Sample records for spatial trial datasets

  1. Full-motion video analysis for improved gender classification

    NASA Astrophysics Data System (ADS)

    Flora, Jeffrey B.; Lochtefeld, Darrell F.; Iftekharuddin, Khan M.

    2014-06-01

    The ability of computer systems to perform gender classification using the dynamic motion of the human subject has important applications in medicine, human factors, and human-computer interface systems. Previous works in motion analysis have used data from sensors (including gyroscopes, accelerometers, and force plates), radar signatures, and video. However, full-motion video, motion capture, range data provides a higher resolution time and spatial dataset for the analysis of dynamic motion. Works using motion capture data have been limited by small datasets in a controlled environment. In this paper, we explore machine learning techniques to a new dataset that has a larger number of subjects. Additionally, these subjects move unrestricted through a capture volume, representing a more realistic, less controlled environment. We conclude that existing linear classification methods are insufficient for the gender classification for larger dataset captured in relatively uncontrolled environment. A method based on a nonlinear support vector machine classifier is proposed to obtain gender classification for the larger dataset. In experimental testing with a dataset consisting of 98 trials (49 subjects, 2 trials per subject), classification rates using leave-one-out cross-validation are improved from 73% using linear discriminant analysis to 88% using the nonlinear support vector machine classifier.

  2. A periodic spatio-spectral filter for event-related potentials.

    PubMed

    Ghaderi, Foad; Kim, Su Kyoung; Kirchner, Elsa Andrea

    2016-12-01

    With respect to single trial detection of event-related potentials (ERPs), spatial and spectral filters are two of the most commonly used pre-processing techniques for signal enhancement. Spatial filters reduce the dimensionality of the data while suppressing the noise contribution and spectral filters attenuate frequency components that most likely belong to noise subspace. However, the frequency spectrum of ERPs overlap with that of the ongoing electroencephalogram (EEG) and different types of artifacts. Therefore, proper selection of the spectral filter cutoffs is not a trivial task. In this research work, we developed a supervised method to estimate the spatial and finite impulse response (FIR) spectral filters, simultaneously. We evaluated the performance of the method on offline single trial classification of ERPs in datasets recorded during an oddball paradigm. The proposed spatio-spectral filter improved the overall single-trial classification performance by almost 9% on average compared with the case that no spatial filters were used. We also analyzed the effects of different spectral filter lengths and the number of retained channels after spatial filtering. Copyright © 2016. Published by Elsevier Ltd.

  3. Reproducibility and Temporal Structure in Weekly Resting-State fMRI over a Period of 3.5 Years

    PubMed Central

    Choe, Ann S.; Jones, Craig K.; Joel, Suresh E.; Muschelli, John; Belegu, Visar; Caffo, Brian S.; Lindquist, Martin A.; van Zijl, Peter C. M.; Pekar, James J.

    2015-01-01

    Resting-state functional MRI (rs-fMRI) permits study of the brain’s functional networks without requiring participants to perform tasks. Robust changes in such resting state networks (RSNs) have been observed in neurologic disorders, and rs-fMRI outcome measures are candidate biomarkers for monitoring clinical trials, including trials of extended therapeutic interventions for rehabilitation of patients with chronic conditions. In this study, we aim to present a unique longitudinal dataset reporting on a healthy adult subject scanned weekly over 3.5 years and identify rs-fMRI outcome measures appropriate for clinical trials. Accordingly, we assessed the reproducibility, and characterized the temporal structure of, rs-fMRI outcome measures derived using independent component analysis (ICA). Data was compared to a 21-person dataset acquired on the same scanner in order to confirm that the values of the single-subject RSN measures were within the expected range as assessed from the multi-participant dataset. Fourteen RSNs were identified, and the inter-session reproducibility of outcome measures—network spatial map, temporal signal fluctuation magnitude, and between-network connectivity (BNC)–was high, with executive RSNs showing the highest reproducibility. Analysis of the weekly outcome measures also showed that many rs-fMRI outcome measures had a significant linear trend, annual periodicity, and persistence. Such temporal structure was most prominent in spatial map similarity, and least prominent in BNC. High reproducibility supports the candidacy of rs-fMRI outcome measures as biomarkers, but the presence of significant temporal structure needs to be taken into account when such outcome measures are considered as biomarkers for rehabilitation-style therapeutic interventions in chronic conditions. PMID:26517540

  4. A Fully Automated Trial Selection Method for Optimization of Motor Imagery Based Brain-Computer Interface.

    PubMed

    Zhou, Bangyan; Wu, Xiaopei; Lv, Zhao; Zhang, Lei; Guo, Xiaojin

    2016-01-01

    Independent component analysis (ICA) as a promising spatial filtering method can separate motor-related independent components (MRICs) from the multichannel electroencephalogram (EEG) signals. However, the unpredictable burst interferences may significantly degrade the performance of ICA-based brain-computer interface (BCI) system. In this study, we proposed a new algorithm frame to address this issue by combining the single-trial-based ICA filter with zero-training classifier. We developed a two-round data selection method to identify automatically the badly corrupted EEG trials in the training set. The "high quality" training trials were utilized to optimize the ICA filter. In addition, we proposed an accuracy-matrix method to locate the artifact data segments within a single trial and investigated which types of artifacts can influence the performance of the ICA-based MIBCIs. Twenty-six EEG datasets of three-class motor imagery were used to validate the proposed methods, and the classification accuracies were compared with that obtained by frequently used common spatial pattern (CSP) spatial filtering algorithm. The experimental results demonstrated that the proposed optimizing strategy could effectively improve the stability, practicality and classification performance of ICA-based MIBCI. The study revealed that rational use of ICA method may be crucial in building a practical ICA-based MIBCI system.

  5. Accuracy of Digitally Fabricated Wax Denture Bases and Conventional Completed Complete Dentures.

    PubMed

    Stawarczyk, Bogna; Lümkemann, Nina; Eichberger, Marlis; Wimmer, Timea

    2017-12-19

    The purpose of this investigation was to analyze the accuracy of digitally fabricated wax trial dentures and conventionally finalized complete dentures in comparison to a surface tessellation language (STL)-dataset. A generated data set for the denture bases and the tooth sockets was used, converted into STL-format, and saved as reference. Five mandibular and 5 maxillary denture bases were milled from wax blanks and denture teeth were waxed into their tooth sockets. Each complete denture was checked on fit, waxed onto the dental cast, and digitized using an optical laboratory scanning device. The complete dentures were completed conventionally using the injection method, finished, and scanned. The resulting STL-datasets were exported into the three-dimensional (3D) software GOM Inspect. Each of the 5 mandibular and 5 maxillary complete dentures was aligned with the STL- and the wax trial denture dataset. Alignment was performed based on a best-fit algorithm. A three-dimensional analysis of the spatial divergences in x -, y - and z -axes was performed by the 3D software and visualized in a color-coded illustration. The mean positive and negative deviations between the datasets were calculated automatically. In a direct comparison between maxillary wax trial dentures and complete dentures, complete dentures showed higher deviations from the STL-dataset than the wax trial dentures. The deviations occurred in the area of the teeth as well as in the distal area of the denture bases. In contrast, the highest deviations in both the mandibular wax trial dentures and the mandibular complete dentures were observed in the distal area. The complete dentures showed higher deviations on the occlusal surfaces of the teeth compared to the wax dentures. Computer-aided design/computer-aided manufacturing (CAD/CAM)-fabricated wax dentures exhibited fewer deviations from the STL-reference than the complete dentures. The deviations were significantly greater in the vicinity of the denture teeth area and the bases. The conventional transfer of CAD/CAM-fabricated wax dentures into acrylic resin leads to the highest deviations from the STL-reference.

  6. Insights from Modelling the Spatial Dependence Structure of Hydraulic Conductivity at the MADE Site Using Spatial Copulas

    NASA Astrophysics Data System (ADS)

    Haslauer, Claus; Bohling, Geoff

    2013-04-01

    Hydraulic conductivity (K) is a fundamental parameter that influences groundwater flow and solute transport. Measurements of K are limited and uncertain. Moreover, the spatial structure of K, which impacts the groundwater velocity field and hence directly influences the advective spreading of a solute migrating in the subsurface, is commonly described by approaches using second order moments. Spatial copulas have in the recent past been applied successfully to model the spatial dependence structure of heterogeneous subsurface datasets. At the MADE site, hydraulic conductivity (K) has been measured in exceptional detail. Two independently collected data-sets were used for this study: (1) ~2000 flowmeter based K measurements, and (2) ~20,000 direct-push based K measurements. These datasets exhibit a very heterogeneous (Var[ln(K)]>2) spatially distributed K field. A copula analysis reveals that the spatial dependence structure of the flowmeter and direct-push datasets are essentially the same. A spatial copula analysis factors out the influence of the marginal distribution of the property under investigation. This independence from the marginal distributions allows the copula analysis to reveal the underlying similarity between the spatial dependence structures of the flowmeter and direct-push datasets despite two complicating factors: 1) an overall offset between the datasets, with direct-push K values being, on average, roughly a factor of five lower than flowmeter K values, due at least in part to opposite biases between the two measurement techniques, and 2) the presence of some anomalously high K values in the direct-push dataset due to a lower limit on accurately measureable pressure responses in high-K zones. In addition, the vertical resolution of the direct-push dataset is ten times finer than that of the flowmeter dataset. Upscaling the direct-push data to compensate for this difference resulted in little change to the spatial structure. The objective of the presented work is to use multidimensional spatial copulas to describe and model the spatial dependence of the spatial structure of K at the heterogeneous MADE site, and evaluate the effects of this multidimensional description on solute transport.

  7. Eyetracking metrics reveal impaired spatial anticipation in behavioural variant frontotemporal dementia.

    PubMed

    Primativo, Silvia; Clark, Camilla; Yong, Keir X X; Firth, Nicholas C; Nicholas, Jennifer; Alexander, Daniel; Warren, Jason D; Rohrer, Jonathan D; Crutch, Sebastian J

    2017-11-01

    Eyetracking technology has had limited application in the dementia field to date, with most studies attempting to discriminate syndrome subgroups on the basis of basic oculomotor functions rather than higher-order cognitive abilities. Eyetracking-based tasks may also offer opportunities to reduce or ameliorate problems associated with standard paper-and-pencil cognitive tests such as the complexity and linguistic demands of verbal test instructions, and the problems of tiredness and attention associated with lengthy tasks that generate few data points at a slow rate. In the present paper we adapted the Brixton spatial anticipation test to a computerized instruction-less version where oculomotor metrics, rather than overt verbal responses, were taken into account as indicators of high level cognitive functions. Twelve bvFTD (in whom spatial anticipation deficits were expected), six SD patients (in whom deficits were predicted to be less frequent) and 38 healthy controls were presented with a 10 × 7 matrix of white circles. During each trial (N = 24) a black dot moved across seven positions on the screen, following 12 different patterns. Participants' eye movements were recorded. Frequentist statistical analysis of standard eye movement metrics were complemented by a Bayesian machine learning (ML) approach in which raw eyetracking time series datasets were examined to explore the ability to discriminate diagnostic group performance not only on the overall performance but also on individual trials. The original pen and paper Brixton test identified a spatial anticipation deficit in 7/12 (58%) of bvFTD and in 2/6 (33%) of SD patients. The eyetracking frequentist approach reported the deficit in 11/12 (92%) of bvFTD and in none (0%) of the SD patients. The machine learning approach had the main advantage of identifying significant differences from controls in 24/24 individual trials for bvFTD patients and in only 12/24 for SD patients. Results indicate that the fine grained rich datasets obtained from eyetracking metrics can inform us about high level cognitive functions in dementia, such as spatial anticipation. The ML approach can help identify conditions where subtle deficits are present and, potentially, contribute to test optimisation and the reduction of testing times. The absence of instructions also favoured a better distinction between different clinical groups of patients and can help provide valuable disease-specific markers. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Global Data Spatially Interrelate System for Scientific Big Data Spatial-Seamless Sharing

    NASA Astrophysics Data System (ADS)

    Yu, J.; Wu, L.; Yang, Y.; Lei, X.; He, W.

    2014-04-01

    A good data sharing system with spatial-seamless services will prevent the scientists from tedious, boring, and time consuming work of spatial transformation, and hence encourage the usage of the scientific data, and increase the scientific innovation. Having been adopted as the framework of Earth datasets by Group on Earth Observation (GEO), Earth System Spatial Grid (ESSG) is potential to be the spatial reference of the Earth datasets. Based on the implementation of ESSG, SDOG-ESSG, a data sharing system named global data spatially interrelate system (GASE) was design to make the data sharing spatial-seamless. The architecture of GASE was introduced. The implementation of the two key components, V-Pools, and interrelating engine, and the prototype is presented. Any dataset is firstly resampled into SDOG-ESSG, and is divided into small blocks, and then are mapped into hierarchical system of the distributed file system in V-Pools, which together makes the data serving at a uniform spatial reference and at a high efficiency. Besides, the datasets from different data centres are interrelated by the interrelating engine at the uniform spatial reference of SDOGESSG, which enables the system to sharing the open datasets in the internet spatial-seamless.

  9. Ontology for Transforming Geo-Spatial Data for Discovery and Integration of Scientific Data

    NASA Astrophysics Data System (ADS)

    Nguyen, L.; Chee, T.; Minnis, P.

    2013-12-01

    Discovery and access to geo-spatial scientific data across heterogeneous repositories and multi-discipline datasets can present challenges for scientist. We propose to build a workflow for transforming geo-spatial datasets into semantic environment by using relationships to describe the resource using OWL Web Ontology, RDF, and a proposed geo-spatial vocabulary. We will present methods for transforming traditional scientific dataset, use of a semantic repository, and querying using SPARQL to integrate and access datasets. This unique repository will enable discovery of scientific data by geospatial bound or other criteria.

  10. Automatic segmentation of male pelvic anatomy on computed tomography images: a comparison with multiple observers in the context of a multicentre clinical trial.

    PubMed

    Geraghty, John P; Grogan, Garry; Ebert, Martin A

    2013-04-30

    This study investigates the variation in segmentation of several pelvic anatomical structures on computed tomography (CT) between multiple observers and a commercial automatic segmentation method, in the context of quality assurance and evaluation during a multicentre clinical trial. CT scans of two prostate cancer patients ('benchmarking cases'), one high risk (HR) and one intermediate risk (IR), were sent to multiple radiotherapy centres for segmentation of prostate, rectum and bladder structures according to the TROG 03.04 "RADAR" trial protocol definitions. The same structures were automatically segmented using iPlan software for the same two patients, allowing structures defined by automatic segmentation to be quantitatively compared with those defined by multiple observers. A sample of twenty trial patient datasets were also used to automatically generate anatomical structures for quantitative comparison with structures defined by individual observers for the same datasets. There was considerable agreement amongst all observers and automatic segmentation of the benchmarking cases for bladder (mean spatial variations < 0.4 cm across the majority of image slices). Although there was some variation in interpretation of the superior-inferior (cranio-caudal) extent of rectum, human-observer contours were typically within a mean 0.6 cm of automatically-defined contours. Prostate structures were more consistent for the HR case than the IR case with all human observers segmenting a prostate with considerably more volume (mean +113.3%) than that automatically segmented. Similar results were seen across the twenty sample datasets, with disagreement between iPlan and observers dominant at the prostatic apex and superior part of the rectum, which is consistent with observations made during quality assurance reviews during the trial. This study has demonstrated quantitative analysis for comparison of multi-observer segmentation studies. For automatic segmentation algorithms based on image-registration as in iPlan, it is apparent that agreement between observer and automatic segmentation will be a function of patient-specific image characteristics, particularly for anatomy with poor contrast definition. For this reason, it is suggested that automatic registration based on transformation of a single reference dataset adds a significant systematic bias to the resulting volumes and their use in the context of a multicentre trial should be carefully considered.

  11. Tree-based approach for exploring marine spatial patterns with raster datasets.

    PubMed

    Liao, Xiaohan; Xue, Cunjin; Su, Fenzhen

    2017-01-01

    From multiple raster datasets to spatial association patterns, the data-mining technique is divided into three subtasks, i.e., raster dataset pretreatment, mining algorithm design, and spatial pattern exploration from the mining results. Comparison with the former two subtasks reveals that the latter remains unresolved. Confronted with the interrelated marine environmental parameters, we propose a Tree-based Approach for eXploring Marine Spatial Patterns with multiple raster datasets called TAXMarSP, which includes two models. One is the Tree-based Cascading Organization Model (TCOM), and the other is the Spatial Neighborhood-based CAlculation Model (SNCAM). TCOM designs the "Spatial node→Pattern node" from top to bottom layers to store the table-formatted frequent patterns. Together with TCOM, SNCAM considers the spatial neighborhood contributions to calculate the pattern-matching degree between the specified marine parameters and the table-formatted frequent patterns and then explores the marine spatial patterns. Using the prevalent quantification Apriori algorithm and a real remote sensing dataset from January 1998 to December 2014, a successful application of TAXMarSP to marine spatial patterns in the Pacific Ocean is described, and the obtained marine spatial patterns present not only the well-known but also new patterns to Earth scientists.

  12. Using Matrix and Tensor Factorizations for the Single-Trial Analysis of Population Spike Trains.

    PubMed

    Onken, Arno; Liu, Jian K; Karunasekara, P P Chamanthi R; Delis, Ioannis; Gollisch, Tim; Panzeri, Stefano

    2016-11-01

    Advances in neuronal recording techniques are leading to ever larger numbers of simultaneously monitored neurons. This poses the important analytical challenge of how to capture compactly all sensory information that neural population codes carry in their spatial dimension (differences in stimulus tuning across neurons at different locations), in their temporal dimension (temporal neural response variations), or in their combination (temporally coordinated neural population firing). Here we investigate the utility of tensor factorizations of population spike trains along space and time. These factorizations decompose a dataset of single-trial population spike trains into spatial firing patterns (combinations of neurons firing together), temporal firing patterns (temporal activation of these groups of neurons) and trial-dependent activation coefficients (strength of recruitment of such neural patterns on each trial). We validated various factorization methods on simulated data and on populations of ganglion cells simultaneously recorded in the salamander retina. We found that single-trial tensor space-by-time decompositions provided low-dimensional data-robust representations of spike trains that capture efficiently both their spatial and temporal information about sensory stimuli. Tensor decompositions with orthogonality constraints were the most efficient in extracting sensory information, whereas non-negative tensor decompositions worked well even on non-independent and overlapping spike patterns, and retrieved informative firing patterns expressed by the same population in response to novel stimuli. Our method showed that populations of retinal ganglion cells carried information in their spike timing on the ten-milliseconds-scale about spatial details of natural images. This information could not be recovered from the spike counts of these cells. First-spike latencies carried the majority of information provided by the whole spike train about fine-scale image features, and supplied almost as much information about coarse natural image features as firing rates. Together, these results highlight the importance of spike timing, and particularly of first-spike latencies, in retinal coding.

  13. Using Matrix and Tensor Factorizations for the Single-Trial Analysis of Population Spike Trains

    PubMed Central

    Onken, Arno; Liu, Jian K.; Karunasekara, P. P. Chamanthi R.; Delis, Ioannis; Gollisch, Tim; Panzeri, Stefano

    2016-01-01

    Advances in neuronal recording techniques are leading to ever larger numbers of simultaneously monitored neurons. This poses the important analytical challenge of how to capture compactly all sensory information that neural population codes carry in their spatial dimension (differences in stimulus tuning across neurons at different locations), in their temporal dimension (temporal neural response variations), or in their combination (temporally coordinated neural population firing). Here we investigate the utility of tensor factorizations of population spike trains along space and time. These factorizations decompose a dataset of single-trial population spike trains into spatial firing patterns (combinations of neurons firing together), temporal firing patterns (temporal activation of these groups of neurons) and trial-dependent activation coefficients (strength of recruitment of such neural patterns on each trial). We validated various factorization methods on simulated data and on populations of ganglion cells simultaneously recorded in the salamander retina. We found that single-trial tensor space-by-time decompositions provided low-dimensional data-robust representations of spike trains that capture efficiently both their spatial and temporal information about sensory stimuli. Tensor decompositions with orthogonality constraints were the most efficient in extracting sensory information, whereas non-negative tensor decompositions worked well even on non-independent and overlapping spike patterns, and retrieved informative firing patterns expressed by the same population in response to novel stimuli. Our method showed that populations of retinal ganglion cells carried information in their spike timing on the ten-milliseconds-scale about spatial details of natural images. This information could not be recovered from the spike counts of these cells. First-spike latencies carried the majority of information provided by the whole spike train about fine-scale image features, and supplied almost as much information about coarse natural image features as firing rates. Together, these results highlight the importance of spike timing, and particularly of first-spike latencies, in retinal coding. PMID:27814363

  14. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015.

    PubMed

    Abatzoglou, John T; Dobrowski, Solomon Z; Parks, Sean A; Hegewisch, Katherine C

    2018-01-09

    We present TerraClimate, a dataset of high-spatial resolution (1/24°, ~4-km) monthly climate and climatic water balance for global terrestrial surfaces from 1958-2015. TerraClimate uses climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim dataset, with coarser resolution time varying (i.e., monthly) data from other sources to produce a monthly dataset of precipitation, maximum and minimum temperature, wind speed, vapor pressure, and solar radiation. TerraClimate additionally produces monthly surface water balance datasets using a water balance model that incorporates reference evapotranspiration, precipitation, temperature, and interpolated plant extractable soil water capacity. These data provide important inputs for ecological and hydrological studies at global scales that require high spatial resolution and time varying climate and climatic water balance data. We validated spatiotemporal aspects of TerraClimate using annual temperature, precipitation, and calculated reference evapotranspiration from station data, as well as annual runoff from streamflow gauges. TerraClimate datasets showed noted improvement in overall mean absolute error and increased spatial realism relative to coarser resolution gridded datasets.

  15. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015

    NASA Astrophysics Data System (ADS)

    Abatzoglou, John T.; Dobrowski, Solomon Z.; Parks, Sean A.; Hegewisch, Katherine C.

    2018-01-01

    We present TerraClimate, a dataset of high-spatial resolution (1/24°, ~4-km) monthly climate and climatic water balance for global terrestrial surfaces from 1958-2015. TerraClimate uses climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim dataset, with coarser resolution time varying (i.e., monthly) data from other sources to produce a monthly dataset of precipitation, maximum and minimum temperature, wind speed, vapor pressure, and solar radiation. TerraClimate additionally produces monthly surface water balance datasets using a water balance model that incorporates reference evapotranspiration, precipitation, temperature, and interpolated plant extractable soil water capacity. These data provide important inputs for ecological and hydrological studies at global scales that require high spatial resolution and time varying climate and climatic water balance data. We validated spatiotemporal aspects of TerraClimate using annual temperature, precipitation, and calculated reference evapotranspiration from station data, as well as annual runoff from streamflow gauges. TerraClimate datasets showed noted improvement in overall mean absolute error and increased spatial realism relative to coarser resolution gridded datasets.

  16. Evaluating the Consistency of the 1982–1999 NDVI Trends in the Iberian Peninsula across Four Time-series Derived from the AVHRR Sensor: LTDR, GIMMS, FASIR, and PAL-II

    PubMed Central

    Alcaraz-Segura, Domingo; Liras, Elisa; Tabik, Siham; Paruelo, José; Cabello, Javier

    2010-01-01

    Successive efforts have processed the Advanced Very High Resolution Radiometer (AVHRR) sensor archive to produce Normalized Difference Vegetation Index (NDVI) datasets (i.e., PAL, FASIR, GIMMS, and LTDR) under different corrections and processing schemes. Since NDVI datasets are used to evaluate carbon gains, differences among them may affect nations’ carbon budgets in meeting international targets (such as the Kyoto Protocol). This study addresses the consistency across AVHRR NDVI datasets in the Iberian Peninsula (Spain and Portugal) by evaluating whether their 1982–1999 NDVI trends show similar spatial patterns. Significant trends were calculated with the seasonal Mann-Kendall trend test and their spatial consistency with partial Mantel tests. Over 23% of the Peninsula (N, E, and central mountain ranges) showed positive and significant NDVI trends across the four datasets and an additional 18% across three datasets. In 20% of Iberia (SW quadrant), the four datasets exhibited an absence of significant trends and an additional 22% across three datasets. Significant NDVI decreases were scarce (croplands in the Guadalquivir and Segura basins, La Mancha plains, and Valencia). Spatial consistency of significant trends across at least three datasets was observed in 83% of the Peninsula, but it decreased to 47% when comparing across the four datasets. FASIR, PAL, and LTDR were the most spatially similar datasets, while GIMMS was the most different. The different performance of each AVHRR dataset to detect significant NDVI trends (e.g., LTDR detected greater significant trends (both positive and negative) and in 32% more pixels than GIMMS) has great implications to evaluate carbon budgets. The lack of spatial consistency across NDVI datasets derived from the same AVHRR sensor archive, makes it advisable to evaluate carbon gains trends using several satellite datasets and, whether possible, independent/additional data sources to contrast. PMID:22205868

  17. Evaluating the consistency of the 1982-1999 NDVI trends in the Iberian Peninsula across four time-series derived from the AVHRR sensor: LTDR, GIMMS, FASIR, and PAL-II.

    PubMed

    Alcaraz-Segura, Domingo; Liras, Elisa; Tabik, Siham; Paruelo, José; Cabello, Javier

    2010-01-01

    Successive efforts have processed the Advanced Very High Resolution Radiometer (AVHRR) sensor archive to produce Normalized Difference Vegetation Index (NDVI) datasets (i.e., PAL, FASIR, GIMMS, and LTDR) under different corrections and processing schemes. Since NDVI datasets are used to evaluate carbon gains, differences among them may affect nations' carbon budgets in meeting international targets (such as the Kyoto Protocol). This study addresses the consistency across AVHRR NDVI datasets in the Iberian Peninsula (Spain and Portugal) by evaluating whether their 1982-1999 NDVI trends show similar spatial patterns. Significant trends were calculated with the seasonal Mann-Kendall trend test and their spatial consistency with partial Mantel tests. Over 23% of the Peninsula (N, E, and central mountain ranges) showed positive and significant NDVI trends across the four datasets and an additional 18% across three datasets. In 20% of Iberia (SW quadrant), the four datasets exhibited an absence of significant trends and an additional 22% across three datasets. Significant NDVI decreases were scarce (croplands in the Guadalquivir and Segura basins, La Mancha plains, and Valencia). Spatial consistency of significant trends across at least three datasets was observed in 83% of the Peninsula, but it decreased to 47% when comparing across the four datasets. FASIR, PAL, and LTDR were the most spatially similar datasets, while GIMMS was the most different. The different performance of each AVHRR dataset to detect significant NDVI trends (e.g., LTDR detected greater significant trends (both positive and negative) and in 32% more pixels than GIMMS) has great implications to evaluate carbon budgets. The lack of spatial consistency across NDVI datasets derived from the same AVHRR sensor archive, makes it advisable to evaluate carbon gains trends using several satellite datasets and, whether possible, independent/additional data sources to contrast.

  18. A Compilation of Spatial Datasets to Support a Preliminary Assessment of Pesticides and Pesticide Use on Tribal Lands in Oklahoma

    USGS Publications Warehouse

    Mashburn, Shana L.; Winton, Kimberly T.

    2010-01-01

    This CD-ROM contains spatial datasets that describe natural and anthropogenic features and county-level estimates of agricultural pesticide use and pesticide data for surface-water, groundwater, and biological specimens in the state of Oklahoma. County-level estimates of pesticide use were compiled from the Pesticide National Synthesis Project of the U.S. Geological Survey, National Water-Quality Assessment Program. Pesticide data for surface water, groundwater, and biological specimens were compiled from U.S. Geological Survey National Water Information System database. These spatial datasets that describe natural and manmade features were compiled from several agencies and contain information collected by the U.S. Geological Survey. The U.S. Geological Survey datasets were not collected specifically for this compilation, but were previously collected for projects with various objectives. The spatial datasets were created by different agencies from sources with varied quality. As a result, features common to multiple layers may not overlay exactly. Users should check the metadata to determine proper use of these spatial datasets. These data were not checked for accuracy or completeness. If a question of accuracy or completeness arise, the user should contact the originator cited in the metadata.

  19. Statistical and Spatial Analysis of Bathymetric Data for the St. Clair River, 1971-2007

    USGS Publications Warehouse

    Bennion, David

    2009-01-01

    To address questions concerning ongoing geomorphic processes in the St. Clair River, selected bathymetric datasets spanning 36 years were analyzed. Comparisons of recent high-resolution datasets covering the upper river indicate a highly variable, active environment. Although statistical and spatial comparisons of the datasets show that some changes to the channel size and shape have taken place during the study period, uncertainty associated with various survey methods and interpolation processes limit the statistically certain results. The methods used to spatially compare the datasets are sensitive to small variations in position and depth that are within the range of uncertainty associated with the datasets. Characteristics of the data, such as the density of measured points and the range of values surveyed, can also influence the results of spatial comparison. With due consideration of these limitations, apparently active and ongoing areas of elevation change in the river are mapped and discussed.

  20. Finding Spatio-Temporal Patterns in Large Sensor Datasets

    ERIC Educational Resources Information Center

    McGuire, Michael Patrick

    2010-01-01

    Spatial or temporal data mining tasks are performed in the context of the relevant space, defined by a spatial neighborhood, and the relevant time period, defined by a specific time interval. Furthermore, when mining large spatio-temporal datasets, interesting patterns typically emerge where the dataset is most dynamic. This dissertation is…

  1. Data-driven decision support for radiologists: re-using the National Lung Screening Trial dataset for pulmonary nodule management.

    PubMed

    Morrison, James J; Hostetter, Jason; Wang, Kenneth; Siegel, Eliot L

    2015-02-01

    Real-time mining of large research trial datasets enables development of case-based clinical decision support tools. Several applicable research datasets exist including the National Lung Screening Trial (NLST), a dataset unparalleled in size and scope for studying population-based lung cancer screening. Using these data, a clinical decision support tool was developed which matches patient demographics and lung nodule characteristics to a cohort of similar patients. The NLST dataset was converted into Structured Query Language (SQL) tables hosted on a web server, and a web-based JavaScript application was developed which performs real-time queries. JavaScript is used for both the server-side and client-side language, allowing for rapid development of a robust client interface and server-side data layer. Real-time data mining of user-specified patient cohorts achieved a rapid return of cohort cancer statistics and lung nodule distribution information. This system demonstrates the potential of individualized real-time data mining using large high-quality clinical trial datasets to drive evidence-based clinical decision-making.

  2. Single-trial effective brain connectivity patterns enhance discriminability of mental imagery tasks

    NASA Astrophysics Data System (ADS)

    Rathee, Dheeraj; Cecotti, Hubert; Prasad, Girijesh

    2017-10-01

    Objective. The majority of the current approaches of connectivity based brain-computer interface (BCI) systems focus on distinguishing between different motor imagery (MI) tasks. Brain regions associated with MI are anatomically close to each other, hence these BCI systems suffer from low performances. Our objective is to introduce single-trial connectivity feature based BCI system for cognition imagery (CI) based tasks wherein the associated brain regions are located relatively far away as compared to those for MI. Approach. We implemented time-domain partial Granger causality (PGC) for the estimation of the connectivity features in a BCI setting. The proposed hypothesis has been verified with two publically available datasets involving MI and CI tasks. Main results. The results support the conclusion that connectivity based features can provide a better performance than a classical signal processing framework based on bandpass features coupled with spatial filtering for CI tasks, including word generation, subtraction, and spatial navigation. These results show for the first time that connectivity features can provide a reliable performance for imagery-based BCI system. Significance. We show that single-trial connectivity features for mixed imagery tasks (i.e. combination of CI and MI) can outperform the features obtained by current state-of-the-art method and hence can be successfully applied for BCI applications.

  3. Spatial and environmental connectivity analysis in a cholera vaccine trial.

    PubMed

    Emch, Michael; Ali, Mohammad; Root, Elisabeth D; Yunus, Mohammad

    2009-02-01

    This paper develops theory and methods for vaccine trials that utilize spatial and environmental information. Satellite imagery is used to identify whether households are connected to one another via water bodies in a study area in rural Bangladesh. Then relationships between neighborhood-level cholera vaccine coverage and placebo incidence and neighborhood-level spatial variables are measured. The study hypothesis is that unvaccinated people who are environmentally connected to people who have been vaccinated will be at lower risk compared to unvaccinated people who are environmentally connected to people who have not been vaccinated. We use four datasets including: a cholera vaccine trial database, a longitudinal demographic database of the rural population from which the vaccine trial participants were selected, a household-level geographic information system (GIS) database of the same study area, and high resolution Quickbird satellite imagery. An environmental connectivity metric was constructed by integrating the satellite imagery with the vaccine and demographic databases linked with GIS. The results show that there is a relationship between neighborhood rates of cholera vaccination and placebo incidence. Thus, people are indirectly protected when more people in their environmentally connected neighborhood are vaccinated. This result is similar to our previous work that used a simpler Euclidean distance neighborhood to measure neighborhood vaccine coverage [Ali, M., Emch, M., von Seidlein, L., Yunus, M., Sack, D. A., Holmgren, J., et al. (2005). Herd immunity conferred by killed oral cholera vaccines in Bangladesh. Lancet, 366(9479), 44-49]. Our new method of measuring environmental connectivity is more precise since it takes into account the transmission mode of cholera and therefore this study validates our assertion that the oral cholera vaccine provides indirect protection in addition to direct protection.

  4. Functional CAR models for large spatially correlated functional datasets.

    PubMed

    Zhang, Lin; Baladandayuthapani, Veerabhadran; Zhu, Hongxiao; Baggerly, Keith A; Majewski, Tadeusz; Czerniak, Bogdan A; Morris, Jeffrey S

    2016-01-01

    We develop a functional conditional autoregressive (CAR) model for spatially correlated data for which functions are collected on areal units of a lattice. Our model performs functional response regression while accounting for spatial correlations with potentially nonseparable and nonstationary covariance structure, in both the space and functional domains. We show theoretically that our construction leads to a CAR model at each functional location, with spatial covariance parameters varying and borrowing strength across the functional domain. Using basis transformation strategies, the nonseparable spatial-functional model is computationally scalable to enormous functional datasets, generalizable to different basis functions, and can be used on functions defined on higher dimensional domains such as images. Through simulation studies, we demonstrate that accounting for the spatial correlation in our modeling leads to improved functional regression performance. Applied to a high-throughput spatially correlated copy number dataset, the model identifies genetic markers not identified by comparable methods that ignore spatial correlations.

  5. A novel on-line spatial-temporal k-anonymity method for location privacy protection from sequence rules-based inference attacks.

    PubMed

    Zhang, Haitao; Wu, Chenxue; Chen, Zewei; Liu, Zhao; Zhu, Yunhong

    2017-01-01

    Analyzing large-scale spatial-temporal k-anonymity datasets recorded in location-based service (LBS) application servers can benefit some LBS applications. However, such analyses can allow adversaries to make inference attacks that cannot be handled by spatial-temporal k-anonymity methods or other methods for protecting sensitive knowledge. In response to this challenge, first we defined a destination location prediction attack model based on privacy-sensitive sequence rules mined from large scale anonymity datasets. Then we proposed a novel on-line spatial-temporal k-anonymity method that can resist such inference attacks. Our anti-attack technique generates new anonymity datasets with awareness of privacy-sensitive sequence rules. The new datasets extend the original sequence database of anonymity datasets to hide the privacy-sensitive rules progressively. The process includes two phases: off-line analysis and on-line application. In the off-line phase, sequence rules are mined from an original sequence database of anonymity datasets, and privacy-sensitive sequence rules are developed by correlating privacy-sensitive spatial regions with spatial grid cells among the sequence rules. In the on-line phase, new anonymity datasets are generated upon LBS requests by adopting specific generalization and avoidance principles to hide the privacy-sensitive sequence rules progressively from the extended sequence anonymity datasets database. We conducted extensive experiments to test the performance of the proposed method, and to explore the influence of the parameter K value. The results demonstrated that our proposed approach is faster and more effective for hiding privacy-sensitive sequence rules in terms of hiding sensitive rules ratios to eliminate inference attacks. Our method also had fewer side effects in terms of generating new sensitive rules ratios than the traditional spatial-temporal k-anonymity method, and had basically the same side effects in terms of non-sensitive rules variation ratios with the traditional spatial-temporal k-anonymity method. Furthermore, we also found the performance variation tendency from the parameter K value, which can help achieve the goal of hiding the maximum number of original sensitive rules while generating a minimum of new sensitive rules and affecting a minimum number of non-sensitive rules.

  6. A novel on-line spatial-temporal k-anonymity method for location privacy protection from sequence rules-based inference attacks

    PubMed Central

    Wu, Chenxue; Liu, Zhao; Zhu, Yunhong

    2017-01-01

    Analyzing large-scale spatial-temporal k-anonymity datasets recorded in location-based service (LBS) application servers can benefit some LBS applications. However, such analyses can allow adversaries to make inference attacks that cannot be handled by spatial-temporal k-anonymity methods or other methods for protecting sensitive knowledge. In response to this challenge, first we defined a destination location prediction attack model based on privacy-sensitive sequence rules mined from large scale anonymity datasets. Then we proposed a novel on-line spatial-temporal k-anonymity method that can resist such inference attacks. Our anti-attack technique generates new anonymity datasets with awareness of privacy-sensitive sequence rules. The new datasets extend the original sequence database of anonymity datasets to hide the privacy-sensitive rules progressively. The process includes two phases: off-line analysis and on-line application. In the off-line phase, sequence rules are mined from an original sequence database of anonymity datasets, and privacy-sensitive sequence rules are developed by correlating privacy-sensitive spatial regions with spatial grid cells among the sequence rules. In the on-line phase, new anonymity datasets are generated upon LBS requests by adopting specific generalization and avoidance principles to hide the privacy-sensitive sequence rules progressively from the extended sequence anonymity datasets database. We conducted extensive experiments to test the performance of the proposed method, and to explore the influence of the parameter K value. The results demonstrated that our proposed approach is faster and more effective for hiding privacy-sensitive sequence rules in terms of hiding sensitive rules ratios to eliminate inference attacks. Our method also had fewer side effects in terms of generating new sensitive rules ratios than the traditional spatial-temporal k-anonymity method, and had basically the same side effects in terms of non-sensitive rules variation ratios with the traditional spatial-temporal k-anonymity method. Furthermore, we also found the performance variation tendency from the parameter K value, which can help achieve the goal of hiding the maximum number of original sensitive rules while generating a minimum of new sensitive rules and affecting a minimum number of non-sensitive rules. PMID:28767687

  7. a Comparative Analysis of Five Cropland Datasets in Africa

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Lu, M.; Wu, W.

    2018-04-01

    The food security, particularly in Africa, is a challenge to be resolved. The cropland area and spatial distribution obtained from remote sensing imagery are vital information. In this paper, according to cropland area and spatial location, we compare five global cropland datasets including CCI Land Cover, GlobCover, MODIS Collection 5, GlobeLand30 and Unified Cropland in circa 2010 of Africa in terms of cropland area and spatial location. The accuracy of cropland area calculated from five datasets was analyzed compared with statistic data. Based on validation samples, the accuracies of spatial location for the five cropland products were assessed by error matrix. The results show that GlobeLand30 has the best fitness with the statistics, followed by MODIS Collection 5 and Unified Cropland, GlobCover and CCI Land Cover have the lower accuracies. For the accuracy of spatial location of cropland, GlobeLand30 reaches the highest accuracy, followed by Unified Cropland, MODIS Collection 5 and GlobCover, CCI Land Cover has the lowest accuracy. The spatial location accuracy of five datasets in the Csa with suitable farming condition is generally higher than in the Bsk.

  8. The effects of spatial population dataset choice on estimates of population at risk of disease

    PubMed Central

    2011-01-01

    Background The spatial modeling of infectious disease distributions and dynamics is increasingly being undertaken for health services planning and disease control monitoring, implementation, and evaluation. Where risks are heterogeneous in space or dependent on person-to-person transmission, spatial data on human population distributions are required to estimate infectious disease risks, burdens, and dynamics. Several different modeled human population distribution datasets are available and widely used, but the disparities among them and the implications for enumerating disease burdens and populations at risk have not been considered systematically. Here, we quantify some of these effects using global estimates of populations at risk (PAR) of P. falciparum malaria as an example. Methods The recent construction of a global map of P. falciparum malaria endemicity enabled the testing of different gridded population datasets for providing estimates of PAR by endemicity class. The estimated population numbers within each class were calculated for each country using four different global gridded human population datasets: GRUMP (~1 km spatial resolution), LandScan (~1 km), UNEP Global Population Databases (~5 km), and GPW3 (~5 km). More detailed assessments of PAR variation and accuracy were conducted for three African countries where census data were available at a higher administrative-unit level than used by any of the four gridded population datasets. Results The estimates of PAR based on the datasets varied by more than 10 million people for some countries, even accounting for the fact that estimates of population totals made by different agencies are used to correct national totals in these datasets and can vary by more than 5% for many low-income countries. In many cases, these variations in PAR estimates comprised more than 10% of the total national population. The detailed country-level assessments suggested that none of the datasets was consistently more accurate than the others in estimating PAR. The sizes of such differences among modeled human populations were related to variations in the methods, input resolution, and date of the census data underlying each dataset. Data quality varied from country to country within the spatial population datasets. Conclusions Detailed, highly spatially resolved human population data are an essential resource for planning health service delivery for disease control, for the spatial modeling of epidemics, and for decision-making processes related to public health. However, our results highlight that for the low-income regions of the world where disease burden is greatest, existing datasets display substantial variations in estimated population distributions, resulting in uncertainty in disease assessments that utilize them. Increased efforts are required to gather contemporary and spatially detailed demographic data to reduce this uncertainty, particularly in Africa, and to develop population distribution modeling methods that match the rigor, sophistication, and ability to handle uncertainty of contemporary disease mapping and spread modeling. In the meantime, studies that utilize a particular spatial population dataset need to acknowledge the uncertainties inherent within them and consider how the methods and data that comprise each will affect conclusions. PMID:21299885

  9. Deep neural network for traffic sign recognition systems: An analysis of spatial transformers and stochastic optimisation methods.

    PubMed

    Arcos-García, Álvaro; Álvarez-García, Juan A; Soria-Morillo, Luis M

    2018-03-01

    This paper presents a Deep Learning approach for traffic sign recognition systems. Several classification experiments are conducted over publicly available traffic sign datasets from Germany and Belgium using a Deep Neural Network which comprises Convolutional layers and Spatial Transformer Networks. Such trials are built to measure the impact of diverse factors with the end goal of designing a Convolutional Neural Network that can improve the state-of-the-art of traffic sign classification task. First, different adaptive and non-adaptive stochastic gradient descent optimisation algorithms such as SGD, SGD-Nesterov, RMSprop and Adam are evaluated. Subsequently, multiple combinations of Spatial Transformer Networks placed at distinct positions within the main neural network are analysed. The recognition rate of the proposed Convolutional Neural Network reports an accuracy of 99.71% in the German Traffic Sign Recognition Benchmark, outperforming previous state-of-the-art methods and also being more efficient in terms of memory requirements. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Analysing and correcting the differences between multi-source and multi-scale spatial remote sensing observations.

    PubMed

    Dong, Yingying; Luo, Ruisen; Feng, Haikuan; Wang, Jihua; Zhao, Jinling; Zhu, Yining; Yang, Guijun

    2014-01-01

    Differences exist among analysis results of agriculture monitoring and crop production based on remote sensing observations, which are obtained at different spatial scales from multiple remote sensors in same time period, and processed by same algorithms, models or methods. These differences can be mainly quantitatively described from three aspects, i.e. multiple remote sensing observations, crop parameters estimation models, and spatial scale effects of surface parameters. Our research proposed a new method to analyse and correct the differences between multi-source and multi-scale spatial remote sensing surface reflectance datasets, aiming to provide references for further studies in agricultural application with multiple remotely sensed observations from different sources. The new method was constructed on the basis of physical and mathematical properties of multi-source and multi-scale reflectance datasets. Theories of statistics were involved to extract statistical characteristics of multiple surface reflectance datasets, and further quantitatively analyse spatial variations of these characteristics at multiple spatial scales. Then, taking the surface reflectance at small spatial scale as the baseline data, theories of Gaussian distribution were selected for multiple surface reflectance datasets correction based on the above obtained physical characteristics and mathematical distribution properties, and their spatial variations. This proposed method was verified by two sets of multiple satellite images, which were obtained in two experimental fields located in Inner Mongolia and Beijing, China with different degrees of homogeneity of underlying surfaces. Experimental results indicate that differences of surface reflectance datasets at multiple spatial scales could be effectively corrected over non-homogeneous underlying surfaces, which provide database for further multi-source and multi-scale crop growth monitoring and yield prediction, and their corresponding consistency analysis evaluation.

  11. Analysing and Correcting the Differences between Multi-Source and Multi-Scale Spatial Remote Sensing Observations

    PubMed Central

    Dong, Yingying; Luo, Ruisen; Feng, Haikuan; Wang, Jihua; Zhao, Jinling; Zhu, Yining; Yang, Guijun

    2014-01-01

    Differences exist among analysis results of agriculture monitoring and crop production based on remote sensing observations, which are obtained at different spatial scales from multiple remote sensors in same time period, and processed by same algorithms, models or methods. These differences can be mainly quantitatively described from three aspects, i.e. multiple remote sensing observations, crop parameters estimation models, and spatial scale effects of surface parameters. Our research proposed a new method to analyse and correct the differences between multi-source and multi-scale spatial remote sensing surface reflectance datasets, aiming to provide references for further studies in agricultural application with multiple remotely sensed observations from different sources. The new method was constructed on the basis of physical and mathematical properties of multi-source and multi-scale reflectance datasets. Theories of statistics were involved to extract statistical characteristics of multiple surface reflectance datasets, and further quantitatively analyse spatial variations of these characteristics at multiple spatial scales. Then, taking the surface reflectance at small spatial scale as the baseline data, theories of Gaussian distribution were selected for multiple surface reflectance datasets correction based on the above obtained physical characteristics and mathematical distribution properties, and their spatial variations. This proposed method was verified by two sets of multiple satellite images, which were obtained in two experimental fields located in Inner Mongolia and Beijing, China with different degrees of homogeneity of underlying surfaces. Experimental results indicate that differences of surface reflectance datasets at multiple spatial scales could be effectively corrected over non-homogeneous underlying surfaces, which provide database for further multi-source and multi-scale crop growth monitoring and yield prediction, and their corresponding consistency analysis evaluation. PMID:25405760

  12. Maximizing Accessibility to Spatially Referenced Digital Data.

    ERIC Educational Resources Information Center

    Hunt, Li; Joselyn, Mark

    1995-01-01

    Discusses some widely available spatially referenced datasets, including raster and vector datasets. Strategies for improving accessibility include: acquisition of data in a software-dependent format; reorganization of data into logical geographic units; acquisition of intelligent retrieval software; improving computer hardware; and intelligent…

  13. Development and assessment of 30-meter pine density maps for landscape-level modeling of mountain pine beetle dynamics

    Treesearch

    Benjamin A. Crabb; James A. Powell; Barbara J. Bentz

    2012-01-01

    Forecasting spatial patterns of mountain pine beetle (MPB) population success requires spatially explicit information on host pine distribution. We developed a means of producing spatially explicit datasets of pine density at 30-m resolution using existing geospatial datasets of vegetation composition and structure. Because our ultimate goal is to model MPB population...

  14. Data Descriptor: TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015

    Treesearch

    John T. Abatzoglou; Solomon Z. Dobrowski; Sean A. Parks; Katherine C. Hegewisch

    2018-01-01

    We present TerraClimate, a dataset of high-spatial resolution (1/24°, ~4-km) monthly climate and climatic water balance for global terrestrial surfaces from 1958–2015. TerraClimate uses climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim dataset, with coarser resolution time varying (i.e., monthly) data from...

  15. High resolution population distribution maps for Southeast Asia in 2010 and 2015.

    PubMed

    Gaughan, Andrea E; Stevens, Forrest R; Linard, Catherine; Jia, Peng; Tatem, Andrew J

    2013-01-01

    Spatially accurate, contemporary data on human population distributions are vitally important to many applied and theoretical researchers. The Southeast Asia region has undergone rapid urbanization and population growth over the past decade, yet existing spatial population distribution datasets covering the region are based principally on population count data from censuses circa 2000, with often insufficient spatial resolution or input data to map settlements precisely. Here we outline approaches to construct a database of GIS-linked circa 2010 census data and methods used to construct fine-scale (∼100 meters spatial resolution) population distribution datasets for each country in the Southeast Asia region. Landsat-derived settlement maps and land cover information were combined with ancillary datasets on infrastructure to model population distributions for 2010 and 2015. These products were compared with those from two other methods used to construct commonly used global population datasets. Results indicate mapping accuracies are consistently higher when incorporating land cover and settlement information into the AsiaPop modelling process. Using existing data, it is possible to produce detailed, contemporary and easily updatable population distribution datasets for Southeast Asia. The 2010 and 2015 datasets produced are freely available as a product of the AsiaPop Project and can be downloaded from: www.asiapop.org.

  16. High Resolution Population Distribution Maps for Southeast Asia in 2010 and 2015

    PubMed Central

    Gaughan, Andrea E.; Stevens, Forrest R.; Linard, Catherine; Jia, Peng; Tatem, Andrew J.

    2013-01-01

    Spatially accurate, contemporary data on human population distributions are vitally important to many applied and theoretical researchers. The Southeast Asia region has undergone rapid urbanization and population growth over the past decade, yet existing spatial population distribution datasets covering the region are based principally on population count data from censuses circa 2000, with often insufficient spatial resolution or input data to map settlements precisely. Here we outline approaches to construct a database of GIS-linked circa 2010 census data and methods used to construct fine-scale (∼100 meters spatial resolution) population distribution datasets for each country in the Southeast Asia region. Landsat-derived settlement maps and land cover information were combined with ancillary datasets on infrastructure to model population distributions for 2010 and 2015. These products were compared with those from two other methods used to construct commonly used global population datasets. Results indicate mapping accuracies are consistently higher when incorporating land cover and settlement information into the AsiaPop modelling process. Using existing data, it is possible to produce detailed, contemporary and easily updatable population distribution datasets for Southeast Asia. The 2010 and 2015 datasets produced are freely available as a product of the AsiaPop Project and can be downloaded from: www.asiapop.org. PMID:23418469

  17. Statistical methods to estimate treatment effects from multichannel electroencephalography (EEG) data in clinical trials.

    PubMed

    Ma, Junshui; Wang, Shubing; Raubertas, Richard; Svetnik, Vladimir

    2010-07-15

    With the increasing popularity of using electroencephalography (EEG) to reveal the treatment effect in drug development clinical trials, the vast volume and complex nature of EEG data compose an intriguing, but challenging, topic. In this paper the statistical analysis methods recommended by the EEG community, along with methods frequently used in the published literature, are first reviewed. A straightforward adjustment of the existing methods to handle multichannel EEG data is then introduced. In addition, based on the spatial smoothness property of EEG data, a new category of statistical methods is proposed. The new methods use a linear combination of low-degree spherical harmonic (SPHARM) basis functions to represent a spatially smoothed version of the EEG data on the scalp, which is close to a sphere in shape. In total, seven statistical methods, including both the existing and the newly proposed methods, are applied to two clinical datasets to compare their power to detect a drug effect. Contrary to the EEG community's recommendation, our results suggest that (1) the nonparametric method does not outperform its parametric counterpart; and (2) including baseline data in the analysis does not always improve the statistical power. In addition, our results recommend that (3) simple paired statistical tests should be avoided due to their poor power; and (4) the proposed spatially smoothed methods perform better than their unsmoothed versions. Copyright 2010 Elsevier B.V. All rights reserved.

  18. A comparative analysis reveals weak relationships between ecological factors and beta diversity of stream insect metacommunities at two spatial levels.

    PubMed

    Heino, Jani; Melo, Adriano S; Bini, Luis Mauricio; Altermatt, Florian; Al-Shami, Salman A; Angeler, David G; Bonada, Núria; Brand, Cecilia; Callisto, Marcos; Cottenie, Karl; Dangles, Olivier; Dudgeon, David; Encalada, Andrea; Göthe, Emma; Grönroos, Mira; Hamada, Neusa; Jacobsen, Dean; Landeiro, Victor L; Ligeiro, Raphael; Martins, Renato T; Miserendino, María Laura; Md Rawi, Che Salmah; Rodrigues, Marciel E; Roque, Fabio de Oliveira; Sandin, Leonard; Schmera, Denes; Sgarbi, Luciano F; Simaika, John P; Siqueira, Tadeu; Thompson, Ross M; Townsend, Colin R

    2015-03-01

    The hypotheses that beta diversity should increase with decreasing latitude and increase with spatial extent of a region have rarely been tested based on a comparative analysis of multiple datasets, and no such study has focused on stream insects. We first assessed how well variability in beta diversity of stream insect metacommunities is predicted by insect group, latitude, spatial extent, altitudinal range, and dataset properties across multiple drainage basins throughout the world. Second, we assessed the relative roles of environmental and spatial factors in driving variation in assemblage composition within each drainage basin. Our analyses were based on a dataset of 95 stream insect metacommunities from 31 drainage basins distributed around the world. We used dissimilarity-based indices to quantify beta diversity for each metacommunity and, subsequently, regressed beta diversity on insect group, latitude, spatial extent, altitudinal range, and dataset properties (e.g., number of sites and percentage of presences). Within each metacommunity, we used a combination of spatial eigenfunction analyses and partial redundancy analysis to partition variation in assemblage structure into environmental, shared, spatial, and unexplained fractions. We found that dataset properties were more important predictors of beta diversity than ecological and geographical factors across multiple drainage basins. In the within-basin analyses, environmental and spatial variables were generally poor predictors of variation in assemblage composition. Our results revealed deviation from general biodiversity patterns because beta diversity did not show the expected decreasing trend with latitude. Our results also call for reconsideration of just how predictable stream assemblages are along ecological gradients, with implications for environmental assessment and conservation decisions. Our findings may also be applicable to other dynamic systems where predictability is low.

  19. A reanalysis dataset of the South China Sea.

    PubMed

    Zeng, Xuezhi; Peng, Shiqiu; Li, Zhijin; Qi, Yiquan; Chen, Rongyu

    2014-01-01

    Ocean reanalysis provides a temporally continuous and spatially gridded four-dimensional estimate of the ocean state for a better understanding of the ocean dynamics and its spatial/temporal variability. Here we present a 19-year (1992-2010) high-resolution ocean reanalysis dataset of the upper ocean in the South China Sea (SCS) produced from an ocean data assimilation system. A wide variety of observations, including in-situ temperature/salinity profiles, ship-measured and satellite-derived sea surface temperatures, and sea surface height anomalies from satellite altimetry, are assimilated into the outputs of an ocean general circulation model using a multi-scale incremental three-dimensional variational data assimilation scheme, yielding a daily high-resolution reanalysis dataset of the SCS. Comparisons between the reanalysis and independent observations support the reliability of the dataset. The presented dataset provides the research community of the SCS an important data source for studying the thermodynamic processes of the ocean circulation and meso-scale features in the SCS, including their spatial and temporal variability.

  20. A reanalysis dataset of the South China Sea

    PubMed Central

    Zeng, Xuezhi; Peng, Shiqiu; Li, Zhijin; Qi, Yiquan; Chen, Rongyu

    2014-01-01

    Ocean reanalysis provides a temporally continuous and spatially gridded four-dimensional estimate of the ocean state for a better understanding of the ocean dynamics and its spatial/temporal variability. Here we present a 19-year (1992–2010) high-resolution ocean reanalysis dataset of the upper ocean in the South China Sea (SCS) produced from an ocean data assimilation system. A wide variety of observations, including in-situ temperature/salinity profiles, ship-measured and satellite-derived sea surface temperatures, and sea surface height anomalies from satellite altimetry, are assimilated into the outputs of an ocean general circulation model using a multi-scale incremental three-dimensional variational data assimilation scheme, yielding a daily high-resolution reanalysis dataset of the SCS. Comparisons between the reanalysis and independent observations support the reliability of the dataset. The presented dataset provides the research community of the SCS an important data source for studying the thermodynamic processes of the ocean circulation and meso-scale features in the SCS, including their spatial and temporal variability. PMID:25977803

  1. ASSESSING THE ACCURACY OF NATIONAL LAND COVER DATASET AREA ESTIMATES AT MULTIPLE SPATIAL EXTENTS

    EPA Science Inventory

    Site specific accuracy assessments provide fine-scale evaluation of the thematic accuracy of land use/land cover (LULC) datasets; however, they provide little insight into LULC accuracy across varying spatial extents. Additionally, LULC data are typically used to describe lands...

  2. Validation of the Hospital Episode Statistics Outpatient Dataset in England.

    PubMed

    Thorn, Joanna C; Turner, Emma; Hounsome, Luke; Walsh, Eleanor; Donovan, Jenny L; Verne, Julia; Neal, David E; Hamdy, Freddie C; Martin, Richard M; Noble, Sian M

    2016-02-01

    The Hospital Episode Statistics (HES) dataset is a source of administrative 'big data' with potential for costing purposes in economic evaluations alongside clinical trials. This study assesses the validity of coverage in the HES outpatient dataset. Men who died of, or with, prostate cancer were selected from a prostate-cancer screening trial (CAP, Cluster randomised triAl of PSA testing for Prostate cancer). Details of visits that took place after 1/4/2003 to hospital outpatient departments for conditions related to prostate cancer were extracted from medical records (MR); these appointments were sought in the HES outpatient dataset based on date. The matching procedure was repeated for periods before and after 1/4/2008, when the HES outpatient dataset was accredited as a national statistic. 4922 outpatient appointments were extracted from MR for 370 men. 4088 appointments recorded in MR were identified in the HES outpatient dataset (83.1%; 95% confidence interval [CI] 82.0-84.1). For appointments occurring prior to 1/4/2008, 2195/2755 (79.7%; 95% CI 78.2-81.2) matches were observed, while 1893/2167 (87.4%; 95% CI 86.0-88.9) appointments occurring after 1/4/2008 were identified (p for difference <0.001). 215/370 men (58.1%) had at least one appointment in the MR review that was unmatched in HES, 155 men (41.9%) had all their appointments identified, and 20 men (5.4%) had no appointments identified in HES. The HES outpatient dataset appears reasonably valid for research, particularly following accreditation. The dataset may be a suitable alternative to collecting MR data from hospital notes within a trial, although caution should be exercised with data collected prior to accreditation.

  3. How does spatial extent of fMRI datasets affect independent component analysis decomposition?

    PubMed

    Aragri, Adriana; Scarabino, Tommaso; Seifritz, Erich; Comani, Silvia; Cirillo, Sossio; Tedeschi, Gioacchino; Esposito, Fabrizio; Di Salle, Francesco

    2006-09-01

    Spatial independent component analysis (sICA) of functional magnetic resonance imaging (fMRI) time series can generate meaningful activation maps and associated descriptive signals, which are useful to evaluate datasets of the entire brain or selected portions of it. Besides computational implications, variations in the input dataset combined with the multivariate nature of ICA may lead to different spatial or temporal readouts of brain activation phenomena. By reducing and increasing a volume of interest (VOI), we applied sICA to different datasets from real activation experiments with multislice acquisition and single or multiple sensory-motor task-induced blood oxygenation level-dependent (BOLD) signal sources with different spatial and temporal structure. Using receiver operating characteristics (ROC) methodology for accuracy evaluation and multiple regression analysis as benchmark, we compared sICA decompositions of reduced and increased VOI fMRI time-series containing auditory, motor and hemifield visual activation occurring separately or simultaneously in time. Both approaches yielded valid results; however, the results of the increased VOI approach were spatially more accurate compared to the results of the decreased VOI approach. This is consistent with the capability of sICA to take advantage of extended samples of statistical observations and suggests that sICA is more powerful with extended rather than reduced VOI datasets to delineate brain activity. (c) 2006 Wiley-Liss, Inc.

  4. Detecting single-trial EEG evoked potential using a wavelet domain linear mixed model: application to error potentials classification.

    PubMed

    Spinnato, J; Roubaud, M-C; Burle, B; Torrésani, B

    2015-06-01

    The main goal of this work is to develop a model for multisensor signals, such as magnetoencephalography or electroencephalography (EEG) signals that account for inter-trial variability, suitable for corresponding binary classification problems. An important constraint is that the model be simple enough to handle small size and unbalanced datasets, as often encountered in BCI-type experiments. The method involves the linear mixed effects statistical model, wavelet transform, and spatial filtering, and aims at the characterization of localized discriminant features in multisensor signals. After discrete wavelet transform and spatial filtering, a projection onto the relevant wavelet and spatial channels subspaces is used for dimension reduction. The projected signals are then decomposed as the sum of a signal of interest (i.e., discriminant) and background noise, using a very simple Gaussian linear mixed model. Thanks to the simplicity of the model, the corresponding parameter estimation problem is simplified. Robust estimates of class-covariance matrices are obtained from small sample sizes and an effective Bayes plug-in classifier is derived. The approach is applied to the detection of error potentials in multichannel EEG data in a very unbalanced situation (detection of rare events). Classification results prove the relevance of the proposed approach in such a context. The combination of the linear mixed model, wavelet transform and spatial filtering for EEG classification is, to the best of our knowledge, an original approach, which is proven to be effective. This paper improves upon earlier results on similar problems, and the three main ingredients all play an important role.

  5. Cadastral Database Positional Accuracy Improvement

    NASA Astrophysics Data System (ADS)

    Hashim, N. M.; Omar, A. H.; Ramli, S. N. M.; Omar, K. M.; Din, N.

    2017-10-01

    Positional Accuracy Improvement (PAI) is the refining process of the geometry feature in a geospatial dataset to improve its actual position. This actual position relates to the absolute position in specific coordinate system and the relation to the neighborhood features. With the growth of spatial based technology especially Geographical Information System (GIS) and Global Navigation Satellite System (GNSS), the PAI campaign is inevitable especially to the legacy cadastral database. Integration of legacy dataset and higher accuracy dataset like GNSS observation is a potential solution for improving the legacy dataset. However, by merely integrating both datasets will lead to a distortion of the relative geometry. The improved dataset should be further treated to minimize inherent errors and fitting to the new accurate dataset. The main focus of this study is to describe a method of angular based Least Square Adjustment (LSA) for PAI process of legacy dataset. The existing high accuracy dataset known as National Digital Cadastral Database (NDCDB) is then used as bench mark to validate the results. It was found that the propose technique is highly possible for positional accuracy improvement of legacy spatial datasets.

  6. Influence of spatial and temporal scales in identifying temperature extremes

    NASA Astrophysics Data System (ADS)

    van Eck, Christel M.; Friedlingstein, Pierre; Mulder, Vera L.; Regnier, Pierre A. G.

    2016-04-01

    Extreme heat events are becoming more frequent. Notable are severe heatwaves such as the European heatwave of 2003, the Russian heat wave of 2010 and the Australian heatwave of 2013. Surface temperature is attaining new maxima not only during the summer but also during the winter. The year of 2015 is reported to be a temperature record breaking year for both summer and winter. These extreme temperatures are taking their human and environmental toll, emphasizing the need for an accurate method to define a heat extreme in order to fully understand the spatial and temporal spread of an extreme and its impact. This research aims to explore how the use of different spatial and temporal scales influences the identification of a heat extreme. For this purpose, two near-surface temperature datasets of different temporal scale and spatial scale are being used. First, the daily ERA-Interim dataset of 0.25 degree and a time span of 32 years (1979-2010). Second, the daily Princeton Meteorological Forcing Dataset of 0.5 degree and a time span of 63 years (1948-2010). A temperature is considered extreme anomalous when it is surpassing the 90th, 95th, or the 99th percentile threshold based on the aforementioned pre-processed datasets. The analysis is conducted on a global scale, dividing the world in IPCC's so-called SREX regions developed for the analysis of extreme climate events. Pre-processing is done by detrending and/or subtracting the monthly climatology based on 32 years of data for both datasets and on 63 years of data for only the Princeton Meteorological Forcing Dataset. This results in 6 datasets of temperature anomalies from which the location in time and space of the anomalous warm days are identified. Comparison of the differences between these 6 datasets in terms of absolute threshold temperatures for extremes and the temporal and spatial spread of the extreme anomalous warm days show a dependence of the results on the datasets and methodology used. This stresses the need for a careful selection of data and methodology when identifying heat extremes.

  7. VEMAP Phase 2 bioclimatic database. I. Gridded historical (20th century) climate for modeling ecosystem dynamics across the conterminous USA

    USGS Publications Warehouse

    Kittel, T.G.F.; Rosenbloom, N.A.; Royle, J. Andrew; Daly, Christopher; Gibson, W.P.; Fisher, H.H.; Thornton, P.; Yates, D.N.; Aulenbach, S.; Kaufman, C.; McKeown, R.; Bachelet, D.; Schimel, D.S.; Neilson, R.; Lenihan, J.; Drapek, R.; Ojima, D.S.; Parton, W.J.; Melillo, J.M.; Kicklighter, D.W.; Tian, H.; McGuire, A.D.; Sykes, M.T.; Smith, B.; Cowling, S.; Hickler, T.; Prentice, I.C.; Running, S.; Hibbard, K.A.; Post, W.M.; King, A.W.; Smith, T.; Rizzo, B.; Woodward, F.I.

    2004-01-01

    Analysis and simulation of biospheric responses to historical forcing require surface climate data that capture those aspects of climate that control ecological processes, including key spatial gradients and modes of temporal variability. We developed a multivariate, gridded historical climate dataset for the conterminous USA as a common input database for the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP), a biogeochemical and dynamic vegetation model intercomparison. The dataset covers the period 1895-1993 on a 0.5?? latitude/longitude grid. Climate is represented at both monthly and daily timesteps. Variables are: precipitation, mininimum and maximum temperature, total incident solar radiation, daylight-period irradiance, vapor pressure, and daylight-period relative humidity. The dataset was derived from US Historical Climate Network (HCN), cooperative network, and snowpack telemetry (SNOTEL) monthly precipitation and mean minimum and maximum temperature station data. We employed techniques that rely on geostatistical and physical relationships to create the temporally and spatially complete dataset. We developed a local kriging prediction model to infill discontinuous and limited-length station records based on spatial autocorrelation structure of climate anomalies. A spatial interpolation model (PRISM) that accounts for physiographic controls was used to grid the infilled monthly station data. We implemented a stochastic weather generator (modified WGEN) to disaggregate the gridded monthly series to dailies. Radiation and humidity variables were estimated from the dailies using a physically-based empirical surface climate model (MTCLIM3). Derived datasets include a 100 yr model spin-up climate and a historical Palmer Drought Severity Index (PDSI) dataset. The VEMAP dataset exhibits statistically significant trends in temperature, precipitation, solar radiation, vapor pressure, and PDSI for US National Assessment regions. The historical climate and companion datasets are available online at data archive centers. ?? Inter-Research 2004.

  8. Spatial aspects of building and population exposure data and their implications for global earthquake exposure modeling

    USGS Publications Warehouse

    Dell’Acqua, F.; Gamba, P.; Jaiswal, K.

