Sample records for spatial trends studied

  1. Spatial and temporal trends of selected trace elements in liver tissue from polar bears (Ursus maritimus) from Alaska, Canada and Greenland.

    PubMed

    Routti, Heli; Letcher, Robert J; Born, Erik W; Branigan, Marsha; Dietz, Rune; Evans, Thomas J; Fisk, Aaron T; Peacock, Elizabeth; Sonne, Christian

    2011-08-01

    Spatial trends and comparative changes in time of selected trace elements were studied in liver tissue from polar bears from ten different subpopulation locations in Alaska, Canadian Arctic and East Greenland. For nine of the trace elements (As, Cd, Cu, Hg, Mn, Pb, Rb, Se and Zn) spatial trends were investigated in 136 specimens sampled during 2005-2008 from bears from these ten subpopulations. Concentrations of Hg, Se and As were highest in the (northern and southern) Beaufort Sea area and lowest in (western and southern) Hudson Bay area and Chukchi/Bering Sea. In contrast, concentrations of Cd showed an increasing trend from east to west. Minor or no spatial trends were observed for Cu, Mn, Rb and Zn. Spatial trends were in agreement with previous studies, possibly explained by natural phenomena. To assess temporal changes of Cd, Hg, Se and Zn concentrations during the last decades, we compared our results to previously published data. These time comparisons suggested recent Hg increase in East Greenland polar bears. This may be related to Hg emissions and/or climate-induced changes in Hg cycles or changes in the polar bear food web related to global warming. Also, Hg:Se molar ratio has increased in East Greenland polar bears, which suggests there may be an increased risk for Hg(2+)-mediated toxicity. Since the underlying reasons for spatial trends or changes in time of trace elements in the Arctic are still largely unknown, future studies should focus on the role of changing climate and trace metal emissions on geographical and temporal trends of trace elements.

  2. Spatial and temporal trends of selected trace elements in liver tissue from polar bears (Ursus maritimus) from Alaska, Canada and Greenland

    USGS Publications Warehouse

    Routti, H.; Letcher, R.J.; Born, E.W.; Branigan, M.; Dietz, R.; Evans, T.J.; Fisk, A.T.; Peacock, E.; Sonne, C.

    2011-01-01

    Spatial trends and comparative changes in time of selected trace elements were studied in liver tissue from polar bears from ten different subpopulation locations in Alaska, Canadian Arctic and East Greenland. For nine of the trace elements (As, Cd, Cu, Hg, Mn, Pb, Rb, Se and Zn) spatial trends were investigated in 136 specimens sampled during 2005-2008 from bears from these ten subpopulations. Concentrations of Hg, Se and As were highest in the (northern and southern) Beaufort Sea area and lowest in (western and southern) Hudson Bay area and Chukchi/Bering Sea. In contrast, concentrations of Cd showed an increasing trend from east to west. Minor or no spatial trends were observed for Cu, Mn, Rb and Zn. Spatial trends were in agreement with previous studies, possibly explained by natural phenomena. To assess temporal changes of Cd, Hg, Se and Zn concentrations during the last decades, we compared our results to previously published data. These time comparisons suggested recent Hg increase in East Greenland polar bears. This may be related to Hg emissions and/or climate-induced changes in Hg cycles or changes in the polar bear food web related to global warming. Also, Hg:Se molar ratio has increased in East Greenland polar bears, which suggests there may be an increased risk for Hg 2+-mediated toxicity. Since the underlying reasons for spatial trends or changes in time of trace elements in the Arctic are still largely unknown, future studies should focus on the role of changing climate and trace metal emissions on geographical and temporal trends of trace elements. ?? 2011 The Royal Society of Chemistry.

  3. Developmental Trends for Object and Spatial Working Memory: A Psychophysiological Analysis

    ERIC Educational Resources Information Center

    Van Leijenhorst, Linda; Crone, Eveline A.; Van der Molen, Maurits W.

    2007-01-01

    This study examined developmental trends in object and spatial working memory (WM) using heart rate (HR) to provide an index of covert cognitive processes. Participants in 4 age groups (6-7, 9-10, 11-12, 18-26, n=20 each) performed object and spatial WM tasks, in which each trial was followed by feedback. Spatial WM task performance reached adult…

  4. Spatial heterogeneity in statistical power to detect changes in lake area in Alaskan National Wildlife Refuges

    USGS Publications Warehouse

    Nicol, Samuel; Roach, Jennifer K.; Griffith, Brad

    2013-01-01

    Over the past 50 years, the number and size of high-latitude lakes have decreased throughout many regions; however, individual lake trends have been variable in direction and magnitude. This spatial heterogeneity in lake change makes statistical detection of temporal trends challenging, particularly in small analysis areas where weak trends are difficult to separate from inter- and intra-annual variability. Factors affecting trend detection include inherent variability, trend magnitude, and sample size. In this paper, we investigated how the statistical power to detect average linear trends in lake size of 0.5, 1.0 and 2.0 %/year was affected by the size of the analysis area and the number of years of monitoring in National Wildlife Refuges in Alaska. We estimated power for large (930–4,560 sq km) study areas within refuges and for 2.6, 12.9, and 25.9 sq km cells nested within study areas over temporal extents of 4–50 years. We found that: (1) trends in study areas could be detected within 5–15 years, (2) trends smaller than 2.0 %/year would take >50 years to detect in cells within study areas, and (3) there was substantial spatial variation in the time required to detect change among cells. Power was particularly low in the smallest cells which typically had the fewest lakes. Because small but ecologically meaningful trends may take decades to detect, early establishment of long-term monitoring will enhance power to detect change. Our results have broad applicability and our method is useful for any study involving change detection among variable spatial and temporal extents.

  5. Observed Trend in Surface Wind Speed Over the Conterminous USA and CMIP5 Simulations

    NASA Technical Reports Server (NTRS)

    Hashimoto, Hirofumi; Nemani, Ramakrishna R.

    2016-01-01

    There has been no spatial surface wind map even over the conterminous USA due to the difficulty of spatial interpolation of wind field. As a result, the reanalysis data were often used to analyze the statistics of spatial pattern in surface wind speed. Unfortunately, no consistent trend in wind field was found among the available reanalysis data, and that obstructed the further analysis or projection of spatial pattern of wind speed. In this study, we developed the methodology to interpolate the observed wind speed data at weather stations using random forest algorithm. We produced the 1-km daily climate variables over the conterminous USA from 1979 to 2015. The validation using Ameriflux daily data showed that R2 is 0.59. Existing studies have found the negative trend over the Eastern US, and our study also showed same results. However, our new datasets also revealed the significant increasing trend over the southwest US especially from April to June. The trend in the southwestern US represented change or seasonal shift in North American Monsoon. Global analysis of CMIP5 data projected the decrease trend in mid-latitude, while increase trend in tropical region over the land. Most likely because of the low resolution in GCM, CMIP5 data failed to simulate the increase trend in the southwest US, even though it was qualitatively predicted that pole ward shift of anticyclone help the North American Monsoon.

  6. Short-term Aerosol Trends: Reality or Myth?

    NASA Technical Reports Server (NTRS)

    Leptoukh, Gregory; Zubko, Viktor

    2009-01-01

    The main questions addressed in this slide presentation involve short-term trends of MODIS aerosol optical thickness (AOT) over 6 years: (1) Why are the trends different in different regions? (2) How are these trends so high? (3) Why are they "coherent" in many areas? (4) Are these changes in aerosol concentrations real, i.e., are they monotonic changes in emissions? Several views of the Spatial Distribution of AOT from Terra are shown. In conclusion there are several trends: (1) There is a broad spatial inhomogenueity in AOT trends over 6 years of MODIS Terra and Aqua (2) Some of the areas demonstrate clear positive trends related to increase of emission (e.g., Eastern China) (3) Strong trends in some other areas are superficial and might be attributed, in part, to: (3a) Least squares linear trend sensitivity to outliers (need to use more robust linear fitting method) (3b) Spatial and temporal shifts or trends in meteorological conditions, especially in wind patterns responsible for aerosol transport (6) Aerosol trends should be studied together with changes in meteorology patterns as they might closely linked together

  7. Estimating temporal trend in the presence of spatial complexity: A Bayesian hierarchical model for a wetland plant population undergoing restoration

    USGS Publications Warehouse

    Rodhouse, T.J.; Irvine, K.M.; Vierling, K.T.; Vierling, L.A.

    2011-01-01

    Monitoring programs that evaluate restoration and inform adaptive management are important for addressing environmental degradation. These efforts may be well served by spatially explicit hierarchical approaches to modeling because of unavoidable spatial structure inherited from past land use patterns and other factors. We developed Bayesian hierarchical models to estimate trends from annual density counts observed in a spatially structured wetland forb (Camassia quamash [camas]) population following the cessation of grazing and mowing on the study area, and in a separate reference population of camas. The restoration site was bisected by roads and drainage ditches, resulting in distinct subpopulations ("zones") with different land use histories. We modeled this spatial structure by fitting zone-specific intercepts and slopes. We allowed spatial covariance parameters in the model to vary by zone, as in stratified kriging, accommodating anisotropy and improving computation and biological interpretation. Trend estimates provided evidence of a positive effect of passive restoration, and the strength of evidence was influenced by the amount of spatial structure in the model. Allowing trends to vary among zones and accounting for topographic heterogeneity increased precision of trend estimates. Accounting for spatial autocorrelation shifted parameter coefficients in ways that varied among zones depending on strength of statistical shrinkage, autocorrelation and topographic heterogeneity-a phenomenon not widely described. Spatially explicit estimates of trend from hierarchical models will generally be more useful to land managers than pooled regional estimates and provide more realistic assessments of uncertainty. The ability to grapple with historical contingency is an appealing benefit of this approach.

  8. Decreasing spatial variability in precipitation extremes in southwestern China and the local/large-scale influencing factors

    NASA Astrophysics Data System (ADS)

    Liu, Meixian; Xu, Xianli; Sun, Alex

    2015-07-01

    Climate extremes can cause devastating damage to human society and ecosystems. Recent studies have drawn many conclusions about trends in climate extremes, but few have focused on quantitative analysis of their spatial variability and underlying mechanisms. By using the techniques of overlapping moving windows, the Mann-Kendall trend test, correlation, and stepwise regression, this study examined the spatial-temporal variation of precipitation extremes and investigated the potential key factors influencing this variation in southwestern (SW) China, a globally important biodiversity hot spot and climate-sensitive region. Results showed that the changing trends of precipitation extremes were not spatially uniform, but the spatial variability of these precipitation extremes decreased from 1959 to 2012. Further analysis found that atmospheric circulations rather than local factors (land cover, topographic conditions, etc.) were the main cause of such precipitation extremes. This study suggests that droughts or floods may become more homogenously widespread throughout SW China. Hence, region-wide assessments and coordination are needed to help mitigate the economic and ecological impacts.

  9. Spatial correlation in precipitation trends in the Brazilian Amazon

    NASA Astrophysics Data System (ADS)

    Buarque, Diogo Costa; Clarke, Robin T.; Mendes, Carlos Andre Bulhoes

    2010-06-01

    A geostatistical analysis of variables derived from Amazon daily precipitation records (trends in annual precipitation totals, trends in annual maximum precipitation accumulated over 1-5 days, trend in length of dry spell, trend in number of wet days per year) gave results that are consistent with those previously reported. Averaged over the Brazilian Amazon region as a whole, trends in annual maximum precipitations were slightly negative, the trend in the length of dry spell was slightly positive, and the trend in the number of wet days in the year was slightly negative. For trends in annual maximum precipitation accumulated over 1-5 days, spatial correlation between trends was found to extend up to a distance equivalent to at least half a degree of latitude or longitude, with some evidence of anisotropic correlation. Time trends in annual precipitation were found to be spatially correlated up to at least ten degrees of separation, in both W-E and S-N directions. Anisotropic spatial correlation was strongly evident in time trends in length of dry spell with much stronger evidence of spatial correlation in the W-E direction, extending up to at least five degrees of separation, than in the S-N. Because the time trends analyzed are shown to be spatially correlated, it is argued that methods at present widely used to test the statistical significance of climate trends over time lead to erroneous conclusions if spatial correlation is ignored, because records from different sites are assumed to be statistically independent.

  10. Modeling trends from North American Breeding Bird Survey data: a spatially explicit approach

    USGS Publications Warehouse

    Bled, Florent; Sauer, John R.; Pardieck, Keith L.; Doherty, Paul; Royle, J. Andy

    2013-01-01

    Population trends, defined as interval-specific proportional changes in population size, are often used to help identify species of conservation interest. Efficient modeling of such trends depends on the consideration of the correlation of population changes with key spatial and environmental covariates. This can provide insights into causal mechanisms and allow spatially explicit summaries at scales that are of interest to management agencies. We expand the hierarchical modeling framework used in the North American Breeding Bird Survey (BBS) by developing a spatially explicit model of temporal trend using a conditional autoregressive (CAR) model. By adopting a formal spatial model for abundance, we produce spatially explicit abundance and trend estimates. Analyses based on large-scale geographic strata such as Bird Conservation Regions (BCR) can suffer from basic imbalances in spatial sampling. Our approach addresses this issue by providing an explicit weighting based on the fundamental sample allocation unit of the BBS. We applied the spatial model to three species from the BBS. Species have been chosen based upon their well-known population change patterns, which allows us to evaluate the quality of our model and the biological meaning of our estimates. We also compare our results with the ones obtained for BCRs using a nonspatial hierarchical model (Sauer and Link 2011). Globally, estimates for mean trends are consistent between the two approaches but spatial estimates provide much more precise trend estimates in regions on the edges of species ranges that were poorly estimated in non-spatial analyses. Incorporating a spatial component in the analysis not only allows us to obtain relevant and biologically meaningful estimates for population trends, but also enables us to provide a flexible framework in order to obtain trend estimates for any area.

  11. Trend detection in river flow indices in Poland

    NASA Astrophysics Data System (ADS)

    Piniewski, Mikołaj; Marcinkowski, Paweł; Kundzewicz, Zbigniew W.

    2018-02-01

    The issue of trend detection in long time series of river flow records is of vast theoretical interest and considerable practical relevance. Water management is based on the assumption of stationarity; hence, it is crucial to check whether taking this assumption is justified. The objective of this study is to analyse long-term trends in selected river flow indices in small- and medium-sized catchments with relatively unmodified flow regime (semi-natural catchments) in Poland. The examined indices describe annual and seasonal average conditions as well as annual extreme conditions—low and high flows. The special focus is on the spatial analysis of trends, carried out on a comprehensive, representative data set of flow gauges. The present paper is timely, as no spatially comprehensive studies (i.e. covering the entire Poland or its large parts) on trend detection in time series of river flow have been done in the recent 15 years or so. The results suggest that there is a strong random component in the river flow process, the changes are weak and the spatial pattern is complex. Yet, the results of trend detection in different indices of river flow in Poland show that there exists a spatial divide that seems to hold quite generally for various indices (annual, seasonal, as well as low and high flow). Decreases of river flow dominate in the northern part of the country and increases usually in the southern part. Stations in the central part show mostly `no trend' results. However, the spatial gradient is apparent only for the data for the period 1981-2016 rather than for 1956-2016. It seems also that the magnitude of increases of river flow is generally lower than that of decreases.

  12. Spatial pattern and temporal trend of mortality due to tuberculosis 10

    PubMed Central

    de Queiroz, Ana Angélica Rêgo; Berra, Thaís Zamboni; Garcia, Maria Concebida da Cunha; Popolin, Marcela Paschoal; Belchior, Aylana de Souza; Yamamura, Mellina; dos Santos, Danielle Talita; Arroyo, Luiz Henrique; Arcêncio, Ricardo Alexandre

    2018-01-01

    ABSTRACT Objectives: To describe the epidemiological profile of mortality due to tuberculosis (TB), to analyze the spatial pattern of these deaths and to investigate the temporal trend in mortality due to tuberculosis in Northeast Brazil. Methods: An ecological study based on secondary mortality data. Deaths due to TB were included in the study. Descriptive statistics were calculated and gross mortality rates were estimated and smoothed by the Local Empirical Bayesian Method. Prais-Winsten’s regression was used to analyze the temporal trend in the TB mortality coefficients. The Kernel density technique was used to analyze the spatial distribution of TB mortality. Results: Tuberculosis was implicated in 236 deaths. The burden of tuberculosis deaths was higher amongst males, single people and people of mixed ethnicity, and the mean age at death was 51 years. TB deaths were clustered in the East, West and North health districts, and the tuberculosis mortality coefficient remained stable throughout the study period. Conclusions: Analyses of the spatial pattern and temporal trend in mortality revealed that certain areas have higher TB mortality rates, and should therefore be prioritized in public health interventions targeting the disease. PMID:29742272

  13. Analysis of spatial and temporal rainfall trends in Sicily during the 1921-2012 period

    NASA Astrophysics Data System (ADS)

    Liuzzo, Lorena; Bono, Enrico; Sammartano, Vincenzo; Freni, Gabriele

    2016-10-01

    Precipitation patterns worldwide are changing under the effects of global warming. The impacts of these changes could dramatically affect the hydrological cycle and, consequently, the availability of water resources. In order to improve the quality and reliability of forecasting models, it is important to analyse historical precipitation data to account for possible future changes. For these reasons, a large number of studies have recently been carried out with the aim of investigating the existence of statistically significant trends in precipitation at different spatial and temporal scales. In this paper, the existence of statistically significant trends in rainfall from observational datasets, which were measured by 245 rain gauges over Sicily (Italy) during the 1921-2012 period, was investigated. Annual, seasonal and monthly time series were examined using the Mann-Kendall non-parametric statistical test to detect statistically significant trends at local and regional scales, and their significance levels were assessed. Prior to the application of the Mann-Kendall test, the historical dataset was completed using a geostatistical spatial interpolation technique, the residual ordinary kriging, and then processed to remove the influence of serial correlation on the test results, applying the procedure of trend-free pre-whitening. Once the trends at each site were identified, the spatial patterns of the detected trends were examined using spatial interpolation techniques. Furthermore, focusing on the 30 years from 1981 to 2012, the trend analysis was repeated with the aim of detecting short-term trends or possible changes in the direction of the trends. Finally, the effect of climate change on the seasonal distribution of rainfall during the year was investigated by analysing the trend in the precipitation concentration index. The application of the Mann-Kendall test to the rainfall data provided evidence of a general decrease in precipitation in Sicily during the 1921-2012 period. Downward trends frequently occurred during the autumn and winter months. However, an increase in total annual precipitation was detected during the period from 1981 to 2012.

  14. Spatial patterns of March and September streamflow trends in Pacific Northwest Streams, 1958-2008

    USGS Publications Warehouse

    Chang, Heejun; Jung, Il-Won; Steele, Madeline; Gannett, Marshall

    2012-01-01

    Summer streamflow is a vital water resource for municipal and domestic water supplies, irrigation, salmonid habitat, recreation, and water-related ecosystem services in the Pacific Northwest (PNW) in the United States. This study detects significant negative trends in September absolute streamflow in a majority of 68 stream-gauging stations located on unregulated streams in the PNW from 1958 to 2008. The proportion of March streamflow to annual streamflow increases in most stations over 1,000 m elevation, with a baseflow index of less than 50, while absolute March streamflow does not increase in most stations. The declining trends of September absolute streamflow are strongly associated with seven-day low flow, January–March maximum temperature trends, and the size of the basin (19–7,260 km2), while the increasing trends of the fraction of March streamflow are associated with elevation, April 1 snow water equivalent, March precipitation, center timing of streamflow, and October–December minimum temperature trends. Compared with ordinary least squares (OLS) estimated regression models, spatial error regression and geographically weighted regression (GWR) models effectively remove spatial autocorrelation in residuals. The GWR model results show spatial gradients of local R 2 values with consistently higher local R 2 values in the northern Cascades. This finding illustrates that different hydrologic landscape factors, such as geology and seasonal distribution of precipitation, also influence streamflow trends in the PNW. In addition, our spatial analysis model results show that considering various geographic factors help clarify the dynamics of streamflow trends over a large geographical area, supporting a spatial analysis approach over aspatial OLS-estimated regression models for predicting streamflow trends. Results indicate that transitional rain–snow surface water-dominated basins are likely to have reduced summer streamflow under warming scenarios. Consequently, a better understanding of the relationships among summer streamflow, precipitation, snowmelt, elevation, and geology can help water managers predict the response of regional summer streamflow to global warming.

  15. Urban sprawl and fragmentation in Latin America: a dynamic quantification and characterization of spatial patterns.

    PubMed

    Inostroza, Luis; Baur, Rolf; Csaplovics, Elmar

    2013-01-30

    South America is one of the most urbanized continents in the world, where almost 84% of the total population lives in cities, more urbanized than North America (82%) and Europe (73%). Spatial dynamics, their structure, main features, land consumption rates, spatial arrangement, fragmentation degrees and comparability, remain mostly unknown for most Latin American cities. Using satellite imagery the main parameters of sprawl are quantified for 10 Latin American cities over a period of 20 years by monitoring growth patterns and identifying spatial metrics to characterize urban development and sprawling features measured with GIS tools. This quantification contributes to a better understanding of urban form in Latin America. A pervasive spatial expansion has been observed, where most of the studied cities are expanding at fast rates with falling densities trend. Although important differences in the rates of land consumption and densities exist, there is an underlying fragmentation trend towards increasing sprawl. These trends of spatial discontinuity may eventually be intensified by further economic development. Urban Sprawl/Latin America/GIS metrics/spatial development. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Spatial patterns and temporal trends in mercury concentrations, precipitation depths, and mercury wet deposition in the North American Great Lakes region, 2002-2008

    USGS Publications Warehouse

    Risch, Martin R.; Gay, David A.; Fowler, Kathleen K.; Keeler, Gerard J.; Backus, Sean M.; Blanchard, Pierrette; Barres, James A.; Dvonch, J. Timothy

    2012-01-01

    Annual and weekly mercury (Hg) concentrations, precipitation depths, and Hg wet deposition in the Great Lakes region were analyzed by using data from 5 monitoring networks in the USA and Canada for a 2002-2008 study period. High-resolution maps of calculated annual data, 7-year mean data, and net interannual change for the study period were prepared to assess spatial patterns. Areas with 7-year mean annual Hg concentrations higher than the 12 ng per liter water-quality criterion were mapped in 4 states. Temporal trends in measured weekly data were determined statistically. Monitoring sites with significant 7-year trends in weekly Hg wet deposition were spatially separated and were not sites with trends in weekly Hg concentration. During 2002-2008, Hg wet deposition was found to be unchanged in the Great Lakes region and its subregions. Any small decreases in Hg concentration apparently were offset by increases in precipitation.

  17. Temporal and spatial characteristics of annual and seasonal rainfall in Malawi

    NASA Astrophysics Data System (ADS)

    Ngongondo, Cosmo; Xu, Chong-Yu; Gottschalk, Lars; Tallaksen, Lena M.; Alemaw, Berhanu

    2010-05-01

    An understanding of the temporal and spatial characteristics of rainfall is central to water resources planning and management. However, such information is often limited in many developing countries like Malawi. In an effort to bridge the information gap, this study examined the temporal and spatial charecteristics of rainfall in Malawi. Rainfall readings from 42 stations across Malawi from 1960 to 2006 were analysed at monthly, annual and seasonal scales. The Malawian rainfall season lasts from November to April. The data were firstly subjected to quality checks through the cumulative deviations test and the Standard Normal Homogeinity Test (SNHT). Monthly distribution in a typical year, called heterogeneity, was investigated using the Precipitation Concentration Index (PCI). Further, normalized precipitation anomaly series of annual rainfall series (AR) and the PCI (APCI) were used to test for interannual rainfall variability. Spatial variability was characterised by fitting the Spatial Correlation function (SCF). The nonparametric Mann-Kendall statistic was used to investigate the temporal trends of the various rainfall variables. The results showed that 40 of the stations passed both data quality tests. For the two stations that failed, the data were adjusted using nearby stations. Annual and seasonal rainfall were found to be characterised by high spatial variation. The country mean annual rainfall was 1095 mm with mean interannual variability of 26%. The highland areas to the north and southeast of the country exhibited the highest rainfall and lowest interannual variability. Lowest rainfall coupled with high interannual variability was found in the Lower Shire basin, in the southern part of Malawi. This simillarity is the pattern of annual and seasonal rainfall should be expected because all stations had over 90% of their observed annual rainfall in the six month period between November and April. Monthly rainfall was found to be highly variable both temporally and spatially. None of the stations have stable monthly rainfall regimes (mean PCI of less than 10). Stations with the highest mean rainfall were found to have a lower interannual variability. The rainfall stations showed low spatial correlations for annual, monthly as well as seasonal timescales indicating that the data may not be suitable for spatial interpolation. However, some structure (i.e. lower correlation with distance) could be observed when aggregating the data at 50 mile intervals. The annual and seasonal rainfall series were dominated by negative trends. The spatial distribution of the trends can be described as heterogeneous, although most of the stations in the southern region have negative trends. At the monthly timescale, 37 of the stations show a negative trend with four of the stations, all in the south, showing significant negative trends. On the other hand, only 5 stations show positive trends with only one significant trend in the south. Keywords: Malawi, rainfall trends, spatial variation

  18. Evaluating the Consistency of the 1982–1999 NDVI Trends in the Iberian Peninsula across Four Time-series Derived from the AVHRR Sensor: LTDR, GIMMS, FASIR, and PAL-II

    PubMed Central

    Alcaraz-Segura, Domingo; Liras, Elisa; Tabik, Siham; Paruelo, José; Cabello, Javier

    2010-01-01

    Successive efforts have processed the Advanced Very High Resolution Radiometer (AVHRR) sensor archive to produce Normalized Difference Vegetation Index (NDVI) datasets (i.e., PAL, FASIR, GIMMS, and LTDR) under different corrections and processing schemes. Since NDVI datasets are used to evaluate carbon gains, differences among them may affect nations’ carbon budgets in meeting international targets (such as the Kyoto Protocol). This study addresses the consistency across AVHRR NDVI datasets in the Iberian Peninsula (Spain and Portugal) by evaluating whether their 1982–1999 NDVI trends show similar spatial patterns. Significant trends were calculated with the seasonal Mann-Kendall trend test and their spatial consistency with partial Mantel tests. Over 23% of the Peninsula (N, E, and central mountain ranges) showed positive and significant NDVI trends across the four datasets and an additional 18% across three datasets. In 20% of Iberia (SW quadrant), the four datasets exhibited an absence of significant trends and an additional 22% across three datasets. Significant NDVI decreases were scarce (croplands in the Guadalquivir and Segura basins, La Mancha plains, and Valencia). Spatial consistency of significant trends across at least three datasets was observed in 83% of the Peninsula, but it decreased to 47% when comparing across the four datasets. FASIR, PAL, and LTDR were the most spatially similar datasets, while GIMMS was the most different. The different performance of each AVHRR dataset to detect significant NDVI trends (e.g., LTDR detected greater significant trends (both positive and negative) and in 32% more pixels than GIMMS) has great implications to evaluate carbon budgets. The lack of spatial consistency across NDVI datasets derived from the same AVHRR sensor archive, makes it advisable to evaluate carbon gains trends using several satellite datasets and, whether possible, independent/additional data sources to contrast. PMID:22205868

  19. Evaluating the consistency of the 1982-1999 NDVI trends in the Iberian Peninsula across four time-series derived from the AVHRR sensor: LTDR, GIMMS, FASIR, and PAL-II.

    PubMed

    Alcaraz-Segura, Domingo; Liras, Elisa; Tabik, Siham; Paruelo, José; Cabello, Javier

    2010-01-01

    Successive efforts have processed the Advanced Very High Resolution Radiometer (AVHRR) sensor archive to produce Normalized Difference Vegetation Index (NDVI) datasets (i.e., PAL, FASIR, GIMMS, and LTDR) under different corrections and processing schemes. Since NDVI datasets are used to evaluate carbon gains, differences among them may affect nations' carbon budgets in meeting international targets (such as the Kyoto Protocol). This study addresses the consistency across AVHRR NDVI datasets in the Iberian Peninsula (Spain and Portugal) by evaluating whether their 1982-1999 NDVI trends show similar spatial patterns. Significant trends were calculated with the seasonal Mann-Kendall trend test and their spatial consistency with partial Mantel tests. Over 23% of the Peninsula (N, E, and central mountain ranges) showed positive and significant NDVI trends across the four datasets and an additional 18% across three datasets. In 20% of Iberia (SW quadrant), the four datasets exhibited an absence of significant trends and an additional 22% across three datasets. Significant NDVI decreases were scarce (croplands in the Guadalquivir and Segura basins, La Mancha plains, and Valencia). Spatial consistency of significant trends across at least three datasets was observed in 83% of the Peninsula, but it decreased to 47% when comparing across the four datasets. FASIR, PAL, and LTDR were the most spatially similar datasets, while GIMMS was the most different. The different performance of each AVHRR dataset to detect significant NDVI trends (e.g., LTDR detected greater significant trends (both positive and negative) and in 32% more pixels than GIMMS) has great implications to evaluate carbon budgets. The lack of spatial consistency across NDVI datasets derived from the same AVHRR sensor archive, makes it advisable to evaluate carbon gains trends using several satellite datasets and, whether possible, independent/additional data sources to contrast.

  20. Spatial distribution and temporal trends of rainfall erosivity in mainland China for 1951-2010

    Treesearch

    Wei Qin; Qiankun Guo; Changqing Zuo; Zhijie Shan; Liang Ma; Ge Sun

    2016-01-01

    Rainfall erosivity is an important factor for estimating soil erosion rates. Understanding the spatial distributionand temporal trends of rainfall erosivity is especially critical for soil erosion risk assessment and soil conservationplanning in mainland China. However, reports on the spatial distribution and temporal trends of rainfall...

  1. Trends in monthly precipitation over the northwest of Iran (NWI)

    NASA Astrophysics Data System (ADS)

    Asakereh, Hossein

    2017-10-01

    Increasing global temperatures during the last century have had their own effects on other climatic conditions, particularly on precipitation characteristics. This study was meant to investigate the spatial and temporal monthly trends of precipitation using the least square error (LSE) approach for the northwest of Iran (NWI). To this end, a database was obtained from 250 measuring stations uniformly scattered all over NWI from 1961 to 2010. The spatial average of annual precipitation in NWI during the period of study was approximately 220.9-726.7 mm. The annual precipitation decreased from southwest to northeast, while the large amount of precipitation was concentrated in the south-west and in the mountainous areas. All over NWI, the maximum and minimum precipitation records occurred from March to May and July to September, respectively. The coefficient of variation (CV) is greater than 44 % in all of NWI and may reach over 76 % in many places. The greatest range of CV, for instance, occurred during July. The spatial variability of precipitation was consistent with a tempo-spatial pattern of precipitation trends. There was a considerable difference between the amounts of change during the months, and the negative trends were mainly attributed to areas concentrated in eastern and southern parts of NWI far from the western mountain ranges. Moreover, limited areas with positive precipitation trends can be found in very small and isolated regions. This is observable particularly in the eastern half of NWI, which is mostly located far from Westerlies. On the other hand, seasonal precipitation trends indicated a slight decrease during winter and spring and a slight increase during summer and autumn. Consequently, there were major changes in average precipitation that occurred negatively in the area under study during the observation period. This finding is in agreement with those findings by recent studies which revealed a decreasing trend of around 2 mm/year over NWI during 1966-2005.

  2. Spatio-Temporal Trends of Fire in Slash and Burn Agriculture Landscape: A Case Study from Nagaland, India

    NASA Astrophysics Data System (ADS)

    Padalia, H.; Mondal, P. P.

    2014-11-01

    Increasing incidences of fire from land conversion and residue burning in tropics is the major concern in global warming. Spatial and temporal monitoring of trends of fire incidences is, therefore, significant in order to determine contribution of carbon emissions from slash and burn agriculture. In this study, we analyzed time-series Terra / Aqua MODIS satellite hotspot products from 2001 to 2013 to derive intra- and inter-annual trends in fire incidences in Nagaland state, located in the Indo-Burma biodiversity hotspot. Time-series regression was applied to MODIS fire products at variable spatial scales in GIS. Significance of change in fire frequency at each grid level was tested using t statistic. Spatial clustering of higher or lower fire incidences across study area was determined using Getis-OrdGi statistic. Maximum fire incidences were encountered in moist mixed deciduous forests (46%) followed by secondary moist bamboo brakes (30%). In most parts of the study area fire incidences peaked during March while in warmer parts (e.g. Mon district dominated by indigenous people) fire activity starts as early as during November and peaks in January. Regression trend analysis captured noticeable areas with statistically significant positive (e.g. Mokokchung, Wokha, Mon, Tuensang and Kiphire districts) and negative (e.g. Kohima and north-western part of Mokokchung district) inter-annual fire frequency trends based on area-based aggregation of fire occurrences at different grid sizes. Localization of spatial clusters of high fire incidences was observed in Mokokchung, Wokha, Mon,Tuensang and Kiphire districts.

  3. Extent of Night Warming and Spatially Heterogeneous Cloudiness Differentiate Temporal Trend of Greenness in Mountainous Tropics in the New Century

    NASA Astrophysics Data System (ADS)

    Yu, Mei; Gao, Qiong; Gao, Chunxiao; Wang, Chao

    2017-01-01

    Tropical forests have essential functions in global C dynamics but vulnerable to changes in land cover land use (LCLUC) and climate. The tropics of Caribbean are experiencing warming and drying climate and diverse LCLUC. However, large-scale studies to detect long-term trends of C and mechanisms behind are still rare. Using MODIS Enhanced Vegetation Index (EVI), we investigated greenness trend in the Greater Antilles Caribbean during 2000-2015, and analyzed trend of vegetation patches without LCLUC to give prominence to climate impacts. We hypothesized that night warming and heavy cloudiness would reduce EVI in this mountainous tropical region. Over the 15 years, EVI decreased significantly in Jamaica, Haiti, Dominican Republic, and Puerto Rico, but increased in Cuba partly due to its strong reforestation. Haiti had the largest decreasing trend because of continuous deforestation for charcoals. After LCLUC was excluded, EVI trend still varied greatly, decreasing in the windward but increasing in the leeward of Puerto Rico. Nighttime warming reinforced by spatially heterogeneous cloudiness was found to significantly and negatively correlate with EVI trend, and explained the spatial pattern of the latter. Although cooled daytime and increased rainfall might enhance EVI, nighttime warming dominated the climate impacts and differentiated the EVI trend.

  4. Extent of Night Warming and Spatially Heterogeneous Cloudiness Differentiate Temporal Trend of Greenness in Mountainous Tropics in the New Century

    PubMed Central

    Yu, Mei; Gao, Qiong; Gao, Chunxiao; Wang, Chao

    2017-01-01

    Tropical forests have essential functions in global C dynamics but vulnerable to changes in land cover land use (LCLUC) and climate. The tropics of Caribbean are experiencing warming and drying climate and diverse LCLUC. However, large-scale studies to detect long-term trends of C and mechanisms behind are still rare. Using MODIS Enhanced Vegetation Index (EVI), we investigated greenness trend in the Greater Antilles Caribbean during 2000–2015, and analyzed trend of vegetation patches without LCLUC to give prominence to climate impacts. We hypothesized that night warming and heavy cloudiness would reduce EVI in this mountainous tropical region. Over the 15 years, EVI decreased significantly in Jamaica, Haiti, Dominican Republic, and Puerto Rico, but increased in Cuba partly due to its strong reforestation. Haiti had the largest decreasing trend because of continuous deforestation for charcoals. After LCLUC was excluded, EVI trend still varied greatly, decreasing in the windward but increasing in the leeward of Puerto Rico. Nighttime warming reinforced by spatially heterogeneous cloudiness was found to significantly and negatively correlate with EVI trend, and explained the spatial pattern of the latter. Although cooled daytime and increased rainfall might enhance EVI, nighttime warming dominated the climate impacts and differentiated the EVI trend. PMID:28120949

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Subimal; Das, Debasish; Kao, Shih-Chieh

    Recent studies disagree on how rainfall extremes over India have changed in space and time over the past half century, as well as on whether the changes observed are due to global warming or regional urbanization. Although a uniform and consistent decrease in moderate rainfall has been reported, a lack of agreement about trends in heavy rainfall may be due in part to differences in the characterization and spatial averaging of extremes. Here we use extreme value theory to examine trends in Indian rainfall over the past half century in the context of long-term, low-frequency variability.We show that when generalizedmore » extreme value theory is applied to annual maximum rainfall over India, no statistically significant spatially uniform trends are observed, in agreement with previous studies using different approaches. Furthermore, our space time regression analysis of the return levels points to increasing spatial variability of rainfall extremes over India. Our findings highlight the need for systematic examination of global versus regional drivers of trends in Indian rainfall extremes, and may help to inform flood hazard preparedness and water resource management in the region.« less

  6. Mapping Patterns and Trends in the Spatial Availability of Alcohol Using Low-Level Geographic Data: A Case Study in England 2003-2013.

    PubMed

    Angus, Colin; Holmes, John; Maheswaran, Ravi; Green, Mark A; Meier, Petra; Brennan, Alan

    2017-04-12

    Much literature examines the relationship between the spatial availability of alcohol and alcohol-related harm. This study aims to address an important gap in this evidence by using detailed outlet data to examine recent temporal trends in the sociodemographic distribution of spatial availability for different types of alcohol outlet in England. Descriptive analysis of measures of alcohol outlet density and proximity using extremely high resolution market research data stratified by outlet type and quintiles of area-level deprivation from 2003, 2007, 2010 and 2013 was undertaken and hierarchical linear growth models fitted to explore the significance of socioeconomic differences. We find that overall availability of alcohol changed very little from 2003 to 2013 (density +1.6%), but this conceals conflicting trends by outlet type and area-level deprivation. Mean on-trade density has decreased substantially (-2.2 outlets within 1 km (Inter-Quartile Range (IQR) -3-0), although access to restaurants has increased (+1.0 outlets (IQR 0-1)), while off-trade access has risen substantially (+2.4 outlets (IQR 0-3)). Availability is highest in the most deprived areas ( p < 0.0001) although these areas have also seen the greatest falls in on-trade outlet availability ( p < 0.0001). This study underlines the importance of using detailed, low-level geographic data to understand patterns and trends in the spatial availability of alcohol. There are significant variations in these trends by outlet type and deprivation level which may have important implications for health inequalities and public health policy.

  7. Mapping Patterns and Trends in the Spatial Availability of Alcohol Using Low-Level Geographic Data: A Case Study in England 2003–2013

    PubMed Central

    Angus, Colin; Holmes, John; Maheswaran, Ravi; Green, Mark A.; Meier, Petra; Brennan, Alan

    2017-01-01

    Much literature examines the relationship between the spatial availability of alcohol and alcohol-related harm. This study aims to address an important gap in this evidence by using detailed outlet data to examine recent temporal trends in the sociodemographic distribution of spatial availability for different types of alcohol outlet in England. Descriptive analysis of measures of alcohol outlet density and proximity using extremely high resolution market research data stratified by outlet type and quintiles of area-level deprivation from 2003, 2007, 2010 and 2013 was undertaken and hierarchical linear growth models fitted to explore the significance of socioeconomic differences. We find that overall availability of alcohol changed very little from 2003 to 2013 (density +1.6%), but this conceals conflicting trends by outlet type and area-level deprivation. Mean on-trade density has decreased substantially (−2.2 outlets within 1 km (Inter-Quartile Range (IQR) −3–0), although access to restaurants has increased (+1.0 outlets (IQR 0–1)), while off-trade access has risen substantially (+2.4 outlets (IQR 0–3)). Availability is highest in the most deprived areas (p < 0.0001) although these areas have also seen the greatest falls in on-trade outlet availability (p < 0.0001). This study underlines the importance of using detailed, low-level geographic data to understand patterns and trends in the spatial availability of alcohol. There are significant variations in these trends by outlet type and deprivation level which may have important implications for health inequalities and public health policy. PMID:28417941

  8. The relative roles of environment, history and local dispersal in controlling the distributions of common tree and shrub species in a tropical forest landscape, Panama

    USGS Publications Warehouse

    Svenning, J.-C.; Engelbrecht, B.M.J.; Kinner, D.A.; Kursar, T.A.; Stallard, R.F.; Wright, S.J.

    2006-01-01

    We used regression models and information-theoretic model selection to assess the relative importance of environment, local dispersal and historical contingency as controls of the distributions of 26 common plant species in tropical forest on Barro Colorado Island (BCI), Panama. We censused eighty-eight 0.09-ha plots scattered across the landscape. Environmental control, local dispersal and historical contingency were represented by environmental variables (soil moisture, slope, soil type, distance to shore, old-forest presence), a spatial autoregressive parameter (??), and four spatial trend variables, respectively. We built regression models, representing all combinations of the three hypotheses, for each species. The probability that the best model included the environmental variables, spatial trend variables and ?? averaged 33%, 64% and 50% across the study species, respectively. The environmental variables, spatial trend variables, ??, and a simple intercept model received the strongest support for 4, 15, 5 and 2 species, respectively. Comparing the model results to information on species traits showed that species with strong spatial trends produced few and heavy diaspores, while species with strong soil moisture relationships were particularly drought-sensitive. In conclusion, history and local dispersal appeared to be the dominant controls of the distributions of common plant species on BCI. Copyright ?? 2006 Cambridge University Press.

  9. Large-Scale Overlays and Trends: Visually Mining, Panning and Zooming the Observable Universe.

    PubMed

    Luciani, Timothy Basil; Cherinka, Brian; Oliphant, Daniel; Myers, Sean; Wood-Vasey, W Michael; Labrinidis, Alexandros; Marai, G Elisabeta

    2014-07-01

    We introduce a web-based computing infrastructure to assist the visual integration, mining and interactive navigation of large-scale astronomy observations. Following an analysis of the application domain, we design a client-server architecture to fetch distributed image data and to partition local data into a spatial index structure that allows prefix-matching of spatial objects. In conjunction with hardware-accelerated pixel-based overlays and an online cross-registration pipeline, this approach allows the fetching, displaying, panning and zooming of gigabit panoramas of the sky in real time. To further facilitate the integration and mining of spatial and non-spatial data, we introduce interactive trend images-compact visual representations for identifying outlier objects and for studying trends within large collections of spatial objects of a given class. In a demonstration, images from three sky surveys (SDSS, FIRST and simulated LSST results) are cross-registered and integrated as overlays, allowing cross-spectrum analysis of astronomy observations. Trend images are interactively generated from catalog data and used to visually mine astronomy observations of similar type. The front-end of the infrastructure uses the web technologies WebGL and HTML5 to enable cross-platform, web-based functionality. Our approach attains interactive rendering framerates; its power and flexibility enables it to serve the needs of the astronomy community. Evaluation on three case studies, as well as feedback from domain experts emphasize the benefits of this visual approach to the observational astronomy field; and its potential benefits to large scale geospatial visualization in general.

  10. Regional nutrient trends in streams and rivers of the United States, 1993-2003

    USGS Publications Warehouse

    Sprague, Lori A.; Lorenz, David L.

    2009-01-01

    Trends in flow-adjusted concentrations (indicators of anthropogenic changes) and observed concentrations (indicators of natural and anthropogenic changes) of total phosphorus and total nitrogen from 1993 to 2003 were evaluated in the eastern, central, and western United States by adapting the Regional Kendall trend test to account for seasonality and spatial correlation. The only significant regional trend was an increase in flow-adjusted concentrations of total phosphorus in the central United States, which corresponded to increases in phosphorus inputs from fertilizer in the region, particularly west of the Mississippi River. A similar upward regional trend in observed total phosphorus concentrations in the central United States was not found, likely because precipitation and runoff decreased during drought conditions in the region, offsetting the increased source loading on the land surface. A greater number of regional trends would have been significant if spatial correlation had been disregarded, indicating the importance of spatial correlation modifications in regional trend assessments when sites are not spatially independent.

  11. A Study on Environmental Research Trends Using Text-Mining Method - Focus on Spatial information and ICT -

    NASA Astrophysics Data System (ADS)

    Lee, M. J.; Oh, K. Y.; Joung-ho, L.

    2016-12-01

    Recently there are many research about analysing the interaction between entities by text-mining analysis in various fields. In this paper, we aimed to quantitatively analyse research-trends in the area of environmental research relating either spatial information or ICT (Information and Communications Technology) by Text-mining analysis. To do this, we applied low-dimensional embedding method, clustering analysis, and association rule to find meaningful associative patterns of key words frequently appeared in the articles. As the authors suppose that KCI (Korea Citation Index) articles reflect academic demands, total 1228 KCI articles that have been published from 1996 to 2015 were reviewed and analysed by Text-mining method. First, we derived KCI articles from NDSL(National Discovery for Science Leaders) site. And then we pre-processed their key-words elected from abstract and then classified those in separable sectors. We investigated the appearance rates and association rule of key-words for articles in the two fields: spatial-information and ICT. In order to detect historic trends, analysis was conducted separately for the four periods: 1996-2000, 2001-2005, 2006-2010, 2011-2015. These analysis were conducted with the usage of R-software. As a result, we conformed that environmental research relating spatial information mainly focused upon such fields as `GIS(35%)', `Remote-Sensing(25%)', `environmental theme map(15.7%)'. Next, `ICT technology(23.6%)', `ICT service(5.4%)', `mobile(24%)', `big data(10%)', `AI(7%)' are primarily emerging from environmental research relating ICT. Thus, from the analysis results, this paper asserts that research trends and academic progresses are well-structured to review recent spatial information and ICT technology and the outcomes of the analysis can be an adequate guidelines to establish environment policies and strategies. KEY WORDS: Big data, Test-mining, Environmental research, Spatial-information, ICT Acknowledgements: The authors appreciate the support that this study has received from `Building application frame of environmental issues, to respond to the latest ICT trends'.

  12. Spatio-temporal trends of rainfall across Indian river basins

    NASA Astrophysics Data System (ADS)

    Bisht, Deepak Singh; Chatterjee, Chandranath; Raghuwanshi, Narendra Singh; Sridhar, Venkataramana

    2018-04-01

    Daily gridded high-resolution rainfall data of India Meteorological Department at 0.25° spatial resolution (1901-2015) was analyzed to detect the trend in seasonal, annual, and maximum cumulative rainfall for 1, 2, 3, and 5 days. The present study was carried out for 85 river basins of India during 1901-2015 and pre- and post-urbanization era, i.e., 1901-1970 and 1971-2015, respectively. Mann-Kendall ( α = 0.05) and Theil-Sen's tests were employed for detecting the trend and percentage of change over the period of time, respectively. Daily extreme rainfall events, above 95 and 99 percentile threshold, were also analyzed to detect any trend in their magnitude and number of occurrences. The upward trend was found for the majority of the sub-basins for 1-, 2-, 3-, and 5-day maximum cumulative rainfall during the post-urbanization era. The magnitude of extreme threshold events is also found to be increasing in the majority of the river basins during the post-urbanization era. A 30-year moving window analysis further revealed a widespread upward trend in a number of extreme threshold rainfall events possibly due to urbanization and climatic factors. Overall trends studied against intra-basin trend across Ganga basin reveal the mixed pattern of trends due to inherent spatial heterogeneity of rainfall, therefore, highlighting the importance of scale for such studies.

  13. Spatial Visualisation and Cognitive Style: How Do Gender Differences Play Out?

    ERIC Educational Resources Information Center

    Ramful, Ajay; Lowrie, Tom

    2015-01-01

    This study investigated potential gender differences in a sample of 807 Year 6 Singaporean students in relation to two variables: spatial visualisation ability and cognitive style. In contrast to the general trend, overall there were no significant gender differences on spatial visualisation ability. However, gender differences were prevalent…

  14. Trend analysis of hydro-climatic variables in the north of Iran

    NASA Astrophysics Data System (ADS)

    Nikzad Tehrani, E.; Sahour, H.; Booij, M. J.

    2018-04-01

    Trend analysis of climate variables such as streamflow, precipitation, and temperature provides useful information for understanding the hydrological changes associated with climate change. In this study, a nonparametric Mann-Kendall test was employed to evaluate annual, seasonal, and monthly trends of precipitation and streamflow for the Neka basin in the north of Iran over a 44-year period (1972 to 2015). In addition, the Inverse Distance Weight (IDW) method was used for annual seasonal, monthly, and daily precipitation trends in order to investigate the spatial correlation between precipitation and streamflow trends in the study area. Results showed a downward trend in annual and winter precipitation (Z < -1.96) and an upward trend in annual maximum daily precipitation. Annual and monthly mean flows for most of the months in the Neka basin decreased by 14% significantly, but the annual maximum daily flow increased by 118%. Results for the trend analysis of streamflow and climatic variables showed that there are statistically significant relationships between precipitation and streamflow (p value < 0.05). Correlation coefficients for Kendall, Spearman's rank and linear regression are 0.43, 0.61, and 0.67, respectively. The spatial presentation of the detected precipitation and streamflow trends showed a downward trend for the mean annual precipitation observed in the upstream part of the study area which is consistent with the streamflow trend. Also, there is a good correlation between monthly and seasonal precipitation and streamflow for all sub-basins (Sefidchah, Gelvard, Abelu). In general, from a hydro-climatic point of view, the results showed that the study area is moving towards a situation with more severe drought events.

  15. Modeling Alaska boreal forests with a controlled trend surface approach

    Treesearch

    Mo Zhou; Jingjing Liang

    2012-01-01

    An approach of Controlled Trend Surface was proposed to simultaneously take into consideration large-scale spatial trends and nonspatial effects. A geospatial model of the Alaska boreal forest was developed from 446 permanent sample plots, which addressed large-scale spatial trends in recruitment, diameter growth, and mortality. The model was tested on two sets of...

  16. Geographical Gradients in Argentinean Terrestrial Mammal Species Richness and Their Environmental Correlates

    PubMed Central

    Márquez, Ana L.; Real, Raimundo; Kin, Marta S.; Guerrero, José Carlos; Galván, Betina; Barbosa, A. Márcia; Olivero, Jesús; Palomo, L. Javier; Vargas, J. Mario; Justo, Enrique

    2012-01-01

    We analysed the main geographical trends of terrestrial mammal species richness (SR) in Argentina, assessing how broad-scale environmental variation (defined by climatic and topographic variables) and the spatial form of the country (defined by spatial filters based on spatial eigenvector mapping (SEVM)) influence the kinds and the numbers of mammal species along these geographical trends. We also evaluated if there are pure geographical trends not accounted for by the environmental or spatial factors. The environmental variables and spatial filters that simultaneously correlated with the geographical variables and SR were considered potential causes of the geographic trends. We performed partial correlations between SR and the geographical variables, maintaining the selected explanatory variables statistically constant, to determine if SR was fully explained by them or if a significant residual geographic pattern remained. All groups and subgroups presented a latitudinal gradient not attributable to the spatial form of the country. Most of these trends were not explained by climate. We used a variation partitioning procedure to quantify the pure geographic trend (PGT) that remained unaccounted for. The PGT was larger for latitudinal than for longitudinal gradients. This suggests that historical or purely geographical causes may also be relevant drivers of these geographical gradients in mammal diversity. PMID:23028254

  17. The solar dimming/brightening effect over the Mediterranean Basin in the period 1979-2012

    NASA Astrophysics Data System (ADS)

    Kambezidis, H. D.; Kaskaoutis, D. G.; Kalliampakos, G. K.; Rashki, A.; Wild, M.

    2016-12-01

    Numerous studies have shown that the solar radiation reaching the Earth's surface is subjected to multi-decadal variations with significant spatial and temporal heterogeneities in both magnitude and sign. Although several studies have examined the solar radiation trends over Europe, North America and Asia, the Mediterranean Basin has not been studied extensively. This work investigates the evolution and trends in the surface net short-wave radiation (NSWR, surface solar radiation - reflected) over the Mediterranean Basin during the period 1979-2012 using monthly re-analysis datasets from the Modern Era Retrospective-Analysis for Research and Applications (MERRA) and aims to shed light on the specific role of clouds on the NSWR trends. The solar dimming/brightening phenomenon is temporally and spatially analyzed over the Mediterranean Basin. The spatially-averaged NSWR over the whole Mediterranean Basin was found to increase in MERRA by +0.36 Wm-2 per decade, with higher rates over the western Mediterranean (+0.82 Wm-2 per decade), and especially during spring (March-April-May; +1.3 Wm-2 per decade). However, statistically significant trends in NSWR either for all-sky or clean-sky conditions are observed only in May. The increasing trends in NSWR are mostly associated with decreasing ones in cloud optical depth (COD), especially for the low (<700 hPa) clouds. The decreasing COD trends (less opaque clouds and/or decrease in absolute cloudiness) are more pronounced during spring, thus controlling the increasing tendency in NSWR. The NSWR trends for cloudless (clear) skies are influenced by changes in the water-vapor content or even variations in surface albedo to a lesser degree, whereas aerosols are temporally constant in MERRA. The slight negative trend (not statistically significant) in NSWR under clear skies for nearly all months and seasons implies a slight increasing trend in water vapor under a warming and more humid climatic scenario over the Mediterranean.

  18. Characterizing uncertainties in recent trends of global terrestrial net primary production through ensemble modeling

    NASA Astrophysics Data System (ADS)

    Wang, W.; Hashimoto, H.; Ganguly, S.; Votava, P.; Nemani, R. R.; Myneni, R. B.

    2010-12-01

    Large uncertainties exist in our understanding of the trends and variability in global net primary production (NPP) and its controls. This study attempts to address this question through a multi-model ensemble experiment. In particular, we drive ecosystem models including CASA, LPJ, Biome-BGC, TOPS-BGC, and BEAMS with a long-term climate dataset (i.e., CRU-NCEP) to estimate global NPP from 1901 to 2009 at a spatial resolution of 0.5 x 0.5 degree. We calculate the trends of simulated NPP during different time periods and test their sensitivities to climate variables of solar radiation, air temperature, precipitation, vapor pressure deficit (VPD), and atmospheric CO2 levels. The results indicate a large diversity among the simulated NPP trends over the past 50 years, ranging from nearly no trend to an increasing trend of ~0.1 PgC/yr. Spatial patterns of the NPP generally show positive trends in boreal forests, induced mainly by increasing temperatures in these regions; they also show negative trends in the tropics, although the spatial patterns are more diverse. These diverse trends result from different climatic sensitivities of NPP among the tested models. Depending the ecological processes (e.g., photosynthesis or respiration) a model emphasizes, it can be more or less responsive to changes in solar radiation, temperatures, water, or atmospheric CO2 levels. Overall, these results highlight the limit of current ecosystem models in simulating NPP, which cannot be easily observed. They suggest that the traditional single-model approach is not ideal for characterizing trends and variability in global carbon cycling.

  19. Biological and climate factors co-regulated spatial-temporal dynamics of vegetation autumn phenology on the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zu, Jiaxing; Zhang, Yangjian; Huang, Ke; Liu, Yaojie; Chen, Ning; Cong, Nan

    2018-07-01

    Climate change is receiving mounting attentions from various fields and phenology is a commonly used indicator signaling vegetation responses to climate change. Previous phenology studies have mostly focused on vegetation greening-up and its climatic driving factors, while autumn phenology has been barely touched upon. In this study, vegetation phenological metrics were extracted from MODIS NDVI data and their temporal and spatial patterns were explored on the Tibetan Plateau (TP). The results showed that the start of season (SOS) has significantly earlier trend in the first decade, while the end of season (EOS) has slightly (not significant) earlier trend. In the spatial dimension, similar patterns were also identified. The SOS plays a more significant role in regulating vegetation growing season length than EOS does. The EOS and driving effects from each factor exhibited spatially heterogeneous patterns. Biological factor is the dominant factor regulating the spatial pattern of EOS, while climate factors control its inter-annual variation.

  20. Has upwelling strengthened along worldwide coasts over 1982-2010?

    NASA Astrophysics Data System (ADS)

    Varela, R.; Álvarez, I.; Santos, F.; Decastro, M.; Gómez-Gesteira, M.

    2015-05-01

    Changes in coastal upwelling strength have been widely studied since 1990 when Bakun proposed that global warming can induce the intensification of upwelling in coastal areas. Whether present wind trends support this hypothesis remains controversial, as results of previous studies seem to depend on the study area, the length of the time series, the season, and even the database used. In this study, temporal and spatial trends in the coastal upwelling regime worldwide were investigated during upwelling seasons from 1982 to 2010 using a single wind database (Climate Forecast System Reanalysis) with high spatial resolution (0.3°). Of the major upwelling systems, increasing trends were only observed in the coastal areas of Benguela, Peru, Canary, and northern California. A tendency for an increase in upwelling-favourable winds was also identified along several less studied regions, such as the western Australian and southern Caribbean coasts.

  1. Has upwelling strengthened along worldwide coasts over 1982-2010?

    PubMed Central

    Varela, R.; Álvarez, I.; Santos, F.;  deCastro, M.; Gómez-Gesteira, M.

    2015-01-01

    Changes in coastal upwelling strength have been widely studied since 1990 when Bakun proposed that global warming can induce the intensification of upwelling in coastal areas. Whether present wind trends support this hypothesis remains controversial, as results of previous studies seem to depend on the study area, the length of the time series, the season, and even the database used. In this study, temporal and spatial trends in the coastal upwelling regime worldwide were investigated during upwelling seasons from 1982 to 2010 using a single wind database (Climate Forecast System Reanalysis) with high spatial resolution (0.3°). Of the major upwelling systems, increasing trends were only observed in the coastal areas of Benguela, Peru, Canary, and northern California. A tendency for an increase in upwelling-favourable winds was also identified along several less studied regions, such as the western Australian and southern Caribbean coasts. PMID:25952477

  2. Depth-time interpolation of feature trends extracted from mobile microelectrode data with kernel functions.

    PubMed

    Wong, Stephen; Hargreaves, Eric L; Baltuch, Gordon H; Jaggi, Jurg L; Danish, Shabbar F

    2012-01-01

    Microelectrode recording (MER) is necessary for precision localization of target structures such as the subthalamic nucleus during deep brain stimulation (DBS) surgery. Attempts to automate this process have produced quantitative temporal trends (feature activity vs. time) extracted from mobile MER data. Our goal was to evaluate computational methods of generating spatial profiles (feature activity vs. depth) from temporal trends that would decouple automated MER localization from the clinical procedure and enhance functional localization in DBS surgery. We evaluated two methods of interpolation (standard vs. kernel) that generated spatial profiles from temporal trends. We compared interpolated spatial profiles to true spatial profiles that were calculated with depth windows, using correlation coefficient analysis. Excellent approximation of true spatial profiles is achieved by interpolation. Kernel-interpolated spatial profiles produced superior correlation coefficient values at optimal kernel widths (r = 0.932-0.940) compared to standard interpolation (r = 0.891). The choice of kernel function and kernel width resulted in trade-offs in smoothing and resolution. Interpolation of feature activity to create spatial profiles from temporal trends is accurate and can standardize and facilitate MER functional localization of subcortical structures. The methods are computationally efficient, enhancing localization without imposing additional constraints on the MER clinical procedure during DBS surgery. Copyright © 2012 S. Karger AG, Basel.

  3. Spatial and temporal variation of rainfall trends of Sri Lanka

    NASA Astrophysics Data System (ADS)

    Wickramagamage, P.

    2016-08-01

    This study was based on daily rainfall data of 48 stations distributed over the entire island covering a 30-year period from 1981 to 2010. Data analysis was done to identify the spatial pattern of rainfall trends. The methods employed in data analysis are linear regression and interpolation by Universal Kriging and Radial Basis function. The slope of linear regression curves of 48 stations was used in interpolation. The regression coefficients show spatially and seasonally variable positive and negative trends of annual and seasonal rainfall. About half of the mean annual pentad series show negative trends, while the rest shows positive trends. By contrast, the rainfall trends of the Southwest Monsoon (SWM) season are predominantly negative throughout the country. The first phase of the Northeast Monsoon (NEM1) displays downward trends everywhere, with the exception of the Southeastern coastal area. The strongest negative trends were found in the Northeast and in the Central Highlands. The second phase (NEM2) is mostly positive, except in the Northeast. The Inter-Monsoon (IM) periods have predominantly upward trends almost everywhere, but still the trends in some parts of the Highlands and Northeast are negative. The long-term data at Watawala Nuwara Eliya and Sandringham show a consistent decline in the rainfall over the last 100 years, particularly during the SWM. There seems to be a faster decline in the rainfall in the last 3 decades. These trends are consistent with the observations in India. It is generally accepted that there has been changes in the circulation pattern. Weakening of the SWM circulation parameters caused by global warming appears to be the main causes of recent changes. Effect of the Asian Brown Cloud may also play a role in these changes.

  4. Spatial and Temporal Temperature trends on Iraq during 1980-2015

    NASA Astrophysics Data System (ADS)

    Al-Timimi, Yassen K.; Al-Khudhairy, Aws A.

    2018-05-01

    Monthly Mean surface air temperature at 23 stations in Iraq were analyzed for temporal trends and spatial variation during 1980-2015. Seasonal and annual temperature was analyzed using Mann-Kendall test to detect the significant trend. The results of temporal analysis showed that during winter, spring, summer and Autumn have a positive trend in all the parts of Iraq. A tendency has also been observed towards warmer years, with significantly warmer summer and spring periods and slightly warmer autumn and winter, the highest increase is (3.5)°C in Basrah during the summer. The results of spatial analyze using the ArcGIS showed that the seasonal temperature can be divided into two or three distinct areas with high temperature in the south and decreasing towards north, where the trend of spatial temperature were decreasing from south to the north in all the four seasons.

  5. Evaluating collective significance of climatic trends: A comparison of methods on synthetic data

    NASA Astrophysics Data System (ADS)

    Huth, Radan; Dubrovský, Martin

    2017-04-01

    The common approach to determine whether climatic trends are significantly different from zero is to conduct individual (local) tests at each single site (station or gridpoint). Whether the number of sites where the trends are significantly non-zero can or cannot occur by random, is almost never evaluated in trend studies. That is, collective (global) significance of trends is ignored. We compare three approaches to evaluating collective statistical significance of trends at a network of sites, using the following statistics: (i) the number of successful local tests (a successful test means here a test in which the null hypothesis of no trend is rejected); this is a standard way of assessing collective significance in various applications in atmospheric sciences; (ii) the smallest p-value among the local tests (Walker test); and (iii) the counts of positive and negative trends regardless of their magnitudes and local significance. The third approach is a new procedure that we propose; the rationale behind it is that it is reasonable to assume that the prevalence of one sign of trends at individual sites is indicative of a high confidence in the trend not being zero, regardless of the (in)significance of individual local trends. A potentially large amount of information contained in trends that are not locally significant, which are typically deemed irrelevant and neglected, is thus not lost and is retained in the analysis. In this contribution we examine the feasibility of the proposed way of significance testing on synthetic data, produced by a multi-site stochastic generator, and compare it with the two other ways of assessing collective significance, which are well established now. The synthetic dataset, mimicking annual mean temperature on an array of stations (or gridpoints), is constructed assuming a given statistical structure characterized by (i) spatial separation (density of the station network), (ii) local variance, (iii) temporal and spatial autocorrelations, and (iv) the trend magnitude. The probabilistic distributions of the three test statistics (null distributions) and critical values of the tests are determined from multiple realizations of the synthetic dataset, in which no trend is imposed at each site (that is, any trend is a result of random fluctuations only). The procedure is then evaluated by determining the type II error (the probability of a false detection of a trend) in the presence of a trend with a known magnitude, for which the synthetic dataset with an imposed spatially uniform non-zero trend is used. A sensitivity analysis is conducted for various combinations of the trend magnitude and spatial autocorrelation.

  6. [Ecological risk assessment of land use based on exploratory spatial data analysis (ESDA): a case study of Haitan Island, Fujian Province].

    PubMed

    Wu, Jian; Chen, Peng; Wen, Chao-Xiang; Fu, Shi-Feng; Chen, Qing-Hui

    2014-07-01

    As a novel environment management tool, ecological risk assessment has provided a new perspective for the quantitative evaluation of ecological effects of land-use change. In this study, Haitan Island in Fujian Province was taken as a case. Based on the Landsat TM obtained in 1990, SPOT5 RS images obtained in 2010, general layout planning map of Pingtan Comprehensive Experimental Zone in 2030, as well as the field investigation data, we established an ecological risk index to measure ecological endpoints. By using spatial autocorrelation and semivariance analysis of Exploratory Spatial Data Analysis (ESDA), the ecological risk of Haitan Island under different land-use situations was assessed, including the past (1990), present (2010) and future (2030), and the potential risk and its changing trend were analyzed. The results revealed that the ecological risk index showed obvious scale effect, with strong positive correlation within 3000 meters. High-high (HH) and low-low (LL) aggregations were predominant types in spatial distribution of ecological risk index. The ecological risk index showed significant isotropic characteristics, and its spatial distribution was consistent with Anselin Local Moran I (LISA) distribution during the same period. Dramatic spatial distribution change of each ecological risk area was found among 1990, 2010 and 2030, and the fluctuation trend and amplitude of different ecological risk areas were diverse. The low ecological risk area showed a rise-to-fall trend while the medium and high ecological risk areas showed a fall-to-rise trend. In the planning period, due to intensive anthropogenic disturbance, the high ecological risk area spread throughout the whole region. To reduce the ecological risk in land-use and maintain the regional ecological security, the following ecological risk control strategies could be adopted, i.e., optimizing the spatial pattern of land resources, protecting the key ecoregions and controlling the scale of construction land use.

  7. Effects of decreasing resolution on spectral and spatial information content in an agricultural area. [Pottawatmie study site, Iowa and Nebraska

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The effects of decreasing spatial resolution from 6 1/4 miles square to 50 miles square are described. The effects of increases in cell size is studied on; the mean and variance of spectral data; spatial trends; and vegetative index numbers. Information content changes on cadastral, vegetal, soil, water and physiographic information are summarized.

  8. Effects of sampling interval on spatial patterns and statistics of watershed nitrogen concentration

    USGS Publications Warehouse

    Wu, S.-S.D.; Usery, E.L.; Finn, M.P.; Bosch, D.D.

    2009-01-01

    This study investigates how spatial patterns and statistics of a 30 m resolution, model-simulated, watershed nitrogen concentration surface change with sampling intervals from 30 m to 600 m for every 30 m increase for the Little River Watershed (Georgia, USA). The results indicate that the mean, standard deviation, and variogram sills do not have consistent trends with increasing sampling intervals, whereas the variogram ranges remain constant. A sampling interval smaller than or equal to 90 m is necessary to build a representative variogram. The interpolation accuracy, clustering level, and total hot spot areas show decreasing trends approximating a logarithmic function. The trends correspond to the nitrogen variogram and start to level at a sampling interval of 360 m, which is therefore regarded as a critical spatial scale of the Little River Watershed. Copyright ?? 2009 by Bellwether Publishing, Ltd. All right reserved.

  9. Trends in 1970-2010 southern California surface maximum temperatures: extremes and heat waves

    NASA Astrophysics Data System (ADS)

    Ghebreegziabher, Amanuel T.

    Daily maximum temperatures from 1970-2010 were obtained from the National Climatic Data Center (NCDC) for 28 South Coast Air Basin (SoCAB) Cooperative Network (COOP) sites. Analyses were carried out on the entire data set, as well as on the 1970-1974 and 2006-2010 sub-periods, including construction of spatial distributions and time-series trends of both summer-average and annual-maximum values and of the frequency of two and four consecutive "daytime" heat wave events. Spatial patterns of average and extreme values showed three areas consistent with climatological SoCAB flow patterns: cold coastal, warm inland low-elevation, and cool further-inland mountain top. Difference (2006-2010 minus 1970-1974) distributions of both average and extreme-value trends were consistent with the shorter period (1970-2005) study of previous study, as they showed the expected inland regional warming and a "reverse-reaction" cooling in low elevation coastal and inland areas open to increasing sea breeze flows. Annual-extreme trends generally showed cooling at sites below 600 m and warming at higher elevations. As the warming trends of the extremes were larger than those of the averages, regional warming thus impacts extremes more than averages. Spatial distributions of hot-day frequencies showed expected maximum at inland low-elevation sites. Regional warming again thus induced increases at both elevated-coastal areas, but low-elevation areas showed reverse-reaction decreases.

  10. Deriving spatial trends of air pollution at a neighborhood-scale through mobile monitoring

    EPA Science Inventory

    Abstract: Measuring air pollution in real-time using an instrumented vehicle platform has been an emerging strategy to resolve air pollution trends at a very fine spatial scale (10s of meters). Achieving second-by-second data representative of urban air quality trends requires a...

  11. Spatial and Temporal Trends of Snowfall in Central New York - A Lake Effect Dominated Region

    NASA Astrophysics Data System (ADS)

    Hartnett, Justin Joseph

    Central New York is located in one of the snowiest regions in the United States, with the city of Syracuse, New York the snowiest metropolis in the nation. Snowfall in the region generally begins in mid-November and lasts until late-March. Snow accumulation occurs from a multitude of conditions: frontal systems, mid-latitude cyclones, Nor'easters, and most notably lake-effect storms. Lake effect snowfall (LES) is a difficult parameter to forecast due to the isolated and highly variable nature of the storm. Consequently, studies have attempted to determine changes in snowfall for lake-effect dominated regions. Annual snowfall patterns are of particular concern as seasonal snowfall totals are vital for water resources, winter businesses, agriculture, government and state agencies, and much more. Through the use of snowfall, temperature, precipitation, and location data from the National Weather Service's Cooperative Observer Program (COOP), spatial and temporal changes in snowfall for Central New York were determined. In order to determine climatic changes in snowfall, statistical analyses were performed (i.e. least squares estimation, correlations, principal component analyses, etc.) and spatial maps analyzed. Once snowfall trends were determined, factors influencing the trends were examined. Long-term snowfall trends for CNY were positive for original stations (˜0.46 +/- 0.20 in. yr -1) and homogenously filtered stations (0.23 +/- 0.20 in. yr -1). However, snowfall trends for shorter time-increments within the long-term period were not consistent, as positive, negative, and neutral trends were calculated. Regional differences in snowfall trends were observed for CNY as typical lake-effect areas (northern counties, the Tug Hill Plateau and the Southern Hills) experienced larger snowfall trends than areas less dominated by LES. Typical lake-effect months (December - February) experienced the greatest snowfall trend in CNY compared to other winter months. The influence of teleconnections on seasonal snowfall in CNY was not pronounced; however, there was a slight significant (5%) correlation (< 0.35) with the Atlantic Multidecadal Oscillation. It was not clear if changes in air temperature or changes in precipitation were the cause of variations in snowfall trends. It was also inconclusive if the elevation or distance from Lake Ontario resulted in increased snowfall trends. Results from this study will aid in seasonal snowfall forecasts in CNY, which can be used to predict future snowfall. Even though the study area is regionally specific, the methods may be applied to other lake effect dominated areas to determine temporal and spatial variations in snowfall. This study will enhance climatologists and operational forecasters' awareness and understanding of snowfall, especially lake effect snowfall in CNY.

  12. Changes of the time-varying percentiles of daily extreme temperature in China

    NASA Astrophysics Data System (ADS)

    Li, Bin; Chen, Fang; Xu, Feng; Wang, Xinrui

    2017-11-01

    Identifying the air temperature frequency distributions and evaluating the trends in time-varying percentiles are very important for climate change studies. In order to get a better understanding of the recent temporal and spatial pattern of the temperature changes in China, we have calculated the trends in temporal-varying percentiles of the daily extreme air temperature firstly. Then we divide all the stations to get the spatial patterns for the percentile trends using the average linkage cluster analysis method. To make a comparison, the shifts of trends percentile frequency distribution from 1961-1985 to 1986-2010 are also examined. Important results in three aspects have been achieved: (1) In terms of the trends in temporal-varying percentiles of the daily extreme air temperature, the most intense warming for daily maximum air temperature (Tmax) was detected in the upper percentiles with a significant increasing tendency magnitude (>2.5 °C/50year), and the greatest warming for daily minimum air temperature (Tmin) occurred with very strong trends exceeding 4 °C/50year. (2) The relative coherent spatial patterns for the percentile trends were found, and stations for the whole country had been divided into three clusters. The three primary clusters were distributed regularly to some extent from north to south, indicating the possible large influence of the latitude. (3) The most significant shifts of trends percentile frequency distribution from 1961-1985 to 1986-2010 was found in Tmax. More than half part of the frequency distribution show negative trends less than -0.5 °C/50year in 1961-1985, while showing trends less than 2.5 °C/50year in 1986-2010.

  13. The new MOPREDAS database and the monthly precipitation trends in Spain (December 1945- November 2005)

    NASA Astrophysics Data System (ADS)

    Gonzalez-Hidalgo, Jose Carlos; Brunetti, Michele; Martin, De Luis

    2010-05-01

    Precipitation is one of the most important climate elements directly affecting human society, economic activities and natural systems; at the same time it is the most variable climate element, and its changes can be detected only if a spatially dense network of observations is used. Due to this, the last AR4 report renewed interest in the study of precipitation, and suggests focusing on detailed sub-regional studies, with a preference for those areas where water is a scarce resource with heavy demands placed on it. We have developed the new MOPREDAS database (MOnthly PREcipitation DAtabase of Spain) by exploiting the total amount of data available at Spanish Meteorological Agency (AEMET, formerly INM). These provide a total of 2670 complete and homogeneous series for the period 1946-2005 after exhaustive quality control and reconstruction processes, and at present is the most complete and extensive monthly precipitation dataset uptodated in Spain, including dense information up to 1500 m o.l.s.. MOPREDAS has been created with the aim of analyzing the behaviour of precipitation in the conterminous provinces of Spain, and to validate the downscaling of climate models on a detailed spatial level. To this end, the station data were also interpolated on a regular grid, at 1/10 of degree of resolution, over the whole Spain. Trend analysis (Mann-Kendall text, p <0,10) confirms great spatial and temporal variability in the behaviour of precipitation across Spain between 1946-2005. Except March, June and October, no generalized significant pattern have been found, but subregional areas with homogeneous trend were detected. MOPREDAS shows a global decrease of precipitation in March that affects 68.9% of Spain and 31.8% in June, while in October the area affected by positive trends is 33.7% of land (p<0.10). We detected numerous sub-regional coherent patterns well delineated by topographic factors, and passing unnoticed until now due to inadequate data density. These results suggest that both global and local factors affect the spatial distribution of trends in the Iberian Peninsula, being mountain chains the most significant geographical factor in determining the spatial distribution of monthly trends on a detailed, sub-regional spatial scale.

  14. Monitoring Functional Traits of Alpine Vegetation using Remote Sensing

    NASA Astrophysics Data System (ADS)

    Li, C.; Wulf, H.; Schaepman, M. E.; Schmid, B.

    2016-12-01

    Plant functional traits can be used to study the interactions between plants and ecosystem functioning as well as the response of plants to various environmental pressures. Continuous monitoring of plant functional traits dynamics on a large spatial scale is important to understand the mechanisms of ecosystem function degradation, especially on the Qinghai-Tibet Plateau. In this study, we investigated spatiotemporal trends of functional traits (i.e., chlorophyll content, phenology, leaf area index proxy of leaf size and above ground biomass proxy of leaf mass) in the eastern part of the Qinghai-Tibet Plateau based on the combined analysis of multi-sensor satellite data and field observations at three spatial scales (ground-truth data at 1 m, Landsat at 30 m, MODIS at 500 m), and analyzed potential factors contribute to their spatiotemporal trends. Chlorophyll content (Chl) and biomass was retrieved based on 94 field plots measurements. LAI was analyzed using MCD15A3H product and estimated values using digital hemispherical photographs in the field. Plant phenology will be processed based on MODIS NDVI time series and hourly Phenocam observations. The preliminary results show that (1) Chl, LAI and biomass show high spatial heterogeneity trends and increase in 2001 - 2015. (2) Elevation played an important role in the spatial pattern of LAI and Chl variation in 15 years. A dividing line of approximately 3800 m exists and shows that below this line, LAI and Chl changes more complicated, showing significantly positive and negative linear trend. While above this altitude, the change rate of two variables keeps relatively stable. Vegetation in low elevation is exposed to high habitat diversity by showing high Chl, LAI and biomass spatial heterogeneity. The vegetation in high habitat diversity may be more sensitive to climatic variables and human activities than higher elevation since warming contribute to the positive trend of traits while human factors like urbanization might be explain negative trend in relative low altitude (below 3800 m). (3) Temperature contribute to the above functional traits variation than precipitation, especially temperature is more correlated to the functional traits of widely distributed vegetation type than narrow-ranging vegetation type.

  15. Trends in Streamflow and Nutrient and Suspended-Sediment Concentrations and Loads in the Upper Mississippi, Ohio, Red, and Great Lakes River Basins, 1975-2004

    USGS Publications Warehouse

    Lorenz, David L.; Robertson, Dale M.; Hall, David W.; Saad, David A.

    2009-01-01

    Many actions have been taken to reduce nutrient and suspended-sediment concentrations and the amount of nutrients and sediment transported in streams as a result of the Clean Water Act and subsequent regulations. This report assesses how nutrient and suspended-sediment concentrations and loads in selected streams have changed during recent years to determine if these actions have been successful. Flow-adjusted and overall trends in concentrations and trends in loads from 1993 to 2004 were computed for total nitrogen, dissolved ammonia, total organic nitrogen plus ammonia, dissolved nitrite plus nitrate, total phosphorus, dissolved phosphorus, total suspended material (total suspended solids or suspended sediment), and total suspended sediment for 49 sites in the Upper Mississippi, Ohio, Red, and Great Lakes Basins. Changes in total nitrogen, total phosphorus, and total suspended-material loads were examined from 1975 to 2003 at six sites to provide a longer term context for the data examined from 1993 to 2004. Flow-adjusted trends in total nitrogen concentrations at 19 of 24 sites showed tendency toward increasing concentrations, and overall trends in total nitrogen concentrations at 16 of the 24 sites showed a general tendency toward increasing concentrations. The trends in these flow-adjusted total nitrogen concentrations are related to the changes in fertilizer nitrogen applications. Flow-adjusted trends in dissolved ammonia concentrations from 1993 to 2004 showed a widespread tendency toward decreasing concentrations. The widespread, downward trends in dissolved ammonia concentrations indicate that some of the ammonia reduction goals of the Clean Water Act are being met. Flow-adjusted and overall trends in total organic plus ammonia nitrogen concentrations from 1993 to 2004 did not show a distinct spatial pattern. Flow-adjusted and overall trends in dissolved nitrite plus nitrate concentrations from 1993 to 2004 also did not show a distinct spatial pattern. Flow-adjusted trends in total phosphorus concentrations were upward at 24 of 40 sites. Overall trends in total phosphorus concentrations were mixed and showed no spatial pattern. Flow-adjusted and overall trends in dissolved phosphorus concentrations were consistently downward at all of the sites in the eastern part of the basins studied. The reduction in phosphorus fertilizer use and manure production east of the Mississippi River could explain most of the observed trends in dissolved phosphorus. Flow-adjusted trends in total suspended-material concentrations showed distinct spatial patterns of increasing tendencies throughout the western part of the basins studied and in Illinois and decreasing concentrations throughout most of Wisconsin, Iowa, and in the eastern part of the basins studied. Flow-adjusted trends in total phosphorus were strongly related to the flow-adjusted trends in suspended materials. The trends in the flow-adjusted suspended-sediment concentrations from 1993 to 2004 resembled those for suspended materials. The long-term, nonmonotonic trends in total nitrogen, total phosphorus, and suspended-material loads for 1975 to 2003 were described by local regression, LOESS, smoothing for six sites. The statistical significance of those trends cannot be determined; however, the long-term changes found for annual streamflow and load data indicate that the monotonic trends from 1993 to 2004 should not be extrapolated backward in time.

  16. TRENDS IN FLOODS AND LOW FLOWS IN THE UNITED STATES: IMPACT OF SPATIAL CORRELATION. (R824992,R826888)

    EPA Science Inventory

    Trends in flood and low flows in the US were evaluated using a regional average Kendall's S trend test at two spatial scales and over two timeframes. Field significance was assessed using a bootstrap methodology to account for the observed regional cross-correlation of streamflow...

  17. Trends in LST over the peninsular Spain as derived from the AVHRR imagery data

    NASA Astrophysics Data System (ADS)

    Khorchani, Makki; Vicente-Serrano, Sergio M.; Azorin-Molina, Cesar; Garcia, Monica; Martin-Hernandez, Natalia; Peña-Gallardo, Marina; El Kenawy, Ahmed; Domínguez-Castro, Fernando

    2018-07-01

    This study analyzes the spatio-temporal variability and trends of land surface temperature (LST) over peninsular Spain, considering all the available historical satellite imagery data from the NOAA-AVHRR product from July 1981 to June 2015 and explores whether changes in LST are related to the observed changes in air temperature, solar radiation and land cover. We found that LST showed a significant increase between 1982 and 2014, with an average increase on the order of 0.71 °C decade-1, being stronger during summertime (1.53 °C decade-1). The results also indicate a strong spatial coherence between LST and NDVI changes. The areas that experienced an increase in the LST were spatially consistent with those areas with no changes or even a dominant decrease in vegetation coverage. In addition, the strong increase of LST is coherent with observations of the recent radiative forcing affecting Spain, particularly during summertime. The confidence of the obtained LST trends during summer is also reinforced by the spatial differences recorded in trends, in addition to the differences found between land cover types. Specifically, the magnitude of this increase was much higher in the dryland non-permanent agricultural areas, which are usually harvested during summer, when soil is dominantly nude. In contrast, in well-developed forests, the magnitude of LST was much lower. Our results on the observed LST trends and their spatial patterns can contribute to better understanding of the recent eco-hydrological processes in peninsular Spain.

  18. Precipitation climatology over India: validation with observations and reanalysis datasets and spatial trends

    NASA Astrophysics Data System (ADS)

    Kishore, P.; Jyothi, S.; Basha, Ghouse; Rao, S. V. B.; Rajeevan, M.; Velicogna, Isabella; Sutterley, Tyler C.

    2016-01-01

    Changing rainfall patterns have significant effect on water resources, agriculture output in many countries, especially the country like India where the economy depends on rain-fed agriculture. Rainfall over India has large spatial as well as temporal variability. To understand the variability in rainfall, spatial-temporal analyses of rainfall have been studied by using 107 (1901-2007) years of daily gridded India Meteorological Department (IMD) rainfall datasets. Further, the validation of IMD precipitation data is carried out with different observational and different reanalysis datasets during the period from 1989 to 2007. The Global Precipitation Climatology Project data shows similar features as that of IMD with high degree of comparison, whereas Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation data show similar features but with large differences, especially over northwest, west coast and western Himalayas. Spatially, large deviation is observed in the interior peninsula during the monsoon season with National Aeronautics Space Administration-Modern Era Retrospective-analysis for Research and Applications (NASA-MERRA), pre-monsoon with Japanese 25 years Re Analysis (JRA-25), and post-monsoon with climate forecast system reanalysis (CFSR) reanalysis datasets. Among the reanalysis datasets, European Centre for Medium-Range Weather Forecasts Interim Re-Analysis (ERA-Interim) shows good comparison followed by CFSR, NASA-MERRA, and JRA-25. Further, for the first time, with high resolution and long-term IMD data, the spatial distribution of trends is estimated using robust regression analysis technique on the annual and seasonal rainfall data with respect to different regions of India. Significant positive and negative trends are noticed in the whole time series of data during the monsoon season. The northeast and west coast of the Indian region shows significant positive trends and negative trends over western Himalayas and north central Indian region.

  19. Spatial analysis of precipitation time series over the Upper Indus Basin

    NASA Astrophysics Data System (ADS)

    Latif, Yasir; Yaoming, Ma; Yaseen, Muhammad

    2018-01-01

    The upper Indus basin (UIB) holds one of the most substantial river systems in the world, contributing roughly half of the available surface water in Pakistan. This water provides necessary support for agriculture, domestic consumption, and hydropower generation; all critical for a stable economy in Pakistan. This study has identified trends, analyzed variability, and assessed changes in both annual and seasonal precipitation during four time series, identified herein as: (first) 1961-2013, (second) 1971-2013, (third) 1981-2013, and (fourth) 1991-2013, over the UIB. This study investigated spatial characteristics of the precipitation time series over 15 weather stations and provides strong evidence of annual precipitation by determining significant trends at 6 stations (Astore, Chilas, Dir, Drosh, Gupis, and Kakul) out of the 15 studied stations, revealing a significant negative trend during the fourth time series. Our study also showed significantly increased precipitation at Bunji, Chitral, and Skardu, whereas such trends at the rest of the stations appear insignificant. Moreover, our study found that seasonal precipitation decreased at some locations (at a high level of significance), as well as periods of scarce precipitation during all four seasons. The observed decreases in precipitation appear stronger and more significant in autumn; having 10 stations exhibiting decreasing precipitation during the fourth time series, with respect to time and space. Furthermore, the observed decreases in precipitation appear robust and more significant for regions at high elevation (>1300 m). This analysis concludes that decreasing precipitation dominated the UIB, both temporally and spatially including in the higher areas.

  20. Nutrients and the Great Lakes Nearshore, Circa 2002-2007

    EPA Science Inventory

    Nearshore nutrient impressions were largely limited to observations of local spatial trends from a few site-specific studies and some temporal trends at a set of Canadian water intake locations (later summarized in Nicholls et al. 1999). Lacking a systematic information base fo...

  1. Temporal trends in physical violence, gender differences and spatial vulnerability of the location of victim's residences.

    PubMed

    Cavalcante, Gigliana Maria Sobral; de Macedo Bernardino, Ítalo; da Nóbrega, Lorena Marques; Ferreira, Raquel Conceição; Ferreira E Ferreira, Efigênia; d'Avila, Sérgio

    2018-06-01

    The aim of study was to describe trends in physical violence among Brazilian victims and investigate spatial vulnerability of the location of victim's residences. This study performed an ecological-level longitudinal analysis, examining violence rates over 4 years. Cases of 4795 victims of physical aggression attended at a Center of Legal Medicine were investigated. Trend analysis was used to evaluate the data, with the creation of polynomial regression models (p < 0.05). Violence rates showed significant temporal variations according to sociodemographic characteristics of victims (p < 0.05) and the circumstances of aggressions (p < 0.05). Moreover, there was a significant increase in violence rate in the North (R 2  = 16.1%; p = 0.019) and South (R 2  = 18.4%; p = 0.010), whereas the rural zone (R 2  = 10.1%; p = 0.028) presented a decrease. The findings highlight the need for protection policies that address spatial-temporal aspects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Elkhorn Slough: Detecting Eutrophication through Geospatial Modeling Applications

    NASA Astrophysics Data System (ADS)

    Caraballo Álvarez, I. O.; Childs, A.; Jurich, K.

    2016-12-01

    Elkhorn Slough in Monterey, California, has experienced substantial nutrient loading and eutrophication over the past 21 years as a result of fertilizer-rich runoff from nearby agricultural fields. This study seeks to identify and track spatial patterns of eutrophication hotspots and the correlation to land use changes, possible nutrient sources, and general climatic trends using remotely sensed and in situ data. Threats of rising sea level, subsiding marshes, and increased eutrophication hotspots demonstrate the necessity to analyze the effects of increasing nutrient loads, relative sea level changes, and sedimentation within Elkhorn Slough. The Soil & Water Assessment Tool (SWAT) model integrates specified inputs to assess nutrient and sediment loading and their sources. TerrSet's Land Change Modeler forecasts the future potential of land change transitions for various land cover classes around the slough as a result of nutrient loading, eutrophication, and increased sedimentation. TerrSet's Earth Trends Modeler provides a comprehensive analysis of image time series to rapidly assess long term eutrophication trends and detect spatial patterns of known hotspots. Results from this study will inform future coastal management practices and provide greater spatial and temporal insight into Elkhorn Slough eutrophication dynamics.

  3. Spatial and Temporal Trends in Stable Carbon and Oxygen Isotope Ratios of Juvenile Winter Flounder

    EPA Science Inventory

    Isotopic ratios of fish otoliths have been used in numerous studies as natural tags or markers to aid the study of connectivity among fish populations. We investigated the use of spatial and temporal changes in the stable carbon and oxygen isotope ratios of otoliths to different...

  4. Spatial Visualization as Mediating between Mathematics Learning Strategy and Mathematics Achievement among 8th Grade Students

    ERIC Educational Resources Information Center

    Rabab'h, Belal; Veloo, Arsaythamby

    2015-01-01

    Jordanian 8th grade students revealed low achievement in mathematics through four periods (1999, 2003, 2007 & 2011) of Trends in International Mathematics and Science Study (TIMSS). This study aimed to determine whether spatial visualization mediates the affect of Mathematics Learning Strategies (MLS) factors namely mathematics attitude,…

  5. Spatial Distribution and Trends of Waterborne Diseases in Tashkent Province

    PubMed Central

    Subramanian, Veluswami Saravanan; Cho, Min Jung; Tan, Siwei Zoe; Fayzieva, Dilorom; Sebaly, Christian

    2017-01-01

    Introduction: The cumulative effect of limited investment in public water systems, inadequate public health infrastructure, and gaps in infectious disease prevention increased the incidence of waterborne diseases in Uzbekistan. The objectives of this study were: (1) to spatially analyze the distribution of the diseases in Tashkent Province, (2) to identify the intensity of spatial trends in the province, (3) to identify urban-rural characteristics of the disease distribution, and (4) to identify the differences in disease incidence between pediatric and adult populations of the province. Methods: Data on four major waterborne diseases and socio-demographics factors were collected in Tashkent Province from 2011 to 2014. Descriptive epidemiological methods and spatial-temporal methods were used to investigate the distribution and trends, and to identify waterborne diseases hotspots and vulnerable population groups in the province. Results: Hepatitis A and enterobiasis had a high incidence in most of Tashkent Province, with higher incidences in the eastern and western districts. Residents of rural areas, including children, were found to be more vulnerable to the waterborne diseases compared to other populations living in the province. Conclusions: This pilot study calls for more scientific investigations of waterborne diseases and their effect on public health in the region, which could facilitate targeted public health interventions in vulnerable regions of Uzbekistan. PMID:29138738

  6. Spatial Distribution and Trends of Waterborne Diseases in Tashkent Province.

    PubMed

    Subramanian, Veluswami Saravanan; Cho, Min Jung; Tan, Siwei Zoe; Fayzieva, Dilorom; Sebaly, Christian

    2017-01-01

    The cumulative effect of limited investment in public water systems, inadequate public health infrastructure, and gaps in infectious disease prevention increased the incidence of waterborne diseases in Uzbekistan. The objectives of this study were: (1) to spatially analyze the distribution of the diseases in Tashkent Province, (2) to identify the intensity of spatial trends in the province, (3) to identify urban-rural characteristics of the disease distribution, and (4) to identify the differences in disease incidence between pediatric and adult populations of the province. Data on four major waterborne diseases and socio-demographics factors were collected in Tashkent Province from 2011 to 2014. Descriptive epidemiological methods and spatial-temporal methods were used to investigate the distribution and trends, and to identify waterborne diseases hotspots and vulnerable population groups in the province. Hepatitis A and enterobiasis had a high incidence in most of Tashkent Province, with higher incidences in the eastern and western districts. Residents of rural areas, including children, were found to be more vulnerable to the waterborne diseases compared to other populations living in the province. This pilot study calls for more scientific investigations of waterborne diseases and their effect on public health in the region, which could facilitate targeted public health interventions in vulnerable regions of Uzbekistan.

