR antagonism research. Impaired cognition is a core feature of schizophrenia. A better understanding of NMDA antagonism, its physiological and cognitive consequences, may provide improved models of psychosis and cognitive therapeutics.
Characterizing age-related decline of recognition memory and brain activation profile in mice.
Belblidia, Hassina; Leger, Marianne; Abdelmalek, Abdelouadoud; Quiedeville, Anne; Calocer, Floriane; Boulouard, Michel; Jozet-Alves, Christelle; Freret, Thomas; Schumann-Bard, Pascale
2018-06-01
Episodic memory decline is one of the earlier deficits occurring during normal aging in humans. The question of spatial versus non-spatial sensitivity to age-related memory decline is of importance for a full understanding of these changes. Here, we characterized the effect of normal aging on both non-spatial (object) and spatial (object location) memory performances as well as on associated neuronal activation in mice. Novel-object (NOR) and object-location (OLR) recognition tests, respectively assessing the identity and spatial features of object memory, were examined at different ages. We show that memory performances in both tests were altered by aging as early as 15 months of age: NOR memory was partially impaired whereas OLR memory was found to be fully disrupted at 15 months of age. Brain activation profiles were assessed for both tests using immunohistochemical detection of c-Fos (neuronal activation marker) in 3and 15 month-old mice. Normal performances in NOR task by 3 month-old mice were associated to an activation of the hippocampus and a trend towards an activation in the perirhinal cortex, in a way that did significantly differ with 15 month-old mice. During OLR task, brain activation took place in the hippocampus in 3 month-old but not significantly in 15 month-old mice, which were fully impaired at this task. These differential alterations of the object- and object-location recognition memory may be linked to differential alteration of the neuronal networks supporting these tasks. Copyright © 2018 Elsevier Inc. All rights reserved.
Sahgal, A; McKeith, I G; Galloway, P H; Tasker, N; Steckler, T
1995-02-01
Visuospatial memory was investigated in two groups of patients suffering from senile dementias of the Alzheimer (SDAT) or Lewy body (SDLT) types; a, third, age-matched, healthy control group was also included. The two patient groups were mildly demented and could not be distinguished from each other by traditional tests of cognitive function. A different pattern of performance emerged in the two groups on a computerised test of spatial working memory, which is a self-ordered pointing task requiring the subject to search for hidden tokens. An analysis of the pattern of errors revealed that the SDLT group made more of both possible types of error ("Within Search" and "Between Search") than the SDAT group. Neither patient groups' performance differed from each other when assessed on a computerised Corsi spatial span task. A measure of planning ability was obtained by examining search strategies. Although an index previously developed to measure the subject's use of a particular strategy in the spatial working memory task failed to detect any differences between the three groups, a novel index was calculated which focuses on performance within a search, and this revealed deficits in both demented groups. Since the two patient groups differed from each other in the spatial working memory, but not the Corsi spatial span, task, it is suggested that the differences between the two demented groups are not due to a specific mnemonic impairment, but reflect dysfunctions in non-mnemonic processes mediated by fronto-subcortical circuits, which are more severely damaged in SDLT.
Multiple reference frames in haptic spatial processing
NASA Astrophysics Data System (ADS)
Volčič, R.
2008-08-01
The present thesis focused on haptic spatial processing. In particular, our interest was directed to the perception of spatial relations with the main focus on the perception of orientation. To this end, we studied haptic perception in different tasks, either in isolation or in combination with vision. The parallelity task, where participants have to match the orientations of two spatially separated bars, was used in its two-dimensional and three-dimensional versions in Chapter 2 and Chapter 3, respectively. The influence of non-informative vision and visual interference on performance in the parallelity task was studied in Chapter 4. A different task, the mental rotation task, was introduced in a purely haptic study in Chapter 5 and in a visuo-haptic cross-modal study in Chapter 6. The interaction of multiple reference frames and their influence on haptic spatial processing were the common denominators of these studies. In this thesis we approached the problems of which reference frames play the major role in haptic spatial processing and how the relative roles of distinct reference frames change depending on the available information and the constraints imposed by different tasks. We found that the influence of a reference frame centered on the hand was the major cause of the deviations from veridicality observed in both the two-dimensional and three-dimensional studies. The results were described by a weighted average model, in which the hand-centered egocentric reference frame is supposed to have a biasing influence on the allocentric reference frame. Performance in haptic spatial processing has been shown to depend also on sources of information or processing that are not strictly connected to the task at hand. When non-informative vision was provided, a beneficial effect was observed in the haptic performance. This improvement was interpreted as a shift from the egocentric to the allocentric reference frame. Moreover, interfering visual information presented in the vicinity of the haptic stimuli parametrically modulated the magnitude of the deviations. The influence of the hand-centered reference frame was shown also in the haptic mental rotation task where participants were quicker in judging the parity of objects when these were aligned with respect to the hands than when they were physically aligned. Similarly, in the visuo-haptic cross-modal mental rotation task the parity judgments were influenced by the orientation of the exploring hand with respect to the viewing direction. This effect was shown to be modulated also by an intervening temporal delay that supposedly counteracts the influence of the hand-centered reference frame. We suggest that the hand-centered reference frame is embedded in a hierarchical structure of reference frames where some of these emerge depending on the demands and the circumstances of the surrounding environment and the needs of an active perceiver.
Dumont, Julie R.; Amin, Eman; Wright, Nicholas F.; Dillingham, Christopher M.; Aggleton, John P.
2015-01-01
The present study sought to understand how the hippocampus and anterior thalamic nuclei are conjointly required for spatial learning by examining the impact of cutting a major tract (the fornix) that interconnects these two sites. The initial experiments examined the consequences of fornix lesions in rats on spatial biconditional discrimination learning. The rationale arose from previous findings showing that fornix lesions spare the learning of spatial biconditional tasks, despite the same task being highly sensitive to both hippocampal and anterior thalamic nuclei lesions. In the present study, fornix lesions only delayed acquisition of the spatial biconditional task, pointing to additional contributions from non-fornical routes linking the hippocampus with the anterior thalamic nuclei. The same fornix lesions spared the learning of an analogous nonspatial biconditional task that used local contextual cues. Subsequent tests, including T-maze place alternation, place learning in a cross-maze, and a go/no-go place discrimination, highlighted the impact of fornix lesions when distal spatial information is used flexibly to guide behaviour. The final experiment examined the ability to learn incidentally the spatial features of a square water-maze that had differently patterned walls. Fornix lesions disrupted performance but did not stop the rats from distinguishing the various corners of the maze. Overall, the results indicate that interconnections between the hippocampus and anterior thalamus, via the fornix, help to resolve problems with flexible spatial and temporal cues, but the results also signal the importance of additional, non-fornical contributions to hippocampal-anterior thalamic spatial processing, particularly for problems with more stable spatial solutions. PMID:25453745
Spatial-Sequential and Spatial-Simultaneous Working Memory in Individuals with Williams Syndrome
ERIC Educational Resources Information Center
Lanfranchi, Silvia; De Mori, Letizia; Mammarella, Irene C.; Carretti, Barbara; Vianello, Renzo
2015-01-01
The aim of the present study was to compare visuospatial working memory performance in 18 individuals with Williams syndrome (WS) and 18 typically developing (TD) children matched for nonverbal mental age. Two aspects were considered: task presentation format (i.e., spatial-sequential or spatial-simultaneous), and level of attentional control…
Effects of VR system fidelity on analyzing isosurface visualization of volume datasets.
Laha, Bireswar; Bowman, Doug A; Socha, John J
2014-04-01
Volume visualization is an important technique for analyzing datasets from a variety of different scientific domains. Volume data analysis is inherently difficult because volumes are three-dimensional, dense, and unfamiliar, requiring scientists to precisely control the viewpoint and to make precise spatial judgments. Researchers have proposed that more immersive (higher fidelity) VR systems might improve task performance with volume datasets, and significant results tied to different components of display fidelity have been reported. However, more information is needed to generalize these results to different task types, domains, and rendering styles. We visualized isosurfaces extracted from synchrotron microscopic computed tomography (SR-μCT) scans of beetles, in a CAVE-like display. We ran a controlled experiment evaluating the effects of three components of system fidelity (field of regard, stereoscopy, and head tracking) on a variety of abstract task categories that are applicable to various scientific domains, and also compared our results with those from our prior experiment using 3D texture-based rendering. We report many significant findings. For example, for search and spatial judgment tasks with isosurface visualization, a stereoscopic display provides better performance, but for tasks with 3D texture-based rendering, displays with higher field of regard were more effective, independent of the levels of the other display components. We also found that systems with high field of regard and head tracking improve performance in spatial judgment tasks. Our results extend existing knowledge and produce new guidelines for designing VR systems to improve the effectiveness of volume data analysis.
Attention to sound improves auditory reliability in audio-tactile spatial optimal integration.
Vercillo, Tiziana; Gori, Monica
2015-01-01
The role of attention on multisensory processing is still poorly understood. In particular, it is unclear whether directing attention toward a sensory cue dynamically reweights cue reliability during integration of multiple sensory signals. In this study, we investigated the impact of attention in combining audio-tactile signals in an optimal fashion. We used the Maximum Likelihood Estimation (MLE) model to predict audio-tactile spatial localization on the body surface. We developed a new audio-tactile device composed by several small units, each one consisting of a speaker and a tactile vibrator independently controllable by external software. We tested participants in an attentional and a non-attentional condition. In the attentional experiment, participants performed a dual task paradigm: they were required to evaluate the duration of a sound while performing an audio-tactile spatial task. Three unisensory or multisensory stimuli, conflictual or not conflictual sounds and vibrations arranged along the horizontal axis, were presented sequentially. In the primary task participants had to evaluate in a space bisection task the position of the second stimulus (the probe) with respect to the others (the standards). In the secondary task they had to report occasionally changes in duration of the second auditory stimulus. In the non-attentional task participants had only to perform the primary task (space bisection). Our results showed an enhanced auditory precision (and auditory weights) in the auditory attentional condition with respect to the control non-attentional condition. The results of this study support the idea that modality-specific attention modulates multisensory integration.
Gardner, Mark R.; Brazier, Mark; Edmonds, Caroline J.; Gronholm, Petra C.
2013-01-01
Previous research provides evidence for a dissociable embodied route to spatial perspective-taking that is under strategic control. The present experiment investigated further the influence of strategy on spatial perspective-taking by assessing whether participants may also elect to employ a separable “disembodied” route loading on inhibitory control mechanisms. Participants (N = 92) undertook both the “own body transformation” (OBT) perspective-taking task, requiring speeded spatial judgments made from the perspective of an observed figure, and a control task measuring ability to inhibit spatially compatible responses in the absence of a figure. Perspective-taking performance was found to be related to performance on the response inhibition control task, in that participants who tended to take longer to adopt a new perspective also tended to show a greater elevation in response times when inhibiting spatially compatible responses. This relationship was restricted to those participants reporting that they adopted the perspective of another by reversing left and right whenever confronted with a front-view figure; it was absent in those participants who reported perspective-taking by mentally transforming their spatial orientation to align with that of the figure. Combined with previously published results, these findings complete a double dissociation between embodied and disembodied routes to spatial perspective-taking, implying that spatial perspective-taking is subject to modulation by strategy, and suggesting that embodied routes to perspective-taking may place minimal demands on domain general executive functions. PMID:23964229
A twin study of spatial and non-spatial delayed response performance in middle age.
Kremen, William S; Mai, Tuan; Panizzon, Matthew S; Franz, Carol E; Blankfeld, Howard M; Xian, Hong; Eisen, Seth A; Tsuang, Ming T; Lyons, Michael J
2011-06-01
Delayed alternation and object alternation are classic spatial and non-spatial delayed response tasks. We tested 632 middle-aged male veteran twins on variants of these tasks in order to compare test difficulty, measure their inter-correlation, test order effects, and estimate heritabilities (proportion of observed variance due to genetic influences). Non-spatial alternation (NSA), which may involve greater reliance on processing of subgoals, was significantly more difficult than spatial alternation (SA). Despite their similarities, NSA and SA scores were uncorrelated. NSA performance was worse when administered second; there was no SA order effect. NSA scores were modestly heritable (h(2)=.25; 26); SA was not. There was shared genetic variance between NSA scores and general intellectual ability (r(g)=.55; .67), but this also suggests genetic influences specific to NSA. Compared with findings from small, selected control samples, high "failure" rates in this community-based sample raise concerns about interpretation of brain dysfunction in elderly or patient samples. Copyright © 2011 Elsevier Inc. All rights reserved.
A Twin Study of Spatial and Non-Spatial Delayed Response Performance in Middle Age
Kremen, William S.; Mai, Tuan; Panizzon, Matthew S.; Franz, Carol E.; Blankfeld, Howard M.; Xian, Hong; Eisen, Seth A.; Tsuang, Ming T.; Lyons, Michael J.
2011-01-01
Delayed alternation and object alternation are classic spatial and non-spatial delayed response tasks. We tested 632 middle-aged male veteran twins on variants of these tasks in order to compare test difficulty, measure their inter-correlation, test order effects, and estimate heritabilities (proportion of observed variance due to genetic influences). Non-spatial alternation (NSA), which may involve greater reliance on processing of subgoals, was significantly more difficult than spatial alternation (SA). Despite their similarities, NSA and SA scores were uncorrelated. NSA performance was worse when administered second; there was no SA order effect. NSA scores were modestly heritable (h2=.25; 26); SA was not. There was shared genetic variance between NSA scores and general intellectual ability (rg=.55; .67), but this also suggests genetic influences specific to NSA. Compared with findings from small, selected control samples, high “failure” rates in this community-based sample raise concerns about interpretation of brain dysfunction in elderly or patient samples. PMID:21477911
Hamlyn, Eugene; Brand, Linda; Shahid, Mohammed; Harvey, Brian H
2009-10-01
Ampakines have shown beneficial effects on cognition in selected animal models of learning. However, their ability to modify long-term spatial memory tasks has not been studied yet. This would lend credence to their possible value in treating disorders of cognition. We evaluated the actions of subchronic Org 26576 administration on spatial reference memory performance in the 5-day Morris water maze task in male Sprague-Dawley rats, at doses of 1, 3 and 10 mg/kg twice daily through intraperitoneal injection over 12 days. Org 26576 exerted a dose and time-dependent effect on spatial learning, with dosages of 3 and 10 mg/kg significantly enhancing acquisition on day 1. Globally, escape latency decreased significantly as the training days progressed in the saline and Org 26576-treated groups, indicating that significant and equal learning had taken place over the learning period. However, at the end of the learning period, all doses of Org 26576 significantly improved spatial memory storage/retrieval without confounding effects in the cued version of the task. Org 26576 offers early phase spatial memory benefits in rats, but particularly enhances search accuracy during reference memory retrieval. These results support its possible utility in treating disorders characterized by deficits in cognitive performance.
Role of strategies and prior exposure in mental rotation.
Cherney, Isabelle D; Neff, Nicole L
2004-06-01
The purpose of these two studies was to examine sex differences in strategy use and the effect of prior exposure on the performance on Vandenberg and Kuse's 1978 Mental Rotation Test. A total of 152 participants completed the spatial task and self-reported their strategy use. Consistent with previous studies, men outperformed women. Strategy usage did not account for these differences, although guessing did. Previous exposure to the Mental Rotation Test, American College Test scores and frequent computer or video game play predicted performance on the test. These results suggest that prior exposure to spatial tasks may provide cues to improve participants' performance.
Cohen, D
1976-10-01
This paper reports an analysis of sex differences in cognitive test scores covering the dimensions of spatial orientation and spatial visualization in groups of 6 older men and 6 women matched for speed of performance on a maze test and level of performance on a spatial relations task. Older men were more proficient solving spatial problems using the body as a referent, whereas there was no significant difference between the sexes in imagining spatial displacement. Matched comparisons appear a useful adjunct to population research to understand the type(s) of cognitive processes where differential performance by the sexes is observed.
Van de Weijer-Bergsma, Eva; Kroesbergen, Evelyn H; Prast, Emilie J; Van Luit, Johannes E H
2015-09-01
Working memory is an important predictor of academic performance, and of math performance in particular. Most working memory tasks depend on one-to-one administration by a testing assistant, which makes the use of such tasks in large-scale studies time-consuming and costly. Therefore, an online, self-reliant visual-spatial working memory task (the Lion game) was developed for primary school children (6-12 years of age). In two studies, the validity and reliability of the Lion game were investigated. The results from Study 1 (n = 442) indicated satisfactory six-week test-retest reliability, excellent internal consistency, and good concurrent and predictive validity. The results from Study 2 (n = 5,059) confirmed the results on the internal consistency and predictive validity of the Lion game. In addition, multilevel analysis revealed that classroom membership influenced Lion game scores. We concluded that the Lion game is a valid and reliable instrument for the online computerized and self-reliant measurement of visual-spatial working memory (i.e., updating).
Thompson, Clarissa A.; Morris, Bradley J.; Sidney, Pooja G.
2017-01-01
Do children spontaneously represent spatial-numeric features of a task, even when it does not include printed numbers (Mix et al., 2016)? Sixty first grade students completed a novel spatial estimation task by seeking and finding pages in a 100-page book without printed page numbers. Children were shown pages 1 through 6 and 100, and then were asked, “Can you find page X?” Children’s precision of estimates on the page finder task and a 0-100 number line estimation task was calculated with the Percent Absolute Error (PAE) formula (Siegler and Booth, 2004), in which lower PAE indicated more precise estimates. Children’s numerical knowledge was further assessed with: (1) numeral identification (e.g., What number is this: 57?), (2) magnitude comparison (e.g., Which is larger: 54 or 57?), and (3) counting on (e.g., Start counting from 84 and count up 5 more). Children’s accuracy on these tasks was correlated with their number line PAE. Children’s number line estimation PAE predicted their page finder PAE, even after controlling for age and accuracy on the other numerical tasks. Children’s estimates on the page finder and number line tasks appear to tap a general magnitude representation. However, the page finder task did not correlate with numeral identification and counting-on performance, likely because these tasks do not measure children’s magnitude knowledge. Our results suggest that the novel page finder task is a useful measure of children’s magnitude knowledge, and that books have similar spatial-numeric affordances as number lines and numeric board games. PMID:29312084
Voss, Patrice; Gougoux, Frederic; Zatorre, Robert J; Lassonde, Maryse; Lepore, Franco
2008-04-01
Blind individuals do not necessarily receive more auditory stimulation than sighted individuals. However, to interact effectively with their environment, they have to rely on non-visual cues (in particular auditory) to a greater extent. Often benefiting from cerebral reorganization, they not only learn to rely more on such cues but also may process them better and, as a result, demonstrate exceptional abilities in auditory spatial tasks. Here we examine the effects of blindness on brain activity, using positron emission tomography (PET), during a sound-source discrimination task (SSDT) in both early- and late-onset blind individuals. This should not only provide an answer to the question of whether the blind manifest changes in brain activity but also allow a direct comparison of the two subgroups performing an auditory spatial task. The task was presented under two listening conditions: one binaural and one monaural. The binaural task did not show any significant behavioural differences between groups, but it demonstrated striate and extrastriate activation in the early-blind groups. A subgroup of early-blind individuals, on the other hand, performed significantly better than all the other groups during the monaural task, and these enhanced skills were correlated with elevated activity within the left dorsal extrastriate cortex. Surprisingly, activation of the right ventral visual pathway, which was significantly activated in the late-blind individuals during the monaural task, was negatively correlated with performance. This suggests the possibility that not all cross-modal plasticity is beneficial. Overall, our results not only support previous findings showing that occipital cortex of early-blind individuals is functionally engaged in spatial auditory processing but also shed light on the impact the age of onset of blindness can have on the ensuing cross-modal plasticity.
The Effects of Divided Attention on Speech Motor, Verbal Fluency, and Manual Task Performance
ERIC Educational Resources Information Center
Dromey, Christopher; Shim, Erin
2008-01-01
Purpose: The goal of this study was to evaluate aspects of the "functional distance hypothesis," which predicts that tasks regulated by brain networks in closer anatomic proximity will interfere more with each other than tasks controlled by spatially distant regions. Speech, verbal fluency, and manual motor tasks were examined to ascertain whether…
Secondary-Task Effects on Learning with Multimedia: An Investigation through Eye-Movement Analysis
ERIC Educational Resources Information Center
Acarturk, Cengiz; Ozcelik, Erol
2017-01-01
This study investigates secondary-task interference on eye movements through learning with multimedia. We focus on the relationship between the influence of the secondary task on the eye movements of learners, and the learning outcomes as measured by retention, matching, and transfer. Half of the participants performed a spatial tapping task while…
The effects of spatially displaced visual feedback on remote manipulator performance
NASA Technical Reports Server (NTRS)
Smith, Randy L.; Stuart, Mark A.
1989-01-01
The effects of spatially displaced visual feedback on the operation of a camera viewed remote manipulation task are analyzed. A remote manipulation task is performed by operators exposed to the following different viewing conditions: direct view of the work site; normal camera view; reversed camera view; inverted/reversed camera view; and inverted camera view. The task completion performance times are statistically analyzed with a repeated measures analysis of variance, and a Newman-Keuls pairwise comparison test is administered to the data. The reversed camera view is ranked third out of four camera viewing conditions, while the normal viewing condition is found significantly slower than the direct viewing condition. It is shown that generalization to remote manipulation applications based upon the results of direct manipulation studies are quite useful, but they should be made cautiously.
Roelofs, Ardi
2012-01-01
A few studies have examined selective attention in Stroop task performance through ex-Gaussian analyses of response time (RT) distributions. It has remained unclear whether the tail of the RT distribution in vocal responding reflects spatial integration of relevant and irrelevant attributes, as suggested by Spieler, Balota, and Faust (2000). Here, two colour-word Stroop experiments with vocal responding are reported in which the spatial relation between colour and word was manipulated. Participants named colours (e.g., green; say "green") while trying to ignore distractors that were incongruent or congruent words (e.g., red or green), or neutral series of Xs. The vocal RT was measured. Colour words in colour, white words superimposed onto colour rectangles (Experiment 1), and colour rectangles combined with auditory words (Experiment 2) yielded Stroop effects in both the leading edge and the tail of the RT distributions. These results indicate that spatial integration is not necessary for effects in the tail to occur in vocal responding. It is argued that the findings are compatible with an association of the tail effects with task conflict.
Enhancing Cognition with Video Games: A Multiple Game Training Study
Oei, Adam C.; Patterson, Michael D.