    2012-01-01

    This paper discusses spatial aspects of the global exposure dataset and mapping needs for earthquake risk assessment. We discuss this in the context of development of a Global Exposure Database for the Global Earthquake Model (GED4GEM), which requires compilation of a multi-scale inventory of assets at risk, for example, buildings, populations, and economic exposure. After defining the relevant spatial and geographic scales of interest, different procedures are proposed to disaggregate coarse-resolution data, to map them, and if necessary to infer missing data by using proxies. We discuss the advantages and limitations of these methodologies and detail the potentials of utilizing remote-sensing data. The latter is used especially to homogenize an existing coarser dataset and, where possible, replace it with detailed information extracted from remote sensing using the built-up indicators for different environments. Present research shows that the spatial aspects of earthquake risk computation are tightly connected with the availability of datasets of the resolution necessary for producing sufficiently detailed exposure. The global exposure database designed by the GED4GEM project is able to manage datasets and queries of multiple spatial scales.

  9. A high resolution spatial population database of Somalia for disease risk mapping.

    PubMed

    Linard, Catherine; Alegana, Victor A; Noor, Abdisalan M; Snow, Robert W; Tatem, Andrew J

    2010-09-14

    Millions of Somali have been deprived of basic health services due to the unstable political situation of their country. Attempts are being made to reconstruct the health sector, in particular to estimate the extent of infectious disease burden. However, any approach that requires the use of modelled disease rates requires reasonable information on population distribution. In a low-income country such as Somalia, population data are lacking, are of poor quality, or become outdated rapidly. Modelling methods are therefore needed for the production of contemporary and spatially detailed population data. Here land cover information derived from satellite imagery and existing settlement point datasets were used for the spatial reallocation of populations within census units. We used simple and semi-automated methods that can be implemented with free image processing software to produce an easily updatable gridded population dataset at 100 × 100 meters spatial resolution. The 2010 population dataset was matched to administrative population totals projected by the UN. Comparison tests between the new dataset and existing population datasets revealed important differences in population size distributions, and in population at risk of malaria estimates. These differences are particularly important in more densely populated areas and strongly depend on the settlement data used in the modelling approach. The results show that it is possible to produce detailed, contemporary and easily updatable settlement and population distribution datasets of Somalia using existing data. The 2010 population dataset produced is freely available as a product of the AfriPop Project and can be downloaded from: http://www.afripop.org.

  10. A high resolution spatial population database of Somalia for disease risk mapping

    PubMed Central

    2010-01-01

    Background Millions of Somali have been deprived of basic health services due to the unstable political situation of their country. Attempts are being made to reconstruct the health sector, in particular to estimate the extent of infectious disease burden. However, any approach that requires the use of modelled disease rates requires reasonable information on population distribution. In a low-income country such as Somalia, population data are lacking, are of poor quality, or become outdated rapidly. Modelling methods are therefore needed for the production of contemporary and spatially detailed population data. Results Here land cover information derived from satellite imagery and existing settlement point datasets were used for the spatial reallocation of populations within census units. We used simple and semi-automated methods that can be implemented with free image processing software to produce an easily updatable gridded population dataset at 100 × 100 meters spatial resolution. The 2010 population dataset was matched to administrative population totals projected by the UN. Comparison tests between the new dataset and existing population datasets revealed important differences in population size distributions, and in population at risk of malaria estimates. These differences are particularly important in more densely populated areas and strongly depend on the settlement data used in the modelling approach. Conclusions The results show that it is possible to produce detailed, contemporary and easily updatable settlement and population distribution datasets of Somalia using existing data. The 2010 population dataset produced is freely available as a product of the AfriPop Project and can be downloaded from: http://www.afripop.org. PMID:20840751

  11. Template based rotation: A method for functional connectivity analysis with a priori templates☆

    PubMed Central

    Schultz, Aaron P.; Chhatwal, Jasmeer P.; Huijbers, Willem; Hedden, Trey; van Dijk, Koene R.A.; McLaren, Donald G.; Ward, Andrew M.; Wigman, Sarah; Sperling, Reisa A.

    2014-01-01

    Functional connectivity magnetic resonance imaging (fcMRI) is a powerful tool for understanding the network level organization of the brain in research settings and is increasingly being used to study large-scale neuronal network degeneration in clinical trial settings. Presently, a variety of techniques, including seed-based correlation analysis and group independent components analysis (with either dual regression or back projection) are commonly employed to compute functional connectivity metrics. In the present report, we introduce template based rotation,1 a novel analytic approach optimized for use with a priori network parcellations, which may be particularly useful in clinical trial settings. Template based rotation was designed to leverage the stable spatial patterns of intrinsic connectivity derived from out-of-sample datasets by mapping data from novel sessions onto the previously defined a priori templates. We first demonstrate the feasibility of using previously defined a priori templates in connectivity analyses, and then compare the performance of template based rotation to seed based and dual regression methods by applying these analytic approaches to an fMRI dataset of normal young and elderly subjects. We observed that template based rotation and dual regression are approximately equivalent in detecting fcMRI differences between young and old subjects, demonstrating similar effect sizes for group differences and similar reliability metrics across 12 cortical networks. Both template based rotation and dual-regression demonstrated larger effect sizes and comparable reliabilities as compared to seed based correlation analysis, though all three methods yielded similar patterns of network differences. When performing inter-network and sub-network connectivity analyses, we observed that template based rotation offered greater flexibility, larger group differences, and more stable connectivity estimates as compared to dual regression and seed based analyses. This flexibility owes to the reduced spatial and temporal orthogonality constraints of template based rotation as compared to dual regression. These results suggest that template based rotation can provide a useful alternative to existing fcMRI analytic methods, particularly in clinical trial settings where predefined outcome measures and conserved network descriptions across groups are at a premium. PMID:25150630

  12. Reference datasets for bioequivalence trials in a two-group parallel design.

    PubMed

    Fuglsang, Anders; Schütz, Helmut; Labes, Detlew

    2015-03-01

    In order to help companies qualify and validate the software used to evaluate bioequivalence trials with two parallel treatment groups, this work aims to define datasets with known results. This paper puts a total 11 datasets into the public domain along with proposed consensus obtained via evaluations from six different software packages (R, SAS, WinNonlin, OpenOffice Calc, Kinetica, EquivTest). Insofar as possible, datasets were evaluated with and without the assumption of equal variances for the construction of a 90% confidence interval. Not all software packages provide functionality for the assumption of unequal variances (EquivTest, Kinetica), and not all packages can handle datasets with more than 1000 subjects per group (WinNonlin). Where results could be obtained across all packages, one showed questionable results when datasets contained unequal group sizes (Kinetica). A proposal is made for the results that should be used as validation targets.

  13. An Evaluation of Database Solutions to Spatial Object Association

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, V S; Kurc, T; Saltz, J

    2008-06-24

    Object association is a common problem encountered in many applications. Spatial object association, also referred to as crossmatch of spatial datasets, is the problem of identifying and comparing objects in two datasets based on their positions in a common spatial coordinate system--one of the datasets may correspond to a catalog of objects observed over time in a multi-dimensional domain; the other dataset may consist of objects observed in a snapshot of the domain at a time point. The use of database management systems to the solve the object association problem provides portability across different platforms and also greater flexibility. Increasingmore » dataset sizes in today's applications, however, have made object association a data/compute-intensive problem that requires targeted optimizations for efficient execution. In this work, we investigate how database-based crossmatch algorithms can be deployed on different database system architectures and evaluate the deployments to understand the impact of architectural choices on crossmatch performance and associated trade-offs. We investigate the execution of two crossmatch algorithms on (1) a parallel database system with active disk style processing capabilities, (2) a high-throughput network database (MySQL Cluster), and (3) shared-nothing databases with replication. We have conducted our study in the context of a large-scale astronomy application with real use-case scenarios.« less

  14. A Big Spatial Data Processing Framework Applying to National Geographic Conditions Monitoring

    NASA Astrophysics Data System (ADS)

    Xiao, F.

    2018-04-01

    In this paper, a novel framework for spatial data processing is proposed, which apply to National Geographic Conditions Monitoring project of China. It includes 4 layers: spatial data storage, spatial RDDs, spatial operations, and spatial query language. The spatial data storage layer uses HDFS to store large size of spatial vector/raster data in the distributed cluster. The spatial RDDs are the abstract logical dataset of spatial data types, and can be transferred to the spark cluster to conduct spark transformations and actions. The spatial operations layer is a series of processing on spatial RDDs, such as range query, k nearest neighbor and spatial join. The spatial query language is a user-friendly interface which provide people not familiar with Spark with a comfortable way to operation the spatial operation. Compared with other spatial frameworks, it is highlighted that comprehensive technologies are referred for big spatial data processing. Extensive experiments on real datasets show that the framework achieves better performance than traditional process methods.

  15. ESSG-based global spatial reference frame for datasets interrelation

    NASA Astrophysics Data System (ADS)

    Yu, J. Q.; Wu, L. X.; Jia, Y. J.

    2013-10-01

    To know well about the highly complex earth system, a large volume of, as well as a large variety of, datasets on the planet Earth are being obtained, distributed, and shared worldwide everyday. However, seldom of existing systems concentrates on the distribution and interrelation of different datasets in a common Global Spatial Reference Frame (GSRF), which holds an invisble obstacle to the data sharing and scientific collaboration. Group on Earth Obeservation (GEO) has recently established a new GSRF, named Earth System Spatial Grid (ESSG), for global datasets distribution, sharing and interrelation in its 2012-2015 WORKING PLAN.The ESSG may bridge the gap among different spatial datasets and hence overcome the obstacles. This paper is to present the implementation of the ESSG-based GSRF. A reference spheroid, a grid subdvision scheme, and a suitable encoding system are required to implement it. The radius of ESSG reference spheroid was set to the double of approximated Earth radius to make datasets from different areas of earth system science being covered. The same paramerters of positioning and orienting as Earth Centred Earth Fixed (ECEF) was adopted for the ESSG reference spheroid to make any other GSRFs being freely transformed into the ESSG-based GSRF. Spheroid degenerated octree grid with radius refiment (SDOG-R) and its encoding method were taken as the grid subdvision and encoding scheme for its good performance in many aspects. A triple (C, T, A) model is introduced to represent and link different datasets based on the ESSG-based GSRF. Finally, the methods of coordinate transformation between the ESSGbased GSRF and other GSRFs were presented to make ESSG-based GSRF operable and propagable.

  16. Inter-comparison of multiple statistically downscaled climate datasets for the Pacific Northwest, USA

    PubMed Central

    Jiang, Yueyang; Kim, John B.; Still, Christopher J.; Kerns, Becky K.; Kline, Jeffrey D.; Cunningham, Patrick G.

    2018-01-01

    Statistically downscaled climate data have been widely used to explore possible impacts of climate change in various fields of study. Although many studies have focused on characterizing differences in the downscaling methods, few studies have evaluated actual downscaled datasets being distributed publicly. Spatially focusing on the Pacific Northwest, we compare five statistically downscaled climate datasets distributed publicly in the US: ClimateNA, NASA NEX-DCP30, MACAv2-METDATA, MACAv2-LIVNEH and WorldClim. We compare the downscaled projections of climate change, and the associated observational data used as training data for downscaling. We map and quantify the variability among the datasets and characterize the spatio-temporal patterns of agreement and disagreement among the datasets. Pair-wise comparisons of datasets identify the coast and high-elevation areas as areas of disagreement for temperature. For precipitation, high-elevation areas, rainshadows and the dry, eastern portion of the study area have high dissimilarity among the datasets. By spatially aggregating the variability measures into watersheds, we develop guidance for selecting datasets within the Pacific Northwest climate change impact studies. PMID:29461513

  17. Inter-comparison of multiple statistically downscaled climate datasets for the Pacific Northwest, USA.

    PubMed

    Jiang, Yueyang; Kim, John B; Still, Christopher J; Kerns, Becky K; Kline, Jeffrey D; Cunningham, Patrick G

    2018-02-20

    Statistically downscaled climate data have been widely used to explore possible impacts of climate change in various fields of study. Although many studies have focused on characterizing differences in the downscaling methods, few studies have evaluated actual downscaled datasets being distributed publicly. Spatially focusing on the Pacific Northwest, we compare five statistically downscaled climate datasets distributed publicly in the US: ClimateNA, NASA NEX-DCP30, MACAv2-METDATA, MACAv2-LIVNEH and WorldClim. We compare the downscaled projections of climate change, and the associated observational data used as training data for downscaling. We map and quantify the variability among the datasets and characterize the spatio-temporal patterns of agreement and disagreement among the datasets. Pair-wise comparisons of datasets identify the coast and high-elevation areas as areas of disagreement for temperature. For precipitation, high-elevation areas, rainshadows and the dry, eastern portion of the study area have high dissimilarity among the datasets. By spatially aggregating the variability measures into watersheds, we develop guidance for selecting datasets within the Pacific Northwest climate change impact studies.

  18. Absence of carious lesions at margins of glass-ionomer cement and amalgam restorations: An update of systematic review evidence

    PubMed Central

    2011-01-01

    Background This article aims to update the existing systematic review evidence elicited by Mickenautsch et al. up to 18 January 2008 (published in the European Journal of Paediatric Dentistry in 2009) and addressing the review question of whether, in the same dentition and same cavity class, glass-ionomer cement (GIC) restored cavities show less recurrent carious lesions on cavity margins than cavities restored with amalgam. Methods The systematic literature search was extended beyond the original search date and a further hand-search and reference check was done. The quality of accepted trials was assessed, using updated quality criteria, and the risk of bias was investigated in more depth than previously reported. In addition, the focus of quantitative synthesis was shifted to single datasets extracted from the accepted trials. Results The database search (up to 10 August 2010) identified 1 new trial, in addition to the 9 included in the original systematic review, and 11 further trials were included after a hand-search and reference check. Of these 21 trials, 11 were excluded and 10 were accepted for data extraction and quality assessment. Thirteen dichotomous datasets of primary outcomes and 4 datasets with secondary outcomes were extracted. Meta-analysis and cumulative meta-analysis were used in combining clinically homogenous datasets. The overall results of the computed datasets suggest that GIC has a higher caries-preventive effect than amalgam for restorations in permanent teeth. No difference was found for restorations in the primary dentition. Conclusion This outcome is in agreement with the conclusions of the original systematic review. Although the findings of the trials identified in this update may be considered to be less affected by attrition- and publication bias, their risk of selection- and detection/performance bias is high. Thus, verification of the currently available results requires further high-quality randomised control trials. PMID:21396097

  19. Sensitivity and specificity considerations for fMRI encoding, decoding, and mapping of auditory cortex at ultra-high field.

    PubMed

    Moerel, Michelle; De Martino, Federico; Kemper, Valentin G; Schmitter, Sebastian; Vu, An T; Uğurbil, Kâmil; Formisano, Elia; Yacoub, Essa

    2018-01-01

    Following rapid technological advances, ultra-high field functional MRI (fMRI) enables exploring correlates of neuronal population activity at an increasing spatial resolution. However, as the fMRI blood-oxygenation-level-dependent (BOLD) contrast is a vascular signal, the spatial specificity of fMRI data is ultimately determined by the characteristics of the underlying vasculature. At 7T, fMRI measurement parameters determine the relative contribution of the macro- and microvasculature to the acquired signal. Here we investigate how these parameters affect relevant high-end fMRI analyses such as encoding, decoding, and submillimeter mapping of voxel preferences in the human auditory cortex. Specifically, we compare a T 2 * weighted fMRI dataset, obtained with 2D gradient echo (GE) EPI, to a predominantly T 2 weighted dataset obtained with 3D GRASE. We first investigated the decoding accuracy based on two encoding models that represented different hypotheses about auditory cortical processing. This encoding/decoding analysis profited from the large spatial coverage and sensitivity of the T 2 * weighted acquisitions, as evidenced by a significantly higher prediction accuracy in the GE-EPI dataset compared to the 3D GRASE dataset for both encoding models. The main disadvantage of the T 2 * weighted GE-EPI dataset for encoding/decoding analyses was that the prediction accuracy exhibited cortical depth dependent vascular biases. However, we propose that the comparison of prediction accuracy across the different encoding models may be used as a post processing technique to salvage the spatial interpretability of the GE-EPI cortical depth-dependent prediction accuracy. Second, we explored the mapping of voxel preferences. Large-scale maps of frequency preference (i.e., tonotopy) were similar across datasets, yet the GE-EPI dataset was preferable due to its larger spatial coverage and sensitivity. However, submillimeter tonotopy maps revealed biases in assigned frequency preference and selectivity for the GE-EPI dataset, but not for the 3D GRASE dataset. Thus, a T 2 weighted acquisition is recommended if high specificity in tonotopic maps is required. In conclusion, different fMRI acquisitions were better suited for different analyses. It is therefore critical that any sequence parameter optimization considers the eventual intended fMRI analyses and the nature of the neuroscience questions being asked. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Internal Consistency of the NVAP Water Vapor Dataset

    NASA Technical Reports Server (NTRS)

    Suggs, Ronnie J.; Jedlovec, Gary J.; Arnold, James E. (Technical Monitor)

    2001-01-01

    The NVAP (NASA Water Vapor Project) dataset is a global dataset at 1 x 1 degree spatial resolution consisting of daily, pentad, and monthly atmospheric precipitable water (PW) products. The analysis blends measurements from the Television and Infrared Operational Satellite (TIROS) Operational Vertical Sounder (TOVS), the Special Sensor Microwave/Imager (SSM/I), and radiosonde observations into a daily collage of PW. The original dataset consisted of five years of data from 1988 to 1992. Recent updates have added three additional years (1993-1995) and incorporated procedural and algorithm changes from the original methodology. Since each of the PW sources (TOVS, SSM/I, and radiosonde) do not provide global coverage, each of these sources compliment one another by providing spatial coverage over regions and during times where the other is not available. For this type of spatial and temporal blending to be successful, each of the source components should have similar or compatible accuracies. If this is not the case, regional and time varying biases may be manifested in the NVAP dataset. This study examines the consistency of the NVAP source data by comparing daily collocated TOVS and SSM/I PW retrievals with collocated radiosonde PW observations. The daily PW intercomparisons are performed over the time period of the dataset and for various regions.

  1. Rule-based topology system for spatial databases to validate complex geographic datasets

    NASA Astrophysics Data System (ADS)

    Martinez-Llario, J.; Coll, E.; Núñez-Andrés, M.; Femenia-Ribera, C.

    2017-06-01

    A rule-based topology software system providing a highly flexible and fast procedure to enforce integrity in spatial relationships among datasets is presented. This improved topology rule system is built over the spatial extension Jaspa. Both projects are open source, freely available software developed by the corresponding author of this paper. Currently, there is no spatial DBMS that implements a rule-based topology engine (considering that the topology rules are designed and performed in the spatial backend). If the topology rules are applied in the frontend (as in many GIS desktop programs), ArcGIS is the most advanced solution. The system presented in this paper has several major advantages over the ArcGIS approach: it can be extended with new topology rules, it has a much wider set of rules, and it can mix feature attributes with topology rules as filters. In addition, the topology rule system can work with various DBMSs, including PostgreSQL, H2 or Oracle, and the logic is performed in the spatial backend. The proposed topology system allows users to check the complex spatial relationships among features (from one or several spatial layers) that require some complex cartographic datasets, such as the data specifications proposed by INSPIRE in Europe and the Land Administration Domain Model (LADM) for Cadastral data.

  2. Global patterns of current and future road infrastructure

    NASA Astrophysics Data System (ADS)

    Meijer, Johan R.; Huijbregts, Mark A. J.; Schotten, Kees C. G. J.; Schipper, Aafke M.

    2018-06-01

    Georeferenced information on road infrastructure is essential for spatial planning, socio-economic assessments and environmental impact analyses. Yet current global road maps are typically outdated or characterized by spatial bias in coverage. In the Global Roads Inventory Project we gathered, harmonized and integrated nearly 60 geospatial datasets on road infrastructure into a global roads dataset. The resulting dataset covers 222 countries and includes over 21 million km of roads, which is two to three times the total length in the currently best available country-based global roads datasets. We then related total road length per country to country area, population density, GDP and OECD membership, resulting in a regression model with adjusted R 2 of 0.90, and found that that the highest road densities are associated with densely populated and wealthier countries. Applying our regression model to future population densities and GDP estimates from the Shared Socioeconomic Pathway (SSP) scenarios, we obtained a tentative estimate of 3.0–4.7 million km additional road length for the year 2050. Large increases in road length were projected for developing nations in some of the world’s last remaining wilderness areas, such as the Amazon, the Congo basin and New Guinea. This highlights the need for accurate spatial road datasets to underpin strategic spatial planning in order to reduce the impacts of roads in remaining pristine ecosystems.

  3. Translation of EEG Spatial Filters from Resting to Motor Imagery Using Independent Component Analysis

    PubMed Central

    Wang, Yijun; Wang, Yu-Te; Jung, Tzyy-Ping

    2012-01-01

    Electroencephalogram (EEG)-based brain-computer interfaces (BCIs) often use spatial filters to improve signal-to-noise ratio of task-related EEG activities. To obtain robust spatial filters, large amounts of labeled data, which are often expensive and labor-intensive to obtain, need to be collected in a training procedure before online BCI control. Several studies have recently developed zero-training methods using a session-to-session scenario in order to alleviate this problem. To our knowledge, a state-to-state translation, which applies spatial filters derived from one state to another, has never been reported. This study proposes a state-to-state, zero-training method to construct spatial filters for extracting EEG changes induced by motor imagery. Independent component analysis (ICA) was separately applied to the multi-channel EEG in the resting and the motor imagery states to obtain motor-related spatial filters. The resultant spatial filters were then applied to single-trial EEG to differentiate left- and right-hand imagery movements. On a motor imagery dataset collected from nine subjects, comparable classification accuracies were obtained by using ICA-based spatial filters derived from the two states (motor imagery: 87.0%, resting: 85.9%), which were both significantly higher than the accuracy achieved by using monopolar scalp EEG data (80.4%). The proposed method considerably increases the practicality of BCI systems in real-world environments because it is less sensitive to electrode misalignment across different sessions or days and does not require annotated pilot data to derive spatial filters. PMID:22666377

  4. Application of Climate Assessment Tool (CAT) to estimate climate variability impacts on nutrient loading from local watersheds

    Treesearch

    Ying Ouyang; Prem B. Parajuli; Gary Feng; Theodor D. Leininger; Yongshan Wan; Padmanava Dash

    2018-01-01

    A vast amount of future climate scenario datasets, created by climate models such as general circulation models (GCMs), have been used in conjunction with watershed models to project future climate variability impact on hydrological processes and water quality. However, these low spatial-temporal resolution datasets are often difficult to downscale spatially and...

  5. A new global 1-km dataset of percentage tree cover derived from remote sensing

    USGS Publications Warehouse

    DeFries, R.S.; Hansen, M.C.; Townshend, J.R.G.; Janetos, A.C.; Loveland, Thomas R.

    2000-01-01

    Accurate assessment of the spatial extent of forest cover is a crucial requirement for quantifying the sources and sinks of carbon from the terrestrial biosphere. In the more immediate context of the United Nations Framework Convention on Climate Change, implementation of the Kyoto Protocol calls for estimates of carbon stocks for a baseline year as well as for subsequent years. Data sources from country level statistics and other ground-based information are based on varying definitions of 'forest' and are consequently problematic for obtaining spatially and temporally consistent carbon stock estimates. By combining two datasets previously derived from the Advanced Very High Resolution Radiometer (AVHRR) at 1 km spatial resolution, we have generated a prototype global map depicting percentage tree cover and associated proportions of trees with different leaf longevity (evergreen and deciduous) and leaf type (broadleaf and needleleaf). The product is intended for use in terrestrial carbon cycle models, in conjunction with other spatial datasets such as climate and soil type, to obtain more consistent and reliable estimates of carbon stocks. The percentage tree cover dataset is available through the Global Land Cover Facility at the University of Maryland at http://glcf.umiacs.umd.edu.

  6. Hierarchical acquisition of visual specificity in spatial contextual cueing.

    PubMed

    Lie, Kin-Pou

    2015-01-01

    Spatial contextual cueing refers to visual search performance's being improved when invariant associations between target locations and distractor spatial configurations are learned incidentally. Using the instance theory of automatization and the reverse hierarchy theory of visual perceptual learning, this study explores the acquisition of visual specificity in spatial contextual cueing. Two experiments in which detailed visual features were irrelevant for distinguishing between spatial contexts found that spatial contextual cueing was visually generic in difficult trials when the trials were not preceded by easy trials (Experiment 1) but that spatial contextual cueing progressed to visual specificity when difficult trials were preceded by easy trials (Experiment 2). These findings support reverse hierarchy theory, which predicts that even when detailed visual features are irrelevant for distinguishing between spatial contexts, spatial contextual cueing can progress to visual specificity if the stimuli remain constant, the task is difficult, and difficult trials are preceded by easy trials. However, these findings are inconsistent with instance theory, which predicts that when detailed visual features are irrelevant for distinguishing between spatial contexts, spatial contextual cueing will not progress to visual specificity. This study concludes that the acquisition of visual specificity in spatial contextual cueing is more plausibly hierarchical, rather than instance-based.

  7. Statistical Frequency-Dependent Analysis of Trial-to-Trial Variability in Single Time Series by Recurrence Plots.

    PubMed

    Tošić, Tamara; Sellers, Kristin K; Fröhlich, Flavio; Fedotenkova, Mariia; Beim Graben, Peter; Hutt, Axel

    2015-01-01

    For decades, research in neuroscience has supported the hypothesis that brain dynamics exhibits recurrent metastable states connected by transients, which together encode fundamental neural information processing. To understand the system's dynamics it is important to detect such recurrence domains, but it is challenging to extract them from experimental neuroscience datasets due to the large trial-to-trial variability. The proposed methodology extracts recurrent metastable states in univariate time series by transforming datasets into their time-frequency representations and computing recurrence plots based on instantaneous spectral power values in various frequency bands. Additionally, a new statistical inference analysis compares different trial recurrence plots with corresponding surrogates to obtain statistically significant recurrent structures. This combination of methods is validated by applying it to two artificial datasets. In a final study of visually-evoked Local Field Potentials in partially anesthetized ferrets, the methodology is able to reveal recurrence structures of neural responses with trial-to-trial variability. Focusing on different frequency bands, the δ-band activity is much less recurrent than α-band activity. Moreover, α-activity is susceptible to pre-stimuli, while δ-activity is much less sensitive to pre-stimuli. This difference in recurrence structures in different frequency bands indicates diverse underlying information processing steps in the brain.

  8. Statistical Frequency-Dependent Analysis of Trial-to-Trial Variability in Single Time Series by Recurrence Plots

    PubMed Central

    Tošić, Tamara; Sellers, Kristin K.; Fröhlich, Flavio; Fedotenkova, Mariia; beim Graben, Peter; Hutt, Axel

    2016-01-01

    For decades, research in neuroscience has supported the hypothesis that brain dynamics exhibits recurrent metastable states connected by transients, which together encode fundamental neural information processing. To understand the system's dynamics it is important to detect such recurrence domains, but it is challenging to extract them from experimental neuroscience datasets due to the large trial-to-trial variability. The proposed methodology extracts recurrent metastable states in univariate time series by transforming datasets into their time-frequency representations and computing recurrence plots based on instantaneous spectral power values in various frequency bands. Additionally, a new statistical inference analysis compares different trial recurrence plots with corresponding surrogates to obtain statistically significant recurrent structures. This combination of methods is validated by applying it to two artificial datasets. In a final study of visually-evoked Local Field Potentials in partially anesthetized ferrets, the methodology is able to reveal recurrence structures of neural responses with trial-to-trial variability. Focusing on different frequency bands, the δ-band activity is much less recurrent than α-band activity. Moreover, α-activity is susceptible to pre-stimuli, while δ-activity is much less sensitive to pre-stimuli. This difference in recurrence structures in different frequency bands indicates diverse underlying information processing steps in the brain. PMID:26834580

  9. A Benchmark Dataset for SSVEP-Based Brain-Computer Interfaces.

    PubMed

    Wang, Yijun; Chen, Xiaogang; Gao, Xiaorong; Gao, Shangkai

    2017-10-01

    This paper presents a benchmark steady-state visual evoked potential (SSVEP) dataset acquired with a 40-target brain- computer interface (BCI) speller. The dataset consists of 64-channel Electroencephalogram (EEG) data from 35 healthy subjects (8 experienced and 27 naïve) while they performed a cue-guided target selecting task. The virtual keyboard of the speller was composed of 40 visual flickers, which were coded using a joint frequency and phase modulation (JFPM) approach. The stimulation frequencies ranged from 8 Hz to 15.8 Hz with an interval of 0.2 Hz. The phase difference between two adjacent frequencies was . For each subject, the data included six blocks of 40 trials corresponding to all 40 flickers indicated by a visual cue in a random order. The stimulation duration in each trial was five seconds. The dataset can be used as a benchmark dataset to compare the methods for stimulus coding and target identification in SSVEP-based BCIs. Through offline simulation, the dataset can be used to design new system diagrams and evaluate their BCI performance without collecting any new data. The dataset also provides high-quality data for computational modeling of SSVEPs. The dataset is freely available fromhttp://bci.med.tsinghua.edu.cn/download.html.

  10. Detecting and Quantifying Forest Change: The Potential of Existing C- and X-Band Radar Datasets.

    PubMed

    Tanase, Mihai A; Ismail, Ismail; Lowell, Kim; Karyanto, Oka; Santoro, Maurizio

    2015-01-01

    This paper evaluates the opportunity provided by global interferometric radar datasets for monitoring deforestation, degradation and forest regrowth in tropical and semi-arid environments. The paper describes an easy to implement method for detecting forest spatial changes and estimating their magnitude. The datasets were acquired within space-borne high spatial resolutions radar missions at near-global scales thus being significant for monitoring systems developed under the United Framework Convention on Climate Change (UNFCCC). The approach presented in this paper was tested in two areas located in Indonesia and Australia. Forest change estimation was based on differences between a reference dataset acquired in February 2000 by the Shuttle Radar Topography Mission (SRTM) and TanDEM-X mission (TDM) datasets acquired in 2011 and 2013. The synergy between SRTM and TDM datasets allowed not only identifying changes in forest extent but also estimating their magnitude with respect to the reference through variations in forest height.

  11. Quantifying density cues in grouping displays.

    PubMed

    Machilsen, Bart; Wagemans, Johan; Demeyer, Maarten

    2016-09-01

    Perceptual grouping processes are typically studied using sparse displays of spatially separated elements. Unless the grouping cue of interest is a proximity cue, researchers will want to ascertain that such a cue is absent from the display. Various solutions to this problem have been employed in the literature; however, no validation of these methods exists. Here, we test a number of local density metrics both through their performance as constrained ideal observer models, and through a comparison with a large dataset of human detection trials. We conclude that for the selection of stimuli without a density cue, the Voronoi density metric is preferable, especially if combined with a measurement of the distance to each element's nearest neighbor. We offer the entirety of the dataset as a benchmark for the evaluation of future, possibly improved, metrics. With regard to human processes of grouping by proximity, we found observers to be insensitive to target groupings that are more sparse than the surrounding distractor elements, and less sensitive to regularity cues in element positioning than to local clusterings of target elements. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Ground and satellite based assessment of meteorological droughts: The Coello river basin case study

    NASA Astrophysics Data System (ADS)

    Cruz-Roa, A. F.; Olaya-Marín, E. J.; Barrios, M. I.

    2017-10-01

    The spatial distribution of droughts is a key factor for designing water management policies at basin scale in arid and semi-arid regions. Ground hydro-meteorological data in neo-tropical areas are scarce; therefore, the merging of ground and satellite datasets is a promissory approach for improving our understanding of water distribution. This paper compares three monthly rainfall interpolation methods for drought evaluation. The ordinary kriging technique based on ground data, and cokriging with elevation as auxiliary variable were compared against cokriging using the Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA). Twenty rain gauge stations and the 3B42V7 version of the TMPA research dataset were considered. Comparisons were made over the Coello river basin (Colombia) at 3″ spatial resolution covering a period of eight years (1998-2005). The best spatial rainfall estimation was found for cokriging using ground data and elevation. The spatial support of TMPA dataset is very coarse for a merged interpolation with ground data, this spatial scales discrepancy highlight the need to consider scaling rules in the interpolation process.

  13. Efficient Lane Boundary Detection with Spatial-Temporal Knowledge Filtering

    PubMed Central

    Nan, Zhixiong; Wei, Ping; Xu, Linhai; Zheng, Nanning

    2016-01-01

    Lane boundary detection technology has progressed rapidly over the past few decades. However, many challenges that often lead to lane detection unavailability remain to be solved. In this paper, we propose a spatial-temporal knowledge filtering model to detect lane boundaries in videos. To address the challenges of structure variation, large noise and complex illumination, this model incorporates prior spatial-temporal knowledge with lane appearance features to jointly identify lane boundaries. The model first extracts line segments in video frames. Two novel filters—the Crossing Point Filter (CPF) and the Structure Triangle Filter (STF)—are proposed to filter out the noisy line segments. The two filters introduce spatial structure constraints and temporal location constraints into lane detection, which represent the spatial-temporal knowledge about lanes. A straight line or curve model determined by a state machine is used to fit the line segments to finally output the lane boundaries. We collected a challenging realistic traffic scene dataset. The experimental results on this dataset and other standard dataset demonstrate the strength of our method. The proposed method has been successfully applied to our autonomous experimental vehicle. PMID:27529248

  14. A flexible cure rate model for spatially correlated survival data based on generalized extreme value distribution and Gaussian process priors.

    PubMed

    Li, Dan; Wang, Xia; Dey, Dipak K

    2016-09-01

    Our present work proposes a new survival model in a Bayesian context to analyze right-censored survival data for populations with a surviving fraction, assuming that the log failure time follows a generalized extreme value distribution. Many applications require a more flexible modeling of covariate information than a simple linear or parametric form for all covariate effects. It is also necessary to include the spatial variation in the model, since it is sometimes unexplained by the covariates considered in the analysis. Therefore, the nonlinear covariate effects and the spatial effects are incorporated into the systematic component of our model. Gaussian processes (GPs) provide a natural framework for modeling potentially nonlinear relationship and have recently become extremely powerful in nonlinear regression. Our proposed model adopts a semiparametric Bayesian approach by imposing a GP prior on the nonlinear structure of continuous covariate. With the consideration of data availability and computational complexity, the conditionally autoregressive distribution is placed on the region-specific frailties to handle spatial correlation. The flexibility and gains of our proposed model are illustrated through analyses of simulated data examples as well as a dataset involving a colon cancer clinical trial from the state of Iowa. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A study on the use of Gumbel approximation with the Bernoulli spatial scan statistic.

    PubMed

    Read, S; Bath, P A; Willett, P; Maheswaran, R

    2013-08-30

    The Bernoulli version of the spatial scan statistic is a well established method of detecting localised spatial clusters in binary labelled point data, a typical application being the epidemiological case-control study. A recent study suggests the inferential accuracy of several versions of the spatial scan statistic (principally the Poisson version) can be improved, at little computational cost, by using the Gumbel distribution, a method now available in SaTScan(TM) (www.satscan.org). We study in detail the effect of this technique when applied to the Bernoulli version and demonstrate that it is highly effective, albeit with some increase in false alarm rates at certain significance thresholds. We explain how this increase is due to the discrete nature of the Bernoulli spatial scan statistic and demonstrate that it can affect even small p-values. Despite this, we argue that the Gumbel method is actually preferable for very small p-values. Furthermore, we extend previous research by running benchmark trials on 12 000 synthetic datasets, thus demonstrating that the overall detection capability of the Bernoulli version (i.e. ratio of power to false alarm rate) is not noticeably affected by the use of the Gumbel method. We also provide an example application of the Gumbel method using data on hospital admissions for chronic obstructive pulmonary disease. Copyright © 2013 John Wiley & Sons, Ltd.

  16. An assessment of differences in gridded precipitation datasets in complex terrain

    NASA Astrophysics Data System (ADS)

    Henn, Brian; Newman, Andrew J.; Livneh, Ben; Daly, Christopher; Lundquist, Jessica D.

    2018-01-01

    Hydrologic modeling and other geophysical applications are sensitive to precipitation forcing data quality, and there are known challenges in spatially distributing gauge-based precipitation over complex terrain. We conduct a comparison of six high-resolution, daily and monthly gridded precipitation datasets over the Western United States. We compare the long-term average spatial patterns, and interannual variability of water-year total precipitation, as well as multi-year trends in precipitation across the datasets. We find that the greatest absolute differences among datasets occur in high-elevation areas and in the maritime mountain ranges of the Western United States, while the greatest percent differences among datasets relative to annual total precipitation occur in arid and rain-shadowed areas. Differences between datasets in some high-elevation areas exceed 200 mm yr-1 on average, and relative differences range from 5 to 60% across the Western United States. In areas of high topographic relief, true uncertainties and biases are likely higher than the differences among the datasets; we present evidence of this based on streamflow observations. Precipitation trends in the datasets differ in magnitude and sign at smaller scales, and are sensitive to how temporal inhomogeneities in the underlying precipitation gauge data are handled.

  17. Comparison and Evaluation of Annual NDVI Time Series in China Derived from the NOAA AVHRR LTDR and Terra MODIS MOD13C1 Products

    PubMed Central

    Guo, Xiaoyi; Zhang, Hongyan; Wu, Zhengfang; Zhao, Jianjun; Zhang, Zhengxiang

    2017-01-01

    Time series of Normalized Difference Vegetation Index (NDVI) derived from multiple satellite sensors are crucial data to study vegetation dynamics. The Land Long Term Data Record Version 4 (LTDR V4) NDVI dataset was recently released at a 0.05 × 0.05° spatial resolution and daily temporal resolution. In this study, annual NDVI time series that are composited by the LTDR V4 and Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI datasets (MOD13C1) are compared and evaluated for the period from 2001 to 2014 in China. The spatial patterns of the NDVI generally match between the LTDR V4 and MOD13C1 datasets. The transitional zone between high and low NDVI values generally matches the boundary of semi-arid and sub-humid regions. A significant and high coefficient of determination is found between the two datasets according to a pixel-based correlation analysis. The spatially averaged NDVI of LTDR V4 is characterized by a much weaker positive regression slope relative to that of the spatially averaged NDVI of the MOD13C1 dataset because of changes in NOAA AVHRR sensors between 2005 and 2006. The measured NDVI values of LTDR V4 were always higher than that of MOD13C1 in western China due to the relatively lower atmospheric water vapor content in western China, and opposite observation appeared in eastern China. In total, 18.54% of the LTDR V4 NDVI pixels exhibit significant trends, whereas 35.79% of the MOD13C1 NDVI pixels show significant trends. Good agreement is observed between the significant trends of the two datasets in the Northeast Plain, Bohai Economic Rim, Loess Plateau, and Yangtze River Delta. By contrast, the datasets contrasted in northwestern desert regions and southern China. A trend analysis of the regression slope values according to the vegetation type shows good agreement between the LTDR V4 and MOD13C1 datasets. This study demonstrates the spatial and temporal consistencies and discrepancies between the AVHRR LTDR and MODIS MOD13C1 NDVI products in China, which could provide useful information for the choice of NDVI products in subsequent studies of vegetation dynamics. PMID:28587266

  18. Comparison and Evaluation of Annual NDVI Time Series in China Derived from the NOAA AVHRR LTDR and Terra MODIS MOD13C1 Products.

    PubMed

    Guo, Xiaoyi; Zhang, Hongyan; Wu, Zhengfang; Zhao, Jianjun; Zhang, Zhengxiang

    2017-06-06

    Time series of Normalized Difference Vegetation Index (NDVI) derived from multiple satellite sensors are crucial data to study vegetation dynamics. The Land Long Term Data Record Version 4 (LTDR V4) NDVI dataset was recently released at a 0.05 × 0.05° spatial resolution and daily temporal resolution. In this study, annual NDVI time series that are composited by the LTDR V4 and Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI datasets (MOD13C1) are compared and evaluated for the period from 2001 to 2014 in China. The spatial patterns of the NDVI generally match between the LTDR V4 and MOD13C1 datasets. The transitional zone between high and low NDVI values generally matches the boundary of semi-arid and sub-humid regions. A significant and high coefficient of determination is found between the two datasets according to a pixel-based correlation analysis. The spatially averaged NDVI of LTDR V4 is characterized by a much weaker positive regression slope relative to that of the spatially averaged NDVI of the MOD13C1 dataset because of changes in NOAA AVHRR sensors between 2005 and 2006. The measured NDVI values of LTDR V4 were always higher than that of MOD13C1 in western China due to the relatively lower atmospheric water vapor content in western China, and opposite observation appeared in eastern China. In total, 18.54% of the LTDR V4 NDVI pixels exhibit significant trends, whereas 35.79% of the MOD13C1 NDVI pixels show significant trends. Good agreement is observed between the significant trends of the two datasets in the Northeast Plain, Bohai Economic Rim, Loess Plateau, and Yangtze River Delta. By contrast, the datasets contrasted in northwestern desert regions and southern China. A trend analysis of the regression slope values according to the vegetation type shows good agreement between the LTDR V4 and MOD13C1 datasets. This study demonstrates the spatial and temporal consistencies and discrepancies between the AVHRR LTDR and MODIS MOD13C1 NDVI products in China, which could provide useful information for the choice of NDVI products in subsequent studies of vegetation dynamics.

  19. Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geostatistical Datasets.

    PubMed

    Datta, Abhirup; Banerjee, Sudipto; Finley, Andrew O; Gelfand, Alan E

    2016-01-01

    Spatial process models for analyzing geostatistical data entail computations that become prohibitive as the number of spatial locations become large. This article develops a class of highly scalable nearest-neighbor Gaussian process (NNGP) models to provide fully model-based inference for large geostatistical datasets. We establish that the NNGP is a well-defined spatial process providing legitimate finite-dimensional Gaussian densities with sparse precision matrices. We embed the NNGP as a sparsity-inducing prior within a rich hierarchical modeling framework and outline how computationally efficient Markov chain Monte Carlo (MCMC) algorithms can be executed without storing or decomposing large matrices. The floating point operations (flops) per iteration of this algorithm is linear in the number of spatial locations, thereby rendering substantial scalability. We illustrate the computational and inferential benefits of the NNGP over competing methods using simulation studies and also analyze forest biomass from a massive U.S. Forest Inventory dataset at a scale that precludes alternative dimension-reducing methods. Supplementary materials for this article are available online.

  20. Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geostatistical Datasets

    PubMed Central

    Datta, Abhirup; Banerjee, Sudipto; Finley, Andrew O.; Gelfand, Alan E.

    2018-01-01

    Spatial process models for analyzing geostatistical data entail computations that become prohibitive as the number of spatial locations become large. This article develops a class of highly scalable nearest-neighbor Gaussian process (NNGP) models to provide fully model-based inference for large geostatistical datasets. We establish that the NNGP is a well-defined spatial process providing legitimate finite-dimensional Gaussian densities with sparse precision matrices. We embed the NNGP as a sparsity-inducing prior within a rich hierarchical modeling framework and outline how computationally efficient Markov chain Monte Carlo (MCMC) algorithms can be executed without storing or decomposing large matrices. The floating point operations (flops) per iteration of this algorithm is linear in the number of spatial locations, thereby rendering substantial scalability. We illustrate the computational and inferential benefits of the NNGP over competing methods using simulation studies and also analyze forest biomass from a massive U.S. Forest Inventory dataset at a scale that precludes alternative dimension-reducing methods. Supplementary materials for this article are available online. PMID:29720777

  1. Mapping working memory retrieval in space and in time: A combined electroencephalography and electrocorticography approach.

    PubMed

    Zhang, Qiong; van Vugt, Marieke; Borst, Jelmer P; Anderson, John R

    2018-07-01

    In this study, we investigated the time course and neural correlates of the retrieval process underlying visual working memory. We made use of a rare dataset in which the same task was recorded using both scalp electroencephalography (EEG) and Electrocorticography (ECoG), respectively. This allowed us to examine with great spatial and temporal detail how the retrieval process works, and in particular how the medial temporal lobe (MTL) is involved. In each trial, participants judged whether a probe face had been among a set of recently studied faces. With a method that combines hidden semi-Markov models and multivariate pattern analysis, the neural signal was decomposed into a sequence of latent cognitive stages with information about their durations on a trial-by-trial basis. Analyzed separately, EEG and ECoG data yielded converging results on discovered stages and their interpretation, which reflected 1) a brief pre-attention stage, 2) encoding the stimulus, 3) retrieving the studied set, and 4) making a decision. Combining these stages with the high spatial resolution of ECoG suggested that activity in the temporal cortex reflected item familiarity in the retrieval stage; and that once retrieval is complete, there is active maintenance of the studied face set in the decision stage in the MTL. During this same period, the frontal cortex guides the decision by means of theta coupling with the MTL. These observations generalize previous findings on the role of MTL theta from long-term memory tasks to short-term memory tasks. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. What are we ‘tweeting’ about obesity? Mapping tweets with Topic Modeling and Geographic Information System

    PubMed Central

    Ghosh, Debarchana (Debs); Guha, Rajarshi

    2014-01-01

    Public health related tweets are difficult to identify in large conversational datasets like Twitter.com. Even more challenging is the visualization and analyses of the spatial patterns encoded in tweets. This study has the following objectives: How can topic modeling be used to identify relevant public health topics such as obesity on Twitter.com? What are the common obesity related themes? What is the spatial pattern of the themes? What are the research challenges of using large conversational datasets from social networking sites? Obesity is chosen as a test theme to demonstrate the effectiveness of topic modeling using Latent Dirichlet Allocation (LDA) and spatial analysis using Geographic Information System (GIS). The dataset is constructed from tweets (originating from the United States) extracted from Twitter.com on obesity-related queries. Examples of such queries are ‘food deserts’, ‘fast food’, and ‘childhood obesity’. The tweets are also georeferenced and time stamped. Three cohesive and meaningful themes such as ‘childhood obesity and schools’, ‘obesity prevention’, and ‘obesity and food habits’ are extracted from the LDA model. The GIS analysis of the extracted themes show distinct spatial pattern between rural and urban areas, northern and southern states, and between coasts and inland states. Further, relating the themes with ancillary datasets such as US census and locations of fast food restaurants based upon the location of the tweets in a GIS environment opened new avenues for spatial analyses and mapping. Therefore the techniques used in this study provide a possible toolset for computational social scientists in general and health researchers in specific to better understand health problems from large conversational datasets. PMID:25126022

  3. What are we 'tweeting' about obesity? Mapping tweets with Topic Modeling and Geographic Information System.

    PubMed

    Ghosh, Debarchana Debs; Guha, Rajarshi

    2013-01-01

    Public health related tweets are difficult to identify in large conversational datasets like Twitter.com. Even more challenging is the visualization and analyses of the spatial patterns encoded in tweets. This study has the following objectives: How can topic modeling be used to identify relevant public health topics such as obesity on Twitter.com? What are the common obesity related themes? What is the spatial pattern of the themes? What are the research challenges of using large conversational datasets from social networking sites? Obesity is chosen as a test theme to demonstrate the effectiveness of topic modeling using Latent Dirichlet Allocation (LDA) and spatial analysis using Geographic Information System (GIS). The dataset is constructed from tweets (originating from the United States) extracted from Twitter.com on obesity-related queries. Examples of such queries are 'food deserts', 'fast food', and 'childhood obesity'. The tweets are also georeferenced and time stamped. Three cohesive and meaningful themes such as 'childhood obesity and schools', 'obesity prevention', and 'obesity and food habits' are extracted from the LDA model. The GIS analysis of the extracted themes show distinct spatial pattern between rural and urban areas, northern and southern states, and between coasts and inland states. Further, relating the themes with ancillary datasets such as US census and locations of fast food restaurants based upon the location of the tweets in a GIS environment opened new avenues for spatial analyses and mapping. Therefore the techniques used in this study provide a possible toolset for computational social scientists in general and health researchers in specific to better understand health problems from large conversational datasets.

  4. Precipitation climatology over India: validation with observations and reanalysis datasets and spatial trends

    NASA Astrophysics Data System (ADS)

    Kishore, P.; Jyothi, S.; Basha, Ghouse; Rao, S. V. B.; Rajeevan, M.; Velicogna, Isabella; Sutterley, Tyler C.

    2016-01-01

    Changing rainfall patterns have significant effect on water resources, agriculture output in many countries, especially the country like India where the economy depends on rain-fed agriculture. Rainfall over India has large spatial as well as temporal variability. To understand the variability in rainfall, spatial-temporal analyses of rainfall have been studied by using 107 (1901-2007) years of daily gridded India Meteorological Department (IMD) rainfall datasets. Further, the validation of IMD precipitation data is carried out with different observational and different reanalysis datasets during the period from 1989 to 2007. The Global Precipitation Climatology Project data shows similar features as that of IMD with high degree of comparison, whereas Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation data show similar features but with large differences, especially over northwest, west coast and western Himalayas. Spatially, large deviation is observed in the interior peninsula during the monsoon season with National Aeronautics Space Administration-Modern Era Retrospective-analysis for Research and Applications (NASA-MERRA), pre-monsoon with Japanese 25 years Re Analysis (JRA-25), and post-monsoon with climate forecast system reanalysis (CFSR) reanalysis datasets. Among the reanalysis datasets, European Centre for Medium-Range Weather Forecasts Interim Re-Analysis (ERA-Interim) shows good comparison followed by CFSR, NASA-MERRA, and JRA-25. Further, for the first time, with high resolution and long-term IMD data, the spatial distribution of trends is estimated using robust regression analysis technique on the annual and seasonal rainfall data with respect to different regions of India. Significant positive and negative trends are noticed in the whole time series of data during the monsoon season. The northeast and west coast of the Indian region shows significant positive trends and negative trends over western Himalayas and north central Indian region.

  5. Geostatistical Characterization of Cereal Leaf Beetle (Coleoptera: Chrysomelidae) Distributions in Wheat.

    PubMed

    Reay-Jones, Francis P F

    2017-08-01

    A 3-yr study was conducted in wheat, Triticum aestivum L., in South Carolina to characterize the spatial distribution of Oulema melanopus (L.) adults, eggs, and larvae using semivariograms, which provides a measure of spatial dependence among sampling data. Moran's I coefficients for peak densities of each life stage indicated significant positive autocorrelation for seven (two for eggs, one for larvae, and four for adults) of the 16 datasets. Aggregation was detected in 13 of these 16 datasets when analyzed by semivariogram modeling, with spherical, Gaussian, and exponential models best fitting for eight, four, and one dataset, respectively, and with models for two datasets having only one parameter (nugget) significantly different from zero. The nugget-to-sill ratios ranged from 0.043 to 0.774, and indicated strong spatial dependence in six models (three for adults, two for eggs, and one for larvae), moderate spatial dependence in six models (three for adults and six for eggs), and weak spatial dependence in one model (adults). Range values varied from 39.1 m to 234.1 m, with an average of 120.1 ± 14.0 m. Average range values were 104.9, 135.2, and 161.2 m for adults, eggs, and larvae, respectively. Because the majority of semivariogram models in our study indicated aggregated distributions, spatial sampling will provide more information than nonspatial random sampling. Developing our understanding of spatial dependence of crop pests is needed to optimize sampling plans and can provide a basis for exploring site-specific management tactics. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Uncertainty Assessment of the NASA Earth Exchange Global Daily Downscaled Climate Projections (NEX-GDDP) Dataset

    NASA Technical Reports Server (NTRS)

    Wang, Weile; Nemani, Ramakrishna R.; Michaelis, Andrew; Hashimoto, Hirofumi; Dungan, Jennifer L.; Thrasher, Bridget L.; Dixon, Keith W.

    2016-01-01

    The NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) dataset is comprised of downscaled climate projections that are derived from 21 General Circulation Model (GCM) runs conducted under the Coupled Model Intercomparison Project Phase 5 (CMIP5) and across two of the four greenhouse gas emissions scenarios (RCP4.5 and RCP8.5). Each of the climate projections includes daily maximum temperature, minimum temperature, and precipitation for the periods from 1950 through 2100 and the spatial resolution is 0.25 degrees (approximately 25 km x 25 km). The GDDP dataset has received warm welcome from the science community in conducting studies of climate change impacts at local to regional scales, but a comprehensive evaluation of its uncertainties is still missing. In this study, we apply the Perfect Model Experiment framework (Dixon et al. 2016) to quantify the key sources of uncertainties from the observational baseline dataset, the downscaling algorithm, and some intrinsic assumptions (e.g., the stationary assumption) inherent to the statistical downscaling techniques. We developed a set of metrics to evaluate downscaling errors resulted from bias-correction ("quantile-mapping"), spatial disaggregation, as well as the temporal-spatial non-stationarity of climate variability. Our results highlight the spatial disaggregation (or interpolation) errors, which dominate the overall uncertainties of the GDDP dataset, especially over heterogeneous and complex terrains (e.g., mountains and coastal area). In comparison, the temporal errors in the GDDP dataset tend to be more constrained. Our results also indicate that the downscaled daily precipitation also has relatively larger uncertainties than the temperature fields, reflecting the rather stochastic nature of precipitation in space. Therefore, our results provide insights in improving statistical downscaling algorithms and products in the future.

  7. Spatially-explicit estimation of geographical representation in large-scale species distribution datasets.

    PubMed

    Kalwij, Jesse M; Robertson, Mark P; Ronk, Argo; Zobel, Martin; Pärtel, Meelis

    2014-01-01

    Much ecological research relies on existing multispecies distribution datasets. Such datasets, however, can vary considerably in quality, extent, resolution or taxonomic coverage. We provide a framework for a spatially-explicit evaluation of geographical representation within large-scale species distribution datasets, using the comparison of an occurrence atlas with a range atlas dataset as a working example. Specifically, we compared occurrence maps for 3773 taxa from the widely-used Atlas Florae Europaeae (AFE) with digitised range maps for 2049 taxa of the lesser-known Atlas of North European Vascular Plants. We calculated the level of agreement at a 50-km spatial resolution using average latitudinal and longitudinal species range, and area of occupancy. Agreement in species distribution was calculated and mapped using Jaccard similarity index and a reduced major axis (RMA) regression analysis of species richness between the entire atlases (5221 taxa in total) and between co-occurring species (601 taxa). We found no difference in distribution ranges or in the area of occupancy frequency distribution, indicating that atlases were sufficiently overlapping for a valid comparison. The similarity index map showed high levels of agreement for central, western, and northern Europe. The RMA regression confirmed that geographical representation of AFE was low in areas with a sparse data recording history (e.g., Russia, Belarus and the Ukraine). For co-occurring species in south-eastern Europe, however, the Atlas of North European Vascular Plants showed remarkably higher richness estimations. Geographical representation of atlas data can be much more heterogeneous than often assumed. Level of agreement between datasets can be used to evaluate geographical representation within datasets. Merging atlases into a single dataset is worthwhile in spite of methodological differences, and helps to fill gaps in our knowledge of species distribution ranges. Species distribution dataset mergers, such as the one exemplified here, can serve as a baseline towards comprehensive species distribution datasets.

  8. Datasets, Technologies and Products from the NASA/NOAA Electronic Theater 2002

    NASA Technical Reports Server (NTRS)

    Hasler, A. Fritz; Starr, David (Technical Monitor)

    2001-01-01

    An in depth look at the Earth Science datasets used in the Etheater Visualizations will be presented. This will include the satellite orbits, platforms, scan patterns, the size, temporal and spatial resolution, and compositing techniques used to obtain the datasets as well as the spectral bands utilized.

  9. Digital spatial data for observed, predicted, and misclassification errors for observations in the training dataset for nitrate and arsenic concentrations in basin-fill aquifers in the Southwest Principal Aquifers study area

    USGS Publications Warehouse

    McKinney, Tim S.; Anning, David W.

    2012-01-01

    This product "Digital spatial data for observed, predicted, and misclassification errors for observations in the training dataset for nitrate and arsenic concentrations in basin-fill aquifers in the Southwest Principal Aquifers study area" is a 1:250,000-scale point spatial dataset developed as part of a regional Southwest Principal Aquifers (SWPA) study (Anning and others, 2012). The study examined the vulnerability of basin-fill aquifers in the southwestern United States to nitrate contamination and arsenic enrichment. Statistical models were developed by using the random forest classifier algorithm to predict concentrations of nitrate and arsenic across a model grid that represents local- and basin-scale measures of source, aquifer susceptibility, and geochemical conditions.

  10. Non-target adjacent stimuli classification improves performance of classical ERP-based brain computer interface

    NASA Astrophysics Data System (ADS)

    Ceballos, G. A.; Hernández, L. F.

    2015-04-01

    Objective. The classical ERP-based speller, or P300 Speller, is one of the most commonly used paradigms in the field of Brain Computer Interfaces (BCI). Several alterations to the visual stimuli presentation system have been developed to avoid unfavorable effects elicited by adjacent stimuli. However, there has been little, if any, regard to useful information contained in responses to adjacent stimuli about spatial location of target symbols. This paper aims to demonstrate that combining the classification of non-target adjacent stimuli with standard classification (target versus non-target) significantly improves classical ERP-based speller efficiency. Approach. Four SWLDA classifiers were trained and combined with the standard classifier: the lower row, upper row, right column and left column classifiers. This new feature extraction procedure and the classification method were carried out on three open databases: the UAM P300 database (Universidad Autonoma Metropolitana, Mexico), BCI competition II (dataset IIb) and BCI competition III (dataset II). Main results. The inclusion of the classification of non-target adjacent stimuli improves target classification in the classical row/column paradigm. A gain in mean single trial classification of 9.6% and an overall improvement of 25% in simulated spelling speed was achieved. Significance. We have provided further evidence that the ERPs produced by adjacent stimuli present discriminable features, which could provide additional information about the spatial location of intended symbols. This work promotes the searching of information on the peripheral stimulation responses to improve the performance of emerging visual ERP-based spellers.

  11. Comparing adult cannabis treatment-seekers enrolled in a clinical trial with national samples of cannabis users in the United States

    PubMed Central

    McClure, Erin A.; King, Jacqueline S.; Wahle, Aimee; Matthews, Abigail G.; Sonne, Susan C.; Lofwall, Michelle R.; McRae-Clark, Aimee L.; Ghitza, Udi E.; Martinez, Melissa; Cloud, Kasie; Virk, Harvir S.; Gray, Kevin M.

    2017-01-01

    Background Cannabis use rates are increasing among adults in the United States (US) while the perception of harm is declining. This may result in an increased prevalence of cannabis use disorder and the need for more clinical trials to evaluate efficacious treatment strategies. Clinical trials are the gold standard for evaluating treatment, yet study samples are rarely representative of the target population. This finding has not yet been established for cannabis treatment trials. This study compared demographic and cannabis use characteristics of a cannabis cessation clinical trial sample (run through National Drug Abuse Treatment Clinical Trials Network) with three nationally representative datasets from the US; 1) National Survey on Drug Use and Health, 2) National Epidemiologic Survey on Alcohol and Related Conditions-III, and 3) Treatment Episodes Data Set – Admissions. Methods Comparisons were made between the clinical trial sample and appropriate cannabis using sub-samples from the national datasets, and propensity scores were calculated to determine the degree of similarity between samples. Results Results showed that the clinical trial sample was significantly different from all three national datasets, with the clinical trial sample having greater representation among older adults, African Americans, Hispanic/Latinos, adults with more education, non-tobacco users, and daily and almost daily cannabis users. Conclusions These results are consistent with previous studies of other substance use disorder populations and extend sample representation issues to a cannabis use disorder population. This illustrates the need to ensure representative samples within cannabis treatment clinical trials to improve the generalizability of promising findings. PMID:28511033

  12. Comparing adult cannabis treatment-seekers enrolled in a clinical trial with national samples of cannabis users in the United States.

    PubMed

    McClure, Erin A; King, Jacqueline S; Wahle, Aimee; Matthews, Abigail G; Sonne, Susan C; Lofwall, Michelle R; McRae-Clark, Aimee L; Ghitza, Udi E; Martinez, Melissa; Cloud, Kasie; Virk, Harvir S; Gray, Kevin M

    2017-07-01

    Cannabis use rates are increasing among adults in the United States (US) while the perception of harm is declining. This may result in an increased prevalence of cannabis use disorder and the need for more clinical trials to evaluate efficacious treatment strategies. Clinical trials are the gold standard for evaluating treatment, yet study samples are rarely representative of the target population. This finding has not yet been established for cannabis treatment trials. This study compared demographic and cannabis use characteristics of a cannabis cessation clinical trial sample (run through National Drug Abuse Treatment Clinical Trials Network) with three nationally representative datasets from the US; 1) National Survey on Drug Use and Health, 2) National Epidemiologic Survey on Alcohol and Related Conditions-III, and 3) Treatment: Episodes Data Set - Admissions. Comparisons were made between the clinical trial sample and appropriate cannabis using sub-samples from the national datasets, and propensity scores were calculated to determine the degree of similarity between samples. showed that the clinical trial sample was significantly different from all three national datasets, with the clinical trial sample having greater representation among older adults, African Americans, Hispanic/Latinos, adults with more education, non-tobacco users, and daily and almost daily cannabis users. These results are consistent with previous studies of other substance use disorder populations and extend sample representation issues to a cannabis use disorder population. This illustrates the need to ensure representative samples within cannabis treatment clinical trials to improve the generalizability of promising findings. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Effect of Variable Spatial Scales on USLE-GIS Computations

    NASA Astrophysics Data System (ADS)

    Patil, R. J.; Sharma, S. K.

    2017-12-01

    Use of appropriate spatial scale is very important in Universal Soil Loss Equation (USLE) based spatially distributed soil erosion modelling. This study aimed at assessment of annual rates of soil erosion at different spatial scales/grid sizes and analysing how changes in spatial scales affect USLE-GIS computations using simulation and statistical variabilities. Efforts have been made in this study to recommend an optimum spatial scale for further USLE-GIS computations for management and planning in the study area. The present research study was conducted in Shakkar River watershed, situated in Narsinghpur and Chhindwara districts of Madhya Pradesh, India. Remote Sensing and GIS techniques were integrated with Universal Soil Loss Equation (USLE) to predict spatial distribution of soil erosion in the study area at four different spatial scales viz; 30 m, 50 m, 100 m, and 200 m. Rainfall data, soil map, digital elevation model (DEM) and an executable C++ program, and satellite image of the area were used for preparation of the thematic maps for various USLE factors. Annual rates of soil erosion were estimated for 15 years (1992 to 2006) at four different grid sizes. The statistical analysis of four estimated datasets showed that sediment loss dataset at 30 m spatial scale has a minimum standard deviation (2.16), variance (4.68), percent deviation from observed values (2.68 - 18.91 %), and highest coefficient of determination (R2 = 0.874) among all the four datasets. Thus, it is recommended to adopt this spatial scale for USLE-GIS computations in the study area due to its minimum statistical variability and better agreement with the observed sediment loss data. This study also indicates large scope for use of finer spatial scales in spatially distributed soil erosion modelling.

  14. Global patterns and climate drivers of water-use efficiency in terrestrial ecosystems deduced from satellite-based datasets and carbon cycle models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yan; Piao, Shilong; Huang, Mengtian

    Our aim is to investigate how ecosystem water-use efficiency (WUE) varies spatially under different climate conditions, and how spatial variations in WUE differ from those of transpiration-based water-use efficiency (WUE t) and transpiration-based inherent water-use efficiency (IWUE t). LocationGlobal terrestrial ecosystems. We investigated spatial patterns of WUE using two datasets of gross primary productivity (GPP) and evapotranspiration (ET) and four biosphere model estimates of GPP and ET. Spatial relationships between WUE and climate variables were further explored through regression analyses. Global WUE estimated by two satellite-based datasets is 1.9 ± 0.1 and 1.8 ± 0.6g C m -2mm -1 lowermore » than the simulations from four process-based models (2.0 ± 0.3g C m -2mm -1) but comparable within the uncertainty of both approaches. In both satellite-based datasets and process models, precipitation is more strongly associated with spatial gradients of WUE for temperate and tropical regions, but temperature dominates north of 50 degrees N. WUE also increases with increasing solar radiation at high latitudes. The values of WUE from datasets and process-based models are systematically higher in wet regions (with higher GPP) than in dry regions. WUE t shows a lower precipitation sensitivity than WUE, which is contrary to leaf- and plant-level observations. IWUE t, the product of WUE t and water vapour deficit, is found to be rather conservative with spatially increasing precipitation, in agreement with leaf- and plant-level measurements. In conclusion, WUE, WUE t and IWUE t produce different spatial relationships with climate variables. In dry ecosystems, water losses from evaporation from bare soil, uncorrelated with productivity, tend to make WUE lower than in wetter regions. Yet canopy conductance is intrinsically efficient in those ecosystems and maintains a higher IWUEt. This suggests that the responses of each component flux of evapotranspiration should be analysed separately when investigating regional gradients in WUE, its temporal variability and its trends.« less

  15. Global patterns and climate drivers of water-use efficiency in terrestrial ecosystems deduced from satellite-based datasets and carbon cycle models

    DOE PAGES

    Sun, Yan; Piao, Shilong; Huang, Mengtian; ...

    2015-12-23

    Our aim is to investigate how ecosystem water-use efficiency (WUE) varies spatially under different climate conditions, and how spatial variations in WUE differ from those of transpiration-based water-use efficiency (WUE t) and transpiration-based inherent water-use efficiency (IWUE t). LocationGlobal terrestrial ecosystems. We investigated spatial patterns of WUE using two datasets of gross primary productivity (GPP) and evapotranspiration (ET) and four biosphere model estimates of GPP and ET. Spatial relationships between WUE and climate variables were further explored through regression analyses. Global WUE estimated by two satellite-based datasets is 1.9 ± 0.1 and 1.8 ± 0.6g C m -2mm -1 lowermore » than the simulations from four process-based models (2.0 ± 0.3g C m -2mm -1) but comparable within the uncertainty of both approaches. In both satellite-based datasets and process models, precipitation is more strongly associated with spatial gradients of WUE for temperate and tropical regions, but temperature dominates north of 50 degrees N. WUE also increases with increasing solar radiation at high latitudes. The values of WUE from datasets and process-based models are systematically higher in wet regions (with higher GPP) than in dry regions. WUE t shows a lower precipitation sensitivity than WUE, which is contrary to leaf- and plant-level observations. IWUE t, the product of WUE t and water vapour deficit, is found to be rather conservative with spatially increasing precipitation, in agreement with leaf- and plant-level measurements. In conclusion, WUE, WUE t and IWUE t produce different spatial relationships with climate variables. In dry ecosystems, water losses from evaporation from bare soil, uncorrelated with productivity, tend to make WUE lower than in wetter regions. Yet canopy conductance is intrinsically efficient in those ecosystems and maintains a higher IWUEt. This suggests that the responses of each component flux of evapotranspiration should be analysed separately when investigating regional gradients in WUE, its temporal variability and its trends.« less

  16. Support vector machine in crash prediction at the level of traffic analysis zones: Assessing the spatial proximity effects.