  7. ICESat laser altimetry over small mountain glaciers

    NASA Astrophysics Data System (ADS)

    Treichler, Désirée; Kääb, Andreas

    2016-09-01

    Using sparsely glaciated southern Norway as a case study, we assess the potential and limitations of ICESat laser altimetry for analysing regional glacier elevation change in rough mountain terrain. Differences between ICESat GLAS elevations and reference elevation data are plotted over time to derive a glacier surface elevation trend for the ICESat acquisition period 2003-2008. We find spatially varying biases between ICESat and three tested digital elevation models (DEMs): the Norwegian national DEM, SRTM DEM, and a high-resolution lidar DEM. For regional glacier elevation change, the spatial inconsistency of reference DEMs - a result of spatio-temporal merging - has the potential to significantly affect or dilute trends. Elevation uncertainties of all three tested DEMs exceed ICESat elevation uncertainty by an order of magnitude, and are thus limiting the accuracy of the method, rather than ICESat uncertainty. ICESat matches glacier size distribution of the study area well and measures small ice patches not commonly monitored in situ. The sample is large enough for spatial and thematic subsetting. Vertical offsets to ICESat elevations vary for different glaciers in southern Norway due to spatially inconsistent reference DEM age. We introduce a per-glacier correction that removes these spatially varying offsets, and considerably increases trend significance. Only after application of this correction do individual campaigns fit observed in situ glacier mass balance. Our correction also has the potential to improve glacier trend significance for other causes of spatially varying vertical offsets, for instance due to radar penetration into ice and snow for the SRTM DEM or as a consequence of mosaicking and merging that is common for national or global DEMs. After correction of reference elevation bias, we find that ICESat provides a robust and realistic estimate of a moderately negative glacier mass balance of around -0.36 ± 0.07 m ice per year. This regional estimate agrees well with the heterogeneous but overall negative in situ glacier mass balance observed in the area.

  8. OSPAR standard method and software for statistical analysis of beach litter data.

    PubMed

    Schulz, Marcus; van Loon, Willem; Fleet, David M; Baggelaar, Paul; van der Meulen, Eit

    2017-09-15

    The aim of this study is to develop standard statistical methods and software for the analysis of beach litter data. The optimal ensemble of statistical methods comprises the Mann-Kendall trend test, the Theil-Sen slope estimation, the Wilcoxon step trend test and basic descriptive statistics. The application of Litter Analyst, a tailor-made software for analysing the results of beach litter surveys, to OSPAR beach litter data from seven beaches bordering on the south-eastern North Sea, revealed 23 significant trends in the abundances of beach litter types for the period 2009-2014. Litter Analyst revealed a large variation in the abundance of litter types between beaches. To reduce the effects of spatial variation, trend analysis of beach litter data can most effectively be performed at the beach or national level. Spatial aggregation of beach litter data within a region is possible, but resulted in a considerable reduction in the number of significant trends. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Accessing Recent Trend of Land Surface Temperature from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.; Romanov, Peter

    2011-01-01

    Land surface temperature (Ts) is an important element to measure the state of terrestrial ecosystems and to study surface energy budgets. In support of the land cover/land use change-related international program MAIRS (Monsoon Asia Integrated Regional Study), we have collected global monthly Ts measured by MODIS since the beginning of the missions. The MODIS Ts time series have approximately 11 years of data from Terra since 2000 and approximately 9 years of data from Aqua since 2002, which makes possible to study the recent climate, such as trend. In this study, monthly climatology from two platforms are calculated and compared with that from AIRS. The spatial patterns of Ts trends are accessed, focusing on the Eurasia region. Furthermore, MODIS Ts trends are compared with those from AIRS and NASA's atmospheric assimilation model, MERRA (Modern Era Retrospective-analysis for Research and Applications). The preliminary results indicate that the recent 8-year Ts trend shows an oscillation-type spatial variation over Eurasia. The pattern is consistent for data from MODIS, AIRS, and MERRA, with the positive center over Eastern Europe, and the negative center over Central Siberia. The calculated climatology and anomaly of MODIS Ts will be integrated into the online visualization system, Giovanni, at NASA GES DISC for easy use by scientists and general public.

  10. Spatial trends in Pearson Type III statistical parameters

    USGS Publications Warehouse

    Lichty, R.W.; Karlinger, M.R.

    1995-01-01

    Spatial trends in the statistical parameters (mean, standard deviation, and skewness coefficient) of a Pearson Type III distribution of the logarithms of annual flood peaks for small rural basins (less than 90 km2) are delineated using a climate factor CT, (T=2-, 25-, and 100-yr recurrence intervals), which quantifies the effects of long-term climatic data (rainfall and pan evaporation) on observed T-yr floods. Maps showing trends in average parameter values demonstrate the geographically varying influence of climate on the magnitude of Pearson Type III statistical parameters. The spatial trends in variability of the parameter values characterize the sensitivity of statistical parameters to the interaction of basin-runoff characteristics (hydrology) and climate. -from Authors

  11. Vertical land motion controls regional sea level rise patterns on the United States east coast since 1900

    NASA Astrophysics Data System (ADS)

    Piecuch, C. G.; Huybers, P. J.; Hay, C.; Mitrovica, J. X.; Little, C. M.; Ponte, R. M.; Tingley, M.

    2017-12-01

    Understanding observed spatial variations in centennial relative sea level trends on the United States east coast has important scientific and societal applications. Past studies based on models and proxies variously suggest roles for crustal displacement, ocean dynamics, and melting of the Greenland ice sheet. Here we perform joint Bayesian inference on regional relative sea level, vertical land motion, and absolute sea level fields based on tide gauge records and GPS data. Posterior solutions show that regional vertical land motion explains most (80% median estimate) of the spatial variance in the large-scale relative sea level trend field on the east coast over 1900-2016. The posterior estimate for coastal absolute sea level rise is remarkably spatially uniform compared to previous studies, with a spatial average of 1.4-2.3 mm/yr (95% credible interval). Results corroborate glacial isostatic adjustment models and reveal that meaningful long-period, large-scale vertical velocity signals can be extracted from short GPS records.

  12. The effect of length and starting year on trend analyses of temperatures in Spanish mainland (1951-2010). Seasonal analyses: Spring (III)

    NASA Astrophysics Data System (ADS)

    Salinas Solé, Celia; Peña Angulo, Dhais; Gonzalez Hidalgo, Jose Carlos; Brunetti, Michele

    2017-04-01

    In this poster we applied the moving window approach (see Poster I of this collection) to analyze trends of spring and its corresponding months (March, April, May) temperature mean values of maximum (Tmax) and minimum (Tmin) in Spanish mainland to detect the effects of length period and starting year. Monthly series belong to Monthly Temperature dataset of Spanish mainland (MOTEDAS). Database contains in its grid format of 5236 pixels of monthly series (10x10 km). The threshold used in spatial analyses considers 20% of land under significant trend (p<0.05). The most striking results are as follow: • Seasonal Tmax shows that global trend was positive and significant until the mid 80's with higher values than 75% from between 1954-2010 to 1979-2010, being reduced after to the north region. So, from 1985-2010 no significant trend have been detected. Monthly analyses show differences. March trend is not significant (<20% of area) since 1974-2010, while significant trend in April and May varies between 1961-2010/1979-2010 and 1965-2010/1980-2010 respectively, clearly located in northern midland and Mediterranean coastland. • Spring Tmin trend analyses is significantly (>20%) during all temporal windows, notwithstanding NW do not show global significant trend, and in the most recent temporal windows only affect significantly SE. Monthly analyses also differ. Not significant trend is detected in March from 1979-2010, and from 1985-2010 in May, being April the month in any temporal windows with more than 20% of land affected by significant trend. • Spatial differences are detected between windows (South-North in March, East-West in April-May. We can conclude Tmax trend varies accordingly temporal windows dramatically in spring and no significance has been detected in the recent decades. Northern areas and Mediterranean coastland seems to be the most affected. Monthy Tmax trend spatial analyses confirm the heterogeneity of diurnal temperatures; different spatial gradients in windows have been detected between months. Seasonal Tmin show a more global temporal pattern. Spatial gradients of significance between months have been detected, in some sense contraries to the observed in Tmax.

  13. Analysis on variability and trend in Antarctic sea ice albedo between 1983 and 2009

    NASA Astrophysics Data System (ADS)

    Seo, Minji; Kim, Hyun-cheol; Choi, Sungwon; Lee, Kyeong-sang; Han, Kyung-soo

    2017-04-01

    Sea ice is key parameter in order to understand the cryosphere climate change. Several studies indicate the different trend of sea ice between Antarctica and Arctic. Albedo is important factor for understanding the energy budget and factors for observing of environment changes of Cryosphere such as South Pole, due to it mainly covered by ice and snow with high albedo value. In this study, we analyzed variability and trend of long-term sea ice albedo data to understand the changes of sea ice over Antarctica. In addiction, sea ice albedo researched the relationship with Antarctic oscillation in order to determine the atmospheric influence. We used the sea ice albedo data at The Satellite Application Facility on Climate Monitoring and Antarctic Oscillation data at NOAA Climate Prediction Center (CPC). We analyzed the annual trend in albedo using linear regression to understand the spatial and temporal tendency. Antarctic sea ice albedo has two spatial trend. Weddle sea / Ross sea sections represent a positive trend (0.26% ˜ 0.04% yr-1) and Bellingshausen Amundsen sea represents a negative trend (- 0.14 ˜ -0.25%yr-1). Moreover, we performed the correlation analysis between albedo and Antarctic oscillation. As a results, negative area indicate correlation coefficient of - 0.3639 and positive area indicates correlation coefficient of - 0.0741. Theses results sea ice albedo has regional trend according to ocean. Decreasing sea ice trend has negative relationship with Antarctic oscillation, its represent a possibility that sea ice influence atmospheric factor.

  14. Stability of Major Geogenic Cations in Drinking Water-An Issue of Public Health Importance: A Danish Study, 1980⁻2017.

    PubMed

    Wodschow, Kirstine; Hansen, Birgitte; Schullehner, Jörg; Ersbøll, Annette Kjær

    2018-06-08

    Concentrations and spatial variations of the four cations Na, K, Mg and Ca are known to some extent for groundwater and to a lesser extent for drinking water. Using Denmark as case, the purpose of this study was to analyze the spatial and temporal variations in the major cations in drinking water. The results will contribute to a better exposure estimation in future studies of the association between cations and diseases. Spatial and temporal variations and the association with aquifer types, were analyzed with spatial scan statistics, linear regression and a multilevel mixed-effects linear regression model. About 65,000 water samples of each cation (1980⁻2017) were included in the study. Results of mean concentrations were 31.4 mg/L, 3.5 mg/L, 12.1 mg/L and 84.5 mg/L for 1980⁻2017 for Na, K, Mg and Ca, respectively. An expected west-east trend in concentrations were confirmed, mainly explained by variations in aquifer types. The trend in concentration was stable for about 31⁻45% of the public water supply areas. It is therefore recommended that the exposure estimate in future health related studies not only be based on a single mean value, but that temporal and spatial variations should also be included.

  15. The Stratification Analysis of Sediment Data for Lake Michigan

    EPA Science Inventory

    This research paper describes the development of spatial statistical tools that are applied to investigate the spatial trends of sediment data sets for nutrients and carbon in Lake Michigan. All of the sediment data utilized in the present study was collected over a two year per...

  16. Arctic tundra greening and browning (2007-2013) based on satellite-observed solar-induced fluorescence data

    NASA Astrophysics Data System (ADS)

    Fu, D.; Su, F.; Wang, J.

    2017-12-01

    More accurate evaluation of the state of Arctic tundra vegetation is important for our understanding of Arctic and global systems. Arctic tundra greening has been reported, increasing vegetation cover and productivity in many regions, but browning has been also reported, based on satellite-observed Normalized Difference Vegetation Index (NDVI) from 2011 until recently. Here we demonstrate a satellite-based method of estimating tundra greenness trend. A more direct indicator of greenness (spatially downscaling solar-induced fluorescence, SIF) was used to analyze the spatial and temporal patterns of Arctic tundra greenness trends based on ordinary least square regression (2007-2013). Meanwhile, two other greenness indices were used for the comparison, which were two NDVI products: GIMMS NDVI3g, and MOD13Q1 Collection 6. Generally, the Arctic tundra was not consistently greening, browning also existed. For the spatial trends, the results showed that most parts of the Arctic tundra below 75ºN was browning (-0.0098 mW/m2/sr/nm/year) using SIF, whereas spatially heterogeneous trends (greening or browning) were obtained based on the two NDVI products. For the temporal trends, the greenness value of Eurasia Arctic tundra is higher than Northern America and the whole Arctic tundra for the three greenness indices. From 2010, the Arctic tundra was greening based on MOD13Q1, whereas is browning using GIMMS NDVI3g. However, the Arctic tundra was obviously browning using SIF data. This study demonstrates a way of investigating the variation of Arctic tundra vegetation via new satellite-observed data.

  17. The Spatial-Temporal Characteristics of Air Pollution in China from 2001–2014

    PubMed Central

    Bao, Junzhe; Yang, Xiping; Zhao, Zhiyuan; Wang, Zhenkun; Yu, Chuanhua; Li, Xudong

    2015-01-01

    To provide some useful information about the control of air pollution in China, we studied the spatial-temporal characteristics of air pollution in China from 2001–2014. First, we drew several line charts and histograms of the Air Pollution Index (API) and Air Quality Index (AQI) of 31 capital cities and municipalities to research the distribution across different times and cities; then, we researched the spatial clustering of API and AQI; finally, we examined the shift of the gravity center of API and AQI in different years and months. The API values had a decreasing trend: the high values had a clustering trend in some northern cities, and the low values had a clustering trend in some southern cities. The AQI values were relatively low, from 15:00–17:00 during the day. The gravity center of API had a trend of moving south from 2001–2003, then fluctuated in an unordered pattern and moved north in the winter. The AQI gravity center did not have a regular shift during different months. In conclusion, the government should take action to mitigate air pollution in some typical cities, as well as air pollution during the winter. PMID:26694427

  18. Reevaluation of Stratospheric Ozone Trends From SAGE II Data Using a Simultaneous Temporal and Spatial Analysis

    NASA Technical Reports Server (NTRS)

    Damadeo, R. P.; Zawodny, J. M.; Thomason, L. W.

    2014-01-01

    This paper details a new method of regression for sparsely sampled data sets for use with time-series analysis, in particular the Stratospheric Aerosol and Gas Experiment (SAGE) II ozone data set. Non-uniform spatial, temporal, and diurnal sampling present in the data set result in biased values for the long-term trend if not accounted for. This new method is performed close to the native resolution of measurements and is a simultaneous temporal and spatial analysis that accounts for potential diurnal ozone variation. Results show biases, introduced by the way data is prepared for use with traditional methods, can be as high as 10%. Derived long-term changes show declines in ozone similar to other studies but very different trends in the presumed recovery period, with differences up to 2% per decade. The regression model allows for a variable turnaround time and reveals a hemispheric asymmetry in derived trends in the middle to upper stratosphere. Similar methodology is also applied to SAGE II aerosol optical depth data to create a new volcanic proxy that covers the SAGE II mission period. Ultimately this technique may be extensible towards the inclusion of multiple data sets without the need for homogenization.

  19. Spatiotemporal Trends Analysis of Pyrethroid Sediment Concentrations Spanning 10 Years in a Residential Creek in California.

    PubMed

    Hall, Lenwood W; Anderson, Ronald D; Killen, William D

    2016-02-01

    The objective of this study was to assess temporal and spatial trends for eight pyrethroids monitored in sediment spanning 10 years from 2006 to 2015 in a residential stream in California (Pleasant Grove Creek). The timeframe for this study included sampling 3 years during a somewhat normal non-drought period (2006-2008) and 3 years during a severe drought period (2013-2015). Regression analysis of pyrethroid concentrations in Pleasant Grove Creek for 2006, 2007, 2008, 2012, 2013, 2014, and 2015 using ½ the detection limit for nondetected concentrations showed statistically significant declining trends for cyfluthrin, cypermethrin, deltamethrin, permethrin, and total pyrethoids. Additional trends analysis of the Pleasant Grove Creek pyrethroid data using only measured concentrations, without nondetected values, showed similar statistically significant declining trends for cyfluthrin, cypermethrin, deltamethrin, esfenvalerate, fenpropathrin, permethrin, and total pyrethroids. Spatial trends analysis for the specific creek sites showed that six of the eight pyrethroids had a greater number of sites with statistically significant declining concentrations. Possible reasons for reduced pyrethroid concentrations in the stream bed in Pleasant Grove Creek during this 10-year period are label changes in 2012 that reduced residential use and lack of precipitation during the later severe drought years of 2013-2015.

  20. Spatial distribution of unidirectional trends in temperature and temperature extremes in Pakistan

    NASA Astrophysics Data System (ADS)

    Khan, Najeebullah; Shahid, Shamsuddin; Ismail, Tarmizi bin; Wang, Xiao-Jun

    2018-06-01

    Pakistan is one of the most vulnerable countries of the world to temperature extremes due to its predominant arid climate and geographic location in the fast temperature rising zone. Spatial distribution of the trends in annual and seasonal temperatures and temperature extremes over Pakistan has been assessed in this study. The gauge-based gridded daily temperature data of Berkeley Earth Surface Temperature (BEST) having a spatial resolution of 1° × 1° was used for the assessment of trends over the period 1960-2013 using modified Mann-Kendall test (MMK), which can discriminate the multi-decadal oscillatory variations from secular trends. The results show an increase in the annual average of daily maximum and minimum temperatures in 92 and 99% area of Pakistan respectively at 95% level of confidence. The annual temperature is increasing faster in southern high-temperature region compared to other parts of the country. The minimum temperature is rising faster (0.17-0.37 °C/decade) compared to maximum temperature (0.17-0.29 °C/decade) and therefore declination of diurnal temperature range (DTR) (- 0.15 to - 0.08 °C/decade) in some regions. The annual numbers of both hot and cold days are increasing in whole Pakistan except in the northern sub-Himalayan region. Heat waves are on the rise, especially in the hot Sindh plains and the Southern coastal region, while the cold waves are becoming lesser in the northern cold region. Obtained results contradict with the findings of previous studies on temperature trends, which indicate the need for reassessment of climatic trends in Pakistan using the MMK test to understand the anthropogenic impacts of climate change.

  1. Visual and Spatial Modes in Science Learning

    ERIC Educational Resources Information Center

    Ramadas, Jayashree

    2009-01-01

    This paper surveys some major trends from research on visual and spatial thinking coming from cognitive science, developmental psychology, science literacy, and science studies. It explores the role of visualisation in creativity, in building mental models, and in the communication of scientific ideas, in order to place these findings in the…

  2. When will trends in European mean and heavy daily precipitation emerge?

    NASA Astrophysics Data System (ADS)

    Maraun, Douglas

    2013-03-01

    A multi-model ensemble of regional climate projections for Europe is employed to investigate how the time of emergence (TOE) for seasonal sums and maxima of daily precipitation depends on spatial scale. The TOE is redefined for emergence from internal variability only; the spread of the TOE due to imperfect climate model formulation is used as a measure of uncertainty in the TOE itself. Thereby, the TOE becomes a fundamentally limiting timescale and translates into a minimum spatial scale on which robust conclusions can be drawn about precipitation trends. Thus, minimum temporal and spatial scales for adaptation planning are also given. In northern Europe, positive winter trends in mean and heavy precipitation, and in southwestern and southeastern Europe, summer trends in mean precipitation already emerge within the next few decades. However, across wide areas, especially for heavy summer precipitation, the local trend emerges only late in the 21st century or later. For precipitation averaged to larger scales, the trend, in general, emerges earlier.

  3. Satellite-based Monitoring of global Precipitation using the PERSIANN system: from Weather- to Climate-scales with some application examples

    NASA Astrophysics Data System (ADS)

    Switzer, A.; Yap, W.; Lauro, F.; Gouramanis, C.; Dominey-Howes, D.; Labbate, M.

    2016-12-01

    This presentation provides an overview of the PERSIANN precipitation products from the near real time high-resolution (4km, 30 min) PERSIANN-CCS to the most recent 34+-year PERSIANN-CDR (25km, daily). It is widely believed that the hydrologic cycle has been intensifying due to global warming and the frequency and the intensity of hydrologic extremes has also been increasing. Using the long-term historical global high resolution (daily, 0.25 degree) PERSIANN-CDR dataset covering over three decades from 1983 to the present day, we assess changes in global precipitation across different spatial scales. Our results show differences in trends, depending on which spatial scale is used, highlighting the importance of spatial scale in trend analysis. In addition, while there is an easily observable increasing global temperature trend, the global precipitation trend results created by the PERSIANN-CDR dataset used in this study are inconclusive. In addition, we use PERSIANN-CDR to assess the performance of the 32 CMIP5 models in terms of extreme precipitation indices in various continent-climate zones. The assessment can provide a guide for both model developers to target regions and processes that are not yet fully captured in certain climate types, and for climate model output users to be able to select the models and/or the study areas that may best fit their applications of interest.

  4. Satellite-based Monitoring of global Precipitation using the PERSIANN system: from Weather- to Climate-scales with some application examples

    NASA Astrophysics Data System (ADS)

    Sorooshian, S.; Nguyen, P.; Hsu, K. L.

    2017-12-01

    This presentation provides an overview of the PERSIANN precipitation products from the near real time high-resolution (4km, 30 min) PERSIANN-CCS to the most recent 34+-year PERSIANN-CDR (25km, daily). It is widely believed that the hydrologic cycle has been intensifying due to global warming and the frequency and the intensity of hydrologic extremes has also been increasing. Using the long-term historical global high resolution (daily, 0.25 degree) PERSIANN-CDR dataset covering over three decades from 1983 to the present day, we assess changes in global precipitation across different spatial scales. Our results show differences in trends, depending on which spatial scale is used, highlighting the importance of spatial scale in trend analysis. In addition, while there is an easily observable increasing global temperature trend, the global precipitation trend results created by the PERSIANN-CDR dataset used in this study are inconclusive. In addition, we use PERSIANN-CDR to assess the performance of the 32 CMIP5 models in terms of extreme precipitation indices in various continent-climate zones. The assessment can provide a guide for both model developers to target regions and processes that are not yet fully captured in certain climate types, and for climate model output users to be able to select the models and/or the study areas that may best fit their applications of interest.

  5. Long-term trends in the structure of eastern Adriatic littoral fish assemblages: Consequences for fisheries management

    NASA Astrophysics Data System (ADS)

    Stagličić, N.; Matić-Skoko, S.; Pallaoro, A.; Grgičević, R.; Kraljević, M.; Tutman, P.; Dragičević, B.; Dulčić, J.

    2011-09-01

    Long-term interannual changes in abundance, biomass, diversity and structure of littoral fish assemblages were examined between 1993 and 2009 by experimental trammel net fishing up to six times per year, within the warm period - May to September, at multiple areas along the eastern Adriatic coast with the aim of testing for the consistency of patterns of change across a large spatial scale (˜600 km). The results revealed spatially consistent increasing trends of total fish abundance and biomass growing at an average rate of 15 and 14% per year, respectively. Of the diversity indices analysed, the same pattern of variability was observed for Shannon diversity, while Pielou evenness and average taxonomic distinctness measures Δ ∗ and Δ + showed spatial variability with no obvious temporal trends. Multivariate fish assemblage structure underwent a directional change displaying a similar pattern through time for all the areas. The structural change in fish assemblages generally involved most of the species present in trammel net catches. A large pool of fish species responsible for producing the temporal pattern of assemblage change was relatively different in each of the areas reflecting a large geographic range covered by the study. An analysis of 4 fish species ( Symphodus tinca, Pagellus erythrinus, Mullus surmuletus, Scorpaena porcus) common to each of the study areas as the ones driving the temporal change indicated that there were clear increasing trends of their mean catches across the years at all the study areas. A common pattern among time trajectories across the spatial scale studied implies that the factor affecting the littoral fish assemblages is not localised but regional in nature. As an underlying factor having the potential to induce such widespread and consistent improvements in littoral fish assemblages, a more restrictive artisanal fishery management that has progressively been put in place during the study period, is suggested and discussed.

  6. When at what scale will trends in European mean and heavy precipitation emerge

    NASA Astrophysics Data System (ADS)

    Maraun, Douglas

    2013-04-01

    A multi-model ensemble of regional climate projections for Europe is employed to investigate how the time of emergence (TOE) for seasonal sums and maxima of daily precipitation depends on spatial scale. The TOE is redefined for emergence from internal variability only, the spread of the TOE due to imperfect climate model formulation is used as a measure of uncertainty in the TOE itself. Thereby the TOE becomes a fundamentally limiting time scale and translates into a minimum spatial scale on which robust conclusions can be drawn about precipitation trends. Thus also minimum temporal and spatial scales for adaptation planning are given. In northern Europe, positive winter trends in mean and heavy precipitation, in southwestern and southeastern Europe summer trends in mean precipitation emerge already within the next decades. Yet across wide areas, especially for heavy summer precipitation, the local trend emerges only late in the 21st century or later. For precipitation averaged to larger scales, the trend in general emerges earlier. Douglas Maraun, When at what scale will trends in European mean and heavy precipitation emerge? Env. Res. Lett., in press, 2013.

  7. Observed SWE trends and climate analysis for Northwest Pacific North America: validation for future projection of SWE using the CRCM and VIC

    NASA Astrophysics Data System (ADS)

    Bennett, K. E.; Bronaugh, D.; Rodenhuis, D.

    2008-12-01

    Observational databases of snow water equivalent (SWE) have been collected from Alaska, western US states and the Canadian provinces of British Columbia, Alberta, Saskatchewan, and territories of NWT, and the Yukon. These databases were initially validated to remove inconsistencies and errors in the station records, dates or the geographic co-ordinates of the station. The cleaned data was then analysed for historical (1950 to 2006) trend using emerging techniques for trend detection based on (first of the month) estimates for January to June. Analysis of SWE showed spatial variability in the count of records across the six month time period, and this study illustrated differences between Canadian and US (or the north and south) collection. Two different data sets (one gridded and one station) were then used to analyse April 1st records, for which there was the greatest spatial spread of station records for analysis with climate information. Initial results show spatial variability (in both magnitude and direction of trend) for trend results, and climate correlations and principal components indicate different drivers of change in SWE across the western US, Canada and north to Alaska. These results will be used to validate future predictions of SWE that are being undertaken using the Canadian Regional Climate Model (CRCM) and the Variable Infiltration Capacity (VIC) hydrologic model for Western Northern America (CRCM) and British Columbia (VIC).

  8. The underlying processes of a soil mite metacommunity on a small scale.

    PubMed

    Dong, Chengxu; Gao, Meixiang; Guo, Chuanwei; Lin, Lin; Wu, Donghui; Zhang, Limin

    2017-01-01

    Metacommunity theory provides an understanding of how ecological processes regulate local community assemblies. However, few field studies have evaluated the underlying mechanisms of a metacommunity on a small scale through revealing the relative roles of spatial and environmental filtering in structuring local community composition. Based on a spatially explicit sampling design in 2012 and 2013, this study aims to evaluate the underlying processes of a soil mite metacommunity on a small spatial scale (50 m) in a temperate deciduous forest located at the Maoershan Ecosystem Research Station, Northeast China. Moran's eigenvector maps (MEMs) were used to model independent spatial variables. The relative importance of spatial (including trend variables, i.e., geographical coordinates, and broad- and fine-scale spatial variables) and environmental factors in driving the soil mite metacommunity was determined by variation partitioning. Mantel and partial Mantel tests and a redundancy analysis (RDA) were also used to identify the relative contributions of spatial and environmental variables. The results of variation partitioning suggested that the relatively large and significant variance was a result of spatial variables (including broad- and fine-scale spatial variables and trend), indicating the importance of dispersal limitation and autocorrelation processes. The significant contribution of environmental variables was detected in 2012 based on a partial Mantel test, and soil moisture and soil organic matter were especially important for the soil mite metacommunity composition in both years. The study suggested that the soil mite metacommunity was primarily regulated by dispersal limitation due to broad-scale and neutral biotic processes at a fine-scale and that environmental filtering might be of subordinate importance. In conclusion, a combination of metacommunity perspectives between neutral and species sorting theories was suggested to be important in the observed structure of the soil mite metacommunity at the studied small scale.

  9. The underlying processes of a soil mite metacommunity on a small scale

    PubMed Central

    Guo, Chuanwei; Lin, Lin; Wu, Donghui; Zhang, Limin

    2017-01-01

    Metacommunity theory provides an understanding of how ecological processes regulate local community assemblies. However, few field studies have evaluated the underlying mechanisms of a metacommunity on a small scale through revealing the relative roles of spatial and environmental filtering in structuring local community composition. Based on a spatially explicit sampling design in 2012 and 2013, this study aims to evaluate the underlying processes of a soil mite metacommunity on a small spatial scale (50 m) in a temperate deciduous forest located at the Maoershan Ecosystem Research Station, Northeast China. Moran’s eigenvector maps (MEMs) were used to model independent spatial variables. The relative importance of spatial (including trend variables, i.e., geographical coordinates, and broad- and fine-scale spatial variables) and environmental factors in driving the soil mite metacommunity was determined by variation partitioning. Mantel and partial Mantel tests and a redundancy analysis (RDA) were also used to identify the relative contributions of spatial and environmental variables. The results of variation partitioning suggested that the relatively large and significant variance was a result of spatial variables (including broad- and fine-scale spatial variables and trend), indicating the importance of dispersal limitation and autocorrelation processes. The significant contribution of environmental variables was detected in 2012 based on a partial Mantel test, and soil moisture and soil organic matter were especially important for the soil mite metacommunity composition in both years. The study suggested that the soil mite metacommunity was primarily regulated by dispersal limitation due to broad-scale and neutral biotic processes at a fine-scale and that environmental filtering might be of subordinate importance. In conclusion, a combination of metacommunity perspectives between neutral and species sorting theories was suggested to be important in the observed structure of the soil mite metacommunity at the studied small scale. PMID:28481906

  10. Spatial analysis for the identification of risk areas for schistosomiasis mansoni in the State of Sergipe, Brazil, 2005-2014.

    PubMed

    Santos, Allan Dantas Dos; Lima, Ana Caroline Rodrigues; Santos, Márcio Bezerra; Alves, José Antônio Barreto; Góes, Marco Aurélio de Oliveira; Nunes, Marco Antônio Prado; Sá, Sidney Lourdes César Souza; Araújo, Karina Conceição Gomes Machado de

    2016-01-01

    Schistosomiasis is a parasitic infectious disease with a worldwide prevalence. The objective of this work is to identify risk areas for schistosomiasis mansoni transmission in the State of Sergipe, Brazil, during the period from 2005 to 2014. We conducted an epidemiological study with secondary data from the Information System Control Program of Schistosomiasis [Sistema de Informação do Programa de Controle da Esquistossomose (SISPCE)]. Temporal trends were analyzed to obtain the annual percentage change (APC) in the rates of annual prevalence. In addition to the description of general indicators of the disease, the spatial analysis was descriptive, by means of the estimator of intensity kernel, and showed spatial dependence by indicators of global Moran (I) and Local Index of Spatial Association (LISA). Thematic maps of spatial distribution were made, identifying priority intervention areas in need of healthcare. There were 78,663 cases of schistosomiasis, with an average of 8.7% positivity recorded; 79.8% of the cases were treated, and Sergipe showed a decreasing positive trend (APC: -2.78). There was the presence of spatial autocorrelation and a significant global Moran index (I = 0.19; p-value = 0.03). We identified clusters of high-risk areas, mainly located in the northeast and southcentral of the state, which each had equally high infection rates. There was a decreasing positive trend of schistosomiasis in Sergipe. Spatial analysis identified the geographic distribution of risk and allowed the definition of priority areas for the maintenance and intensification of control interventions.

  11. The Variable Grid Method, an Approach for the Simultaneous Visualization and Assessment of Spatial Trends and Uncertainty

    NASA Astrophysics Data System (ADS)

    Rose, K.; Glosser, D.; Bauer, J. R.; Barkhurst, A.

    2015-12-01

    The products of spatial analyses that leverage the interpolation of sparse, point data to represent continuous phenomena are often presented without clear explanations of the uncertainty associated with the interpolated values. As a result, there is frequently insufficient information provided to effectively support advanced computational analyses and individual research and policy decisions utilizing these results. This highlights the need for a reliable approach capable of quantitatively producing and communicating spatial data analyses and their inherent uncertainties for a broad range of uses. To address this need, we have developed the Variable Grid Method (VGM), and associated Python tool, which is a flexible approach that can be applied to a variety of analyses and use case scenarios where users need a method to effectively study, evaluate, and analyze spatial trends and patterns while communicating the uncertainty in the underlying spatial datasets. The VGM outputs a simultaneous visualization representative of the spatial data analyses and quantification of underlying uncertainties, which can be calculated using data related to sample density, sample variance, interpolation error, uncertainty calculated from multiple simulations, etc. We will present examples of our research utilizing the VGM to quantify key spatial trends and patterns for subsurface data interpolations and their uncertainties and leverage these results to evaluate storage estimates and potential impacts associated with underground injection for CO2 storage and unconventional resource production and development. The insights provided by these examples identify how the VGM can provide critical information about the relationship between uncertainty and spatial data that is necessary to better support their use in advance computation analyses and informing research, management and policy decisions.

  12. Remotely Sensed Spatio-Temporal Variability of Snow Cover in Himalayan Region with Perspective of Climate Change

    NASA Astrophysics Data System (ADS)

    Dhakal, S.; Ojha, S.

    2017-12-01

    Climate change and its impact of water resource have gained tremendous attention among scientific committee, governments and other stakeholders since last couple of decades, especially in Himalayan region. In this study, we purpose remotely sensed measurements to monitor snow cover, both spatially and temporal, and assess climate change impact on water resource. The snow cover data from MODIS satellite (2000-2010) have been used to analyze some climate change indicators. In particular, the variability in the maximum snow extent with elevations, its temporal variability (8-day, monthly, seasonal and annual), its variation trend and its relation with temperature have been analyzed. The snow products used in this study are the maximum snow extent and fractional snow covers, which come in 8-day temporal and 500m and 0.05 degree spatial resolutions, respectively. The results showed a tremendous potential of the MODIS snow product for studying the spatial and temporal variability of snow as well as the study of climate change impact in large and inaccessible regions like the Himalayas. The snow area extent (SAE) (%) time series exhibits similar patterns during seven hydrological years, even though there are some deviations in the accumulation and melt periods. The analysis showed relatively well inverse relation between the daily mean temperature and SAE during the melting period. Some important trends of snow fall are also observed. In particular, the decreasing trend in January and increasing trend in late winter and early spring may be interpreted as a signal of a possible seasonal shift. However, it requires more years of data to verify this conclusion.

  13. Monitoring vegetation dynamics with medium resolution MODIS-EVI time series at sub-regional scale in southern Africa

    NASA Astrophysics Data System (ADS)

    Dubovyk, Olena; Landmann, Tobias; Erasmus, Barend F. N.; Tewes, Andreas; Schellberg, Jürgen

    2015-06-01

    Currently there is a lack of knowledge on spatio-temporal patterns of land surface dynamics at medium spatial scale in southern Africa, even though this information is essential for better understanding of ecosystem response to climatic variability and human-induced land transformations. In this study, we analysed vegetation dynamics across a large area in southern Africa using the 14-years (2000-2013) of medium spatial resolution (250 m) MODIS-EVI time-series data. Specifically, we investigated temporal changes in the time series of key phenometrics including overall greenness, peak and timing of annual greenness over the monitoring period and study region. In order to specifically capture spatial and per pixel vegetation changes over time, we calculated trends in these phenometrics using a robust trend analysis method. The results showed that interannual vegetation dynamics followed precipitation patterns with clearly differentiated seasonality. The earliest peak greenness during 2000-2013 occurred at the end of January in the year 2000 and the latest peak greenness was observed at the mid of March in 2012. Specifically spatial patterns of long-term vegetation trends allowed mapping areas of (i) decrease or increase in overall greenness, (ii) decrease or increase of peak greenness, and (iii) shifts in timing of occurrence of peak greenness over the 14-year monitoring period. The observed vegetation decline in the study area was mainly attributed to human-induced factors. The obtained information is useful to guide selection of field sites for detailed vegetation studies and land rehabilitation interventions and serve as an input for a range of land surface models.

  14. Spatial and temporal trends and flow dynamics of glyphosate and other pesticides within an agricultural watershed in Argentina.

    PubMed

    Pérez, Débora J; Okada, Elena; De Gerónimo, Eduardo; Menone, Mirta L; Aparicio, Virginia C; Costa, José L

    2017-12-01

    In the present study, we evaluated the spatial and temporal trends of current-use pesticides in surface water and sediments as well as their relationship with hydrological stream dynamics within the agricultural watershed of El Crespo stream (Buenos Aires Province, Argentina). We sampled 2 contrasting sites: site 1 (upstream), surrounded by agricultural lands, and site 2 (downstream), surrounded by natural grasslands. Most of the applied pesticides (glyphosate, 2,4-D, atrazine, tebuconazole, and imidacloprid) were detected at high frequencies in surface water samples at both sites. However, only glyphosate and aminomethylphosphonic acid (AMPA) were present at high concentrations and had a significant spatial-temporal trend. The highest concentrations were found during spring 2014 at site 1, in association with the intense rains that occurred in that season. The fact that glyphosate and AMPA concentrations were higher than the rest of the studied compounds is closely related to the land use within the watershed, as glyphosate was the most applied herbicide during the fallow period of glyphosate-resistant crops (soybean, maize). The pesticide mixture had a significant spatial-temporal trend, reaching the highest levels during storm flow events in spring 2014. The intensive rains in spring 2014 could be the main factor influencing stream hydrology and pesticide behavior at El Crespo watershed. The estimated annual pesticide losses were 3.11 g/ha at site 1 and 0.72 g/ha at site 2. This result indicates that an attenuation process could be decreasing pesticide loads during downstream transport from site 1 to site 2. Environ Toxicol Chem 2017;36:3206-3216. © 2017 SETAC. © 2017 SETAC.

  15. Unidirectional trends in annual and seasonal climate and extremes in Egypt

    NASA Astrophysics Data System (ADS)

    Nashwan, Mohamed Salem; Shahid, Shamsuddin; Abd Rahim, Norhan

    2018-05-01

    The presence of short- and long-term autocorrelations can lead to considerable change in significance of trend in hydro-climatic time series. Therefore, past findings of climatic trend studies that did not consider autocorrelations became a questionable issue. The spatial patterns in the trends of annual and seasonal temperature, rainfall, and related extremes in Egypt have been assessed in this paper using modified Mann-Kendal (MMK) trend test which can detect unidirectional trends in time series in the presence of short- and long-term autocorrelations. The trends obtained using the MMK test was compared with that obtained using standard Mann-Kendall (MK) test to show how natural variability in climate affects the trends. The daily rainfall and temperature data of Princeton Global Meteorological Forcing for the period 1948-2010 having a spatial resolution of 0.25° × 0.25° was used for this purpose. The results showed a large difference between the trends obtained using MMK and MK tests. The MMK test showed increasing trends in temperature and a number of temperature extremes in Egypt, but almost no change in rainfall and rainfall extremes. The minimum temperature was found to increase (0.08-0.29 °C/decade) much faster compared to maximum temperature (0.07-0.24 °C/decade) and therefore, a decrease in diurnal temperature range (- 0.01 to - 0.16 °C/decade) in most part of Egypt. The number of winter hot days and nights are increasing, while the number of cold days is decreasing in most part of the country. The study provides a more realistic scenario of the changes in climate and weather extremes of Egypt.

  16. Estimating front-wave velocity of infectious diseases: a simple, efficient method applied to bluetongue.

    PubMed

    Pioz, Maryline; Guis, Hélène; Calavas, Didier; Durand, Benoît; Abrial, David; Ducrot, Christian

    2011-04-20

    Understanding the spatial dynamics of an infectious disease is critical when attempting to predict where and how fast the disease will spread. We illustrate an approach using a trend-surface analysis (TSA) model combined with a spatial error simultaneous autoregressive model (SAR(err) model) to estimate the speed of diffusion of bluetongue (BT), an infectious disease of ruminants caused by bluetongue virus (BTV) and transmitted by Culicoides. In a first step to gain further insight into the spatial transmission characteristics of BTV serotype 8, we used 2007-2008 clinical case reports in France and TSA modelling to identify the major directions and speed of disease diffusion. We accounted for spatial autocorrelation by combining TSA with a SAR(err) model, which led to a trend SAR(err) model. Overall, BT spread from north-eastern to south-western France. The average trend SAR(err)-estimated velocity across the country was 5.6 km/day. However, velocities differed between areas and time periods, varying between 2.1 and 9.3 km/day. For more than 83% of the contaminated municipalities, the trend SAR(err)-estimated velocity was less than 7 km/day. Our study was a first step in describing the diffusion process for BT in France. To our knowledge, it is the first to show that BT spread in France was primarily local and consistent with the active flight of Culicoides and local movements of farm animals. Models such as the trend SAR(err) models are powerful tools to provide information on direction and speed of disease diffusion when the only data available are date and location of cases.

  17. The human sex odds at birth after the atmospheric atomic bomb tests, after Chernobyl, and in the vicinity of nuclear facilities.

    PubMed

    Scherb, Hagen; Voigt, Kristina

    2011-06-01

    Ever since the discovery of the mutagenic properties of ionizing radiation, the possibility of birth sex odds shifts in exposed human populations was considered in the scientific community. Positive evidence, however weak, was obtained after the atomic bombing of Japan. We previously investigated trends in the sex odds before and after the Chernobyl Nuclear Power Plant accident. In a pilot study, combined data from the Czech Republic, Denmark, Finland, Germany, Hungary, Norway, Poland, and Sweden between 1982 and 1992 showed a downward trend in the sex odds and a significant jump in 1987, the year immediately after Chernobyl. Moreover, a significant positive association of the sex odds between 1986 and 1991 with Chernobyl fallout at the district level in Germany was observed. Both of these findings, temporality (effect after exposure) and dose response association, yield evidence of causality. The primary aim of this study was to investigate longer time periods (1950-2007) in all of Europe and in the USA with emphasis on the global atmospheric atomic bomb test fallout and on the Chernobyl accident. To obtain further evidence, we also analyze sex odds data near nuclear facilities in Germany and Switzerland. DATA AND STATISTICAL METHODS: National gender-specific annual live births data for 39 European countries from 1975 to 2007 were compiled using the pertinent internet data bases provided by the World Health Organization, United Nations, Council of Europe, and EUROSTAT. For a synoptic re-analysis of the period 1950 to 1990, published data from the USA and from a predominantly western and less Chernobyl-exposed part of Europe were studied additionally. To assess spatial, temporal, as well as spatial-temporal trends in the sex odds and to investigate possible changes in those trends after the atomic bomb tests, after Chernobyl, and in the vicinity of nuclear facilities, we applied ordinary linear logistic regression. Region-specific and eventually changing spatial-temporal trends were analyzed using dummy variables coding for continents, countries, districts, municipalities, time periods, and appropriate spatial-temporal interactions. The predominantly western European sex odds trend together with the US sex odds trend (1950-1990 each) show a similar behavior. Both trends are consistent with a uniform reduction from 1950 to 1964, an increase from 1964 to 1975 that may be associated with delayed global atomic bomb test fallout released prior to the Partial Test Ban Treaty in 1963 and again a more or less constant decrease from 1975 to 1990. In practically all of Europe, including eastern European countries, from 1975 to 1986, and in the USA from 1975 to 2002, there were highly significant uniform downward trends in the sex odds with a reduction of 0.22% to 0.25% per 10 years. In contrast to the USA, in Europe there was a highly significant jump of the sex odds of 0.20% in the year 1987 following Chernobyl. From 1987 to 2000, the European sex odds trend reversed its sign and went upward, highly significantly so, with 0.42% per 10 years relative to the downward trend before Chernobyl. The global secular trend analyses are corroborated by the analysis of spatial-temporal sex odds trends near nuclear facilities (NF) in Germany and Switzerland. Within 35 km distance from those NF, the sex odds increase significantly in the range of 0.30% to 0.40% during NF operating time. The atmospheric atomic bomb test fallout affected the human sex odds at birth overall, and the Chernobyl fallout had a similar impact in Europe and parts of Asia. The birth sex odds near nuclear facilities are also distorted. The persistently disturbed secular human sex odds trends allow the estimation of the global deficit of births in the range of several millions.

  18. Fine-scale population dynamics in a marine fish species inferred from dynamic state-space models.

    PubMed

    Rogers, Lauren A; Storvik, Geir O; Knutsen, Halvor; Olsen, Esben M; Stenseth, Nils C

    2017-07-01

    Identifying the spatial scale of population structuring is critical for the conservation of natural populations and for drawing accurate ecological inferences. However, population studies often use spatially aggregated data to draw inferences about population trends and drivers, potentially masking ecologically relevant population sub-structure and dynamics. The goals of this study were to investigate how population dynamics models with and without spatial structure affect inferences on population trends and the identification of intrinsic drivers of population dynamics (e.g. density dependence). Specifically, we developed dynamic, age-structured, state-space models to test different hypotheses regarding the spatial structure of a population complex of coastal Atlantic cod (Gadus morhua). Data were from a 93-year survey of juvenile (age 0 and 1) cod sampled along >200 km of the Norwegian Skagerrak coast. We compared two models: one which assumes all sampled cod belong to one larger population, and a second which assumes that each fjord contains a unique population with locally determined dynamics. Using the best supported model, we then reconstructed the historical spatial and temporal dynamics of Skagerrak coastal cod. Cross-validation showed that the spatially structured model with local dynamics had better predictive ability. Furthermore, posterior predictive checks showed that a model which assumes one homogeneous population failed to capture the spatial correlation pattern present in the survey data. The spatially structured model indicated that population trends differed markedly among fjords, as did estimates of population parameters including density-dependent survival. Recent biomass was estimated to be at a near-record low all along the coast, but the finer scale model indicated that the decline occurred at different times in different regions. Warm temperatures were associated with poor recruitment, but local changes in habitat and fishing pressure may have played a role in driving local dynamics. More generally, we demonstrated how state-space models can be used to test evidence for population spatial structure based on survey time-series data. Our study shows the importance of considering spatially structured dynamics, as the inferences from such an approach can lead to a different ecological understanding of the drivers of population declines, and fundamentally different management actions to restore populations. © 2017 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

  19. Random field theory to interpret the spatial variability of lacustrine soils

    NASA Astrophysics Data System (ADS)

    Russo, Savino; Vessia, Giovanna

    2015-04-01

    The lacustrine soils are quaternary soils, dated from Pleistocene to Holocene periods, generated in low-energy depositional environments and characterized by soil mixture of clays, sands and silts with alternations of finer and coarser grain size layers. They are often met at shallow depth filling several tens of meters of tectonic or erosive basins typically placed in internal Appenine areas. The lacustrine deposits are often locally interbedded by detritic soils resulting from the failure of surrounding reliefs. Their heterogeneous lithology is associated with high spatial variability of physical and mechanical properties both along horizontal and vertical directions. The deterministic approach is still commonly adopted to accomplish the mechanical characterization of these heterogeneous soils where undisturbed sampling is practically not feasible (if the incoherent fraction is prevalent) or not spatially representative (if the cohesive fraction prevails). The deterministic approach consists on performing in situ tests, like Standard Penetration Tests (SPT) or Cone Penetration Tests (CPT) and deriving design parameters through "expert judgment" interpretation of the measure profiles. These readings of tip and lateral resistances (Rp and RL respectively) are almost continuous but highly variable in soil classification according to Schmertmann (1978). Thus, neglecting the spatial variability cannot be the best strategy to estimated spatial representative values of physical and mechanical parameters of lacustrine soils to be used for engineering applications. Hereafter, a method to draw the spatial variability structure of the aforementioned measure profiles is presented. It is based on the theory of the Random Fields (Vanmarcke 1984) applied to vertical readings of Rp measures from mechanical CPTs. The proposed method relies on the application of the regression analysis, by which the spatial mean trend and fluctuations about this trend are derived. Moreover, the scale of fluctuation is calculated to measure the maximum length beyond which profiles of measures are independent. The spatial mean trend can be used to identify "quasi-homogeneous" soil layers where the standard deviation and the scale of fluctuation can be calculated. In this study, five Rp profiles performed in the lacustrine deposits of the high River Pescara Valley have been analyzed. There, silty clay deposits with thickness ranging from a few meters to about 60m, and locally rich in sands and peats, are investigated. In this study, vertical trends of Rp profiles have been derived to be converted into design parameter mean trends. Furthermore, the variability structure derived from Rp readings can be propagated to design parameters to calculate the "characteristic values" requested by the European building codes. References Schmertmann J.H. 1978. Guidelines for Cone Penetration Test, Performance and Design. Report No. FHWA-TS-78-209, U.S. Department of Transportation, Washington, D.C., pp. 145. Vanmarcke E.H. 1984. Random Fields, analysis and synthesis. Cambridge (USA): MIT Press.

  20. Spatial Analysis of the Human Immunodeficiency Virus Epidemic among Men Who Have Sex with Men in China, 2006-2015.

    PubMed

    Qin, Qianqian; Guo, Wei; Tang, Weiming; Mahapatra, Tanmay; Wang, Liyan; Zhang, Nanci; Ding, Zhengwei; Cai, Chang; Cui, Yan; Sun, Jiangping

    2017-04-01

    Studies have shown a recent upsurge in human immunodeficiency virus (HIV) burden among men who have sex with men (MSM) in China, especially in urban areas. For intervention planning and resource allocation, spatial analyses of HIV/AIDS case-clusters were required to identify epidemic foci and trends among MSM in China. Information regarding MSM recorded as HIV/AIDS cases during 2006-2015 were extracted from the National Case Reporting System. Demographic trends were determined through Cochran-Armitage trend tests. Distribution of case-clusters was examined using spatial autocorrelation. Spatial-temporal scan was used to detect disease clustering. Spatial correlations between cases and socioenvironmental factors were determined by spatial regression. Between 2006 and 2015, in China, 120 371 HIV/AIDS cases were identified among MSM. Newly identified HIV/AIDS cases among self-reported MSM increased from 487 cases in 2006 to >30 000 cases in 2015. Among those HIV/AIDS cases recorded during 2006-2015, 47.0% were 20-29 years old and 24.9% were aged 30-39 years. Based on clusters of HIV/AIDS cases identified through spatial analysis, the epidemic was concentrated among MSM in large cities. Spatial-temporal clusters contained municipalities, provincial capitals, and main cities such as Beijing, Shanghai, Chongqing, Chengdu, and Guangzhou. Spatial regression analysis showed that sociodemographic indicators such as population density, per capita gross domestic product, and number of county-level medical institutions had statistically significant positive correlations with HIV/AIDS among MSM. Assorted spatial analyses revealed an increasingly concentrated HIV epidemic among young MSM in Chinese cities, calling for targeted health education and intensive interventions at an early age. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  1. Spatial patterns and secular trends in human leishmaniasis incidence in Morocco between 2003 and 2013.

    PubMed

    Sadeq, Mina

    2016-05-11

    Few studies on spatial patterns or secular trends in human leishmanias have been conducted in Morocco. This study aimed to examine spatial patterns and trends associated with the human leishmaniasis incidence rate (HLIR) at the province/prefecture level between 2003 and 2013 in Morocco. Only the available published country data on the HLIR between 2003 and 2013, from the open access files of the Ministry of Health, were used. Secular trends were examined using Kendall's rank correlation. An exploratory spatial data analysis was also conducted to examine the spatial autocorrelation (Global Moran's I and local indicator of spatial association [LISA]), and spatial diffusion at the province/prefecture level. The influence of various covariates (poverty rate, vulnerability rate, population density, and urbanization) on the HLIR was tested via spatial regression (ordinary least squares regression). At the country level, no secular variation was observed. Poisson annual incidence rate estimates were 13 per 100 000 population (95 % CI = 12.9-13.1) for cutaneous leishmaniasis (CL) and 0.4 per 100 000 population (95 % CI = 0.4-0.5) for visceral leishmaniasis (VL). The available data on HLIR were based on combined CL and VL cases, however, as the CL cases totally outnumbered the VL ones, HLIR may be considered as CL incidence rate. At the provincial level, a secular increase in the incidence rate was observed in Al Hoceima (P = 0.008), Taounate (P = 0.04), Larache (P = 0.002), Tétouan (P = 0.0003), Khenifra (P = 0.008), Meknes (P = 0.03), and El Kelaa (P = 0.0007), whereas a secular decrease was observed only in the Chichaoua province (P = 0.006). Even though increased or decreased rate was evident in these provinces, none of them showed clustering of leishmaniasis incidence. Significant spatial clusters of high leishmaniasis incidence were located in the northeastern part of Morocco, while spatial clusters of low leishmaniasis incidence were seen in some northwestern and southern parts of Morocco; there was spatial randomness in the remaining parts of the country. Significant clustering was seen from 2005 to 2013, during which time the Errachidia province was a permanent 'hot spot'. Global Moran's I increased from 0.2844 (P = 0.006) in 2005 to 0.5886 (P = 0.001) in 2011, and decreased to 0.2491 (P = 0.004) in 2013. It was found that only poverty had an effect on the HLIR (P = 0.0003), contributing only 23 % to this (Adjusted R-squared = 0.226). Localities showing either secular increase in human leishmaniasis or significant clustering have been identified, which may guide decision-making as to where to appropriately allocate funding and implement control measures. Researchers are also urged to undertake further studies focusing on these localities.

  2. Regional-Scale Declines in Productivity of Pink and Chum Salmon Stocks in Western North America

    PubMed Central

    Malick, Michael J.; Cox, Sean P.

    2016-01-01

    Sockeye salmon (Oncorhynchus nerka) stocks throughout the southern part of their North American range have experienced declines in productivity over the past two decades. In this study, we tested the hypothesis that pink (O. gorbuscha) and chum (O. keta) salmon stocks have also experienced recent declines in productivity by investigating temporal and spatial trends in productivity of 99 wild North American pink and chum salmon stocks. We used a combination of population dynamics and time series models to quantify individual stock trends as well as common temporal trends in pink and chum salmon productivity across local, regional, and continental spatial scales. Our results indicated widespread declines in productivity of wild chum salmon stocks throughout Washington (WA) and British Columbia (BC) with 81% of stocks showing recent declines in productivity, although the exact form of the trends varied among regions. For pink salmon, the majority of stocks in WA and BC (65%) did not have strong temporal trends in productivity; however, all stocks that did have trends in productivity showed declining productivity since at least brood year 1996. We found weaker evidence of widespread declines in productivity for Alaska pink and chum salmon, with some regions and stocks showing declines in productivity (e.g., Kodiak chum salmon stocks) and others showing increases (e.g., Alaska Peninsula pink salmon stocks). We also found strong positive covariation between stock productivity series at the regional spatial scale for both pink and chum salmon, along with evidence that this regional-scale positive covariation has become stronger since the early 1990s in WA and BC. In general, our results suggest that common processes operating at the regional or multi-regional spatial scales drive productivity of pink and chum salmon stocks in western North America and that the effects of these process on productivity may change over time. PMID:26760510

  3. Nightlights along the Eastern Alpine river network in Austria and Italy as a proxy of human presence

    NASA Astrophysics Data System (ADS)

    Ceola, Serena; Montanari, Alberto; Parajka, Juraj; Viglione, Alberto; Bloeschl, Guenter

    2016-04-01

    Understanding the spatial and temporal distribution of human settlements and economic activities in relation to the geographical location of streams and rivers is of fundamental concern for several hydrologic issues such as flood risk and drought management, water pollution and exploitation, as well as stream ecological purposes. Indeed, the human presence close to streams and rivers is known to have consistently increased worldwide, therefore introducing dramatic anthropogenic and environmental changes. This research study analyses the spatial and temporal evolution of human settlements and associated economic activity, derived from nighttime lights, in the Eastern Alpine region. Nightlights, available at a 1 km spatial resolution and for a 22-year period, constitute an excellent data base, which allows to explore in details human signatures. In this experiment, nightlights are associated to five distinct distance-from-river classes, by using the CCM river network data base. From the temporal perspective, nightlights in correspondence of each distance-from-river class within each study region show an overall increasing trend, whereas the spatial trends differs among the study regions. More information about the analysis and project are available at: http://www.water-switch-on.eu/.

  4. Stratospheric Temperature Trends Observed by TIMED/SABER

    NASA Astrophysics Data System (ADS)

    Xian, T.; Tan, R.

    2017-12-01

    Trends in the stratospheric temperature are studied based on the temperature profile observation from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER). The spatially trends are evaluated in different time scales ranging from decadal to monthly resolved. The results indicate a signature of BDC acceleration. There are strong warming trends (up to 9 K/decade) in the middle to upper stratosphere in the high latitude spring, summer, and autumn seasons, accompanied by strong cooling trends in the lower stratosphere. Besides, strong warming trends occurs through the whole stratosphere over the Southern Hemisphere, which confirms Antarctic ozone layer healing since 2000. In addition, the results demonstrate a significant warming trends in the middle of tropical stratosphere, which becomes strongest during June-July-August.

  5. Spatio-Temporal Epidemiology of Viral Hepatitis in China (2003-2015): Implications for Prevention and Control Policies.

    PubMed

    Zhu, Bin; Liu, Jinlin; Fu, Yang; Zhang, Bo; Mao, Ying

    2018-04-02

    Viral hepatitis, as one of the most serious notifiable infectious diseases in China, takes heavy tolls from the infected and causes a severe economic burden to society, yet few studies have systematically explored the spatio-temporal epidemiology of viral hepatitis in China. This study aims to explore, visualize and compare the epidemiologic trends and spatial changing patterns of different types of viral hepatitis (A, B, C, E and unspecified, based on the classification of CDC) at the provincial level in China. The growth rates of incidence are used and converted to box plots to visualize the epidemiologic trends, with the linear trend being tested by chi-square linear by linear association test. Two complementary spatial cluster methods are used to explore the overall agglomeration level and identify spatial clusters: spatial autocorrelation analysis (measured by global and local Moran's I) and space-time scan analysis. Based on the spatial autocorrelation analysis, the hotspots of hepatitis A remain relatively stable and gradually shrunk, with Yunnan and Sichuan successively moving out the high-high (HH) cluster area. The HH clustering feature of hepatitis B in China gradually disappeared with time. However, the HH cluster area of hepatitis C has gradually moved towards the west, while for hepatitis E, the provincial units around the Yangtze River Delta region have been revealing HH cluster features since 2005. The space-time scan analysis also indicates the distinct spatial changing patterns of different types of viral hepatitis in China. It is easy to conclude that there is no one-size-fits-all plan for the prevention and control of viral hepatitis in all the provincial units. An effective response requires a package of coordinated actions, which should vary across localities regarding the spatial-temporal epidemic dynamics of each type of virus and the specific conditions of each provincial unit.

  6. Water vapor variation and the effect of aerosols in China

    NASA Astrophysics Data System (ADS)

    Gui, Ke; Che, Huizheng; Chen, Quanliang; Zeng, Zhaoliang; Zheng, Yu; Long, Qichao; Sun, Tianze; Liu, Xinyu; Wang, Yaqiang; Liao, Tingting; Yu, Jie; Wang, Hong; Zhang, Xiaoye

    2017-09-01

    This study analyzes the annual and seasonal trends in precipitable water vapor (PWV) and surface temperature (Ts) over China from 1979 to 2015, and the relationships between PWV and Ts and between PWV and aerosol absorption optical depth (AAOD), using data from radiosonde stations, weather stations and multiple satellite observations. The results revealed a positive PWV trend between 1979 and 1999, and a negative PWV trend between 2000 and 2015. Analysis of the differences in the PWV trend among different stations types showed that the magnitude of the trends were in the order main urban stations > provincial capital stations > suburb stations, suggesting that anthropogenic activities have a strong influence on the PWV trend. The AAOD exhibited a significant positive trend in most regions of China from 2005 to 2015 (confidence level 95%). Using spatial correlation analysis, we showed that PWV trend derived from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations is correlated with Ts, with an annual correlation coefficient of 0.596. In addition, the spatial correlation between PWV and AAOD showed a negative relationship, with the highest correlation coefficients of -0.76 and -0.71 observed in mid-eastern China and central northwest China, respectively, suggesting that the increase in AAOD in recent years may be one of the reasons for the decrease in PWV since the 2000s in China.

  7. Utilizing Multi-Ensemble of Downscaled CMIP5 GCMs to Investigate Trends and Spatial and Temporal Extent of Drought in Willamette Basin

    NASA Astrophysics Data System (ADS)

    Ahmadalipour, A.; Beal, B.; Moradkhani, H.

    2015-12-01

    Changing climate and potential future increases in global temperature are likely to have impacts on drought characteristics and hydrologic cylce. In this study, we analyze changes in temporal and spatial extent of meteorological and hydrological droughts in future, and their trends. Three statistically downscaled datasets from NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP), Multivariate Adaptive Constructed Analogs (MACA), and Bias Correction and Spatial Disagregation (BCSD-PSU) each consisting of 10 CMIP5 Global Climate Models (GCM) are utilized for RCP4.5 and RCP8.5 scenarios. Further, Precipitation Runoff Modeling System (PRMS) hydrologic model is used to simulate streamflow from GCM inputs and assess the hydrological drought characteristics. Standard Precipitation Index (SPI) and Streamflow Drought Index (SDI) are the two indexes used to investigate meteorological and hydrological drought, respectively. Study is done for Willamette Basin with a drainage area of 29,700 km2 accommodating more than 3 million inhabitants and 25 dams. We analyze our study for annual time scale as well as three future periods of near future (2010-2039), intermediate future (2040-2069), and far future (2070-2099). Large uncertainty is found from GCM predictions. Results reveal that meteorological drought events are expected to increase in near future. Severe to extreme drought with large areal coverage and several years of occurance is predicted around year 2030 with the likelihood of exceptional drought for both drought types. SPI is usually showing positive trends, while SDI indicates negative trends in most cases.

  8. Long-term vegetation activity trends in the Iberian Peninsula and The Balearic Islands using high spatial resolution NOAA-AVHRR data (1981 - 2015).

    NASA Astrophysics Data System (ADS)

    Martin-Hernandez, Natalia; Vicente-Serrano, Sergio; Azorin-Molina, Cesar; Begueria-Portugues, Santiago; Reig-Gracia, Fergus; Zabalza-Martínez, Javier

    2017-04-01

    We have analysed trends in the Normalized Difference Vegetation Index (NDVI) in the Iberian Peninsula and The Balearic Islands over the period 1981 - 2015 using a new high resolution data set from the entire available NOAA - AVHRR images (IBERIAN NDVI dataset). After a complete processing including geocoding, calibration, cloud removal, topographic correction and temporal filtering, we obtained bi-weekly time series. To assess the accuracy of the new IBERIAN NDVI time-series, we have compared temporal variability and trends of NDVI series with those results reported by GIMMS 3g and MODIS (MOD13A3) NDVI datasets. In general, the IBERIAN NDVI showed high reliability with these two products but showing higher spatial resolution than the GIMMS dataset and covering two more decades than the MODIS dataset. Using the IBERIAN NDVI dataset, we analysed NDVI trends by means of the non-parametric Mann-Kendall test and Theil-Sen slope estimator. In average, vegetation trends in the study area show an increase over the last decades. However, there are local spatial differences: the main increase has been recorded in humid regions of the north of the Iberian Peninsula. The statistical techniques allow finding abrupt and gradual changes in different land cover types during the analysed period. These changes are related with human activity due to land transformations (from dry to irrigated land), land abandonment and forest recovery.

  9. Spatial heterogeneity of greening and browning between and within bioclimatic zones in northern West Siberia

    NASA Astrophysics Data System (ADS)

    Miles, Victoria V.; Esau, Igor

    2016-11-01

    Studies of the normalized difference vegetation index (NDVI) have found broad changes in vegetation productivity in high northern latitudes in the past decades, including increases in NDVI (‘greening’) in tundra regions and decreases (‘browning’) in forest regions. The causes of these changes are not well understood but have been attributed to a variety of factors. We use Moderate Resolution Imaging Spectrometer (MODIS) satellite data for 2000-2014 and focus on northern West Siberia—a hot spot of extensive landcover change due to rapid resource development, geomorphic change, climate change and reindeer grazing. The region is relatively little-studied in terms of vegetation productivity patterns and trends. This study examines changes between and within bioclimatic sub-zones and reveals differences between forest and treeless areas and differences in productivity even down to the tree species level. Our results show that only 18% of the total northern West Siberia area had statistically significant changes in productivity, with 8.4% increasing (greening) and 9.6% decreasing (browning). We find spatial heterogeneity in the trends, and contrasting trends both between and within bioclimatic zones. A key finding is the identification of contrasting trends for different species within the same bioclimatic zone. Browning is most prominent in areas of denser tree coverage, and particularly in evergreen coniferous forest with dark (Picea abie, Picea obovata) or light (Pinus sylvestris) evergreen and evergreen-majority mixed forests. In contrast, low density deciduous needle-leaf forest dominated by larch (Larix sibirica), shows a significant increase in productivity, even while neighboring different species show productivity decrease. These results underscore the complexity of the patterns of variability and trends in vegetation productivity, and suggest the need for spatially and thematically detailed studies to better understand the response of different northern forest types and species to climate and environmental change.

  10. Combined multivariate statistical techniques, Water Pollution Index (WPI) and Daniel Trend Test methods to evaluate temporal and spatial variations and trends of water quality at Shanchong River in the Northwest Basin of Lake Fuxian, China.

    PubMed

    Wang, Quan; Wu, Xianhua; Zhao, Bin; Qin, Jie; Peng, Tingchun

    2015-01-01

    Understanding spatial and temporal variations in river water quality and quantitatively evaluating the trend of changes are important in order to study and efficiently manage water resources. In this study, an analysis of Water Pollution Index (WPI), Daniel Trend Test, Cluster Analysis and Discriminant Analysis are applied as an integrated approach to quantitatively explore the spatial and temporal variations and the latent sources of water pollution in the Shanchong River basin, Northwest Basin of Lake Fuxian, China. We group all field surveys into 2 clusters (dry season and rainy season). Moreover, 14 sampling sites have been grouped into 3 clusters for the rainy season (highly polluted, moderately polluted and less polluted sites) and 2 clusters for the dry season (highly polluted and less polluted sites) based on their similarities and the level of pollution during the two seasons. The results show that the main trend of pollution was aggravated during the transition from the dry to the rainy season. The Water Pollution Index of Total Nitrogen is the highest of all pollution parameters, whereas the Chemical Oxygen Demand (Chromium) is the lowest. Our results also show that the main sources of pollution are farming activities alongside the Shanchong River, soil erosion and fish culture at Shanchong River reservoir area and domestic sewage from scattered rural residential area. Our results suggest that strategies to prevent water pollutionat the Shanchong River basin need to focus on non-point pollution control by employing appropriate fertilizer formulas in farming, and take the measures of soil and water conservation at Shanchong reservoir area, and purifying sewage from scattered villages.

  11. Combined Multivariate Statistical Techniques, Water Pollution Index (WPI) and Daniel Trend Test Methods to Evaluate Temporal and Spatial Variations and Trends of Water Quality at Shanchong River in the Northwest Basin of Lake Fuxian, China

    PubMed Central

    Wang, Quan; Wu, Xianhua; Zhao, Bin; Qin, Jie; Peng, Tingchun

    2015-01-01

    Understanding spatial and temporal variations in river water quality and quantitatively evaluating the trend of changes are important in order to study and efficiently manage water resources. In this study, an analysis of Water Pollution Index (WPI), Daniel Trend Test, Cluster Analysis and Discriminant Analysis are applied as an integrated approach to quantitatively explore the spatial and temporal variations and the latent sources of water pollution in the Shanchong River basin, Northwest Basin of Lake Fuxian, China. We group all field surveys into 2 clusters (dry season and rainy season). Moreover, 14 sampling sites have been grouped into 3 clusters for the rainy season (highly polluted, moderately polluted and less polluted sites) and 2 clusters for the dry season (highly polluted and less polluted sites) based on their similarities and the level of pollution during the two seasons. The results show that the main trend of pollution was aggravated during the transition from the dry to the rainy season. The Water Pollution Index of Total Nitrogen is the highest of all pollution parameters, whereas the Chemical Oxygen Demand (Chromium) is the lowest. Our results also show that the main sources of pollution are farming activities alongside the Shanchong River, soil erosion and fish culture at Shanchong River reservoir area and domestic sewage from scattered rural residential area. Our results suggest that strategies to prevent water pollutionat the Shanchong River basin need to focus on non-point pollution control by employing appropriate fertilizer formulas in farming, and take the measures of soil and water conservation at Shanchong reservoir area, and purifying sewage from scattered villages. PMID:25837673

  12. Observed and Modeled Trends in Southern Ocean Sea Ice

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.

    2003-01-01

    Conceptual models and global climate model (GCM) simulations have both indicated the likelihood of an enhanced sensitivity to climate change in the polar regions, derived from the positive feedbacks brought about by the polar abundance of snow and ice surfaces. Some models further indicate that the changes in the polar regions can have a significant impact globally. For instance, 37% of the temperature sensitivity to a doubling of atmospheric CO2 in simulations with the GCM of the Goddard Institute for Space Studies (GISS) is attributable exclusively to inclusion of sea ice variations in the model calculations. Both sea ice thickness and sea ice extent decrease markedly in the doubled CO, case, thereby allowing the ice feedbacks to occur. Stand-alone sea ice models have shown Southern Ocean hemispherically averaged winter ice-edge retreats of 1.4 deg latitude for each 1 K increase in atmospheric temperatures. Observations, however, show a much more varied Southern Ocean ice cover, both spatially and temporally, than many of the modeled expectations. In fact, the satellite passive-microwave record of Southern Ocean sea ice since late 1978 has revealed overall increases rather than decreases in ice extents, with ice extent trends on the order of 11,000 sq km/year. When broken down spatially, the positive trends are strongest in the Ross Sea, while the trends are negative in the Bellingshausen/Amundsen Seas. Greater spatial detail can be obtained by examining trends in the length of the sea ice season, and those trends show a coherent picture of shortening sea ice seasons throughout almost the entire Bellingshausen and Amundsen Seas to the west of the Antarctic Peninsula and in the far western Weddell Sea immediately to the east of the Peninsula, with lengthening sea ice seasons around much of the rest of the continent. This pattern corresponds well with the spatial pattern of temperature trends, as the Peninsula region is the one region in the Antarctic with a strong record of temperature increases. Still, although the patterns of the temperature and ice changes match fairly well, there is a substantial ways to go before these patterns are understood (and can be modeled) in the full context of global change.

  13. A spatial-temporal approach to surveillance of prostate cancer disparities in population subgroups.

    PubMed Central

    Hsu, Chiehwen Ed; Mas, Francisco Soto; Miller, Jerry A.; Nkhoma, Ella T.

    2007-01-01

    BACKGROUND: Prostate cancer mortality disparities exist among racial/ethnic groups in the United States, yet few studies have explored the spatiotemporal trend of the disease burden. To better understand mortality disparities by geographic regions over time, the present study analyzed the geographic variations of prostate cancer mortality by three Texas racial/ethnic groups over a 22-year period. METHODS: The Spatial Scan Statistic developed by Kulldorff et al was used. Excess mortality was detected using scan windows of 50% and 90% of the study period and a spatial cluster size of 50% of the population at risk. Time trend was analyzed to examine the potential temporal effects of clustering. Spatial queries were used to identify regions with multiple racial/ethnic groups having excess mortality. RESULTS: The most likely area of excess mortality for blacks occurred in Dallas-Metroplex and upper east Texas areas between 1990 and 1999; for Hispanics, in central Texas between 1992 and 1996: and for non-Hispanic whites, in the upper south and west to central Texas areas between 1990 and 1996. Excess mortality persisted among all racial/ethnic groups in the identified counties. The second scan revealed that three counties in west Texas presented an excess mortality for Hispanics from 1980-2001. Many counties bore an excess mortality burden for multiple groups. There is no time trend decline in prostate cancer mortality for blacks and non-Hispanic whites in Texas. CONCLUSION: Disparities in prostate cancer mortality among racial/ethnic groups existed in Texas. Central Texas counties with excess mortality in multiple subgroups warrant further investigation. PMID:17304971

  14. Gene-Environment Interplay in Physical, Psychological, and Cognitive Domains in Mid to Late Adulthood: Is APOE a Variability Gene?

    PubMed

    Reynolds, Chandra A; Gatz, Margaret; Christensen, Kaare; Christiansen, Lene; Dahl Aslan, Anna K; Kaprio, Jaakko; Korhonen, Tellervo; Kremen, William S; Krueger, Robert; McGue, Matt; Neiderhiser, Jenae M; Pedersen, Nancy L

    2016-01-01

    Despite emerging interest in gene-environment interaction (GxE) effects, there is a dearth of studies evaluating its potential relevance apart from specific hypothesized environments and biometrical variance trends. Using a monozygotic within-pair approach, we evaluated evidence of G×E for body mass index (BMI), depressive symptoms, and cognition (verbal, spatial, attention, working memory, perceptual speed) in twin studies from four countries. We also evaluated whether APOE is a 'variability gene' across these measures and whether it partly represents the 'G' in G×E effects. In all three domains, G×E effects were pervasive across country and gender, with small-to-moderate effects. Age-cohort trends were generally stable for BMI and depressive symptoms; however, they were variable-with both increasing and decreasing age-cohort trends-for different cognitive measures. Results also suggested that APOE may represent a 'variability gene' for depressive symptoms and spatial reasoning, but not for BMI or other cognitive measures. Hence, additional genes are salient beyond APOE.

  15. NATIONAL STATUS AND TRENDS PROGRAM

    EPA Science Inventory

    Since 1984, the National Status and Trends (NS&T) Program has monitored, on a national scale, spatial and temporal trends of chemical contamination and biological responses to that contamination. Temporal trends are being monitored through the Mussel Watch project that analyzes m...

  16. 10 Yr Spatial and Temporal Trends of PM2.5 Concentrations in the Southeastern US Estimated Using High-resolution Satellite Data

    NASA Technical Reports Server (NTRS)

    Hu, X.; Waller, L. A.; Lyapustin, A.; Wang, Y.; Liu, Y.

    2013-01-01

    Long-term PM2.5 exposure has been reported to be associated with various adverse health outcomes. However, most ground monitors are located in urban areas, leading to a potentially biased representation of the true regional PM2.5 levels. To facilitate epidemiological studies, accurate estimates of spatiotemporally continuous distribution of PM2.5 concentrations are essential. Satellite-retrieved aerosol optical depth (AOD) has been widely used for PM2.5 concentration estimation due to its comprehensive spatial coverage. Nevertheless, an inherent disadvantage of current AOD products is their coarse spatial resolutions. For instance, the spatial resolutions of the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Multiangle Imaging SpectroRadiometer (MISR) are 10 km and 17.6 km, respectively. In this paper, a new AOD product with 1 km spatial resolution retrieved by the multi-angle implementation of atmospheric correction (MAIAC) algorithm was used. A two-stage model was developed to account for both spatial and temporal variability in the PM2.5-AOD relationship by incorporating the MAIAC AOD, meteorological fields, and land use variables as predictors. Our study area is in the southeastern US, centered at the Atlanta Metro area, and data from 2001 to 2010 were collected from various sources. The model was fitted for each year individually, and we obtained model fitting R2 ranging from 0.71 to 0.85, MPE from 1.73 to 2.50 g m3, and RMSPE from 2.75 to 4.10 g m3. In addition, we found cross validation R2 ranging from 0.62 to 0.78, MPE from 2.00 to 3.01 g m3, and RMSPE from 3.12 to 5.00 g m3, indicating a good agreement between the estimated and observed values. Spatial trends show that high PM2.5 levels occurred in urban areas and along major highways, while low concentrations appeared in rural or mountainous areas. A time series analysis was conducted to examine temporal trends of PM2.5 concentrations in the study area from 2001 to 2010. The results showed that the PM2.5 levels in the study area followed a generally declining trend from 2001 to 2010 and decreased about 20 during the period. However, there was an exception of an increase in year 2005, which is attributed to elevated sulfate concentrations in the study area in warm months of 2005. An investigation of the impact of wild and prescribed fires on PM2.5 levels in 2007 suggests a positive relationship between them.

  17. On the temporal and spatial characteristics of tornado days in the United States

    NASA Astrophysics Data System (ADS)

    Moore, Todd W.

    2017-02-01

    More tornadoes are produced per year in the United States than in any other country, and these tornadoes have produced tremendous losses of life and property. Understanding how tornado activity will respond to climate change is important if we wish to prepare for future changes. Trends in various tornado and tornado day characteristics, including their annual frequencies, their temporal variability, and their spatial distributions, have been reported in the past few years. This study contributes to this body of literature by further analyzing the temporal and spatial characteristics of tornado days in the United States. The analyses performed in this study support previously reported findings in addition to providing new perspectives, including that the temporal trends are observed only in low-frequency and high-frequency tornado days and that the eastward shift in tornado activity is produced, in part, by the increasing number of high-frequency tornado days, which tend to occur to the east of the traditionally depicted tornado alley in the Great Plains.

  18. Spatial clustering of average risks and risk trends in Bayesian disease mapping.

    PubMed

    Anderson, Craig; Lee, Duncan; Dean, Nema

    2017-01-01

    Spatiotemporal disease mapping focuses on estimating the spatial pattern in disease risk across a set of nonoverlapping areal units over a fixed period of time. The key aim of such research is to identify areas that have a high average level of disease risk or where disease risk is increasing over time, thus allowing public health interventions to be focused on these areas. Such aims are well suited to the statistical approach of clustering, and while much research has been done in this area in a purely spatial setting, only a handful of approaches have focused on spatiotemporal clustering of disease risk. Therefore, this paper outlines a new modeling approach for clustering spatiotemporal disease risk data, by clustering areas based on both their mean risk levels and the behavior of their temporal trends. The efficacy of the methodology is established by a simulation study, and is illustrated by a study of respiratory disease risk in Glasgow, Scotland. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Characterizing permafrost soil active layer dynamics and sensitivity to landscape spatial heterogeneity in Alaska

    DOE PAGES

    Yi, Yonghong; Kimball, John S.; Chen, Richard; ...

    2017-05-30

    An important feature of the Arctic is large spatial heterogeneity in active layer conditions, which is generally poorly represented by global models. In this study, we developed a spatially integrated modelling and analysis framework combining field observations, local scale (~ 50 m) active layer thickness (ALT) and soil moisture maps derived from airborne low frequency (L + P-band) radar measurements, and global satellite environmental observations to investigate the ALT sensitivity to recent climate trends and landscape heterogeneity in Alaska. Model simulated ALT results show good correspondence with in-situ measurements in higher permafrost probability (PP ≥ 70 %) areas (n =more » 33, R = 0.60, mean bias = 1.58 cm, RMSE = 20.32 cm). The model results also reveal widespread ALT deepening since 2001, with smaller ALT increases in northern Alaska (mean trend = 0.32 ± 1.18 cm yr -1) and much larger increases (> 3 cm yr -1) across interior and southern Alaska. The positive ALT trend coincides with regional warming and a longer snow-free season (R = 0.60 ± 0.32). Uncertainty in the spatial and vertical distribution of soil organic carbon (SOC) was found to be the most important factor affecting model ALT accuracy. Here, potential improvements in characterizing SOC heterogeneity, including better spatial sampling of soil conditions and advances in remote sensing of SOC and soil moisture, will enable more accurate predictions of permafrost active layer conditions.« less

  20. Characterizing permafrost soil active layer dynamics and sensitivity to landscape spatial heterogeneity in Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Yonghong; Kimball, John S.; Chen, Richard

    An important feature of the Arctic is large spatial heterogeneity in active layer conditions, which is generally poorly represented by global models. In this study, we developed a spatially integrated modelling and analysis framework combining field observations, local scale (~ 50 m) active layer thickness (ALT) and soil moisture maps derived from airborne low frequency (L + P-band) radar measurements, and global satellite environmental observations to investigate the ALT sensitivity to recent climate trends and landscape heterogeneity in Alaska. Model simulated ALT results show good correspondence with in-situ measurements in higher permafrost probability (PP ≥ 70 %) areas (n =more » 33, R = 0.60, mean bias = 1.58 cm, RMSE = 20.32 cm). The model results also reveal widespread ALT deepening since 2001, with smaller ALT increases in northern Alaska (mean trend = 0.32 ± 1.18 cm yr -1) and much larger increases (> 3 cm yr -1) across interior and southern Alaska. The positive ALT trend coincides with regional warming and a longer snow-free season (R = 0.60 ± 0.32). Uncertainty in the spatial and vertical distribution of soil organic carbon (SOC) was found to be the most important factor affecting model ALT accuracy. Here, potential improvements in characterizing SOC heterogeneity, including better spatial sampling of soil conditions and advances in remote sensing of SOC and soil moisture, will enable more accurate predictions of permafrost active layer conditions.« less

  1. Integrating resource selection into spatial capture-recapture models for large carnivores

    Treesearch

    K. M. Proffitt; J. F. Goldberg; M. Hebblewhite; R. Russell; B. S. Jimenez; H. S. Robinson; Kristine Pilgrim; Michael Schwartz

    2015-01-01

    Wildlife managers need reliable methods to estimate large carnivore densities and population trends; yet large carnivores are elusive, difficult to detect, and occur at low densities making traditional approaches intractable. Recent advances in spatial capture-recapture (SCR) models have provided new approaches for monitoring trends in wildlife abundance and...

  2. AIRS Water Vapor and Cloud Products Validate and Explain Recent Negative Global and Tropical OLR Trends Observed by CERES

    NASA Astrophysics Data System (ADS)

    Susskind, J.; Molnar, G. I.; Iredell, L. F.; Sounder Research Team

    2010-12-01

    Joel Susskind, Gyula Molnar, and Lena Iredell NASA GSFC Sounder Research Team Abstract This paper compares spatial and temporal anomalies and trends of OLR as observed by CERES and computed based on AIRS retrieved surface and atmospheric geophysical parameters over the time period September 2002 - February 2010. This time period is marked by a substantial decreasing OLR trend on the order of -0.1 W/m2/yr averaged over the globe. There are very large spatial variations of these trends however, with local values ranging from -2.6 W/m2/yr to +3.0 W/m2/yr in the tropics. The spatial patterns of the AIRS and CERES trends are in essentially perfect agreement with each other, as are the anomaly time series averaged over different spatial regions. This essentially perfect agreement of OLR anomalies and trends derived from observations by two different instruments, in totally independent and different manners, implies that both sets of results must be highly accurate. The agreement of anomalies and trends of OLR as observed by CERES and computed from AIRS derived products also indirectly validates the anomalies and trends of the AIRS derived products as well. We used the anomalies and trends of AIRS derived water vapor and cloud products to explain why global OLR has had a large negative trend over the time period September 2002 through February 2010. Tropical OLR began to decrease significantly at the onset of a strong La Niña in mid-2007. AIRS products show that cloudiness and mid-tropospheric water vapor began to increase in the region 5°N - 20°S latitude extending eastward from 150°W - 30°E longitude at that time, with a corresponding very large drop in OLR in this region. Late 2009 is characterized by a strong El-Niño, with a corresponding change in sign of observed anomalies of mid-tropospheric water vapor, cloud cover, and OLR in this region, as well as that of OLR anomalies in the tropics and globally. Monthly mean anomalies of OLR, water vapor and cloud cover over this region are all shown to be highly correlated in time with those of an El Nino anomaly index four months previously. The El Nino index is defined as the SST anomaly averaged over the area 15S to 15N and 160W eastward to 30E. If one excludes the area 5°N - 20°S, 150°W - 30°E from the statistics, the negative area mean tropical OLR trends, as well as OLR trends over the rest of the globe, are substantially reduced over the time period under study.

  3. Combining raw and compositional data to determine the spatial patterns of Potentially Toxic Elements in soils.

    PubMed

    Boente, C; Albuquerque, M T D; Fernández-Braña, A; Gerassis, S; Sierra, C; Gallego, J R

    2018-08-01

    When considering complex scenarios involving several attributes, such as in environmental characterization, a clearer picture of reality can be achieved through the dimensional reduction of data. In this context, maps facilitate the visualization of spatial patterns of contaminant distribution and the identification of enriched areas. A set, of 15 Potentially Toxic Elements (PTEs) - (As, Ba, Cd, Co, Cr, Cu, Hg, Mo, Ni, Pb, Sb, Se, Tl, V, and Zn), was measured in soil, collected in Langreo's municipality (80km 2 ), Spain. Relative enrichment (RE) is introduced here to refer to the proportion of elements present in a given context. Indeed, a novel approach is provided for research into PTE fate. This method involves studying the variability of PTE proportions throughout the study area, thereby allowing the identification of dissemination trends. Traditional geostatistical approaches commonly use raw data (concentrations) accepting that the elements analyzed make up the entirety of the soil. However, in geochemical studies the analyzed elements are just a fraction of the total soil composition. Therefore, considering compositional data is pivotal. The spatial characterization of PTEs considering raw and compositional data together allowed a broad discussion about, not only the PTEs concentration's distribution but also to reckon possible trends of relative enrichment (RE). Transformations to open closed data are widely used for this purpose. Spatial patterns have an indubitable interest. In this study, the Centered Log-ratio transformation (clr) was used, followed by its back-transformation, to build a set of compositional data that, combined with raw data, allowed to establish the sources of the PTEs and trends of spatial dissemination. Based on the obtained findings it was possible to conclude that the Langreo area is deeply affected by its industrial and mining legacy. City center is highly enriched in Pb and Hg and As shows enrichment in a northwesterly direction. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Spatial and temporal variation in daily temperature indices in summer and winter seasons over India (1969-2012)

    NASA Astrophysics Data System (ADS)

    Kumar, Naresh; Jaswal, A. K.; Mohapatra, M.; Kore, P. A.

    2017-08-01

    Spatial and temporal variations in summer and winter extreme temperature indices are studied by using daily maximum and minimum temperatures data from 227 surface meteorological stations well distributed over India for the period 1969-2012. For this purpose, time series for six extreme temperature indices namely, hot days (HD), very hot days (VHD), extremely hot days (EHD), cold nights (CN), very cold nights (VCN), and extremely cold nights (ECN) are calculated for all the stations. In addition, time series for mean extreme temperature indices of summer and winter seasons are also analyzed. Study reveals high variability in spatial distribution of threshold temperatures of extreme temperature indices over the country. In general, increasing trends are observed in summer hot days indices and decreasing trends in winter cold night indices over most parts of the country. The results obtained in this study indicate warming in summer maximum and winter minimum temperatures over India. Averaged over India, trends in summer hot days indices HD, VHD, and EHD are significantly increasing (+1.0, +0.64, and +0.32 days/decade, respectively) and winter cold night indices CN, VCN, and ECN are significantly decreasing (-0.93, -0.47, and -0.15 days/decade, respectively). Also, it is observed that the impact of extreme temperature is higher along the west coast for summer and east coast for winter.

  5. Space-time patterns of trends in stratospheric constituents derived from UARS measurements

    NASA Astrophysics Data System (ADS)

    Randel, William J.; Wu, Fei; Russell, James M.; Waters, Joe

    1999-02-01

    The spatial and temporal behavior of low-frequency changes (trends) in stratospheric constituents measured by instruments on the Upper Atmosphere Research Satellite (UARS) during 1991-98 is investigated. The data include CH4, H2O, HF, HCl, O3, and NO2 from the Halogen Occultation Experiment (HALOE), and O3, ClO, and HNO3 from the Microwave Limb Sounder (MLS). Time series of global anomalies are analyzed by linear regression and empirical orthogonal function analysis. Each of the constituents show significant linear trends over at least some region of the stratosphere, and the spatial patterns exhibit coupling between the different species. Several of the constituents (namely CH4, H2O, HF, HCl, O3, and NO2) exhibit a temporal change in trend rates, with strong changes prior to 1996 and weaker (or reversed) trends thereafter. Positive trends are observed in upper stratospheric ClO, with a percentage rate during 1993-97 consistent with stratospheric HCl increases and with tropospheric chlorine emission rates. Significant negative trends in ozone in the tropical middle stratosphere are found in both HALOE and MLS data during 1993-97, together with positive trends in the tropics near 25 km. These trends are very different from the decadal-scale ozone trends observed since 1979, and this demonstrates the variability of trends calculated over short time periods. Positive trends in NO2 are found in the tropical middle stratosphere, and spatial coincidence to the observed ozone decreases suggests the ozone is responding to the NO2 increase. Significant negative trends in HNO3 are found in the lower stratosphere of both hemispheres. These coupled signatures offer a fingerprint of chemical evolution in the stratosphere for the UARS time frame.

  6. Study on temporal and spatial variations of urban land use based on land change data

    NASA Astrophysics Data System (ADS)

    Jiang, Ping; Liu, Yanfang; Fan, Min; Zhang, Yang

    2009-10-01

    With the rapid development of urbanization, demands of urban land increase in succession, hence, to analyze temporal and spatial variations of urban land use becomes more and more important. In this paper, the principle of trend surface analysis and formula of urban land sprawl index ( ULSI) are expatiated at first, and then based on land change data of Jiayu county, the author fits quadratic trend surface by choosing urban land area as dependent variable and urbanization and GDP as independent variables from 1996 to 2006, draws isoline of trend surface and residual values; and then urban land sprawl indexes of towns are calculated on the basis of urban land area of 1996 and 2006 and distribution map of ULSI is plotted. After analyzing those results, we can conclude that there is consanguineous relationship between urban land area and urbanization, economic level etc.

  7. Multi-Scale Analysis of Trends in Northeastern Temperate Forest Springtime Phenology

    NASA Astrophysics Data System (ADS)

    Moon, M.; Melaas, E. K.; Sulla-menashe, D. J.; Friedl, M. A.

    2017-12-01

    The timing of spring leaf emergence is highly variable in many ecosystems, exerts first-order control growing season length, and significantly modulates seasonally-integrated photosynthesis. Numerous studies have reported trends toward earlier spring phenology in temperate forests, with some papers indicating that this trend is also leading to increased carbon uptake. At broad spatial scales, however, most of these studies have used data from coarse spatial resolution instruments such as MODIS, which does not resolve ecologically important landscape-scale patterns in phenology. In this work, we examine how long-term trends in spring phenology differ across three data sources acquired at different scales of measurements at the Harvard Forest in central Massachusetts. Specifically, we compared trends in the timing of phenology based on long-term in-situ measurements of phenology, estimates based on eddy-covariance measurements of net carbon uptake transition dates, and from two sources of satellite-based remote sensing (MODIS and Landsat) land surface phenology (LSP) data. Our analysis focused on the flux footprint surrounding the Harvard Forest Environmental Measurements (EMS) tower. Our results reveal clearly defined trends toward earlier springtime phenology in Landsat LSP and in the timing of tower-based net carbon uptake. However, we find no statistically significant trend in springtime phenology measured from MODIS LSP data products, possibly because the time series of MODIS observations is relatively short (13 years). The trend in tower-based transition data exhibited a larger negative value than the trend derived from Landsat LSP data (-0.42 and -0.28 days per year for 21 and 28 years, respectively). More importantly, these results have two key implications regarding how changes in spring phenology are impacting carbon uptake at landscape-scale. First, long-term trends in spring phenology can be quite different, depending on what data source is used to estimate the trend, and 2) the response of carbon uptake to climate change may be more sensitive than the response of land surface phenology itself.

  8. Spatial and temporal variability of fluoride concentrations in groundwater resources of Larestan and Gerash regions in Iran from 2003 to 2010.