2013-01-01
Background Previous evidence points to a causal link between playing action video games and enhanced cognition and perception. However, benefits of playing other video games are under-investigated. We examined whether playing non-action games also improves cognition. Hence, we compared transfer effects of an action and other non-action types that required different cognitive demands. Methodology/Principal Findings We instructed 5 groups of non-gamer participants to play one game each on a mobile device (iPhone/iPod Touch) for one hour a day/five days a week over four weeks (20 hours). Games included action, spatial memory, match-3, hidden- object, and an agent-based life simulation. Participants performed four behavioral tasks before and after video game training to assess for transfer effects. Tasks included an attentional blink task, a spatial memory and visual search dual task, a visual filter memory task to assess for multiple object tracking and cognitive control, as well as a complex verbal span task. Action game playing eliminated attentional blink and improved cognitive control and multiple-object tracking. Match-3, spatial memory and hidden object games improved visual search performance while the latter two also improved spatial working memory. Complex verbal span improved after match-3 and action game training. Conclusion/Significance Cognitive improvements were not limited to action game training alone and different games enhanced different aspects of cognition. We conclude that training specific cognitive abilities frequently in a video game improves performance in tasks that share common underlying demands. Overall, these results suggest that many video game-related cognitive improvements may not be due to training of general broad cognitive systems such as executive attentional control, but instead due to frequent utilization of specific cognitive processes during game play. Thus, many video game training related improvements to cognition may be attributed to near-transfer effects. PMID:23516504
Conflict Tasks of Different Types Divergently Affect the Attentional Processing of Gaze and Arrow.
Fan, Lingxia; Yu, Huan; Zhang, Xuemin; Feng, Qing; Sun, Mengdan; Xu, Mengsi
2018-01-01
The present study explored the attentional processing mechanisms of gaze and arrow cues in two different types of conflict tasks. In Experiment 1, participants performed a flanker task in which gaze and arrow cues were presented as central targets or bilateral distractors. The congruency between the direction of the target and the distractors was manipulated. Results showed that arrow distractors greatly interfered with the attentional processing of gaze, while the processing of arrow direction was immune to conflict from gaze distractors. Using a spatial compatibility task, Experiment 2 explored the conflict effects exerted on gaze and arrow processing by their relative spatial locations. When the direction of the arrow was in conflict with its spatial layout on screen, response times were slowed; however, the encoding of gaze was unaffected by spatial location. In general, processing to an arrow cue is less influenced by bilateral gaze cues but is affected by irrelevant spatial information, while processing to a gaze cue is greatly disturbed by bilateral arrows but is unaffected by irrelevant spatial information. Different effects on gaze and arrow cues by different types of conflicts may reflect two relatively distinct specific modes of the attentional process.
Gray, J R
2001-09-01
Emotional states might selectively modulate components of cognitive control. To test this hypothesis, the author randomly assigned 152 undergraduates (equal numbers of men and women) to watch short videos intended to induce emotional states (approach, neutral, or withdrawal). Each video was followed by a computerized 2-back working memory task (spatial or verbal, equated for difficulty and appearance). Spatial 2-back performance was enhanced by a withdrawal state and impaired by an approach state; the opposite pattern held for verbal performance. The double dissociation held more strongly for participants who made more errors than average across conditions. The results suggest that approach-withdrawal states can have selective influences on components of cognitive control, possibly on a hemispheric basis. They support and extend several frameworks for conceptualizing emotion-cognition interactions.
Taillade, Mathieu; Sauzéon, Hélène; Dejos, Marie; Pala, Prashant Arvind; Larrue, Florian; Wallet, Grégory; Gross, Christian; N'Kaoua, Bernard
2013-01-01
The aim of this study was to evaluate in large-scale spaces wayfinding and spatial learning difficulties for older adults in relation to the executive and memory decline associated with aging. We compared virtual reality (VR)-based wayfinding and spatial memory performances between young and older adults. Wayfinding and spatial memory performances were correlated with classical measures of executive and visuo-spatial memory functions, but also with self-reported estimates of wayfinding difficulties. We obtained a significant effect of age on wayfinding performances but not on spatial memory performances. The overall correlations showed significant correlations between the wayfinding performances and the classical measures of both executive and visuo-spatial memory, but only when the age factor was not partialled out. Also, older adults underestimated their wayfinding difficulties. A significant relationship between the wayfinding performances and self-reported wayfinding difficulty estimates is found, but only when the age effect was partialled out. These results show that, even when older adults have an equivalent spatial knowledge to young adults, they had greater difficulties with the wayfinding task, supporting an executive decline view in age-related wayfinding difficulties. However, the correlation results are in favor of both the memory and executive decline views as mediators of age-related differences in wayfinding performances. This is discussed in terms of the relationships between memory and executive functioning in wayfinding task orchestration. Our results also favor the use of objective assessments of everyday navigation difficulties in virtual applications, instead of self-reported questionnaires, since older adults showed difficulties in estimating their everyday wayfinding problems.
Huperzine A: Behavioral and Pharmacological Evaluation in Rhesus Monkeys
2008-06-01
challenged with 30 ug/kg scopolamine . Doses of 1 and 10 ug/kg HUP improved choice accuracy on a previously learned delayed spatial memory task in the...elderly subjects, and doses of 10 and 100 ug/kg reversed the scopolamine -induced deficits in the younger monkeys. Unfortunately, no data regarding...interval) in the spatial memory task differentially modulated the drug effects on performance. Specifically, scopolamine impaired accuracy
Cussen, Victoria A; Mench, Joy A
2014-07-01
Psittacines are generally considered to possess cognitive abilities comparable to those of primates. Most psittacine research has evaluated performance on standardized complex cognition tasks, but studies of basic cognitive processes are limited. We tested orange-winged Amazon parrots (Amazona amazonica) on a spatial foraging assessment, the Hamilton search task. This task is a standardized test used in human and non-human primate studies. It has multiple phases, which require trial and error learning, learning set breaking, and spatial memory. We investigated search strategies used to complete the task, cognitive flexibility, and long-term memory for the task. We also assessed the effects of individual strength of motor lateralization (foot preference) and sex on task performance. Almost all (92%) of the parrots acquired the task. All had significant foot preferences, with 69% preferring their left foot, and showed side preferences contralateral to their preferred limb during location selection. The parrots were able to alter their search strategies when reward contingencies changed, demonstrating cognitive flexibility. They were also able to remember the task over a 6-month period. Lateralization had a significant influence on learning set acquisition but no effect on cognitive flexibility. There were no sex differences. To our knowledge, this is the first cognitive study using this particular species and one of the few studies of cognitive abilities in any Neotropical parrot species.
Zago, Laure; Petit, Laurent; Jobard, Gael; Hay, Julien; Mazoyer, Bernard; Tzourio-Mazoyer, Nathalie; Karnath, Hans-Otto; Mellet, Emmanuel
2017-01-08
The objective of this study was to validate a line bisection judgement (LBJ) task for use in investigating the lateralized cerebral bases of spatial attention in a sample of 51 right-handed healthy participants. Using functional magnetic resonance imaging (fMRI), the participants performed a LBJ task that was compared to a visuomotor control task during which the participants made similar saccadic and motoric responses. Cerebral lateralization was determined using a voxel-based functional asymmetry analysis and a hemispheric functional lateralization index (HFLI) computed from fMRI contrast images. Behavioural attentional deviation biases were assessed during the LBJ task and a "paper and pencil" symbol cancellation task (SCT). Individual visuospatial skills were also evaluated. The results showed that both the LBJ and SCT tasks elicited leftward spatial biases in healthy subjects, although the biases were not correlated, which indicated their independence. Neuroimaging results showed that the LBJ task elicited a right hemispheric lateralization, with rightward asymmetries found in a large posterior occipito-parietal area, the posterior calcarine sulcus (V1p) and the temporo-occipital junction (TOJ) and in the inferior frontal gyrus, the anterior insula and the superior medial frontal gyrus. The comparison of the LBJ asymmetry map to the lesion map of neglect patients who suffer line bisection deviation demonstrated maximum overlap in a network that included the middle occipital gyrus (MOG), the TOJ, the anterior insula and the inferior frontal region, likely subtending spatial LBJ bias. Finally, the LBJ task-related cerebral lateralization was specifically correlated with the LBJ spatial bias but not with the SCT bias or with the visuospatial skills of the participants. Taken together, these results demonstrated that the LBJ task is adequate for investigating spatial lateralization in healthy subjects and is suitable for determining the factors underlying the variability of spatial cerebral lateralization. Copyright © 2017 Elsevier Ltd. All rights reserved.
Spatial and numerical processing in children with high and low visuospatial abilities.
Crollen, Virginie; Noël, Marie-Pascale
2015-04-01
In the literature on numerical cognition, a strong association between numbers and space has been repeatedly demonstrated. However, only a few recent studies have been devoted to examine the consequences of low visuospatial abilities on calculation processing. In this study, we wanted to investigate whether visuospatial weakness may affect pure spatial processing as well as basic numerical reasoning. To do so, the performances of children with high and low visuospatial abilities were directly compared on different spatial tasks (the line bisection and Simon tasks) and numerical tasks (the number bisection, number-to-position, and numerical comparison tasks). Children from the low visuospatial group presented the classic Simon and SNARC (spatial numerical association of response codes) effects but showed larger deviation errors as compared with the high visuospatial group. Our results, therefore, demonstrated that low visuospatial abilities did not change the nature of the mental number line but rather led to a decrease in its accuracy. Copyright © 2014 Elsevier Inc. All rights reserved.
Johnston, Kevin; Everling, Stefan
2009-05-01
Visuospatial working memory is one of the most extensively investigated functions of the dorsolateral prefrontal cortex (DLPFC). Theories of prefrontal cortical function have suggested that this area exerts cognitive control by modulating the activity of structures to which it is connected. Here, we used the oculomotor system as a model in which to characterize the output signals sent from the DLPFC to a target structure during a classical spatial working memory task. We recorded the activity of identified DLPFC-superior colliculus (SC) projection neurons while monkeys performed a memory-guided saccade task in which they were required to generate saccades toward remembered stimulus locations. DLPFC neurons sent signals related to all aspects of the task to the SC, some of which were spatially tuned. These data provide the first direct evidence that the DLPFC sends task-relevant information to the SC during a spatial working memory task, and further support a role for the DLPFC in the direct modulation of other brain areas.
Lo, Y L; Zhang, H H; Wang, C C; Chin, Z Y; Fook-Chong, S; Gabriel, C; Guan, C T
2009-01-01
In overt reading and singing tasks, actual vocalization of words in a rhythmic fashion is performed. During execution of these tasks, the role of underlying vascular processes in relation to cortical excitability changes in a spatial manner is uncertain. Our objective was to investigate cortical excitability changes during reading and singing with transcranial magnetic stimulation (TMS), as well as vascular changes with nearinfrared spectroscopy (NIRS). Findings with TMS and NIRS were correlated. TMS and NIRS recordings were performed in 5 normal subjects while they performed reading and singing tasks separately. TMS was applied over the left motor cortex at 9 positions 2.5 cm apart. NIRS recordings were made over these identical positions. Although both TMS and NIRS showed significant mean cortical excitability and hemodynamic changes from baseline during vocalization tasks, there was no significant spatial correlation of these changes evaluated with the 2 techniques over the left motor cortex. Our findings suggest that increased left-sided cortical excitability from overt vocalization tasks in the corresponding "hand area" were the result of "functional connectivity," rather than an underlying "vascular overflow mechanism" from the adjacent speech processing or face/mouth areas. Our findings also imply that functional neurophysiological and vascular methods may evaluate separate underlying processes, although subjects performed identical vocalization tasks. Future research combining similar methodologies should embrace this aspect and harness their separate capabilities.
Chan, Winnie Wai Lan; Wong, Terry Tin-Yau
2016-08-01
People map numbers onto space. The well-replicated SNARC (spatial-numerical association of response codes) effect indicates that people have a left-sided bias when responding to small numbers and a right-sided bias when responding to large numbers. This study examined whether such spatial codes were tagged to the ordinal or magnitude information of numbers among kindergarteners and whether it was related to early numerical abilities. Based on the traditional magnitude judgment task, we developed two variant tasks-namely the month judgment task and dot judgment task-to elicit ordinal and magnitude processing of numbers, respectively. Results showed that kindergarteners oriented small numbers toward the left side and large numbers toward the right side when processing the ordinal information of numbers in the month judgment task but not when processing the magnitude information in the number judgment task and dot judgment task, suggesting that the left-to-right spatial bias was probably tagged to the ordinal but not magnitude property of numbers. Moreover, the strength of the SNARC effect was not related to early numerical abilities. These findings have important implications for the early spatial representation of numbers and its role in numerical performance among kindergarteners. Copyright © 2016 Elsevier Inc. All rights reserved.
Leão, Anderson H F F; Medeiros, André M; Apolinário, Gênedy K S; Cabral, Alícia; Ribeiro, Alessandra M; Barbosa, Flávio F; Silva, Regina H
2016-05-01
The plus-maze discriminative avoidance task (PMDAT) has been used to investigate interactions between aversive memory and an anxiety-like response in rodents. Suitable performance in this task depends on the activity of the basolateral amygdala, similar to other aversive-based memory tasks. However, the role of spatial cues and hippocampal-dependent learning in the performance of PMDAT remains unknown. Here, we investigated the role of proximal and distal cues in the retrieval of this task. Animals tested under misplaced proximal cues had diminished performance, and animals tested under both misplaced proximal cues and absent distal cues could not discriminate the aversive arm. We also assessed the role of the dorsal hippocampus (CA1) in this aversive memory task. Temporary bilateral inactivation of dorsal CA1 was conducted with muscimol (0.05 μg, 0.1 μg, and 0.2 μg) prior to the training session. While the acquisition of the task was not altered, muscimol impaired the performance in the test session and reduced the anxiety-like response in the training session. We also performed a spreading analysis of a fluorophore-conjugated muscimol to confirm selective inhibition of CA1. In conclusion, both distal and proximal cues are required to retrieve the task, with the latter being more relevant to spatial orientation. Dorsal CA1 activity is also required for aversive memory formation in this task, and interfered with the anxiety-like response as well. Importantly, both effects were detected by different parameters in the same paradigm, endorsing the previous findings of independent assessment of aversive memory and anxiety-like behavior in the PMDAT. Taken together, these findings suggest that the PMDAT probably requires an integration of multiple systems for memory formation, resembling an episodic-like memory rather than a pure conditioning behavior. Furthermore, the concomitant and independent assessment of emotionality and memory in rodents is relevant to elucidate how these memory systems interact during aversive memory formation. Thus, the PMDAT can be useful for studying hippocampal-dependent memory when it involves emotional content. Copyright © 2016 Elsevier B.V. All rights reserved.
Szturm, Tony; Maharjan, Pramila; Marotta, Jonathan J; Shay, Barbara; Shrestha, Shiva; Sakhalkar, Vedant
2013-09-01
Mobility limitations and cognitive impairments, each common with aging, reduce levels of physical and mental activity, are prognostic of future adverse health events, and are associated with an increased fall risk. The purpose of this study was to examine whether divided attention during walking at a constant speed would decrease locomotor rhythm, stability, and cognitive performance. Young healthy participants (n=20) performed a visuo-spatial cognitive task in sitting and while treadmill walking at 2 speeds (0.7 and 1.0 m/s).Treadmill speed had a significant effect on temporal gait variables and ML-COP excursion. Cognitive load did not have a significant effect on average temporal gait variables or COP excursion, but variation of gait variables increased during dual-task walking. ML and AP trunk motion was found to decrease during dual-task walking. There was a significant decrease in cognitive performance (success rate, response time and movement time) while walking, but no effect due to treadmill speed. In conclusion walking speed is an important variable to be controlled in studies that are designed to examine effects of concurrent cognitive tasks on locomotor rhythm, pacing and stability. Divided attention during walking at a constant speed did result in decreased performance of a visuo-spatial cognitive task and an increased variability in locomotor rhythm. Copyright © 2013 Elsevier B.V. All rights reserved.
Augmented Reality for the Assessment of Children's Spatial Memory in Real Settings
Juan, M.-Carmen; Mendez-Lopez, Magdalena; Perez-Hernandez, Elena; Albiol-Perez, Sergio
2014-01-01
Short-term memory can be defined as the capacity for holding a small amount of information in mind in an active state for a short period of time. Although some instruments have been developed to study spatial short-term memory in real environments, there are no instruments that are specifically designed to assess visuospatial short-term memory in an attractive way to children. In this paper, we present the ARSM (Augmented Reality Spatial Memory) task, the first Augmented Reality task that involves a user's movement to assess spatial short-term memory in healthy children. The experimental procedure of the ARSM task was designed to assess the children's skill to retain visuospatial information. They were individually asked to remember the real place where augmented reality objects were located. The children (N = 76) were divided into two groups: preschool (5–6 year olds) and primary school (7–8 year olds). We found a significant improvement in ARSM task performance in the older group. The correlations between scores for the ARSM task and traditional procedures were significant. These traditional procedures were the Dot Matrix subtest for the assessment of visuospatial short-term memory of the computerized AWMA-2 battery and a parent's questionnaire about a child's everyday spatial memory. Hence, we suggest that the ARSM task has high verisimilitude with spatial short-term memory skills in real life. In addition, we evaluated the ARSM task's usability and perceived satisfaction. The study revealed that the younger children were more satisfied with the ARSM task. This novel instrument could be useful in detecting visuospatial short-term difficulties that affect specific developmental navigational disorders and/or school academic achievement. PMID:25438146
Augmented reality for the assessment of children's spatial memory in real settings.
Juan, M-Carmen; Mendez-Lopez, Magdalena; Perez-Hernandez, Elena; Albiol-Perez, Sergio
2014-01-01
Short-term memory can be defined as the capacity for holding a small amount of information in mind in an active state for a short period of time. Although some instruments have been developed to study spatial short-term memory in real environments, there are no instruments that are specifically designed to assess visuospatial short-term memory in an attractive way to children. In this paper, we present the ARSM (Augmented Reality Spatial Memory) task, the first Augmented Reality task that involves a user's movement to assess spatial short-term memory in healthy children. The experimental procedure of the ARSM task was designed to assess the children's skill to retain visuospatial information. They were individually asked to remember the real place where augmented reality objects were located. The children (N = 76) were divided into two groups: preschool (5-6 year olds) and primary school (7-8 year olds). We found a significant improvement in ARSM task performance in the older group. The correlations between scores for the ARSM task and traditional procedures were significant. These traditional procedures were the Dot Matrix subtest for the assessment of visuospatial short-term memory of the computerized AWMA-2 battery and a parent's questionnaire about a child's everyday spatial memory. Hence, we suggest that the ARSM task has high verisimilitude with spatial short-term memory skills in real life. In addition, we evaluated the ARSM task's usability and perceived satisfaction. The study revealed that the younger children were more satisfied with the ARSM task. This novel instrument could be useful in detecting visuospatial short-term difficulties that affect specific developmental navigational disorders and/or school academic achievement.
Cue combination in a combined feature contrast detection and figure identification task.
Meinhardt, Günter; Persike, Malte; Mesenholl, Björn; Hagemann, Cordula
2006-11-01
Target figures defined by feature contrast in spatial frequency, orientation or both cues had to be detected in Gabor random fields and their shape had to be identified in a dual task paradigm. Performance improved with increasing feature contrast and was strongly correlated among both tasks. Subjects performed significantly better with combined cues than with single cues. The improvement due to cue summation was stronger than predicted by the assumption of independent feature specific mechanisms, and increased with the performance level achieved with single cues until it was limited by ceiling effects. Further, cue summation was also strongly correlated among tasks: when there was benefit due to the additional cue in feature contrast detection, there was also benefit in figure identification. For the same performance level achieved with single cues, cue summation was generally larger in figure identification than in feature contrast detection, indicating more benefit when processes of shape and surface formation are involved. Our results suggest that cue combination improves spatial form completion and figure-ground segregation in noisy environments, and therefore leads to more stable object vision.
Inhibitory Control and Working Memory in Post-Institutionalized Children
Merz, Emily C.; McCall, Robert B.; Wright, Amanda J.; Luna, Beatriz
2013-01-01
Inhibitory control and working memory were examined in post-institutionalized (PI) children adopted into United States families from Russian institutions. The PI sample originated from institutions that were less severely depriving than those represented in previous studies and approximated the level of psychosocial deprivation, which is characterized by adequate physical resources but a lack of consistent and responsive caregiving. PI children (N=75; 29 male) ranged in age from 8–17 years (M=12.97; SD=3.03) and were grouped according to whether they were adopted after 14 months or before 9 months. A non-adopted comparison group (N=133; 65 male) ranged in age from 8–17 years (M=12.26; SD=2.75). PI children adopted after 14 months of age displayed poorer performance on the stop-signal and spatial span tasks relative to PI children adopted before 9 months of age after controlling for age at assessment. The two PI groups did not differ in their performance on a spatial self-ordered search task. Older-adopted PI children also showed poorer spatial span task performance compared to non-adopted children, but younger-adopted PI children did not. Task performance was significantly associated with parent-rated hyperactive-impulsive behavior in everyday contexts. These findings suggest that exposure to prolonged early institutional deprivation may be linked with inhibitory control and working memory difficulties years after adoption. PMID:23519375
Bertone, Armando; Mottron, Laurent; Jelenic, Patricia; Faubert, Jocelyn
2005-10-01
Visuo-perceptual processing in autism is characterized by intact or enhanced performance on static spatial tasks and inferior performance on dynamic tasks, suggesting a deficit of dorsal visual stream processing in autism. However, previous findings by Bertone et al. indicate that neuro-integrative mechanisms used to detect complex motion, rather than motion perception per se, may be impaired in autism. We present here the first demonstration of concurrent enhanced and decreased performance in autism on the same visuo-spatial static task, wherein the only factor dichotomizing performance was the neural complexity required to discriminate grating orientation. The ability of persons with autism was found to be superior for identifying the orientation of simple, luminance-defined (or first-order) gratings but inferior for complex, texture-defined (or second-order) gratings. Using a flicker contrast sensitivity task, we demonstrated that this finding is probably not due to abnormal information processing at a sub-cortical level (magnocellular and parvocellular functioning). Together, these findings are interpreted as a clear indication of altered low-level perceptual information processing in autism, and confirm that the deficits and assets observed in autistic visual perception are contingent on the complexity of the neural network required to process a given type of visual stimulus. We suggest that atypical neural connectivity, resulting in enhanced lateral inhibition, may account for both enhanced and decreased low-level information processing in autism.
The role of potential agents in making spatial perspective taking social
Clements-Stephens, Amy M.; Vasiljevic, Katarina; Murray, Alexandra J.; Shelton, Amy L.
2013-01-01
A striking relationship between visual spatial perspective taking (VSPT) and social skills has been demonstrated for perspective-taking tasks in which the target of the imagined or inferred perspective is a potential agent, suggesting that the presence of a potential agent may create a social context for the seemingly spatial task of imagining a novel visual perspective. In a series of studies, we set out to investigate how and when a target might be viewed as sufficiently agent-like to incur a social influence on VSPT performance. By varying the perceptual and conceptual features that defined the targets as potential agents, we find that even something as simple as suggesting animacy for a simple wooden block may be sufficient. More critically, we found that experience with one potential agent influenced the performance with subsequent targets, either by inducing or eliminating the influence of social skills on VSPT performance. These carryover effects suggest that the relationship between social skills and VSPT performance is mediated by a complex relationship that includes the task, the target, and the context in which that target is perceived. These findings highlight potential problems that arise when identifying a task as belonging exclusively to a single cognitive domain and stress instead the highly interactive nature of cognitive domains and their susceptibility to cross-domain individual differences. PMID:24046735
Yanovich, Polina; Isenhower, Robert W.; Sage, Jacob; Torres, Elizabeth B.