    PubMed

    Dong, Ni; Huang, Helai; Zheng, Liang

    2015-09-01

    In zone-level crash prediction, accounting for spatial dependence has become an extensively studied topic. This study proposes Support Vector Machine (SVM) model to address complex, large and multi-dimensional spatial data in crash prediction. Correlation-based Feature Selector (CFS) was applied to evaluate candidate factors possibly related to zonal crash frequency in handling high-dimension spatial data. To demonstrate the proposed approaches and to compare them with the Bayesian spatial model with conditional autoregressive prior (i.e., CAR), a dataset in Hillsborough county of Florida was employed. The results showed that SVM models accounting for spatial proximity outperform the non-spatial model in terms of model fitting and predictive performance, which indicates the reasonableness of considering cross-zonal spatial correlations. The best model predictive capability, relatively, is associated with the model considering proximity of the centroid distance by choosing the RBF kernel and setting the 10% of the whole dataset as the testing data, which further exhibits SVM models' capacity for addressing comparatively complex spatial data in regional crash prediction modeling. Moreover, SVM models exhibit the better goodness-of-fit compared with CAR models when utilizing the whole dataset as the samples. A sensitivity analysis of the centroid-distance-based spatial SVM models was conducted to capture the impacts of explanatory variables on the mean predicted probabilities for crash occurrence. While the results conform to the coefficient estimation in the CAR models, which supports the employment of the SVM model as an alternative in regional safety modeling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Visualizing Time-Varying Distribution Data in EOS Application

    NASA Technical Reports Server (NTRS)

    Shen, Han-Wei

    2004-01-01

    In this research, we have developed several novel visualization methods for spatial probability density function data. Our focus has been on 2D spatial datasets, where each pixel is a random variable, and has multiple samples which are the results of experiments on that random variable. We developed novel clustering algorithms as a means to reduce the information contained in these datasets; and investigated different ways of interpreting and clustering the data.

  18. Architecture of the local spatial data infrastructure for regional climate change research

    NASA Astrophysics Data System (ADS)

    Titov, Alexander; Gordov, Evgeny

    2013-04-01

    Georeferenced datasets (meteorological databases, modeling and reanalysis results, etc.) are actively used in modeling and analysis of climate change for various spatial and temporal scales. Due to inherent heterogeneity of environmental datasets as well as their size which might constitute up to tens terabytes for a single dataset studies in the area of climate and environmental change require a special software support based on SDI approach. A dedicated architecture of the local spatial data infrastructure aiming at regional climate change analysis using modern web mapping technologies is presented. Geoportal is a key element of any SDI, allowing searching of geoinformation resources (datasets and services) using metadata catalogs, producing geospatial data selections by their parameters (data access functionality) as well as managing services and applications of cartographical visualization. It should be noted that due to objective reasons such as big dataset volume, complexity of data models used, syntactic and semantic differences of various datasets, the development of environmental geodata access, processing and visualization services turns out to be quite a complex task. Those circumstances were taken into account while developing architecture of the local spatial data infrastructure as a universal framework providing geodata services. So that, the architecture presented includes: 1. Effective in terms of search, access, retrieval and subsequent statistical processing, model of storing big sets of regional georeferenced data, allowing in particular to store frequently used values (like monthly and annual climate change indices, etc.), thus providing different temporal views of the datasets 2. General architecture of the corresponding software components handling geospatial datasets within the storage model 3. Metadata catalog describing in detail using ISO 19115 and CF-convention standards datasets used in climate researches as a basic element of the spatial data infrastructure as well as its publication according to OGC CSW (Catalog Service Web) specification 4. Computational and mapping web services to work with geospatial datasets based on OWS (OGC Web Services) standards: WMS, WFS, WPS 5. Geoportal as a key element of thematic regional spatial data infrastructure providing also software framework for dedicated web applications development To realize web mapping services Geoserver software is used since it provides natural WPS implementation as a separate software module. To provide geospatial metadata services GeoNetwork Opensource (http://geonetwork-opensource.org) product is planned to be used for it supports ISO 19115/ISO 19119/ISO 19139 metadata standards as well as ISO CSW 2.0 profile for both client and server. To implement thematic applications based on geospatial web services within the framework of local SDI geoportal the following open source software have been selected: 1. OpenLayers JavaScript library, providing basic web mapping functionality for the thin client such as web browser 2. GeoExt/ExtJS JavaScript libraries for building client-side web applications working with geodata services. The web interface developed will be similar to the interface of such popular desktop GIS applications, as uDIG, QuantumGIS etc. The work is partially supported by RF Ministry of Education and Science grant 8345, SB RAS Program VIII.80.2.1 and IP 131.

  19. An empirical understanding of triple collocation evaluation measure

    NASA Astrophysics Data System (ADS)

    Scipal, Klaus; Doubkova, Marcela; Hegyova, Alena; Dorigo, Wouter; Wagner, Wolfgang

    2013-04-01

    Triple collocation method is an advanced evaluation method that has been used in the soil moisture field for only about half a decade. The method requires three datasets with an independent error structure that represent an identical phenomenon. The main advantages of the method are that it a) doesn't require a reference dataset that has to be considered to represent the truth, b) limits the effect of random and systematic errors of other two datasets, and c) simultaneously assesses the error of three datasets. The objective of this presentation is to assess the triple collocation error (Tc) of the ASAR Global Mode Surface Soil Moisture (GM SSM 1) km dataset and highlight problems of the method related to its ability to cancel the effect of error of ancillary datasets. In particular, the goal is to a) investigate trends in Tc related to the change in spatial resolution from 5 to 25 km, b) to investigate trends in Tc related to the choice of a hydrological model, and c) to study the relationship between Tc and other absolute evaluation methods (namely RMSE and Error Propagation EP). The triple collocation method is implemented using ASAR GM, AMSR-E, and a model (either AWRA-L, GLDAS-NOAH, or ERA-Interim). First, the significance of the relationship between the three soil moisture datasets was tested that is a prerequisite for the triple collocation method. Second, the trends in Tc related to the choice of the third reference dataset and scale were assessed. For this purpose the triple collocation is repeated replacing AWRA-L with two different globally available model reanalysis dataset operating at different spatial resolution (ERA-Interim and GLDAS-NOAH). Finally, the retrieved results were compared to the results of the RMSE and EP evaluation measures. Our results demonstrate that the Tc method does not eliminate the random and time-variant systematic errors of the second and the third dataset used in the Tc. The possible reasons include the fact a) that the TC method could not fully function with datasets acting at very different spatial resolutions, or b) that the errors were not fully independent as initially assumed.

  20. Integrative Spatial Data Analytics for Public Health Studies of New York State

    PubMed Central

    Chen, Xin; Wang, Fusheng

    2016-01-01

    Increased accessibility of health data made available by the government provides unique opportunity for spatial analytics with much higher resolution to discover patterns of diseases, and their correlation with spatial impact indicators. This paper demonstrated our vision of integrative spatial analytics for public health by linking the New York Cancer Mapping Dataset with datasets containing potential spatial impact indicators. We performed spatial based discovery of disease patterns and variations across New York State, and identify potential correlations between diseases and demographic, socio-economic and environmental indicators. Our methods were validated by three correlation studies: the correlation between stomach cancer and Asian race, the correlation between breast cancer and high education population, and the correlation between lung cancer and air toxics. Our work will allow public health researchers, government officials or other practitioners to adequately identify, analyze, and monitor health problems at the community or neighborhood level for New York State. PMID:28269834

  1. Spatially Explicit Models to Investigate Geographic Patterns in the Distribution of Forensic STRs: Application to the North-Eastern Mediterranean.

    PubMed

    Messina, Francesco; Finocchio, Andrea; Akar, Nejat; Loutradis, Aphrodite; Michalodimitrakis, Emmanuel I; Brdicka, Radim; Jodice, Carla; Novelletto, Andrea

    2016-01-01

    Human forensic STRs used for individual identification have been reported to have little power for inter-population analyses. Several methods have been developed which incorporate information on the spatial distribution of individuals to arrive at a description of the arrangement of diversity. We genotyped at 16 forensic STRs a large population sample obtained from many locations in Italy, Greece and Turkey, i.e. three countries crucial to the understanding of discontinuities at the European/Asian junction and the genetic legacy of ancient migrations, but seldom represented together in previous studies. Using spatial PCA on the full dataset, we detected patterns of population affinities in the area. Additionally, we devised objective criteria to reduce the overall complexity into reduced datasets. Independent spatially explicit methods applied to these latter datasets converged in showing that the extraction of information on long- to medium-range geographical trends and structuring from the overall diversity is possible. All analyses returned the picture of a background clinal variation, with regional discontinuities captured by each of the reduced datasets. Several aspects of our results are confirmed on external STR datasets and replicate those of genome-wide SNP typings. High levels of gene flow were inferred within the main continental areas by coalescent simulations. These results are promising from a microevolutionary perspective, in view of the fast pace at which forensic data are being accumulated for many locales. It is foreseeable that this will allow the exploitation of an invaluable genotypic resource, assembled for other (forensic) purposes, to clarify important aspects in the formation of local gene pools.

  2. High spatial resolution mapping of folds and fractures using Unmanned Aerial Vehicle (UAV) photogrammetry

    NASA Astrophysics Data System (ADS)

    Cruden, A. R.; Vollgger, S.

    2016-12-01

    The emerging capability of UAV photogrammetry combines a simple and cost-effective method to acquire digital aerial images with advanced computer vision algorithms that compute spatial datasets from a sequence of overlapping digital photographs from various viewpoints. Depending on flight altitude and camera setup, sub-centimeter spatial resolution orthophotographs and textured dense point clouds can be achieved. Orientation data can be collected for detailed structural analysis by digitally mapping such high-resolution spatial datasets in a fraction of time and with higher fidelity compared to traditional mapping techniques. Here we describe a photogrammetric workflow applied to a structural study of folds and fractures within alternating layers of sandstone and mudstone at a coastal outcrop in SE Australia. We surveyed this location using a downward looking digital camera mounted on commercially available multi-rotor UAV that autonomously followed waypoints at a set altitude and speed to ensure sufficient image overlap, minimum motion blur and an appropriate resolution. The use of surveyed ground control points allowed us to produce a geo-referenced 3D point cloud and an orthophotograph from hundreds of digital images at a spatial resolution < 10 mm per pixel, and cm-scale location accuracy. Orientation data of brittle and ductile structures were semi-automatically extracted from these high-resolution datasets using open-source software. This resulted in an extensive and statistically relevant orientation dataset that was used to 1) interpret the progressive development of folds and faults in the region, and 2) to generate a 3D structural model that underlines the complex internal structure of the outcrop and quantifies spatial variations in fold geometries. Overall, our work highlights how UAV photogrammetry can contribute to new insights in structural analysis.

  3. Predicting Classifier Performance with Limited Training Data: Applications to Computer-Aided Diagnosis in Breast and Prostate Cancer

    PubMed Central

    Basavanhally, Ajay; Viswanath, Satish; Madabhushi, Anant

    2015-01-01

    Clinical trials increasingly employ medical imaging data in conjunction with supervised classifiers, where the latter require large amounts of training data to accurately model the system. Yet, a classifier selected at the start of the trial based on smaller and more accessible datasets may yield inaccurate and unstable classification performance. In this paper, we aim to address two common concerns in classifier selection for clinical trials: (1) predicting expected classifier performance for large datasets based on error rates calculated from smaller datasets and (2) the selection of appropriate classifiers based on expected performance for larger datasets. We present a framework for comparative evaluation of classifiers using only limited amounts of training data by using random repeated sampling (RRS) in conjunction with a cross-validation sampling strategy. Extrapolated error rates are subsequently validated via comparison with leave-one-out cross-validation performed on a larger dataset. The ability to predict error rates as dataset size increases is demonstrated on both synthetic data as well as three different computational imaging tasks: detecting cancerous image regions in prostate histopathology, differentiating high and low grade cancer in breast histopathology, and detecting cancerous metavoxels in prostate magnetic resonance spectroscopy. For each task, the relationships between 3 distinct classifiers (k-nearest neighbor, naive Bayes, Support Vector Machine) are explored. Further quantitative evaluation in terms of interquartile range (IQR) suggests that our approach consistently yields error rates with lower variability (mean IQRs of 0.0070, 0.0127, and 0.0140) than a traditional RRS approach (mean IQRs of 0.0297, 0.0779, and 0.305) that does not employ cross-validation sampling for all three datasets. PMID:25993029

  4. Providing Geographic Datasets as Linked Data in Sdi

    NASA Astrophysics Data System (ADS)

    Hietanen, E.; Lehto, L.; Latvala, P.

    2016-06-01

    In this study, a prototype service to provide data from Web Feature Service (WFS) as linked data is implemented. At first, persistent and unique Uniform Resource Identifiers (URI) are created to all spatial objects in the dataset. The objects are available from those URIs in Resource Description Framework (RDF) data format. Next, a Web Ontology Language (OWL) ontology is created to describe the dataset information content using the Open Geospatial Consortium's (OGC) GeoSPARQL vocabulary. The existing data model is modified in order to take into account the linked data principles. The implemented service produces an HTTP response dynamically. The data for the response is first fetched from existing WFS. Then the Geographic Markup Language (GML) format output of the WFS is transformed on-the-fly to the RDF format. Content Negotiation is used to serve the data in different RDF serialization formats. This solution facilitates the use of a dataset in different applications without replicating the whole dataset. In addition, individual spatial objects in the dataset can be referred with URIs. Furthermore, the needed information content of the objects can be easily extracted from the RDF serializations available from those URIs. A solution for linking data objects to the dataset URI is also introduced by using the Vocabulary of Interlinked Datasets (VoID). The dataset is divided to the subsets and each subset is given its persistent and unique URI. This enables the whole dataset to be explored with a web browser and all individual objects to be indexed by search engines.

  5. Spatializing 6,000 years of global urbanization from 3700 BC to AD 2000

    NASA Astrophysics Data System (ADS)

    Reba, Meredith; Reitsma, Femke; Seto, Karen C.

    2016-06-01

    How were cities distributed globally in the past? How many people lived in these cities? How did cities influence their local and regional environments? In order to understand the current era of urbanization, we must understand long-term historical urbanization trends and patterns. However, to date there is no comprehensive record of spatially explicit, historic, city-level population data at the global scale. Here, we developed the first spatially explicit dataset of urban settlements from 3700 BC to AD 2000, by digitizing, transcribing, and geocoding historical, archaeological, and census-based urban population data previously published in tabular form by Chandler and Modelski. The dataset creation process also required data cleaning and harmonization procedures to make the data internally consistent. Additionally, we created a reliability ranking for each geocoded location to assess the geographic uncertainty of each data point. The dataset provides the first spatially explicit archive of the location and size of urban populations over the last 6,000 years and can contribute to an improved understanding of contemporary and historical urbanization trends.

  6. Spatializing 6,000 years of global urbanization from 3700 BC to AD 2000

    PubMed Central

    Reba, Meredith; Reitsma, Femke; Seto, Karen C.

    2016-01-01

    How were cities distributed globally in the past? How many people lived in these cities? How did cities influence their local and regional environments? In order to understand the current era of urbanization, we must understand long-term historical urbanization trends and patterns. However, to date there is no comprehensive record of spatially explicit, historic, city-level population data at the global scale. Here, we developed the first spatially explicit dataset of urban settlements from 3700 BC to AD 2000, by digitizing, transcribing, and geocoding historical, archaeological, and census-based urban population data previously published in tabular form by Chandler and Modelski. The dataset creation process also required data cleaning and harmonization procedures to make the data internally consistent. Additionally, we created a reliability ranking for each geocoded location to assess the geographic uncertainty of each data point. The dataset provides the first spatially explicit archive of the location and size of urban populations over the last 6,000 years and can contribute to an improved understanding of contemporary and historical urbanization trends. PMID:27271481

  7. Opportunities for multivariate analysis of open spatial datasets to characterize urban flooding risks

    NASA Astrophysics Data System (ADS)

    Gaitan, S.; ten Veldhuis, J. A. E.

    2015-06-01

    Cities worldwide are challenged by increasing urban flood risks. Precise and realistic measures are required to reduce flooding impacts. However, currently implemented sewer and topographic models do not provide realistic predictions of local flooding occurrence during heavy rain events. Assessing other factors such as spatially distributed rainfall, socioeconomic characteristics, and social sensing, may help to explain probability and impacts of urban flooding. Several spatial datasets have been recently made available in the Netherlands, including rainfall-related incident reports made by citizens, spatially distributed rain depths, semidistributed socioeconomic information, and buildings age. Inspecting the potential of this data to explain the occurrence of rainfall related incidents has not been done yet. Multivariate analysis tools for describing communities and environmental patterns have been previously developed and used in the field of study of ecology. The objective of this paper is to outline opportunities for these tools to explore urban flooding risks patterns in the mentioned datasets. To that end, a cluster analysis is performed. Results indicate that incidence of rainfall-related impacts is higher in areas characterized by older infrastructure and higher population density.

  8. Mapping populations at risk: improving spatial demographic data for infectious disease modeling and metric derivation

    PubMed Central

    2012-01-01

    The use of Global Positioning Systems (GPS) and Geographical Information Systems (GIS) in disease surveys and reporting is becoming increasingly routine, enabling a better understanding of spatial epidemiology and the improvement of surveillance and control strategies. In turn, the greater availability of spatially referenced epidemiological data is driving the rapid expansion of disease mapping and spatial modeling methods, which are becoming increasingly detailed and sophisticated, with rigorous handling of uncertainties. This expansion has, however, not been matched by advancements in the development of spatial datasets of human population distribution that accompany disease maps or spatial models. Where risks are heterogeneous across population groups or space or dependent on transmission between individuals, spatial data on human population distributions and demographic structures are required to estimate infectious disease risks, burdens, and dynamics. The disease impact in terms of morbidity, mortality, and speed of spread varies substantially with demographic profiles, so that identifying the most exposed or affected populations becomes a key aspect of planning and targeting interventions. Subnational breakdowns of population counts by age and sex are routinely collected during national censuses and maintained in finer detail within microcensus data. Moreover, demographic and health surveys continue to collect representative and contemporary samples from clusters of communities in low-income countries where census data may be less detailed and not collected regularly. Together, these freely available datasets form a rich resource for quantifying and understanding the spatial variations in the sizes and distributions of those most at risk of disease in low income regions, yet at present, they remain unconnected data scattered across national statistical offices and websites. In this paper we discuss the deficiencies of existing spatial population datasets and their limitations on epidemiological analyses. We review sources of detailed, contemporary, freely available and relevant spatial demographic data focusing on low income regions where such data are often sparse and highlight the value of incorporating these through a set of examples of their application in disease studies. Moreover, the importance of acknowledging, measuring, and accounting for uncertainty in spatial demographic datasets is outlined. Finally, a strategy for building an open-access database of spatial demographic data that is tailored to epidemiological applications is put forward. PMID:22591595

  9. Architectural Implications for Spatial Object Association Algorithms*

    PubMed Central

    Kumar, Vijay S.; Kurc, Tahsin; Saltz, Joel; Abdulla, Ghaleb; Kohn, Scott R.; Matarazzo, Celeste

    2013-01-01

    Spatial object association, also referred to as crossmatch of spatial datasets, is the problem of identifying and comparing objects in two or more datasets based on their positions in a common spatial coordinate system. In this work, we evaluate two crossmatch algorithms that are used for astronomical sky surveys, on the following database system architecture configurations: (1) Netezza Performance Server®, a parallel database system with active disk style processing capabilities, (2) MySQL Cluster, a high-throughput network database system, and (3) a hybrid configuration consisting of a collection of independent database system instances with data replication support. Our evaluation provides insights about how architectural characteristics of these systems affect the performance of the spatial crossmatch algorithms. We conducted our study using real use-case scenarios borrowed from a large-scale astronomy application known as the Large Synoptic Survey Telescope (LSST). PMID:25692244

  10. NASA Cold Land Processes Experiment (CLPX 2002/03): Atmospheric analyses datasets

    Treesearch

    Glen E. Liston; Daniel L. Birkenheuer; Christopher A. Hiemstra; Donald W. Cline; Kelly Elder

    2008-01-01

    This paper describes the Local Analysis and Prediction System (LAPS) and the 20-km horizontal grid version of the Rapid Update Cycle (RUC20) atmospheric analyses datasets, which are available as part of the Cold Land Processes Field Experiment (CLPX) data archive. The LAPS dataset contains spatially and temporally continuous atmospheric and surface variables over...

  11. geoknife: Reproducible web-processing of large gridded datasets

    USGS Publications Warehouse

    Read, Jordan S.; Walker, Jordan I.; Appling, Alison P.; Blodgett, David L.; Read, Emily K.; Winslow, Luke A.

    2016-01-01

    Geoprocessing of large gridded data according to overlap with irregular landscape features is common to many large-scale ecological analyses. The geoknife R package was created to facilitate reproducible analyses of gridded datasets found on the U.S. Geological Survey Geo Data Portal web application or elsewhere, using a web-enabled workflow that eliminates the need to download and store large datasets that are reliably hosted on the Internet. The package provides access to several data subset and summarization algorithms that are available on remote web processing servers. Outputs from geoknife include spatial and temporal data subsets, spatially-averaged time series values filtered by user-specified areas of interest, and categorical coverage fractions for various land-use types.

  12. The impact of the resolution of meteorological datasets on catchment-scale drought studies

    NASA Astrophysics Data System (ADS)

    Hellwig, Jost; Stahl, Kerstin

    2017-04-01

    Gridded meteorological datasets provide the basis to study drought at a range of scales, including catchment scale drought studies in hydrology. They are readily available to study past weather conditions and often serve real time monitoring as well. As these datasets differ in spatial/temporal coverage and spatial/temporal resolution, for most studies there is a tradeoff between these features. Our investigation examines whether biases occur when studying drought on catchment scale with low resolution input data. For that, a comparison among the datasets HYRAS (covering Central Europe, 1x1 km grid, daily data, 1951 - 2005), E-OBS (Europe, 0.25° grid, daily data, 1950-2015) and GPCC (whole world, 0.5° grid, monthly data, 1901 - 2013) is carried out. Generally, biases in precipitation increase with decreasing resolution. Most important variations are found during summer. In low mountain range of Central Europe the datasets of sparse resolution (E-OBS, GPCC) overestimate dry days and underestimate total precipitation since they are not able to describe high spatial variability. However, relative measures like the correlation coefficient reveal good consistencies of dry and wet periods, both for absolute precipitation values and standardized indices like the Standardized Precipitation Index (SPI) or Standardized Precipitation Evaporation Index (SPEI). Particularly the most severe droughts derived from the different datasets match very well. These results indicate that absolute values of sparse resolution datasets applied to catchment scale might be critical to use for an assessment of the hydrological drought at catchment scale, whereas relative measures for determining periods of drought are more trustworthy. Therefore, studies on drought, that downscale meteorological data, should carefully consider their data needs and focus on relative measures for dry periods if sufficient for the task.

  13. Delineation of marsh types and marsh-type change in coastal Louisiana for 2007 and 2013

    USGS Publications Warehouse

    Hartley, Stephen B.; Couvillion, Brady R.; Enwright, Nicholas M.

    2017-05-30

    The Bureau of Ocean Energy Management researchers often require detailed information regarding emergent marsh vegetation types (such as fresh, intermediate, brackish, and saline) for modeling habitat capacities and mitigation. In response, the U.S. Geological Survey in cooperation with the Bureau of Ocean Energy Management produced a detailed change classification of emergent marsh vegetation types in coastal Louisiana from 2007 and 2013. This study incorporates two existing vegetation surveys and independent variables such as Landsat Thematic Mapper multispectral satellite imagery, high-resolution airborne imagery from 2007 and 2013, bare-earth digital elevation models based on airborne light detection and ranging, alternative contemporary land-cover classifications, and other spatially explicit variables. An image classification based on image objects was created from 2007 and 2013 National Agriculture Imagery Program color-infrared aerial photography. The final products consisted of two 10-meter raster datasets. Each image object from the 2007 and 2013 spatial datasets was assigned a vegetation classification by using a simple majority filter. In addition to those spatial datasets, we also conducted a change analysis between the datasets to produce a 10-meter change raster product. This analysis identified how much change has taken place and where change has occurred. The spatial data products show dynamic areas where marsh loss is occurring or where marsh type is changing. This information can be used to assist and advance conservation efforts for priority natural resources.

  14. Effects and Safety of Gyejibongnyeong-Hwan on Dysmenorrhea Caused by Blood Stagnation: A Randomized Controlled Trial

    PubMed Central

    Park, Jeong-Su; Park, Sunju; Cheon, Chun-Hoo; Jo, Seong-Cheon; Cho, Han Baek; Lim, Eun-Mee; Lim, Hyung Ho; Shin, Yong-Cheol; Ko, Seong-Gyu

    2013-01-01

    Objective. This study was a multicenter, randomized, double-blind, and controlled trial with two parallel arms: the GJBNH group and the placebo group. This trial recruited 100 women aging 18 to 35 years with primary dysmenorrhea caused by blood stagnation. The investigational drugs, GJBNH or placebo, were administered for two menstrual periods (8 weeks) to the participants three times per day. The participants were followed up for two menstrual cycles after the administration. Results. The results were analyzed by the intention-to-treat (ITT) dataset and the per-protocol (PP) dataset. In the ITT dataset, the change of the average menstrual pain VAS score in the GJBNH group was statistically significantly lower than that in the control group. Significant difference was not observed in the SF-MPQ score change between the GJBNH group and the placebo group. No significant difference was observed in the PP analyses. In the follow-up phase, the VAS scores of the average menstrual pain and the maximum menstrual pain continually decreased in the placebo group, but they increased in the GJBNH group. Conclusion. GJBNH treatment for eight weeks improved the pain of the dysmenorrhea caused by blood stagnation, but it should be successively administered for more than two menstrual cycles. Trial Registration. This trial is registered with Current Controlled Trials no. ISRCTN30426947. PMID:24191165

  15. Development of a GIService based on spatial data mining for location choice of convenience stores in Taipei City

    NASA Astrophysics Data System (ADS)

    Jung, Chinte; Sun, Chih-Hong

    2006-10-01

    Motivated by the increasing accessibility of technology, more and more spatial data are being made digitally available. How to extract the valuable knowledge from these large (spatial) databases is becoming increasingly important to businesses, as well. It is essential to be able to analyze and utilize these large datasets, convert them into useful knowledge, and transmit them through GIS-enabled instruments and the Internet, conveying the key information to business decision-makers effectively and benefiting business entities. In this research, we combine the techniques of GIS, spatial decision support system (SDSS), spatial data mining (SDM), and ArcGIS Server to achieve the following goals: (1) integrate databases from spatial and non-spatial datasets about the locations of businesses in Taipei, Taiwan; (2) use the association rules, one of the SDM methods, to extract the knowledge from the integrated databases; and (3) develop a Web-based SDSS GIService as a location-selection tool for business by the product of ArcGIS Server.

  16. Sparse modeling of spatial environmental variables associated with asthma

    PubMed Central

    Chang, Timothy S.; Gangnon, Ronald E.; Page, C. David; Buckingham, William R.; Tandias, Aman; Cowan, Kelly J.; Tomasallo, Carrie D.; Arndt, Brian G.; Hanrahan, Lawrence P.; Guilbert, Theresa W.

    2014-01-01

    Geographically distributed environmental factors influence the burden of diseases such as asthma. Our objective was to identify sparse environmental variables associated with asthma diagnosis gathered from a large electronic health record (EHR) dataset while controlling for spatial variation. An EHR dataset from the University of Wisconsin’s Family Medicine, Internal Medicine and Pediatrics Departments was obtained for 199,220 patients aged 5–50 years over a three-year period. Each patient’s home address was geocoded to one of 3,456 geographic census block groups. Over one thousand block group variables were obtained from a commercial database. We developed a Sparse Spatial Environmental Analysis (SASEA). Using this method, the environmental variables were first dimensionally reduced with sparse principal component analysis. Logistic thin plate regression spline modeling was then used to identify block group variables associated with asthma from sparse principal components. The addresses of patients from the EHR dataset were distributed throughout the majority of Wisconsin’s geography. Logistic thin plate regression spline modeling captured spatial variation of asthma. Four sparse principal components identified via model selection consisted of food at home, dog ownership, household size, and disposable income variables. In rural areas, dog ownership and renter occupied housing units from significant sparse principal components were associated with asthma. Our main contribution is the incorporation of sparsity in spatial modeling. SASEA sequentially added sparse principal components to Logistic thin plate regression spline modeling. This method allowed association of geographically distributed environmental factors with asthma using EHR and environmental datasets. SASEA can be applied to other diseases with environmental risk factors. PMID:25533437

  17. Sparse modeling of spatial environmental variables associated with asthma.

    PubMed

    Chang, Timothy S; Gangnon, Ronald E; David Page, C; Buckingham, William R; Tandias, Aman; Cowan, Kelly J; Tomasallo, Carrie D; Arndt, Brian G; Hanrahan, Lawrence P; Guilbert, Theresa W

    2015-02-01

    Geographically distributed environmental factors influence the burden of diseases such as asthma. Our objective was to identify sparse environmental variables associated with asthma diagnosis gathered from a large electronic health record (EHR) dataset while controlling for spatial variation. An EHR dataset from the University of Wisconsin's Family Medicine, Internal Medicine and Pediatrics Departments was obtained for 199,220 patients aged 5-50years over a three-year period. Each patient's home address was geocoded to one of 3456 geographic census block groups. Over one thousand block group variables were obtained from a commercial database. We developed a Sparse Spatial Environmental Analysis (SASEA). Using this method, the environmental variables were first dimensionally reduced with sparse principal component analysis. Logistic thin plate regression spline modeling was then used to identify block group variables associated with asthma from sparse principal components. The addresses of patients from the EHR dataset were distributed throughout the majority of Wisconsin's geography. Logistic thin plate regression spline modeling captured spatial variation of asthma. Four sparse principal components identified via model selection consisted of food at home, dog ownership, household size, and disposable income variables. In rural areas, dog ownership and renter occupied housing units from significant sparse principal components were associated with asthma. Our main contribution is the incorporation of sparsity in spatial modeling. SASEA sequentially added sparse principal components to Logistic thin plate regression spline modeling. This method allowed association of geographically distributed environmental factors with asthma using EHR and environmental datasets. SASEA can be applied to other diseases with environmental risk factors. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Merging Station Observations with Large-Scale Gridded Data to Improve Hydrological Predictions over Chile

    NASA Astrophysics Data System (ADS)

    Peng, L.; Sheffield, J.; Verbist, K. M. J.

    2016-12-01

    Hydrological predictions at regional-to-global scales are often hampered by the lack of meteorological forcing data. The use of large-scale gridded meteorological data is able to overcome this limitation, but these data are subject to regional biases and unrealistic values at local scale. This is especially challenging in regions such as Chile, where climate exhibits high spatial heterogeneity as a result of long latitude span and dramatic elevation changes. However, regional station-based observational datasets are not fully exploited and have the potential of constraining biases and spatial patterns. This study aims at adjusting precipitation and temperature estimates from the Princeton University global meteorological forcing (PGF) gridded dataset to improve hydrological simulations over Chile, by assimilating 982 gauges from the Dirección General de Aguas (DGA). To merge station data with the gridded dataset, we use a state-space estimation method to produce optimal gridded estimates, considering both the error of the station measurements and the gridded PGF product. The PGF daily precipitation, maximum and minimum temperature at 0.25° spatial resolution are adjusted for the period of 1979-2010. Precipitation and temperature gauges with long and continuous records (>70% temporal coverage) are selected, while the remaining stations are used for validation. The leave-one-out cross validation verifies the robustness of this data assimilation approach. The merged dataset is then used to force the Variable Infiltration Capacity (VIC) hydrological model over Chile at daily time step which are compared to the observations of streamflow. Our initial results show that the station-merged PGF precipitation effectively captures drizzle and the spatial pattern of storms. Overall the merged dataset has significant improvements compared to the original PGF with reduced biases and stronger inter-annual variability. The invariant spatial pattern of errors between the station data and the gridded product opens up the possibility of merging real-time satellite and intermittent gauge observations to produce more accurate real-time hydrological predictions.

  19. A Spatially Distinct History of the Development of California Groundfish Fisheries

    PubMed Central

    Miller, Rebecca R.; Field, John C.; Santora, Jarrod A.; Schroeder, Isaac D.; Huff, David D.; Key, Meisha; Pearson, Don E.; MacCall, Alec D.

    2014-01-01

    During the past century, commercial fisheries have expanded from small vessels fishing in shallow, coastal habitats to a broad suite of vessels and gears that fish virtually every marine habitat on the globe. Understanding how fisheries have developed in space and time is critical for interpreting and managing the response of ecosystems to the effects of fishing, however time series of spatially explicit data are typically rare. Recently, the 1933–1968 portion of the commercial catch dataset from the California Department of Fish and Wildlife was recovered and digitized, completing the full historical series for both commercial and recreational datasets from 1933–2010. These unique datasets include landing estimates at a coarse 10 by 10 minute “grid-block” spatial resolution and extends the entire length of coastal California up to 180 kilometers from shore. In this study, we focus on the catch history of groundfish which were mapped for each grid-block using the year at 50% cumulative catch and total historical catch per habitat area. We then constructed generalized linear models to quantify the relationship between spatiotemporal trends in groundfish catches, distance from ports, depth, percentage of days with wind speed over 15 knots, SST and ocean productivity. Our results indicate that over the history of these fisheries, catches have taken place in increasingly deeper habitat, at a greater distance from ports, and in increasingly inclement weather conditions. Understanding spatial development of groundfish fisheries and catches in California are critical for improving population models and for evaluating whether implicit stock assessment model assumptions of relative homogeneity of fisheries removals over time and space are reasonable. This newly reconstructed catch dataset and analysis provides a comprehensive appreciation for the development of groundfish fisheries with respect to commonly assumed trends of global fisheries patterns that are typically constrained by a lack of long-term spatial datasets. PMID:24967973

  20. Spatiotemporal patterns of precipitation inferred from streamflow observations across the Sierra Nevada mountain range

    NASA Astrophysics Data System (ADS)

    Henn, Brian; Clark, Martyn P.; Kavetski, Dmitri; Newman, Andrew J.; Hughes, Mimi; McGurk, Bruce; Lundquist, Jessica D.

    2018-01-01

    Given uncertainty in precipitation gauge-based gridded datasets over complex terrain, we use multiple streamflow observations as an additional source of information about precipitation, in order to identify spatial and temporal differences between a gridded precipitation dataset and precipitation inferred from streamflow. We test whether gridded datasets capture across-crest and regional spatial patterns of variability, as well as year-to-year variability and trends in precipitation, in comparison to precipitation inferred from streamflow. We use a Bayesian model calibration routine with multiple lumped hydrologic model structures to infer the most likely basin-mean, water-year total precipitation for 56 basins with long-term (>30 year) streamflow records in the Sierra Nevada mountain range of California. We compare basin-mean precipitation derived from this approach with basin-mean precipitation from a precipitation gauge-based, 1/16° gridded dataset that has been used to simulate and evaluate trends in Western United States streamflow and snowpack over the 20th century. We find that the long-term average spatial patterns differ: in particular, there is less precipitation in the gridded dataset in higher-elevation basins whose aspect faces prevailing cool-season winds, as compared to precipitation inferred from streamflow. In a few years and basins, there is less gridded precipitation than there is observed streamflow. Lower-elevation, southern, and east-of-crest basins show better agreement between gridded and inferred precipitation. Implied actual evapotranspiration (calculated as precipitation minus streamflow) then also varies between the streamflow-based estimates and the gridded dataset. Absolute uncertainty in precipitation inferred from streamflow is substantial, but the signal of basin-to-basin and year-to-year differences are likely more robust. The findings suggest that considering streamflow when spatially distributing precipitation in complex terrain may improve its representation, particularly for basins whose orientations (e.g., windward-facing) are favored for orographic precipitation enhancement.

  1. Movement imagery classification in EMOTIV cap based system by Naïve Bayes.

    PubMed

    Stock, Vinicius N; Balbinot, Alexandre

    2016-08-01

    Brain-computer interfaces (BCI) provide means of communications and control, in assistive technology, which do not require motor activity from the user. The goal of this study is to promote classification of two types of imaginary movements, left and right hands, in an EMOTIV cap based system, using the Naïve Bayes classifier. A preliminary analysis with respect to results obtained by other experiments in this field is also conducted. Processing of the electroencephalography (EEG) signals is done applying Common Spatial Pattern filters. The EPOC electrodes cap is used for EEG acquisition, in two test subjects, for two distinct trial formats. The channels picked are FC5, FC6, P7 and P8 of the 10-20 system, and a discussion about the differences of using C3, C4, P3 and P4 positions is proposed. Dataset 3 of the BCI Competition II is also analyzed using the implemented algorithms. The maximum classification results for the proposed experiment and for the BCI Competition dataset were, respectively, 79% and 85% The conclusion of this study is that the picked positions for electrodes may be applied for BCI systems with satisfactory classification rates.

  2. An effective assessment protocol for continuous geospatial datasets of forest characteristics using USFS Forest Inventory and Analysis (FIA) data

    Treesearch

    Rachel Riemann; Barry Tyler Wilson; Andrew Lister; Sarah Parks

    2010-01-01

    Geospatial datasets of forest characteristics are modeled representations of real populations on the ground. The continuous spatial character of such datasets provides an incredible source of information at the landscape level for ecosystem research, policy analysis, and planning applications, all of which are critical for addressing current challenges related to...

  3. Spatial prediction of near surface soil water retention functions using hydrogeophysics

    NASA Astrophysics Data System (ADS)

    Gibson, J. P.; Franz, T. E.

    2017-12-01

    The hydrological community often turns to widely available spatial datasets such as SSURGO to characterize the spatial variability of soil across a landscape of interest. This has served as a reasonable first approximation when lacking localized soil data. However, previous work has shown that information loss within land surface models primarily stems from parameterization. Localized soil sampling is both expensive and time intense, and thus a need exists in connecting spatial datasets with ground observations. Given that hydrogeophysics is data-dense, rapid, and relatively easy to adopt, it is a promising technique to help dovetail localized soil sampling with larger spatial datasets. In this work, we utilize 2 geophysical techniques; cosmic ray neutron probe and electromagnetic induction, to identify temporally stable soil moisture patterns. This is achieved by measuring numerous times over a range of wet to dry field conditions in order to apply an empirical orthogonal function. We then present measured water retention functions of shallow cores extracted within each temporally stable zone. Lastly, we use soil moisture patterns as a covariate to predict soil hydraulic properties in areas without measurement and validate using a leave-one-out cross validation analysis. Using these approaches to better constrain soil hydraulic property variability, we speculate that further research can better estimate hydrologic fluxes in areas of interest.

  4. Spatially Explicit Models to Investigate Geographic Patterns in the Distribution of Forensic STRs: Application to the North-Eastern Mediterranean

    PubMed Central

    Messina, Francesco; Finocchio, Andrea; Akar, Nejat; Loutradis, Aphrodite; Michalodimitrakis, Emmanuel I.; Brdicka, Radim; Jodice, Carla

    2016-01-01

    Human forensic STRs used for individual identification have been reported to have little power for inter-population analyses. Several methods have been developed which incorporate information on the spatial distribution of individuals to arrive at a description of the arrangement of diversity. We genotyped at 16 forensic STRs a large population sample obtained from many locations in Italy, Greece and Turkey, i.e. three countries crucial to the understanding of discontinuities at the European/Asian junction and the genetic legacy of ancient migrations, but seldom represented together in previous studies. Using spatial PCA on the full dataset, we detected patterns of population affinities in the area. Additionally, we devised objective criteria to reduce the overall complexity into reduced datasets. Independent spatially explicit methods applied to these latter datasets converged in showing that the extraction of information on long- to medium-range geographical trends and structuring from the overall diversity is possible. All analyses returned the picture of a background clinal variation, with regional discontinuities captured by each of the reduced datasets. Several aspects of our results are confirmed on external STR datasets and replicate those of genome-wide SNP typings. High levels of gene flow were inferred within the main continental areas by coalescent simulations. These results are promising from a microevolutionary perspective, in view of the fast pace at which forensic data are being accumulated for many locales. It is foreseeable that this will allow the exploitation of an invaluable genotypic resource, assembled for other (forensic) purposes, to clarify important aspects in the formation of local gene pools. PMID:27898725

  5. Dataset on outdoor behavior-system and spatial-pattern in the third place in cold area-based on the perspective of new energy structure.

    PubMed

    Ren, Kai; Wang, Yuan; Liu, Tingxi; Wang, Guanli

    2017-02-01

    The data presented in this paper are related to the research article entitled "Exploration of Outdoor Behavior System and Spatial Pattern in the Third Place in Cold Area- based on the perspective of new energy structure" (Ren, 2016) [1]. The dataset was from a field sub-time extended investigation to residents of Power Home Community in Inner Mongolia of China that belongs to cold region of ID area according to Chinese design code for buildings. This filed data provided descriptive statistics about environment-behavior symbiosis system, environment loading, behavior system, spatial demanding and spatial pattern for all kinds of residents (Older, younger, children). The field data set is made publicly available to enable critical or extended analyzes.

  6. NATIONAL HYDROGRAPHY DATASET

    EPA Science Inventory

    Resource Purpose:The National Hydrography Dataset (NHD) is a comprehensive set of digital spatial data that contains information about surface water features such as lakes, ponds, streams, rivers, springs and wells. Within the NHD, surface water features are combined to fo...

  7. Exploratory spatial data analysis of global MODIS active fire data

    NASA Astrophysics Data System (ADS)

    Oom, D.; Pereira, J. M. C.

    2013-04-01

    We performed an exploratory spatial data analysis (ESDA) of autocorrelation patterns in the NASA MODIS MCD14ML Collection 5 active fire dataset, for the period 2001-2009, at the global scale. The dataset was screened, resulting in an annual rate of false alarms and non-vegetation fires ranging from a minimum of 3.1% in 2003 to a maximum of 4.4% in 2001. Hot bare soils and gas flares were the major sources of false alarms and non-vegetation fires. The data were aggregated at 0.5° resolution for the global and local spatial autocorrelation Fire counts were found to be positively correlated up to distances of around 200 km, and negatively for larger distances. A value of 0.80 (p = 0.001, α = 0.05) for Moran's I indicates strong spatial autocorrelation between fires at global scale, with 60% of all cells displaying significant positive or negative spatial correlation. Different types of spatial autocorrelation were mapped and regression diagnostics allowed for the identification of spatial outlier cells, with fire counts much higher or lower than expected, considering their spatial context.

  8. The emergence of spatial cyberinfrastructure.

    PubMed

    Wright, Dawn J; Wang, Shaowen

    2011-04-05

    Cyberinfrastructure integrates advanced computer, information, and communication technologies to empower computation-based and data-driven scientific practice and improve the synthesis and analysis of scientific data in a collaborative and shared fashion. As such, it now represents a paradigm shift in scientific research that has facilitated easy access to computational utilities and streamlined collaboration across distance and disciplines, thereby enabling scientific breakthroughs to be reached more quickly and efficiently. Spatial cyberinfrastructure seeks to resolve longstanding complex problems of handling and analyzing massive and heterogeneous spatial datasets as well as the necessity and benefits of sharing spatial data flexibly and securely. This article provides an overview and potential future directions of spatial cyberinfrastructure. The remaining four articles of the special feature are introduced and situated in the context of providing empirical examples of how spatial cyberinfrastructure is extending and enhancing scientific practice for improved synthesis and analysis of both physical and social science data. The primary focus of the articles is spatial analyses using distributed and high-performance computing, sensor networks, and other advanced information technology capabilities to transform massive spatial datasets into insights and knowledge.

  9. The emergence of spatial cyberinfrastructure

    PubMed Central

    Wright, Dawn J.; Wang, Shaowen

    2011-01-01

    Cyberinfrastructure integrates advanced computer, information, and communication technologies to empower computation-based and data-driven scientific practice and improve the synthesis and analysis of scientific data in a collaborative and shared fashion. As such, it now represents a paradigm shift in scientific research that has facilitated easy access to computational utilities and streamlined collaboration across distance and disciplines, thereby enabling scientific breakthroughs to be reached more quickly and efficiently. Spatial cyberinfrastructure seeks to resolve longstanding complex problems of handling and analyzing massive and heterogeneous spatial datasets as well as the necessity and benefits of sharing spatial data flexibly and securely. This article provides an overview and potential future directions of spatial cyberinfrastructure. The remaining four articles of the special feature are introduced and situated in the context of providing empirical examples of how spatial cyberinfrastructure is extending and enhancing scientific practice for improved synthesis and analysis of both physical and social science data. The primary focus of the articles is spatial analyses using distributed and high-performance computing, sensor networks, and other advanced information technology capabilities to transform massive spatial datasets into insights and knowledge. PMID:21467227

  10. Architectural Implications for Spatial Object Association Algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, V S; Kurc, T; Saltz, J

    2009-01-29

    Spatial object association, also referred to as cross-match of spatial datasets, is the problem of identifying and comparing objects in two or more datasets based on their positions in a common spatial coordinate system. In this work, we evaluate two crossmatch algorithms that are used for astronomical sky surveys, on the following database system architecture configurations: (1) Netezza Performance Server R, a parallel database system with active disk style processing capabilities, (2) MySQL Cluster, a high-throughput network database system, and (3) a hybrid configuration consisting of a collection of independent database system instances with data replication support. Our evaluation providesmore » insights about how architectural characteristics of these systems affect the performance of the spatial crossmatch algorithms. We conducted our study using real use-case scenarios borrowed from a large-scale astronomy application known as the Large Synoptic Survey Telescope (LSST).« less

  11. A geospatial database model for the management of remote sensing datasets at multiple spectral, spatial, and temporal scales

    NASA Astrophysics Data System (ADS)

    Ifimov, Gabriela; Pigeau, Grace; Arroyo-Mora, J. Pablo; Soffer, Raymond; Leblanc, George

    2017-10-01

    In this study the development and implementation of a geospatial database model for the management of multiscale datasets encompassing airborne imagery and associated metadata is presented. To develop the multi-source geospatial database we have used a Relational Database Management System (RDBMS) on a Structure Query Language (SQL) server which was then integrated into ArcGIS and implemented as a geodatabase. The acquired datasets were compiled, standardized, and integrated into the RDBMS, where logical associations between different types of information were linked (e.g. location, date, and instrument). Airborne data, at different processing levels (digital numbers through geocorrected reflectance), were implemented in the geospatial database where the datasets are linked spatially and temporally. An example dataset consisting of airborne hyperspectral imagery, collected for inter and intra-annual vegetation characterization and detection of potential hydrocarbon seepage events over pipeline areas, is presented. Our work provides a model for the management of airborne imagery, which is a challenging aspect of data management in remote sensing, especially when large volumes of data are collected.

  12. Hierarchical Bayesian spatial models for predicting multiple forest variables using waveform LiDAR, hyperspectral imagery, and large inventory datasets

    USGS Publications Warehouse

    Finley, Andrew O.; Banerjee, Sudipto; Cook, Bruce D.; Bradford, John B.

    2013-01-01

    In this paper we detail a multivariate spatial regression model that couples LiDAR, hyperspectral and forest inventory data to predict forest outcome variables at a high spatial resolution. The proposed model is used to analyze forest inventory data collected on the US Forest Service Penobscot Experimental Forest (PEF), ME, USA. In addition to helping meet the regression model's assumptions, results from the PEF analysis suggest that the addition of multivariate spatial random effects improves model fit and predictive ability, compared with two commonly applied modeling approaches. This improvement results from explicitly modeling the covariation among forest outcome variables and spatial dependence among observations through the random effects. Direct application of such multivariate models to even moderately large datasets is often computationally infeasible because of cubic order matrix algorithms involved in estimation. We apply a spatial dimension reduction technique to help overcome this computational hurdle without sacrificing richness in modeling.

  13. Sexual Orientation-Related Differences in Virtual Spatial Navigation and Spatial Search Strategies.

    PubMed

    Rahman, Qazi; Sharp, Jonathan; McVeigh, Meadhbh; Ho, Man-Ling

    2017-07-01

    Spatial abilities are generally hypothesized to differ between men and women, and people with different sexual orientations. According to the cross-sex shift hypothesis, gay men are hypothesized to perform in the direction of heterosexual women and lesbian women in the direction of heterosexual men on cognitive tests. This study investigated sexual orientation differences in spatial navigation and strategy during a virtual Morris water maze task (VMWM). Forty-four heterosexual men, 43 heterosexual women, 39 gay men, and 34 lesbian/bisexual women (aged 18-54 years) navigated a desktop VMWM and completed measures of intelligence, handedness, and childhood gender nonconformity (CGN). We quantified spatial learning (hidden platform trials), probe trial performance, and cued navigation (visible platform trials). Spatial strategies during hidden and probe trials were classified into visual scanning, landmark use, thigmotaxis/circling, and enfilading. In general, heterosexual men scored better than women and gay men on some spatial learning and probe trial measures and used more visual scan strategies. However, some differences disappeared after controlling for age and estimated IQ (e.g., in visual scanning heterosexual men differed from women but not gay men). Heterosexual women did not differ from lesbian/bisexual women. For both sexes, visual scanning predicted probe trial performance. More feminine CGN scores were associated with lower performance among men and greater performance among women on specific spatial learning or probe trial measures. These results provide mixed evidence for the cross-sex shift hypothesis of sexual orientation-related differences in spatial cognition.

  14. EEG datasets for motor imagery brain-computer interface.

    PubMed

    Cho, Hohyun; Ahn, Minkyu; Ahn, Sangtae; Kwon, Moonyoung; Jun, Sung Chan

    2017-07-01

    Most investigators of brain-computer interface (BCI) research believe that BCI can be achieved through induced neuronal activity from the cortex, but not by evoked neuronal activity. Motor imagery (MI)-based BCI is one of the standard concepts of BCI, in that the user can generate induced activity by imagining motor movements. However, variations in performance over sessions and subjects are too severe to overcome easily; therefore, a basic understanding and investigation of BCI performance variation is necessary to find critical evidence of performance variation. Here we present not only EEG datasets for MI BCI from 52 subjects, but also the results of a psychological and physiological questionnaire, EMG datasets, the locations of 3D EEG electrodes, and EEGs for non-task-related states. We validated our EEG datasets by using the percentage of bad trials, event-related desynchronization/synchronization (ERD/ERS) analysis, and classification analysis. After conventional rejection of bad trials, we showed contralateral ERD and ipsilateral ERS in the somatosensory area, which are well-known patterns of MI. Finally, we showed that 73.08% of datasets (38 subjects) included reasonably discriminative information. Our EEG datasets included the information necessary to determine statistical significance; they consisted of well-discriminated datasets (38 subjects) and less-discriminative datasets. These may provide researchers with opportunities to investigate human factors related to MI BCI performance variation, and may also achieve subject-to-subject transfer by using metadata, including a questionnaire, EEG coordinates, and EEGs for non-task-related states. © The Authors 2017. Published by Oxford University Press.

  15. Simulation-Based Evaluation of the Performances of an Algorithm for Detecting Abnormal Disease-Related Features in Cattle Mortality Records.

    PubMed

    Perrin, Jean-Baptiste; Durand, Benoît; Gay, Emilie; Ducrot, Christian; Hendrikx, Pascal; Calavas, Didier; Hénaux, Viviane

    2015-01-01

    We performed a simulation study to evaluate the performances of an anomaly detection algorithm considered in the frame of an automated surveillance system of cattle mortality. The method consisted in a combination of temporal regression and spatial cluster detection which allows identifying, for a given week, clusters of spatial units showing an excess of deaths in comparison with their own historical fluctuations. First, we simulated 1,000 outbreaks of a disease causing extra deaths in the French cattle population (about 200,000 herds and 20 million cattle) according to a model mimicking the spreading patterns of an infectious disease and injected these disease-related extra deaths in an authentic mortality dataset, spanning from January 2005 to January 2010. Second, we applied our algorithm on each of the 1,000 semi-synthetic datasets to identify clusters of spatial units showing an excess of deaths considering their own historical fluctuations. Third, we verified if the clusters identified by the algorithm did contain simulated extra deaths in order to evaluate the ability of the algorithm to identify unusual mortality clusters caused by an outbreak. Among the 1,000 simulations, the median duration of simulated outbreaks was 8 weeks, with a median number of 5,627 simulated deaths and 441 infected herds. Within the 12-week trial period, 73% of the simulated outbreaks were detected, with a median timeliness of 1 week, and a mean of 1.4 weeks. The proportion of outbreak weeks flagged by an alarm was 61% (i.e. sensitivity) whereas one in three alarms was a true alarm (i.e. positive predictive value). The performances of the detection algorithm were evaluated for alternative combination of epidemiologic parameters. The results of our study confirmed that in certain conditions automated algorithms could help identifying abnormal cattle mortality increases possibly related to unidentified health events.

  16. Simulation-Based Evaluation of the Performances of an Algorithm for Detecting Abnormal Disease-Related Features in Cattle Mortality Records

    PubMed Central

    Perrin, Jean-Baptiste; Durand, Benoît; Gay, Emilie; Ducrot, Christian; Hendrikx, Pascal; Calavas, Didier; Hénaux, Viviane

    2015-01-01

    We performed a simulation study to evaluate the performances of an anomaly detection algorithm considered in the frame of an automated surveillance system of cattle mortality. The method consisted in a combination of temporal regression and spatial cluster detection which allows identifying, for a given week, clusters of spatial units showing an excess of deaths in comparison with their own historical fluctuations. First, we simulated 1,000 outbreaks of a disease causing extra deaths in the French cattle population (about 200,000 herds and 20 million cattle) according to a model mimicking the spreading patterns of an infectious disease and injected these disease-related extra deaths in an authentic mortality dataset, spanning from January 2005 to January 2010. Second, we applied our algorithm on each of the 1,000 semi-synthetic datasets to identify clusters of spatial units showing an excess of deaths considering their own historical fluctuations. Third, we verified if the clusters identified by the algorithm did contain simulated extra deaths in order to evaluate the ability of the algorithm to identify unusual mortality clusters caused by an outbreak. Among the 1,000 simulations, the median duration of simulated outbreaks was 8 weeks, with a median number of 5,627 simulated deaths and 441 infected herds. Within the 12-week trial period, 73% of the simulated outbreaks were detected, with a median timeliness of 1 week, and a mean of 1.4 weeks. The proportion of outbreak weeks flagged by an alarm was 61% (i.e. sensitivity) whereas one in three alarms was a true alarm (i.e. positive predictive value). The performances of the detection algorithm were evaluated for alternative combination of epidemiologic parameters. The results of our study confirmed that in certain conditions automated algorithms could help identifying abnormal cattle mortality increases possibly related to unidentified health events. PMID:26536596

  17. Uncertainty of future projections of species distributions in mountainous regions.

    PubMed

    Tang, Ying; Winkler, Julie A; Viña, Andrés; Liu, Jianguo; Zhang, Yuanbin; Zhang, Xiaofeng; Li, Xiaohong; Wang, Fang; Zhang, Jindong; Zhao, Zhiqiang

    2018-01-01

    Multiple factors introduce uncertainty into projections of species distributions under climate change. The uncertainty introduced by the choice of baseline climate information used to calibrate a species distribution model and to downscale global climate model (GCM) simulations to a finer spatial resolution is a particular concern for mountainous regions, as the spatial resolution of climate observing networks is often insufficient to detect the steep climatic gradients in these areas. Using the maximum entropy (MaxEnt) modeling framework together with occurrence data on 21 understory bamboo species distributed across the mountainous geographic range of the Giant Panda, we examined the differences in projected species distributions obtained from two contrasting sources of baseline climate information, one derived from spatial interpolation of coarse-scale station observations and the other derived from fine-spatial resolution satellite measurements. For each bamboo species, the MaxEnt model was calibrated separately for the two datasets and applied to 17 GCM simulations downscaled using the delta method. Greater differences in the projected spatial distributions of the bamboo species were observed for the models calibrated using the different baseline datasets than between the different downscaled GCM simulations for the same calibration. In terms of the projected future climatically-suitable area by species, quantification using a multi-factor analysis of variance suggested that the sum of the variance explained by the baseline climate dataset used for model calibration and the interaction between the baseline climate data and the GCM simulation via downscaling accounted for, on average, 40% of the total variation among the future projections. Our analyses illustrate that the combined use of gridded datasets developed from station observations and satellite measurements can help estimate the uncertainty introduced by the choice of baseline climate information to the projected changes in species distribution.

  18. Uncertainty of future projections of species distributions in mountainous regions

    PubMed Central

    Tang, Ying; Viña, Andrés; Liu, Jianguo; Zhang, Yuanbin; Zhang, Xiaofeng; Li, Xiaohong; Wang, Fang; Zhang, Jindong; Zhao, Zhiqiang

    2018-01-01

    Multiple factors introduce uncertainty into projections of species distributions under climate change. The uncertainty introduced by the choice of baseline climate information used to calibrate a species distribution model and to downscale global climate model (GCM) simulations to a finer spatial resolution is a particular concern for mountainous regions, as the spatial resolution of climate observing networks is often insufficient to detect the steep climatic gradients in these areas. Using the maximum entropy (MaxEnt) modeling framework together with occurrence data on 21 understory bamboo species distributed across the mountainous geographic range of the Giant Panda, we examined the differences in projected species distributions obtained from two contrasting sources of baseline climate information, one derived from spatial interpolation of coarse-scale station observations and the other derived from fine-spatial resolution satellite measurements. For each bamboo species, the MaxEnt model was calibrated separately for the two datasets and applied to 17 GCM simulations downscaled using the delta method. Greater differences in the projected spatial distributions of the bamboo species were observed for the models calibrated using the different baseline datasets than between the different downscaled GCM simulations for the same calibration. In terms of the projected future climatically-suitable area by species, quantification using a multi-factor analysis of variance suggested that the sum of the variance explained by the baseline climate dataset used for model calibration and the interaction between the baseline climate data and the GCM simulation via downscaling accounted for, on average, 40% of the total variation among the future projections. Our analyses illustrate that the combined use of gridded datasets developed from station observations and satellite measurements can help estimate the uncertainty introduced by the choice of baseline climate information to the projected changes in species distribution. PMID:29320501

  19. Phylogenetic congruence of lichenised fungi and algae is affected by spatial scale and taxonomic diversity.

    PubMed

    Buckley, Hannah L; Rafat, Arash; Ridden, Johnathon D; Cruickshank, Robert H; Ridgway, Hayley J; Paterson, Adrian M

    2014-01-01

    The role of species' interactions in structuring biological communities remains unclear. Mutualistic symbioses, involving close positive interactions between two distinct organismal lineages, provide an excellent means to explore the roles of both evolutionary and ecological processes in determining how positive interactions affect community structure. In this study, we investigate patterns of co-diversification between fungi and algae for a range of New Zealand lichens at the community, genus, and species levels and explore explanations for possible patterns related to spatial scale and pattern, taxonomic diversity of the lichens considered, and the level sampling replication. We assembled six independent datasets to compare patterns in phylogenetic congruence with varied spatial extent of sampling, taxonomic diversity and level of specimen replication. For each dataset, we used the DNA sequences from the ITS regions of both the fungal and algal genomes from lichen specimens to produce genetic distance matrices. Phylogenetic congruence between fungi and algae was quantified using distance-based redundancy analysis and we used geographic distance matrices in Moran's eigenvector mapping and variance partitioning to evaluate the effects of spatial variation on the quantification of phylogenetic congruence. Phylogenetic congruence was highly significant for all datasets and a large proportion of variance in both algal and fungal genetic distances was explained by partner genetic variation. Spatial variables, primarily at large and intermediate scales, were also important for explaining genetic diversity patterns in all datasets. Interestingly, spatial structuring was stronger for fungal than algal genetic variation. As the spatial extent of the samples increased, so too did the proportion of explained variation that was shared between the spatial variables and the partners' genetic variation. Different lichen taxa showed some variation in their phylogenetic congruence and spatial genetic patterns and where greater sample replication was used, the amount of variation explained by partner genetic variation increased. Our results suggest that the phylogenetic congruence pattern, at least at small spatial scales, is likely due to reciprocal co-adaptation or co-dispersal. However, the detection of these patterns varies among different lichen taxa, across spatial scales and with different levels of sample replication. This work provides insight into the complexities faced in determining how evolutionary and ecological processes may interact to generate diversity in symbiotic association patterns at the population and community levels. Further, it highlights the critical importance of considering sample replication, taxonomic diversity and spatial scale in designing studies of co-diversification.

  20. Mapping and spatiotemporal analysis tool for hydrological data: Spellmap

    USDA-ARS?s Scientific Manuscript database

    Lack of data management and analyses tools is one of the major limitations to effectively evaluate and use large datasets of high-resolution atmospheric, surface, and subsurface observations. High spatial and temporal resolution datasets better represent the spatiotemporal variability of hydrologica...

  1. Evaluation of Uncertainty in Precipitation Datasets for New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Besha, A. A.; Steele, C. M.; Fernald, A.

    2014-12-01

    Climate change, population growth and other factors are endangering water availability and sustainability in semiarid/arid areas particularly in the southwestern United States. Wide coverage of spatial and temporal measurements of precipitation are key for regional water budget analysis and hydrological operations which themselves are valuable tool for water resource planning and management. Rain gauge measurements are usually reliable and accurate at a point. They measure rainfall continuously, but spatial sampling is limited. Ground based radar and satellite remotely sensed precipitation have wide spatial and temporal coverage. However, these measurements are indirect and subject to errors because of equipment, meteorological variability, the heterogeneity of the land surface itself and lack of regular recording. This study seeks to understand precipitation uncertainty and in doing so, lessen uncertainty propagation into hydrological applications and operations. We reviewed, compared and evaluated the TRMM (Tropical Rainfall Measuring Mission) precipitation products, NOAA's (National Oceanic and Atmospheric Administration) Global Precipitation Climatology Centre (GPCC) monthly precipitation dataset, PRISM (Parameter elevation Regression on Independent Slopes Model) data and data from individual climate stations including Cooperative Observer Program (COOP), Remote Automated Weather Stations (RAWS), Soil Climate Analysis Network (SCAN) and Snowpack Telemetry (SNOTEL) stations. Though not yet finalized, this study finds that the uncertainty within precipitation estimates datasets is influenced by regional topography, season, climate and precipitation rate. Ongoing work aims to further evaluate precipitation datasets based on the relative influence of these phenomena so that we can identify the optimum datasets for input to statewide water budget analysis.

  2. Long-term vegetation activity trends in the Iberian Peninsula and The Balearic Islands using high spatial resolution NOAA-AVHRR data (1981 - 2015).

    NASA Astrophysics Data System (ADS)

    Martin-Hernandez, Natalia; Vicente-Serrano, Sergio; Azorin-Molina, Cesar; Begueria-Portugues, Santiago; Reig-Gracia, Fergus; Zabalza-Martínez, Javier

    2017-04-01

    We have analysed trends in the Normalized Difference Vegetation Index (NDVI) in the Iberian Peninsula and The Balearic Islands over the period 1981 - 2015 using a new high resolution data set from the entire available NOAA - AVHRR images (IBERIAN NDVI dataset). After a complete processing including geocoding, calibration, cloud removal, topographic correction and temporal filtering, we obtained bi-weekly time series. To assess the accuracy of the new IBERIAN NDVI time-series, we have compared temporal variability and trends of NDVI series with those results reported by GIMMS 3g and MODIS (MOD13A3) NDVI datasets. In general, the IBERIAN NDVI showed high reliability with these two products but showing higher spatial resolution than the GIMMS dataset and covering two more decades than the MODIS dataset. Using the IBERIAN NDVI dataset, we analysed NDVI trends by means of the non-parametric Mann-Kendall test and Theil-Sen slope estimator. In average, vegetation trends in the study area show an increase over the last decades. However, there are local spatial differences: the main increase has been recorded in humid regions of the north of the Iberian Peninsula. The statistical techniques allow finding abrupt and gradual changes in different land cover types during the analysed period. These changes are related with human activity due to land transformations (from dry to irrigated land), land abandonment and forest recovery.

  3. Improved Statistical Method For Hydrographic Climatic Records Quality Control

    NASA Astrophysics Data System (ADS)

    Gourrion, J.; Szekely, T.

    2016-02-01

    Climate research benefits from the continuous development of global in-situ hydrographic networks in the last decades. Apart from the increasing volume of observations available on a large range of temporal and spatial scales, a critical aspect concerns the ability to constantly improve the quality of the datasets. In the context of the Coriolis Dataset for ReAnalysis (CORA) version 4.2, a new quality control method based on a local comparison to historical extreme values ever observed is developed, implemented and validated. Temperature, salinity and potential density validity intervals are directly estimated from minimum and maximum values from an historical reference dataset, rather than from traditional mean and standard deviation estimates. Such an approach avoids strong statistical assumptions on the data distributions such as unimodality, absence of skewness and spatially homogeneous kurtosis. As a new feature, it also allows addressing simultaneously the two main objectives of a quality control strategy, i.e. maximizing the number of good detections while minimizing the number of false alarms. The reference dataset is presently built from the fusion of 1) all ARGO profiles up to early 2014, 2) 3 historical CTD datasets and 3) the Sea Mammals CTD profiles from the MEOP database. All datasets are extensively and manually quality controlled. In this communication, the latest method validation results are also presented. The method has been implemented in the latest version of the CORA dataset and will benefit to the next version of the Copernicus CMEMS dataset.

  4. Hyperspectral Image Classification With Markov Random Fields and a Convolutional Neural Network

    NASA Astrophysics Data System (ADS)

    Cao, Xiangyong; Zhou, Feng; Xu, Lin; Meng, Deyu; Xu, Zongben; Paisley, John

    2018-05-01

    This paper presents a new supervised classification algorithm for remotely sensed hyperspectral image (HSI) which integrates spectral and spatial information in a unified Bayesian framework. First, we formulate the HSI classification problem from a Bayesian perspective. Then, we adopt a convolutional neural network (CNN) to learn the posterior class distributions using a patch-wise training strategy to better use the spatial information. Next, spatial information is further considered by placing a spatial smoothness prior on the labels. Finally, we iteratively update the CNN parameters using stochastic gradient decent (SGD) and update the class labels of all pixel vectors using an alpha-expansion min-cut-based algorithm. Compared with other state-of-the-art methods, the proposed classification method achieves better performance on one synthetic dataset and two benchmark HSI datasets in a number of experimental settings.

  5. OpenMSI Arrayed Analysis Tools v2.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BOWEN, BENJAMIN; RUEBEL, OLIVER; DE ROND, TRISTAN

    2017-02-07

    Mass spectrometry imaging (MSI) enables high-resolution spatial mapping of biomolecules in samples and is a valuable tool for the analysis of tissues from plants and animals, microbial interactions, high-throughput screening, drug metabolism, and a host of other applications. This is accomplished by desorbing molecules from the surface on spatially defined locations, using a laser or ion beam. These ions are analyzed by a mass spectrometry and collected into a MSI 'image', a dataset containing unique mass spectra from the sampled spatial locations. MSI is used in a diverse and increasing number of biological applications. The OpenMSI Arrayed Analysis Tool (OMAAT)more » is a new software method that addresses the challenges of analyzing spatially defined samples in large MSI datasets, by providing support for automatic sample position optimization and ion selection.« less

  6. Resolution testing and limitations of geodetic and tsunami datasets for finite fault inversions along subduction zones

    NASA Astrophysics Data System (ADS)

    Williamson, A.; Newman, A. V.