    PubMed

    Amini, Hassan; Haghighat, Gholam Ali; Yunesian, Masud; Nabizadeh, Ramin; Mahvi, Amir Hossein; Dehghani, Mohammad Hadi; Davani, Rahim; Aminian, Abd-Rasool; Shamsipour, Mansour; Hassanzadeh, Naser; Faramarzi, Hossein; Mesdaghinia, Alireza

    2016-02-01

    There is discrepancy about intervals of fluoride monitoring in groundwater resources by Iranian authorities. Spatial and temporal variability of fluoride in groundwater resources of Larestan and Gerash regions in Iran were analyzed from 2003 to 2010 using a geospatial information system and the Mann-Kendall trend test. The mean concentrations of fluoride for the 8-year period in the eight cities and 31 villages were 1.6 and 2.0 mg/l, respectively; the maximum values were 2.4 and 3.8 mg/l, respectively. Spatial, temporal, and spatiotemporal variability of fluoride in overall groundwater resources were relatively constant over the years. However, results of the Mann-Kendall trend test revealed a monotonic trend in the time series of one city and 11 villages for the 8-year period. Specifically, one city and three villages showed positive significant Kendall's Tau values, suggesting an upward trend in fluoride concentrations over the 8-year period. In contrast, seven villages displayed negative significant Kendall's Tau values, arguing for a downward trend in fluoride concentrations over the years. From 2003 to 2010, approximately 52 % of the Larestan and Gerash areas have had fluoride concentrations above the maximum permissible Iranian drinking water standard fluoride level (1.4 mg/l), and about 116,000 people were exposed to such excess amounts. Therefore, our study supports for a close monitoring of fluoride concentrations from health authorities in monthly intervals, especially in villages and cities that showed positive trend in fluoride concentrations. Moreover, we recommend simultaneous implementation of cost-effective protective measures or interventions until a standard fluoride level is achieved.

  9. Tracking contaminants in seabirds of Arctic Canada: temporal and spatial insights.

    PubMed

    Mallory, Mark L; Braune, Birgit M

    2012-07-01

    Levels and trends of persistent organic pollutants and trace elements in seabirds breeding in the vast Canadian Arctic have been monitored since 1975. Data from this monitoring have indicated both spatial and temporal variation across the region, attributable in part to differences in species' diets, differences in regional deposition patterns, and unidirectional trends in contaminants reaching this area from emissions in temperate and tropical areas to the south. Seabird tissues have served as effective biomonitors to examine this variation, and national and international collaboration in this monitoring effort has promoted valuable synthetic assessments of spatial and temporal patterns in Arctic contaminants. Here we review the history of the monitoring program, the critical role played by Environment Canada's National Wildlife Specimen Bank, and we summarize important spatial and temporal trends in various contaminants in Canadian Arctic seabirds. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Assessment of primary and secondary ambient particle trends using satellite aerosol optical depth and ground speciation data in the New England region, United States

    PubMed Central

    Lee, Hyung Joo; Kang, Choong-Min; Coull, Brent A.; Bell, Michelle L.; Koutrakis, Petros

    2014-01-01

    The effectiveness of air pollution emission control policies can be evaluated by examining ambient pollutant concentration trends that are observed at a large number of ground monitoring sites over time. In this paper, we used ground monitoring measurements in conjunction with satellite aerosol optical depth (AOD) data to investigate fine particulate matter (PM2.5; particulate matter with aerodynamic diameter ≤2.5 μm) trends and their spatial patterns over a large U.S. region, New England, during 2000–2008. We examined the trends in rural and urban areas to get a better insight about the trends of regional and local source emissions. Decreases in PM2.5 concentrations (μg/m3) were more pronounced in urban areas than in rural ones. In addition, the highest and lowest PM2.5 decreases (μg/m3) were observed for winter and summer, respectively. Together, these findings suggest that primary particle concentrations decreased more relative to secondary ones. This is also supported by the analysis of the speciation data which showed that downward trends of primary pollutants including black carbon were stronger than those of secondary pollutants including sulfate. Furthermore, this study found that ambient primary pollutants decreased at the same rate as their respective source emissions. This was not the case for secondary pollutants which decreased at a slower rate than that of their precursor emissions. This indicates that concentrations of secondary pollutants depend not only on the primary emissions but also on the availability of atmospheric oxidants which might not change during the study period. This novel approach of investigating spatially varying concentration trends, in combination with ground PM2.5 species trends, can be of substantial regulatory importance. PMID:24906074

  11. The color of sea level: Importance of spatial variations in spectral shape for assessing the significance of trends

    NASA Astrophysics Data System (ADS)

    Hughes, Chris W.; Williams, Simon D. P.

    2010-10-01

    We investigate spatial variations in the shape of the spectrum of sea level variability based on a homogeneously sampled 12 year gridded altimeter data set. We present a method of plotting spectral information as color, focusing on periods between 2 and 24 weeks, which shows that significant spatial variations in the spectral shape exist and contain useful dynamical information. Using the Bayesian Information Criterion, we determine that, typically, a fifth-order autoregressive model is needed to capture the structure in the spectrum. Using this model, we show that statistical errors in fitted local trends range between less than 1 and more than 5 times of what would be calculated assuming "white" noise and that the time needed to detect a 1 mm/yr trend ranges between about 5 years and many decades. For global mean sea level, the statistical error reduces to 0.1 mm/yr over 12 years, with only 2 years needed to detect a 1 mm/yr trend. We find significant regional differences in trend from the global mean. The patterns of these regional differences are indicative of a sea level trend dominated by dynamical ocean processes over this period.

  12. Comparison and Evaluation of Annual NDVI Time Series in China Derived from the NOAA AVHRR LTDR and Terra MODIS MOD13C1 Products

    PubMed Central

    Guo, Xiaoyi; Zhang, Hongyan; Wu, Zhengfang; Zhao, Jianjun; Zhang, Zhengxiang

    2017-01-01

    Time series of Normalized Difference Vegetation Index (NDVI) derived from multiple satellite sensors are crucial data to study vegetation dynamics. The Land Long Term Data Record Version 4 (LTDR V4) NDVI dataset was recently released at a 0.05 × 0.05° spatial resolution and daily temporal resolution. In this study, annual NDVI time series that are composited by the LTDR V4 and Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI datasets (MOD13C1) are compared and evaluated for the period from 2001 to 2014 in China. The spatial patterns of the NDVI generally match between the LTDR V4 and MOD13C1 datasets. The transitional zone between high and low NDVI values generally matches the boundary of semi-arid and sub-humid regions. A significant and high coefficient of determination is found between the two datasets according to a pixel-based correlation analysis. The spatially averaged NDVI of LTDR V4 is characterized by a much weaker positive regression slope relative to that of the spatially averaged NDVI of the MOD13C1 dataset because of changes in NOAA AVHRR sensors between 2005 and 2006. The measured NDVI values of LTDR V4 were always higher than that of MOD13C1 in western China due to the relatively lower atmospheric water vapor content in western China, and opposite observation appeared in eastern China. In total, 18.54% of the LTDR V4 NDVI pixels exhibit significant trends, whereas 35.79% of the MOD13C1 NDVI pixels show significant trends. Good agreement is observed between the significant trends of the two datasets in the Northeast Plain, Bohai Economic Rim, Loess Plateau, and Yangtze River Delta. By contrast, the datasets contrasted in northwestern desert regions and southern China. A trend analysis of the regression slope values according to the vegetation type shows good agreement between the LTDR V4 and MOD13C1 datasets. This study demonstrates the spatial and temporal consistencies and discrepancies between the AVHRR LTDR and MODIS MOD13C1 NDVI products in China, which could provide useful information for the choice of NDVI products in subsequent studies of vegetation dynamics. PMID:28587266

  13. Comparison and Evaluation of Annual NDVI Time Series in China Derived from the NOAA AVHRR LTDR and Terra MODIS MOD13C1 Products.

    PubMed

    Guo, Xiaoyi; Zhang, Hongyan; Wu, Zhengfang; Zhao, Jianjun; Zhang, Zhengxiang

    2017-06-06

    Time series of Normalized Difference Vegetation Index (NDVI) derived from multiple satellite sensors are crucial data to study vegetation dynamics. The Land Long Term Data Record Version 4 (LTDR V4) NDVI dataset was recently released at a 0.05 × 0.05° spatial resolution and daily temporal resolution. In this study, annual NDVI time series that are composited by the LTDR V4 and Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI datasets (MOD13C1) are compared and evaluated for the period from 2001 to 2014 in China. The spatial patterns of the NDVI generally match between the LTDR V4 and MOD13C1 datasets. The transitional zone between high and low NDVI values generally matches the boundary of semi-arid and sub-humid regions. A significant and high coefficient of determination is found between the two datasets according to a pixel-based correlation analysis. The spatially averaged NDVI of LTDR V4 is characterized by a much weaker positive regression slope relative to that of the spatially averaged NDVI of the MOD13C1 dataset because of changes in NOAA AVHRR sensors between 2005 and 2006. The measured NDVI values of LTDR V4 were always higher than that of MOD13C1 in western China due to the relatively lower atmospheric water vapor content in western China, and opposite observation appeared in eastern China. In total, 18.54% of the LTDR V4 NDVI pixels exhibit significant trends, whereas 35.79% of the MOD13C1 NDVI pixels show significant trends. Good agreement is observed between the significant trends of the two datasets in the Northeast Plain, Bohai Economic Rim, Loess Plateau, and Yangtze River Delta. By contrast, the datasets contrasted in northwestern desert regions and southern China. A trend analysis of the regression slope values according to the vegetation type shows good agreement between the LTDR V4 and MOD13C1 datasets. This study demonstrates the spatial and temporal consistencies and discrepancies between the AVHRR LTDR and MODIS MOD13C1 NDVI products in China, which could provide useful information for the choice of NDVI products in subsequent studies of vegetation dynamics.

  14. What tree-ring reconstruction tells us about conifer defoliator outbreaks

    Treesearch

    Ann M. Lynch

    2012-01-01

    Our ability to understand the dynamics of forest insect outbreaks is limited by the lack of long-term data describing the temporal and spatial trends of outbreaks, the size and long life span of host plants, and the impracticability of manipulative experiments at relevant temporal and spatial scales. Population responses can be studied across varying site and stand...

  15. Exploratory Temporal and Spatial Analysis of Myocardial Infarction Hospitalizations in Calgary, Canada

    PubMed Central

    Liu, Xiaoxiao; Bertazzon, Stefania

    2017-01-01

    Spatial and temporal analyses are critical to understand the pattern of myocardial infarction (MI) hospitalizations over space and time, and to identify their underlying determinants. In this paper, we analyze MI hospitalizations in Calgary from 2004 to 2013, stratified by age and gender. First, a seasonal trend decomposition analyzes the seasonality; then a linear regression models the trend component. Moran’s I and hot spot analyses explore the spatial pattern. Though exploratory, results show that most age and gender groups feature a statistically significant decline over the 10 years, consistent with previous studies in Canada. Decline rates vary across ages and genders, with the slowest decline observed for younger males. Each gender exhibits a seasonal pattern with peaks in both winter and summer. Spatially, MI hot spots are identified in older communities, and in socioeconomically and environmentally disadvantaged communities. In the older communities, higher MI rates appear to be more highly associated with demographics. Conversely, worse air quality appears to be locally associated with higher MI incidence in younger age groups. The study helps identify areas of concern, where MI hot spots are identified for younger age groups, suggesting the need for localized public health policies to target local risk factors. PMID:29232910

  16. [Assessment on ecological security spatial differences of west areas of Liaohe River based on GIS].

    PubMed

    Wang, Geng; Wu, Wei

    2005-09-01

    Ecological security assessment and early warning research have spatiality; non-linearity; randomicity, it is needed to deal with much spatial information. Spatial analysis and data management are advantages of GIS, it can define distribution trend and spatial relations of environmental factors, and show ecological security pattern graphically. The paper discusses the method of ecological security spatial differences of west areas of Liaohe River based on GIS and ecosystem non-health. First, studying on pressure-state-response (P-S-R) assessment indicators system, investigating in person and gathering information; Second, digitizing the river, applying fuzzy AHP to put weight, quantizing and calculating by fuzzy comparing; Last, establishing grid data-base; expounding spatial differences of ecological security by GIS Interpolate and Assembly.

  17. The effect of length and starting year on trend analyses of temperatures in Spanish mainland (1951-2010). Seasonal analyses: Autumn (V)

    NASA Astrophysics Data System (ADS)

    Salinas Solé, Celia; Peña Angulo, Dhais; Gonzalez HIgaldo, Jose Carlos; Brunetti, MIchele

    2017-04-01

    In this poster we applied the moving window approach (see Poster I of this collection) to analyze trends of autumn and its corresponding months (September, October, November) temperature mean values of maximum (Tmax) and minimum (Tmin) in Spanish mainland to detect the effects of length period and starting year. Monthly series belong to Monthly Temperature dataset of Spanish mainland (MOTEDAS). Database contains in its grid format of 5236 pixels of monthly series (10x10 km). The threshold used in spatial analyses considers 20% of land under significant trend (p<0.05). The most striking results are as follow: • Seasonal trend analyses of Autumn Tmax show no significance at any temporal Windows. Trends of Tmin are significant in more than 20% of land until 1974-2010. The area affected in Tmin progressively increase from SE to NW. • Monthly trend analyses not detect any significance in Tmax, while in Tmin, particularly in October, an extended area is detected in temporal windows in between 1951-2010 to 1978-2010, but clearly concentrated in the starting years of initial 70´s. Spatial pattern of areas affected significantly seems to be from SE to NW for October, and South-North in September. To conclude autumn trend analyses of Tmax and Tmin in Spanish mainland only detect significant trend in Tmin, mostly located in the 70´s and extending from SE to central areas of study area.

  18. Association analysis between spatiotemporal variation of vegetation greenness and precipitation/temperature in the Yangtze River Basin (China).

    PubMed

    Cui, Lifang; Wang, Lunche; Singh, Ramesh P; Lai, Zhongping; Jiang, Liangliang; Yao, Rui

    2018-05-23

    The variation in vegetation greenness provides good understanding of the sustainable management and monitoring of land surface ecosystems. The present paper discusses the spatial-temporal changes in vegetation and controlling factors in the Yangtze River Basin (YRB) using Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI) for the period 2001-2013. Theil-Sen Median trend analysis, Pearson correlation coefficients, and residual analysis have been used, which shows decreasing trend of the annual mean NDVI over the whole YRB. Spatially, the regions with significant decreasing trends were mainly located in parts of central YRB, and pronounced increasing trends were observed in parts of the eastern and western YRB. The mean NDVI during spring and summer seasons increased, while it decreased during autumn and winter seasons. The seasonal mean NDVI shows spatial heterogeneity due to the vegetation types. The correlation analysis shows a positive relation between NDVI and temperature over most of the YRB, whereas NDVI and precipitation show a negative correlation. The residual analysis shows an increase in NDVI in parts of eastern and western YRB and the decrease in NDVI in the small part of Yangtze River Delta (YRD) and the mid-western YRB due to human activities. In general, climate factors were the principal drivers of NDVI variation in YRB in recent years.

  19. THE EFFECTS OF SPATIAL SMOOTHING ON SOLAR MAGNETIC HELICITY PARAMETERS AND THE HEMISPHERIC HELICITY SIGN RULE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ocker, Stella Koch; Petrie, Gordon, E-mail: socker@oberlin.edu, E-mail: gpetrie@nso.edu

    The hemispheric preference for negative/positive helicity to occur in the northern/southern solar hemisphere provides clues to the causes of twisted, flaring magnetic fields. Previous studies on the hemisphere rule may have been affected by seeing from atmospheric turbulence. Using Hinode /SOT-SP data spanning 2006–2013, we studied the effects of two spatial smoothing tests that imitate atmospheric seeing: noise reduction by ignoring pixel values weaker than the estimated noise threshold, and Gaussian spatial smoothing. We studied in detail the effects of atmospheric seeing on the helicity distributions across various field strengths for active regions (ARs) NOAA 11158 and NOAA 11243, in addition tomore » studying the average helicities of 179 ARs with and without smoothing. We found that, rather than changing trends in the helicity distributions, spatial smoothing modified existing trends by reducing random noise and by regressing outliers toward the mean, or removing them altogether. Furthermore, the average helicity parameter values of the 179 ARs did not conform to the hemisphere rule: independent of smoothing, the weak-vertical-field values tended to be negative in both hemispheres, and the strong-vertical-field values tended to be positive, especially in the south. We conclude that spatial smoothing does not significantly affect the overall statistics for space-based data, and thus seeing from atmospheric turbulence seems not to have significantly affected previous studies’ ground-based results on the hemisphere rule.« less

  20. Penguin Bank: A Loa-Trend Hawaiian Volcano

    NASA Astrophysics Data System (ADS)

    Xu, G.; Blichert-Toft, J.; Clague, D. A.; Cousens, B.; Frey, F. A.; Moore, J. G.

    2007-12-01

    Hawaiian volcanoes along the Hawaiian Ridge from Molokai Island in the northwest to the Big Island in the southeast, define two parallel trends of volcanoes known as the Loa and Kea spatial trends. In general, lavas erupted along these two trends have distinctive geochemical characteristics that have been used to define the spatial distribution of geochemical heterogeneities in the Hawaiian plume (e.g., Abouchami et al., 2005). These geochemical differences are well established for the volcanoes forming the Big Island. The longevity of the Loa- Kea geochemical differences can be assessed by studying East and West Molokai volcanoes and Penguin Bank which form a volcanic ridge perpendicular to the Loa and Kea spatial trends. Previously we showed that East Molokai volcano (~1.5 Ma) is exclusively Kea-like and that West Molokai volcano (~1.8 Ma) includes lavas that are both Loa- and Kea-like (Xu et al., 2005 and 2007).The submarine Penguin Bank (~2.2 Ma), probably an independent volcano constructed west of West Molokai volcano, should be dominantly Loa-like if the systematic Loa and Kea geochemical differences were present at ~2.2 Ma. We have studied 20 samples from Penguin Bank including both submarine and subaerially-erupted lavas recovered by dive and dredging. All lavas are tholeiitic basalt representing shield-stage lavas. Trace element ratios, such as Sr/Nb and Zr/Nb, and isotopic ratios of Sr and Nd clearly are Loa-like. On an ɛNd-ɛHf plot, Penguin Bank lavas fall within the field defined by Mauna Loa lavas. Pb isotopic data lie near the Loa-Kea boundary line defined by Abouchami et al. (2005). In conclusion, we find that from NE to SW, i.e., perpendicular to the Loa and Kea spatial trend, there is a shift from Kea-like East Molokai lavas to Loa-like Penguin Bank lavas with the intermediate West Molokai volcano having lavas with both Loa- and Kea-like geochemical features. Therefore, the Loa and Kea geochemical dichotomy exhibited by Big Island volcanoes existed at ~2.2 Ma when the Molokai Island volcanoes formed and has persisted until the present. References: Abouchami et al., 2005 Nature, 434:851-856 Xu et al., 2005 G3, doi: 10.1029/2004GC000830 Xu et al., 2007 G3, doi: 10.1029/2006GC001554

  1. Proton Energy Optimization and Spatial Distribution Analysis from a Thickness Study Using Liquid Crystal Targets

    NASA Astrophysics Data System (ADS)

    Willis, Christopher; Poole, Patrick; Schumacher, Douglas; Freeman, Richard; van Woerkom, Linn

    2016-10-01

    Laser-accelerated ions from thin targets have been widely studied for applications including secondary radiation sources and cancer therapy, with recent studies trending towards thinner targets which can provide improved ion energies and yields. Here we discuss results from an experiment on the Scarlet laser at OSU using variable thickness liquid crystal targets. On this experiment, the spatial and spectral distributions of accelerated ions were measured along target normal and laser axes at varying thicknesses from 150nm to 2000nm at a laser intensity of 1 ×1020W /cm2 . Maximum ion energy was observed for targets in the 600 - 800nm thickness range, with proton energies reaching 24MeV . The ions were further characterized using radiochromic film, revealing an unusual spatial distribution on many laser shots. Here, the peak ion yield falls in an annular ring surrounding the target normal, with an increasing divergence angle as a function of ion energy. Details of these spatial and spectral ion distributions will be presented, including spectral deconvolution of the RCF data, revealing additional trends in the accelerated ion distributions. Supported by the DARPA PULSE program through a Grant from AMRDEC, and by the NNSA under contract DE-NA0001976.

  2. Spatial and temporal trends from an air quality sensor network near a heavily trafficked intersection

    NASA Astrophysics Data System (ADS)

    Orlando, P.; Vo, D.; Giossi, C.; George, L.

    2017-12-01

    With the world-wide increase in urbanization and the increasing usage of combustion vehicles in urban areas, traffic-related air pollution is a growing health hazard. However, there are limited studies that examine the spatial and temporal impacts of traffic-related pollutants within cities. In particular, there are few studies that look at traffic management and its potential for pollution mitigation. In a previous study we examined roadway pollution and traffic parameters with one roadway station instrumented with standard measurement instruments. With the advent of low-cost air pollution sensors, we have expanded our work by observing multiple sites within a neighborhood to understand spatial and temporal exposures. We have deployed a high-density sensor network around urban arterial corridors in SE Portland, Oregon. This network consisted of ten nodes measuring CO, NO, NO2 and O3, and ten nodes measuring CO, CO2, VOC and PM2.5. The co-location of standard measurement instruments provided insight towards the utility of our low-cost sensor network, as the different nodes varied in cost, and potentially in quality. We have identified near-real-time temporal trends and local-scale spatial patterns during the summer of 2017. Meteorological and traffic data were included to further characterize these patterns, exploring the potential for pollution mitigation.

  3. Spatial heterogeneity distribution of soil total nitrogen and total phosphorus in the Yaoxiang watershed in a hilly area of northern China based on geographic information system and geostatistics.

    PubMed

    Liu, Yu; Gao, Peng; Zhang, Liyong; Niu, Xiang; Wang, Bing

    2016-10-01

    Soil total nitrogen (STN) and total phosphorus (STP) are important indicators of soil nutrients and the important indexes of soil fertility and soil quality evaluation. Using geographic information system (GIS) and geostatistics, the spatial heterogeneity distribution of STN and STP in the Yaoxiang watershed in a hilly area of northern China was studied. The results showed that: (1) The STN and STP contents showed a declining trend with the increase in soil depth; the variation coefficients ( C v ) of STN and STP in the 0- to 10-cm soil layer (42.25% and 14.77%, respectively) were higher than in the 10- to 30-cm soil layer (28.77% and 11.60%, respectively). Moreover, the C v of STN was higher than that of STP. (2) The maximum C 0 /( C 0  +  C 1 ) of STN and STP in the soil layers was less than 25%, this indicated that a strong spatial distribution autocorrelation existed for STN and STP; and the STP showed higher intensity and more stable variation than the STN. (3) From the correlation analysis, we concluded that the topographic indexes such as elevation and slope direction all influenced the spatial distribution of STN and STP (correlation coefficients were 0.688 and 0.518, respectively). (4) The overall distribution of STN and STP in the Yaoxiang watershed decreased from the northwest to the southeast. This variation trend was similar to the watershed DEM trend and was significantly influenced by vegetation and topographic factors. These results revealed the spatial heterogeneity distribution of STN and STP, and addressed the influences of forest vegetation coverage, elevation, and other topographic factors on the spatial distribution of STN and STP at the watershed scale.

  4. Characterizing permafrost active layer dynamics and sensitivity to landscape spatial heterogeneity in Alaska

    NASA Astrophysics Data System (ADS)

    Yi, Yonghong; Kimball, John S.; Chen, Richard H.; Moghaddam, Mahta; Reichle, Rolf H.; Mishra, Umakant; Zona, Donatella; Oechel, Walter C.

    2018-01-01

    An important feature of the Arctic is large spatial heterogeneity in active layer conditions, which is generally poorly represented by global models and can lead to large uncertainties in predicting regional ecosystem responses and climate feedbacks. In this study, we developed a spatially integrated modeling and analysis framework combining field observations, local-scale ( ˜ 50 m resolution) active layer thickness (ALT) and soil moisture maps derived from low-frequency (L + P-band) airborne radar measurements, and global satellite environmental observations to investigate the ALT sensitivity to recent climate trends and landscape heterogeneity in Alaska. Modeled ALT results show good correspondence with in situ measurements in higher-permafrost-probability (PP ≥ 70 %) areas (n = 33; R = 0.60; mean bias = 1.58 cm; RMSE = 20.32 cm), but with larger uncertainty in sporadic and discontinuous permafrost areas. The model results also reveal widespread ALT deepening since 2001, with smaller ALT increases in northern Alaska (mean trend = 0.32±1.18 cm yr-1) and much larger increases (> 3 cm yr-1) across interior and southern Alaska. The positive ALT trend coincides with regional warming and a longer snow-free season (R = 0.60 ± 0.32). A spatially integrated analysis of the radar retrievals and model sensitivity simulations demonstrated that uncertainty in the spatial and vertical distribution of soil organic carbon (SOC) was the largest factor affecting modeled ALT accuracy, while soil moisture played a secondary role. Potential improvements in characterizing SOC heterogeneity, including better spatial sampling of soil conditions and advances in remote sensing of SOC and soil moisture, will enable more accurate predictions of active layer conditions and refinement of the modeling framework across a larger domain.

  5. Analysis of spatial-temporal heterogeneity in remotely sensed aerosol properties observed during 2005-2015 over three countries along the Gulf of Guinea Coast in Southern West Africa

    NASA Astrophysics Data System (ADS)

    Aklesso, Mangamana; Kumar, K. Raghavendra; Bu, Lingbing; Boiyo, Richard

    2018-06-01

    In the present study, the spatial-temporal distribution and estimation of trends of different aerosol optical properties, and related impact factors were investigated over three countries: Ghana, Togo, and Benin along the Gulf of Guinea Coast in Southern West Africa (SWA). For this purpose, long-term satellite derived aerosol optical properties (aerosol optical depth at 550 nm; AOD550, Ångström exponent at 470-660 nm; AE470-660, and absorption aerosol index; AAI) retrieved from the Moderate-resolution Imaging Spectroradiometer (MODIS) and Ozone Monitoring Instrument (OMI) during January 2005-December 2015 were utilized. The annual mean spatial distribution of AOD550 was found to be high (>0.55) over the southern coastal area, moderate-to-high (0.35-0.55) over the central, and low (<0.35) over northern parts of the study domain. The seasonal mean variations showed high (low) values of AOD550 and AAI during the Harmattan or dry (wet) season. Whereas, low (high) AE470-660 values were characterized during the Harmattan (wet) season. Linear trend analysis revealed a decreasing trend in AOD550 and AAI, and increasing trend in AE470-660. Further, an investigation on the potential drivers to AOD distribution over the SWA revealed that precipitation, NDVI, and terrain were negatively correlated with AOD. Finally, the HYSPLIT derived back trajectory analyses revealed diverse transport pathways originated from the North Atlantic Ocean, Sahara Desert, and Nigeria along with locally generated aerosols.

  6. Space and time scales of shoreline change at Cape Cod National Seashore, MA, USA

    USGS Publications Warehouse

    Allen, J.R.; LaBash, C.L.; List, J.H.; Kraus, Nicholas C.; McDougal, William G.

    1999-01-01

    Different processes cause patterns of shoreline change which are exhibited at different magnitudes and nested into different spatial and time scale hierarchies. The 77-km outer beach at Cape Cod National Seashore offers one of the few U.S. federally owned portions of beach to study shoreline change within the full range of sediment source and sink relationships, and barely affected by human intervention. 'Mean trends' of shoreline changes are best observed at long time scales but contain much spatial variation thus many sites are not equal in response. Long-term, earlier-noted trends are confirmed but the added quantification and resolution improves greatly the understanding of appropriate spatial and time scales of those processes driving bluff retreat and barrier island changes in both north and south depocenters. Shorter timescales allow for comparison of trends and uncertainty in shoreline change at local scales but are dependent upon some measure of storm intensity and seasonal frequency. Single-event shoreline survey results for one storm at daily intervals after the erosional phase suggest a recovery time for the system of six days, identifies three sites with abnormally large change, and that responses at these sites are spatially coherent for now unknown reasons. Areas near inlets are the most variable at all time scales. Hierarchies in both process and form are suggested.

  7. Compositional trends in aeolian dust along a transect across the southwestern United States

    USGS Publications Warehouse

    Goldstein, H.L.; Reynolds, R.L.; Reheis, M.C.; Yount, J.C.; Neff, J.C.

    2008-01-01

    Aeolian dust strongly influences ecology and landscape geochemistry over large areas that span several desert ecosystems of the southwestern United States. This study evaluates spatial and temporal variations and trends of the physical and chemical properties of dust in the southwestern United States by examining dust deposited in natural depressions on high isolated surfaces along a transect from the Mojave Desert to the central Colorado Plateau. Aeolian dust is recognized in these depressions on the basis of textural, chemical, isotopic, and mineralogical characteristics and comparisons of those characteristics to the underlying bedrock units. Spatial and temporal trends suggest that although local dust sources are important to the accumulated material in these depressions, Mojave Desert dust sources may also contribute. Depth trends in the depressions suggest that Mojave sources may have contributed more dust to the Colorado Plateau recently than in the past. These interpretations point to the important roles of far-traveled aeolian dust for landscape geochemistry and imply future changes to soil geochemistry under changing conditions in far-distant dust source areas. Copyright 2008 by the American Geophysical Union.

  8. Spatiotemporal changes in vegetation net primary productivity in the arid region of Northwest China, 2001 to 2012

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Pan, Jinghu

    2018-03-01

    Net primary productivity (NPP) is recognized as an important index of ecosystem conditions and a key variable of the terrestrial carbon cycle. It also represents the comprehensive effects of climate change and anthropogenic activity on terrestrial vegetation. In this study, the temporal-spatial pattern of NPP for the period 2001-2012 was analyzed using a remote sensing-based carbon model (i.e., the Carnegie-Ames-Stanford Approach, CASA) in addition to other methods, such as linear trend analysis, standard deviation, and the Hurst index. Temporally, NPP showed a significant increasing trend for the arid region of Northwest China (ARNC), with an annual increase of 2.327 g C. Maximum and minimum productivity values appeared in July and December, respectively. Spatially, the NPP was relatively stable in the temperate and warm-temperate desert regions of Northwest China, while temporally, it showed an increasing trend. However, some attention should be given to the northwestern warm-temperate desert region, where there is severe continuous degradation and only a slight improvement trend.

  9. Spatio-Temporal Variations of Soil Water Use in the Growing Season in Northeast China Using Modis Data

    NASA Astrophysics Data System (ADS)

    Chang, s.; Huang, F.; Li, B.; Qi, H.; Zhai, H.

    2018-04-01

    Water use efficiency is known as an important indicator of carbon and water cycle and reflects the transformation capacity of vegetation water and nutrients into biomass. In this study, we presented a new indicator of water use efficiency, soil water use level (SWUL), derived from satellite remote sensing based gross primary production and the Visible and Shortwave Infrared Drought Index (VSDI). SWUL based on MODIS data was calculated for the growing season of 2014 in Northeast China, and the spatial pattern and the variation trend were analyzed. Results showed that the highest SWUL was observed in forestland with the value of 36.65. In cropland and grassland, the average SWUL were 26.18 and 29.29, respectively. SWUL showed an increased trend in the first half period of the growing season and peaked around the 200th day. After the 220th day, SWUL presented a decreasing trend. Compared to the soil water use efficiency (SWUE), SWUL might depict the water use status at finer spatial resolution. The new indicator SWUL can help promote understanding the water use efficiency for regions of higher spatial heterogeneity.

  10. Quantifying spatial and temporal trends in beach-dune volumetric changes using spatial statistics

    NASA Astrophysics Data System (ADS)

    Eamer, Jordan B. R.; Walker, Ian J.

    2013-06-01

    Spatial statistics are generally underutilized in coastal geomorphology, despite offering great potential for identifying and quantifying spatial-temporal trends in landscape morphodynamics. In particular, local Moran's Ii provides a statistical framework for detecting clusters of significant change in an attribute (e.g., surface erosion or deposition) and quantifying how this changes over space and time. This study analyzes and interprets spatial-temporal patterns in sediment volume changes in a beach-foredune-transgressive dune complex following removal of invasive marram grass (Ammophila spp.). Results are derived by detecting significant changes in post-removal repeat DEMs derived from topographic surveys and airborne LiDAR. The study site was separated into discrete, linked geomorphic units (beach, foredune, transgressive dune complex) to facilitate sub-landscape scale analysis of volumetric change and sediment budget responses. Difference surfaces derived from a pixel-subtraction algorithm between interval DEMs and the LiDAR baseline DEM were filtered using the local Moran's Ii method and two different spatial weights (1.5 and 5 m) to detect statistically significant change. Moran's Ii results were compared with those derived from a more spatially uniform statistical method that uses a simpler student's t distribution threshold for change detection. Morphodynamic patterns and volumetric estimates were similar between the uniform geostatistical method and Moran's Ii at a spatial weight of 5 m while the smaller spatial weight (1.5 m) consistently indicated volumetric changes of less magnitude. The larger 5 m spatial weight was most representative of broader site morphodynamics and spatial patterns while the smaller spatial weight provided volumetric changes consistent with field observations. All methods showed foredune deflation immediately following removal with increased sediment volumes into the spring via deposition at the crest and on lobes in the lee, despite erosion on the stoss slope and dune toe. Generally, the foredune became wider by landward extension and the seaward slope recovered from erosion to a similar height and form to that of pre-restoration despite remaining essentially free of vegetation.

  11. Trends in Southern Ocean Eddy Kinetic Energy

    NASA Astrophysics Data System (ADS)

    Chambers, Don

    2016-04-01

    A recent study by Hogg et al. (JGR, 2015) has demonstrated a 20-year trend in eddy kinetic energy (EKE) computed from satellite altimetry data. However, this estimate is based on an averaging over large spatial areas. In this study, we use the same methods to examine regional EKE trends throughout the Southern Ocean, from 1993-2015. We do find significant positive trends in several areas of the Southern Ocean, mainly in regions with high mean EKE associated with interactions between jets and bathymetry. At the same time, however, there are also regions with significant negative trends. Overall, EKE in the majority of the Southern Ocean has not changed. These results suggest that the estimates of Hogg et al. may have been biased by these regional extremes, and that more work is needed to quantify climatic changes in EKE.

  12. Trends in Southern Ocean Eddy Kinetic Energy

    NASA Astrophysics Data System (ADS)

    Chambers, D. P.

    2016-02-01

    A recent study by Hogg et al. (JGR, 2015) has demonstrated a 20-year trend in eddy kinetic energy (EKE) computed from satellite altimetry data. However, this estimate is based on an averaging over large spatial areas. In this study, we use the same methods to examine regional EKE trends throughout the Southern Ocean, from 1993-2015. We do find significant positive trends in several areas of the Southern Ocean, mainly in regions with high mean EKE associated with interactions between jets and bathymetry. At the same time, however, there are also regions with significant negative trends. Overall, EKE in the majority of the Southern Ocean has not changed. These results suggest that the estimates of Hogg et al. may have been biased by these regional extremes, and that more work is needed to quantify climatic changes in EKE.

  13. Population synchrony of a native fish across three Laurentian Great Lakes: Evaluating the effects of dispersal and climate

    USGS Publications Warehouse

    Bunnell, D.B.; Adams, J.V.; Gorman, O.T.; Madenjian, C.P.; Riley, S.C.; Roseman, E.F.; Schaeffer, J.S.

    2010-01-01

    Climate and dispersal are the two most commonly cited mechanisms to explain spatial synchrony among time series of animal populations, and climate is typically most important for fishes. Using data from 1978-2006, we quantified the spatial synchrony in recruitment and population catch-per-unit-effort (CPUE) for bloater (Coregonus hoyi) populations across lakes Superior, Michigan, and Huron. In this natural field experiment, climate was highly synchronous across lakes but the likelihood of dispersal between lakes differed. When data from all lakes were pooled, modified correlograms revealed spatial synchrony to occur up to 800 km for long-term (data not detrended) trends and up to 600 km for short-term (data detrended by the annual rate of change) trends. This large spatial synchrony more than doubles the scale previously observed in freshwater fish populations, and exceeds the scale found in most marine or estuarine populations. When analyzing the data separately for within- and between-lake pairs, spatial synchrony was always observed within lakes, up to 400 or 600 km. Conversely, between-lake synchrony did not occur among short-term trends, and for long-term trends, the scale of synchrony was highly variable. For recruit CPUE, synchrony occurred up to 600 km between both lakes Michigan and Huron (where dispersal was most likely) and lakes Michigan and Superior (where dispersal was least likely), but failed to occur between lakes Huron and Superior (where dispersal likelihood was intermediate). When considering the scale of putative bloater dispersal and genetic information from previous studies, we concluded that dispersal was likely underlying within-lake synchrony but climate was more likely underlying between-lake synchrony. The broad scale of synchrony in Great Lakes bloater populations increases their probability of extirpation, a timely message for fishery managers given current low levels of bloater abundance. ?? Springer-Verlag 2009.

  14. Climate Risk and Vulnerability in the Caribbean and Gulf of Mexico Region: Interactions with Spatial Population and Land Cover Change

    NASA Astrophysics Data System (ADS)

    Chen, R. S.; Levy, M.; Baptista, S.; Adamo, S.

    2010-12-01

    Vulnerability to climate variability and change will depend on dynamic interactions between different aspects of climate, land-use change, and socioeconomic trends. Measurements and projections of these changes are difficult at the local scale but necessary for effective planning. New data sources and methods make it possible to assess land-use and socioeconomic changes that may affect future patterns of climate vulnerability. In this paper we report on new time series data sets that reveal trends in the spatial patterns of climate vulnerability in the Caribbean/Gulf of Mexico Region. Specifically, we examine spatial time series data for human population over the period 1990-2000, time series data on land use and land cover over 2000-2009, and infant mortality rates as a proxy for poverty for 2000-2008. We compare the spatial trends for these measures to the distribution of climate-related natural disaster risk hotspots (cyclones, floods, landslides, and droughts) in terms of frequency, mortality, and economic losses. We use these data to identify areas where climate vulnerability appears to be increasing and where it may be decreasing. Regions where trends and patterns are especially worrisome include coastal areas of Guatemala and Honduras.

  15. Exploring spatial-temporal dynamics of fire regime features in mainland Spain

    NASA Astrophysics Data System (ADS)

    Jiménez-Ruano, Adrián; Rodrigues Mimbrero, Marcos; de la Riva Fernández, Juan

    2017-10-01

    This paper explores spatial-temporal dynamics in fire regime features, such as fire frequency, burnt area, large fires and natural- and human-caused fires, as an essential part of fire regime characterization. Changes in fire features are analysed at different spatial - regional and provincial/NUTS3 - levels, together with summer and winter temporal scales, using historical fire data from Spain for the period 1974-2013. Temporal shifts in fire features are investigated by means of change point detection procedures - Pettitt test, AMOC (at most one change), PELT (pruned exact linear time) and BinSeg (binary segmentation) - at a regional level to identify changes in the time series of the features. A trend analysis was conducted using the Mann-Kendall and Sen's slope tests at both the regional and NUTS3 level. Finally, we applied a principal component analysis (PCA) and varimax rotation to trend outputs - mainly Sen's slope values - to summarize overall temporal behaviour and to explore potential links in the evolution of fire features. Our results suggest that most fire features show remarkable shifts between the late 1980s and the first half of the 1990s. Mann-Kendall outputs revealed negative trends in the Mediterranean region. Results from Sen's slope suggest high spatial and intra-annual variability across the study area. Fire activity related to human sources seems to be experiencing an overall decrease in the northwestern provinces, particularly pronounced during summer. Similarly, the Hinterland and the Mediterranean coast are gradually becoming less fire affected. Finally, PCA enabled trends to be synthesized into four main components: winter fire frequency (PC1), summer burnt area (PC2), large fires (PC3) and natural fires (PC4).

  16. Continental U.S. streamflow trends from 1940 to 2009 and their relationships with watershed spatial characteristics

    NASA Astrophysics Data System (ADS)

    Rice, Joshua S.; Emanuel, Ryan E.; Vose, James M.; Nelson, Stacy A. C.

    2015-08-01

    Changes in streamflow are an important area of ongoing research in the hydrologic sciences. To better understand spatial patterns in past changes in streamflow, we examined relationships between watershed-scale spatial characteristics and trends in streamflow. Trends in streamflow were identified by analyzing mean daily flow observations between 1940 and 2009 from 967 U.S. Geological Survey stream gages. Results indicated that streamflow across the continental U.S., as a whole, increased while becoming less extreme between 1940 and 2009. However, substantial departures from the continental U.S. (CONUS) scale pattern occurred at the regional scale, including increased annual maxima, decreased annual minima, overall drying trends, and changes in streamflow variability. A subset of watersheds belonging to a reference data set exhibited significantly smaller trend magnitudes than those observed in nonreference watersheds. Boosted regression tree models were applied to examine the influence of watershed characteristics on streamflow trend magnitudes at both the CONUS and regional scale. Geographic location was found to be of particular importance at the CONUS scale while local variability in hydroclimate and topography tended to have a strong influence on regional-scale patterns in streamflow trends. This methodology facilitates detailed, data-driven analyses of how the characteristics of individual watersheds interact with large-scale hydroclimate forces to influence how changes in streamflow manifest.

  17. Temporal and spatial evolution characteristics of water environment quality in Heze

    NASA Astrophysics Data System (ADS)

    Gao, Qian; Zhao, Qiang; Li, Xiumei

    2018-06-01

    The evolution of water environment is relatively complicated. The study of its characteristics is helpful to grasp the general direction of spatial and temporal evolution of water environment in Heze city, and to carry out water resources development and water environment protection more rationally. The comprehensive pollution index method for calculation, and the observed data are handled by Excel. In order to facilitate the analysis of the basin, Arcgis is utilized to map the watershed map. In addition, for the spatial evolution, surfer12 is used to analyze the spatial evolution characteristics the spatial evolution, and to draw the pictures of spatial evolution of chemical oxygen demand and water quality evolution. The study shows that: (1) In Heze, the quality of water environment has been improved year by year from 2006 to 2013. In 2014, the water environment has deteriorated. The content of volatile phenol has increased greatly, and the evolution trend of COD is close to the trend of the comprehensive pollution index. (2) In terms of Spatial state of water environment, the water quality of Zhuzhao New River and Wanfu River is poor, and Dongyu River water quality is better. Zhuzhao New River and Wanfu River water qualityis often worse than grade V or V, and Dongyu River water quality is mostly maintained in the grade Ⅳ. Through the analysis on the spatial revolution characteristics of water quality and chemical oxygen demand(COD),as a result, water quality is poor in the northern region,and the water quality in the southern region is better in Heze. Although the water quality has changed in recent years, the overall pattern is relatively stable.

  18. Estimates of spatial and temporal variation of energy crops biomass yields in the US

    NASA Astrophysics Data System (ADS)

    Song, Y.; Jain, A. K.; Landuyt, W.; Kheshgi, H. S.

    2013-12-01

    Perennial grasses, such as switchgrass (Panicum viragatum) and Miscanthus (Miscanthus x giganteus) have been identified for potential use as biomass feedstocks in the US. Current research on perennial grass biomass production has been evaluated on small-scale plots. However, the extent to which this potential can be realized at a landscape-scale will depend on the biophysical potential to grow these grasses with minimum possible amount of land that needs to be diverted from food to fuel production. To assess this potential three questions about the biomass yield for these grasses need to be answered: (1) how the yields for different grasses are varied spatially and temporally across the US; (2) whether the yields are temporally stable or not; and (3) how the spatial and temporal trends in yields of these perennial grasses are controlled by limiting factors, including soil type, water availability, climate, and crop varieties. To answer these questions, the growth processes of the perennial grasses are implemented into a coupled biophysical, physiological and biogeochemical model (ISAM). The model has been applied to quantitatively investigate the spatial and temporal trends in biomass yields for over the period 1980 -2010 in the US. The bioenergy grasses considered in this study include Miscanthus, Cave-in-Rock switchgrass and Alamo switchgrass. The effects of climate, soil and topography on the spatial and temporal trends of biomass yields are quantitatively analyzed using principal component analysis and GIS based geographically weighted regression. The spatial temporal trend results are evaluated further to classify each part of the US into four homogeneous potential yield zones: high and stable yield zone (HS), high but unstable yield zone (HU), low and stable yield zone (LS) and low but unstable yield zone (LU). Our preliminary results indicate that the yields for perennial grasses among different zones are strongly related to the different controlling factors. For example, the yield in HS zone is depended on soil and topography factors. However, the yields in HU zone are more controlled by climate factors, leading to a large uncertainty in yield potential of bioenergy grasses under future climate change.

  19. Spatio-Temporal Trends and Risk Factors for Shigella from 2001 to 2011 in Jiangsu Province, People's Republic of China

    PubMed Central

    Bao, Changjun; Hu, Jianli; Liu, Wendong; Liang, Qi; Wu, Ying; Norris, Jessie; Peng, Zhihang; Yu, Rongbin; Shen, Hongbing; Chen, Feng

    2014-01-01

    Objective This study aimed to describe the spatial and temporal trends of Shigella incidence rates in Jiangsu Province, People's Republic of China. It also intended to explore complex risk modes facilitating Shigella transmission. Methods County-level incidence rates were obtained for analysis using geographic information system (GIS) tools. Trend surface and incidence maps were established to describe geographic distributions. Spatio-temporal cluster analysis and autocorrelation analysis were used for detecting clusters. Based on the number of monthly Shigella cases, an autoregressive integrated moving average (ARIMA) model successfully established a time series model. A spatial correlation analysis and a case-control study were conducted to identify risk factors contributing to Shigella transmissions. Results The far southwestern and northwestern areas of Jiangsu were the most infected. A cluster was detected in southwestern Jiangsu (LLR = 11674.74, P<0.001). The time series model was established as ARIMA (1, 12, 0), which predicted well for cases from August to December, 2011. Highways and water sources potentially caused spatial variation in Shigella development in Jiangsu. The case-control study confirmed not washing hands before dinner (OR = 3.64) and not having access to a safe water source (OR = 2.04) as the main causes of Shigella in Jiangsu Province. Conclusion Improvement of sanitation and hygiene should be strengthened in economically developed counties, while access to a safe water supply in impoverished areas should be increased at the same time. PMID:24416167

  20. Identifying food deserts and swamps based on relative healthy food access: a spatio-temporal Bayesian approach.

    PubMed

    Luan, Hui; Law, Jane; Quick, Matthew

    2015-12-30

    Obesity and other adverse health outcomes are influenced by individual- and neighbourhood-scale risk factors, including the food environment. At the small-area scale, past research has analysed spatial patterns of food environments for one time period, overlooking how food environments change over time. Further, past research has infrequently analysed relative healthy food access (RHFA), a measure that is more representative of food purchasing and consumption behaviours than absolute outlet density. This research applies a Bayesian hierarchical model to analyse the spatio-temporal patterns of RHFA in the Region of Waterloo, Canada, from 2011 to 2014 at the small-area level. RHFA is calculated as the proportion of healthy food outlets (healthy outlets/healthy + unhealthy outlets) within 4-km from each small-area. This model measures spatial autocorrelation of RHFA, temporal trend of RHFA for the study region, and spatio-temporal trends of RHFA for small-areas. For the study region, a significant decreasing trend in RHFA is observed (-0.024), suggesting that food swamps have become more prevalent during the study period. For small-areas, significant decreasing temporal trends in RHFA were observed for all small-areas. Specific small-areas located in south Waterloo, north Kitchener, and southeast Cambridge exhibited the steepest decreasing spatio-temporal trends and are classified as spatio-temporal food swamps. This research demonstrates a Bayesian spatio-temporal modelling approach to analyse RHFA at the small-area scale. Results suggest that food swamps are more prevalent than food deserts in the Region of Waterloo. Analysing spatio-temporal trends of RHFA improves understanding of local food environment, highlighting specific small-areas where policies should be targeted to increase RHFA and reduce risk factors of adverse health outcomes such as obesity.

  1. Recent Change of Vegetation Growth Trend in China

    NASA Technical Reports Server (NTRS)

    Peng, Shushi; Chen, Anping; Xu, Liang; Cao, Chunxiang; Fang, Jingyun; Myneni, Ranga B.; Pinzon, Jorge E.; Tucker, COmpton J.; Piao, Shilong

    2011-01-01

    Using satellite-derived normalized difference vegetation index (NDVI) data, several previous studies have indicated that vegetation growth significantly increased in most areas of China during the period 1982-99. In this letter, we extended the study period to 2010. We found that at the national scale the growing season (April-October) NDVI significantly increased by 0.0007/yr from 1982 to 2010, but the increasing trend in NDVI over the last decade decreased in comparison to that of the 1982-99 period. The trends in NDVI show significant seasonal and spatial variances. The increasing trend in April and May (AM) NDVI (0.0013/yr is larger than those in June, July and August (JJA) (0.0003/yr) and September and October (SO) (0.0008/yr). This relatively small increasing trend of JJA NDVI during 1982-2010 compared with that during 1982-99 (0.0012/yr) (Piao et al 2003 J. Geophys. Res.-Atmos. 108 4401) implies a change in the JJA vegetation growth trend, which significantly turned from increasing (0.0039/yr) to slightly decreasing (0:0002/yr) in 1988. Regarding the spatial pattern of changes in NDVI, the growing season NDVI increased (over 0.0020/yr) from 1982 to 2010 in southern China, while its change was close to zero in northern China, as a result of a significant changing trend reversal that occurred in the 1990s and early 2000s. In northern China, the growing season NDVI significantly increased before the 1990s as a result of warming and enhanced precipitation, but decreased after the 1990s due to drought stress strengthened by warming and reduced precipitation. Our results also show that the responses of vegetation growth to climate change vary across different seasons and ecosystems.

  2. Trends and causes of historical wetland loss in coastal Louisiana

    USGS Publications Warehouse

    Bernier, Julie

    2013-01-01

    Wetland losses in the northern Gulf Coast region of the United States are so extensive that they represent critical concerns to government environmental agencies and natural resource managers. In Louisiana, almost 3,000 square kilometers (km2) of low-lying wetlands converted to open water between 1956 and 2004, and billions of dollars in State and Federal funding have been allocated for coastal restoration projects intended to compensate for some of those wetland losses. Recent research at the St. Petersburg Coastal and Marine Science Center (SPCMSC) focused on understanding the physical processes and human activities that contributed to historical wetland loss in coastal Louisiana and the spatial and temporal trends of that loss. The physical processes (land-surface subsidence and sediment erosion) responsible for historical wetland loss were quantified by comparing marsh-surface elevations, water depths, and vertical displacements of stratigraphic contacts at 10 study areas in the Mississippi River delta plain and 6 sites at Sabine National Wildlife Refuge (SNWR) in the western chenier plain. The timing and extent of land loss at the study areas was determined by comparing historical maps, aerial photographs, and satellite imagery; the temporal and spatial trends of those losses were compared with historical subsidence rates and hydrocarbon production trends.

  3. Observation-Driven Estimation of the Spatial Variability of 20th Century Sea Level Rise

    NASA Astrophysics Data System (ADS)

    Hamlington, B. D.; Burgos, A.; Thompson, P. R.; Landerer, F. W.; Piecuch, C. G.; Adhikari, S.; Caron, L.; Reager, J. T.; Ivins, E. R.

    2018-03-01

    Over the past two decades, sea level measurements made by satellites have given clear indications of both global and regional sea level rise. Numerous studies have sought to leverage the modern satellite record and available historic sea level data provided by tide gauges to estimate past sea level rise, leading to several estimates for the 20th century trend in global mean sea level in the range between 1 and 2 mm/yr. On regional scales, few attempts have been made to estimate trends over the same time period. This is due largely to the inhomogeneity and quality of the tide gauge network through the 20th century, which render commonly used reconstruction techniques inadequate. Here, a new approach is adopted, integrating data from a select set of tide gauges with prior estimates of spatial structure based on historical sea level forcing information from the major contributing processes over the past century. The resulting map of 20th century regional sea level rise is optimized to agree with the tide gauge-measured trends, and provides an indication of the likely contributions of different sources to regional patterns. Of equal importance, this study demonstrates the sensitivities of this regional trend map to current knowledge and uncertainty of the contributing processes.

  4. Indian Summer Monsoon Rainfall: Implications of Contrasting Trends in the Spatial Variability of Means and Extremes

    PubMed Central

    Ghosh, Subimal; Vittal, H.; Sharma, Tarul; Karmakar, Subhankar; Kasiviswanathan, K. S.; Dhanesh, Y.; Sudheer, K. P.; Gunthe, S. S.

    2016-01-01

    India’s agricultural output, economy, and societal well-being are strappingly dependent on the stability of summer monsoon rainfall, its variability and extremes. Spatial aggregate of intensity and frequency of extreme rainfall events over Central India are significantly increasing, while at local scale they are spatially non-uniform with increasing spatial variability. The reasons behind such increase in spatial variability of extremes are poorly understood and the trends in mean monsoon rainfall have been greatly overlooked. Here, by using multi-decadal gridded daily rainfall data over entire India, we show that the trend in spatial variability of mean monsoon rainfall is decreasing as exactly opposite to that of extremes. The spatial variability of extremes is attributed to the spatial variability of the convective rainfall component. Contrarily, the decrease in spatial variability of the mean rainfall over India poses a pertinent research question on the applicability of large scale inter-basin water transfer by river inter-linking to address the spatial variability of available water in India. We found a significant decrease in the monsoon rainfall over major water surplus river basins in India. Hydrological simulations using a Variable Infiltration Capacity (VIC) model also revealed that the water yield in surplus river basins is decreasing but it is increasing in deficit basins. These findings contradict the traditional notion of dry areas becoming drier and wet areas becoming wetter in response to climate change in India. This result also calls for a re-evaluation of planning for river inter-linking to supply water from surplus to deficit river basins. PMID:27463092

  5. Indian Summer Monsoon Rainfall: Implications of Contrasting Trends in the Spatial Variability of Means and Extremes.

    PubMed

    Ghosh, Subimal; Vittal, H; Sharma, Tarul; Karmakar, Subhankar; Kasiviswanathan, K S; Dhanesh, Y; Sudheer, K P; Gunthe, S S

    2016-01-01

    India's agricultural output, economy, and societal well-being are strappingly dependent on the stability of summer monsoon rainfall, its variability and extremes. Spatial aggregate of intensity and frequency of extreme rainfall events over Central India are significantly increasing, while at local scale they are spatially non-uniform with increasing spatial variability. The reasons behind such increase in spatial variability of extremes are poorly understood and the trends in mean monsoon rainfall have been greatly overlooked. Here, by using multi-decadal gridded daily rainfall data over entire India, we show that the trend in spatial variability of mean monsoon rainfall is decreasing as exactly opposite to that of extremes. The spatial variability of extremes is attributed to the spatial variability of the convective rainfall component. Contrarily, the decrease in spatial variability of the mean rainfall over India poses a pertinent research question on the applicability of large scale inter-basin water transfer by river inter-linking to address the spatial variability of available water in India. We found a significant decrease in the monsoon rainfall over major water surplus river basins in India. Hydrological simulations using a Variable Infiltration Capacity (VIC) model also revealed that the water yield in surplus river basins is decreasing but it is increasing in deficit basins. These findings contradict the traditional notion of dry areas becoming drier and wet areas becoming wetter in response to climate change in India. This result also calls for a re-evaluation of planning for river inter-linking to supply water from surplus to deficit river basins.

  6. Exploring spatial patterns and drivers of forest fires in Portugal (1980-2014).

    PubMed

    Nunes, A N; Lourenço, L; Meira, A C Castro

    2016-12-15

    Information on the spatial incidence of fire ignition density and burnt area, trends and drivers of wildfires is vitally important in providing support for environmental and civil protection policies, designing appropriate prevention measures and allocating firefighting resources. The key objectives of this study were to analyse the geographical incidence and temporal trends for wildfires, as well as the main drivers of fire ignition and burnt area in Portugal on a municipal level. The results show that fires are not distributed uniformly throughout Portuguese territory, both in terms of ignition density and burnt area. One spot in the north-western area is well defined, covering 10% of the municipalities where more than one third of the total fire ignitions are concentrated. In >80% of Portuguese municipalities, ignition density has registered a positive trend since the 1980s. With regard to burnt area, 60% of the municipalities had a nil annual trend, 35% showed a positive trend and 5%, located mainly in the central region, revealed negative trends. Geographically weighted regression proved more efficient in identifying the most relevant physical and anthropogenic drivers of municipal wildfires in comparison with simple linear regression models. Topography, density of population, land cover and livestock were found to be significant in both ignition density and burnt area, although considerable variations were observed in municipal explanatory power. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Problems in evaluating regional and local trends in temperature: An example from eastern Colorado, USA

    USGS Publications Warehouse

    Pielke, R.A.; Stohlgren, T.; Schell, L.; Parton, W.; Doesken, N.; Redmond, K.; Moeny, J.; McKee, T.; Kittel, T.G.F.

    2002-01-01

    We evaluated long-term trends in average maximum and minimum temperatures, threshold temperatures, and growing season in eastern Colorado, USA, to explore the potential shortcomings of many climate-change studies that either: (1) generalize regional patterns from single stations, single seasons, or a few parameters over short duration from averaging dissimilar stations: or (2) generalize an average regional pattern from coarse-scale general circulation models. Based on 11 weather stations, some trends were weakly regionally consistent with previous studies of night-time temperature warming. Long-term (80 + years) mean minimum temperatures increased significantly (P < 0.2) in about half the stations in winter, spring, and autumn and six stations had significant decreases in the number of days per year with temperatures ??? - 17.8 ??C (???0??F). However, spatial and temporal variation in the direction of change was enormous for all the other weather parameters tested, and, in the majority of tests, few stations showed significant trends (even at P < 0.2). In summer, four stations had significant increases and three stations had significant decreases in minimum temperatures, producing a strongly mixed regional signal. Trends in maximum temperature varied seasonally and geographically, as did trends in threshold temperature days ???32.2??C (???90??F) or days ???37.8??C (???100??F). There was evidence of a subregional cooling in autumn's maximum temperatures, with five stations showing significant decreasing trends. There were many geographic anomalies where neighbouring weather stations differed greatly in the magnitude of change or where they had significant and opposite trends. We conclude that sub-regional spatial and seasonal variation cannot be ignored when evaluating the direction and magnitude of climate change. It is unlikely that one or a few weather stations are representative of regional climate trends, and equally unlikely that regionally projected climate change from coarse-scale general circulation models will accurately portray trends at sub-regional scales. However, the assessment of a group of stations for consistent more qualitative trends (such as the number of days less than - 17.8??C, such as we found) provides a reasonably robust procedure to evaluate climate trends and variability. Copyright ?? 2002 Royal Meteorological Society.

  8. Revisiting AVHRR Tropospheric Aerosol Trends Using Principal Component Analysis

    NASA Technical Reports Server (NTRS)

    Li, Jing; Carlson, Barbara E.; Lacis, Andrew A.

    2014-01-01

    The advanced very high resolution radiometer (AVHRR) satellite instruments provide a nearly 25 year continuous record of global aerosol properties over the ocean. It offers valuable insights into the long-term change in global aerosol loading. However, the AVHRR data record is heavily influenced by two volcanic eruptions, El Chichon on March 1982 and Mount Pinatubo on June 1991. The gradual decay of volcanic aerosols may last years after the eruption, which potentially masks the estimation of aerosol trends in the lower troposphere, especially those of anthropogenic origin. In this study, we show that a principal component analysis approach effectively captures the bulk of the spatial and temporal variability of volcanic aerosols into a single mode. The spatial pattern and time series of this mode provide a good match to the global distribution and decay of volcanic aerosols. We further reconstruct the data set by removing the volcanic aerosol component and reestimate the global and regional aerosol trends. Globally, the reconstructed data set reveals an increase of aerosol optical depth from 1985 to 1990 and decreasing trend from 1994 to 2006. Regionally, in the 1980s, positive trends are observed over the North Atlantic and North Arabian Sea, while negative tendencies are present off the West African coast and North Pacific. During the 1994 to 2006 period, the Gulf of Mexico, North Atlantic close to Europe, and North Africa exhibit negative trends, while the coastal regions of East and South Asia, the Sahel region, and South America show positive trends.

  9. Modeling a secular trend by Monte Carlo simulation of height biased migration in a spatial network.

    PubMed

    Groth, Detlef

    2017-04-01

    Background: In a recent Monte Carlo simulation, the clustering of body height of Swiss military conscripts within a spatial network with characteristic features of the natural Swiss geography was investigated. In this study I examined the effect of migration of tall individuals into network hubs on the dynamics of body height within the whole spatial network. The aim of this study was to simulate height trends. Material and methods: Three networks were used for modeling, a regular rectangular fishing net like network, a real world example based on the geographic map of Switzerland, and a random network. All networks contained between 144 and 148 districts and between 265-307 road connections. Around 100,000 agents were initially released with average height of 170 cm, and height standard deviation of 6.5 cm. The simulation was started with the a priori assumption that height variation within a district is limited and also depends on height of neighboring districts (community effect on height). In addition to a neighborhood influence factor, which simulates a community effect, body height dependent migration of conscripts between adjacent districts in each Monte Carlo simulation was used to re-calculate next generation body heights. In order to determine the direction of migration for taller individuals, various centrality measures for the evaluation of district importance within the spatial network were applied. Taller individuals were favored to migrate more into network hubs, backward migration using the same number of individuals was random, not biased towards body height. Network hubs were defined by the importance of a district within the spatial network. The importance of a district was evaluated by various centrality measures. In the null model there were no road connections, height information could not be delivered between the districts. Results: Due to the favored migration of tall individuals into network hubs, average body height of the hubs, and later, of the whole network increased by up to 0.1 cm per iteration depending on the network model. The general increase in height within the network depended on connectedness and on the amount of height information that was exchanged between neighboring districts. If higher amounts of neighborhood height information were exchanged, the general increase in height within the network was large (strong secular trend). The trend in the homogeneous fishnet like network was lowest, the trend in the random network was highest. Yet, some network properties, such as the heteroscedasticity and autocorrelations of the migration simulation models differed greatly from the natural features observed in Swiss military conscript networks. Autocorrelations of district heights for instance, were much higher in the migration models. Conclusion: This study confirmed that secular height trends can be modeled by preferred migration of tall individuals into network hubs. However, basic network properties of the migration simulation models differed greatly from the natural features observed in Swiss military conscripts. Similar network-based data from other countries should be explored to better investigate height trends with Monte Carlo migration approach.

  10. Filling the white space on maps of European runoff trends: estimates from a multi-model ensemble

    NASA Astrophysics Data System (ADS)

    Stahl, K.; Tallaksen, L. M.; Hannaford, J.; van Lanen, H. A. J.

    2012-07-01

    An overall appraisal of runoff changes at the European scale has been hindered by "white space" on maps of observed trends due to a paucity of readily-available streamflow data. This study tested whether this white space can be filled using estimates of trends derived from model simulations of European runoff. The simulations stem from an ensemble of eight global hydrological models that were forced with the same climate input for the period 1963-2000. The derived trends were validated for 293 grid cells across the European domain with observation-based trend estimates. The ensemble mean overall provided the best representation of trends in the observations. Maps of trends in annual runoff based on the ensemble mean demonstrated a pronounced continental dipole pattern of positive trends in western and northern Europe and negative trends in southern and parts of eastern Europe, which has not previously been demonstrated and discussed in comparable detail. Overall, positive trends in annual streamflow appear to reflect the marked wetting trends of the winter months, whereas negative annual trends result primarily from a widespread decrease in streamflow in spring and summer months, consistent with a decrease in summer low flow in large parts of Europe. High flow appears to have increased in rain-dominated hydrological regimes, whereas an inconsistent or decreasing signal was found in snow-dominated regimes. The different models agreed on the predominant continental-scale pattern of trends, but in some areas disagreed on the magnitude and even the direction of trends, particularly in transition zones between regions with increasing and decreasing runoff trends, in complex terrain with a high spatial variability, and in snow-dominated regimes. Model estimates appeared most reliable in reproducing observed trends in annual runoff, winter runoff, and 7-day high flow. Modelled trends in runoff during the summer months, spring (for snow influenced regions) and autumn, and trends in summer low flow were more variable - both among models and in the spatial patterns of agreement between models and the observations. The use of models to display changes in these hydrological characteristics should therefore be viewed with caution due to higher uncertainty.

  11. The influence of watershed characteristics on spatial patterns of trends in annual scale streamflow variability in the continental U.S.

    NASA Astrophysics Data System (ADS)

    Rice, Joshua S.; Emanuel, Ryan E.; Vose, James M.

    2016-09-01

    As human activity and climate variability alter the movement of water through the environment the need to better understand hydrologic cycle responses to these changes has grown. A reasonable starting point for gaining such insight is studying changes in streamflow given the importance of streamflow as a source of renewable freshwater. Using a wavelet assisted method we analyzed trends in the magnitude of annual scale streamflow variability from 967 watersheds in the continental U.S. (CONUS) over a 70 year period (1940-2009). Decreased annual variability was the dominant pattern at the CONUS scale. Ecoregion scale results agreed with the CONUS pattern with the exception of two ecoregions closely divided between increases and decreases and one where increases dominated. A comparison of trends in reference and non-reference watersheds indicated that trend magnitudes in non-reference watersheds were significantly larger than those in reference watersheds. Boosted regression tree (BRT) models were used to study the relationship between watershed characteristics and the magnitude of trends in streamflow. At the CONUS scale, the balance between precipitation and evaporative demand, and measures of geographic location were of high relative importance. Relationships between the magnitude of trends and watershed characteristics at the ecoregion scale exhibited differences from the CONUS results and substantial variability was observed among ecoregions. Additionally, the methodology used here has the potential to serve as a robust framework for top-down, data driven analyses of the relationships between changes in the hydrologic cycle and the spatial context within which those changes occur.

  12. Bioaccumulation of perfluoroalkyl substances in exploited fish and crustaceans: Spatial trends across two estuarine systems.

    PubMed

    Taylor, Matthew D; Beyer-Robson, Janina; Johnson, Daniel D; Knott, Nathan A; Bowles, Karl C

    2018-06-01

    Spatial patterns in perfluoroalkyl substances were quantified for exploited fish and crustaceans across two contrasting Australian estuaries (Port Stephens and Hunter River). Perfluorooctane sulfonate (PFOS) was detected in 77% of composites from Port Stephens and 100% of composites from Hunter River. Most species from Port Stephens showed a clear trend with distance to source. In contrast, only a subset of species showed this trend in the Hunter River, potentially due to species movement patterns and differing hydrology. Spatial modelling showed that PFOS concentrations were expected to exceed the relevant trigger value up to ~13,500 m from the main point source for Port Stephens and ~9000 m for the Hunter River. These results represent the first major investigation of bioaccumulation of PFASs in exploited species in Australian estuaries, and highlight various factors that can contribute to spatial patterns in bioaccumulation. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  13. [Temporal and spatial variations of extreme climatic events in Songnen Grassland, Northeast China during 1960-2014].

    PubMed

    Ma, Qi Yun; Zhang, Ji Quan; Lai, Quan; Zhang, Feng; Dong, Zhen Hua; A, Lu Si

    2017-06-18

    Fourteen extreme climatic indices related with main regional meteorological disasters and vegetation growth were calculated based on daily data from 13 meteorological stations during 1960-2014 in Songnen Grassland, Northeast China. Then, the variation trend and the spatial and temporal patterns of climatic extreme events were analyzed by using regression analysis, break trend analy-sis, Mann-Kendall test, Sen's slope estimator and moving t-test method. The results indicated that summer days (SU25), warm days (TX90P), warm nights (TN90P) and warm spell duration (WSDI) representing extremely high temperatures showed significant increasing trends (P<0.05). Meanwhile, frost days (FD0), cold days (TX10P), cold nights (TN10P) and cold spell duration indicator (CSDI) representing extremely low temperatures showed obviously decreasing trends. The magnitudes of changes in cold indices (FD0, TX10P, TN10P and CSDI) were clearly greater than those of warm indices (SU25, TX90P, TN90P and WSDI), and that changes in night indices were larger than those of day indices. Regional climate warming trend was obvious from 1970 to 2009, and the most occurrences of the abrupt changes in these indices were identified in this period. The extreme precipitation indices did not show obvious trend, in general, SDII and CDD experienced a slightly decreasing trend while RX5D, R95P, PRCPTOT and CWD witnessed a mildly increasing trend. It may be concluded that regional climate changed towards warming and slightly wetting in Songnen Grassland. The most sensitive region for extreme temperature was distributed in the south and north region. Additionally, the extreme temperature indices showed clearly spatial difference between the south and the north. As for the spatial variations of extreme precipitation indices, the climate could be characterized by becoming wetter in northern region, and getting drier in southern region, especially in southwestern region with a high drought risk.

  14. Spatial Econometric Research on the Relationship between Highway Construction and Regional Economic Growth in China: Evidence from the Nationwide Panel Data

    NASA Astrophysics Data System (ADS)

    Ye, N. J.; Li, W. J.; Li, Y.; Bai, Y. F.

    2017-12-01

    Based on spatial panel data from 2010 to 2016 in China, this paper makes an empirical analysis on the relationship between highway construction and regional economic growth by means of spatial econometric model. The results show that there is positive spatial correlation on regional economic growth in China, and strong spatial dependences between some provinces and cities appear, specifically, Hebei, Beijing, Tianjin, Shanghai, Zhejiang and other eastern coastal areas show high-high agglomeration trend, the Pearl River Delta region presents high-low agglomeration trend; In terms of nationwide provinces and municipalities, a province’s highway construction investment for their own province and the neighboring provinces has pulling effect on economic growth to a certain extent, and the direct effect is more obvious.

  15. Variations in extreme precipitation on the Loess Plateau using a high-resolution dataset and their linkages with atmospheric circulation indices

    NASA Astrophysics Data System (ADS)

    Zhao, Guangju; Zhai, Jianqing; Tian, Peng; Zhang, Limei; Mu, Xingmin; An, Zhengfeng; Han, Mengwei

    2017-08-01

    Assessing regional patterns and trends in extreme precipitation is crucial for facilitating flood control and drought adaptation because extreme climate events have more damaging impacts on society and ecosystems than simple shifts in the mean values. In this study, we employed daily precipitation data from 231 climate stations spanning 1961 to 2014 to explore the changes in precipitation extremes on the Loess Plateau, China. Nine of the 12 extreme precipitation indices suggested decreasing trends, and only the annual total wet-day precipitation (PRCPTOT) and R10 declined significantly: - 0.69 mm/a and - 0.023 days/a at the 95% confidence level. The spatial patterns in all of the extreme precipitation indices indicated mixed trends on the Loess Plateau, with decreasing trends in the precipitation extremes at the majority of the stations examined in the Fen-Wei River valley and high-plain plateau. Most of extreme precipitation indices suggested apparent regional differences, whereas R25 and R20 had spatially similar patterns on the Loess Plateau, with many stations revealing no trends. In addition, we found a potential decreasing trend in rainfall amounts and rainy days and increasing trends in rainfall intensities and storm frequencies in some regions due to increasing precipitation events in recent years. The relationships between extreme rainfall events and atmospheric circulation indices suggest that the weakening trend in the East Asia summer monsoon has limited the northward extension of the rainfall belt to northern China, thereby leading to a decrease in rainfall on the Loess Plateau.

  16. Googling trends in conservation biology.

    PubMed

    Proulx, Raphaël; Massicotte, Philippe; Pépino, Marc

    2014-02-01

    Web-crawling approaches, that is, automated programs data mining the internet to obtain information about a particular process, have recently been proposed for monitoring early signs of ecosystem degradation or for establishing crop calendars. However, lack of a clear conceptual and methodological framework has prevented the development of such approaches within the field of conservation biology. Our objective was to illustrate how Google Trends, a freely accessible web-crawling engine, can be used to track changes in timing of biological processes, spatial distribution of invasive species, and level of public awareness about key conservation issues. Google Trends returns the number of internet searches that were made for a keyword in a given region of the world over a defined period. Using data retrieved online for 13 countries, we exemplify how Google Trends can be used to study the timing of biological processes, such as the seasonal recurrence of pollen release or mosquito outbreaks across a latitudinal gradient. We mapped the spatial extent of results from Google Trends for 5 invasive species in the United States and found geographic patterns in invasions that are consistent with their coarse-grained distribution at state levels. From 2004 through 2012, Google Trends showed that the level of public interest and awareness about conservation issues related to ecosystem services, biodiversity, and climate change increased, decreased, and followed both trends, respectively. Finally, to further the development of research approaches at the interface of conservation biology, collective knowledge, and environmental management, we developed an algorithm that allows the rapid retrieval of Google Trends data. © 2013 Society for Conservation Biology.

  17. Using nestling plasma to assess long-term spatial and temporal concentrations of organochlorine compounds in bald eagles within Voyageurs National Park, Minnesota, USA

    Treesearch

    H. Tyler Pittman; William W. Bowerman; Leland H. Grim; Teryl G. Grubb; William C. Bridges; Michael R. Wierda

    2015-01-01

    The bald eagle (Haliaeetus leucocephalus) population at Voyageurs National Park (VNP) provides an opportunity to assess long-term temporal and spatial trends of persistent environmental contaminants. Nestling bald eagle plasma samples collected from 1997 to 2010 were analyzed for polychlorinated biphenyls (PCBs) and organochlorine pesticides. Trends of total PCBs,...

  18. Spatial and temporal patterns in preterm birth in the United States.

    PubMed

    Byrnes, John; Mahoney, Richard; Quaintance, Cele; Gould, Jeffrey B; Carmichael, Suzan; Shaw, Gary M; Showen, Amy; Phibbs, Ciaran; Stevenson, David K; Wise, Paul H

    2015-06-01

    Despite years of research, the etiologies of preterm birth remain unclear. In order to help generate new research hypotheses, this study explored spatial and temporal patterns of preterm birth in a large, total-population dataset. Data on 145 million US births in 3,000 counties from the Natality Files of the National Center for Health Statistics for 1971-2011 were examined. State trends in early (<34 wk) and late (34-36 wk) preterm birth rates were compared. K-means cluster analyses were conducted to identify gestational age distribution patterns for all US counties over time. A weak association was observed between state trends in <34 wk birth rates and the initial absolute <34 wk birth rate. Significant associations were observed between trends in <34 wk and 34-36 wk birth rates and between white and African American <34 wk births. Periodicity was observed in county-level trends in <34 wk birth rates. Cluster analyses identified periods of significant heterogeneity and homogeneity in gestational age distributional trends for US counties. The observed geographic and temporal patterns suggest periodicity and complex, shared influences among preterm birth rates in the United States. These patterns could provide insight into promising hypotheses for further research.

  19. Exploration of Urban Spatial Planning Evaluation Based on Humanland Harmony

    NASA Astrophysics Data System (ADS)

    Hu, X. S.; Ma, Q. R.; Liang, W. Q.; Wang, C. X.; Xiong, X. Q.; Han, X. H.

    2017-09-01

    This study puts forward a new concept, "population urbanization level forecast - driving factor analysis - urban spatial planning analysis" for achieving efficient and intensive development of urbanization considering human-land harmony. We analyzed big data for national economic and social development, studied the development trends of population urbanization and its influencing factors using the grey system model in Chengmai county of Hainan province, China. In turn, we calculated the population of Chengmai coming years based on the forecasting urbanization rate and the corresponding amount of urban construction land, and evaluated the urban spatial planning with GIS spatial analysis method in the study area. The result shows that the proposed concept is feasible for evaluation of urban spatial planning, and is meaningful for guiding the rational distribution of urban space, controlling the scale of development, improving the quality of urbanization and thus promoting highly-efficient and intensive use of limited land resource.

  20. Spatial and temporal drivers of wildfire occurrence in the context of rural development in northern Wisconsin, USA

    Treesearch

    Brian R Miranda; Brian R Sturtevant; Susan I Stewart; Roger B. Hammer

    2012-01-01

    Most drivers underlying wildfire are dynamic, but at different spatial and temporal scales. We quantified temporal and spatial trends in wildfire patterns over two spatial extents in northern Wisconsin to identify drivers and their change through time. We used spatial point pattern analysis to quantify the spatial pattern of wildfire occurrences, and linear regression...

  1. Terrestrial mosses as biomonitors of atmospheric POPs pollution: a review.

    PubMed

    Harmens, H; Foan, L; Simon, V; Mills, G

    2013-02-01

    Worldwide there is concern about the continuing release of persistent organic pollutants (POPs) into the environment. In this study we review the application of mosses as biomonitors of atmospheric deposition of POPs. Examples in the literature show that mosses are suitable organisms to monitor spatial patterns and temporal trends of atmospheric concentrations or deposition of POPs. These examples include polycyclic aromatic hydrocarbons (PAHs), polychlorobiphenyls (PCBs), dioxins and furans (PCDD/Fs), and polybrominated diphenyl ethers (PBDEs). The majority of studies report on PAHs concentrations in mosses and relative few studies have been conducted on other POPs. So far, many studies have focused on spatial patterns around pollution sources or the concentration in mosses in remote areas such as the polar regions, as an indication of long-range transport of POPs. Very few studies have determined temporal trends or have directly related the concentrations in mosses with measured atmospheric concentrations and/or deposition fluxes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Regional precipitation trend analysis at the Langat River Basin, Selangor, Malaysia

    NASA Astrophysics Data System (ADS)

    Palizdan, Narges; Falamarzi, Yashar; Huang, Yuk Feng; Lee, Teang Shui; Ghazali, Abdul Halim

    2014-08-01

    Various hydrological and meteorological variables such as rainfall and temperature have been affected by global climate change. Any change in the pattern of precipitation can have a significant impact on the availability of water resources, agriculture, and the ecosystem. Therefore, knowledge on rainfall trend is an important aspect of water resources management. In this study, the regional annual and seasonal precipitation trends at the Langat River Basin, Malaysia, for the period of 1982-2011 were examined at the 95 % level of significance using the regional average Mann-Kendall (RAMK) test and the regional average Mann-Kendall coupled with bootstrap (RAMK-bootstrap) method. In order to identify the homogeneous regions respectively for the annual and seasonal scales, firstly, at-site mean total annual and separately at-site mean total seasonal precipitation were spatialized into 5 km × 5 km grids using the inverse distance weighting (IDW) algorithm. Next, the optimum number of homogeneous regions (clusters) is computed using the silhouette coefficient approach. Next, the homogeneous regions were formed using the K-mean clustering method. From the annual scale perspective, all three regions showed positive trends. However, the application of two methods at this scale showed a significant trend only in the region AC1. The region AC2 experienced a significant positive trend using only the RAMK test. On a seasonal scale, all regions showed insignificant trends, except the regions I1C1 and I1C2 in the Inter-Monsoon 1 (INT1) season which experienced significant upward trends. In addition, it was proven that the significance of trends has been affected by the existence of serial and spatial correlations.

  3. Disparity in rainfall trend and patterns among different regions: analysis of 158 years' time series of rainfall dataset across India

    NASA Astrophysics Data System (ADS)

    Saha, Saurav; Chakraborty, Debasish; Paul, Ranjit Kumar; Samanta, Sandipan; Singh, S. B.

    2017-10-01

    Rainfall anomaly during crop-growing season can have large impact on the agricultural output of a country, especially like India, where two-thirds of the crop land is rain-fed. In such situation, decreased agricultural production not only challenges food security of the country but directly and immediately hits the livelihood of its farming community. In a vast country like India, rainfall or its anomalies hardly follow a specific pattern, rather it is having high variability in spatial domain. This study focused on the trends of national and regional rainfall anomalies (wetness/dryness) along with their interrelationship using time series data of past 158 years. The significant reducing wetness trend (p < 0.05) over north mountainous India was prominent with an increasing trend over southern peninsular India (p < 0.10). However, long-term annual wetness was increasing over entire peninsular India. The results of change point tests indicate that major abrupt changes occurred between early to mid-twentieth century having regional variations. The regional interrelationship was studied using principal component, hierarchical clustering, and pair-wise difference test, which clearly indicated a significantly different pattern in rainfall anomalies for north east India (p = 0.022), north central India (p = 0.022), and north mountainous India (p = 0.011) from that of the all India. Result of this study affirmed high spatial variability in rainfall anomaly and most importantly established the unalike pattern in trends of regional rainfall vis-à-vis national level, ushering towards paradigm shift in rainfall forecast from country scale to regional scale for pragmatic planning.

  4. Recent shifts in Himalayan vegetation activity trends in response to climatic change and environmental drivers

    NASA Astrophysics Data System (ADS)

    Mishra, N. B.; Mainali, K. P.

    2016-12-01

    Climatic changes along with anthropogenic disturbances are causing dramatic ecological impacts in mid to high latitude mountain vegetation including in the Himalayas which are ecologically sensitive environments. Given the challenges associated with in situ vegetation monitoring in the Himalayas, remote sensing based quantification of vegetation dynamics can provide essential ecological information on changes in vegetation activity that may consist of alternative sequence of greening and/or browning periods. This study utilized a trend break analysis procedure for detection of monotonic as well as abrupt (either interruption or reversal) trend changes in smoothed normalized difference vegetation index satellite time-series data over the Himalayas. Overall, trend breaks in vegetation greenness showed high spatio-temporal variability in distribution considering elevation, ecoregion and land cover/use stratifications. Interrupted greening was spatially most dominant in all Himalayan ecoregions followed by abrupt browning. Areas showing trend reversal and monotonic trends appeared minority. Trend type distribution was strongly dependent on elevation as majority of greening (with or without interruption) occurred at lower elevation areas at higher elevation were dominantly. Ecoregion based stratification of trend types highlighted some exception to this elevational dependence as high altitude ecoregions of western Himalayas showed significantly less browning compared to the ecoregions in eastern Himalaya. Land cover/use based analysis of trend distribution showed that interrupted greening was most dominant in closed needleleafed forest following by rainfed cropland and mosaic croplands while interrupted browning most dominant in closed to open herbaceous vegetation found at higher elevation areas followed by closed needleleafed forest and closed to open broad leafed evergreen forests. Spatial analysis of trend break timing showed that for majority of areas experiencing interrupted greening, break in trend occurred later compared to areas with interrupted browning where break trend was observed much earlier. These results have significant implications for environmental management in the context of climate change and ecosystem dynamics in the Himalayas.

  5. Spatiotemporal variations in precipitation across the Chinese Mongolian plateau over the past half century

    NASA Astrophysics Data System (ADS)

    Gao, Ruizhong; Li, Fengling; Wang, Xixi; Liu, Tingxi; Du, Dandan; Bai, Yong

    2017-09-01

    Precipitation, as affected by climate change, controls the growth of steppe grasses and grassland degradation/desertification in semiarid/arid regions, including the Chinese Mongolian plateau. This study examined the spatial variability and temporal trends in precipitation across the plateau in terms of four indexes: total precipitation (P), number of rainy days (Wd), number of precipitation events (N), and average precipitation intensity (Imean). Although seldom published in the literature, this information is vital for efforts to develop adaptive measures to sustain this vulnerable pasture economy. Seven hundred time series were formulated by preprocessing the data on daily precipitation over the period 1960 to 2012 at 25 weather stations scattered across the plateau. The results indicated that although the plateau was becoming drier overall, the intensity of storm events increased markedly, as indicated by decreasing trends for P, Wd and N but an increasing trend for Imean. On average, P decreased by 0.65 mm yr- 1 over the study period, while Imean increased by 0.2 mm d- 1 yr- 1. Across the plateau, the western part was becoming wetter, while the central-eastern part was becoming drier. This spatial discrepancy in the precipitation trends was particularly obvious in the winter dry season, with Imean tending to increase more rapidly in the central-eastern than western part, especially in the spring dry season. It is expected that these trends will continue, thus further challenging the already vulnerable eco-environment of the plateau.

  6. Using spatio-temporal modeling to predict long-term exposure to black smoke at fine spatial and temporal scale

    NASA Astrophysics Data System (ADS)

    Dadvand, Payam; Rushton, Stephen; Diggle, Peter J.; Goffe, Louis; Rankin, Judith; Pless-Mulloli, Tanja

    2011-01-01

    Whilst exposure to air pollution is linked to a wide range of adverse health outcomes, assessing levels of this exposure has remained a challenge. This study reports a modeling approach for the estimation of weekly levels of ambient black smoke (BS) at residential postcodes across Northeast England (2055 km 2) over a 12 year period (1985-1996). A two-stage modeling strategy was developed using monitoring data on BS together with a range of covariates including data on traffic, population density, industrial activity, land cover (remote sensing), and meteorology. The first stage separates the temporal trend in BS for the region as a whole from within-region spatial variation and the second stage is a linear model which predicts BS levels at all locations in the region using spatially referenced covariate data as predictors and the regional predicted temporal trend as an offset. Traffic and land cover predictors were included in the final model, which predicted 70% of the spatio-temporal variation in BS across the study region over the study period. This modeling approach appears to provide a robust way of estimating exposure to BS at an inter-urban scale.

  7. A spatial econometric analysis of land-use change with land cover trends data: an application to the Pacific Northwest

    Treesearch

    David J. Lewis; Ralph J. Alig

    2014-01-01

    This paper develops a plot-level spatial econometric land-use model and estimates it with U.S. Geological Survey Land Cover Trends (LCT) geographic information system panel data for the western halves of the states of Oregon and Washington. The discrete-choice framework we use models plot-scale choices of the three dominant land uses in this region: forest, agriculture...

  8. Specificity of perceptual processing in rereading spatially transformed materials.

    PubMed

    Horton, K D; McKenzie, B D

    1995-05-01

    While most studies using the task of reading spatially transformed text do not reveal evidence of specific perceptual transfer, a study by Masson (1986, Experiment 3) provides clear evidence of such effects. Several experiments were designed to identify the basis for this empirical discrepancy. The only substantive evidence of specific perceptual transfer occurred when the words were presented in an unfamiliar typography, although each study suggested a trend toward perceptual specificity effects. The results are discussed in terms of Graf and Ryan's (1990) ideas about the role of distinctive memory representations.

  9. Interannual Change Detection of Mediterranean Seagrasses Using RapidEye Image Time Series

    PubMed Central

    Traganos, Dimosthenis; Reinartz, Peter

    2018-01-01

    Recent research studies have highlighted the decrease in the coverage of Mediterranean seagrasses due to mainly anthropogenic activities. The lack of data on the distribution of these significant aquatic plants complicates the quantification of their decreasing tendency. While Mediterranean seagrasses are declining, satellite remote sensing technology is growing at an unprecedented pace, resulting in a wealth of spaceborne image time series. Here, we exploit recent advances in high spatial resolution sensors and machine learning to study Mediterranean seagrasses. We process a multispectral RapidEye time series between 2011 and 2016 to detect interannual seagrass dynamics in 888 submerged hectares of the Thermaikos Gulf, NW Aegean Sea, Greece (eastern Mediterranean Sea). We assess the extent change of two Mediterranean seagrass species, the dominant Posidonia oceanica and Cymodocea nodosa, following atmospheric and analytical water column correction, as well as machine learning classification, using Random Forests, of the RapidEye time series. Prior corrections are necessary to untangle the initially weak signal of the submerged seagrass habitats from satellite imagery. The central results of this study show that P. oceanica seagrass area has declined by 4.1%, with a trend of −11.2 ha/yr, while C. nodosa seagrass area has increased by 17.7% with a trend of +18 ha/yr throughout the 5-year study period. Trends of change in spatial distribution of seagrasses in the Thermaikos Gulf site are in line with reported trends in the Mediterranean. Our presented methodology could be a time- and cost-effective method toward the quantitative ecological assessment of seagrass dynamics elsewhere in the future. From small meadows to whole coastlines, knowledge of aquatic plant dynamics could resolve decline or growth trends and accurately highlight key units for future restoration, management, and conservation. PMID:29467777

  10. Interannual Change Detection of Mediterranean Seagrasses Using RapidEye Image Time Series.

    PubMed

    Traganos, Dimosthenis; Reinartz, Peter

    2018-01-01

    Recent research studies have highlighted the decrease in the coverage of Mediterranean seagrasses due to mainly anthropogenic activities. The lack of data on the distribution of these significant aquatic plants complicates the quantification of their decreasing tendency. While Mediterranean seagrasses are declining, satellite remote sensing technology is growing at an unprecedented pace, resulting in a wealth of spaceborne image time series. Here, we exploit recent advances in high spatial resolution sensors and machine learning to study Mediterranean seagrasses. We process a multispectral RapidEye time series between 2011 and 2016 to detect interannual seagrass dynamics in 888 submerged hectares of the Thermaikos Gulf, NW Aegean Sea, Greece (eastern Mediterranean Sea). We assess the extent change of two Mediterranean seagrass species, the dominant Posidonia oceanica and Cymodocea nodosa , following atmospheric and analytical water column correction, as well as machine learning classification, using Random Forests, of the RapidEye time series. Prior corrections are necessary to untangle the initially weak signal of the submerged seagrass habitats from satellite imagery. The central results of this study show that P. oceanica seagrass area has declined by 4.1%, with a trend of -11.2 ha/yr, while C. nodosa seagrass area has increased by 17.7% with a trend of +18 ha/yr throughout the 5-year study period. Trends of change in spatial distribution of seagrasses in the Thermaikos Gulf site are in line with reported trends in the Mediterranean. Our presented methodology could be a time- and cost-effective method toward the quantitative ecological assessment of seagrass dynamics elsewhere in the future. From small meadows to whole coastlines, knowledge of aquatic plant dynamics could resolve decline or growth trends and accurately highlight key units for future restoration, management, and conservation.

  11. Recent recovery of surface wind speed after decadal decrease: a focus on South Korea

    NASA Astrophysics Data System (ADS)

    Kim, JongChun; Paik, Kyungrock

    2015-09-01

    We investigate the multi-decadal variability of observed surface wind speed around South Korea. It is found that surface wind speed exhibits decreasing trend from mid-1950s until 2003, which is similar with the trends reported for other parts of the world. However, the decreasing trend ceases and becomes unclear since then. It is revealed that decreasing wind speed until 2003 is strongly associated with the decreasing trend of the spatial variance in both atmospheric pressure and air temperature across the East Asia for the same period. On the contrary, break of decreasing trend in surface wind speed since 2003 is associated with increasing spatial variance in surface temperature over the East Asia. Ground observation shows that surface wind speed and air temperature exhibit highly negative correlations for both summer and winter prior to 2003. However, since 2003, the correlations differ between seasons. We suggest that mechanisms behind the recent wind speed trend are different between summer and winter. This is on the basis of an interesting finding that air temperature has decreased while surface temperature has increased during winter months since 2003. We hypothesize that such contrasting temperature trends indicate more frequent movement of external cold air mass into the region since 2003. We also hypothesize that increasing summer wind speed is driven by intrusion of warm air mass into the region which is witnessed via increasing spatial variance in surface temperature across East Asia and the fact that both air and surface temperature rise together.

  12. Spatial and Alignment Analyses for a Field of Small Volcanic Vents South of Pavonis Mons and Implications for the Tharsis Province, Mars

    NASA Technical Reports Server (NTRS)

    Bleacher, Jacob E.; Glaze, Lori S.; Greeley, Ronald; Hauber, Ernst; Baloga, Stephen; Sakimoto, Susan E. H.; Williams, David A.; Glotch, Timothy D.

    2009-01-01

    A field of small volcanic vents south of Pavonis Mons was mapped with each vent assigned a two-dimensional data point. Nearest neighbor and two-point azimuth analyses were applied to the resulting location data. Nearest neighbor results show that vents within this field are spatially random in a Poisson sense, suggesting that the vents formed independently of each other without sharing a centralized magma source at shallow depth. Two-point azimuth results show that the vents display north-trending alignment relationships between one another. This trend corresponds to the trends of faults and fractures of the Noachian-aged Claritas Fossae, which might extend into our study area buried beneath more recently emplaced lava flows. However, individual elongate vent summit structures do not consistently display the same trend. The development of the volcanic field appears to display tectonic control from buried Noachian-aged structural patterns on small, ascending magma bodies while the surface orientations of the linear vents might reflect different, younger tectonic patterns. These results suggest a complex interaction between magma ascension through the crust, and multiple, older, buried Tharsis-related tectonic structures.