2013-01-01
Background Often in Parkinson’s disease (PD) motor-related problems overshadow latent non-motor deficits as it is difficult to dissociate one from the other with commonly used observational inventories. Here we ask if the variability patterns of hand speed and acceleration would be revealing of deficits in spatial-orientation related decisions as patients performed a familiar reach-to-grasp task. To this end we use spatial-orientation priming which normally facilitates motor-program selection and asked whether in PD spatial-orientation priming helps or hinders performance. Methods To dissociate spatial-orientation- and motor-related deficits participants performed two versions of the task. The biomechanical version (DEFAULT) required the same postural- and hand-paths as the orientation-priming version (primed-UP). Any differences in the patients here could not be due to motor issues as the tasks were biomechanically identical. The other priming version (primed-DOWN) however required additional spatial and postural processing. We assessed in all three cases both the forward segment deliberately aimed towards the spatial-target and the retracting segment, spontaneously bringing the hand to rest without an instructed goal. Results and Conclusions We found that forward and retracting segments belonged in two different statistical classes according to the fluctuations of speed and acceleration maxima. Further inspection revealed conservation of the forward (voluntary) control of speed but in PD a discontinuity of this control emerged during the uninstructed retractions which was absent in NC. Two PD groups self-emerged: one group in which priming always affected the retractions and the other in which only the more challenging primed-DOWN condition was affected. These PD-groups self-formed according to the speed variability patterns, which systematically changed along a gradient that depended on the priming, thus dissociating motor from spatial-orientation issues. Priming did not facilitate the motor task in PD but it did reveal a breakdown in the spatial-orientation decision that was independent of the motor-postural path. PMID:23843963
Males and females differ in brain activation during cognitive tasks.
Bell, Emily C; Willson, Morgan C; Wilman, Alan H; Dave, Sanjay; Silverstone, Peter H
2006-04-01
To examine the effect of gender on regional brain activity, we utilized functional magnetic resonance imaging (fMRI) during a motor task and three cognitive tasks; a word generation task, a spatial attention task, and a working memory task in healthy male (n = 23) and female (n = 10) volunteers. Functional data were examined for group differences both in the number of pixels activated, and the blood-oxygen-level-dependent (BOLD) magnitude during each task. Males had a significantly greater mean activation than females in the working memory task with a greater number of pixels being activated in the right superior parietal gyrus and right inferior occipital gyrus, and a greater BOLD magnitude occurring in the left inferior parietal lobe. However, despite these fMRI changes, there were no significant differences between males and females on cognitive performance of the task. In contrast, in the spatial attention task, men performed better at this task than women, but there were no significant functional differences between the two groups. In the word generation task, there were no external measures of performance, but in the functional measurements, males had a significantly greater mean activation than females, where males had a significantly greater BOLD signal magnitude in the left and right dorsolateral prefrontal cortex, the right inferior parietal lobe, and the cingulate. In neither of the motor tasks (right or left hand) did males and females perform differently. Our fMRI findings during the motor tasks were a greater mean BOLD signal magnitude in males in the right hand motor task, compared to females where males had an increased BOLD signal magnitude in the right inferior parietal gyrus and in the left inferior frontal gyrus. In conclusion, these results demonstrate differential patterns of activation in males and females during a variety of cognitive tasks, even though performance in these tasks may not vary, and also that variability in performance may not be reflected in differences in brain activation. These results suggest that in functional imaging studies in clinical populations it may be sensible to examine each sex independently until this effect is more fully understood.
Out with the Old and in with the New—Is Backward Inhibition a Domain-Specific Process?
Menghini, Deny; Vicari, Stefano; Petrosini, Laura; Ferlazzo, Fabio
2015-01-01
Effective task switching is supported by the inhibition of the just executed task, so that potential interference from previously executed tasks is adaptively counteracted. This inhibitory mechanism, named Backward Inhibition (BI), has been inferred from the finding that switching back to a recently executed task (A-B-A task sequence) is harder than switching back to a less recently executed task (C-B-A task sequence). Despite the fact that BI effects do impact performance on everyday life activities, up to now it is still not clear whether the BI represents an amodal and material-independent process or whether it interacts with the task material. To address this issue, a group of individuals with Williams syndrome (WS) characterized by specific difficulties in maintaining and processing visuo-spatial, but not verbal, information, and a mental age- and gender-matched group of typically developing (TD) children were subjected to three task-switching experiments requiring verbal or visuo-spatial material to be processed. Results showed that individuals with WS exhibited a normal BI effect during verbal task-switching, but a clear deficit during visuo-spatial task-switching. Overall, our findings demonstrating that the BI is a material-specific process have important implications for theoretical models of cognitive control and its architecture. PMID:26565628
Spatial Language Facilitates Spatial Cognition: Evidence from Children Who Lack Language Input
ERIC Educational Resources Information Center
Gentner, Dedre; Ozyurek, Asli; Gurcanli, Ozge; Goldin-Meadow, Susan
2013-01-01
Does spatial language influence how people think about space? To address this question, we observed children who did not know a conventional language, and tested their performance on nonlinguistic spatial tasks. We studied deaf children living in Istanbul whose hearing losses prevented them from acquiring speech and whose hearing parents had not…
Vojtechova, Iveta; Petrasek, Tomas; Hatalova, Hana; Pistikova, Adela; Vales, Karel; Stuchlik, Ales
2016-05-15
The prevention of engram interference, pattern separation, flexibility, cognitive coordination and spatial navigation are usually studied separately at the behavioral level. Impairment in executive functions is often observed in patients suffering from schizophrenia. We have designed a protocol for assessing these functions all together as behavioral separation. This protocol is based on alternated or sequential training in two tasks testing different hippocampal functions (the Morris water maze and active place avoidance), and alternated or sequential training in two similar environments of the active place avoidance task. In Experiment 1, we tested, in adult rats, whether the performance in two different spatial tasks was affected by their order in sequential learning, or by their day-to-day alternation. In Experiment 2, rats learned to solve the active place avoidance task in two environments either alternately or sequentially. We found that rats are able to acquire both tasks and to discriminate both similar contexts without obvious problems regardless of the order or the alternation. We used two groups of rats, controls and a rat model of psychosis induced by a subchronic intraperitoneal application of 0.08mg/kg of dizocilpine (MK-801), a non-competitive antagonist of NMDA receptors. Dizocilpine had no selective effect on parallel/sequential learning of tasks/contexts. However, it caused hyperlocomotion and a significant deficit in learning in the active place avoidance task regardless of the task alternation. Cognitive coordination tested by this task is probably more sensitive to dizocilpine than spatial orientation because no hyperactivity or learning impairment was observed in the Morris water maze. Copyright © 2016 Elsevier B.V. All rights reserved.
Mochizuki, Kei
2015-01-01
While neurons in the lateral prefrontal cortex (PFC) encode spatial information during the performance of working memory tasks, they are also known to participate in subjective behavior such as spatial attention and action selection. In the present study, we analyzed the activity of primate PFC neurons during the performance of a free choice memory-guided saccade task in which the monkeys needed to choose a saccade direction by themselves. In trials when the receptive field location was subsequently chosen by the animal, PFC neurons with spatially selective visual response started to show greater activation before cue onset. This result suggests that the fluctuation of firing before cue presentation prematurely biased the representation of a certain spatial location and eventually encouraged the subsequent choice of that location. In addition, modulation of the activity by the animal's choice was observed only in neurons with high sustainability of activation and was also dependent on the spatial configuration of the visual cues. These findings were consistent with known characteristics of PFC neurons in information maintenance in spatial working memory function. These results suggest that precue fluctuation of spatial representation was shared and enhanced through the working memory network in the PFC and could finally influence the animal's free choice of saccade direction. The present study revealed that the PFC plays an important role in decision making in a free choice condition and that the dynamics of decision making are constrained by the network architecture embedded in this cortical area. PMID:26490287
Covert spatial attention is functionally intact in amblyopic human adults.
Roberts, Mariel; Cymerman, Rachel; Smith, R Theodore; Kiorpes, Lynne; Carrasco, Marisa
2016-12-01
Certain abnormalities in behavioral performance and neural signaling have been attributed to a deficit of visual attention in amblyopia, a neurodevelopmental disorder characterized by a diverse array of visual deficits following abnormal binocular childhood experience. Critically, most have inferred attention's role in their task without explicitly manipulating and measuring its effects against a baseline condition. Here, we directly investigate whether human amblyopic adults benefit from covert spatial attention-the selective processing of visual information in the absence of eye movements-to the same degree as neurotypical observers. We manipulated both involuntary (Experiment 1) and voluntary (Experiment 2) attention during an orientation discrimination task for which the effects of covert spatial attention have been well established in neurotypical and special populations. In both experiments, attention significantly improved accuracy and decreased reaction times to a similar extent (a) between the eyes of the amblyopic adults and (b) between the amblyopes and their age- and gender-matched controls. Moreover, deployment of voluntary attention away from the target location significantly impaired task performance (Experiment 2). The magnitudes of the involuntary and voluntary attention benefits did not correlate with amblyopic depth or severity. Both groups of observers showed canonical performance fields (better performance along the horizontal than vertical meridian and at the lower than upper vertical meridian) and similar effects of attention across locations. Despite their characteristic low-level vision impairments, covert spatial attention remains functionally intact in human amblyopic adults.
Huang, Yanli; Tse, Chi-Shing
2015-01-01
According to the Conceptual Metaphor Theory, people understand abstract concepts depending on the activation of more concrete concepts, but not vice versa. The present research aims to investigate the role of directionality and automaticity regarding the activation of the conceptual metaphor “good is up”. Experiment 1 tested the automaticity of the spatial-to-valence metaphoric congruency effect by having participants judge the valence of a positive or negative word that appeared either at the top or at the bottom of the screen. They performed the task concurrently with a 6-digit verbal rehearsal task in the working-memory-load (WML) blocks and without this task in the non-WML blocks. The spatial-to-valence metaphoric congruency effect occurred for the positive words in the non-WML blocks (i.e., positive words are judged more quickly when they appeared at the top than at the bottom of the screen), but not in the WML blocks, suggesting that this metaphoric association might not be activated automatically. Experiments 2-6 investigated the valence-to-spatial metaphoric association and its automaticity. Participants processed a positive or negative prime, which appeared at the center of the screen, and then identified a letter (p/q) that subsequently appeared at the top or bottom of the screen. The valence-to-spatial metaphoric congruency effect did not occur in the WML (6-digit verbal rehearsal) or non-WML blocks, whether response modality to the prime was key-press or vocal, or whether the prime was a word or a picture. The effect only unexpectedly occurred when the task was simultaneously performed with a 4-dot-position visuospatial rehearsal task. Nevertheless, the data collapsed across multiple experiments showed a null valence-to-spatial metaphoric congruency effect, suggesting the absence of the valence-to-spatial metaphoric association in general. The implications of the current findings for the Conceptual Metaphor Theory and its alternatives are discussed. PMID:25867748
Electrophysiological Evidence for Domain-General Processes in Task-Switching
Capizzi, Mariagrazia; Ambrosini, Ettore; Arbula, Sandra; Mazzonetto, Ilaria; Vallesi, Antonino
2016-01-01
The ability to flexibly switch between tasks is a hallmark of cognitive control. Despite previous studies that have investigated whether different task-switching types would be mediated by distinct or overlapping neural mechanisms, no definitive consensus has been reached on this question yet. Here, we aimed at directly addressing this issue by recording the event-related potentials (ERPs) elicited by two types of task-switching occurring in the context of spatial and verbal cognitive domains. Source analysis was also applied to the ERP data in order to track the spatial dynamics of brain activity underlying task-switching abilities. In separate blocks of trials, participants had to perform either spatial or verbal switching tasks both of which employed the same type of stimuli. The ERP analysis, which was carried out through a channel- and time-uninformed mass univariate approach, showed no significant differences between the spatial and verbal domains in the modulation of switch and repeat trials. Specifically, relative to repeat trials, switch trials in both domains were associated with a first larger positivity developing over left parieto-occipital electrodes and with a subsequent larger negativity distributed over mid-left fronto-central sites. The source analysis reconstruction for the two ERP components complemented these findings by highlighting the involvement of left-lateralized prefrontal areas in task-switching. Overall, our results join and extend recent research confirming the existence of left-lateralized domain-general task-switching processes. PMID:27047366
A Theory of the Visual System Biology Underlying Development of Spatial Frequency Lateralization
ERIC Educational Resources Information Center
Howard, Mary F.; Reggia, James A.
2007-01-01
The spatial frequency hypothesis contends that performance differences between the hemispheres on various visuospatial tasks are attributable to lateralized processing of the spatial frequency content of visual stimuli. Hellige has proposed that such lateralization could arise during infant development from the earlier maturation of the right…
Music Exposure and the Development of Spatial Intelligence in Children.
ERIC Educational Resources Information Center
Rauscher, Frances H.
1999-01-01
Presents research on the effects of music instruction on spatial-temporal reasoning in children. Summarizes past studies that tested whether music training transfers to spatial-temporal task performance. A work-in-progress focuses on whether music training can improve economically-disadvantaged preschoolers' abstract reasoning and why…
Evaluation of 2 cognitive abilities tests in a dual-task environment
NASA Technical Reports Server (NTRS)
Vidulich, M. A.; Tsang, P. S.
1986-01-01
Most real world operators are required to perform multiple tasks simultaneously. In some cases, such as flying a high performance aircraft or trouble shooting a failing nuclear power plant, the operator's ability to time share or process in parallel" can be driven to extremes. This has created interest in selection tests of cognitive abilities. Two tests that have been suggested are the Dichotic Listening Task and the Cognitive Failures Questionnaire. Correlations between these test results and time sharing performance were obtained and the validity of these tests were examined. The primary task was a tracking task with dynamically varying bandwidth. This was performed either alone or concurrently with either another tracking task or a spatial transformation task. The results were: (1) An unexpected negative correlation was detected between the two tests; (2) The lack of correlation between either test and task performance made the predictive utility of the tests scores appear questionable; (3) Pilots made more errors on the Dichotic Listening Task than college students.
ERIC Educational Resources Information Center
Vuontela, Virve; Steenari, Maija-Riikka; Aronen, Eeva T.; Korvenoja, Antti; Aronen, Hannu J.; Carlson, Synnove
2009-01-01
Using functional magnetic resonance imaging (fMRI) and n-back tasks we investigated whether, in 11-13-year-old children, spatial (location) and nonspatial (color) information is differentially processed during visual attention (0-back) and working memory (WM) (2-back) tasks and whether such cognitive task performance, compared to a resting state,…
Role of right posterior parietal cortex in maintaining attention to spatial locations over time
Coulthard, Elizabeth J.; Husain, Masud
2009-01-01
Recent models of human posterior parietal cortex (PPC) have variously emphasized its role in spatial perception, visuomotor control or directing attention. However, neuroimaging and lesion studies also suggest that the right PPC might play a special role in maintaining an alert state. Previously, assessments of right-hemisphere patients with hemispatial neglect have revealed significant overall deficits on vigilance tasks, but to date there has been no demonstration of a deterioration of performance over time—a vigilance decrement—considered by some to be a key index of a deficit in maintaining attention. Moreover, sustained attention deficits in neglect have not specifically been related to PPC lesions, and it remains unclear whether they interact with spatial impairments in this syndrome. Here we examined the ability of right-hemisphere patients with neglect to maintain attention, comparing them to stroke controls and healthy individuals. We found evidence of an overall deficit in sustaining attention associated with PPC lesions, even for a simple detection task with stimuli presented centrally. In a second experiment, we demonstrated a vigilance decrement in neglect patients specifically only when they were required to maintain attention to spatial locations, but not verbal material. Lesioned voxels in the right PPC spanning a region between the intraparietal sulcus and inferior parietal lobe were significantly associated with this deficit. Finally, we compared performance on a task that required attention to be maintained either to visual patterns or spatial locations, matched for task difficulty. Again, we found a vigilance decrement but only when attention had to be maintained on spatial information. We conclude that sustaining attention to spatial locations is a critical function of the human right PPC which needs to be incorporated into models of normal parietal function as well as those of the clinical syndrome of hemispatial neglect. PMID:19158107
Task and spatial frequency modulations of object processing: an EEG study.
Craddock, Matt; Martinovic, Jasna; Müller, Matthias M
2013-01-01
Visual object processing may follow a coarse-to-fine sequence imposed by fast processing of low spatial frequencies (LSF) and slow processing of high spatial frequencies (HSF). Objects can be categorized at varying levels of specificity: the superordinate (e.g. animal), the basic (e.g. dog), or the subordinate (e.g. Border Collie). We tested whether superordinate and more specific categorization depend on different spatial frequency ranges, and whether any such dependencies might be revealed by or influence signals recorded using EEG. We used event-related potentials (ERPs) and time-frequency (TF) analysis to examine the time course of object processing while participants performed either a grammatical gender-classification task (which generally forces basic-level categorization) or a living/non-living judgement (superordinate categorization) on everyday, real-life objects. Objects were filtered to contain only HSF or LSF. We found a greater positivity and greater negativity for HSF than for LSF pictures in the P1 and N1 respectively, but no effects of task on either component. A later, fronto-central negativity (N350) was more negative in the gender-classification task than the superordinate categorization task, which may indicate that this component relates to semantic or syntactic processing. We found no significant effects of task or spatial frequency on evoked or total gamma band responses. Our results demonstrate early differences in processing of HSF and LSF content that were not modulated by categorization task, with later responses reflecting such higher-level cognitive factors.
ERIC Educational Resources Information Center
Noordzij, Matthijs L.; Zuidhoek, Sander; Postma, Albert
2006-01-01
The purpose of the present study is twofold: the first objective is to evaluate the importance of visual experience for the ability to form a spatial representation (spatial mental model) of fairly elaborate spatial descriptions. Secondly, we examine whether blind people exhibit the same preferences (i.e. level of performance on spatial tasks) as…
Faraji, Jamshid; Lehmann, Hugo; Metz, Gerlinde A; Sutherland, Robert J
2008-05-16
Spatial tasks are widely used to determine the function of limbic system structures in rats. The present study used a new task designed to evaluate spatial behavior, the ziggurat task (ZT), to examine the performance of rats with widespread hippocampal damage induced by N-methyl-d-aspartic acid (NMDA). The task consisted of an open field containing 16 identical ziggurats (pyramid shaped towers) arranged at equal distances. One of the ziggurats was baited with a food reward. The task required rats to navigate through the open field by using a combination of distal and/or proximal cues in order to locate the food reward. The ability to acquire and recall the location of the goal (baited) ziggurat was tested in consecutive training sessions of eight trials per day for 10 days. The location of the goal ziggurat was changed every second day, requiring the rats to learn a total of five different locations. Several parameters, including latency to find the target, distance traveled, the number of visits to non-baited ziggurats (errors), and the number of returns were used as indices of learning and memory. Control rats showed a significant decrease in distance traveled and reduced latency in locating the goal ziggurat across trials and days, suggesting that they learned and remembered the location of the goal ziggurat. Interestingly, the hippocampal-damaged group moved significantly faster, and traveled longer distances compared to the control group. Significant differences were observed between these groups with respect to the number of errors and returns on test days. Day 11 served as probe day, in which no food reward was given. The controls spent more time searching for the food in the previous training quadrant compared to the hippocampal group. The findings demonstrate that the ZT is a sensitive and efficient dry task for measuring hippocampus-dependent spatial performance in rats requiring little training and not associated with some of the disadvantages of water tasks.
Herlitz, Agneta; Kabir, Zarina N
2006-12-01
We investigated the presence and magnitude of sex differences in late adulthood, assessing 426 illiterate Bangladeshis, 239 literate Bangladeshis, and 598 Swedes. The cognitive domains examined included calculation, episodic memory, spatial visualization, and global cognitive ability. In general, men performed at a higher level than women on tasks assessing calculation and spatial visualization, whereas women performed at a higher level than men on the episodic memory task. Notably, the pattern of cognitive sex differences was similar irrespective of nationality and literacy, although the magnitude of the male advantage was inversely related to level of education. Finally, the low performance of the illiterate women demonstrated the penalizing effect restrictions in public exposure might have on cognitive performance.
Spatial frequency discrimination learning in normal and developmentally impaired human vision
Astle, Andrew T.; Webb, Ben S.; McGraw, Paul V.
2010-01-01
Perceptual learning effects demonstrate that the adult visual system retains neural plasticity. If perceptual learning holds any value as a treatment tool for amblyopia, trained improvements in performance must generalise. Here we investigate whether spatial frequency discrimination learning generalises within task to other spatial frequencies, and across task to contrast sensitivity. Before and after training, we measured contrast sensitivity and spatial frequency discrimination (at a range of reference frequencies 1, 2, 4, 8, 16 c/deg). During training, normal and amblyopic observers were divided into three groups. Each group trained on a spatial frequency discrimination task at one reference frequency (2, 4, or 8 c/deg). Normal and amblyopic observers who trained at lower frequencies showed a greater rate of within task learning (at their reference frequency) compared to those trained at higher frequencies. Compared to normals, amblyopic observers showed greater within task learning, at the trained reference frequency. Normal and amblyopic observers showed asymmetrical transfer of learning from high to low spatial frequencies. Both normal and amblyopic subjects showed transfer to contrast sensitivity. The direction of transfer for contrast sensitivity measurements was from the trained spatial frequency to higher frequencies, with the bandwidth and magnitude of transfer greater in the amblyopic observers compared to normals. The findings provide further support for the therapeutic efficacy of this approach and establish general principles that may help develop more effective protocols for the treatment of developmental visual deficits. PMID:20832416
Adolescent social defeat decreases spatial working memory performance in adulthood
2013-01-01
Background Adolescent social stress is associated with increased incidence of mental illnesses in adulthood that are characterized by deficits in cognitive focus and flexibility. Such enhanced vulnerability may be due to psychosocial stress-induced disruption of the developing mesocortical dopamine system, which plays a fundamental role in facilitating complex cognitive processes such as spatial working memory. Adolescent rats exposed to repeated social defeat as a model of social stress develop dopaminergic hypofunction in the medial prefrontal cortex as adults. To evaluate a direct link between adolescent social stress and later deficits in cognitive function, the present study tested the effects of adolescent social defeat on two separate tests of spatial working memory performance. Methods Adult rats exposed to adolescent social defeat and their controls were trained on either the delayed win-shift task or the delayed alternating T-Maze task and then challenged with various delay periods. To evaluate potential differences in motivation for the food reward used in memory tasks, consumption and conditioned place preference for sweetened condensed milk were tested in a separate cohort of previously defeated rats and controls. Results Compared to controls, adult rats defeated in adolescence showed a delay-dependent deficit in spatial working memory performance, committing more errors at a 90 s and 5 min delay period on the T-maze and win-shift tasks, respectively. Observed memory deficits were likely independent of differences in reward motivation, as conditioned place preference for the palatable food used on both tasks was similar between the adolescent social defeat group and control. Conclusions The results demonstrate that severe social stressors during adolescence can produce long term deficits in aspects of cognitive function. Given the dependence of spatial working memory on prefrontal dopamine, pharmacologically reversing dopaminergic deficiencies caused by adolescent social stress has the potential to treat such cognitive deficits. PMID:24134918
Figure/ground segregation from temporal delay is best at high spatial frequencies.