    2017-12-01

    Finite fault inversions utilizing multiple datasets have become commonplace for large earthquakes pending data availability. The mixture of geodetic datasets such as Global Navigational Satellite Systems (GNSS) and InSAR, seismic waveforms, and when applicable, tsunami waveforms from Deep-Ocean Assessment and Reporting of Tsunami (DART) gauges, provide slightly different observations that when incorporated together lead to a more robust model of fault slip distribution. The merging of different datasets is of particular importance along subduction zones where direct observations of seafloor deformation over the rupture area are extremely limited. Instead, instrumentation measures related ground motion from tens to hundreds of kilometers away. The distance from the event and dataset type can lead to a variable degree of resolution, affecting the ability to accurately model the spatial distribution of slip. This study analyzes the spatial resolution attained individually from geodetic and tsunami datasets as well as in a combined dataset. We constrain the importance of distance between estimated parameters and observed data and how that varies between land-based and open ocean datasets. Analysis focuses on accurately scaled subduction zone synthetic models as well as analysis of the relationship between slip and data in recent large subduction zone earthquakes. This study shows that seafloor deformation sensitive datasets, like open-ocean tsunami waveforms or seafloor geodetic instrumentation, can provide unique offshore resolution for understanding most large and particularly tsunamigenic megathrust earthquake activity. In most environments, we simply lack the capability to resolve static displacements using land-based geodetic observations.

  7. Novel probabilistic models of spatial genetic ancestry with applications to stratification correction in genome-wide association studies.

    PubMed

    Bhaskar, Anand; Javanmard, Adel; Courtade, Thomas A; Tse, David

    2017-03-15

    Genetic variation in human populations is influenced by geographic ancestry due to spatial locality in historical mating and migration patterns. Spatial population structure in genetic datasets has been traditionally analyzed using either model-free algorithms, such as principal components analysis (PCA) and multidimensional scaling, or using explicit spatial probabilistic models of allele frequency evolution. We develop a general probabilistic model and an associated inference algorithm that unify the model-based and data-driven approaches to visualizing and inferring population structure. Our spatial inference algorithm can also be effectively applied to the problem of population stratification in genome-wide association studies (GWAS), where hidden population structure can create fictitious associations when population ancestry is correlated with both the genotype and the trait. Our algorithm Geographic Ancestry Positioning (GAP) relates local genetic distances between samples to their spatial distances, and can be used for visually discerning population structure as well as accurately inferring the spatial origin of individuals on a two-dimensional continuum. On both simulated and several real datasets from diverse human populations, GAP exhibits substantially lower error in reconstructing spatial ancestry coordinates compared to PCA. We also develop an association test that uses the ancestry coordinates inferred by GAP to accurately account for ancestry-induced correlations in GWAS. Based on simulations and analysis of a dataset of 10 metabolic traits measured in a Northern Finland cohort, which is known to exhibit significant population structure, we find that our method has superior power to current approaches. Our software is available at https://github.com/anand-bhaskar/gap . abhaskar@stanford.edu or ajavanma@usc.edu. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  8. Assessment of Observational Uncertainty in Extreme Precipitation Events over the Continental United States

    NASA Astrophysics Data System (ADS)

    Slinskey, E. A.; Loikith, P. C.; Waliser, D. E.; Goodman, A.

    2017-12-01

    Extreme precipitation events are associated with numerous societal and environmental impacts. Furthermore, anthropogenic climate change is projected to alter precipitation intensity across portions of the Continental United States (CONUS). Therefore, a spatial understanding and intuitive means of monitoring extreme precipitation over time is critical. Towards this end, we apply an event-based indicator, developed as a part of NASA's support of the ongoing efforts of the US National Climate Assessment, which assigns categories to extreme precipitation events based on 3-day storm totals as a basis for dataset intercomparison. To assess observational uncertainty across a wide range of historical precipitation measurement approaches, we intercompare in situ station data from the Global Historical Climatology Network (GHCN), satellite-derived precipitation data from NASA's Tropical Rainfall Measuring Mission (TRMM), gridded in situ station data from the Parameter-elevation Regressions on Independent Slopes Model (PRISM), global reanalysis from NASA's Modern Era Retrospective-Analysis version 2 (MERRA 2), and regional reanalysis with gauge data assimilation from NCEP's North American Regional Reanalysis (NARR). Results suggest considerable variability across the five-dataset suite in the frequency, spatial extent, and magnitude of extreme precipitation events. Consistent with expectations, higher resolution datasets were found to resemble station data best and capture a greater frequency of high-end extreme events relative to lower spatial resolution datasets. The degree of dataset agreement varies regionally, however all datasets successfully capture the seasonal cycle of precipitation extremes across the CONUS. These intercomparison results provide additional insight about observational uncertainty and the ability of a range of precipitation measurement and analysis products to capture extreme precipitation event climatology. While the event category threshold is fixed in this analysis, preliminary results from the development of a flexible categorization scheme, that scales with grid resolution, are presented.

  9. Application of Alignment Methodologies to Spatial Ontologies in the Hydro Domain

    NASA Astrophysics Data System (ADS)

    Lieberman, J. E.; Cheatham, M.; Varanka, D.

    2015-12-01

    Ontologies are playing an increasing role in facilitating mediation and translation between datasets representing diverse schemas, vocabularies, or knowledge communities. This role is relatively straightforward when there is one ontology comprising all relevant common concepts that can be mapped to entities in each dataset. Frequently, one common ontology has not been agreed to. Either each dataset is represented by a distinct ontology, or there are multiple candidates for commonality. Either the one most appropriate (expressive, relevant, correct) ontology must be chosen, or else concepts and relationships matched across multiple ontologies through an alignment process so that they may be used in concert to carry out mediation or other semantic operations. A resulting alignment can be effective to the extent that entities in in the ontologies represent differing terminology for comparable conceptual knowledge. In cases such as spatial ontologies, though, ontological entities may also represent disparate conceptualizations of space according to the discernment methods and application domains on which they are based. One ontology's wetland concept may overlap in space with another ontology's recharge zone or wildlife range or water feature. In order to evaluate alignment with respect to spatial ontologies, alignment has been applied to a series of ontologies pertaining to surface water that are used variously in hydrography (characterization of water features), hydrology (study of water cycling), and water quality (nutrient and contaminant transport) application domains. There is frequently a need to mediate between datasets in each domain in order to develop broader understanding of surface water systems, so there is a practical as well theoretical value in the alignment. From a domain expertise standpoint, the ontologies under consideration clearly contain some concepts that are spatially as well as conceptually identical and then others with less clear similarities in either sense. Our study serves both to determine the limits of standard methods for aligning spatial ontologies and to suggest new methods of calculating similarity axioms that take into account semantic, spatial, and cognitive criteria relevant to fitness for relevant usage scenarios.

  10. Tularosa Basin Play Fairway Analysis Data and Models

    DOE Data Explorer

    Nash, Greg

    2017-07-11

    This submission includes raster datasets for each layer of evidence used for weights of evidence analysis as well as the deterministic play fairway analysis (PFA). Data representative of heat, permeability and groundwater comprises some of the raster datasets. Additionally, the final deterministic PFA model is provided along with a certainty model. All of these datasets are best used with an ArcGIS software package, specifically Spatial Data Modeler.

  11. Mapping the spatial distribution of global anthropogenic mercury atmospheric emission inventories

    NASA Astrophysics Data System (ADS)

    Wilson, Simon J.; Steenhuisen, Frits; Pacyna, Jozef M.; Pacyna, Elisabeth G.

    This paper describes the procedures employed to spatially distribute global inventories of anthropogenic emissions of mercury to the atmosphere, prepared by Pacyna, E.G., Pacyna, J.M., Steenhuisen, F., Wilson, S. [2006. Global anthropogenic mercury emission inventory for 2000. Atmospheric Environment, this issue, doi:10.1016/j.atmosenv.2006.03.041], and briefly discusses the results of this work. A new spatially distributed global emission inventory for the (nominal) year 2000, and a revised version of the 1995 inventory are presented. Emissions estimates for total mercury and major species groups are distributed within latitude/longitude-based grids with a resolution of 1×1 and 0.5×0.5°. A key component in the spatial distribution procedure is the use of population distribution as a surrogate parameter to distribute emissions from sources that cannot be accurately geographically located. In this connection, new gridded population datasets were prepared, based on the CEISIN GPW3 datasets (CIESIN, 2004. Gridded Population of the World (GPW), Version 3. Center for International Earth Science Information Network (CIESIN), Columbia University and Centro Internacional de Agricultura Tropical (CIAT). GPW3 data are available at http://beta.sedac.ciesin.columbia.edu/gpw/index.jsp). The spatially distributed emissions inventories and population datasets prepared in the course of this work are available on the Internet at www.amap.no/Resources/HgEmissions/

  12. a Novel Framework for Remote Sensing Image Scene Classification

    NASA Astrophysics Data System (ADS)

    Jiang, S.; Zhao, H.; Wu, W.; Tan, Q.

    2018-04-01

    High resolution remote sensing (HRRS) images scene classification aims to label an image with a specific semantic category. HRRS images contain more details of the ground objects and their spatial distribution patterns than low spatial resolution images. Scene classification can bridge the gap between low-level features and high-level semantics. It can be applied in urban planning, target detection and other fields. This paper proposes a novel framework for HRRS images scene classification. This framework combines the convolutional neural network (CNN) and XGBoost, which utilizes CNN as feature extractor and XGBoost as a classifier. Then, this framework is evaluated on two different HRRS images datasets: UC-Merced dataset and NWPU-RESISC45 dataset. Our framework achieved satisfying accuracies on two datasets, which is 95.57 % and 83.35 % respectively. From the experiments result, our framework has been proven to be effective for remote sensing images classification. Furthermore, we believe this framework will be more practical for further HRRS scene classification, since it costs less time on training stage.

  13. High resolution global gridded data for use in population studies

    NASA Astrophysics Data System (ADS)

    Lloyd, Christopher T.; Sorichetta, Alessandro; Tatem, Andrew J.

    2017-01-01

    Recent years have seen substantial growth in openly available satellite and other geospatial data layers, which represent a range of metrics relevant to global human population mapping at fine spatial scales. The specifications of such data differ widely and therefore the harmonisation of data layers is a prerequisite to constructing detailed and contemporary spatial datasets which accurately describe population distributions. Such datasets are vital to measure impacts of population growth, monitor change, and plan interventions. To this end the WorldPop Project has produced an open access archive of 3 and 30 arc-second resolution gridded data. Four tiled raster datasets form the basis of the archive: (i) Viewfinder Panoramas topography clipped to Global ADMinistrative area (GADM) coastlines; (ii) a matching ISO 3166 country identification grid; (iii) country area; (iv) and slope layer. Further layers include transport networks, landcover, nightlights, precipitation, travel time to major cities, and waterways. Datasets and production methodology are here described. The archive can be downloaded both from the WorldPop Dataverse Repository and the WorldPop Project website.

  14. High resolution global gridded data for use in population studies.

    PubMed

    Lloyd, Christopher T; Sorichetta, Alessandro; Tatem, Andrew J

    2017-01-31

    Recent years have seen substantial growth in openly available satellite and other geospatial data layers, which represent a range of metrics relevant to global human population mapping at fine spatial scales. The specifications of such data differ widely and therefore the harmonisation of data layers is a prerequisite to constructing detailed and contemporary spatial datasets which accurately describe population distributions. Such datasets are vital to measure impacts of population growth, monitor change, and plan interventions. To this end the WorldPop Project has produced an open access archive of 3 and 30 arc-second resolution gridded data. Four tiled raster datasets form the basis of the archive: (i) Viewfinder Panoramas topography clipped to Global ADMinistrative area (GADM) coastlines; (ii) a matching ISO 3166 country identification grid; (iii) country area; (iv) and slope layer. Further layers include transport networks, landcover, nightlights, precipitation, travel time to major cities, and waterways. Datasets and production methodology are here described. The archive can be downloaded both from the WorldPop Dataverse Repository and the WorldPop Project website.

  15. A scoping review of spatial cluster analysis techniques for point-event data.

    PubMed

    Fritz, Charles E; Schuurman, Nadine; Robertson, Colin; Lear, Scott

    2013-05-01

    Spatial cluster analysis is a uniquely interdisciplinary endeavour, and so it is important to communicate and disseminate ideas, innovations, best practices and challenges across practitioners, applied epidemiology researchers and spatial statisticians. In this research we conducted a scoping review to systematically search peer-reviewed journal databases for research that has employed spatial cluster analysis methods on individual-level, address location, or x and y coordinate derived data. To illustrate the thematic issues raised by our results, methods were tested using a dataset where known clusters existed. Point pattern methods, spatial clustering and cluster detection tests, and a locally weighted spatial regression model were most commonly used for individual-level, address location data (n = 29). The spatial scan statistic was the most popular method for address location data (n = 19). Six themes were identified relating to the application of spatial cluster analysis methods and subsequent analyses, which we recommend researchers to consider; exploratory analysis, visualization, spatial resolution, aetiology, scale and spatial weights. It is our intention that researchers seeking direction for using spatial cluster analysis methods, consider the caveats and strengths of each approach, but also explore the numerous other methods available for this type of analysis. Applied spatial epidemiology researchers and practitioners should give special consideration to applying multiple tests to a dataset. Future research should focus on developing frameworks for selecting appropriate methods and the corresponding spatial weighting schemes.

  16. Dissecting the space-time structure of tree-ring datasets using the partial triadic analysis.

    PubMed

    Rossi, Jean-Pierre; Nardin, Maxime; Godefroid, Martin; Ruiz-Diaz, Manuela; Sergent, Anne-Sophie; Martinez-Meier, Alejandro; Pâques, Luc; Rozenberg, Philippe

    2014-01-01

    Tree-ring datasets are used in a variety of circumstances, including archeology, climatology, forest ecology, and wood technology. These data are based on microdensity profiles and consist of a set of tree-ring descriptors, such as ring width or early/latewood density, measured for a set of individual trees. Because successive rings correspond to successive years, the resulting dataset is a ring variables × trees × time datacube. Multivariate statistical analyses, such as principal component analysis, have been widely used for extracting worthwhile information from ring datasets, but they typically address two-way matrices, such as ring variables × trees or ring variables × time. Here, we explore the potential of the partial triadic analysis (PTA), a multivariate method dedicated to the analysis of three-way datasets, to apprehend the space-time structure of tree-ring datasets. We analyzed a set of 11 tree-ring descriptors measured in 149 georeferenced individuals of European larch (Larix decidua Miller) during the period of 1967-2007. The processing of densitometry profiles led to a set of ring descriptors for each tree and for each year from 1967-2007. The resulting three-way data table was subjected to two distinct analyses in order to explore i) the temporal evolution of spatial structures and ii) the spatial structure of temporal dynamics. We report the presence of a spatial structure common to the different years, highlighting the inter-individual variability of the ring descriptors at the stand scale. We found a temporal trajectory common to the trees that could be separated into a high and low frequency signal, corresponding to inter-annual variations possibly related to defoliation events and a long-term trend possibly related to climate change. We conclude that PTA is a powerful tool to unravel and hierarchize the different sources of variation within tree-ring datasets.

  17. Improvements in the spatial representation of lakes and reservoirs in the contiguous United States for the National Water Model

    NASA Astrophysics Data System (ADS)

    Khan, S.; Salas, F.; Sampson, K. M.; Read, L. K.; Cosgrove, B.; Li, Z.; Gochis, D. J.

    2017-12-01

    The representation of inland surface water bodies in distributed hydrologic models at the continental scale is a challenge. The National Water Model (NWM) utilizes the National Hydrography Dataset Plus Version 2 (NHDPlusV2) "waterbody" dataset to represent lakes and reservoirs. The "waterbody" layer is a comprehensive dataset that represents surface water bodies using common features like lakes, ponds, reservoirs, estuaries, playas and swamps/marshes. However, a major issue that remains unresolved even in the latest revision of NHDPlus Version 2 is the inconsistency in waterbody digitization and delineation errors. Manually correcting the water body polygons becomes tedious and quickly impossible for continental-scale hydrologic models such as the NWM. In this study, we improved spatial representation of 6,802 lakes and reservoirs by analyzing 379,110 waterbodies in the contiguous United States (excluding the Laurentian Great Lakes). We performed a step-by- step process that integrates a set of geospatial analyses to identify, track, and correct the extent of lakes and reservoirs features that are larger than 0.75 km2. The following assumptions were applied while developing the new dataset: a) lakes and reservoirs cannot directly feed into each other; b) each waterbody must have one outlet; and c) a single lake or reservoir feature cannot have multiple parts. The majority of the NHDplusV2 waterbody features in the original dataset are delineated correctly. However approximately 3 % of the lake and reservoir polygons were found to be incorrect with topological errors and were corrected accordingly. It is important to fix these digitizing errors because the waterbody features are closely linked to the river topology. This new waterbody dataset will ensure that model-simulated water is directed into and through the lakes and reservoirs in a manner that supports the NWM code base and assumptions. The improved dataset will facilitate more effective integration of lakes and reservoirs with correct spatial features into the updated NWM.

  18. Effects of spatial resolution and landscape structure on land cover characterization

    NASA Astrophysics Data System (ADS)

    Yang, Wenli

    This dissertation addressed problems in scaling, problems that are among the main challenges in remote sensing. The principal objective of the research was to investigate the effects of changing spatial scale on the representation of land cover. A second objective was to determine the relationship between such effects, characteristics of landscape structure and scaling procedures. Four research issues related to spatial scaling were examined. They included: (1) the upscaling of Normalized Difference Vegetation Index (NDVI); (2) the effects of spatial scale on indices of landscape structure; (3) the representation of land cover databases at different spatial scales; and (4) the relationships between landscape indices and land cover area estimations. The overall bias resulting from non-linearity of NDVI in relation to spatial resolution is generally insignificant as compared to other factors such as influences of aerosols and water vapor. The bias is, however, related to land surface characteristics. Significant errors may be introduced in heterogeneous areas where different land cover types exhibit strong spectral contrast. Spatially upscaled SPOT and TM NDVIs have information content comparable with the AVHRR-derived NDVI. Indices of landscape structure and spatial resolution are generally related, but the exact forms of the relationships are subject to changes in other factors including the basic patch unit constituting a landscape and the proportional area of foreground land cover under consideration. The extent of agreement between spatially aggregated coarse resolution land cover datasets and full resolution datasets changes with the properties of the original datasets, including the pixel size and class definition. There are close relationships between landscape structure and class areas estimated from spatially aggregated land cover databases. The relationships, however, do not permit extension from one area to another. Inversion calibration across different geographic/ecological areas is, therefore, not feasible. Different rules govern the land cover area changes across resolutions when different upscaling methods are used. Special attention should be given to comparison between land cover maps derived using different methods.

  19. Texture-specific bag of visual words model and spatial cone matching-based method for the retrieval of focal liver lesions using multiphase contrast-enhanced CT images.

    PubMed

    Xu, Yingying; Lin, Lanfen; Hu, Hongjie; Wang, Dan; Zhu, Wenchao; Wang, Jian; Han, Xian-Hua; Chen, Yen-Wei

    2018-01-01

    The bag of visual words (BoVW) model is a powerful tool for feature representation that can integrate various handcrafted features like intensity, texture, and spatial information. In this paper, we propose a novel BoVW-based method that incorporates texture and spatial information for the content-based image retrieval to assist radiologists in clinical diagnosis. This paper presents a texture-specific BoVW method to represent focal liver lesions (FLLs). Pixels in the region of interest (ROI) are classified into nine texture categories using the rotation-invariant uniform local binary pattern method. The BoVW-based features are calculated for each texture category. In addition, a spatial cone matching (SCM)-based representation strategy is proposed to describe the spatial information of the visual words in the ROI. In a pilot study, eight radiologists with different clinical experience performed diagnoses for 20 cases with and without the top six retrieved results. A total of 132 multiphase computed tomography volumes including five pathological types were collected. The texture-specific BoVW was compared to other BoVW-based methods using the constructed dataset of FLLs. The results show that our proposed model outperforms the other three BoVW methods in discriminating different lesions. The SCM method, which adds spatial information to the orderless BoVW model, impacted the retrieval performance. In the pilot trial, the average diagnosis accuracy of the radiologists was improved from 66 to 80% using the retrieval system. The preliminary results indicate that the texture-specific features and the SCM-based BoVW features can effectively characterize various liver lesions. The retrieval system has the potential to improve the diagnostic accuracy and the confidence of the radiologists.

  20. Mapping regional soil water erosion risk in the Brittany-Loire basin for water management agency

    NASA Astrophysics Data System (ADS)

    Degan, Francesca; Cerdan, Olivier; Salvador-Blanes, Sébastien; Gautier, Jean-Noël

    2014-05-01

    Soil water erosion is one of the main degradation processes that affect soils through the removal of soil particles from the surface. The impacts for environment and agricultural areas are diverse, such as water pollution, crop yield depression, organic matter loss and reduction in water storage capacity. There is therefore a strong need to produce maps at the regional scale to help environmental policy makers and soil and water management bodies to mitigate the effect of water and soil pollution. Our approach aims to model and map soil erosion risk at regional scale (155 000 km²) and high spatial resolution (50 m) in the Brittany - Loire basin. The factors responsible for soil erosion are different according to the spatial and time scales considered. The regional scale entails challenges about homogeneous data sets availability, spatial resolution of results, various erosion processes and agricultural practices. We chose to improve the MESALES model (Le Bissonnais et al., 2002) to map soil erosion risk, because it was developed specifically for water erosion in agricultural fields in temperate areas. The MESALES model consists in a decision tree which gives for each combination of factors the corresponding class of soil erosion risk. Four factors that determine soil erosion risk are considered: soils, land cover, climate and topography. The first main improvement of the model consists in using newly available datasets that are more accurate than the initial ones. The datasets used cover all the study area homogeneously. Soil dataset has a 1/1 000 000 scale and attributes such as texture, soil type, rock fragment and parent material are used. The climate dataset has a spatial resolution of 8 km and a temporal resolution of mm/day for 12 years. Elevation dataset has a spatial resolution of 50 m. Three different land cover datasets are used where the finest spatial resolution is 50 m over three years. Using these datasets, four erosion factors are characterized and quantified: the soil factors (soil sealing, erodibility and runoff), the rate of land cover over three years for each season and for 77 land use classes, the topographic factor (slope and drainage area) and the climate hazard (seasonal amount and rainfall erosivity). These modifications of the original MESALES model allow to better represent erosion risk for arable and bare land. We validated model results by stakeholder consultations and meetings over all the study area. The model has finally been modified taking into account validation results. Results are provided with a spatial resolution of 1 km, and then integrated into 2121 catchments. An erosion risk map for each season and an annual erosion risk map are produced. These new maps allow to organize in hierarchy 2121 catchments into three erosion risk classes. In the annual erosion risk map, 347 catchments have the highest erosion risk, which corresponds to 16 % of total Brittany-Loire basin area. Water management agency now uses these maps to identify priority areas and to plan specific preservation practices.

  1. Developing a regional retrospective ensemble precipitation dataset for watershed hydrology modeling, Idaho, USA

    NASA Astrophysics Data System (ADS)

    Flores, A. N.; Smith, K.; LaPorte, P.

    2011-12-01

    Applications like flood forecasting, military trafficability assessment, and slope stability analysis necessitate the use of models capable of resolving hydrologic states and fluxes at spatial scales of hillslopes (e.g., 10s to 100s m). These models typically require precipitation forcings at spatial scales of kilometers or better and time intervals of hours. Yet in especially rugged terrain that typifies much of the Western US and throughout much of the developing world, precipitation data at these spatiotemporal resolutions is difficult to come by. Ground-based weather radars have significant problems in high-relief settings and are sparsely located, leaving significant gaps in coverage and high uncertainties. Precipitation gages provide accurate data at points but are very sparsely located and their placement is often not representative, yielding significant coverage gaps in a spatial and physiographic sense. Numerical weather prediction efforts have made precipitation data, including critically important information on precipitation phase, available globally and in near real-time. However, these datasets present watershed modelers with two problems: (1) spatial scales of many of these datasets are tens of kilometers or coarser, (2) numerical weather models used to generate these datasets include a land surface parameterization that in some circumstances can significantly affect precipitation predictions. We report on the development of a regional precipitation dataset for Idaho that leverages: (1) a dataset derived from a numerical weather prediction model, (2) gages within Idaho that report hourly precipitation data, and (3) a long-term precipitation climatology dataset. Hourly precipitation estimates from the Modern Era Retrospective-analysis for Research and Applications (MERRA) are stochastically downscaled using a hybrid orographic and statistical model from their native resolution (1/2 x 2/3 degrees) to a resolution of approximately 1 km. Downscaled precipitation realizations are conditioned on hourly observations from reporting gages and then conditioned again on the Parameter-elevation Regressions on Independent Slopes Model (PRISM) at the monthly timescale to reflect orographic precipitation trends common to watersheds of the Western US. While this methodology potentially introduces cross-pollination of errors due to the re-use of precipitation gage data, it nevertheless achieves an ensemble-based precipitation estimate and appropriate measures of uncertainty at a spatiotemporal resolution appropriate for watershed modeling.

  2. Accuracy assessment of seven global land cover datasets over China

    NASA Astrophysics Data System (ADS)

    Yang, Yongke; Xiao, Pengfeng; Feng, Xuezhi; Li, Haixing

    2017-03-01

    Land cover (LC) is the vital foundation to Earth science. Up to now, several global LC datasets have arisen with efforts of many scientific communities. To provide guidelines for data usage over China, nine LC maps from seven global LC datasets (IGBP DISCover, UMD, GLC, MCD12Q1, GLCNMO, CCI-LC, and GlobeLand30) were evaluated in this study. First, we compared their similarities and discrepancies in both area and spatial patterns, and analysed their inherent relations to data sources and classification schemes and methods. Next, five sets of validation sample units (VSUs) were collected to calculate their accuracy quantitatively. Further, we built a spatial analysis model and depicted their spatial variation in accuracy based on the five sets of VSUs. The results show that, there are evident discrepancies among these LC maps in both area and spatial patterns. For LC maps produced by different institutes, GLC 2000 and CCI-LC 2000 have the highest overall spatial agreement (53.8%). For LC maps produced by same institutes, overall spatial agreement of CCI-LC 2000 and 2010, and MCD12Q1 2001 and 2010 reach up to 99.8% and 73.2%, respectively; while more efforts are still needed if we hope to use these LC maps as time series data for model inputting, since both CCI-LC and MCD12Q1 fail to represent the rapid changing trend of several key LC classes in the early 21st century, in particular urban and built-up, snow and ice, water bodies, and permanent wetlands. With the highest spatial resolution, the overall accuracy of GlobeLand30 2010 is 82.39%. For the other six LC datasets with coarse resolution, CCI-LC 2010/2000 has the highest overall accuracy, and following are MCD12Q1 2010/2001, GLC 2000, GLCNMO 2008, IGBP DISCover, and UMD in turn. Beside that all maps exhibit high accuracy in homogeneous regions; local accuracies in other regions are quite different, particularly in Farming-Pastoral Zone of North China, mountains in Northeast China, and Southeast Hills. Special attention should be paid for data users who are interested in these regions.

  3. Evaluating Climate Causation of Conflict in Darfur Using Multi-temporal, Multi-resolution Satellite Image Datasets With Novel Analyses

    NASA Astrophysics Data System (ADS)

    Brown, I.; Wennbom, M.

    2013-12-01

    Climate change, population growth and changes in traditional lifestyles have led to instabilities in traditional demarcations between neighboring ethic and religious groups in the Sahel region. This has resulted in a number of conflicts as groups resort to arms to settle disputes. Such disputes often centre on or are justified by competition for resources. The conflict in Darfur has been controversially explained by resource scarcity resulting from climate change. Here we analyse established methods of using satellite imagery to assess vegetation health in Darfur. Multi-decadal time series of observations are available using low spatial resolution visible-near infrared imagery. Typically normalized difference vegetation index (NDVI) analyses are produced to describe changes in vegetation ';greenness' or ';health'. Such approaches have been widely used to evaluate the long term development of vegetation in relation to climate variations across a wide range of environments from the Arctic to the Sahel. These datasets typically measure peak NDVI observed over a given interval and may introduce bias. It is furthermore unclear how the spatial organization of sparse vegetation may affect low resolution NDVI products. We develop and assess alternative measures of vegetation including descriptors of the growing season, wetness and resource availability. Expanding the range of parameters used in the analysis reduces our dependence on peak NDVI. Furthermore, these descriptors provide a better characterization of the growing season than the single NDVI measure. Using multi-sensor data we combine high temporal/moderate spatial resolution data with low temporal/high spatial resolution data to improve the spatial representativity of the observations and to provide improved spatial analysis of vegetation patterns. The approach places the high resolution observations in the NDVI context space using a longer time series of lower resolution imagery. The vegetation descriptors derived are evaluated using independent high spatial resolution datasets that reveal the pattern and health of vegetation at metre scales. We also use climate variables to support the interpretation of these data. We conclude that the spatio-temporal patterns in Darfur vegetation and climate datasets suggest that labelling the conflict a climate-change conflict is inaccurate and premature.

  4. Reconstruction of a Three Hourly 1-km Land Surface Air Temperature Dataset in the Qinghai-Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Ding, L.

    2017-12-01

    Land surface air temperature (SAT) is an important parameter in the modeling of radiation balance and energy budget of the earth surface. Generally, SAT is measured at ground meteorological stations; then SAT mapping is possible though a spatial interpolation process. The interpolated SAT map relies on the spatial distribution of ground stations, the terrain, and many other factors; thus, it has great uncertainties in regions with complicated terrain. Instead, SAT map can also be obtained through physical modeling of interactions between the land surface and the atmosphere. Such dataset generally has coarse spatial resolution (e.g. coarser than 0.1°) and cannot satisfy the applications at fine scales, e.g. 1 km. This presentation reports the reconstruction of a three hourly 1-km SAT dataset from 2001 to 2015 over the Qinghai-Tibet Plateau. The terrain in the Qinghai-Tibet Plateau, especially in the eastern part, is extremely complicated. Two SAT datasets with good qualities are used in this study. The first one is from the 3h China Meteorological Forcing Dataset with a 0.1° resolution released by the Institute of Tibetan Plateau Research, Chinese Academy of Sciences (Yang et al., 2010); the second one is from the ERA-Interim product with the same temporal resolution and a 0.125° resolution. A statistical approach is developed to downscale the spatial resolution of the derived SAT to 1-km. The elevation and the normalized difference vegetation index (NDVI) are selected as two scaling factors in the downscaling approach. Results demonstrate there is significantly negative correlation between the SAT and elevation in all seasons; there is also significantly negative correlation between the SAT and NDVI in the vegetation growth seasons, while the correlation decreases in the other seasons. Therefore, a temporally dynamic downscaling approach is feasible to enhance the spatial resolution of the SAT. Compared with the SAT at the 0.1° or 0.125°, the reconstructed 1-km SAT can provide much more spatial details in areas with complicated terrain. Additionally, the 1-km SAT agrees well with the ground measured air temperatures as well as the SAT before downscaling. The reconstructed SAT will be beneficial for the modeling of surface radiation balance and energy budget over the Qinghai-Tibet Plateau.

  5. Short-term memory stores organized by information domain.

    PubMed

    Noyce, Abigail L; Cestero, Nishmar; Shinn-Cunningham, Barbara G; Somers, David C

    2016-04-01

    Vision and audition have complementary affinities, with vision excelling in spatial resolution and audition excelling in temporal resolution. Here, we investigated the relationships among the visual and auditory modalities and spatial and temporal short-term memory (STM) using change detection tasks. We created short sequences of visual or auditory items, such that each item within a sequence arose at a unique spatial location at a unique time. On each trial, two successive sequences were presented; subjects attended to either space (the sequence of locations) or time (the sequence of inter item intervals) and reported whether the patterns of locations or intervals were identical. Each subject completed blocks of unimodal trials (both sequences presented in the same modality) and crossmodal trials (Sequence 1 visual, Sequence 2 auditory, or vice versa) for both spatial and temporal tasks. We found a strong interaction between modality and task: Spatial performance was best on unimodal visual trials, whereas temporal performance was best on unimodal auditory trials. The order of modalities on crossmodal trials also mattered, suggesting that perceptual fidelity at encoding is critical to STM. Critically, no cost was attributable to crossmodal comparison: In both tasks, performance on crossmodal trials was as good as or better than on the weaker unimodal trials. STM representations of space and time can guide change detection in either the visual or the auditory modality, suggesting that the temporal or spatial organization of STM may supersede sensory-specific organization.

  6. Gridded precipitation fields at high temporal and spatial resolution for operational flood forecasting in the Rhine basin

    NASA Astrophysics Data System (ADS)

    van Osnabrugge, Bart; Weerts, Albrecht; Uijlenhoet, Remko

    2017-04-01

    Gridded areal precipitation, as one of the most important hydrometeorological input variables for initial state estimation in operational hydrological forecasting, is available in the form of raster data sets (e.g. HYRAS and EOBS) for the River Rhine basin. These datasets are compiled off-line on a daily time step using station data with the highest possible spatial density. However, such a product is not available operationally and at an hourly discretisation. Therefore, we constructed an hourly gridded precipitation dataset at 1.44 km2 resolution for the Rhine basin for the period from 1998 to present using a REGNIE-like interpolation procedure (Weerts et al., 2008) using a low and a high density rain gauge network. The datasets were validated against daily HYRAS (Rauthe, 2013) and EOBS (Haylock, 2008) data. The main goal of the operational procedure is to emulate the HYRAS dataset as good as possible, as the daily HYRAS dataset is used in the off-line calibration of the hydrological model. Our main findings are that even with low station density, the spatial patterns found in the HYRAS data set are well reproduced. With low station density (years 1999-2006) our dataset underestimates precipitation compared to HYRAS and EOBS, notably during the winter. However, interpolation based on the same set of stations overestimates precipitation compared to EOBS for the years 2006-2014. This discrepancy disappears when switching to the high station density. We also analyze the robustness of the hourly precipitation fields by comparing with stations not used during interpolation. Specific issues regarding the data when creating the gridded precipitation fields will be highlighted. Finally, the datasets are used to drive an hourly and daily gridded WFLOW_HBV model of the Rhine at the same spatial resolution. Haylock, M.R., N. Hofstra, A.M.G. Klein Tank, E.J. Klok, P.D. Jones and M. New. 2008: A European daily high-resolution gridded dataset of surface temperature and precipitation. J. Geophys. Res (Atmospheres), 113, D20119, doi:10.1029/2008JD10201 Rauthe, M., Steiner, H., Riediger, U., Mazurkiewicz, A., Gratzki, A. 2013: A Central European precipitation climatology - Part 1: Generation and validation of a high-resolution gridded daily data set (HYRAS). Meteorologische Zeitschrift, 22(3), 235 256 Weerts, A.H., D. Meißner, and S. Rademacher, 2008. Input data rainfall-runoff model operational system FEWS-NL & FEWS-DE. Technical report, Deltares.

  7. High Resolution Stratigraphic Mapping in Complex Terrain: A Comparison of Traditional Remote Sensing Techniques with Unmanned Aerial Vehicle - Structure from Motion Photogrammetry

    NASA Astrophysics Data System (ADS)

    Nesbit, P. R.; Hugenholtz, C.; Durkin, P.; Hubbard, S. M.; Kucharczyk, M.; Barchyn, T.

    2016-12-01

    Remote sensing and digital mapping have started to revolutionize geologic mapping in recent years as a result of their realized potential to provide high resolution 3D models of outcrops to assist with interpretation, visualization, and obtaining accurate measurements of inaccessible areas. However, in stratigraphic mapping applications in complex terrain, it is difficult to acquire information with sufficient detail at a wide spatial coverage with conventional techniques. We demonstrate the potential of a UAV and Structure from Motion (SfM) photogrammetric approach for improving 3D stratigraphic mapping applications within a complex badland topography. Our case study is performed in Dinosaur Provincial Park (Alberta, Canada), mapping late Cretaceous fluvial meander belt deposits of the Dinosaur Park formation amidst a succession of steeply sloping hills and abundant drainages - creating a challenge for stratigraphic mapping. The UAV-SfM dataset (2 cm spatial resolution) is compared directly with a combined satellite and aerial LiDAR dataset (30 cm spatial resolution) to reveal advantages and limitations of each dataset before presenting a unique workflow that utilizes the dense point cloud from the UAV-SfM dataset for analysis. The UAV-SfM dense point cloud minimizes distortion, preserves 3D structure, and records an RGB attribute - adding potential value in future studies. The proposed UAV-SfM workflow allows for high spatial resolution remote sensing of stratigraphy in complex topographic environments. This extended capability can add value to field observations and has the potential to be integrated with subsurface petroleum models.

  8. Operational use of open satellite data for marine water quality monitoring

    NASA Astrophysics Data System (ADS)

    Symeonidis, Panagiotis; Vakkas, Theodoros

    2017-09-01

    The purpose of this study was to develop an operational platform for marine water quality monitoring using near real time satellite data. The developed platform utilizes free and open satellite data available from different data sources like COPERNICUS, the European Earth Observation Initiative, or NASA, from different satellites and instruments. The quality of the marine environment is operationally evaluated using parameters like chlorophyll-a concentration, water color and Sea Surface Temperature (SST). For each parameter, there are more than one dataset available, from different data sources or satellites, to allow users to select the most appropriate dataset for their area or time of interest. The above datasets are automatically downloaded from the data provider's services and ingested to the central, spatial engine. The spatial data platform uses the Postgresql database with the PostGIS extension for spatial data storage and Geoserver for the provision of the spatial data services. The system provides daily, 10 days and monthly maps and time series of the above parameters. The information is provided using a web client which is based on the GET SDI PORTAL, an easy to use and feature rich geospatial visualization and analysis platform. The users can examine the temporal variation of the parameters using a simple time animation tool. In addition, with just one click on the map, the system provides an interactive time series chart for any of the parameters of the available datasets. The platform can be offered as Software as a Service (SaaS) to any area in the Mediterranean region.

  9. High-Resolution Digital Terrain Models of the Sacramento/San Joaquin Delta Region, California

    USGS Publications Warehouse

    Coons, Tom; Soulard, Christopher E.; Knowles, Noah

    2008-01-01

    The U.S. Geological Survey (USGS) Western Region Geographic Science Center, in conjunction with the USGS Water Resources Western Branch of Regional Research, has developed a high-resolution elevation dataset covering the Sacramento/San Joaquin Delta region of California. The elevation data were compiled photogrammically from aerial photography (May 2002) with a scale of 1:15,000. The resulting dataset has a 10-meter horizontal resolution grid of elevation values. The vertical accuracy was determined to be 1 meter. Two versions of the elevation data are available: the first dataset has all water coded as zero, whereas the second dataset has bathymetry data merged with the elevation data. The projection of both datasets is set to UTM Zone 10, NAD 1983. The elevation data are clipped into files that spatially approximate 7.5-minute USGS quadrangles, with about 100 meters of overlap to facilitate combining the files into larger regions without data gaps. The files are named after the 7.5-minute USGS quadrangles that cover the same general spatial extent. File names that include a suffix (_b) indicate that the bathymetry data are included (for example, sac_east versus sac_east_b). These files are provided in ESRI Grid format.

  10. SPARQL Query Re-writing Using Partonomy Based Transformation Rules

    NASA Astrophysics Data System (ADS)

    Jain, Prateek; Yeh, Peter Z.; Verma, Kunal; Henson, Cory A.; Sheth, Amit P.

    Often the information present in a spatial knowledge base is represented at a different level of granularity and abstraction than the query constraints. For querying ontology's containing spatial information, the precise relationships between spatial entities has to be specified in the basic graph pattern of SPARQL query which can result in long and complex queries. We present a novel approach to help users intuitively write SPARQL queries to query spatial data, rather than relying on knowledge of the ontology structure. Our framework re-writes queries, using transformation rules to exploit part-whole relations between geographical entities to address the mismatches between query constraints and knowledge base. Our experiments were performed on completely third party datasets and queries. Evaluations were performed on Geonames dataset using questions from National Geographic Bee serialized into SPARQL and British Administrative Geography Ontology using questions from a popular trivia website. These experiments demonstrate high precision in retrieval of results and ease in writing queries.

  11. Spatiotemporal Permutation Entropy as a Measure for Complexity of Cardiac Arrhythmia

    NASA Astrophysics Data System (ADS)

    Schlemmer, Alexander; Berg, Sebastian; Lilienkamp, Thomas; Luther, Stefan; Parlitz, Ulrich

    2018-05-01

    Permutation entropy (PE) is a robust quantity for measuring the complexity of time series. In the cardiac community it is predominantly used in the context of electrocardiogram (ECG) signal analysis for diagnoses and predictions with a major application found in heart rate variability parameters. In this article we are combining spatial and temporal PE to form a spatiotemporal PE that captures both, complexity of spatial structures and temporal complexity at the same time. We demonstrate that the spatiotemporal PE (STPE) quantifies complexity using two datasets from simulated cardiac arrhythmia and compare it to phase singularity analysis and spatial PE (SPE). These datasets simulate ventricular fibrillation (VF) on a two-dimensional and a three-dimensional medium using the Fenton-Karma model. We show that SPE and STPE are robust against noise and demonstrate its usefulness for extracting complexity features at different spatial scales.

  12. Demonstration of Airborne Wide Area Assessment Technologies at Pueblo Precision Bombing Ranges, Colorado. Hyperspectral Imaging, Version 2.0

    DTIC Science & Technology

    2007-09-27

    the spatial and spectral resolution ...variety of geological and vegetation mapping efforts, the Hymap sensor offered the best available combination of spectral and spatial resolution , signal... The limitations of the technology currently relate to spatial and spectral resolution and geo- correction accuracy. Secondly, HSI datasets

  13. Developing a new global network of river reaches from merged satellite-derived datasets

    NASA Astrophysics Data System (ADS)

    Lion, C.; Allen, G. H.; Beighley, E.; Pavelsky, T.

    2015-12-01

    In 2020, the Surface Water and Ocean Topography satellite (SWOT), a joint mission of NASA/CNES/CSA/UK will be launched. One of its major products will be the measurements of continental water extent, including the width, height, and slope of rivers and the surface area and elevations of lakes. The mission will improve the monitoring of continental water and also our understanding of the interactions between different hydrologic reservoirs. For rivers, SWOT measurements of slope must be carried out over predefined river reaches. As such, an a priori dataset for rivers is needed in order to facilitate analysis of the raw SWOT data. The information required to produce this dataset includes measurements of river width, elevation, slope, planform, river network topology, and flow accumulation. To produce this product, we have linked two existing global datasets: the Global River Widths from Landsat (GRWL) database, which contains river centerline locations, widths, and a braiding index derived from Landsat imagery, and a modified version of the HydroSHEDS hydrologically corrected digital elevation product, which contains heights and flow accumulation measurements for streams at 3 arcsecond spatial resolution. Merging these two datasets requires considerable care. The difficulties, among others, lie in the difference of resolution: 30m versus 3 arseconds, and the age of the datasets: 2000 versus ~2010 (some rivers have moved, the braided sections are different). As such, we have developed custom software to merge the two datasets, taking into account the spatial proximity of river channels in the two datasets and ensuring that flow accumulation in the final dataset always increases downstream. Here, we present our preliminary results for a portion of South America and demonstrate the strengths and weaknesses of the method.

  14. Spectral-spatial classification of hyperspectral data with mutual information based segmented stacked autoencoder approach

    NASA Astrophysics Data System (ADS)

    Paul, Subir; Nagesh Kumar, D.

    2018-04-01

    Hyperspectral (HS) data comprises of continuous spectral responses of hundreds of narrow spectral bands with very fine spectral resolution or bandwidth, which offer feature identification and classification with high accuracy. In the present study, Mutual Information (MI) based Segmented Stacked Autoencoder (S-SAE) approach for spectral-spatial classification of the HS data is proposed to reduce the complexity and computational time compared to Stacked Autoencoder (SAE) based feature extraction. A non-parametric dependency measure (MI) based spectral segmentation is proposed instead of linear and parametric dependency measure to take care of both linear and nonlinear inter-band dependency for spectral segmentation of the HS bands. Then morphological profiles are created corresponding to segmented spectral features to assimilate the spatial information in the spectral-spatial classification approach. Two non-parametric classifiers, Support Vector Machine (SVM) with Gaussian kernel and Random Forest (RF) are used for classification of the three most popularly used HS datasets. Results of the numerical experiments carried out in this study have shown that SVM with a Gaussian kernel is providing better results for the Pavia University and Botswana datasets whereas RF is performing better for Indian Pines dataset. The experiments performed with the proposed methodology provide encouraging results compared to numerous existing approaches.

  15. A multiscale Bayesian data integration approach for mapping air dose rates around the Fukushima Daiichi Nuclear Power Plant.

    PubMed

    Wainwright, Haruko M; Seki, Akiyuki; Chen, Jinsong; Saito, Kimiaki

    2017-02-01

    This paper presents a multiscale data integration method to estimate the spatial distribution of air dose rates in the regional scale around the Fukushima Daiichi Nuclear Power Plant. We integrate various types of datasets, such as ground-based walk and car surveys, and airborne surveys, all of which have different scales, resolutions, spatial coverage, and accuracy. This method is based on geostatistics to represent spatial heterogeneous structures, and also on Bayesian hierarchical models to integrate multiscale, multi-type datasets in a consistent manner. The Bayesian method allows us to quantify the uncertainty in the estimates, and to provide the confidence intervals that are critical for robust decision-making. Although this approach is primarily data-driven, it has great flexibility to include mechanistic models for representing radiation transport or other complex correlations. We demonstrate our approach using three types of datasets collected at the same time over Fukushima City in Japan: (1) coarse-resolution airborne surveys covering the entire area, (2) car surveys along major roads, and (3) walk surveys in multiple neighborhoods. Results show that the method can successfully integrate three types of datasets and create an integrated map (including the confidence intervals) of air dose rates over the domain in high resolution. Moreover, this study provides us with various insights into the characteristics of each dataset, as well as radiocaesium distribution. In particular, the urban areas show high heterogeneity in the contaminant distribution due to human activities as well as large discrepancy among different surveys due to such heterogeneity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Spatial variability effects on precision and power of forage yield estimation

    USDA-ARS?s Scientific Manuscript database

    Spatial analyses of yield trials are important, as they adjust cultivar means for spatial variation and improve the statistical precision of yield estimation. While the relative efficiency of spatial analysis has been frequently reported in several yield trials, its application on long-term forage y...

  17. Percentage of Protected Area Amounts within each Watershed Boundary for the Conterminous US

    EPA Science Inventory

    Abstract: This dataset uses spatial information from the Watershed Boundary Dataset (WBD, March 2011) and the Protected Areas Database of the United States (PAD-US Version 1.0). The resulting data layer, with percentages of protected areas by category, was created using the ATtI...

  18. Leveraging freely available remote sensing and ancillary datasets for semi-automated identification of potential wetland areas using a Geographic Information System (GIS).

    DOT National Transportation Integrated Search

    2016-06-01

    The purpose of this study was to develop a wetland identification tool that makes use of freely available geospatial : datasets to identify potential wetland locations at a spatial scale relevant for transportation corridor assessments. The tool was ...

  19. ACCURACY OF THE 1992 NATIONAL LAND COVER DATASET AREA ESTIMATES: AN ANALYSIS AT MULTIPLE SPATIAL EXTENTS

    EPA Science Inventory

    Abstract for poster presentation:

    Site-specific accuracy assessments evaluate fine-scale accuracy of land-use/land-cover(LULC) datasets but provide little insight into accuracy of area estimates of LULC

    classes derived from sampling units of varying size. Additiona...

  20. Unleashing spatially distributed ecohydrology modeling using Big Data tools

    NASA Astrophysics Data System (ADS)

    Miles, B.; Idaszak, R.

    2015-12-01

    Physically based spatially distributed ecohydrology models are useful for answering science and management questions related to the hydrology and biogeochemistry of prairie, savanna, forested, as well as urbanized ecosystems. However, these models can produce hundreds of gigabytes of spatial output for a single model run over decadal time scales when run at regional spatial scales and moderate spatial resolutions (~100-km2+ at 30-m spatial resolution) or when run for small watersheds at high spatial resolutions (~1-km2 at 3-m spatial resolution). Numerical data formats such as HDF5 can store arbitrarily large datasets. However even in HPC environments, there are practical limits on the size of single files that can be stored and reliably backed up. Even when such large datasets can be stored, querying and analyzing these data can suffer from poor performance due to memory limitations and I/O bottlenecks, for example on single workstations where memory and bandwidth are limited, or in HPC environments where data are stored separately from computational nodes. The difficulty of storing and analyzing spatial data from ecohydrology models limits our ability to harness these powerful tools. Big Data tools such as distributed databases have the potential to surmount the data storage and analysis challenges inherent to large spatial datasets. Distributed databases solve these problems by storing data close to computational nodes while enabling horizontal scalability and fault tolerance. Here we present the architecture of and preliminary results from PatchDB, a distributed datastore for managing spatial output from the Regional Hydro-Ecological Simulation System (RHESSys). The initial version of PatchDB uses message queueing to asynchronously write RHESSys model output to an Apache Cassandra cluster. Once stored in the cluster, these data can be efficiently queried to quickly produce both spatial visualizations for a particular variable (e.g. maps and animations), as well as point time series of arbitrary variables at arbitrary points in space within a watershed or river basin. By treating ecohydrology modeling as a Big Data problem, we hope to provide a platform for answering transformative science and management questions related to water quantity and quality in a world of non-stationary climate.

  1. Improved statistical method for temperature and salinity quality control

    NASA Astrophysics Data System (ADS)

    Gourrion, Jérôme; Szekely, Tanguy

    2017-04-01

    Climate research and Ocean monitoring benefit from the continuous development of global in-situ hydrographic networks in the last decades. Apart from the increasing volume of observations available on a large range of temporal and spatial scales, a critical aspect concerns the ability to constantly improve the quality of the datasets. In the context of the Coriolis Dataset for ReAnalysis (CORA) version 4.2, a new quality control method based on a local comparison to historical extreme values ever observed is developed, implemented and validated. Temperature, salinity and potential density validity intervals are directly estimated from minimum and maximum values from an historical reference dataset, rather than from traditional mean and standard deviation estimates. Such an approach avoids strong statistical assumptions on the data distributions such as unimodality, absence of skewness and spatially homogeneous kurtosis. As a new feature, it also allows addressing simultaneously the two main objectives of an automatic quality control strategy, i.e. maximizing the number of good detections while minimizing the number of false alarms. The reference dataset is presently built from the fusion of 1) all ARGO profiles up to late 2015, 2) 3 historical CTD datasets and 3) the Sea Mammals CTD profiles from the MEOP database. All datasets are extensively and manually quality controlled. In this communication, the latest method validation results are also presented. The method has already been implemented in the latest version of the delayed-time CMEMS in-situ dataset and will be deployed soon in the equivalent near-real time products.

  2. Dataset on spatial distribution and location of universities in Nigeria.

    PubMed

    Adeyemi, G A; Edeki, S O

    2018-06-01

    Access to quality educational system, and the location of educational institutions are of great importance for future prospect of youth in any nation. These in return, have great effects on the economy growth and development of any country. Thus, the dataset contained in this article examines and explains the spatial distribution of universities in the Nigeria system of education. Data from the university commission, Nigeria, as at December 2017 are used. These include all the 40 federal universities, 44 states universities, and 69 private universities making a total of 153 universities in the Nigerian system of education. The data analysis is via the Geographic Information System (GIS) software. The dataset contained in this article will be of immense assistance to the national educational policy makers, parents, and potential students as regards smart and reliable decision making academically.

  3. The importance of accurate road data for spatial applications in public health: customizing a road network

    PubMed Central

    Frizzelle, Brian G; Evenson, Kelly R; Rodriguez, Daniel A; Laraia, Barbara A

    2009-01-01

    Background Health researchers have increasingly adopted the use of geographic information systems (GIS) for analyzing environments in which people live and how those environments affect health. One aspect of this research that is often overlooked is the quality and detail of the road data and whether or not it is appropriate for the scale of analysis. Many readily available road datasets, both public domain and commercial, contain positional errors or generalizations that may not be compatible with highly accurate geospatial locations. This study examined the accuracy, completeness, and currency of four readily available public and commercial sources for road data (North Carolina Department of Transportation, StreetMap Pro, TIGER/Line 2000, TIGER/Line 2007) relative to a custom road dataset which we developed and used for comparison. Methods and Results A custom road network dataset was developed to examine associations between health behaviors and the environment among pregnant and postpartum women living in central North Carolina in the United States. Three analytical measures were developed to assess the comparative accuracy and utility of four publicly and commercially available road datasets and the custom dataset in relation to participants' residential locations over three time periods. The exclusion of road segments and positional errors in the four comparison road datasets resulted in between 5.9% and 64.4% of respondents lying farther than 15.24 meters from their nearest road, the distance of the threshold set by the project to facilitate spatial analysis. Agreement, using a Pearson's correlation coefficient, between the customized road dataset and the four comparison road datasets ranged from 0.01 to 0.82. Conclusion This study demonstrates the importance of examining available road datasets and assessing their completeness, accuracy, and currency for their particular study area. This paper serves as an example for assessing the feasibility of readily available commercial or public road datasets, and outlines the steps by which an improved custom dataset for a study area can be developed. PMID:19409088

  4. NLCD - MODIS albedo data

    EPA Pesticide Factsheets

    The NLCD-MODIS land cover-albedo database integrates high-quality MODIS albedo observations with areas of homogeneous land cover from NLCD. The spatial resolution (pixel size) of the database is 480m-x-480m aligned to the standardized UGSG Albers Equal-Area projection. The spatial extent of the database is the continental United States. This dataset is associated with the following publication:Wickham , J., C.A. Barnes, and T. Wade. Combining NLCD and MODIS to Create a Land Cover-Albedo Dataset for the Continental United States. REMOTE SENSING OF ENVIRONMENT. Elsevier Science Ltd, New York, NY, USA, 170(0): 143-153, (2015).

  5. Evaluation of CLM4 Solar Radiation Partitioning Scheme Using Remote Sensing and Site Level FPAR Datasets

    DOE PAGES

    Wang, Kai; Mao, Jiafu; Dickinson, Robert; ...

    2013-06-05

    This paper examines a land surface solar radiation partitioning scheme, i.e., that of the Community Land Model version 4 (CLM4) with coupled carbon and nitrogen cycles. Taking advantage of a unique 30-year fraction of absorbed photosynthetically active radiation (FPAR) dataset derived from the Global Inventory Modeling and Mapping Studies (GIMMS) normalized difference vegetation index (NDVI) data set, multiple other remote sensing datasets, and site level observations, we evaluated the CLM4 FPAR ’s seasonal cycle, diurnal cycle, long-term trends and spatial patterns. These findings show that the model generally agrees with observations in the seasonal cycle, long-term trends, and spatial patterns,more » but does not reproduce the diurnal cycle. Discrepancies also exist in seasonality magnitudes, peak value months, and spatial heterogeneity. Here, we identify the discrepancy in the diurnal cycle as, due to, the absence of dependence on sun angle in the model. Implementation of sun angle dependence in a one-dimensional (1-D) model is proposed. The need for better relating of vegetation to climate in the model, indicated by long-term trends, is also noted. Evaluation of the CLM4 land surface solar radiation partitioning scheme using remote sensing and site level FPAR datasets provides targets for future development in its representation of this naturally complicated process.« less

  6. Spectral-spatial hyperspectral image classification using super-pixel-based spatial pyramid representation

    NASA Astrophysics Data System (ADS)

    Fan, Jiayuan; Tan, Hui Li; Toomik, Maria; Lu, Shijian

    2016-10-01

    Spatial pyramid matching has demonstrated its power for image recognition task by pooling features from spatially increasingly fine sub-regions. Motivated by the concept of feature pooling at multiple pyramid levels, we propose a novel spectral-spatial hyperspectral image classification approach using superpixel-based spatial pyramid representation. This technique first generates multiple superpixel maps by decreasing the superpixel number gradually along with the increased spatial regions for labelled samples. By using every superpixel map, sparse representation of pixels within every spatial region is then computed through local max pooling. Finally, features learned from training samples are aggregated and trained by a support vector machine (SVM) classifier. The proposed spectral-spatial hyperspectral image classification technique has been evaluated on two public hyperspectral datasets, including the Indian Pines image containing 16 different agricultural scene categories with a 20m resolution acquired by AVIRIS and the University of Pavia image containing 9 land-use categories with a 1.3m spatial resolution acquired by the ROSIS-03 sensor. Experimental results show significantly improved performance compared with the state-of-the-art works. The major contributions of this proposed technique include (1) a new spectral-spatial classification approach to generate feature representation for hyperspectral image, (2) a complementary yet effective feature pooling approach, i.e. the superpixel-based spatial pyramid representation that is used for the spatial correlation study, (3) evaluation on two public hyperspectral image datasets with superior image classification performance.

  7. Comparison of Different Machine Learning Algorithms for Lithological Mapping Using Remote Sensing Data and Morphological Features: A Case Study in Kurdistan Region, NE Iraq

    NASA Astrophysics Data System (ADS)

    Othman, Arsalan; Gloaguen, Richard

    2015-04-01

    Topographic effects and complex vegetation cover hinder lithology classification in mountain regions based not only in field, but also in reflectance remote sensing data. The area of interest "Bardi-Zard" is located in the NE of Iraq. It is part of the Zagros orogenic belt, where seven lithological units outcrop and is known for its chromite deposit. The aim of this study is to compare three machine learning algorithms (MLAs): Maximum Likelihood (ML), Support Vector Machines (SVM), and Random Forest (RF) in the context of a supervised lithology classification task using Advanced Space-borne Thermal Emission and Reflection radiometer (ASTER) satellite, its derived, spatial information (spatial coordinates) and geomorphic data. We emphasize the enhancement in remote sensing lithological mapping accuracy that arises from the integration of geomorphic features and spatial information (spatial coordinates) in classifications. This study identifies that RF is better than ML and SVM algorithms in almost the sixteen combination datasets, which were tested. The overall accuracy of the best dataset combination with the RF map for the all seven classes reach ~80% and the producer and user's accuracies are ~73.91% and 76.09% respectively while the kappa coefficient is ~0.76. TPI is more effective with SVM algorithm than an RF algorithm. This paper demonstrates that adding geomorphic indices such as TPI and spatial information in the dataset increases the lithological classification accuracy.

  8. Location Prediction Based on Transition Probability Matrices Constructing from Sequential Rules for Spatial-Temporal K-Anonymity Dataset

    PubMed Central

    Liu, Zhao; Zhu, Yunhong; Wu, Chenxue

    2016-01-01

    Spatial-temporal k-anonymity has become a mainstream approach among techniques for protection of users’ privacy in location-based services (LBS) applications, and has been applied to several variants such as LBS snapshot queries and continuous queries. Analyzing large-scale spatial-temporal anonymity sets may benefit several LBS applications. In this paper, we propose two location prediction methods based on transition probability matrices constructing from sequential rules for spatial-temporal k-anonymity dataset. First, we define single-step sequential rules mined from sequential spatial-temporal k-anonymity datasets generated from continuous LBS queries for multiple users. We then construct transition probability matrices from mined single-step sequential rules, and normalize the transition probabilities in the transition matrices. Next, we regard a mobility model for an LBS requester as a stationary stochastic process and compute the n-step transition probability matrices by raising the normalized transition probability matrices to the power n. Furthermore, we propose two location prediction methods: rough prediction and accurate prediction. The former achieves the probabilities of arriving at target locations along simple paths those include only current locations, target locations and transition steps. By iteratively combining the probabilities for simple paths with n steps and the probabilities for detailed paths with n-1 steps, the latter method calculates transition probabilities for detailed paths with n steps from current locations to target locations. Finally, we conduct extensive experiments, and correctness and flexibility of our proposed algorithm have been verified. PMID:27508502

  9. Automated brain tumor segmentation using spatial accuracy-weighted hidden Markov Random Field.

    PubMed

    Nie, Jingxin; Xue, Zhong; Liu, Tianming; Young, Geoffrey S; Setayesh, Kian; Guo, Lei; Wong, Stephen T C

    2009-09-01

    A variety of algorithms have been proposed for brain tumor segmentation from multi-channel sequences, however, most of them require isotropic or pseudo-isotropic resolution of the MR images. Although co-registration and interpolation of low-resolution sequences, such as T2-weighted images, onto the space of the high-resolution image, such as T1-weighted image, can be performed prior to the segmentation, the results are usually limited by partial volume effects due to interpolation of low-resolution images. To improve the quality of tumor segmentation in clinical applications where low-resolution sequences are commonly used together with high-resolution images, we propose the algorithm based on Spatial accuracy-weighted Hidden Markov random field and Expectation maximization (SHE) approach for both automated tumor and enhanced-tumor segmentation. SHE incorporates the spatial interpolation accuracy of low-resolution images into the optimization procedure of the Hidden Markov Random Field (HMRF) to segment tumor using multi-channel MR images with different resolutions, e.g., high-resolution T1-weighted and low-resolution T2-weighted images. In experiments, we evaluated this algorithm using a set of simulated multi-channel brain MR images with known ground-truth tissue segmentation and also applied it to a dataset of MR images obtained during clinical trials of brain tumor chemotherapy. The results show that more accurate tumor segmentation results can be obtained by comparing with conventional multi-channel segmentation algorithms.

  10. HTM Spatial Pooler With Memristor Crossbar Circuits for Sparse Biometric Recognition.

    PubMed

    James, Alex Pappachen; Fedorova, Irina; Ibrayev, Timur; Kudithipudi, Dhireesha

    2017-06-01

    Hierarchical Temporal Memory (HTM) is an online machine learning algorithm that emulates the neo-cortex. The development of a scalable on-chip HTM architecture is an open research area. The two core substructures of HTM are spatial pooler and temporal memory. In this work, we propose a new Spatial Pooler circuit design with parallel memristive crossbar arrays for the 2D columns. The proposed design was validated on two different benchmark datasets, face recognition, and speech recognition. The circuits are simulated and analyzed using a practical memristor device model and 0.18 μm IBM CMOS technology model. The databases AR, YALE, ORL, and UFI, are used to test the performance of the design in face recognition. TIMIT dataset is used for the speech recognition.

  11. The Graduate Outcome Project: Using Data from the Integrated Data Infrastructure Project

    ERIC Educational Resources Information Center

    Rees, Malcolm

    2014-01-01

    This paper reports on progress to date with a project underway in New Zealand involving the extraction of data from multiple government agencies that is then combined into one comprehensive longitudinal integrated dataset and made available to trial participants in a way never previously thought possible. The dataset includes school leaver…

  12. Recent Clinical Trials in Osteoporosis: A Firm Foundation or Falling Short?

    PubMed Central

    Lakey, Wanda C.; Batch, Bryan C.; Chiswell, Karen; Tasneem, Asba; Green, Jennifer B.

    2016-01-01

    The global burden of osteoporotic fractures is associated with significant morbidity, mortality, and healthcare costs. We examined the ClinicalTrials.gov database to determine whether recently registered clinical trials addressed prevention and treatment in those at high risk for fracture. A dataset of 96,346 trials registered in ClinicalTrials.gov was downloaded on September 27, 2010. At the time of the dataset download, 40,970 interventional trials had been registered since October 1, 2007. The osteoporosis subset comprised 239 interventional trials (0.6%). Those trials evaluating orthopedic procedures were excluded. The primary purpose was treatment in 67.0%, prevention in 20.1%, supportive care in 5.8%, diagnostic in 2.2%, basic science in 3.1%, health services research in 0.9%, and screening in 0.9%. The majority of studies (61.1%) included drug-related interventions. Most trials (56.9%) enrolled only women, 38.9% of trials were open to both men and women, and 4.2% enrolled only men. Roughly one fifth (19.7%) of trials excluded research participants older than 65 years, and 33.5% of trials excluded those older than 75 years. The funding sources were industry in 51.0%, the National Institutes of Health in 6.3%, and other in 42.7%. We found that most osteoporosis-related trials registered from October 2007 through September 2010 examined the efficacy and safety of drug treatment, and fewer trials examined prevention and non-drug interventions. Trials of interventions that are not required to be registered in ClinicalTrials.gov may be underrepresented. Few trials are specifically studying osteoporosis in men and older adults. Recently registered osteoporosis trials may not sufficiently address fracture prevention. PMID:27191848

  13. Oregon Cascades Play Fairway Analysis: Raster Datasets and Models

    DOE Data Explorer

    Adam Brandt

    2015-11-15

    This submission includes maps of the spatial distribution of basaltic, and felsic rocks in the Oregon Cascades. It also includes a final Play Fairway Analysis (PFA) model, with the heat and permeability composite risk segments (CRS) supplied separately. Metadata for each raster dataset can be found within the zip files, in the TIF images

  14. PRISM Climate Group, Oregon State U

    Science.gov Websites

    FAQ PRISM Climate Data The PRISM Climate Group gathers climate observations from a wide range of monitoring networks, applies sophisticated quality control measures, and develops spatial climate datasets to reveal short- and long-term climate patterns. The resulting datasets incorporate a variety of modeling

  15. A Review of Land-Cover Mapping Activities in Coastal Alabama and Mississippi

    USGS Publications Warehouse

    Smith, Kathryn E.L.; Nayegandhi, Amar; Brock, John C.

    2010-01-01

    INTRODUCTION Land-use and land-cover (LULC) data provide important information for environmental management. Data pertaining to land-cover and land-management activities are a common requirement for spatial analyses, such as watershed modeling, climate change, and hazard assessment. In coastal areas, land development, storms, and shoreline modification amplify the need for frequent and detailed land-cover datasets. The northern Gulf of Mexico coastal area is no exception. The impact of severe storms, increases in urban area, dramatic changes in land cover, and loss of coastal-wetland habitat all indicate a vital need for reliable and comparable land-cover data. Four main attributes define a land-cover dataset: the date/time of data collection, the spatial resolution, the type of classification, and the source data. The source data are the foundation dataset used to generate LULC classification and are typically remotely sensed data, such as aerial photography or satellite imagery. These source data have a large influence on the final LULC data product, so much so that one can classify LULC datasets into two general groups: LULC data derived from aerial photography and LULC data derived from satellite imagery. The final LULC data can be converted from one format to another (for instance, vector LULC data can be converted into raster data for analysis purposes, and vice versa), but each subsequent dataset maintains the imprint of the source medium within its spatial accuracy and data features. The source data will also influence the spatial and temporal resolution, as well as the type of classification. The intended application of the LULC data typically defines the type of source data and methodology, with satellite imagery being selected for large landscapes (state-wide, national data products) and repeatability (environmental monitoring and change analysis). The coarse spatial scale and lack of refined land-use categories are typical drawbacks to satellite-based land-use classifications. Aerial photography is typically selected for smaller landscapes (watershed-basin scale), for greater definition of the land-use categories, and for increased spatial resolution. Disadvantages of using photography include time-consuming digitization, high costs for imagery collection, and lack of seasonal data. Recently, the availability of high-resolution satellite imagery has generated a new category of LULC data product. These new datasets have similar strengths to the aerial-photo-based LULC in that they possess the potential for refined definition of land-use categories and increased spatial resolution but also have the benefit of satellite-based classifications, such as repeatability for change analysis. LULC classification based on high-resolution satellite imagery is still in the early stages of development but merits greater attention because environmental-monitoring and landscape-modeling programs rely heavily on LULC data. This publication summarizes land-use and land-cover mapping activities for Alabama and Mississippi coastal areas within the U.S. Geological Survey (USGS) Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazard Susceptibility Project boundaries. Existing LULC datasets will be described, as well as imagery data sources and ancillary data that may provide ground-truth or satellite training data for a forthcoming land-cover classification. Finally, potential areas for a high-resolution land-cover classification in the Alabama-Mississippi region will be identified.