  13. On the suitability of current atmospheric reanalyses for regional warming studies over China

    NASA Astrophysics Data System (ADS)

    Zhou, Chunlüe; He, Yanyi; Wang, Kaicun

    2018-06-01

    Reanalyses are widely used because they add value to routine observations by generating physically or dynamically consistent and spatiotemporally complete atmospheric fields. Existing studies include extensive discussions of the temporal suitability of reanalyses in studies of global change. This study adds to this existing work by investigating the suitability of reanalyses in studies of regional climate change, in which land-atmosphere interactions play a comparatively important role. In this study, surface air temperatures (Ta) from 12 current reanalysis products are investigated; in particular, the spatial patterns of trends in Ta are examined using homogenized measurements of Ta made at ˜ 2200 meteorological stations in China from 1979 to 2010. The results show that ˜ 80 % of the mean differences in Ta between the reanalyses and the in situ observations can be attributed to the differences in elevation between the stations and the model grids. Thus, the Ta climatologies display good skill, and these findings rebut previous reports of biases in Ta. However, the biases in theTa trends in the reanalyses diverge spatially (standard deviation = 0.15-0.30 °C decade-1 using 1° × 1° grid cells). The simulated biases in the trends in Ta correlate well with those of precipitation frequency, surface incident solar radiation (Rs) and atmospheric downward longwave radiation (Ld) among the reanalyses (r = -0.83, 0.80 and 0.77; p < 0.1) when the spatial patterns of these variables are considered. The biases in the trends in Ta over southern China (on the order of -0.07 °C decade-1) are caused by biases in the trends in Rs, Ld and precipitation frequency on the order of 0.10, -0.08 and -0.06 °C decade-1, respectively. The biases in the trends in Ta over northern China (on the order of -0.12 °C decade-1) result jointly from those in Ld and precipitation frequency. Therefore, improving the simulation of precipitation frequency and Rs helps to maximize the signal component corresponding to regional climate. In addition, the analysis of Ta observations helps represent regional warming in ERA-Interim and JRA-55. Incorporating vegetation dynamics in reanalyses and the use of accurate aerosol information, as in the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), would lead to improvements in the modelling of regional warming. The use of the ensemble technique adopted in the twentieth-century atmospheric model ensemble ERA-20CM significantly narrows the uncertainties associated with regional warming in reanalyses (standard deviation = 0.15 °C decade-1).

  14. Spatial-temporal cluster analysis of mortality from road traffic injuries using geographic information systems in West of Iran during 2009-2014.

    PubMed

    Zangeneh, Alireza; Najafi, Farid; Karimi, Saeed; Saeidi, Shahram; Izadi, Neda

    2018-04-01

    Road traffic injuries (RTIs) are considered as one of the most important health problems endangering people's life. The examination of the geographical distribution of RTIs could help policymakers in better planning to reduce RTIs. This study, therefore, aimed to determine the spatial-temporal clustering of mortality from RTIs in West of Iran. Deaths from RTIs, registered in Forensic Medicine Organization of Kermanshah province over a period of six years (2009-2014), were used. Using negative binomial regression, the mortality trend was investigated. In order to investigate the spatial distribution of RTIs, we used ArcGIS. (Version 10.3). The median age of the 3231 people died in RTIs was 37 (IQR = 31) year, 78.4% were male. The 6-year average mortality rate from RTIs was 27.8/100,000 deaths, and the average rate had a declining trend. The dispersion of RTIs showed that most deaths occurred in Kermanshah, Islamabad, Bisotun, and Harsin road axes, respectively. The mean center of all deaths from RTIs occurred in Kermanshah province, the central area of Kermanshah district. The spatial trend of such deaths has moved to the northeast-southwest, and such deaths were geographically centralized. Results of Moran's I with respect to cluster analysis also indicated positive spatial autocorrelations. The results showed that the mortality rate from RTIs, despite the decline in recent years, is still high when compared with other countries. The clustering of accidents raises the concern that road infrastructure in certain locations may also be a factor. Regarding the results related to the temporal analysis, it is suggested that the enforcement of traffic rules be stricter at rush hours. Copyright © 2018 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  15. Analysing the spatial patterns of erosion scars using point process theory at the coastal chalk cliff of Mesnil-Val, (Normandy, Northern France)

    NASA Astrophysics Data System (ADS)

    Rohmer, J.; Dewez, D.

    2014-09-01

    Over the last decade, many cliff erosion studies have focused on frequency-size statistics using inventories of sea cliff retreat sizes. By comparison, only a few paid attention to quantifying the spatial and temporal organisation of erosion scars over a cliff face. Yet, this spatial organisation carries essential information about the external processes and the environmental conditions that promote or initiate sea-cliff instabilities. In this article, we use summary statistics of spatial point process theory as a tool to examine the spatial and temporal pattern of a rockfall inventory recorded with repeated terrestrial laser scanning surveys at the chalk coastal cliff site of Mesnil-Val (Normandy, France). Results show that: (1) the spatial density of erosion scars is specifically conditioned alongshore by the distance to an engineered concrete groin, with an exponential-like decreasing trend, and vertically focused both at wave breaker height and on strong lithological contrasts; (2) small erosion scars (10-3-10-2 m3) aggregate in clusters within a radius of 5 to 10 m, which suggests some sort of attraction or focused causative process, and disperse above this critical distance; (3) on the contrary, larger erosion scars (10-2-101 m3) tend to disperse above a radius of 1 to 5 m, possibly due to the spreading of successive failures across the cliff face; (4) large scars significantly occur albeit moderately, where previous large rockfalls have occurred during preceeding winter; (5) this temporal trend is not apparent for small events. In conclusion, this study shows, with a worked example, how spatial point process summary statistics are a tool to test and quantify the significance of geomorphological observation organisation.

  16. Analysing the spatial patterns of erosion scars using point process theory at the coastal chalk cliff of Mesnil-Val, Normandy, northern France

    NASA Astrophysics Data System (ADS)

    Rohmer, J.; Dewez, T.

    2015-02-01

    Over the last decade, many cliff erosion studies have focused on frequency-size statistics using inventories of sea cliff retreat sizes. By comparison, only a few paid attention to quantifying the spatial and temporal organisation of erosion scars over a cliff face. Yet, this spatial organisation carries essential information about the external processes and the environmental conditions that promote or initiate sea-cliff instabilities. In this article, we use summary statistics of spatial point process theory as a tool to examine the spatial and temporal pattern of a rockfall inventory recorded with repeated terrestrial laser scanning surveys at the chalk coastal cliff site of Mesnil-Val (Normandy, France). Results show that: (1) the spatial density of erosion scars is specifically conditioned alongshore by the distance to an engineered concrete groyne, with an exponential-like decreasing trend, and vertically focused both at wave breaker height and on strong lithological contrasts; (2) small erosion scars (10-3 to 10-2 m3) aggregate in clusters within a radius of 5 to 10 m, which suggests some sort of attraction or focused causative process, and disperse above this critical distance; (3) on the contrary, larger erosion scars (10-2 to 101 m3) tend to disperse above a radius of 1 to 5 m, possibly due to the spreading of successive failures across the cliff face; (4) large scars significantly occur albeit moderately, where previous large rockfalls have occurred during preceding winter; (5) this temporal trend is not apparent for small events. In conclusion, this study shows, with a worked example, how spatial point process summary statistics are a tool to test and quantify the significance of geomorphological observation organisation.

  17. Monitoring temporal and spatial trends of legacy and emerging contaminants in marine environment: results from the environmental specimen bank (es-BANK) of Ehime University, Japan.

    PubMed

    Tanabe, Shinsuke; Ramu, Karri

    2012-07-01

    The Environmental Specimen Bank (es-BANK) for Global Monitoring at the Center for Marine Environmental Studies, Ehime University, Japan has more than four decades of practical experience in specimen banking. Over the years, es-BANK has archived specimens representing a wide range of environmental matrices, i.e. fishes, reptiles, birds, aquatic mammals, terrestrial mammals, human, soils, and sediments. The samples have been collected as part of the various monitoring programs conducted worldwide. The current review is a summary of selected studies conducted at the Center for Marine Environmental Studies, on temporal and spatial trends of legacy and emerging contaminants in the marine environment. One of the major conclusions drawn from the studies is that environmental problems are no more regional issues and, thus, environmental specimen banking should not be limited to national boundaries, but should have a global outlook. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Performance of some biotic indices in the real variable world: a case study at different spatial scales in North-Western Mediterranean Sea.

    PubMed

    Tataranni, Mariella; Lardicci, Claudio

    2010-01-01

    The aim of this study was to analyse the variability of four different benthic biotic indices (AMBI, BENTIX, H', M-AMBI) in two marine coastal areas of the North-Western Mediterranean Sea. In each coastal area, 36 replicates were randomly selected according to a hierarchical sampling design, which allowed estimating the variance components of the indices associated with four different spatial scales (ranging from metres to kilometres). All the analyses were performed at two different sampling periods in order to evaluate if the observed trends were consistent over the time. The variance components of the four indices revealed complex trends and different patterns in the two sampling periods. These results highlighted that independently from the employed index, a rigorous and appropriate sampling design taking into account different scales should always be used in order to avoid erroneous classifications and to develop effective monitoring programs.

  19. Usefulness of AIRS-Derived OLR, Temperature, Water Vapor and Cloudiness Anomaly Trends for GCM Validation

    NASA Technical Reports Server (NTRS)

    Molnar, Gyula I.; Susskind, Joel; Iredell, Lena F.

    2010-01-01

    Mainly due to their global nature, satellite observations can provide a very useful basis for GCM validations. In particular, satellite sounders such as AIRS provide 3-D spatial information (most useful for GCMs), so the question arises: can we use AIRS datasets for climate variability assessments? We show that the recent (September 2002 February 2010) CERES-observed negative trend in OLR of approx.-0.1 W/sq m/yr averaged over the globe is found in the AIRS OLR data as well. Most importantly, even minute details (down to 1 x 1 degree GCM-scale resolution) of spatial and temporal anomalies and trends of OLR as observed by CERES and computed based on AIRS-retrieved surface and atmospheric geophysical parameters over this time period are essentially the same. The correspondence can be seen even in the very large spatial variations of these trends with local values ranging from -2.6 W/sq m/yr to +3.0 W/sq m/yr in the tropics, for example. This essentially perfect agreement of OLR anomalies and trends derived from observations by two different instruments, in totally independent and different manners, implies that both sets of results must be highly accurate, and indirectly validates the anomalies and trends of other AIRS derived products as well. These products show that global and regional anomalies and trends of OLR, water vapor and cloud cover over the last 7+ years are strongly influenced by EI-Nino-La Nina cycles . We have created climate parameter anomaly datasets using AIRS retrievals which can be compared directly with coupled GCM climate variability assessments. Moreover, interrelationships of these anomalies and trends should also be similar between the observed and GCM-generated datasets, and, in cases of discrepancies, GCM parameterizations could be improved based on the relationships observed in the data. First, we assess spatial "trends" of variability of climatic parameter anomalies [since anomalies relative to the seasonal cycle are good proxies of climate variability] at the common 1x1 degree GCM grid-scale by creating spatial anomaly "trends" based on the first 7+ years of AIRS Version 5 Leve13 data. We suggest that modelers should compare these with their (coupled) GCM's performance covering the same period. We evaluate temporal variability and interrelations of climatic anomalies on global to regional e.g., deep Tropical Hovmoller diagrams, El-Nino-related variability scales, and show the effects of El-Nino-La Nina activity on tropical anomalies and trends of water vapor cloud cover and OLR. For GCMs to be trusted highly for long-term climate change predictions, they should be able to reproduce findings similar to these. In summary, the AIRS-based climate variability analyses provide high quality, informative and physically plausible interrelationships among OLR, temperature, humidity and cloud cover both on the spatial and temporal scales. GCM validations can use these results even directly, e. g., by creating 1x1 degree trendmaps for the same period in coupled climate simulations.

  20. Detecting trends in landscape pattern metrics over a 20-year period using a sampling-based monitoring programme

    USGS Publications Warehouse

    Griffith, J.A.; Stehman, S.V.; Sohl, Terry L.; Loveland, Thomas R.

    2003-01-01

    Temporal trends in landscape pattern metrics describing texture, patch shape and patch size were evaluated in the US Middle Atlantic Coastal Plain Ecoregion. The landscape pattern metrics were calculated for a sample of land use/cover data obtained for four points in time from 1973-1992. The multiple sampling dates permit evaluation of trend, whereas availability of only two sampling dates allows only evaluation of change. Observed statistically significant trends in the landscape pattern metrics demonstrated that the sampling-based monitoring protocol was able to detect a trend toward a more fine-grained landscape in this ecoregion. This sampling and analysis protocol is being extended spatially to the remaining 83 ecoregions in the US and temporally to the year 2000 to provide a national and regional synthesis of the temporal and spatial dynamics of landscape pattern covering the period 1973-2000.

  1. How much have California winters warmed over the last century?

    NASA Astrophysics Data System (ADS)

    Wang, K. J.; Williams, A. P.; Lettenmaier, D. P.

    2017-09-01

    Extraordinarily warm 2013-2014 and 2014-2015 winter temperatures in California accompanied by drought conditions contributed to low snow accumulations and stressed water resources, giving rise to the question: how much has California's climate warmed over the last century? We examine long-term trends in maximum (Tmax) and minimum (Tmin) daily temperatures in winter estimated from five gridded data sets. Resulting trends show some consistent features, such as higher trends in Tmin than Tmax; however, substantial differences exist in the trend magnitudes and spatial patterns due mostly to the nature of spatial interpolation employed in the different data sets. Averaged across California over 1920-2015, Tmax trends vary from -0.30 to 1.2°C/century, while Tmin trends range from 1.2 to 1.9°C/century. The differences in temperature strongly impact modeled changes in snow water equivalent over the last century (from -5.0 to -7.6 km3/century).

  2. The effect of length and starting year on trend analyses of temperatures in Spanish mainland (1951-2010). Seasonal analyses: Summer (IV)

    NASA Astrophysics Data System (ADS)

    Salinas Solé, Celia; Peña Angulo, Dhais; Gonzalez Hidalgo, Jose Carlos; Brunetti, Michele

    2017-04-01

    In this poster we applied the moving window approach (see Poster I of this collection) to analyze trends of summer and its corresponding months (June, July, August) temperature mean values of maximum (Tmax) and minimum (Tmin) in Spanish mainland to detect the effects of length period and starting year. Monthly series belong to Monthly Temperature dataset of Spanish mainland (MOTEDAS). Database contains in its grid format of 5236 pixels of monthly series (10x10 km). The threshold used in spatial analyses considers 20% of land under significant trend (p<0.05). The most striking results are as follow: • Tmax and Tmin seasonal trends affected mostly all the Spanish mainland, while the area affected decrease from 1983-2010 (Tmax) and 1987-2010 (Tmin). In both cases the areas affected significantly in recent decades are restricted to Eastern-coastland areas. • Monthly analyses show highly differences between Tmax and Tmin. Only June Tmax show significant trend in extended areas, and in fact from 70´s they are restricted to eastern coastland. Meanwhile both July and August Tmax trend affect particularly that area until mid 70´s. • Monthly trend analyses of Tmin show different patterns both in temporal windows and spatial distribution. Significant trend in June dominates practically all windows, while in July and August they predominate in south and eastern-Mediterranean coastland. No significant trend has been observed from middle of the 80´s (< 20% of area). In conclusion, summer trend analyses of Tmax and Tmin and their spatial distribution show clearly highly differences. In Tmax seasonal trend seems to be dominated by June Tmax behavior, while in Tmin the contribution of July and August must be considered particularly in southern and eastern-Mediterranean coastland. The most recent decades in Tmax and Tmin do not show significance, except in June Tmin.

  3. Hydrologic budget and conditions of Permian, Pennsylvanian, and Mississippian aquifers in the Appalachian Plateaus physiographic province

    USGS Publications Warehouse

    McCoy, Kurt J.; Yager, Richard M.; Nelms, David L.; Ladd, David E.; Monti,, Jack; Kozar, Mark D.

    2015-08-13

    A subset of 77 index streamgages, defined as having 60 or more years of complete record between the years 1930 and 2011 with no more than 20 percent missing data, was selected to show spatial patterns of change in the water budget. Data from the index streamgages showed that the overall trends in base flow are dependent upon the period of evaluation. Long-term (1930–2011) increases in base flow were observed throughout the study area. For two shorter periods (1930–1969 and 1970–2011) trends in base flow were largely negative. In general, spatial patterns of change in streamflow, base flow, and runoff were mixed but generally consistent with prevailing climate patterns and land-use changes.

  4. Evolution of Diurnal Asymmetry of Surface Temperature over Different Climatic Zones

    NASA Astrophysics Data System (ADS)

    Rajendran, V.; C T, D.; Chakravorty, A.; AghaKouchak, A.

    2016-12-01

    The increase in drought, flood, diseases, crop failure etc. in the recent past has created an alarm amongst the researchers. One of the main reasons behind the intensification of these environmental hazards is the recent revelation of climate change, which is generally attributed to the human induced global warming, represented by an increase in global mean temperature. However, in order to formulate policies to mitigate and prevent the threats due to global warming, its key driving factors should be analysed at high spatial and temporal resolution. Diurnal Temperature Range (DTR) is one of the indicators of global warming. The study of the evolution of the DTR is crucial, since it affects agriculture, health, ecosystems, transport, etc. Recent studies reveal that diurnal asymmetry has decreased globally, whereas a few regional studies report a contradictory pattern and attributed them to localized feedback processes. However, an evident conclusion cannot be made using the linear trend approaches employed in the past studies and the evolution of diurnal asymmetry should be investigated using non-linear trend approach for better perception. Hence, the regional evolution of DTR trend has been analysed using the spatially-temporally Multidimensional Ensemble Empirical Mode Decomposition (MEEMD) method over India and observed a positive trend in over-all mean of DTR, while its rate of increase has declined in the recent decades. Further, the grids showing negative trend in DTR is observed in arid deserts and warm-temperate grasslands and positive trend over the west coast and sub-tropical forest in the North-East. This transition predominantly began from the west coast and is stretched with an increase in magnitude. These changes are more pronounced during winter and post-monsoon seasons, especially in the arid desert and warm-temperate grasslands, where the rate of increase in minimum temperature is higher than that of the maximum temperature. These analyses suggest that the DTR changes are influenced by both, local and global factors working in tandem, since a warmed up ocean produces contradictory DTR trends in different climatic zones. It can be inferred from this study that the impact of a global change in a region will depend on the regional climate.

  5. Trend analysis of precipitation in Jharkhand State, India. Investigating precipitation variability in Jharkhand State

    NASA Astrophysics Data System (ADS)

    Chandniha, Surendra Kumar; Meshram, Sarita Gajbhiye; Adamowski, Jan Franklin; Meshram, Chandrashekhar

    2017-10-01

    Jharkhand is one of the eastern states of India which has an agriculture-based economy. Uncertain and erratic distribution of precipitation as well as a lack of state water resources planning is the major limitation to crop growth in the region. In this study, the spatial and temporal variability in precipitation in the state was examined using a monthly precipitation time series of 111 years (1901-2011) from 18 meteorological stations. Autocorrelation and Mann-Kendall/modified Mann-Kendall tests were utilized to detect possible trends, and the Theil and Sen slope estimator test was used to determine the magnitude of change over the entire time series. The most probable change year (change point) was detected using the Pettitt-Mann-Whitney test, and the entire time series was sub-divided into two parts: before and after the change point. Arc-Map 9.3 software was utilized to assess the spatial patterns of the trends over the entire state. Annual precipitation exhibited a decreasing trend in 5 out of 18 stations during the whole period. For annual, monsoon and winter periods of precipitation, the slope test indicated a decreasing trend for all stations during 1901-2011. The highest variability was observed in post-monsoon precipitation (77.87 %) and the lowest variability was observed in the annual series (15.76 %) over the 111 years. An increasing trend in precipitation in the state was found during the period 1901-1949, which was reversed during the subsequent period (1950-2011).

  6. Evaluation of reported NOx emission trends between 2005 and 2013 by assimilation of OMI-NO2 data into LOTOS-EUROS

    NASA Astrophysics Data System (ADS)

    Schaap, Martijn; Segers, Arjo; Curier, Lyana; Timmermans, Renske

    2016-04-01

    Consistent and long time series of remotely sensed trace gas levels may provide a useful tool to estimate surface emissions and emission trends. We use the OMI-NO2 product in conjunction with the LOTOS-EUROS CTM to estimate European emission trends through correction of the OMI-time series for meteorological variability as well as through assimilation using an ensemble kalman filter system (EnKF). The chemistry transport model captures a large fraction of the variability in NO2 columns at a synoptic timescale, although a seasonal signal in the bias between the modeled and retrieved column data remains. Prior to the assimilation, the OMI-NO2 data have been analyzed to establish the spatially variable temporal and spatial correlation lengths, required for the settings in the EnKF system. The assimilation run for 2005-2013 was performed using constant 2005 emissions to be able to quantify the emission change. The assimilation reduces the model-observation differences considerably. Significant negative trends of 2-3 % per year (as compared to 2005) were found in highly industrialized areas across Western Europe. The assimilation system also identifies the areas with major emission reductions in e.g. northern Spain as identified in earlier studies. Comparison of the trends derived from the assimilation and the data itself shows a high level of agreement, both the trends found in this way are smaller than those reported.

  7. An innovative procedure to assess multi-scale temporal trends in groundwater quality: Example of the nitrate in the Seine-Normandy basin, France

    NASA Astrophysics Data System (ADS)

    Lopez, Benjamin; Baran, Nicole; Bourgine, Bernard

    2015-03-01

    The European Water Framework Directive (WFD) asks Member States to identify trends in contaminant concentrations in groundwater and to take measures to reach a good chemical status by 2015. In this study, carried out in a large hydrological basin (95,300 km2), an innovative procedure is described for the assessment of recent trends in groundwater nitrate concentrations both at sampling point and regional scales. Temporal variograms of piezometric and nitrate concentration time series are automatically calculated and fitted in order to classify groundwater according to their temporal pattern. These results are then coupled with aquifer lithology to map spatial units within which the modes of diffuse transport of contaminants towards groundwater are assumed to be the same at all points. These spatial units are suitable for evaluating regional trends. The stability over time of the time series is tested based on the cumulative sum principle, to determine the time period during which the trend should be sought. The Mann-Kendall and Regional-Kendall nonparametric tests for monotonic trends, coupled with the Sen-slope test, are applied to the periods following the point breaks thus determined at both the sampling point or regional scales. This novel procedure is robust and enables rapid processing of large databases of raw data. It would therefore be useful for managing groundwater quality in compliance with the aims of the WFD.

  8. No growth stimulation of Canada's boreal forest under half-century of combined warming and CO2 fertilization.

    PubMed

    Girardin, Martin P; Bouriaud, Olivier; Hogg, Edward H; Kurz, Werner; Zimmermann, Niklaus E; Metsaranta, Juha M; de Jong, Rogier; Frank, David C; Esper, Jan; Büntgen, Ulf; Guo, Xiao Jing; Bhatti, Jagtar

    2016-12-27

    Considerable evidence exists that current global temperatures are higher than at any time during the past millennium. However, the long-term impacts of rising temperatures and associated shifts in the hydrological cycle on the productivity of ecosystems remain poorly understood for mid to high northern latitudes. Here, we quantify species-specific spatiotemporal variability in terrestrial aboveground biomass stem growth across Canada's boreal forests from 1950 to the present. We use 873 newly developed tree-ring chronologies from Canada's National Forest Inventory, representing an unprecedented degree of sampling standardization for a large-scale dendrochronological study. We find significant regional- and species-related trends in growth, but the positive and negative trends compensate each other to yield no strong overall trend in forest growth when averaged across the Canadian boreal forest. The spatial patterns of growth trends identified in our analysis were to some extent coherent with trends estimated by remote sensing, but there are wide areas where remote-sensing information did not match the forest growth trends. Quantifications of tree growth variability as a function of climate factors and atmospheric CO 2 concentration reveal strong negative temperature and positive moisture controls on spatial patterns of tree growth rates, emphasizing the ecological sensitivity to regime shifts in the hydrological cycle. An enhanced dependence of forest growth on soil moisture during the late-20th century coincides with a rapid rise in summer temperatures and occurs despite potential compensating effects from increased atmospheric CO 2 concentration.

  9. Multi-sensor studies of short-term interannual variations of aerosols

    NASA Astrophysics Data System (ADS)

    Leptoukh, G.; Zubko, V.

    2009-04-01

    In the present paper, we analyze in details the interannual variability of MODIS (Terra and Aqua) Aerosol Optical Depth (AOD) for years 2002 - 2008. The AOD anomaly maps of short-term trends exhibit interesting spatial variability with the AOD percent change per year reaching 10% or more in some contiguous areas ("hot" and "cold" spots). These numbers seem to be rather high to reflect the actual changes in aerosol emissions, thus prompting the following questions: Are these changes real, or some of these high trends are in fact artifacts of the analysis methods used? Can they be attributed to trends in aerosol sampling trends? Are they caused by changes in meteorological patterns affecting aerosol transport routs? Is there any relation of these changes to ENSO, NAO, and other known atmospheric cycles? Our analysis (still in progress) provides numerical answers and physical explanation to some of these questions. We investigate alternative methods for trend calculation and provide recommendations for a more robust AOD trend calculation. We correlate AOD spatial and temporal distributions with those of humidity, winds, seas surface temperature, and other geophysical parameters using remote sensing data from various space-based sensors, e.g., MODIS, AIRS, along with reanalysis data. We provide the most likely relation of AOD changes observed in some equatorial areas with the recent phase of ENSO. As a result, we identify regions where AOD short-term trends can be attributed to causes other than drastic changes in local aerosol emission and/or caused by the natural outbreaks (fires, volcano eruptions, etc.). We also identify regions with monotonic change in local pollution where the alternative explanations fail to provide different interpretation for the observed trends.

  10. Quasistationary areas of NDVI trend dynamics is a powerful research tool for studying spatial patterns of land vegetation

    NASA Astrophysics Data System (ADS)

    Shevyrnogov, Anatoly; Larko, Aleksandr

    The most important task for humankind is to study and understand global processes on Earth. Large factual material on the dynamics of the optical spectral characteristics of the land surface has been accumulated in recent decades. This has been only made possible due to the use of satellite information. The development of satellite measurement technologies and new methods for pre-processing and interpretation of satellite data allowed the research adequate to the scale of the Earth. This adequacy includes the compliance of scale terrestrial objects to the scale of satellite measurements. Research is not limited by any latitude or longitude of the objects studied. The second most important quality is the adequacy of the technologies used to velocities of processes on Earth. This is enabled by long-term continuous satellite measurements at almost all latitudes. Effectiveness of this approach to the study of natural systems has been shown by the authors in ASR publications (AP Shevyrnogov, GS Vysotskaya, JI Gitelson, Quasistationary areas of chlorophyll concentration in the world ocean as observed satellite data Advances in Space Research, Volume 18, Issue 7, Pages 129-132, 1996), which reported a method for determining the ocean surface quasistationary zones. This approach allowed us to identify different types of phytopigment dynamics and the hydrological structure of the ocean. We proposed a similar approach for the study of land vegetation. In some aspects, it is similar to the previously published approach, despite the different nature of terrestrial and aquatic ecosystems. The results are based on the processing of satellite data from 1981 to 2006. Dynamics is the most interesting and important parameter of ecosystems, especially their trends. Therefore, it has been chosen for the analysis of spatial patterns of plant biota. The first results showed great heterogeneity of variances in nonlinear trends of the study areas of the Earth's surface. They corresponded to different natural systems. Various scales of temporal and spatial windows highlight different features of land vegetation. Methods for normalization of the initial information are also effective for highlighting the features of the spatial structure of vegetation. Thus, we have a powerful tool to analyze the spatial distribution and dynamics of terrestrial vegetation based on satellite data. This approach provides a great opportunity to get fundamental knowledge on the functioning of the biosphere. This is global warming, shifts in permafrost boundaries, global gas exchange, etc. It can be used for practical applications in various fields of human activity: forestry, environmental protection, agriculture, etc. We show the illustration of this method: the global maps of land surface dynamics of trends with different parameters of data processing.

  11. Characterization of the Spatial Variability of Methane, Ozone, and Carbon Dioxide in Two Oil and Gas Production Basins Via a Spatial Grid of Continuous Measurements

    NASA Astrophysics Data System (ADS)

    Casey, J. G.; Collier, A. M.; Hannigan, M.; Piedrahita, R.; Vaughn, B. H.; Sherwood, O.

    2015-12-01

    In recent years, aided by the advent of horizontal drilling used in conjunction with hydraulic fracturing, oil and gas production in basins around the United States has increased significantly. A study was conducted in two oil and gas basins during the spring and summer of 2015 to investigate the spatial and temporal variability of several atmospheric trace gases that can be influenced by oil and gas extraction including methane, ozone, and carbon dioxide. Fifteen air quality monitors were distributed across the Denver Julesburg Basin in Northeast Colorado, and the San Juan Basin, which stretches from Southwest Colorado into Northwest New Mexico in Four Corners Region. Spatial variability in ozone was observed across each basin. The presence of dynamic short-term trends observed in the mole fraction of methane and carbon dioxide indicate the extent to which each site is uniquely impacted by local emission sources. Diurnal trends of these two constituents lead toward a better understanding of local pooling of emissions that can be influenced by topography, the planetary boundary layer height, atmospheric stability, as well as the composition and flux of local and regional emissions sources.

  12. Land Area Change in Coastal Louisiana: A Multidecadal Perspective (from 1956 to 2006)

    USGS Publications Warehouse

    Barras, John A.; Bernier, Julie C.; Morton, Robert A.

    2008-01-01

    The U.S. Geological Survey (USGS) analyzed changes in the configuration of land and water in coastal Louisiana by using a sequential series of 14 data sets summarizing land and water areas from 1956 to 2006. The purpose of this study is to provide a spatially and temporally consistent source of quantitative information on land area across coastal Louisiana, broken into three physiographic provinces (the term 'coastal Louisiana' is used to present data on the collective area). The land-water data sets used in this study are interpreted through spatial analysis and by linear regression analysis. The spatial depictions of land area change reveal a complex and interwoven mosaic of loss and gain patterns caused by natural and human-induced processes operating at varied temporal and spatial scales, resulting in fluctuating contributions to coastal loss. The linear regression analysis provides a robust estimate of recent change trends by comparing land area over time for all data sets from 1985 to 2004 and from 1985 to 2006 by physiographic province across coastal Louisiana. The 1956 to 2006 map showing multidecadal changes, along with the linear regressions of land area change presented in this study, provide a comprehensive and concise presentation of historical trends and rates of land area change in coastal Louisiana. Taking a broad historical view provides an in-depth understanding of land area changes over time. For example, one observation provided by our historical review is that the majority of the widespread, nontransitory land gains depicted on the map over the past 50 years, with the exception of the progradation of the Atchafafalaya River and Wax Lake deltas, are primarily related to sediment placement and landward migration of barrier islands. Another point revealed by our historical approach is that recent land losses caused by hurricanes sometimes commingled with or exacerbated older losses formed during the 1956 to 1978 period. Furthermore, our analyses also show how the immediate impacts of extreme storms can alter the long-term, time-averaged trends of landscape change, thus limiting the range of projections for the future. For this reason, this study does not include trend projections beyond 2015 because of uncertainties related to recovery from the 2005 hurricane season and the potential for other episodic events that could skew future rates of change.

  13. Hot spots, hot moments and time-span of changes in drivers and their responses on carbon cycling in Europe

    NASA Astrophysics Data System (ADS)

    Tomelleri, E.; Forkel, M.; Fuchs, R.; Jung, M.; Mahecha, M. D.; Reichstein, M.; Weber, U.

    2012-12-01

    The objective of this study is to provide a complete quantitative assessment of the annual to decadal variability, hotspots of changes and the temporal magnitude of regional trends and variability for the main drivers of carbon cycle like climate and land use and their responses for Europe. For this purpose we used an harmonized climatic data set (ERA Interim and WATCH) and an historical land-use change reconstruction (HILDAv1, Fuchs in prep.). Both the data sets cover the period 1900-2010 and have a 0.25 deg spatial resolution. As driver response we used two different empirically up-scaled GPP fields: the first (MTE) obtained by the application of model trees (Jung et al. 2009) and a second (LUE) based on a light use efficiency model (Tomelleri in prep.). Both the approaches are based on the up-scaling of Fluxnet observations. The response fields have monthly temporal resolution and are limited to the period 1982-2011. We estimated break-points in time series of driver and response variables based on the method of Bai and Perron (2003) to identify changes in trends. This method was implemented in Verbesselt et al. 2010 and applied by deJong et al. 2011 to detect phenological and abrupt changes and trends in vegetation activity based on satellite-derived vegetation index time series. The analysis of drivers and responses allowed to identify the dominant factors driving the biosphere-atmosphere carbon exchange. The synchronous analysis of climatic drivers and land use change allowed us to explain most of the temporal and spatial variability showing that in the regions and time period where the most land use change occurred the climatic drivers are not sufficient to explain trends and oscillation in carbon cycling. The comparison of our analysis for the up-scaling methods shows some agreement: we found inconsistency in the spatial and temporal patterns in regions where the Fluxnet network is less dense. This can be explained by the conceptual difference in the up-scaling methods: while one is on pixel basis (MTE) the other (LUE) is up-scaling model parameters by bioclimatic regions. Our study shows the value of up-scaling methods for understanding the spatial-temporal variability of carbon cycling and how these are a valuable tool for spatial and temporal analysis. Furthermore, the use of climatic drivers and land-use change demonstrated the need of taking natural and anthropogenic drivers into consideration for explaining trends and oscillations. Possibly a further analysis including detailed management practices for forestry and agriculture would help in explaining the remaining variance. References: Bai, J., Perron, P.: Computation and analysis of multiple structural change models. Journal of Applied Econometrics, 18(1), 2003. Jung, M., Reichstein, M., and Bondeau, A.: Towards global empirical upscaling of FLUXNET eddy covariance observations: validation of a model tree ensemble approach using a biosphere model. Biogeosciences, 6, 2009. Verbesselt, J., Hyndman, R., Newnham, G., Culvenor, D.: Detecting trend and seasonal changes in satellite image time series. Remote Sensing of Environment,114(1), 2010. de Jong, R., Verbesselt, J., Schaepman, M.E., Bruin, S.: Trend changes in global greening and browning: contribution of short-term trends to longer-term change. Global Change Biology, 18, 2011.

  14. AIDS in adults 50 years of age and over: characteristics, trends and spatial distribution of the risk.

    PubMed

    Nogueira, Jordana de Almeida; Silva, Antônia Oliveira; Sá, Laísa Ribeiro de; Almeida, Sandra Aparecida de; Monroe, Aline Aparecida; Villa, Tereza Cristina Scatena

    2014-01-01

    to analyze the sociodemographic characteristics, epidemic trend and spatial distribution of the risk of AIDS in adults 50 years of age and over. population-based, ecological study, that used secondary data from the Notifiable Disease Information System (Sinan/AIDS) of Paraíba state from the period January 2000 to December 2010. during the study period, 307 cases of AIDS were reported among people 50 years of age or over. There was a predominance of males (205/66, 8%), mixed race, and low education levels. The municipalities with populations above 100 thousand inhabitants reported 58.5% of the cases. There was a progressive increase in cases among women; an increasing trend in the incidence (positive linear correlation); and an advance in the geographical spread of the disease, with expansion to the coastal region and to the interior of the state, reaching municipalities with populations below 30 thousand inhabitants. In some locations the risk of disease was 100 times greater than the relative risk for the state. aging, with the feminization and interiorization of the epidemic in adults 50 years of age and over, confirms the need for the induction of affirmative policies targeted toward this age group.

  15. On the functional optimization of a certain class of nonstationary spatial functions

    USGS Publications Warehouse

    Christakos, G.; Paraskevopoulos, P.N.

    1987-01-01

    Procedures are developed in order to obtain optimal estimates of linear functionals for a wide class of nonstationary spatial functions. These procedures rely on well-established constrained minimum-norm criteria, and are applicable to multidimensional phenomena which are characterized by the so-called hypothesis of inherentity. The latter requires elimination of the polynomial, trend-related components of the spatial function leading to stationary quantities, and also it generates some interesting mathematics within the context of modelling and optimization in several dimensions. The arguments are illustrated using various examples, and a case study computed in detail. ?? 1987 Plenum Publishing Corporation.

  16. Climatic Redistribution of Canada's Water Resources (CROCWR): An analysis of spatial and temporal hydrological trends and patterns in western Canada

    NASA Astrophysics Data System (ADS)

    Bawden, A. J.; Burn, D. H.; Prowse, T. D.

    2012-12-01

    Climate variability and change can have profound impacts on the hydrologic regime of a watershed. These effects are likely to be especially severe in regions particularly sensitive to changes in climate, such as the Canadian north, or when there are other stresses on the hydrologic regime, such as may occur when there are large withdrawals from, or land-use changes within, a watershed. A recent report of the Intergovernmental Panel on Climate Change (IPCC) stressed that future climate is likely to accelerate the hydrologic cycle and hence may affect water security in certain locations. For some regions, this will mean enhanced access to water resources, but because the effects will not be spatially uniform, other regions will experience reduced access. Understanding these patterns is critical for water managers and government agencies in western Canada - an area of highly contrasting hydroclimatic regimes and overlapping water-use and jurisdictional borders - as adapting to climate change may require reconsideration of inter-regional transfers and revised allocation of water resources to competing industrial sectors, including agriculture, hydroelectric production, and oil and gas. This research involves the detection and examination of spatial and temporal streamflow trends in western Canadian rivers as a response to changing climatic factors, including temperature, precipitation, snowmelt, and the synoptic patterns controlling these drivers. The study area, known as the CROCWR region, extends from the Pacific coast of British Columbia as far east as the Saskatchewan-Manitoba border and from the Canada-United States international border through a large portion of the Northwest Territories. This analysis examines hydrologic trends in monthly and annual streamflow for a collection of 34 hydrometric gauging stations believed to adequately represent the overall effects of climate variability and change on flows in western Canada by means of the Mann-Kendall non-parametric trend test. Large-scale spatial patterns are determined through examination of trends and contrasts between upper and lower reaches of individual sub-basins, as well as via analysis of streamflow redistributions within the CROCWR region as an entirety (i.e. north, south, east and/or west-moving patterns). Results are used to predict future implications of hydroclimatic variability and change on western Canada's water resources and recommend measures to be taken by water managers in response to these changes. This research is part of a larger hydroclimatic study that includes an analysis of the climatic drivers contributing to shifting flow regimes in western Canada as well as a study of the controlling synoptic patterns and teleconnections associated with changes in these driving forces.

  17. Black Sea thermohaline properties: Long‐term trends and variations

    PubMed Central

    Stips, A.; Garcia‐Gorriz, E.; Macias Moy, D.

    2017-01-01

    Abstract The current knowledge about spatial and temporal dynamics of the Black Sea's thermohaline structure is incomplete because of missing data and sparse distribution of existing measurements in space and time. This study presents 56 year continuous simulations of the Black Sea's hydrodynamics using the 3D General Estuarine Transport Model (GETM), without incorporating any relaxation toward climatological or observational data fields. This property of the model allows us to estimate independent temporal trends, in addition to resolving the spatial structure. The simulations suggest that the intermediate layer temperature is characterized by a weak positive trend (warming), whereas the surface temperature does not show a clear linear trend. Different salinity trends have been established at the surface (negative), upper (weaker negative) and main halocline (positive). Three distinct dynamic periods are identified (1960–1970, 1970–1995, 1995–2015), which exhibit pronounced changes in the Black Sea's thermohaline properties and basin circulation. Strengthening of the main cyclonic circulation, accompanied by intensification of the mesoscale anticyclonic eddy formation is found. Both events strongly affect the sea surface salinity but contribute in opposing directions. Specifically, strong composite large‐scale circulation leads to an increase in sea surface salinity, while enhanced formation of mesoscale anticyclones decreases it. Salinity evolution with time is thus the result of the competition of these two opposing yet interdependent processes. PMID:28989833

  18. The impact of roads on the demography of grizzly bears in Alberta.

    PubMed

    Boulanger, John; Stenhouse, Gordon B

    2014-01-01

    One of the principal factors that have reduced grizzly bear populations has been the creation of human access into grizzly bear habitat by roads built for resource extraction. Past studies have documented mortality and distributional changes of bears relative to roads but none have attempted to estimate the direct demographic impact of roads in terms of both survival rates, reproductive rates, and the interaction of reproductive state of female bears with survival rate. We applied a combination of survival and reproductive models to estimate demographic parameters for threatened grizzly bear populations in Alberta. Instead of attempting to estimate mean trend we explored factors which caused biological and spatial variation in population trend. We found that sex and age class survival was related to road density with subadult bears being most vulnerable to road-based mortality. A multi-state reproduction model found that females accompanied by cubs of the year and/or yearling cubs had lower survival rates compared to females with two year olds or no cubs. A demographic model found strong spatial gradients in population trend based upon road density. Threshold road densities needed to ensure population stability were estimated to further refine targets for population recovery of grizzly bears in Alberta. Models that considered lowered survival of females with dependant offspring resulted in lower road density thresholds to ensure stable bear populations. Our results demonstrate likely spatial variation in population trend and provide an example how demographic analysis can be used to refine and direct conservation measures for threatened species.

  19. The Impact of Roads on the Demography of Grizzly Bears in Alberta

    PubMed Central

    2014-01-01

    One of the principal factors that have reduced grizzly bear populations has been the creation of human access into grizzly bear habitat by roads built for resource extraction. Past studies have documented mortality and distributional changes of bears relative to roads but none have attempted to estimate the direct demographic impact of roads in terms of both survival rates, reproductive rates, and the interaction of reproductive state of female bears with survival rate. We applied a combination of survival and reproductive models to estimate demographic parameters for threatened grizzly bear populations in Alberta. Instead of attempting to estimate mean trend we explored factors which caused biological and spatial variation in population trend. We found that sex and age class survival was related to road density with subadult bears being most vulnerable to road-based mortality. A multi-state reproduction model found that females accompanied by cubs of the year and/or yearling cubs had lower survival rates compared to females with two year olds or no cubs. A demographic model found strong spatial gradients in population trend based upon road density. Threshold road densities needed to ensure population stability were estimated to further refine targets for population recovery of grizzly bears in Alberta. Models that considered lowered survival of females with dependant offspring resulted in lower road density thresholds to ensure stable bear populations. Our results demonstrate likely spatial variation in population trend and provide an example how demographic analysis can be used to refine and direct conservation measures for threatened species. PMID:25532035

  20. Spatial synchrony of local populations has increased in association with the recent Northern Hemisphere climate trend.

    PubMed

    Post, Eric; Forchhammer, Mads C

    2004-06-22

    According to ecological theory, populations whose dynamics are entrained by environmental correlation face increased extinction risk as environmental conditions become more synchronized spatially. This prediction is highly relevant to the study of ecological consequences of climate change. Recent empirical studies have indicated, for example, that large-scale climate synchronizes trophic interactions and population dynamics over broad spatial scales in freshwater and terrestrial systems. Here, we present an analysis of century-scale, spatially replicated data on local weather and the population dynamics of caribou in Greenland. Our results indicate that spatial autocorrelation in local weather has increased with large-scale climatic warming. This increase in spatial synchrony of environmental conditions has been matched, in turn, by an increase in the spatial synchrony of local caribou populations toward the end of the 20th century. Our results indicate that spatial synchrony in environmental conditions and the populations influenced by them are highly variable through time and can increase with climatic warming. We suggest that if future warming can increase population synchrony, it may also increase extinction risk.

  1. Estimating terrestrial water storage changes in the Tarim River Basin using GRACE data

    NASA Astrophysics Data System (ADS)

    Zhao, Kefei; Li, Xia

    2017-12-01

    Terrestrial water storage (TWS) plays a fundamental role in the arid Tarim River Basin, which is mainly fed by glacier and snow melt water. However, the significant scarcity of ground-based observations, especially in the high-altitude mountain areas, limits our understanding of TWS changes in this region. In this study, TWS variations in the Tarim River Basin were estimated using monthly GRACE Level 2 Release 5 (RL05) products from 2002 to August 2015. The GRACE results were validated against outputs of Global Land Data Assimilation System (GLDAS) including spatial and temporal correlation analysis. The correlation between the regional TWS time-series of GRACE and GLDAS is 0.7777. It was found that GRACE TWS shows a slightly decreasing trend of -1.4069 ± 0.5060 mm yr-1 in the entire Tarim River Basin during the study period and a significant spatial difference over the study area. An apparent decreasing trend in Tien Shan and the Taklamakan Desert, and a significant increasing trend in the Kunlun Mountains and eastern Pamirs Plateau were also detected. Moreover, seasonal analysis of regional TWS time-series, precipitation and the 0 °C isotherm height in summer showed that detrended TWS variations were consistent with precipitation while long-term trends of TWS were contrary to that of the 0 °C isotherm height in summer. It implied that the interannual TWS variations were dominated by precipitation and the long-term trend of TWS changes was affected by changes of the 0 °C isotherm height in summer. This information could enrich our knowledge about water storage changes, including glacier mass balance and groundwater, and its response to climate change in this vast but sparse in-situ measurements area.

  2. Space time modelling of air quality for environmental-risk maps: A case study in South Portugal

    NASA Astrophysics Data System (ADS)

    Soares, Amilcar; Pereira, Maria J.

    2007-10-01

    Since the 1960s, there has been a strong industrial development in the Sines area, on the southern Atlantic coast of Portugal, including the construction of an important industrial harbour and of, mainly, petrochemical and energy-related industries. These industries are, nowadays, responsible for substantial emissions of SO2, NOx, particles, VOCs and part of the ozone polluting the atmosphere. The major industries are spatially concentrated in a restricted area, very close to populated areas and natural resources such as those protected by the European Natura 2000 network. Air quality parameters are measured at the emissions' sources and at a few monitoring stations. Although air quality parameters are measured on an hourly basis, the lack of representativeness in space of these non-homogeneous phenomena makes even their representativeness in time questionable. Hence, in this study, the regional spatial dispersion of contaminants is also evaluated, using diffusive-sampler (Radiello Passive Sampler) campaigns during given periods. Diffusive samplers cover the entire space extensively, but just for a limited period of time. In the first step of this study, a space-time model of pollutants was built, based on a stochastic simulation-direct sequential simulation-with local spatial trend. The spatial dispersion of the contaminants for a given period of time-corresponding to the exposure time of the diffusive samplers-was computed by ordinary kriging. Direct sequential simulation was applied to produce equiprobable spatial maps for each day of that period, using the kriged map as a spatial trend and the daily measurements of pollutants from the monitoring stations as hard data. In the second step, the following environmental risk and costs maps were computed from the set of simulated realizations of pollutants: (i) maps of the contribution of each emission to the pollutant concentration at any spatial location; (ii) costs of badly located monitoring stations.

  3. Nitrogen mineralization in riparian soils along a river continuum within a multi-landuse basin

    EPA Science Inventory

    Nitrogen dynamics in riparian systems are often addressed within one landuse type and are rarely studied on watershed scales involving multiple land uses. This study tested for both temporal trends and watershed-wide spatial patterns in N mineralization and identified site fact...

  4. Geo-spatial analysis of temporal trends of temperature and its extremes over India using daily gridded (1°×1°) temperature data of 1969-2005

    NASA Astrophysics Data System (ADS)

    Chakraborty, Abhishek; Seshasai, M. V. R.; Rao, S. V. C. Kameswara; Dadhwal, V. K.

    2017-10-01

    Daily gridded (1°×1°) temperature data (1969-2005) were used to detect spatial patterns of temporal trends of maximum and minimum temperature (monthly and seasonal), growing degree days (GDDs) over the crop-growing season ( kharif, rabi, and zaid) and annual frequencies of temperature extremes over India. The direction and magnitude of trends, at each grid level, were estimated using the Mann-Kendall statistics ( α = 0.05) and further assessed at the homogeneous temperature regions using a field significance test ( α=0.05). General warming trends were observed over India with considerable variations in direction and magnitude over space and time. The spatial extent and the magnitude of the increasing trends of minimum temperature (0.02-0.04 °C year-1) were found to be higher than that of maximum temperature (0.01-0.02 °C year-1) during winter and pre-monsoon seasons. Significant negative trends of minimum temperature were found over eastern India during the monsoon months. Such trends were also observed for the maximum temperature over northern and eastern parts, particularly in the winter month of January. The general warming patterns also changed the thermal environment of the crop-growing season causing significant increase in GDDs during kharif and rabi seasons across India. The warming climate has also caused significant increase in occurrences of hot extremes such as hot days and hot nights, and significant decrease in cold extremes such as cold days and cold nights.

  5. [Spatial-temporal pattern and obstacle factors of cultivated land ecological security in major grain producing areas of northeast China: a case study in Jilin Province].

    PubMed

    Zhao, Hong-Bo; Ma, Yan-Ji

    2014-02-01

    According to the cultivated land ecological security in major grain production areas of Northeast China, this paper selected 48 counties of Jilin Province as the research object. Based on the PSR-EES conceptual framework model, an evaluation index system of cultivated land ecological security was built. By using the improved TOPSIS, Markov chains, GIS spatial analysis and obstacle degree models, the spatial-temporal pattern of cultivated land ecological security and the obstacle factors were analyzed from 1995 to 2011 in Jilin Province. The results indicated that, the composite index of cultivated land ecological security appeared in a rising trend in Jilin Province from 1995 to 2011, and the cultivated land ecological security level changed from being sensitive to being general. There was a pattern of 'Club Convergence' in cultivated land ecological security level in each county and the spatial discrepancy tended to become larger. The 'Polarization' trend of cultivated land ecological security level was obvious. The distributions of sensitive level and critical security level with ribbon patterns tended to be dispersed, the general security level and relative security levels concentrated, and the distributions of security level scattered. The unstable trend of cultivated land ecological security level was more and more obvious. The main obstacle factors that affected the cultivated land ecological security level in Jilin Province were rural net income per capita, economic density, the proportion of environmental protection investment in GDP, degree of machinery cultivation and the comprehensive utilization rate of industrial solid wastes.

  6. A multi-scale methodology for comparing GCM and RCM results over the Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Samuels, Rana; Krichak, Simon; Breitgand, Joseph; Alpert, Pinhas

    2010-05-01

    The importance of skillful climate modeling is increasingly being realized as results are being incorporated into environmental, economic, and even business planning. Global circulation models (GCMs) employed by the IPCC provide results at spatial scales of hundreds of kilometers, which is useful for understanding global trends but not appropriate for use as input into regional and local impacts models used to inform policy and development. To address this shortcoming, regional climate models (RCMs) which dynamically downscale the results of the GCMs are used. In this study we present first results of a dynamically downscaled RCM focusing on the Eastern Mediterranean region. For the historical 1960-2000 time period, results at a spatial scale of both 25 km and 50 km are compared with historical station data from 5 locations across Israel as well as with the results of 3 GCM models (ECHAM5, NOAA GFDL, and CCCMA) at annual, monthly and daily time scales. Results from a recently completed Japanese GCM at a spatial scale of 20 km are also included. For the historical validation period, we show that as spatial scale increases the skill in capturing annual and inter-annual temperature and rainfall also increases. However, for intra-seasonal rainfall characteristics important for hydrological and agricultural planning (eg. dry and wet spells, number of rain days) the GCM results (including the 20 km Japanese model) capture the historical trends better than the dynamically downscaled RegCM. For future scenarios of temperature and precipitation changes, we compare results across the models for the available time periods, generating a range of future trends.

  7. Spatial-temporal dynamics of NDVI and Chl-a concentration from 1998 to 2009 in the East coastal zone of China: integrating terrestrial and oceanic components.

    PubMed

    Hou, Xiyong; Li, Mingjie; Gao, Meng; Yu, Liangju; Bi, Xiaoli

    2013-01-01

    Annual normalized difference vegetation index (NDVI) and chlorophyll-a (Chl-a) concentration are the most important large-scale indicators of terrestrial and oceanic ecosystem net primary productivity. In this paper, the Sea-viewing Wide Field-of-view Sensor level 3 standard mapped image annual products from 1998 to 2009 are used to study the spatial-temporal characters of terrestrial NDVI and oceanic Chl-a concentration on two sides of the coastline of China by using the methods of mean value (M), coefficient of variation (CV), the slope of unary linear regression model (Slope), and the Hurst index (H). In detail, we researched and analyzed the spatial-temporal dynamics, the longitudinal zonality and latitudinal zonality, the direction, intensity, and persistency of historical changes. The results showed that: (1) spatial patterns of M and CV between NDVI and Chl-a concentration from 1998 to 2009 were very different. The dynamic variation of terrestrial NDVI was much mild, while the variation of oceanic Chl-a concentration was relatively much larger; (2) distinct longitudinal zonality was found for Chl-a concentration and NDVI due to their hypersensitivity to the distance to shoreline, and strong latitudinal zonality existed for Chl-a concentration while terrestrial NDVI had a very weak latitudinal zonality; (3) overall, the NDVI showed a slight decreasing trend while the Chl-a concentration showed a significant increasing trend in the past 12 years, and both of them exhibit strong self-similarity and long-range dependence which indicates opposite future trends between land and ocean.

  8. Spatially differentiated trends in urbanization, agricultural land abandonment and reclamation, and woodland recovery in Northern China.

    PubMed

    Wang, Chao; Gao, Qiong; Wang, Xian; Yu, Mei

    2016-11-22

    Uncovering magnitude, trend, and spatial pattern of land cover/land use changes (LCLUC) is crucial for understanding mechanisms of LCLUC and assisting land use planning and conservation. China has been undergoing unprecedented economic growth, massive rural-to-urban migration, and large-scale policy-driven ecological restoration, and therefore encountering enormous LCLUC in recent decades. However, comprehensive understandings of spatiotemporal LCLUC dynamics and underlying mechanisms are still lacking. Based on classification of annual LCLU maps from MODIS satellite imagery, we proposed a land change detection method to capture significant land change hotspots over Northern China during 2001-2013, and further analyzed temporal trends and spatial patterns of LCLUC. We found rapid decline of agricultural land near urban was predominantly caused by urban expansion. The process was especially strong in North China Plain with 14,057 km 2 of urban gain and -21,017 km 2 of agricultural land loss. To offset the loss of agricultural land, Northeast China Plain and Xinjiang were reclaimed. Substantial recovery of forests (49,908 km 2 ) and closed shrubland (60,854 km 2 ) occurred in mountainous regions due to abandoned infertile farmland, secondary succession, and governmental conservation policies. The spatial patterns and trends of LCLUC in Northern China provide information to support effective environmental policies towards sustainable development.

  9. Spatially differentiated trends in urbanization, agricultural land abandonment and reclamation, and woodland recovery in Northern China

    PubMed Central

    Wang, Chao; Gao, Qiong; Wang, Xian; Yu, Mei

    2016-01-01

    Uncovering magnitude, trend, and spatial pattern of land cover/land use changes (LCLUC) is crucial for understanding mechanisms of LCLUC and assisting land use planning and conservation. China has been undergoing unprecedented economic growth, massive rural-to-urban migration, and large-scale policy-driven ecological restoration, and therefore encountering enormous LCLUC in recent decades. However, comprehensive understandings of spatiotemporal LCLUC dynamics and underlying mechanisms are still lacking. Based on classification of annual LCLU maps from MODIS satellite imagery, we proposed a land change detection method to capture significant land change hotspots over Northern China during 2001–2013, and further analyzed temporal trends and spatial patterns of LCLUC. We found rapid decline of agricultural land near urban was predominantly caused by urban expansion. The process was especially strong in North China Plain with 14,057 km2 of urban gain and −21,017 km2 of agricultural land loss. To offset the loss of agricultural land, Northeast China Plain and Xinjiang were reclaimed. Substantial recovery of forests (49,908 km2) and closed shrubland (60,854 km2) occurred in mountainous regions due to abandoned infertile farmland, secondary succession, and governmental conservation policies. The spatial patterns and trends of LCLUC in Northern China provide information to support effective environmental policies towards sustainable development. PMID:27874092

  10. Spatially differentiated trends in urbanization, agricultural land abandonment and reclamation, and woodland recovery in Northern China

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Gao, Qiong; Wang, Xian; Yu, Mei

    2016-11-01

    Uncovering magnitude, trend, and spatial pattern of land cover/land use changes (LCLUC) is crucial for understanding mechanisms of LCLUC and assisting land use planning and conservation. China has been undergoing unprecedented economic growth, massive rural-to-urban migration, and large-scale policy-driven ecological restoration, and therefore encountering enormous LCLUC in recent decades. However, comprehensive understandings of spatiotemporal LCLUC dynamics and underlying mechanisms are still lacking. Based on classification of annual LCLU maps from MODIS satellite imagery, we proposed a land change detection method to capture significant land change hotspots over Northern China during 2001-2013, and further analyzed temporal trends and spatial patterns of LCLUC. We found rapid decline of agricultural land near urban was predominantly caused by urban expansion. The process was especially strong in North China Plain with 14,057 km2 of urban gain and -21,017 km2 of agricultural land loss. To offset the loss of agricultural land, Northeast China Plain and Xinjiang were reclaimed. Substantial recovery of forests (49,908 km2) and closed shrubland (60,854 km2) occurred in mountainous regions due to abandoned infertile farmland, secondary succession, and governmental conservation policies. The spatial patterns and trends of LCLUC in Northern China provide information to support effective environmental policies towards sustainable development.

  11. Contrasted spatial and long-term trends in precipitation chemistry and deposition fluxes at rural stations in France

    NASA Astrophysics Data System (ADS)

    Pascaud, A.; Sauvage, S.; Coddeville, P.; Nicolas, M.; Croisé, L.; Mezdour, A.; Probst, A.

    2016-12-01

    The long-distance effect of atmospheric pollution on ecosystems has led to the conclusion of international agreements to regulate atmospheric emissions and monitor their impact. This study investigated variations in atmospheric deposition chemistry in France using data gathered from three different monitoring networks (37 stations) over the period from 1995 to 2007. Despite some methodological differences (e.g. type of collector, frequency of sampling and analysis), converging results were found in spatial variations, seasonal patterns and temporal trends. With regard to spatial variations, the mean annual pH in particular ranged from 4.9 in the north-east to 5.8 in the south-east. This gradient was related to the concentration of NO3- and non-sea-salt SO42- (maximum volume-weighted mean of 38 and 31 μeq l-1 respectively) and of acid-neutralising compounds such as non-sea-salt Ca2+ and NH4+. In terms of seasonal variations, winter and autumn pH were linked to lower acidity neutralisation than during the warm season. The temporal trends in atmospheric deposition varied depending on the chemical species and site location. The most significant and widespread trend was the decrease in non-sea-salt SO42- concentrations (significant at 65% of the stations). At the same time, many stations showed an increasing trend in annual pH (+0.3 on average for 16 stations). These two trends are probably due to the reduction in SO2 emissions that has been imposed in Europe since the 1980s. Temporal trends in inorganic N concentrations were rather moderate and not consistent with the trends reported in emission estimates. Despite the reduction in NOx emissions, NO3- concentrations in atmospheric deposition remained mostly unchanged or even increased at three stations (+0.43 μeq l-1 yr-1 on average). In contrast NH4+ concentrations in atmospheric deposition decreased at several stations located in western and northern areas, while the estimates of NH3 emissions remained fairly stable. The decrease in non-sea-salt SO42- and NH4+ concentrations was mainly due to a decrease in summer values and can in part be related to a dilution process since the precipitation amount showed an increasing trend during the summer. Furthermore, increasing trends in NO3- concentrations in the spring and, to a lesser extent, in NH4+ concentrations suggested that other atmospheric physicochemical processes should also be taken into account.

  12. Time and space in the middle paleolithic: Spatial structure and occupation dynamics of seven open-air sites.

    PubMed

    Clark, Amy E

    2016-05-06

    The spatial structure of archeological sites can help reconstruct the settlement dynamics of hunter-gatherers by providing information on the number and length of occupations. This study seeks to access this information through a comparison of seven sites. These sites are open-air and were all excavated over large spatial areas, up to 2,000 m(2) , and are therefore ideal for spatial analysis, which was done using two complementary methods, lithic refitting and density zones. Both methods were assessed statistically using confidence intervals. The statistically significant results from each site were then compiled to evaluate trends that occur across the seven sites. These results were used to assess the "spatial consistency" of each assemblage and, through that, the number and duration of occupations. This study demonstrates that spatial analysis can be a powerful tool in research on occupation dynamics and can help disentangle the many occupations that often make up an archeological assemblage. © 2016 Wiley Periodicals, Inc.

  13. Space-based constraints on spatial and temporal patterns of NO(x) emissions in California, 2005-2008.

    PubMed

    Russell, Ashley R; Valin, Lukas C; Bucsela, Eric J; Wenig, Mark O; Cohen, Ronald C

    2010-05-01

    We describe ground and space-based measurements of spatial and temporal variation of NO(2) in four California metropolitan regions. The measurements of weekly cycles and trends over the years 2005-2008 observed both from the surface and from space are nearly identical to each other. Observed decreases in Los Angeles and the surrounding cities are 46% on weekends and 9%/year from 2005-2008. Similar decreases are observed in the San Francisco Bay area and in Sacramento. In the San Joaquin Valley cities of Fresno and Bakersfield weekend decreases are much smaller, only 27%, and the decreasing trend is only 4%/year. We describe evidence that the satellite observations provide a uniquely complete view of changes in spatial patterns over time. For example, we observe variations in the spatial pattern of weekday-weekend concentrations in the Los Angeles basin with much steeper weekend decreases at the eastern edge of the basin. We also observe that the spatial extent of high NO(2) in the San Joaquin Valley has not receded as much as it has for other regions in the state. Analysis of these measurements is used to describe observational constraints on temporal trends in emission sources in the different regions.

  14. Exploring the Mechanisms of Ecological Land Change Based on the Spatial Autoregressive Model: A Case Study of the Poyang Lake Eco-Economic Zone, China

    PubMed Central

    Xie, Hualin; Liu, Zhifei; Wang, Peng; Liu, Guiying; Lu, Fucai

    2013-01-01

    Ecological land is one of the key resources and conditions for the survival of humans because it can provide ecosystem services and is particularly important to public health and safety. It is extremely valuable for effective ecological management to explore the evolution mechanisms of ecological land. Based on spatial statistical analyses, we explored the spatial disparities and primary potential drivers of ecological land change in the Poyang Lake Eco-economic Zone of China. The results demonstrated that the global Moran’s I value is 0.1646 during the 1990 to 2005 time period and indicated significant positive spatial correlation (p < 0.05). The results also imply that the clustering trend of ecological land changes weakened in the study area. Some potential driving forces were identified by applying the spatial autoregressive model in this study. The results demonstrated that the higher economic development level and industrialization rate were the main drivers for the faster change of ecological land in the study area. This study also tested the superiority of the spatial autoregressive model to study the mechanisms of ecological land change by comparing it with the traditional linear regressive model. PMID:24384778

  15. Analyzing spatial and temporal trends in Aboveground Biomass within the Acadian New England Forests using the complete Landsat Archive

    NASA Astrophysics Data System (ADS)

    Kilbride, J. B.; Fraver, S.; Ayrey, E.; Weiskittel, A.; Braaten, J.; Hughes, J. M.; Hayes, D. J.

    2017-12-01

    Forests within the New England states and Canadian Maritime provinces, here described as the Acadian New England (ANE) forests, have undergone substantial disturbances due to insect, fire, and anthropogenic factors. Through repeated satellite observations captures by USGS's Landsat program, 45 years of disturbance information can be incorporated into modeling efforts to better understand the spatial and temporal trends in forest above ground biomass (AGB). Using Google's Earth Engine, annual mosaics were developed for the ANE study area and then disturbance and recovery metrics were developed using the temporal segmentation algorithm VeRDET. Normalization procedures were developed to incorporate the Landsat Multispectral Scanner (MSS, 1972 - 1985) data alongside the modern era of Landsat Thematic Mapper (TM, 1984-2013), Enhanced Thematic Mapper plus (ETM+, 1999 - present), and Operational Land Imager (OLI, 2013- present) data products. This has enabled the creation of a dataset with an unprecedented spatial and temporal view of forest landscape change. Model training was performed using was the Forest Inventory Analysis (FIA) and New Brunswick Permanent Sample Plot data datasets. Modeling was performed using parametric techniques such as mixed effects models and non-parametric techniques such as k-NN imputation and generalized boosted regression. We compare the biomass estimate and model accuracy to other inventory and modeling studies produced within this study area. The spatial and temporal patterns of stock changes are analyzed against resource policy, land ownership changes, and forest management.

  16. [Spatial analysis of autumn-winter type scrub typhus in Shandong province, 2006-2014].

    PubMed

    Yang, H; Bi, Z W; Kou, Z Q; Zheng, L; Zhao, Z T

    2016-05-01

    To discuss the spatial-temporal distribution and epidemic trends of autumn-winter type scrub typhus in Shandong province, and provide scientific evidence for further study for the prevention and control of the disease. The scrub typhus surveillance data during 2006-2014 were collected from Shandong Disease Reporting Information System. The data was analyzed by using software ArcGIS 9.3(ESRI Inc., Redlands, CA, USA), GeoDa 0.9.5-i and SatScan 9.1.1. The Moran' s I, log-likelihood ratio(LLR), relative risk(RR)were calculated and the incidence choropleth maps, local indicators of spatial autocorrelation cluster maps and space scaning cluster maps were drawn. A total of 4 453 scrub typhus cases were reported during 2006-2014, and the annual incidence increased with year. Among the 17 prefectures(municipality)in Shandong, 13 were affected by scrub typhus. The global Moran's I index was 0.501 5(P<0.01). The differences in local Moran' s I index among 16 prefectures were significant(P<0.01). The " high-high" clustering areas were mainly Wulian county, Lanshan district and Juxian county of Rizhao, Xintai county of Tai' an, Gangcheng and Laicheng districts of Laiwu, Yiyuan county of Zibo and Mengyin county of Linyi. Spatial scan analysis showed that an eastward moving trend of high-risk clusters and two new high-risk clusters were found in Zaozhuang in 2014. The centers of the most likely clusters were in the south central mountainous areas during 2006-2010 and in 2012, eastern hilly areas in 2011, 2013 and 2014, and the size of the clusters expanded in 2008, 2011, 2013 and 2014. One spatial-temporal cluster was detected from October 1, 2014 to November 30, 2014, the center of the cluster was in Rizhao and the radius was 222.34 kilometers. A positive spatial correlation and spatial agglomerations were found in the distribution of autumn-winter type scrub typhus in Shandong. Since 2006, the epidemic area of the disease has expanded and the number of high-risk areas has increased. Moreover, the eastward moving and periodically expanding trends of high-risk clusters were detected.

  17. Impact of Satellite Viewing-Swath Width on Global and Regional Aerosol Optical Thickness Statistics and Trends

    NASA Technical Reports Server (NTRS)

    Colarco, P. R.; Kahn, R. A.; Remer, L. A.; Levy, R. C.

    2014-01-01

    We use the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite aerosol optical thickness (AOT) product to assess the impact of reduced swath width on global and regional AOT statistics and trends. Alongtrack and across-track sampling strategies are employed, in which the full MODIS data set is sub-sampled with various narrow-swath (approximately 400-800 km) and single pixel width (approximately 10 km) configurations. Although view-angle artifacts in the MODIS AOT retrieval confound direct comparisons between averages derived from different sub-samples, careful analysis shows that with many portions of the Earth essentially unobserved, spatial sampling introduces uncertainty in the derived seasonal-regional mean AOT. These AOT spatial sampling artifacts comprise up to 60%of the full-swath AOT value under moderate aerosol loading, and can be as large as 0.1 in some regions under high aerosol loading. Compared to full-swath observations, narrower swath and single pixel width sampling exhibits a reduced ability to detect AOT trends with statistical significance. On the other hand, estimates of the global, annual mean AOT do not vary significantly from the full-swath values as spatial sampling is reduced. Aggregation of the MODIS data at coarse grid scales (10 deg) shows consistency in the aerosol trends across sampling strategies, with increased statistical confidence, but quantitative errors in the derived trends are found even for the full-swath data when compared to high spatial resolution (0.5 deg) aggregations. Using results of a model-derived aerosol reanalysis, we find consistency in our conclusions about a seasonal-regional spatial sampling artifact in AOT Furthermore, the model shows that reduced spatial sampling can amount to uncertainty in computed shortwave top-ofatmosphere aerosol radiative forcing of 2-3 W m(sup-2). These artifacts are lower bounds, as possibly other unconsidered sampling strategies would perform less well. These results suggest that future aerosol satellite missions having significantly less than full-swath viewing are unlikely to sample the true AOT distribution well enough to obtain the statistics needed to reduce uncertainty in aerosol direct forcing of climate.

  18. Spatio-temporal representativeness of ground-based downward solar radiation measurements

    NASA Astrophysics Data System (ADS)

    Schwarz, Matthias; Wild, Martin; Folini, Doris

    2017-04-01

    Surface solar radiation (SSR) is most directly observed with ground based pyranometer measurements. Besides measurement uncertainties, which arise from the pyranometer instrument itself, also errors attributed to the limited spatial representativeness of observations from single sites for their large-scale surrounding have to be taken into account when using such measurements for energy balance studies. In this study the spatial representativeness of 157 homogeneous European downward surface solar radiation time series from the Global Energy Balance Archive (GEBA) and the Baseline Surface Radiation Network (BSRN) were examined for the period 1983-2015 by using the high resolution (0.05°) surface solar radiation data set from the Satellite Application Facility on Climate Monitoring (CM-SAF SARAH) as a proxy for the spatiotemporal variability of SSR. By correlating deseasonalized monthly SSR time series form surface observations against single collocated satellite derived SSR time series, a mean spatial correlation pattern was calculated and validated against purely observational based patterns. Generally decreasing correlations with increasing distance from station, with high correlations (R2 = 0.7) in proximity to the observational sites (±0.5°), was found. When correlating surface observations against time series from spatially averaged satellite derived SSR data (and thereby simulating coarser and coarser grids), very high correspondence between sites and the collocated pixels has been found for pixel sizes up to several degrees. Moreover, special focus was put on the quantification of errors which arise in conjunction to spatial sampling when estimating the temporal variability and trends for a larger region from a single surface observation site. For 15-year trends on a 1° grid, errors due to spatial sampling in the order of half of the measurement uncertainty for monthly mean values were found.

  19. Time series evaluation of landscape dynamics using annual Landsat imagery and spatial statistical modeling: Evidence from the Phoenix metropolitan region

    NASA Astrophysics Data System (ADS)

    Fan, Chao; Myint, Soe W.; Rey, Sergio J.; Li, Wenwen

    2017-06-01

    Urbanization is a natural and social process involving simultaneous changes to the Earth's land systems, energy flow, demographics, and the economy. Understanding the spatiotemporal pattern of urbanization is increasingly important for policy formulation, decision making, and natural resource management. A combination of satellite remote sensing and patch-based models has been widely adopted to characterize landscape changes at various spatial and temporal scales. Nevertheless, the validity of this type of framework in identifying long-term changes, especially subtle or gradual land modifications is seriously challenged. In this paper, we integrate annual image time series, continuous spatial indices, and non-parametric trend analysis into a spatiotemporal study of landscape dynamics over the Phoenix metropolitan area from 1991 to 2010. We harness local indicators of spatial dependence and modified Mann-Kendall test to describe the monotonic trends in the quantity and spatial arrangement of two important land use land cover types: vegetation and built-up areas. Results suggest that declines in vegetation and increases in built-up areas are the two prevalent types of changes across the region. Vegetation increases mostly occur at the outskirts where new residential areas are developed from natural desert. A sizable proportion of vegetation declines and built-up increases are seen in the central and southeast part. Extensive land conversion from agricultural fields into urban land use is one important driver of vegetation declines. The xeriscaping practice also contributes to part of vegetation loss and an increasingly heterogeneous landscape. The quantitative framework proposed in this study provides a pathway to effective landscape mapping and change monitoring from a spatial statistical perspective.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rafique, Rashid; Zhao, Fang; de Jong, Rogier

    The net primary productivity (NPP) is commonly used for understanding the dynamics of terrestrial ecosystems and their role in carbon cycle. We used a combination of the most recent NDVI and model–based NPP estimates (from five models of the TRENDY project) for the period 1982-2012, to study the role of terrestrial ecosystems in carbon cycle under the prevailing climate conditions. We found that 80% and 67% of the global land area showed positive NPP and NDVI values, respectively, for this period. The global NPP was estimated to be about 63 Pg C y -1, with an increase of 0.214 Pgmore » C y -1 y -1. Similarly, the global mean NDVI was estimated to be 0.33, with an increasing trend of 0.00041 y-1. The spatial patterns of NPP and NDVI demonstrated substantial variability, especially at the regional level, for most part of the globe. However, on temporal scale, both global NPP and NDVI showed a corresponding pattern of increase (decrease) for the duration of this study except for few years (e.g. 1990 and 1995-98). Generally, the Northern Hemisphere showed stronger NDVI and NPP increasing trends over time compared to the Southern Hemisphere; however, NDVI showed larger trends in Temperate regions while NPP showed larger trends in Boreal regions. Among the five models, the maximum and minimum NPP were produced by JULES (72.4 Pg C y -1) and LPJ (53.72 Pg C y -1) models, respectively. At latitudinal level, the NDVI and NPP ranges were ~0.035 y -1 to ~-0.016 y -1 and ~0.10 Pg C y -1 y -1 to ~-0.047 Pg C y -1 y -1, respectively. Overall, the results of this study suggest that the modeled NPP generally correspond to the NDVI trends in the temporal dimension. Lastly, the significant variability in spatial patterns of NPP and NDVI trends points to a need for research to understand the causes of these discrepancies between molded and observed ecosystem dynamics, and the carbon cycle.« less

  1. Evaluating the power to detect temporal trends in fishery-independent time surveys: A case study based on gill nets set in the Ohio waters of Lake Erie for walleyes

    USGS Publications Warehouse

    Wagner, Tyler; Vandergoot, Christopher S.; Tyson, Jeff

    2011-01-01

    Fishery-independent (FI) surveys provide critical information used for the sustainable management and conservation of fish populations. Because fisheries management often requires the effects of management actions to be evaluated and detected within a relatively short time frame, it is important that research be directed toward FI survey evaluation, especially with respect to the ability to detect temporal trends. Using annual FI gill-net survey data for Lake Erie walleyes Sander vitreus collected from 1978 to 2006 as a case study, our goals were to (1) highlight the usefulness of hierarchical models for estimating spatial and temporal sources of variation in catch per effort (CPE); (2) demonstrate how the resulting variance estimates can be used to examine the statistical power to detect temporal trends in CPE in relation to sample size, duration of sampling, and decisions regarding what data are most appropriate for analysis; and (3) discuss recommendations for evaluating FI surveys and analyzing the resulting data to support fisheries management. This case study illustrated that the statistical power to detect temporal trends was low over relatively short sampling periods (e.g., 5–10 years) unless the annual decline in CPE reached 10–20%. For example, if 50 sites were sampled each year, a 10% annual decline in CPE would not be detected with more than 0.80 power until 15 years of sampling, and a 5% annual decline would not be detected with more than 0.8 power for approximately 22 years. Because the evaluation of FI surveys is essential for ensuring that trends in fish populations can be detected over management-relevant time periods, we suggest using a meta-analysis–type approach across systems to quantify sources of spatial and temporal variation. This approach can be used to evaluate and identify sampling designs that increase the ability of managers to make inferences about trends in fish stocks.

  2. Evaluating the power to detect temporal trends in fishery independent surveys: A case study based on Gillnets Set in the Ohio waters of Lake Erie for walleye

    USGS Publications Warehouse

    Wagner, Tyler; Vandergoot, Christopher S.; Tyson, Jeff

    2009-01-01

    Fishery-independent (FI) surveys provide critical information used for the sustainable management and conservation of fish populations. Because fisheries management often requires the effects of management actions to be evaluated and detected within a relatively short time frame, it is important that research be directed toward FI survey evaluation, especially with respect to the ability to detect temporal trends. Using annual FI gill-net survey data for Lake Erie walleyes Sander vitreus collected from 1978 to 2006 as a case study, our goals were to (1) highlight the usefulness of hierarchical models for estimating spatial and temporal sources of variation in catch per effort (CPE); (2) demonstrate how the resulting variance estimates can be used to examine the statistical power to detect temporal trends in CPE in relation to sample size, duration of sampling, and decisions regarding what data are most appropriate for analysis; and (3) discuss recommendations for evaluating FI surveys and analyzing the resulting data to support fisheries management. This case study illustrated that the statistical power to detect temporal trends was low over relatively short sampling periods (e.g., 5–10 years) unless the annual decline in CPE reached 10–20%. For example, if 50 sites were sampled each year, a 10% annual decline in CPE would not be detected with more than 0.80 power until 15 years of sampling, and a 5% annual decline would not be detected with more than 0.8 power for approximately 22 years. Because the evaluation of FI surveys is essential for ensuring that trends in fish populations can be detected over management-relevant time periods, we suggest using a meta-analysis–type approach across systems to quantify sources of spatial and temporal variation. This approach can be used to evaluate and identify sampling designs that increase the ability of managers to make inferences about trends in fish stocks.

  3. Active tectonics on Deception Island (West-Antarctica): A new approach by using the fractal anisotropy of lineaments, fault slip measurements and the caldera collapse shape

    USGS Publications Warehouse

    Pérez-López, R.; Giner-Robles, J.L.; Martínez-Díaz, J.J.; Rodríguez-Pascua, M.A.; Bejar, M.; Paredes, C.; González-Casado, J.M.

    2007-01-01

    The tectonic field on Deception Island (South Shetlands, West Antarctica) is determined from structural and fractal analyses. Three different analyses are applied to the study of the strain and stress fields in the area: (1) field measurements of faults (strain analysis), (2) fractal geometry of the spatial distribution of lineaments and (3) the caldera shape (stress analyses). In this work, the identified strain field is extensional with the maximum horizontal shortening trending NE-SW and NW-SE. The fractal technique applied to the spatial distribution of lineaments indicates a stress field with SHMAX oriented NE-SW. The elliptical caldera of Deception Island, determined from field mapping, satellite imagery, vents and fissure eruptions, has an elongate shape and a stress field with SHMAX trending NE-SW.

  4. Evaluation of CLM4 Solar Radiation Partitioning Scheme Using Remote Sensing and Site Level FPAR Datasets

    DOE PAGES

    Wang, Kai; Mao, Jiafu; Dickinson, Robert; ...

    2013-06-05

    This paper examines a land surface solar radiation partitioning scheme, i.e., that of the Community Land Model version 4 (CLM4) with coupled carbon and nitrogen cycles. Taking advantage of a unique 30-year fraction of absorbed photosynthetically active radiation (FPAR) dataset derived from the Global Inventory Modeling and Mapping Studies (GIMMS) normalized difference vegetation index (NDVI) data set, multiple other remote sensing datasets, and site level observations, we evaluated the CLM4 FPAR ’s seasonal cycle, diurnal cycle, long-term trends and spatial patterns. These findings show that the model generally agrees with observations in the seasonal cycle, long-term trends, and spatial patterns,more » but does not reproduce the diurnal cycle. Discrepancies also exist in seasonality magnitudes, peak value months, and spatial heterogeneity. Here, we identify the discrepancy in the diurnal cycle as, due to, the absence of dependence on sun angle in the model. Implementation of sun angle dependence in a one-dimensional (1-D) model is proposed. The need for better relating of vegetation to climate in the model, indicated by long-term trends, is also noted. Evaluation of the CLM4 land surface solar radiation partitioning scheme using remote sensing and site level FPAR datasets provides targets for future development in its representation of this naturally complicated process.« less

  5. Temporal and spatial variations of rainfall erosivity in Southern Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Hsi; Lin, Huan-Hsuan; Chu, Chun-Kuang

    2014-05-01

    Soil erosion models are essential in developing effective soil and water resource conservation strategies. Soil erosion is generally evaluated using the Universal Soil Loss Equation (USLE) with an appropriate regional scale description. Among factors in the USLE model, the rainfall erosivity index (R) provides one of the clearest indications of the effects of climate change. Accurate estimation of rainfall erosivity requires continuous rainfall data; however, such data rarely demonstrate good spatial and temporal coverage. The data set consisted of 9240 storm events for the period 1993 to 2011, monitored by 27 rainfall stations of the Central Weather Bureau (CWB) in southern Taiwan, was used to analyze the temporal-spatial variations of rainfall erosivity. The spatial distribution map was plotted based on rainfall erosivity by the Kriging interpolation method. Results indicated that rainfall erosivity is mainly concentrated in rainy season from June to November typically contributed 90% of the yearly R factor. The temporal variations of monthly rainfall erosivity during June to November and annual rainfall erosivity have increasing trend from 1993 to 2011. There is an increasing trend from southwest to northeast in spatial distribution of rainfall erosivity in southern Taiwan. The results further indicated that there is a higher relationship between elevation and rainfall erosivity. The method developed in this study may also be useful for sediment disasters on Climate Change.

  6. A comparison of extreme rainfall characteristics in the Brazilian Amazon derived from two gridded data sets and a national rain gauge network

    NASA Astrophysics Data System (ADS)

    Clarke, Robin T.; Bulhoes Mendes, Carlos Andre; Costa Buarque, Diogo

    2010-07-01

    Two issues of particular importance for the Amazon watershed are: whether annual maxima obtained from reanalysis and raingauge records agree well enough for the former to be useful in extending records of the latter; and whether reported trends in Amazon annual rainfall are reflected in the behavior of annual extremes in precipitation estimated from reanalyses and raingauge records. To explore these issues, three sets of daily precipitation data (1979-2001) from the Brazilian Amazon were analyzed (NCEP/NCAR and ERA-40 reanalyses, and records from the raingauge network of the Brazilian water resources agency - ANA), using the following variables: (1) mean annual maximum precipitation totals, accumulated over one, two, three and five days; (2) linear trends in these variables; (3) mean length of longest within-year "dry" spell; (4) linear trends in these variables. Comparisons between variables obtained from all three data sources showed that reanalyses underestimated time-trends and mean annual maximum precipitation (over durations of one to five days), and the correlations between reanalysis and spatially-interpolated raingauge estimates were small for these two variables. Both reanalyses over-estimated mean lengths of dry period relative to the mean length recorded by the raingauge network. Correlations between the trends calculated from all three data sources were small. Time-trends averaged over the reanalysis grid-squares, and spatially-interpolated time trends from raingauge data, were all clustered around zero. In conclusion, although the NCEP/NCAR and ERA-40 gridded data-sets may be valuable for studies of inter-annual variability in precipitation totals, they were found to be inappropriate for analysis of precipitation extremes.

  7. Spatial and seasonal patterns in climate change, temperatures, and precipitation across the United States.

    PubMed

    Portmann, Robert W; Solomon, Susan; Hegerl, Gabriele C

    2009-05-05

    Changes in climate during the 20th century differ from region to region across the United States. We provide strong evidence that spatial variations in US temperature trends are linked to the hydrologic cycle, and we also present unique information on the seasonal and latitudinal structure of the linkage. We show that there is a statistically significant inverse relationship between trends in daily temperature and average daily precipitation across regions. This linkage is most pronounced in the southern United States (30-40 degrees N) during the May-June time period and, to a lesser extent, in the northern United States (40-50 degrees N) during the July-August time period. It is strongest in trends in maximum temperatures (T(max)) and 90th percentile exceedance trends (90PET), and less pronounced in the T(max) 10PET and the corresponding T(min) statistics, and it is robust to changes in analysis period. Although previous studies suggest that areas of increased precipitation may have reduced trends in temperature compared with drier regions, a change in sign from positive to negative trends suggests some additional cause. We show that trends in precipitation may account for some, but not likely all, of the cause point to evidence that shows that dynamical patterns (El Niño/Southern Oscillation, North Atlantic Oscillation, etc.) cannot account for the observed effects during May-June. We speculate that changing aerosols, perhaps related to vegetation changes, and increased strength of the aerosol direct and indirect effect may play a role in the observed linkages between these indices of temperature change and the hydrologic cycle.

  8. Development of A Dust Climate Indicator for the US National Climate Assessment

    NASA Astrophysics Data System (ADS)

    Tong, D.; Wang, J. X. L.; Gill, T. E.; Van Pelt, S.; Kim, D.

    2016-12-01

    Dust activity is a relatively simple but practical indicator to document the response of dryland ecosystems to climate change, making it an integral part of the National Climate Assessment (NCA). We present here a multi-agency collaboration that aims at developing a suite of dust climate indicators to document and monitor the long-term variability and trend of dust storm activity in the western United States. Recent dust observations have revealed rapid intensification of dust storm activity in the western United States. This trend is also closely correlated with a rapid increase in dust deposition in rainwater and "valley fever" hospitalization in southwestern states. It remains unclear, however, if such a trend, when enhanced by predicted warming and rainfall oscillation in the Southwest, will result in irreversible environmental development such as desertification or even another "Dust Bowl". Based on continuous ground aerosol monitoring, we have reconstructed a long-term dust storm climatology in the western United States. We report here direct evidence of rapid intensification of dust storm activity over US deserts in the past decades (1990 to 2013), in contrast to the decreasing trends in Asia and Africa. The US trend is spatially and temporally correlated with incidences of valley fever, an infectious disease caused by soil-dwelling fungus that has increased eight-fold in the past decade. We further investigate the linkage between dust variations and possible climate drivers and find that the regional dust trends are likely driven by large-scale variations of sea surface temperature in the Pacific Ocean, with the strongest correlation with the Pacific Decadal Oscillation (PDO). Future study will explore the link between the temporal and spatial trends of increase in dustiness and vegetation change in southwestern semi-arid and arid ecosystems.

  9. Top-down deactivation of interference from irrelevant spatial or verbal stimulus features.

    PubMed

    Frings, Christian; Wühr, Peter

    2014-11-01

    The selective-attention model of Houghton and Tipper (1994) assumes top-down deactivation of (conflicting) distractor representations as a mechanism of visual attention. Deactivation should produce an inverted-U-shaped activation function for distractor representations. In a recent study, Frings, Wentura, and Wühr (2012) tested this prediction in a variant of the flanker task in which a cue sometimes required participants to respond to the distractors rather than to the target. When reaction times and error rates were plotted as a function of the target-cue stimulus onset asynchrony, a quadratic trend emerged, consistent with the notion of distractor deactivation. However, in the flanker task, an alternative explanation for the quadratic trend in terms of attentional zooming is possible. The present experiments tested the deactivation account against the attentional-zooming account with the Stroop and the Simon task, in which attentional zooming should have minimal effects on distractor processing, because the target and distractor are presented at the same spatial location. Both experiments replicated the quadratic trend in the performance functions for responses to incongruent distractors, and additionally showed linear trends in the performance functions for responses to congruent distractors. These results provide additional support for the notion of top-down deactivation of distractor representations as a mechanism of visual selective attention.

  10. Tree invasion of a montane meadow complex: temporal trends, spatial patterns, and biotic interactions

    Treesearch

    Charles B. Halpern; Joseph A. Antos; Janine M. Rice; Ryan D. Haugo; Nicole L. Lang

    2010-01-01

    We combined spatial point pattern analysis, population age structures, and a time-series of stem maps to quantify spatial and temporal patterns of conifer invasion over a 200-yr period in three plots totaling 4 ha. In combination, spatial and temporal patterns of establishment suggest an invasion process shaped by biotic interactions, with facilitation promoting...

  11. Minimizing Spatial Variability of Healthcare Spatial Accessibility-The Case of a Dengue Fever Outbreak.

    PubMed

    Chu, Hone-Jay; Lin, Bo-Cheng; Yu, Ming-Run; Chan, Ta-Chien

    2016-12-13

    Outbreaks of infectious diseases or multi-casualty incidents have the potential to generate a large number of patients. It is a challenge for the healthcare system when demand for care suddenly surges. Traditionally, valuation of heath care spatial accessibility was based on static supply and demand information. In this study, we proposed an optimal model with the three-step floating catchment area (3SFCA) to account for the supply to minimize variability in spatial accessibility. We used empirical dengue fever outbreak data in Tainan City, Taiwan in 2015 to demonstrate the dynamic change in spatial accessibility based on the epidemic trend. The x and y coordinates of dengue-infected patients with precision loss were provided publicly by the Tainan City government, and were used as our model's demand. The spatial accessibility of heath care during the dengue outbreak from August to October 2015 was analyzed spatially and temporally by producing accessibility maps, and conducting capacity change analysis. This study also utilized the particle swarm optimization (PSO) model to decrease the spatial variation in accessibility and shortage areas of healthcare resources as the epidemic went on. The proposed method in this study can help decision makers reallocate healthcare resources spatially when the ratios of demand and supply surge too quickly and form clusters in some locations.

  12. Analysis and prediction of rainfall trends over Bangladesh using Mann-Kendall, Spearman's rho tests and ARIMA model

    NASA Astrophysics Data System (ADS)

    Rahman, Mohammad Atiqur; Yunsheng, Lou; Sultana, Nahid

    2017-08-01

    In this study, 60-year monthly rainfall data of Bangladesh were analysed to detect trends. Modified Mann-Kendall, Spearman's rho tests and Sen's slope estimators were applied to find the long-term annual, dry season and monthly trends. Sequential Mann-Kendall analysis was applied to detect the potential trend turning points. Spatial variations of the trends were examined using inverse distance weighting (IDW) interpolation. AutoRegressive integrated moving average (ARIMA) model was used for the country mean rainfall and for other two stations data which depicted the highest and the lowest trend in the Mann-Kendall and Spearman's rho tests. Results showed that there is no significant trend in annual rainfall pattern except increasing trends for Cox's Bazar, Khulna, Satkhira and decreasing trend for Srimagal areas. For the dry season, only Bogra area represented significant decreasing trend. Long-term monthly trends demonstrated a mixed pattern; both negative and positive changes were found from February to September. Comilla area showed a significant decreasing trend for consecutive 3 months while Rangpur and Khulna stations confirmed the significant rising trends for three different months in month-wise trends analysis. Rangpur station data gave a maximum increasing trend in April whereas a maximum decreasing trend was found in August for Comilla station. ARIMA models predict +3.26, +8.6 and -2.30 mm rainfall per year for the country, Cox's Bazar and Srimangal areas, respectively. However, all the test results and predictions revealed a good agreement among them in the study.