Kojima, H
1998-12-01
Two experiments investigated the role of spatial frequency in performance of a figure/ground segregation task based on temporal cues. Figure orientation was much easier to judge when figure and ground portions of the target were defined exclusively by random texture composed entirely of high spatial frequencies. When target components were defined by low spatial frequencies only, the task was nearly impossible except with long temporal delay between figure and ground. These results are inconsistent with the hypothesis that M-cell activity is primarily responsible for figure/ground segregation from temporal delay. Instead, these results point to a distinction between temporal integration and temporal differentiation. Additionally, the present results can be related to recent work on the binding of spatial features over time.
Group benefits in joint perceptual tasks-a review.
Wahn, Basil; Kingstone, Alan; König, Peter
2018-05-12
In daily life, humans often perform perceptual tasks together to reach a shared goal. In these situations, individuals may collaborate (e.g., by distributing task demands) to perform the task better than when the task is performed alone (i.e., attain a group benefit). In this review, we identify the factors influencing if, and to what extent, a group benefit is attained and provide a framework of measures to assess group benefits in perceptual tasks. In particular, we integrate findings from two frequently investigated joint perceptual tasks: visuospatial tasks and decision-making tasks. For both task types, we find that an exchange of information between coactors is critical to improve joint performance. Yet, the type of exchanged information and how coactors collaborate differs between tasks. In visuospatial tasks, coactors exchange information about the performed actions to distribute task demands. In perceptual decision-making tasks, coactors exchange their confidence on their individual perceptual judgments to negotiate a joint decision. We argue that these differences can be explained by the task structure: coactors distribute task demands if a joint task allows for a spatial division and stimuli can be accurately processed by one individual. Otherwise, they perform the task individually and then integrate their individual judgments. © 2018 New York Academy of Sciences.
A test of the reward-value hypothesis.
Smith, Alexandra E; Dalecki, Stefan J; Crystal, Jonathon D
2017-03-01
Rats retain source memory (memory for the origin of information) over a retention interval of at least 1 week, whereas their spatial working memory (radial maze locations) decays within approximately 1 day. We have argued that different forgetting functions dissociate memory systems. However, the two tasks, in our previous work, used different reward values. The source memory task used multiple pellets of a preferred food flavor (chocolate), whereas the spatial working memory task provided access to a single pellet of standard chow-flavored food at each location. Thus, according to the reward-value hypothesis, enhanced performance in the source memory task stems from enhanced encoding/memory of a preferred reward. We tested the reward-value hypothesis by using a standard 8-arm radial maze task to compare spatial working memory accuracy of rats rewarded with either multiple chocolate or chow pellets at each location using a between-subjects design. The reward-value hypothesis predicts superior accuracy for high-valued rewards. We documented equivalent spatial memory accuracy for high- and low-value rewards. Importantly, a 24-h retention interval produced equivalent spatial working memory accuracy for both flavors. These data are inconsistent with the reward-value hypothesis and suggest that reward value does not explain our earlier findings that source memory survives unusually long retention intervals.
Visual selective attention in amnestic mild cognitive impairment.
McLaughlin, Paula M; Anderson, Nicole D; Rich, Jill B; Chertkow, Howard; Murtha, Susan J E
2014-11-01
Subtle deficits in visual selective attention have been found in amnestic mild cognitive impairment (aMCI). However, few studies have explored performance on visual search paradigms or the Simon task, which are known to be sensitive to disease severity in Alzheimer's patients. Furthermore, there is limited research investigating how deficiencies can be ameliorated with exogenous support (auditory cues). Sixteen individuals with aMCI and 14 control participants completed 3 experimental tasks that varied in demand and cue availability: visual search-alerting, visual search-orienting, and Simon task. Visual selective attention was influenced by aMCI, auditory cues, and task characteristics. Visual search abilities were relatively consistent across groups. The aMCI participants were impaired on the Simon task when working memory was required, but conflict resolution was similar to controls. Spatially informative orienting cues improved response times, whereas spatially neutral alerting cues did not influence performance. Finally, spatially informative auditory cues benefited the aMCI group more than controls in the visual search task, specifically at the largest array size where orienting demands were greatest. These findings suggest that individuals with aMCI have working memory deficits and subtle deficiencies in orienting attention and rely on exogenous information to guide attention. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Preliminary assessment of cognitive impairments in canine idiopathic epilepsy.
Winter, Joshua; Packer, Rowena Mary Anne; Volk, Holger Andreas
2018-06-02
In humans, epilepsy can induce or accelerate cognitive impairment (CI). There is emerging evidence of CI in dogs with idiopathic epilepsy (IE) from recent epidemiological studies. The aim of our study was to assess CI in dogs with IE using two tests of cognitive dysfunction designed for use in a clinical setting. Dogs with IE (n=17) were compared against controls (n=18) in their performance in two tasks; a spatial working memory task and a problem-solving task. In addition, owners completed the Canine Cognitive Dysfunction Rating (CCDR) scale for their dog. The groups did not differ statistically with respect to age and breed. Dogs with IE performed significantly worse than controls on the spatial working memory task (P = 0.016), but not on the problem solving task (P=0.683). CCDR scores were significantly higher in the IE group (P=0.016); however, no dogs reach the recommended threshold score for CCD diagnosis. Our preliminary data suggest that dogs with IE exhibit impairments in a spatial working memory task. Further research is required to explore the effect of IE on other cognitive abilities in dogs with a larger sample, characterising the age of onset, nature and progression of any impairments and the impact of anti-epileptic drugs. © British Veterinary Association (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Kolata, Stefan; Light, Kenneth; Matzel, Louis D.
2008-01-01
It has been established that both domain-specific (e.g. spatial) as well as domain-general (general intelligence) factors influence human cognition. However, the separation of these processes has rarely been attempted in studies using laboratory animals. Previously, we have found that the performances of outbred mice across a wide range of learning tasks correlate in such a way that a single factor can explain 30– 44% of the variance between animals. This general learning factor is in some ways qualitatively and quantitatively analogous to general intelligence in humans. The complete structure of cognition in mice, however, has not been explored due to the limited sample sizes of our previous analyses. Here we report a combined analysis from 241 CD-1 mice tested in five primary learning tasks, and a subset of mice tested in two additional learning tasks. At least two (possibly three) of the seven learning tasks placed explicit demands on spatial and/or hippocampus-dependent processing abilities. Consistent with previous findings, we report a robust general factor influencing learning in mice that accounted for 38% of the variance across tasks. In addition, a domain-specific factor was found to account for performance on that subset of tasks that shared a dependence on hippocampal and/or spatial processing. These results provide further evidence for a general learning/cognitive factor in genetically heterogeneous mice. Furthermore (and similar to human cognitive performance), these results suggest a hierarchical structure to cognitive processes in this genetically heterogeneous species. PMID:19129932
Task-induced frequency modulation features for brain-computer interfacing.
Jayaram, Vinay; Hohmann, Matthias; Just, Jennifer; Schölkopf, Bernhard; Grosse-Wentrup, Moritz
2017-10-01
Task-induced amplitude modulation of neural oscillations is routinely used in brain-computer interfaces (BCIs) for decoding subjects' intents, and underlies some of the most robust and common methods in the field, such as common spatial patterns and Riemannian geometry. While there has been some interest in phase-related features for classification, both techniques usually presuppose that the frequencies of neural oscillations remain stable across various tasks. We investigate here whether features based on task-induced modulation of the frequency of neural oscillations enable decoding of subjects' intents with an accuracy comparable to task-induced amplitude modulation. We compare cross-validated classification accuracies using the amplitude and frequency modulated features, as well as a joint feature space, across subjects in various paradigms and pre-processing conditions. We show results with a motor imagery task, a cognitive task, and also preliminary results in patients with amyotrophic lateral sclerosis (ALS), as well as using common spatial patterns and Laplacian filtering. The frequency features alone do not significantly out-perform traditional amplitude modulation features, and in some cases perform significantly worse. However, across both tasks and pre-processing in healthy subjects the joint space significantly out-performs either the frequency or amplitude features alone. This result only does not hold for ALS patients, for whom the dataset is of insufficient size to draw any statistically significant conclusions. Task-induced frequency modulation is robust and straight forward to compute, and increases performance when added to standard amplitude modulation features across paradigms. This allows more information to be extracted from the EEG signal cheaply and can be used throughout the field of BCIs.
Brisson, Benoit; Leblanc, Emilie; Jolicoeur, Pierre
2009-02-01
It has recently been demonstrated that a lateralized distractor that matches the individual's top-down control settings elicits an N2pc wave, an electrophysiological index of the focus of visual-spatial attention, indicating that contingent capture has a visual-spatial locus. Here, we investigated whether contingent capture required capacity-limited central resources by incorporating a contingent capture task as the second task of a psychological refractory period (PRP) dual-task paradigm. The N2pc was used to monitor where observers were attending while they performed concurrent central processing known to cause the PRP effect. The N2pc elicited by the lateralized distractor that matched the top-down control settings was attenuated in high concurrent central load conditions, indicating that although involuntary, the deployment of visual-spatial attention occurring during contingent capture depends on capacity-limited central resources.
Interaction Between Spatial and Feature Attention in Posterior Parietal Cortex
Ibos, Guilhem; Freedman, David J.
2016-01-01
Summary Lateral intraparietal (LIP) neurons encode a vast array of sensory and cognitive variables. Recently, we proposed that the flexibility of feature representations in LIP reflect the bottom-up integration of sensory signals, modulated by feature-based attention (FBA), from upstream feature-selective cortical neurons. Moreover, LIP activity is also strongly modulated by the position of space-based attention (SBA). However, the mechanisms by which SBA and FBA interact to facilitate the representation of task-relevant spatial and non-spatial features in LIP remain unclear. We recorded from LIP neurons during performance of a task which required monkeys to detect specific conjunctions of color, motion-direction, and stimulus position. Here we show that FBA and SBA potentiate each other’s effect in a manner consistent with attention gating the flow of visual information along the cortical visual pathway. Our results suggest that linear bottom-up integrative mechanisms allow LIP neurons to emphasize task-relevant spatial and non-spatial features. PMID:27499082
Asymmetric Spatial Processing Under Cognitive Load
Naert, Lien; Bonato, Mario; Fias, Wim
2018-01-01
Spatial attention allows us to selectively process information within a certain location in space. Despite the vast literature on spatial attention, the effect of cognitive load on spatial processing is still not fully understood. In this study we added cognitive load to a spatial processing task, so as to see whether it would differentially impact upon the processing of visual information in the left versus the right hemispace. The main paradigm consisted of a detection task that was performed during the maintenance interval of a verbal working memory task. We found that increasing cognitive working memory load had a more negative impact on detecting targets presented on the left side compared to those on the right side. The strength of the load effect correlated with the strength of the interaction on an individual level. The implications of an asymmetric attentional bias with a relative disadvantage for the left (vs the right) hemispace under high verbal working memory (WM) load are discussed. PMID:29740371
Interaction between Spatial and Feature Attention in Posterior Parietal Cortex.
Ibos, Guilhem; Freedman, David J
2016-08-17
Lateral intraparietal (LIP) neurons encode a vast array of sensory and cognitive variables. Recently, we proposed that the flexibility of feature representations in LIP reflect the bottom-up integration of sensory signals, modulated by feature-based attention (FBA), from upstream feature-selective cortical neurons. Moreover, LIP activity is also strongly modulated by the position of space-based attention (SBA). However, the mechanisms by which SBA and FBA interact to facilitate the representation of task-relevant spatial and non-spatial features in LIP remain unclear. We recorded from LIP neurons during performance of a task that required monkeys to detect specific conjunctions of color, motion direction, and stimulus position. Here we show that FBA and SBA potentiate each other's effect in a manner consistent with attention gating the flow of visual information along the cortical visual pathway. Our results suggest that linear bottom-up integrative mechanisms allow LIP neurons to emphasize task-relevant spatial and non-spatial features. Copyright © 2016 Elsevier Inc. All rights reserved.
Spatial memory tasks in rodents: what do they model?
Morellini, Fabio
2013-10-01
The analysis of spatial learning and memory in rodents is commonly used to investigate the mechanisms underlying certain forms of human cognition and to model their dysfunction in neuropsychiatric and neurodegenerative diseases. Proper interpretation of rodent behavior in terms of spatial memory and as a model of human cognitive functions is only possible if various navigation strategies and factors controlling the performance of the animal in a spatial task are taken into consideration. The aim of this review is to describe the experimental approaches that are being used for the study of spatial memory in rats and mice and the way that they can be interpreted in terms of general memory functions. After an introduction to the classification of memory into various categories and respective underlying neuroanatomical substrates, I explain the concept of spatial memory and its measurement in rats and mice by analysis of their navigation strategies. Subsequently, I describe the most common paradigms for spatial memory assessment with specific focus on methodological issues relevant for the correct interpretation of the results in terms of cognitive function. Finally, I present recent advances in the use of spatial memory tasks to investigate episodic-like memory in mice.
Thomassin, Noémylle; Gonthier, Corentin; Guerraz, Michel; Roulin, Jean-Luc
2015-01-01
Participants with a high working memory span tend to perform better than low spans in a variety of tasks. However, their performance is paradoxically more impaired when they have to perform two tasks at once, a phenomenon that could be labeled the "hard fall effect." The present study tested whether this effect exists in a short-term memory task, and investigated the proposal that the effect is due to high spans using efficient facilitative strategies under simple task conditions. Ninety-eight participants performed a spatial short-term memory task under simple and dual task conditions; stimuli presentation times either allowed for the use of complex facilitative strategies or not. High spans outperformed low spans only under simple task conditions when presentation times allowed for the use of facilitative strategies. These results indicate that the hard fall effect exists on a short-term memory task and may be caused by individual differences in strategy use.
Simone, Ashley N; Bédard, Anne-Claude V; Marks, David J; Halperin, Jeffrey M
2016-01-01
The aim of this study was to examine working memory (WM) modalities (visual-spatial and auditory-verbal) and processes (maintenance and manipulation) in children with and without attention-deficit/hyperactivity disorder (ADHD). The sample consisted of 63 8-year-old children with ADHD and an age- and sex-matched non-ADHD comparison group (N=51). Auditory-verbal and visual-spatial WM were assessed using the Digit Span and Spatial Span subtests from the Wechsler Intelligence Scale for Children Integrated - Fourth Edition. WM maintenance and manipulation were assessed via forward and backward span indices, respectively. Data were analyzed using a 3-way Group (ADHD vs. non-ADHD)×Modality (Auditory-Verbal vs. Visual-Spatial)×Condition (Forward vs. Backward) Analysis of Variance (ANOVA). Secondary analyses examined differences between Combined and Predominantly Inattentive ADHD presentations. Significant Group×Condition (p=.02) and Group×Modality (p=.03) interactions indicated differentially poorer performance by those with ADHD on backward relative to forward and visual-spatial relative to auditory-verbal tasks, respectively. The 3-way interaction was not significant. Analyses targeting ADHD presentations yielded a significant Group×Condition interaction (p=.009) such that children with ADHD-Predominantly Inattentive Presentation performed differentially poorer on backward relative to forward tasks compared to the children with ADHD-Combined Presentation. Findings indicate a specific pattern of WM weaknesses (i.e., WM manipulation and visual-spatial tasks) for children with ADHD. Furthermore, differential patterns of WM performance were found for children with ADHD-Predominantly Inattentive versus Combined Presentations. (JINS, 2016, 22, 1-11).
Spatial attention does improve temporal discrimination.
Chica, Ana B; Christie, John
2009-02-01
It has recently been stated that exogenous attention impairs temporal-resolution tasks (Hein, Rolke, & Ulrich, 2006; Rolke, Dinkelbach, Hein, & Ulrich, 2008; Yeshurun, 2004; Yeshurun & Levy, 2003). In comparisons of performance on spatially cued trials versus neutral cued trials, the results have suggested that spatial attention decreases temporal resolution. However, when performance on cued and uncued trials has been compared in order to equate for cue salience, typically speed-accuracy trade-offs (SATs) have been observed, making the interpretation of the results difficult. In the present experiments, we aimed at studying the effect of spatial attention in temporal resolution while using a procedure to control for SATs. We controlled reaction times (RTs) by constraining the time to respond, so that response decisions would be made within comparable time windows. The results revealed that when RT was controlled, performance was impaired for cued trials as compared with neutral trials, replicating previous findings. However, when cued and uncued trials were compared, performance was actually improved for cued trials as compared with uncued trials. These results suggest that SAT effects may have played an important role in the previous studies, because when they were controlled and measured, the results reversed, revealing that exogenous attention does improve performance on temporal-resolution tasks.
Is Attentional Resource Allocation Across Sensory Modalities Task-Dependent?
Wahn, Basil; König, Peter
2017-01-01
Human information processing is limited by attentional resources. That is, via attentional mechanisms, humans select a limited amount of sensory input to process while other sensory input is neglected. In multisensory research, a matter of ongoing debate is whether there are distinct pools of attentional resources for each sensory modality or whether attentional resources are shared across sensory modalities. Recent studies have suggested that attentional resource allocation across sensory modalities is in part task-dependent. That is, the recruitment of attentional resources across the sensory modalities depends on whether processing involves object-based attention (e.g., the discrimination of stimulus attributes) or spatial attention (e.g., the localization of stimuli). In the present paper, we review findings in multisensory research related to this view. For the visual and auditory sensory modalities, findings suggest that distinct resources are recruited when humans perform object-based attention tasks, whereas for the visual and tactile sensory modalities, partially shared resources are recruited. If object-based attention tasks are time-critical, shared resources are recruited across the sensory modalities. When humans perform an object-based attention task in combination with a spatial attention task, partly shared resources are recruited across the sensory modalities as well. Conversely, for spatial attention tasks, attentional processing does consistently involve shared attentional resources for the sensory modalities. Generally, findings suggest that the attentional system flexibly allocates attentional resources depending on task demands. We propose that such flexibility reflects a large-scale optimization strategy that minimizes the brain's costly resource expenditures and simultaneously maximizes capability to process currently relevant information.
2013-01-01
Background The pig is emerging as a model species that bridges the gap between rodents and humans in research. In particular, the miniature pig (referred to hereafter as the minipig) is increasingly being used as non-rodent species in pharmacological and toxicological studies. However, there is as yet a lack of validated behavioral tests for pigs, although there is evidence that the spatial holeboard task can be used to assess the working and reference memory of pigs. In the present study, we compared the learning performance of commercial pigs and Göttingen minipigs in a holeboard task. Methods Biperiden, a muscarinic M1 receptor blocker, is used to induce impairments in cognitive function in animal research. The two groups of pigs were treated orally with increasing doses of biperiden (0.05 – 20 mg.kg-1) after they had reached asymptotic performance in the holeboard task. Results Both the conventional pigs and the Göttingen minipigs learned the holeboard task, reaching nearly errorless asymptotic working and reference memory performance within approximately 100 acquisition trials. Biperiden treatment affected reference, but not working, memory, increasing trial duration and the latency to first hole visit at doses ≥ 5 mg.kg-1. Conclusion Both pig breeds learned the holeboard task and had a comparable performance. Biperiden had only a minor effect on holeboard performance overall, and mainly on reference memory performance. The effectiveness needs to be evaluated further before definitive conclusions can be drawn about the ability of this potential cognition impairer in pigs. PMID:23305134
Cognitive effects of methylphenidate and levodopa in healthy volunteers.
Linssen, A M W; Sambeth, A; Vuurman, E F P M; Riedel, W J
2014-02-01
Our previous study showed enhanced declarative memory consolidation after acute methylphenidate (MPH) administration. The primary aim of the current study was to investigate the duration of this effect. Secondary, the dopaminergic contribution of MPH effects, the electrophysiological correlates of declarative memory, and the specificity of memory enhancing effects of MPH to declarative memory were assessed. Effects of 40 mg of MPH on memory performance were compared to 100mg of levodopa (LEV) in a placebo-controlled crossover study with 30 healthy volunteers. Memory performance testing included a word learning test, the Sternberg memory scanning task, a paired associates learning task, and a spatial working memory task. During the word learning test, event-related brain potentials (ERPs) were measured. MPH failed to enhance retention of words at a 30 min delay, but it improved 24 h delayed memory recall relative to PLA and LEV. Furthermore, during encoding, the P3b and P600 ERP latencies were prolonged and the P600 amplitude was larger after LEV compared to PLA and MPH. MPH speeded response times on the Sternberg Memory Scanning task and improved performance on the Paired Associates Learning task, relative to LEV, but not PLA. Performance on the Spatial working memory task was not affected by the treatments. These findings suggest that MPH and LEV might have opposite effects on memory. © 2013 Published by Elsevier B.V. and ECNP.
Cho, Woo-Hyun; Park, Jung-Cheol; Chung, ChiHye; Jeon, Won Kyung; Han, Jung-Soo
2014-10-15
Learning strategy preference was assessed in 5XFAD mice, which carry 5 familial Alzheimer's disease (AD) mutations. Mice were sequentially trained in cued and place/spatial versions of the water maze task. After training, a strategy preference test was conducted in which mice were required to choose between the spatial location where the platform had previously been during the place/spatial training, and a visible platform in a new location. 5XFAD and non-transgenic control mice showed equivalent escape performance in both training tasks. However, in the strategy preference test, 5XFAD mice preferred a cued strategy relative to control mice. When the training sequence was presented in the reverse order (i.e., place/spatial training before cued training), 5XFAD mice showed impairments in place/spatial training, but no differences in cued training or in the strategy preference test comparing to control. Analysis of regional Aβ42 deposition in brains of 5XFAD mice showed that the hippocampus, which is involved in the place/spatial learning strategy, had the highest levels of Aβ42 and the dorsal striatum, which is involved in cued learning strategy, showed a small increase in Aβ42 levels. The effect of training protocol order on performance, and regional differences in Aβ42 deposition observed in 5XFAD mice, suggest differential functional recruitment of brain structures related to learning in healthy and AD individuals. Copyright © 2014 Elsevier B.V. All rights reserved.
Sex differences in spatial memory using serial and search tasks.