  16. High resolution global gridded data for use in population studies

    PubMed Central

    Lloyd, Christopher T.; Sorichetta, Alessandro; Tatem, Andrew J.

    2017-01-01

    Recent years have seen substantial growth in openly available satellite and other geospatial data layers, which represent a range of metrics relevant to global human population mapping at fine spatial scales. The specifications of such data differ widely and therefore the harmonisation of data layers is a prerequisite to constructing detailed and contemporary spatial datasets which accurately describe population distributions. Such datasets are vital to measure impacts of population growth, monitor change, and plan interventions. To this end the WorldPop Project has produced an open access archive of 3 and 30 arc-second resolution gridded data. Four tiled raster datasets form the basis of the archive: (i) Viewfinder Panoramas topography clipped to Global ADMinistrative area (GADM) coastlines; (ii) a matching ISO 3166 country identification grid; (iii) country area; (iv) and slope layer. Further layers include transport networks, landcover, nightlights, precipitation, travel time to major cities, and waterways. Datasets and production methodology are here described. The archive can be downloaded both from the WorldPop Dataverse Repository and the WorldPop Project website. PMID:28140386

  17. Development and validation of a prognostic nomogram for colorectal cancer after radical resection based on individual patient data from three large-scale phase III trials

    PubMed Central

    Akiyoshi, Takashi; Maeda, Hiromichi; Kashiwabara, Kosuke; Kanda, Mitsuro; Mayanagi, Shuhei; Aoyama, Toru; Hamada, Chikuma; Sadahiro, Sotaro; Fukunaga, Yosuke; Ueno, Masashi; Sakamoto, Junichi; Saji, Shigetoyo; Yoshikawa, Takaki

    2017-01-01

    Background Few prediction models have so far been developed and assessed for the prognosis of patients who undergo curative resection for colorectal cancer (CRC). Materials and Methods We prepared a clinical dataset including 5,530 patients who participated in three major randomized controlled trials as a training dataset and 2,263 consecutive patients who were treated at a cancer-specialized hospital as a validation dataset. All subjects underwent radical resection for CRC which was histologically diagnosed to be adenocarcinoma. The main outcomes that were predicted were the overall survival (OS) and disease free survival (DFS). The identification of the variables in this nomogram was based on a Cox regression analysis and the model performance was evaluated by Harrell's c-index. The calibration plot and its slope were also studied. For the external validation assessment, risk group stratification was employed. Results The multivariate Cox model identified variables; sex, age, pathological T and N factor, tumor location, size, lymphnode dissection, postoperative complications and adjuvant chemotherapy. The c-index was 0.72 (95% confidence interval [CI] 0.66-0.77) for the OS and 0.74 (95% CI 0.69-0.78) for the DFS. The proposed stratification in the risk groups demonstrated a significant distinction between the Kaplan–Meier curves for OS and DFS in the external validation dataset. Conclusions We established a clinically reliable nomogram to predict the OS and DFS in patients with CRC using large scale and reliable independent patient data from phase III randomized controlled trials. The external validity was also confirmed on the practical dataset. PMID:29228760

  18. General practitioner (family physician) workforce in Australia: comparing geographic data from surveys, a mailing list and medicare

    PubMed Central

    2013-01-01

    Background Good quality spatial data on Family Physicians or General Practitioners (GPs) are key to accurately measuring geographic access to primary health care. The validity of computed associations between health outcomes and measures of GP access such as GP density is contingent on geographical data quality. This is especially true in rural and remote areas, where GPs are often small in number and geographically dispersed. However, there has been limited effort in assessing the quality of nationally comprehensive, geographically explicit, GP datasets in Australia or elsewhere. Our objective is to assess the extent of association or agreement between different spatially explicit nationwide GP workforce datasets in Australia. This is important since disagreement would imply differential relationships with primary healthcare relevant outcomes with different datasets. We also seek to enumerate these associations across categories of rurality or remoteness. Method We compute correlations of GP headcounts and workload contributions between four different datasets at two different geographical scales, across varying levels of rurality and remoteness. Results The datasets are in general agreement with each other at two different scales. Small numbers of absolute headcounts, with relatively larger fractions of locum GPs in rural areas cause unstable statistical estimates and divergences between datasets. Conclusion In the Australian context, many of the available geographic GP workforce datasets may be used for evaluating valid associations with health outcomes. However, caution must be exercised in interpreting associations between GP headcounts or workloads and outcomes in rural and remote areas. The methods used in these analyses may be replicated in other locales with multiple GP or physician datasets. PMID:24005003

  19. Developing a Global Network of River Reaches in Preparation of SWOT

    NASA Astrophysics Data System (ADS)

    Lion, C.; Pavelsky, T.; Allen, G. H.; Beighley, E.; Schumann, G.; Durand, M. T.

    2016-12-01

    In 2020, the Surface Water and Ocean Topography satellite (SWOT), a joint mission of NASA/CNES/CSA/UK will be launched. One of its major products will be the measurements of continental water surfaces, including the width, height, and slope of rivers and the surface area and elevations of lakes. The mission will improve the monitoring of continental water and also our understanding of the interactions between different hydrologic reservoirs. For rivers, SWOT measurements of slope will be carried out over predefined river reaches. As such, an a priori dataset for rivers is needed in order to facilitate analysis of the raw SWOT data. The information required to produce this dataset includes measurements of river width, elevation, slope, planform, river network topology, and flow accumulation. To produce this product, we have linked two existing global datasets: the Global River Widths from Landsat (GRWL) database, which contains river centerline locations, widths, and a braiding index derived from Landsat imagery, and a modified version of the HydroSHEDS hydrologically corrected digital elevation product, which contains heights and flow accumulation measurements for streams at 3 arcseconds spatial resolution. Merging these two datasets requires considerable care. The difficulties, among others, lie in the difference of resolution: 30m versus 3 arseconds, and the age of the datasets: 2000 versus 2010 (some rivers have moved, the braided sections are different). As such, we have developed custom software to merge the two datasets, taking into account the spatial proximity of river channels in the two datasets and ensuring that flow accumulation in the final dataset always increases downstream. Here, we present our results for the globe.

  20. Self-organizing maps: a versatile tool for the automatic analysis of untargeted imaging datasets.

    PubMed

    Franceschi, Pietro; Wehrens, Ron

    2014-04-01

    MS-based imaging approaches allow for location-specific identification of chemical components in biological samples, opening up possibilities of much more detailed understanding of biological processes and mechanisms. Data analysis, however, is challenging, mainly because of the sheer size of such datasets. This article presents a novel approach based on self-organizing maps, extending previous work in order to be able to handle the large number of variables present in high-resolution mass spectra. The key idea is to generate prototype images, representing spatial distributions of ions, rather than prototypical mass spectra. This allows for a two-stage approach, first generating typical spatial distributions and associated m/z bins, and later analyzing the interesting bins in more detail using accurate masses. The possibilities and advantages of the new approach are illustrated on an in-house dataset of apple slices. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Spatial interpolation quality assessments for soil sensor transect datasets

    USDA-ARS?s Scientific Manuscript database

    Near-ground geophysical soil sensors provide extremely valuable information for precision agriculture applications. Indeed, their readings can be used as proxy for many soil parameters. Typically, leave-one-out (loo) cross-validation (CV) of spatial interpolation of sensor data returns overly optimi...

  2. TECA: A Parallel Toolkit for Extreme Climate Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prabhat, Mr; Ruebel, Oliver; Byna, Surendra

    2012-03-12

    We present TECA, a parallel toolkit for detecting extreme events in large climate datasets. Modern climate datasets expose parallelism across a number of dimensions: spatial locations, timesteps and ensemble members. We design TECA to exploit these modes of parallelism and demonstrate a prototype implementation for detecting and tracking three classes of extreme events: tropical cyclones, extra-tropical cyclones and atmospheric rivers. We process a modern TB-sized CAM5 simulation dataset with TECA, and demonstrate good runtime performance for the three case studies.

  3. On the uncertainties associated with using gridded rainfall data as a proxy for observed

    NASA Astrophysics Data System (ADS)

    Tozer, C. R.; Kiem, A. S.; Verdon-Kidd, D. C.

    2011-09-01

    Gridded rainfall datasets are used in many hydrological and climatological studies, in Australia and elsewhere, including for hydroclimatic forecasting, climate attribution studies and climate model performance assessments. The attraction of the spatial coverage provided by gridded data is clear, particularly in Australia where the spatial and temporal resolution of the rainfall gauge network is sparse. However, the question that must be asked is whether it is suitable to use gridded data as a proxy for observed point data, given that gridded data is inherently "smoothed" and may not necessarily capture the temporal and spatial variability of Australian rainfall which leads to hydroclimatic extremes (i.e. droughts, floods)? This study investigates this question through a statistical analysis of three monthly gridded Australian rainfall datasets - the Bureau of Meteorology (BOM) dataset, the Australian Water Availability Project (AWAP) and the SILO dataset. To demonstrate the hydrological implications of using gridded data as a proxy for gauged data, a rainfall-runoff model is applied to one catchment in South Australia (SA) initially using gridded data as the source of rainfall input and then gauged rainfall data. The results indicate a markedly different runoff response associated with each of the different sources of rainfall data. It should be noted that this study does not seek to identify which gridded dataset is the "best" for Australia, as each gridded data source has its pros and cons, as does gauged or point data. Rather the intention is to quantify differences between various gridded data sources and how they compare with gauged data so that these differences can be considered and accounted for in studies that utilise these gridded datasets. Ultimately, if key decisions are going to be based on the outputs of models that use gridded data, an estimate (or at least an understanding) of the uncertainties relating to the assumptions made in the development of gridded data and how that gridded data compares with reality should be made.

  4. A high-resolution European dataset for hydrologic modeling

    NASA Astrophysics Data System (ADS)

    Ntegeka, Victor; Salamon, Peter; Gomes, Goncalo; Sint, Hadewij; Lorini, Valerio; Thielen, Jutta

    2013-04-01

    There is an increasing demand for large scale hydrological models not only in the field of modeling the impact of climate change on water resources but also for disaster risk assessments and flood or drought early warning systems. These large scale models need to be calibrated and verified against large amounts of observations in order to judge their capabilities to predict the future. However, the creation of large scale datasets is challenging for it requires collection, harmonization, and quality checking of large amounts of observations. For this reason, only a limited number of such datasets exist. In this work, we present a pan European, high-resolution gridded dataset of meteorological observations (EFAS-Meteo) which was designed with the aim to drive a large scale hydrological model. Similar European and global gridded datasets already exist, such as the HadGHCND (Caesar et al., 2006), the JRC MARS-STAT database (van der Goot and Orlandi, 2003) and the E-OBS gridded dataset (Haylock et al., 2008). However, none of those provide similarly high spatial resolution and/or a complete set of variables to force a hydrologic model. EFAS-Meteo contains daily maps of precipitation, surface temperature (mean, minimum and maximum), wind speed and vapour pressure at a spatial grid resolution of 5 x 5 km for the time period 1 January 1990 - 31 December 2011. It furthermore contains calculated radiation, which is calculated by using a staggered approach depending on the availability of sunshine duration, cloud cover and minimum and maximum temperature, and evapotranspiration (potential evapotranspiration, bare soil and open water evapotranspiration). The potential evapotranspiration was calculated using the Penman-Monteith equation with the above-mentioned meteorological variables. The dataset was created as part of the development of the European Flood Awareness System (EFAS) and has been continuously updated throughout the last years. The dataset variables are used as inputs to the hydrological calibration and validation of EFAS as well as for establishing long-term discharge "proxy" climatologies which can then in turn be used for statistical analysis to derive return periods or other time series derivatives. In addition, this dataset will be used to assess climatological trends in Europe. Unfortunately, to date no baseline dataset at the European scale exists to test the quality of the herein presented data. Hence, a comparison against other existing datasets can therefore only be an indication of data quality. Due to availability, a comparison was made for precipitation and temperature only, arguably the most important meteorological drivers for hydrologic models. A variety of analyses was undertaken at country scale against data reported to EUROSTAT and E-OBS datasets. The comparison revealed that while the datasets showed overall similar temporal and spatial patterns, there were some differences in magnitudes especially for precipitation. It is not straightforward to define the specific cause for these differences. However, in most cases the comparatively low observation station density appears to be the principal reason for the differences in magnitude.

  5. A statistical metadata model for clinical trials' data management.

    PubMed

    Vardaki, Maria; Papageorgiou, Haralambos; Pentaris, Fragkiskos

    2009-08-01

    We introduce a statistical, process-oriented metadata model to describe the process of medical research data collection, management, results analysis and dissemination. Our approach explicitly provides a structure for pieces of information used in Clinical Study Data Management Systems, enabling a more active role for any associated metadata. Using the object-oriented paradigm, we describe the classes of our model that participate during the design of a clinical trial and the subsequent collection and management of the relevant data. The advantage of our approach is that we focus on presenting the structural inter-relation of these classes when used during datasets manipulation by proposing certain transformations that model the simultaneous processing of both data and metadata. Our solution reduces the possibility of human errors and allows for the tracking of all changes made during datasets lifecycle. The explicit modeling of processing steps improves data quality and assists in the problem of handling data collected in different clinical trials. The case study illustrates the applicability of the proposed framework demonstrating conceptually the simultaneous handling of datasets collected during two randomized clinical studies. Finally, we provide the main considerations for implementing the proposed framework into a modern Metadata-enabled Information System.

  6. Emerging Technologies for Assessing Physical Activity Behaviors in Space and Time

    PubMed Central

    Hurvitz, Philip M.; Moudon, Anne Vernez; Kang, Bumjoon; Saelens, Brian E.; Duncan, Glen E.

    2014-01-01

    Precise measurement of physical activity is important for health research, providing a better understanding of activity location, type, duration, and intensity. This article describes a novel suite of tools to measure and analyze physical activity behaviors in spatial epidemiology research. We use individual-level, high-resolution, objective data collected in a space-time framework to investigate built and social environment influences on activity. First, we collect data with accelerometers, global positioning system units, and smartphone-based digital travel and photo diaries to overcome many limitations inherent in self-reported data. Behaviors are measured continuously over the full spectrum of environmental exposures in daily life, instead of focusing exclusively on the home neighborhood. Second, data streams are integrated using common timestamps into a single data structure, the “LifeLog.” A graphic interface tool, “LifeLog View,” enables simultaneous visualization of all LifeLog data streams. Finally, we use geographic information system SmartMap rasters to measure spatially continuous environmental variables to capture exposures at the same spatial and temporal scale as in the LifeLog. These technologies enable precise measurement of behaviors in their spatial and temporal settings but also generate very large datasets; we discuss current limitations and promising methods for processing and analyzing such large datasets. Finally, we provide applications of these methods in spatially oriented research, including a natural experiment to evaluate the effects of new transportation infrastructure on activity levels, and a study of neighborhood environmental effects on activity using twins as quasi-causal controls to overcome self-selection and reverse causation problems. In summary, the integrative characteristics of large datasets contained in LifeLogs and SmartMaps hold great promise for advancing spatial epidemiologic research to promote healthy behaviors. PMID:24479113

  7. Age-related differences in the use of spatial and categorical relationships in a visuo-spatial working memory task.

    PubMed

    Dai, Ruizhi; Thomas, Ayanna K; Taylor, Holly A

    2018-01-30

    Research examining object identity and location processing in visuo-spatial working memory (VSWM) has yielded inconsistent results on whether age differences exist in VSWM. The present study investigated whether these inconsistencies may stem from age-related differences in VSWM sub-processes, and whether processing of component VSWM information can be facilitated. In two experiments, younger and older adults studied 5 × 5 grids containing five objects in separate locations. In a continuous recognition paradigm, participants were tested on memory for object identity, location, or identity and location information combined. Spatial and categorical relationships were manipulated within grids to provide trial-level facilitation. In Experiment 1, randomizing trial types (location, identity, combination) assured that participants could not predict the information that would be queried. In Experiment 2, blocking trials by type encouraged strategic processing. Thus, we manipulated the nature of the task through object categorical relationship and spatial organization, and trial blocking. Our findings support age-related declines in VSWM. Additionally, grid organizations (categorical and spatial relationships), and trial blocking differentially affected younger and older adults. Younger adults used spatial organizations more effectively whereas older adults demonstrated an association bias. Our finding also suggests that older adults may be less efficient than younger adults in strategically engaging information processing.

  8. Spatially resolved RNA-sequencing of the embryonic heart identifies a role for Wnt/β-catenin signaling in autonomic control of heart rate

    PubMed Central

    Burkhard, Silja Barbara

    2018-01-01

    Development of specialized cells and structures in the heart is regulated by spatially -restricted molecular pathways. Disruptions in these pathways can cause severe congenital cardiac malformations or functional defects. To better understand these pathways and how they regulate cardiac development we used tomo-seq, combining high-throughput RNA-sequencing with tissue-sectioning, to establish a genome-wide expression dataset with high spatial resolution for the developing zebrafish heart. Analysis of the dataset revealed over 1100 genes differentially expressed in sub-compartments. Pacemaker cells in the sinoatrial region induce heart contractions, but little is known about the mechanisms underlying their development. Using our transcriptome map, we identified spatially restricted Wnt/β-catenin signaling activity in pacemaker cells, which was controlled by Islet-1 activity. Moreover, Wnt/β-catenin signaling controls heart rate by regulating pacemaker cellular response to parasympathetic stimuli. Thus, this high-resolution transcriptome map incorporating all cell types in the embryonic heart can expose spatially restricted molecular pathways critical for specific cardiac functions. PMID:29400650

  9. Automating an integrated spatial data-mining model for landfill site selection

    NASA Astrophysics Data System (ADS)

    Abujayyab, Sohaib K. M.; Ahamad, Mohd Sanusi S.; Yahya, Ahmad Shukri; Ahmad, Siti Zubaidah; Aziz, Hamidi Abdul

    2017-10-01

    An integrated programming environment represents a robust approach to building a valid model for landfill site selection. One of the main challenges in the integrated model is the complicated processing and modelling due to the programming stages and several limitations. An automation process helps avoid the limitations and improve the interoperability between integrated programming environments. This work targets the automation of a spatial data-mining model for landfill site selection by integrating between spatial programming environment (Python-ArcGIS) and non-spatial environment (MATLAB). The model was constructed using neural networks and is divided into nine stages distributed between Matlab and Python-ArcGIS. A case study was taken from the north part of Peninsular Malaysia. 22 criteria were selected to utilise as input data and to build the training and testing datasets. The outcomes show a high-performance accuracy percentage of 98.2% in the testing dataset using 10-fold cross validation. The automated spatial data mining model provides a solid platform for decision makers to performing landfill site selection and planning operations on a regional scale.

  10. Daily precipitation grids for Austria since 1961—development and evaluation of a spatial dataset for hydroclimatic monitoring and modelling

    NASA Astrophysics Data System (ADS)

    Hiebl, Johann; Frei, Christoph

    2018-04-01

    Spatial precipitation datasets that are long-term consistent, highly resolved and extend over several decades are an increasingly popular basis for modelling and monitoring environmental processes and planning tasks in hydrology, agriculture, energy resources management, etc. Here, we present a grid dataset of daily precipitation for Austria meant to promote such applications. It has a grid spacing of 1 km, extends back till 1961 and is continuously updated. It is constructed with the classical two-tier analysis, involving separate interpolations for mean monthly precipitation and daily relative anomalies. The former was accomplished by kriging with topographic predictors as external drift utilising 1249 stations. The latter is based on angular distance weighting and uses 523 stations. The input station network was kept largely stationary over time to avoid artefacts on long-term consistency. Example cases suggest that the new analysis is at least as plausible as previously existing datasets. Cross-validation and comparison against experimental high-resolution observations (WegenerNet) suggest that the accuracy of the dataset depends on interpretation. Users interpreting grid point values as point estimates must expect systematic overestimates for light and underestimates for heavy precipitation as well as substantial random errors. Grid point estimates are typically within a factor of 1.5 from in situ observations. Interpreting grid point values as area mean values, conditional biases are reduced and the magnitude of random errors is considerably smaller. Together with a similar dataset of temperature, the new dataset (SPARTACUS) is an interesting basis for modelling environmental processes, studying climate change impacts and monitoring the climate of Austria.

  11. Evaluation of reanalysis datasets against observational soil temperature data over China

    NASA Astrophysics Data System (ADS)

    Yang, Kai; Zhang, Jingyong

    2018-01-01

    Soil temperature is a key land surface variable, and is a potential predictor for seasonal climate anomalies and extremes. Using observational soil temperature data in China for 1981-2005, we evaluate four reanalysis datasets, the land surface reanalysis of the European Centre for Medium-Range Weather Forecasts (ERA-Interim/Land), the second modern-era retrospective analysis for research and applications (MERRA-2), the National Center for Environmental Prediction Climate Forecast System Reanalysis (NCEP-CFSR), and version 2 of the Global Land Data Assimilation System (GLDAS-2.0), with a focus on 40 cm soil layer. The results show that reanalysis data can mainly reproduce the spatial distributions of soil temperature in summer and winter, especially over the east of China, but generally underestimate their magnitudes. Owing to the influence of precipitation on soil temperature, the four datasets perform better in winter than in summer. The ERA-Interim/Land and GLDAS-2.0 produce spatial characteristics of the climatological mean that are similar to observations. The interannual variability of soil temperature is well reproduced by the ERA-Interim/Land dataset in summer and by the CFSR dataset in winter. The linear trend of soil temperature in summer is well rebuilt by reanalysis datasets. We demonstrate that soil heat fluxes in April-June and in winter are highly correlated with the soil temperature in summer and winter, respectively. Different estimations of surface energy balance components can contribute to different behaviors in reanalysis products in terms of estimating soil temperature. In addition, reanalysis datasets can mainly rebuild the northwest-southeast gradient of soil temperature memory over China.

  12. Building a multi-scaled geospatial temporal ecology database from disparate data sources: fostering open science and data reuse.

    PubMed

    Soranno, Patricia A; Bissell, Edward G; Cheruvelil, Kendra S; Christel, Samuel T; Collins, Sarah M; Fergus, C Emi; Filstrup, Christopher T; Lapierre, Jean-Francois; Lottig, Noah R; Oliver, Samantha K; Scott, Caren E; Smith, Nicole J; Stopyak, Scott; Yuan, Shuai; Bremigan, Mary Tate; Downing, John A; Gries, Corinna; Henry, Emily N; Skaff, Nick K; Stanley, Emily H; Stow, Craig A; Tan, Pang-Ning; Wagner, Tyler; Webster, Katherine E

    2015-01-01

    Although there are considerable site-based data for individual or groups of ecosystems, these datasets are widely scattered, have different data formats and conventions, and often have limited accessibility. At the broader scale, national datasets exist for a large number of geospatial features of land, water, and air that are needed to fully understand variation among these ecosystems. However, such datasets originate from different sources and have different spatial and temporal resolutions. By taking an open-science perspective and by combining site-based ecosystem datasets and national geospatial datasets, science gains the ability to ask important research questions related to grand environmental challenges that operate at broad scales. Documentation of such complicated database integration efforts, through peer-reviewed papers, is recommended to foster reproducibility and future use of the integrated database. Here, we describe the major steps, challenges, and considerations in building an integrated database of lake ecosystems, called LAGOS (LAke multi-scaled GeOSpatial and temporal database), that was developed at the sub-continental study extent of 17 US states (1,800,000 km(2)). LAGOS includes two modules: LAGOSGEO, with geospatial data on every lake with surface area larger than 4 ha in the study extent (~50,000 lakes), including climate, atmospheric deposition, land use/cover, hydrology, geology, and topography measured across a range of spatial and temporal extents; and LAGOSLIMNO, with lake water quality data compiled from ~100 individual datasets for a subset of lakes in the study extent (~10,000 lakes). Procedures for the integration of datasets included: creating a flexible database design; authoring and integrating metadata; documenting data provenance; quantifying spatial measures of geographic data; quality-controlling integrated and derived data; and extensively documenting the database. Our procedures make a large, complex, and integrated database reproducible and extensible, allowing users to ask new research questions with the existing database or through the addition of new data. The largest challenge of this task was the heterogeneity of the data, formats, and metadata. Many steps of data integration need manual input from experts in diverse fields, requiring close collaboration.

  13. Building a multi-scaled geospatial temporal ecology database from disparate data sources: Fostering open science through data reuse

    USGS Publications Warehouse

    Soranno, Patricia A.; Bissell, E.G.; Cheruvelil, Kendra S.; Christel, Samuel T.; Collins, Sarah M.; Fergus, C. Emi; Filstrup, Christopher T.; Lapierre, Jean-Francois; Lotting, Noah R.; Oliver, Samantha K.; Scott, Caren E.; Smith, Nicole J.; Stopyak, Scott; Yuan, Shuai; Bremigan, Mary Tate; Downing, John A.; Gries, Corinna; Henry, Emily N.; Skaff, Nick K.; Stanley, Emily H.; Stow, Craig A.; Tan, Pang-Ning; Wagner, Tyler; Webster, Katherine E.

    2015-01-01

    Although there are considerable site-based data for individual or groups of ecosystems, these datasets are widely scattered, have different data formats and conventions, and often have limited accessibility. At the broader scale, national datasets exist for a large number of geospatial features of land, water, and air that are needed to fully understand variation among these ecosystems. However, such datasets originate from different sources and have different spatial and temporal resolutions. By taking an open-science perspective and by combining site-based ecosystem datasets and national geospatial datasets, science gains the ability to ask important research questions related to grand environmental challenges that operate at broad scales. Documentation of such complicated database integration efforts, through peer-reviewed papers, is recommended to foster reproducibility and future use of the integrated database. Here, we describe the major steps, challenges, and considerations in building an integrated database of lake ecosystems, called LAGOS (LAke multi-scaled GeOSpatial and temporal database), that was developed at the sub-continental study extent of 17 US states (1,800,000 km2). LAGOS includes two modules: LAGOSGEO, with geospatial data on every lake with surface area larger than 4 ha in the study extent (~50,000 lakes), including climate, atmospheric deposition, land use/cover, hydrology, geology, and topography measured across a range of spatial and temporal extents; and LAGOSLIMNO, with lake water quality data compiled from ~100 individual datasets for a subset of lakes in the study extent (~10,000 lakes). Procedures for the integration of datasets included: creating a flexible database design; authoring and integrating metadata; documenting data provenance; quantifying spatial measures of geographic data; quality-controlling integrated and derived data; and extensively documenting the database. Our procedures make a large, complex, and integrated database reproducible and extensible, allowing users to ask new research questions with the existing database or through the addition of new data. The largest challenge of this task was the heterogeneity of the data, formats, and metadata. Many steps of data integration need manual input from experts in diverse fields, requiring close collaboration.

  14. A pipeline of spatio-temporal filtering for predicting the laterality of self-initiated fine movements from single trial readiness potentials.

    PubMed

    Zeid, Elias Abou; Sereshkeh, Alborz Rezazadeh; Chau, Tom

    2016-12-01

    In recent years, the readiness potential (RP), a type of pre-movement neural activity, has been investigated for asynchronous electroencephalogram (EEG)-based brain-computer interfaces (BCIs). Since the RP is attenuated for involuntary movements, a BCI driven by RP alone could facilitate intentional control amid a plethora of unintentional movements. Previous studies have attempted single trial classification of RP via spatial and temporal filtering methods, or by combining the RP with event-related desynchronization. However, RP feature extraction remains challenging due to the slow non-oscillatory nature of the potential, its variability among participants and the inherent noise in EEG signals. Here, we propose a participant-specific, individually optimized pipeline of spatio-temporal filtering (PSTF) to improve RP feature extraction for laterality prediction. PSTF applies band-pass filtering on RP signals, followed by Fisher criterion spatial filtering to maximize class separation, and finally temporal window averaging for feature dimension reduction. Optimal parameters are simultaneously found by cross-validation for each participant. Using EEG data from 14 participants performing self-initiated left or right key presses as well as two benchmark BCI datasets, we compared the performance of PSTF to two popular methods: common spatial subspace decomposition, and adaptive spatio-temporal filtering. On the BCI benchmark data sets, PSTF performed comparably to both existing methods. With the key press EEG data, PSTF extracted more discriminative features, thereby leading to more accurate (74.99% average accuracy) predictions of RP laterality than that achievable with existing methods. Naturalistic and volitional interaction with the world is an important capacity that is lost with traditional system-paced BCIs. We demonstrated a significant improvement in fine movement laterality prediction from RP features alone. Our work supports further study of RP-based BCI for intuitive asynchronous control of the environment, such as augmentative communication or wheelchair navigation.

  15. A pipeline of spatio-temporal filtering for predicting the laterality of self-initiated fine movements from single trial readiness potentials

    NASA Astrophysics Data System (ADS)

    Abou Zeid, Elias; Rezazadeh Sereshkeh, Alborz; Chau, Tom

    2016-12-01

    Objective. In recent years, the readiness potential (RP), a type of pre-movement neural activity, has been investigated for asynchronous electroencephalogram (EEG)-based brain-computer interfaces (BCIs). Since the RP is attenuated for involuntary movements, a BCI driven by RP alone could facilitate intentional control amid a plethora of unintentional movements. Previous studies have attempted single trial classification of RP via spatial and temporal filtering methods, or by combining the RP with event-related desynchronization. However, RP feature extraction remains challenging due to the slow non-oscillatory nature of the potential, its variability among participants and the inherent noise in EEG signals. Here, we propose a participant-specific, individually optimized pipeline of spatio-temporal filtering (PSTF) to improve RP feature extraction for laterality prediction. Approach. PSTF applies band-pass filtering on RP signals, followed by Fisher criterion spatial filtering to maximize class separation, and finally temporal window averaging for feature dimension reduction. Optimal parameters are simultaneously found by cross-validation for each participant. Using EEG data from 14 participants performing self-initiated left or right key presses as well as two benchmark BCI datasets, we compared the performance of PSTF to two popular methods: common spatial subspace decomposition, and adaptive spatio-temporal filtering. Main results. On the BCI benchmark data sets, PSTF performed comparably to both existing methods. With the key press EEG data, PSTF extracted more discriminative features, thereby leading to more accurate (74.99% average accuracy) predictions of RP laterality than that achievable with existing methods. Significance. Naturalistic and volitional interaction with the world is an important capacity that is lost with traditional system-paced BCIs. We demonstrated a significant improvement in fine movement laterality prediction from RP features alone. Our work supports further study of RP-based BCI for intuitive asynchronous control of the environment, such as augmentative communication or wheelchair navigation.

  16. Student Activity and Profile Datasets from an Online Video-Based Collaborative Learning Experience

    ERIC Educational Resources Information Center

    Martín, Estefanía; Gértrudix, Manuel; Urquiza-Fuentes, Jaime; Haya, Pablo A.

    2015-01-01

    This paper describes two datasets extracted from a video-based educational experience using a social and collaborative platform. The length of the trial was 3 months. It involved 111 students from two different courses. Twenty-nine came from Computer Engineering (CE) course and 82 from Media and Communication (M&C) course. They were organised…

  17. Spatial attention does improve temporal discrimination.

    PubMed

    Chica, Ana B; Christie, John

    2009-02-01

    It has recently been stated that exogenous attention impairs temporal-resolution tasks (Hein, Rolke, & Ulrich, 2006; Rolke, Dinkelbach, Hein, & Ulrich, 2008; Yeshurun, 2004; Yeshurun & Levy, 2003). In comparisons of performance on spatially cued trials versus neutral cued trials, the results have suggested that spatial attention decreases temporal resolution. However, when performance on cued and uncued trials has been compared in order to equate for cue salience, typically speed-accuracy trade-offs (SATs) have been observed, making the interpretation of the results difficult. In the present experiments, we aimed at studying the effect of spatial attention in temporal resolution while using a procedure to control for SATs. We controlled reaction times (RTs) by constraining the time to respond, so that response decisions would be made within comparable time windows. The results revealed that when RT was controlled, performance was impaired for cued trials as compared with neutral trials, replicating previous findings. However, when cued and uncued trials were compared, performance was actually improved for cued trials as compared with uncued trials. These results suggest that SAT effects may have played an important role in the previous studies, because when they were controlled and measured, the results reversed, revealing that exogenous attention does improve performance on temporal-resolution tasks.

  18. The MIND PALACE: A Multi-Spectral Imaging and Spectroscopy Database for Planetary Science

    NASA Astrophysics Data System (ADS)

    Eshelman, E.; Doloboff, I.; Hara, E. K.; Uckert, K.; Sapers, H. M.; Abbey, W.; Beegle, L. W.; Bhartia, R.

    2017-12-01

    The Multi-Instrument Database (MIND) is the web-based home to a well-characterized set of analytical data collected by a suite of deep-UV fluorescence/Raman instruments built at the Jet Propulsion Laboratory (JPL). Samples derive from a growing body of planetary surface analogs, mineral and microbial standards, meteorites, spacecraft materials, and other astrobiologically relevant materials. In addition to deep-UV spectroscopy, datasets stored in MIND are obtained from a variety of analytical techniques obtained over multiple spatial and spectral scales including electron microscopy, optical microscopy, infrared spectroscopy, X-ray fluorescence, and direct fluorescence imaging. Multivariate statistical analysis techniques, primarily Principal Component Analysis (PCA), are used to guide interpretation of these large multi-analytical spectral datasets. Spatial co-referencing of integrated spectral/visual maps is performed using QGIS (geographic information system software). Georeferencing techniques transform individual instrument data maps into a layered co-registered data cube for analysis across spectral and spatial scales. The body of data in MIND is intended to serve as a permanent, reliable, and expanding database of deep-UV spectroscopy datasets generated by this unique suite of JPL-based instruments on samples of broad planetary science interest.

  19. Gap-filling a spatially explicit plant trait database: comparing imputation methods and different levels of environmental information

    NASA Astrophysics Data System (ADS)

    Poyatos, Rafael; Sus, Oliver; Badiella, Llorenç; Mencuccini, Maurizio; Martínez-Vilalta, Jordi

    2018-05-01

    The ubiquity of missing data in plant trait databases may hinder trait-based analyses of ecological patterns and processes. Spatially explicit datasets with information on intraspecific trait variability are rare but offer great promise in improving our understanding of functional biogeography. At the same time, they offer specific challenges in terms of data imputation. Here we compare statistical imputation approaches, using varying levels of environmental information, for five plant traits (leaf biomass to sapwood area ratio, leaf nitrogen content, maximum tree height, leaf mass per area and wood density) in a spatially explicit plant trait dataset of temperate and Mediterranean tree species (Ecological and Forest Inventory of Catalonia, IEFC, dataset for Catalonia, north-east Iberian Peninsula, 31 900 km2). We simulated gaps at different missingness levels (10-80 %) in a complete trait matrix, and we used overall trait means, species means, k nearest neighbours (kNN), ordinary and regression kriging, and multivariate imputation using chained equations (MICE) to impute missing trait values. We assessed these methods in terms of their accuracy and of their ability to preserve trait distributions, multi-trait correlation structure and bivariate trait relationships. The relatively good performance of mean and species mean imputations in terms of accuracy masked a poor representation of trait distributions and multivariate trait structure. Species identity improved MICE imputations for all traits, whereas forest structure and topography improved imputations for some traits. No method performed best consistently for the five studied traits, but, considering all traits and performance metrics, MICE informed by relevant ecological variables gave the best results. However, at higher missingness (> 30 %), species mean imputations and regression kriging tended to outperform MICE for some traits. MICE informed by relevant ecological variables allowed us to fill the gaps in the IEFC incomplete dataset (5495 plots) and quantify imputation uncertainty. Resulting spatial patterns of the studied traits in Catalan forests were broadly similar when using species means, regression kriging or the best-performing MICE application, but some important discrepancies were observed at the local level. Our results highlight the need to assess imputation quality beyond just imputation accuracy and show that including environmental information in statistical imputation approaches yields more plausible imputations in spatially explicit plant trait datasets.

  20. EPA Tribal Areas (4 of 4): Alaska Native Allotments

    EPA Pesticide Factsheets

    This dataset is a spatial representation of the Public Land Survey System (PLSS) in Alaska, generated from land survey records. The data represents a seamless spatial portrayal of native allotment land parcels, their legal descriptions, corner positioning and markings, and survey measurements. This data is intended for mapping purposes only and is not a substitute or replacement for the legal land survey records or other legal documents.Measurement and attribute data are collected from survey records using data entry screens into a relational database. The database design is based upon the FGDC Cadastral Content Data Standard. Corner positions are derived by geodetic calculations using measurement records. Closure and edgematching are applied to produce a seamless dataset. The resultant features do not preserve the original geometry of survey measurements, but the record measurements are reported as attributes. Additional boundary data are derived by spatial capture, protraction and GIS processing. The spatial features are stored and managed within the relational database, with active links to the represented measurement and attribute data.

  1. A big data approach to macrofaunal baseline assessment, monitoring and sustainable exploitation of the seabed.

    PubMed

    Cooper, K M; Barry, J

    2017-09-29

    In this study we produce a standardised dataset for benthic macrofauna and sediments through integration of data (33,198 samples) from 777 grab surveys. The resulting dataset is used to identify spatial and temporal patterns in faunal distribution around the UK, and the role of sediment composition and other explanatory variables in determining such patterns. We show how insight into natural variability afforded by the dataset can be used to improve the sustainability of activities which affect sediment composition, by identifying conditions which should remain favourable for faunal recolonisation. Other big data applications and uses of the dataset are discussed.

  2. seNorge2 daily precipitation, an observational gridded dataset over Norway from 1957 to the present day

    NASA Astrophysics Data System (ADS)

    Lussana, Cristian; Saloranta, Tuomo; Skaugen, Thomas; Magnusson, Jan; Tveito, Ole Einar; Andersen, Jess

    2018-02-01

    The conventional climate gridded datasets based on observations only are widely used in atmospheric sciences; our focus in this paper is on climate and hydrology. On the Norwegian mainland, seNorge2 provides high-resolution fields of daily total precipitation for applications requiring long-term datasets at regional or national level, where the challenge is to simulate small-scale processes often taking place in complex terrain. The dataset constitutes a valuable meteorological input for snow and hydrological simulations; it is updated daily and presented on a high-resolution grid (1 km of grid spacing). The climate archive goes back to 1957. The spatial interpolation scheme builds upon classical methods, such as optimal interpolation and successive-correction schemes. An original approach based on (spatial) scale-separation concepts has been implemented which uses geographical coordinates and elevation as complementary information in the interpolation. seNorge2 daily precipitation fields represent local precipitation features at spatial scales of a few kilometers, depending on the station network density. In the surroundings of a station or in dense station areas, the predictions are quite accurate even for intense precipitation. For most of the grid points, the performances are comparable to or better than a state-of-the-art pan-European dataset (E-OBS), because of the higher effective resolution of seNorge2. However, in very data-sparse areas, such as in the mountainous region of southern Norway, seNorge2 underestimates precipitation because it does not make use of enough geographical information to compensate for the lack of observations. The evaluation of seNorge2 as the meteorological forcing for the seNorge snow model and the DDD (Distance Distribution Dynamics) rainfall-runoff model shows that both models have been able to make profitable use of seNorge2, partly because of the automatic calibration procedure they incorporate for precipitation. The seNorge2 dataset 1957-2015 is available at https://doi.org/10.5281/zenodo.845733. Daily updates from 2015 onwards are available at http://thredds.met.no/thredds/catalog/metusers/senorge2/seNorge2/provisional_archive/PREC1d/gridded_dataset/catalog.html.

  3. DownscaleConcept 2.3 User Manual. Downscaled, Spatially Distributed Soil Moisture Calculator

    DTIC Science & Technology

    2011-01-01

    be first presented with the dataset 28 results to your query. From this page, check the box next to the ASTER GDEM dataset and press the "List...information for verification. No charge will be associated with GDEM data archives. 14. Select "Submit Order Now!" to process your order. 15. Wait for

  4. Basin Assessment Spatial Planning Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The tool is intended to facilitate hydropower development and water resource planning by improving synthesis and interpretation of disparate spatial datasets that are considered in development actions (e.g., hydrological characteristics, environmentally and culturally sensitive areas, existing or proposed water power resources, climate-informed forecasts). The tool enables this capability by providing a unique framework for assimilating, relating, summarizing, and visualizing disparate spatial data through the use of spatial aggregation techniques, relational geodatabase platforms, and an interactive web-based Geographic Information Systems (GIS). Data are aggregated and related based on shared intersections with a common spatial unit; in this case, industry-standard hydrologic drainagemore » areas for the U.S. (National Hydrography Dataset) are used as the spatial unit to associate planning data. This process is performed using all available scalar delineations of drainage areas (i.e., region, sub-region, basin, sub-basin, watershed, sub-watershed, catchment) to create spatially hierarchical relationships among planning data and drainages. These entity-relationships are stored in a relational geodatabase that provides back-end structure to the web GIS and its widgets. The full technology stack was built using all open-source software in modern programming languages. Interactive widgets that function within the viewport are also compatible with all modern browsers.« less

  5. The worth of data to reduce predictive uncertainty of an integrated catchment model by multi-constraint calibration

    NASA Astrophysics Data System (ADS)

    Koch, J.; Jensen, K. H.; Stisen, S.

    2017-12-01

    Hydrological models that integrate numerical process descriptions across compartments of the water cycle are typically required to undergo thorough model calibration in order to estimate suitable effective model parameters. In this study, we apply a spatially distributed hydrological model code which couples the saturated zone with the unsaturated zone and the energy portioning at the land surface. We conduct a comprehensive multi-constraint model calibration against nine independent observational datasets which reflect both the temporal and the spatial behavior of hydrological response of a 1000km2 large catchment in Denmark. The datasets are obtained from satellite remote sensing and in-situ measurements and cover five keystone hydrological variables: discharge, evapotranspiration, groundwater head, soil moisture and land surface temperature. Results indicate that a balanced optimization can be achieved where errors on objective functions for all nine observational datasets can be reduced simultaneously. The applied calibration framework was tailored with focus on improving the spatial pattern performance; however results suggest that the optimization is still more prone to improve the temporal dimension of model performance. This study features a post-calibration linear uncertainty analysis. This allows quantifying parameter identifiability which is the worth of a specific observational dataset to infer values to model parameters through calibration. Furthermore the ability of an observation to reduce predictive uncertainty is assessed as well. Such findings determine concrete implications on the design of model calibration frameworks and, in more general terms, the acquisition of data in hydrological observatories.

  6. A hybrid approach for fusing 4D-MRI temporal information with 3D-CT for the study of lung and lung tumor motion.

    PubMed

    Yang, Y X; Teo, S-K; Van Reeth, E; Tan, C H; Tham, I W K; Poh, C L

    2015-08-01

    Accurate visualization of lung motion is important in many clinical applications, such as radiotherapy of lung cancer. Advancement in imaging modalities [e.g., computed tomography (CT) and MRI] has allowed dynamic imaging of lung and lung tumor motion. However, each imaging modality has its advantages and disadvantages. The study presented in this paper aims at generating synthetic 4D-CT dataset for lung cancer patients by combining both continuous three-dimensional (3D) motion captured by 4D-MRI and the high spatial resolution captured by CT using the authors' proposed approach. A novel hybrid approach based on deformable image registration (DIR) and finite element method simulation was developed to fuse a static 3D-CT volume (acquired under breath-hold) and the 3D motion information extracted from 4D-MRI dataset, creating a synthetic 4D-CT dataset. The study focuses on imaging of lung and lung tumor. Comparing the synthetic 4D-CT dataset with the acquired 4D-CT dataset of six lung cancer patients based on 420 landmarks, accurate results (average error <2 mm) were achieved using the authors' proposed approach. Their hybrid approach achieved a 40% error reduction (based on landmarks assessment) over using only DIR techniques. The synthetic 4D-CT dataset generated has high spatial resolution, has excellent lung details, and is able to show movement of lung and lung tumor over multiple breathing cycles.

  7. GIEMS-D3: A new long-term, dynamical, high-spatial resolution inundation extent dataset at global scale

    NASA Astrophysics Data System (ADS)

    Aires, Filipe; Miolane, Léo; Prigent, Catherine; Pham Duc, Binh; Papa, Fabrice; Fluet-Chouinard, Etienne; Lehner, Bernhard

    2017-04-01

    The Global Inundation Extent from Multi-Satellites (GIEMS) provides multi-year monthly variations of the global surface water extent at 25kmx25km resolution. It is derived from multiple satellite observations. Its spatial resolution is usually compatible with climate model outputs and with global land surface model grids but is clearly not adequate for local applications that require the characterization of small individual water bodies. There is today a strong demand for high-resolution inundation extent datasets, for a large variety of applications such as water management, regional hydrological modeling, or for the analysis of mosquitos-related diseases. A new procedure is introduced to downscale the GIEMS low spatial resolution inundations to a 3 arc second (90 m) dataset. The methodology is based on topography and hydrography information from the HydroSHEDS database. A new floodability index is adopted and an innovative smoothing procedure is developed to ensure the smooth transition, in the high-resolution maps, between the low-resolution boxes from GIEMS. Topography information is relevant for natural hydrology environments controlled by elevation, but is more limited in human-modified basins. However, the proposed downscaling approach is compatible with forthcoming fusion with other more pertinent satellite information in these difficult regions. The resulting GIEMS-D3 database is the only high spatial resolution inundation database available globally at the monthly time scale over the 1993-2007 period. GIEMS-D3 is assessed by analyzing its spatial and temporal variability, and evaluated by comparisons to other independent satellite observations from visible (Google Earth and Landsat), infrared (MODIS) and active microwave (SAR).

  8. Spatial distribution, sampling precision and survey design optimisation with non-normal variables: The case of anchovy (Engraulis encrasicolus) recruitment in Spanish Mediterranean waters

    NASA Astrophysics Data System (ADS)

    Tugores, M. Pilar; Iglesias, Magdalena; Oñate, Dolores; Miquel, Joan

    2016-02-01

    In the Mediterranean Sea, the European anchovy (Engraulis encrasicolus) displays a key role in ecological and economical terms. Ensuring stock sustainability requires the provision of crucial information, such as species spatial distribution or unbiased abundance and precision estimates, so that management strategies can be defined (e.g. fishing quotas, temporal closure areas or marine protected areas MPA). Furthermore, the estimation of the precision of global abundance at different sampling intensities can be used for survey design optimisation. Geostatistics provide a priori unbiased estimations of the spatial structure, global abundance and precision for autocorrelated data. However, their application to non-Gaussian data introduces difficulties in the analysis in conjunction with low robustness or unbiasedness. The present study applied intrinsic geostatistics in two dimensions in order to (i) analyse the spatial distribution of anchovy in Spanish Western Mediterranean waters during the species' recruitment season, (ii) produce distribution maps, (iii) estimate global abundance and its precision, (iv) analyse the effect of changing the sampling intensity on the precision of global abundance estimates and, (v) evaluate the effects of several methodological options on the robustness of all the analysed parameters. The results suggested that while the spatial structure was usually non-robust to the tested methodological options when working with the original dataset, it became more robust for the transformed datasets (especially for the log-backtransformed dataset). The global abundance was always highly robust and the global precision was highly or moderately robust to most of the methodological options, except for data transformation.

  9. Stability of Spatial Distributions of Stink Bugs, Boll Injury, and NDVI in Cotton.

    PubMed

    Reay-Jones, Francis P F; Greene, Jeremy K; Bauer, Philip J

    2016-10-01

    A 3-yr study was conducted to determine the degree of aggregation of stink bugs and boll injury in cotton, Gossypium hirsutum L., and their spatial association with a multispectral vegetation index (normalized difference vegetation index [NDVI]). Using the spatial analysis by distance indices analyses, stink bugs were less frequently aggregated (17% for adults and 4% for nymphs) than boll injury (36%). NDVI values were also significantly aggregated within fields in 19 of 48 analyses (40%), with the majority of significant indices occurring in July and August. Paired NDVI datasets from different sampling dates were frequently associated (86.5% for weekly intervals among datasets). Spatial distributions of both stink bugs and boll injury were less stable than for NDVI, with positive associations varying from 12.5 to 25% for adult stink bugs for weekly intervals, depending on species. Spatial distributions of boll injury from stink bug feeding were more stable than stink bugs, with 46% positive associations among paired datasets with weekly intervals. NDVI values were positively associated with boll injury from stink bug feeding in 11 out of 22 analyses, with no significant negative associations. This indicates that NDVI has potential as a component of site-specific management. Future work should continue to examine the value of remote sensing for insect management in cotton, with an aim to develop tools such as risk assessment maps that will help growers to reduce insecticide inputs. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. GeoPAT: A toolbox for pattern-based information retrieval from large geospatial databases

    NASA Astrophysics Data System (ADS)

    Jasiewicz, Jarosław; Netzel, Paweł; Stepinski, Tomasz

    2015-07-01

    Geospatial Pattern Analysis Toolbox (GeoPAT) is a collection of GRASS GIS modules for carrying out pattern-based geospatial analysis of images and other spatial datasets. The need for pattern-based analysis arises when images/rasters contain rich spatial information either because of their very high resolution or their very large spatial extent. Elementary units of pattern-based analysis are scenes - patches of surface consisting of a complex arrangement of individual pixels (patterns). GeoPAT modules implement popular GIS algorithms, such as query, overlay, and segmentation, to operate on the grid of scenes. To achieve these capabilities GeoPAT includes a library of scene signatures - compact numerical descriptors of patterns, and a library of distance functions - providing numerical means of assessing dissimilarity between scenes. Ancillary GeoPAT modules use these functions to construct a grid of scenes or to assign signatures to individual scenes having regular or irregular geometries. Thus GeoPAT combines knowledge retrieval from patterns with mapping tasks within a single integrated GIS environment. GeoPAT is designed to identify and analyze complex, highly generalized classes in spatial datasets. Examples include distinguishing between different styles of urban settlements using VHR images, delineating different landscape types in land cover maps, and mapping physiographic units from DEM. The concept of pattern-based spatial analysis is explained and the roles of all modules and functions are described. A case study example pertaining to delineation of landscape types in a subregion of NLCD is given. Performance evaluation is included to highlight GeoPAT's applicability to very large datasets. The GeoPAT toolbox is available for download from

  11. Somatosensory spatial attention modulates amplitudes, latencies, and latency jitter of laser-evoked brain potentials.

    PubMed

    Franz, Marcel; Nickel, Moritz M; Ritter, Alexander; Miltner, Wolfgang H R; Weiss, Thomas

    2015-04-01

    Several studies provided evidence that the amplitudes of laser-evoked potentials (LEPs) are modulated by attention. However, previous reports were based on across-trial averaging of LEP responses at the expense of losing information about intertrial variability related to attentional modulation. The aim of this study was to investigate the effects of somatosensory spatial attention on single-trial parameters (i.e., amplitudes, latencies, and latency jitter) of LEP components (N2 and P2). Twelve subjects participated in a sustained spatial attention paradigm while noxious laser stimuli (left hand) and noxious electrical stimuli (right hand) were sequentially delivered to the dorsum of the respective hand with nonnoxious air puffs randomly interspersed within the sequence of noxious stimuli. Participants were instructed to mentally count all stimuli (i.e., noxious and nonnoxious) applied to the attended location. Laser stimuli, presented to the attended hand (ALS), elicited larger single-trial amplitudes of the N2 component compared with unattended laser stimuli (ULS). In contrast, single-trial amplitudes of the P2 component were not significantly affected by spatial attention. Single-trial latencies of the N2 and P2 were significantly smaller for ALS vs. ULS. Additionally, the across-trial latency jitter of the N2 component was reduced for ALS. Conversely, the latency jitter of the P2 component was smaller for ULS compared with ALS. With the use of single-trial analysis, the study provided new insights into brain dynamics of LEPs related to spatial attention. Our results indicate that single-trial parameters of LEP components are differentially modulated by spatial attention. Copyright © 2015 the American Physiological Society.

  12. More outcomes than trials: a call for consistent data collection across stroke rehabilitation trials.

    PubMed

    Ali, M; English, C; Bernhardt, J; Sunnerhagen, K S; Brady, M

    2013-01-01

    Stroke survivors experience complex combinations of impairments, activity limitations, and participation restrictions. The essential components of stroke rehabilitation remain elusive. Determining efficacy in randomized controlled trials (RCTs) is challenging; there is no commonly agreed primary outcome measure for rehabilitation trials. Clinical guidelines depend on proof of efficacy in RCTs and meta-analyses. However, diverse trial aims, differing methods, inconsistent data collection, and use of multiple assessment tools hinder comparability across trials. Consistent data collection in acute stroke trials has facilitated meta-analyses to inform trial design and clinical practice. With few exceptions, inconsistent data collection has hindered similar progress in stroke rehabilitation research. There is an urgent need for the routine collection of a core dataset of common variables in rehabilitation trials. The European Stroke Organisation Outcomes Working Group, the National Institutes of Neurological Disorders and Stroke Common Data Elements project, and the Collaborative Stroke Audit and Research project have called for consistency in data collection in stroke trials. Standardizing data collection can decrease study start up times, facilitate data sharing, and inform clinical guidelines. Although achieving consensus on which outcome measures to use in stroke rehabilitation trials is a considerable task, perhaps a feasible starting point is to achieve consistency in the collection of data on demography, stroke severity, and stroke onset to inclusion times. Longer term goals could include the development of a consensus process to establish the core dataset. This should be endorsed by researchers, funders, and journal editors in order to facilitate sustainable change. © 2012 The Authors. International Journal of Stroke © 2012 World Stroke Organization.

  13. A global wind resource atlas including high-resolution terrain effects

    NASA Astrophysics Data System (ADS)

    Hahmann, Andrea; Badger, Jake; Olsen, Bjarke; Davis, Neil; Larsen, Xiaoli; Badger, Merete

    2015-04-01

    Currently no accurate global wind resource dataset is available to fill the needs of policy makers and strategic energy planners. Evaluating wind resources directly from coarse resolution reanalysis datasets underestimate the true wind energy resource, as the small-scale spatial variability of winds is missing. This missing variability can account for a large part of the local wind resource. Crucially, it is the windiest sites that suffer the largest wind resource errors: in simple terrain the windiest sites may be underestimated by 25%, in complex terrain the underestimate can be as large as 100%. The small-scale spatial variability of winds can be modelled using novel statistical methods and by application of established microscale models within WAsP developed at DTU Wind Energy. We present the framework for a single global methodology, which is relative fast and economical to complete. The method employs reanalysis datasets, which are downscaled to high-resolution wind resource datasets via a so-called generalization step, and microscale modelling using WAsP. This method will create the first global wind atlas (GWA) that covers all land areas (except Antarctica) and 30 km coastal zone over water. Verification of the GWA estimates will be done at carefully selected test regions, against verified estimates from mesoscale modelling and satellite synthetic aperture radar (SAR). This verification exercise will also help in the estimation of the uncertainty of the new wind climate dataset. Uncertainty will be assessed as a function of spatial aggregation. It is expected that the uncertainty at verification sites will be larger than that of dedicated assessments, but the uncertainty will be reduced at levels of aggregation appropriate for energy planning, and importantly much improved relative to what is used today. In this presentation we discuss the methodology used, which includes the generalization of wind climatologies, and the differences in local and spatially aggregated wind resources that result from using different reanalyses in the various verification regions. A prototype web interface for the public access to the data will also be showcased.

  14. Spatial prediction of near surface soil water retention functions using hydrogeophysics and empirical orthogonal functions

    NASA Astrophysics Data System (ADS)

    Gibson, Justin; Franz, Trenton E.

    2018-06-01

    The hydrological community often turns to widely available spatial datasets such as the NRCS Soil Survey Geographic database (SSURGO) to characterize the spatial variability of soil properties. When used to spatially characterize and parameterize watershed models, this has served as a reasonable first approximation when lacking localized or incomplete soil data. Within agriculture, soil data has been left relatively coarse when compared to numerous other data sources measured. This is because localized soil sampling is both expensive and time intense, thus a need exists in better connecting spatial datasets with ground observations. Given that hydrogeophysics is data-dense, rapid, non-invasive, and relatively easy to adopt, it is a promising technique to help dovetail localized soil sampling with spatially exhaustive datasets. In this work, we utilize two common near surface geophysical methods, cosmic-ray neutron probe and electromagnetic induction, to identify temporally stable spatial patterns of measured geophysical properties in three 65 ha agricultural fields in western Nebraska. This is achieved by repeat geophysical observations of the same study area across a range of wet to dry field conditions in order to evaluate with an empirical orthogonal function. Shallow cores were then extracted within each identified zone and water retention functions were generated in the laboratory. Using EOF patterns as a covariate, we quantify the predictive skill of estimating soil hydraulic properties in areas without measurement using a bootstrap validation analysis. Results indicate that sampling locations informed via repeat hydrogeophysical surveys, required only five cores to reduce the cross-validation root mean squared error by an average of 64% as compared to soil parameters predicted by a commonly used benchmark, SSURGO and ROSETTA. The reduction to five strategically located samples within the 65 ha fields reduces sampling efforts by up to ∼90% as compared to the common practice of soil grid sampling every 1 ha.

  15. Best Linear Unbiased Prediction (BLUP) for regional yield trials: a comparison to additive main effects and multiplicative interaction (AMMI) analysis.

    PubMed

    Piepho, H P

    1994-11-01

    Multilocation trials are often used to analyse the adaptability of genotypes in different environments and to find for each environment the genotype that is best adapted; i.e. that is highest yielding in that environment. For this purpose, it is of interest to obtain a reliable estimate of the mean yield of a cultivar in a given environment. This article compares two different statistical estimation procedures for this task: the Additive Main Effects and Multiplicative Interaction (AMMI) analysis and Best Linear Unbiased Prediction (BLUP). A modification of a cross validation procedure commonly used with AMMI is suggested for trials that are laid out as a randomized complete block design. The use of these procedure is exemplified using five faba bean datasets from German registration trails. BLUP was found to outperform AMMI in four of five faba bean datasets.

  16. Microarray Data Mining for Potential Selenium Targets in Chemoprevention of Prostate Cancer

    PubMed Central

    ZHANG, HAITAO; DONG, YAN; ZHAO, HONGJUAN; BROOKS, JAMES D.; HAWTHORN, LESLEYANN; NOWAK, NORMA; MARSHALL, JAMES R.; GAO, ALLEN C.; IP, CLEMENT

    2008-01-01

    Background A previous clinical trial showed that selenium supplementation significantly reduced the incidence of prostate cancer. We report here a bioinformatics approach to gain new insights into selenium molecular targets that might be relevant to prostate cancer chemoprevention. Materials and Methods We first performed data mining analysis to identify genes which are consistently dysregulated in prostate cancer using published datasets from gene expression profiling of clinical prostate specimens. We then devised a method to systematically analyze three selenium microarray datasets from the LNCaP human prostate cancer cells, and to match the analysis to the cohort of genes implicated in prostate carcinogenesis. Moreover, we compared the selenium datasets with two datasets obtained from expression profiling of androgen-stimulated LNCaP cells. Results We found that selenium reverses the expression of genes implicated in prostate carcinogenesis. In addition, we found that selenium could counteract the effect of androgen on the expression of a subset obtained from androgen-regulated genes. Conclusions The above information provides us with a treasure of new clues to investigate the mechanism of selenium chemoprevention of prostate cancer. Furthermore, these selenium target genes could also serve as biomarkers in future clinical trials to gauge the efficacy of selenium intervention. PMID:18548127

  17. Long-term records of global radiation, carbon and water fluxes derived from multi-satellite data and a process-based model

    NASA Astrophysics Data System (ADS)

    Ryu, Youngryel; Jiang, Chongya

    2016-04-01

    To gain insights about the underlying impacts of global climate change on terrestrial ecosystem fluxes, we present a long-term (1982-2015) global radiation, carbon and water fluxes products by integrating multi-satellite data with a process-based model, the Breathing Earth System Simulator (BESS). BESS is a coupled processed model that integrates radiative transfer in the atmosphere and canopy, photosynthesis (GPP), and evapotranspiration (ET). BESS was designed most sensitive to the variables that can be quantified reliably, fully taking advantages of remote sensing atmospheric and land products. Originally, BESS entirely relied on MODIS as input variables to produce global GPP and ET during the MODIS era. This study extends the work to provide a series of long-term products from 1982 to 2015 by incorporating AVHRR data. In addition to GPP and ET, more land surface processes related datasets are mapped to facilitate the discovery of the ecological variations and changes. The CLARA-A1 cloud property datasets, the TOMS aerosol datasets, along with the GLASS land surface albedo datasets, were input to a look-up table derived from an atmospheric radiative transfer model to produce direct and diffuse components of visible and near infrared radiation datasets. Theses radiation components together with the LAI3g datasets and the GLASS land surface albedo datasets, were used to calculate absorbed radiation through a clumping corrected two-stream canopy radiative transfer model. ECMWF ERA interim air temperature data were downscaled by using ALP-II land surface temperature dataset and a region-dependent regression model. The spatial and seasonal variations of CO2 concentration were accounted by OCO-2 datasets, whereas NOAA's global CO2 growth rates data were used to describe interannual variations. All these remote sensing based datasets are used to run the BESS. Daily fluxes in 1/12 degree were computed and then aggregated to half-month interval to match with the spatial-temporal resolution of LAI3g dataset. The BESS GPP and ET products were compared to other independent datasets including MPI-BGC and CLM. Overall, the BESS products show good agreement with the other two datasets, indicating a compelling potential for bridging remote sensing and land surface models.

  18. A framework for mapping tree species combining hyperspectral and LiDAR data: Role of selected classifiers and sensor across three spatial scales

    NASA Astrophysics Data System (ADS)

    Ghosh, Aniruddha; Fassnacht, Fabian Ewald; Joshi, P. K.; Koch, Barbara

    2014-02-01

    Knowledge of tree species distribution is important worldwide for sustainable forest management and resource evaluation. The accuracy and information content of species maps produced using remote sensing images vary with scale, sensor (optical, microwave, LiDAR), classification algorithm, verification design and natural conditions like tree age, forest structure and density. Imaging spectroscopy reduces the inaccuracies making use of the detailed spectral response. However, the scale effect still has a strong influence and cannot be neglected. This study aims to bridge the knowledge gap in understanding the scale effect in imaging spectroscopy when moving from 4 to 30 m pixel size for tree species mapping, keeping in mind that most current and future hyperspectral satellite based sensors work with spatial resolution around 30 m or more. Two airborne (HyMAP) and one spaceborne (Hyperion) imaging spectroscopy dataset with pixel sizes of 4, 8 and 30 m, respectively were available to examine the effect of scale over a central European forest. The forest under examination is a typical managed forest with relatively homogenous stands featuring mostly two canopy layers. Normalized digital surface model (nDSM) derived from LiDAR data was used additionally to examine the effect of height information in tree species mapping. Six different sets of predictor variables (reflectance value of all bands, selected components of a Minimum Noise Fraction (MNF), Vegetation Indices (VI) and each of these sets combined with LiDAR derived height) were explored at each scale. Supervised kernel based (Support Vector Machines) and ensemble based (Random Forest) machine learning algorithms were applied on the dataset to investigate the effect of the classifier. Iterative bootstrap-validation with 100 iterations was performed for classification model building and testing for all the trials. For scale, analysis of overall classification accuracy and kappa values indicated that 8 m spatial resolution (reaching kappa values of over 0.83) slightly outperformed the results obtained from 4 m for the study area and five tree species under examination. The 30 m resolution Hyperion image produced sound results (kappa values of over 0.70), which in some areas of the test site were comparable with the higher spatial resolution imagery when qualitatively assessing the map outputs. Considering input predictor sets, MNF bands performed best at 4 and 8 m resolution. Optical bands were found to be best for 30 m spatial resolution. Classification with MNF as input predictors produced better visual appearance of tree species patches when compared with reference maps. Based on the analysis, it was concluded that there is no significant effect of height information on tree species classification accuracies for the present framework and study area. Furthermore, in the examined cases there was no single best choice among the two classifiers across scales and predictors. It can be concluded that tree species mapping from imaging spectroscopy for forest sites comparable to the one under investigation is possible with reliable accuracies not only from airborne but also from spaceborne imaging spectroscopy datasets.

  19. Automatic three-dimensional registration of intravascular optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Ughi, Giovanni J.; Adriaenssens, Tom; Larsson, Matilda; Dubois, Christophe; Sinnaeve, Peter R.; Coosemans, Mark; Desmet, Walter; D'hooge, Jan

    2012-02-01

    Intravascular optical coherence tomography (IV-OCT) is a catheter-based high-resolution imaging technique able to visualize the inner wall of the coronary arteries and implanted devices in vivo with an axial resolution below 20 μm. IV-OCT is being used in several clinical trials aiming to quantify the vessel response to stent implantation over time. However, stent analysis is currently performed manually and corresponding images taken at different time points are matched through a very labor-intensive and subjective procedure. We present an automated method for the spatial registration of IV-OCT datasets. Stent struts are segmented through consecutive images and three-dimensional models of the stents are created for both datasets to be registered. The two models are initially roughly registered through an automatic initialization procedure and an iterative closest point algorithm is subsequently applied for a more precise registration. To correct for nonuniform rotational distortions (NURDs) and other potential acquisition artifacts, the registration is consecutively refined on a local level. The algorithm was first validated by using an in vitro experimental setup based on a polyvinyl-alcohol gel tubular phantom. Subsequently, an in vivo validation was obtained by exploiting stable vessel landmarks. The mean registration error in vitro was quantified to be 0.14 mm in the longitudinal axis and 7.3-deg mean rotation error. In vivo validation resulted in 0.23 mm in the longitudinal axis and 10.1-deg rotation error. These results indicate that the proposed methodology can be used for automatic registration of in vivo IV-OCT datasets. Such a tool will be indispensable for larger studies on vessel healing pathophysiology and reaction to stent implantation. As such, it will be valuable in testing the performance of new generations of intracoronary devices and new therapeutic drugs.

  20. The Wind Integration National Dataset (WIND) toolkit (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caroline Draxl: NREL

    2014-01-01

    Regional wind integration studies require detailed wind power output data at many locations to perform simulations of how the power system will operate under high penetration scenarios. The wind datasets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as being time synchronized with available load profiles.As described in this presentation, the WIND Toolkit fulfills these requirements by providing a state-of-the-art national (US) wind resource, power production and forecast dataset.

  1. DOTAGWA: A CASE STUDY IN WEB-BASED ARCHITECTURES FOR CONNECTING SURFACE WATER MODELS TO SPATIALLY ENABLED WEB APPLICATIONS

    EPA Science Inventory

    The Automated Geospatial Watershed Assessment (AGWA) tool is a desktop application that uses widely available standardized spatial datasets to derive inputs for multi-scale hydrologic models (Miller et al., 2007). The required data sets include topography (DEM data), soils, clima...

  2. Variability of Upper-Tropospheric Precipitable from Satellite and Model Reanalysis Datasets

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Iwai, Hisaki

    1999-01-01

    Numerous datasets have been used to quantify water vapor and its variability in the upper-troposphere from satellite and model reanalysis data. These investigations have shown some usefulness in monitoring seasonal and inter-annual variations in moisture either globally, with polar orbiting satellite data or global model output analysis, or regionally, with the higher spatial and temporal resolution geostationary measurements. The datasets are not without limitations, however, due to coverage or limited temporal sampling, and may also contain bias in their representation of moisture processes. The research presented in this conference paper inter-compares the NVAP, NCEP/NCAR and DAO reanalysis models, and GOES satellite measurements of upper-tropospheric,precipitable water for the period from 1988-1994. This period captures several dramatic swings in climate events associated with ENSO events. The data are evaluated for temporal and spatial continuity, inter-compared to assess reliability and potential bias, and analyzed in light of expected trends due to changes in precipitation and synoptic-scale weather features. This work is the follow-on to previous research which evaluated total precipitable water over the same period. The relationship between total and upper-level precipitable water in the datasets will be discussed as well.