  13. No growth stimulation of Canada’s boreal forest under half-century of combined warming and CO2 fertilization

    PubMed Central

    Girardin, Martin P.; Hogg, Edward H.; Kurz, Werner; Zimmermann, Niklaus E.; Metsaranta, Juha M.; de Jong, Rogier; Frank, David C.; Esper, Jan; Büntgen, Ulf; Guo, Xiao Jing; Bhatti, Jagtar

    2016-01-01

    Considerable evidence exists that current global temperatures are higher than at any time during the past millennium. However, the long-term impacts of rising temperatures and associated shifts in the hydrological cycle on the productivity of ecosystems remain poorly understood for mid to high northern latitudes. Here, we quantify species-specific spatiotemporal variability in terrestrial aboveground biomass stem growth across Canada’s boreal forests from 1950 to the present. We use 873 newly developed tree-ring chronologies from Canada’s National Forest Inventory, representing an unprecedented degree of sampling standardization for a large-scale dendrochronological study. We find significant regional- and species-related trends in growth, but the positive and negative trends compensate each other to yield no strong overall trend in forest growth when averaged across the Canadian boreal forest. The spatial patterns of growth trends identified in our analysis were to some extent coherent with trends estimated by remote sensing, but there are wide areas where remote-sensing information did not match the forest growth trends. Quantifications of tree growth variability as a function of climate factors and atmospheric CO2 concentration reveal strong negative temperature and positive moisture controls on spatial patterns of tree growth rates, emphasizing the ecological sensitivity to regime shifts in the hydrological cycle. An enhanced dependence of forest growth on soil moisture during the late-20th century coincides with a rapid rise in summer temperatures and occurs despite potential compensating effects from increased atmospheric CO2 concentration. PMID:27956624

  14. A thirty year, fine-scale, characterization of area burned in Canadian forests shows evidence of regionally increasing trends in the last decade

    PubMed Central

    2018-01-01

    Fire as a dominant disturbance has profound implications on the terrestrial carbon cycle. We present the first ever multi-decadal, spatially-explicit, 30 meter assessment of fire regimes across the forested ecoregions of Canada at an annual time-step. From 1985 to 2015, 51 Mha burned, impacting over 6.5% of forested ecosystems. Mean annual area burned was 1,651,818 ha and varied markedly (σ = 1,116,119), with 25% of the total area burned occurring in three years: 1989, 1995, and 2015. Boreal forest types contained 98% of the total area burned, with the conifer-dominated Boreal Shield containing one-third of all burned area. While results confirm no significant national trend in burned area for the period of 1985 to 2015, a significant national increasing trend (α = 0.05) of 11% per year was evident for the past decade (2006 to 2015). Regionally, a significant increasing trend in total burned area from 1985 to 2015 was observed in the Montane Cordillera (2.4% increase per year), while the Taiga Plains and Taiga Shield West displayed significant increasing trends from 2006 to 2015 (26.1% and 12.7% increases per year, respectively). The Atlantic Maritime, which had the lowest burned area of all ecozones (0.01% burned per year), was the only ecozone to display a significant negative trend (2.4% decrease per year) from 1985 to 2015. Given the century-long fire return intervals in many of these ecozones, and large annual variability in burned area, short-term trends need to be interpreted with caution. Additional interpretive cautions are related to year used for trend initiation and the nature and extents of spatial regionalizations used for summarizing findings. The results of our analysis provide a baseline for monitoring future national and regional trends in burned area and offer spatially and temporally detailed insights to inform science, policy, and management. PMID:29787562

  15. A thirty year, fine-scale, characterization of area burned in Canadian forests shows evidence of regionally increasing trends in the last decade.

    PubMed

    Coops, Nicholas C; Hermosilla, Txomin; Wulder, Michael A; White, Joanne C; Bolton, Douglas K

    2018-01-01

    Fire as a dominant disturbance has profound implications on the terrestrial carbon cycle. We present the first ever multi-decadal, spatially-explicit, 30 meter assessment of fire regimes across the forested ecoregions of Canada at an annual time-step. From 1985 to 2015, 51 Mha burned, impacting over 6.5% of forested ecosystems. Mean annual area burned was 1,651,818 ha and varied markedly (σ = 1,116,119), with 25% of the total area burned occurring in three years: 1989, 1995, and 2015. Boreal forest types contained 98% of the total area burned, with the conifer-dominated Boreal Shield containing one-third of all burned area. While results confirm no significant national trend in burned area for the period of 1985 to 2015, a significant national increasing trend (α = 0.05) of 11% per year was evident for the past decade (2006 to 2015). Regionally, a significant increasing trend in total burned area from 1985 to 2015 was observed in the Montane Cordillera (2.4% increase per year), while the Taiga Plains and Taiga Shield West displayed significant increasing trends from 2006 to 2015 (26.1% and 12.7% increases per year, respectively). The Atlantic Maritime, which had the lowest burned area of all ecozones (0.01% burned per year), was the only ecozone to display a significant negative trend (2.4% decrease per year) from 1985 to 2015. Given the century-long fire return intervals in many of these ecozones, and large annual variability in burned area, short-term trends need to be interpreted with caution. Additional interpretive cautions are related to year used for trend initiation and the nature and extents of spatial regionalizations used for summarizing findings. The results of our analysis provide a baseline for monitoring future national and regional trends in burned area and offer spatially and temporally detailed insights to inform science, policy, and management.

  16. Geostatistical and GIS analysis of the spatial variability of alluvial gold content in Ngoura-Colomines area, Eastern Cameroon: Implications for the exploration of primary gold deposit

    NASA Astrophysics Data System (ADS)

    Takodjou Wambo, Jonas Didero; Ganno, Sylvestre; Djonthu Lahe, Yannick Sthopira; Kouankap Nono, Gus Djibril; Fossi, Donald Hermann; Tchouatcha, Milan Stafford; Nzenti, Jean Paul

    2018-06-01

    Linear and nonlinear geostatistic is commonly used in ore grade estimation and seldom used in Geographical Information System (GIS) technology. In this study, we suggest an approach based on geostatistic linear ordinary kriging (OK) and Geographical Information System (GIS) techniques to investigate the spatial distribution of alluvial gold content, mineralized and gangue layers thicknesses from 73 pits at the Ngoura-Colomines area with the aim to determine controlling factors for the spatial distribution of mineralization and delineate the most prospective area for primary gold mineralization. Gold content varies between 0.1 and 4.6 g/m3 and has been broadly grouped into three statistical classes. These classes have been spatially subdivided into nine zones using ordinary kriging model based on physical and topographical characteristics. Both mineralized and barren layer thicknesses show randomly spatial distribution, and there is no correlation between these parameters and the gold content. This approach has shown that the Ngoura-Colomines area is located in a large shear zone compatible with the Riedel fault system composed of P and P‧ fractures oriented NE-SW and NNE-SSW respectively; E-W trending R fractures and R‧ fractures with NW-SE trends that could have contributed significantly to the establishment of this gold mineralization. The combined OK model and GIS analysis have led to the delineation of Colomines, Tissongo, Madubal and Boutou villages as the most prospective areas for the exploration of primary gold deposit in the study area.

  17. Spatial and temporal characteristics of droughts in Luanhe River basin, China

    NASA Astrophysics Data System (ADS)

    Wang, Yixuan; Zhang, Ting; Chen, Xu; Li, Jianzhu; Feng, Ping

    2018-02-01

    The spatial and temporal characteristics of drought are investigated for Luanhe River basin, using monthly precipitation data from 26 stations covering the common period of 1958-2011. The spatial pattern of drought was assessed by applying principal component analysis (PCA) to the Standardized Precipitation Index (SPI) computed on 3- and 12-month time scales. In addition, annual SPI and seasonal SPIs (including spring SPI, summer SPI, autumn SPI, and winter SPI) were also defined and considered in this study to characterize seasonal and annual drought conditions, respectively. For all seven SPI cases, three distinctive sub-regions with different temporal evolutions of droughts are well identified, respectively, representing the southeast, middle, and northwest of the Luanhe River basin. The Mann-Kendall (MK) trend test with a trend-free pre-whitening (TFPW) procedure and Sen's method were used to determine the temporal trends in the annual and seasonal SPI time series. The continuous wavelet transform (CWT) was employed for further detecting the periodical features of drought condition in each sub-region. Results of MK and Sen's tests show a general tendency of intensification in summer drought over the entire basin, while a significant mitigating trend in spring drought. On the whole, an aggravating trend of inter-annual drought is discovered across the basin. Based on the CWT, the drought variability in the basin is generally dominated by 16- to 64-month cycles, and the 2- to 6-year cycles appear to be obvious when concerned with annual and seasonal droughts. Furthermore, a cross wavelet analysis was performed to examine the possible links between the drought conditions and large-scale climate patterns. The teleconnections of ENSO, NAO, PDO, and AMO show significant influences on the regional droughts principally concentrated in the 16- to 64-month period, maybe responsible for the physical causes of the cyclical behavior of drought occurrences. PDO and AMO also highlight a noteworthy correlation with drought variability on a decadal scale (around 128-month period). The findings of this study will provide valuable references for regional drought mitigation and water resource management.

  18. Early Warning Signals of Ecological Transitions: Methods for Spatial Patterns

    PubMed Central

    Brock, William A.; Carpenter, Stephen R.; Ellison, Aaron M.; Livina, Valerie N.; Seekell, David A.; Scheffer, Marten; van Nes, Egbert H.; Dakos, Vasilis

    2014-01-01

    A number of ecosystems can exhibit abrupt shifts between alternative stable states. Because of their important ecological and economic consequences, recent research has focused on devising early warning signals for anticipating such abrupt ecological transitions. In particular, theoretical studies show that changes in spatial characteristics of the system could provide early warnings of approaching transitions. However, the empirical validation of these indicators lag behind their theoretical developments. Here, we summarize a range of currently available spatial early warning signals, suggest potential null models to interpret their trends, and apply them to three simulated spatial data sets of systems undergoing an abrupt transition. In addition to providing a step-by-step methodology for applying these signals to spatial data sets, we propose a statistical toolbox that may be used to help detect approaching transitions in a wide range of spatial data. We hope that our methodology together with the computer codes will stimulate the application and testing of spatial early warning signals on real spatial data. PMID:24658137

  19. Application and Analysis of Measurement Model for Calibrating Spatial Shear Surface in Triaxial Test

    NASA Astrophysics Data System (ADS)

    Zhang, Zhihua; Qiu, Hongsheng; Zhang, Xiedong; Zhang, Hang

    2017-12-01

    Discrete element method has great advantages in simulating the contacts, fractures, large displacement and deformation between particles. In order to analyze the spatial distribution of the shear surface in the three-dimensional triaxial test, a measurement model is inserted in the numerical triaxial model which is generated by weighted average assembling method. Due to the non-visibility of internal shear surface in laboratory, it is largely insufficient to judge the trend of internal shear surface only based on the superficial cracks of sheared sample, therefore, the measurement model is introduced. The trend of the internal shear zone is analyzed according to the variations of porosity, coordination number and volumetric strain in each layer. It shows that as a case study on confining stress of 0.8 MPa, the spatial shear surface is calibrated with the results of the rotated particle distribution and the theoretical value with the specific characteristics of the increase of porosity, the decrease of coordination number, and the increase of volumetric strain, which represents the measurement model used in three-dimensional model is applicable.

  20. Editorial for Journal of Hydrology: Regional Studies

    USGS Publications Warehouse

    Willems, Patrick; Batelaan, Okke; Hughes, Denis A.; Swarzenski, Peter W.

    2014-01-01

    Hydrological regimes and processes show strong regional differences. While some regions are affected by extreme drought and desertification, others are under threat of increased fluvial and/or pluvial floods. Changes to hydrological systems as a consequence of natural variations and human activities are region-specific. Many of these changes have significant interactions with and implications for human life and ecosystems. Amongst others, population growth, improvements in living standards and other demographic and socio-economic trends, related changes in water and energy demands, change in land use, water abstractions and returns to the hydrological system (UNEP, 2008), introduce temporal and spatial changes to the system and cause contamination of surface and ground waters. Hydro-meteorological boundary conditions are also undergoing spatial and temporal changes. Climate change has been shown to increase temporal and spatial variations of rainfall, increase temperature and cause changes to evapotranspiration and other hydro-meteorological variables (IPCC, 2013). However, these changes are also region specific. In addition to these climate trends, (multi)-decadal oscillatory changes in climatic conditions and large variations in meteorological conditions will continue to occur.

  1. A spatial model of bird abundance as adjusted for detection probability

    USGS Publications Warehouse

    Gorresen, P.M.; Mcmillan, G.P.; Camp, R.J.; Pratt, T.K.

    2009-01-01

    Modeling the spatial distribution of animals can be complicated by spatial and temporal effects (i.e. spatial autocorrelation and trends in abundance over time) and other factors such as imperfect detection probabilities and observation-related nuisance variables. Recent advances in modeling have demonstrated various approaches that handle most of these factors but which require a degree of sampling effort (e.g. replication) not available to many field studies. We present a two-step approach that addresses these challenges to spatially model species abundance. Habitat, spatial and temporal variables were handled with a Bayesian approach which facilitated modeling hierarchically structured data. Predicted abundance was subsequently adjusted to account for imperfect detection and the area effectively sampled for each species. We provide examples of our modeling approach for two endemic Hawaiian nectarivorous honeycreepers: 'i'iwi Vestiaria coccinea and 'apapane Himatione sanguinea. ?? 2009 Ecography.

  2. Monitoring survival rates of landbirds at varying spatial scales: An application of the MAPS Program

    USGS Publications Warehouse

    Rosenberg, D.K.; DeSante, D.F.; Hines, J.E.; Bonney, Rick; Pashley, David N.; Cooper, Robert; Niles, Larry

    2000-01-01

    Survivorship is a primary demographic parameter affecting population dynamics, and thus trends in species abundance. The Monitoring Avian Productivity and Survivorship (MAPS) program is a cooperative effort designed to monitor landbird demographic parameters. A principle goal of MAPS is to estimate annual survivorship and identify spatial patterns and temporal trends in these rates. We evaluated hypotheses of spatial patterns in survival rates among a collection of neighboring sampling sites, such as within national forests, among biogeographic provinces, and between breeding populations that winter in either Central or South America, and compared these geographic-specific models to a model of a common survival rate among all sampling sites. We used data collected during 1992-1995 from Swainson's Thrush (Cathorus ustulatus) populations in the western region of the United States. We evaluated the ability to detect spatial and temporal patterns of survivorship with simulated data. We found weak evidence of spatial differences in survival rates at the local scale of 'location,' which typically contained 3 mist-netting stations. There was little evidence of differences in survival rates among biogeographic provinces or between populations that winter in either Central or South America. When data were pooled for a regional estimate of survivorship, the percent relative bias due to pooling 'locations' was 12 years of monitoring. Detection of spatial patterns and temporal trends in survival rates from local to regional scales will provide important information for management and future research directed toward conservation of landbirds.

  3. Political Shifts and Forest Transitions: A Review and Theoretical Framework for Future Research

    NASA Astrophysics Data System (ADS)

    Ordway, E.

    2015-12-01

    Most armed conflicts in recent history have occurred in biodiversity hotspots. Yet, studies examining impacts of warfare on forests yield contradictory results making it difficult to decipher trends and patterns. This study provides a theoretical framework that can be used to clarify hypothetical relationships between conflict and forest transitions, contributing to our ability to push forward a growing field of research on environmental change and conflict. Landsat TM and ETM+ satellite data were analyzed to examine forest transitions in Rwanda during a conflict and post conflict period. Net trends showed little difference between periods, with a rate of 1.6% annual gain in forest cover during conflict years, and 2.5% after the conflict. Further investigation revealed spatially concentrated forest loss during conflict years; 96% of forest loss occurred in protected areas with the most loss in Gishwati Forest Reserve at a rate of 6.1%. Trends were explored using spatially explicit conflict data that distinguished armed conflict activity from conflict induced settlements. Impacts of conflict on forests in Rwanda appear to be influenced by natural resource use near settlements. Massive migrations of people into settlements during the conflict, who had previously been scattered across the landscape, likely resulted in a redistribution of pressures. Reduced pressure elsewhere supports this inference. Results underscore the vulnerability of protected areas and the spatial dynamics of forest resource dependence during conflicts. This work demonstrates the value of distinguishing conflict activities to assess their varied environmental effects, and contributes to our theoretical development of environmental change and conflict.

  4. AIRS Water Vapor and Cloud Products Validate and Explain Recent Negative Global and Tropical OLR Trends Observed by CERES

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Molnar, Gyula; Iredell, Lena

    2010-01-01

    This paper compares spatial and temporal anomalies and trends of OLR as observed by CERES and computed based on AIRS retrieved surface and atmospheric geophysical parameters over the time period September 2002 February 2010. This time period is marked by a substantial decreasing OLR trend on the order of -0.1 W/m2/yr averaged over the globe. There are very large spatial variations of these trends however, with local values ranging from -2.6 W/m2/yr to +3.0 W/m2/yr in the tropics. The spatial patterns of the AIRS and CERES trends are in essentially perfect agreement with each other, as are the anomaly time series averaged over different spatial regions. This essentially perfect agreement of OLR anomalies and trends derived from observations by two different instruments, in totally independent and different manners, implies that both sets of results must be highly accurate. The agreement of anomalies and trends of OLR as observed by CERES and computed from AIRS derived products also indirectly validates the anomalies and trends of the AIRS derived products as well. We used the anomalies and trends of AIRS derived water vapor and cloud products to explain why global OLR has had a large negative trend over the time period September 2002 through February 2010. Tropical OLR began to decrease significantly at the onset of a strong La Nina in mid-2007. AIRS products show that cloudiness and mid-tropospheric water vapor began to increase in the region 5degN - 20degS latitude extending eastward from 150degW - 30 E longitude at that time, with a corresponding very large drop in OLR in this region. Late 2009 is characterized by a strong El-Nino, with a corresponding change in sign of observed anomalies of mid-tropospheric water vapor, cloud cover, and OLR in this region, as we] l as that of OLR anomalies in the tropics and globally. Monthly mean anomalies of OLR, water vapor and cloud cover over this region are all shown to be highly correlated in time with those of an El Nino anomaly index four months previously. The El Nino index is defined as the SST anomaly averaged over the area 15S to 15N and 160W eastward to 30E. If one excludes the area 5degN - 20degS, 150degW - 30degE from the statistics, the negative area mean tropical OLR trends, as well as OLR trends over the rest of the globe, are substantially

  5. Towards understanding temporal and spatial dynamics of seagrass landscapes using time-series remote sensing

    NASA Astrophysics Data System (ADS)

    Lyons, Mitchell B.; Roelfsema, Chris M.; Phinn, Stuart R.

    2013-03-01

    The spatial and temporal dynamics of seagrasses have been well studied at the leaf to patch scales, however, the link to large spatial extent landscape and population dynamics is still unresolved in seagrass ecology. Traditional remote sensing approaches have lacked the temporal resolution and consistency to appropriately address this issue. This study uses two high temporal resolution time-series of thematic seagrass cover maps to examine the spatial and temporal dynamics of seagrass at both an inter- and intra-annual time scales, one of the first globally to do so at this scale. Previous work by the authors developed an object-based approach to map seagrass cover level distribution from a long term archive of Landsat TM and ETM+ images on the Eastern Banks (≈200 km2), Moreton Bay, Australia. In this work a range of trend and time-series analysis methods are demonstrated for a time-series of 23 annual maps from 1988 to 2010 and a time-series of 16 monthly maps during 2008-2010. Significant new insight was presented regarding the inter- and intra-annual dynamics of seagrass persistence over time, seagrass cover level variability, seagrass cover level trajectory, and change in area of seagrass and cover levels over time. Overall we found that there was no significant decline in total seagrass area on the Eastern Banks, but there was a significant decline in seagrass cover level condition. A case study of two smaller communities within the Eastern Banks that experienced a decline in both overall seagrass area and condition are examined in detail, highlighting possible differences in environmental and process drivers. We demonstrate how trend and time-series analysis enabled seagrass distribution to be appropriately assessed in context of its spatial and temporal history and provides the ability to not only quantify change, but also describe the type of change. We also demonstrate the potential use of time-series analysis products to investigate seagrass growth and decline as well as the processes that drive it. This study demonstrates clear benefits over traditional seagrass mapping and monitoring approaches, and provides a proof of concept for the use of trend and time-series analysis of remotely sensed seagrass products to benefit current endeavours in seagrass ecology.

  6. Spatio-temporal Trends of Climate Variability in North Carolina

    NASA Astrophysics Data System (ADS)

    Sayemuzzaman, Mohammad

    Climatic trends in spatial and temporal variability of maximum temperature (Tmax), minimum temperature (Tmin), mean temperature (Tmean) and precipitation were evaluated for 249 ground-based stations in North Carolina for 1950-2009. The Mann-Kendall (MK), the Theil-Sen Approach (TSA) and the Sequential Mann-Kendall (SQMK) tests were applied to quantify the significance of trend, magnitude of trend and the trend shift, respectively. The lag-1 serial correlation and double mass curve techniques were used to address the data independency and homogeneity. The pre-whitening technique was used to eliminate the effect of auto correlation of the data series. The difference between minimum and maximum temperatures, and so the diurnal temperature range (DTR), at some stations was found to be decreasing on both an annual and a seasonal basis, with an overall increasing trend in the mean temperature. For precipitation, a statewide increasing trend in fall (highest in November) and decreasing trend in winter (highest in February) were detected. No pronounced increasing/decreasing trends were detected in annual, spring, and summer precipitation time series. Trend analysis on a spatial scale (for three physiographic regions: mountain, piedmont and coastal) revealed mixed results. Coastal zone exhibited increasing mean temperature (warming) trend as compared to other locations whereas mountain zone showed decreasing trend (cooling). Three main moisture components (precipitation, total cloud cover, and soil moisture) and the two major atmospheric circulation modes (North Atlantic Oscillation and Southern Oscillation) were used for correlative analysis purposes with the temperature (specifically with DTR) and precipitation trends. It appears that the moisture components are associated with DTR more than the circulation modes in North Carolina.

  7. Analysis of reference evapotranspiration (ET0) trends under climate change in Bangladesh using observed and CMIP5 data sets

    NASA Astrophysics Data System (ADS)

    Rahman, Mohammad Atiqur; Yunsheng, Lou; Sultana, Nahid; Ongoma, Victor

    2018-03-01

    ET0 is an important hydro-meteorological phenomenon, which is influenced by changing climate like other climatic parameters. This study investigates the present and future trends of ET0 in Bangladesh using 39 years' historical and downscaled CMIP5 daily climatic data for the twenty-first century. Statistical Downscaling Model (SDSM) was used to downscale the climate data required to calculate ET0. Penman-Monteith formula was applied in ET0 calculation for both the historical and modelled data. To analyse ET0 trends and trend changing patterns, modified Mann-Kendall and Sequential Mann-Kendall tests were, respectively, done. Spatial variations of ET0 trends are presented by inverse distance weighting interpolation using ArcGIS 10.2.2. Results show that RCP8.5 (2061-2099) will experience the highest amount of ET0 totals in comparison to the historical and all other scenarios in the same time span of 39 years. Though significant positive trends were observed in the mid and last months of year from month-wise trend analysis of representative concentration pathways, significant negative trends were also found for some months using historical data in similar analysis. From long-term annual trend analysis, it was found that major part of the country represents decreasing trends using historical data, but increasing trends were observed for modelled data. Theil-Sen estimations of ET0 trends in the study depict a good consistency with the Mann-Kendall test results. The findings of the study would contribute in irrigation water management and planning of the country and also in furthering the climate change study using modelled data in the context of Bangladesh.

  8. Population trends and distribution of Common Murre Uria aalge colonies in Washington, 1996-2015

    USGS Publications Warehouse

    Thomas, Susan M; Lyons, James E.

    2017-01-01

    Periodic assessments of population trends and changes in spatial distribution are valuable for managing marine birds and their breeding habitats, particularly when evaluating long-term response to threats such as oil spills, predation pressure, and changing ocean conditions. We evaluated recent trends in abundance and distribution of the Common Murre Uria aalge within Copalis, Quillayute Needles, and Flattery Rocks National Wildlife Refuges, which include all murre colonies in Washington except one, off-refuge, on Tatoosh Island. In 1996-2001 and 2010-2015, aerial photographic surveys were conducted during the incubation phase (mid-June through mid-July) each year. Using images from film (1996-2001) and digital (2010-2015) cameras that included all parts of each colony, we manually counted murres. We estimated population trend as annual percent change in whole-colony counts using an overdispersed Poisson regression model. Overall, numbers of murres counted at breeding colonies in Washington increased by 8.8% per year (95% CI 3.0%-14.9%) during 1996–2015. The overall statewide increase was driven by an increase at colonies in northern Washington of approximately 11% per year (95% CI 4.5%-17.8%). Despite an increasing trend, abundance remains lower than levels in the late 1970s, and the spatial distribution has changed. Colonies in southern Washington - where murres were historically the most abundant - are no longer active, or only minimally so, whereas colonies in the north - which were rarely active in the early 1970s - are now the largest. There was high variability in spatial distribution among years, a pattern that indicates a need for coordinated monitoring and movement studies throughout the California Current System to understand dispersal and colonization. Our results indicate that future management of refuge islands could protect both current and historic colony locations, given the patterns of colony dynamics and the uncertainty about long-term effects of a changing ocean ecosystem and predation pressure on the status of murres.

  9. Analysis of the spatial-temporal change of the vegetation index in the upper reach of Han River Basin in 2000-2016

    NASA Astrophysics Data System (ADS)

    Luan, Jinkai; Liu, Dengfeng; Zhang, Lianpeng; Huang, Qiang; Feng, Jiuliang; Lin, Mu; Li, Guobao

    2018-06-01

    Han River is the water source region of the middle route of South-to-North Water Diversion in China and the ecological projects were implemented since many years ago. In order to monitor the change of vegetation in Han River and evaluate the effect of ecological projects, it is needed to reveal the spatial-temporal change of the vegetation in the upper reach of Han River quantitatively. The study is based on MODIS/Terra NDVI remote sensing data, and analyzes the spatial-temporal changes of the NDVI in August from 2000 to 2016 at pixel scale in the upper reach of Han River Basin. The results show that, the area with increasing NDVI between 0 and 0.005 per year accounts for 62.07 % of the area of upper reach of Han River Basin, and the area with changing rate between -0.005 and 0 per year accounts for 26.65 % of the research area. The area with significant decreasing trend only accounts for 2.76 %, while area significant increasing trend accounts for 13.47 %, and the area with increasing NDVI is much larger than the area with reducing NDVI. The vegetation index of each county is evaluated and found that, the areal proportion with significant decreasing trend in Hantai is the biggest, reaching 35.57 %. The areal proportion with significant increasing trend in Zhenba County, Ziyang County, Xunyang County, Zhashui County, Shangzhou District, Shanyang County and Yun County is larger than the others, and the areal proportions are more than 20 %. The largest areal proportion with significant increasing trend is in Shangzhou District and it reaches 31.11 %. On the whole, the area ratio in all districts and counties with increasing NDVI is much larger than the area ratio with decreasing NDVI.

  10. Dynamics of vegetation autumn phenology and its response to multiple environmental factors from 1982 to 2012 on Qinghai-Tibetan Plateau in China.

    PubMed

    Li, Peng; Peng, Changhui; Wang, Meng; Luo, Yunpeng; Li, Mingxu; Zhang, Kerou; Zhang, Dingling; Zhu, Qiuan

    2018-05-11

    Autumn phenological shifts induced by environmental change have resulted in substantial impacts on ecosystem processes. However, autumn phenology and its multiple related controlling factors have not been well studied. In this study, the spatiotemporal patterns of the end date of the vegetation growing season (EGS) and their multiple controls (climate change, summer vegetation growth and human activities) over the Qinghai-Tibetan Plateau (QTP) were investigated using the satellite-derived normalized difference vegetation index (NDVI) based on GIMMS3g datasets during 1982-2012. The results showed that there was no significant temporal trend in the EGS during the period of 1982-2012. Spatially, there was a notable advancing trend in the southwest region and a delayed trend in the other regions of the QTP during 1982-2000, and this spatial trend was reversed during 2001-2012. We found average temperature, precipitation and sunshine duration of autumn exerted positive effects on EGS on the QTP, while average temperature and sunshine duration of summer exerted negative effects. Our results indicated that vegetation growth in summer tends to induce an earlier EGS in alpine vegetation, whereas summer vegetation degradation could delay the EGS on the QTP. In contrast, moderate grazing delays vegetation browning in autumn, while overgrazing leads to advancement of grass senescence. This study improves our understanding of how multiple environmental variables jointly affect autumn phenology and highlights the importance of biotic controls for autumn phenology on the QTP. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Isotopic constraints on global atmospheric methane sources and sinks: a critical assessment of recent findings and new data

    NASA Astrophysics Data System (ADS)

    Schwietzke, S.; Sherwood, O.; Michel, S. E.; Bruhwiler, L.; Dlugokencky, E. J.; Tans, P. P.

    2017-12-01

    Methane isotopic data have increasingly been used in recent studies to help constrain global atmospheric methane sources and sinks. The added scientific contributions to this field include (i) careful comparisons and merging of atmospheric isotope measurement datasets to increase spatial coverage, (ii) in-depth analyses of observed isotopic spatial gradients and seasonal patterns, and (iii) improved datasets of isotopic source signatures. Different interpretations have been made regarding the utility of the isotopic data on the diagnosis of methane sources and sinks. Some studies have found isotopic evidence of a largely microbial source causing the renewed growth in global atmospheric methane since 2007, and underestimated global fossil fuel methane emissions compared to most previous studies. However, other studies have challenged these conclusions by pointing out substantial spatial variability in isotopic source signatures as well as open questions in atmospheric sinks and biomass burning trends. This presentation will review and contrast the main arguments and evidence for the different conclusions. The analysis will distinguish among the different research objectives including (i) global methane budget source attribution in steady-state, (ii) source attribution of recent global methane trends, and (iii) identifying specific methane sources in individual plumes during field campaigns. Additional comparisons of model experiments with atmospheric measurements and updates on isotopic source signature data will complement the analysis.

  12. Developing a Hierarchical Model for the Spatial Analysis of PM10 Pollution Extremes in the Mexico City Metropolitan Area.

    PubMed

    Aguirre-Salado, Alejandro Ivan; Vaquera-Huerta, Humberto; Aguirre-Salado, Carlos Arturo; Reyes-Mora, Silvia; Olvera-Cervantes, Ana Delia; Lancho-Romero, Guillermo Arturo; Soubervielle-Montalvo, Carlos

    2017-07-06

    We implemented a spatial model for analysing PM 10 maxima across the Mexico City metropolitan area during the period 1995-2016. We assumed that these maxima follow a non-identical generalized extreme value (GEV) distribution and modeled the trend by introducing multivariate smoothing spline functions into the probability GEV distribution. A flexible, three-stage hierarchical Bayesian approach was developed to analyse the distribution of the PM 10 maxima in space and time. We evaluated the statistical model's performance by using a simulation study. The results showed strong evidence of a positive correlation between the PM 10 maxima and the longitude and latitude. The relationship between time and the PM 10 maxima was negative, indicating a decreasing trend over time. Finally, a high risk of PM 10 maxima presenting levels above 1000 μ g/m 3 (return period: 25 yr) was observed in the northwestern region of the study area.

  13. Developing a Hierarchical Model for the Spatial Analysis of PM10 Pollution Extremes in the Mexico City Metropolitan Area

    PubMed Central

    Aguirre-Salado, Alejandro Ivan; Vaquera-Huerta, Humberto; Aguirre-Salado, Carlos Arturo; Reyes-Mora, Silvia; Olvera-Cervantes, Ana Delia; Lancho-Romero, Guillermo Arturo; Soubervielle-Montalvo, Carlos

    2017-01-01

    We implemented a spatial model for analysing PM10 maxima across the Mexico City metropolitan area during the period 1995–2016. We assumed that these maxima follow a non-identical generalized extreme value (GEV) distribution and modeled the trend by introducing multivariate smoothing spline functions into the probability GEV distribution. A flexible, three-stage hierarchical Bayesian approach was developed to analyse the distribution of the PM10 maxima in space and time. We evaluated the statistical model’s performance by using a simulation study. The results showed strong evidence of a positive correlation between the PM10 maxima and the longitude and latitude. The relationship between time and the PM10 maxima was negative, indicating a decreasing trend over time. Finally, a high risk of PM10 maxima presenting levels above 1000 μg/m3 (return period: 25 yr) was observed in the northwestern region of the study area. PMID:28684720

  14. Spatial distribution and historical trends of heavy metals in the sediments of petroleum producing regions of the Beibu Gulf, China.

    PubMed

    Yang, Jichao; Wang, Weiguo; Zhao, Mengwei; Chen, Bin; Dada, Olusegun A; Chu, Zhihui

    2015-02-15

    The concentrations of As, Sb, Hg, Pb, Cd, and Ba in the surface and core sediments of the oil and gas producing region of the Beibu Gulf were measured by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and Atomic Fluorescence Spectrometry (AFS), and the spatial distribution and historical trends of these elements are discussed. The results show that the concentrations of these elements are highest near the platforms. The results of Enrichment Factor (EF) and Potential Ecological Risk Index (PERI) also reveal significantly higher enrichment around the platforms, which imply that the offshore petroleum production was the cause of the unusual distribution and severe enrichment of these elements in the study area. The environment around the platforms was highly laden with toxic elements, thereby representing a very high ecological risk to the environment of the study area. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. An experimental study of the fluid mechanics associated with porous walls

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Heaman, J.; Smith, A.

    1992-01-01

    The fluid mechanics of air exiting from a porous material is investigated. The experiments are filter rating dependent, as porous walls with filter ratings differing by about three orders of magnitude are studied. The flow behavior is investigated for its spatial and temporal stability. The results from the investigation are related to jet behavior in at least one of the following categories: (1) jet coalescence effects with increasing flow rate; (2) jet field decay with increasing distance from the porous wall; (3) jet field temporal turbulence characteristics; and (4) single jet turbulence characteristics. The measurements show that coalescence effects cause jet development, and this development stage can be traced by measuring the pseudoturbulence (spatial velocity variations) at any flow rate. The pseudoturbulence variation with increasing mass flow reveals an initial increasing trend followed by a leveling trend, both of which are directly proportional to the filter rating. A critical velocity begins this leveling trend and represents the onset of fully developed jetting action in the flow field. A correlation is developed to predict the onset of fully developed jets in the flow emerging from a porous wall. The data further show that the fully developed jet dimensions are independent of the filter rating, thus providing a length scale for this type of flow field (1 mm). Individual jet characteristics provide another unifying trend with similar velocity decay behavior with distance; however, the respective turbulence magnitudes show vast differences between jets from the same sample. Measurements of the flow decay with distance from the porous wall show that the higher spatial frequency components of the jet field dissipate faster than the lower frequency components. Flow turbulence intensity measurements show an out of phase behavior with the velocity field and are generally found to increase as the distance from the wall is increased.

  16. Temporal trends and spatial distribution of unsafe abortion in Brazil, 1996-2012

    PubMed Central

    Martins-Melo, Francisco Rogerlândio; Lima, Mauricélia da Silveira; Alencar, Carlos Henrique; Ramos, Alberto Novaes; Carvalho, Francisco Herlânio Costa; Machado, Márcia Maria Tavares; Heukelbach, Jorg

    2014-01-01

    OBJECTIVE To analyze temporal trends and distribution patterns of unsafe abortion in Brazil. METHODS Ecological study based on records of hospital admissions of women due to abortion in Brazil between 1996 and 2012, obtained from the Hospital Information System of the Ministry of Health. We estimated the number of unsafe abortions stratified by place of residence, using indirect estimate techniques. The following indicators were calculated: ratio of unsafe abortions/100 live births and rate of unsafe abortion/1,000 women of childbearing age. We analyzed temporal trends through polynomial regression and spatial distribution using municipalities as the unit of analysis. RESULTS In the study period, a total of 4,007,327 hospital admissions due to abortions were recorded in Brazil. We estimated a total of 16,905,911 unsafe abortions in the country, with an annual mean of 994,465 abortions (mean unsafe abortion rate: 17.0 abortions/1,000 women of childbearing age; ratio of unsafe abortions: 33.2/100 live births). Unsafe abortion presented a declining trend at national level (R2: 94.0%, p < 0.001), with unequal patterns between regions. There was a significant reduction of unsafe abortion in the Northeast (R2: 93.0%, p < 0.001), Southeast (R2: 92.0%, p < 0.001) and Central-West regions (R2: 64.0%, p < 0.001), whereas the North (R2: 39.0%, p = 0.030) presented an increase, and the South (R2: 22.0%, p = 0.340) remained stable. Spatial analysis identified the presence of clusters of municipalities with high values for unsafe abortion, located mainly in states of the North, Northeast and Southeast Regions. CONCLUSIONS Unsafe abortion remains a public health problem in Brazil, with marked regional differences, mainly concentrated in the socioeconomically disadvantaged regions of the country. Qualification of attention to women’s health, especially to reproductive aspects and attention to pre- and post-abortion processes, are necessary and urgent strategies to be implemented in the country. PMID:25119946

  17. Climatology and trends of summer high temperature days in India during 1969-2013

    NASA Astrophysics Data System (ADS)

    Jaswal, A. K.; Rao, P. C. S.; Singh, Virendra

    2015-02-01

    Based on the daily maximum air temperature data from 176 stations in India from 1969 to 2013, the climatological distribution of the number of days with high temperature (HT) defined as days with maximum temperature higher than 37°C during summer season (March-June) are studied. With a focus on the regional variability and long-term trends, the impacts of HT days are examined by dividing the country into six geographical regions (North, West, North-central, East, South-central and South). Although the long-term (1969-2013) climatological numbers of HT days display well-defined spatial patterns, there is clear change in climatological mean and coefficient of variation of HT days in a recent period (1991-2013). The long period trends indicate increase in summer HT days by 3%, 5%, and 18% in north, west, and south regions, respectively and decrease by 4% and 9% in north-central and east regions respectively. However, spatial variations in HT days exist across different regions in the country. The data analysis shows that 2010 was the warmest summer year and 2013 was the coolest summer year in India. Comparison of spatial distributions of trends in HT days for 1969-1990 and 1991-2013 periods reveal that there is an abrupt increase in the number of HT days over north, west and north-central regions of India probably from mid 1990s. A steep increase in summer HT days in highly populated cities of Mumbai, New Delhi, Chennai, Jaipur, and Visakhapatnam is noticed during the recent period of 1991-2013. The summer HT days over southern India indicate significant positive correlation with Nino 3.4 index for three months' running mean (December-January-February, January-March, February-April, March-May and April-June).

  18. Spatial and temporal variations of particulate organic carbon in the Yellow-Bohai Sea over 2002-2016.

    PubMed

    Fan, Hang; Wang, Xiujun; Zhang, Haibo; Yu, Zhitong

    2018-05-22

    The Yellow-Bohai Sea (YBS) is a typical marginal sea in the Northwest Pacific Ocean; however, little is known about the dynamics of particulate organic carbon (POC) and underlying mechanisms. Here, we analyze the spatial and temporal variations of surface POC derived from MODIS-Aqua during 2002-2016. Overall, POC is higher in the Bohai Sea (315-588 mg m -3 ) than in the Yellow Sea (181-492 mg m -3 ), and higher in the nearshore than in the offshore. Surface POC is highest in spring in the YBS, and lowest in winter (summer) in the Bohai Sea (the Yellow Sea). The spatial and seasonal patterns of POC are due to combined influences of primary productivity, water exchange, sediment resuspension and terrestrial inputs. Surface POC shows an overall decreasing trend prior to 2012 followed by an upward trend until 2015 in the YBS, which is almost opposite to chlorophyll; the decrease (increase) may result from strengthened (weakened) water exchange with the East China Sea through the Yellow Sea Warm Current. Declined terrestrial runoff is also partly responsible for the decrease prior to 2012. Our study suggests that water exchange and sediment resuspension are dominant factors regulating the spatial and temporal variability of POC in the YBS.

  19. 75 years of dryland science: Trends and gaps in arid ecology literature.

    PubMed

    Greenville, Aaron C; Dickman, Chris R; Wardle, Glenda M

    2017-01-01

    Growth in the publication of scientific articles is occurring at an exponential rate, prompting a growing need to synthesise information in a timely manner to combat urgent environmental problems and guide future research. Here, we undertake a topic analysis of dryland literature over the last 75 years (8218 articles) to identify areas in arid ecology that are well studied and topics that are emerging. Four topics-wetlands, mammal ecology, litter decomposition and spatial modelling, were identified as 'hot topics' that showed higher than average growth in publications from 1940 to 2015. Five topics-remote sensing, climate, habitat and spatial, agriculture and soils-microbes, were identified as 'cold topics', with lower than average growth over the survey period, but higher than average numbers of publications. Topics in arid ecology clustered into seven broad groups on word-based similarity. These groups ranged from mammal ecology and population genetics, broad-scale management and ecosystem modelling, plant ecology, agriculture and ecophysiology, to populations and paleoclimate. These patterns may reflect trends in the field of ecology more broadly. We also identified two broad research gaps in arid ecology: population genetics, and habitat and spatial research. Collaborations between population genetics and ecologists and investigations of ecological processes across spatial scales would contribute profitably to the advancement of arid ecology and to ecology more broadly.

  20. Sampling scales define occupancy and underlying occupancy-abundance relationships in animals.

    PubMed

    Steenweg, Robin; Hebblewhite, Mark; Whittington, Jesse; Lukacs, Paul; McKelvey, Kevin

    2018-01-01

    Occupancy-abundance (OA) relationships are a foundational ecological phenomenon and field of study, and occupancy models are increasingly used to track population trends and understand ecological interactions. However, these two fields of ecological inquiry remain largely isolated, despite growing appreciation of the importance of integration. For example, using occupancy models to infer trends in abundance is predicated on positive OA relationships. Many occupancy studies collect data that violate geographical closure assumptions due to the choice of sampling scales and application to mobile organisms, which may change how occupancy and abundance are related. Little research, however, has explored how different occupancy sampling designs affect OA relationships. We develop a conceptual framework for understanding how sampling scales affect the definition of occupancy for mobile organisms, which drives OA relationships. We explore how spatial and temporal sampling scales, and the choice of sampling unit (areal vs. point sampling), affect OA relationships. We develop predictions using simulations, and test them using empirical occupancy data from remote cameras on 11 medium-large mammals. Surprisingly, our simulations demonstrate that when using point sampling, OA relationships are unaffected by spatial sampling grain (i.e., cell size). In contrast, when using areal sampling (e.g., species atlas data), OA relationships are affected by spatial grain. Furthermore, OA relationships are also affected by temporal sampling scales, where the curvature of the OA relationship increases with temporal sampling duration. Our empirical results support these predictions, showing that at any given abundance, the spatial grain of point sampling does not affect occupancy estimates, but longer surveys do increase occupancy estimates. For rare species (low occupancy), estimates of occupancy will quickly increase with longer surveys, even while abundance remains constant. Our results also clearly demonstrate that occupancy for mobile species without geographical closure is not true occupancy. The independence of occupancy estimates from spatial sampling grain depends on the sampling unit. Point-sampling surveys can, however, provide unbiased estimates of occupancy for multiple species simultaneously, irrespective of home-range size. The use of occupancy for trend monitoring needs to explicitly articulate how the chosen sampling scales define occupancy and affect the occupancy-abundance relationship. © 2017 by the Ecological Society of America.

  1. The impact of nonuniform sampling on stratospheric ozone trends derived from occultation instruments

    NASA Astrophysics Data System (ADS)

    Damadeo, Robert P.; Zawodny, Joseph M.; Remsberg, Ellis E.; Walker, Kaley A.

    2018-01-01

    This paper applies a recently developed technique for deriving long-term trends in ozone from sparsely sampled data sets to multiple occultation instruments simultaneously without the need for homogenization. The technique can compensate for the nonuniform temporal, spatial, and diurnal sampling of the different instruments and can also be used to account for biases and drifts between instruments. These problems have been noted in recent international assessments as being a primary source of uncertainty that clouds the significance of derived trends. Results show potential recovery trends of ˜ 2-3 % decade-1 in the upper stratosphere at midlatitudes, which are similar to other studies, and also how sampling biases present in these data sets can create differences in derived recovery trends of up to ˜ 1 % decade-1 if not properly accounted for. Limitations inherent to all techniques (e.g., relative instrument drifts) and their impacts (e.g., trend differences up to ˜ 2 % decade-1) are also described and a potential path forward towards resolution is presented.

  2. Trends in record-breaking temperatures for the conterminous United States

    NASA Astrophysics Data System (ADS)

    Rowe, Clinton M.; Derry, Logan E.

    2012-08-01

    In an unchanging climate, record-breaking temperatures are expected to decrease in frequency over time, as established records become increasingly more difficult to surpass. This inherent trend in the number of record-breaking events confounds the interpretation of actual trends in the presence of any underlying climate change. Here, a simple technique to remove the inherent trend is introduced so that any remaining trend can be examined separately for evidence of a climate change. As this technique does not use the standard definition of a broken record, our records* are differentiated by an asterisk. Results for the period 1961-2010 indicate that the number of record* low daily minimum temperatures has been significantly and steadily decreasing nearly everywhere across the United States while the number of record* high daily minimum temperatures has been predominantly increasing. Trends in record* low and record* high daily maximum temperatures are generally weaker and more spatially mixed in sign. These results are consistent with other studies examining changes expected in a warming climate.

  3. Regional transport modelling for nitrate trend assessment and forecasting in a chalk aquifer.

    PubMed

    Orban, Philippe; Brouyère, Serge; Batlle-Aguilar, Jordi; Couturier, Julie; Goderniaux, Pascal; Leroy, Mathieu; Maloszewski, Piotr; Dassargues, Alain

    2010-10-21

    Regional degradation of groundwater resources by nitrate has become one of the main challenges for water managers worldwide. Regulations have been defined to reverse observed nitrate trends in groundwater bodies, such as the Water Framework Directive and the Groundwater Daughter Directive in the European Union. In such a context, one of the main challenges remains to develop efficient approaches for groundwater quality assessment at regional scale, including quantitative numerical modelling, as a decision support for groundwater management. A new approach combining the use of environmental tracers and the innovative 'Hybrid Finite Element Mixing Cell' (HFEMC) modelling technique is developed to study and forecast the groundwater quality at the regional scale, with an application to a regional chalk aquifer in the Geer basin in Belgium. Tritium data and nitrate time series are used to produce a conceptual model for regional groundwater flow and contaminant transport in the combined unsaturated and saturated zones of the chalk aquifer. This shows that the spatial distribution of the contamination in the Geer basin is essentially linked to the hydrodynamic conditions prevailing in the basin, more precisely to groundwater age and mixing and not to the spatial patterns of land use or local hydrodispersive processes. A three-dimensional regional scale groundwater flow and solute transport model is developed. It is able to reproduce the spatial patterns of tritium and nitrate and the observed nitrate trends in the chalk aquifer and it is used to predict the evolution of nitrate concentrations in the basin. The modelling application shows that the global inertia of groundwater quality is strong in the basin and trend reversal is not expected to occur before the 2015 deadline fixed by the European Water Framework Directive. The expected time required for trend reversal ranges between 5 and more than 50 years, depending on the location in the basin and the expected reduction in nitrate application. To reach a good chemical status, nitrate concentrations in the infiltrating water should be reduced as soon as possible below 50mg/l; however, even in that case, more than 50 years is needed to fully reverse upward trends. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Space-based observations of nitrogen dioxide: Trends in anthropogenic emissions

    NASA Astrophysics Data System (ADS)

    Russell, Ashley Ray

    Space-based instruments provide routine global observations, offering a unique perspective on the spatial and temporal variation of atmospheric constituents. In this dissertation, trends in regional-scale anthropogenic nitrogen oxide emissions (NO + NO2 ≡ NOx) are investigated using high resolution observations from the Ozone Monitoring Instrument (OMI). By comparing trends in OMI observations with those from ground-based measurements and an emissions inventory, I show that satellite observations are well-suited for capturing changes in emissions over time. The high spatial and temporal resolutions of the observations provide a uniquely complete view of regional-scale changes in the spatial patterns of NO 2. I show that NOx concentrations have decreased significantly in urban regions of the United States between 2005 and 2011, with an average reduction of 32 ± 7%. By examining day-of-week and interannual trends, I show that these reductions can largely be attributed to improved emission control technology in the mobile source fleet; however, I also show that the economic downturn of the late 2000's has impacted emissions. Additionally, I describe the development of a high-resolution retrieval of NO2 from OMI observations known as the Berkeley High Resolution (BEHR) retrieval. The BEHR product uses higher spatial and temporal resolution terrain and profile parameters than the operational retrievals and is shown to provide a more quantitative measure of tropospheric NO2 column density. These results have important implications for future retrievals of NO2 from space-based observations.

  5. Changing Pattern of Indian Monsoon Extremes: Global and Local Factors

    NASA Astrophysics Data System (ADS)

    Ghosh, Subimal; Shastri, Hiteshri; Pathak, Amey; Paul, Supantha

    2017-04-01

    Indian Summer Monsoon Rainfall (ISMR) extremes have remained a major topic of discussion in the field of global change and hydro-climatology over the last decade. This attributes to multiple conclusions on changing pattern of extremes along with poor understanding of multiple processes at global and local scales associated with monsoon extremes. At a spatially aggregate scale, when number of extremes in the grids are summed over, a statistically significant increasing trend is observed for both Central India (Goswami et al., 2006) and all India (Rajeevan et al., 2008). However, such a result over Central India does not satisfy flied significance test of increase and no decrease (Krishnamurthy et al., 2009). Statistically rigorous extreme value analysis that deals with the tail of the distribution reveals a spatially non-uniform trend of extremes over India (Ghosh et al., 2012). This results into statistically significant increasing trend of spatial variability. Such an increase of spatial variability points to the importance of local factors such as deforestation and urbanization. We hypothesize that increase of spatial average of extremes is associated with the increase of events occurring over large region, while increase in spatial variability attributes to local factors. A Lagrangian approach based dynamic recycling model reveals that the major contributor of moisture to wide spread extremes is Western Indian Ocean, while land surface also contributes around 25-30% of moisture during the extremes in Central India. We further test the impacts of local urbanization on extremes and find the impacts are more visible over West central, Southern and North East India. Regional atmospheric simulations coupled with Urban Canopy Model (UCM) shows that urbanization intensifies extremes in city areas, but not uniformly all over the city. The intensification occurs over specific pockets of the urban region, resulting an increase in spatial variability even within the city. This also points to the need of setting up multiple weather stations over the city at a finer resolution for better understanding of urban extremes. We conclude that the conventional method of considering large scale factors is not sufficient for analysing the monsoon extremes and characterization of the same needs a blending of both global and local factors. Ghosh, S., Das, D., Kao, S-C. & Ganguly, A. R. Lack of uniform trends but increasing spatial variability in observed Indian rainfall extremes. Nature Clim. Change 2, 86-91 (2012) Goswami, B. N., Venugopal, V., Sengupta, D., Madhusoodanan, M. S. & Xavier, P. K. Increasing trend of extreme rain events over India in a warming environment. Science 314, 1442-1445 (2006). Krishnamurthy, C. K. B., Lall, U. & Kwon, H-H. Changing frequency and intensity of rainfall extremes over India from 1951 to 2003. J. Clim. 22, 4737-4746 (2009). Rajeevan, M., Bhate, J. & Jaswal, A. K. Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data. Geophys. Res. Lett. 35, L18707 (2008).

  6. Spatiotemporal patterns of drought at various time scales in Shandong Province of Eastern China

    NASA Astrophysics Data System (ADS)

    Zuo, Depeng; Cai, Siyang; Xu, Zongxue; Li, Fulin; Sun, Wenchao; Yang, Xiaojing; Kan, Guangyuan; Liu, Pin

    2018-01-01

    The temporal variations and spatial patterns of drought in Shandong Province of Eastern China were investigated by calculating the standardized precipitation evapotranspiration index (SPEI) at 1-, 3-, 6-, 12-, and 24-month time scales. Monthly precipitation and air temperature time series during the period 1960-2012 were collected at 23 meteorological stations uniformly distributed over the region. The non-parametric Mann-Kendall test was used to explore the temporal trends of precipitation, air temperature, and the SPEI drought index. S-mode principal component analysis (PCA) was applied to identify the spatial patterns of drought. The results showed that an insignificant decreasing trend in annual total precipitation was detected at most stations, a significant increase of annual average air temperature occurred at all the 23 stations, and a significant decreasing trend in the SPEI was mainly detected at the coastal stations for all the time scales. The frequency of occurrence of extreme and severe drought at different time scales generally increased with decades; higher frequency and larger affected area of extreme and severe droughts occurred as the time scale increased, especially for the northwest of Shandong Province and Jiaodong peninsular. The spatial pattern of drought for SPEI-1 contains three regions: eastern Jiaodong Peninsular and northwestern and southern Shandong. As the time scale increased to 3, 6, and 12 months, the order of the three regions was transformed into another as northwestern Shandong, eastern Jiaodong Peninsular, and southern Shandong. For SPEI-24, the location identified by REOF1 was slightly shifted from northwestern Shandong to western Shandong, and REOF2 and REOF3 identified another two weak patterns in the south edge and north edge of Jiaodong Peninsular, respectively. The potential causes of drought and the impact of drought on agriculture in the study area have also been discussed. The temporal variations and spatial patterns of drought obtained in this study provide valuable information for water resources planning and drought disaster prevention and mitigation in Eastern China.

  7. AIDS in adults 50 years of age and over: characteristics, trends and spatial distribution of the risk1

    PubMed Central

    Nogueira, Jordana de Almeida; Silva, Antônia Oliveira; de Sá, Laísa Ribeiro; de Almeida, Sandra Aparecida; Monroe, Aline Aparecida; Villa, Tereza Cristina Scatena

    2014-01-01

    Objective to analyze the sociodemographic characteristics, epidemic trend and spatial distribution of the risk of AIDS in adults 50 years of age and over. Method population-based, ecological study, that used secondary data from the Notifiable Disease Information System (Sinan/AIDS) of Paraíba state from the period January 2000 to December 2010. Results during the study period, 307 cases of AIDS were reported among people 50 years of age or over. There was a predominance of males (205/66, 8%), mixed race, and low education levels. The municipalities with populations above 100 thousand inhabitants reported 58.5% of the cases. There was a progressive increase in cases among women; an increasing trend in the incidence (positive linear correlation); and an advance in the geographical spread of the disease, with expansion to the coastal region and to the interior of the state, reaching municipalities with populations below 30 thousand inhabitants. In some locations the risk of disease was 100 times greater than the relative risk for the state. Conclusion aging, with the feminization and interiorization of the epidemic in adults 50 years of age and over, confirms the need for the induction of affirmative policies targeted toward this age group. PMID:25029044

  8. Modeling the impacts of phenological and inter-annual changes in landscape metrics on local biodiversity of agricultural lands of Eastern Ontario using multi-spatial and multi-temporal remote sensing data

    NASA Astrophysics Data System (ADS)

    Alavi-Shoushtari, N.; King, D.

    2017-12-01

    Agricultural landscapes are highly variable ecosystems and are home to many local farmland species. Seasonal, phenological and inter-annual agricultural landscape dynamics have potential to affect the richness and abundance of farmland species. Remote sensing provides data and techniques which enable monitoring landscape changes in multiple temporal and spatial scales. MODIS high temporal resolution remote sensing images enable detection of seasonal and phenological trends, while Landsat higher spatial resolution images, with its long term archive enables inter-annual trend analysis over several decades. The objective of this study to use multi-spatial and multi-temporal remote sensing data to model the response of farmland species to landscape metrics. The study area is the predominantly agricultural region of eastern Ontario. 92 sample landscapes were selected within this region using a protocol designed to maximize variance in composition and configuration heterogeneity while controlling for amount of forest and spatial autocorrelation. Two sample landscape extents (1×1km and 3×3km) were selected to analyze the impacts of spatial scale on biodiversity response. Gamma diversity index data for four taxa groups (birds, butterflies, plants, and beetles) were collected during the summers of 2011 and 2012 within the cropped area of each landscape. To extract the seasonal and phenological metrics a 2000-2012 MODIS NDVI time-series was used, while a 1985-2012 Landsat time-series was used to model the inter-annual trends of change in the sample landscapes. The results of statistical modeling showed significant relationships between farmland biodiversity for several taxa and the phenological and inter-annual variables. The following general results were obtained: 1) Among the taxa groups, plant and beetles diversity was most significantly correlated with the phenological variables; 2) Those phenological variables which are associated with the variability in the start of season date across the sample landscapes and the variability in the corresponding NDVI values at that date showed the strongest correlation with the biodiversity indices; 3) The significance of the models improved when using 3×3km site extent both for MODIS and Landsat based models due most likely to the larger sample size over 3x3km.

  9. Time evolution of atmospheric parameters and their influence on sea level pressure over the head Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Patra, Anindita; Bhaskaran, Prasad K.; Jose, Felix

    2018-06-01

    A zonal dipole in the observed trends of wind speed and significant wave height over the Head Bay of Bengal region was recently reported in the literature attributed due to the variations in sea level pressure (SLP). The SLP in turn is governed by prevailing atmospheric conditions such as local temperature, humidity, rainfall, atmospheric pressure, wind field distribution, formation of tropical cyclones, etc. The present study attempts to investigate the inter-annual variability of atmospheric parameters and its role on the observed zonal dipole trend in sea level pressure, surface wind speed and significant wave height. It reports on the aspects related to linear trend as well as its spatial variability for several atmospheric parameters: air temperature, geopotential height, omega (vertical velocity), and zonal wind, over the head Bay of Bengal, by analyzing National Centers for Environmental Prediction (NCEP) Reanalysis 2 dataset covering a period of 38 years (1979-2016). Significant warming from sea level to 200 mb pressure level and thereafter cooling above has been noticed during all the seasons. Warming within the troposphere exhibits spatial difference between eastern and western side of the domain. This led to fall in lower tropospheric geopotential height and its east-west variability, exhibiting a zonal dipole pattern across the Head Bay. In the upper troposphere, uplift in geopotential height was found as a result of cooling in higher levels (10-100 mb). Variability in omega also substantiated the observed variations in geopotential height. The study also finds weakening in the upper level westerlies and easterlies. Interestingly, a linear trend in lower tropospheric u-wind component also reveals an east-west dipole pattern over the study region. Further, the study corroborates the reported dipole in trends of sea level pressure, wind speed and significant wave height by evaluating the influence of atmospheric variability on these parameters.

  10. Groundwater-quality data in 12 GAMA study units: Results from the 2006–10 initial sampling period and the 2008–13 trend sampling period, California GAMA Priority Basin Project

    USGS Publications Warehouse

    Mathany, Timothy M.

    2017-03-09

    The Priority Basin Project (PBP) of the Groundwater Ambient Monitoring and Assessment (GAMA) program was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey in cooperation with the California State Water Resources Control Board. From 2004 through 2012, the GAMA-PBP collected samples and assessed the quality of groundwater resources that supply public drinking water in 35 study units across the State. Selected sites in each study unit were sampled again approximately 3 years after initial sampling as part of an assessment of temporal trends in water quality by the GAMA-PBP. Twelve of the study units, initially sampled during 2006–11 (initial sampling period) and sampled a second time during 2008–13 (trend sampling period) to assess temporal trends, are the subject of this report.The initial sampling was designed to provide a spatially unbiased assessment of the quality of untreated groundwater used for public water supplies in the 12 study units. In these study units, 550 sampling sites were selected by using a spatially distributed, randomized, grid-based method to provide spatially unbiased representation of the areas assessed (grid sites, also called “status sites”). After the initial sampling period, 76 of the previously sampled status sites (approximately 10 percent in each study unit) were randomly selected for trend sampling (“trend sites”). The 12 study units sampled both during the initial sampling and during the trend sampling period were distributed among 6 hydrogeologic provinces: Coastal (Northern and Southern), Transverse Ranges and Selected Peninsular Ranges, Klamath, Modoc Plateau and Cascades, and Sierra Nevada Hydrogeologic Provinces. For the purposes of this trend report, the six hydrogeologic provinces were grouped into two hydrogeologic regions based on location: Coastal and Mountain.The groundwater samples were analyzed for a number of synthetic organic constituents (volatile organic compounds, pesticides, and pesticide degradates), constituents of special interest (perchlorate and 1,2,3-trichloropropane), and natural inorganic constituents (nutrients, major and minor ions, and trace elements). Isotopic tracers (tritium, carbon-14, and stable isotopes of hydrogen and oxygen in water) also were measured to help identify processes affecting groundwater quality and the sources and ages of the sampled groundwater. More than 200 constituents and water-quality indicators were measured during the trend sampling period.Quality-control samples (blanks, replicates, matrix-spikes, and surrogate compounds) were collected at about one-third of the trend sites, and the results for these samples were used to evaluate the quality of the data for the groundwater samples. On the basis of detections in laboratory and field blank samples collected by GAMA-PBP study units, including the 12 study units presented here, reporting levels for some groundwater results were adjusted in this report. Differences between replicate samples were mostly within acceptable ranges, indicating low variability in analytical results. Matrix-spike recoveries were largely within the acceptable range (70 to 130 percent).This study did not attempt to evaluate the quality of water delivered to consumers. After withdrawal, groundwater used for drinking water typically is treated, disinfected, and blended with other waters to achieve acceptable water quality. The comparison benchmarks used in this report apply to treated water that is served to the consumer, not to untreated groundwater. To provide some context for the results, however, concentrations of constituents measured in these groundwater samples were compared with benchmarks established by the U.S. Environmental Protection Agency and the State of California. Comparisons between data collected for this study and benchmarks for drinking water are for illustrative purposes only and are not indicative of compliance or non-compliance with those benchmarks.Most organic constituents that were detected in groundwater samples from the trend sites were found at concentrations less than health-based benchmarks. One volatile organic compound—perchloroethene—was detected at a concentration greater than the health-based benchmark in samples from one trend site during the initial and trend sampling periods. Chloroform was detected in at least 10 percent of the samples at trend sites in both sampling periods. Methyl tert-butyl ether was detected in samples from more than 10 percent of the trend sites during the initial sampling period. No pesticide or pesticide degradate was detected in greater than 10 percent of the samples from trend sites or at concentrations greater than their health-based benchmarks during either sampling period. Nutrients were not detected at concentrations greater than their health-based benchmarks during either sampling period.Most detections of major ions and trace elements in samples from trend sites were less than health-based benchmarks during both sampling periods. Arsenic and boron each were detected at concentrations greater than the health-based benchmark in samples from four trend sites during the initial and trend sampling periods. Molybdenum was detected in samples from four trend sites at concentrations greater than the health-based benchmark during both sampling periods. Samples from two of these trend sites had similar molybdenum concentrations, and two had substantially different concentrations during the initial and trend sampling periods. Uranium was detected at a concentration greater than the health-based benchmark only at two trend sites.

  11. A simple spatial working memory and attention test on paired symbols shows developmental deficits in schizophrenia patients.

    PubMed

    Song, Wei; Zhang, Kai; Sun, Jinhua; Ma, Lina; Jesse, Forrest Fabian; Teng, Xiaochun; Zhou, Ying; Bao, Hechen; Chen, Shiqing; Wang, Shuai; Yang, Beimeng; Chu, Xixia; Ding, Wenhua; Du, Yasong; Cheng, Zaohuo; Wu, Bin; Chen, Shanguang; He, Guang; He, Lin; Chen, Xiaoping; Li, Weidong

    2013-01-01

    People with neuropsychiatric disorders such as schizophrenia often display deficits in spatial working memory and attention. Evaluating working memory and attention in schizophrenia patients is usually based on traditional tasks and the interviewer's judgment. We developed a simple Spatial Working Memory and Attention Test on Paired Symbols (SWAPS). It takes only several minutes to complete, comprising 101 trials for each subject. In this study, we tested 72 schizophrenia patients and 188 healthy volunteers in China. In a healthy control group with ages ranging from 12 to 60, the efficiency score (accuracy divided by reaction time) reached a peak in the 20-27 age range and then declined with increasing age. Importantly, schizophrenia patients failed to display this developmental trend in the same age range and adults had significant deficits compared to the control group. Our data suggests that this simple Spatial Working Memory and Attention Test on Paired Symbols can be a useful tool for studies of spatial working memory and attention in neuropsychiatric disorders.

  12. Shifts in frog size and phenology: Testing predictions of climate change on a widespread anuran using data from prior to rapid climate warming.

    PubMed

    Sheridan, Jennifer A; Caruso, Nicholas M; Apodaca, Joseph J; Rissler, Leslie J

    2018-01-01

    Changes in body size and breeding phenology have been identified as two major ecological consequences of climate change, yet it remains unclear whether climate acts directly or indirectly on these variables. To better understand the relationship between climate and ecological changes, it is necessary to determine environmental predictors of both size and phenology using data from prior to the onset of rapid climate warming, and then to examine spatially explicit changes in climate, size, and phenology, not just general spatial and temporal trends. We used 100 years of natural history collection data for the wood frog, Lithobates sylvaticus with a range >9 million km 2 , and spatially explicit environmental data to determine the best predictors of size and phenology prior to rapid climate warming (1901-1960). We then tested how closely size and phenology changes predicted by those environmental variables reflected actual changes from 1961 to 2000. Size, phenology, and climate all changed as expected (smaller, earlier, and warmer, respectively) at broad spatial scales across the entire study range. However, while spatially explicit changes in climate variables accurately predicted changes in phenology, they did not accurately predict size changes during recent climate change (1961-2000), contrary to expectations from numerous recent studies. Our results suggest that changes in climate are directly linked to observed phenological shifts. However, the mechanisms driving observed body size changes are yet to be determined, given the less straightforward relationship between size and climate factors examined in this study. We recommend that caution be used in "space-for-time" studies where measures of a species' traits at lower latitudes or elevations are considered representative of those under future projected climate conditions. Future studies should aim to determine mechanisms driving trends in phenology and body size, as well as the impact of climate on population density, which may influence body size.

  13. [Spatial structure analysis and distribution simulation of Therioaphis trifolii population based on geostatistics and GIS].

    PubMed

    Zhang, Rong; Leng, Yun-fa; Zhu, Meng-meng; Wang, Fang

    2007-11-01

    Based on geographic information system and geostatistics, the spatial structure of Therioaphis trifolii population of different periods in Yuanzhou district of Guyuan City, the southern Ningxia Province, was analyzed. The spatial distribution of Therioaphis trifolii population was also simulated by ordinary Kriging interpretation. The results showed that Therioaphis trifolii population of different periods was correlated spatially in the study area. The semivariograms of Therioaphis trifolii could be described by exponential model, indicating an aggregated spatial arrangement. The spatial variance varied from 34.13%-48.77%, and the range varied from 8.751-12.049 km. The degree and direction of aggregation showed that the trend was increased gradually from southwest to northeast. The dynamic change of Therioaphis trifolii population in different periods could be analyzed intuitively on the simulated maps of the spatial distribution from the two aspects of time and space, The occurrence position and degree of Therioaphis trifolii to a state of certain time could be determined easily.

  14. How noise and coupling influence leading indicators of population extinction in a spatially extended ecological system.

    PubMed

    O'Regan, Suzanne M

    2018-12-01

    Anticipating critical transitions in spatially extended systems is a key topic of interest to ecologists. Gradually declining metapopulations are an important example of a spatially extended biological system that may exhibit a critical transition. Theory for spatially extended systems approaching extinction that accounts for environmental stochasticity and coupling is currently lacking. Here, we develop spatially implicit two-patch models with additive and multiplicative forms of environmental stochasticity that are slowly forced through population collapse, through changing environmental conditions. We derive patch-specific expressions for candidate indicators of extinction and test their performance via a simulation study. Coupling and spatial heterogeneities decrease the magnitude of the proposed indicators in coupled populations relative to isolated populations, and the noise regime and the degree of coupling together determine trends in summary statistics. This theory may be readily applied to other spatially extended ecological systems, such as coupled infectious disease systems on the verge of elimination.

  15. Spatiotemporal variations of potential evapotranspiration and aridity index in relation to influencing factors over Southwest China during 1960-2013

    NASA Astrophysics Data System (ADS)

    Zhao, Yifei; Zou, Xinqing; Cao, Liguo; Yao, Yulong; Fu, Guanghe

    2017-07-01

    This study investigated the spatial-temporal patterns and trends of potential evapotranspiration (ET0) and aridity index (AI) over Southwest China during 1960-2013 based on daily temperature, precipitation, wind speed, sunshine duration, total solar radiation, and relative humidity data from 108 meteorological stations. The Penman-Monteith model, Mann-Kendall (M-K) test, moving t test, and Morlet wavelet method were used. The results indicated that ET0 and AI across the region displayed decreasing trends, but the former was significant. After 2000, regionally average trends in ET0 and AI increased rapidly, indicating that droughts increased over Southwest China in recent years. Spatially, the changes of ET0 and AI were dissimilar and not clustered, either. Temporally, both ET0 and AI displayed obvious abrupt change points over different timescales and that of AI was during the winter monsoon period. Significant periodic variations with periods of 27, 13, and 5 years were found in ET0, but only of 13 and 5 years existed in AI. Correlation analysis revealed that the sunshine duration and wind speed were the dominant factors affecting ET0 and that AI showed strong negative correlation with precipitation. The findings of this study enhance the understanding of the relationship between climate change and drought in Southwest China, while the mechanism controlling the variation in drought requires further study.

  16. Temporal and spatial changes of rainfall and streamflow in the Upper Tekezē-Atbara river basin, Ethiopia

    NASA Astrophysics Data System (ADS)

    Gebremicael, Tesfay G.; Mohamed, Yasir A.; Zaag, Pieter v.; Hagos, Eyasu Y.

    2017-04-01

    The Upper Tekezē-Atbara river sub-basin, part of the Nile Basin, is characterized by high temporal and spatial variability of rainfall and streamflow. In spite of its importance for sustainable water use and food security, the changing patterns of streamflow and its association with climate change is not well understood. This study aims to improve the understanding of the linkages between rainfall and streamflow trends and identify possible drivers of streamflow variabilities in the basin. Trend analyses and change-point detections of rainfall and streamflow were analysed using Mann-Kendall and Pettitt tests, respectively, using data records for 21 rainfall and 9 streamflow stations. The nature of changes and linkages between rainfall and streamflow were carefully examined for monthly, seasonal and annual flows, as well as indicators of hydrologic alteration (IHA). The trend and change-point analyses found that 19 of the tested 21 rainfall stations did not show statistically significant changes. In contrast, trend analyses on the streamflow showed both significant increasing and decreasing patterns. A decreasing trend in the dry season (October to February), short season (March to May), main rainy season (June to September) and annual totals is dominant in six out of the nine stations. Only one out of nine gauging stations experienced significant increasing flow in the dry and short rainy seasons, attributed to the construction of Tekezē hydropower dam upstream this station in 2009. Overall, streamflow trends and change-point timings were found to be inconsistent among the stations. Changes in streamflow without significant change in rainfall suggests factors other than rainfall drive the change. Most likely the observed changes in streamflow regimes could be due to changes in catchment characteristics of the basin. Further studies are needed to verify and quantify the hydrological changes shown in statistical tests by identifying the physical mechanisms behind those changes. The findings from this study are useful as a prerequisite for studying the effects of catchment management dynamics on the hydrological variabilities in the basin.

  17. Temporal-spatial evolution of the hydrologic drought characteristics of the karst drainage basins in South China

    NASA Astrophysics Data System (ADS)

    He, Zhonghua; Liang, Hong; Yang, Chaohui; Huang, Fasu; Zeng, Xinbo

    2018-02-01

    Hydrologic drought, as a typical natural phenomenon in the context of global climate change, is the extension and development of meteorological and agricultural droughts, and it is an eventual and extreme drought. This study selects 55 hydrological control basins in Southern China as research areas. The study analyzes features, such as intensity and occurrence frequency of hydrologic droughts, and explores the spatial-temporal evolution patterns in the karst drainage basins in Southern China by virtue of Streamflow Drought Index. Results show that (1) the general hydrologic droughts from 1970s to 2010s exhibited ;an upward trend after having experienced a previous decline; in the karst drainage basins in Southern China; the trend was mainly represented by the gradual alleviation of hydrologic droughts from 1970s to 1990s and the gradual aggravation from 2000s to 2010s. (2) The spatial-temporal evolution pattern of occurrence frequency in the karst drainage basins in Southern China was consistent with the intensity of hydrologic droughts. The periods of 1970s and 2010s exhibited the highest occurrence frequency. (3) The karst drainage basins in Southern China experienced extremely complex variability of hydrologic droughts from 1970s to 2010s. Drought intensity and occurrence frequency significantly vary for different types of hydrology.

  18. Trends in Upper-Level Cloud Cover and Surface Divergence Over the Tropical Indo-Pacific Ocean Between 1952 And 1997

    NASA Technical Reports Server (NTRS)

    Norris, Joel R.

    2005-01-01

    This study investigated the spatial pattern of linear trends in surface-observed upper-level (combined mid-level and High-level) cloud cover, precipitation, and surface divergence over the tropical Indo-Pacific Ocean during 1952-1957. Cloud values were obtained from the Extended Edited Cloud Report Archive (EECRA), precipitation values were obtained from the Hulme/Climate Research Unit Data Set, and surface divergence was alternatively calculated from wind reported Comprehensive Ocean-Atmosphere Data Set and from Smith and Reynolds Extended Reconstructed sea level pressure data.

  19. Comparison of Mean Climate Trends in the Northern Hemisphere Between N.C.E.P. and Two Atmosphere-Ocean Model Forced Runs

    NASA Technical Reports Server (NTRS)

    Lucarini, Valerio; Russell, Gary L.; Hansen, James E. (Technical Monitor)

    2002-01-01

    Results are presented for two greenhouse gas experiments of the Goddard Institute for Space Studies Atmosphere-Ocean Model (AOM). The computed trends of surface pressure, surface temperature, 850, 500 and 200 mb geopotential heights and related temperatures of the model for the time frame 1960-2000 are compared to those obtained from the National Centers for Environmental Prediction observations. A spatial correlation analysis and mean value comparison are performed, showing good agreement. A brief general discussion about the statistics of trend detection is presented. The domain of interest is the Northern Hemisphere (NH) because of the higher reliability of both the model results and the observations. The accuracy that this AOM has in describing the observed regional and NH climate trends makes it reliable in forecasting future climate changes.

  20. Warming Trends and Bleaching Stress of the World’s Coral Reefs 1985-2012

    NASA Astrophysics Data System (ADS)

    Heron, Scott F.; Maynard, Jeffrey A.; van Hooidonk, Ruben; Eakin, C. Mark

    2016-12-01

    Coral reefs across the world’s oceans are in the midst of the longest bleaching event on record (from 2014 to at least 2016). As many of the world’s reefs are remote, there is limited information on how past thermal conditions have influenced reef composition and current stress responses. Using satellite temperature data for 1985-2012, the analysis we present is the first to quantify, for global reef locations, spatial variations in warming trends, thermal stress events and temperature variability at reef-scale (~4 km). Among over 60,000 reef pixels globally, 97% show positive SST trends during the study period with 60% warming significantly. Annual trends exceeded summertime trends at most locations. This indicates that the period of summer-like temperatures has become longer through the record, with a corresponding shortening of the ‘winter’ reprieve from warm temperatures. The frequency of bleaching-level thermal stress increased three-fold between 1985-91 and 2006-12 - a trend climate model projections suggest will continue. The thermal history data products developed enable needed studies relating thermal history to bleaching resistance and community composition. Such analyses can help identify reefs more resilient to thermal stress.

  1. Warming Trends and Bleaching Stress of the World’s Coral Reefs 1985–2012

    PubMed Central

    Heron, Scott F.; Maynard, Jeffrey A.; van Hooidonk, Ruben; Eakin, C. Mark

    2016-01-01

    Coral reefs across the world’s oceans are in the midst of the longest bleaching event on record (from 2014 to at least 2016). As many of the world’s reefs are remote, there is limited information on how past thermal conditions have influenced reef composition and current stress responses. Using satellite temperature data for 1985–2012, the analysis we present is the first to quantify, for global reef locations, spatial variations in warming trends, thermal stress events and temperature variability at reef-scale (~4 km). Among over 60,000 reef pixels globally, 97% show positive SST trends during the study period with 60% warming significantly. Annual trends exceeded summertime trends at most locations. This indicates that the period of summer-like temperatures has become longer through the record, with a corresponding shortening of the ‘winter’ reprieve from warm temperatures. The frequency of bleaching-level thermal stress increased three-fold between 1985–91 and 2006–12 – a trend climate model projections suggest will continue. The thermal history data products developed enable needed studies relating thermal history to bleaching resistance and community composition. Such analyses can help identify reefs more resilient to thermal stress. PMID:27922080

  2. Warming Trends and Bleaching Stress of the World's Coral Reefs 1985-2012.

    PubMed

    Heron, Scott F; Maynard, Jeffrey A; van Hooidonk, Ruben; Eakin, C Mark

    2016-12-06

    Coral reefs across the world's oceans are in the midst of the longest bleaching event on record (from 2014 to at least 2016). As many of the world's reefs are remote, there is limited information on how past thermal conditions have influenced reef composition and current stress responses. Using satellite temperature data for 1985-2012, the analysis we present is the first to quantify, for global reef locations, spatial variations in warming trends, thermal stress events and temperature variability at reef-scale (~4 km). Among over 60,000 reef pixels globally, 97% show positive SST trends during the study period with 60% warming significantly. Annual trends exceeded summertime trends at most locations. This indicates that the period of summer-like temperatures has become longer through the record, with a corresponding shortening of the 'winter' reprieve from warm temperatures. The frequency of bleaching-level thermal stress increased three-fold between 1985-91 and 2006-12 - a trend climate model projections suggest will continue. The thermal history data products developed enable needed studies relating thermal history to bleaching resistance and community composition. Such analyses can help identify reefs more resilient to thermal stress.

  3. Migrant deaths at the Arizona-Mexico border: Spatial trends of a mass disaster.

    PubMed

    Giordano, Alberto; Spradley, M Katherine

    2017-11-01

    Geographic Information Science (GIScience) technology has been used to document, investigate, and predict patterns that may be of utility in both forensic academic research and applied practice. In examining spatial and temporal trends of the mass disaster that is occurring along the U.S.-Mexico border, other researchers have highlighted predictive patterns for search and recovery efforts as well as water station placement. The purpose of this paper is to use previously collected spatial data of migrant deaths from Arizona to address issues of data uncertainty and data accuracy that affect our understanding of this phenomenon, including local and federal policies that impact the U.S.-Mexico border. The main objective of our study was to explore how the locations of migrant deaths have varied over time. Our results confirm patterns such as a lack of relationship between Border Patrol apprehensions and migrant deaths, as well as highlight new patterns such as the increased positional accuracy of migrant deaths recorded closer to the border. This paper highlights the importance of using positionally accurate data to detect spatio-temporal trends in forensic investigations of mass disasters: without qualitative and quantitative information concerning the accuracy of the data collected, the reliability of the results obtained remains questionable. We conclude by providing a set of guidelines for standardizing the collection and documentation of migrant remains at the U.S.-Mexico border. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Spatial-temporal distribution and risk assessment of mercury in different fractions in surface sediments from the Yangtze River estuary.

    PubMed

    Wang, Qingrui; Liu, Ruimin; Men, Cong; Xu, Fei; Guo, Lijia; Shen, Zhenyao

    2017-11-15

    The temporal and spatial distributions of mercury in different fractions and its potential ecological risk were investigated in sediments from the Yangtze River estuary (YRE) by analyzing data collected from the study area. The results showed that mercury in the organic and residual fractions had dominant proportions, from 15.2% to 48.52% and from 45.96% to 81.59%, respectively. The fractions were more susceptible to seasonal changes than other fractions. Higher proportions of mercury in organic fraction were found in wet seasons; the opposite was true for mercury in residual fraction. With respect to the spatial distribution, the concentration mercury in exchangeable, carbonate and Fe-Mn oxide fractions showed a decreasing trend from the inner estuary to the outer estuary, but no obvious trends were found in the distributions of mercury in the organic and residual fractions. The risk assessment code (RAC) was used to evaluate the potential ecological risk in the study area based on the proportions of exchangeable and carbonate fractions. The average RAC values during the four periods were 6.00%, 2.20%, 2.83%, and 0.61%. Although these values show that the risk in the study area is generally low, the distribution of RAC values indicates that the inner estuary has a medium risk, with a value up to 10%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Spatial distribution of dust-bound trace elements in Pakistan and their implications for human exposure.

    PubMed

    Eqani, Syed Ali Musstjab Akber Shah; Kanwal, Ayesha; Bhowmik, Avit Kumar; Sohail, Mohammad; Ullah, Rizwan; Ali, Syeda Maria; Alamdar, Ambreen; Ali, Nadeem; Fasola, Mauro; Shen, Heqing

    2016-06-01

    This study aims to assess the spatial patterns of selected dust-borne trace elements alongside the river Indus Pakistan, their relation with anthropogenic and natural sources, and the potential risk posed to human health. The studied elements were found in descending concentrations: Mn, Zn, Pb, Cu, Ni, Cr, Co, and Cd. The Index of Geo-accumulation indicated that pollution of trace metals were higher in lower Indus plains than on mountain areas. In general, the toxic elements Cr, Mn, Co and Ni exhibited altitudinal trends (P < 0.05). The few exceptions to this trend were the higher values for all studied elements from the northern wet mountainous zone (low lying Himalaya). Spatial PCA/FA highlighted that the sources of different trace elements were zone specific, thus pointing to both geological influences and anthropogenic activities. The Hazard Index for Co and for Mn in children exceeded the value of 1 only in the riverine delta zone and in the southern low lying zone, whereas the Hazard Index for Pb was above the bench mark for both children and adults (with few exceptions) in all regions, thus indicating potential non-carcinogenic health risks. These results will contribute towards the environmental management of trace metal(s) with potential risk for human health throughout Pakistan. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Can data from disparate long-term fish monitoring programs be used to increase our understanding of regional and continental trends in large river assemblages?

    USGS Publications Warehouse

    Counihan, Timothy D.; Waite, Ian R.; Casper, Andrew F.; Ward, David L.; Sauer, Jennifer S.; Irwin, Elise R.; Chapman, Colin G.; Ickes, Brian; Paukert, Craig P.; Kosovich, John J.; Bayer, Jennifer M.

    2018-01-01

    Understanding trends in the diverse resources provided by large rivers will help balance tradeoffs among stakeholders and inform strategies to mitigate the effects of landscape scale stressors such as climate change and invasive species. Absent a cohesive coordinated effort to assess trends in important large river resources, a logical starting point is to assess our ability to draw inferences from existing efforts. In this paper, we use a common analytical framework to analyze data from five disparate fish monitoring programs to better understand the nature of spatial and temporal trends in large river fish assemblages. We evaluated data from programs that monitor fishes in the Colorado, Columbia, Illinois, Mississippi, and Tallapoosa rivers using non-metric dimensional scaling ordinations and associated tests to evaluate trends in fish assemblage structure and native fish biodiversity. Our results indicate that fish assemblages exhibited significant spatial and temporal trends in all five of the rivers. We also document native species diversity trends that were variable within and between rivers and generally more evident in rivers with higher species richness and programs of longer duration. We discuss shared and basin-specific landscape level stressors. Having a basic understanding of the nature and extent of trends in fish assemblages is a necessary first step towards understanding factors affecting biodiversity and fisheries in large rivers.

  7. Can data from disparate long-term fish monitoring programs be used to increase our understanding of regional and continental trends in large river assemblages?

    PubMed Central

    Waite, Ian R.; Casper, Andrew F.; Ward, David L.; Sauer, Jennifer S.; Irwin, Elise R.; Chapman, Colin G.; Ickes, Brian S.; Paukert, Craig P.; Kosovich, John J.; Bayer, Jennifer M.

    2018-01-01

    Understanding trends in the diverse resources provided by large rivers will help balance tradeoffs among stakeholders and inform strategies to mitigate the effects of landscape scale stressors such as climate change and invasive species. Absent a cohesive coordinated effort to assess trends in important large river resources, a logical starting point is to assess our ability to draw inferences from existing efforts. In this paper, we use a common analytical framework to analyze data from five disparate fish monitoring programs to better understand the nature of spatial and temporal trends in large river fish assemblages. We evaluated data from programs that monitor fishes in the Colorado, Columbia, Illinois, Mississippi, and Tallapoosa rivers using non-metric dimensional scaling ordinations and associated tests to evaluate trends in fish assemblage structure and native fish biodiversity. Our results indicate that fish assemblages exhibited significant spatial and temporal trends in all five of the rivers. We also document native species diversity trends that were variable within and between rivers and generally more evident in rivers with higher species richness and programs of longer duration. We discuss shared and basin-specific landscape level stressors. Having a basic understanding of the nature and extent of trends in fish assemblages is a necessary first step towards understanding factors affecting biodiversity and fisheries in large rivers. PMID:29364953

  8. Long-term (1930-2010) trends in groundwater levels in Texas: influences of soils, landcover and water use.

    PubMed

    Chaudhuri, Sriroop; Ale, Srinivasulu

    2014-08-15

    Rapid groundwater depletion has raised grave concerns about sustainable development in many parts of Texas, as well as in other parts of the world. Previous hydrologic investigations on groundwater levels in Texas were conducted mostly on aquifer-specific basis, and hence lacked state-wide panoramic view. The aim of this study was to present a qualitative overview of long-term (1930-2010) trends in groundwater levels in Texas and identify spatial patterns by applying different statistical (boxplots, correlation-regression, hierarchical cluster analysis) and geospatial techniques (Moran's I, Local Indicators of Spatial Association) on 136,930 groundwater level observations from Texas Water Development Board's database. State-wide decadal median water-levels declined from about 14 m from land surface in the 1930s to about 36 m in the 2000s. Number of counties with deeper median water-levels (water-level depth>100 m) increased from 2 to 13 between 1930s and 2000s, accompanied by a decrease in number of counties having shallower median water-levels (water-level depth<25 m) from 134 to 113. Water-level declines across Texas, however, mostly followed logarithmic trends marked by leveling-off phenomena in recent times. Assessment of water-levels by Groundwater Management Areas (GMA), management units created to address groundwater depletion issues, indicated hotspots of deep water-levels in Texas Panhandle and GMA 8 since the 1960s. Contrasting patterns in water use, landcover, geology and soil properties distinguished Texas Panhandle from GMA 8. Irrigated agriculture is the major cause of depletion in the Texas Panhandle as compared to increasing urbanization in GMA 8. Overall our study indicated that use of robust spatial and statistical methods can reveal important details about the trends in water-level changes and shed lights on the associated factors. Due to very generic nature, techniques used in this study can also be applied to other areas with similar eco-hydrologic issues to identify regions that warrant future management actions. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Spatial-temporal trend for mother-to-child transmission of HIV up to infancy and during pre-Option B+ in western Kenya, 2007-13.

    PubMed

    Waruru, Anthony; Achia, Thomas N O; Muttai, Hellen; Ng'ang'a, Lucy; Zielinski-Gutierrez, Emily; Ochanda, Boniface; Katana, Abraham; Young, Peter W; Tobias, James L; Juma, Peter; De Cock, Kevin M; Tylleskär, Thorkild

    2018-01-01

    Using spatial-temporal analyses to understand coverage and trends in elimination of mother-to-child transmission of HIV (e-MTCT) efforts may be helpful in ensuring timely services are delivered to the right place. We present spatial-temporal analysis of seven years of HIV early infant diagnosis (EID) data collected from 12 districts in western Kenya from January 2007 to November 2013, during pre-Option B+ use. We included in the analysis infants up to one year old. We performed trend analysis using extended Cochran-Mantel-Haenszel stratified test and logistic regression models to examine trends and associations of infant HIV status at first diagnosis with: early diagnosis (<8 weeks after birth), age at specimen collection, infant ever having breastfed, use of single dose nevirapine, and maternal antiretroviral therapy status. We examined these covariates and fitted spatial and spatial-temporal semiparametric Poisson regression models to explain HIV-infection rates using R-integrated nested Laplace approximation package. We calculated new infections per 100,000 live births and used Quantum GIS to map fitted MTCT estimates for each district in Nyanza region. Median age was two months, interquartile range 1.5-5.8 months. Unadjusted pooled positive rate was 11.8% in the seven-years period and declined from 19.7% in 2007 to 7.0% in 2013, p < 0.01. Uptake of testing ≤8 weeks after birth was under 50% in 2007 and increased to 64.1% by 2013, p < 0.01. By 2013, the overall standardized MTCT rate was 447 infections per 100,000 live births. Based on Bayesian deviance information criterion comparisons, the spatial-temporal model with maternal and infant covariates was best in explaining geographical variation in MTCT. Improved EID uptake and reduced MTCT rates are indicators of progress towards e-MTCT. Cojoined analysis of time and covariates in a spatial context provides a robust approach for explaining differences in programmatic impact over time. During this pre-Option B+ period, the prevention of mother to child transmission program in this region has not achieved e-MTCT target of ≤50 infections per 100,000 live births. Geographical disparities in program achievements may signify gaps in spatial distribution of e-MTCT efforts and could indicate areas needing further resources and interventions.

  10. Trends in atmospheric deposition fluxes of sulphur and nitrogen in Czech forests.

    PubMed

    Hůnová, Iva; Maznová, Jana; Kurfürst, Pavel

    2014-01-01

    We present the temporal trends and spatial changes of deposition of sulphur and nitrogen in Czech forests based on records from long-term monitoring. A statistically significant trend for sulphur was detected at most of the sites measuring for wet, dry, and total deposition fluxes and at many of these the trend was also present for the period after 2000. The spatial pattern of the changes in sulphur deposition flux between 1995 and 2011 shows the decrease over the entire forested area in a wide range of 18.1-0.2 g m(-2) year(-1) with the most pronounced improvement in formerly most impacted regions. Nitrogen still represents a considerable stress in many areas. The value of nitrogen deposition flux of 1 g m(-2) year(-1) is exceeded over a significant portion of the country. On an equivalent basis, the ion ratios of NO3(-)/SO4(2-) and NH4(+)/SO4(2-) in precipitation show significantly increasing trends in time similarly to those of pH. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Simulations inform design of regional occupancy-based monitoring for a sparsely distributed, territorial species

    Treesearch

    Quresh S. Latif; Martha M. Ellis; Victoria A. Saab; Kim Mellen-McLean

    2017-01-01

    Sparsely distributed species attract conservation concern, but insufficient information on population trends challenges conservation and funding prioritization. Occupancy-based monitoring is attractive for these species, but appropriate sampling design and inference depend on particulars of the study system. We employed spatially explicit simulations to identify...

  12. Multiscale analysis of the spatial variability of heavy metals and organic matter in soils and groundwater across Spain

    NASA Astrophysics Data System (ADS)

    Luque-Espinar, J. A.; Pardo-Igúzquiza, E.; Grima-Olmedo, J.; Grima-Olmedo, C.

    2018-06-01

    During the last years there has been an increasing interest in assessing health risks caused by exposure to contaminants found in soil, air, and water, like heavy metals or emerging contaminants. This work presents a study on the spatial patterns and interaction effects among relevant heavy metals (Sb, As and Pb) that may occur together in different minerals. Total organic carbon (TOC) have been analyzed too because it is an essential component in the regulatory mechanisms that control the amount of metal in soils. Even more, exposure to these elements is associated with a number of diseases and environmental problems. These metals can have both natural and anthropogenic origins. A key component of any exposure study is a reliable model of the spatial distribution the elements studied. A geostatistical analysis have been performed in order to show that selected metals are auto-correlated and cross-correlated and type and magnitude of such cross-correlation varies depending on the spatial scale under consideration. After identifying general trends, we analyzed the residues left after subtracting the trend from the raw variables. Three scales of variability were identified (compounds or factors) with scales of 5, 35 and 135 km. The first factor (F1) basically identifies anomalies of natural origin but, in some places, of anthropogenics origin as well. The other two are related to geology (F2 and F3) although F3 represents more clearly geochemical background related to large lithological groups. Likewise, mapping of two major structures indicates that significant faults have influence on the distribution of the studied elements. Finally, influence of soil and lithology on groundwater by means of contingency analysis was assessed.

  13. Long-term trend of satellite-observed significant wave height and impact on ecosystem in the East/Japan Sea

    NASA Astrophysics Data System (ADS)

    Woo, Hye-Jin; Park, Kyung-Ae

    2017-09-01

    Significant wave height (SWH) data of nine satellite altimeters were validated with in-situ SWH measurements from buoy stations in the East/Japan Sea (EJS) and the Northwest Pacific Ocean. The spatial and temporal variability of extreme SWHs was investigated by defining the 90th, 95th, and 99th percentiles based on percentile analysis. The annual mean of extreme SWHs was dramatically increased by 3.45 m in the EJS, which is significantly higher than the normal mean of about 1.44 m. The spatial distributions of SWHs showed significantly higher values in the eastern region of the EJS than those in the western part. Characteristic seasonality was found from the time-series SWHs with high SWHs (>2.5 m) in winter but low values (<1 m) in summer. The trends of the normal and extreme (99th percentile) SWHs in the EJS had a positive value of 0.0056 m year-1 and 0.0125 m year-1, respectively. The long-term trend demonstrated that higher SWH values were more extreme with time during the past decades. The predominant spatial distinctions between the coastal regions in the marginal seas of the Northwest Pacific Ocean and open ocean regions were presented. In spring, both normal and extreme SWHs showed substantially increasing trends in the EJS. Finally, we first presented the impact of the long-term trend of extreme SWHs on the marine ecosystem through vertical mixing enhancement in the upper ocean of the EJS.