Shah, Darshna S; Prados, Jose; Gamble, Jasmin; De Lillo, Carlo; Gibson, Claire L
2013-11-15
The present study assessed the spatial abilities of male and female human participants using different versions of the non-navigational Corsi block-tapping test (CBT) and a search task. Males performed significantly better than females on the standard manual version of the CBT; however, the standard CBT does not allow discrimination between spatial memory span and the role of spatial organisational factors (structure, path length and presence of crossings) in the sequences to recall. These organisational factors were assessed, therefore, in an experiment in which 7-block-sequences had to be recalled in a computerised version of the CBT. No sex differences in performance were observed on the computerised CBT, indicating that males do not make better use of spatial organisational principles. Accordingly, sex differences observed in the manual CBT are likely to rely upon differences in memory span between males and females. In the search task, participants could locate a goal by reference to a Euclidian space (the geometry of a virtual enclose) or to proximal non-geometric cues. Both male and female participants showed a preference for the non-geometric cues, which overshadowed learning about the geometric cues when the two sets were available simultaneously during the training stage. These results indicate that sex differences do exist in those tests which are dependent on memory span. Sex differences were absent, however, in spatial organisational skills or in the usage of Euclidian and egocentric strategies to solve problems relying on spatial ability. Copyright © 2013 Elsevier B.V. All rights reserved.
No Sex Differences in Spatial Location Memory for Abstract Designs
ERIC Educational Resources Information Center
Rahman, Qazi; Bakare, Monsurat; Serinsu, Ceydan
2011-01-01
Previous research has demonstrated a female advantage, albeit imperfectly, on tests of object location memory where object identity information is readily available. However, spatial and visual elements are often confounded in the experimental tasks used. Here spatial and visual memory performance was compared in 30 men and 30 women by presenting…
A Cognitive Component Analysis Approach for Developing Game-Based Spatial Learning Tools
ERIC Educational Resources Information Center
Hung, Pi-Hsia; Hwang, Gwo-Jen; Lee, Yueh-Hsun; Su, I-Hsiang
2012-01-01
Spatial ability has been recognized as one of the most important factors affecting the mathematical performance of students. Previous studies on spatial learning have mainly focused on developing strategies to shorten the problem-solving time of learners for very specific learning tasks. Such an approach usually has limited effects on improving…
van Steenburgh, J Jason; Varvaris, Mark; Schretlen, David J; Vannorsdall, Tracy D; Gordon, Barry
2017-01-01
Working memory (WM) often is impaired in autism spectrum disorder (ASD). Such impairment may underlie core deficits in cognition and social functioning. Transcranial direct current stimulation (tDCS) has been shown to enhance WM in both healthy adults and clinical populations, but its efficacy in ASD is unknown. We predicted that bifrontal tDCS would improve WM performances of adults with high-functioning autism during active stimulation compared to sham stimulation and that such enhancement would generalize to an untrained task. Twelve adults with high-functioning ASD engaged in a battery of WM tasks that included backward spatial span, backward digit span, spatial n -back and letter n -back. While engaged, 40 min of 1.5 mA bifrontal stimulation was applied over the left and the right dorsolateral prefrontal cortices (DLPFC). Using a single-blind crossover design, each participant received left anodal/right cathodal stimulation, right anodal/left cathodal stimulation, or sham stimulation, in randomized counterbalanced order on three separate days. Following tDCS, participants again engaged in letter and spatial n -back tasks before taking the Brief Test of Attention (BTA). We used repeated-measures ANOVA to compare overall performance on the WM battery as measured by a composite of z -scores for all five measures. Post hoc ANOVAs, t tests, Friedman's tests, and Wilcoxon signed-rank tests were used to measure the online and offline effects of tDCS and to assess performances on individual measures. Compared to sham stimulation, both left DLPFC anodal stimulation ( t 11 = 5.4, p = 0.0002) and right DLPFC anodal stimulation ( t 11 = 3.57, p = 0.004) improved overall WM performance. Left anodal stimulation ( t 11 = 3.9, p = 0.003) and right anodal stimulation ( t 11 = 2.7, p = 0.019) enhanced performances during stimulation. Enhancement transferred to an untrained task 50 min after right anodal stimulation (z 11 = 2.263, p = 0.024). The tasks that showed the largest effects of active stimulation were spatial span backward ( z 11 = 2.39, p = 0.017) and BTA ( z 11 = 2.263, p = 0.024). In adults with high-functioning ASD, active bifrontal tDCS given during WM tasks appears to improve performance. TDCS benefits also transferred to an untrained task completed shortly after stimulation. These results suggest that tDCS can improve WM task performance and could reduce some core deficits of autism. NCT01602263.
Mandolesi, L; Leggio, M G; Graziano, A; Neri, P; Petrosini, L
2001-12-01
Spatial function is one of the cognitive functions altered in the presence of cerebellar lesions. We investigated the cerebellar contribution to the acquisition of spatial procedural and working memory components by means of a radial maze. To establish whether a cerebellar lesion would cause a deficit in solving the radial maze, a first experiment was carried out by using a full-baited maze procedure in different experimental groups, with or without cerebellar lesion and with or without pretraining. Non-pretrained hemicerebellectomized (HCbed) animals exhibited impaired performances in all (motor, spatial and procedural) task aspects. Pre-trained HCbed animals performed similarly to control animals in the task aspects linked to the processing of spatial and procedural factors. To distinguish procedural from working memory components, a forced-choice paradigm of the radial maze was used in the second experiment. Non-pretrained HCbed rats continued to make a lot of errors and show severe perseverative tendencies, already observed in the first experiment, supporting a specific cerebellar role in acquiring new behaviours and in modifying them in relation to the context. Interestingly, hindered from putting the acquired explorative patterns into action and compelled to use only working memory abilities, the pretrained HCbed group exhibited a dramatic worsening of performance. In conclusion, the present findings demonstrate that cerebellar damage induces a specific behaviour in radial maze tasks, characterized by an inflexible use of the procedures (if indeed any procedure was acquired before the lesion) and by a severe impairment in working memory processes.
Visuo-Spatial Performance in Autism: A Meta-Analysis
ERIC Educational Resources Information Center
Muth, Anne; Hönekopp, Johannes; Falter, Christine M.
2014-01-01
Visuo-spatial skills are believed to be enhanced in autism spectrum disorders (ASDs). This meta-analysis tests the current state of evidence for Figure Disembedding, Block Design, Mental Rotation and Navon tasks in ASD and neurotypicals. Block Design (d = 0.32) and Figure Disembedding (d = 0.26) showed superior performance for ASD with large…
Storbeck, Justin; Maswood, Raeya
2016-08-01
The effects of emotion on working memory and executive control are often studied in isolation. Positive mood enhances verbal and impairs spatial working memory, whereas negative mood enhances spatial and impairs verbal working memory. Moreover, positive mood enhances executive control, whereas negative mood has little influence. We examined how emotion influences verbal and spatial working memory capacity, which requires executive control to coordinate between holding information in working memory and completing a secondary task. We predicted that positive mood would improve both verbal and spatial working memory capacity because of its influence on executive control. Positive, negative and neutral moods were induced followed by completing a verbal (Experiment 1) or spatial (Experiment 2) working memory operation span task to assess working memory capacity. Positive mood enhanced working memory capacity irrespective of the working memory domain, whereas negative mood had no influence on performance. Thus, positive mood was more successful holding information in working memory while processing task-irrelevant information, suggesting that the influence mood has on executive control supersedes the independent effects mood has on domain-specific working memory.
Carlson, Abby G; Rowe, Ellen; Curby, Timothy W
2013-01-01
Recent research has established a connection between children's fine motor skills and their academic performance. Previous research has focused on fine motor skills measured prior to elementary school, while the present sample included children ages 5-18 years old, making it possible to examine whether this link remains relevant throughout childhood and adolescence. Furthermore, the majority of research linking fine motor skills and academic achievement has not determined which specific components of fine motor skill are driving this relation. The few studies that have looked at associations of separate fine motor tasks with achievement suggest that copying tasks that tap visual-spatial integration skills are most closely related to achievement. The present study examined two separate elements of fine motor skills--visual-motor coordination and visual-spatial integration--and their associations with various measures of academic achievement. Visual-motor coordination was measured using tracing tasks, while visual-spatial integration was measured using copy-a-figure tasks. After controlling for gender, socioeconomic status, IQ, and visual-motor coordination, and visual-spatial integration explained significant variance in children's math and written expression achievement. Knowing that visual-spatial integration skills are associated with these two achievement domains suggests potential avenues for targeted math and writing interventions for children of all ages.
Working memory plasticity in old age: practice gain, transfer, and maintenance.
Li, Shu-Chen; Schmiedek, Florian; Huxhold, Oliver; Röcke, Christina; Smith, Jacqui; Lindenberger, Ulman
2008-12-01
Adult age differences in cognitive plasticity have been studied less often in working memory than in episodic memory. The authors investigated the effects of extensive working memory practice on performance improvement, transfer, and short-term maintenance of practice gains and transfer effects. Adults age 20-30 years and 70-80 years practiced a spatial working memory task with 2 levels of processing demands across 45 days for about 15 min per day. In both age groups and relative to age-matched, no-contact control groups, we found (a) substantial performance gains on the practiced task, (b) near transfer to a more demanding spatial n-back task and to numerical n-back tasks, and (c) 3-month maintenance of practice gains and near transfer effects, with decrements relative to postpractice performance among older but not younger adults. No evidence was found for far transfer to complex span tasks. The authors discuss neuronal mechanisms underlying adult age differences and similarities in patterns of plasticity and conclude that the potential of deliberate working memory practice as a tool for improving cognition in old age merits further exploration. Copyright (c) 2009 APA, all rights reserved.
Sex differences in neural efficiency: Are they due to the stereotype threat effect?☆
Dunst, Beate; Benedek, Mathias; Bergner, Sabine; Athenstaedt, Ursula; Neubauer, Aljoscha C.
2013-01-01
The neural efficiency hypothesis postulates a more efficient use of brain resources in more intelligent people as compared to less intelligent ones. However, this relationship was found to be moderated by sex and task content. While the phenomenon of neural efficiency was previously supported for men when performing visuo-spatial tasks it occurred for women only when performing verbal tasks. One possible explanation for this finding could be provided by the well-studied phenomenon called stereotype threat. Stereotype threat arises when a negative stereotype of one’s own group is made salient and can result in behavior that confirms the stereotype. Overall, 32 boys and 31 girls of varying intellectual ability were tested with a mental rotation task, either under a stereotype exposure or a no-stereotype exposure condition while measuring their EEG. The behavioral results show that an activated negative stereotype not necessarily hampers the performance of girls. Physiologically, a confirmation of the neural efficiency phenomenon was only obtained for boys working under a no-stereotype exposure condition. This result pattern replicates previous findings without threat and thus suggests that sex differences in neural efficiency during visuo-spatial tasks may not be due to the stereotype threat effect. PMID:24092950
Cognitive and motor aging in female chimpanzees.
Lacreuse, Agnès; Russell, Jamie L; Hopkins, William D; Herndon, James G
2014-03-01
We present the first longitudinal data on cognitive and motor aging in the chimpanzee (Pan troglodytes). Thirty-eight adult female chimpanzees (10-54 years old) were studied. The apes were tested longitudinally for 3 years in a modified Primate Cognition Test Battery, which comprised 12 tests of physical and social cognition. The chimpanzees were also administered a fine motor task requiring them to remove a steel nut from rods of various complexity. There was little evidence for an age-related decline in tasks of Physical Cognition: for most tasks, performance was either stable or improved with repeated testing across age groups. An exception was Spatial Memory, for which 4 individuals more than 50 years old experienced a significant performance decline across the 3 years of testing. Poorer performance with age was found in 2 tasks of Social Cognition, an attention-getting task and a gaze-following task. A slight motor impairment was also observed, with old chimpanzees improving less than younger animals with repeated testing on the simplest rod. Hormonal status effects were restricted to spatial memory, with non-cycling females outperforming cycling females independently of age. Unexpectedly, older chimpanzees were better than younger individuals in understanding causality relationships based on sound. Copyright © 2014 Elsevier Inc. All rights reserved.
Single-trial effective brain connectivity patterns enhance discriminability of mental imagery tasks
NASA Astrophysics Data System (ADS)
Rathee, Dheeraj; Cecotti, Hubert; Prasad, Girijesh
2017-10-01
Objective. The majority of the current approaches of connectivity based brain-computer interface (BCI) systems focus on distinguishing between different motor imagery (MI) tasks. Brain regions associated with MI are anatomically close to each other, hence these BCI systems suffer from low performances. Our objective is to introduce single-trial connectivity feature based BCI system for cognition imagery (CI) based tasks wherein the associated brain regions are located relatively far away as compared to those for MI. Approach. We implemented time-domain partial Granger causality (PGC) for the estimation of the connectivity features in a BCI setting. The proposed hypothesis has been verified with two publically available datasets involving MI and CI tasks. Main results. The results support the conclusion that connectivity based features can provide a better performance than a classical signal processing framework based on bandpass features coupled with spatial filtering for CI tasks, including word generation, subtraction, and spatial navigation. These results show for the first time that connectivity features can provide a reliable performance for imagery-based BCI system. Significance. We show that single-trial connectivity features for mixed imagery tasks (i.e. combination of CI and MI) can outperform the features obtained by current state-of-the-art method and hence can be successfully applied for BCI applications.
Sutton, Jennifer E; Buset, Melanie; Keller, Mikayla
2014-01-01
A number of careers involve tasks that place demands on spatial cognition, but it is still unclear how and whether skills acquired in such applied experiences transfer to other spatial tasks. The current study investigated the association between pilot training and the ability to form a mental survey representation, or cognitive map, of a novel, ground-based, virtual environment. Undergraduate students who were engaged in general aviation pilot training and controls matched to the pilots on gender and video game usage freely explored a virtual town. Subsequently, participants performed a direction estimation task that tested the accuracy of their cognitive map representation of the town. In addition, participants completed the Object Perspective Test and rated their spatial abilities. Pilots were significantly more accurate than controls at estimating directions but did not differ from controls on the Object Perspective Test. Locations in the town were visited at a similar rate by the two groups, indicating that controls' relatively lower accuracy was not due to failure to fully explore the town. Pilots' superior performance is likely due to better online cognitive processing during exploration, suggesting the spatial updating they engage in during flight transfers to a non-aviation context.
Sutton, Jennifer E.; Buset, Melanie; Keller, Mikayla
2014-01-01
A number of careers involve tasks that place demands on spatial cognition, but it is still unclear how and whether skills acquired in such applied experiences transfer to other spatial tasks. The current study investigated the association between pilot training and the ability to form a mental survey representation, or cognitive map, of a novel, ground-based, virtual environment. Undergraduate students who were engaged in general aviation pilot training and controls matched to the pilots on gender and video game usage freely explored a virtual town. Subsequently, participants performed a direction estimation task that tested the accuracy of their cognitive map representation of the town. In addition, participants completed the Object Perspective Test and rated their spatial abilities. Pilots were significantly more accurate than controls at estimating directions but did not differ from controls on the Object Perspective Test. Locations in the town were visited at a similar rate by the two groups, indicating that controls' relatively lower accuracy was not due to failure to fully explore the town. Pilots' superior performance is likely due to better online cognitive processing during exploration, suggesting the spatial updating they engage in during flight transfers to a non-aviation context. PMID:24603608
Cognitive Effects of Risperidone in Children with Autism and Irritable Behavior
Aman, Michael G.; McDougle, Christopher J.; Scahill, Lawrence; Tierney, Elaine; McCracken, James T.; Arnold, L. Eugene; Vitiello, Benedetto; Ritz, Louise; Gavaletz, Allison; Cronin, Pegeen; Swiezy, Naomi; Wheeler, Courtney; Koenig, Kathleen; Ghuman, Jaswinder K.; Posey, David J.
2008-01-01
Abstract Objective The objective of this research was to explore the effects of risperidone on cognitive processes in children with autism and irritable behavior. Method Thirty-eight children, ages 5–17 years with autism and severe behavioral disturbance, were randomly assigned to risperidone (0.5 to 3.5 mg/day) or placebo for 8 weeks. This sample of 38 was a subset of 101 subjects who participated in the clinical trial; 63 were unable to perform the cognitive tasks. A double-blind placebo-controlled parallel groups design was used. Dependent measures included tests of sustained attention, verbal learning, hand-eye coordination, and spatial memory assessed before, during, and after the 8-week treatment. Changes in performance were compared by repeated measures ANOVA. Results Twenty-nine boys and 9 girls with autism and severe behavioral disturbance and a mental age ≥18 months completed the cognitive part of the study. No decline in performance occurred with risperidone. Performance on a cancellation task (number of correct detections) and a verbal learning task (word recognition) was better on risperidone than on placebo (without correction for multiplicity). Equivocal improvement also occurred on a spatial memory task. There were no significant differences between treatment conditions on the Purdue Pegboard (hand-eye coordination) task or the Analog Classroom Task (timed math test). Conclusion Risperidone given to children with autism at doses up to 3.5 mg for up to 8 weeks appears to have no detrimental effect on cognitive performance. PMID:18582177
[Learning virtual routes: what does verbal coding do in working memory?].
Gyselinck, Valérie; Grison, Élise; Gras, Doriane
2015-03-01
Two experiments were run to complete our understanding of the role of verbal and visuospatial encoding in the construction of a spatial model from visual input. In experiment 1 a dual task paradigm was applied to young adults who learned a route in a virtual environment and then performed a series of nonverbal tasks to assess spatial knowledge. Results indicated that landmark knowledge as asserted by the visual recognition of landmarks was not impaired by any of the concurrent task. Route knowledge, assessed by recognition of directions, was impaired both by a tapping task and a concurrent articulation task. Interestingly, the pattern was modulated when no landmarks were available to perform the direction task. A second experiment was designed to explore the role of verbal coding on the construction of landmark and route knowledge. A lexical-decision task was used as a verbal-semantic dual task, and a tone decision task as a nonsemantic auditory task. Results show that these new concurrent tasks impaired differently landmark knowledge and route knowledge. Results can be interpreted as showing that the coding of route knowledge could be grounded on both a coding of the sequence of events and on a semantic coding of information. These findings also point on some limits of Baddeley's working memory model. (PsycINFO Database Record (c) 2015 APA, all rights reserved).
Effects of testosterone on spatial learning and memory in adult male rats
Spritzer, Mark D.; Daviau, Emily D.; Coneeny, Meagan K.; Engelman, Shannon M.; Prince, W. Tyler; Rodriguez-Wisdom, Karlye N.
2011-01-01
A male advantage over females for spatial tasks has been well documented in both humans and rodents, but it remains unclear how the activational effects of testosterone influence spatial ability in males. In a series of experiments, we tested how injections of testosterone influenced the spatial working and reference memory of castrated male rats. In the eight-arm radial maze, testosterone injections (0.500 mg/rat) reduced the number of working memory errors during the early blocks of testing but had no effect on the number of reference memory errors relative to the castrated control group. In a reference memory version of the Morris water maze, injections of a wide range of testosterone doses (0.0625-1.000 mg/rat) reduced path lengths to the hidden platform, indicative of improved spatial learning. This improved learning was independent of testosterone dose, with all treatment groups showing better performance than the castrated control males. Furthermore, this effect was only observed when rats were given testosterone injections starting seven days prior to water maze testing and not when injections were given only on the testing days. We also observed that certain doses of testosterone (0.250 and 1.000 mg/rat) increased perseverative behavior in a reversal-learning task. Finally, testosterone did not have a clear effect on spatial working memory in the Morris water maze, although intermediate doses seemed to optimize performance. Overall, the results indicate that testosterone can have positive activational effects on spatial learning and memory, but the duration of testosterone replacement and the nature of the spatial task modify these effects. PMID:21295035
Mochizuki, Kei; Funahashi, Shintaro
2016-01-01
While neurons in the lateral prefrontal cortex (PFC) encode spatial information during the performance of working memory tasks, they are also known to participate in subjective behavior such as spatial attention and action selection. In the present study, we analyzed the activity of primate PFC neurons during the performance of a free choice memory-guided saccade task in which the monkeys needed to choose a saccade direction by themselves. In trials when the receptive field location was subsequently chosen by the animal, PFC neurons with spatially selective visual response started to show greater activation before cue onset. This result suggests that the fluctuation of firing before cue presentation prematurely biased the representation of a certain spatial location and eventually encouraged the subsequent choice of that location. In addition, modulation of the activity by the animal's choice was observed only in neurons with high sustainability of activation and was also dependent on the spatial configuration of the visual cues. These findings were consistent with known characteristics of PFC neurons in information maintenance in spatial working memory function. These results suggest that precue fluctuation of spatial representation was shared and enhanced through the working memory network in the PFC and could finally influence the animal's free choice of saccade direction. The present study revealed that the PFC plays an important role in decision making in a free choice condition and that the dynamics of decision making are constrained by the network architecture embedded in this cortical area. Copyright © 2016 the American Physiological Society.
A new semantic vigilance task: vigilance decrement, workload, and sensitivity to dual-task costs.
Epling, Samantha L; Russell, Paul N; Helton, William S
2016-01-01
Cognitive resource theory is a common explanation for both the performance decline in vigilance tasks, known as the vigilance decrement, and the limited ability to perform multiple tasks simultaneously. The limited supply of cognitive resources may be utilized faster than they are replenished resulting in a performance decrement, or may need to be allocated among multiple tasks with some performance cost. Researchers have proposed both domain-specific, for example spatial versus verbal processing resources, and domain general cognitive resources. One challenge in testing the domain specificity of cognitive resources in vigilance is the current lack of difficult semantic vigilance tasks which reliably produce a decrement. In the present research, we investigated whether the vigilance decrement was found in a new abbreviated semantic discrimination vigilance task, and whether there was a performance decrement in said vigilance task when paired with a word recall task, as opposed to performed individually. As hypothesized, a vigilance decrement in the semantic vigilance task was found in both the single-task and dual-task conditions, along with reduced vigilance performance in the dual-task condition and reduced word recall in the dual-task condition. This is consistent with cognitive resource theory. The abbreviated semantic vigilance task will be a useful tool for researchers interested in determining the specificity of cognitive resources utilized in vigilance tasks.
Confidence mediates the sex difference in mental rotation performance.
Estes, Zachary; Felker, Sydney
2012-06-01
On tasks that require the mental rotation of 3-dimensional figures, males typically exhibit higher accuracy than females. Using the most common measure of mental rotation (i.e., the Mental Rotations Test), we investigated whether individual variability in confidence mediates this sex difference in mental rotation performance. In each of four experiments, the sex difference was reliably elicited and eliminated by controlling or manipulating participants' confidence. Specifically, confidence predicted performance within and between sexes (Experiment 1), rendering confidence irrelevant to the task reliably eliminated the sex difference in performance (Experiments 2 and 3), and manipulating confidence significantly affected performance (Experiment 4). Thus, confidence mediates the sex difference in mental rotation performance and hence the sex difference appears to be a difference of performance rather than ability. Results are discussed in relation to other potential mediators and mechanisms, such as gender roles, sex stereotypes, spatial experience, rotation strategies, working memory, and spatial attention.