  3. Spatial Query for Planetary Data

    NASA Technical Reports Server (NTRS)

    Shams, Khawaja S.; Crockett, Thomas M.; Powell, Mark W.; Joswig, Joseph C.; Fox, Jason M.

    2011-01-01

    Science investigators need to quickly and effectively assess past observations of specific locations on a planetary surface. This innovation involves a location-based search technology that was adapted and applied to planetary science data to support a spatial query capability for mission operations software. High-performance location-based searching requires the use of spatial data structures for database organization. Spatial data structures are designed to organize datasets based on their coordinates in a way that is optimized for location-based retrieval. The particular spatial data structure that was adapted for planetary data search is the R+ tree.

  4. Validation of the DIFFAL, HPAC and HotSpot Dispersion Models Using the Full-Scale Radiological Dispersal Device (FSRDD) Field Trials Witness Plate Deposition Dataset.

    PubMed

    Purves, Murray; Parkes, David

    2016-05-01

    Three atmospheric dispersion models--DIFFAL, HPAC, and HotSpot--of differing complexities have been validated against the witness plate deposition dataset taken during the Full-Scale Radiological Dispersal Device (FSRDD) Field Trials. The small-scale nature of these trials in comparison to many other historical radiological dispersion trials provides a unique opportunity to evaluate the near-field performance of the models considered. This paper performs validation of these models using two graphical methods of comparison: deposition contour plots and hotline profile graphs. All of the models tested are assessed to perform well, especially considering that previous model developments and validations have been focused on larger-scale scenarios. Of the models, HPAC generally produced the most accurate results, especially at locations within ∼100 m of GZ. Features present within the observed data, such as hot spots, were not well modeled by any of the codes considered. Additionally, it was found that an increase in the complexity of the meteorological data input to the models did not necessarily lead to an improvement in model accuracy; this is potentially due to the small-scale nature of the trials.

  5. GUDM: Automatic Generation of Unified Datasets for Learning and Reasoning in Healthcare.

    PubMed

    Ali, Rahman; Siddiqi, Muhammad Hameed; Idris, Muhammad; Ali, Taqdir; Hussain, Shujaat; Huh, Eui-Nam; Kang, Byeong Ho; Lee, Sungyoung

    2015-07-02

    A wide array of biomedical data are generated and made available to healthcare experts. However, due to the diverse nature of data, it is difficult to predict outcomes from it. It is therefore necessary to combine these diverse data sources into a single unified dataset. This paper proposes a global unified data model (GUDM) to provide a global unified data structure for all data sources and generate a unified dataset by a "data modeler" tool. The proposed tool implements user-centric priority based approach which can easily resolve the problems of unified data modeling and overlapping attributes across multiple datasets. The tool is illustrated using sample diabetes mellitus data. The diverse data sources to generate the unified dataset for diabetes mellitus include clinical trial information, a social media interaction dataset and physical activity data collected using different sensors. To realize the significance of the unified dataset, we adopted a well-known rough set theory based rules creation process to create rules from the unified dataset. The evaluation of the tool on six different sets of locally created diverse datasets shows that the tool, on average, reduces 94.1% time efforts of the experts and knowledge engineer while creating unified datasets.

  6. GUDM: Automatic Generation of Unified Datasets for Learning and Reasoning in Healthcare

    PubMed Central

    Ali, Rahman; Siddiqi, Muhammad Hameed; Idris, Muhammad; Ali, Taqdir; Hussain, Shujaat; Huh, Eui-Nam; Kang, Byeong Ho; Lee, Sungyoung

    2015-01-01

    A wide array of biomedical data are generated and made available to healthcare experts. However, due to the diverse nature of data, it is difficult to predict outcomes from it. It is therefore necessary to combine these diverse data sources into a single unified dataset. This paper proposes a global unified data model (GUDM) to provide a global unified data structure for all data sources and generate a unified dataset by a “data modeler” tool. The proposed tool implements user-centric priority based approach which can easily resolve the problems of unified data modeling and overlapping attributes across multiple datasets. The tool is illustrated using sample diabetes mellitus data. The diverse data sources to generate the unified dataset for diabetes mellitus include clinical trial information, a social media interaction dataset and physical activity data collected using different sensors. To realize the significance of the unified dataset, we adopted a well-known rough set theory based rules creation process to create rules from the unified dataset. The evaluation of the tool on six different sets of locally created diverse datasets shows that the tool, on average, reduces 94.1% time efforts of the experts and knowledge engineer while creating unified datasets. PMID:26147731

  7. Development of a stationary digital breast tomosynthesis system for clinical applications

    NASA Astrophysics Data System (ADS)

    Tucker, Andrew Wallace

    Digital breast tomosynthesis (DBT) has been shown to be a very beneficial tool in the fight against breast cancer. However, current DBT systems have poor spatial resolution compared to full field digital mammography (FFDM), the current gold standard for screening mammography. The poor spatial resolution of DBT systems is a result of the single X-ray source design. In DBT systems a single X-ray source is rotated over an angular span in order to acquire the images needed for 3D reconstruction. The rotation of the X-ray source degrades the spatial resolution of the images. DBT systems which are approved for use in the United States for screening mammography are required to also take a full field digital mammogram with every DBT acquisition in order to compensate for the poor spatial resolution. This double exposure essentially doubles the radiation dose to patients. Over the past few years our research group has developed a carbon nanotube (CNT) based X-ray source technology. The unique nature of CNT X-ray sources allows for multiple X-ray focal spots in a single X-ray source. Using this technology we have recently developed a stationary DBT system (s-DBT) system which is capable of producing a full tomosynthesis image dataset with zero motion of the X-ray source. This system has been shown to have increased spatial resolution over other DBT systems in a laboratory setting. The goal of this thesis work was to optimize the s-DBT system, demonstrate its usefulness over other systems, and finally implement it into the clinic for a clinical trial. The s-DBT system was optimized using different image quality measurements. The optimized system was then used in a breast specimen imaging trial which compared s-DBT to magnified 2D mammography and a conventional single source DBT system. Readers preferred s-DBT to magnified 2D mammography for specimen margin delineation and mass detection, these results were not significant. Using physical measures for spatial resolution the s-DBT system was shown to have improved image quality over conventional single source DBT systems in breast tissue. A separate study showed that s-DBT could be a feasible alternative to FFDM for screening patients with breast implants. Finally, a second s-DBT system was constructed and implemented into the Department of Mammography at UNC hospitals. The first patient was imaged on the system in December of 2013.

  8. Modelling land cover change in the Ganga basin

    NASA Astrophysics Data System (ADS)

    Moulds, S.; Tsarouchi, G.; Mijic, A.; Buytaert, W.

    2013-12-01

    Over recent decades the green revolution in India has driven substantial environmental change. Modelling experiments have identified northern India as a 'hot spot' of land-atmosphere coupling strength during the boreal summer. However, there is a wide range of sensitivity of atmospheric variables to soil moisture between individual climate models. The lack of a comprehensive land cover change dataset to force climate models has been identified as a major contributor to model uncertainty. In this work a time series dataset of land cover change between 1970 and 2010 is constructed for northern India to improve the quantification of regional hydrometeorological feedbacks. The MODIS instrument on board the Aqua and Terra satellites provides near-continuous remotely sensed datasets from 2000 to the present day. However, the quality of satellite products before 2000 is poor. To complete the dataset MODIS images are extrapolated back in time using the Conversion of Land Use and its Effects at small regional extent (CLUE-s) modelling framework. Non-spatial estimates of land cover area from national agriculture and forest statistics, available on a state-wise, annual basis, are used as a direct model input. Land cover change is allocated spatially as a function of biophysical and socioeconomic drivers identified using logistic regression. This dataset will provide an essential input to a high resolution, physically based land surface model to generate the lower boundary condition to assess the impact of land cover change on regional climate.

  9. Analysis of the precipitation and streamflow extremes in Northern Italy using high resolution reanalysis dataset Express-Hydro

    NASA Astrophysics Data System (ADS)

    Silvestro, Francesco; Parodi, Antonio; Campo, Lorenzo

    2017-04-01

    The characterization of the hydrometeorological extremes, both in terms of rainfall and streamflow, in a given region plays a key role in the environmental monitoring provided by the flood alert services. In last years meteorological simulations (both near real-time and historical reanalysis) were available at increasing spatial and temporal resolutions, making possible long-period hydrological reanalysis in which the meteo dataset is used as input in distributed hydrological models. In this work, a very high resolution meteorological reanalysis dataset, namely Express-Hydro (CIMA, ISAC-CNR, GAUSS Special Project PR45DE), was employed as input in the hydrological model Continuum in order to produce long time series of streamflows in the Liguria territory, located in the Northern part of Italy. The original dataset covers the whole Europe territory in the 1979-2008 period, at 4 km of spatial resolution and 3 hours of time resolution. Analyses in terms of comparison between the rainfall estimated by the dataset and the observations (available from the local raingauges network) were carried out, and a bias correction was also performed in order to better match the observed climatology. An extreme analysis was eventually carried on the streamflows time series obtained by the simulations, by comparing them with the results of the same hydrological model fed with the observed time series of rainfall. The results of the analysis are shown and discussed.

  10. Harmonization of Multiple Forest Disturbance Data to Create a 1986-2011 Database for the Conterminous United States

    NASA Astrophysics Data System (ADS)

    Soulard, C. E.; Acevedo, W.; Yang, Z.; Cohen, W. B.; Stehman, S. V.; Taylor, J. L.

    2015-12-01

    A wide range of spatial forest disturbance data exist for the conterminous United States, yet inconsistencies between map products arise because of differing programmatic objectives and methodologies. Researchers on the Land Change Research Project (LCRP) are working to assess spatial agreement, characterize uncertainties, and resolve discrepancies between these national level datasets, in regard to forest disturbance. Disturbance maps from the Global Forest Change (GFC), Landfire Vegetation Disturbance (LVD), National Land Cover Dataset (NLCD), Vegetation Change Tracker (VCT), Web-enabled Landsat Data (WELD), and Monitoring Trends in Burn Severity (MTBS) were harmonized using a pixel-based data fusion process. The harmonization process reconciled forest harvesting, forest fire, and remaining forest disturbance across four intervals (1986-1992, 1992-2001, 2001-2006, and 2006-2011) by relying on convergence of evidence across all datasets available for each interval. Pixels with high agreement across datasets were retained, while moderate-to-low agreement pixels were visually assessed and either manually edited using reference imagery or discarded from the final disturbance map(s). National results show that annual rates of forest harvest and overall fire have increased over the past 25 years. Overall, this study shows that leveraging the best elements of readily-available data improves forest loss monitoring relative to using a single dataset to monitor forest change, particularly by reducing commission errors.

  11. Potential distribution dataset of honeybees in Indian Ocean Islands: Case study of Zanzibar Island.

    PubMed

    Mwalusepo, Sizah; Muli, Eliud; Nkoba, Kiatoko; Nguku, Everlyn; Kilonzo, Joseph; Abdel-Rahman, Elfatih M; Landmann, Tobias; Fakih, Asha; Raina, Suresh

    2017-10-01

    Honeybees ( Apis mellifera ) are principal insect pollinators, whose worldwide distribution and abundance is known to largely depend on climatic conditions. However, the presence records dataset on potential distribution of honeybees in Indian Ocean Islands remain less documented. Presence records in shape format and probability of occurrence of honeybees with different temperature change scenarios is provided in this article across Zanzibar Island. Maximum entropy (Maxent) package was used to analyse the potential distribution of honeybees. The dataset provides information on the current and future distribution of the honey bees in Zanzibar Island. The dataset is of great importance for improving stakeholders understanding of the role of temperature change on the spatial distribution of honeybees.

  12. Effect of xylitol versus sorbitol: a quantitative systematic review of clinical trials.

    PubMed

    Mickenautsch, Steffen; Yengopal, Veerasamy

    2012-08-01

    This study aimed to appraise, within the context of tooth caries, the current clinical evidence and its risk for bias regarding the effects of xylitol in comparison with sorbitol. Databases were searched for clinical trials to 19 March 2011. Inclusion criteria required studies to: test a caries-related primary outcome; compare the effects of xylitol with those of sorbitol; describe a clinical trial with two or more arms, and utilise a prospective study design. Articles were excluded if they did not report computable data or did not follow up test and control groups in the same way. Individual dichotomous and continuous datasets were extracted from accepted articles. Selection and performance/detection bias were assessed. Sensitivity analysis was used to investigate attrition bias. Egger's regression and funnel plotting were used to investigate risk for publication bias. Nine articles were identified. Of these, eight were accepted and one was excluded. Ten continuous and eight dichotomous datasets were extracted. Because of high clinical heterogeneity, no meta-analysis was performed. Most of the datasets favoured xylitol, but this was not consistent. The accepted trials may be limited by selection bias. Results of the sensitivity analysis indicate a high risk for attrition bias. The funnel plot and Egger's regression results suggest a low publication bias risk. External fluoride exposure and stimulated saliva flow may have confounded the measured anticariogenic effect of xylitol. The evidence identified in support of xylitol over sorbitol is contradictory, is at high risk for selection and attrition bias and may be limited by confounder effects. Future high-quality randomised controlled trials are needed to show whether xylitol has a greater anticariogenic effect than sorbitol. © 2012 FDI World Dental Federation.

  13. [Spatial domain display for interference image dataset].

    PubMed

    Wang, Cai-Ling; Li, Yu-Shan; Liu, Xue-Bin; Hu, Bing-Liang; Jing, Juan-Juan; Wen, Jia

    2011-11-01

    The requirements of imaging interferometer visualization is imminent for the user of image interpretation and information extraction. However, the conventional researches on visualization only focus on the spectral image dataset in spectral domain. Hence, the quick show of interference spectral image dataset display is one of the nodes in interference image processing. The conventional visualization of interference dataset chooses classical spectral image dataset display method after Fourier transformation. In the present paper, the problem of quick view of interferometer imager in image domain is addressed and the algorithm is proposed which simplifies the matter. The Fourier transformation is an obstacle since its computation time is very large and the complexion would be even deteriorated with the size of dataset increasing. The algorithm proposed, named interference weighted envelopes, makes the dataset divorced from transformation. The authors choose three interference weighted envelopes respectively based on the Fourier transformation, features of interference data and human visual system. After comparing the proposed with the conventional methods, the results show the huge difference in display time.

  14. Interactions between pre-processing and classification methods for event-related-potential classification: best-practice guidelines for brain-computer interfacing.

    PubMed

    Farquhar, J; Hill, N J

    2013-04-01

    Detecting event related potentials (ERPs) from single trials is critical to the operation of many stimulus-driven brain computer interface (BCI) systems. The low strength of the ERP signal compared to the noise (due to artifacts and BCI irrelevant brain processes) makes this a challenging signal detection problem. Previous work has tended to focus on how best to detect a single ERP type (such as the visual oddball response). However, the underlying ERP detection problem is essentially the same regardless of stimulus modality (e.g., visual or tactile), ERP component (e.g., P300 oddball response, or the error-potential), measurement system or electrode layout. To investigate whether a single ERP detection method might work for a wider range of ERP BCIs we compare detection performance over a large corpus of more than 50 ERP BCI datasets whilst systematically varying the electrode montage, spectral filter, spatial filter and classifier training methods. We identify an interesting interaction between spatial whitening and regularised classification which made detection performance independent of the choice of spectral filter low-pass frequency. Our results show that pipeline consisting of spectral filtering, spatial whitening, and regularised classification gives near maximal performance in all cases. Importantly, this pipeline is simple to implement and completely automatic with no expert feature selection or parameter tuning required. Thus, we recommend this combination as a "best-practice" method for ERP detection problems.

  15. Implementing DOIs for Oceanographic Satellite Data at PO.DAAC

    NASA Astrophysics Data System (ADS)

    Hausman, J.; Tauer, E.; Chung, N.; Chen, C.; Moroni, D. F.

    2013-12-01

    The Physical Oceanographic Distributed Active Archive Center (PO.DAAC) is NASA's archive for physical oceanographic satellite data. It distributes over 500 datasets from gravity, ocean wind, sea surface topography, sea ice, ocean currents, salinity, and sea surface temperature satellite missions. A dataset is a collection of granules/files that share the same mission/project, versioning, processing level, spatial, and temporal characteristics. The large number of datasets is partially due to the number of satellite missions, but mostly because a single satellite mission typically has multiple versions or even temporal and spatial resolutions of data. As a result, a user might mistake one dataset for a different dataset from the same satellite mission. Due to the PO.DAAC'S vast variety and volume of data and growing requirements to report dataset usage, it has begun implementing DOIs for the datasets it archives and distributes. However, this was not as simple as registering a name for a DOI and providing a URL. Before implementing DOIs multiple questions needed to be answered. What are the sponsor and end-user expectations regarding DOIs? At what level does a DOI get assigned (dataset, file/granule)? Do all data get a DOI, or only selected data? How do we create a DOI? How do we create landing pages and manage them? What changes need to be made to the data archive, life cycle policy and web portal to accommodate DOIs? What if the data also exists at another archive and a DOI already exists? How is a DOI included if the data were obtained via a subsetting tool? How does a researcher or author provide a unique, definitive reference (standard citation) for a given dataset? This presentation will discuss how these questions were answered through changes in policy, process, and system design. Implementing DOIs is not a trivial undertaking, but as DOIs are rapidly becoming the de facto approach, it is worth the effort. Researchers have historically referenced the source satellite and data center (or archive), but scientific writings do not typically provide enough detail to point to a singular, uniquely identifiable dataset. DOIs provide the means to help researchers be precise in their data citations and provide needed clarity, standardization and permanence.

  16. Optimizing spatial patterns with sparse filter bands for motor-imagery based brain-computer interface.

    PubMed

    Zhang, Yu; Zhou, Guoxu; Jin, Jing; Wang, Xingyu; Cichocki, Andrzej

    2015-11-30

    Common spatial pattern (CSP) has been most popularly applied to motor-imagery (MI) feature extraction for classification in brain-computer interface (BCI) application. Successful application of CSP depends on the filter band selection to a large degree. However, the most proper band is typically subject-specific and can hardly be determined manually. This study proposes a sparse filter band common spatial pattern (SFBCSP) for optimizing the spatial patterns. SFBCSP estimates CSP features on multiple signals that are filtered from raw EEG data at a set of overlapping bands. The filter bands that result in significant CSP features are then selected in a supervised way by exploiting sparse regression. A support vector machine (SVM) is implemented on the selected features for MI classification. Two public EEG datasets (BCI Competition III dataset IVa and BCI Competition IV IIb) are used to validate the proposed SFBCSP method. Experimental results demonstrate that SFBCSP help improve the classification performance of MI. The optimized spatial patterns by SFBCSP give overall better MI classification accuracy in comparison with several competing methods. The proposed SFBCSP is a potential method for improving the performance of MI-based BCI. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Communicating and Evaluating the Causes of Seismicity in Oklahoma Using ArcGIS Online Story Map Web Applications

    NASA Astrophysics Data System (ADS)

    Justman, D.; Rose, K.; Bauer, J. R.; Miller, R., III; Vasylkivska, V.; Romeo, L.

    2016-12-01

    ArcGIS Online story maps allows users to communicate complex topics with geospatially enabled stories. This story map web application entitled "Evaluating the Mysteries of Seismicity in Oklahoma" has been employed as part of a broader research effort investigating the relationships between spatiotemporal systems and seismicity to understand the recent increase in seismicity by reviewing literature, exploring, and performing analyses on key datasets. It offers information about the unprecedented increase in seismic events since 2008, earthquake history, the risk to the population, physical mechanisms behind earthquakes, natural and anthropogenic earthquake factors, and individual & cumulative spatial extents of these factors. The cumulative spatial extents for natural, anthropogenic, and all combined earthquake factors were determined using the Cumulative Spatial Impact Layers (CSILs) tool developed at the National Energy Technology Laboratory (NETL). Results show positive correlations between the average number of influences (datasets related to individual factors) and the number of earthquakes for every 100 square mile grid cell in Oklahoma, along with interesting spatial correlations for the individual & cumulative spatial extents of these factors when overlaid with earthquake density and a hotspot analysis for earthquake magnitude from 2010 to 2015.

  18. Scaling identity connects human mobility and social interactions.

    PubMed

    Deville, Pierre; Song, Chaoming; Eagle, Nathan; Blondel, Vincent D; Barabási, Albert-László; Wang, Dashun

    2016-06-28

    Massive datasets that capture human movements and social interactions have catalyzed rapid advances in our quantitative understanding of human behavior during the past years. One important aspect affecting both areas is the critical role space plays. Indeed, growing evidence suggests both our movements and communication patterns are associated with spatial costs that follow reproducible scaling laws, each characterized by its specific critical exponents. Although human mobility and social networks develop concomitantly as two prolific yet largely separated fields, we lack any known relationships between the critical exponents explored by them, despite the fact that they often study the same datasets. Here, by exploiting three different mobile phone datasets that capture simultaneously these two aspects, we discovered a new scaling relationship, mediated by a universal flux distribution, which links the critical exponents characterizing the spatial dependencies in human mobility and social networks. Therefore, the widely studied scaling laws uncovered in these two areas are not independent but connected through a deeper underlying reality.

  19. Integrated web system of geospatial data services for climate research

    NASA Astrophysics Data System (ADS)

    Okladnikov, Igor; Gordov, Evgeny; Titov, Alexander

    2016-04-01

    Georeferenced datasets are currently actively used for modeling, interpretation and forecasting of climatic and ecosystem changes on different spatial and temporal scales. Due to inherent heterogeneity of environmental datasets as well as their huge size (up to tens terabytes for a single dataset) a special software supporting studies in the climate and environmental change areas is required. An approach for integrated analysis of georefernced climatological data sets based on combination of web and GIS technologies in the framework of spatial data infrastructure paradigm is presented. According to this approach a dedicated data-processing web system for integrated analysis of heterogeneous georeferenced climatological and meteorological data is being developed. It is based on Open Geospatial Consortium (OGC) standards and involves many modern solutions such as object-oriented programming model, modular composition, and JavaScript libraries based on GeoExt library, ExtJS Framework and OpenLayers software. This work is supported by the Ministry of Education and Science of the Russian Federation, Agreement #14.613.21.0037.

  20. Impact of Land Cover Characterization and Properties on Snow Albedo in Climate Models

    NASA Astrophysics Data System (ADS)

    Wang, L.; Bartlett, P. A.; Chan, E.; Montesano, P.

    2017-12-01

    The simulation of winter albedo in boreal and northern environments has been a particular challenge for land surface modellers. Assessments of output from CMIP3 and CMIP5 climate models have revealed that many simulations are characterized by overestimation of albedo in the boreal forest. Recent studies suggest that inaccurate representation of vegetation distribution, improper simulation of leaf area index, and poor treatment of canopy-snow processes are the primary causes of albedo errors. While several land cover datasets are commonly used to derive plant functional types (PFT) for use in climate models, new land cover and vegetation datasets with higher spatial resolution have become available in recent years. In this study, we compare the spatial distribution of the dominant PFTs and canopy cover fractions based on different land cover datasets, and present results from offline simulations of the latest version Canadian Land Surface Scheme (CLASS) over the northern Hemisphere land. We discuss the impact of land cover representation and surface properties on winter albedo simulations in climate models.

  1. Scaling identity connects human mobility and social interactions

    PubMed Central

    Deville, Pierre; Song, Chaoming; Eagle, Nathan; Blondel, Vincent D.; Barabási, Albert-László; Wang, Dashun

    2016-01-01

    Massive datasets that capture human movements and social interactions have catalyzed rapid advances in our quantitative understanding of human behavior during the past years. One important aspect affecting both areas is the critical role space plays. Indeed, growing evidence suggests both our movements and communication patterns are associated with spatial costs that follow reproducible scaling laws, each characterized by its specific critical exponents. Although human mobility and social networks develop concomitantly as two prolific yet largely separated fields, we lack any known relationships between the critical exponents explored by them, despite the fact that they often study the same datasets. Here, by exploiting three different mobile phone datasets that capture simultaneously these two aspects, we discovered a new scaling relationship, mediated by a universal flux distribution, which links the critical exponents characterizing the spatial dependencies in human mobility and social networks. Therefore, the widely studied scaling laws uncovered in these two areas are not independent but connected through a deeper underlying reality. PMID:27274050

  2. A hybrid approach for fusing 4D-MRI temporal information with 3D-CT for the study of lung and lung tumor motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Y. X.; Van Reeth, E.; Poh, C. L., E-mail: clpoh@ntu.edu.sg

    2015-08-15

    Purpose: Accurate visualization of lung motion is important in many clinical applications, such as radiotherapy of lung cancer. Advancement in imaging modalities [e.g., computed tomography (CT) and MRI] has allowed dynamic imaging of lung and lung tumor motion. However, each imaging modality has its advantages and disadvantages. The study presented in this paper aims at generating synthetic 4D-CT dataset for lung cancer patients by combining both continuous three-dimensional (3D) motion captured by 4D-MRI and the high spatial resolution captured by CT using the authors’ proposed approach. Methods: A novel hybrid approach based on deformable image registration (DIR) and finite elementmore » method simulation was developed to fuse a static 3D-CT volume (acquired under breath-hold) and the 3D motion information extracted from 4D-MRI dataset, creating a synthetic 4D-CT dataset. Results: The study focuses on imaging of lung and lung tumor. Comparing the synthetic 4D-CT dataset with the acquired 4D-CT dataset of six lung cancer patients based on 420 landmarks, accurate results (average error <2 mm) were achieved using the authors’ proposed approach. Their hybrid approach achieved a 40% error reduction (based on landmarks assessment) over using only DIR techniques. Conclusions: The synthetic 4D-CT dataset generated has high spatial resolution, has excellent lung details, and is able to show movement of lung and lung tumor over multiple breathing cycles.« less

  3. A framework for automatic creation of gold-standard rigid 3D-2D registration datasets.

    PubMed

    Madan, Hennadii; Pernuš, Franjo; Likar, Boštjan; Špiclin, Žiga

    2017-02-01

    Advanced image-guided medical procedures incorporate 2D intra-interventional information into pre-interventional 3D image and plan of the procedure through 3D/2D image registration (32R). To enter clinical use, and even for publication purposes, novel and existing 32R methods have to be rigorously validated. The performance of a 32R method can be estimated by comparing it to an accurate reference or gold standard method (usually based on fiducial markers) on the same set of images (gold standard dataset). Objective validation and comparison of methods are possible only if evaluation methodology is standardized, and the gold standard  dataset is made publicly available. Currently, very few such datasets exist and only one contains images of multiple patients acquired during a procedure. To encourage the creation of gold standard 32R datasets, we propose an automatic framework. The framework is based on rigid registration of fiducial markers. The main novelty is spatial grouping of fiducial markers on the carrier device, which enables automatic marker localization and identification across the 3D and 2D images. The proposed framework was demonstrated on clinical angiograms of 20 patients. Rigid 32R computed by the framework was more accurate than that obtained manually, with the respective target registration error below 0.027 mm compared to 0.040 mm. The framework is applicable for gold standard setup on any rigid anatomy, provided that the acquired images contain spatially grouped fiducial markers. The gold standard datasets and software will be made publicly available.

  4. Identifying spatially similar gene expression patterns in early stage fruit fly embryo images: binary feature versus invariant moment digital representations

    PubMed Central

    Gurunathan, Rajalakshmi; Van Emden, Bernard; Panchanathan, Sethuraman; Kumar, Sudhir

    2004-01-01

    Background Modern developmental biology relies heavily on the analysis of embryonic gene expression patterns. Investigators manually inspect hundreds or thousands of expression patterns to identify those that are spatially similar and to ultimately infer potential gene interactions. However, the rapid accumulation of gene expression pattern data over the last two decades, facilitated by high-throughput techniques, has produced a need for the development of efficient approaches for direct comparison of images, rather than their textual descriptions, to identify spatially similar expression patterns. Results The effectiveness of the Binary Feature Vector (BFV) and Invariant Moment Vector (IMV) based digital representations of the gene expression patterns in finding biologically meaningful patterns was compared for a small (226 images) and a large (1819 images) dataset. For each dataset, an ordered list of images, with respect to a query image, was generated to identify overlapping and similar gene expression patterns, in a manner comparable to what a developmental biologist might do. The results showed that the BFV representation consistently outperforms the IMV representation in finding biologically meaningful matches when spatial overlap of the gene expression pattern and the genes involved are considered. Furthermore, we explored the value of conducting image-content based searches in a dataset where individual expression components (or domains) of multi-domain expression patterns were also included separately. We found that this technique improves performance of both IMV and BFV based searches. Conclusions We conclude that the BFV representation consistently produces a more extensive and better list of biologically useful patterns than the IMV representation. The high quality of results obtained scales well as the search database becomes larger, which encourages efforts to build automated image query and retrieval systems for spatial gene expression patterns. PMID:15603586

  5. Improvement in the accuracy of back trajectories using WRF to identify pollen sources in southern Iberian Peninsula.

    PubMed

    Hernández-Ceballos, M A; Skjøth, C A; García-Mozo, H; Bolívar, J P; Galán, C

    2014-12-01

    Airborne pollen transport at micro-, meso-gamma and meso-beta scales must be studied by atmospheric models, having special relevance in complex terrain. In these cases, the accuracy of these models is mainly determined by the spatial resolution of the underlying meteorological dataset. This work examines how meteorological datasets determine the results obtained from atmospheric transport models used to describe pollen transport in the atmosphere. We investigate the effect of the spatial resolution when computing backward trajectories with the HYSPLIT model. We have used meteorological datasets from the WRF model with 27, 9 and 3 km resolutions and from the GDAS files with 1° resolution. This work allows characterizing atmospheric transport of Olea pollen in a region with complex flows. The results show that the complex terrain affects the trajectories and this effect varies with the different meteorological datasets. Overall, the change from GDAS to WRF-ARW inputs improves the analyses with the HYSPLIT model, thereby increasing the understanding the pollen episode. The results indicate that a spatial resolution of at least 9 km is needed to simulate atmospheric flows that are considerable affected by the relief of the landscape. The results suggest that the appropriate meteorological files should be considered when atmospheric models are used to characterize the atmospheric transport of pollen on micro-, meso-gamma and meso-beta scales. Furthermore, at these scales, the results are believed to be generally applicable for related areas such as the description of atmospheric transport of radionuclides or in the definition of nuclear-radioactivity emergency preparedness.

  6. Improvement in the accuracy of back trajectories using WRF to identify pollen sources in southern Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Hernández-Ceballos, M. A.; Skjøth, C. A.; García-Mozo, H.; Bolívar, J. P.; Galán, C.

    2014-12-01

    Airborne pollen transport at micro-, meso-gamma and meso-beta scales must be studied by atmospheric models, having special relevance in complex terrain. In these cases, the accuracy of these models is mainly determined by the spatial resolution of the underlying meteorological dataset. This work examines how meteorological datasets determine the results obtained from atmospheric transport models used to describe pollen transport in the atmosphere. We investigate the effect of the spatial resolution when computing backward trajectories with the HYSPLIT model. We have used meteorological datasets from the WRF model with 27, 9 and 3 km resolutions and from the GDAS files with 1 ° resolution. This work allows characterizing atmospheric transport of Olea pollen in a region with complex flows. The results show that the complex terrain affects the trajectories and this effect varies with the different meteorological datasets. Overall, the change from GDAS to WRF-ARW inputs improves the analyses with the HYSPLIT model, thereby increasing the understanding the pollen episode. The results indicate that a spatial resolution of at least 9 km is needed to simulate atmospheric flows that are considerable affected by the relief of the landscape. The results suggest that the appropriate meteorological files should be considered when atmospheric models are used to characterize the atmospheric transport of pollen on micro-, meso-gamma and meso-beta scales. Furthermore, at these scales, the results are believed to be generally applicable for related areas such as the description of atmospheric transport of radionuclides or in the definition of nuclear-radioactivity emergency preparedness.

  7. Patterns of contribution to citizen science biodiversity projects increase understanding of volunteers' recording behaviour.

    PubMed

    Boakes, Elizabeth H; Gliozzo, Gianfranco; Seymour, Valentine; Harvey, Martin; Smith, Chloë; Roy, David B; Haklay, Muki

    2016-09-13

    The often opportunistic nature of biological recording via citizen science leads to taxonomic, spatial and temporal biases which add uncertainty to biodiversity estimates. However, such biases may also give valuable insight into volunteers' recording behaviour. Using Greater London as a case-study we examined the composition of three citizen science datasets - from Greenspace Information for Greater London CIC, iSpot and iRecord - with respect to recorder contribution and spatial and taxonomic biases, i.e. when, where and what volunteers record. We found most volunteers contributed few records and were active for just one day. Each dataset had its own taxonomic and spatial signature suggesting that volunteers' personal recording preferences may attract them towards particular schemes. There were also patterns across datasets: species' abundance and ease of identification were positively associated with number of records, as was plant height. We found clear hotspots of recording activity, the 10 most popular sites containing open water. We note that biases are accrued as part of the recording process (e.g. species' detectability) as well as from volunteer preferences. An increased understanding of volunteer behaviour gained from analysing the composition of records could thus enhance the fit between volunteers' interests and the needs of scientific projects.

  8. Digital Astronaut Photography: A Discovery Dataset for Archaeology

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.

    2010-01-01

    Astronaut photography acquired from the International Space Station (ISS) using commercial off-the-shelf cameras offers a freely-accessible source for high to very high resolution (4-20 m/pixel) visible-wavelength digital data of Earth. Since ISS Expedition 1 in 2000, over 373,000 images of the Earth-Moon system (including land surface, ocean, atmospheric, and lunar images) have been added to the Gateway to Astronaut Photography of Earth online database (http://eol.jsc.nasa.gov ). Handheld astronaut photographs vary in look angle, time of acquisition, solar illumination, and spatial resolution. These attributes of digital astronaut photography result from a unique combination of ISS orbital dynamics, mission operations, camera systems, and the individual skills of the astronaut. The variable nature of astronaut photography makes the dataset uniquely useful for archaeological applications in comparison with more traditional nadir-viewing multispectral datasets acquired from unmanned orbital platforms. For example, surface features such as trenches, walls, ruins, urban patterns, and vegetation clearing and regrowth patterns may be accentuated by low sun angles and oblique viewing conditions (Fig. 1). High spatial resolution digital astronaut photographs can also be used with sophisticated land cover classification and spatial analysis approaches like Object Based Image Analysis, increasing the potential for use in archaeological characterization of landscapes and specific sites.

  9. Patterns of contribution to citizen science biodiversity projects increase understanding of volunteers’ recording behaviour

    PubMed Central

    Boakes, Elizabeth H.; Gliozzo, Gianfranco; Seymour, Valentine; Harvey, Martin; Smith, Chloë; Roy, David B.; Haklay, Muki

    2016-01-01

    The often opportunistic nature of biological recording via citizen science leads to taxonomic, spatial and temporal biases which add uncertainty to biodiversity estimates. However, such biases may also give valuable insight into volunteers’ recording behaviour. Using Greater London as a case-study we examined the composition of three citizen science datasets – from Greenspace Information for Greater London CIC, iSpot and iRecord - with respect to recorder contribution and spatial and taxonomic biases, i.e. when, where and what volunteers record. We found most volunteers contributed few records and were active for just one day. Each dataset had its own taxonomic and spatial signature suggesting that volunteers’ personal recording preferences may attract them towards particular schemes. There were also patterns across datasets: species’ abundance and ease of identification were positively associated with number of records, as was plant height. We found clear hotspots of recording activity, the 10 most popular sites containing open water. We note that biases are accrued as part of the recording process (e.g. species’ detectability) as well as from volunteer preferences. An increased understanding of volunteer behaviour gained from analysing the composition of records could thus enhance the fit between volunteers’ interests and the needs of scientific projects. PMID:27619155

  10. An Archive of Downscaled WCRP CMIP3 Climate Projections for Planning Applications in the Contiguous United States

    NASA Astrophysics Data System (ADS)

    Brekke, L. D.; Pruitt, T.; Maurer, E. P.; Duffy, P. B.

    2007-12-01

    Incorporating climate change information into long-term evaluations of water and energy resources requires analysts to have access to climate projection data that have been spatially downscaled to "basin-relevant" resolution. This is necessary in order to develop system-specific hydrology and demand scenarios consistent with projected climate scenarios. Analysts currently have access to "climate model" resolution data (e.g., at LLNL PCMDI), but not spatially downscaled translations of these datasets. Motivated by a common interest in supporting regional and local assessments, the U.S. Bureau of Reclamation and LLNL (through support from the DOE National Energy Technology Laboratory) have teamed to develop an archive of downscaled climate projections (temperature and precipitation) with geographic coverage consistent with the North American Land Data Assimilation System domain, encompassing the contiguous United States. A web-based information service, hosted at LLNL Green Data Oasis, has been developed to provide Reclamation, LLNL, and other interested analysts free access to archive content. A contemporary statistical method was used to bias-correct and spatially disaggregate projection datasets, and was applied to 112 projections included in the WCRP CMIP3 multi-model dataset hosted by LLNL PCMDI (i.e. 16 GCMs and their multiple simulations of SRES A2, A1b, and B1 emissions pathways).

  11. High quality high spatial resolution functional classification in low dose dynamic CT perfusion using singular value decomposition (SVD) and k-means clustering

    NASA Astrophysics Data System (ADS)

    Pisana, Francesco; Henzler, Thomas; Schönberg, Stefan; Klotz, Ernst; Schmidt, Bernhard; Kachelrieß, Marc

    2017-03-01

    Dynamic CT perfusion acquisitions are intrinsically high-dose examinations, due to repeated scanning. To keep radiation dose under control, relatively noisy images are acquired. Noise is then further enhanced during the extraction of functional parameters from the post-processing of the time attenuation curves of the voxels (TACs) and normally some smoothing filter needs to be employed to better visualize any perfusion abnormality, but sacrificing spatial resolution. In this study we propose a new method to detect perfusion abnormalities keeping both high spatial resolution and high CNR. To do this we first perform the singular value decomposition (SVD) of the original noisy spatial temporal data matrix to extract basis functions of the TACs. Then we iteratively cluster the voxels based on a smoothed version of the three most significant singular vectors. Finally, we create high spatial resolution 3D volumes where to each voxel is assigned a distance from the centroid of each cluster, showing how functionally similar each voxel is compared to the others. The method was tested on three noisy clinical datasets: one brain perfusion case with an occlusion in the left internal carotid, one healthy brain perfusion case, and one liver case with an enhancing lesion. Our method successfully detected all perfusion abnormalities with higher spatial precision when compared to the functional maps obtained with a commercially available software. We conclude this method might be employed to have a rapid qualitative indication of functional abnormalities in low dose dynamic CT perfusion datasets. The method seems to be very robust with respect to both spatial and temporal noise and does not require any special a priori assumption. While being more robust respect to noise and with higher spatial resolution and CNR when compared to the functional maps, our method is not quantitative and a potential usage in clinical routine could be as a second reader to assist in the maps evaluation, or to guide a dataset smoothing before the modeling part.

  12. Web-GIS visualisation of permafrost-related Remote Sensing products for ESA GlobPermafrost

    NASA Astrophysics Data System (ADS)

    Haas, A.; Heim, B.; Schaefer-Neth, C.; Laboor, S.; Nitze, I.; Grosse, G.; Bartsch, A.; Kaab, A.; Strozzi, T.; Wiesmann, A.; Seifert, F. M.

    2016-12-01

    The ESA GlobPermafrost (www.globpermafrost.info) provides a remote sensing service for permafrost research and applications. The service comprises of data product generation for various sites and regions as well as specific infrastructure allowing overview and access to datasets. Based on an online user survey conducted within the project, the user community extensively applies GIS software to handle remote sensing-derived datasets and requires preview functionalities before accessing them. In response, we develop the Permafrost Information System PerSys which is conceptualized as an open access geospatial data dissemination and visualization portal. PerSys will allow visualisation of GlobPermafrost raster and vector products such as land cover classifications, Landsat multispectral index trend datasets, lake and wetland extents, InSAR-based land surface deformation maps, rock glacier velocity fields, spatially distributed permafrost model outputs, and land surface temperature datasets. The datasets will be published as WebGIS services relying on OGC-standardized Web Mapping Service (WMS) and Web Feature Service (WFS) technologies for data display and visualization. The WebGIS environment will be hosted at the AWI computing centre where a geodata infrastructure has been implemented comprising of ArcGIS for Server 10.4, PostgreSQL 9.2 and a browser-driven data viewer based on Leaflet (http://leafletjs.com). Independently, we will provide an `Access - Restricted Data Dissemination Service', which will be available to registered users for testing frequently updated versions of project datasets. PerSys will become a core project of the Arctic Permafrost Geospatial Centre (APGC) within the ERC-funded PETA-CARB project (www.awi.de/petacarb). The APGC Data Catalogue will contain all final products of GlobPermafrost, allow in-depth dataset search via keywords, spatial and temporal coverage, data type, etc., and will provide DOI-based links to the datasets archived in the long-term, open access PANGAEA data repository.

  13. On the uncertainties associated with using gridded rainfall data as a proxy for observed

    NASA Astrophysics Data System (ADS)

    Tozer, C. R.; Kiem, A. S.; Verdon-Kidd, D. C.

    2012-05-01

    Gridded rainfall datasets are used in many hydrological and climatological studies, in Australia and elsewhere, including for hydroclimatic forecasting, climate attribution studies and climate model performance assessments. The attraction of the spatial coverage provided by gridded data is clear, particularly in Australia where the spatial and temporal resolution of the rainfall gauge network is sparse. However, the question that must be asked is whether it is suitable to use gridded data as a proxy for observed point data, given that gridded data is inherently "smoothed" and may not necessarily capture the temporal and spatial variability of Australian rainfall which leads to hydroclimatic extremes (i.e. droughts, floods). This study investigates this question through a statistical analysis of three monthly gridded Australian rainfall datasets - the Bureau of Meteorology (BOM) dataset, the Australian Water Availability Project (AWAP) and the SILO dataset. The results of the monthly, seasonal and annual comparisons show that not only are the three gridded datasets different relative to each other, there are also marked differences between the gridded rainfall data and the rainfall observed at gauges within the corresponding grids - particularly for extremely wet or extremely dry conditions. Also important is that the differences observed appear to be non-systematic. To demonstrate the hydrological implications of using gridded data as a proxy for gauged data, a rainfall-runoff model is applied to one catchment in South Australia initially using gauged data as the source of rainfall input and then gridded rainfall data. The results indicate a markedly different runoff response associated with each of the different sources of rainfall data. It should be noted that this study does not seek to identify which gridded dataset is the "best" for Australia, as each gridded data source has its pros and cons, as does gauged data. Rather, the intention is to quantify differences between various gridded data sources and how they compare with gauged data so that these differences can be considered and accounted for in studies that utilise these gridded datasets. Ultimately, if key decisions are going to be based on the outputs of models that use gridded data, an estimate (or at least an understanding) of the uncertainties relating to the assumptions made in the development of gridded data and how that gridded data compares with reality should be made.

  14. Creating Digital Environments for Multi-Agent Simulation

    DTIC Science & Technology

    2003-12-01

    foliage on a polygon to represent a tree). Tile A spatial partition of a coverage that shares the same set of feature classes with the same... orthophoto datasets can be made from rectified grayscale aerial images. These datasets can support various weapon systems, Command, Control...Raster Product Format (RPF) Standard. This data consists of unclassified seamless orthophotos , made from rectified grayscale aerial images. DOI 10

  15. [Spatial and Temporal Variations in Spectrum-Derived Vegetation Growth Trend in Qinghai-Tibetan Plateau from 1982 to 2014].

    PubMed

    Wang, Zhi-wei; Wu, Xiao-dong; Yue, Guang-yang; Zhao, Lin; Wang, Qian; Nan, Zhuo-tong; Qin, Yu; Wu, Tong-hua; Shi, Jian-zong; Zou, De-fu

    2016-02-01

    Recently considerable researches have focused on monitoring vegetation changes because of its important role in regula- ting the terrestrial carbon cycle and the climate system. There were the largest areas with high-altitudes in the Qinghai-Tibet Plateau (QTP), which is often referred to as the third pole of the world. And vegetation in this region is significantly sensitive to the global warming. Meanwhile NDVI dataset was one of the most useful tools to monitor the vegetation activity with high spatial and temporal resolution, which is a normalized transform of the near-infrared radiation (NIR) to red reflectance ratio. Therefore, an extended GIMMS NDVI dataset from 1982-2006 to 1982-2014 was presented using a unary linear regression by MODIS dataset from 2000 to 2014 in QTP. Compared with previous researches, the accuracy of the extended NDVI dataset was improved again with consideration the residuals derived from scale transformation. So the model of extend NDVI dataset could be a new method to integrate different NDVI products. With the extended NDVI dataset, we found that in growing season there was a statistically significant increase (0.000 4 yr⁻¹, r² = 0.585 9, p < 0.001) in QTP from 1982 to 2014. During the study pe- riod, the trends of NDVI were significantly increased in spring (0.000 5 yr⁻¹, r² = 0.295 4, p = 0.001), summer (0.000 3 yr⁻¹, r² = 0.105 3, p = 0.065) and autumn respectively (0.000 6 yr⁻¹, r² = 0.436 7, p < 0.001). Due to the increased vegeta- tion activity in Qinghai-Tibet Plateau from 1982 to 2014, the magnitude of carbon sink was accumulated in this region also at this same period. Then the data of temperature and precipitation was used to explore the reason of vegetation changed. Although the trends of them are both increased, the correlation between NDVI and temperature is higher than precipitation in vegetation grow- ing season, spring, summer and autumn. Furthermore, there is significant spatial heterogeneity of the changing trends for ND- VI, temperature and precipitation at Qinghai-Tibet Plateau scale.

  16. Statistical Inference and Spatial Patterns in Correlates of IQ

    ERIC Educational Resources Information Center

    Hassall, Christopher; Sherratt, Thomas N.

    2011-01-01

    Cross-national comparisons of IQ have become common since the release of a large dataset of international IQ scores. However, these studies have consistently failed to consider the potential lack of independence of these scores based on spatial proximity. To demonstrate the importance of this omission, we present a re-evaluation of several…

  17. A geologic and mineral exploration spatial database for the Stillwater Complex, Montana

    USGS Publications Warehouse

    Zientek, Michael L.; Parks, Heather L.

    2014-01-01

    This report provides essential spatially referenced datasets based on geologic mapping and mineral exploration activities conducted from the 1920s to the 1990s. This information will facilitate research on the complex and provide background material needed to explore for mineral resources and to develop sound land-management policy.

  18. EXIMS: an improved data analysis pipeline based on a new peak picking method for EXploring Imaging Mass Spectrometry data.

    PubMed

    Wijetunge, Chalini D; Saeed, Isaam; Boughton, Berin A; Spraggins, Jeffrey M; Caprioli, Richard M; Bacic, Antony; Roessner, Ute; Halgamuge, Saman K

    2015-10-01

    Matrix Assisted Laser Desorption Ionization-Imaging Mass Spectrometry (MALDI-IMS) in 'omics' data acquisition generates detailed information about the spatial distribution of molecules in a given biological sample. Various data processing methods have been developed for exploring the resultant high volume data. However, most of these methods process data in the spectral domain and do not make the most of the important spatial information available through this technology. Therefore, we propose a novel streamlined data analysis pipeline specifically developed for MALDI-IMS data utilizing significant spatial information for identifying hidden significant molecular distribution patterns in these complex datasets. The proposed unsupervised algorithm uses Sliding Window Normalization (SWN) and a new spatial distribution based peak picking method developed based on Gray level Co-Occurrence (GCO) matrices followed by clustering of biomolecules. We also use gist descriptors and an improved version of GCO matrices to extract features from molecular images and minimum medoid distance to automatically estimate the number of possible groups. We evaluated our algorithm using a new MALDI-IMS metabolomics dataset of a plant (Eucalypt) leaf. The algorithm revealed hidden significant molecular distribution patterns in the dataset, which the current Component Analysis and Segmentation Map based approaches failed to extract. We further demonstrate the performance of our peak picking method over other traditional approaches by using a publicly available MALDI-IMS proteomics dataset of a rat brain. Although SWN did not show any significant improvement as compared with using no normalization, the visual assessment showed an improvement as compared to using the median normalization. The source code and sample data are freely available at http://exims.sourceforge.net/. awgcdw@student.unimelb.edu.au or chalini_w@live.com Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Intensity-Duration-Frequency curves from remote sensing datasets: direct comparison of weather radar and CMORPH over the Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Morin, Efrat; Marra, Francesco; Peleg, Nadav; Mei, Yiwen; Anagnostou, Emmanouil N.

    2017-04-01

    Rainfall frequency analysis is used to quantify the probability of occurrence of extreme rainfall and is traditionally based on rain gauge records. The limited spatial coverage of rain gauges is insufficient to sample the spatiotemporal variability of extreme rainfall and to provide the areal information required by management and design applications. Conversely, remote sensing instruments, even if quantitative uncertain, offer coverage and spatiotemporal detail that allow overcoming these issues. In recent years, remote sensing datasets began to be used for frequency analyses, taking advantage of increased record lengths and quantitative adjustments of the data. However, the studies so far made use of concepts and techniques developed for rain gauge (i.e. point or multiple-point) data and have been validated by comparison with gauge-derived analyses. These procedures add further sources of uncertainty and prevent from isolating between data and methodological uncertainties and from fully exploiting the available information. In this study, we step out of the gauge-centered concept presenting a direct comparison between at-site Intensity-Duration-Frequency (IDF) curves derived from different remote sensing datasets on corresponding spatial scales, temporal resolutions and records. We analyzed 16 years of homogeneously corrected and gauge-adjusted C-Band weather radar estimates, high-resolution CMORPH and gauge-adjusted high-resolution CMORPH over the Eastern Mediterranean. Results of this study include: (a) good spatial correlation between radar and satellite IDFs ( 0.7 for 2-5 years return period); (b) consistent correlation and dispersion in the raw and gauge adjusted CMORPH; (c) bias is almost uniform with return period for 12-24 h durations; (d) radar identifies thicker tail distributions than CMORPH and the tail of the distributions depends on the spatial and temporal scales. These results demonstrate the potential of remote sensing datasets for rainfall frequency analysis for management (e.g. warning and early-warning systems) and design (e.g. sewer design, large scale drainage planning)

  20. Spatio-Temporal Gap Analysis of OBIS-SEAMAP Project Data: Assessment and Way Forward

    PubMed Central

    Kot, Connie Y.; Fujioka, Ei; Hazen, Lucie J.; Best, Benjamin D.; Read, Andrew J.; Halpin, Patrick N.

    2010-01-01

    The OBIS-SEAMAP project has acquired and served high-quality marine mammal, seabird, and sea turtle data to the public since its inception in 2002. As data accumulated, spatial and temporal biases resulted and a comprehensive gap analysis was needed in order to assess coverage to direct data acquisition for the OBIS-SEAMAP project and for taxa researchers should true gaps in knowledge exist. All datasets published on OBIS-SEAMAP up to February 2009 were summarized spatially and temporally. Seabirds comprised the greatest number of records, compared to the other two taxa, and most records were from shipboard surveys, compared to the other three platforms. Many of the point observations and polyline tracklines were located in northern and central Atlantic and the northeastern and central-eastern Pacific. The Southern Hemisphere generally had the lowest representation of data, with the least number of records in the southern Atlantic and western Pacific regions. Temporally, records of observations for all taxa were the lowest in fall although the number of animals sighted was lowest in the winter. Oceanographic coverage of observations varied by platform for each taxa, which showed that using two or more platforms represented habitat ranges better than using only one alone. Accessible and published datasets not already incorporated do exist within spatial and temporal gaps identified. Other related open-source data portals also contain data that fill gaps, emphasizing the importance of dedicated data exchange. Temporal and spatial gaps were mostly a result of data acquisition effort, development of regional partnerships and collaborations, and ease of field data collection. Future directions should include fostering partnerships with researchers in the Southern Hemisphere while targeting datasets containing species with limited representation. These results can facilitate prioritizing datasets needed to be represented and for planning research for true gaps in space and time. PMID:20886047

  1. Modeling the Hydrological Regime of Turkana Lake (Kenya, Ethiopia) by Combining Spatially Distributed Hydrological Modeling and Remote Sensing Datasets

    NASA Astrophysics Data System (ADS)

    Anghileri, D.; Kaelin, A.; Peleg, N.; Fatichi, S.; Molnar, P.; Roques, C.; Longuevergne, L.; Burlando, P.

    2017-12-01

    Hydrological modeling in poorly gauged basins can benefit from the use of remote sensing datasets although there are challenges associated with the mismatch in spatial and temporal scales between catchment scale hydrological models and remote sensing products. We model the hydrological processes and long-term water budget of the Lake Turkana catchment, a transboundary basin between Kenya and Ethiopia, by integrating several remote sensing products into a spatially distributed and physically explicit model, Topkapi-ETH. Lake Turkana is the world largest desert lake draining a catchment of 145'500 km2. It has three main contributing rivers: the Omo river, which contributes most of the annual lake inflow, the Turkwel river, and the Kerio rivers, which contribute the remaining part. The lake levels have shown great variations in the last decades due to long-term climate fluctuations and the regulation of three reservoirs, Gibe I, II, and III, which significantly alter the hydrological seasonality. Another large reservoir is planned and may be built in the next decade, generating concerns about the fate of Lake Turkana in the long run because of this additional anthropogenic pressure and increasing evaporation driven by climate change. We consider different remote sensing datasets, i.e., TRMM-V7 for precipitation, MERRA-2 for temperature, as inputs to the spatially distributed hydrological model. We validate the simulation results with other remote sensing datasets, i.e., GRACE for total water storage anomalies, GLDAS-NOAH for soil moisture, ERA-Interim/Land for surface runoff, and TOPEX/Poseidon for satellite altimetry data. Results highlight how different remote sensing products can be integrated into a hydrological modeling framework accounting for their relative uncertainties. We also carried out simulations with the artificial reservoirs planned in the north part of the catchment and without any reservoirs, to assess their impacts on the catchment hydrological regime and the Lake Turkana level variability.

  2. Spatio-temporal gap analysis of OBIS-SEAMAP project data: assessment and way forward.

    PubMed

    Kot, Connie Y; Fujioka, Ei; Hazen, Lucie J; Best, Benjamin D; Read, Andrew J; Halpin, Patrick N

    2010-09-24

    The OBIS-SEAMAP project has acquired and served high-quality marine mammal, seabird, and sea turtle data to the public since its inception in 2002. As data accumulated, spatial and temporal biases resulted and a comprehensive gap analysis was needed in order to assess coverage to direct data acquisition for the OBIS-SEAMAP project and for taxa researchers should true gaps in knowledge exist. All datasets published on OBIS-SEAMAP up to February 2009 were summarized spatially and temporally. Seabirds comprised the greatest number of records, compared to the other two taxa, and most records were from shipboard surveys, compared to the other three platforms. Many of the point observations and polyline tracklines were located in northern and central Atlantic and the northeastern and central-eastern Pacific. The Southern Hemisphere generally had the lowest representation of data, with the least number of records in the southern Atlantic and western Pacific regions. Temporally, records of observations for all taxa were the lowest in fall although the number of animals sighted was lowest in the winter. Oceanographic coverage of observations varied by platform for each taxa, which showed that using two or more platforms represented habitat ranges better than using only one alone. Accessible and published datasets not already incorporated do exist within spatial and temporal gaps identified. Other related open-source data portals also contain data that fill gaps, emphasizing the importance of dedicated data exchange. Temporal and spatial gaps were mostly a result of data acquisition effort, development of regional partnerships and collaborations, and ease of field data collection. Future directions should include fostering partnerships with researchers in the Southern Hemisphere while targeting datasets containing species with limited representation. These results can facilitate prioritizing datasets needed to be represented and for planning research for true gaps in space and time.

  3. Application of spatial technology in malaria research & control: some new insights.

    PubMed

    Saxena, Rekha; Nagpal, B N; Srivastava, Aruna; Gupta, S K; Dash, A P

    2009-08-01

    Geographical information System (GIS) has emerged as the core of the spatial technology which integrates wide range of dataset available from different sources including Remote Sensing (RS) and Global Positioning System (GPS). Literature published during the decade (1998-2007) has been compiled and grouped into six categories according to the usage of the technology in malaria epidemiology. Different GIS modules like spatial data sources, mapping and geo-processing tools, distance calculation, digital elevation model (DEM), buffer zone and geo-statistical analysis have been investigated in detail, illustrated with examples as per the derived results. These GIS tools have contributed immensely in understanding the epidemiological processes of malaria and examples drawn have shown that GIS is now widely used for research and decision making in malaria control. Statistical data analysis currently is the most consistent and established set of tools to analyze spatial datasets. The desired future development of GIS is in line with the utilization of geo-statistical tools which combined with high quality data has capability to provide new insight into malaria epidemiology and the complexity of its transmission potential in endemic areas.

  4. Spatial and temporal dynamics of multidimensional well-being, livelihoods and ecosystem services in coastal Bangladesh.

    PubMed

    Adams, Helen; Adger, W Neil; Ahmad, Sate; Ahmed, Ali; Begum, Dilruba; Lázár, Attila N; Matthews, Zoe; Rahman, Mohammed Mofizur; Streatfield, Peter Kim

    2016-11-08

    Populations in resource dependent economies gain well-being from the natural environment, in highly spatially and temporally variable patterns. To collect information on this, we designed and implemented a 1586-household quantitative survey in the southwest coastal zone of Bangladesh. Data were collected on material, subjective and health dimensions of well-being in the context of natural resource use, particularly agriculture, aquaculture, mangroves and fisheries. The questionnaire included questions on factors that mediate poverty outcomes: mobility and remittances; loans and micro-credit; environmental perceptions; shocks; and women's empowerment. The data are stratified by social-ecological system to take into account spatial dynamics and the survey was repeated with the same respondents three times within a year to incorporate seasonal dynamics. The dataset includes blood pressure measurements and height and weight of men, women and children. In addition, the household listing includes basic data on livelihoods and income for approximately 10,000 households. The dataset facilitates interdisciplinary research on spatial and temporal dynamics of well-being in the context of natural resource dependence in low income countries.

  5. Spatial and temporal dynamics of multidimensional well-being, livelihoods and ecosystem services in coastal Bangladesh

    PubMed Central

    Adams, Helen; Adger, W. Neil; Ahmad, Sate; Ahmed, Ali; Begum, Dilruba; Lázár, Attila N.; Matthews, Zoe; Rahman, Mohammed Mofizur; Streatfield, Peter Kim

    2016-01-01

    Populations in resource dependent economies gain well-being from the natural environment, in highly spatially and temporally variable patterns. To collect information on this, we designed and implemented a 1586-household quantitative survey in the southwest coastal zone of Bangladesh. Data were collected on material, subjective and health dimensions of well-being in the context of natural resource use, particularly agriculture, aquaculture, mangroves and fisheries. The questionnaire included questions on factors that mediate poverty outcomes: mobility and remittances; loans and micro-credit; environmental perceptions; shocks; and women’s empowerment. The data are stratified by social-ecological system to take into account spatial dynamics and the survey was repeated with the same respondents three times within a year to incorporate seasonal dynamics. The dataset includes blood pressure measurements and height and weight of men, women and children. In addition, the household listing includes basic data on livelihoods and income for approximately 10,000 households. The dataset facilitates interdisciplinary research on spatial and temporal dynamics of well-being in the context of natural resource dependence in low income countries. PMID:27824340

  6. A virtual dosimetry audit - Towards transferability of gamma index analysis between clinical trial QA groups.

    PubMed

    Hussein, Mohammad; Clementel, Enrico; Eaton, David J; Greer, Peter B; Haworth, Annette; Ishikura, Satoshi; Kry, Stephen F; Lehmann, Joerg; Lye, Jessica; Monti, Angelo F; Nakamura, Mitsuhiro; Hurkmans, Coen; Clark, Catharine H

    2017-12-01

    Quality assurance (QA) for clinical trials is important. Lack of compliance can affect trial outcome. Clinical trial QA groups have different methods of dose distribution verification and analysis, all with the ultimate aim of ensuring trial compliance. The aim of this study was to gain a better understanding of different processes to inform future dosimetry audit reciprocity. Six clinical trial QA groups participated. Intensity modulated treatment plans were generated for three different cases. A range of 17 virtual 'measurements' were generated by introducing a variety of simulated perturbations (such as MLC position deviations, dose differences, gantry rotation errors, Gaussian noise) to three different treatment plan cases. Participants were blinded to the 'measured' data details. Each group analysed the datasets using their own gamma index (γ) technique and using standardised parameters for passing criteria, lower dose threshold, γ normalisation and global γ. For the same virtual 'measured' datasets, different results were observed using local techniques. For the standardised γ, differences in the percentage of points passing with γ < 1 were also found, however these differences were less pronounced than for each clinical trial QA group's analysis. These variations may be due to different software implementations of γ. This virtual dosimetry audit has been an informative step in understanding differences in the verification of measured dose distributions between different clinical trial QA groups. This work lays the foundations for audit reciprocity between groups, particularly with more clinical trials being open to international recruitment. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. LiDAR based prediction of forest biomass using hierarchical models with spatially varying coefficients

    USGS Publications Warehouse

    Babcock, Chad; Finley, Andrew O.; Bradford, John B.; Kolka, Randall K.; Birdsey, Richard A.; Ryan, Michael G.

    2015-01-01

    Many studies and production inventory systems have shown the utility of coupling covariates derived from Light Detection and Ranging (LiDAR) data with forest variables measured on georeferenced inventory plots through regression models. The objective of this study was to propose and assess the use of a Bayesian hierarchical modeling framework that accommodates both residual spatial dependence and non-stationarity of model covariates through the introduction of spatial random effects. We explored this objective using four forest inventory datasets that are part of the North American Carbon Program, each comprising point-referenced measures of above-ground forest biomass and discrete LiDAR. For each dataset, we considered at least five regression model specifications of varying complexity. Models were assessed based on goodness of fit criteria and predictive performance using a 10-fold cross-validation procedure. Results showed that the addition of spatial random effects to the regression model intercept improved fit and predictive performance in the presence of substantial residual spatial dependence. Additionally, in some cases, allowing either some or all regression slope parameters to vary spatially, via the addition of spatial random effects, further improved model fit and predictive performance. In other instances, models showed improved fit but decreased predictive performance—indicating over-fitting and underscoring the need for cross-validation to assess predictive ability. The proposed Bayesian modeling framework provided access to pixel-level posterior predictive distributions that were useful for uncertainty mapping, diagnosing spatial extrapolation issues, revealing missing model covariates, and discovering locally significant parameters.

  8. Evidence for impairments in using static line drawings of eye gaze cues to orient visual-spatial attention in children with high functioning autism.

    PubMed

    Goldberg, Melissa C; Mostow, Allison J; Vecera, Shaun P; Larson, Jennifer C Gidley; Mostofsky, Stewart H; Mahone, E Mark; Denckla, Martha B

    2008-09-01

    We examined the ability to use static line drawings of eye gaze cues to orient visual-spatial attention in children with high functioning autism (HFA) compared to typically developing children (TD). The task was organized such that on valid trials, gaze cues were directed toward the same spatial location as the appearance of an upcoming target, while on invalid trials gaze cues were directed to an opposite location. Unlike TD children, children with HFA showed no advantage in reaction time (RT) on valid trials compared to invalid trials (i.e., no significant validity effect). The two stimulus onset asynchronies (200 ms, 700 ms) did not differentially affect these findings. The results suggest that children with HFA show impairments in utilizing static line drawings of gaze cues to orient visual-spatial attention.

  9. MVIRI/SEVIRI TOA Radiation Datasets within the Climate Monitoring SAF

    NASA Astrophysics Data System (ADS)

    Urbain, Manon; Clerbaux, Nicolas; Ipe, Alessandro; Baudrez, Edward; Velazquez Blazquez, Almudena; Moreels, Johan

    2016-04-01

    Within CM SAF, Interim Climate Data Records (ICDR) of Top-Of-Atmosphere (TOA) radiation products from the Geostationary Earth Radiation Budget (GERB) instruments on the Meteosat Second Generation (MSG) satellites have been released in 2013. These datasets (referred to as CM-113 and CM-115, resp. for shortwave (SW) and longwave (LW) radiation) are based on the instantaneous TOA fluxes from the GERB Edition-1 dataset. They cover the time period 2004-2011. Extending these datasets backward in the past is not possible as no GERB instruments were available on the Meteosat First Generation (MFG) satellites. As an alternative, it is proposed to rely on the Meteosat Visible and InfraRed Imager (MVIRI - from 1982 until 2004) and the Spinning Enhanced Visible and Infrared Imager (SEVIRI - from 2004 onward) to generate a long Thematic Climate Data Record (TCDR) from Meteosat instruments. Combining MVIRI and SEVIRI allows an unprecedented temporal (30 minutes / 15 minutes) and spatial (2.5 km / 3 km) resolution compared to the Clouds and the Earth's Radiant Energy System (CERES) products. This is a step forward as it helps to increase the knowledge of the diurnal cycle and the small-scale spatial variations of radiation. The MVIRI/SEVIRI datasets (referred to as CM-23311 and CM-23341, resp. for SW and LW radiation) will provide daily and monthly averaged TOA Reflected Solar (TRS) and Emitted Thermal (TET) radiation in "all-sky" conditions (no clear-sky conditions for this first version of the datasets), as well as monthly averaged of the hourly integrated values. The SEVIRI Solar Channels Calibration (SSCC) and the operational calibration have been used resp. for the SW and LW channels. For MFG, it is foreseen to replace the latter by the EUMETSAT/GSICS recalibration of MVIRI using HIRS. The CERES TRMM angular dependency models have been used to compute TRS fluxes while theoretical models have been used for TET fluxes. The CM-23311 and CM-23341 datasets will cover a 32 years time period, from 1st February 1982 to 31st January 2014. TRS and TET fluxes will be provided on a regular latitude-longitude grid at a spatial resolution of 0.05° (i.e. about 5.5 km) to ensure consistency with other CM SAF products. Validation will be performed at lower resolution (e.g. 1° x 1°) by intercomparison with several other datasets (CERES EBAF, CERES SYN 1deg-day, HIRS OLR, ISCCP-FD, NCDC daily OLR, etc.).

  10. An Evaluation of Data Fusion Products for the Analysis of Dryland Forest Phenology

    NASA Astrophysics Data System (ADS)

    Walker, J. J.; de Beurs, K.; Wynne, R. H.; Gao, F.