  14. A pilot study of spatial patterns in referrals to a multicentre cancer genetics service.

    PubMed

    Tempest, Vanessa; Higgs, Gary; McDonald, Kevin; Iredale, Rachel; Bater, Tony; Gray, Jonathon

    2005-01-01

    To analyse spatial and temporal patterns in patients referred to a cancer genetics service in order to monitor service utilization and accessibility. Postcodes of patients during a 4-year period were used to examine spatial patterns using a Geographical Information System (GIS). Referral rates were compared visually and statistically to explore yearly variation for administrative areas in Wales. There has been a four-fold increase in actual referrals to the service over the period of study. The variance between unitary authority referral rates has decreased from the inception of the service from an almost ten-fold difference between lowest and highest in year 1 to less than a three-fold difference in year 4. This study shows the potential of GIS to highlight spatial variations in referral rates across Wales. Although the disparity in referral rates has decreased, trends in referral rates are not consistent. Ongoing research will examine those referral and referrer characteristics affecting uptake. Copyright 2005 S. Karger AG, Basel.

  15. Trends and spatial distribution of annual and seasonal rainfall in Ethiopia

    USGS Publications Warehouse

    Cheung, W.H.; Senay, G.B.; Singh, A.

    2008-01-01

    As a country whose economy is heavily dependent on low-productivity rainfed agriculture, rainfall trends are often cited as one of the more important factors in explaining various socio-economic problems such as food insecurity. Therefore, in order to help policymakers and developers make more informed decisions, this study investigated the temporal dynamics of rainfall and its spatial distribution within Ethiopia. Changes in rainfall were examined using data from 134 stations in 13 watersheds between 1960 and 2002. The variability and trends in seasonal and annual rainfall were analysed at the watershed scale with data (1) from all available years, and (2) excluding years that lacked observations from at least 25% of the gauges. Similar analyses were also performed at the gauge, regional, and national levels. By regressing annual watershed rainfall on time, results from the one-sample t-test show no significant changes in rainfall for any of the watersheds examined. However, in our regressions of seasonal rainfall averages against time, we found a significant decline in June to September rainfall (i.e. Kiremt) for the Baro-Akobo, Omo-Ghibe, Rift Valley, and Southern Blue Nile watersheds located in the southwestern and central parts of Ethiopia. While the gauge level analysis showed that certain gauge stations experienced recent changes in rainfall, these trends are not necessarily reflected at the watershed or regional levels.

  16. Variation in perfluoroalkyl acids in the American alligator (Alligator mississippiensis) at Merritt Island National Wildlife Refuge

    PubMed Central

    Bangma, Jacqueline T.; Reiner, Jessica L.; Jones, Martin; Lowers, Russ H.; Nilsen, Frances; Rainwater, Thomas R.; Somerville, Stephen; Guillette, Louis J.; Bowden, John A.

    2017-01-01

    This study aimed to quantify concentrations of fifteen perfluoroalkyl acids (PFAAs) in the plasma of American alligators (Alligator mississippiensis) inhabiting wetlands surrounding the Kennedy Space Center (KSC) in Florida, USA located at Merritt Island National Wildlife Refuge (MINWR). Approximately 10 male and 10 female alligators (ntotal = 229) were sampled each month during 2008 and 2009 to determine if seasonal or spatial trends existed with PFAA burden. PFOS represented the highest plasma burden (median 185 ng/g) and PFHxS the second highest (median 7.96 ng/g). While no significant seasonal trends were observed, unique spatial trends emerged. Many of the measured PFAAs co-varied strongly together and similar trends were observed for PFOS, PFDA, PFUnA, and PFDoA, as well as for PFOA, PFHxS, PFNA, PFTriA, and PFTA, suggesting more than one source of PFAAs at MINWR. Higher concentrations of PFOS and the PFAAs that co-varied with PFOS were collected from animals around sites that included the Shuttle Landing Facility (SLF) fire house and the Neil Armstrong Operations and Checkout (O&C) retention pond, while higher concentrations of PFOA and the PFAA that co-varied with PFOA were sampled from animals near the gun range and the old fire training facility. Sex-based differences and snout-vent length (SVL) correlations with PFAA burden were also investigated. PMID:27689886

  17. Variation in perfluoroalkyl acids in the American alligator (Alligator mississippiensis) at Merritt Island National Wildlife Refuge.

    PubMed

    Bangma, Jacqueline T; Reiner, Jessica L; Jones, Martin; Lowers, Russell H; Nilsen, Frances; Rainwater, Thomas R; Somerville, Stephen; Guillette, Louis J; Bowden, John A

    2017-01-01

    This study aimed to quantify concentrations of fifteen perfluoroalkyl acids (PFAAs) in the plasma of American alligators (Alligator mississippiensis) inhabiting wetlands surrounding the Kennedy Space Center (KSC) in Florida, USA located at Merritt Island National Wildlife Refuge (MINWR). Approximately 10 male and 10 female alligators (n total  = 229) were sampled each month during 2008 and 2009 to determine if seasonal or spatial trends existed with PFAA burden. PFOS represented the highest plasma burden (median 185 ng/g) and PFHxS the second highest (median 7.96 ng/g). While no significant seasonal trends were observed, unique spatial trends emerged. Many of the measured PFAAs co-varied strongly together and similar trends were observed for PFOS, PFDA, PFUnA, and PFDoA, as well as for PFOA, PFHxS, PFNA, PFTriA, and PFTA, suggesting more than one source of PFAAs at MINWR. Higher concentrations of PFOS and the PFAAs that co-varied with PFOS were collected from animals around sites that included the Shuttle Landing Facility (SLF) fire house and the Neil Armstrong Operations and Checkout (O&C) retention pond, while higher concentrations of PFOA and the PFAA that co-varied with PFOA were sampled from animals near the gun range and the old fire training facility. Sex-based differences and snout-vent length (SVL) correlations with PFAA burden were also investigated. Published by Elsevier Ltd.

  18. Trend analysis of the aerosol optical depth from fusion of MISR and MODIS retrievals over China

    NASA Astrophysics Data System (ADS)

    Guo, Jing; Gu, Xingfa; Yu, Tao; Cheng, Tianhai; Chen, Hao

    2014-03-01

    Atmospheric aerosol plays an important role in the climate change though direct and indirect processes. In order to evaluate the effects of aerosols on climate, it is necessary to have a research on their spatial and temporal distributions. Satellite aerosol remote sensing is a developing technology that may provide good temporal sampling and superior spatial coverage to study aerosols. The Moderate Resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging Spectroradiometer (MISR) have provided aerosol observations since 2000, with large coverage and high accuracy. However, due to the complex surface, cloud contamination, and aerosol models used in the retrieving process, the uncertainties still exist in current satellite aerosol products. There are several observed differences in comparing the MISR and MODIS AOD data with the AERONET AOD. Combing multiple sensors could reduce uncertainties and improve observational accuracy. The validation results reveal that a better agreement between fusion AOD and AERONET AOD. The results confirm that the fusion AOD values are more accurate than single sensor. We have researched the trend analysis of the aerosol properties over China based on nine-year (2002-2010) fusion data. Compared with trend analysis in Jingjintang and Yangtze River Delta, the accuracy has increased by 5% and 3%, respectively. It is obvious that the increasing trend of the AOD occurred in Yangtze River Delta, where human activities may be the main source of the increasing AOD.

  19. Temporal trend of the snow-related variables in Sierra Nevada in the last years: An analysis combining Earth Observation and hydrological modelling

    NASA Astrophysics Data System (ADS)

    Pérez-Luque, Antonio J.; Herrero, Javier; Bonet, Francisco J.; Pérez-Pérez, Ramón

    2016-04-01

    Climate change is causing declines in snow-cover extent and duration in European mountain ranges. This is especially important in Mediterranean mountain ranges where the observed trends towards precipitation and higher temperatures can provoke problems of water scarcity. In this work, we analyzed temporal trends (2000 to 2014) of snow-related variables obtained from satellite and modelling data in Sierra Nevada, a Mediterranean high-mountain range located in Southern Spain, at 37°N. Snow cover indicators (snow-cover duration, snow-cover onset dates and snow-cover melting dates) were obtained by processing images of MOD10A2 MODIS product using an automated workflow. Precipitation data were obtained using WiMMed, a complete and fully distributed hydrological model that is used to map the annual rainfall and snowfall with a resolution of 30x30 m over the whole study area. It uses expert algorithms to interpolate precipitation and temperature at an hourly scale, and simulates partition of precipitation into snowfall with several methods. For each snow-related indicator (snow-covers and snowfall), a trend analysis was applied at the MODIS pixel scale during the study period (2000-2014). We applied Mann-Kendall test and Theil-Sen slope estimation in each of the pixels comprising Sierra Nevada. The trend analysis assesses the intensity, magnitude and degree of statistical significance during the period analysed. The spatial pattern of these trends was explored according to elevation ranges. Finally, we explored the relationship between trends of snow-cover related indicators and precipitation trends. Our results show that snow-cover has undergone significant changes in the last 14 years. 80 % of the pixels covering Sierra Nevada showed a negative trend in the duration of snow-cover. We also observed a delay in the snow-cover onset date (68.03 % pixels showing a positive trend in the snow-cover onset date) and an advance in the melt date (80.72 % of pixels followed a negative trend for the snow-cover melting date). Precipitation does not show a significant trend for these years, even though its inter-annual variability has been outstanding. The maximum mean annual precipitation of 906 mm/year doubles the mean precipitation, which somehow compensates for the occurrence of a sequence of dry years with a minimum of 250 mm/year. The assessment of the spatial pattern of snow cover duration shows that both the trend and the slope of the trend becomes more pronounced with elevation. At higher elevations the snow-cover duration decreased an average of 3 days from 2000-2014. This research has been funded by ECOPOTENTIAL (Improving future ecosystem benefits through Earth Observations) Horizon 2020 EU project, and Sierra Nevada Global Change Observatory (LTER-site)

  20. Spaceborne estimated long-term trends (1980s - 2013) of albedo and melting season length over the Greenland ice sheet and linkages to climate drivers

    NASA Astrophysics Data System (ADS)

    Tedesco, M.; Stroeve, J. C.

    2014-12-01

    The length of the melting season and surface albedo modulate the amount of meltwater produced over the Greenland ice sheet. The two quantities are intimately connected through a suite of non-linear processes: for example, early melting can reduce the surface albedo (through constructive grain size metamorphism), hence affecting the surface energy balance and further increasing melting. Over the past years, several studies have highlighted increased melting concurring, with a decrease of mean surface albedo over Greenland. However, few studies have examined the duration of the melting season, its implication for surface processes and linkages to climate drivers. Moreover, the majority (if not all) of the studies assessing albedo trends from spaceborne data over Greenland have focused on the last decade or so (2000 - 2013) because they use data collected over the same period by the Moderate Resolution Imaging Spectroradiometer (MODIS). Here, we evaluate and synthesize long-term trends in the length of the melting season (1979 - 2013) derived from spaceborne microwave observations together with surface albedo trends for the period 1982 - 2013 using data from the Advanced Very High Resolution Radiometer (AVHRR). To our knowledge, this is the first time that trends in Greenland albedo and melt season length are discussed for the periods considered in this study. Our results point to a lengthening of the melting season as a consequence of earlier melt onset and later refreeze and to a decrease of mean albedo (1982 - 2013) over the Greenland ice sheet, with trends being spatially variable. To account for this spatial variability, the results of an analysis at regional scales over 12 different regions (defined by elevation and drainage systems) are also reported. The robustness of the results is evaluated by means of a comparative analysis of the results obtained from both AVHRR and MODIS when overlapping data are available (2000 - 2013). Lastly, because large-scale circulation patterns and climate drivers can impact the amount of meltwater produced over Greenland (hence impacting albedo), we discuss the observed trends in the context of North Atlantic Oscillation (NAO) and Greenland Blocking Index (GBI) using a combination of regional climate model outputs and re-analysis data.

  1. Salting our freshwater lakes.

    PubMed

    Dugan, Hilary A; Bartlett, Sarah L; Burke, Samantha M; Doubek, Jonathan P; Krivak-Tetley, Flora E; Skaff, Nicholas K; Summers, Jamie C; Farrell, Kaitlin J; McCullough, Ian M; Morales-Williams, Ana M; Roberts, Derek C; Ouyang, Zutao; Scordo, Facundo; Hanson, Paul C; Weathers, Kathleen C

    2017-04-25

    The highest densities of lakes on Earth are in north temperate ecosystems, where increasing urbanization and associated chloride runoff can salinize freshwaters and threaten lake water quality and the many ecosystem services lakes provide. However, the extent to which lake salinity may be changing at broad spatial scales remains unknown, leading us to first identify spatial patterns and then investigate the drivers of these patterns. Significant decadal trends in lake salinization were identified using a dataset of long-term chloride concentrations from 371 North American lakes. Landscape and climate metrics calculated for each site demonstrated that impervious land cover was a strong predictor of chloride trends in Northeast and Midwest North American lakes. As little as 1% impervious land cover surrounding a lake increased the likelihood of long-term salinization. Considering that 27% of large lakes in the United States have >1% impervious land cover around their perimeters, the potential for steady and long-term salinization of these aquatic systems is high. This study predicts that many lakes will exceed the aquatic life threshold criterion for chronic chloride exposure (230 mg L -1 ), stipulated by the US Environmental Protection Agency (EPA), in the next 50 y if current trends continue.

  2. Memory and Trend of Precipitation in China during 1966-2013

    NASA Astrophysics Data System (ADS)

    Du, M.; Sun, F.; Liu, W.

    2017-12-01

    As climate change has had a significant impact on water cycle, the characteristic and variation of precipitation under climate change turned into a hotspot in hydrology. This study aims to analyze the trend and memory (both short-term and long-term) of precipitation in China. To do that, we apply statistical tests (including Mann-Kendall test, Ljung-Box test and Hurst exponent) to annual precipitation (P), frequency of rainy day (λ) and mean daily rainfall in days when precipitation occurs (α) in China (1966-2013). We also use a resampling approach to determine the field significance. From there, we evaluate the spatial distribution and percentages of stations with significant memory or trend. We find that the percentages of significant downtrends for λ and significant uptrends for α are significantly larger than the critical values at 95% field significance level, probably caused by the global warming. From these results, we conclude that extra care is necessary when significant results are obtained using statistical tests. This is because the null hypothesis could be rejected by chance and this situation is more likely to occur if spatial correlation is ignored according to the results of the resampling approach.

  3. [Research on monitoring land subsidence in Beijing plain area using PS-InSAR technology].

    PubMed

    Gu, Zhao-Qin; Gong, Hui-Li; Zhang, You-Quan; Lu, Xue-Hui; Wang, Sa; Wang, Rong; Liu, Huan-Huan

    2014-07-01

    In the present paper, the authors use permanent scatterers synthetic aperture radar interferometry (PS-InSAR) technique and 29 acquisitions by Envisat during 2003 to 2009 to monitor and analyze the spatial-temporal distribution and mechanism characterize of land subsidence in Beijing plain area. The results show that subsidence bowls have been bounded together in Beijing plain area, which covers Chaoyang, Changping, Shunyi and Tongzhou area, and the range of subsidence has an eastward trend. The most serious regional subsidence is mainly distributed by the quaternary depression in Beijing plain area. PS-Insar results also show a new subsidence bowl in Pinggu. What's more, the spatial and temporal distribution of deformation is controlled mainly by faults, such as Liangxiang-Shunyi fault, Huangzhuang-Gaoliying fault, and Nankou-Sunhe fault. The subsidence and level of groundwater in study area shows a good correlation, and the subsidence shows seasonal ups trend during November to March and seasonal downs trend during March to June along with changes in groundwater levels. The contribution of land subsidence is also influenced by stress-strain behavior of aquitards. The compaction of aquitards shows an elastic, plastic, viscoelastic pattern.

  4. Contrasting runoff trends between dry and wet parts of eastern Tibetan Plateau.

    PubMed

    Wang, Yuanyuan; Zhang, Yongqiang; Chiew, Francis H S; McVicar, Tim R; Zhang, Lu; Li, Hongxia; Qin, Guanghua

    2017-11-13

    As the "Asian Water Tower", the Tibetan Plateau (TP) provides water resources for more than 1.4 billion people, but suffers from climatic and environmental changes, followed by the changes in water balance components. We used state-of-the-art satellite-based products to estimate spatial and temporal variations and trends in annual precipitation, evapotranspiration and total water storage change across eastern TP, which were then used to reconstruct an annual runoff variability series for 2003-2014. The basin-scale reconstructed streamflow variability matched well with gauge observations for five large rivers. Annual runoff increased strongly in dry part because of increases in precipitation, but decreased in wet part because of decreases in precipitation, aggravated by noticeable increases in evapotranspiration in the north of wet part. Although precipitation primarily governed temporal-spatial pattern of runoff, total water storage change contributed greatly to runoff variation in regions with wide-spread permanent snow/ice or permafrost. Our study indicates that the contrasting runoff trends between the dry and wet parts of eastern TP requires a change in water security strategy, and attention should be paid to the negative water resources impacts detected for southwestern part which has undergone vast glacier retreat and decreasing precipitation.

  5. Spatial and temporal trends of drought effects in a heterogeneous semi-arid forest ecosystem

    USGS Publications Warehouse

    Assal, Timothy J.; Anderson, Patrick J.; Sibold, Jason

    2016-01-01

    Drought has long been recognized as a driving mechanism in the forests of western North America and drought-induced mortality has been documented across genera in recent years. Given the frequency of these events are expected to increase in the future, understanding patterns of mortality and plant response to severe drought is important to resource managers. Drought can affect the functional, physiological, structural, and demographic properties of forest ecosystems. Remote sensing studies have documented changes in forest properties due to direct and indirect effects of drought; however, few studies have addressed this at local scales needed to characterize highly heterogeneous ecosystems in the forest-shrubland ecotone. We analyzed a 22-year Landsat time series (1985–2012) to determine changes in forest in an area that experienced a relatively dry decade punctuated by two years of extreme drought. We assessed the relationship between several vegetation indices and field measured characteristics (e.g. plant area index and canopy gap fraction) and applied these indices to trend analysis to uncover the location, direction and timing of change. Finally, we assessed the interaction of climate and topography by forest functional type. The Normalized Difference Moisture Index (NDMI), a measure of canopy water content, had the strongest correlation with short-term field measures of plant area index (R2 = 0.64) and canopy gap fraction (R2 = 0.65). Over the entire time period, 25% of the forested area experienced a significant (p-value < 0.05) negative trend in NDMI, compared to less than 10% in a positive trend. Coniferous forests were more likely to be associated with a negative NDMI trend than deciduous forest. Forests on southern aspects were least likely to exhibit a negative trend while north aspects were most prevalent. Field plots with a negative trend had a lower live density, and higher amounts of standing dead and down trees compared to plots with no trend. Our analysis identifies spatially explicit patterns of long-term trends anchored with ground based evidence to highlight areas of forest that are resistant, persistent or vulnerable to severe drought. The results provide a long-term perspective for the resource management of this area and can be applied to similar ecosystems throughout western North America.

  6. Mortality and Case Fatality Due to Visceral Leishmaniasis in Brazil: A Nationwide Analysis of Epidemiology, Trends and Spatial Patterns

    PubMed Central

    Martins-Melo, Francisco Rogerlândio; Lima, Mauricélia da Silveira; Ramos, Alberto Novaes; Alencar, Carlos Henrique; Heukelbach, Jorg

    2014-01-01

    Background Visceral leishmaniasis (VL) is a significant public health problem in Brazil and several regions of the world. This study investigated the magnitude, temporal trends and spatial distribution of mortality related to VL in Brazil. Methods We performed a study based on secondary data obtained from the Brazilian Mortality Information System. We included all deaths in Brazil from 2000 to 2011, in which VL was recorded as cause of death. We present epidemiological characteristics, trend analysis of mortality and case fatality rates by joinpoint regression models, and spatial analysis using municipalities as geographical units of analysis. Results In the study period, 12,491,280 deaths were recorded in Brazil. VL was mentioned in 3,322 (0.03%) deaths. Average annual age-adjusted mortality rate was 0.15 deaths per 100,000 inhabitants and case fatality rate 8.1%. Highest mortality rates were observed in males (0.19 deaths/100,000 inhabitants), <1 year-olds (1.03 deaths/100,000 inhabitants) and residents in Northeast region (0.30 deaths/100,000 inhabitants). Highest case fatality rates were observed in males (8.8%), ≥70 year-olds (43.8%) and residents in South region (17.7%). Mortality and case fatality rates showed a significant increase in Brazil over the period, with different patterns between regions: increasing mortality rates in the North (Annual Percent Change – APC: 9.4%; 95% confidence interval – CI: 5.3 to 13.6), and Southeast (APC: 8.1%; 95% CI: 2.6 to 13.9); and increasing case fatality rates in the Northeast (APC: 4.0%; 95% CI: 0.8 to 7.4). Spatial analysis identified a major cluster of high mortality encompassing a wide geographic range in North and Northeast Brazil. Conclusions Despite ongoing control strategies, mortality related to VL in Brazil is increasing. Mortality and case fatality vary considerably between regions, and surveillance and control measures should be prioritized in high-risk clusters. Early diagnosis and treatment are fundamental strategies for reducing case fatality of VL in Brazil. PMID:24699517

  7. Modeling Trends in Tropospheric Aerosol Burden & Its Radiative Effects

    EPA Science Inventory

    Large changes in emissions of aerosol precursors have occurred across the southeast U.S., North America, as well as the northern hemisphere. The spatial heterogeneity and contrasting trends in the aerosol burden is resulting in differing effects on regional radiative balance. Mul...

  8. Influence of habitat amount, arrangement, and use on population trend estimates of male Kirtland's warblers

    USGS Publications Warehouse

    Donner, D.M.; Probst, J.R.; Ribic, C.A.

    2008-01-01

    Kirtland's warblers (Dendroica kirtlandii) persist in a naturally patchy environment of young, regenerating jack pine forests (i.e., 5-23 years old) created after wildfires and human logging activities. We examined how changing landscape structure from 26 years of forest management and wildfire disturbances influenced population size and spatial dispersion of male Kirtland's warblers within their restricted breeding range in northern Lower Michigan, USA. The male Kirtland's warbler population was six times larger in 2004 (1,322) compared to 1979 (205); the change was nonlinear with 1987 and 1994 identified as significant points of change. In 1987, the population trend began increasing after a slowly declining trend prior to 1987, and the rate of increase appeared to slow after 1994. Total amount of suitable habitat and the relative area of wildfire-regenerated habitat were the most important factors explaining population trend. Suitable habitat increased 149% primarily due to increasing plantations from forest management. The relative amount and location of wildfire-regenerated habitat modified the distribution of males among various habitat types, and the spatial variation in their abundance across the primary breeding range. These findings indicate that the Kirtland's warbler male population shifted its use of habitat types temporally and spatially as the population increased and as the relative availability of habitats changed through time. We demonstrate that researchers and managers need to consider not only habitat quality, but the temporal and the spatial context of habitat availability and population levels when making habitat restoration decisions. ?? 2008 Springer Science+Business Media B.V.

  9. Spatial and temporal analyses of metrics of tuberculosis infection in badgers (Meles meles) from the Republic of Ireland: Trends in apparent prevalence.

    PubMed

    Byrne, A W; Kenny, K; Fogarty, U; O'Keeffe, J J; More, S J; McGrath, G; Teeling, M; Martin, S W; Dohoo, I R

    2015-12-01

    Badgers are a wildlife host of Mycobacterium bovis, the causative agent of bovine tuberculosis (bTB), and an important contributor to the epidemiology of bTB in cattle in Ireland and Britain. Repeated culling of badgers in high prevalence cattle bTB areas has been used in the Republic of Ireland as one tool to reduce intra- and interspecific transmission of M. bovis. We assessed factors that influenced infection prevalence of culled badgers from 2009 to 2012 (n=4948) where spatial, temporal and intrinsic factor data were available using multivariable modelling. Prevalence appeared higher in western areas than eastern areas of Ireland and badgers were more likely to be test-positive if caught at a sett (burrow system) which was close to other infected setts (spatial clustering of infection). There was a significant positive association between badger test-status and cattle prevalence of M. bovis infection at a spatial scale of 1km around setts. Badgers were more likely to be deemed test positive if they were male (OR: 1.9) or a parous female (OR: 1.7), compared to a female who had never conceived. Our results are consistent with different groups within badger populations having differential exposures and therefore infection risk (for example, parous vs. non-parous females). Furthermore, bTB clusters within the badger population, with greater risk to badgers in setts that are closest to other infected setts. The effective scale of the association of bTB risk between badger and cattle populations may be relatively large in Ireland. Our data indicate that the overall trend in prevalence of M. bovis infection in badgers has decreased in Ireland (P<0.001) while controlling for significant confounders over the study period, and follows a longer temporal trend from 2007 to 2013, where unadjusted apparent prevalence declined from 26% to 11% during 2007 to mid-2011, followed by a stable trend between 9 and 11% thereafter (n=10,267). Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Spatial and temporal variations in airborne Ambrosia pollen in Europe.

    PubMed

    Sikoparija, B; Skjøth, C A; Celenk, S; Testoni, C; Abramidze, T; Alm Kübler, K; Belmonte, J; Berger, U; Bonini, M; Charalampopoulos, A; Damialis, A; Clot, B; Dahl, Å; de Weger, L A; Gehrig, R; Hendrickx, M; Hoebeke, L; Ianovici, N; Kofol Seliger, A; Magyar, D; Mányoki, G; Milkovska, S; Myszkowska, D; Páldy, A; Pashley, C H; Rasmussen, K; Ritenberga, O; Rodinkova, V; Rybníček, O; Shalaboda, V; Šaulienė, I; Ščevková, J; Stjepanović, B; Thibaudon, M; Verstraeten, C; Vokou, D; Yankova, R; Smith, M

    2017-01-01

    The European Commission Cooperation in Science and Technology (COST) Action FA1203 "SMARTER" aims to make recommendations for the sustainable management of Ambrosia across Europe and for monitoring its efficiency and cost-effectiveness. The goal of the present study is to provide a baseline for spatial and temporal variations in airborne Ambrosia pollen in Europe that can be used for the management and evaluation of this noxious plant. The study covers the full range of Ambrosia artemisiifolia L. distribution over Europe (39°N-60°N; 2°W-45°E). Airborne Ambrosia pollen data for the principal flowering period of Ambrosia (August-September) recorded during a 10-year period (2004-2013) were obtained from 242 monitoring sites. The mean sum of daily average airborne Ambrosia pollen and the number of days that Ambrosia pollen was recorded in the air were analysed. The mean and standard deviation (SD) were calculated regardless of the number of years included in the study period, while trends are based on those time series with 8 or more years of data. Trends were considered significant at p  < 0.05. There were few significant trends in the magnitude and frequency of atmospheric Ambrosia pollen (only 8% for the mean sum of daily average Ambrosia pollen concentrations and 14% for the mean number of days Ambrosia pollen were recorded in the air). The direction of any trends varied locally and reflected changes in sources of the pollen, either in size or in distance from the monitoring station. Pollen monitoring is important for providing an early warning of the expansion of this invasive and noxious plant.

  11. Impacts of the spatial extent of pollen-climate calibration-set on the absolute values, range and trends of reconstructed Holocene precipitation

    NASA Astrophysics Data System (ADS)

    Cao, X.; Tian, F.; Telford, R.; Ni, J.; Xu, Q.; Chen, F.; Liu, X.; Stebich, M.; Zhao, Y.; Herzschuh, U.

    2017-12-01

    Pollen-based quantitative reconstructions of past climate variables is a standard palaeoclimatic approach. Despite knowing that the spatial extent of the calibration-set affects the reconstruction result, guidance is lacking as to how to determine a suitable spatial extent of the pollen-climate calibration-set. In this study, past mean annual precipitation (Pann) during the Holocene (since 11.5 cal ka BP) is reconstructed repeatedly for pollen records from Qinghai Lake (36.7°N, 100.5°E; north-east Tibetan Plateau), Gonghai Lake (38.9°N, 112.2°E; north China) and Sihailongwan Lake (42.3°N, 126.6°E; north-east China) using calibration-sets of varying spatial extents extracted from the modern pollen dataset of China and Mongolia (2559 sampling sites and 168 pollen taxa in total). Results indicate that the spatial extent of the calibration-set has a strong impact on model performance, analogue quality and reconstruction diagnostics (absolute value, range, trend, optimum). Generally, these effects are stronger with the modern analogue technique (MAT) than with weighted averaging partial least squares (WA-PLS). With respect to fossil spectra from northern China, the spatial extent of calibration-sets should be restricted to ca. 1000 km in radius because small-scale calibration-sets (<800 km radius) will likely fail to include enough spatial variation in the modern pollen assemblages to reflect the temporal range shifts during the Holocene, while too broad a scale calibration-set (>1500 km radius) will include taxa with very different pollen-climate relationships. Based on our results we conclude that the optimal calibration-set should 1) cover a reasonably large spatial extent with an even distribution of modern pollen samples; 2) possess good model performance as indicated by cross-validation, high analogue quality, and excellent fit with the target fossil pollen spectra; 3) possess high taxonomic resolution, and 4) obey the modern and past distribution ranges of taxa inferred from palaeo-genetic and macrofossil studies.

  12. Analysis of Ozone Trends and Spatial Variations in the North American Lower and Middle Troposphere from a Long-term Ozone Climatology Dataset

    NASA Astrophysics Data System (ADS)

    Liu, J.; Tarasick, D. W.; Mao, H.; Li, Y., , Dr; Osman, M.; Zhao, T.; Jung, J.; Fioletov, V.; Moeini, O.

    2017-12-01

    Ozone trends and spatial variations in the North American free troposphere from the 1970s to the 2000s are characterized, based on the newly developed Trajectory-mapped Ozonesonde dataset for the Stratosphere and Troposphere (TOST). TOST uses a special domain-filling technique with forward and backward trajectory calculations to fill in spatial gaps in ozonesonde data. TOST is resolved in latitude, longitude, and altitude so it can provide new information on the long-term variations of troposheric ozone in three dimensions. . Global trend calculations with sparse and irregularly-spaced ozonesonde data must contend with the problem of how to properly weight the data in a zonal or regional average. As TOST spreads the data according to dynamic meteorological information, in a zonal or regional average it will therefore weight the data according to the meteorologically-determined area that each site samples. Through four decades, the highest ozone concentrations in the lower and middle troposphere generally appeared over the central midlatitudes of North America. Longitudinally, ozone was lowest over the southern Pacific Ocean, intermediate over the North American continent, and highest in the outflow along the east coast. The overall ozone trends in the four decades averaged over North America are positive. In particular, there has been an increasing trend at high latitudes between 50-90°N in the North American middle troposphere. Our analysis suggests that this may be caused by influences from the stratosphere and from lower latitudes during the period. The trends from TOST are compared with the original ozonesonde data at selected stations and both datasets correlate closely.

  13. Different trends in extreme and median surface aerosol extinction coefficients over China inferred from quality-controlled visibility data

    NASA Astrophysics Data System (ADS)

    Li, Jing; Li, Chengcai; Zhao, Chunsheng

    2018-03-01

    Although the temporal changes in aerosol properties have been widely investigated, the majority of studies has focused on average conditions without much emphasis on the extremes. However, the latter can be more important in terms of human health and climate change. This study uses a previously validated, quality-controlled visibility dataset to investigate the long-term trends (expressed in terms of relative changes) in extreme surface aerosol extinction coefficient (AEC) over China and compares them with the median trends. Two methods are used to independently evaluate the trends, which arrive at consistent results. The signs of extreme and median trends are generally coherent, whereas their magnitudes show distinct spatial and temporal differences. In the 1980s, an overall positive trend is found throughout China with the extreme trend exceeding the mean trend, except for northwest China and the North China Plain. In the 1990s, AEC over northeast and northwest China started to decline while the rest of the country still exhibited an increase. The extreme trends continued to dominate in the south while they yielded to the mean trend in the north. After the year 2000, the extreme trend became weaker than the mean trend overall in terms of both the magnitude and significance level. The annual trend can be primarily attributed to winter and fall trends. The results suggest that the decadal changes in pollution in China may be governed by different mechanisms. Synoptic conditions that often result in extreme air quality changes might have dominated in the 1980s, whereas emission increase might have been the main factor for the 2000s.

  14. Recent trends in paralytic shellfish toxins in Puget Sound, relationships to climate, and capacity for prediction of toxic events

    Treesearch

    Stephanie K. Moore; Nathan J. Mantua; Barbara M. Hickey; Vera L. Trainer

    2009-01-01

    Temporal and spatial trends in paralytic shellfish toxins (PSTs) in Puget Sound shellfish and their relationships with climate are investigated using long-term monitoring data since 1957. Data are selected for trend analyses based on the sensitivity of shellfish species to PSTs and their depuration rates, and the frequency of sample collection at individual sites....

  15. Spatial and temporal trends in runoff at long-term streamgages within and near the Chesapeake Bay Watershed

    USGS Publications Warehouse

    Rice, Karen C.; Hirsch, Robert M.

    2012-01-01

    Long-term streamflow data within the Chesapeake Bay watershed and surrounding area were analyzed in an attempt to identify trends in streamflow. Data from 30 streamgages near and within the Chesapeake Bay watershed were selected from 1930 through 2010 for analysis. Streamflow data were converted to runoff and trend slopes in percent change per decade were calculated. Trend slopes for three runoff statistics (the 7-day minimum, the mean, and the 1-day maximum) were analyzed annually and seasonally. The slopes also were analyzed both spatially and temporally. The spatial results indicated that trend slopes in the northern half of the watershed were generally greater than those in the southern half. The temporal analysis was done by splitting the 80-year flow record into two subsets; records for 28 streamgages were analyzed for 1930 through 1969 and records for 30 streamgages were analyzed for 1970 through 2010. The mean of the data for all sites for each year were plotted so that the following datasets were analyzed: the 7-day minimum runoff for the north, the 7-day minimum runoff for the south, the mean runoff for the north, the mean runoff for the south, the 1-day maximum runoff for the north, and the 1-day maximum runoff for the south. Results indicated that the period 1930 through 1969 was statistically different from the period 1970 through 2010. For the 7-day minimum runoff and the mean runoff, the latter period had significantly higher streamflow than did the earlier period, although within those two periods no significant linear trends were identified. For the 1-day maximum runoff, no step trend or linear trend could be shown to be statistically significant for the north, although the south showed a mixture of an upward step trend accompanied by linear downtrends within the periods. In no case was a change identified that indicated an increasing rate of change over time, and no general pattern was identified of hydrologic conditions becoming "more extreme" over time.

  16. Spatial and temporal trends of reference crop evapotranspiration and its influential variables in Yangtze River Delta, eastern China

    NASA Astrophysics Data System (ADS)

    Xu, Yu; Xu, Youpeng; Wang, Yuefeng; Wu, Lei; Li, Guang; Song, Song

    2017-11-01

    Reference crop evapotranspiration (ETo) is one of the most important links in hydrologic circulation and greatly affects regional agricultural production and water resource management. Its variation has drawn more and more attention in the context of global warming. We used the Penman-Monteith method of the Food and Agriculture Organization, based on meteorological factors such as air temperature, sunshine duration, wind speed, and relative humidity to calculate the ETo over 46 meteorological stations located in the Yangtze River Delta, eastern China, from 1957 to 2014. The spatial distributions and temporal trends in ETo were analyzed based on the modified Mann-Kendall trend test and linear regression method, while ArcGIS software was employed to produce the distribution maps. The multiple stepwise regression method was applied in the analysis of the meteorological variable time series to identify the causes of any observed trends in ETo. The results indicated that annual ETo showed an obvious spatial pattern of higher values in the north than in the south. Annual increasing trends were found at 34 meteorological stations (73.91 % of the total), which were mainly located in the southeast. Among them, 12 (26.09 % of the total) stations showed significant trends. We saw a dominance of increasing trends in the monthly ETo except for January, February, and August. The high value zone of monthly ETo appeared in the northwest from February to June, mid-south area from July to August, and southeast coastal area from September to January. The research period was divided into two stages—stage I (1957-1989) and stage II (1990-2014)—to investigate the long-term temporal ETo variation. In stage I, almost 85 % of the total stations experienced decreasing trends, while more than half of the meteorological stations showed significant increasing trends in annual ETo during stage II except in February and September. Relative humidity, wind speed, and sunshine duration were identified as the most dominant meteorological variables influencing annual ETo changes. The results are expected to assist water resource managers and policy makers in making better planning decisions in the research region.

  17. Long-term trends and spatial patterns of PM2.5-induced premature mortality in South and Southeast Asia from 1999 to 2014.

    PubMed

    Shi, Yusheng; Matsunaga, Tsuneo; Yamaguchi, Yasushi; Zhao, Aimei; Li, Zhengqiang; Gu, Xingfa

    2018-08-01

    Fine particulate matter (PM 2.5 ) poses a potential threat to human health, including premature mortality under long-term exposure. Based on a long-term series of high-resolution (0.01°×0.01°) satellite-retrieved PM 2.5 concentrations, this study estimated the premature mortality attributable to PM 2.5 in South and Southeast Asia (SSEA) from 1999 to 2014. Then, the long-term trends and spatial characteristics of PM 2.5 -induced premature deaths (1999-2014) were analyzed using trend analyses and standard deviation ellipses. Results showed the estimated number of PM 2.5 -induced average annual premature deaths in SSEA was 1,447,000. The numbers increased from 1,179,400 in 1999 to 1,724,900 in 2014, with a growth rate of 38% and net increase of 545,500. Stroke and ischemic heart disease were the two principal contributors, accounting for 39% and 35% of the total, respectively. High values were concentrated in North India, Bangladesh, East Pakistan, and some metropolitan areas of Southeast Asia. An estimated 991,600 deaths in India was quantified (i.e., ~69% of the total premature deaths in SSEA). The long-term trends (1999-2014) of PM 2.5 -related premature mortality exhibited consistent incremental tendencies in all countries except Sri Lanka. The findings of this study suggest that strict controls of PM 2.5 concentrations in SSEA are urgently required. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Future changes over the Himalayas: Maximum and minimum temperature

    NASA Astrophysics Data System (ADS)

    Dimri, A. P.; Kumar, D.; Choudhary, A.; Maharana, P.

    2018-03-01

    An assessment of the projection of minimum and maximum air temperature over the Indian Himalayan region (IHR) from the COordinated Regional Climate Downscaling EXperiment- South Asia (hereafter, CORDEX-SA) regional climate model (RCM) experiments have been carried out under two different Representative Concentration Pathway (RCP) scenarios. The major aim of this study is to assess the probable future changes in the minimum and maximum climatology and its long-term trend under different RCPs along with the elevation dependent warming over the IHR. A number of statistical analysis such as changes in mean climatology, long-term spatial trend and probability distribution function are carried out to detect the signals of changes in climate. The study also tries to quantify the uncertainties associated with different model experiments and their ensemble in space, time and for different seasons. The model experiments and their ensemble show prominent cold bias over Himalayas for present climate. However, statistically significant higher warming rate (0.23-0.52 °C/decade) for both minimum and maximum air temperature (Tmin and Tmax) is observed for all the seasons under both RCPs. The rate of warming intensifies with the increase in the radiative forcing under a range of greenhouse gas scenarios starting from RCP4.5 to RCP8.5. In addition to this, a wide range of spatial variability and disagreements in the magnitude of trend between different models describes the uncertainty associated with the model projections and scenarios. The projected rate of increase of Tmin may destabilize the snow formation at the higher altitudes in the northern and western parts of Himalayan region, while rising trend of Tmax over southern flank may effectively melt more snow cover. Such combined effect of rising trend of Tmin and Tmax may pose a potential threat to the glacial deposits. The overall trend of Diurnal temperature range (DTR) portrays increasing trend across entire area with highest magnitude under RCP8.5. This higher rate of increase is imparted from the predominant rise of Tmax as compared to Tmin.

  19. Competition for spectral irradiance between epilimnetic optically active dissolved and suspended matter and phytoplankton in the metalimnion. Consequences for limnology and chemistry.

    PubMed

    Bracchini, Luca; Dattilo, Arduino Massimo; Falcucci, Margherita; Hull, Vincent; Tognazzi, Antonio; Rossi, Claudio; Loiselle, Steven Arthur

    2011-06-01

    In deep lakes, water column stratification isolates the surface water from the deeper bottom layers, creating a three dimensional differentiation of the chemical, physical, biological and optical characteristics of the waters. Chromophoric dissolved organic matter (CDOM) and total suspended solids (TSS) play an important role in the attenuation of ultraviolet and photosynthetically active radiation. In the present analysis of spectral irradiance, we show that the wavelength composition of the metalimnetic visible irradiance was influenced by epilimnetic spatial distribution of CDOM. We found a low occurrence of blue-green photons in the metalimnion where epilimnetic concentrations of CDOM are high. In this field study, the spatial variation of the spectral irradiance in the metalimnion correlates with the observed metalimnetic concentrations of chlorophyll a as well as chlorophyll a : chlorophyll b/c ratios. Dissolved oxygen, pH, and nutrients trends suggest that chlorophyll a concentrations were representative of the phytoplankton biomass and primary production. Thus, metalimnetic changes of spectral irradiance may have a direct impact on primary production and an indirect effect on the spatial trends of pH, dissolved oxygen, and inorganic nutrients in the metalimnion.

  20. Spatiotemporal hurdle models for zero-inflated count data: Exploring trends in emergency department visits.

    PubMed

    Neelon, Brian; Chang, Howard H; Ling, Qiang; Hastings, Nicole S

    2016-12-01

    Motivated by a study exploring spatiotemporal trends in emergency department use, we develop a class of two-part hurdle models for the analysis of zero-inflated areal count data. The models consist of two components-one for the probability of any emergency department use and one for the number of emergency department visits given use. Through a hierarchical structure, the models incorporate both patient- and region-level predictors, as well as spatially and temporally correlated random effects for each model component. The random effects are assigned multivariate conditionally autoregressive priors, which induce dependence between the components and provide spatial and temporal smoothing across adjacent spatial units and time periods, resulting in improved inferences. To accommodate potential overdispersion, we consider a range of parametric specifications for the positive counts, including truncated negative binomial and generalized Poisson distributions. We adopt a Bayesian inferential approach, and posterior computation is handled conveniently within standard Bayesian software. Our results indicate that the negative binomial and generalized Poisson hurdle models vastly outperform the Poisson hurdle model, demonstrating that overdispersed hurdle models provide a useful approach to analyzing zero-inflated spatiotemporal data. © The Author(s) 2014.

  1. Spatial analysis of relative humidity during ungauged periods in a mountainous region

    NASA Astrophysics Data System (ADS)

    Um, Myoung-Jin; Kim, Yeonjoo

    2017-08-01

    Although atmospheric humidity influences environmental and agricultural conditions, thereby influencing plant growth, human health, and air pollution, efforts to develop spatial maps of atmospheric humidity using statistical approaches have thus far been limited. This study therefore aims to develop statistical approaches for inferring the spatial distribution of relative humidity (RH) for a mountainous island, for which data are not uniformly available across the region. A multiple regression analysis based on various mathematical models was used to identify the optimal model for estimating monthly RH by incorporating not only temperature but also location and elevation. Based on the regression analysis, we extended the monthly RH data from weather stations to cover the ungauged periods when no RH observations were available. Then, two different types of station-based data, the observational data and the data extended via the regression model, were used to form grid-based data with a resolution of 100 m. The grid-based data that used the extended station-based data captured the increasing RH trend along an elevation gradient. Furthermore, annual RH values averaged over the regions were examined. Decreasing temporal trends were found in most cases, with magnitudes varying based on the season and region.

  2. Spatial-temporal trend and health implications of polycyclic aromatic hydrocarbons (PAHs) in resident oysters, South China Sea: A case study of Eastern Guangdong coast.

    PubMed

    Yu, Zi-Ling; Lin, Qin; Gu, Yang-Guang; Ke, Chang-Liang; Sun, Run-Xia

    2016-09-15

    Spatial and temporal distributions of polycyclic aromatic hydrocarbons (PAHs) were investigated in Eastern Guangdong coast, China. Total PAH concentrations in oysters ranged from 231 to 1178ng/g with a mean concentration of 622ng/g dry weight. Compared with other bays and estuaries, PAH levels in oysters were moderate. Spatial distribution of PAHs was site specific, with relatively high PAH concentrations observed in Zhelin Bay and Kaozhouyang Bay. Based on the Spearman test analysis, only PAH concentration in oysters from Jiazi Harbor showed a significant increasing trend (P<0.05). Three-ring PAHs were the most abundant, accounting for 54.2%-88.4% of total PAHs. Diagnostic ratios suggested that PAHs were derived mainly from petroleum origin. BaP and ∑4PAH concentrations were well within the European Union limits (5ng/g and 30ng/g wet weight, respectively). The incremental lifetime cancer risks (ILCR) for PAHs were <10(-5), indicating that the adverse health risks associated with oyster consumption in this area were minimal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Flexural subsidence and basement tectonics of the Cretaceous Western Interior basin, United States

    NASA Astrophysics Data System (ADS)

    Pang, Ming; Nummedal, Dag

    1995-02-01

    The flexural subsidence history recorded in Cenomanian to early Campanian (97 to 80 Ma) strata in the Cretaceous U.S. Western Interior basin was studied with two-dimensional flexural backstripping techniques. Results indicate that the flexural subsidence resulting from thrust loading was superimposed on epeirogenic subsidence in the foreland basin. The flexural component exhibits significant spatial and temporal variations along both the strike and dip relative to the Sevier thrust belt. The greatest cumulative subsidence occurred in southwestern Wyoming and northern Utah. Concurrent subsidence in northwestern Montana and southern Utah was insignificant. Temporal trends in subsidence also show a distinct regional pattern. From the Cenomanian to late Turonian (97 to 90 Ma), subsidence rates were high in Utah and much lower in Wyoming and Montana. In contrast, during the Coniacian and Santonian (90 to 85 Ma) subsidence accelerated rapidly in Wyoming, increased slightly in Montana, and decreased in Utah. We suggest that these spatially and temporally varying subsidence patterns reflect the interplay of several geodynamic factors, including: (1) temporal and spatial variation in emplacement of the thrust loads, (2) segmentation of the basement into adjacent blocks with different rheological properties, (3) reactivation of basement fault trends, and (4) regional dynamic topographic effects.

  4. Spatiospectral Analysis of Accelerated Protons from Sub-Micron Liquid Crystal Films

    NASA Astrophysics Data System (ADS)

    Willis, Christopher; Poole, Patrick; Cochran, Ginevra; van Woerkom, Linn; Schumacher, Douglass

    2017-10-01

    Recent studies on ion acceleration have trended towards ultra-thin (<1 μm) targets due to improved ion energies and yields from these targets. As discussed here, ultra-thin targets may exhibit unusual spatial distributions in the accelerated ions, such that ion spectrometer data may not be representative of the overall distribution. More complete characterization of the ions requires spectral unfolding of radiochromic film (RCF) data, yielding spatially dependent spectra. Spatiospectral data will be presented from several experiments using sub-micron liquid crystal film targets at the Scarlet (OSU), Texas Petawatt (UT, Austin) and PHELIX (GSI, Darmstadt) laser facilities, including evidence of >75 MeV protons from 300 nm films at PHELIX. Analysis of RCF data is supported by Monte-Carlo modeling of RCF response to ions and electrons using FLUKA. Trends in the resulting ion distributions will be discussed including spatially varying slope temperature and observation of annular ring features at moderate ion energies on many shots. This material is based upon work supported by the AFOSR under award FA9550-14-1-0085, by the DARPA PULSE program through a Grant from AMRDEC, and by the NNSA under contract DE-NA0003107.

  5. Emerging trends in geospatial artificial intelligence (geoAI): potential applications for environmental epidemiology.

    PubMed

    VoPham, Trang; Hart, Jaime E; Laden, Francine; Chiang, Yao-Yi

    2018-04-17

    Geospatial artificial intelligence (geoAI) is an emerging scientific discipline that combines innovations in spatial science, artificial intelligence methods in machine learning (e.g., deep learning), data mining, and high-performance computing to extract knowledge from spatial big data. In environmental epidemiology, exposure modeling is a commonly used approach to conduct exposure assessment to determine the distribution of exposures in study populations. geoAI technologies provide important advantages for exposure modeling in environmental epidemiology, including the ability to incorporate large amounts of big spatial and temporal data in a variety of formats; computational efficiency; flexibility in algorithms and workflows to accommodate relevant characteristics of spatial (environmental) processes including spatial nonstationarity; and scalability to model other environmental exposures across different geographic areas. The objectives of this commentary are to provide an overview of key concepts surrounding the evolving and interdisciplinary field of geoAI including spatial data science, machine learning, deep learning, and data mining; recent geoAI applications in research; and potential future directions for geoAI in environmental epidemiology.

  6. Social determinants, their relationship with leprosy risk and temporal trends in a tri-border region in Latin America

    PubMed Central

    Arcoverde, Marcos Augusto Moraes; Ramos, Antônio Carlos Viera; Alves, Luana Seles; Berra, Thais Zamboni; Arroyo, Luiz Henrique; de Queiroz, Ana Angélica Rêgo; dos Santos, Danielle Talita; Belchior, Aylana de Souza; Alves, Josilene Dália; Pieri, Flávia Meneguetti; Silva-Sobrinho, Reinaldo Antônio; Pinto, Ione Carvalho; Tavares, Clodis Maria; Yamamura, Mellina; Frade, Marco Andrey Cipriani; Palha, Pedro Fredemir; Chiaravalloti-Neto, Francisco; Arcêncio, Ricardo Alexandre

    2018-01-01

    Background Brazil is the only country in Latin America that has adopted a national health system. This causes differences in access to health among Latin American countries and induces noticeable migration to Brazilian regions to seek healthcare. This phenomenon has led to difficulties in the control and elimination of diseases related to poverty, such as leprosy. The aim of this study was to evaluate social determinants and their relationship with the risk of leprosy, as well as to examine the temporal trend of its occurrence in a Brazilian municipality located on the tri-border area between Brazil, Paraguay and Argentina. Methods This ecological study investigated newly-diagnosed cases of leprosy between 2003 and 2015. Exploratory analysis of the data was performed through descriptive statistics. For spatial analysis, geocoding of the data was performed using spatial scan statistic techniques to obtain the Relative Risk (RR) for each census tract, with their respective 95% confidence intervals calculated. The Bivariate Moran I test, Ordinary Least Squares (OLS) and Geographically Weighted Regression (GWR) models were applied to analyze the spatial relationships of social determinants and leprosy risk. The temporal trend of the annual coefficient of new cases was obtained through the Prais-Winsten regression. A standard error of 5% was considered statistically significant (p < 0.05). Results Of the 840 new cases identified in the study, there was a predominance of females (n = 427, 50.8%), of white race/color (n = 685, 81.6%), age range 15 to 59 years (n = 624, 74.3%), and incomplete elementary education (n = 504, 60.0%). The results obtained from multivariate analysis revealed that the proportion of households with monthly nominal household income per capita greater than 1 minimum wage (β = 0.025, p = 0.036) and people of brown race (β = -0.101, p = 0.024) were statistically-significantly associated with risk of illness due to leprosy. These results also confirmed that social determinants and risk of leprosy were significantly spatially non-stationary. Regarding the temporal trend, a decrease of 4% (95% CI [-0.053, -0.033], p = 0.000) per year was observed in the rate of detection of new cases of leprosy. Conclusion The social determinants income and race/color were associated with the risk of leprosy. The study’s highlighting of these social determinants can contribute to the development of public policies directed toward the elimination of leprosy in the border region. PMID:29624595

  7. Global and regional variability and change in terrestrial ecosystems net primary production and NDVI: A model-data comparison

    DOE PAGES

    Rafique, Rashid; Zhao, Fang; de Jong, Rogier; ...

    2016-02-25

    The net primary productivity (NPP) is commonly used for understanding the dynamics of terrestrial ecosystems and their role in carbon cycle. We used a combination of the most recent NDVI and model–based NPP estimates (from five models of the TRENDY project) for the period 1982-2012, to study the role of terrestrial ecosystems in carbon cycle under the prevailing climate conditions. We found that 80% and 67% of the global land area showed positive NPP and NDVI values, respectively, for this period. The global NPP was estimated to be about 63 Pg C y -1, with an increase of 0.214 Pgmore » C y -1 y -1. Similarly, the global mean NDVI was estimated to be 0.33, with an increasing trend of 0.00041 y-1. The spatial patterns of NPP and NDVI demonstrated substantial variability, especially at the regional level, for most part of the globe. However, on temporal scale, both global NPP and NDVI showed a corresponding pattern of increase (decrease) for the duration of this study except for few years (e.g. 1990 and 1995-98). Generally, the Northern Hemisphere showed stronger NDVI and NPP increasing trends over time compared to the Southern Hemisphere; however, NDVI showed larger trends in Temperate regions while NPP showed larger trends in Boreal regions. Among the five models, the maximum and minimum NPP were produced by JULES (72.4 Pg C y -1) and LPJ (53.72 Pg C y -1) models, respectively. At latitudinal level, the NDVI and NPP ranges were ~0.035 y -1 to ~-0.016 y -1 and ~0.10 Pg C y -1 y -1 to ~-0.047 Pg C y -1 y -1, respectively. Overall, the results of this study suggest that the modeled NPP generally correspond to the NDVI trends in the temporal dimension. Lastly, the significant variability in spatial patterns of NPP and NDVI trends points to a need for research to understand the causes of these discrepancies between molded and observed ecosystem dynamics, and the carbon cycle.« less

  8. Status and Trends of Nitrogen Loads to Estuaries of the Conterminous U.S.

    EPA Science Inventory

    We applied regional SPARROW (SPAtially Referenced Regressions On Watershed attributes) models to estimate status and trends of potential nitrogen loads to estuaries of the conterminous United States. The original SPARROW models predict average detrended loads by source based on ...

  9. Evaluation of procedures for prediction of unconventional gas in the presence of geologic trends

    USGS Publications Warehouse

    Attanasi, E.D.; Coburn, T.C.

    2009-01-01

    This study extends the application of local spatial nonparametric prediction models to the estimation of recoverable gas volumes in continuous-type gas plays to regimes where there is a single geologic trend. A transformation is presented, originally proposed by Tomczak, that offsets the distortions caused by the trend. This article reports on numerical experiments that compare predictive and classification performance of the local nonparametric prediction models based on the transformation with models based on Euclidean distance. The transformation offers improvement in average root mean square error when the trend is not severely misspecified. Because of the local nature of the models, even those based on Euclidean distance in the presence of trends are reasonably robust. The tests based on other model performance metrics such as prediction error associated with the high-grade tracts and the ability of the models to identify sites with the largest gas volumes also demonstrate the robustness of both local modeling approaches. ?? International Association for Mathematical Geology 2009.

  10. Nitrogen oxides and ozone in Portugal: trends and ozone estimation in an urban and a rural site.

    PubMed

    Fernández-Guisuraga, José Manuel; Castro, Amaya; Alves, Célia; Calvo, Ana; Alonso-Blanco, Elisabeth; Blanco-Alegre, Carlos; Rocha, Alfredo; Fraile, Roberto

    2016-09-01

    This study provides an analysis of the spatial distribution and trends of NO, NO2 and O3 concentrations in Portugal between 1995 and 2010. Furthermore, an estimation model for daily ozone concentrations was developed for an urban and a rural site. NO concentration showed a significant decreasing trend in most urban stations. A decreasing trend in NO2 is only observed in the stations with less influence from emissions of primary NO2. Several stations showed a significant upward trend in O3 as a result of the decrease in the NO/NO2 ratio. In the northern rural region, ozone showed a strong correlation with wind direction, highlighting the importance of long-range transport. In the urban site, most of the variance is explained by the NO2/NOX ratio. The results obtained by the ozone estimation model in the urban site fit 2013 observed data. In the rural site, the estimated ozone during extreme events agrees with observed concentration.

  11. 75 years of dryland science: Trends and gaps in arid ecology literature

    PubMed Central

    Dickman, Chris R.; Wardle, Glenda M.

    2017-01-01

    Growth in the publication of scientific articles is occurring at an exponential rate, prompting a growing need to synthesise information in a timely manner to combat urgent environmental problems and guide future research. Here, we undertake a topic analysis of dryland literature over the last 75 years (8218 articles) to identify areas in arid ecology that are well studied and topics that are emerging. Four topics—wetlands, mammal ecology, litter decomposition and spatial modelling, were identified as ‘hot topics’ that showed higher than average growth in publications from 1940 to 2015. Five topics—remote sensing, climate, habitat and spatial, agriculture and soils-microbes, were identified as ‘cold topics’, with lower than average growth over the survey period, but higher than average numbers of publications. Topics in arid ecology clustered into seven broad groups on word-based similarity. These groups ranged from mammal ecology and population genetics, broad-scale management and ecosystem modelling, plant ecology, agriculture and ecophysiology, to populations and paleoclimate. These patterns may reflect trends in the field of ecology more broadly. We also identified two broad research gaps in arid ecology: population genetics, and habitat and spatial research. Collaborations between population genetics and ecologists and investigations of ecological processes across spatial scales would contribute profitably to the advancement of arid ecology and to ecology more broadly. PMID:28384186

  12. Wet-bulb, dew point, and air temperature trends in Spain

    NASA Astrophysics Data System (ADS)

    Moratiel, R.; Soriano, B.; Centeno, A.; Spano, D.; Snyder, R. L.

    2017-10-01

    This study analyses trends of mean ( T m), maximum ( T x), minimum ( T n), dew point ( T d), and wet-bulb temperatures ( T w) on an annual, seasonal, and monthly time scale over Spain during the period 1981-2010. The main purpose was to determine how temperature and humidity changes are impacting on T w, which is probably a better measure of climate change than temperature alone. In this study, 43 weather stations were used to detect data trends using the nonparametric Mann-Kendall test and the Sen method to estimate the slope of trends. Significant linear trends observed for T m, T x, and T n versus year were 56, 58, and 47 % of the weather stations, respectively, with temperature ranges between 0.2 and 0.4 °C per decade. The months with bigger trends were April, May, June, and July with the highest trend for T x. The spatial behaviour of T d and T w was variable, with various locations showing trends from -0.6 to +0.3 °C per decade for T d and from -0.4 to +0.5 °C per decade for T w. Both T d and T w showed negative trends for July, August, September, November, and December. Comparing the trends versus time of each variable versus each of the other variables exhibited poor relationships, which means you cannot predict the trend of one variable from the trend of another variable. The trend of T x was not related to the trend of T n. The trends of T x, T m, and T n versus time were unrelated to the trends versus time of either T d or T w. The trend of T w showed a high coefficient of determination with the trend of T d with an annual value of R 2 = 0.86. Therefore, the T w trend is more related to changes in humidity than temperature.

  13. Quantification of Local Warming Trend: A Remote Sensing-Based Approach

    PubMed Central

    Rahaman, Khan Rubayet; Hassan, Quazi K.

    2017-01-01

    Understanding the warming trends at local level is critical; and, the development of relevant adaptation and mitigation policies at those levels are quite challenging. Here, our overall goal was to generate local warming trend map at 1 km spatial resolution by using: (i) Moderate Resolution Imaging Spectroradiometer (MODIS)-based 8-day composite surface temperature data; (ii) weather station-based yearly average air temperature data; and (iii) air temperature normal (i.e., 30 year average) data over the Canadian province of Alberta during the period 1961–2010. Thus, we analysed the station-based air temperature data in generating relationships between air temperature normal and yearly average air temperature in order to facilitate the selection of year-specific MODIS-based surface temperature data. These MODIS data in conjunction with weather station-based air temperature normal data were then used to model local warming trends. We observed that almost 88% areas of the province experienced warming trends (i.e., up to 1.5°C). The study concluded that remote sensing technology could be useful for delineating generic trends associated with local warming. PMID:28072857

  14. Prevailing climatic trends and runoff response from Hindukush-Karakoram-Himalaya, upper Indus Basin

    NASA Astrophysics Data System (ADS)

    Hasson, Shabeh ul; Böhner, Jürgen; Lucarini, Valerio

    2017-05-01

    Largely depending on the meltwater from the Hindukush-Karakoram-Himalaya, withdrawals from the upper Indus Basin (UIB) contribute half of the surface water availability in Pakistan, indispensable for agricultural production systems, industrial and domestic use, and hydropower generation. Despite such importance, a comprehensive assessment of prevailing state of relevant climatic variables determining the water availability is largely missing. Against this background, this study assesses the trends in maximum, minimum and mean temperatures, diurnal temperature range and precipitation from 18 stations (1250-4500 m a.s.l.) for their overlapping period of record (1995-2012) and, separately, from six stations of their long-term record (1961-2012). For this, a Mann-Kendall test on serially independent time series is applied to detect the existence of a trend, while its true slope is estimated using the Sen's slope method. Further, locally identified climatic trends are statistically assessed for their spatial-scale significance within 10 identified subregions of the UIB, and the spatially (field-) significant climatic trends are then qualitatively compared with the trends in discharge out of corresponding subregions. Over the recent period (1995-2012), we find warming and drying of spring (field-significant in March) and increasing early melt season discharge from most of the subregions, likely due to a rapid snowmelt. In stark contrast, most of the subregions feature a field-significant cooling within the monsoon period (particularly in July and September), which coincides well with the main glacier melt season. Hence, a decreasing or weakly increasing discharge is observed from the corresponding subregions during mid- to late melt season (particularly in July). Such tendencies, being largely consistent with the long-term trends (1961-2012), most likely indicate dominance of the nival but suppression of the glacial melt regime, altering overall hydrology of the UIB in future. These findings, though constrained by sparse and short observations, largely contribute in understanding the UIB melt runoff dynamics and address the hydroclimatic explanation of the Karakoram Anomaly.

  15. Understanding Evapotranspiration Trends and their Driving Mechanisms: An investigation across CONUS based on numerical modeling

    NASA Astrophysics Data System (ADS)

    Parr, D.; Wang, G.; Fu, C.

    2015-12-01

    As shown by climate models, increasing global temperatures and enhanced greenhouse gas concentration such as CO2 have had major effects on the dynamics of the hydrologic cycle and the surface energy budget, in particular, on evapotranspiration (ET). ET has significant decadal variations whether it be regionally or globally and variations of ET have major environmental and socioeconomic impacts. A number of recent studies have found a global increase in annual mean ET around 7mm per year per decade from about 1982 to the late 1990s. These results correspond with what is expected from an intensification of the hydrological cycle. However, the increasing ET trend did not continue after 1998 and from 1998-2008 this global trend was replaced with a decreasing trend of similar magnitude. This study uses numerical modeling to investigate if similar changing ET trends emerge in the continental U.S and part of northern Mexico. After validating model simulated evaporative fluxes and comparing spatial patterns to the aforementioned studies, various changing trends of different signs are identified across the U.S., and specific regions with strong signals of change are chosen for further examination with the purpose of identifying the root causes of these changing trends and which variables are most influential towards change. Experimental simulations conducted to isolate the most influential factors towards ET reveal that precipitation amount as well as its characteristics have the greatest impact on the ET trends discovered, with other factors like wind and air temperatures displaying less influence over inter-annual trends. This study helps better understand terrestrial ET and it's interactions which will help facilitate better predictions of change in surface climate such as heatwaves and droughts as well as impacts on water resources.

  16. Climate and Hydrological Data Analysis for hydrological and solute transport modelling purposes in the Muriaé River basin, Atlantic Forest Biome, SE Brazil

    NASA Astrophysics Data System (ADS)

    Santos, Juliana; Künne, Annika; Kralisch, Sven; Fink, Manfred; Brenning, Alexander

    2016-04-01

    The Muriaé River basin in SE Brazil has been experiencing an increasing pressure on water resources, due to the population growth of the Rio de Janeiro urban area connected with the growth of the industrial and agricultural sector. This leads to water scarcity, riverine forest degradation, soil erosion and water quality problems among other impacts. Additionally the region has been suffering with seasonal precipitation variations leading to extreme events such as droughts, floods and landslides. Climate projections for the near future indicate a high inter-annual variability of rainfall with an increase in the frequency and intensity of heavy rainfall events combined with a statistically significant increase in the duration of dry periods and a reduced duration of wet periods. This may lead to increased soil erosion during the wet season, while the longer dry periods may reduce the vegetation cover, leaving the soil even more exposed and vulnerable to soil erosion. In consequence, it is crucial to understand how climate affects the interaction between the timing of extreme rainfall events, hydrological processes, vegetation growth, soil cover and soil erosion. In this context, physically-based hydrological modelling can contribute to a better understanding of spatial-temporal process dynamics in the Earth's system and support Integrated Water Resourses Management (IWRM) and adaptation strategies. The study area is the Muriaé river basin which has an area of approx. 8000 km² in Minas Gerais and Rio de Janeiro States. The basin is representative of a region of domain of hillslopes areas with the predominancy of pasture for livestock production. This study will present some of the relevant analyses which have been carried out on data (climate and streamflow) prior to using them for hydrological modelling, including consistency checks, homogeneity, pattern and statistical analyses, or annual and seasonal trends detection. Several inconsistencies on the raw data were detected and excluded from the dataset. Statistically significant annual and seasonal trends have been detected such as an increasing trend for annual mean temperature, a decreasing trend for annual relative humidity and an increasing trend for precipitation during the wet season. Moreover, the physically-based and fully distributed hydrological model JAMS/J2K-S has been applied and the spatial-temporal visualization of the climate data as well as an evaluation of spatial uncertainty will be presented.

  17. Coarse climate change projections for species living in a fine-scaled world.

    PubMed

    Nadeau, Christopher P; Urban, Mark C; Bridle, Jon R

    2017-01-01

    Accurately predicting biological impacts of climate change is necessary to guide policy. However, the resolution of climate data could be affecting the accuracy of climate change impact assessments. Here, we review the spatial and temporal resolution of climate data used in impact assessments and demonstrate that these resolutions are often too coarse relative to biologically relevant scales. We then develop a framework that partitions climate into three important components: trend, variance, and autocorrelation. We apply this framework to map different global climate regimes and identify where coarse climate data is most and least likely to reduce the accuracy of impact assessments. We show that impact assessments for many large mammals and birds use climate data with a spatial resolution similar to the biologically relevant area encompassing population dynamics. Conversely, impact assessments for many small mammals, herpetofauna, and plants use climate data with a spatial resolution that is orders of magnitude larger than the area encompassing population dynamics. Most impact assessments also use climate data with a coarse temporal resolution. We suggest that climate data with a coarse spatial resolution is likely to reduce the accuracy of impact assessments the most in climates with high spatial trend and variance (e.g., much of western North and South America) and the least in climates with low spatial trend and variance (e.g., the Great Plains of the USA). Climate data with a coarse temporal resolution is likely to reduce the accuracy of impact assessments the most in the northern half of the northern hemisphere where temporal climatic variance is high. Our framework provides one way to identify where improving the resolution of climate data will have the largest impact on the accuracy of biological predictions under climate change. © 2016 John Wiley & Sons Ltd.

  18. Trends in Middle East climate extreme indices from 1950 to 2003

    NASA Astrophysics Data System (ADS)

    Zhang, Xuebin; Aguilar, Enric; Sensoy, Serhat; Melkonyan, Hamlet; Tagiyeva, Umayra; Ahmed, Nader; Kutaladze, Nato; Rahimzadeh, Fatemeh; Taghipour, Afsaneh; Hantosh, T. H.; Albert, Pinhas; Semawi, Mohammed; Karam Ali, Mohammad; Said Al-Shabibi, Mansoor Halal; Al-Oulan, Zaid; Zatari, Taha; Al Dean Khelet, Imad; Hamoud, Saleh; Sagir, Ramazan; Demircan, Mesut; Eken, Mehmet; Adiguzel, Mustafa; Alexander, Lisa; Peterson, Thomas C.; Wallis, Trevor

    2005-11-01

    A climate change workshop for the Middle East brought together scientists and data for the region to produce the first area-wide analysis of climate extremes for the region. This paper reports trends in extreme precipitation and temperature indices that were computed during the workshop and additional indices data that became available after the workshop. Trends in these indices were examined for 1950-2003 at 52 stations covering 15 countries, including Armenia, Azerbaijan, Bahrain, Cyprus, Georgia, Iran, Iraq, Israel, Jordan, Kuwait, Oman, Qatar, Saudi Arabia, Syria, and Turkey. Results indicate that there have been statistically significant, spatially coherent trends in temperature indices that are related to temperature increases in the region. Significant, increasing trends have been found in the annual maximum of daily maximum and minimum temperature, the annual minimum of daily maximum and minimum temperature, the number of summer nights, and the number of days where daily temperature has exceeded its 90th percentile. Significant negative trends have been found in the number of days when daily temperature is below its 10th percentile and daily temperature range. Trends in precipitation indices, including the number of days with precipitation, the average precipitation intensity, and maximum daily precipitation events, are weak in general and do not show spatial coherence. The workshop attendees have generously made the indices data available for the international research community.

  19. Mobile Air Monitoring Data Processing Strategies and Effects on Spatial Air Pollution Trends

    EPA Science Inventory

    The collection of real-time air quality measurements while in motion (i.e., mobile monitoring) is currently conducted worldwide to evaluate in situ emissions, local air quality trends, and air pollutant exposure. This measurement strategy pushes the limits of traditional data an...

  20. Comprehensive Status and Trends of Nitrogen Loads to Estuaries in the Conterminous United States: Pacific Coast Results

    EPA Science Inventory

    We applied regional SPARROW (SPAtially Referenced Regressions On Watershed attributes) models to estimate status and trends of potential nitrogen loads to estuaries of the conterminous United States. The original Regional SPARROW models predict average detrended loads by source ...

  1. The spatial diffusion of norovirus epidemics over three seasons in Tokyo.

    PubMed

    Inaida, S; Shobugawa, Y; Matsuno, S; Saito, R; Suzuki, H

    2015-02-01

    We studied the spatial trend of norovirus (NoV) epidemics using sentinel gastroenteritis surveillance data for patients aged <15 years (n = 140) in the Tokyo area for the 2006-2007 to 2008-2009 seasons utilizing the kriging method of geographical information system (GIS). This is the first study of the spreading pattern of NoV epidemics using sentinel surveillance data. Correlations of sentinel cases between the seasons and with demographic data were examined to identify the trend and related factors. A similar pattern of diffusion was observed over the seasons, and its mean correlation between seasons was significantly high. A higher number of cases were found in the peripheral area, which surrounds the most populated central area, and showed a correlation with the ratio of the children population (r = 0·321, P < 0·01) and the ratio of residents in larger families (r = 0·263, P < 0·01). While NoV susceptibility remained, the results suggest a transmission route in the local community as a possible epidemic factor. Prevention with focus on the peripheral area is desirable.

  2. Spatial Variability in Enceladus' Plume Material: Convergence of Evidence or Coincidence?

    NASA Astrophysics Data System (ADS)

    Dhingra, Deepak; Hedman, Matthew M.; Clark, Roger Nelson

    2016-10-01

    Systematic spatial trends in the properties of the plume material emerging from Enceladus' tiger stripes can be observed in multiple observations from the Cassini mission. Subtle near infrared spectral differences within the plume have been reported across tiger stripes based on Visual and Infrared Mapping Spectrometer (VIMS) observations at high spatial resolution [1]. These spectral differences are likely due to variable water-ice grain size distribution along the source fissures (i.e. tiger stripes) and perhaps by the presence/absence of water vapor emission [2]. We now report a correlation of this spatial trend (along tiger stripes) with several other published results including (a) differences in the ice particle sizes across tiger stripes on Enceladus' surface [3, 4], (b) the surface abundance of organic material [3] and finally, (c) the relative proportion of type II grains (associated with organic/siliceous material) in the plume [5] from Damascus to Alexandria as measured by the Cosmic Dust Analyzer (CDA) instrument.The general trend indicates that at least some of the plume properties (viz. particle size, organic abundance) achieve a peak over Damascus and then become gradually subtle towards Alexandria. The observed differences between tiger stripes eruptions and the nature of correlations (trends from Damascus to Alexandria) hold important clues to the subsurface environment at Enceladus including differences in the geological setting of the individual tiger stripes [6]. The latter is a likely possibility given the large spatial spread of eruptions in Encealdus' South Polar Terrain (SPT).[1] Dhingra et al., (2015) 46th Lunar Planet. Sci. Conf., Abstract#1648[2] Dhingra et al. (2016) Icarus, submitted[3] Brown et al. (2006) Science, 311, 1425-1428[4] Jaumann et al. (2008) Icarus, 193, 407-419[5] Postberg et al. (2011) Nature, doi:10.1038/nature10175[6] Yin and Pappalardo (2015) Icarus, 260, 409-439

  3. Effect of Spatial Heterogeneity of Runoff Generation Mechanisms on the Scaling Behavior of Event Runoff Responses in a Natural River Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hongyi; Sivapalan, Murugesu

    2011-05-26

    This paper investigates the effects of spatial heterogeneity of runoff generation processes on the scaling behavior of event runoff responses in a natural catchment, the Illinois River Basin near Tahlequah in Oklahoma. A previous study in this basin had revealed a systematic spatial trend in the relative dominance of different runoff generation mechanisms, with the fraction of total runoff generation due to the subsurface stormflow mechanism shown to increase in the downstream direction, while surface runoff generation by saturation excess showed a corresponding decrease. These trends were attributable to corresponding systematic trends in landscape properties, namely, saturated hydraulic conductivity ofmore » soils and topographic slope. Considering the differences in the timing of hillslope responses between the different runoff generation mechanisms, this paper then explores their impacts on the runoff routing responses, including how they change with increasing spatial scale. For this purpose we utilize a distributed, physically based hydrological model, with a fully hydraulic stream network routing component. The model is used to generate instantaneous response functions (IRF) for nested catchments of a range of sizes along the river network, as well as quantitative measures of their shape, e.g., peak and time-to-peak. In order to decipher and separate the effects of landscape heterogeneity from those due to basin geomorphology and hydrologic regime, the model simulations are carried out for three hypothetical cases that make assumptions about regarding landscape properties (uniform, a systematic trend, and heterogeneity plus the trend), repeating these simulations under wet and dry antecedent conditions. The simulations produced expected (consistent with previous theoretical studies) and also somewhat surprising results. For example, the power-law relationship between peak of the IRF and drainage area is shown to be flatter under wet conditions than under dry conditions, even though the (faster) saturation excess mechanism is more dominant under wet conditions. This result appears to be caused by partial area runoff generation: under wet conditions, the fraction of saturation area is about 30%, while under dry conditions it is less than 10% for the same input of rainfall. This means travel times associated with overland flow (that mostly contributes to the peak and time to peak) are in fact longer under wet conditions than during dry conditions. The power-law relationship between peak and drainage area also exhibits a scaling break at around 1000 km2, and this can be shown to be related to the peculiar shape of the catchment, which is reflected in a corresponding scaling break in the mainstream length versus drainage area relationship (i.e., Hack’s Law) at about 1,000 km2.« less

  4. Utilizing Higher Resolution Land Surface Remote Sensing Data for Assessing Recent Trends over Asia Monsoon Region

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory

    2010-01-01

    The slide presentation discusses the integration of 1-kilometer spatial resolution land temperature data from the Moderate Resolution Imaging Spectroradiometer (MODIS), with 8-day temporal resolution, into the NASA Monsoon-Asia Integrated Regional Study (MAIRS) Data Center. The data will be available for analysis and visualization in the Giovanni data system. It discusses the NASA MAIRS Data Center, presents an introduction to the data access tools, and an introduction of Products available from the service, discusses the higher resolution Land Surface Temperature (LST) and presents preliminary results of LST Trends over China.

  5. Spatial and temporal variability of precipitation in Serbia for the period 1961-2010

    NASA Astrophysics Data System (ADS)

    Milovanović, Boško; Schuster, Phillip; Radovanović, Milan; Vakanjac, Vesna Ristić; Schneider, Christoph

    2017-10-01

    Monthly, seasonal and annual sums of precipitation in Serbia were analysed in this paper for the period 1961-2010. Latitude, longitude and altitude of 421 precipitation stations and terrain features in their close environment (slope and aspect of terrain within a radius of 10 km around the station) were used to develop a regression model on which spatial distribution of precipitation was calculated. The spatial distribution of annual, June (maximum values for almost all of the stations) and February (minimum values for almost all of the stations) precipitation is presented. Annual precipitation amounts ranged from 500 to 600 mm to over 1100 mm. June precipitation ranged from 60 to 140 mm and February precipitation from 30 to 100 mm. The validation results expressed as root mean square error (RMSE) for monthly sums ranged from 3.9 mm in October (7.5% of the average precipitation for this month) to 6.2 mm in April (10.4%). For seasonal sums, RMSE ranged from 10.4 mm during autumn (6.1% of the average precipitation for this season) to 20.5 mm during winter (13.4%). On the annual scale, RMSE was 68 mm (9.5% of the average amount of precipitation). We further analysed precipitation trends using Sen's estimation, while the Mann-Kendall test was used for testing the statistical significance of the trends. For most parts of Serbia, the mean annual precipitation trends fell between -5 and +5 and +5 and +15 mm/decade. June precipitation trends were mainly between -8 and +8 mm/decade. February precipitation trends generally ranged from -3 to +3 mm/decade.

  6. The characteristics on spatiotemporal variations of summer heatwaves in China

    NASA Astrophysics Data System (ADS)

    Qixiang, C.; Wang, L.; Wu, S., II; Li, Y.

    2016-12-01

    Summer heatwaves in China have impacts on forestry, agriculture resource, infrastructure, and heat -related illness and mortality. Based on daily air temperature and relative humidity from the Chinese Meteorological Data Sharing Service System, the spatial distribution and trends of the intensity, duration, and frequency of heatwaves in China during 1960-2015 were analyzed. Considering climatic variability, we defined a heatwave as a spell of consecutive days with maximum temperatures exceeding the relative threshold (temperature percentile) .We also consider a indices combined hot days and tropical nights (CHT), and the humidity-corrected apparent temperature (AT) to analyze the health impacts of hot days in summer. This study shows that while the average frequency and duration of heatwaves has an increasing trend since 1990s, the North China Plain has a decreasing trend. This study also shows that the largest CHT values occur in southeast China, and the largest AT values occur in South China.

  7. Trend-surface analysis of morphometric parameters: A case study in southeastern Brazil

    NASA Astrophysics Data System (ADS)

    Grohmann, Carlos Henrique

    2005-10-01

    Trend-surface analysis was carried out on data from morphometric parameters isobase and hydraulic gradient. The study area, located in the eastern border of Quadrilátero Ferrífero, southeastern Brazil, presents four main geomorphological units, one characterized by fluvial dissection, two of mountainous relief, with a scarp of hundreds of meters of fall between them, and a flat plateau in the central portion of the fluvially dissected terrains. Morphometric maps were evaluated in GRASS-GIS and statistics were made on R statistical language, using the spatial package. Analysis of variance (ANOVA) was made to test the significance of each surface and the significance of increasing polynomial degree. The best results were achieved with sixth-order surface for isobase and second-order surface for hydraulic gradient. Shape and orientation of residual maps contours for selected trends were compared with structures inferred from several morphometric maps, and a good correlation is present.

  8. A statistical model and national data set for partioning fish-tissue mercury concentration variation between spatiotemporal and sample characteristic effects

    USGS Publications Warehouse

    Wente, Stephen P.

    2004-01-01

    Many Federal, Tribal, State, and local agencies monitor mercury in fish-tissue samples to identify sites with elevated fish-tissue mercury (fish-mercury) concentrations, track changes in fish-mercury concentrations over time, and produce fish-consumption advisories. Interpretation of such monitoring data commonly is impeded by difficulties in separating the effects of sample characteristics (species, tissues sampled, and sizes of fish) from the effects of spatial and temporal trends on fish-mercury concentrations. Without such a separation, variation in fish-mercury concentrations due to differences in the characteristics of samples collected over time or across space can be misattributed to temporal or spatial trends; and/or actual trends in fish-mercury concentration can be misattributed to differences in sample characteristics. This report describes a statistical model and national data set (31,813 samples) for calibrating the aforementioned statistical model that can separate spatiotemporal and sample characteristic effects in fish-mercury concentration data. This model could be useful for evaluating spatial and temporal trends in fishmercury concentrations and developing fish-consumption advisories. The observed fish-mercury concentration data and model predictions can be accessed, displayed geospatially, and downloaded via the World Wide Web (http://emmma.usgs.gov). This report and the associated web site may assist in the interpretation of large amounts of data from widespread fishmercury monitoring efforts.

  9. Filling the white space on maps of European runoff trends: estimates from a multi-model ensemble

    NASA Astrophysics Data System (ADS)

    Stahl, K.; Tallaksen, L. M.; Hannaford, J.; van Lanen, H. A. J.

    2012-02-01

    An overall appraisal of runoff changes at the European scale has been hindered by "white space" on maps of observed trends due to a paucity of readily-available streamflow data. This study tested whether this white space can be filled using estimates of trends derived from model simulations of European runoff. The simulations stem from an ensemble of eight global hydrological models that were forced with the same climate input for the period 1963-2000. A validation of the derived trends for 293 grid cells across the European domain with observation-based trend estimates, allowed an assessment of the uncertainty of the modelled trends. The models agreed on the predominant continental scale patterns of trends, but disagreed on magnitudes and even on trend directions at the transition between regions with increasing and decreasing runoff trends, in complex terrain with a high spatial variability, and in snow-dominated regimes. Model estimates appeared most reliable in reproducing trends in annual runoff, winter runoff, and 7-day high flow. Modelled trends in runoff during the summer months, spring (for snow influenced regions) and autumn, and trends in summer low flow, were more variable and should be viewed with caution due to higher uncertainty. The ensemble mean overall provided the best representation of the trends in the observations. Maps of trends in annual runoff based on the ensemble mean demonstrated a pronounced continental dipole pattern of positive trends in western and northern Europe and negative trends in southern and parts of Eastern Europe, which has not previously been demonstrated and discussed in comparable detail.

  10. Temporal, spatial, and body size effects on growth rates of loggerhead sea turtles (Caretta caretta) in the Northwest Atlantic

    USGS Publications Warehouse

    Bjorndal, Karen A.; Schroeder, Barbara A.; Foley, Allen M.; Witherington, Blair E.; Bresette, Michael; Clark, David; Herren, Richard M.; Arendt, Michael D.; Schmid, Jeffrey R.; Meylan, Anne B.; Meylan, Peter A.; Provancha, Jane A.; Hart, Kristen M.; Lamont, Margaret M.; Carthy, Raymond R.; Bolten, Alan B.

    2013-01-01

    In response to a call from the US National Research Council for research programs to combine their data to improve sea turtle population assessments, we analyzed somatic growth data for Northwest Atlantic (NWA) loggerhead sea turtles (Caretta caretta) from 10 research programs. We assessed growth dynamics over wide ranges of geography (9–33°N latitude), time (1978–2012), and body size (35.4–103.3 cm carapace length). Generalized additive models revealed significant spatial and temporal variation in growth rates and a significant decline in growth rates with increasing body size. Growth was more rapid in waters south of the USA (<24°N) than in USA waters. Growth dynamics in southern waters in the NWA need more study because sample size was small. Within USA waters, the significant spatial effect in growth rates of immature loggerheads did not exhibit a consistent latitudinal trend. Growth rates declined significantly from 1997 through 2007 and then leveled off or increased. During this same interval, annual nest counts in Florida declined by 43 % (Witherington et al. in Ecol Appl 19:30–54, 2009) before rebounding. Whether these simultaneous declines reflect responses in productivity to a common environmental change should be explored to determine whether somatic growth rates can help interpret population trends based on annual counts of nests or nesting females. Because of the significant spatial and temporal variation in growth rates, population models of NWA loggerheads should avoid employing growth data from restricted spatial or temporal coverage to calculate demographic metrics such as age at sexual maturity.

  11. Spatial trends in S and Cl in ash leachates of the May 18th, 1980 eruption of Mt. St Helens

    NASA Astrophysics Data System (ADS)

    Ayris, Paul M.; Delmelle, Pierre; Durant, Adam J.; Damby, David E.; Maters, Elena C.

    2014-05-01

    It has long been known that surficial deposits of salts and acids on volcanic ash particles derive from interactions of ash with sulphur and halide species within the eruption plume and volcanic cloud. These compounds are mobilised as ash particles are wetted, and beneficial or detrimental environmental and health impacts may be induced where the most concentrated solutions are produced. However, limited mechanistic understanding of gas-ash interactions currently precludes prediction of the spatial distribution or variation in leachate chemistry and concentration following an eruption. Sampling and leachate analysis of freshly-fallen ash therefore offers the sole method by which such variations can be observed. Previous ash leachate studies often involve a limited number of ash samples, and utilise a 'one-dimensional' analysis that considers variation in terms of absolute distance from the source volcano. Here, we demonstrate that extensive sampling and a 'two-dimensional' analysis can uncover more complex spatial trends. We compiled over 358 leachate compositions from the May 18th 1980 eruption of Mt. St. Helens. Of the water-extracted leachates, only 95 compositions from ash sampled at 45 localities between 35 and 1129 km from the volcano are sufficiently documented to be retrospectively comparable. To consider the effects of intra-deposit variability, we calculated average concentrations of leachate data within 11×22 km grid cells across the region, and defined a data quality parameter to reflect confidence in the derived values. To investigate any dependence of leachate composition on the grain size distribution, we generated an interpolated map of geometric specific surface area variation across the deposit, normalising ash leachate data to the calculated specific surface area at the corresponding sampling location. The data treatment identifies S and Cl enrichments in proximal blast deposits; relatively constant Cl concentrations across the ashfall deposits; and a core region of depleted S concentrations in ashfall deposits between 240 and 400 km from the volcano, coinciding with the distal thickening of the deposit attributed to particle aggregation and enhanced fallout. Blast deposit enrichments can be attributed to pre-eruptive uptake of SO2 and HCl gases within the cryptodome, while ashfall deposit trends could reflect differences in the rates of HCl and SO2 uptake by ash, modified by in-plume aggregation processes. However, to validate and interpret such trends with greater confidence would have required a greater spatial density and temporal resolution of sampling, with comprehensive characterisation of the recovered ash and the surrounding deposit. In the future, rigorous study and sampling of equivalent extent to that in the aftermath of the historic Mt. St. Helens eruption is likely required to extend insight into processes affecting the spatial distribution of leachate chemistry.

  12. Spatial and temporal evaluation of long term trend (2005-2014) of OMI retrieved NO2 and SO2 concentrations in Henan Province, China

    NASA Astrophysics Data System (ADS)

    Zhang, Leishi; Lee, Chih Sheng; Zhang, Ruiqin; Chen, Liangfu

    2017-04-01

    Tropospheric NO2 and SO2 concentrations are of great importance with regard to air quality, atmospheric chemistry, and climate change. Due to lack of surface monitoring stations, this study analyzes long term trend of NO2 and SO2 levels (2005-2014), retrieved from Ozone Monitoring Instrument (OMI) board on the NASA's Aura satellite, in an important region of China - Henan Province. Henan Province, located in North China Plain, has encountered serious air pollution problems including extremely high PM2.5 concentrations and as one of the most polluted region in China. The satellite spatial images clearly show that high levels of both NO2 and SO2 are concentrated in north and northeastern regions with much lower levels observed in other parts of Henan. Both pollutants exhibit the highest levels in winter with the least in summer/spring. The temporal trend analysis based on moving average of deseasonalized and decyclic data indicates that for NO2, there is a continuous increasing pattern from 2005 to 2011 at 6.4% per year, thereafter, it shows a decreasing trend (10.6% per year). As for SO2, the increasing trend is about 16% per year from 2005 to 2007 with decreasing rate 7% per year from 2007 to 2014. The economic development with incredible annual 11% GDP growth in Henan is responsible for increasing levels of NO2 and SO2. The observed decreasing SO2 level starting in 2007 is due to reduced SO2 emission, utilization of flue gas desulfurization (FGD) devices and to some extent, in preparation of Beijing 2008 Olympic Games. On the other hand, increasing vehicle numbers (155% from 2006 to 2012) and coal consumption (37% during the same span), along with the lack of denitration process for removing flue/exhaust gas NOx are responsible for increasing NO2 trend until 2011. The ratio of SO2/NO2 started decreasing in 2007 and dropped significantly from 2011 to 2013 indicating good performance of FGD and ever increasing NOx contribution from mobile sources. Unlike those observed in developed countries (US, EU and Japan) where a decreasing trend for both SO2 and NO2 has been observed since 1990s, the observed upward and downward trend found in Henan is similar to those found in North China Plain and other parts of China. The spatial and temporal trend analyses of SO2 and NO2 in four other regions in Henan further indicate a similar trend to those observed in Henan Province, albeit with different increasing and decreasing rate. The results provide regulatory agency to develop action plans to combat air pollution problem in general and SO2 and NO2 problems in particular in Henan. The implications of our findings and recommendations for decision makers are discussed in the paper.

  13. Implementation of a Time Series Analysis for the Assessment of the Role of Climate Variability in a Post-Disturbance Savanna System

    NASA Astrophysics Data System (ADS)

    Gibbes, C.; Southworth, J.; Waylen, P. R.

    2013-05-01

    How do climate variability and climate change influence vegetation cover and vegetation change in savannas? A landscape scale investigation of the effect of changes in precipitation on vegetation is undertaken through the employment of a time series analysis. The multi-national study region is located within the Kavango-Zambezi region, and is delineated by the Okavango, Kwando, and Zambezi watersheds. A mean-variance time-series analysis quantifies vegetation dynamics and characterizes vegetation response to climate. The spatially explicit approach used to quantify the persistence of vegetation productivity permits the extraction of information regarding long term climate-landscape dynamics. Results show a pattern of reduced mean annual precipitation and increased precipitation variability across key social and ecological areas within the study region. Despite decreased mean annual precipitation since the mid to late 1970's vegetation trends predominantly indicate increasing biomass. The limited areas which have diminished vegetative cover relate to specific vegetation types, and are associated with declines in precipitation variability. Results indicate that in addition to short term changes in vegetation cover, long term trends in productive biomass are apparent, relate to spatial differences in precipitation variability, and potentially represent shifts vegetation composition. This work highlights the importance of time-series analyses for examining climate-vegetation linkages in a spatially explicit manner within a highly vulnerable region of the world.

  14. Evaluation of wildfire patterns at the wildland-urban fringe across the continental U.S.

    NASA Astrophysics Data System (ADS)

    Kinoshita, A. M.; Hogue, T. S.