Moehler, Tobias; Fiehler, Katja
2015-11-01
Saccade curvature represents a sensitive measure of oculomotor inhibition with saccades curving away from covertly attended locations. Here we investigated whether and how saccade curvature depends on movement preparation time when a perceptual task is performed during or before saccade preparation. Participants performed a dual-task including a visual discrimination task at a cued location and a saccade task to the same location (congruent) or to a different location (incongruent). Additionally, we varied saccade preparation time (time between saccade cue and Go-signal) and the occurrence of the discrimination task (during saccade preparation=simultaneous vs. before saccade preparation=sequential). We found deteriorated perceptual performance in incongruent trials during simultaneous task performance while perceptual performance was unaffected during sequential task performance. Saccade accuracy and precision were deteriorated in incongruent trials during simultaneous and, to a lesser extent, also during sequential task performance. Saccades consistently curved away from covertly attended non-saccade locations. Saccade curvature was unaffected by movement preparation time during simultaneous task performance but decreased and finally vanished with increasing movement preparation time during sequential task performance. Our results indicate that the competing saccade plan to the covertly attended non-saccade location is maintained during simultaneous task performance until the perceptual task is solved while in the sequential condition, in which the discrimination task is solved prior to the saccade task, oculomotor inhibition decays gradually with movement preparation time. Copyright © 2015 Elsevier Ltd. All rights reserved.
Right-hemispheric dominance of spatial memory in split-brain mice.
Shinohara, Yoshiaki; Hosoya, Aki; Yamasaki, Nobuyuki; Ahmed, Hassan; Hattori, Satoko; Eguchi, Megumi; Yamaguchi, Shun; Miyakawa, Tsuyoshi; Hirase, Hajime; Shigemoto, Ryuichi
2012-02-01
Left-right asymmetry of human brain function has been known for a century, although much of molecular and cellular basis of brain laterality remains to be elusive. Recent studies suggest that hippocampal CA3-CA1 excitatory synapses are asymmetrically arranged, however, the functional implication of the asymmetrical circuitry has not been studied at the behavioral level. In order to address the left-right asymmetry of hippocampal function in behaving mice, we analyzed the performance of "split-brain" mice in the Barnes maze. The "split-brain" mice received ventral hippocampal commissure and corpus callosum transection in addition to deprivation of visual input from one eye. In such mice, the hippocampus in the side of visual deprivation receives sensory-driven input. Better spatial task performance was achieved by the mice which were forced to use the right hippocampus than those which were forced to use the left hippocampus. In two-choice spatial maze, forced usage of left hippocampus resulted in a comparable performance to the right counterpart, suggesting that both hippocampal hemispheres are capable of conducting spatial learning. Therefore, the results obtained from the Barnes maze suggest that the usage of the right hippocampus improves the accuracy of spatial memory. Performance of non-spatial yet hippocampus-dependent tasks (e.g. fear conditioning) was not influenced by the laterality of the hippocampus. Copyright © 2010 Wiley Periodicals, Inc.
Meneghetti, Chiara; Labate, Enia; Pazzaglia, Francesca; Hamilton, Colin; Gyselinck, Valérie
2017-05-01
This study examines the involvement of spatial and visual working memory (WM) in the construction of flexible spatial models derived from survey and route descriptions. Sixty young adults listened to environment descriptions, 30 from a survey perspective and the other 30 from a route perspective, while they performed spatial (spatial tapping [ST]) and visual (dynamic visual noise [DVN]) secondary tasks - believed to overload the spatial and visual working memory (WM) components, respectively - or no secondary task (control, C). Their mental representations of the environment were tested by free recall and a verification test with both route and survey statements. Results showed that, for both recall tasks, accuracy was worse in the ST than in the C or DVN conditions. In the verification test, the effect of both ST and DVN was a decreasing accuracy for sentences testing spatial relations from the opposite perspective to the one learnt than if the perspective was the same; only ST had a stronger interference effect than the C condition for sentences from the opposite perspective from the one learnt. Overall, these findings indicate that both visual and spatial WM, and especially the latter, are involved in the construction of perspective-flexible spatial models. © 2016 The British Psychological Society.
Covert spatial attention is functionally intact in amblyopic human adults
Roberts, Mariel; Cymerman, Rachel; Smith, R. Theodore; Kiorpes, Lynne; Carrasco, Marisa
2016-01-01
Certain abnormalities in behavioral performance and neural signaling have been attributed to a deficit of visual attention in amblyopia, a neurodevelopmental disorder characterized by a diverse array of visual deficits following abnormal binocular childhood experience. Critically, most have inferred attention's role in their task without explicitly manipulating and measuring its effects against a baseline condition. Here, we directly investigate whether human amblyopic adults benefit from covert spatial attention—the selective processing of visual information in the absence of eye movements—to the same degree as neurotypical observers. We manipulated both involuntary (Experiment 1) and voluntary (Experiment 2) attention during an orientation discrimination task for which the effects of covert spatial attention have been well established in neurotypical and special populations. In both experiments, attention significantly improved accuracy and decreased reaction times to a similar extent (a) between the eyes of the amblyopic adults and (b) between the amblyopes and their age- and gender-matched controls. Moreover, deployment of voluntary attention away from the target location significantly impaired task performance (Experiment 2). The magnitudes of the involuntary and voluntary attention benefits did not correlate with amblyopic depth or severity. Both groups of observers showed canonical performance fields (better performance along the horizontal than vertical meridian and at the lower than upper vertical meridian) and similar effects of attention across locations. Despite their characteristic low-level vision impairments, covert spatial attention remains functionally intact in human amblyopic adults. PMID:28033433
ERIC Educational Resources Information Center
Xu, Chang; LeFevre, Jo-Anne
2016-01-01
Are there differential benefits of training sequential number knowledge versus spatial skills for children's numerical and spatial performance? Three- to five-year-old children (N = 84) participated in 1 session of either sequential training (e.g., what comes before and after the number 5?) or non-numerical spatial training (i.e., decomposition of…
Altered prefrontal function with aging: insights into age-associated performance decline.
Solbakk, Anne-Kristin; Fuhrmann Alpert, Galit; Furst, Ansgar J; Hale, Laura A; Oga, Tatsuhide; Chetty, Sundari; Pickard, Natasha; Knight, Robert T
2008-09-26
We examined the effects of aging on visuo-spatial attention. Participants performed a bi-field visual selective attention task consisting of infrequent target and task-irrelevant novel stimuli randomly embedded among repeated standards in either attended or unattended visual fields. Blood oxygenation level dependent (BOLD) responses to the different classes of stimuli were measured using functional magnetic resonance imaging. The older group had slower reaction times to targets, and committed more false alarms but had comparable detection accuracy to young controls. Attended target and novel stimuli activated comparable widely distributed attention networks, including anterior and posterior association cortex, in both groups. The older group had reduced spatial extent of activation in several regions, including prefrontal, basal ganglia, and visual processing areas. In particular, the anterior cingulate and superior frontal gyrus showed more restricted activation in older compared with young adults across all attentional conditions and stimulus categories. The spatial extent of activations correlated with task performance in both age groups, but the regional pattern of association between hemodynamic responses and behavior differed between the groups. Whereas the young subjects relied on posterior regions, the older subjects engaged frontal areas. The results indicate that aging alters the functioning of neural networks subserving visual attention, and that these changes are related to cognitive performance.
Lamm, Claus; Fischmeister, Florian Ph S; Bauer, Herbert
2005-12-01
Using slow-cortical potentials (SCPs), Vitouch et al. demonstrated that subjects with low ability to solve a complex visuo-spatial imagery task show higher activity in occipital, parietal and frontal cortex during task processing than subjects with high ability. This finding has been interpreted in the sense of the so-called "neural efficiency" hypothesis, which assumes that the central nervous system of individuals with higher intellectual abilities is functioning in a more efficient way than the one of individuals with lower abilities. Using a higher spatial resolution of SCP recordings, and by employing the source localization method of LORETA (low-resolution electromagnetic tomography), we investigated this hypothesis by performing an extended replication of Vitouch et al.'s study. SCPs during processing of a visuo-spatial imagery task were recorded in pre-selected subjects with either high or low abilities in solving the imagery task. Topographic and LORETA analyses of SCPs revealed that a distributed network of extrastriate occipital, superior parietal, temporal, medial frontal and prefrontal areas was active during task solving. This network is well in line with former studies of the functional neuroanatomy of visuo-spatial imagery. Contrary to our expectations, however, the results of Vitouch et al. as well as of other studies supporting the neural efficiency hypothesis could not be confirmed since no difference in brain activity between groups was observed. This inconsistency between studies might be due to differing task processing strategies. While subjects with high abilities in the Vitouch et al. study seemed to use a visuo-perceptual task solving approach, all other subjects relied upon a visuo-motor task processing strategy.
A Male Advantage for Spatial and Object but Not Verbal Working Memory Using the N-Back Task
ERIC Educational Resources Information Center
Lejbak, Lisa; Crossley, Margaret; Vrbancic, Mirna
2011-01-01
Sex-related differences have been reported for performance and neural substrates on some working memory measures that carry a high cognitive load, including the popular n-back neuroimaging paradigm. Despite some evidence of a sex effect on the task, the influence of sex on performance represents a potential confound in neuroimaging research. The…
Méndez-Couz, Marta; Conejo, Nélida M; Vallejo, Guillermo; Arias, Jorge L
2015-01-01
Several studies suggest a prefrontal cortex involvement during the acquisition and consolidation of spatial memory, suggesting an active modulating role at late stages of acquisition processes. Recently, we have reported that the prelimbic and infralimbic areas of the prefrontal cortex, among other structures, are also specifically involved in the late phases of spatial memory extinction. This study aimed to evaluate whether the inactivation of the prelimbic area of the prefrontal cortex impaired spatial memory extinction. For this purpose, male Wistar rats were implanted bilaterally with cannulae into the prelimbic region of the prefrontal cortex. Animals were trained during 5 consecutive days in a hidden platform task and tested for reference spatial memory immediately after the last training session. One day after completing the training task, bilateral infusion of the GABAA receptor agonist Muscimol was performed before the extinction protocol was carried out. Additionally, cytochrome c oxidase histochemistry was applied to map the metabolic brain activity related to the spatial memory extinction under prelimbic cortex inactivation. Results show that animals acquired the reference memory task in the water maze, and the extinction task was successfully completed without significant impairment. However, analysis of the functional brain networks involved by cytochrome oxidase activity interregional correlations showed changes in brain networks between the group treated with Muscimol as compared to the saline-treated group, supporting the involvement of the mammillary bodies at a the late stage in the memory extinction process. Copyright © 2015 Elsevier B.V. All rights reserved.
Cultural differences in visual attention: Implications for distraction processing.
Amer, Tarek; Ngo, K W Joan; Hasher, Lynn
2017-05-01
We investigated differences between participants of East Asian and Western descent in attention to and implicit memory for irrelevant words which participants were instructed to ignore while completing a target task (a Stroop Task in Experiment 1 and a 1-back task on pictures in Experiment 2). Implicit memory was measured using two conceptual priming tasks (category generation in Experiment 1 and general knowledge in Experiment 2). Participants of East Asian descent showed reliable implicit memory for previous distractors relative to those of Western descent with no evidence of differences on target task performance. We also found differences in a Corsi Block spatial memory task in both studies, with superior performance by the East Asian group. Our findings suggest that cultural differences in attention extend to task-irrelevant background information, and demonstrate for the first time that such information can boost performance when it becomes relevant on a subsequent task. © 2016 The British Psychological Society.
Ebersbach, Mirjam; Nawroth, Christian
2016-01-01
Tracking objects that are hidden and then moved is a crucial ability related to object permanence, which develops across several stages in early childhood. In spatial rotation tasks, children observe a target object that is hidden in one of two or more containers before the containers are rotated around a fixed axis. Usually, 30-month-olds fail to find the hidden object after it was rotated by 180°. We examined whether visual discriminability of the containers improves 30-month-olds’ success in this task and whether children perform better after 90° than after 180° rotations. Two potential hiding containers with same or different colors were placed on a board that was rotated by 90° or 180° in a within-subjects design. Children (N = 29) performed above chance level in all four conditions. Their overall success in finding the object did not improve by differently colored containers. However, different colors prevented children from showing an inhibition bias in 90° rotations, that is, choosing the empty container more often when it was located close to them than when it was farther away: This bias emerged in the same colors condition but not in the different colors condition. Results are discussed in view of particular challenges that might facilitate or deteriorate spatial rotation tasks for young children. PMID:27812346
Hydrocortisone infusion exerts dose- and sex-dependent effects on attention to emotional stimuli.
Breitberg, Alaina; Drevets, Wayne C; Wood, Suzanne E; Mah, Linda; Schulkin, Jay; Sahakian, Barbara J; Erickson, Kristine
2013-03-01
Glucocorticoid administration has been shown to exert complex effects on cognitive and emotional processing. In the current study we investigated the effects of glucocorticoid administration on attention towards emotional words, using an Affective Go/No-go task on which healthy humans have shown an attentional bias towards positive as compared to negative words. Healthy volunteers received placebo and either low-dose (0.15mg/kg) or high-dose (0.45mg/kg) hydrocortisone intravenously during two separate visits in a double-blind, randomized design. Seventy-five minutes post-infusion, the subjects performed tests of attention (Rapid Visual Information Processing [RVIP]), spatial working memory (Spatial Span) and emotional processing (Affective Go/No-go task [AGNG]). On the attention task, performance was impaired under both hydrocortisone doses relative to placebo, though the effect on error rate was not significant after controlling for age; Spatial Span performance was unaffected by hydrocortisone administration. On the AGNG task, relative to the placebo condition the low-dose hydrocortisone infusion decreased response time to emotional words while high-dose hydrocortisone increased response time. In the females specifically, both high and low dose hydrocortisone administration attenuated the normal attentional bias toward positively valenced words. These data suggest that, in healthy women, the modulation of attention by the emotional salience of stimuli is influenced by glucocorticoid hormone concentrations. Copyright © 2012 Elsevier Inc. All rights reserved.
Ebersbach, Mirjam; Nawroth, Christian
2016-01-01
Tracking objects that are hidden and then moved is a crucial ability related to object permanence, which develops across several stages in early childhood. In spatial rotation tasks, children observe a target object that is hidden in one of two or more containers before the containers are rotated around a fixed axis. Usually, 30-month-olds fail to find the hidden object after it was rotated by 180°. We examined whether visual discriminability of the containers improves 30-month-olds' success in this task and whether children perform better after 90° than after 180° rotations. Two potential hiding containers with same or different colors were placed on a board that was rotated by 90° or 180° in a within-subjects design. Children ( N = 29) performed above chance level in all four conditions. Their overall success in finding the object did not improve by differently colored containers. However, different colors prevented children from showing an inhibition bias in 90° rotations, that is, choosing the empty container more often when it was located close to them than when it was farther away: This bias emerged in the same colors condition but not in the different colors condition. Results are discussed in view of particular challenges that might facilitate or deteriorate spatial rotation tasks for young children.
Meegan, Daniel V; Honsberger, Michael J M
2005-05-01
Many neuroimaging studies have been designed to differentiate domain-specific processes in the brain. A common design constraint is to use identical stimuli for different domain-specific tasks. For example, an experiment investigating spatial versus identity processing would present compound spatial-identity stimuli in both spatial and identity tasks, and participants would be instructed to attend to, encode, maintain, or retrieve spatial information in the spatial task, and identity information in the identity task. An assumption in such studies is that spatial information will not be processed in the identity task, as it is irrelevant for that task. We report three experiments demonstrating violations of this assumption. Our results suggest that comparisons of spatial and identity tasks in existing neuroimaging studies have underestimated the amount of brain activation that is spatial-specific. For future neuroimaging studies, we recommend unique stimulus displays for each domain-specific task, and event-related measurement of post-stimulus processing.
Thinking in Pictures as a cognitive account of autism.
Kunda, Maithilee; Goel, Ashok K
2011-09-01
We analyze the hypothesis that some individuals on the autism spectrum may use visual mental representations and processes to perform certain tasks that typically developing individuals perform verbally. We present a framework for interpreting empirical evidence related to this "Thinking in Pictures" hypothesis and then provide comprehensive reviews of data from several different cognitive tasks, including the n-back task, serial recall, dual task studies, Raven's Progressive Matrices, semantic processing, false belief tasks, visual search, spatial recall, and visual recall. We also discuss the relationships between the Thinking in Pictures hypothesis and other cognitive theories of autism including Mindblindness, Executive Dysfunction, Weak Central Coherence, and Enhanced Perceptual Functioning.
Subiaul, Francys; Patterson, Eric M; Schilder, Brian; Renner, Elizabeth; Barr, Rachel
2015-11-01
In contrast to other primates, human children's imitation performance goes from low to high fidelity soon after infancy. Are such changes associated with the development of other forms of learning? We addressed this question by testing 215 children (26-59 months) on two social conditions (imitation, emulation) - involving a demonstration - and two asocial conditions (trial-and-error, recall) - involving individual learning - using two touchscreen tasks. The tasks required responding to either three different pictures in a specific picture order (Cognitive: Airplane→Ball→Cow) or three identical pictures in a specific spatial order (Motor-Spatial: Up→Down→Right). There were age-related improvements across all conditions and imitation, emulation and recall performance were significantly better than trial-and-error learning. Generalized linear models demonstrated that motor-spatial imitation fidelity was associated with age and motor-spatial emulation performance, but cognitive imitation fidelity was only associated with age. While this study provides evidence for multiple imitation mechanisms, the development of one of those mechanisms - motor-spatial imitation - may be bootstrapped by the development of another social learning skill - motor-spatial emulation. Together, these findings provide important clues about the development of imitation, which is arguably a distinctive feature of the human species. © 2014 John Wiley & Sons Ltd.
Sleep-dependent consolidation patterns reveal insights into episodic memory structure.
Oyanedel, Carlos N; Sawangjit, Anuck; Born, Jan; Inostroza, Marion
2018-05-18
Episodic memory formation is considered a genuinely hippocampal function. Its study in rodents has relied on two different task paradigms, i.e. the so called "what-where-when" (WW-When) task and "what-where-which" (WW-Which) task. The WW-When task aims to assess the memory for an episode as an event bound into its context defined by spatial and distinct temporal information, the WW-Which task lacks the temporal component and introduces, instead, an "occasion setter" marking the broader contextual configuration in which the event occurred. Whether both tasks measure episodic memory in an equivalent manner in terms of recollection has been controversially discussed. Here, we compared in two groups of rats the consolidating effects of sleep on episodic-like memory between both task paradigms. Sampling and test phases were separated by a 90-min morning retention interval which did or did not allow for spontaneous sleep. Results show that sleep is crucial for the consolidation of the memory on both tasks. However, consolidating effects of sleep were stronger for the WW-Which than WW-When task. Comparing performance during the post-sleep test phase revealed that WW-When memory only gradually emerged during the 3-min test period whereas WW-Which memory was readily expressed already from the first minute onward. Separate analysis of the temporal and spatial components of WW-When performance showed that the delayed episodic memory on this task originated from the temporal component which also did not emerge until the third minute of the test phase, whereas the spatial component already showed up in the first minute. In conclusion, sleep differentially affects consolidation on the two episodic-like memory tasks, with the delayed expression of WW-When memory after sleep resulting from preferential coverage of temporal aspects by this task. Copyright © 2018. Published by Elsevier Inc.
Prism adaptation magnitude has differential influences on perceptual versus manual responses.
Striemer, Christopher L; Russell, Karyn; Nath, Priya
2016-10-01
Previous research has indicated that rightward prism adaptation can reduce symptoms of spatial neglect following right brain damage. In addition, leftward prism adaptation can create "neglect-like" patterns of performance in healthy adults on tasks that measure attention and spatial biases. Although a great deal of research has focused on which behaviors are influenced by prism adaptation, very few studies have focused directly on how the magnitude of visual shift induced by prisms might be related to the observed aftereffects, or the effects of prisms on measures of attentional and spatial biases. In the current study, we examined these questions by having groups of healthy adult participants complete manual line bisection and landmark tasks prior to and following adaptation to either 8.5° (15 diopter; n = 22) or 17° (30 diopter; n = 25) leftward shifting prisms. Our results demonstrated a significantly larger rightward shift in straight-ahead pointing (a measure of prism aftereffect) following adaptation to 17°, compared to 8.5° leftward shifting prisms. In addition, only 17° leftward shifting prisms resulted in a significant rightward shift in line bisection following adaptation. However, there was a significant change in performance on the landmark task pre- versus post-adaptation in both the 8.5° and 17° leftward shifting prism groups. Interestingly, correlation analyses indicated that changes in straight-ahead pointing pre- versus post-adaptation were positively correlated with changes in performance on the manual line bisection task, but not the landmark task. These data suggest that larger magnitudes of prism adaptation seem to have a greater influence on tasks that require a response with the adapted hand (i.e., line bisection), compared to tasks that only require a perceptual judgment (i.e., the landmark task). In addition, these data provide further evidence that the effects of prisms on manual and perceptual responses are not related to one another.
The relation between navigation strategy and associative memory: An individual differences approach.
Ngo, Chi T; Weisberg, Steven M; Newcombe, Nora S; Olson, Ingrid R
2016-04-01
Although the hippocampus is implicated in both spatial navigation and associative memory, very little is known about whether individual differences in the 2 domains covary. People who prefer to navigate using a hippocampal-dependent place strategy may show better performance on associative memory tasks than those who prefer a caudate-dependent response strategy (Bohbot, Gupta, Banner, & Dahmani, 2011), but not all studies suggest such an effect (Woollett & Maguire, 2009, 2012). Here we tested nonexpert young adults and found that preference for a place strategy positively correlated with spatial (object-location) associative memory performance but did not correlate with nonspatial (face-name) associative memory performance. Importantly, these correlations differed from each other, indicating that the relation between navigation strategy and associative memory is specific to the spatial domain. In addition, the 2 associative memory tasks significantly correlated, suggesting that object-location memory taps into processes relevant to both hippocampal-dependent navigation and nonspatial associative memory. Our findings also suggest that individual differences in spatial associative memory may account for some of the variance in navigation strategies. (c) 2016 APA, all rights reserved).
Task-induced frequency modulation features for brain-computer interfacing
NASA Astrophysics Data System (ADS)
Jayaram, Vinay; Hohmann, Matthias; Just, Jennifer; Schölkopf, Bernhard; Grosse-Wentrup, Moritz
2017-10-01
Objective. Task-induced amplitude modulation of neural oscillations is routinely used in brain-computer interfaces (BCIs) for decoding subjects’ intents, and underlies some of the most robust and common methods in the field, such as common spatial patterns and Riemannian geometry. While there has been some interest in phase-related features for classification, both techniques usually presuppose that the frequencies of neural oscillations remain stable across various tasks. We investigate here whether features based on task-induced modulation of the frequency of neural oscillations enable decoding of subjects’ intents with an accuracy comparable to task-induced amplitude modulation. Approach. We compare cross-validated classification accuracies using the amplitude and frequency modulated features, as well as a joint feature space, across subjects in various paradigms and pre-processing conditions. We show results with a motor imagery task, a cognitive task, and also preliminary results in patients with amyotrophic lateral sclerosis (ALS), as well as using common spatial patterns and Laplacian filtering. Main results. The frequency features alone do not significantly out-perform traditional amplitude modulation features, and in some cases perform significantly worse. However, across both tasks and pre-processing in healthy subjects the joint space significantly out-performs either the frequency or amplitude features alone. This result only does not hold for ALS patients, for whom the dataset is of insufficient size to draw any statistically significant conclusions. Significance. Task-induced frequency modulation is robust and straight forward to compute, and increases performance when added to standard amplitude modulation features across paradigms. This allows more information to be extracted from the EEG signal cheaply and can be used throughout the field of BCIs.