    2010-12-01

    Semi-arid forest areas cover a significant proportion of the world’s land surface; in the interior western U.S. alone, dryland forests extend across more than 56 million hectares. The scarcity of water in these systems makes them acutely sensitive to sustained weather fluctuations, such as the higher temperatures and altered water regimes predicted under most climate change scenarios. To understand, monitor, and predict the anticipated spatial and temporal changes in these areas, it is vital to characterize current phenological patterns. Phenological analysis of western U.S. drylands is complicated by patchy land cover and mosaics of plant phenology states at a variety of spatial scales. Our aim is to use complementary satellite sensors to mitigate these difficulties and gain greater insight into phenological patterns in dryland forests. In this study we applied the spatial and temporal adaptive reflectance model (STARFM; Gao et al. 2006) to fuse Landsat and MODIS imagery to create synthetic images at Landsat spatial resolution and MODIS temporal resolution. To determine which MODIS dataset is most appropriate for the creation of synthetic images intended for the analysis of dryland forest phenology, we examined the effect of temporal compositing and BRDF function adjustment on the accuracy of STARFM imagery. We assembled seven Landsat 5 scenes (path/row 37/36) and temporally-coincident 500m MODIS datasets (seven daily (MOD09GA), seven 8-day composite (MOD09A1), and fourteen 16-day nadir BRDF-adjusted composite (MCD43A4) images) spanning the 2006 April - October growing season in northern Arizona, which is characterized by large tracts of dryland forest. The STARFM algorithm was applied to each MODIS data series to produce four synthetic images (one daily; one 8-day composite; and two 16-day composites) corresponding to each Landsat image. Validation of the accuracy of the synthetic images was achieved by comparing the reflectance values of a random sample of the identified dryland forest pixels in both images. Preliminary data analysis of the effect of the temporal resolution and dataset parameters indicates that the MODIS 8-day composite image may be a suitable and sufficient dataset for phenological analysis in this dryland forest ecosystem. Overall, this work demonstrates the feasibility of using data fusion products to assemble an imagery dataset at sufficiently high temporal and spatial scales to permit a more detailed examination of the underlying phenological processes and trends in dryland forest areas.

  11. Experimental feasibility of multistatic holography for breast microwave radar image reconstruction.

    PubMed

    Flores-Tapia, Daniel; Rodriguez, Diego; Solis, Mario; Kopotun, Nikita; Latif, Saeed; Maizlish, Oleksandr; Fu, Lei; Gui, Yonsheng; Hu, Can-Ming; Pistorius, Stephen

    2016-08-01

    The goal of this study was to assess the experimental feasibility of circular multistatic holography, a novel breast microwave radar reconstruction approach, using experimental datasets recorded using a preclinical experimental setup. The performance of this approach was quantitatively evaluated by calculating the signal to clutter ratio (SCR), contrast to clutter ratio (CCR), tumor to fibroglandular response ratio (TFRR), spatial accuracy, and reconstruction time. Five datasets were recorded using synthetic phantoms with the dielectric properties of breast tissue in the 1-6 GHz range using a custom radar system developed by the authors. The datasets contained synthetic structures that mimic the dielectric properties of fibroglandular breast tissues. Four of these datasets the authors covered an 8 mm inclusion that emulated a tumor. A custom microwave radar system developed at the University of Manitoba was used to record the radar responses from the phantoms. The datasets were reconstructed using the proposed multistatic approach as well as with a monostatic holography approach that has been previously shown to yield the images with the highest contrast and focal quality. For all reconstructions, the location of the synthetic tumors in the experimental setup was consistent with the position in the both the monostatic and multistatic reconstructed images. The average spatial error was less than 4 mm, which is half the spatial resolution of the data acquisition system. The average SCR, CCR, and TFRR of the images reconstructed with the multistatic approach were 15.0, 9.4, and 10.0 dB, respectively. In comparison, monostatic images obtained using the datasets from the same experimental setups yielded average SCR, CCR, and TFRR values of 12.8, 4.9, and 5.9 dB. No artifacts, defined as responses generated by the reconstruction method of at least half the energy of the tumor signatures, were noted in the multistatic reconstructions. The average execution time of the images formed using the proposed approach was 4 s, which is one order of magnitude faster than the current state-of-the-art time-domain multistatic breast microwave radar reconstruction algorithms. The images generated by the proposed method show that multistatic holography is capable of forming spatially accurate images in real-time with signal to clutter levels and contrast values higher than other published monostatic and multistatic cylindrical radar reconstruction approaches. In comparison to the monostatic holographic approach, the images generated by the proposed multistatic approach had SCR values that were at least 50% higher. The multistatic images had CCR and TFRR values at least 200% greater than those formed using a monostatic approach.

  12. Calibrating a numerical model's morphology using high-resolution spatial and temporal datasets from multithread channel flume experiments.

    NASA Astrophysics Data System (ADS)

    Javernick, L.; Bertoldi, W.; Redolfi, M.

    2017-12-01

    Accessing or acquiring high quality, low-cost topographic data has never been easier due to recent developments of the photogrammetric techniques of Structure-from-Motion (SfM). Researchers can acquire the necessary SfM imagery with various platforms, with the ability to capture millimetre resolution and accuracy, or large-scale areas with the help of unmanned platforms. Such datasets in combination with numerical modelling have opened up new opportunities to study river environments physical and ecological relationships. While numerical models overall predictive accuracy is most influenced by topography, proper model calibration requires hydraulic data and morphological data; however, rich hydraulic and morphological datasets remain scarce. This lack in field and laboratory data has limited model advancement through the inability to properly calibrate, assess sensitivity, and validate the models performance. However, new time-lapse imagery techniques have shown success in identifying instantaneous sediment transport in flume experiments and their ability to improve hydraulic model calibration. With new capabilities to capture high resolution spatial and temporal datasets of flume experiments, there is a need to further assess model performance. To address this demand, this research used braided river flume experiments and captured time-lapse observed sediment transport and repeat SfM elevation surveys to provide unprecedented spatial and temporal datasets. Through newly created metrics that quantified observed and modeled activation, deactivation, and bank erosion rates, the numerical model Delft3d was calibrated. This increased temporal data of both high-resolution time series and long-term temporal coverage provided significantly improved calibration routines that refined calibration parameterization. Model results show that there is a trade-off between achieving quantitative statistical and qualitative morphological representations. Specifically, statistical agreement simulations suffered to represent braiding planforms (evolving toward meandering), and parameterization that ensured braided produced exaggerated activation and bank erosion rates. Marie Sklodowska-Curie Individual Fellowship: River-HMV, 656917

  13. Correction of elevation offsets in multiple co-located lidar datasets

    USGS Publications Warehouse

    Thompson, David M.; Dalyander, P. Soupy; Long, Joseph W.; Plant, Nathaniel G.

    2017-04-07

    IntroductionTopographic elevation data collected with airborne light detection and ranging (lidar) can be used to analyze short- and long-term changes to beach and dune systems. Analysis of multiple lidar datasets at Dauphin Island, Alabama, revealed systematic, island-wide elevation differences on the order of 10s of centimeters (cm) that were not attributable to real-world change and, therefore, were likely to represent systematic sampling offsets. These offsets vary between the datasets, but appear spatially consistent within a given survey. This report describes a method that was developed to identify and correct offsets between lidar datasets collected over the same site at different times so that true elevation changes over time, associated with sediment accumulation or erosion, can be analyzed.

  14. Earth-Science Data Co-Locating Tool

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; Pan, Lei; Block, Gary L.

    2012-01-01

    This software is used to locate Earth-science satellite data and climate-model analysis outputs in space and time. This enables the direct comparison of any set of data with different spatial and temporal resolutions. It is written in three separate modules that are clearly separated for their functionality and interface with other modules. This enables a fast development of supporting any new data set. In this updated version of the tool, several new front ends are developed for new products. This software finds co-locatable data pairs for given sets of data products and creates new data products that share the same spatial and temporal coordinates. This facilitates the direct comparison between the two heterogeneous datasets and the comprehensive and synergistic use of the datasets.

  15. Second thoughts on the final rule: An analysis of baseline participant characteristics reports on ClinicalTrials.gov.

    PubMed

    Cahan, Amos; Anand, Vibha

    2017-01-01

    ClinicalTrials.gov is valuable for aggregate-level analysis of trials. The recently published final rule aims to improve reporting of trial results. We aimed to assess variability in ClinicalTirals.gov records reporting participants' baseline measures. The September 2015 edition of the database for Aggregate Analysis of ClinicalTrials.gov (AACT), was used in this study. To date, AACT contains 186,941 trials of which 16,660 trials reporting baseline (participant) measures were analyzed. We also analyzed a subset of 13,818 Highly Likely Applicable Clinical Trials (HLACT), for which reporting of results is likely mandatory and compared a random sample of 30 trial records to their journal articles. We report counts for each mandatory baseline measure and variability reporting in their formats. The AACT dataset contains 8,161 baseline measures with 1206 unique measurement units. However, of these 6,940 (85%) variables appear only once in the dataset. Age and Gender are reported using many different formats (178 and 49 respectively). "Age" as the variable name is reported in 60 different formats. HLACT subset reports measures using 3,931 variables. The most frequent Age format (i.e. mean (years) ± sd) is found in only 45% of trials. Overall only 4 baseline measures (Region of Enrollment, Age, Number of Participants, and Gender) are reported by > 10% of trials. Discrepancies are found in both the types and formats of ClinicalTrials.gov records and their corresponding journal articles. On average, journal articles include twice the number of baseline measures (13.6±7.1 (sd) vs. 6.6±7.6) when compared to the ClinicalTrials.gov records that report any results. We found marked variability in baseline measures reporting. This is not addressed by the final rule. To support secondary use of ClinicalTrials.gov, a uniform format for baseline measures reporting is warranted.

  16. Evaluation of the Global Land Data Assimilation System (GLDAS) air temperature data products

    USGS Publications Warehouse

    Ji, Lei; Senay, Gabriel B.; Verdin, James P.

    2015-01-01

    There is a high demand for agrohydrologic models to use gridded near-surface air temperature data as the model input for estimating regional and global water budgets and cycles. The Global Land Data Assimilation System (GLDAS) developed by combining simulation models with observations provides a long-term gridded meteorological dataset at the global scale. However, the GLDAS air temperature products have not been comprehensively evaluated, although the accuracy of the products was assessed in limited areas. In this study, the daily 0.25° resolution GLDAS air temperature data are compared with two reference datasets: 1) 1-km-resolution gridded Daymet data (2002 and 2010) for the conterminous United States and 2) global meteorological observations (2000–11) archived from the Global Historical Climatology Network (GHCN). The comparison of the GLDAS datasets with the GHCN datasets, including 13 511 weather stations, indicates a fairly high accuracy of the GLDAS data for daily temperature. The quality of the GLDAS air temperature data, however, is not always consistent in different regions of the world; for example, some areas in Africa and South America show relatively low accuracy. Spatial and temporal analyses reveal a high agreement between GLDAS and Daymet daily air temperature datasets, although spatial details in high mountainous areas are not sufficiently estimated by the GLDAS data. The evaluation of the GLDAS data demonstrates that the air temperature estimates are generally accurate, but caution should be taken when the data are used in mountainous areas or places with sparse weather stations.

  17. A Large-Scale, High-Resolution Hydrological Model Parameter Data Set for Climate Change Impact Assessment for the Conterminous US

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oubeidillah, Abdoul A; Kao, Shih-Chieh; Ashfaq, Moetasim

    2014-01-01

    To extend geographical coverage, refine spatial resolution, and improve modeling efficiency, a computation- and data-intensive effort was conducted to organize a comprehensive hydrologic dataset with post-calibrated model parameters for hydro-climate impact assessment. Several key inputs for hydrologic simulation including meteorologic forcings, soil, land class, vegetation, and elevation were collected from multiple best-available data sources and organized for 2107 hydrologic subbasins (8-digit hydrologic units, HUC8s) in the conterminous United States at refined 1/24 (~4 km) spatial resolution. Using high-performance computing for intensive model calibration, a high-resolution parameter dataset was prepared for the macro-scale Variable Infiltration Capacity (VIC) hydrologic model. The VICmore » simulation was driven by DAYMET daily meteorological forcing and was calibrated against USGS WaterWatch monthly runoff observations for each HUC8. The results showed that this new parameter dataset may help reasonably simulate runoff at most US HUC8 subbasins. Based on this exhaustive calibration effort, it is now possible to accurately estimate the resources required for further model improvement across the entire conterminous United States. We anticipate that through this hydrologic parameter dataset, the repeated effort of fundamental data processing can be lessened, so that research efforts can emphasize the more challenging task of assessing climate change impacts. The pre-organized model parameter dataset will be provided to interested parties to support further hydro-climate impact assessment.« less

  18. Spatial assessment of land degradation through key ecosystem services: The role of globally available data.

    PubMed

    Cerretelli, Stefania; Poggio, Laura; Gimona, Alessandro; Yakob, Getahun; Boke, Shiferaw; Habte, Mulugeta; Coull, Malcolm; Peressotti, Alessandro; Black, Helaina

    2018-07-01

    Land degradation is a serious issue especially in dry and developing countries leading to ecosystem services (ESS) degradation due to soil functions' depletion. Reliably mapping land degradation spatial distribution is therefore important for policy decisions. The main objectives of this paper were to infer land degradation through ESS assessment and compare the modelling results obtained using different sets of data. We modelled important physical processes (sediment erosion and nutrient export) and the equivalent ecosystem services (sediment and nutrient retention) to infer land degradation in an area in the Ethiopian Great Rift Valley. To model soil erosion/retention capability, and nitrogen export/retention capability, two datasets were used: a 'global' dataset derived from existing global-coverage data and a hybrid dataset where global data were integrated with data from local surveys. The results showed that ESS assessments can be used to infer land degradation and identify priority areas for interventions. The comparison between the modelling results of the two different input datasets showed that caution is necessary if only global-coverage data are used at a local scale. In remote and data-poor areas, an approach that integrates global data with targeted local sampling campaigns might be a good compromise to use ecosystem services in decision-making. Copyright © 2018. Published by Elsevier B.V.

  19. National Geospatial Data Asset Lifecycle Baseline Maturity Assessment for the Federal Geographic Data Committee

    NASA Astrophysics Data System (ADS)

    Peltz-Lewis, L. A.; Blake-Coleman, W.; Johnston, J.; DeLoatch, I. B.

    2014-12-01

    The Federal Geographic Data Committee (FGDC) is designing a portfolio management process for 193 geospatial datasets contained within the 16 topical National Spatial Data Infrastructure themes managed under OMB Circular A-16 "Coordination of Geographic Information and Related Spatial Data Activities." The 193 datasets are designated as National Geospatial Data Assets (NGDA) because of their significance in implementing to the missions of multiple levels of government, partners and stakeholders. As a starting point, the data managers of these NGDAs will conduct a baseline maturity assessment of the dataset(s) for which they are responsible. The maturity is measured against benchmarks related to each of the seven stages of the data lifecycle management framework promulgated within the OMB Circular A-16 Supplemental Guidance issued by OMB in November 2010. This framework was developed by the interagency Lifecycle Management Work Group (LMWG), consisting of 16 Federal agencies, under the 2004 Presidential Initiative the Geospatial Line of Business,using OMB Circular A-130" Management of Federal Information Resources" as guidance The seven lifecycle stages are: Define, Inventory/Evaluate, Obtain, Access, Maintain, Use/Evaluate, and Archive. This paper will focus on the Lifecycle Baseline Maturity Assessment, and efforts to integration the FGDC approach with other data maturity assessments.

  20. Evaluating the High Asia Reanalysis (HAR) using Gauge-based and Satellite Precipitation Data over High Mountain Asia

    NASA Astrophysics Data System (ADS)

    Pangaluru, K.; Velicogna, I.; Ciraci, E.; Mohajerani, Y.

    2017-12-01

    The Indus, Ganges and Brahmaputra (IGB) basins supply water for both domestic and agricultural demands, the latter of which is the mainstay of Indian economy. Here, we use high-resolution Asia Refined Analysis (HAR) rainfall datasets to study the spatial and temporal behavior of rainfall over the mountainous areas of the Indus, Ganges and Brahmaputra (IGB) over the period from 2001 to 2014. The validation of High Asia Refined Analysis (HAR) precipitation data is carried out with observational (GPCP, CRU and CPC) and satellite (TRMM_3B43) datasets for the period. We find that the relative differences between the HAR model and the satellite and gauge-based datasets varies between -9% and 67% for the seasonal mean and between 1% and 26% for the annual mean for all basins. The correlation between the HAR model and the observational datasets lies between 0.5 and 0.9 for all seasons. Spatial variations and monthly magnitudes of gridded precipitation trends are calculated by using the Mann-Kendall (MK) test and the Thei-Sen approach (TSA) respectively. We found significant positive trends precipitation grids over the IGB basins in the annual and monsoon season time frames, as opposed to winter and falls seasons.

  1. Personalizing lung cancer risk prediction and imaging follow-up recommendations using the National Lung Screening Trial dataset.

    PubMed

    Hostetter, Jason M; Morrison, James J; Morris, Michael; Jeudy, Jean; Wang, Kenneth C; Siegel, Eliot

    2017-11-01

    To demonstrate a data-driven method for personalizing lung cancer risk prediction using a large clinical dataset. An algorithm was used to categorize nodules found in the first screening year of the National Lung Screening Trial as malignant or nonmalignant. Risk of malignancy for nodules was calculated based on size criteria according to the Fleischner Society recommendations from 2005, along with the additional discriminators of pack-years smoking history, sex, and nodule location. Imaging follow-up recommendations were assigned according to Fleischner size category malignancy risk. Nodule size correlated with malignancy risk as predicted by the Fleischner Society recommendations. With the additional discriminators of smoking history, sex, and nodule location, significant risk stratification was observed. For example, men with ≥60 pack-years smoking history and upper lobe nodules measuring >4 and ≤6 mm demonstrated significantly increased risk of malignancy at 12.4% compared to the mean of 3.81% for similarly sized nodules (P < .0001). Based on personalized malignancy risk, 54% of nodules >4 and ≤6 mm were reclassified to longer-term follow-up than recommended by Fleischner. Twenty-seven percent of nodules ≤4 mm were reclassified to shorter-term follow-up. Using available clinical datasets such as the National Lung Screening Trial in conjunction with locally collected datasets can help clinicians provide more personalized malignancy risk predictions and follow-up recommendations. By incorporating 3 demographic data points, the risk of lung nodule malignancy within the Fleischner categories can be considerably stratified and more personalized follow-up recommendations can be made. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  2. Chemical elements in the environment: multi-element geochemical datasets from continental to national scale surveys on four continents

    USGS Publications Warehouse

    Caritat, Patrice de; Reimann, Clemens; Smith, David; Wang, Xueqiu

    2017-01-01

    During the last 10-20 years, Geological Surveys around the world have undertaken a major effort towards delivering fully harmonized and tightly quality-controlled low-density multi-element soil geochemical maps and datasets of vast regions including up to whole continents. Concentrations of between 45 and 60 elements commonly have been determined in a variety of different regolith types (e.g., sediment, soil). The multi-element datasets are published as complete geochemical atlases and made available to the general public. Several other geochemical datasets covering smaller areas but generally at a higher spatial density are also available. These datasets may, however, not be found by superficial internet-based searches because the elements are not mentioned individually either in the title or in the keyword lists of the original references. This publication attempts to increase the visibility and discoverability of these fundamental background datasets covering large areas up to whole continents.

  3. Internet use and health: Connecting secondary data through spatial microsimulation

    PubMed Central

    Deetjen, Ulrike; Powell, John A

    2016-01-01

    Objective Internet use may affect health and health service use, and is seen as a potential lever for empowering patients, levelling inequalities and managing costs in the health system. However, supporting evidence is scant, partially due to a lack of data to investigate the relationship on a larger scale. This paper presents an approach for connecting existing datasets to generate new insights. Methods Spatial microsimulation offers a way to combine a random sample survey on Internet use with aggregate census data and other routine data from the health system based on small geographic areas to examine the relationship between Internet use, perceived health and health service use. While health research has primarily used spatial microsimulation to estimate the geographic distribution of a certain phenomenon, this research highlights this simulation technique as a way to link datasets for joint analysis, with location as the connecting element. Results Internet use is associated with higher perceived health and lower health service use independently of whether Internet use was conceptualised in terms of access, support or usage, and controlling for sociodemographic covariates. Internal validation confirms that differences between actual and simulated data are small; external validation shows that the simulated dataset is a good reflection of the real world. Conclusion Spatial microsimulation helps to generate new insights through linking secondary data in a privacy-preserving and cost-effective way. This allows for better understanding the relationship between Internet use and health, enabling theoretical insights and practical implications for policy with insights down to the local level. PMID:29942566

  4. Spatially Referenced Educational Achievement Data Exploration: A Web-Based Interactive System Integration of GIS, PHP, and MySQL Technologies

    ERIC Educational Resources Information Center

    Mulvenon, Sean W.; Wang, Kening; Mckenzie, Sarah; Anderson, Travis

    2006-01-01

    Effective exploration of spatially referenced educational achievement data can help educational researchers and policy analysts speed up gaining valuable insight into datasets. This article illustrates a demo system developed in the National Office for Research on Measurement and Evaluation Systems (NORMES) for supporting Web-based interactive…

  5. Towards improved parameterization of a macroscale hydrologic model in a discontinuous permafrost boreal forest ecosystem

    DOE PAGES

    Endalamaw, Abraham; Bolton, W. Robert; Young-Robertson, Jessica M.; ...

    2017-09-14

    Modeling hydrological processes in the Alaskan sub-arctic is challenging because of the extreme spatial heterogeneity in soil properties and vegetation communities. Nevertheless, modeling and predicting hydrological processes is critical in this region due to its vulnerability to the effects of climate change. Coarse-spatial-resolution datasets used in land surface modeling pose a new challenge in simulating the spatially distributed and basin-integrated processes since these datasets do not adequately represent the small-scale hydrological, thermal, and ecological heterogeneity. The goal of this study is to improve the prediction capacity of mesoscale to large-scale hydrological models by introducing a small-scale parameterization scheme, which bettermore » represents the spatial heterogeneity of soil properties and vegetation cover in the Alaskan sub-arctic. The small-scale parameterization schemes are derived from observations and a sub-grid parameterization method in the two contrasting sub-basins of the Caribou Poker Creek Research Watershed (CPCRW) in Interior Alaska: one nearly permafrost-free (LowP) sub-basin and one permafrost-dominated (HighP) sub-basin. The sub-grid parameterization method used in the small-scale parameterization scheme is derived from the watershed topography. We found that observed soil thermal and hydraulic properties – including the distribution of permafrost and vegetation cover heterogeneity – are better represented in the sub-grid parameterization method than the coarse-resolution datasets. Parameters derived from the coarse-resolution datasets and from the sub-grid parameterization method are implemented into the variable infiltration capacity (VIC) mesoscale hydrological model to simulate runoff, evapotranspiration (ET), and soil moisture in the two sub-basins of the CPCRW. Simulated hydrographs based on the small-scale parameterization capture most of the peak and low flows, with similar accuracy in both sub-basins, compared to simulated hydrographs based on the coarse-resolution datasets. On average, the small-scale parameterization scheme improves the total runoff simulation by up to 50 % in the LowP sub-basin and by up to 10 % in the HighP sub-basin from the large-scale parameterization. This study shows that the proposed sub-grid parameterization method can be used to improve the performance of mesoscale hydrological models in the Alaskan sub-arctic watersheds.« less

  6. Towards improved parameterization of a macroscale hydrologic model in a discontinuous permafrost boreal forest ecosystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Endalamaw, Abraham; Bolton, W. Robert; Young-Robertson, Jessica M.

    Modeling hydrological processes in the Alaskan sub-arctic is challenging because of the extreme spatial heterogeneity in soil properties and vegetation communities. Nevertheless, modeling and predicting hydrological processes is critical in this region due to its vulnerability to the effects of climate change. Coarse-spatial-resolution datasets used in land surface modeling pose a new challenge in simulating the spatially distributed and basin-integrated processes since these datasets do not adequately represent the small-scale hydrological, thermal, and ecological heterogeneity. The goal of this study is to improve the prediction capacity of mesoscale to large-scale hydrological models by introducing a small-scale parameterization scheme, which bettermore » represents the spatial heterogeneity of soil properties and vegetation cover in the Alaskan sub-arctic. The small-scale parameterization schemes are derived from observations and a sub-grid parameterization method in the two contrasting sub-basins of the Caribou Poker Creek Research Watershed (CPCRW) in Interior Alaska: one nearly permafrost-free (LowP) sub-basin and one permafrost-dominated (HighP) sub-basin. The sub-grid parameterization method used in the small-scale parameterization scheme is derived from the watershed topography. We found that observed soil thermal and hydraulic properties – including the distribution of permafrost and vegetation cover heterogeneity – are better represented in the sub-grid parameterization method than the coarse-resolution datasets. Parameters derived from the coarse-resolution datasets and from the sub-grid parameterization method are implemented into the variable infiltration capacity (VIC) mesoscale hydrological model to simulate runoff, evapotranspiration (ET), and soil moisture in the two sub-basins of the CPCRW. Simulated hydrographs based on the small-scale parameterization capture most of the peak and low flows, with similar accuracy in both sub-basins, compared to simulated hydrographs based on the coarse-resolution datasets. On average, the small-scale parameterization scheme improves the total runoff simulation by up to 50 % in the LowP sub-basin and by up to 10 % in the HighP sub-basin from the large-scale parameterization. This study shows that the proposed sub-grid parameterization method can be used to improve the performance of mesoscale hydrological models in the Alaskan sub-arctic watersheds.« less

  7. A downscaled 1 km dataset of daily Greenland ice sheet surface mass balance components (1958-2014)

    NASA Astrophysics Data System (ADS)

    Noel, B.; Van De Berg, W. J.; Fettweis, X.; Machguth, H.; Howat, I. M.; van den Broeke, M. R.

    2015-12-01

    The current spatial resolution in regional climate models (RCMs), typically around 5 to 20 km, remains too coarse to accurately reproduce the spatial variability in surface mass balance (SMB) components over the narrow ablation zones, marginal outlet glaciers and neighbouring ice caps of the Greenland ice sheet (GrIS). In these topographically rough terrains, the SMB components are highly dependent on local variations in topography. However, the relatively low-resolution elevation and ice mask prescribed in RCMs contribute to significantly underestimate melt and runoff in these regions due to unresolved valley glaciers and fjords. Therefore, near-km resolution topography is essential to better capture SMB variability in these spatially restricted regions. We present a 1 km resolution dataset of daily GrIS SMB covering the period 1958-2014, which is statistically downscaled from data of the polar regional climate model RACMO2.3 at 11 km, using an elevation dependence. The dataset includes all individual SMB components projected on the elevation and ice mask from the GIMP DEM, down-sampled to 1 km. Daily runoff and sublimation are interpolated to the 1 km topography using a local regression to elevation valid for each day specifically; daily precipitation is bi-linearly downscaled without elevation corrections. The daily SMB dataset is then reconstructed by summing downscaled precipitation, sublimation and runoff. High-resolution elevation and ice mask allow for properly resolving the narrow ablation zones and valley glaciers at the GrIS margins, leading to significant increase in runoff estimate. In these regions, and especially over narrow glaciers tongues, the downscaled products improve on the original RACMO2.3 outputs by better representing local SMB patterns through a gradual ablation increase towards the GrIS margins. We discuss the impact of downscaling on the SMB components in a case study for a spatially restricted region, where large elevation discrepancies are observed between both resolutions. Owing to generally enhanced runoff in the GrIS ablation zone, the evaluation of daily downscaled SMB against ablation measurements, collected at in-situ measuring sites derived from a newly compiled ablation dataset, shows a better agreement with observations relative to native RACMO2.3 SMB at 11 km.

  8. Comparison of Radiative Energy Flows in Observational Datasets and Climate Modeling

    NASA Technical Reports Server (NTRS)

    Raschke, Ehrhard; Kinne, Stefan; Rossow, William B.; Stackhouse, Paul W. Jr.; Wild, Martin

    2016-01-01

    This study examines radiative flux distributions and local spread of values from three major observational datasets (CERES, ISCCP, and SRB) and compares them with results from climate modeling (CMIP3). Examinations of the spread and differences also differentiate among contributions from cloudy and clear-sky conditions. The spread among observational datasets is in large part caused by noncloud ancillary data. Average differences of at least 10Wm(exp -2) each for clear-sky downward solar, upward solar, and upward infrared fluxes at the surface demonstrate via spatial difference patterns major differences in assumptions for atmospheric aerosol, solar surface albedo and surface temperature, and/or emittance in observational datasets. At the top of the atmosphere (TOA), observational datasets are less influenced by the ancillary data errors than at the surface. Comparisons of spatial radiative flux distributions at the TOA between observations and climate modeling indicate large deficiencies in the strength and distribution of model-simulated cloud radiative effects. Differences are largest for lower-altitude clouds over low-latitude oceans. Global modeling simulates stronger cloud radiative effects (CRE) by +30Wmexp -2) over trade wind cumulus regions, yet smaller CRE by about -30Wm(exp -2) over (smaller in area) stratocumulus regions. At the surface, climate modeling simulates on average about 15Wm(exp -2) smaller radiative net flux imbalances, as if climate modeling underestimates latent heat release (and precipitation). Relative to observational datasets, simulated surface net fluxes are particularly lower over oceanic trade wind regions (where global modeling tends to overestimate the radiative impact of clouds). Still, with the uncertainty in noncloud ancillary data, observational data do not establish a reliable reference.

  9. A comparison of multi-spectral, multi-angular, and multi-temporal remote sensing datasets for fractional shrub canopy mapping in Arctic Alaska

    USGS Publications Warehouse

    Selkowitz, D.J.

    2010-01-01

    Shrub cover appears to be increasing across many areas of the Arctic tundra biome, and increasing shrub cover in the Arctic has the potential to significantly impact global carbon budgets and the global climate system. For most of the Arctic, however, there is no existing baseline inventory of shrub canopy cover, as existing maps of Arctic vegetation provide little information about the density of shrub cover at a moderate spatial resolution across the region. Remotely-sensed fractional shrub canopy maps can provide this necessary baseline inventory of shrub cover. In this study, we compare the accuracy of fractional shrub canopy (> 0.5 m tall) maps derived from multi-spectral, multi-angular, and multi-temporal datasets from Landsat imagery at 30 m spatial resolution, Moderate Resolution Imaging SpectroRadiometer (MODIS) imagery at 250 m and 500 m spatial resolution, and MultiAngle Imaging Spectroradiometer (MISR) imagery at 275 m spatial resolution for a 1067 km2 study area in Arctic Alaska. The study area is centered at 69 ??N, ranges in elevation from 130 to 770 m, is composed primarily of rolling topography with gentle slopes less than 10??, and is free of glaciers and perennial snow cover. Shrubs > 0.5 m in height cover 2.9% of the study area and are primarily confined to patches associated with specific landscape features. Reference fractional shrub canopy is determined from in situ shrub canopy measurements and a high spatial resolution IKONOS image swath. Regression tree models are constructed to estimate fractional canopy cover at 250 m using different combinations of input data from Landsat, MODIS, and MISR. Results indicate that multi-spectral data provide substantially more accurate estimates of fractional shrub canopy cover than multi-angular or multi-temporal data. Higher spatial resolution datasets also provide more accurate estimates of fractional shrub canopy cover (aggregated to moderate spatial resolutions) than lower spatial resolution datasets, an expected result for a study area where most shrub cover is concentrated in narrow patches associated with rivers, drainages, and slopes. Including the middle infrared bands available from Landsat and MODIS in the regression tree models (in addition to the four standard visible and near-infrared spectral bands) typically results in a slight boost in accuracy. Including the multi-angular red band data available from MISR in the regression tree models, however, typically boosts accuracy more substantially, resulting in moderate resolution fractional shrub canopy estimates approaching the accuracy of estimates derived from the much higher spatial resolution Landsat sensor. Given the poor availability of snow and cloud-free Landsat scenes in many areas of the Arctic and the promising results demonstrated here by the MISR sensor, MISR may be the best choice for large area fractional shrub canopy mapping in the Alaskan Arctic for the period 2000-2009.

  10. Surrogate taxa and fossils as reliable proxies of spatial biodiversity patterns in marine benthic communities.

    PubMed

    Tyler, Carrie L; Kowalewski, Michał

    2017-03-15

    Rigorous documentation of spatial heterogeneity (β-diversity) in present-day and preindustrial ecosystems is required to assess how marine communities respond to environmental and anthropogenic drivers. However, the overwhelming majority of contemporary and palaeontological assessments have centred on single higher taxa. To evaluate the validity of single taxa as community surrogates and palaeontological proxies, we compared macrobenthic communities and sympatric death assemblages at 52 localities in Onslow Bay (NC, USA). Compositional heterogeneity did not differ significantly across datasets based on live molluscs, live non-molluscs, and all live organisms. Death assemblages were less heterogeneous spatially, likely reflecting homogenization by time-averaging. Nevertheless, live and dead datasets were greater than 80% congruent in pairwise comparisons to the literature estimates of β-diversity in other marine ecosystems, yielded concordant bathymetric gradients, and produced nearly identical ordinations consistently delineating habitats. Congruent estimates from molluscs and non-molluscs suggest that single groups can serve as reliable community proxies. High spatial fidelity of death assemblages supports the emerging paradigm of Conservation Palaeobiology. Integrated analyses of ecological and palaeontological data based on surrogate taxa can quantify anthropogenic changes in marine ecosystems and advance our understanding of spatial and temporal aspects of biodiversity. © 2017 The Author(s).

  11. Spatial decorrelation stretch of annual (2003-2014) Daymet precipitation summaries on a 1-km grid for California, Nevada, Arizona, and Utah.

    PubMed

    Ch Miliaresis, George

    2016-06-01

    A method is presented for elevation (H) and spatial position (X, Y) decorrelation stretch of annual precipitation summaries on a 1-km grid for SW USA for the period 2003 to 2014. Multiple linear regression analysis of the first and second principal component (PC) quantifies the variance in the multi-temporal precipitation imagery that is explained by X, Y, and elevation (h). The multi-temporal dataset is reconstructed from the PC1 and PC2 residual images and the later PCs by taking into account the variance that is not related to X, Y, and h. Clustering of the reconstructed precipitation dataset allowed the definition of positive (for example, in Sierra Nevada, Salt Lake City) and negative (for example, in San Joaquin Valley, Nevada, Colorado Plateau) precipitation anomalies. The temporal and spatial patterns defined from the spatially standardized multi-temporal precipitation imagery provide a tool of comparison for regions in different geographic environments according to the deviation from the precipitation amount that they are expected to receive as function of X, Y, and h. Such a standardization allows the definition of less or more sensitive to climatic change regions and gives an insight in the spatial impact of atmospheric circulation that causes the annual precipitation.

  12. Asynchrony in the inter-annual recruitment of lake whitefish Coregonus clupeaformis in the Great Lakes region

    USGS Publications Warehouse

    Zischke, Mitchell T.; Bunnell, David B.; Troy, Cary D.; Berglund, Eric K.; Caroffino, David C.; Ebener, Mark P.; He, Ji X.; Sitar, Shawn P.; Hook, Tomas O.

    2017-01-01

    Spatially separated fish populations may display synchrony in annual recruitment if the factors that drive recruitment success, particularly abiotic factors such as temperature, are synchronised across broad spatial scales. We examined inter-annual variation in recruitment among lake whitefish (Coregonus clupeaformis) populations in lakes Huron, Michigan and Superior using fishery-dependent and -independent data from 1971 to 2014. Relative year-class strength (RYCS) was calculated from catch-curve residuals for each year class across multiple sampling years. Pairwise comparison of RYCS among datasets revealed no significant associations either within or between lakes, suggesting that recruitment of lake whitefish is spatially asynchronous. There was no consistent correlation between pairwise agreement and the distance between datasets, and models to estimate the spatial scale of recruitment synchrony did not fit well to these data. This suggests that inter-annual recruitment variation of lake whitefish is asynchronous across broad spatial scales in the Great Lakes. While our method primarily evaluated year-to-year recruitment variation, it is plausible that recruitment of lake whitefish varies at coarser temporal scales (e.g. decadal). Nonetheless, our findings differ from research on some other Coregonus species and suggest that local biotic or density-dependent factors may contribute strongly to lake whitefish recruitment rather than inter-annual variability in broad-scale abiotic factors.

  13. Digital hydrologic networks supporting applications related to spatially referenced regression modeling

    USGS Publications Warehouse

    Brakebill, John W.; Wolock, David M.; Terziotti, Silvia

    2011-01-01

    Digital hydrologic networks depicting surface-water pathways and their associated drainage catchments provide a key component to hydrologic analysis and modeling. Collectively, they form common spatial units that can be used to frame the descriptions of aquatic and watershed processes. In addition, they provide the ability to simulate and route the movement of water and associated constituents throughout the landscape. Digital hydrologic networks have evolved from derivatives of mapping products to detailed, interconnected, spatially referenced networks of water pathways, drainage areas, and stream and watershed characteristics. These properties are important because they enhance the ability to spatially evaluate factors that affect the sources and transport of water-quality constituents at various scales. SPAtially Referenced Regressions On Watershed attributes (SPARROW), a process-based ⁄ statistical model, relies on a digital hydrologic network in order to establish relations between quantities of monitored contaminant flux, contaminant sources, and the associated physical characteristics affecting contaminant transport. Digital hydrologic networks modified from the River Reach File (RF1) and National Hydrography Dataset (NHD) geospatial datasets provided frameworks for SPARROW in six regions of the conterminous United States. In addition, characteristics of the modified RF1 were used to update estimates of mean-annual streamflow. This produced more current flow estimates for use in SPARROW modeling.

  14. Octree-based indexing for 3D pointclouds within an Oracle Spatial DBMS

    NASA Astrophysics Data System (ADS)

    Schön, Bianca; Mosa, Abu Saleh Mohammad; Laefer, Debra F.; Bertolotto, Michela

    2013-02-01

    A large proportion of today's digital datasets have a spatial component. The effective storage and management of which poses particular challenges, especially with light detection and ranging (LiDAR), where datasets of even small geographic areas may contain several hundred million points. While in the last decade 2.5-dimensional data were prevalent, true 3-dimensional data are increasingly commonplace via LiDAR. They have gained particular popularity for urban applications including generation of city-scale maps, baseline data disaster management, and utility planning. Additionally, LiDAR is commonly used for flood plane identification, coastal-erosion tracking, and forest biomass mapping. Despite growing data availability, current spatial information systems do not provide suitable full support for the data's true 3D nature. Consequently, one system is needed to store the data and another for its processing, thereby necessitating format transformations. The work presented herein aims at a more cost-effective way for managing 3D LiDAR data that allows for storage and manipulation within a single system by enabling a new index within existing spatial database management technology. Implementation of an octree index for 3D LiDAR data atop Oracle Spatial 11g is presented, along with an evaluation showing up to an eight-fold improvement compared to the native Oracle R-tree index.

  15. One-trial memory for object-place associations after separate lesions of hippocampus and posterior parahippocampal region in the monkey.

    PubMed

    Malkova, Ludise; Mishkin, Mortimer

    2003-03-01

    In earlier studies of one-trial spatial memory in monkeys (Parkinson et al., 1988; Angeli et al., 1993), severe and chronic memory impairment for both object-place association and place alone was found after ablation of the hippocampal formation. The results appeared to provide the first clear-cut evidence in the monkey of the essential role of the hippocampus in spatial memory, but that interpretation neglected the inclusion in the lesion of the underlying posterior parahippocampal region. To determine the separate contributions of the hippocampus and posterior parahippocampal region to these spatial forms of one-trial memory, we trained 10 rhesus monkeys, as before, to remember the spatial positions of either two different trial-unique objects overlying two of the wells in a three-well test tray (object-place trials) or simply two of the three wells (place trials). Six of the monkeys then received ibotenic acid lesions restricted to the hippocampal formation (group H), and the four others received selective ablations of the posterior parahippocampal region (group P), comprising mainly parahippocampal cortex, parasubiculum, and presubiculum. Group H was found to be completely unaffected postoperatively on both types of trials, whereas group P sustained an impairment on both types equal in magnitude to that observed after the combined lesions in the original studies. Thus, contrary to the previous interpretation, one-trial memory for object-place association and, perhaps more fundamentally, one-trial memory for two different places appear to be critically dependent not on the hippocampal formation but rather on the posterior parahippocampal region.

  16. Spatially-explicit models of global tree density.

    PubMed

    Glick, Henry B; Bettigole, Charlie; Maynard, Daniel S; Covey, Kristofer R; Smith, Jeffrey R; Crowther, Thomas W

    2016-08-16

    Remote sensing and geographic analysis of woody vegetation provide means of evaluating the distribution of natural resources, patterns of biodiversity and ecosystem structure, and socio-economic drivers of resource utilization. While these methods bring geographic datasets with global coverage into our day-to-day analytic spheres, many of the studies that rely on these strategies do not capitalize on the extensive collection of existing field data. We present the methods and maps associated with the first spatially-explicit models of global tree density, which relied on over 420,000 forest inventory field plots from around the world. This research is the result of a collaborative effort engaging over 20 scientists and institutions, and capitalizes on an array of analytical strategies. Our spatial data products offer precise estimates of the number of trees at global and biome scales, but should not be used for local-level estimation. At larger scales, these datasets can contribute valuable insight into resource management, ecological modelling efforts, and the quantification of ecosystem services.

  17. Multidimensional Compressed Sensing MRI Using Tensor Decomposition-Based Sparsifying Transform

    PubMed Central

    Yu, Yeyang; Jin, Jin; Liu, Feng; Crozier, Stuart

    2014-01-01

    Compressed Sensing (CS) has been applied in dynamic Magnetic Resonance Imaging (MRI) to accelerate the data acquisition without noticeably degrading the spatial-temporal resolution. A suitable sparsity basis is one of the key components to successful CS applications. Conventionally, a multidimensional dataset in dynamic MRI is treated as a series of two-dimensional matrices, and then various matrix/vector transforms are used to explore the image sparsity. Traditional methods typically sparsify the spatial and temporal information independently. In this work, we propose a novel concept of tensor sparsity for the application of CS in dynamic MRI, and present the Higher-order Singular Value Decomposition (HOSVD) as a practical example. Applications presented in the three- and four-dimensional MRI data demonstrate that HOSVD simultaneously exploited the correlations within spatial and temporal dimensions. Validations based on cardiac datasets indicate that the proposed method achieved comparable reconstruction accuracy with the low-rank matrix recovery methods and, outperformed the conventional sparse recovery methods. PMID:24901331

  18. Local multiplicity adjustment for the spatial scan statistic using the Gumbel distribution.

    PubMed

    Gangnon, Ronald E

    2012-03-01

    The spatial scan statistic is an important and widely used tool for cluster detection. It is based on the simultaneous evaluation of the statistical significance of the maximum likelihood ratio test statistic over a large collection of potential clusters. In most cluster detection problems, there is variation in the extent of local multiplicity across the study region. For example, using a fixed maximum geographic radius for clusters, urban areas typically have many overlapping potential clusters, whereas rural areas have relatively few. The spatial scan statistic does not account for local multiplicity variation. We describe a previously proposed local multiplicity adjustment based on a nested Bonferroni correction and propose a novel adjustment based on a Gumbel distribution approximation to the distribution of a local scan statistic. We compare the performance of all three statistics in terms of power and a novel unbiased cluster detection criterion. These methods are then applied to the well-known New York leukemia dataset and a Wisconsin breast cancer incidence dataset. © 2011, The International Biometric Society.

  19. Local multiplicity adjustment for the spatial scan statistic using the Gumbel distribution

    PubMed Central

    Gangnon, Ronald E.

    2011-01-01

    Summary The spatial scan statistic is an important and widely used tool for cluster detection. It is based on the simultaneous evaluation of the statistical significance of the maximum likelihood ratio test statistic over a large collection of potential clusters. In most cluster detection problems, there is variation in the extent of local multiplicity across the study region. For example, using a fixed maximum geographic radius for clusters, urban areas typically have many overlapping potential clusters, while rural areas have relatively few. The spatial scan statistic does not account for local multiplicity variation. We describe a previously proposed local multiplicity adjustment based on a nested Bonferroni correction and propose a novel adjustment based on a Gumbel distribution approximation to the distribution of a local scan statistic. We compare the performance of all three statistics in terms of power and a novel unbiased cluster detection criterion. These methods are then applied to the well-known New York leukemia dataset and a Wisconsin breast cancer incidence dataset. PMID:21762118

  20. Global climate shocks to agriculture from 1950 - 2015

    NASA Astrophysics Data System (ADS)

    Jackson, N. D.; Konar, M.; Debaere, P.; Sheffield, J.

    2016-12-01

    Climate shocks represent a major disruption to crop yields and agricultural production, yet a consistent and comprehensive database of agriculturally relevant climate shocks does not exist. To this end, we conduct a spatially and temporally disaggregated analysis of climate shocks to agriculture from 1950-2015 using a new gridded dataset. We quantify the occurrence and magnitude of climate shocks for all global agricultural areas during the growing season using a 0.25-degree spatial grid and daily time scale. We include all major crops and both temperature and precipitation extremes in our analysis. Critically, we evaluate climate shocks to all potential agricultural areas to improve projections within our time series. To do this, we use Global Agro-Ecological Zones maps from the Food and Agricultural Organization, the Princeton Global Meteorological Forcing dataset, and crop calendars from Sacks et al. (2010). We trace the dynamic evolution of climate shocks to agriculture, evaluate the spatial heterogeneity in agriculturally relevant climate shocks, and identify the crops and regions that are most prone to climate shocks.

  1. A comparison of spatial interpolation methods for soil temperature over a complex topographical region

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Tang, Xiao-Ping; Ma, Xue-Qing; Liu, Hong-Bin

    2016-08-01

    Soil temperature variability data provide valuable information on understanding land-surface ecosystem processes and climate change. This study developed and analyzed a spatial dataset of monthly mean soil temperature at a depth of 10 cm over a complex topographical region in southwestern China. The records were measured at 83 stations during the period of 1961-2000. Nine approaches were compared for interpolating soil temperature. The accuracy indicators were root mean square error (RMSE), modelling efficiency (ME), and coefficient of residual mass (CRM). The results indicated that thin plate spline with latitude, longitude, and elevation gave the best performance with RMSE varying between 0.425 and 0.592 °C, ME between 0.895 and 0.947, and CRM between -0.007 and 0.001. A spatial database was developed based on the best model. The dataset showed that larger seasonal changes of soil temperature were from autumn to winter over the region. The northern and eastern areas with hilly and low-middle mountains experienced larger seasonal changes.

  2. Spatial Variation of Selenium in Appalachian Coal Seams

    NASA Astrophysics Data System (ADS)

    Le, L.; Tyner, J. S.; Perfect, E.; Yoder, D. C.

    2013-12-01

    The potential environmental impacts from coal extraction have led to many investigations of the geochemistry of coal. Previous studies have shown that selenium (Se) is an environmental contaminant due to its mutagenic effects on sensitive macro-organisms as a result of bioaccumulation in affected waters. Some regulatory authorities have responded by requiring the sampling of coal seams and adjacent rock for Se prior to authorizing a given coal mining permit. In at least one case, a single continuous rock core was sampled for Se to determine the threshold of Se across a 2.2 square kilometer proposed surface coal mine. To examine the adequacy of such an approach, we investigated the spatial variability and correlation of a West Virginia Geological and Economic Survey (WVGES) dataset of Se concentrations from coal seams collected within Appalachia (1088 samples). We conducted semi-variogram and Kriging cross-validation analyses on six coal seams from the dataset. Our findings suggest no significant spatial correlation of Se within a given coal seam.

  3. VLUIS, a land use data product for Victoria, Australia, covering 2006 to 2013

    PubMed Central

    Morse-McNabb, Elizabeth; Sheffield, Kathryn; Clark, Rob; Lewis, Hayden; Robson, Susan; Cherry, Don; Williams, Steve

    2015-01-01

    Land Use Information is a key dataset required to enable an understanding of the changing nature of our landscapes and the associated influences on natural resources and regional communities. The Victorian Land Use Information System (VLUIS) data product has been created within the State Government of Victoria to support land use assessments. The project began in 2007 using stakeholder engagement to establish product requirements such as format, classification, frequency and spatial resolution. Its genesis is significantly different to traditional methods, incorporating data from a range of jurisdictions to develop land use information designed for regular on-going creation and consistency. Covering the entire landmass of Victoria, the dataset separately describes land tenure, land use and land cover. These variables are co-registered to a common spatial base (cadastral parcels) across the state for the period 2006 to 2013; biennially for land tenure and land use, and annually for land cover. Data is produced as a spatial GIS feature class. PMID:26602150

  4. VLUIS, a land use data product for Victoria, Australia, covering 2006 to 2013.

    PubMed

    Morse-McNabb, Elizabeth; Sheffield, Kathryn; Clark, Rob; Lewis, Hayden; Robson, Susan; Cherry, Don; Williams, Steve

    2015-11-24

    Land Use Information is a key dataset required to enable an understanding of the changing nature of our landscapes and the associated influences on natural resources and regional communities. The Victorian Land Use Information System (VLUIS) data product has been created within the State Government of Victoria to support land use assessments. The project began in 2007 using stakeholder engagement to establish product requirements such as format, classification, frequency and spatial resolution. Its genesis is significantly different to traditional methods, incorporating data from a range of jurisdictions to develop land use information designed for regular on-going creation and consistency. Covering the entire landmass of Victoria, the dataset separately describes land tenure, land use and land cover. These variables are co-registered to a common spatial base (cadastral parcels) across the state for the period 2006 to 2013; biennially for land tenure and land use, and annually for land cover. Data is produced as a spatial GIS feature class.

  5. Operational use of spaceborne lidar datasets

    NASA Astrophysics Data System (ADS)

    Marenco, Franco; Halloran, Gemma; Forsythe, Mary

    2018-04-01

    The Met Office plans to use space lidar datasets from CALIPSO, CATS, Aeolus and EarthCARE operationally in near real time (NRT), for the detection of aerosols. The first step is the development of NRT imagery for nowcasting of volcanic events, air quality, and mineral dust episodes. Model verification and possibly assimilation will be explored. Assimilation trials of Aeolus winds are also planned. Here we will present our first in-house imagery and our operational requirements.

  6. Measuring attention using the Posner cuing paradigm: the role of across and within trial target probabilities

    PubMed Central

    Hayward, Dana A.; Ristic, Jelena

    2013-01-01

    Numerous studies conducted within the recent decades have utilized the Posner cuing paradigm for eliciting, measuring, and theoretically characterizing attentional orienting. However, the data from recent studies suggest that the Posner cuing task might not provide an unambiguous measure of attention, as reflexive spatial orienting has been found to interact with extraneous processes engaged by the task's typical structure, i.e., the probability of target presence across trials, which affects tonic alertness, and the probability of target presence within trials, which affects voluntary temporal preparation. To understand the contribution of each of these two processes to the measurement of attentional orienting we assessed their individual and combined effects on reflexive attention elicited by a spatially nonpredictive peripheral cue. Our results revealed that the magnitude of spatial orienting was modulated by joint changes in the global probability of target presence across trials and the local probability of target presence within trials, while the time course of spatial orienting was susceptible to changes in the probability of target presence across trials. These data thus raise important questions about the choice of task parameters within the Posner cuing paradigm and their role in both the measurement and theoretical attributions of the observed attentional effects. PMID:23730280

  7. Automated Topographic Change Detection via Dem Differencing at Large Scales Using The Arcticdem Database

    NASA Astrophysics Data System (ADS)

    Candela, S. G.; Howat, I.; Noh, M. J.; Porter, C. C.; Morin, P. J.

    2016-12-01

    In the last decade, high resolution satellite imagery has become an increasingly accessible tool for geoscientists to quantify changes in the Arctic land surface due to geophysical, ecological and anthropomorphic processes. However, the trade off between spatial coverage and spatial-temporal resolution has limited detailed, process-level change detection over large (i.e. continental) scales. The ArcticDEM project utilized over 300,000 Worldview image pairs to produce a nearly 100% coverage elevation model (above 60°N) offering the first polar, high spatial - high resolution (2-8m by region) dataset, often with multiple repeats in areas of particular interest to geo-scientists. A dataset of this size (nearly 250 TB) offers endless new avenues of scientific inquiry, but quickly becomes unmanageable computationally and logistically for the computing resources available to the average scientist. Here we present TopoDiff, a framework for a generalized. automated workflow that requires minimal input from the end user about a study site, and utilizes cloud computing resources to provide a temporally sorted and differenced dataset, ready for geostatistical analysis. This hands-off approach allows the end user to focus on the science, without having to manage thousands of files, or petabytes of data. At the same time, TopoDiff provides a consistent and accurate workflow for image sorting, selection, and co-registration enabling cross-comparisons between research projects.

  8. Detecting and modelling structures on the micro and the macro scales: Assessing their effects on solute transport behaviour

    NASA Astrophysics Data System (ADS)

    Haslauer, C. P.; Bárdossy, A.; Sudicky, E. A.

    2017-09-01

    This paper demonstrates quantitative reasoning to separate the dataset of spatially distributed variables into different entities and subsequently characterize their geostatistical properties, properly. The main contribution of the paper is a statistical based algorithm that matches the manual distinction results. This algorithm is based on measured data and is generally applicable. In this paper, it is successfully applied at two datasets of saturated hydraulic conductivity (K) measured at the Borden (Canada) and the Lauswiesen (Germany) aquifers. The boundary layer was successfully delineated at Borden despite its only mild heterogeneity and only small statistical differences between the divided units. The methods are verified with the more heterogeneous Lauswiesen aquifer K data-set, where a boundary layer has previously been delineated. The effects of the macro- and the microstructure on solute transport behaviour are evaluated using numerical solute tracer experiments. Within the microscale structure, both Gaussian and non-Gaussian models of spatial dependence of K are evaluated. The effects of heterogeneity both on the macro- and the microscale are analysed using numerical tracer experiments based on four scenarios: including or not including the macroscale structures and optimally fitting a Gaussian or a non-Gaussian model for the spatial dependence in the micro-structure. The paper shows that both micro- and macro-scale structures are important, as in each of the four possible geostatistical scenarios solute transport behaviour differs meaningfully.

  9. A Geospatial Database that Supports Derivation of Climatological Features of Severe Weather

    NASA Astrophysics Data System (ADS)

    Phillips, M.; Ansari, S.; Del Greco, S.

    2007-12-01

    The Severe Weather Data Inventory (SWDI) at NOAA's National Climatic Data Center (NCDC) provides user access to archives of several datasets critical to the detection and evaluation of severe weather. These datasets include archives of: · NEXRAD Level-III point features describing general storm structure, hail, mesocyclone and tornado signatures · National Weather Service Storm Events Database · National Weather Service Local Storm Reports collected from storm spotters · National Weather Service Warnings · Lightning strikes from Vaisala's National Lightning Detection Network (NLDN) SWDI archives all of these datasets in a spatial database that allows for convenient searching and subsetting. These data are accessible via the NCDC web site, Web Feature Services (WFS) or automated web services. The results of interactive web page queries may be saved in a variety of formats, including plain text, XML, Google Earth's KMZ, standards-based NetCDF and Shapefile. NCDC's Storm Risk Assessment Project (SRAP) uses data from the SWDI database to derive gridded climatology products that show the spatial distributions of the frequency of various events. SRAP also can relate SWDI events to other spatial data such as roads, population, watersheds, and other geographic, sociological, or economic data to derive products that are useful in municipal planning, emergency management, the insurance industry, and other areas where there is a need to quantify and qualify how severe weather patterns affect people and property.

  10. High-resolution spatial databases of monthly climate variables (1961-2010) over a complex terrain region in southwestern China

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Xu, An-Ding; Liu, Hong-Bin

    2015-01-01

    Climate data in gridded format are critical for understanding climate change and its impact on eco-environment. The aim of the current study is to develop spatial databases for three climate variables (maximum, minimum temperatures, and relative humidity) over a large region with complex topography in southwestern China. Five widely used approaches including inverse distance weighting, ordinary kriging, universal kriging, co-kriging, and thin-plate smoothing spline were tested. Root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) showed that thin-plate smoothing spline with latitude, longitude, and elevation outperformed other models. Average RMSE, MAE, and MAPE of the best models were 1.16 °C, 0.74 °C, and 7.38 % for maximum temperature; 0.826 °C, 0.58 °C, and 6.41 % for minimum temperature; and 3.44, 2.28, and 3.21 % for relative humidity, respectively. Spatial datasets of annual and monthly climate variables with 1-km resolution covering the period 1961-2010 were then obtained using the best performance methods. Comparative study showed that the current outcomes were in well agreement with public datasets. Based on the gridded datasets, changes in temperature variables were investigated across the study area. Future study might be needed to capture the uncertainty induced by environmental conditions through remote sensing and knowledge-based methods.

  11. Application Perspective of 2D+SCALE Dimension

    NASA Astrophysics Data System (ADS)

    Karim, H.; Rahman, A. Abdul

    2016-09-01

    Different applications or users need different abstraction of spatial models, dimensionalities and specification of their datasets due to variations of required analysis and output. Various approaches, data models and data structures are now available to support most current application models in Geographic Information System (GIS). One of the focuses trend in GIS multi-dimensional research community is the implementation of scale dimension with spatial datasets to suit various scale application needs. In this paper, 2D spatial datasets that been scaled up as the third dimension are addressed as 2D+scale (or 3D-scale) dimension. Nowadays, various data structures, data models, approaches, schemas, and formats have been proposed as the best approaches to support variety of applications and dimensionality in 3D topology. However, only a few of them considers the element of scale as their targeted dimension. As the scale dimension is concerned, the implementation approach can be either multi-scale or vario-scale (with any available data structures and formats) depending on application requirements (topology, semantic and function). This paper attempts to discuss on the current and new potential applications which positively could be integrated upon 3D-scale dimension approach. The previous and current works on scale dimension as well as the requirements to be preserved for any given applications, implementation issues and future potential applications forms the major discussion of this paper.

  12. Spatial heterogeneity of type I error for local cluster detection tests

    PubMed Central

    2014-01-01

    Background Just as power, type I error of cluster detection tests (CDTs) should be spatially assessed. Indeed, CDTs’ type I error and power have both a spatial component as CDTs both detect and locate clusters. In the case of type I error, the spatial distribution of wrongly detected clusters (WDCs) can be particularly affected by edge effect. This simulation study aims to describe the spatial distribution of WDCs and to confirm and quantify the presence of edge effect. Methods A simulation of 40 000 datasets has been performed under the null hypothesis of risk homogeneity. The simulation design used realistic parameters from survey data on birth defects, and in particular, two baseline risks. The simulated datasets were analyzed using the Kulldorff’s spatial scan as a commonly used test whose behavior is otherwise well known. To describe the spatial distribution of type I error, we defined the participation rate for each spatial unit of the region. We used this indicator in a new statistical test proposed to confirm, as well as quantify, the edge effect. Results The predefined type I error of 5% was respected for both baseline risks. Results showed strong edge effect in participation rates, with a descending gradient from center to edge, and WDCs more often centrally situated. Conclusions In routine analysis of real data, clusters on the edge of the region should be carefully considered as they rarely occur when there is no cluster. Further work is needed to combine results from power studies with this work in order to optimize CDTs performance. PMID:24885343

  13. DAPAGLOCO - A global daily precipitation dataset from satellite and rain-gauge measurements

    NASA Astrophysics Data System (ADS)

    Spangehl, T.; Danielczok, A.; Dietzsch, F.; Andersson, A.; Schroeder, M.; Fennig, K.; Ziese, M.; Becker, A.

    2017-12-01

    The BMBF funded project framework MiKlip(Mittelfristige Klimaprognosen) develops a global climate forecast system on decadal time scales for operational applications. Herein, the DAPAGLOCO project (Daily Precipitation Analysis for the validation of Global medium-range Climate predictions Operationalized) provides a global precipitation dataset as a combination of microwave-based satellite measurements over ocean and rain gauge measurements over land on daily scale. The DAPAGLOCO dataset is created for the evaluation of the MiKlip forecast system in the first place. The HOAPS dataset (Hamburg Ocean Atmosphere Parameter and Fluxes from Satellite data) is used for the derivation of precipitation rates over ocean and is extended by the use of measurements from TMI, GMI, and AMSR-E, in addition to measurements from SSM/I and SSMIS. A 1D-Var retrieval scheme is developed to retrieve rain rates from microwave imager data, which also allows for the determination of uncertainty estimates. Over land, the GPCC (Global Precipitation Climatology Center) Full Data Daily product is used. It consists of rain gauge measurements that are interpolated on a regular grid by ordinary Kriging. The currently available dataset is based on a neuronal network approach, consists of 21 years of data from 1988 to 2008 and is currently extended until 2015 using the 1D-Var scheme and with improved sampling. Three different spatial resolved dataset versions are available with 1° and 2.5° global, and 0.5° for Europe. The evaluation of the MiKlip forecast system by DAPAGLOCO is based on ETCCDI (Expert Team on Climate Change and Detection Indices). Hindcasts are used for the index-based comparison between model and observations. These indices allow for the evaluation of precipitation extremes, their spatial and temporal distribution as well as for the duration of dry and wet spells, average precipitation amounts and percentiles on global scale. Besides, an ETCCDI-based climatology of the DAPAGLOCO precipitation dataset has been derived.

  14. Discovering New Global Climate Patterns: Curating a 21-Year High Temporal (Hourly) and Spatial (40km) Resolution Reanalysis Dataset

    NASA Astrophysics Data System (ADS)

    Hou, C. Y.; Dattore, R.; Peng, G. S.

    2014-12-01

    The National Center for Atmospheric Research's Global Climate Four-Dimensional Data Assimilation (CFDDA) Hourly 40km Reanalysis dataset is a dynamically downscaled dataset with high temporal and spatial resolution. The dataset contains three-dimensional hourly analyses in netCDF format for the global atmospheric state from 1985 to 2005 on a 40km horizontal grid (0.4°grid increment) with 28 vertical levels, providing good representation of local forcing and diurnal variation of processes in the planetary boundary layer. This project aimed to make the dataset publicly available, accessible, and usable in order to provide a unique resource to allow and promote studies of new climate characteristics. When the curation project started, it had been five years since the data files were generated. Also, although the Principal Investigator (PI) had generated a user document at the end of the project in 2009, the document had not been maintained. Furthermore, the PI had moved to a new institution, and the remaining team members were reassigned to other projects. These factors made data curation in the areas of verifying data quality, harvest metadata descriptions, documenting provenance information especially challenging. As a result, the project's curation process found that: Data curator's skill and knowledge helped make decisions, such as file format and structure and workflow documentation, that had significant, positive impact on the ease of the dataset's management and long term preservation. Use of data curation tools, such as the Data Curation Profiles Toolkit's guidelines, revealed important information for promoting the data's usability and enhancing preservation planning. Involving data curators during each stage of the data curation life cycle instead of at the end could improve the curation process' efficiency. Overall, the project showed that proper resources invested in the curation process would give datasets the best chance to fulfill their potential to help with new climate pattern discovery.

  15. Annotating spatio-temporal datasets for meaningful analysis in the Web

    NASA Astrophysics Data System (ADS)

    Stasch, Christoph; Pebesma, Edzer; Scheider, Simon

    2014-05-01

    More and more environmental datasets that vary in space and time are available in the Web. This comes along with an advantage of using the data for other purposes than originally foreseen, but also with the danger that users may apply inappropriate analysis procedures due to lack of important assumptions made during the data collection process. In order to guide towards a meaningful (statistical) analysis of spatio-temporal datasets available in the Web, we have developed a Higher-Order-Logic formalism that captures some relevant assumptions in our previous work [1]. It allows to proof on meaningful spatial prediction and aggregation in a semi-automated fashion. In this poster presentation, we will present a concept for annotating spatio-temporal datasets available in the Web with concepts defined in our formalism. Therefore, we have defined a subset of the formalism as a Web Ontology Language (OWL) pattern. It allows capturing the distinction between the different spatio-temporal variable types, i.e. point patterns, fields, lattices and trajectories, that in turn determine whether a particular dataset can be interpolated or aggregated in a meaningful way using a certain procedure. The actual annotations that link spatio-temporal datasets with the concepts in the ontology pattern are provided as Linked Data. In order to allow data producers to add the annotations to their datasets, we have implemented a Web portal that uses a triple store at the backend to store the annotations and to make them available in the Linked Data cloud. Furthermore, we have implemented functions in the statistical environment R to retrieve the RDF annotations and, based on these annotations, to support a stronger typing of spatio-temporal datatypes guiding towards a meaningful analysis in R. [1] Stasch, C., Scheider, S., Pebesma, E., Kuhn, W. (2014): "Meaningful spatial prediction and aggregation", Environmental Modelling & Software, 51, 149-165.

  16. MSWEP V2 global 3-hourly 0.1° precipitation: methodology and quantitative appraisal

    NASA Astrophysics Data System (ADS)

    Beck, H.; Yang, L.; Pan, M.; Wood, E. F.; William, L.

    2017-12-01

    Here, we present Multi-Source Weighted-Ensemble Precipitation (MSWEP) V2, the first fully global gridded precipitation (P) dataset with a 0.1° spatial resolution. The dataset covers the period 1979-2016, has a 3-hourly temporal resolution, and was derived by optimally merging a wide range of data sources based on gauges (WorldClim, GHCN-D, GSOD, and others), satellites (CMORPH, GridSat, GSMaP, and TMPA 3B42RT), and reanalyses (ERA-Interim, JRA-55, and NCEP-CFSR). MSWEP V2 implements some major improvements over V1, such as (i) the correction of distributional P biases using cumulative distribution function matching, (ii) increasing the spatial resolution from 0.25° to 0.1°, (iii) the inclusion of ocean areas, (iv) the addition of NCEP-CFSR P estimates, (v) the addition of thermal infrared-based P estimates for the pre-TRMM era, (vi) the addition of 0.1° daily interpolated gauge data, (vii) the use of a daily gauge correction scheme that accounts for regional differences in the 24-hour accumulation period of gauges, and (viii) extension of the data record to 2016. The gauge-based assessment of the reanalysis and satellite P datasets, necessary for establishing the merging weights, revealed that the reanalysis datasets strongly overestimate the P frequency for the entire globe, and that the satellite (resp. reanalysis) datasets consistently performed better at low (high) latitudes. Compared to other state-of-the-art P datasets, MSWEP V2 exhibits more plausible global patterns in mean annual P, percentiles, and annual number of dry days, and better resolves the small-scale variability over topographically complex terrain. Other P datasets appear to consistently underestimate P amounts over mountainous regions. Long-term mean P estimates for the global, land, and ocean domains based on MSWEP V2 are 959, 796, and 1026 mm/yr, respectively, in close agreement with the best previous published estimates.

  17. National Transportation Atlas Databases : 2002

    DOT National Transportation Integrated Search

    2002-01-01

    The National Transportation Atlas Databases 2002 (NTAD2002) is a set of nationwide geographic databases of transportation facilities, transportation networks, and associated infrastructure. These datasets include spatial information for transportatio...

  18. National Transportation Atlas Databases : 2010

    DOT National Transportation Integrated Search

    2010-01-01

    The National Transportation Atlas Databases 2010 (NTAD2010) is a set of nationwide geographic databases of transportation facilities, transportation networks, and associated infrastructure. These datasets include spatial information for transportatio...

  19. National Transportation Atlas Databases : 2006

    DOT National Transportation Integrated Search

    2006-01-01

    The National Transportation Atlas Databases 2006 (NTAD2006) is a set of nationwide geographic databases of transportation facilities, transportation networks, and associated infrastructure. These datasets include spatial information for transportatio...

  20. National Transportation Atlas Databases : 2005

    DOT National Transportation Integrated Search

    2005-01-01

    The National Transportation Atlas Databases 2005 (NTAD2005) is a set of nationwide geographic databases of transportation facilities, transportation networks, and associated infrastructure. These datasets include spatial information for transportatio...