    2014-12-01

    Wildfires threaten ecosystems and urban development across the United States, posing significant implications for land management and natural processes such as watershed hydrology. This study investigates the spatial association between large wildfires and urbanization. Several geospatial dataset are combined to map wildfires (Monitoring Trends in Burn Severity for 1984 to 2012) and housing density (SILVIS Lab Spatial Analysis for Conservation and Sustainability decadal housing density for 1940 to 2030) relative to natural wildlands across the contiguous U.S. Several buffers (i.e. 25 km) are developed around wildlands (Protected Areas Database of the United States) to quantify the change and relationship in spatial fire and housing density patterns. Since 1984, wildfire behavior is cyclical and follows general climatology, where warmer years have more and larger fires. Ignition locations also follow transportation corridors and development which provide easy accessibility to wildlands. In California, both fire frequency and total acres burned exhibit increasing trends (statistically significant at 95%). The 1980s average wildfire frequency and total acres burned was 3100 fires and approximately 1200 km2, respectively. These numbers have increased to 2200 fires and over 1500 km2 in the 2010 to 2012 period alone. Initial observations also show that decennial population and area burned for four major Californian counties (Los Angeles, San Bernardino, San Diego, and Shasta) show strong correlation between the last decade of burned area, urban-fringe proximity, and urbanization trends. Improving our understanding of human induced wildfire regimes provides key information on urban fringe communities most vulnerable to the wildfire risks and can help inform regional development planning.

  15. Spatiotemporal trend analysis of metal concentrations in sediments of a residential California stream with toxicity and regulatory implications.

    PubMed

    Hall, Lenwood W; Anderson, Ronald D; Killen, William D

    2017-06-07

    The objective of this study was to determine if concentrations of arsenic, cadmium, chromium, copper, lead, nickel and zinc measured in the sediments of a residential stream in California (Pleasant Grove Creek) have changed temporally or spatially from 2006 to 2016. Threshold Effect Levels (TELs), conservative ecological effects benchmarks, and exceedances for the seven metals were also evaluated over the 11-year time period to provide insight into potential metal toxicity to resident benthic communities. In addition, the bioavailability of metals in sediments was also determined by calculating Simultaneous Extracted Metal/Acid Volatle Sulfide (SEM/AVS) ratios to allow an additional assessment of toxicity. Regulatory implications of this data set and the role of metal toxicity are also discussed. Stream-wide temporal trend analysis showed no statistically significant trends for any of the metals. However, spatial analysis for several sites located near storm drains did show a significant increase for most metals over the 11-year period. TEL exceedances during the 7 years of sampling, spanning 2006-2016, were reported for all metals with the number of exceedances ranging from 47 for copper and zinc to 1 for lead. A spatial analysis showed that the highest number of TEL exceedances and the highest number of SEM/AVS ratios greater than one with at least one metal exceeding a TEL occurred at upstream sites. The potentially toxic metal concentrations reported in Pleasant Grove Creek should be used in the 303 (d) listing process for impaired water bodies in California.

  16. Perspectives on Political Geography in AP® Human Geography

    ERIC Educational Resources Information Center

    Leib, Jonathan; Smothers-Marcello, Jody

    2016-01-01

    Two trends have remade the field of political geography over the past quarter-century. First, a revision of taken-for-granted concepts that amounted to "spatial determinism." Second, pioneering many new and emerging concepts such as political ecology. Both trends are important contributions to the evolving section of the AP Human…

  17. High resolution pollutant measurements in complex urban environments using mobile monitoring

    EPA Science Inventory

    Measuring air pollution in real-time using an instrumented vehicle platform has been an emerging strategy to resolve air pollution trends at a very fine spatial scale (10s of meters). Achieving second-by-second data representative of urban air quality trends requires advanced in...

  18. Spatial and Temporal Inter-Relationships between Anomalies and Trends of Temperature, Moisture, Cloud Cover, and OLR as Observed by AIRS/AMSU on Aqua

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2008-01-01

    AIRS/AMSU is the advanced IR/MW atmospheric sounding system launched on EOS Aqua in May 2002. Products derived from AIRS/AMSU by the AIRS Science Team include surface skin temperature and atmospheric temperature profiles; atmospheric humidity profiles, fractional cloud cover and cloud top pressure, and OLR. Products covering the period September 2002 through the present have been derived from AIRS/AMSU using the AIRS Science Team Version 5 retrieval algorithm. In this paper, we will show results covering the time period September 2006 - November 2008. This time period is marked by a substantial warming trend of Northern Hemisphere Extratropical land surface skin temperatures, as well as pronounced El Nino - La Nina episodes. These both influence the spatial and temporal anomaly patterns of atmospheric temperature and moisture profiles, as well as of cloud cover and Clear sky and All Sky OLR. The relationships between temporal and spatial anomalies of these parameters over this time period, as determined from AIRS/AMSU observations, will be shown, with particular emphasis on which contribute significantly to OLR anomalies in each of the tropics and extra-tropics. Results will also be shown to validate the anomalies and trends of temperature profiles and OLR as determined from analysis of AIRS/AMSU data. Global and regional trends during the 6 1/3 year period are not necessarily indicative of what has happened in the past, or what may happen in the future. Nevertheless, the inter-relationships of spatial and temporal anomalies of atmospheric geophysical parameters with those of surface skin temperature are indicative of climate processes, and can be used to test the performance of climate models when driven by changes in surface temperatures.

  19. Spatial and Temporal Inter-Relationship between Anomalies and Trends of Temperature, Moisture, Cloud Cover and OLR as Observed by AIRS/AMSU on Aqua

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Molnar, Gyula

    2009-01-01

    AIRS/AMSU is the advanced IR/MW atmospheric sounding system launched on EOS Aqua in May 2002. Products derived from AIRS/AMSU by the AIRS Science Team include surface skin temperature and atmospheric temperature profiled; atmospheric humidity profiles, fractional cloud clover and cloud top pressure, and OLR. Products covering the period September 2002 through the present have been derived from AIRS/AMSU using the AIRS Science Team Version 5 retrieval algorithm. In this paper, we will show results covering the time period September 2006 - November 2008. This time period is marked by a substantial warming trend of Northern Hemisphere Extra-tropical land surface skin temperatures, as well as pronounced El Nino - La Nina episodes. These both influence the spatial and temporal anomaly patterns of atmospheric temperature and moisture profiles, as well as of cloud cover and Clear Sky and All Sky OLR. The relationships between temporal and spatial anomalies of these parameters over this time period, as determined from AIRS/AMSU observations, will be shown with particular emphasis on which contribute significantly to OLR anomalies in each of the tropics and extra-tropics. Results will also be shown to evaluate the anomalies and trends of temperature profiles and OLR as determined from analysis of AIRS/AMSU data. Global and regional trends during the 6 1/3 year time period are not necessarily indicative of what has happened in the past, or what may happen in the future. Nevertheless, the inter-relationships of spatial and temporal anomalies of atmospheric geophysical parameters with those of surface skin temperature are indicative of climate processes, and can be used to test the performance of climate models when driven by changes in surface temperatures.

  20. Spatio-temporal variability of soil water content on the local scale in a Mediterranean mountain area (Vallcebre, North Eastern Spain). How different spatio-temporal scales reflect mean soil water content

    NASA Astrophysics Data System (ADS)

    Molina, Antonio J.; Latron, Jérôme; Rubio, Carles M.; Gallart, Francesc; Llorens, Pilar

    2014-08-01

    As a result of complex human-land interactions and topographic variability, many Mediterranean mountain catchments are covered by agricultural terraces that have locally modified the soil water content dynamic. Understanding these local-scale dynamics helps us grasp better how hydrology behaves on the catchment scale. Thus, this study examined soil water content variability in the upper 30 cm of the soil on a Mediterranean abandoned terrace in north-east Spain. Using a dataset of high spatial (regular grid of 128 automatic TDR probes at 2.5 m intervals) and temporal (20-min time step) resolution, gathered throughout a 84-day period, the spatio-temporal variability of soil water content at the local scale and the way that different spatio-temporal scales reflect the mean soil water content were investigated. Soil water content spatial variability and its relation to wetness conditions were examined, along with the spatial structuring of the soil water content within the terrace. Then, the ability of single probes and of different combinations of spatial measurements (transects and grids) to provide a good estimate of mean soil water content on the terrace scale was explored by means of temporal stability analyses. Finally, the effect of monitoring frequency on the magnitude of detectable daily soil water content variations was studied. Results showed that soil water content spatial variability followed a bimodal pattern of increasing absolute variability with increasing soil water content. In addition, a linear trend of decreasing soil water content as the distance from the inner part of the terrace increased was identified. Once this trend was subtracted, resulting semi-variograms suggested that the spatial resolution examined was too high to appreciate spatial structuring in the data. Thus, the spatial pattern should be considered as random. Of all the spatial designs tested, the 10 × 10 m mesh grid (9 probes) was considered the most suitable option for a good, time-stable estimate of mean soil water content, as no improvement was obtained with the 5 × 5 m mesh grid (30 probes). Finally, the results of temporal aggregation showed that decreasing the monitoring frequency down to 8 h during wetting-up periods and to 1 day during drying-down ones did not result in a loss of information on daily soil water content variations.

  1. Changes in daily and monthly rainfall in the Middle Yellow River, China

    NASA Astrophysics Data System (ADS)

    He, Yi; Tian, Peng; Mu, Xingmin; Gao, Peng; Zhao, Guangju; Wang, Fei; Li, Pengfei

    2017-07-01

    Highly concentrated precipitation, where a large percentage of annual precipitation occurs over a few days, may include a high risk of flooding and severe soil erosion. Thus, areas with severe erosion such as the Loess Plateau in China are particularly vulnerable to highly concentrated precipitation events due to climate change. In this study, we investigated spatial and temporal patterns in the concentration of rainfall in the Middle Yellow River (MYR) from the last 56 years (1958-2013). We used daily and monthly precipitation data from 26 meteorological stations in the study area to calculate the precipitation concentration index (PCI) and the concentration index (CI). The southern and northern parts of the MYR were characterized by a lower CI with a decreasing trend, while the middle parts had a higher CI with an increasing trend. High PCI values occurred in the southern MYR, while lower PCIs with a more homogenous rainfall distribution were found mainly in the northern parts of the MYR. The annual PCI and CI exhibited positive trends at most stations, although only a minority of stations had significant trends ( P < 0.05). At seasonal scales, CI exhibited significantly increasing trends in winter at most stations, while a few stations had significant trends in the other three seasons. These findings provide important reference information to facilitate ecological restoration and farming operations in the study region.

  2. [Evolution of maize climate productivity and its response to climate change in Heilongjiang Province, China.

    PubMed

    Li, Xiu Fen; Zhao, Hui Ying; Zhu, Hai Xia; Wang, Ping; Wang, Qiu Jing; Wang, Ming; Li, Yu Guang

    2016-08-01

    Under the background of climate change, revealing the change trend and spatial diffe-rence of maize climate productivity in-depth and understanding the regularity of maize climatic resources utilization can provide scientific basis for the macro-decision of agricultural production in Heilongjiang Province. Based on the 1981-2014 meteorological data of 72 weather stations and the corresponding maize yield data in Heilongjiang Province, by the methods of step by step revisal, spatial interpolation and linear trend analysis, this paper studied the photosynthetic productivity (PP), light-temperature productivity (LTP), and climatic productivity (CP) of spring maize, and their temporal and spatial variation characteristics, main influencing factors and light energy utilization efficiency, and evaluated the maize climate productivities under different climate scenarios in the future. The results showed that during the study period, the mean PP, LTP and CP in Heilongjiang Province were 26558, 19953, 18742 kg·hm -2 , respectively. Maize PP, LTP and CP were high in plains and low in mountains, and gradually decreased from southwest to northeast. PP, LTP and CP presented significantly increasing trends, and the increase rates were 378, 723 and 560 kg·hm -2 ·(10 a) -1 , respectively. The increase of radiation and temperature had positive effect on maize production in Heilongjiang Province. The potential productivity of maize presented significant response to climate change. The decrease of solar radiation led to the decline of PP in western Songnen Plain, but the increased temperature compensated the negative effect of solar radiation, so the downward trend of LTP was slowed. The response to climate warming was particularly evident in North and East, and LTP was significantly increased, which was sensitive to the change of precipitation in southwest of Songnen Plain and part of Sanjiang Plain. The average ratio of maize actual yield to its climate productivity was only 24.1%, there was still 75.9% to be developed. In the future, the warm and wet climate would benefit the improvement of maize climate productivity, while the cold and dry climate would make an adverse impact.

  3. Spatial and temporal analysis of fatal off-piste and backcountry avalanche accidents in Austria with a comparison of results in Switzerland, France, Italy and the US

    NASA Astrophysics Data System (ADS)

    Pfeifer, Christian; Höller, Peter; Zeileis, Achim

    2018-02-01

    In this article we analyzed spatial and temporal patterns of fatal Austrian avalanche accidents caused by backcountry and off-piste skiers and snowboarders within the winter periods 1967/1968-2015/2016. The data were based on reports of the Austrian Board for Alpine Safety and reports of the information services of the federal states. Using the date and the location of the recorded avalanche accidents, we were able to carry out spatial and temporal analyses applying generalized additive models and Markov random-field models. As a result of the trend analysis we noticed an increasing trend of backcountry and off-piste avalanche fatalities within the winter periods 1967/1968-2015/2016 (although slightly decreasing in recent years), which is in contradiction to the widespread opinion in Austria that the number of fatalities is constant over time. Additionally, we compared Austrian results with results of Switzerland, France, Italy and the US based on data from the International Commission of Alpine Rescue (ICAR). As a result of the spatial analysis, we noticed two hot spots of avalanche fatalities (Arlberg-Silvretta and Sölden). Because of the increasing trend and the rather narrow regional distribution of the fatalities, initiatives aimed at preventing avalanche accidents were highly recommended.

  4. Causes of spring vegetation greenness trends in the northern mid-high latitudes from 1982 to 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Jiafu; Shi, Xiaoying; Thornton, Peter E

    2012-01-01

    The Community Land Model version 4 (CLM4) is applied to explore the spatial temporal patterns of spring (April May) vegetation growth trends over the northern mid high latitudes (NMH) (>25 N) between 1982 and 2004. During the spring season through the 23 yr period, both the satellite-derived and simulated normalized difference vegetation index (NDVI) anomalies show a statistically significant correlation and an overall greening trend within the study area. Consistently with the observed NDVI temperature relation, the CLM4 NDVI shows a significant positive association with the spring temperature anomaly for the NMH, North America and Eurasia. Large study areas experiencemore » temperature discontinuity associated with contrasting NDVI trends. Before and after the turning point (TP) of the temperature trends, climatic variability plays a dominant role, while the other environmental factors exert minor effects on the NDVI tendencies. Simulated vegetation growth is broadly stimulated by the increasing atmospheric CO2. Trends show that nitrogen deposition increases NDVI mostly in southeastern China, and decreases NDVI mainly in western Russia after the temperature TP. Furthermore, land use-induced NDVI trends vary roughly with the respective changes in land management practices (crop areas and forest coverage). Our results highlight how non-climatic factors mitigate or exacerbate the impact of temperature on spring vegetation growth, particularly across regions with intensive human activity.« less

  5. Globally Increased Crop Growth and Cropping Intensity from the Long-Term Satellite-Based Observations

    NASA Astrophysics Data System (ADS)

    Chen, Bin

    2018-04-01

    Understanding the spatiotemporal change trend of global crop growth and multiple cropping system under climate change scenarios is a critical requirement for supporting the food security issue that maintains the function of human society. Many studies have predicted the effects of climate changes on crop production using a combination of filed studies and models, but there has been limited evidence relating decadal-scale climate change to global crop growth and the spatiotemporal distribution of multiple cropping system. Using long-term satellite-derived Normalized Difference Vegetation Index (NDVI) and observed climate data from 1982 to 2012, we investigated the crop growth trend, spatiotemporal pattern trend of agricultural cropping intensity, and their potential correlations with respect to the climate change drivers at a global scale. Results show that 82.97 % of global cropland maximum NDVI witnesses an increased trend while 17.03 % of that shows a decreased trend over the past three decades. The spatial distribution of multiple cropping system is observed to expand from lower latitude to higher latitude, and the increased cropping intensity is also witnessed globally. In terms of regional major crop zones, results show that all nine selected zones have an obvious upward trend of crop maximum NDVI (p < 0.001), and as for climatic drivers, the gradual temperature and precipitation changes have had a measurable impact on the crop growth trend.

  6. Temporal and Longitudinal Mercury Trends in Burbot (Lota lota) in the Russian Arctic.

    PubMed

    Pelletier, Alexander R; Castello, Leandro; Zhulidov, Alexander V; Gurtovaya, Tatiana Yu; Robarts, Richard D; Holmes, Robert M; Zhulidov, Daniel A; Spencer, Robert G M

    2017-11-21

    Current understanding of mercury (Hg) dynamics in the Arctic is hampered by a lack of data in the Russian Arctic region, which comprises about half of the entire Arctic watershed. This study quantified temporal and longitudinal trends in total mercury (THg) concentrations in burbot (Lota lota) in eight rivers of the Russian Arctic between 1980 and 2001, encompassing an expanse of 118 degrees of longitude. Burbot THg concentrations declined by an average of 2.6% annually across all eight rivers during the study period, decreasing by 39% from 0.171 μg g -1 wet weight (w.w.) in 1980 to 0.104 μg g -1 w.w. in 2001. THg concentrations in burbot also declined by an average of 1.8% per 10° of longitude from west to east across the study area between 1988 and 2001. These results, in combination with those of previous studies, suggest that Hg trends in Arctic freshwater fishes before 2001 were spatially and temporally heterogeneous, as those in the North American Arctic were mostly increasing while those in the Russian Arctic were mostly decreasing. It is suggested that Hg trends in Arctic animals may be influenced by both depositional and postdepositional processes.

  7. Analysis options for estimating status and trends in long-term monitoring

    USGS Publications Warehouse

    Bart, Jonathan; Beyer, Hawthorne L.

    2012-01-01

    This chapter describes methods for estimating long-term trends in ecological parameters. Other chapters in this volume discuss more advanced methods for analyzing monitoring data, but these methods may be relatively inaccessible to some readers. Therefore, this chapter provides an introduction to trend analysis for managers and biologists while also discussing general issues relevant to trend assessment in any long-term monitoring program. For simplicity, we focus on temporal trends in population size across years. We refer to the survey results for each year as the “annual means” (e.g. mean per transect, per plot, per time period). The methods apply with little or no modification, however, to formal estimates of population size, other temporal units (e.g. a month), to spatial or other dimensions such as elevation or a north–south gradient, and to other quantities such as chemical or geological parameters. The chapter primarily discusses methods for estimating population-wide parameters rather than studying variation in trend within the population, which can be examined using methods presented in other chapters (e.g. Chapters 7, 12, 20). We begin by reviewing key concepts related to trend analysis. We then describe how to evaluate potential bias in trend estimates. An overview of the statistical models used to quantify trends is then presented. We conclude by showing ways to estimate trends using simple methods that can be implemented with spreadsheets.

  8. Spatial analysis and characteristics of pig farming in Thailand.

    PubMed

    Thanapongtharm, Weerapong; Linard, Catherine; Chinson, Pornpiroon; Kasemsuwan, Suwicha; Visser, Marjolein; Gaughan, Andrea E; Epprech, Michael; Robinson, Timothy P; Gilbert, Marius

    2016-10-06

    In Thailand, pig production intensified significantly during the last decade, with many economic, epidemiological and environmental implications. Strategies toward more sustainable future developments are currently investigated, and these could be informed by a detailed assessment of the main trends in the pig sector, and on how different production systems are geographically distributed. This study had two main objectives. First, we aimed to describe the main trends and geographic patterns of pig production systems in Thailand in terms of pig type (native, breeding, and fattening pigs), farm scales (smallholder and large-scale farming systems) and type of farming systems (farrow-to-finish, nursery, and finishing systems) based on a very detailed 2010 census. Second, we aimed to study the statistical spatial association between these different types of pig farming distribution and a set of spatial variables describing access to feed and markets. Over the last decades, pig population gradually increased, with a continuously increasing number of pigs per holder, suggesting a continuing intensification of the sector. The different pig-production systems showed very contrasted geographical distributions. The spatial distribution of large-scale pig farms corresponds with that of commercial pig breeds, and spatial analysis conducted using Random Forest distribution models indicated that these were concentrated in lowland urban or peri-urban areas, close to means of transportation, facilitating supply to major markets such as provincial capitals and the Bangkok Metropolitan region. Conversely the smallholders were distributed throughout the country, with higher densities located in highland, remote, and rural areas, where they supply local rural markets. A limitation of the study was that pig farming systems were defined from the number of animals per farm, resulting in their possible misclassification, but this should have a limited impact on the main patterns revealed by the analysis. The very contrasted distribution of different pig production systems present opportunities for future regionalization of pig production. More specifically, the detailed geographical analysis of the different production systems will be used to spatially-inform planning decisions for pig farming accounting for the specific health, environment and economical implications of the different pig production systems.

  9. Spatiotemporal patterns of evapotranspiration in response to multiple environmental factors simulated by the Community Land Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Xiaoying; Mao, Jiafu; Thornton, Peter E

    In this study, spatial and temporal patterns of evapotranspiration (ET) over the period of 1982-2008 are investigated and attributed to multiple environmental factors using the Community Land Model version 4 (CLM4). Our results show that CLM4 captures the spatial distribution and interannual variability of ET well when compared to observation-based estimates derived from the FLUXNET network of eddy covariance towers using the model tree ensembles (MTE) approach. We find that climate trends and variability dominate predicted variability in ET. Elevated atmospheric CO2 concentration also plays an important role in modulating the trend of predicted ET over most land areas, andmore » functions as the dominant factor controlling ET changes over North America, South America and Asia regions. Compared to the effect of climate change and CO2 concentration, the roles of other factors such as nitrogen deposition, land use change and aerosol deposition are less pronounced and regionally dependent. For example, the aerosol deposition contribution is the third-most important factor for trends of ET over Europe, while it has the smallest impact on ET trend over other regions. As ET is a dominant component of the terrestrial water cycle, our results suggest that environmental factors like elevated CO2, nitrogen and aerosol depositions, and land use and land cover change, in addition to climate, could have significant impact on future projections of water resources and water cycle dynamics at global and regional scales.« less

  10. Potential human impacts of overlapping land-use and climate in a sensitive dryland: a case study of the Colorado Plateau, USA

    USGS Publications Warehouse

    Copeland, Stella; Bradford, John B.; Duniway, Michael C.; Schuster, Rudy

    2017-01-01

    Climate and land-use interactions are likely to affect future environmental and socioeconomic conditions in drylands, which tend to be limited by water resources and prone to land degradation. We characterized the potential for interactions between land-use types and land-use and climate change in a model dryland system, the Colorado Plateau, a region with a history of climatic variability and land-use change. We analyzed the spatial and temporal trends in aridification, land-use, and recreation at the county and 10 km2 grid scales. Our results show that oil and gas development and recreation may interact due to increasing trends and overlapping areas of high intensity. Projections suggest that aridification will impact all vegetation classes, with some of the highest proportional change in the south-east. The results suggest that the rate of change and spatial pattern of land-use in the future may differ from past patterns in land-use scale and intensity.

  11. Effects of climate change on soil moisture over China from 1960-2006

    USGS Publications Warehouse

    Zhu, Q.; Jiang, H.; Liu, J.

    2009-01-01

    Soil moisture is an important variable in the climate system and it has sensitive impact on the global climate. Obviously it is one of essential components in the climate change study. The Integrated Biosphere Simulator (IBIS) is used to evaluate the spatial and temporal patterns of soil moisture across China under the climate change conditions for the period 1960-2006. Results show that the model performed better in warm season than in cold season. Mean errors (ME) are within 10% for all the months and root mean squared errors (RMSE) are within 10% except winter season. The model captured the spatial variability higher than 50% in warm seasons. Trend analysis based on the Mann-Kendall method indicated that soil moisture in most area of China is decreased especially in the northern China. The areas with significant increasing trends in soil moisture mainly locate at northwestern China and small areas in southeastern China and eastern Tibet plateau. ?? 2009 IEEE.

  12. Spatial Analysis of Air Quality Monitor Data in China, Japan, and South Korea

    NASA Astrophysics Data System (ADS)

    Rohde, Robert

    2016-04-01

    In 2015, Berkeley Earth published a widely-reported study concluding that air pollution contributes to 1.6 million deaths per year in China. This presentation will provide an update on that work with additional data for China and new analysis for South Korea and Japan. In China, two years of data from more than 1500 monitoring stations allows local trends to be estimated. Preliminary review indicates a trend towards improving air quality across most of China with decreasing emissions at most major population centers. Such improvements are consistent with tightening emissions standards and the decreasing usage of coal. In addition, new spatial analysis has been applied to ~900 monitoring sites in Japan and ~120 sites in South Korea. This new analysis provides information on air quality, pollutant source distributions, and implied mortality in these countries. Finally, boundary crossing fluxes in South Korea and Japan have been used to estimate the fraction of air pollution in Japan and South Korea that has being imported from sources in China.

  13. Analysis of Spatial Pattern and Influencing Factors of E-Commerce

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Chen, J.; Zhang, S.

    2017-09-01

    This paper aims to study the relationship between e-commerce development and geographical characteristics using data of e-commerce, economy, Internet, express delivery and population from 2011 to 2015. Moran's I model and GWR model are applied to analyze the spatial pattern of E-commerce and its influencing factors. There is a growth trend of e-commerce from west to east, and it is obvious to see that e-commerce development has a space-time clustering, especially around the Yangtze River delta. The comprehensive factors caculated through PCA are described as fundamental social productivity, resident living standard and population sex structure. The first two factors have positive correlation with e-commerce, and the intensity of effect increases yearly. However, the influence of population sex structure on the E-commerce development is not significant. Our results suggest that the clustering of e-commerce has a downward trend and the impact of driving factors on e-commerce is observably distinct from year to year in space.

  14. Spatial and temporal trends of mercury and other metals in landlocked char from lakes in the Canadian Arctic archipelago.

    PubMed

    Muir, Derek; Wang, Xiaowa; Bright, Doug; Lockhart, Lyle; Köck, Günter

    2005-12-01

    Spatial and temporal trends of mercury (Hg) and 22 other elements were examined in landlocked Arctic char (Salvelinus alpinus) from six lakes in the Canadian Arctic (Char, Resolute and North Lakes, and Amituk Lake on Cornwallis Island, Sapphire Lake on Devon Island and Boomerang Lake on Somerset Island). The objectives of the study were to compare recent concentrations of Hg and other metals in char with older data from Amituk, Resolute and Char Lakes, in order to examine temporal trends as well as to investigate factors influencing spatial trends in contaminant levels such as lake characteristics, trophic position, size and age of the fish. Geometric mean Hg concentrations in dorsal muscle ranged from 0.147 microg/g wet weight (ww) in Resolute Lake to 1.52 microg/g ww in Amituk Lake for samples collected over the period 1999-2003. Char from Amituk Lake also had significantly higher selenium (Se). Mercury in char from Resolute Lake was strongly correlated with fish length, weight, and age, as well as with thallium, lead and Se. In 5 of 6 lakes, Hg concentrations were correlated with stable nitrogen isotope ratios (delta15N) and larger char were feeding at a higher trophic level presumably due to feeding on smaller char. Weight adjusted mean Hg concentrations in char from Amituk Lake, and unadjusted geometric means in Char Lake and Resolute Lakes, did not show any statistically significant increase from the early 1990s to 2003. However, small sample sizes from 1999-2003 for fish <1000 g limited the power of this comparison in Char and Amituk Lakes. In Resolute Lake char, manganese, strontium and zinc showed consistent decreases from 1997 or 1999 to 2003 while nickel generally increased over the 6 year period. Differences in char trophic level inferred from delta15N values best explained the higher concentrations of Hg in Amituk Lake compared to the other lakes.

  15. Comparison of future and base precipitation anomalies by SimCLIM statistical projection through ensemble approach in Pakistan

    NASA Astrophysics Data System (ADS)

    Amin, Asad; Nasim, Wajid; Mubeen, Muhammad; Kazmi, Dildar Hussain; Lin, Zhaohui; Wahid, Abdul; Sultana, Syeda Refat; Gibbs, Jim; Fahad, Shah

    2017-09-01

    Unpredictable precipitation trends have largely influenced by climate change which prolonged droughts or floods in South Asia. Statistical analysis of monthly, seasonal, and annual precipitation trend carried out for different temporal (1996-2015 and 2041-2060) and spatial scale (39 meteorological stations) in Pakistan. Statistical downscaling model (SimCLIM) was used for future precipitation projection (2041-2060) and analyzed by statistical approach. Ensemble approach combined with representative concentration pathways (RCPs) at medium level used for future projections. The magnitude and slop of trends were derived by applying Mann-Kendal and Sen's slop statistical approaches. Geo-statistical application used to generate precipitation trend maps. Comparison of base and projected precipitation by statistical analysis represented by maps and graphical visualization which facilitate to detect trends. Results of this study projects that precipitation trend was increasing more than 70% of weather stations for February, March, April, August, and September represented as base years. Precipitation trend was decreased in February to April but increase in July to October in projected years. Highest decreasing trend was reported in January for base years which was also decreased in projected years. Greater variation in precipitation trends for projected and base years was reported in February to April. Variations in projected precipitation trend for Punjab and Baluchistan highly accredited in March and April. Seasonal analysis shows large variation in winter, which shows increasing trend for more than 30% of weather stations and this increased trend approaches 40% for projected precipitation. High risk was reported in base year pre-monsoon season where 90% of weather station shows increasing trend but in projected years this trend decreased up to 33%. Finally, the annual precipitation trend has increased for more than 90% of meteorological stations in base (1996-2015) which has decreased for projected year (2041-2060) up to 76%. These result revealed that overall precipitation trend is decreasing in future year which may prolonged the drought in 14% of weather stations under study.

  16. Patterns and predictability in the intra-annual organic carbon variability across the boreal and hemiboreal landscape

    USGS Publications Warehouse

    Hytteborn, Julia K.; Temnerud, Johan; Alexander, Richard B.; Boyer, Elizabeth W.; Futter, Martyn N.; Fröberg, Mats; Dahné, Joel; Bishop, Kevin H.

    2015-01-01

    Factors affecting total organic carbon (TOC) concentrations in 215 watercourses across Sweden were investigated using parameter parsimonious regression approaches to explain spatial and temporal variabilities of the TOC water quality responses. We systematically quantified the effects of discharge, seasonality, and long-term trend as factors controlling intra-annual (among year) and inter-annual (within year) variabilities of TOC by evaluating the spatial variability in model coefficients and catchment characteristics (e.g. land cover, retention time, soil type).Catchment area (0.18–47,000 km2) and land cover types (forests, agriculture and alpine terrain) are typical for the boreal and hemiboreal zones across Fennoscandia. Watercourses had at least 6 years of monthly water quality observations between 1990 and 2010. Statistically significant models (p < 0.05) describing variation of TOC in streamflow were identified in 209 of 215 watercourses with a mean Nash-Sutcliffe efficiency index of 0.44. Increasing long-term trends were observed in 149 (70%) of the watercourses, and intra-annual variation in TOC far exceeded inter-annual variation. The average influences of the discharge and seasonality terms on intra-annual variations in daily TOC concentration were 1.4 and 1.3 mg l− 1 (13 and 12% of the mean annual TOC), respectively. The average increase in TOC was 0.17 mg l− 1 year− 1 (1.6% year− 1).Multivariate regression with over 90 different catchment characteristics explained 21% of the spatial variation in the linear trend coefficient, less than 20% of the variation in the discharge coefficient and 73% of the spatial variation in mean TOC. Specific discharge, water residence time, the variance of daily precipitation, and lake area, explained 45% of the spatial variation in the amplitude of the TOC seasonality.Because the main drivers of temporal variability in TOC are seasonality and discharge, first-order estimates of the influences of climatic variability and change on TOC concentration should be predictable if the studied catchments continue to respond similarly.

  17. Multi-century cool- and warm-season rainfall reconstructions for Australia's major climatic regions

    NASA Astrophysics Data System (ADS)

    Freund, Mandy; Henley, Benjamin J.; Karoly, David J.; Allen, Kathryn J.; Baker, Patrick J.

    2017-11-01

    Australian seasonal rainfall is strongly affected by large-scale ocean-atmosphere climate influences. In this study, we exploit the links between these precipitation influences, regional rainfall variations, and palaeoclimate proxies in the region to reconstruct Australian regional rainfall between four and eight centuries into the past. We use an extensive network of palaeoclimate records from the Southern Hemisphere to reconstruct cool (April-September) and warm (October-March) season rainfall in eight natural resource management (NRM) regions spanning the Australian continent. Our bi-seasonal rainfall reconstruction aligns well with independent early documentary sources and existing reconstructions. Critically, this reconstruction allows us, for the first time, to place recent observations at a bi-seasonal temporal resolution into a pre-instrumental context, across the entire continent of Australia. We find that recent 30- and 50-year trends towards wetter conditions in tropical northern Australia are highly unusual in the multi-century context of our reconstruction. Recent cool-season drying trends in parts of southern Australia are very unusual, although not unprecedented, across the multi-century context. We also use our reconstruction to investigate the spatial and temporal extent of historical drought events. Our reconstruction reveals that the spatial extent and duration of the Millennium Drought (1997-2009) appears either very much below average or unprecedented in southern Australia over at least the last 400 years. Our reconstruction identifies a number of severe droughts over the past several centuries that vary widely in their spatial footprint, highlighting the high degree of diversity in historical droughts across the Australian continent. We document distinct characteristics of major droughts in terms of their spatial extent, duration, intensity, and seasonality. Compared to the three largest droughts in the instrumental period (Federation Drought, 1895-1903; World War II Drought, 1939-1945; and the Millennium Drought, 1997-2005), we find that the historically documented Settlement Drought (1790-1793), Sturt's Drought (1809-1830) and the Goyder Line Drought (1861-1866) actually had more regionalised patterns and reduced spatial extents. This seasonal rainfall reconstruction provides a new opportunity to understand Australian rainfall variability by contextualising severe droughts and recent trends in Australia.

  18. Identification of trend in long term precipitation and reference evapotranspiration over Narmada river basin (India)

    NASA Astrophysics Data System (ADS)

    Pandey, Brij Kishor; Khare, Deepak

    2018-02-01

    Precipitation and reference evapotranspiration are key parameters in hydro-meteorological studies and used for agricultural planning, irrigation system design and management. Precipitation and evaporative demand are expected to be alter under climate change and affect the sustainable development. In this article, spatial variability and temporal trend of precipitation and reference evapotranspiration (ETo) were investigated over Narmada river basin (India), a humid tropical climatic region. In the present study, 12 and 28 observatory stations were selected for precipitation and ETo, respectively of 102-years period (1901-2002). A rigorous analysis for trend detection was carried out using non parametric tests such as Mann-Kendall (MK) and Spearman Rho (SR). Sen's slope estimator was used to analyze the rate of change in long term series. Moreover, all the stations of basin exhibit positive trend for annual ETo, while 8% stations indicate significant negative trend for mean annual precipitation, respectively. Change points of annual precipitation were identified around the year 1962 applying Buishand's and Pettit's test. Annual mean precipitation reduced by 9% in upper part while increased maximum by 5% in lower part of the basin due temporal changes. Although annual mean ETo increase by 4-12% in most of the region. Moreover, results of the study are very helpful in planning and development of agricultural water resources.

  19. Trends and periodicity of daily temperature and precipitation extremes during 1960-2013 in Hunan Province, central south China

    NASA Astrophysics Data System (ADS)

    Chen, Ajiao; He, Xinguang; Guan, Huade; Cai, Yi

    2018-04-01

    In this study, the trends and periodicity in climate extremes are examined in Hunan Province over the period 1960-2013 on the basis of 27 extreme climate indices calculated from daily temperature and precipitation records at 89 meteorological stations. The results show that in the whole province, temperature extremes exhibit a warming trend with more than 50% stations being statistically significant for 7 out of 16 temperature indices, and the nighttime temperature increases faster than the daytime temperature at the annual scale. The changes in most extreme temperature indices show strongly coherent spatial patterns. Moreover, the change rates of almost all temperature indices in north Hunan are greater than those of other regions. However, the statistically significant changes in indices of extreme precipitation are observed at fewer stations than in extreme temperature indices, forming less spatially coherent patterns. Positive trends in indices of extreme precipitation show that the amount and intensity of extreme precipitation events are generally increasing in both annual and seasonal scales, whereas the significant downward trend in consecutive wet days indicates that the precipitation becomes more even over the study period. Analysis of changes in probability distributions of extreme indices for 1960-1986 and 1987-2013 also demonstrates a remarkable shift toward warmer condition and increasing tendency in the amount and intensity of extreme precipitation during the past decades. The variations in extreme climate indices exhibit inconstant frequencies in the wavelet power spectrum. Among the 16 temperature indices, 2 of them show significant 1-year periodic oscillation and 7 of them exhibit significant 4-year cycle during some certain periods. However, significant periodic oscillations can be found in all of the precipitation indices. Wet-day precipitation and three absolute precipitation indices show significant 1-year cycle and other seven provide significant power at the 4-year period, which are mainly found during 1970-1980 and after 1992.

  20. Horseshoe crab spawning activity in Delaware Bay, USA, after harvest reduction: A mixed-model analysis

    USGS Publications Warehouse

    Smith, David R.; Robinson, Timothy J.

    2015-01-01

    A Delaware Bay, USA, standardized survey of spawning horseshoe crabs, Limulus polyphemus, was carried out in 1999 − 2013 through a citizen science network. Previous trend analyses of the data were at the state (DE or NJ) or bay-wide levels. Here, an alternative mixed-model regression analysis was used to estimate trends in female and male spawning densities at the beach level (n = 26) with the objective of inferring their causes. For females, there was no overall trend and no single explanation applies to the temporal and spatial patterns in their densities. Individual beaches that initially had higher densities tended to experience a decrease, while beaches that initially had lower densities tended to experience an increase. As a result, densities of spawning females at the end of the study period were relatively similar among beaches, suggesting a redistribution of females among the beaches over the study period. For males, there was a positive overall trend in spawning abundance from 1999 to 2013, and this increase occurred broadly among beaches. Moreover, the beaches with below-average initial male density tended to have the greatest increases. Possible explanations for these patterns include harvest reduction, sampling artifact, habitat change, density-dependent habitat selection, or mate selection. The broad and significant increase in male spawning density, which occurred after enactment of harvest controls, is consistent with the harvest reduction explanation, but there is no single explanation for the temporal or spatial pattern in female densities. These results highlight the continued value of a citizen-science-based spawning survey in understanding horseshoe crab ecology and conservation.

  1. Spatio-temporal trends in monthly pan evaporation in Aguascalientes, Mexico

    NASA Astrophysics Data System (ADS)

    Ruiz-Alvarez, Osias; Singh, Vijay P.; Medina, Juan Enciso; Munster, Clyde; Kaiser, Ronald; Ontiveros-Capurata, Ronald Ernesto; Diaz-Garcia, Luis Antonio; dos Santos, Carlos Antonio Costa

    2018-05-01

    Emission of greenhouse gases is being alleged to be causing climate change in different regions of the world. The objective of this study was to analyze the spatio-temporal trends of monthly evaporation at 52 weather stations in the state of Aguascalientes (Mexico) which have hydrometeorological records of long periods. The autocorrelation was eliminated with an auto-regressive model, and the trend was determined using the Spearman (S) and Kendall (K) tests. The statistical significance of the trend was determined with the Spearman correlation coefficient (r s) and the Z statistic (the test statistic of the normal distribution) both indicated that that there were statistically significant trends in 107 time series, of these 88 series had negative trends and 19 series had positive trends. Negative trends were present in all months of the year, while positive trends occurred from February to May and from October to December only. The reduction of evaporation from - 4.10 to - 20.50 mm/month/year from June to September showed a hopeful future scenario for rainfed agriculture. Irrigated agriculture during dry months could have a reduction of irrigation requirements as a consequence of the reduction in reference and crop evapotranspiration. The evaporation increase during dry months could increase irrigation requirements and pumping, mainly in March, April, and November when there are trends with increases of about 26.90, 24.60, and 23.90 mm/month/year, respectively. The spatial variability of evaporation trend means that other effects of climate change could vary in different parts of the state. Results of this study will be useful for farmers and institutions in charge of the administration of water resources for developing adaptation and mitigation strategies to climate change.

  2. Spatial and temporal trends in contaminant concentrations in Hexagenia nymphs following a coal ash spill at the Tennessee Valley Authority's Kingston Fossil Plant

    DOE PAGES

    Baker, Tyler F; Jett, Robert Trent; Smith, John G.; ...

    2016-02-25

    A dike failure at the Tennessee Valley Authority Kingston Fossil Plant in East Tennessee, United States, in December 2008, released approximately 4.1 million m3 of coal ash into the Emory River. From 2009 through 2012, samples of mayfly nymphs ( Hexagenia bilineata) were collected each spring from sites in the Emory, Clinch, and Tennessee Rivers upstream and downstream of the spill. Samples were analyzed for 17 metals. Concentrations of metals were generally highest the first 2 miles downstream of the spill, and then decreased with increasing distance from the spill. Arsenic, B, Ba, Be, Mo, Sb, Se, Sr, and Vmore » appeared to have strong ash signatures, whereas Co, Cr, Cu, Ni, and Pb appeared to be associated with ash and other sources. Furthermore, the concentrations for most of these contaminants were modest and are unlikely to cause widespread negative ecological effects. Trends in Hg, Cd, and Zn suggested little (Hg) or no (Cd, Zn) association with ash. Temporal trends suggested that concentrations of ash-related contaminants began to subside after 2010, but because of the limited time period of that analysis (4 yr), further monitoring is needed to verify this trend. The present study provides important information on the magnitude of contaminant exposure to aquatic receptors from a major coal ash spill, as well as spatial and temporal trends for transport of the associated contaminants in a large open watershed. Environ Toxicol Chem 2016;35:1159 1171. Published 2015 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.« less

  3. Complex responses of spring alpine vegetation phenology to snow cover dynamics over the Tibetan Plateau, China.

    PubMed

    Wang, Siyuan; Wang, Xiaoyue; Chen, Guangsheng; Yang, Qichun; Wang, Bin; Ma, Yuanxu; Shen, Ming

    2017-09-01

    Snow cover dynamics are considered to play a key role on spring phenological shifts in the high-latitude, so investigating responses of spring phenology to snow cover dynamics is becoming an increasingly important way to identify and predict global ecosystem dynamics. In this study, we quantified the temporal trends and spatial variations of spring phenology and snow cover across the Tibetan Plateau by calibrating and analyzing time series of the NOAA AVHRR-derived normalized difference vegetation index (NDVI) during 1983-2012. We also examined how snow cover dynamics affect the spatio-temporal pattern of spring alpine vegetation phenology over the plateau. Our results indicated that 52.21% of the plateau experienced a significant advancing trend in the beginning of vegetation growing season (BGS) and 34.30% exhibited a delaying trend. Accordingly, the snow cover duration days (SCD) and snow cover melt date (SCM) showed similar patterns with a decreasing trend in the west and an increasing trend in the southeast, but the start date of snow cover (SCS) showed an opposite pattern. Meanwhile, the spatial patterns of the BGS, SCD, SCS and SCM varied in accordance with the gradients of temperature, precipitation and topography across the plateau. The response relationship of spring phenology to snow cover dynamics varied within different climate, terrain and alpine plant community zones, and the spatio-temporal response patterns were primarily controlled by the long-term local heat-water conditions and topographic conditions. Moreover, temperature and precipitation played a profound impact on diverse responses of spring phenology to snow cover dynamics. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Precipitation and temperature trends over central Italy (Abruzzo Region): 1951-2012

    NASA Astrophysics Data System (ADS)

    Scorzini, Anna Rita; Leopardi, Maurizio

    2018-02-01

    This study analyses spatial and temporal trends of precipitation and temperatures over Abruzzo Region (central Italy), using historical climatic data from a dense observation network. The results show a general, although not significant, negative trend in the regionally averaged annual precipitation (- 1.8% of the yearly mean rainfall per decade). This reduction is particularly evident in winter, especially at mountain stations (average - 3% change/decade). Despite this general decreasing trend, a partial rainfall recovery is observed after the 1980s. Furthermore, the majority of meteorological stations register a significant warming over the last 60 years, (mean annual temperature increase of + 0.15 °C/decade), which reflects a rise in both minimum and maximum temperatures, with the latter generally increasing at a faster rate. Spring and summer are the seasons which contribute most to the general temperature increase, in particular at high elevation sites, which exhibit a more pronounced warming (+ 0.24 °C/decade). However, this tendency has not been uniform over 1951-2012, but it has been characterised by a cooling phenomenon in the first 30 years (1951-1981), followed by an even stronger warming during the last three decades (1982-2012). Finally, correlations between the climatic variables and the dominant teleconnection patterns in the Mediterranean basin are analysed to identify the potential influence of large-scale atmospheric dynamics on observed trends in Abruzzo. The results highlight the dominant role of the East-Atlantic pattern on seasonal temperatures, while more spatially heterogeneous associations, depending on the complex topography of the region, are identified between winter precipitation and the North Atlantic Oscillation, East-Atlantic and East-Atlantic/Western Russian patterns.

  5. Evaluating spatial and temporal variations of rainfall erosivity, case of Central Rift Valley of Ethiopia

    NASA Astrophysics Data System (ADS)

    Meshesha, Derege Tsegaye; Tsunekawa, Atsushi; Tsubo, Mitsuru; Haregeweyn, Nigussie; Adgo, Enyew

    2015-02-01

    Land degradation in many Ethiopian highlands occurs mainly due to high rainfall erosivity and poor soil conservation practices. Rainfall erosivity is an indicator of the precipitation energy and ability to cause soil erosion. In Central Rift Valley (CRV) of Ethiopia, where the climate is characterized as arid and semiarid, rainfall is the main driver of soil erosion that in turn causes a serious expansion in land degradation. In order to evaluate the spatial and temporal variability of rainfall erosivity and its impact on soil erosion, long-term rainfall data (1980-2010) was used, and the monthly Fournier index (FI) and the annual modified Fournier index (MFI) were applied. Student's t test analysis was performed particularly to examine statistical significances of differences in average monthly and annual erosivity values. The result indicated that, in a similar spatial pattern with elevation and rainfall amount, average annual erosivity is also found being higher in western highlands of the valley and gradually decreased towards the east. The long-term average annual erosivity (MFI) showed a general decreasing trend in recent 10 years (2000-2010) as compared to previous 20 years (1980-1999). In most of the stations, average erosivity of main rainy months (May, June, July, and August) showed a decreasing trend, whereby some of them (about 33.3 %) are statically significant at 90 and 95 % confidence intervals but with high variation in spatial pattern of changes. The overall result of the study showed that rainfall aggression (erosivity) in the region has a general decreasing trend in the recent decade as compared to previous decades, especially in the western highlands of the valley. Hence, it implies that anthropogenic factors such as land use change being coupled with topography (steep slope) have largely contributed to increased soil erosion rate in the region.

  6. Size-frequency distribution, growth, and mortality of snow crab (Chionoecetes opilio) and arctic lyre crab (Hyas coarctatus) in the chukchi sea from 2009 to 2013

    NASA Astrophysics Data System (ADS)

    Groß, Jasmin; Konar, Brenda; Brey, Thomas; Grebmeier, Jacqueline M.

    2017-10-01

    The snow crab Chionoecetes opilio and Arctic lyre crab Hyas coarctatus are prominent members of the Chukchi Sea epifaunal community. A better understanding of their life history will aid in determining their role in this ecosystem in light of the changing climate and resource development. In this study, the size frequency distribution, growth, and mortality of these two crab species was examined in 2009, 2010, 2012, and 2013 to determine temporal and spatial patterns within the eastern Chukchi Sea, and to identify potential environmental drivers of the observed patterns. Temporally, the mean size of both sexes of C. opilio and H. coarctatus decreased significantly from 2009 to 2013, with the number of rare maximum sized organisms decreasing significantly to near absence in the latter two study years. Spatially, the mean size of male and female crabs of both species showed a latitudinal trend, decreasing from south to north in the investigation area. Growth of both sexes of C. opilio and H. coarctatus was linear over the sampled size range, and mortality was highest in the latter two study years. Life history features of both species related to different environmental parameters in different years, ranging from temperature, the sediment carbon to nitrogen ratio of the organic content, and sediment grain size distribution. Likely explanations for the observed temporal and spatial variability are ontogenetic migrations of mature crabs to warmer areas possibly due to cooler water temperatures in the latter two study years, or interannual fluctuations, which have been reported for C. opilio populations in other areas where successful waves of recruitment were estimated to occur in eight year intervals. Further research is suggested to determine if the spatial and temporal patterns found in this study are part of the natural variability in this system or if they are an indication of long-term trends.

  7. Pattern transitions in spatial epidemics: Mechanisms and emergent properties.

    PubMed

    Sun, Gui-Quan; Jusup, Marko; Jin, Zhen; Wang, Yi; Wang, Zhen

    2016-12-01

    Infectious diseases are a threat to human health and a hindrance to societal development. Consequently, the spread of diseases in both time and space has been widely studied, revealing the different types of spatial patterns. Transitions between patterns are an emergent property in spatial epidemics that can serve as a potential trend indicator of disease spread. Despite the usefulness of such an indicator, attempts to systematize the topic of pattern transitions have been few and far between. We present a mini-review on pattern transitions in spatial epidemics, describing the types of transitions and their underlying mechanisms. We show that pattern transitions relate to the complexity of spatial epidemics by, for example, being accompanied with phenomena such as coherence resonance and cyclic evolution. The results presented herein provide valuable insights into disease prevention and control, and may even be applicable outside epidemiology, including other branches of medical science, ecology, quantitative finance, and elsewhere. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. A Spectral Method for Spatial Downscaling

    PubMed Central

    Reich, Brian J.; Chang, Howard H.; Foley, Kristen M.

    2014-01-01

    Summary Complex computer models play a crucial role in air quality research. These models are used to evaluate potential regulatory impacts of emission control strategies and to estimate air quality in areas without monitoring data. For both of these purposes, it is important to calibrate model output with monitoring data to adjust for model biases and improve spatial prediction. In this article, we propose a new spectral method to study and exploit complex relationships between model output and monitoring data. Spectral methods allow us to estimate the relationship between model output and monitoring data separately at different spatial scales, and to use model output for prediction only at the appropriate scales. The proposed method is computationally efficient and can be implemented using standard software. We apply the method to compare Community Multiscale Air Quality (CMAQ) model output with ozone measurements in the United States in July 2005. We find that CMAQ captures large-scale spatial trends, but has low correlation with the monitoring data at small spatial scales. PMID:24965037

  9. Spatial distribution of temperature trends and extremes over Maharashtra and Karnataka States of India

    NASA Astrophysics Data System (ADS)

    Dhorde, Amit G.; Korade, Mahendra S.; Dhorde, Anargha A.

    2017-10-01

    Earth surface temperatures are changing worldwide together with the changes in the extreme temperatures. The present study investigates trends and variations of monthly maximum and minimum temperatures and their effects on seasonal fluctuations at different climatological stations of Maharashtra and Karnataka states of India. Trend analysis was performed on annual and seasonal mean maximum temperature (TMAX) and mean minimum temperature (TMIN) for the period 1969 to 2006. During the last 38 years, an increase in annual TMAX and TMIN has occurred. At most of the locations, the increase in TMAX was faster than the TMIN, resulting in an increase in diurnal temperature range. At the same time, annual mean temperature (TM) showed a significant increase over the study area. Percentiles were used to identify extreme temperature indices. An increase in occurrence of warm extremes was observed at southern locations, and cold extremes increased over the central and northeastern part of the study area. Occurrences of cold wave conditions have decreased rapidly compared to heat wave conditions.

  10. Long-term analysis of Zostera noltei: A retrospective approach for understanding seagrasses' dynamics.

    PubMed

    Calleja, Felipe; Galván, Cristina; Silió-Calzada, Ana; Juanes, José A; Ondiviela, Bárbara

    2017-09-01

    Long-term studies are necessary to establish trends and to understand seagrasses' spatial and temporal dynamic. Nevertheless, this type of research is scarce, as the required databases are often unavailable. The objectives of this study are to create a method for mapping the seagrass Zostera noltei using remote sensing techniques, and to apply it to the characterization of the meadows' extension trend and the potential drivers of change. A time series was created using a novel method based on remote sensing techniques that proved to be adequate for mapping the seagrass in the emerged intertidal. The meadows seem to have a decreasing trend between 1984 and the early 2000s, followed by an increasing tendency that represents a recovery in the extension area of the species. This 30-year analysis demonstrated the Z. noltei's recovery in the study site, similar to that in other estuaries nearby and contrary to the worldwide decreasing behavior of seagrasses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Stunting in Children (0-59 Months): What Is the Current Trend in South Africa?

    ERIC Educational Resources Information Center

    Dukhi, Natisha; Sartorius, Benn; Taylor, Myra

    2017-01-01

    Background: Stunting continues to affect young children as a global nutritional disorder. The aim of our study was to assess the prevalence, associated risk factors and spatial clustering for stunting in a disadvantaged South African District. Methods: A community-based cross-sectional weighted survey of households was conducted in the iLembe…

  12. Spatial analysis for prevalence of type 2 diabetes mellitus - A state investigation

    NASA Astrophysics Data System (ADS)

    Zainal, Siti Salsabilah Nabilah; Masnan, Maz Jamilah; Amin, Nor Azrita Mohd; Mohamed, Nordin

    2017-11-01

    Type 2 Diabetes Mellitus (T2DM) is a chronic and non-communicable disease, which is characterized as the cause of premature deaths in the world. Unfortunately, Malaysia is one of the many countries facing this epidemic. Based on the increasing current trend of T2DM patients' cases from the National Diabetes Registry (NDR) Report from 2009 to 2012, there were approximately 2.6 million adults aged 18 years and above living with diabetes disease in Malaysia. Thus, this study aims to (i) perform preliminary spatial analysis for the prevalence of T2DM patients based on some factors, (ii) map the findings of the analyses according to some spatial properties, and (iii) analyze the pattern of diagnosed T2DM patients based on the studied factors. The studied population is one of the highest prevalence states of T2DM in Malaysia. This study is expected to reveal some demographic patterns that probably significant to this alarming epidemic.

  13. Forest resource trends in Illinois

    Treesearch

    Louis R. Iverson

    1994-01-01

    Even though forests occupy only 12% of the land area of Illinois, they play a valuable role in the health of the state's environment and that of its citizens. Many of these benefits have been reviewed in Forest Resources of Illinois: An Atlas and Analysis of Spatial and Temporal Trends (Iverson et al. 1989), and summarized in...

  14. SPAGETTA: a Multi-Purpose Gridded Stochastic Weather Generator

    NASA Astrophysics Data System (ADS)

    Dubrovsky, M.; Huth, R.; Rotach, M. W.; Dabhi, H.

    2017-12-01

    SPAGETTA is a new multisite/gridded multivariate parametric stochastic weather generator (WG). Site-specific precipitation occurrence and amount are modelled by Markov chain and Gamma distribution, the non-precipitation variables are modelled by an autoregressive (AR) model conditioned on precipitation occurrence, and the spatial coherence of all variables is modelled following the Wilks' (2009) approach. SPAGETTA may be run in two modes. Mode 1: it is run as a classical WG, which is calibrated using weather series from multiple sites, and only then it may produce arbitrarily long synthetic series mimicking the spatial and temporal structure of the calibration data. To generate the weather series representing the future climate, the WG parameters are modified according to the climate change scenario, typically derived from GCM or RCM simulations. Mode 2: the user provides only basic information (not necessarily to be realistic) on the temporal and spatial auto-correlation structure of the weather variables and their mean annual cycle; the generator itself derives the parameters of the underlying AR model, which produces the multi-site weather series. Optionally, the user may add the spatially varying trend, which is superimposed to the synthetic series. The contribution consists of following parts: (a) Model of the WG. (b) Validation of WG in terms of the spatial temperature and precipitation characteristics, including characteristics of spatial hot/cold/dry/wet spells. (c) Results of the climate change impact experiment, in which the WG parameters representing the spatial and temporal variability are modified using the climate change scenarios and the effect on the above spatial validation indices is analysed. In this experiment, the WG is calibrated using the E-OBS gridded daily weather data for several European regions, and the climate change scenarios are derived from the selected RCM simulations (CORDEX database). (d) The second mode of operation will be demonstrated by results obtained while developing the methodology for assessing collective significance of trends in multi-site weather series. The performance of the proposed test statistics is assessed based on large number of realisations of synthetic series produced by WG assuming a given statistical structure and trend of the weather series.

  15. Spatial and Temporal Patterns in Black Carbon Deposition to Dated Fennoscandian Arctic Lake Sediments from 1830 to 2010.

    PubMed

    Ruppel, Meri M; Gustafsson, Örjan; Rose, Neil L; Pesonen, Antto; Yang, Handong; Weckström, Jan; Palonen, Vesa; Oinonen, Markku J; Korhola, Atte

    2015-12-15

    Black carbon (BC) is fine particulate matter produced by the incomplete combustion of biomass and fossil fuels. It has a strong climate warming effect that is amplified in the Arctic. Long-term trends of BC play an important role in assessing the climatic effects of BC and in model validation. However, few historical BC records exist from high latitudes. We present five lake-sediment soot-BC (SBC) records from the Fennoscandian Arctic and compare them with records of spheroidal carbonaceous fly-ash particles (SCPs), another BC component, for ca. the last 120 years. The records show spatial and temporal variation in SBC fluxes. Two northernmost lakes indicate declining values from 1960 to the present, which is consistent with modeled BC deposition and atmospheric measurements in the area. However, two lakes located closer to the Kola Peninsula (Russia) have recorded increasing SBC fluxes from 1970 to the present, which is likely caused by regional industrial emissions. The increasing trend is in agreement with a Svalbard ice-core-BC record. The results suggest that BC deposition in parts of the European Arctic may have increased over the last few decades, and further studies are needed to clarify the spatial extent of the increasing BC values and to ascertain the climatic implications.

  16. The impacts of emission trends of POPs on human concentration dynamics: Lessons learned from a longitudinal study in Norway (1979-2007).

    PubMed

    Nøst, Therese Haugdahl; Sandanger, Torkjel Manning; Nieboer, Evert; Odland, Jon Øyvind; Breivik, Knut

    2017-06-01

    In this short communication, our focus is on the relationship between human concentrations of select persistent organic pollutants (POPs) and environmental emissions. It is based on a longitudinal study (1979-2007) conducted in Norway. Our aim was to extract general insights from observed and predicted temporal trends in human concentrations of 49 POPs to assist in the design and interpretation of future monitoring studies. Despite considerable decline for polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) since 1986, the sum of the targeted POPs increased from 1979 until 2001, with per- and polyfluorinated alkyl substances (PFASs) dominating recent blood burden measurements. Specifically, the time trends in serum concentrations of POPs, exemplified by PCB-153, 1,1'-(2,2,2-Trichloroethane-1,1-diyl)bis(4-chlorobenzene) (DDT) and perfluorooctane sulfonic acid (PFOS), resembled the trends in available data on their emissions, production or use. These observations suggest that interpretations of human biomonitoring data on persistent compounds must consider historic emissions, which likely vary spatially across the globe. Based on the different temporal trends observed across POP groups, it is evident that generalizations regarding temporal aspects have limitations. The discussion herein underscores the importance of understanding temporal variations in environmental emissions when designing and interpreting human biomonitoring studies. Copyright © 2017 Elsevier GmbH. All rights reserved.

  17. Tropical cyclone genesis potential index over the western North Pacific simulated by CMIP5 models

    NASA Astrophysics Data System (ADS)

    Song, Yajuan; Wang, Lei; Lei, Xiaoyan; Wang, Xidong

    2015-11-01

    Tropical cyclone (TC) genesis over the western North Pacific (WNP) is analyzed using 23 CMIP5 (Coupled Model Intercomparison Project Phase 5) models and reanalysis datasets. The models are evaluated according to TC genesis potential index (GPI). The spatial and temporal variations of the GPI are first calculated using three atmospheric reanalysis datasets (ERA-Interim, NCEP/NCAR Reanalysis-1, and NCEP/DOE Reanalysis-2). Spatial distributions of July-October-mean TC frequency based on the GPI from ERA-interim are more consistent with observed ones derived from IBTrACS global TC data. So, the ERA-interim reanalysis dataset is used to examine the CMIP5 models in terms of reproducing GPI during the period 1982-2005. Although most models possess deficiencies in reproducing the spatial distribution of the GPI, their multimodel ensemble (MME) mean shows a reasonable climatological GPI pattern characterized by a high GPI zone along 20°N in the WNP. There was an upward trend of TC genesis frequency during 1982 to 1998, followed by a downward trend. Both MME results and reanalysis data can represent a robust increasing trend during 1982-1998, but the models cannot simulate the downward trend after 2000. Analysis based on future projection experiments shows that the GPI exhibits no significant change in the first half of the 21st century, and then starts to decrease at the end of the 21st century under the representative concentration pathway (RCP) 2.6 scenario. Under the RCP8.5 scenario, the GPI shows an increasing trend in the vicinity of 20°N, indicating more TCs could possibly be expected over the WNP under future global warming.

  18. 10-year spatial and temporal trends of PM2.5 concentrations in the southeastern US estimated using high-resolution satellite data

    PubMed Central

    Hu, X.; Waller, L. A.; Lyapustin, A.; Wang, Y.; Liu, Y.

    2017-01-01

    Long-term PM2.5 exposure has been associated with various adverse health outcomes. However, most ground monitors are located in urban areas, leading to a potentially biased representation of true regional PM2.5 levels. To facilitate epidemiological studies, accurate estimates of the spatiotemporally continuous distribution of PM2.5 concentrations are important. Satellite-retrieved aerosol optical depth (AOD) has been increasingly used for PM2.5 concentration estimation due to its comprehensive spatial coverage. Nevertheless, previous studies indicated that an inherent disadvantage of many AOD products is their coarse spatial resolution. For instance, the available spatial resolutions of the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Multiangle Imaging SpectroRadiometer (MISR) AOD products are 10 and 17.6 km, respectively. In this paper, a new AOD product with 1 km spatial resolution retrieved by the multi-angle implementation of atmospheric correction (MAIAC) algorithm based on MODIS measurements was used. A two-stage model was developed to account for both spatial and temporal variability in the PM2.5–AOD relationship by incorporating the MAIAC AOD, meteorological fields, and land use variables as predictors. Our study area is in the southeastern US centered at the Atlanta metro area, and data from 2001 to 2010 were collected from various sources. The model was fitted annually, and we obtained model fitting R2 ranging from 0.71 to 0.85, mean prediction error (MPE) from 1.73 to 2.50 μg m−3, and root mean squared prediction error (RMSPE) from 2.75 to 4.10 μg m−3. In addition, we found cross-validation R2 ranging from 0.62 to 0.78, MPE from 2.00 to 3.01 μgm−3, and RMSPE from 3.12 to 5.00 μgm−3, indicating a good agreement between the estimated and observed values. Spatial trends showed that high PM2.5 levels occurred in urban areas and along major highways, while low concentrations appeared in rural or mountainous areas. Our time-series analysis showed that, for the 10-year study period, the PM2.5 levels in the southeastern US have decreased by ∼20 %. The annual decrease has been relatively steady from 2001 to 2007 and from 2008 to 2010 while a significant drop occurred between 2007 and 2008. An observed increase in PM2.5 levels in year 2005 is attributed to elevated sulfate concentrations in the study area in warm months of 2005. PMID:28966656

  19. Spatiotemporal characteristics of aerosols and their trends over mainland China with the recent Collection 6 MODIS and OMI satellite datasets.

    PubMed

    Hu, Kang; Kumar, Kanike Raghavendra; Kang, Na; Boiyo, Richard; Wu, Jinwen

    2018-03-01

    With the rapid development of China's economy and high rate of industrialization, environmental pollution has become a major challenge for the country. The present study is aimed at analyzing spatiotemporal heterogeneities and changes in trends of different aerosol optical properties observed over China. To achieve this, Collection 6 Level 3 data retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS; 2002-2016) and Ozone Monitoring Instrument (OMI; 2005-2016) sensors were used to investigate aerosol optical depth (AOD 550 ), Ångstrӧm exponent (AE 470-660 ), and Absorption Aerosol Index (AAI). The spatial distribution of annual mean AOD 550 was noticed to be high over economically and industrialized regions of the east, south, and northeast of China, while low aerosol loadings were located over rural and less-developed areas of the west and northeast of China. High AE 470-660 (> 1.0) values were characterized by the abundance of fine-mode particles and vice versa, likely attributed to large anthropogenic activities. Similarly, high AOD with corresponding high AE and low AAI was characterized over the urban-industrialized regions of the central, east, and south of China during most of the months, being more pronounced in June and July. On seasonal scale, AOD values were found to be high during spring, followed by the summer and autumn, and low during the winter season. It is also evident that all aerosol parameters showed a single-peak frequency distribution in all seasons over entire China. Further, the annual, monthly, and seasonal spatial trends revealed a decreasing trend in AOD over most regions of China, except in the southwest of China, which showed a positive increasing trend. Significant increasing trends were noted in AAI for all the seasons, particularly during autumn and winter, resulting in a large amount of the absorbing type of aerosols produced from biomass burning and desert dust.

  20. Greening and browning of the Himalaya: Spatial patterns and the role of climatic change and human drivers.

    PubMed

    Mishra, Niti B; Mainali, Kumar P

    2017-06-01

    The reliable detection and attribution of changes in vegetation greenness is a prerequisite for the development of strategies for the sustainable management of ecosystems. We conducted a robust trend analysis on remote sensing derived vegetation index time-series matrices to detect significant changes in inter-annual vegetation productivity (greening versus browning) for the entire Himalaya, a biodiverse and ecologically sensitive yet understudied region. The spatial variability in trend was assessed considering elevation, 12 dominant land cover/use types and 10 ecoregions. To assess trend causation, at local scale, we compared multi-temporal imagery, and at regional scale, referenced ecological theories of mountain vegetation dynamics and ancillary literature. Overall, 17.56% of Himalayan vegetation (71,162km 2 ) exhibited significant trend (p<0.01) and majority (94%) showed positive trend (greening). Trend distribution showed strong elevational and ecoregion dependence as greening was most dominant at lower and middle elevations whereas majority of the browning occurred at higher elevation (>3800m), with eastern high Himalaya browning more dominantly than western high Himalaya. Land cover/use based categorization confirmed dominant greening of rainfed and irrigated agricultural areas, though cropped areas in western Himalaya contained higher proportion of greening areas. While rising atmospheric CO 2 concentration and nitrogen deposition are the most likely climatic causes of detected greening, success of sustainable forestry practices (community forestry in Nepal) along with increasing agricultural fertilization and irrigation facilities could be possible human drivers. Comparison of multi-temporal imagery enabled direct attribution of some browning areas to anthropogenic land change (dam, airport and tunnel construction). Our satellite detected browning of high altitude vegetation in eastern Himalaya confirm the findings of recent dendrochronology based studies which possibly resulted from reduced pre-monsoon moisture availability in recent decades. These results have significant implications for environmental management in the context of climate change and ecosystem dynamics in the Himalaya. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Comparison of mean climate trends in the Northern Hemisphere between National Centers for Environmental Prediction and two atmosphere-ocean model forced runs

    NASA Astrophysics Data System (ADS)

    Lucarini, Valerio; Russell, Gary L.

    2002-08-01

    Results are presented for two greenhouse gas experiments of the Goddard Institute for Space Studies atmosphere-ocean model (AOM). The computed trends of surface pressure; surface temperature; 850, 500, and 200 mbar geopotential heights; and related temperatures of the model for the time frame 1960-2000 are compared with those obtained from the National Centers for Enviromental Prediction (NCEP) observations. The domain of interest is the Northern Hemisphere because of the higher reliability of both the model results and the observations. A spatial correlation analysis and a mean value comparison are performed, showing good agreement in terms of statistical significance for most of the variables considered in the winter and annual means. However, the 850 mbar temperature trends do not show significant positive correlation, and the surface pressure and 850 mbar geopotential height mean trends confidence intervals do not overlap. A brief general discussion about the statistics of trend detection is presented. The accuracy that this AOM has in describing the regional and NH mean climate trends inferred from NCEP through the atmosphere suggests that it may be reliable in forecasting future climate changes.

  2. Spatial trends and pollution assessment for mercury in the surface soils of the Nansi Lake catchment, China.

    PubMed

    Ren, Ming-Yi; Yang, Li-Yuan; Wang, Long-Feng; Han, Xue-Mei; Dai, Jie-Rui; Pang, Xu-Gui

    2018-01-01

    Surface soil samples collected from Nansi Lake catchment were analyzed for mercury (Hg) to determine its spatial trends and environmental impacts. Results showed that the average soil Hg contents were 0.043 mg kg -1 . A positive correlation was shown between TOC and soil Hg contents. The main type of soil with higher TOC contents and lower pH values showed higher soil Hg contents. Soil TOC contents and CV values were both higher in the eastern catchment. The eastern part of the catchment, where the industry is developed, had relatively high soil Hg contents and a banding distribution of high Hg contents was corresponded with the southwest-northeast economic belt. Urban soils had higher Hg contents than rural soils. The urbanization pattern that soil Hg contents presented a decreasing trend from city center to suburb was shown clearly especially in the three cities. Soil Hg contents in Jining City showed a good consistency with the urban land expansion. The spatial trends of soil Hg contents in the catchment indicated that the type and the intensity of human activities have a strong influence on the distribution of Hg in soils. Calculated risk indices showed that the western part of the catchment presented moderately polluted condition and the eastern part of the catchment showed moderate to strong pollution level. The area with high ecological risk appeared mainly along the economic belt.

  3. Thirty Years of Cloud Cover Patterns from Satellite Data: Fog in California's Central Valley and Coast

    NASA Astrophysics Data System (ADS)

    Waller, E.; Baldocchi, D. D.

    2012-12-01

    In an effort to assess long term trends in winter fog in the Central Valley of California, custom maps of daily cloud cover from an approximately 30 year record of AVHRR (1981-1999) and MODIS (2000-2012) satellite data were generated. Spatial rules were then used to differentiate between fog and general cloud cover. Differences among the sensors (e.g., spectral content, spatial resolution, overpass time) presented problems of consistency, but concurrent climate station data were used to resolve systematic differences in products, and to confirm long term trends. The frequency and extent of Central Valley ("Tule") fog appear to have some periodic oscillation, but also appear to be on the decline, especially in the Sacramento Valley and in the "shoulder" months of November and February. These results may have strong implications for growers of fruit and nut trees in the Central Valley dependent on winter chill hours that are augmented by the foggy daytime conditions. Conclusions about long term trends in fog are limited to daytime patterns, as results are primarily derived from reflectance-based products. Similar analyses of daytime cloud cover are performed on other areas of concern, such as the coastal fog belt of California. Large area and long term patterns here appear to have periodic oscillation similar to that for the Central Valley. However, the relatively coarse spatial resolution of the AVHRR LTDR (Long Term Data Record) data (~5-km) may be limiting for fine-scale analysis of trends.

  4. Long Term Precipitation Pattern Identification and Derivation of Non Linear Precipitation Trend in a Catchment using Singular Spectrum Analysis

    NASA Astrophysics Data System (ADS)

    Unnikrishnan, Poornima; Jothiprakash, Vinayakam

    2017-04-01

    Precipitation is the major component in the hydrologic cycle. Awareness of not only the total amount of rainfall pertaining to a catchment, but also the pattern of its spatial and temporal distribution are equally important in the management of water resources systems in an efficient way. Trend is the long term direction of a time series; it determines the overall pattern of a time series. Singular Spectrum Analysis (SSA) is a time series analysis technique that decomposes the time series into small components (eigen triples). This property of the method of SSA has been utilized to extract the trend component of the rainfall time series. In order to derive trend from the rainfall time series, we need to select components corresponding to trend from the eigen triples. For this purpose, periodogram analysis of the eigen triples have been proposed to be coupled with SSA, in the present study. In the study, seasonal data of England and Wales Precipitation (EWP) for a time period of 1766-2013 have been analyzed and non linear trend have been derived out of the precipitation data. In order to compare the performance of SSA in deriving trend component, Mann Kendall (MK) test is also used to detect trends in EWP seasonal series and the results have been compared. The result showed that the MK test could detect the presence of positive or negative trend for a significance level, whereas the proposed methodology of SSA could extract the non-linear trend present in the rainfall series along with its shape. We will discuss further the comparison of both the methodologies along with the results in the presentation.

  5. Temporal and spatial trends of perfluorinated compounds in juvenile loggerhead sea turtles (Caretta caretta) along the East Coast of the United States.

    PubMed

    O'Connell, Steven G; Arendt, Michael; Segars, Al; Kimmel, Tricia; Braun-McNeill, Joanne; Avens, Larisa; Schroeder, Barbara; Ngai, Lily; Kucklick, John R; Keller, Jennifer M

    2010-07-01

    Perfluorinated compounds (PFCs) are globally distributed persistent environmental contaminants. This study provides temporal trends as well as large-scale spatial trends of PFC concentrations in threatened juvenile loggerhead sea turtles near or from Florida Bay (FL Bay), Cape Canaveral (FL), Charleston (SC), Core Sound (NC), and Chesapeake Bay (MD). PFCs were extracted from 163 plasma and serum samples using solid-phase extraction and quantified with LC-MS/MS. Concentrations of six compounds significantly varied by site, with MD or FL Bay turtles having the highest concentrations. Perfluorooctane sulfonate (PFOS) was the predominant PFC at all sites (range: 0.31 ng/g to 39.0 ng/g). FL Bay turtles, compared to other sites, accumulated a unique PFC pattern with a higher proportion of perfluorocarboxylates compared to PFOS. Furthermore, this study was the first to statistically correlate wildlife PFC concentrations with human population, used as a proxy for urbanization and sources of PFCs to the environment. Positive relationships were found in which human population accounted for 75 and 81% of the variance in turtle PFOS and perfluoroundecanoate (PFUnA) concentrations (p = 0.06 and 0.04), respectively. PFOS and perfluorononanoate (PFNA) significantly decreased from 2000-2008 in SC turtles annually by 20 and 11%, respectively (p

  6. Evaluation of carbon fluxes and trends (2000-2008) in the Greater Platte River Basin: a sustainability study on the potential biofuel feedstock development

    USGS Publications Warehouse

    Gu, Yingxin; Wylie, Bruce K.; Zhang, Li; Gilmanov, Tagir G.

    2012-01-01

    This study evaluates the carbon fluxes and trends and examines the environmental sustainability (e.g., carbon budget, source or sink) of the potential biofuel feedstock sites identified in the Greater Platte River Basin (GPRB). A 9-year (2000–2008) time series of net ecosystem production (NEP), a measure of net carbon absorption or emission by ecosystems, was used to assess the historical trends and budgets of carbon flux for grasslands in the GPRB. The spatially averaged annual NEP (ANEP) for grassland areas that are possibly suitable for biofuel expansion (productive grasslands) was 71–169 g C m−2 year−1 during 2000–2008, indicating a carbon sink (more carbon is absorbed than released) in these areas. The spatially averaged ANEP for areas not suitable for biofuel feedstock development (less productive or degraded grasslands) was −47 to 69 g C m−2 year−1 during 2000–2008, showing a weak carbon source or a weak carbon sink (carbon emitted is nearly equal to carbon absorbed). The 9-year pre-harvest cumulative ANEP was 1166 g C m−2 for the suitable areas (a strong carbon sink) and 200 g C m−2 for the non-suitable areas (a weak carbon sink). Results demonstrate and confirm that our method of dynamic modeling of ecosystem performance can successfully identify areas desirable and sustainable for future biofuel feedstock development. This study provides useful information for land managers and decision makers to make optimal land use decisions regarding biofuel feedstock development and sustainability.

  7. Study of Maowusu Sandy Land Vegetation Coverage Change Based on Modis Ndvi

    NASA Astrophysics Data System (ADS)

    Ye, Q.; Liu, H.; Lin, Y.; Han, R.

    2018-04-01

    This paper selected 2006-2016 MODIS NDVI data with a spatial resolution of 500m and time resolution of 16d, got the 11 years' time series NDVI data of Maowusu sandy land through mosaicking, projection transformation, cutting process in batch. Analysed the spatial and temporal distribution and variation characteristics of vegetation cover in year, season and month time scales by maximum value composite, and unary linear regression analysis. Then, we combined the meteorological data of 33 sites around the sandy area, analysed the response characteristics of vegetation cover change to temperature and precipitation through Pearson correlation coefficient. Studies have shown that: (1) The NDVI value has a stable increase trend, which rate is 0.0075 / a. (2) The vegetation growth have significantly difference in four seasons, the NDVI value of summer > autumn > spring > winter. (3) The NDVI value change trend is conformed to the gauss normal distribution in a year, and it comes to be largest in August, its green season is in April, and yellow season is in the middle of November, the growth period is about 220 d. (4) The vegetation has a decreasing trend from the southeast to the northwest, most part is slightly improved, and Etuokeqianqi improved significantly. (5) The correlation indexes of annual NDVI with temperature and precipitation are -0.2178 and 0.6309, the vegetation growth is mainly affected by precipitation. In this study, a complete vegetation cover analysis and evaluation model for sandy land is established. It has important guiding significance for the sand ecological environment protection.

  8. Radioactivity in smoke particulates from prescribed burns at the Savannah River Site and at selected southeastern United States forests.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Commodore, Adwoa, A.; Jannik, G. Timothy; Eddy, Teresa, P.

    In this study we compare airborne radionuclide concentrations during prescribed burns at the Savannah River Site (SRS) and a sample of forests in the Southeastern United States. The spatial trends of airborne radionuclide concentrations from prescribed burn areas at SRS are also characterized. Total suspended particulate (TSP) samples were taken at three settings (subsequently termed burn sample populations): during prescribed burns at SRS (n = 34), on nonburn days at SRS (n = 12) and during prescribed burns at five offsite locations in the Southeastern United States (n = 2 per location). Mass concentrations of TSP were calculated and alpha,more » beta and gamma spectroscopy was performed to determine radionuclide activity concentrations. Spatial correlation in radionuclide concentration was assessed and ordinary kriging was used to create continuous surface maps across our study area. Median activity concentrations of natural radionuclides including {sup 40}K, thorium and uranium isotopes (n = 34) were higher in samples from SRS prescribed fires (p < 0.02) compared to offsite locations (n = 10) and nonburn days (n = 12). Median gross beta activity was also higher at SRS (p < 0.0001). Median concentrations of anthropogenic radionuclides did not significantly differ among burn sample populations except for {sup 238}Pu (p = 0.0022) and {sup 239,240}Pu (p = 0.014) with median concentrations of 8.41 x 10{sup -4} and 6.72 x 10{sup -5} pCi m{sup -3} at SRS compared to 1.55 x 10{sup -4} and -7.07 x 10{sup -6} pCi m{sup -3} (nonburn days) and 1.46 x 10{sup -4} and 2.78 x 10{sup -6} pCi m{sup 3} (offsite burns) respectively. Results from our spatial analysis found that only {sup 40}K demonstrated significant spatial correlation (X{sup 2} = 15.48, p = 0.0004) and spatial trends do not appear to directly link areas with higher activity concentrations with SRS facilities.« less

  9. Bayesian spatiotemporal crash frequency models with mixture components for space-time interactions.

    PubMed

    Cheng, Wen; Gill, Gurdiljot Singh; Zhang, Yongping; Cao, Zhong

    2018-03-01

    The traffic safety research has developed spatiotemporal models to explore the variations in the spatial pattern of crash risk over time. Many studies observed notable benefits associated with the inclusion of spatial and temporal correlation and their interactions. However, the safety literature lacks sufficient research for the comparison of different temporal treatments and their interaction with spatial component. This study developed four spatiotemporal models with varying complexity due to the different temporal treatments such as (I) linear time trend; (II) quadratic time trend; (III) Autoregressive-1 (AR-1); and (IV) time adjacency. Moreover, the study introduced a flexible two-component mixture for the space-time interaction which allows greater flexibility compared to the traditional linear space-time interaction. The mixture component allows the accommodation of global space-time interaction as well as the departures from the overall spatial and temporal risk patterns. This study performed a comprehensive assessment of mixture models based on the diverse criteria pertaining to goodness-of-fit, cross-validation and evaluation based on in-sample data for predictive accuracy of crash estimates. The assessment of model performance in terms of goodness-of-fit clearly established the superiority of the time-adjacency specification which was evidently more complex due to the addition of information borrowed from neighboring years, but this addition of parameters allowed significant advantage at posterior deviance which subsequently benefited overall fit to crash data. The Base models were also developed to study the comparison between the proposed mixture and traditional space-time components for each temporal model. The mixture models consistently outperformed the corresponding Base models due to the advantages of much lower deviance. For cross-validation comparison of predictive accuracy, linear time trend model was adjudged the best as it recorded the highest value of log pseudo marginal likelihood (LPML). Four other evaluation criteria were considered for typical validation using the same data for model development. Under each criterion, observed crash counts were compared with three types of data containing Bayesian estimated, normal predicted, and model replicated ones. The linear model again performed the best in most scenarios except one case of using model replicated data and two cases involving prediction without including random effects. These phenomena indicated the mediocre performance of linear trend when random effects were excluded for evaluation. This might be due to the flexible mixture space-time interaction which can efficiently absorb the residual variability escaping from the predictable part of the model. The comparison of Base and mixture models in terms of prediction accuracy further bolstered the superiority of the mixture models as the mixture ones generated more precise estimated crash counts across all four models, suggesting that the advantages associated with mixture component at model fit were transferable to prediction accuracy. Finally, the residual analysis demonstrated the consistently superior performance of random effect models which validates the importance of incorporating the correlation structures to account for unobserved heterogeneity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Factors affecting nutrient trends in major rivers of the Chesapeake Bay Watershed

    USGS Publications Warehouse

    Sprague, Lori A.; Langland, M.J.; Yochum, S.E.; Edwards, R.E.; Blomquist, J.D.; Phillips, S.W.; Shenk, G.W.; Preston, S.D.

    2000-01-01

    Trends in nutrient loads and flow-adjusted concentrations in the major rivers entering Chesapeake Bay were computed on the basis of water-quality data collected between 1985 and 1998 at 29 monitoring stations in the Susquehanna, Potomac, James, Rappahannock, York, Patuxent, and Choptank River Basins. Two computer models?the Chesapeake Bay Watershed Model (WSM) and the U.S. Geological Survey?s 'Spatially Referenced Regressions on Watershed attributes' (SPARROW) Model?were used to help explain the major factors affecting the trends. Results from WSM simulations provided information on temporal changes in contributions from major nutrient sources, and results from SPARROW model simulations provided spatial detail on the distribution of nutrient yields in these basins. Additional data on nutrient sources, basin characteristics, implementation of management practices, and ground-water inputs to surface water were analyzed to help explain the trends. The major factors affecting the trends were changes in nutrient sources and natural variations in streamflow. The dominant source of nitrogen and phosphorus from 1985 to 1998 in six of the seven tributary basins to Chesapeake Bay was determined to be agriculture. Because of the predominance of agricultural inputs, changes in agricultural nutrient sources such as manure and fertilizer, combined with decreases in agricultural acreage and implementation of best management practices (BMPs), had the greatest impact on the trends in flow-adjusted nutrient concentrations. Urban acreage and population, however, were noted to be increasing throughout the Chesapeake Bay Watershed, and as a result, delivered loads of nutrients from urban areas increased during the study period. Overall, agricultural nutrient management, in combination with load decreases from point sources due to facility upgrades and the phosphate detergent ban, led to downward trends in flow-adjusted nutrient concentrations atmany of the monitoring stations in the watershed. The loads of nutrients, however, were not reduced significantly at most of the monitoring stations. This is due primarily to higher streamflow in the latter years of the monitoring period, which led to higher loading in those years.Results of this study indicate a need for more detailed information on BMP effectiveness under a full range of hydrologic conditions and in different areas of the watershed; an internally consistent fertilizer data set; greater consideration of the effects of watershed processes on nutrient transport; a refinement of current modeling efforts; and an expansion of the non-tidal monitoring network in the Chesapeake Bay Watershed.

  11. Long-term patterns of air temperatures, daily temperature range, precipitation, grass-reference evapotranspiration and aridity index in the USA great plains: Part II. Temporal trends

    NASA Astrophysics Data System (ADS)

    Kukal, M.; Irmak, S.

    2016-11-01

    Detection of long-term changes in climate variables over large spatial scales is a very important prerequisite to the development of effective mitigation and adaptation measures for the future potential climate change and for developing strategies for future hydrologic balance analyses under changing climate. Moreover, there is a need for effective approaches of providing information about these changes to decision makers, water managers and stakeholders to aid in efficient implementation of the developed strategies. This study involves computation, mapping and analyses of long-term (1968-2013) county-specific trends in annual, growing-season (1st May-30th September) and monthly air temperatures [(maximum (Tmax), minimum (Tmin) and average (Tavg)], daily temperature range (DTR), precipitation, grass reference evapotranspiration (ETo) and aridity index (AI) over the USA Great Plains region using datasets from over 800 weather station sites. Positive trends in annual Tavg, Tmax and Tmin, DTR, precipitation, ETo and AI were observed in 71%, 89%, 85%, 31%, 61%, 38% and 66% of the counties in the region, respectively, whereas these proportions were 48%, 89%, 62%, 20%, 57%, 28%, and 63%, respectively, for the growing-season averages of the same variables. On a regional average basis, the positive trends in growing-season Tavg, Tmax and Tmin, DTR, precipitation, ETo and AI were 0.18 °C decade-1, 0.19 °C decade-1, 0.17 °C decade-1, 0.09 °C decade-1, 1.12 mm yr-1, 0.4 mm yr-1 and 0.02 decade-1, respectively, and the negative trends were 0.21 °C decade-1, 0.06 °C decade-1, 0.09 °C decade-1, 0.22 °C decade-1, 1.16 mm yr-1, 0.76 mm yr-1 and 0.02 decade-1, respectively. The temporal trends were highly variable in space and were appropriately represented using monthly, annual and growing-season maps developed using Geographic Information System (GIS) techniques. The long-term and spatial and temporal information and data for a large region provided in this study can be used to analyze county-level trends in important climatic/hydrologic variables in context of climate change, water resources, agricultural and natural resources response to climate change.

  12. Spatial variations of storm runoff pollution and their correlation with land-use in a rapidly urbanizing catchment in China.

    PubMed

    Qin, Hua-Peng; Khu, Soon-Thiam; Yu, Xiang-Ying

    2010-09-15

    The composition of land use for a rapidly urbanizing catchment is usually heterogeneous, and this may result in significant spatial variations of storm runoff pollution and increase the difficulties of water quality management. The Shiyan Reservoir catchment, a typical rapidly urbanizing area in China, is chosen as a study area, and temporary monitoring sites were set at the downstream of its 6 sub-catchments to synchronously measure rainfall, runoff and water quality during 4 storm events in 2007 and 2009. Due to relatively low frequency monitoring, the IHACRES and exponential pollutant wash-off simulation models are used to interpolate the measured data to compensate for data insufficiency. Three indicators, event pollutant loads per unit area (EPL), event mean concentration (EMC) and pollutant loads transported by the first 50% of runoff volume (FF50), were used to describe the runoff pollution for different pollutants in each sub-catchment during the storm events, and the correlations between runoff pollution spatial variations and land-use patterns were tested by Spearman's rank correlation analysis. The results indicated that similar spatial variation trends were found for different pollutants (EPL or EMC) in light storm events, which strongly correlate with the proportion of residential land use; however, they have different trends in heavy storm events, which correlate with not only the residential land use, but also agricultural and bare land use. And some pairs of pollutants (such as COD/BOD, NH(3)-N/TN) might have the similar source because they have strong or moderate positive spatial correlation. Moreover, the first flush intensity (FF50) varies with impervious land areas and different interception ratio of initial storm runoff volume should be adopted in different sub-catchments. Copyright 2010 Elsevier B.V. All rights reserved.

  13. Influence of macular pigment optical density spatial distribution on intraocular scatter.

    PubMed

    Putnam, Christopher M; Bland, Pauline J; Bassi, Carl J

    This study evaluated the summed measures of macular pigment optical density (MPOD) spatial distribution and their effects on intraocular scatter using a commercially available device (C-Quant, Oculus, USA). A customized heterochromatic flicker photometer (cHFP) device was used to measure MPOD spatial distribution across the central 16° using a 1° stimulus. MPOD was calculated as a discrete measure and summed measures across the central 1°, 3.3°, 10° and 16° diameters. Intraocular scatter was determined as a mean of 5 trials in which reliability and repeatability measures were met using the C-Quant. MPOD spatial distribution maps were constructed and the effects of both discrete and summed values on intraocular scatter were examined. Spatial mapping identified mean values for discrete MPOD [0.32 (s.d.=0.08)], MPOD summed across central 1° [0.37 (s.d.=0.11)], MPOD summed across central 3.3° [0.85 (s.d.=0.20)], MPOD summed across central 10° [1.60 (s.d.=0.35)] and MPOD summed across central 16° [1.78 (s.d.=0.39)]. Mean intraocular scatter was 0.83 (s.d.=0.16) log units. While there were consistent trends for an inverse relationship between MPOD and scatter, these relationships were not statistically significant. Correlations between the highest and lowest quartiles of MPOD within the central 1° were near significance. While there was an overall trend of decreased intraocular forward scatter with increased MPOD consistent with selective short wavelength visible light attenuation, neither discrete nor summed values of MPOD significantly influence intraocular scatter as measured by the C-Quant device. Published by Elsevier España, S.L.U.

  14. Spatial-temporal consistency between gross primary productivity and solar-induced chlorophyll fluorescence of vegetation in China during 2007-2014

    NASA Astrophysics Data System (ADS)

    Ma, J.; Xiao, X.; Zhang, Y.; Chen, B.; Zhao, B.

    2017-12-01

    Great significance exists in accurately estimating spatial-temporal patterns of gross primary production (GPP) because of its important role in global carbon cycle. Satellite-based light use efficiency (LUE) models are regarded as an efficient tool in simulating spatially time-sires GPP. However, the estimation of the accuracy of GPP simulations from LUE at both spatial and temporal scales is still a challenging work. In this study, we simulated GPP of vegetation in China during 2007-2014 using a LUE model (Vegetation Photosynthesis Model, VPM) based on MODIS (moderate-resolution imaging spectroradiometer) images of 8-day temporal and 500-m spatial resolutions and NCEP (National Center for Environmental Prediction) climate data. Global Ozone Monitoring Instrument 2 (GOME-2) solar-induced chlorophyll fluorescence (SIF) data were used to compare with VPM simulated GPP (GPPVPM) temporally and spatially using linear correlation analysis. Significant positive linear correlations exist between monthly GPPVPM and SIF data over both single year (2010) and multiple years (2007-2014) in China. Annual GPPVPM is significantly positive correlated with SIF (R2>0.43) spatially for all years during 2007-2014 and all seasons in 2010 (R2>0.37). GPP dynamic trends is high spatial-temporal heterogeneous in China during 2007-2014. The results of this study indicate that GPPVPM is temporally and spatially in line with SIF data, and space-borne SIF data have great potential in validating and parameterizing GPP estimation of LUE-based models.