Protocol for Short- and Longer-term Spatial Learning and Memory in Mice
Willis, Emily F.; Bartlett, Perry F.; Vukovic, Jana
2017-01-01
Studies on the role of the hippocampus in higher cognitive functions such as spatial learning and memory in rodents are reliant upon robust and objective behavioral tests. This protocol describes one such test—the active place avoidance (APA) task. This behavioral task involves the mouse continuously integrating visual cues to orientate itself within a rotating arena in order to actively avoid a shock zone, the location of which remains constant relative to the room. This protocol details the step-by-step procedures for a novel paradigm of the hippocampal-dependent APA task, measuring acquisition of spatial learning during a single 20-min trial (i.e., short-term memory), with spatial memory encoding and retrieval (i.e., long-term memory) assessed by trials conducted over consecutive days. Using the APA task, cognitive flexibility can be assessed using the reversal learning paradigm, as this increases the cognitive load required for efficient performance in the task. In addition to a detailed experimental protocol, this paper also describes the range of its possible applications, the expected key results, as well as the analytical methods to assess the data, and the pitfalls/troubleshooting measures. The protocol described herein is highly robust and produces replicable results, thus presenting an important paradigm that enables the assessment of subtle short-term changes in spatial learning and memory, such as those observed for many experimental interventions. PMID:29089878
Spatial Thinking Concepts in Early Grade-Level Geography Standards
ERIC Educational Resources Information Center
Anthamatten, Peter
2010-01-01
Research in the cognition and learning sciences has demonstrated that the human brain contains basic structures whose functions are to perform a variety of specific spatial reasoning tasks and that children are capable of learning basic spatial concepts at an early age. There has been a call from within geography to recognize research on spatial…
Number Prompts Left-to-Right Spatial Mapping in Toddlerhood
ERIC Educational Resources Information Center
McCrink, Koleen; Perez, Jasmin; Baruch, Erica
2017-01-01
Toddlers performed a spatial mapping task in which they were required to learn the location of a hidden object in a vertical array and then transpose this location information 90° to a horizontal array. During the vertical training, they were given (a) no labels, (b) alphabetical labels, or (c) numerical labels for each potential spatial location.…
Effects of a no-go Task 2 on Task 1 performance in dual - tasking: From benefits to costs.
Janczyk, Markus; Huestegge, Lynn
2017-04-01
When two tasks are combined in a dual-task experiment, characteristics of Task 2 can influence Task 1 performance, a phenomenon termed the backward crosstalk effect (BCE). Besides instances depending on the (spatial) compatibility of both responses, a particularly interesting example was introduced by Miller (2006): If Task 2 was a no-go task (i.e., one not requiring any action at all), responses were slowed in Task 1. Subsequent work, however, also reported the opposite result-that is, faster Task 1 responses in cases of no-go Task 2 trials. We report three experiments aiming to more precisely identify the conditions under which a no-go Task 2 facilitates or impedes Task 1 performance. The results suggest that an adverse no-go BCE is only observed when the Task 2 response(s) are sufficiently prepared in advance, yielding strong inhibitory control demands for Task 2 that eventually hamper Task 1 processing as well (i.e., inhibitory costs). If this is not the case, encountering a no-go Task 2 trial facilitates Task 1 performance, suggesting that the underlying task representation is reduced to a single - task. These results are discussed in the context of other recent work on BCEs and of recently suggested accounts of the no-go BCE.
Methadone disrupts performance on the working memory version of the Morris water task.
Hepner, Ilana J; Homewood, Judi; Taylor, Alan J
2002-05-01
The aim of the study was to examine if administration of the mu-opiate agonist methadone hydrochloride resulted in deficits in performance on the Morris water tank task, a widely used test of spatial cognition. To this end, after initial training on the task, Long-Evans rats were administered saline or methadone at either 1.25, 2.5 or 5 mg/kg ip 15 min prior to testing. The performance of the highest-dose methadone group was inferior to that of the controls on the working memory version of the Morris task. There were also differences between the groups on the reference memory version of the task, but this result cannot be considered reliable. These data show that methadone has its most profound effect on cognition in rats when efficient performance on the task requires attention to and retention of new information, in this case, the relationship between platform location and the extramaze cues.
ERIC Educational Resources Information Center
Mammarella, Irene C.; Cornoldi, Cesare; Pazzaglia, Francesca; Toso, Cristina; Grimoldi, Mario; Vio, Claudio
2006-01-01
The paper describes the performance of three children with specific visuospatial working memory (VSWM) impairments (Study 1) and three children with visuospatial (nonverbal) learning disabilities (Study 2) assessed with a battery of working memory (WM) tests and with a number of school achievement tasks. Overall, performance on WM tests provides…
Weed, Michael R; Gold, Lisa H; Polis, Ilham; Koob, George F; Fox, Howard S; Taffe, Michael A
2004-01-01
Infection with simian immunodeficiency virus (SIV) in macaques provides an excellent model of AIDS including HIV-induced central nervous system (CNS) pathology and cognitive/behavioral impairment. Recently a behavioral test battery has been developed for macaques based on the CANTAB human neuropsychological testing battery. As with human neuropsychological batteries, different tasks are thought to involve different neural substrates, and therefore performance profiles may assess function in particular brain regions. Ten rhesus monkeys were infected with SIV after being trained on two or more of the battery tasks addressing memory (delayed nonmatching to sample, DNMS), spatial working memory (using a self-ordered spatial search task, SOSS), motivation (progressive-ratio, PR), reaction time (RT), and/or fine motor skills (bimanual motor skill, BMS). Performance was compared to that of 9 uninfected monkeys. Overall, some aspect of performance was impaired in all 10 monkeys following infection. Consistent with results in human AIDS patients, individual performance was impaired most often on battery tasks thought to be sensitive to frontostriatal dopaminergic functioning such as SOSS, RT, and BMS. These results further demonstrate the similarity of behavioral impairment produced by SIV and HIV on homologous behavioral tests, and establish the utility of the testing battery for further investigations into the CNS mechanisms of the reported behavioral changes.
Reward-based spatial crowdsourcing with differential privacy preservation
NASA Astrophysics Data System (ADS)
Xiong, Ping; Zhang, Lefeng; Zhu, Tianqing
2017-11-01
In recent years, the popularity of mobile devices has transformed spatial crowdsourcing (SC) into a novel mode for performing complicated projects. Workers can perform tasks at specified locations in return for rewards offered by employers. Existing methods ensure the efficiency of their systems by submitting the workers' exact locations to a centralised server for task assignment, which can lead to privacy violations. Thus, implementing crowsourcing applications while preserving the privacy of workers' location is a key issue that needs to be tackled. We propose a reward-based SC method that achieves acceptable utility as measured by task assignment success rates, while efficiently preserving privacy. A differential privacy model ensures rigorous privacy guarantee, and Laplace noise is introduced to protect workers' exact locations. We then present a reward allocation mechanism that adjusts each piece of the reward for a task using the distribution of the workers' locations. Through experimental results, we demonstrate that this optimised-reward method is efficient for SC applications.
Separate but correlated: The latent structure of space and mathematics across development.
Mix, Kelly S; Levine, Susan C; Cheng, Yi-Ling; Young, Chris; Hambrick, D Zachary; Ping, Raedy; Konstantopoulos, Spyros
2016-09-01
The relations among various spatial and mathematics skills were assessed in a cross-sectional study of 854 children from kindergarten, third, and sixth grades (i.e., 5 to 13 years of age). Children completed a battery of spatial mathematics tests and their scores were submitted to exploratory factor analyses both within and across domains. In the within domain analyses, all of the measures formed single factors at each age, suggesting consistent, unitary structures across this age range. Yet, as in previous work, the 2 domains were highly correlated, both in terms of overall composite score and pairwise comparisons of individual tasks. When both spatial and mathematics scores were submitted to the same factor analysis, the 2 domain specific factors again emerged, but there also were significant cross-domain factor loadings that varied with age. Multivariate regressions replicated the factor analysis and further revealed that mental rotation was the best predictor of mathematical performance in kindergarten, and visual-spatial working memory was the best predictor of mathematical performance in sixth grade. The mathematical tasks that predicted the most variance in spatial skill were place value (K, 3rd, 6th), word problems (3rd, 6th), calculation (K), fraction concepts (3rd), and algebra (6th). Thus, although spatial skill and mathematics each have strong internal structures, they also share significant overlap, and have particularly strong cross-domain relations for certain tasks. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
ERIC Educational Resources Information Center
Carretti, Barbara; Borella, Erika; Cornoldi, Cesare; De Beni, Rossana
2009-01-01
It is well established that working memory is related to reading comprehension ability. However, its role in explaining specific reading comprehension difficulties is still under debate: the issue mainly concerns whether the contribution of working memory is dependent on task modality (verbal tasks being more predictive than visuo-spatial tasks)…
Guevara, Miguel Angel; Cruz Paniagua, Edwin Iván; Hernández González, Marisela; Sandoval Carrillo, Ivett Karina; Almanza Sepúlveda, Mayra Linné; Hevia Orozco, Jorge Carlos; Amezcua Gutiérrez, Claudia
2018-03-15
Short-term memory and working memory are two closely-related concepts that involve the prefrontal and parietal areas. These two types of memory have been evaluated by means of the spatial span task in its forward and backward conditions, respectively. To determine possible neurofunctional differences between them, this study recorded electroencephalographic activity (EEG) in the frontopolar (Fp1, Fp2), dorsolateral (F3, F4), and parietal (P3 and P4) areas during performance of the forward and backward conditions of this task in young men. The backward condition (an indicator of working memory) was characterized by fewer correct answers, higher absolute power (AP) of the delta band in dorsolateral areas, and a lower correlation between frontopolar and dorsolateral regions in the fast bands (alpha, beta and gamma), mainly in the right hemisphere. The prefrontal EEG changes during backward performance may be associated with the higher attentional demands and inhibition processes required to invert the order of reproduction of a sequence. These data provide evidence that the forward and backward conditions of the spatial span task can be distinguished on the basis of neurofunctional activity and performance, and that each one is associated with a distinct pattern of electrical activity and synchronization between prefrontal areas. The higher AP of the delta band and lower correlation of the fast bands, particularly between right prefrontal areas during the backward condition of this visuospatial task, suggest greater participation by the right prefrontal areas in working memory. Copyright © 2018 Elsevier B.V. All rights reserved.
Prieur, J-M; Bourdin, C; Sarès, F; Vercher, J-L
2006-01-01
A major issue in motor control studies is to determine whether and how we use spatial frames of reference to organize our spatially oriented behaviors. In previous experiments we showed that simulated body tilt during off-axis rotation affected the performance in verbal localization and manual pointing tasks. It was hypothesized that the observed alterations were at least partly due to a change in the orientation of the egocentric frame of reference, which was indeed centered on the body but aligned with the gravitational vector. The present experiments were designed to test this hypothesis in a situation where no inertial constraints (except the usual gravitational one) exist and where the orientation of the body longitudinal z-axis was not aligned with the direction of the gravity. Eleven subjects were exposed to real static body tilt and were required to verbally localize (experiment 1) and to point as accurately as possible towards (experiment 2) memorized visual targets, in two conditions, Head-Free and Head-Fixed conditions. Results show that the performance was only affected by real body tilt in the localization task performed when the subject's head was tilted relative to the body. Thus, dissociation between gravity and body longitudinal z-axis alone is not responsible for localization nor for pointing errors. Therefore, the egocentric frame of reference seems independent from the orientation of the gravity with regard to body z-axis as expected from our previous studies. Moreover, the use of spatial referentials appears to be less mandatory than expected for pointing movements (motor task) than for localization task (cognitive task).
Cognitive processes in spatial mapping: Evidence from a developmental spatial deficit.
Hatfield, Miles; Reilhac, Caroline; Cowley, Hannah; Chang, Elizabeth; McCloskey, Michael
2017-07-01
We report a case study of an adolescent girl (N.K.Y.) with a developmental deficit affecting spatial processing. In a simple spatial mapping task, N.K.Y. shows a striking dissociation: She succeeds in one variant of the experiment in which the stimuli are objects, but struggles in a structurally identical task with people as stimuli. We present evidence that this dissociation stems from a tendency to automatically adopt the spatial perspective of other people, but not objects-a phenomenon also observed in neurotypical individuals. When adopting another person's perspective, N.K.Y. imagines herself in the other's position, representing the other's left and right as if it were her own. N.K.Y.'s deficit in relating left-right information to her own body then disrupts her performance. Our results shed light on the nature of N.K.Y.'s deficit as well as the cognitive operations involved in spatial perspective taking.
Perceptual learning improves contrast sensitivity, visual acuity, and foveal crowding in amblyopia.
Barollo, Michele; Contemori, Giulio; Battaglini, Luca; Pavan, Andrea; Casco, Clara
2017-01-01
Amblyopic observers present abnormal spatial interactions between a low-contrast sinusoidal target and high-contrast collinear flankers. It has been demonstrated that perceptual learning (PL) can modulate these low-level lateral interactions, resulting in improved visual acuity and contrast sensitivity. We measured the extent and duration of generalization effects to various spatial tasks (i.e., visual acuity, Vernier acuity, and foveal crowding) through PL on the target's contrast detection. Amblyopic observers were trained on a contrast-detection task for a central target (i.e., a Gabor patch) flanked above and below by two high-contrast Gabor patches. The pre- and post-learning tasks included lateral interactions at different target-to-flankers separations (i.e., 2, 3, 4, 8λ) and included a range of spatial frequencies and stimulus durations as well as visual acuity, Vernier acuity, contrast-sensitivity function, and foveal crowding. The results showed that perceptual training reduced the target's contrast-detection thresholds more for the longest target-to-flanker separation (i.e., 8λ). We also found generalization of PL to different stimuli and tasks: contrast sensitivity for both trained and untrained spatial frequencies, visual acuity for Sloan letters, and foveal crowding, and partially for Vernier acuity. Follow-ups after 5-7 months showed not only complete maintenance of PL effects on visual acuity and contrast sensitivity function but also further improvement in these tasks. These results suggest that PL improves facilitatory lateral interactions in amblyopic observers, which usually extend over larger separations than in typical foveal vision. The improvement in these basic visual spatial operations leads to a more efficient capability of performing spatial tasks involving high levels of visual processing, possibly due to the refinement of bottom-up and top-down networks of visual areas.
Guérard, Katherine; Tremblay, Sébastien; Saint-Aubin, Jean
2009-10-01
Serial memory for spatial locations increases as the distance between successive stimuli locations decreases. This effect, known as the path length effect [Parmentier, F. B. R., Elford, G., & Maybery, M. T. (2005). Transitional information in spatial serial memory: Path characteristics affect recall performance. Journal of Experimental Psychology: Learning, Memory & Cognition, 31, 412-427], was investigated in a systematic manner using eye tracking and interference procedures to explore the mechanisms responsible for the processing of spatial information. In Experiment 1, eye movements were monitored during a spatial serial recall task--in which the participants have to remember the location of spatially and temporally separated dots on the screen. In the experimental conditions, eye movements were suppressed by requiring participants to incessantly move their eyes between irrelevant locations. Ocular suppression abolished the path length effect whether eye movements were prevented during item presentation or during a 7s retention interval. In Experiment 2, articulatory suppression was combined with a spatial serial recall task. Although articulatory suppression impaired performance, it did not alter the path length effect. Our results suggest that rehearsal plays a key role in serial memory for spatial information, though the effect of path length seems to involve other processes located at encoding, such as the time spent fixating each location and perceptual organization.
Reduced spatial learning in mice infected with the nematode, Heligmosomoides polygyrus.
Kavaliers, M; Colwell, D D
1995-06-01
Parasite modification of host behaviour influences a number of critical responses, but little is known about the effects on host spatial abilities. This study examined the effects of infection with the intestinal trichostrongylid nematode, Heligmosomoides polygyrus, on spatial water maze learning by male laboratory mice, Mus musculus. In this task individual mice had to learn the spatial location of a submerged hidden platform using extramaze visual cues. Determinations of spatial performance were made on day 19 post-infection with mice that had been administered either 50 or 200 infective larvae of H. polygyrus. The infected mice displayed over 1 day of testing (6 blocks of 4 trials) significantly poorer acquisition and retention of the water maze task than either sham-infected or control mice, with mice that had received 200 infective larvae displaying significantly poorer spatial performance than individuals receiving 50 larvae. The decrease in spatial learning occurred in the absence of either any symptoms of illness and malaise, or any evident motor, visual and motivational impairments. It is suggested that in this single host system the parasitic infection-induced decrease in spatial learning arises as a side-effect of the host's immunological and neuromodulatory responses and represents a fitness cost of response to infection.
Meuwese, Julia D.I.; Towgood, Karren J.; Frith, Christopher D.; Burgess, Paul W.
2009-01-01
Multi-voxel pattern analyses have proved successful in ‘decoding’ mental states from fMRI data, but have not been used to examine brain differences associated with atypical populations. We investigated a group of 16 (14 males) high-functioning participants with autism spectrum disorder (ASD) and 16 non-autistic control participants (12 males) performing two tasks (spatial/verbal) previously shown to activate medial rostral prefrontal cortex (mrPFC). Each task manipulated: (i) attention towards perceptual versus self-generated information and (ii) reflection on another person's mental state (‘mentalizing'versus ‘non-mentalizing’) in a 2 × 2 design. Behavioral performance and group-level fMRI results were similar between groups. However, multi-voxel similarity analyses revealed strong differences. In control participants, the spatial distribution of activity generalized significantly between task contexts (spatial/verbal) when examining the same function (attention/mentalizing) but not when comparing different functions. This pattern was disrupted in the ASD group, indicating abnormal functional specialization within mrPFC, and demonstrating the applicability of multi-voxel pattern analysis to investigations of atypical populations. PMID:19174370
An integrated theory of attention and decision making in visual signal detection.
Smith, Philip L; Ratcliff, Roger
2009-04-01
The simplest attentional task, detecting a cued stimulus in an otherwise empty visual field, produces complex patterns of performance. Attentional cues interact with backward masks and with spatial uncertainty, and there is a dissociation in the effects of these variables on accuracy and on response time. A computational theory of performance in this task is described. The theory links visual encoding, masking, spatial attention, visual short-term memory (VSTM), and perceptual decision making in an integrated dynamic framework. The theory assumes that decisions are made by a diffusion process driven by a neurally plausible, shunting VSTM. The VSTM trace encodes the transient outputs of early visual filters in a durable form that is preserved for the time needed to make a decision. Attention increases the efficiency of VSTM encoding, either by increasing the rate of trace formation or by reducing the delay before trace formation begins. The theory provides a detailed, quantitative account of attentional effects in spatial cuing tasks at the level of response accuracy and the response time distributions. (c) 2009 APA, all rights reserved
Storbeck, Justin
2012-08-01
Emotion tunes cognition, such that approach-motivated positive states promote verbal cognition, whereas withdrawal-motivated negative states promote spatial cognition (Gray, 2001). The current research examined whether self-control resources become depleted and influence subsequent behavior when emotion tunes an inappropriate cognitive tendency. In 2 experiments, either an approach-motivated positive state or a withdrawal-motivated negative state was induced, and then participants completed a verbal or a spatial working memory task creating conditions of emotion-cognition alignment (e.g., approach/verbal) or misalignment (e.g., approach/spatial). A control condition was also included. To examine behavioral costs due to depleted self-control resources, participants completed either a Stroop task (Stroop, 1935; Experiment 1) or a Black/White implicit association test (IAT; Greenwald, McGhee, & Schwartz, 1998; Experiment 2). Participants in the misalignment conditions performed worse on the Stroop task, and they were worse at controlling their implicit attitude biases on the IAT. Thus, when emotion tunes inappropriate cognitive tendencies for one's current environment, self-control resources become depleted, impairing behavioral control. (PsycINFO Database Record (c) 2012 APA, all rights reserved).
Bett, David; Allison, Elizabeth; Murdoch, Lauren H.; Kaefer, Karola; Wood, Emma R.; Dudchenko, Paul A.
2012-01-01
Vicarious trial-and-errors (VTEs) are back-and-forth movements of the head exhibited by rodents and other animals when faced with a decision. These behaviors have recently been associated with prospective sweeps of hippocampal place cell firing, and thus may reflect a rodent model of deliberative decision-making. The aim of the current study was to test whether the hippocampus is essential for VTEs in a spatial memory task and in a simple visual discrimination (VD) task. We found that lesions of the hippocampus with ibotenic acid produced a significant impairment in the accuracy of choices in a serial spatial reversal (SR) task. In terms of VTEs, whereas sham-lesioned animals engaged in more VTE behavior prior to identifying the location of the reward as opposed to repeated trials after it had been located, the lesioned animals failed to show this difference. In contrast, damage to the hippocampus had no effect on acquisition of a VD or on the VTEs seen in this task. For both lesion and sham-lesion animals, adding an additional choice to the VD increased the number of VTEs and decreased the accuracy of choices. Together, these results suggest that the hippocampus may be specifically involved in VTE behavior during spatial decision making. PMID:23115549
Layfield, Dylan M.; Patel, Monica; Hallock, Henry; Griffin, Amy
2015-01-01
Inactivation of the rodent medial prefrontal cortex (mPFC) and hippocampus or disconnection of the hippocampus from the mPFC produces deficits in spatial working memory tasks. Previous studies have shown that delay length determines the extent to which mPFC and hippocampus functionally interact, with both structures being necessary for tasks with longer delays and either structure being sufficient for tasks with shorter delays. In addition, inactivation of the nucleus reuniens (Re) / rhomboid nucleus (Rh) of the thalamus, which has bidirectional connections with the mPFC and hippocampus, also produces deficits in these tasks. However, it is unknown how delay duration relates to the function of Re/Rh. If Re/Rh are critical in modulating mPFC-hippocampus interactions, inactivation of the RE/Rh should produce a delay-dependent impairment in spatial working memory performance. To investigate this question, groups of rats were trained on one of three different spatial working memory tasks: continuous alternation (CA), delayed alternation with a five-second delay (DA5), or with a thirty-second delay (DA30). The Re/Rh were inactivated with muscimol infusions prior to testing. The results demonstrate that inactivation of RE/Rh produces a deficit only on the two DA tasks, supporting the notion that the Re/Rh is a critical orchestrator of mPFC-HC interactions. PMID:26391450
Mizuno, Kei; Tanaka, Masaaki; Fukuda, Sanae; Sasabe, Tetsuya; Imai-Matsumura, Kyoko; Watanabe, Yasuyoshi
2011-05-01
When students proceed to junior high school from elementary school, rapid changes in the environment occur, which may cause various behavioral and emotional problems. However, the changes in cognitive functions during this transitional period have rarely been studied. In 158 elementary school students from 4th- to 6th-grades and 159 junior high school students from 7th- to 9th-grades, we assessed various cognitive functions, including motor processing, spatial construction ability, semantic fluency, immediate memory, delayed memory, spatial and non-spatial working memory, and selective, alternative, and divided attention. Our findings showed that performance on spatial and non-spatial working memory, alternative attention, divided attention, and semantic fluency tasks improved from elementary to junior high school. In particular, performance on alternative and divided attention tasks improved during the transitional period from elementary to junior high school. Our finding suggests that development of alternative and divided attention is of crucial importance in the transitional period from elementary to junior high school. Copyright © 2010 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Soung Yee, Anthony
Three experiments have been completed to investigate whether and how a software technique called real-time image mosaicing applied to a restricted field of view (FOV) might influence target detection and path integration performance in simulated aerial search scenarios, representing local and global spatial awareness tasks respectively. The mosaiced FOV (mFOV) was compared to single FOV (sFOV) and one with double the single size (dFOV). In addition to advancing our understanding of visual information in mosaicing, the present study examines the advantages and limitations of a number of metrics used to evaluate performance in path integration tasks, with particular attention paid to measuring performance in identifying complex routes. The highlights of the results are summarized as follows, according to Experiments 1 through 3 respectively. 1. A novel response method for evaluating route identification performance was developed. The surmised benefits of the mFOV relative to sFOV and dFOV revealed no significant differences in performance for the relatively simple route shapes tested. Compared to the mFOV and dFOV conditions, target detection performance in the local task was found to be superior in the sFOV condition. 2. In order to appropriately quantify the observed differences in complex route selections made by the participants, a novel analysis method was developed using the Thurstonian Paired Comparisons Method. 3. To investigate the effect of display size and elevation angle (EA) in a complex route environment, a 2x3 experiment was conducted for the two spatial tasks, at a height selected from Experiment 2. Although no significant differences were found in the target detection task, contrasts in the Paired Comparisons Method results revealed that route identification performance were as hypothesised: mFOV > dFOV > sFOV for EA = 90°. Results were similar for EA = 45°, but with mFOV being no different than dFOV. As hypothesised, EA was found to have an effect on route selection performance, with a top down view performing better than an angled view for the mFOV and sFOV conditions.
A Psychometric Measure of Working Memory Capacity for Configured Body Movement
Wu, Ying Choon; Coulson, Seana
2014-01-01
Working memory (WM) models have traditionally assumed at least two domain-specific storage systems for verbal and visuo-spatial information. We review data that suggest the existence of an additional slave system devoted to the temporary storage of body movements, and present a novel instrument for its assessment: the movement span task. The movement span task assesses individuals' ability to remember and reproduce meaningless configurations of the body. During the encoding phase of a trial, participants watch short videos of meaningless movements presented in sets varying in size from one to five items. Immediately after encoding, they are prompted to reenact as many items as possible. The movement span task was administered to 90 participants along with standard tests of verbal WM, visuo-spatial WM, and a gesture classification test in which participants judged whether a speaker's gestures were congruent or incongruent with his accompanying speech. Performance on the gesture classification task was not related to standard measures of verbal or visuo-spatial working memory capacity, but was predicted by scores on the movement span task. Results suggest the movement span task can serve as an assessment of individual differences in WM capacity for body-centric information. PMID:24465437
The interaction of feature and space based orienting within the attention set.
Lim, Ahnate; Sinnett, Scott
2014-01-01
The processing of sensory information relies on interacting mechanisms of sustained attention and attentional capture, both of which operate in space and on object features. While evidence indicates that exogenous attentional capture, a mechanism previously understood to be automatic, can be eliminated while concurrently performing a demanding task, we reframe this phenomenon within the theoretical framework of the "attention set" (Most et al., 2005). Consequently, the specific prediction that cuing effects should reappear when feature dimensions of the cue overlap with those in the attention set (i.e., elements of the demanding task) was empirically tested and confirmed using a dual-task paradigm involving both sustained attention and attentional capture, adapted from Santangelo et al. (2007). Participants were required to either detect a centrally presented target presented in a stream of distractors (the primary task), or respond to a spatially cued target (the secondary task). Importantly, the spatial cue could either share features with the target in the centrally presented primary task, or not share any features. Overall, the findings supported the attention set hypothesis showing that a spatial cuing effect was only observed when the peripheral cue shared a feature with objects that were already in the attention set (i.e., the primary task). However, this finding was accompanied by differential attentional orienting dependent on the different types of objects within the attention set, with feature-based orienting occurring for target-related objects, and additional spatial-based orienting for distractor-related objects.
The interaction of feature and space based orienting within the attention set
Lim, Ahnate; Sinnett, Scott
2014-01-01
The processing of sensory information relies on interacting mechanisms of sustained attention and attentional capture, both of which operate in space and on object features. While evidence indicates that exogenous attentional capture, a mechanism previously understood to be automatic, can be eliminated while concurrently performing a demanding task, we reframe this phenomenon within the theoretical framework of the “attention set” (Most et al., 2005). Consequently, the specific prediction that cuing effects should reappear when feature dimensions of the cue overlap with those in the attention set (i.e., elements of the demanding task) was empirically tested and confirmed using a dual-task paradigm involving both sustained attention and attentional capture, adapted from Santangelo et al. (2007). Participants were required to either detect a centrally presented target presented in a stream of distractors (the primary task), or respond to a spatially cued target (the secondary task). Importantly, the spatial cue could either share features with the target in the centrally presented primary task, or not share any features. Overall, the findings supported the attention set hypothesis showing that a spatial cuing effect was only observed when the peripheral cue shared a feature with objects that were already in the attention set (i.e., the primary task). However, this finding was accompanied by differential attentional orienting dependent on the different types of objects within the attention set, with feature-based orienting occurring for target-related objects, and additional spatial-based orienting for distractor-related objects. PMID:24523682
McClusky, D A; Ritter, E M; Lederman, A B; Gallagher, A G; Smith, C D
2005-01-01
Given the dynamic nature of modern surgical education, determining factors that may improve the efficiency of laparoscopic training is warranted. The objective of this study was to analyze whether perceptual, visuo-spatial, or psychomotor aptitude are related to the amount of training required to reach specific performance-based goals on a virtual reality surgical simulator. Sixteen MS4 medical students participated in an elective skills course intended to train laparoscopic skills. All were tested for perceptual, visuo-spatial, and psychomotor aptitude using previously validated psychological tests. Training involved as many instructor-guided 1-hour sessions as needed to reach performance goals on a custom designed MIST-VR manipulation-diathermy task (Mentice AB, Gothenberg, Sweden). Thirteen subjects reached performance goals by the end of the course. Two were excluded from analysis due to previous experience with the MIST-VR (total n = 11). Perceptual ability (r = -0.76, P = 0.007) and psychomotor skills (r = 0.62, P = 0.04) significantly correlated with the number of trials required. Visuo-spatial ability did not significantly correlate with training duration. The number of trials required to train subjects to performance goals on the MIST-VR manipulation diathermy task is significantly related to perceptual and psychomotor aptitude.
Remembering to learn: independent place and journey coding mechanisms contribute to memory transfer.
Bahar, Amir S; Shapiro, Matthew L
2012-02-08
The neural mechanisms that integrate new episodes with established memories are unknown. When rats explore an environment, CA1 cells fire in place fields that indicate locations. In goal-directed spatial memory tasks, some place fields differentiate behavioral histories ("journey-dependent" place fields) while others do not ("journey-independent" place fields). To investigate how these signals inform learning and memory for new and familiar episodes, we recorded CA1 and CA3 activity in rats trained to perform a "standard" spatial memory task in a plus maze and in two new task variants. A "switch" task exchanged the start and goal locations in the same environment; an "altered environment" task contained unfamiliar local and distal cues. In the switch task, performance was mildly impaired, new firing maps were stable, but the proportion and stability of journey-dependent place fields declined. In the altered environment, overall performance was strongly impaired, new firing maps were unstable, and stable proportions of journey-dependent place fields were maintained. In both tasks, memory errors were accompanied by a decline in journey codes. The different dynamics of place and journey coding suggest that they reflect separate mechanisms and contribute to distinct memory computations. Stable place fields may represent familiar relationships among environmental features that are required for consistent memory performance. Journey-dependent activity may correspond with goal-directed behavioral sequences that reflect expectancies that generalize across environments. The complementary signals could help link current events with established memories, so that familiarity with either a behavioral strategy or an environment can inform goal-directed learning.
REMEMBERING TO LEARN: INDEPENDENT PLACE AND JOURNEY CODING MECHANISMS CONTRIBUTE TO MEMORY TRANSFER
Bahar, Amir S.; Shapiro, Matthew L.
2012-01-01
The neural mechanisms that integrate new episodes with established memories are unknown. When rats explore an environment, CA1 cells fire in place fields that indicate locations. In goal-directed spatial memory tasks, some place fields differentiate behavioral histories (journey-dependent place fields) while others do not (journey-independent place fields). To investigate how these signals inform learning and memory for new and familiar episodes, we recorded CA1 and CA3 activity in rats trained to perform a standard spatial memory task in a plus maze and in two new task variants. A switch task exchanged the start and goal locations in the same environment; an altered environment task contained unfamiliar local and distal cues. In the switch task, performance was mildly impaired, new firing maps were stable, but the proportion and stability of journey-dependent place fields declined. In the altered environment, overall performance was strongly impaired, new firing maps were unstable, and stable proportions of journey-dependent place fields were maintained. In both tasks, memory errors were accompanied by a decline in journey codes. The different dynamics of place and journey coding suggest that they reflect separate mechanisms and contribute to distinct memory computations. Stable place fields may represent familiar relationships among environmental features that are required for consistent memory performance. Journey-dependent activity may correspond with goal directed behavioral sequences that reflect expectancies that generalize across environments. The complementary signals could help link current events with established memories, so that familiarity with either a behavioral strategy or an environment can inform goal-directed learning. PMID:22323731
Frontal and parietal theta burst TMS impairs working memory for visual-spatial conjunctions
Morgan, Helen M.; Jackson, Margaret C.; van Koningsbruggen, Martijn G.; Shapiro, Kimron L.; Linden, David E.J.
2013-01-01
In tasks that selectively probe visual or spatial working memory (WM) frontal and posterior cortical areas show a segregation, with dorsal areas preferentially involved in spatial (e.g. location) WM and ventral areas in visual (e.g. object identity) WM. In a previous fMRI study [1], we showed that right parietal cortex (PC) was more active during WM for orientation, whereas left inferior frontal gyrus (IFG) was more active during colour WM. During WM for colour-orientation conjunctions, activity in these areas was intermediate to the level of activity for the single task preferred and non-preferred information. To examine whether these specialised areas play a critical role in coordinating visual and spatial WM to perform a conjunction task, we used theta burst transcranial magnetic stimulation (TMS) to induce a functional deficit. Compared to sham stimulation, TMS to right PC or left IFG selectively impaired WM for conjunctions but not single features. This is consistent with findings from visual search paradigms, in which frontal and parietal TMS selectively affects search for conjunctions compared to single features, and with combined TMS and functional imaging work suggesting that parietal and frontal regions are functionally coupled in tasks requiring integration of visual and spatial information. Our results thus elucidate mechanisms by which the brain coordinates spatially segregated processing streams and have implications beyond the field of working memory. PMID:22483548
Frontal and parietal theta burst TMS impairs working memory for visual-spatial conjunctions.
Morgan, Helen M; Jackson, Margaret C; van Koningsbruggen, Martijn G; Shapiro, Kimron L; Linden, David E J
2013-03-01
In tasks that selectively probe visual or spatial working memory (WM) frontal and posterior cortical areas show a segregation, with dorsal areas preferentially involved in spatial (e.g. location) WM and ventral areas in visual (e.g. object identity) WM. In a previous fMRI study [1], we showed that right parietal cortex (PC) was more active during WM for orientation, whereas left inferior frontal gyrus (IFG) was more active during colour WM. During WM for colour-orientation conjunctions, activity in these areas was intermediate to the level of activity for the single task preferred and non-preferred information. To examine whether these specialised areas play a critical role in coordinating visual and spatial WM to perform a conjunction task, we used theta burst transcranial magnetic stimulation (TMS) to induce a functional deficit. Compared to sham stimulation, TMS to right PC or left IFG selectively impaired WM for conjunctions but not single features. This is consistent with findings from visual search paradigms, in which frontal and parietal TMS selectively affects search for conjunctions compared to single features, and with combined TMS and functional imaging work suggesting that parietal and frontal regions are functionally coupled in tasks requiring integration of visual and spatial information. Our results thus elucidate mechanisms by which the brain coordinates spatially segregated processing streams and have implications beyond the field of working memory. Copyright © 2013 Elsevier Inc. All rights reserved.
Contextual cueing: implicit learning and memory of visual context guides spatial attention.
Chun, M M; Jiang, Y
1998-06-01
Global context plays an important, but poorly understood, role in visual tasks. This study demonstrates that a robust memory for visual context exists to guide spatial attention. Global context was operationalized as the spatial layout of objects in visual search displays. Half of the configurations were repeated across blocks throughout the entire session, and targets appeared within consistent locations in these arrays. Targets appearing in learned configurations were detected more quickly. This newly discovered form of search facilitation is termed contextual cueing. Contextual cueing is driven by incidentally learned associations between spatial configurations (context) and target locations. This benefit was obtained despite chance performance for recognizing the configurations, suggesting that the memory for context was implicit. The results show how implicit learning and memory of visual context can guide spatial attention towards task-relevant aspects of a scene.
Walker, Susannah C; Robbins, Trevor W; Roberts, Angela C
2009-05-06
Prefrontal cortex (PFC) is critical for self-ordered response sequencing. Patients with frontal lobe damage are impaired on response sequencing tasks, and increased blood flow has been reported in ventrolateral and dorsolateral PFC in subjects performing such tasks. Previously, we have shown that large excitotoxic lesions of the lateral PFC (LPFC) and orbitofrontal cortex FC (OFC), but not global prefrontal dopamine depletion, markedly impaired marmoset performance on a spatial self-ordered sequencing task (SSOST). To determine whether LPFC or OFC was responsible for the previously observed impairments and whether the underlying neural mechanism was modulated by serotonin, the present study compared the effects of selective LPFC and OFC excitotoxic lesions and 5,7-DHT-induced PFC serotonin depletions in marmosets on SSOST performance. Severe and long-lasting impairments in SSOST performance, including robust perseverative responding, followed LPFC but not OFC lesions. The deficit was ameliorated by task manipulations that precluded perseveration. Depletions of serotonin within LPFC and OFC had no effect, despite impairing performance on a visual discrimination reversal task, thus providing further evidence for differential monaminergic regulation of prefrontal function. In the light of the proposed attentional control functions of ventrolateral PFC and the failure of LPFC-lesioned animals to disengage from the immediately preceding response, it is proposed that this deficit may be due to a failure to attend to and register that a response has been made and thus should not be repeated. However, 5-HT does not appear to be implicated in this response inhibitory capacity.
Three-dimensional vision enhances task performance independently of the surgical method.
Wagner, O J; Hagen, M; Kurmann, A; Horgan, S; Candinas, D; Vorburger, S A
2012-10-01
Within the next few years, the medical industry will launch increasingly affordable three-dimensional (3D) vision systems for the operating room (OR). This study aimed to evaluate the effect of two-dimensional (2D) and 3D visualization on surgical skills and task performance. In this study, 34 individuals with varying laparoscopic experience (18 inexperienced individuals) performed three tasks to test spatial relationships, grasping and positioning, dexterity, precision, and hand-eye and hand-hand coordination. Each task was performed in 3D using binocular vision for open performance, the Viking 3Di Vision System for laparoscopic performance, and the DaVinci robotic system. The same tasks were repeated in 2D using an eye patch for monocular vision, conventional laparoscopy, and the DaVinci robotic system. Loss of 3D vision significantly increased the perceived difficulty of a task and the time required to perform it, independently of the approach (P < 0.0001-0.02). Simple tasks took 25 % to 30 % longer to complete and more complex tasks took 75 % longer with 2D than with 3D vision. Only the difficult task was performed faster with the robot than with laparoscopy (P = 0.005). In every case, 3D robotic performance was superior to conventional laparoscopy (2D) (P < 0.001-0.015). The more complex the task, the more 3D vision accelerates task completion compared with 2D vision. The gain in task performance is independent of the surgical method.
Riekki, Tapani; Salmi, Juha; Svedholm-Häkkinen, Annika M; Lindeman, Marjaana
2018-01-31
According to the Empathizing-Systemizing theory (E-S Theory), individual differences in how people understand the physical world (systemizing) and the social world (empathizing), are two continuums in the general population with several implications, from vocational interests to skills in the social and physical domains. The underlying mechanisms of intuitive physics performance among individuals with strong systemizing and weak empathizing (systemizers) are, however, unknown. Our results affirm higher intuitive physics skills in healthy adult systemizers (N=36), and further reveal the brain mechanisms that are characteristic for those individuals in carrying out such tasks. When the participants performed intuitive physics tasks during functional magnetic resonance imaging, combined higher systemizing and lower empathizing was associated with stronger activations in parts of the default mode network (DMN, cuneus and posterior cingulate gyrus), middle occipital gyrus, and parahippocampal region. The posterior cingulate gyrus and parahippocampal gyrus were specifically associated with systemizing "brain type" even after controlling for task performance, while especially in the parietal cortex, the activation changes were simply explained by higher task performance. We therefore suggest that utilization of DMN-parahippocampal complex, suggested to play a role in internalizing and activating long-term spatial memory representations, is the factor that distinguishes systemizers from empathizers with the opposite "brain type" in intuitive physics tasks. Copyright © 2017 Elsevier Ltd. All rights reserved.
Age-related differences in reaction time task performance in young children.
Kiselev, Sergey; Espy, Kimberly Andrews; Sheffield, Tiffany
2009-02-01
Performance of reaction time (RT) tasks was investigated in young children and adults to test the hypothesis that age-related differences in processing speed supersede a "global" mechanism and are a function of specific differences in task demands and processing requirements. The sample consisted of 54 4-year-olds, 53 5-year-olds, 59 6-year-olds, and 35 adults from Russia. Using the regression approach pioneered by Brinley and the transformation method proposed by Madden and colleagues and Ridderinkhoff and van der Molen, age-related differences in processing speed differed among RT tasks with varying demands. In particular, RTs differed between children and adults on tasks that required response suppression, discrimination of color or spatial orientation, reversal of contingencies of previously learned stimulus-response rules, and greater stimulus-response complexity. Relative costs of these RT task differences were larger than predicted by the global difference hypothesis except for response suppression. Among young children, age-related differences larger than predicted by the global difference hypothesis were evident when tasks required color or spatial orientation discrimination and stimulus-response rule complexity, but not for response suppression or reversal of stimulus-response contingencies. Process-specific, age-related differences in processing speed that support heterochronicity of brain development during childhood were revealed.
Attention and P300-based BCI performance in people with amyotrophic lateral sclerosis
Riccio, Angela; Simione, Luca; Schettini, Francesca; Pizzimenti, Alessia; Inghilleri, Maurizio; Belardinelli, Marta Olivetti; Mattia, Donatella; Cincotti, Febo
2013-01-01
The purpose of this study was to investigate the support of attentional and memory processes in controlling a P300-based brain-computer interface (BCI) in people with amyotrophic lateral sclerosis (ALS). Eight people with ALS performed two behavioral tasks: (i) a rapid serial visual presentation (RSVP) task, screening the temporal filtering capacity and the speed of the update of the attentive filter, and (ii) a change detection task, screening the memory capacity and the spatial filtering capacity. The participants were also asked to perform a P300-based BCI spelling task. By using correlation and regression analyses, we found that only the temporal filtering capacity in the RSVP task was a predictor of both the P300-based BCI accuracy and of the amplitude of the P300 elicited performing the BCI task. We concluded that the ability to keep the attentional filter active during the selection of a target influences performance in BCI control. PMID:24282396
ERIC Educational Resources Information Center
O'Hearn, Kirsten; Hoffman, James E.; Landau, Barbara
2010-01-01
The ability to track moving objects, a crucial skill for mature performance on everyday spatial tasks, has been hypothesized to require a specialized mechanism that may be available in infancy (i.e. indexes). Consistent with the idea of specialization, our previous work showed that object tracking was more impaired than a matched spatial memory…
ERIC Educational Resources Information Center
Schwibbe, Anja; Kothe, Christian; Hampe, Wolfgang; Konradt, Udo
2016-01-01
Sixty years of research have not added up to a concordant evaluation of the influence of spatial and manual abilities on dental skill acquisition. We used Ackerman's theory of ability determinants of skill acquisition to explain the influence of spatial visualization and manual dexterity on the task performance of dental students in two…
Aging and the intrusion superiority effect in visuo-spatial working memory.
Cornoldi, Cesare; Bassani, Chiara; Berto, Rita; Mammarella, Nicola
2007-01-01
This study investigated the active component of visuo-spatial working memory (VSWM) in younger and older adults testing the hypotheses that elderly individuals have a poorer performance than younger ones and that errors in active VSWM tasks depend, at least partially, on difficulties in avoiding intrusions (i.e., avoiding already activated information). In two experiments, participants were presented with sequences of matrices on which three positions were pointed out sequentially: their task was to process all the positions but indicate only the final position of each sequence. Results showed a poorer performance in the elderly compared to the younger group and a higher number of intrusion (errors due to activated but irrelevant positions) rather than invention (errors consisting of pointing out a position never indicated by the experiementer) errors. The number of errors increased when a concurrent task was introduced (Experiment 1) and it was affected by different patterns of matrices (Experiment 2). In general, results show that elderly people have an impaired VSWM and produce a large number of errors due to inhibition failures. However, both the younger and the older adults' visuo-spatial working memory was affected by the presence of activated irrelevant information, the reduction of the available resources, and task constraints.
Klopp, Christine; Garcia, Carlos; Schulman, Allan H; Ward, Christopher P; Tartar, Jaime L
2012-01-01
Spatial learning is shown to be influenced by acute stress in both human and other animals. However, the intricacies of this relationship are unclear. Based on prior findings we hypothesized that compared to a control condition, a social stress condition would not affect spatial learning performance despite elevated biochemical markers of stress. The present study tested the effects of social stress in human males and females on a subsequent spatial learning task. Social stress induction consisted of evaluative stress (the Trier Social Stress Test, TSST) compared to a placebo social stress. Compared to the placebo condition, the TSST resulted in significantly elevated cortisol and alpha amylase levels at multiple time points following stress induction. In accord, cognitive appraisal measures also showed that participants in the TSST group experienced greater perceived stress compared to the placebo group. However, there were no group differences in performance on a spatial learning task. Our findings suggest that unlike physiological stress, social stress does not result in alterations in spatial learning in humans. It is possible that moderate social evaluative stress in humans works to prevent acute stress-mediated alterations in hippocampal learning processes..