  15. Maxillofacial Injuries as Markers of Interpersonal Violence in Belo Horizonte-Brazil: Analysis of the Socio-Spatial Vulnerability of the Location of Victim’s Residences

    PubMed Central

    Silva, Carlos José de Paula; Moura, Ana Clara Mourão; Paiva, Paula Cristina Pelli; Ferreira, Raquel Conceição; Silvestrini, Rafaella Almeida; Vargas, Andréa Maria Duarte; de Paula, Liliam Pacheco Pinto; Naves, Marcelo Drummond; Ferreira, Efigênia Ferreira e

    2015-01-01

    The aim of the present study was to analyze the spatial pattern of cases of maxillofacial injuries caused by interpersonal violence, based on the location of the victim’s residence, and to investigate the existence of conditions of socio-spatial vulnerability in these areas. This is a cross-sectional study, using the data of victims attended in three emergency hospitals in Belo Horizonte-Brazil between January 2008 and December 2010. Based on the process of spatial signature, the socio-spatial condition of the victims was identified according to data from census tracts. The spatial distribution trends of the addresses of victims were analyzed using Kernel maps and Ripley’s K function. Multicriteria analysis was used to analyze the territorial insertion of victims, using a combination of variables to obtain the degree of socio-spatial vulnerability. The residences of the victims were distributed in an aggregated manner in urban areas, with a confidence level of 99%. The highest densities were found in areas of unfavorable socioeconomic conditions and, to a lesser extent, areas with worse residential and neighborhood infrastructure. Spatial clusters of households formed in slums with a significant level of socio-spatial vulnerability. Explanations of the living conditions in segregated urban areas and analysis of the concentration of more vulnerable populations should be a priority in the development of public health and safety policies. PMID:26274320

  16. Effects of Overshooting Convection on the Tropical Tropopause Layer Temperature Structure and Trends

    NASA Astrophysics Data System (ADS)

    Ramsay, H.; Sherwood, S. C.; Singh, M.

    2017-12-01

    A series of idealised cloud-resolving simulations are performed to investigate the impact of spatial/and or temporal inhomogeneity of tropical deep convection (in particular, convective overshoots that penetrate well into the tropical tropopause layer) on upper tropospheric/lower stratospheric (UTLS) temperature structure and trends under surface warming. Two sets of simulations are studied: one in which the sea surface temperature (SST) is increased uniformly, and a second in which convective updrafts are intensified periodically by specifying a diurnally-varying skin temperature. All simulations are run to radiative-convective equilibrium so as to capture the mean-state response at time scales of weeks to months. We discuss the implications of our results for the interpretation of observed and modelled trends in the UTLS, as well as the diurnal cycle of tropical deep convection.

  17. SPATIAL CHANGES IN THE ECOLOGICAL CONDITION OF LAKES ACROSS THE CONTERMINOUS UNITED STATES SINCE 2000

    EPA Science Inventory

    Much of the literature and attention on the analysis of ecological change is focused on detecting temporal trends at single sites. Of equal importance is the change in spatial condition across the landscape. For example, are there more hypereutrophic lakes in the U.S. now than th...

  18. Extent of Night Warming Differentiates the Temporal Trend of Tropical Greenness over 2001-2015

    NASA Astrophysics Data System (ADS)

    Yu, M.; Gao, Q.; Gao, C.; Wang, C.

    2016-12-01

    Tropical forests have essential functions in global C dynamic but vulnerable to changes in land cover land use (LCLUC) and climate. The tropics of Caribbean are experiencing warming and drying climate and diverse LCLUC. However, large-scale studies to detect long-term trends of C and associated mechanisms are still rare. Using MODIS Enhanced Vegetation Index (EVI), we investigated trend of greenness in the Greater Antilles Caribbean during 2000 - 2015 and further analyzed the trend of vegetation patches without LCLUC to separate the climate impacts. We hypothesized that rainfall decrease or/and warming would reduce EVI in this tropical region. All five countries showed significantly decreasing EVI except Cuba of which EVI was increasing partly due to strong reforestation. Haiti has the steepest decreasing EVI due to its deforestation for charcoals. EVI trend varied greatly even for patches without LCLUC, tending to decrease in the windward but increase in the leeward of the island Puerto Rico. Contrary to our intuition, the rainfall was mostly increasing. However the rising night temperature significantly and negatively correlates with the spatial pattern of EVI trends. Although the cooled daytime and increased rainfall might enhance EVI, night warming dominated the climate impacts and differentiated the EVI trend.

  19. Spatial and temporal trends in the mortality burden of air pollution in China: 2004–2012

    PubMed Central

    Liu, Miaomiao; Huang, Yining; Ma, Zongwei; Jin, Zhou; Liu, Xingyu; Wang, Haikun; Liu, Yang; Wang, Jinnan; Jantunen, Matti; BiDr, Jun; KinneyDr, Patrick L.

    2017-01-01

    While recent assessments have quantified the burden of air pollution at the national scale in China, air quality managers would benefit from assessments that disaggregate health impacts over regions and over time. We took advantage of a new 10 × 10 km satellite-based PM2.5 dataset to analyze spatial and temporal trends of air pollution health impacts in China, from 2004 to 2012. Results showed that national PM2.5 related deaths from stroke, ischemic heart disease and lung cancer increased from approximately 800,000 cases in 2004 to over 1.2 million cases in 2012. The health burden exhibited strong spatial variations, with high attributable deaths concentrated in regions including the Beijing–Tianjin Metropolitan Region, Yangtze River Delta, Pearl River Delta, Sichuan Basin, Shandong, Wuhan Metropolitan Region, Changsha–Zhuzhou–Xiangtan, Henan, and Anhui, which have heavy air pollution, high population density, or both. Increasing trends were found in most provinces, but with varied growth rates. While there was some evidence for improving air quality in recent years, this was offset somewhat by the countervailing influences of in–migration together with population growth. We recommend that priority areas for future national air pollution control policies be adjusted to better reflect the spatial hotspots of health burdens. Satellite-based exposure and health impact assessments can be a useful tool for tracking progress on both air quality and population health burden reductions. PMID:27745948

  20. Spatial and temporal trends in the mortality burden of air pollution in China: 2004-2012.

    PubMed

    Liu, Miaomiao; Huang, Yining; Ma, Zongwei; Jin, Zhou; Liu, Xingyu; Wang, Haikun; Liu, Yang; Wang, Jinnan; Jantunen, Matti; Bi, Jun; Kinney, Patrick L

    2017-01-01

    While recent assessments have quantified the burden of air pollution at the national scale in China, air quality managers would benefit from assessments that disaggregate health impacts over regions and over time. We took advantage of a new 10×10km satellite-based PM 2.5 dataset to analyze spatial and temporal trends of air pollution health impacts in China, from 2004 to 2012. Results showed that national PM 2.5 related deaths from stroke, ischemic heart disease and lung cancer increased from approximately 800,000 cases in 2004 to over 1.2 million cases in 2012. The health burden exhibited strong spatial variations, with high attributable deaths concentrated in regions including the Beijing-Tianjin Metropolitan Region, Yangtze River Delta, Pearl River Delta, Sichuan Basin, Shandong, Wuhan Metropolitan Region, Changsha-Zhuzhou-Xiangtan, Henan, and Anhui, which have heavy air pollution, high population density, or both. Increasing trends were found in most provinces, but with varied growth rates. While there was some evidence for improving air quality in recent years, this was offset somewhat by the countervailing influences of in-migration together with population growth. We recommend that priority areas for future national air pollution control policies be adjusted to better reflect the spatial hotspots of health burdens. Satellite-based exposure and health impact assessments can be a useful tool for tracking progress on both air quality and population health burden reductions. Copyright © 2016. Published by Elsevier Ltd.

  1. Spatial and Temporal Dust Source Variability in Northern China Identified Using Advanced Remote Sensing Analysis

    NASA Technical Reports Server (NTRS)

    Taramelli, A.; Pasqui, M.; Barbour, J.; Kirschbaum, D.; Bottai, L.; Busillo, C.; Calastrini, F.; Guarnieri, F.; Small, C.

    2013-01-01

    The aim of this research is to provide a detailed characterization of spatial patterns and temporal trends in the regional and local dust source areas within the desert of the Alashan Prefecture (Inner Mongolia, China). This problem was approached through multi-scale remote sensing analysis of vegetation changes. The primary requirements for this regional analysis are high spatial and spectral resolution data, accurate spectral calibration and good temporal resolution with a suitable temporal baseline. Landsat analysis and field validation along with the low spatial resolution classifications from MODIS and AVHRR are combined to provide a reliable characterization of the different potential dust-producing sources. The representation of intra-annual and inter-annual Normalized Difference Vegetation Index (NDVI) trend to assess land cover discrimination for mapping potential dust source using MODIS and AVHRR at larger scale is enhanced by Landsat Spectral Mixing Analysis (SMA). The combined methodology is to determine the extent to which Landsat can distinguish important soils types in order to better understand how soil reflectance behaves at seasonal and inter-annual timescales. As a final result mapping soil surface properties using SMA is representative of responses of different land and soil cover previously identified by NDVI trend. The results could be used in dust emission models even if they are not reflecting aggregate formation, soil stability or particle coatings showing to be critical for accurately represent dust source over different regional and local emitting areas.

  2. Spatializing 6,000 years of global urbanization from 3700 BC to AD 2000

    NASA Astrophysics Data System (ADS)

    Reba, Meredith; Reitsma, Femke; Seto, Karen C.

    2016-06-01

    How were cities distributed globally in the past? How many people lived in these cities? How did cities influence their local and regional environments? In order to understand the current era of urbanization, we must understand long-term historical urbanization trends and patterns. However, to date there is no comprehensive record of spatially explicit, historic, city-level population data at the global scale. Here, we developed the first spatially explicit dataset of urban settlements from 3700 BC to AD 2000, by digitizing, transcribing, and geocoding historical, archaeological, and census-based urban population data previously published in tabular form by Chandler and Modelski. The dataset creation process also required data cleaning and harmonization procedures to make the data internally consistent. Additionally, we created a reliability ranking for each geocoded location to assess the geographic uncertainty of each data point. The dataset provides the first spatially explicit archive of the location and size of urban populations over the last 6,000 years and can contribute to an improved understanding of contemporary and historical urbanization trends.

  3. Spatializing 6,000 years of global urbanization from 3700 BC to AD 2000

    PubMed Central

    Reba, Meredith; Reitsma, Femke; Seto, Karen C.

    2016-01-01

    How were cities distributed globally in the past? How many people lived in these cities? How did cities influence their local and regional environments? In order to understand the current era of urbanization, we must understand long-term historical urbanization trends and patterns. However, to date there is no comprehensive record of spatially explicit, historic, city-level population data at the global scale. Here, we developed the first spatially explicit dataset of urban settlements from 3700 BC to AD 2000, by digitizing, transcribing, and geocoding historical, archaeological, and census-based urban population data previously published in tabular form by Chandler and Modelski. The dataset creation process also required data cleaning and harmonization procedures to make the data internally consistent. Additionally, we created a reliability ranking for each geocoded location to assess the geographic uncertainty of each data point. The dataset provides the first spatially explicit archive of the location and size of urban populations over the last 6,000 years and can contribute to an improved understanding of contemporary and historical urbanization trends. PMID:27271481

  4. On the discrepancy between observed and CMIP5 multi-model simulated Barents Sea winter sea ice decline

    NASA Astrophysics Data System (ADS)

    Li, Dawei; Zhang, Rong; Knutson, Thomas R.

    2017-04-01

    This study aims to understand the relative roles of external forcing versus internal climate variability in causing the observed Barents Sea winter sea ice extent (SIE) decline since 1979. We identify major discrepancies in the spatial patterns of winter Northern Hemisphere sea ice concentration trends over the satellite period between observations and CMIP5 multi-model mean externally forced response. The CMIP5 externally forced decline in Barents Sea winter SIE is much weaker than that observed. Across CMIP5 ensemble members, March Barents Sea SIE trends have little correlation with global mean surface air temperature trends, but are strongly anti-correlated with trends in Atlantic heat transport across the Barents Sea Opening (BSO). Further comparison with control simulations from coupled climate models suggests that enhanced Atlantic heat transport across the BSO associated with regional internal variability may have played a leading role in the observed decline in winter Barents Sea SIE since 1979.

  5. Trends in Surface Temperature from AIRS.

    NASA Astrophysics Data System (ADS)

    Ruzmaikin, A.; Aumann, H. H.

    2014-12-01

    To address possible causes of the current hiatus in the Earth's global temperature we investigate the trends and variability in the surface temperature using retrievals obtained from the measurements by the Atmospheric Infrared Sounder (AIRS) and its companion instrument, the Advanced Microwave Sounding Unit (AMSU), onboard of Aqua spacecraft in 2002-2014. The data used are L3 monthly means on a 1x1degree spatial grid. We separate the land and ocean temperatures, as well as temperatures in Artic, Antarctic and desert regions. We find a monotonic positive trend for the land temperature but not for the ocean temperature. The difference in the regional trends can help to explain why the global surface temperature remains almost unchanged but the frequency of occurrence of the extreme events increases under rising anthropogenic forcing. The results are compared with the model studies. This work was supported by the Jet Propulsion Laboratory of the California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  6. The Role of the North Atlantic Oscillation (NAO) on Recent Greenland Surface Mass Loss and Mass Partitioning

    NASA Astrophysics Data System (ADS)

    Tedesco, M.; Alexander, P.; Porter, D. F.; Fettweis, X.; Luthcke, S. B.; Mote, T. L.; Rennermalm, A.; Hanna, E.

    2017-12-01

    Despite recent changes in Greenland surface mass losses and atmospheric circulation over the Arctic, little attention has been given to the potential role of large-scale atmospheric processes on the spatial and temporal variability of mass loss and partitioning of the GrIS mass loss. Using a combination of satellite gravimetry measurements, outputs of the MAR regional climate model and reanalysis data, we show that changes in atmospheric patterns since 2013 over the North Atlantic region of the Arctic (NAA) modulate total mass loss trends over Greenland together with the spatial and temporal distribution of mass loss partitioning. For example, during the 2002 - 2012 period, melting persistently increased, especially along the west coast, as a consequence of increased insulation and negative NAO conditions characterizing that period. Starting in 2013, runoff along the west coast decreased while snowfall increased substantially, when NAO turned to a more neutral/positive state. Modeled surface mass balance terms since 1950 indicate that part of the GRACE-period, specifically the period between 2002 and 2012, was exceptional in terms of snowfall over the east and northeast regions. During that period snowfall trend decreased to almost 0 Gt/yr from a long-term increasing trend, which presumed again in 2013. To identify the potential impact of atmospheric patterns on mass balance and its partitioning, we studied the spatial and temporal correlations between NAO and snowfall/runoff. Our results indicate that the correlation between summer snowfall and NAO is not stable during the 1950 - 2015 period. We further looked at changes in patterns of circulation using self organizing maps (SOMs) to identify the atmospheric patterns characterizing snowfall during different periods. We discuss potential implications for past changes and future GCM and RCM simulations.

  7. Modeled changes in extreme wave climate for US and US-affiliated Pacific Islands during the 21st century

    NASA Astrophysics Data System (ADS)

    Shope, J. B.; Storlazzi, C. D.; Erikson, L. H.; Hegermiller, C.

    2013-12-01

    Changes in future wave climates in the tropical Pacific Ocean from global climate change are not well understood. Waves are the dominant spatially- and temporally-varying processes that influence the coastal morphology and ecosystem structure of the islands throughout the tropical Pacific. Waves also impact the coastal infrastructure, natural and cultural resources, and coastal-related economic activities of these islands. Wave heights, periods, and directions were forecast through 2100 using wind parameter outputs from four coupled atmosphere-ocean global climate models from the Coupled Model Inter-Comparison Project, Phase 5., for Representative Concentration Pathways scenarios 4.5 and 8.5 that correspond to moderately mitigated and unmitigated greenhouse gas emissions, respectively. Wind fields from the global climate models were used to drive the global WAVEWATCH III wave model and generate hourly time-series of bulk wave parameters for 25 islands in the mid to western tropical Pacific. Although the results show some spatial heterogeneity, overall, the December-February extreme significant wave heights increase from present to mid century and then decrease toward the end of the century; June-August extreme wave heights decrease throughout the century. Peak wave periods decrease west of the International Date Line through all seasons, whereas peak periods increase in the eastern half of the study area; these trends are smaller during December-February and greatest during June-August. Extreme wave directions in equatorial Micronesia during June-August undergo an approximate 30 degree counter-clockwise rotation from primarily northwest to west. The spatial patterns and trends are similar between the two different greenhouse gas emission scenarios, with the magnitude of the trends greater for the higher scenario.

  8. Effects of environmental covariates and density on the catchability of fish populations and interpretation of catch per unit effort trends

    USGS Publications Warehouse

    Korman, Josh; Yard, Mike

    2017-01-01

    Article for outlet: Fisheries Research. Abstract: Quantifying temporal and spatial trends in abundance or relative abundance is required to evaluate effects of harvest and changes in habitat for exploited and endangered fish populations. In many cases, the proportion of the population or stock that is captured (catchability or capture probability) is unknown but is often assumed to be constant over space and time. We used data from a large-scale mark-recapture study to evaluate the extent of spatial and temporal variation, and the effects of fish density, fish size, and environmental covariates, on the capture probability of rainbow trout (Oncorhynchus mykiss) in the Colorado River, AZ. Estimates of capture probability for boat electrofishing varied 5-fold across five reaches, 2.8-fold across the range of fish densities that were encountered, 2.1-fold over 19 trips, and 1.6-fold over five fish size classes. Shoreline angle and turbidity were the best covariates explaining variation in capture probability across reaches and trips. Patterns in capture probability were driven by changes in gear efficiency and spatial aggregation, but the latter was more important. Failure to account for effects of fish density on capture probability when translating a historical catch per unit effort time series into a time series of abundance, led to 2.5-fold underestimation of the maximum extent of variation in abundance over the period of record, and resulted in unreliable estimates of relative change in critical years. Catch per unit effort surveys have utility for monitoring long-term trends in relative abundance, but are too imprecise and potentially biased to evaluate population response to habitat changes or to modest changes in fishing effort.

  9. Vegetation Cover Analysis in Shaanxi Province of China Based on Grid Pixel Ternd Analysis and Stability Evaluation

    NASA Astrophysics Data System (ADS)

    Yue, H.; Liu, Y.

    2018-04-01

    As a key factor affecting the biogeochemical cycle of human existence, terrestrial vegetation is vulnerable to natural environment and human activities, with obvious temporal and spatial characteristics. The change of vegetation cover will affect the ecological balance and environmental quality to a great extent. Therefore, the research on the causes and influencing factors of vegetation cover has become the focus of attention of scholars at home and abroad. In the evolution of human activities and natural environment, the vegetation coverage in Shaanxi has changed accordingly. Using MODIS/NDVI 2000-2014 time series data, using the method of raster pixel trend analysis, stability evaluation, rescaled range analysis and correlation analysis, the climatic factors in Shaanxi province were studied in the near 15 years vegetation spatial and temporal variation and influence of vegetation NDVI changes. The results show that NDVI in Shaanxi province in the near 15 years increased by 0.081, the increase of NDVI in Northern Shaanxi was obvious, and negative growth was found in some areas of Guanzhong, southern Shaanxi NDVI overall still maintained at a high level; the trend of vegetation change in Shaanxi province has obvious spatial differences, most of the province is a slight tendency to improve vegetation, there are many obvious improvement areas in Northern Shaanxi Province. Guanzhong area vegetation area decreased, the small range of variation of vegetation in Shaanxi province; the most stable areas are mainly concentrated in the southern, southern Yanan, Yulin, Xi'an area of Weinan changed greatly; Shaanxi Province in recent 15 a, the temperature and precipitation have shown an increasing trend, and the vegetation NDVI is more closely related to the average annual rainfall, with increase of 0.48 °C/10 years and 69.5 mm per year.

  10. Study of nonpoint source nutrient loading in the Patuxent River basin, Maryland

    USGS Publications Warehouse

    Preston, S.D.

    1997-01-01

    Study of nonpoint-source (NPS) nutrient loading in Maryland has focused on the Patuxent watershed because of its importance and representativeness of conditions in the State. Evaluation of NPS nutrient loading has been comprehensive and has included long-term monitoring, detailed watershed modeling, and synoptic sampling studies. A large amount of information has been compiled for the watershed and that information is being used to identify primary controls and efficient management strategies for NPS nutrient loading. Results of the Patuxent NPS study have identified spatial trends in water quality that appear to be related to basin charcteristics such as land use, physiography, andgeology. Evaluation of the data compiled by the study components is continuing and is expected to provide more detailed assessments of the reasons for spatial trends. In particular, ongoing evaluation of the watershed model output is expected to provide detailed information on the relative importance of nutrient sources and transport pathways across the entire watershed. Planned future directions of NPS evaluation in the State of Maryland include continued study of water quality in the Patuxent watershed and a shift in emphasis to a statewide approach. Eventually, the statewide approach will become the primary approach usedby the State to evaluate NPS loading. The information gained in the Patuxent study and the tools developed will represent valuable assets indeveloping the statewide NPS assessment program.

  11. Developmental trends in utilizing perceptual closure for grouping of shape: effects of spatial proximity and collinearity.

    PubMed

    Hadad, Bat-Sheva; Kimchi, Ruth

    2006-11-01

    In two experiments, visual search was used to study the grouping of shape on the basis of perceptual closure among participants 5-23 years of age. We first showed that young children, like adults, demonstrate an efficient search for a concave target among convex distractors for closed connected stimuli but an inefficient search for open stimuli. Reliable developmental differences, however, were observed in search for fragmented stimuli as a function of spatial proximity and collinearity between the closure-inducing fragments. When only closure was available, search for all the age groups was equally efficient for spatially close fragments and equally inefficient for spatially distant fragments. When closure and collinearity were available, search for spatially close fragments was equally efficient for all the age groups, but search for spatially distant fragments was inefficient for younger children and improved significantly between ages 5 and 10. These findings suggest that young children can utilize closure as efficiently as can adults for the grouping of shape for closed or nearly closed stimuli. When the closure-inducing fragments are spatially distant, only older children and adults, but not 5-year-olds, can utilize collinearity to enhance closure for the perceptual grouping of shape.

  12. Analysis of satellite precipitation over East Africa during last decades

    NASA Astrophysics Data System (ADS)

    Cattani, Elsa; Wenhaji Ndomeni, Claudine; Merino, Andrés; Levizzani, Vincenzo

    2016-04-01

    Daily accumulated precipitation time series from satellite retrieval algorithms (e.g., ARC2 and TAMSAT) are exploited to extract the spatial and temporal variability of East Africa (EA - 5°S-20°N, 28°E-52°E) precipitation during last decades (1983-2013). The Empirical Orthogonal Function (EOF) analysis is applied to precipitation time series to investigate the spatial and temporal variability in particular for October-November-December referred to as the short rain season. Moreover, the connection among EA's precipitation, sea surface temperature, and soil moisture is analyzed through the correlation with the dominant EOF modes of variability. Preliminary results concern the first two EOF's modes for the ARC2 data set. EOF1 is characterized by an inter-annual variability and a positive correlation between precipitation and El Niño, positive Indian Ocean Dipole mode, and soil moisture, while EOF2 shows a dipole structure of spatial variability associated with a longer scale temporal variability. This second dominant mode is mostly linked to sea surface temperature variations in the North Atlantic Ocean. Further analyses are carried out by computing the time series of the joint CCI/CLIVAR/JCOMM Expert Team on Climate Change Detection and Indices (ETCCDI, http://etccdi.pacificclimate.org/index.shtml), i.e. RX1day, RX5day, CDD, CDD, CWD, SDII, PRCPTOT, R10, R20. The purpose is to identify the occurrenes of extreme events (droughts and floods) and extract precipitation temporal variation by trend analysis (Mann-Kendall technique). Results for the ARC2 data set demonstrate the existence of a dipole spatial pattern in the linear trend of the time series of PRCPTOT (annual precipitation considering days with a rain rate > 1 mm) and SDII (average precipitation on wet days over a year). A negative trend is mainly present over West Ethiopia and Sudan, whereas a positive trend is exhibited over East Ethiopia and Somalia. CDD (maximum number of consecutive dry days) and CWD (maximum number of consecutive wet days) time series do not exhibit a similar behavior and trends are generally weaker with a lower significance level with respect to PRCPTOT and SDII.

  13. Evaluation of precipitation trends from high-resolution satellite precipitation products over Mainland China

    NASA Astrophysics Data System (ADS)

    Chen, Fengrui; Gao, Yongqi

    2018-01-01

    Many studies have reported the excellent ability of high-resolution satellite precipitation products (0.25° or finer) to capture the spatial distribution of precipitation. However, it is not known whether the precipitation trends derived from them are reliable. For the first time, we have evaluated the annual and seasonal precipitation trends from two typical sources of high-resolution satellite-gauge products, TRMM 3B43 and PERSIANN-CDR, using rain gauge observations over China, and they were also compared with those from gauge-only products (0.25° and 0.5° precipitation products, hereafter called CN25 and CN50). The evaluation focused mainly on the magnitude, significance, sign, and relative order of the precipitation trends, and was conducted at gridded and regional scales. The following results were obtained: (1) at the gridded scale, neither satellite-gauge products precisely measure the magnitude of precipitation trends but they do reproduce their sign and relative order; regarding capturing the significance of trends, they exhibit relatively acceptable performance only over regions with a sufficient amount of significant precipitation trends; (2) at the regional scale, both satellite-gauge products generally provide reliable precipitation trends, although they do not reproduce the magnitude of trends in winter precipitation; and (3) overall, CN50 and TRMM 3B43 outperform others in reproducing all four aspects of the precipitation trends. Compared with CN25, PERSIANN-CDR performs better in determining the magnitude of precipitation trends but marginally worse in reproducing their sign and relative order; moreover, both of them are at a level in capturing the significance of precipitation trends.

  14. Spring green-up date derived from GIMMS3g and SPOT-VGT NDVI of winter wheat cropland in the North China Plain

    NASA Astrophysics Data System (ADS)

    Liu, Zhengjia; Wu, Chaoyang; Liu, Yansui; Wang, Xiaoyue; Fang, Bin; Yuan, Wenping; Ge, Quansheng

    2017-08-01

    Satellite temporal resolution affects the fitting accuracy of vegetation growth curves. However, there are few studies that evaluate the impact of different satellite data (including temporal resolution and time series change) on spring green-up date (GUD) extraction. In this study, four GUD algorithms and two different temporal resolution satellite data (GIMMS3g during 1982-2013 and SPOT-VGT during 1999-2013) were used to investigate winter wheat GUD in the North China Plain. Four GUD algorithms included logistic-NDVI (normalized difference vegetation index), logistic-cumNDVI (cumulative NDVI), polynomial-NDVI and polynomial-cumNDVI algorithms. All algorithms and data were first regrouped into eight controlled cases. At site scale, we evaluated the performance of each case using correlation coefficient (r), bias and root mean square error (RMSE). We further compared spatial patterns and inter-annual trends of GUD inferred from different algorithms, and then analyzed the difference between GIMMS3g-based GUD and SPOT-VGT-based GUD. Our results showed that all satellite-based GUD were correlated with observations with r ranging from 0.32 to 0.57 (p < 0.01). SPOT-VGT-based GUD generally had better correlations with observed GUD than those of GIMMS3g. Spatially, SPOT-VGT-based GUD performed more reasonable spatial distributions. Inter-annual regional averaged satellite-based GUD presented overall advanced trends during 1982-2013 (0.3-2.0 days/decade) while delayed trends were observed during 1999-2013 (1.7-7.4 days/decade for GIMMS3g and 3.8-7.4 days/decade for SPOT-VGT). However, their significance levels were highly dependent on the data and algorithms used. Our findings suggest cautions on previous results of inter-annual variability of phenology from a single data/method.

  15. The long-term spatial-temporal trends and burden of esophageal cancer in one high-risk area: A population-registered study in Feicheng, China

    PubMed Central

    Sun, Xiubin; Zhao, Deli; Liu, Yi; Liu, Yunxia; Yuan, Zhongshang; Wang, Jialin; Xue, Fuzhong

    2017-01-01

    Background Feicheng County is a high-risk area for esophageal cancer in Shandong province, China. It is important to determine the long-term spatio-temporal trends in epidemiological characteristics and the burden of esophageal cancer, especially since the implementation of the national esophageal cancer screening program for early detection and treatment in 2005. Methods The data collected in Feicheng County from 2001 to 2012 was extracted from the whole-population cancer registry system. The incidence, mortality, disability-adjusted life years (DALY) and changing trends in esophageal cancer according to age and sex were calculated and described. Results The incidence rate of esophageal cancer in Feicheng was consistently high, and increased significantly for male, but not for female from 2001 to 2012, according to the joinpoint regression analysis. The highest and lowest yearly crude incidence rates were 160.78 and 95.97 per 100000 for males, and 81.36 and 52.17 per 100000 for females. The highest and lowest crude yearly mortality rates were 122.26 and 94.40 per 100000 for males, and 60.75 and 49.35 per 100000for females. Esophageal squamous cell carcinoma was the main pathology type and the tumor location changed significantly from 2001 to 2012. Overall, the DALY remained roughly stable and was estimated as 11.50 for males and 4.90 for females per 1000 people. The burden was mainly caused by premature death. There is an obvious spatial pattern in the distribution of incidence density and burden. Conclusion Esophageal cancer remains a public health issue in Feicheng County with a high incidence, mortality and disease burden. The incidence and burden have obvious spatial heterogeneity, and further studies should be conducted to identify geographical risk factors for precise local prevention and control measures. PMID:28267769

  16. Vulnerabilities of Local Healthcare Providers in Complex Emergencies: Findings from the Manipur Micro-level Insurgency Database 2008-2009.

    PubMed

    Sinha, Samrat; David, Siddarth; Gerdin, Martin; Roy, Nobhojit

    2013-04-24

    Research on healthcare delivery in zones of conflict requires sustained and systematic attention. In the context of the South Asian region, there has been an absence of research on the vulnerabilities of health care workers and institutions in areas affected by armed conflict. The paper presents a case study of the varied nature of security challenges faced by local healthcare providers in the state of Manipur in the North-eastern region of India, located in the Indo-Myanmar frontier region which has been experiencing armed violence and civil strife since the late 1960s. . The aim of this study was to assess longitudinal and spatial trends in incidents involving health care workers in Manipur during the period 2008 to 2009. We conducted a retrospective database analysis of the Manipur Micro-level Insurgency Database 2008-2009, created by using local newspaper archives to measure the overall burden of violence experienced in the state over a two year period. Publicly available press releases of armed groups and local hospitals in the state were used to supplement the quantitative data. Simple linear regression was used to assess longitudinal trends. Data was visualized with GIS-software for spatial analysis. The mean proportion of incidents involving health care workers per month was 2.7% and ranged between 0 and 6.1% (table 2). There was a significant (P=0.037) month-to-month variation in the proportion of incidents involving health care workers, as well as a upward trend of about 0.11% per month. Spatial analysis revealed different patterns depending on whether absolute, population-adjusted, or incident-adjusted frequencies served as the basis of the analysis. The paper shows a small but steady rise in violence against health workers and health institutions impeding health services in Manipur's pervasive violence. More evidence-building backed by research along with institutional obligations and commitment is essential to protect the health-systems Keywords: India, Manipur, insurgency, healthcare, security, ethnic strife.

  17. Canadian Boreal Forest Greening and Browning Trends: An Analysis of Biogeographic Patterns and the Relative Roles of Disturbance versus Climate Drivers

    NASA Astrophysics Data System (ADS)

    Sulla-menashe, D. J.; Woodcock, C. E.; Friedl, M. A.

    2017-12-01

    Recent studies have used satellite-derived normalized difference vegetation index (NDVI) time series derived from the Advanced Very High Resolution Radiometer (AVHRR) to explore geographic patterns in boreal forest greening and browning. A number of these studies indicate that boreal forests are experiencing widespread browning, and have suggested that these patterns reflect decreases in forest productivity induced by climate change. A key limitation of these studies, however, is their reliance on AVHRR data, which provides imagery with very coarse spatial resolution and lower radiometric quality relative to other available remote sensing time series. Here we use NDVI time series from Landsat, which has much higher radiometric quality and spatial resolution than AVHRR, to characterize spatial patterns in greening and browning across Canada's boreal forest and to explore the drivers behind the observed trends. Our results show that the majority of NDVI changes in Canada's boreal forest reflect disturbance-recovery dynamics not climate change impacts, that greening and browning trends outside of disturbed forests are consistent with expected ecological responses to regional changes in climate, and that observed NDVI changes are geographically limited and relatively small in magnitude. Consistent with biogeographic theory, greening and browning unrelated to disturbance tended to be located in ecotones near boundaries of the boreal forest bioclimatic envelope. We observe greening to be most prevalent in Eastern Canada, which is more humid, and browning to be most prevalent in Western Canada, where there is more moisture stress. We conclude that continued long-term climate change has the potential to significantly alter the character and function of Canada's boreal forest, but recent changes have been modest and near-term impacts are likely to be focused in or near ecotones. As part of a NASA funded project supporting the Arctic-Boreal Vulnerability Experiment (ABoVE), we have extended the scope of this study from a set of 46 sites to the entire ABoVE domain covering Alaska and Northwestern Canada (over 6 million square kilometers). Using the full Landsat record, we will also be investigating climate change impacts to the timing of leaf phenology and disturbance frequency in these rapidly warming regions.

  18. Using Relative Position and Temporal Judgments to Assess the Effects of Texture and Field of View on Spatial Awareness for Synthetic Vision Systems Displays

    NASA Technical Reports Server (NTRS)

    Bolton, Matthew L.; Bass, Ellen J.; Comstock, James R., Jr.

    2006-01-01

    Synthetic Vision Systems (SVS) depict computer generated views of terrain surrounding an aircraft. In the assessment of textures and field of view (FOV) for SVS, no studies have directly measured the 3 levels of spatial awareness: identification of terrain, its relative spatial location, and its relative temporal location. This work introduced spatial awareness measures and used them to evaluate texture and FOV in SVS displays. Eighteen pilots made 4 judgments (relative angle, distance, height, and abeam time) regarding the location of terrain points displayed in 112 5-second, non-interactive simulations of a SVS heads down display. Texture produced significant main effects and trends for the magnitude of error in the relative distance, angle, and abeam time judgments. FOV was significant for the directional magnitude of error in the relative distance, angle, and height judgments. Pilots also provided subjective terrain awareness ratings that were compared with the judgment based measures. The study found that elevation fishnet, photo fishnet, and photo elevation fishnet textures best supported spatial awareness for both the judgments and the subjective awareness measures.

  19. Denitrification potential of riparian soils in relation to multiscale spatial environmental factors: a case study of a typical watershed, China.

    PubMed

    Wei, Jianbing; Feng, Hao; Cheng, Quanguo; Gao, Shiqian; Liu, Haiyan

    2017-02-01

    The objective of this study was to test the hypothesis that environmental regulators of riparian zone soil denitrification potential differ according to spatial scale within a watershed; consequently, a second objective was to provide spatial strategies for conserving and restoring the purification function of runoff in riparian ecosystems. The results show that soil denitrification in riparian zones was more heterogeneous at the profile scale than at the cross-section and landscape scales. At the profile scale, biogeochemical factors (including soil total organic carbon, total nitrogen, and nitrate-nitrogen) were the major direct regulators of the spatial distribution of soil denitrification enzyme activity (DEA). At the cross-section scale, factors included distance from river bank and vegetation density, while landscape-scale factors, including topographic index, elevation, and land use types, indirectly regulated the spatial distribution of DEA. At the profile scale, soil DEA was greatest in the upper soil layers. At the cross-section scale, maximum soil DEA occurred in the mid-part of the riparian zone. At the landscape scale, soil DEA showed an increasing trend towards downstream sites, except for those in urbanized areas.

  20. On the Importance of Spatial Resolution for Flap Side Edge Noise Prediction

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond E.; Khorrami, Mehdi R.

    2017-01-01

    A spatial resolution study of flap tip flow and the effects on the farfield noise signature for an 18%-scale, semispan Gulfstream aircraft model are presented. The NASA FUN3D unstructured, compressible Navier-Stokes solver was used to perform the highly resolved, time-dependent, detached eddy simulations of the flow field associated with the flap for this high-fidelity aircraft model. Following our previous work on the same model, the latest computations were undertaken to determine the causes of deficiencies observed in our earlier predictions of the steady and unsteady surface pressures and off-surface flow field at the flap tip regions, in particular the outboard tip area, where the presence of a cavity at the side-edge produces very complex flow features and interactions. The present results show gradual improvement in steady loading at the outboard flap edge region with increasing spatial resolution, yielding more accurate fluctuating surface pressures, off-surface flow field, and farfield noise with improved high-frequency content when compared with wind tunnel measurements. The spatial resolution trends observed in the present study demonstrate that the deficiencies reported in our previous computations are mostly caused by inadequate spatial resolution and are not related to the turbulence model.

  1. Total ozone trend significance from space time variability of daily Dobson data

    NASA Technical Reports Server (NTRS)

    Wilcox, R. W.

    1981-01-01

    Estimates of standard errors of total ozone time and area means, as derived from ozone's natural temporal and spatial variability and autocorrelation in middle latitudes determined from daily Dobson data are presented. Assessing the significance of apparent total ozone trends is equivalent to assessing the standard error of the means. Standard errors of time averages depend on the temporal variability and correlation of the averaged parameter. Trend detectability is discussed, both for the present network and for satellite measurements.

  2. Patterns in Stable Isotope Values of Nitrogen and Carbon in ...

    EPA Pesticide Factsheets

    Stable isotope measurements of nitrogen and carbon (15N, 13ddC) are often used to characterize estuarine, nearshore, and open ocean ecosystems. Reliable information about the spatial distribution of base-level stable isotope values, often represented by primary producers, is critical to interpreting values in these ecosystems. While base-level isotope data are generally readily available for estuaries, nearshore coastal waters, and the open ocean, the continental shelf is less studied. To address this, and as a first step toward developing a surrogate for base-level isotopic signature in this region, we collected surface and deep water samples from the United States’ eastern continental shelf in the Western Atlantic Ocean, from the Gulf of Maine to Cape Hatteras, periodically between 2000 and 2013. During the study, particulate matter 15dN values ranged from 0.8 to 17.4‰, and 13dC values from −26.4 to −15.6‰over the region. We used spatial autocorrelation analysis and random forest modeling to examine the spatial trends and potential environmental drivers of the stable isotope values. We observed general trends toward lower values for both nitrogen and carbon isotopes at the seaward edge of the shelf. Conversely, higher 15dN and 13dC values were observed on the landward edge of the shelf, in particular in the southern portion of the sampling area. Across all sites, the magnitude of the difference between the 15dN of subsurface and surface particulate m

  3. Spatial stabilization and intensification of moistening and drying rate patterns under future climate change

    NASA Astrophysics Data System (ADS)

    Chavaillaz, Y.; Joussaume, S.; Bony, S.; Braconnot, P.

    2015-12-01

    Most climate studies characterize the future climate change by considering the evolution between a fixed current baseline and the future. It emphasizes an increase of future precipitation changes with global warming. Here we use an alternative approach that considers rate of change indicators related to precipitation using projections of an ensemble of General Circulation Models. The rate is defined by the difference between two subsequent 20-year periods. This approach can be relevant to impacts affecting upcoming generations, and to their continuous adaptation towards a changing target. Under the strongest emission pathway (RCP8.5), moistening and drying rates strongly increase at the global scale. As we move further over the twenty-first century, more and more regions exhibit substantial rates. These regions are modified over time due to spatial variability of precipitation. However, we show that they tend to become more geographically stationary through the century, leading to persisting trends at several places over the globe. Whilst global warming is accelerating, this spatial stabilization is due to the decreasing relative influence of global circulation in precipitation changes compared to thermodynamic processes. In specific regions, the combination of intensification and persistence of such substantial rates should be considered in the framework of future impact studies (i.e. the Mediterranean Sea, Central America, South Asia and the Arctic). These trends are already visible in the current period, but could almost disappear if strong mitigation policies (RCP2.6) were quickly implemented.

  4. Spatial and temporal trends of contaminants in eggs of wading birds from San Francisco Bay, California

    USGS Publications Warehouse

    Hothem, R.L.; Roster, D.L.; King, K.A.; Keldsen, T.J.; Marois, Katherine C.; Wainwright, S.E.

    1995-01-01

    Between 1989 and 1991, reproduction by black-crowned night-herons (Nycticorax nycticorax) and snowy egrets (Egretta thula) was studied at sites in San Francisco Bay. Eggs were collected from these and other bay sites and from South Wilbur Flood Area, a reference site in California's San Joaquin Valley. Eggs were analyzed for inorganic trace elements, organochlorine pesticides, and polychlorinated biphenyls (PCBs). Results were compared among sites and years and with results of previous studies. There was some evidence of impaired reproduction, but concentrations of contaminants were generally lower than threshold levels for such effects. Egg hatchability was generally good, with predation being the factor that most limited reproductive success. Mean PCB concentrations were generally higher in eggs from the south end of San Francisco Bay than from the north, but the only temporal change, an increase, was observed at Alcatraz Island. There were spatial differences for p,p'-DDE in night-heron eggs in 1990, but the highest mean concentration of DDE was in night-heron eggs from South Wilbur in 1991. Temporal declines in maximum concentrations of DDE in eggs were observed in the bay, but means did not change significantly over time, At Bair Island in the southern end of the bay, mean concentrations of mercury decreased while selenium increased in night-heron eggs over time, but there were no clear bay-wide spatial or temporal trends for either element.

  5. O/H-N/O: the curious case of NGC 4670

    NASA Astrophysics Data System (ADS)

    Kumari, Nimisha; James, Bethan L.; Irwin, Mike J.; Amorín, Ricardo; Pérez-Montero, Enrique

    2018-05-01

    We use integral field spectroscopic (IFS) observations from Gemini Multi-Object Spectrograph North (GMOS-N) of a group of four H II regions and the surrounding gas in the central region of the blue compact dwarf (BCD) galaxy NGC 4670. At spatial scales of ˜9 pc, we map the spatial distribution of a variety of physical properties of the ionized gas: internal dust attenuation, kinematics, stellar age, star formation rate, emission-line ratios, and chemical abundances. The region of study is found to be photoionized. Using the robust direct Te method, we estimate metallicity, nitrogen-to-oxygen ratio, and helium abundance of the four H II regions. The same parameters are also mapped for the entire region using the HII-CHI-mistry code. We find that log(N/O) is increased in the region where the Wolf-Rayet bump is detected. The region coincides with the continuum region, around which we detect a slight increase in He abundance. We estimate the number of WC4, WN2-4, and WN7-9 stars from the integrated spectrum of WR bump region. We study the relation between log(N/O) and 12 + log(O/H) using the spatially resolved data of the field of view as well as the integrated data of the H II regions from 10 BCDs. We find an unexpected negative trend between N/O and metallicity. Several scenarios are explored to explain this trend, including nitrogen enrichment, and variations in star formation efficiency via chemical evolution models.

  6. A Comparison of Grizzly Bear Demographic Parameters Estimated from Non-Spatial and Spatial Open Population Capture-Recapture Models.

    PubMed

    Whittington, Jesse; Sawaya, Michael A

    2015-01-01

    Capture-recapture studies are frequently used to monitor the status and trends of wildlife populations. Detection histories from individual animals are used to estimate probability of detection and abundance or density. The accuracy of abundance and density estimates depends on the ability to model factors affecting detection probability. Non-spatial capture-recapture models have recently evolved into spatial capture-recapture models that directly include the effect of distances between an animal's home range centre and trap locations on detection probability. Most studies comparing non-spatial and spatial capture-recapture biases focussed on single year models and no studies have compared the accuracy of demographic parameter estimates from open population models. We applied open population non-spatial and spatial capture-recapture models to three years of grizzly bear DNA-based data from Banff National Park and simulated data sets. The two models produced similar estimates of grizzly bear apparent survival, per capita recruitment, and population growth rates but the spatial capture-recapture models had better fit. Simulations showed that spatial capture-recapture models produced more accurate parameter estimates with better credible interval coverage than non-spatial capture-recapture models. Non-spatial capture-recapture models produced negatively biased estimates of apparent survival and positively biased estimates of per capita recruitment. The spatial capture-recapture grizzly bear population growth rates and 95% highest posterior density averaged across the three years were 0.925 (0.786-1.071) for females, 0.844 (0.703-0.975) for males, and 0.882 (0.779-0.981) for females and males combined. The non-spatial capture-recapture population growth rates were 0.894 (0.758-1.024) for females, 0.825 (0.700-0.948) for males, and 0.863 (0.771-0.957) for both sexes. The combination of low densities, low reproductive rates, and predominantly negative population growth rates suggest that Banff National Park's population of grizzly bears requires continued conservation-oriented management actions.

  7. The promise and peril of intensive-site-based ecological research: insights from the Hubbard Brook ecosystem study

    Treesearch

    Timothy J. Fahey; Pamela H. Templer; Bruce T. Anderson; John J. Battles; John L. Campbell; Charles T. Driscoll; Anthony R. Fusco; Mark B. Green; Karim-Aly S. Kassam; Nicholas L. Rodenhouse; Lindsey Rustad; Paul G. Schaberg; Matthew A. Vadeboncoeur

    2015-01-01

    Ecological research is increasingly concentrated at particular locations or sites. This trend reflects a variety of advantages of intensive, site-based research, but also raises important questions about the nature of such spatially delimited research: how well does site based research represent broader areas, and does it constrain scientific discovery? We provide an...

  8. Visualizing Economic Development with ArcGIS Explorer

    ERIC Educational Resources Information Center

    Webster, Megan L.; Milson, Andrew J.

    2011-01-01

    Numerous educators have noted that Geographic Information Systems (GIS) is a powerful tool for social studies teaching and learning. Yet the use of GIS has been hampered by issues such as the cost of the software and the management of large spatial data files. One trend that shows great promise for GIS in education is the move to cloud computing.…

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutherford, L.A.; Matthews, S.L.

    A study was conducted to determine historical atmospheric mercury deposition patterns in the Maritime Provinces. Investigators measured mercury concentrations in peat cores from five ombrotrophic bogs in Kejimkujik, Fundy, Kouchibougouac, and Cape Breton Highlands national parks and in East Baltic Bog, Prince Edward Island. Results presented and discussed include deposition rates calculated using lead-210 date estimates, temporal trends in mercury concentrations, and spatial patterns of mercury deposition.

  10. Spatial and temporal patterns of chronic wasting disease: Fine-scale mapping of a wildlife epidemic in Wisconsin

    USGS Publications Warehouse

    Osnas, E.E.; Heisey, D.M.; Rolley, R.E.; Samuel, M.D.

    2009-01-01

    Emerging infectious diseases threaten wildlife populations and human health. Understanding the spatial distributions of these new diseases is important for disease management and policy makers; however, the data are complicated by heterogeneities across host classes, sampling variance, sampling biases, and the space-time epidemic process. Ignoring these issues can lead to false conclusions or obscure important patterns in the data, such as spatial variation in disease prevalence. Here, we applied hierarchical Bayesian disease mapping methods to account for risk factors and to estimate spatial and temporal patterns of infection by chronic wasting disease (CWD) in white-tailed deer (Odocoileus virginianus) of Wisconsin, USA. We found significant heterogeneities for infection due to age, sex, and spatial location. Infection probability increased with age for all young deer, increased with age faster for young males, and then declined for some older animals, as expected from disease-associated mortality and age-related changes in infection risk. We found that disease prevalence was clustered in a central location, as expected under a simple spatial epidemic process where disease prevalence should increase with time and expand spatially. However, we could not detect any consistent temporal or spatiotemporal trends in CWD prevalence. Estimates of the temporal trend indicated that prevalence may have decreased or increased with nearly equal posterior probability, and the model without temporal or spatiotemporal effects was nearly equivalent to models with these effects based on deviance information criteria. For maximum interpretability of the role of location as a disease risk factor, we used the technique of direct standardization for prevalence mapping, which we develop and describe. These mapping results allow disease management actions to be employed with reference to the estimated spatial distribution of the disease and to those host classes most at risk. Future wildlife epidemiology studies should employ hierarchical Bayesian methods to smooth estimated quantities across space and time, account for heterogeneities, and then report disease rates based on an appropriate standardization. ?? 2009 by the Ecological Society of America.

  11. Spatial and temporal patterns in concentrations of perfluorinated compounds in bald eagle nestlings in the Upper Midwestern United States

    USGS Publications Warehouse

    Route, William T.; Russell, Robin E.; Lindstrom, Andrew B.; Strynor, Mark J.; Key, Rebecca L.

    2014-01-01

    Perfluorinated chemicals (PFCs) are of concern due to their widespread use, persistence in the environment, tendency to accumulate in animal tissues, and growing evidence of toxicity. Between 2006 and 2011 we collected blood plasma from 261 bald eagle nestlings in six study areas from the upper Midwestern United States. Samples were assessed for levels of 16 different PFCs. We used regression analysis in a Bayesian framework to evaluate spatial and temporal trends for these analytes. We found levels as high as 7370 ng/mL for the sum of all 16 PFCs (∑PFCs). Perfluorooctanesulfonate (PFOS) and perfluorodecanesulfonate (PFDS) were the most abundant analytes, making up 67% and 23% of the PFC burden, respectively. Levels of ∑PFC, PFOS, and PFDS were highest in more urban and industrial areas, moderate on Lake Superior, and low on the remote upper St. Croix River watershed. We found evidence of declines in ∑PFCs and seven analytes, including PFOS, PFDS, and perfluorooctanoic acid (PFOA); no trend in two analytes; and increases in two analytes. We argue that PFDS, a long-chained PFC with potential for high bioaccumulation and toxicity, should be considered for future animal and human studies.

  12. Infant mortality evolution in Romania: perspectives from a country in transition

    NASA Astrophysics Data System (ADS)

    Burlea, A.-M.; Muntele, I.

    2012-04-01

    In the last two decades transition was a word used to describe the important mutations that have characterized social and economic structures in Romania. All the changes left their mark on every aspects of life including on population health status, and all modifications were reflected in the evolution of health indicators. Considered one of the most sensitive indicators of living conditions, population health literacy level and healthcare system efficiency infant mortality rate is a negative indicator which reflects the intensity of children deaths before their first anniversary. Based on the current statistical data collected at county level, this research aims to underline the existing spatial differences in Romania at county level, to identify spatial patterns, time trend and to point out the territories that need special attention and a more profound analysis for understanding the causes that are generating them. Using mathematical and statistical methods we have calculated infant mortality for a previous and available period of time (1990 - 2010) and identified a trend influenced by exogenous and endogenous factors. With the help of GIS techniques we have created cartographic material for allowing us an easier identification of spatial disparities. Following the global trend, Romania achieved significant progress in reduction infant mortality. From values that exceeded 26 ‰ at the beginning of the nineties this indicator has continued to diminish until 9.79 ‰ in 2010. But, with all the improvements, value is still double in compare with European Union average. Although characteristic for Romania is the general downward trend, at the county level there can be identified different types of evolution and different spatial pattern. Having the lowest economic development level in the country, Northeast and Southeast counties maintain high values for infant mortality rate. Positive examples are given by Bucharest and some central and western districts, all with socio-economic indicators above the national average. In this context, identification, monitoring and description of infant mortality rate spatial disparities are becoming key points for policy makers and stakeholders as first steps needed for finding the most suitable measures to reduce them, measures tailored for any administrative level in which they occur.

  13. Rising Water Storage in the Niger River basin: Clues and Cause

    NASA Astrophysics Data System (ADS)

    Werth, S.

    2016-12-01

    Heavily populated west African regions along the Niger River are affected by climate and land cover changes, altering the distribution of water resources. To maintain a reliable water supply in the region, water management authorities require knowledge of hydrological changes at various spatial and temporal scales. Local and regional studies reported rising water tables over the last decades as a consequence of complex responses on land use change in the Sahel zone. The spatial extend of this responses is not well understood, as of yet. Thus, this study provides an in-depth investigation of long-term changes in the water storages of Niger River basin and its sub-regions by analyzing more than a decade of satellite based gravity data from the Gravity Recovery And Climate Change (GRACE) satellites. Soil moisture data from four global hydrological models serve to separate freshwater resources (WR) from GRACE-based terrestrial water storage variations. Surface water variations from a global water storage model and trends from altimetry data were applied to separate the groundwater component from WR trends. Errors of all datasets are taken into account. Trends in WR are positive, except for the tropical Upper Niger with negative trends. For the Niger basin, a rise in GW stocks was detected. On the subbasin scale, GW changes are positive for the Sahelian Middle Niger and the Benue. The findings confirm previous observations of water tables in the Sahel and tropical zones, indicating that reported effects of land use change are relevant on large, i.e. basin and subbasin, scales. Our results have implications for Niger water management strategies. While areas with rising water storage are stocking a comfortable backup to mitigate possible future droughts and to deliver water to remote areas with no access to rivers or reservoirs. Increasing groundwater recharges may be accompanied by a reduction in water quality. This study helps to inform authority's decision to address risks for affected communities.

  14. Geo-spatial analysis of the temporal trends of kharif crop phenology metrics over India and its relationships with rainfall parameters.

    PubMed

    Chakraborty, Abhishek; Seshasai, M V R; Dadhwal, V K

    2014-07-01

    The Global Inventory Modeling and Mapping Studies bimonthly Normalized Difference Vegetation Index (NDVI) data of 8 × 8 km spatial resolution for the period of 1982-2006 were analyzed to detect the trends of crop phenology metrics (start of the growing season (SGS), seasonal NDVI amplitude (AMP), seasonally integrated NDVI (SiNDVI)) during kharif season (June to October) and their relationships with the amount of rainfall and the number of rainy days over Indian subcontinent. Direction and magnitude of trends were analyzed at pixel level using the Mann-Kendall test and further assessed at meteorological subdivision level using field significance test (α = 0.1). Significant pre-occurrence of the SGS was observed over northern (Punjab, Haryana) and central (Marathwada, Vidarbha and Madhya Maharashtra) parts, whereas delay was found over southern (Rayalaseema, Coastal Andhra Pradesh) and eastern (Bihar, Gangetic West Bengal and Sub-Himalayan West Bengal) parts of India. North, west, and central India showed significant increasing trends of SiNDVI, corroborating the kharif food grain production performance during the time frame. Significant temporal correlation (α = 0.1) between the rainfall/number of rainy days and crop phenology metrics was observed over the rainfed region of India. About 35-40 % of the study area showed significant correlation between the SGS and the rainfall/number of rainy days during June to August. June month rainfall/number of rainy days was found to be the most sensitive to the SGS. The amount of rainfall and the number of rainy days during monsoon were found to have significant influence over the SiNDVI in 24-30 % of the study area. The crop phenology metrics had significant correlation with the number of rainy days over the larger areas than that of the rainfall amount.

  15. Relationship of opioid prescription sales and overdoses, North Carolina.

    PubMed

    Modarai, F; Mack, K; Hicks, P; Benoit, S; Park, S; Jones, C; Proescholdbell, S; Ising, A; Paulozzi, L

    2013-09-01

    In the United States, fatal drug overdoses have tripled since 1991. This escalation in deaths is believed to be driven primarily by prescription opioid medications. This investigation compared trends and patterns in sales of opioids, opioid drug overdoses treated in emergency departments (EDs), and unintentional overdose deaths in North Carolina (NC). Our ecological study compared rates of opioid sales, opioid related ED overdoses, and unintentional drug overdose deaths in NC. Annual sales data, provided by the Drug Enforcement Administration, for select opioids were converted into morphine equivalents and aggregated by zip code. These opioid drug sales rates were trended from 1997 to 2010. In addition, opioid sales were correlated and compared to opioid related ED visits, which came from a Centers for Disease Control and Prevention syndromic surveillance system, and unintentional overdose deaths, which came from NC Vital Statistics, from 2008 to 2010. Finally, spatial cluster analysis was performed and rates were mapped by zip code in 2010. Opioid sales increased substantially from 1997 to 2010. From 2008 to 2010, the quarterly rates of opioid drug overdoses treated in EDs and opioid sales correlated (r=0.68, p=0.02). Specific regions of the state, particularly in the southern and western corners, had both high rates of prescription opioid sales and overdoses. Temporal trends in sales of prescription opioids correlate with trends in opioid related ED visits. The spatial correlation of opioid sales with ED visit rates shows that opioid sales data may be a timely way to identify high-risk communities in the absence of timely ED data. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Evaluating the spatiotemporal variations of water budget across China over 1951-2006 using IBIS model

    USGS Publications Warehouse

    Zhu, Q.; Jiang, H.; Liu, J.; Wei, X.; Peng, C.; Fang, X.; Liu, S.; Zhou, G.; Yu, S.; Ju, W.

    2010-01-01

    The Integrated Biosphere Simulator is used to evaluate the spatial and temporal patterns of the crucial hydrological variables [run-off and actual evapotranspiration (AET)] of the water balance across China for the period 1951–2006 including a precipitation analysis. Results suggest three major findings. First, simulated run-off captured 85% of the spatial variability and 80% of the temporal variability for 85 hydrological gauges across China. The mean relative errors were within 20% for 66% of the studied stations and within 30% for 86% of the stations. The Nash–Sutcliffe coefficients indicated that the quantity pattern of run-off was also captured acceptably except for some watersheds in southwestern and northwestern China. The possible reasons for underestimation of run-off in the Tibetan plateau include underestimation of precipitation and uncertainties in other meteorological data due to complex topography, and simplified representations of the soil depth attribute and snow processes in the model. Second, simulated AET matched reasonably with estimated values calculated as the residual of precipitation and run-off for watersheds controlled by the hydrological gauges. Finally, trend analysis based on the Mann–Kendall method indicated that significant increasing and decreasing patterns in precipitation appeared in the northwest part of China and the Yellow River region, respectively. Significant increasing and decreasing trends in AET were detected in the Southwest region and the Yangtze River region, respectively. In addition, the Southwest region, northern China (including the Heilongjiang, Liaohe, and Haihe Basins), and the Yellow River Basin showed significant decreasing trends in run-off, and the Zhemin hydrological region showed a significant increasing trend.

  17. Spatial data analysis for exploration of regional scale geothermal resources

    NASA Astrophysics Data System (ADS)

    Moghaddam, Majid Kiavarz; Noorollahi, Younes; Samadzadegan, Farhad; Sharifi, Mohammad Ali; Itoi, Ryuichi

    2013-10-01

    Defining a comprehensive conceptual model of the resources sought is one of the most important steps in geothermal potential mapping. In this study, Fry analysis as a spatial distribution method and 5% well existence, distance distribution, weights of evidence (WofE), and evidential belief function (EBFs) methods as spatial association methods were applied comparatively to known geothermal occurrences, and to publicly-available regional-scale geoscience data in Akita and Iwate provinces within the Tohoku volcanic arc, in northern Japan. Fry analysis and rose diagrams revealed similar directional patterns of geothermal wells and volcanoes, NNW-, NNE-, NE-trending faults, hotsprings and fumaroles. Among the spatial association methods, WofE defined a conceptual model correspondent with the real world situations, approved with the aid of expert opinion. The results of the spatial association analyses quantitatively indicated that the known geothermal occurrences are strongly spatially-associated with geological features such as volcanoes, craters, NNW-, NNE-, NE-direction faults and geochemical features such as hotsprings, hydrothermal alteration zones and fumaroles. Geophysical data contains temperature gradients over 100 °C/km and heat flow over 100 mW/m2. In general, geochemical and geophysical data were better evidence layers than geological data for exploring geothermal resources. The spatial analyses of the case study area suggested that quantitative knowledge from hydrothermal geothermal resources was significantly useful for further exploration and for geothermal potential mapping in the case study region. The results can also be extended to the regions with nearly similar characteristics.

  18. [Spatial regimes: dynamics of intentional homicides in the city of São Paulo between 2000 and 2008].

    PubMed

    Nery, Marcelo Batista; Peres, Maria Fernanda Tourinho; Cardia, Nancy; Vicentin, Diego; Adorno, Sérgio

    2012-12-01

    To identify the existence of spatial and temporal patterns in the occurrence of intentional homicides in the municipality of São Paulo (MSP), Brazil, and to discuss the analytical value of taking such patterns into account when designing studies that address the dynamics and factors associated with the incidence of homicides. A longitudinal ecological study was conducted, having as units of analysis 13 205 census tracts and the 96 census districts that congregate these sectors in São Paulo. All intentional homicides reported in the city between 2000 and 2008 were analyzed. The gross homicide rates per 100 000 population was calculated as well as the global and local Bayesian estimates for each census tract during the study period. To verify the possibility of identifying different patterns of the spatial distribution of homicides, we used BoxMap and Moran's I index. The homicide trends in the city of São Paulo in the last decade were not homogeneous and systematic. Instead, seven patterns of spatial distribution were identified; that is, seven spatial regimes for the occurrence of intentional homicides, considering the homicide rates within each census tract as well as the rates in adjacent tracts. These spatial distribution regimes were not contained within the limits of the census tracts and districts. The results show the importance of analyzing the spatial distribution of social phenomena without restriction of political and administrative boundaries.

  19. Analyzing spatial clustering and the spatiotemporal nature and trends of HIV/AIDS prevalence using GIS: the case of Malawi, 1994-2010.

    PubMed

    Zulu, Leo C; Kalipeni, Ezekiel; Johannes, Eliza

    2014-05-23

    Although local spatiotemporal analysis can improve understanding of geographic variation of the HIV epidemic, its drivers, and the search for targeted interventions, it is limited in sub-Saharan Africa. Despite recent declines, Malawi's estimated 10.0% HIV prevalence (2011) remained among the highest globally. Using data on pregnant women in Malawi, this study 1) examines spatiotemporal trends in HIV prevalence 1994-2010, and 2) for 2010, identifies and maps the spatial variation/clustering of factors associated with HIV prevalence at district level. Inverse distance weighting was used within ArcGIS Geographic Information Systems (GIS) software to generate continuous surfaces of HIV prevalence from point data (1994, 1996, 1999, 2001, 2003, 2005, 2007, and 2010) obtained from surveillance antenatal clinics. From the surfaces prevalence estimates were extracted at district level and the results mapped nationally. Spatial dependency (autocorrelation) and clustering of HIV prevalence were also analyzed. Correlation and multiple regression analyses were used to identify factors associated with HIV prevalence for 2010 and their spatial variation/clustering mapped and compared to HIV clustering. Analysis revealed wide spatial variation in HIV prevalence at regional, urban/rural, district and sub-district levels. However, prevalence was spatially leveling out within and across 'sub-epidemics' while declining significantly after 1999. Prevalence exhibited statistically significant spatial dependence nationally following initial (1995-1999) localized, patchy low/high patterns as the epidemic spread rapidly. Locally, HIV "hotspots" clustered among eleven southern districts/cities while a "coldspot" captured configurations of six central region districts. Preliminary multiple regression of 2010 HIV prevalence produced a model with four significant explanatory factors (adjusted R2 = 0.688): mean distance to main roads, mean travel time to nearest transport, percentage that had taken an HIV test ever, and percentage attaining a senior primary education. Spatial clustering linked some factors to particular subsets of high HIV-prevalence districts. Spatial analysis enhanced understanding of local spatiotemporal variation in HIV prevalence, possible underlying factors, and potential for differentiated spatial targeting of interventions. Findings suggest that intervention strategies should also emphasize improved access to health/HIV services, basic education, and syphilis management, particularly in rural hotspot districts, as further research is done on drivers at finer scale.

  20. Analyzing spatial clustering and the spatiotemporal nature and trends of HIV/AIDS prevalence using GIS: the case of Malawi, 1994-2010

    PubMed Central

    2014-01-01

    Background Although local spatiotemporal analysis can improve understanding of geographic variation of the HIV epidemic, its drivers, and the search for targeted interventions, it is limited in sub-Saharan Africa. Despite recent declines, Malawi’s estimated 10.0% HIV prevalence (2011) remained among the highest globally. Using data on pregnant women in Malawi, this study 1) examines spatiotemporal trends in HIV prevalence 1994-2010, and 2) for 2010, identifies and maps the spatial variation/clustering of factors associated with HIV prevalence at district level. Methods Inverse distance weighting was used within ArcGIS Geographic Information Systems (GIS) software to generate continuous surfaces of HIV prevalence from point data (1994, 1996, 1999, 2001, 2003, 2005, 2007, and 2010) obtained from surveillance antenatal clinics. From the surfaces prevalence estimates were extracted at district level and the results mapped nationally. Spatial dependency (autocorrelation) and clustering of HIV prevalence were also analyzed. Correlation and multiple regression analyses were used to identify factors associated with HIV prevalence for 2010 and their spatial variation/clustering mapped and compared to HIV clustering. Results Analysis revealed wide spatial variation in HIV prevalence at regional, urban/rural, district and sub-district levels. However, prevalence was spatially leveling out within and across ‘sub-epidemics’ while declining significantly after 1999. Prevalence exhibited statistically significant spatial dependence nationally following initial (1995-1999) localized, patchy low/high patterns as the epidemic spread rapidly. Locally, HIV “hotspots” clustered among eleven southern districts/cities while a “coldspot” captured configurations of six central region districts. Preliminary multiple regression of 2010 HIV prevalence produced a model with four significant explanatory factors (adjusted R2 = 0.688): mean distance to main roads, mean travel time to nearest transport, percentage that had taken an HIV test ever, and percentage attaining a senior primary education. Spatial clustering linked some factors to particular subsets of high HIV-prevalence districts. Conclusions Spatial analysis enhanced understanding of local spatiotemporal variation in HIV prevalence, possible underlying factors, and potential for differentiated spatial targeting of interventions. Findings suggest that intervention strategies should also emphasize improved access to health/HIV services, basic education, and syphilis management, particularly in rural hotspot districts, as further research is done on drivers at finer scale. PMID:24886573

  1. Trends in spatio-temporal dynamics of visceral leishmaniasis cases in a highly-endemic focus of Bihar, India: an investigation based on GIS tools.

    PubMed

    Mandal, Rakesh; Kesari, Shreekant; Kumar, Vijay; Das, Pradeep

    2018-04-02

    Visceral leishmaniasis (VL) in Bihar State (India) continues to be endemic, despite the existence of effective treatment and a vector control program to control disease morbidity. A clear understanding of spatio-temporal distribution of VL may improve surveillance and control implementation. This study explored the trends in spatio-temporal dynamics of VL endemicity at a meso-scale level in Vaishali District, based on geographical information systems (GIS) tools and spatial statistical analysis. A GIS database was used to integrate the VL case data from the study area between 2009 and 2014. All cases were spatially linked at a meso-scale level. Geospatial techniques, such as GIS-layer overlaying and mapping, were employed to visualize and detect the spatio-temporal patterns of a VL endemic outbreak across the district. The spatial statistic Moran's I Index (Moran's I) was used to simultaneously evaluate spatial-correlation between endemic villages and the spatial distribution patterns based on both the village location and the case incidence rate (CIR). Descriptive statistics such as mean, standard error, confidence intervals and percentages were used to summarize the VL case data. There were 624 endemic villages with 2719 (average 906 cases/year) VL cases during 2012-2014. The Moran's I revealed a cluster pattern (P < 0.05) of CIR distribution at the meso-scale level. On average, 68 villages were newly-endemic each year. Of which 93.1% of villages' endemicity were found to have occurred on the peripheries of the previous year endemic villages. The mean CIR of the endemic villages that were peripheral to the following year newly-endemic villages, compared to all endemic villages of the same year, was higher (P < 0.05). The results show that the VL endemicity of new villages tends to occur on the periphery of villages endemic in the previous year. High-CIR plays a major role in the spatial dispersion of the VL cases between non-endemic and endemic villages. This information can help achieve VL elimination throughout the Indian subcontinent by improving vector control design and implementation in highly-endemic district.

  2. The spatial and temporal variation of total suspended solid concentration in Pearl River Estuary during 1987-2015 based on remote sensing.

    PubMed

    Wang, Chongyang; Li, Weijiao; Chen, Shuisen; Li, Dan; Wang, Danni; Liu, Jia

    2018-03-15

    The movement and migration of total suspended solid (TSS) are the essential component of global material cycling and change. Based on the TSS concentrations retrieved from 112 scenes of Landsat remote sensing imageries during 1987-2015, the spatial and temporal variations of TSS concentration in high flow season and low flow seasons of six sub-regions (west shoal, west channel, middle shoal, east channel, east shoal and Pearl River Estuary Chinese White Dolphin National Nature Reserve and its adjacent waters (NNR)) of Pearl River Estuary (PRE) were analyzed and compared by statistical simulation. It was found that TSS concentrations in east and west shoals were about 23mg/L and 64mg/L higher than that of the middle shoal, respectively. There was a significant decreasing trend of TSS concentration from the northwest (223.7mg/L) to southeast (51.4mg/L) of study area, with an average reduction of 5.86mg/Lperkm, which mainly attributes to unique interaction of runoff and tide in PRE. In high flow season, there existed a significant and definite annual cycle period (5-8years) of TSS concentration change primarily responding to the periodic variation of precipitation. There were five full-fledged period changes of TSS detected in west shoal and west channel (the years of changes in 1988, 1994, 1998, 2003, 2010, 2015), while there were the last four cycle periods found in middle shoal, east channel, east shoal and NNR only. TSS concentrations in shoals and channels of PRE showed a significant decreased trend mainly due to the dam construction at the same time, with an average annual TSS concentration decrease of 5.7-10.1mg/L in high flow season from 1988 to 2015. There was no significant change trend of TSS concentration in NNR before 2003, but the TSS concentration decreased significantly after the establishment of the NNR since June 2003, with an average annual decrease of 9.7mg/L from 2004 to 2015. It was deduced that man-made protection measures had a great influence on the variation trend and intensity of TSS concentration in PRE, but had little effect on the cycle of TSS changes, indicating that the cyclical change is a very strong natural law. In low flow season, there was no significant change trend of TSS concentrations in PRE except that TSS concentrations in west channel and middle shoal showed a weak increasing trend (2.1mg/L and 2.9mg/L, respectively), which is probably because of controlled discharge for avoiding the intrusion of saltwater in PRE. Evidently, the change trend and cycle periods of TSS concentration in high- and low-flow seasons in six sub-regions of PRE had significant difference. The decreasing trend and cycle periods of TSS concentration mainly occurred in high flow season. The change trend and cycle periods of TSS concentration in low flow season was relatively small in PRE. The study shows that long series mapping of Landsat remote sensing images is an effective way to help understanding the spatial and temporal variation of TSS concentrations of estuaries and coasts, and to increase awareness of environmental change and human activity effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Social disorganization and homicide mortality rate trajectories in Brazil between 1991 and 2010.

    PubMed

    Peres, Maria Fernanda Tourinho; Nivette, Amy

    2017-10-01

    Since the 1990s, researchers have noted declining trends in crime and violence, particularly homicide, in Western countries. Studies have explored national and sub-national trends using latent trajectory analysis techniques and identified several factors associated with declining and/or increasing trajectories. Social disorganization (SD) has been consistently linked to increases in homicide rates over time, explaining at least some of the spatial and temporal heterogeneity of homicide. Similar studies have not yet been carried out in Latin America's cities. In this paper we use Group Based Trajectory models to study homicide mortality rate [HMR] trajectories in Brazilian municipalities between 1991 and 2010. Then, through binary and multinomial logistic regression we investigated the association between SD in 1991, and the likelihood of an increasing HMR trajectory. We carried out an ecological time series study using all Brazilian municipalities in the period between 1991 and 2010 (n = 4491). Data on homicide deaths were collected from the Mortality Information System of the Ministry of Health and standardized by age to calculate HMR per 100,000 population. Socioeconomic and demographic data for 1991 were used to compose the composite measure of SD. Our results highlight the spatial and temporal heterogeneity of homicide mortality in Brazilian municipalities. While national trends are steadily increasing, disaggregating municipal trajectories shows that this is driven by a small proportion of municipalities in the country. We found that SD is associated with an ascending homicide trajectory. This result generally supports the notion that poor social structural conditions can create 'space' for criminal behavior and groups and, consequently, violent death. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Optimization of freeform lightpipes for light-emitting-diode projectors.

    PubMed

    Fournier, Florian; Rolland, Jannick

    2008-03-01

    Standard nonimaging components used to collect and integrate light in light-emitting-diode-based projector light engines such as tapered rods and compound parabolic concentrators are compared to optimized freeform shapes in terms of transmission efficiency and spatial uniformity. We show that the simultaneous optimization of the output surface and the profile shape yields transmission efficiency within the étendue limit up to 90% and spatial uniformity higher than 95%, even for compact sizes. The optimization process involves a manual study of the trends for different shapes and the use of an optimization algorithm to further improve the performance of the freeform lightpipe.

  5. Optimization of freeform lightpipes for light-emitting-diode projectors

    NASA Astrophysics Data System (ADS)

    Fournier, Florian; Rolland, Jannick

    2008-03-01

    Standard nonimaging components used to collect and integrate light in light-emitting-diode-based projector light engines such as tapered rods and compound parabolic concentrators are compared to optimized freeform shapes in terms of transmission efficiency and spatial uniformity. We show that the simultaneous optimization of the output surface and the profile shape yields transmission efficiency within the étendue limit up to 90% and spatial uniformity higher than 95%, even for compact sizes. The optimization process involves a manual study of the trends for different shapes and the use of an optimization algorithm to further improve the performance of the freeform lightpipe.

  6. Observed trends of soil fauna in the Antarctic Dry Valleys: early signs of shifts predicted under climate change.

    PubMed

    Andriuzzi, W S; Adams, B J; Barrett, J E; Virginia, R A; Wall, D H

    2018-02-01

    Long-term observations of ecological communities are necessary for generating and testing predictions of ecosystem responses to climate change. We investigated temporal trends and spatial patterns of soil fauna along similar environmental gradients in three sites of the McMurdo Dry Valleys, Antarctica, spanning two distinct climatic phases: a decadal cooling trend from the early 1990s through the austral summer of February 2001, followed by a shift to the current trend of warming summers and more frequent discrete warming events. After February 2001, we observed a decline in the dominant species (the nematode Scottnema lindsayae) and increased abundance and expanded distribution of less common taxa (rotifers, tardigrades, and other nematode species). Such diverging responses have resulted in slightly greater evenness and spatial homogeneity of taxa. However, total abundance of soil fauna appears to be declining, as positive trends of the less common species so far have not compensated for the declining numbers of the dominant species. Interannual variation in the proportion of juveniles in the dominant species was consistent across sites, whereas trends in abundance varied more. Structural equation modeling supports the hypothesis that the observed biological trends arose from dissimilar responses by dominant and less common species to pulses of water availability resulting from enhanced ice melt. No direct effects of mean summer temperature were found, but there is evidence of indirect effects via its weak but significant positive relationship with soil moisture. Our findings show that combining an understanding of species responses to environmental change with long-term observations in the field can provide a context for validating and refining predictions of ecological trends in the abundance and diversity of soil fauna. © 2018 by the Ecological Society of America.

  7. North Atlantic cyclones; trends, impacts and links to large-scale variability

    NASA Astrophysics Data System (ADS)

    Trigo, R. M.; Trigo, I. F.; Ramos, A. M.; Paredes, D.; Garcia-Herrera, R.; Liberato, M. L. R.; Valente, M. A.

    2009-04-01

    Based on the cyclone detection and tracking algorithm previously developed (Trigo, 2006) we have assessed the inter-annual variability and cyclone frequency trends between 1960 and 2000 for the Euro-Atlantic sector using the highest spatial resolution available (1.125° x 1.125°) from the ERA-40 Surface Level Pressure. Additionally, trends for the u and v wind speed components are also computed at the monthly and seasonal scales, using the same dataset. All cyclone and wind speed trend maps were computed with the corresponding statistical significance field. Results reveal a significant frequency decrease (increase) in the western Mediterranean (Greenland and Scandinavia), particularly in December, February and March. Seasonal and monthly analysis of wind speed trends shows similar spatial patterns. We show that these changes in the frequency of low pressure centers and the associated wind patterns are partially responsible for trends of the significant height of waves. Throughout the extended winter months (ONDJFM), regions with positive (negative) wind magnitude trends, of up to 5 cm/s per year, often correspond to regions of positive (negative) significant wave height trends. The cyclone and wind speed trends computed for the JFM months are well matched by the corresponding trends in significant wave height, with February being the month with the highest trends (negative south of 50°N up to -3 cm/year, and positive up to 5cm/year just north of Scotland). Using precipitation data from ECMWF reanalyses and a CRU high resolution dataset we show the impact of these trends in cyclone frequencies upon the corresponding precipitation trends in the influenced areas. It is also shown that these changes are partially linked to major shifts on the indices of large-scale patterns modes, namely the North Atlantic Oscillation (NAO), the Eastern Atlantic (EA) and the Scandinavian Patterns (SCAN). Trigo, I. F. 2006: Climatology and Interannual Variability of Storm-Tracks in the Euro-Atlantic sector: a comparison between ERA-40 and NCEP/NCAR Reanalyses. Clim. Dyn. DOI 10.1007/s00382-005-0065-9.

  8. Identification of the driving factors' influences on regional energy-related carbon emissions in China based on geographical detector method.

    PubMed

    Zhang, Xinlin; Zhao, Yuan

    2018-04-01

    To investigate the influences of different factors on spatial heterogeneity of regional carbon emissions, we firstly studied the spatial-temporal dynamics of regional energy-related carbon emissions using global Moran's I and Getis-Ord Gi and applied geographical detector model to explain the spatial heterogeneity of regional carbon emissions. Some conclusions were drawn. Regional carbon emissions showed significant global and local spatial autocorrelation. The carbon emissions were greater in eastern and northern regions than in western and southern regions. Fixed assets investment and economic output had been the main contributing factors over the study period, and economic output had been decreasing its influence. Industrial structure's influence showed a decrease trend and became smaller in 2015. The results of the interaction detections in 2015 can be divided into two types: enhance and nonlinear, and enhance and bivariate. The interactive influences between technological level and fixed assets investment, economic output and technological level, population size and technological level, and economic output and economic development were greater than others. Some policy recommendations were proposed.

  9. Homogeneity of a Global Multisatellite Soil Moisture Climate Data Record

    NASA Technical Reports Server (NTRS)

    Su, Chun-Hsu; Ryu, Dongryeol; Dorigo, Wouter; Zwieback, Simon; Gruber, Alexander; Albergel, Clement; Reichle, Rolf H.; Wagner, Wolfgang

    2016-01-01

    Climate Data Records (CDR) that blend multiple satellite products are invaluable for climate studies, trend analysis and risk assessments. Knowledge of any inhomogeneities in the CDR is therefore critical for making correct inferences. This work proposes a methodology to identify the spatiotemporal extent of the inhomogeneities in a 36-year, global multisatellite soil moisture CDR as the result of changing observing systems. Inhomogeneities are detected at up to 24 percent of the tested pixels with spatial extent varying with satellite changeover times. Nevertheless, the contiguous periods without inhomogeneities at changeover times are generally longer than 10 years. Although the inhomogeneities have measurable impact on the derived trends, these trends are similar to those observed in ground data and land surface reanalysis, with an average error less than 0.003 cubic meters per cubic meter per year. These results strengthen the basis of using the product for long-term studies and demonstrate the necessity of homogeneity testing of multisatellite CDRs in general.

  10. Regional trend analysis of surface ozone observations from monitoring networks in eastern North America, Europe and East Asia

    NASA Astrophysics Data System (ADS)

    Chang, K. L.; Petropavlovskikh, I. V.; Cooper, O. R.; Schultz, M.; Wang, T.

    2017-12-01

    Surface ozone is a greenhouse gas and pollutant detrimental to human health and crop and ecosystem productivity. The Tropospheric Ozone Assessment Report (TOAR) is designed to provide the research community with an up-to-date observation-based overview of tropospheric ozone's global distribution and trends. The TOAR Surface Ozone Database contains ozone metrics at thousands of monitoring sites around the world, densely clustered across mid-latitude North America, western Europe and East Asia. Calculating regional ozone trends across these locations is challenging due to the uneven spacing of the monitoring sites across urban and rural areas. To meet this challenge we conducted a spatial and temporal trend analysis of several TOAR ozone metrics across these three regions for summertime (April-September) 2000-2014, using the generalized additive mixed model (GAMM). Our analysis indicates that East Asia has the greatest human and plant exposure to ozone pollution among investigating regions, with increasing ozone levels through 2014. The results also show that ozone mixing ratios continue to decline significantly over eastern North America and Europe, however, there is less evidence for decreases of daytime average ozone at urban sites. The present-day spatial coverage of ozone monitors in East Asia (South Korea and Japan) and eastern North America is adequate for estimating regional trends by simply taking the average of the individual trends at each site. However the European network is more sparsely populated across its northern and eastern regions and therefore a simple average of the individual trends at each site does not yield an accurate regional trend. This analysis demonstrates that the GAMM technique can be used to assess the regional representativeness of existing monitoring networks, indicating those networks for which a regional trend can be obtained by simply averaging the trends of all individual sites and those networks that require a more sophisticated statistical approach.

  11. Exploring the effects of spatial autocorrelation when identifying key drivers of wildlife crop-raiding.

    PubMed

    Songhurst, Anna; Coulson, Tim

    2014-03-01

    Few universal trends in spatial patterns of wildlife crop-raiding have been found. Variations in wildlife ecology and movements, and human spatial use have been identified as causes of this apparent unpredictability. However, varying spatial patterns of spatial autocorrelation (SA) in human-wildlife conflict (HWC) data could also contribute. We explicitly explore the effects of SA on wildlife crop-raiding data in order to facilitate the design of future HWC studies. We conducted a comparative survey of raided and nonraided fields to determine key drivers of crop-raiding. Data were subsampled at different spatial scales to select independent raiding data points. The model derived from all data was fitted to subsample data sets. Model parameters from these models were compared to determine the effect of SA. Most methods used to account for SA in data attempt to correct for the change in P-values; yet, by subsampling data at broader spatial scales, we identified changes in regression estimates. We consequently advocate reporting both model parameters across a range of spatial scales to help biological interpretation. Patterns of SA vary spatially in our crop-raiding data. Spatial distribution of fields should therefore be considered when choosing the spatial scale for analyses of HWC studies. Robust key drivers of elephant crop-raiding included raiding history of a field and distance of field to a main elephant pathway. Understanding spatial patterns and determining reliable socio-ecological drivers of wildlife crop-raiding is paramount for designing mitigation and land-use planning strategies to reduce HWC. Spatial patterns of HWC are complex, determined by multiple factors acting at more than one scale; therefore, studies need to be designed with an understanding of the effects of SA. Our methods are accessible to a variety of practitioners to assess the effects of SA, thereby improving the reliability of conservation management actions.

  12. Time-varying trends of global vegetation activity

    NASA Astrophysics Data System (ADS)

    Pan, N.; Feng, X.; Fu, B.

    2016-12-01

    Vegetation plays an important role in regulating the energy change, water cycle and biochemical cycle in terrestrial ecosystems. Monitoring the dynamics of vegetation activity and understanding their driving factors have been an important issue in global change research. Normalized Difference Vegetation Index (NDVI), an indicator of vegetation activity, has been widely used in investigating vegetation changes at regional and global scales. Most studies utilized linear regression or piecewise linear regression approaches to obtain an averaged changing rate over a certain time span, with an implicit assumption that the trend didn't change over time during that period. However, no evidence shows that this assumption is right for the non-linear and non-stationary NDVI time series. In this study, we adopted the multidimensional ensemble empirical mode decomposition (MEEMD) method to extract the time-varying trends of NDVI from original signals without any a priori assumption of their functional form. Our results show that vegetation trends are spatially and temporally non-uniform during 1982-2013. Most vegetated area exhibited greening trends in the 1980s. Nevertheless, the area with greening trends decreased over time since the early 1990s, and the greening trends have stalled or even reversed in many places. Regions with browning trends were mainly located in southern low latitudes in the 1980s, whose area decreased before the middle 1990s and then increased at an accelerated rate. The greening-to-browning reversals were widespread across all continents except Oceania (43% of the vegetated areas), most of which happened after the middle 1990s. In contrast, the browning-to-greening reversals occurred in smaller area and earlier time. The area with monotonic greening and browning trends accounted for 33% and 5% of the vegetated area, respectively. By performing partial correlation analyses between NDVI and climatic elements (temperature, precipitation and cloud cover) and analyzing the MEEMD-extracted trends of these climatic elements, we discussed possible driving factors of the time-varying trends of NDVI in several specific regions where trend reversals occurred.

  13. Assessing the impact of urbanization on net primary productivity using multi-scale remote sensing data: a case study of Xuzhou, China

    NASA Astrophysics Data System (ADS)

    Tan, Kun; Zhou, Songyang; Li, Erzhu; Du, Peijun

    2015-06-01

    An improved Carnegie Ames Stanford Approach (CASA) model based on two kinds of remote sensing (RS) data, Landsat Enhanced Thematic Mapper Plus (ETM +) and Moderate Resolution Imaging Spectro-radiometer (MODIS), and climate variables were applied to estimate the Net Primary Productivity (NPP) of Xuzhou in June of each year from 2001 to 2010. The NPP of the study area decreased as the spatial scale increased. The average NPP of terrestrial vegetation in Xuzhou showed a decreasing trend in recent years, likely due to changes in climate and environment. The study area was divided into four sub-regions, designated as highest, moderately high, moderately low, and lowest in NPP. The area designated as the lowest sub-region in NPP increased with expanding scale, indicating that the NPP distribution varied with different spatial scales. The NPP of different vegetation types was also significantly influenced by scale. In particular, the NPP of urban woodland produced lower estimates because of mixed pixels. Similar trends in NPP were observed with different RS data. In addition, expansion of residential areas and reduction of vegetated areas were the major reasons for NPP change. Land cover changes in urban areas reduced NPP, which could chiefly be attributed to human-induced disturbance.

  14. Investigating the Influence of Anthropogenic Forcing on Observed Mean and Extreme Sea Level Pressure Trends over the Mediterranean Region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barkhordarian, Armineh

    We investigate whether the observed mean sea level pressure (SLP) trends over the Mediterranean region in the period from 1975 to 2004 are significantly consistent with what 17 models projected as response of SLP to anthropogenic forcing (greenhouse gases and sulphate aerosols, GS). Obtained results indicate that the observed trends in mean SLP cannot be explained by natural (internal) variability. Externally forced changes are detectable in all seasons, except spring. The large-scale component (spatial mean) of the GS signal is detectable in all the 17 models in winter and in 12 of the 17 models in summer. However, the small-scalemore » component (spatial anomalies about the spatial mean) of GS signal is only detectable in winter within 11 of the 17 models. We also show that GS signal has a detectable influence on observed decreasing (increasing) tendency in the frequencies of extremely low (high) SLP days in winter and that these changes cannot be explained by internal climate variability. While the detection of GS forcing is robust in winter and summer, there are striking inconsistencies in autumn, where analysis points to the presence of an external forcing, which is not GS forcing.« less

  15. Investigating the Influence of Anthropogenic Forcing on Observed Mean and Extreme Sea Level Pressure Trends over the Mediterranean Region

    DOE PAGES

    Barkhordarian, Armineh

    2012-01-01

    We investigate whether the observed mean sea level pressure (SLP) trends over the Mediterranean region in the period from 1975 to 2004 are significantly consistent with what 17 models projected as response of SLP to anthropogenic forcing (greenhouse gases and sulphate aerosols, GS). Obtained results indicate that the observed trends in mean SLP cannot be explained by natural (internal) variability. Externally forced changes are detectable in all seasons, except spring. The large-scale component (spatial mean) of the GS signal is detectable in all the 17 models in winter and in 12 of the 17 models in summer. However, the small-scalemore » component (spatial anomalies about the spatial mean) of GS signal is only detectable in winter within 11 of the 17 models. We also show that GS signal has a detectable influence on observed decreasing (increasing) tendency in the frequencies of extremely low (high) SLP days in winter and that these changes cannot be explained by internal climate variability. While the detection of GS forcing is robust in winter and summer, there are striking inconsistencies in autumn, where analysis points to the presence of an external forcing, which is not GS forcing.« less

  16. Trends analysis of rainfall and rainfall extremes in Sarawak, Malaysia using modified Mann-Kendall test

    NASA Astrophysics Data System (ADS)

    Sa'adi, Zulfaqar; Shahid, Shamsuddin; Ismail, Tarmizi; Chung, Eun-Sung; Wang, Xiao-Jun

    2017-11-01

    This study assesses the spatial pattern of changes in rainfall extremes of Sarawak in recent years (1980-2014). The Mann-Kendall (MK) test along with modified Mann-Kendall (m-MK) test, which can discriminate multi-scale variability of unidirectional trend, was used to analyze the changes at 31 stations. Taking account of the scaling effect through eliminating the effect of autocorrelation, m-MK was employed to discriminate multi-scale variability of the unidirectional trends of the annual rainfall in Sarawak. It can confirm the significance of the MK test. The annual rainfall trend from MK test showed significant changes at 95% confidence level at five stations. The seasonal trends from MK test indicate an increasing rate of rainfall during the Northeast monsoon and a decreasing trend during the Southwest monsoon in some region of Sarawak. However, the m-MK test detected an increasing trend in annual rainfall only at one station and no significant trend in seasonal rainfall at any stations. The significant increasing trends of the 1-h maximum rainfall from the MK test are detected mainly at the stations located in the urban area giving concern to the occurrence of the flash flood. On the other hand, the m-MK test detected no significant trend in 1- and 3-h maximum rainfalls at any location. On the contrary, it detected significant trends in 6- and 72-h maximum rainfalls at a station located in the Lower Rajang basin area which is an extensive low-lying agricultural area and prone to stagnant flood. These results indicate that the trends in rainfall and rainfall extremes reported in Malaysia and surrounding region should be verified with m-MK test as most of the trends may result from scaling effect.

  17. Disrupting the Carceral State through Education Journey Mapping

    ERIC Educational Resources Information Center

    Annamma, Subini

    2016-01-01

    The School-to-Prison Pipeline is an alarming trend of funneling children of color out of schools and into incarceration. Yet the focus on the Pipeline neglects the ways society is imbued with a commitment to criminalizing unwanted bodies. In this empirical article I foreground a spatial analysis, making connections to the socio-spatial dialectic,…

  18. Temporal trends of forest interior conditions in the United States

    Treesearch

    Kurt Riitters; James. Wickham

    2012-01-01

    Nature's benefits derived from forest interior environments cannot be sustained if the natural capital of forest interior area is not sustained. We analyzed the spatial patterns of forest loss and gain for the conterminous United States from 2001 to 2006 to determine whether forest interior environments were maintained at five spatial scales. A 1.1 percent net...

  19. Phenology and trend indicators derived from spatially dynamic bi-weekly satellite imagery to support ecosystem monitoring

    Treesearch

    Barron J. Orr; Grant M. Casady; Daniel G. Tuttle; Willem J. D. van Leeuwen; Laura E. Baker; Colleen I. McDonald; Stuart E. Marsh

    2005-01-01

    Ground-based ecosystem monitoring presents some practical challenges to natural resource managers and ecologists tasked with assessing vegetation dynamics across large areas through time. RangeView (http://rangeview.arizona.edu) provides online access to spatially and temporally explicit biweekly vegetation indices derived from satellite data. It also permits side-by-...

  20. Detecting changes in the spatial distribution of nitrate contamination in ground water

    USGS Publications Warehouse

    Liu, Z.-J.; Hallberg, G.R.; Zimmerman, D.L.; Libra, R.D.

    1997-01-01

    Many studies of ground water pollution in general and nitrate contamination in particular have often relied on a one-time investigation, tracking of individual wells, or aggregate summaries. Studies of changes in spatial distribution of contaminants over time are lacking. This paper presents a method to compare spatial distributions for possible changes over time. The large-scale spatial distribution at a given time can be considered as a surface over the area (a trend surface). The changes in spatial distribution from period to period can be revealed by the differences in the shape and/or height of surfaces. If such a surface is described by a polynomial function, changes in surfaces can be detected by testing statistically for differences in their corresponding polynomial functions. This method was applied to nitrate concentration in a population of wells in an agricultural drainage basin in Iowa, sampled in three different years. For the period of 1981-1992, the large-scale spatial distribution of nitrate concentration did not show significant change in the shape of spatial surfaces; while the magnitude of nitrate concentration in the basin, or height of the computed surfaces showed significant fluctuations. The change in magnitude of nitrate concentration is closely related to climatic variations, especially in precipitation. The lack of change in the shape of spatial surfaces means that either the influence of land use/nitrogen management was overshadowed by climatic influence, or the changes in land use/management occurred in a random fashion.

Top