  1. National Transportation Atlas Databases : 2008

    DOT National Transportation Integrated Search

    2008-01-01

    The National Transportation Atlas Databases 2008 (NTAD2008) is a set of nationwide geographic databases of transportation facilities, transportation networks, and associated infrastructure. These datasets include spatial information for transportatio...

  2. National Transportation Atlas Databases : 2003

    DOT National Transportation Integrated Search

    2003-01-01

    The National Transportation Atlas Databases 2003 (NTAD2003) is a set of nationwide geographic databases of transportation facilities, transportation networks, and associated infrastructure. These datasets include spatial information for transportatio...

  3. National Transportation Atlas Databases : 2004

    DOT National Transportation Integrated Search

    2004-01-01

    The National Transportation Atlas Databases 2004 (NTAD2004) is a set of nationwide geographic databases of transportation facilities, transportation networks, and associated infrastructure. These datasets include spatial information for transportatio...

  4. National Transportation Atlas Databases : 2009

    DOT National Transportation Integrated Search

    2009-01-01

    The National Transportation Atlas Databases 2009 (NTAD2009) is a set of nationwide geographic databases of transportation facilities, transportation networks, and associated infrastructure. These datasets include spatial information for transportatio...

  5. National Transportation Atlas Databases : 2007

    DOT National Transportation Integrated Search

    2007-01-01

    The National Transportation Atlas Databases 2007 (NTAD2007) is a set of nationwide geographic databases of transportation facilities, transportation networks, and associated infrastructure. These datasets include spatial information for transportatio...

  6. National Transportation Atlas Databases : 2012

    DOT National Transportation Integrated Search

    2012-01-01

    The National Transportation Atlas Databases 2012 (NTAD2012) is a set of nationwide geographic databases of transportation facilities, transportation networks, and associated infrastructure. These datasets include spatial information for transportatio...

  7. National Transportation Atlas Databases : 2011

    DOT National Transportation Integrated Search

    2011-01-01

    The National Transportation Atlas Databases 2011 (NTAD2011) is a set of nationwide geographic databases of transportation facilities, transportation networks, and associated infrastructure. These datasets include spatial information for transportatio...

  8. Computational optical tomography using 3-D deep convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Nguyen, Thanh; Bui, Vy; Nehmetallah, George

    2018-04-01

    Deep convolutional neural networks (DCNNs) offer a promising performance for many image processing areas, such as super-resolution, deconvolution, image classification, denoising, and segmentation, with outstanding results. Here, we develop for the first time, to our knowledge, a method to perform 3-D computational optical tomography using 3-D DCNN. A simulated 3-D phantom dataset was first constructed and converted to a dataset of phase objects imaged on a spatial light modulator. For each phase image in the dataset, the corresponding diffracted intensity image was experimentally recorded on a CCD. We then experimentally demonstrate the ability of the developed 3-D DCNN algorithm to solve the inverse problem by reconstructing the 3-D index of refraction distributions of test phantoms from the dataset from their corresponding diffraction patterns.

  9. Sampling errors for a nadir viewing instrument on the International Space Station

    NASA Astrophysics Data System (ADS)

    Berger, H. I.; Pincus, R.; Evans, F.; Santek, D.; Ackerman, S.; Ackerman, S.

    2001-12-01

    In an effort to improve the observational charactarization of ice clouds in the earth's atmosphere, we are developing a sub-millimeter wavelength radiometer which we propose to fly on the International Space Station for two years. Our goal is to accurately measure the ice water path and mass-weighted particle size at the finest possible temporal and spatial resolution. The ISS orbit precesses, sampling through the dirunal cycle every 16 days, but technological constraints limit our instrument to a single pixel viewed near nadir. We discuss sampling errors associated with this instrument/platform configuration. We use as "truth" the ISCCP dataset of pixel-level cloud optical retrievals, which acts as a proxy for ice water path; this dataset is sampled according to the orbital characteristics of the space station, and the statistics computed from the sub-sampled population are compared with those from the full dataset. We explore the tradeoffs in average sampling error as a function of the averaging time and spatial scale, and explore the possibility of resolving the dirunal cycle.

  10. Harmonization of forest disturbance datasets of the conterminous USA from 1986 to 2011

    USGS Publications Warehouse

    Soulard, Christopher E.; Acevedo, William; Cohen, Warren B.; Yang, Zhiqiang; Stehman, Stephen V.; Taylor, Janis L.

    2017-01-01

    Several spatial forest disturbance datasets exist for the conterminous USA. The major problem with forest disturbance mapping is that variability between map products leads to uncertainty regarding the actual rate of disturbance. In this article, harmonized maps were produced from multiple data sources (i.e., Global Forest Change, LANDFIRE Vegetation Disturbance, National Land Cover Database, Vegetation Change Tracker, and Web-Enabled Landsat Data). The harmonization process involved fitting common class ontologies and determining spatial congruency to produce forest disturbance maps for four time intervals (1986–1992, 1992–2001, 2001–2006, and 2006–2011). Pixels mapped as disturbed for two or more datasets were labeled as disturbed in the harmonized maps. The primary advantage gained by harmonization was improvement in commission error rates relative to the individual disturbance products. Disturbance omission errors were high for both harmonized and individual forest disturbance maps due to underlying limitations in mapping subtle disturbances with Landsat classification algorithms. To enhance the value of the harmonized disturbance products, we used fire perimeter maps to add information on the cause of disturbance.

  11. Global distribution of clay-size minerals on land surface for biogeochemical and climatological studies

    PubMed Central

    Ito, Akihiko; Wagai, Rota

    2017-01-01

    Clay-size minerals play important roles in terrestrial biogeochemistry and atmospheric physics, but their data have been only partially compiled at global scale. We present a global dataset of clay-size minerals in the topsoil and subsoil at different spatial resolutions. The data of soil clay and its mineralogical composition were gathered through a literature survey and aggregated by soil orders of the Soil Taxonomy for each of the ten groups: gibbsite, kaolinite, illite/mica, smectite, vermiculite, chlorite, iron oxide, quartz, non-crystalline, and others. Using a global soil map, a global dataset of soil clay-size mineral distribution was developed at resolutions of 2' to 2° grid cells. The data uncertainty associated with data variability and assumption was evaluated using a Monte Carlo method, and validity of the clay-size mineral distribution obtained in this study was examined by comparing with other datasets. The global soil clay data offer spatially explicit studies on terrestrial biogeochemical cycles, dust emission to the atmosphere, and other interdisciplinary earth sciences. PMID:28829435

  12. Harmonization of forest disturbance datasets of the conterminous USA from 1986 to 2011.

    PubMed

    Soulard, Christopher E; Acevedo, William; Cohen, Warren B; Yang, Zhiqiang; Stehman, Stephen V; Taylor, Janis L

    2017-04-01

    Several spatial forest disturbance datasets exist for the conterminous USA. The major problem with forest disturbance mapping is that variability between map products leads to uncertainty regarding the actual rate of disturbance. In this article, harmonized maps were produced from multiple data sources (i.e., Global Forest Change, LANDFIRE Vegetation Disturbance, National Land Cover Database, Vegetation Change Tracker, and Web-Enabled Landsat Data). The harmonization process involved fitting common class ontologies and determining spatial congruency to produce forest disturbance maps for four time intervals (1986-1992, 1992-2001, 2001-2006, and 2006-2011). Pixels mapped as disturbed for two or more datasets were labeled as disturbed in the harmonized maps. The primary advantage gained by harmonization was improvement in commission error rates relative to the individual disturbance products. Disturbance omission errors were high for both harmonized and individual forest disturbance maps due to underlying limitations in mapping subtle disturbances with Landsat classification algorithms. To enhance the value of the harmonized disturbance products, we used fire perimeter maps to add information on the cause of disturbance.

  13. A new global anthropogenic heat estimation based on high-resolution nighttime light data

    PubMed Central

    Yang, Wangming; Luan, Yibo; Liu, Xiaolei; Yu, Xiaoyong; Miao, Lijuan; Cui, Xuefeng

    2017-01-01

    Consumption of fossil fuel resources leads to global warming and climate change. Apart from the negative impact of greenhouse gases on the climate, the increasing emission of anthropogenic heat from energy consumption also brings significant impacts on urban ecosystems and the surface energy balance. The objective of this work is to develop a new method of estimating the global anthropogenic heat budget and validate it on the global scale with a high precision and resolution dataset. A statistical algorithm was applied to estimate the annual mean anthropogenic heat (AH-DMSP) from 1992 to 2010 at 1×1 km2 spatial resolution for the entire planet. AH-DMSP was validated for both provincial and city scales, and results indicate that our dataset performs well at both scales. Compared with other global anthropogenic heat datasets, the AH-DMSP has a higher precision and finer spatial distribution. Although there are some limitations, the AH-DMSP could provide reliable, multi-scale anthropogenic heat information, which could be used for further research on regional or global climate change and urban ecosystems. PMID:28829436

  14. GPU Accelerated Clustering for Arbitrary Shapes in Geoscience Data

    NASA Astrophysics Data System (ADS)

    Pankratius, V.; Gowanlock, M.; Rude, C. M.; Li, J. D.

    2016-12-01

    Clustering algorithms have become a vital component in intelligent systems for geoscience that helps scientists discover and track phenomena of various kinds. Here, we outline advances in Density-Based Spatial Clustering of Applications with Noise (DBSCAN) which detects clusters of arbitrary shape that are common in geospatial data. In particular, we propose a hybrid CPU-GPU implementation of DBSCAN and highlight new optimization approaches on the GPU that allows clustering detection in parallel while optimizing data transport during CPU-GPU interactions. We employ an efficient batching scheme between the host and GPU such that limited GPU memory is not prohibitive when processing large and/or dense datasets. To minimize data transfer overhead, we estimate the total workload size and employ an execution that generates optimized batches that will not overflow the GPU buffer. This work is demonstrated on space weather Total Electron Content (TEC) datasets containing over 5 million measurements from instruments worldwide, and allows scientists to spot spatially coherent phenomena with ease. Our approach is up to 30 times faster than a sequential implementation and therefore accelerates discoveries in large datasets. We acknowledge support from NSF ACI-1442997.

  15. Areas of Weakly Anomalous to Anomalous Surface Temperature in Chaffee County, Colorado, as Identified from ASTER Thermal Data

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    Note: This "Weakly Anomalous to Anomalous Surface Temperature" dataset differs from the "Anomalous Surface Temperature" dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1o and 2o above the mean, as opposed to the greater than 2o temperatures contained in the "Anomalous Surface Temperature" dataset. This layer contains areas of anomalous surface temperature in Chaffee County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma.

  16. Areas of Weakly Anomalous to Anomalous Surface Temperature in Garfield County, Colorado, as Identified from ASTER Thermal Data

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    Note: This "Weakly Anomalous to Anomalous Surface Temperature" dataset differs from the "Anomalous Surface Temperature" dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1o and 2o above the mean, as opposed to the greater than 2o temperatures contained in the "Anomalous Surface Temperature" dataset. This layer contains areas of anomalous surface temperature in Garfield County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature between 1o and 2o were considered ASTER modeled warm surface exposures (thermal anomalies) Note: 'o' is used in this description to represent lowercase sigma.

  17. Areas of Weakly Anomalous to Anomalous Surface Temperature in Routt County, Colorado, as Identified from ASTER Thermal Data

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    Note: This "Weakly Anomalous to Anomalous Surface Temperature" dataset differs from the "Anomalous Surface Temperature" dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1o and 2o above the mean, as opposed to the greater than 2o temperatures contained in the "Anomalous Surface Temperature" dataset. This layer contains areas of anomalous surface temperature in Routt County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature between 1o and 2o were considered ASTER modeled warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma.

  18. Areas of Weakly Anomalous to Anomalous Surface Temperature in Dolores County, Colorado, as Identified from ASTER Thermal Data

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    Note: This "Weakly Anomalous to Anomalous Surface Temperature" dataset differs from the "Anomalous Surface Temperature" dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1o and 2o above the mean, as opposed to the greater than 2o temperatures contained in the "Anomalous Surface Temperature" dataset. This layer contains areas of anomalous surface temperature in Dolores County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies) Note: 'o' is used in this description to represent lowercase sigma.

  19. Areas of Weakly Anomalous to Anomalous Surface Temperature in Archuleta County, Colorado, as Identified from ASTER Thermal Data

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    Note: This "Weakly Anomalous to Anomalous Surface Temperature" dataset differs from the "Anomalous Surface Temperature" dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1o and 2o above the mean, as opposed to the greater than 2o temperatures contained in the "Anomalous Surface Temperature" dataset. This layer contains areas of anomalous surface temperature in Archuleta County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature between 1o and 2o were considered ASTER modeled warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma.

  20. The resolution capability of an irregularly sampled dataset: With application to Geosat altimeter data

    NASA Technical Reports Server (NTRS)

    Chelton, Dudley B.; Schlax, Michael G.

    1994-01-01

    A formalism is presented for determining the wavenumber-frequency transfer function associated with an irregularly sampled multidimensional dataset. This transfer function reveals the filtering characteristics and aliasing patterns inherent in the sample design. In combination with information about the spectral characteristics of the signal, the transfer function can be used to quantify the spatial and temporal resolution capability of the dataset. Application of the method to idealized Geosat altimeter data (i.e., neglecting measurement errors and data dropouts) concludes that the Geosat orbit configuration is capable of resolving scales of about 3 deg in latitude and longitude by about 30 days.

  1. Evaluating satellite-derived long-term historical precipitation datasets for drought monitoring in Chile

    NASA Astrophysics Data System (ADS)

    Zambrano, Francisco; Wardlow, Brian; Tadesse, Tsegaye; Lillo-Saavedra, Mario; Lagos, Octavio

    2017-04-01

    Precipitation is a key parameter for the study of climate change and variability and the detection and monitoring of natural disaster such as drought. Precipitation datasets that accurately capture the amount and spatial variability of rainfall is critical for drought monitoring and a wide range of other climate applications. This is challenging in many parts of the world, which often have a limited number of weather stations and/or historical data records. Satellite-derived precipitation products offer a viable alternative with several remotely sensed precipitation datasets now available with long historical data records (+30years), which include the Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) datasets. This study presents a comparative analysis of three historical satellite-based precipitation datasets that include Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B43 version 7 (1998-2015), PERSIANN-CDR (1983-2015) and CHIRPS 2.0 (1981-2015) over Chile to assess their performance across the country and for the case of the two long-term products the applicability for agricultural drought were evaluated when used in the calculation of commonly used drought indicator as the Standardized Precipitation Index (SPI). In this analysis, 278 weather stations of in situ rainfall measurements across Chile were initially compared to the satellite data. The study area (Chile) was divided into five latitudinal zones: North, North-Central, Central, South-Central and South to determine if there were a regional difference among these satellite products, and nine statistics were used to evaluate their performance to estimate the amount and spatial distribution of historical rainfall across Chile. Hierarchical cluster analysis, k-means and singular value decomposition were used to analyze these datasets to better understand their similarities and differences in characterizing rainfall patterns across Chile. Monthly analysis showed that all satellite products highly overestimated rainfall in the arid North zone. However, there were no major difference between all three products from North to South-Central zones. Though, in the South zone, PERSIANN-CDR shows the lowest fit with high underestimation, while CHIRPS 2.0 and TMPA 3B43 v7 had better agreement with in situ measurements. The accuracy of satellite products were highly dependent on the amount of monthly rainfall with the best results found during winter seasons and in zones (Central to South) with higher amounts of precipitation. PERSIANN-CDR and CHIRPS 2.0 were used to derive SPI at time-scale of 1, 3 and 6 months, both satellite products presented similar results when it was compared in situ against satellite SPI's. Because of its higher spatial resolution that allows better characterizing of spatial variation in precipitation pattern, the CHIRPS 2.0 was used to mapping the SPI-3 over Chile. The results of this study show that in order to use the CHIRPS 2.0 and PERSIANN-CDR datasets in Chile to monitor spatial patterns in the rainfall and drought intensity conditions, these products should be calibrated to adjust for the overestimation/underestimation of rainfall geographically specially in the North zone and seasonally during the summer and spring months in the other zones.

  2. Evaluation of the global MODIS 30 arc-second spatially and temporally complete snow-free land surface albedo and reflectance anisotropy dataset

    NASA Astrophysics Data System (ADS)

    Sun, Qingsong; Wang, Zhuosen; Li, Zhan; Erb, Angela; Schaaf, Crystal B.

    2017-06-01

    Land surface albedo is an essential variable for surface energy and climate modeling as it describes the proportion of incident solar radiant flux that is reflected from the Earth's surface. To capture the temporal variability and spatial heterogeneity of the land surface, satellite remote sensing must be used to monitor albedo accurately at a global scale. However, large data gaps caused by cloud or ephemeral snow have slowed the adoption of satellite albedo products by the climate modeling community. To address the needs of this community, we used a number of temporal and spatial gap-filling strategies to improve the spatial and temporal coverage of the global land surface MODIS BRDF, albedo and NBAR products. A rigorous evaluation of the gap-filled values shows good agreement with original high quality data (RMSE = 0.027 for the NIR band albedo, 0.020 for the red band albedo). This global snow-free and cloud-free MODIS BRDF and albedo dataset (established from 2001 to 2015) offers unique opportunities to monitor and assess the impact of the changes on the Earth's land surface.

  3. Universal Stochastic Multiscale Image Fusion: An Example Application for Shale Rock.

    PubMed

    Gerke, Kirill M; Karsanina, Marina V; Mallants, Dirk

    2015-11-02

    Spatial data captured with sensors of different resolution would provide a maximum degree of information if the data were to be merged into a single image representing all scales. We develop a general solution for merging multiscale categorical spatial data into a single dataset using stochastic reconstructions with rescaled correlation functions. The versatility of the method is demonstrated by merging three images of shale rock representing macro, micro and nanoscale spatial information on mineral, organic matter and porosity distribution. Merging multiscale images of shale rock is pivotal to quantify more reliably petrophysical properties needed for production optimization and environmental impacts minimization. Images obtained by X-ray microtomography and scanning electron microscopy were fused into a single image with predefined resolution. The methodology is sufficiently generic for implementation of other stochastic reconstruction techniques, any number of scales, any number of material phases, and any number of images for a given scale. The methodology can be further used to assess effective properties of fused porous media images or to compress voluminous spatial datasets for efficient data storage. Practical applications are not limited to petroleum engineering or more broadly geosciences, but will also find their way in material sciences, climatology, and remote sensing.

  4. Universal Stochastic Multiscale Image Fusion: An Example Application for Shale Rock

    PubMed Central

    Gerke, Kirill M.; Karsanina, Marina V.; Mallants, Dirk

    2015-01-01

    Spatial data captured with sensors of different resolution would provide a maximum degree of information if the data were to be merged into a single image representing all scales. We develop a general solution for merging multiscale categorical spatial data into a single dataset using stochastic reconstructions with rescaled correlation functions. The versatility of the method is demonstrated by merging three images of shale rock representing macro, micro and nanoscale spatial information on mineral, organic matter and porosity distribution. Merging multiscale images of shale rock is pivotal to quantify more reliably petrophysical properties needed for production optimization and environmental impacts minimization. Images obtained by X-ray microtomography and scanning electron microscopy were fused into a single image with predefined resolution. The methodology is sufficiently generic for implementation of other stochastic reconstruction techniques, any number of scales, any number of material phases, and any number of images for a given scale. The methodology can be further used to assess effective properties of fused porous media images or to compress voluminous spatial datasets for efficient data storage. Practical applications are not limited to petroleum engineering or more broadly geosciences, but will also find their way in material sciences, climatology, and remote sensing. PMID:26522938

  5. Multi-temporal AirSWOT elevations on the Willamette river: error characterization and algorithm testing

    NASA Astrophysics Data System (ADS)

    Tuozzolo, S.; Frasson, R. P. M.; Durand, M. T.

    2017-12-01

    We analyze a multi-temporal dataset of in-situ and airborne water surface measurements from the March 2015 AirSWOT field campaign on the Willamette River in Western Oregon, which included six days of AirSWOT flights over a 75km stretch of the river. We examine systematic errors associated with dark water and layover effects in the AirSWOT dataset, and test the efficacies of different filtering and spatial averaging techniques at reconstructing the water surface profile. Finally, we generate a spatially-averaged time-series of water surface elevation and water surface slope. These AirSWOT-derived reach-averaged values are ingested in a prospective SWOT discharge algorithm to assess its performance on SWOT-like data collected from a borderline SWOT-measurable river (mean width = 90m).

  6. Head movements and postures as pain behavior

    PubMed Central

    Al-Hamadi, Ayoub; Limbrecht-Ecklundt, Kerstin; Walter, Steffen; Traue, Harald C.

    2018-01-01

    Pain assessment can benefit from observation of pain behaviors, such as guarding or facial expression, and observational pain scales are widely used in clinical practice with nonverbal patients. However, little is known about head movements and postures in the context of pain. In this regard, we analyze videos of three publically available datasets. The BioVid dataset was recorded with healthy participants subjected to painful heat stimuli. In the BP4D dataset, healthy participants performed a cold-pressor test and several other tasks (meant to elicit emotion). The UNBC dataset videos show shoulder pain patients during range-of-motion tests to their affected and unaffected limbs. In all videos, participants were sitting in an upright position. We studied head movements and postures that occurred during the painful and control trials by measuring head orientation from video over time, followed by analyzing posture and movement summary statistics and occurrence frequencies of typical postures and movements. We found significant differences between pain and control trials with analyses of variance and binomial tests. In BioVid and BP4D, pain was accompanied by head movements and postures that tend to be oriented downwards or towards the pain site. We also found differences in movement range and speed in all three datasets. The results suggest that head movements and postures should be considered for pain assessment and research. As additional pain indicators, they possibly might improve pain management whenever behavior is assessed, especially in nonverbal individuals such as infants or patients with dementia. However, in advance more research is needed to identify specific head movements and postures in pain patients. PMID:29444153

  7. Enhancing Conservation with High Resolution Productivity Datasets for the Conterminous United States

    NASA Astrophysics Data System (ADS)

    Robinson, Nathaniel Paul

    Human driven alteration of the earth's terrestrial surface is accelerating through land use changes, intensification of human activity, climate change, and other anthropogenic pressures. These changes occur at broad spatio-temporal scales, challenging our ability to effectively monitor and assess the impacts and subsequent conservation strategies. While satellite remote sensing (SRS) products enable monitoring of the earth's terrestrial surface continuously across space and time, the practical applications for conservation and management of these products are limited. Often the processes driving ecological change occur at fine spatial resolutions and are undetectable given the resolution of available datasets. Additionally, the links between SRS data and ecologically meaningful metrics are weak. Recent advances in cloud computing technology along with the growing record of high resolution SRS data enable the development of SRS products that quantify ecologically meaningful variables at relevant scales applicable for conservation and management. The focus of my dissertation is to improve the applicability of terrestrial gross and net primary productivity (GPP/NPP) datasets for the conterminous United States (CONUS). In chapter one, I develop a framework for creating high resolution datasets of vegetation dynamics. I use the entire archive of Landsat 5, 7, and 8 surface reflectance data and a novel gap filling approach to create spatially continuous 30 m, 16-day composites of the normalized difference vegetation index (NDVI) from 1986 to 2016. In chapter two, I integrate this with other high resolution datasets and the MOD17 algorithm to create the first high resolution GPP and NPP datasets for CONUS. I demonstrate the applicability of these products for conservation and management, showing the improvements beyond currently available products. In chapter three, I utilize this dataset to evaluate the relationships between land ownership and terrestrial production across the CONUS domain. The main results of this work are three publicly available datasets: 1) 30 m Landsat NDVI; 2) 250 m MODIS based GPP and NPP; and 3) 30 m Landsat based GPP and NPP. My goal is that these products prove useful for the wider scientific, conservation, and land management communities as we continue to strive for better conservation and management practices.

  8. Determining Scale-dependent Patterns in Spatial and Temporal Datasets

    NASA Astrophysics Data System (ADS)

    Roy, A.; Perfect, E.; Mukerji, T.; Sylvester, L.

    2016-12-01

    Spatial and temporal datasets of interest to Earth scientists often contain plots of one variable against another, e.g., rainfall magnitude vs. time or fracture aperture vs. spacing. Such data, comprised of distributions of events along a transect / timeline along with their magnitudes, can display persistent or antipersistent trends, as well as random behavior, that may contain signatures of underlying physical processes. Lacunarity is a technique that was originally developed for multiscale analysis of data. In a recent study we showed that lacunarity can be used for revealing changes in scale-dependent patterns in fracture spacing data. Here we present a further improvement in our technique, with lacunarity applied to various non-binary datasets comprised of event spacings and magnitudes. We test our technique on a set of four synthetic datasets, three of which are based on an autoregressive model and have magnitudes at every point along the "timeline" thus representing antipersistent, persistent, and random trends. The fourth dataset is made up of five clusters of events, each containing a set of random magnitudes. The concept of lacunarity ratio, LR, is introduced; this is the lacunarity of a given dataset normalized to the lacunarity of its random counterpart. It is demonstrated that LR can successfully delineate scale-dependent changes in terms of antipersistence and persistence in the synthetic datasets. This technique is then applied to three different types of data: a hundred-year rainfall record from Knoxville, TN, USA, a set of varved sediments from Marca Shale, and a set of fracture aperture and spacing data from NE Mexico. While the rainfall data and varved sediments both appear to be persistent at small scales, at larger scales they both become random. On the other hand, the fracture data shows antipersistence at small scale (within cluster) and random behavior at large scales. Such differences in behavior with respect to scale-dependent changes in antipersistence to random, persistence to random, or otherwise, maybe be related to differences in the physicochemical properties and processes contributing to multiscale datasets.

  9. Assessment of Chlorophyll-a Algorithms Considering Different Trophic Statuses and Optimal Bands.

    PubMed

    Salem, Salem Ibrahim; Higa, Hiroto; Kim, Hyungjun; Kobayashi, Hiroshi; Oki, Kazuo; Oki, Taikan

    2017-07-31

    Numerous algorithms have been proposed to retrieve chlorophyll- a concentrations in Case 2 waters; however, the retrieval accuracy is far from satisfactory. In this research, seven algorithms are assessed with different band combinations of multispectral and hyperspectral bands using linear (LN), quadratic polynomial (QP) and power (PW) regression approaches, resulting in altogether 43 algorithmic combinations. These algorithms are evaluated by using simulated and measured datasets to understand the strengths and limitations of these algorithms. Two simulated datasets comprising 500,000 reflectance spectra each, both based on wide ranges of inherent optical properties (IOPs), are generated for the calibration and validation stages. Results reveal that the regression approach (i.e., LN, QP, and PW) has more influence on the simulated dataset than on the measured one. The algorithms that incorporated linear regression provide the highest retrieval accuracy for the simulated dataset. Results from simulated datasets reveal that the 3-band (3b) algorithm that incorporate 665-nm and 680-nm bands and band tuning selection approach outperformed other algorithms with root mean square error (RMSE) of 15.87 mg·m -3 , 16.25 mg·m -3 , and 19.05 mg·m -3 , respectively. The spatial distribution of the best performing algorithms, for various combinations of chlorophyll- a (Chla) and non-algal particles (NAP) concentrations, show that the 3b_tuning_QP and 3b_680_QP outperform other algorithms in terms of minimum RMSE frequency of 33.19% and 60.52%, respectively. However, the two algorithms failed to accurately retrieve Chla for many combinations of Chla and NAP, particularly for low Chla and NAP concentrations. In addition, the spatial distribution emphasizes that no single algorithm can provide outstanding accuracy for Chla retrieval and that multi-algorithms should be included to reduce the error. Comparing the results of the measured and simulated datasets reveal that the algorithms that incorporate the 665-nm band outperform other algorithms for measured dataset (RMSE = 36.84 mg·m -3 ), while algorithms that incorporate the band tuning approach provide the highest retrieval accuracy for the simulated dataset (RMSE = 25.05 mg·m -3 ).

  10. Assessment of Chlorophyll-a Algorithms Considering Different Trophic Statuses and Optimal Bands

    PubMed Central

    Higa, Hiroto; Kobayashi, Hiroshi; Oki, Kazuo

    2017-01-01

    Numerous algorithms have been proposed to retrieve chlorophyll-a concentrations in Case 2 waters; however, the retrieval accuracy is far from satisfactory. In this research, seven algorithms are assessed with different band combinations of multispectral and hyperspectral bands using linear (LN), quadratic polynomial (QP) and power (PW) regression approaches, resulting in altogether 43 algorithmic combinations. These algorithms are evaluated by using simulated and measured datasets to understand the strengths and limitations of these algorithms. Two simulated datasets comprising 500,000 reflectance spectra each, both based on wide ranges of inherent optical properties (IOPs), are generated for the calibration and validation stages. Results reveal that the regression approach (i.e., LN, QP, and PW) has more influence on the simulated dataset than on the measured one. The algorithms that incorporated linear regression provide the highest retrieval accuracy for the simulated dataset. Results from simulated datasets reveal that the 3-band (3b) algorithm that incorporate 665-nm and 680-nm bands and band tuning selection approach outperformed other algorithms with root mean square error (RMSE) of 15.87 mg·m−3, 16.25 mg·m−3, and 19.05 mg·m−3, respectively. The spatial distribution of the best performing algorithms, for various combinations of chlorophyll-a (Chla) and non-algal particles (NAP) concentrations, show that the 3b_tuning_QP and 3b_680_QP outperform other algorithms in terms of minimum RMSE frequency of 33.19% and 60.52%, respectively. However, the two algorithms failed to accurately retrieve Chla for many combinations of Chla and NAP, particularly for low Chla and NAP concentrations. In addition, the spatial distribution emphasizes that no single algorithm can provide outstanding accuracy for Chla retrieval and that multi-algorithms should be included to reduce the error. Comparing the results of the measured and simulated datasets reveal that the algorithms that incorporate the 665-nm band outperform other algorithms for measured dataset (RMSE = 36.84 mg·m−3), while algorithms that incorporate the band tuning approach provide the highest retrieval accuracy for the simulated dataset (RMSE = 25.05 mg·m−3). PMID:28758984

  11. Diurnal fluctuations in brain volume: Statistical analyses of MRI from large populations.

    PubMed

    Nakamura, Kunio; Brown, Robert A; Narayanan, Sridar; Collins, D Louis; Arnold, Douglas L

    2015-09-01

    We investigated fluctuations in brain volume throughout the day using statistical modeling of magnetic resonance imaging (MRI) from large populations. We applied fully automated image analysis software to measure the brain parenchymal fraction (BPF), defined as the ratio of the brain parenchymal volume and intracranial volume, thus accounting for variations in head size. The MRI data came from serial scans of multiple sclerosis (MS) patients in clinical trials (n=755, 3269 scans) and from subjects participating in the Alzheimer's Disease Neuroimaging Initiative (ADNI, n=834, 6114 scans). The percent change in BPF was modeled with a linear mixed effect (LME) model, and the model was applied separately to the MS and ADNI datasets. The LME model for the MS datasets included random subject effects (intercept and slope over time) and fixed effects for the time-of-day, time from the baseline scan, and trial, which accounted for trial-related effects (for example, different inclusion criteria and imaging protocol). The model for ADNI additionally included the demographics (baseline age, sex, subject type [normal, mild cognitive impairment, or Alzheimer's disease], and interaction between subject type and time from baseline). There was a statistically significant effect of time-of-day on the BPF change in MS clinical trial datasets (-0.180 per day, that is, 0.180% of intracranial volume, p=0.019) as well as the ADNI dataset (-0.438 per day, that is, 0.438% of intracranial volume, p<0.0001), showing that the brain volume is greater in the morning. Linearly correcting the BPF values with the time-of-day reduced the required sample size to detect a 25% treatment effect (80% power and 0.05 significance level) on change in brain volume from 2 time-points over a period of 1year by 2.6%. Our results have significant implications for future brain volumetric studies, suggesting that there is a potential acquisition time bias that should be randomized or statistically controlled to account for the day-to-day brain volume fluctuations. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Center-Within-Trial Versus Trial-Level Evaluation of Surrogate Endpoints.

    PubMed

    Renfro, Lindsay A; Shi, Qian; Xue, Yuan; Li, Junlong; Shang, Hongwei; Sargent, Daniel J

    2014-10-01

    Evaluation of candidate surrogate endpoints using individual patient data from multiple clinical trials is considered the gold standard approach to validate surrogates at both patient and trial levels. However, this approach assumes the availability of patient-level data from a relatively large collection of similar trials, which may not be possible to achieve for a given disease application. One common solution to the problem of too few similar trials involves performing trial-level surrogacy analyses on trial sub-units (e.g., centers within trials), thereby artificially increasing the trial-level sample size for feasibility of the multi-trial analysis. To date, the practical impact of treating trial sub-units (centers) identically to trials in multi-trial surrogacy analyses remains unexplored, and conditions under which this ad hoc solution may in fact be reasonable have not been identified. We perform a simulation study to identify such conditions, and demonstrate practical implications using a multi-trial dataset of patients with early stage colon cancer.

  13. Center-Within-Trial Versus Trial-Level Evaluation of Surrogate Endpoints

    PubMed Central

    Renfro, Lindsay A.; Shi, Qian; Xue, Yuan; Li, Junlong; Shang, Hongwei; Sargent, Daniel J.

    2014-01-01

    Evaluation of candidate surrogate endpoints using individual patient data from multiple clinical trials is considered the gold standard approach to validate surrogates at both patient and trial levels. However, this approach assumes the availability of patient-level data from a relatively large collection of similar trials, which may not be possible to achieve for a given disease application. One common solution to the problem of too few similar trials involves performing trial-level surrogacy analyses on trial sub-units (e.g., centers within trials), thereby artificially increasing the trial-level sample size for feasibility of the multi-trial analysis. To date, the practical impact of treating trial sub-units (centers) identically to trials in multi-trial surrogacy analyses remains unexplored, and conditions under which this ad hoc solution may in fact be reasonable have not been identified. We perform a simulation study to identify such conditions, and demonstrate practical implications using a multi-trial dataset of patients with early stage colon cancer. PMID:25061255

  14. Data Basin: Expanding Access to Conservation Data, Tools, and People

    NASA Astrophysics Data System (ADS)

    Comendant, T.; Strittholt, J.; Frost, P.; Ward, B. C.; Bachelet, D. M.; Osborne-Gowey, J.

    2009-12-01

    Mapping and spatial analysis are a fundamental part of problem solving in conservation science, yet spatial data are widely scattered, difficult to locate, and often unavailable. Valuable time and resources are wasted locating and gaining access to important biological, cultural, and economic datasets, scientific analysis, and experts. As conservation problems become more serious and the demand to solve them grows more urgent, a new way to connect science and practice is needed. To meet this need, an open-access, web tool called Data Basin (www.databasin.org) has been created by the Conservation Biology Institute in partnership with ESRI and the Wilburforce Foundation. Users of Data Basin can gain quick access to datasets, experts, groups, and tools to help solve real-world problems. Individuals and organizations can perform essential tasks such as exploring and downloading from a vast library of conservation datasets, uploading existing datasets, connecting to other external data sources, create groups, and produce customized maps that can be easily shared. Data Basin encourages sharing and publishing, but also provides privacy and security for sensitive information when needed. Users can publish projects within Data Basin to tell more complete and rich stories of discovery and solutions. Projects are an ideal way to publish collections of datasets, maps and other information on the internet to reach wider audiences. Data Basin also houses individual centers that provide direct access to data, maps, and experts focused on specific geographic areas or conservation topics. Current centers being developed include the Boreal Information Centre, the Data Basin Climate Center, and proposed Aquatic and Forest Conservation Centers.

  15. Assessment of the effects of sex and sex hormones on spatial cognition in adult rats using the Barnes maze.

    PubMed

    Locklear, M N; Kritzer, M F

    2014-07-01

    Although sex differences and hormone effects on spatial cognition are observed in humans and animals, consensus has not been reached regarding exact impact on spatial working or reference memory. Recent studies in rats suggest that stress and/or reward, which are often different in tasks used to assess spatial cognition, can contribute to the inconsistencies in the literature. To minimize the impact of these sex- and sex hormone-sensitive factors, we used the Barnes maze to compare spatial working memory, spatial reference memory and spatial learning strategy in adult male, female, gonadectomized (GDX) male, and GDX male rats supplemented with 17β-estradiol (E) or testosterone propionate (TP). Rats received four acquisition trials, four trials 24h later, and a single retention trial one week after. Males and females acquired the task during the first four trials and retained the task thereafter. In contrast, GDX rats took longer to acquire the task and showed retention deficits at 1week. All deficits were attenuated similarly by TP and E. Assessment of search patterns also showed that strategies in the males transitioned from random to spatially focused and eventually direct approaches to the goal. However, this transition was faster in control and GDX-TP than in GDX and GDX-E rats. In contrast, the females almost invariantly followed the maze edge in thigmotactic, serial searches. Thus, while Barnes maze reveals activational, in part estrogenic effects on spatial cognition in males, its amenability to animals' use of multiple strategies may limit its ability to resolve mnemonic differences across sex. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Spatial and reversal learning in the Morris water maze are largely resistant to six hours of REM sleep deprivation following training

    PubMed Central

    Walsh, Christine M.; Booth, Victoria; Poe, Gina R.

    2011-01-01

    This first test of the role of REM (rapid eye movement) sleep in reversal spatial learning is also the first attempt to replicate a much cited pair of papers reporting that REM sleep deprivation impairs the consolidation of initial spatial learning in the Morris water maze. We hypothesized that REM sleep deprivation following training would impair both hippocampus-dependent spatial learning and learning a new target location within a familiar environment: reversal learning. A 6-d protocol was divided into the initial spatial learning phase (3.5 d) immediately followed by the reversal phase (2.5 d). During the 6 h following four or 12 training trials/day of initial or reversal learning phases, REM sleep was eliminated and non-REM sleep left intact using the multiple inverted flowerpot method. Contrary to our hypotheses, REM sleep deprivation during four or 12 trials/day of initial spatial or reversal learning did not affect training performance. However, some probe trial measures indicated REM sleep-deprivation–associated impairment in initial spatial learning with four trials/day and enhancement of subsequent reversal learning. In naive animals, REM sleep deprivation during normal initial spatial learning was followed by a lack of preference for the subsequent reversal platform location during the probe. Our findings contradict reports that REM sleep is essential for spatial learning in the Morris water maze and newly reveal that short periods of REM sleep deprivation do not impair concurrent reversal learning. Effects on subsequent reversal learning are consistent with the idea that REM sleep serves the consolidation of incompletely learned items. PMID:21677190

  17. Single-trial detection of visual evoked potentials by common spatial patterns and wavelet filtering for brain-computer interface.

    PubMed

    Tu, Yiheng; Huang, Gan; Hung, Yeung Sam; Hu, Li; Hu, Yong; Zhang, Zhiguo

    2013-01-01

    Event-related potentials (ERPs) are widely used in brain-computer interface (BCI) systems as input signals conveying a subject's intention. A fast and reliable single-trial ERP detection method can be used to develop a BCI system with both high speed and high accuracy. However, most of single-trial ERP detection methods are developed for offline EEG analysis and thus have a high computational complexity and need manual operations. Therefore, they are not applicable to practical BCI systems, which require a low-complexity and automatic ERP detection method. This work presents a joint spatial-time-frequency filter that combines common spatial patterns (CSP) and wavelet filtering (WF) for improving the signal-to-noise (SNR) of visual evoked potentials (VEP), which can lead to a single-trial ERP-based BCI.

  18. 3D MRI Modeling of Thin and Spatially Complex Soft Tissue Structures without Shrinkage: Lamprey Myosepta as an Example.

    PubMed

    Wood, Bradley M; Jia, Guang; Carmichael, Owen; McKlveen, Kevin; Homberger, Dominique G

    2018-05-12

    3D imaging techniques enable the non-destructive analysis and modeling of complex structures. Among these, MRI exhibits good soft tissue contrast, but is currently less commonly used for non-clinical research than x-ray CT, even though the latter requires contrast-staining that shrinks and distorts soft tissues. When the objective is the creation of a realistic and complete 3D model of soft tissue structures, MRI data are more demanding to acquire and visualize and require extensive post-processing because they comprise non-cubic voxels with dimensions that represent a trade-off between tissue contrast and image resolution. Therefore, thin soft tissue structures with complex spatial configurations are not always visible in a single MRI dataset, so that standard segmentation techniques are not sufficient for their complete visualization. By using the example of the thin and spatially complex connective tissue myosepta in lampreys, we developed a workflow protocol for the selection of the appropriate parameters for the acquisition of MRI data and for the visualization and 3D modeling of soft tissue structures. This protocol includes a novel recursive segmentation technique for supplementing missing data in one dataset with data from another dataset to produce realistic and complete 3D models. Such 3D models are needed for the modeling of dynamic processes, such as the biomechanics of fish locomotion. However, our methodology is applicable to the visualization of any thin soft tissue structures with complex spatial configurations, such as fasciae, aponeuroses, and small blood vessels and nerves, for clinical research and the further exploration of tensegrity. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  19. Digital Mapping and Environmental Characterization of National Wild and Scenic River Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McManamay, Ryan A; Bosnall, Peter; Hetrick, Shelaine L

    2013-09-01

    Spatially accurate geospatial information is required to support decision-making regarding sustainable future hydropower development. Under a memorandum of understanding among several federal agencies, a pilot study was conducted to map a subset of National Wild and Scenic Rivers (WSRs) at a higher resolution and provide a consistent methodology for mapping WSRs across the United States and across agency jurisdictions. A subset of rivers (segments falling under the jurisdiction of the National Park Service) were mapped at a high resolution using the National Hydrography Dataset (NHD). The spatial extent and representation of river segments mapped at NHD scale were compared withmore » the prevailing geospatial coverage mapped at a coarser scale. Accurately digitized river segments were linked to environmental attribution datasets housed within the Oak Ridge National Laboratory s National Hydropower Asset Assessment Program database to characterize the environmental context of WSR segments. The results suggest that both the spatial scale of hydrography datasets and the adherence to written policy descriptions are critical to accurately mapping WSRs. The environmental characterization provided information to deduce generalized trends in either the uniqueness or the commonness of environmental variables associated with WSRs. Although WSRs occur in a wide range of human-modified landscapes, environmental data layers suggest that they provide habitats important to terrestrial and aquatic organisms and recreation important to humans. Ultimately, the research findings herein suggest that there is a need for accurate, consistent, mapping of the National WSRs across the agencies responsible for administering each river. Geospatial applications examining potential landscape and energy development require accurate sources of information, such as data layers that portray realistic spatial representations.« less

  20. Tackling the 2nd V: Big Data, Variety and the Need for Representation Consistency

    NASA Astrophysics Data System (ADS)

    Clune, T.; Kuo, K. S.

    2016-12-01

    While Big Data technologies are transforming our ability to analyze ever larger volumes of Earth science data, practical constraints continue to limit our ability to compare data across datasets from different sources in an efficient and robust manner. Within a single data collection, invariants such as file format, grid type, and spatial resolution greatly simplify many types of analysis (often implicitly). However, when analysis combines data across multiple data collections, researchers are generally required to implement data transformations (i.e., "data preparation") to provide appropriate invariants. These transformation include changing of file formats, ingesting into a database, and/or regridding to a common spatial representation, and they can either be performed once, statically, or each time the data is accessed. At the very least, this process is inefficient from the perspective of the community as each team selects its own representation and privately implements the appropriate transformations. No doubt there are disadvantages to any "universal" representation, but we posit that major benefits would be obtained if a suitably flexible spatial representation could be standardized along with tools for transforming to/from that representation. We regard this as part of the historic trend in data publishing. Early datasets used ad hoc formats and lacked metadata. As better tools evolved, published data began to use standardized formats (e.g., HDF and netCDF) with attached metadata. We propose that the modern need to perform analysis across data sets should drive a new generation of tools that support a standardized spatial representation. More specifically, we propose the hierarchical triangular mesh (HTM) as a suitable "generic" resolution that permits standard transformations to/from native representations in use today, as well as tools to convert/regrid existing datasets onto that representation.

  1. Bias correction of surface downwelling longwave and shortwave radiation for the EWEMBI dataset

    NASA Astrophysics Data System (ADS)

    Lange, Stefan

    2018-05-01

    Many meteorological forcing datasets include bias-corrected surface downwelling longwave and shortwave radiation (rlds and rsds). Methods used for such bias corrections range from multi-year monthly mean value scaling to quantile mapping at the daily timescale. An additional downscaling is necessary if the data to be corrected have a higher spatial resolution than the observational data used to determine the biases. This was the case when EartH2Observe (E2OBS; Calton et al., 2016) rlds and rsds were bias-corrected using more coarsely resolved Surface Radiation Budget (SRB; Stackhouse Jr. et al., 2011) data for the production of the meteorological forcing dataset EWEMBI (Lange, 2016). This article systematically compares various parametric quantile mapping methods designed specifically for this purpose, including those used for the production of EWEMBI rlds and rsds. The methods vary in the timescale at which they operate, in their way of accounting for physical upper radiation limits, and in their approach to bridging the spatial resolution gap between E2OBS and SRB. It is shown how temporal and spatial variability deflation related to bilinear interpolation and other deterministic downscaling approaches can be overcome by downscaling the target statistics of quantile mapping from the SRB to the E2OBS grid such that the sub-SRB-grid-scale spatial variability present in the original E2OBS data is retained. Cross validations at the daily and monthly timescales reveal that it is worthwhile to take empirical estimates of physical upper limits into account when adjusting either radiation component and that, overall, bias correction at the daily timescale is more effective than bias correction at the monthly timescale if sampling errors are taken into account.

  2. CSP-TSM: Optimizing the performance of Riemannian tangent space mapping using common spatial pattern for MI-BCI.

    PubMed

    Kumar, Shiu; Mamun, Kabir; Sharma, Alok

    2017-12-01

    Classification of electroencephalography (EEG) signals for motor imagery based brain computer interface (MI-BCI) is an exigent task and common spatial pattern (CSP) has been extensively explored for this purpose. In this work, we focused on developing a new framework for classification of EEG signals for MI-BCI. We propose a single band CSP framework for MI-BCI that utilizes the concept of tangent space mapping (TSM) in the manifold of covariance matrices. The proposed method is named CSP-TSM. Spatial filtering is performed on the bandpass filtered MI EEG signal. Riemannian tangent space is utilized for extracting features from the spatial filtered signal. The TSM features are then fused with the CSP variance based features and feature selection is performed using Lasso. Linear discriminant analysis (LDA) is then applied to the selected features and finally classification is done using support vector machine (SVM) classifier. The proposed framework gives improved performance for MI EEG signal classification in comparison with several competing methods. Experiments conducted shows that the proposed framework reduces the overall classification error rate for MI-BCI by 3.16%, 5.10% and 1.70% (for BCI Competition III dataset IVa, BCI Competition IV Dataset I and BCI Competition IV Dataset IIb, respectively) compared to the conventional CSP method under the same experimental settings. The proposed CSP-TSM method produces promising results when compared with several competing methods in this paper. In addition, the computational complexity is less compared to that of TSM method. Our proposed CSP-TSM framework can be potentially used for developing improved MI-BCI systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. The Northern Circumpolar Soil Carbon Database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions

    NASA Astrophysics Data System (ADS)

    Hugelius, G.; Tarnocai, C.; Broll, G.; Canadell, J. G.; Kuhry, P.; Swanson, D. K.

    2012-08-01

    High latitude terrestrial ecosystems are key components in the global carbon (C) cycle. Estimates of global soil organic carbon (SOC), however, do not include updated estimates of SOC storage in permafrost-affected soils or representation of the unique pedogenic processes that affect these soils. The Northern Circumpolar Soil Carbon Database (NCSCD) was developed to quantify the SOC stocks in the circumpolar permafrost region (18.7 × 106 km2). The NCSCD is a polygon-based digital database compiled from harmonized regional soil classification maps in which data on soil order coverage has been linked to pedon data (n = 1647) from the northern permafrost regions to calculate SOC content and mass. In addition, new gridded datasets at different spatial resolutions have been generated to facilitate research applications using the NCSCD (standard raster formats for use in Geographic Information Systems and Network Common Data Form files common for applications in numerical models). This paper describes the compilation of the NCSCD spatial framework, the soil sampling and soil analyses procedures used to derive SOC content in pedons from North America and Eurasia and the formatting of the digital files that are available online. The potential applications and limitations of the NCSCD in spatial analyses are also discussed. The database has the doi:10.5879/ecds/00000001. An open access data-portal with all the described GIS-datasets is available online at: http://dev1.geo.su.se/bbcc/dev/ncscd/.

  4. The Northern Circumpolar Soil Carbon Database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions

    NASA Astrophysics Data System (ADS)

    Hugelius, G.; Tarnocai, C.; Broll, G.; Canadell, J. G.; Kuhry, P.; Swanson, D. K.

    2013-01-01

    High-latitude terrestrial ecosystems are key components in the global carbon (C) cycle. Estimates of global soil organic carbon (SOC), however, do not include updated estimates of SOC storage in permafrost-affected soils or representation of the unique pedogenic processes that affect these soils. The Northern Circumpolar Soil Carbon Database (NCSCD) was developed to quantify the SOC stocks in the circumpolar permafrost region (18.7 × 106 km2). The NCSCD is a polygon-based digital database compiled from harmonized regional soil classification maps in which data on soil order coverage have been linked to pedon data (n = 1778) from the northern permafrost regions to calculate SOC content and mass. In addition, new gridded datasets at different spatial resolutions have been generated to facilitate research applications using the NCSCD (standard raster formats for use in geographic information systems and Network Common Data Form files common for applications in numerical models). This paper describes the compilation of the NCSCD spatial framework, the soil sampling and soil analytical procedures used to derive SOC content in pedons from North America and Eurasia and the formatting of the digital files that are available online. The potential applications and limitations of the NCSCD in spatial analyses are also discussed. The database has the doi:10.5879/ecds/00000001. An open access data portal with all the described GIS-datasets is available online at: http://www.bbcc.su.se/data/ncscd/.

  5. EEG source reconstruction reveals frontal-parietal dynamics of spatial conflict processing.

    PubMed

    Cohen, Michael X; Ridderinkhof, K Richard

    2013-01-01

    Cognitive control requires the suppression of distracting information in order to focus on task-relevant information. We applied EEG source reconstruction via time-frequency linear constrained minimum variance beamforming to help elucidate the neural mechanisms involved in spatial conflict processing. Human subjects performed a Simon task, in which conflict was induced by incongruence between spatial location and response hand. We found an early (∼200 ms post-stimulus) conflict modulation in stimulus-contralateral parietal gamma (30-50 Hz), followed by a later alpha-band (8-12 Hz) conflict modulation, suggesting an early detection of spatial conflict and inhibition of spatial location processing. Inter-regional connectivity analyses assessed via cross-frequency coupling of theta (4-8 Hz), alpha, and gamma power revealed conflict-induced shifts in cortical network interactions: Congruent trials (relative to incongruent trials) had stronger coupling between frontal theta and stimulus-contrahemifield parietal alpha/gamma power, whereas incongruent trials had increased theta coupling between medial frontal and lateral frontal regions. These findings shed new light into the large-scale network dynamics of spatial conflict processing, and how those networks are shaped by oscillatory interactions.

  6. Utah FORGE Groundwater Data

    DOE Data Explorer

    Joe Moore

    2016-07-20

    This submission includes two modelled drawdown scenarios with new supply well locations, a total dissolved solids (TDS) concentration grid (raster dataset representing the spatial distribution of TDS), and an excel spreadsheet containing well data.

  7. Sources of Free and Open Source Spatial Data for Natural Disasters and Principles for Use in Developing Country Contexts

    NASA Astrophysics Data System (ADS)

    Taylor, Faith E.; Malamud, Bruce D.; Millington, James D. A.

    2016-04-01

    Access to reliable spatial and quantitative datasets (e.g., infrastructure maps, historical observations, environmental variables) at regional and site specific scales can be a limiting factor for understanding hazards and risks in developing country settings. Here we present a 'living database' of >75 freely available data sources relevant to hazard and risk in Africa (and more globally). Data sources include national scientific foundations, non-governmental bodies, crowd-sourced efforts, academic projects, special interest groups and others. The database is available at http://tinyurl.com/africa-datasets and is continually being updated, particularly in the context of broader natural hazards research we are doing in the context of Malawi and Kenya. For each data source, we review the spatiotemporal resolution and extent and make our own assessments of reliability and usability of datasets. Although such freely available datasets are sometimes presented as a panacea to improving our understanding of hazards and risk in developing countries, there are both pitfalls and opportunities unique to using this type of freely available data. These include factors such as resolution, homogeneity, uncertainty, access to metadata and training for usage. Based on our experience, use in the field and grey/peer-review literature, we present a suggested set of guidelines for using these free and open source data in developing country contexts.

  8. Investigating population continuity with ancient DNA under a spatially explicit simulation framework.

    PubMed

    Silva, Nuno Miguel; Rio, Jeremy; Currat, Mathias

    2017-12-15

    Recent advances in sequencing technologies have allowed for the retrieval of ancient DNA data (aDNA) from skeletal remains, providing direct genetic snapshots from diverse periods of human prehistory. Comparing samples taken in the same region but at different times, hereafter called "serial samples", may indicate whether there is continuity in the peopling history of that area or whether an immigration of a genetically different population has occurred between the two sampling times. However, the exploration of genetic relationships between serial samples generally ignores their geographical locations and the spatiotemporal dynamics of populations. Here, we present a new coalescent-based, spatially explicit modelling approach to investigate population continuity using aDNA, which includes two fundamental elements neglected in previous methods: population structure and migration. The approach also considers the extensive temporal and geographical variance that is commonly found in aDNA population samples. We first showed that our spatially explicit approach is more conservative than the previous (panmictic) approach and should be preferred to test for population continuity, especially when small and isolated populations are considered. We then applied our method to two mitochondrial datasets from Germany and France, both including modern and ancient lineages dating from the early Neolithic. The results clearly reject population continuity for the maternal line over the last 7500 years for the German dataset but not for the French dataset, suggesting regional heterogeneity in post-Neolithic migratory processes. Here, we demonstrate the benefits of using a spatially explicit method when investigating population continuity with aDNA. It constitutes an improvement over panmictic methods by considering the spatiotemporal dynamics of genetic lineages and the precise location of ancient samples. The method can be used to investigate population continuity between any pair of serial samples (ancient-ancient or ancient-modern) and to investigate more complex evolutionary scenarios. Although we based our study on mitochondrial DNA sequences, diploid molecular markers of different types (DNA, SNP, STR) can also be simulated with our approach. It thus constitutes a promising tool for the analysis of the numerous aDNA datasets being produced, including genome wide data, in humans but also in many other species.

  9. Global daily reference evapotranspiration modeling and evaluation

    USGS Publications Warehouse

    Senay, G.B.; Verdin, J.P.; Lietzow, R.; Melesse, Assefa M.

    2008-01-01

    Accurate and reliable evapotranspiration (ET) datasets are crucial in regional water and energy balance studies. Due to the complex instrumentation requirements, actual ET values are generally estimated from reference ET values by adjustment factors using coefficients for water stress and vegetation conditions, commonly referred to as crop coefficients. Until recently, the modeling of reference ET has been solely based on important weather variables collected from weather stations that are generally located in selected agro-climatic locations. Since 2001, the National Oceanic and Atmospheric Administration’s Global Data Assimilation System (GDAS) has been producing six-hourly climate parameter datasets that are used to calculate daily reference ET for the whole globe at 1-degree spatial resolution. The U.S. Geological Survey Center for Earth Resources Observation and Science has been producing daily reference ET (ETo) since 2001, and it has been used on a variety of operational hydrological models for drought and streamflow monitoring all over the world. With the increasing availability of local station-based reference ET estimates, we evaluated the GDAS-based reference ET estimates using data from the California Irrigation Management Information System (CIMIS). Daily CIMIS reference ET estimates from 85 stations were compared with GDAS-based reference ET at different spatial and temporal scales using five-year daily data from 2002 through 2006. Despite the large difference in spatial scale (point vs. ∼100 km grid cell) between the two datasets, the correlations between station-based ET and GDAS-ET were very high, exceeding 0.97 on a daily basis to more than 0.99 on time scales of more than 10 days. Both the temporal and spatial correspondences in trend/pattern and magnitudes between the two datasets were satisfactory, suggesting the reliability of using GDAS parameter-based reference ET for regional water and energy balance studies in many parts of the world. While the study revealed the potential of GDAS ETo for large-scale hydrological applications, site-specific use of GDAS ETo in complex hydro-climatic regions such as coastal areas and rugged terrain may require the application of bias correction and/or disaggregation of the GDAS ETo using downscaling techniques.

  10. Optimal spectral tracking--adapting to dynamic regime change.

    PubMed

    Brittain, John-Stuart; Halliday, David M

    2011-01-30

    Real world data do not always obey the statistical restraints imposed upon them by sophisticated analysis techniques. In spectral analysis for instance, an ergodic process--the interchangeability of temporal for spatial averaging--is assumed for a repeat-trial design. Many evolutionary scenarios, such as learning and motor consolidation, do not conform to such linear behaviour and should be approached from a more flexible perspective. To this end we previously introduced the method of optimal spectral tracking (OST) in the study of trial-varying parameters. In this extension to our work we modify the OST routines to provide an adaptive implementation capable of reacting to dynamic transitions in the underlying system state. In so doing, we generalise our approach to characterise both slow-varying and rapid fluctuations in time-series, simultaneously providing a metric of system stability. The approach is first applied to a surrogate dataset and compared to both our original non-adaptive solution and spectrogram approaches. The adaptive OST is seen to display fast convergence and desirable statistical properties. All three approaches are then applied to a neurophysiological recording obtained during a study on anaesthetic monitoring. Local field potentials acquired from the posterior hypothalamic region of a deep brain stimulation patient undergoing anaesthesia were analysed. The characterisation of features such as response delay, time-to-peak and modulation brevity are considered. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Sound localization with communications headsets: comparison of passive and active systems.

    PubMed

    Abel, Sharon M; Tsang, Suzanne; Boyne, Stephen

    2007-01-01

    Studies have demonstrated that conventional hearing protectors interfere with sound localization. This research examines possible benefits from advanced communications devices. Horizontal plane sound localization was compared in normal-hearing males with the ears unoccluded and fitted with Peltor H10A passive attenuation earmuffs, Racal Slimgard II communications muffs in active noise reduction (ANR) and talk-through-circuitry (TTC) modes and Nacre QUIETPRO TM communications earplugs in off (passive attenuation) and push-to-talk (PTT) modes. Localization was assessed using an array of eight loudspeakers, two in each spatial quadrant. The stimulus was 75 dB SPL, 300-ms broadband noise. One block of 120 forced-choice loudspeaker identification trials was presented in each condition. Subjects responded using a laptop response box with a set of eight microswitches in the same configuration as the speaker array. A repeated measures ANOVA was applied to the dataset. The results reveal that the overall percent correct response was highest in the unoccluded condition (94%). A significant reduction of 24% was observed for the communications devices in TTC and PTT modes and a reduction of 49% for the passive muff and plug and muff with ANR. Disruption in performance was due to an increase in front-back reversal errors for mirror image spatial positions. The results support the conclusion that communications devices with advanced technologies are less detrimental to directional hearing than conventional, passive, limited amplification and ANR devices.

  12. Spatial sequences, but not verbal sequences, are vulnerable to general interference during retention in working memory.

    PubMed

    Morey, Candice C; Miron, Monica D

    2016-12-01

    Among models of working memory, there is not yet a consensus about how to describe functions specific to storing verbal or visual-spatial memories. We presented aural-verbal and visual-spatial lists simultaneously and sometimes cued one type of information after presentation, comparing accuracy in conditions with and without informative retro-cues. This design isolates interference due specifically to maintenance, which appears most clearly in the uncued trials, from interference due to encoding, which occurs in all dual-task trials. When recall accuracy was comparable between tasks, we found that spatial memory was worse in uncued than in retro-cued trials, whereas verbal memory was not. Our findings bolster proposals that maintenance of spatial serial order, like maintenance of visual materials more broadly, relies on general rather than specialized resources, while maintenance of verbal sequences may rely on domain-specific resources. We argue that this asymmetry should be explicitly incorporated into models of working memory. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  13. Spatial Downscaling of Alien Species Presences using Machine Learning

    NASA Astrophysics Data System (ADS)

    Daliakopoulos, Ioannis N.; Katsanevakis, Stelios; Moustakas, Aristides

    2017-07-01

    Large scale, high-resolution data on alien species distributions are essential for spatially explicit assessments of their environmental and socio-economic impacts, and management interventions for mitigation. However, these data are often unavailable. This paper presents a method that relies on Random Forest (RF) models to distribute alien species presence counts at a finer resolution grid, thus achieving spatial downscaling. A sufficiently large number of RF models are trained using random subsets of the dataset as predictors, in a bootstrapping approach to account for the uncertainty introduced by the subset selection. The method is tested with an approximately 8×8 km2 grid containing floral alien species presence and several indices of climatic, habitat, land use covariates for the Mediterranean island of Crete, Greece. Alien species presence is aggregated at 16×16 km2 and used as a predictor of presence at the original resolution, thus simulating spatial downscaling. Potential explanatory variables included habitat types, land cover richness, endemic species richness, soil type, temperature, precipitation, and freshwater availability. Uncertainty assessment of the spatial downscaling of alien species’ occurrences was also performed and true/false presences and absences were quantified. The approach is promising for downscaling alien species datasets of larger spatial scale but coarse resolution, where the underlying environmental information is available at a finer resolution than the alien species data. Furthermore, the RF architecture allows for tuning towards operationally optimal sensitivity and specificity, thus providing a decision support tool for designing a resource efficient alien species census.

  14. Accuracy of stream habitat interpolations across spatial scales

    USGS Publications Warehouse

    Sheehan, Kenneth R.; Welsh, Stuart A.

    2013-01-01

    Stream habitat data are often collected across spatial scales because relationships among habitat, species occurrence, and management plans are linked at multiple spatial scales. Unfortunately, scale is often a factor limiting insight gained from spatial analysis of stream habitat data. Considerable cost is often expended to collect data at several spatial scales to provide accurate evaluation of spatial relationships in streams. To address utility of single scale set of stream habitat data used at varying scales, we examined the influence that data scaling had on accuracy of natural neighbor predictions of depth, flow, and benthic substrate. To achieve this goal, we measured two streams at gridded resolution of 0.33 × 0.33 meter cell size over a combined area of 934 m2 to create a baseline for natural neighbor interpolated maps at 12 incremental scales ranging from a raster cell size of 0.11 m2 to 16 m2 . Analysis of predictive maps showed a logarithmic linear decay pattern in RMSE values in interpolation accuracy for variables as resolution of data used to interpolate study areas became coarser. Proportional accuracy of interpolated models (r2 ) decreased, but it was maintained up to 78% as interpolation scale moved from 0.11 m2 to 16 m2 . Results indicated that accuracy retention was suitable for assessment and management purposes at various scales different from the data collection scale. Our study is relevant to spatial modeling, fish habitat assessment, and stream habitat management because it highlights the potential of using a single dataset to fulfill analysis needs rather than investing considerable cost to develop several scaled datasets.

  15. SCSPOD14, a South China Sea physical oceanographic dataset derived from in situ measurements during 1919-2014.

    PubMed

    Zeng, Lili; Wang, Dongxiao; Chen, Ju; Wang, Weiqiang; Chen, Rongyu

    2016-04-26

    In addition to the oceanographic data available for the South China Sea (SCS) from the World Ocean Database (WOD) and Array for Real-time Geostrophic Oceanography (Argo) floats, a suite of observations has been made by the South China Sea Institute of Oceanology (SCSIO) starting from the 1970s. Here, we assemble a SCS Physical Oceanographic Dataset (SCSPOD14) based on 51,392 validated temperature and salinity profiles collected from these three datasets for the period 1919-2014. A gridded dataset of climatological monthly mean temperature, salinity, and mixed and isothermal layer depth derived from an objective analysis of profiles is also presented. Comparisons with the World Ocean Atlas (WOA) and IFREMER/LOS Mixed Layer Depth Climatology confirm the reliability of the new dataset. This unique dataset offers an invaluable baseline perspective on the thermodynamic processes, spatial and temporal variability of water masses, and basin-scale and mesoscale oceanic structures in the SCS. We anticipate improvements and regular updates to this product as more observations become available from existing and future in situ networks.

  16. SCSPOD14, a South China Sea physical oceanographic dataset derived from in situ measurements during 1919–2014

    PubMed Central

    Zeng, Lili; Wang, Dongxiao; Chen, Ju; Wang, Weiqiang; Chen, Rongyu

    2016-01-01

    In addition to the oceanographic data available for the South China Sea (SCS) from the World Ocean Database (WOD) and Array for Real-time Geostrophic Oceanography (Argo) floats, a suite of observations has been made by the South China Sea Institute of Oceanology (SCSIO) starting from the 1970s. Here, we assemble a SCS Physical Oceanographic Dataset (SCSPOD14) based on 51,392 validated temperature and salinity profiles collected from these three datasets for the period 1919–2014. A gridded dataset of climatological monthly mean temperature, salinity, and mixed and isothermal layer depth derived from an objective analysis of profiles is also presented. Comparisons with the World Ocean Atlas (WOA) and IFREMER/LOS Mixed Layer Depth Climatology confirm the reliability of the new dataset. This unique dataset offers an invaluable baseline perspective on the thermodynamic processes, spatial and temporal variability of water masses, and basin-scale and mesoscale oceanic structures in the SCS. We anticipate improvements and regular updates to this product as more observations become available from existing and future in situ networks. PMID:27116565

  17. Two ultraviolet radiation datasets that cover China

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Hu, Bo; Wang, Yuesi; Liu, Guangren; Tang, Liqin; Ji, Dongsheng; Bai, Yongfei; Bao, Weikai; Chen, Xin; Chen, Yunming; Ding, Weixin; Han, Xiaozeng; He, Fei; Huang, Hui; Huang, Zhenying; Li, Xinrong; Li, Yan; Liu, Wenzhao; Lin, Luxiang; Ouyang, Zhu; Qin, Boqiang; Shen, Weijun; Shen, Yanjun; Su, Hongxin; Song, Changchun; Sun, Bo; Sun, Song; Wang, Anzhi; Wang, Genxu; Wang, Huimin; Wang, Silong; Wang, Youshao; Wei, Wenxue; Xie, Ping; Xie, Zongqiang; Yan, Xiaoyuan; Zeng, Fanjiang; Zhang, Fawei; Zhang, Yangjian; Zhang, Yiping; Zhao, Chengyi; Zhao, Wenzhi; Zhao, Xueyong; Zhou, Guoyi; Zhu, Bo

    2017-07-01

    Ultraviolet (UV) radiation has significant effects on ecosystems, environments, and human health, as well as atmospheric processes and climate change. Two ultraviolet radiation datasets are described in this paper. One contains hourly observations of UV radiation measured at 40 Chinese Ecosystem Research Network stations from 2005 to 2015. CUV3 broadband radiometers were used to observe the UV radiation, with an accuracy of 5%, which meets the World Meteorology Organization's measurement standards. The extremum method was used to control the quality of the measured datasets. The other dataset contains daily cumulative UV radiation estimates that were calculated using an all-sky estimation model combined with a hybrid model. The reconstructed daily UV radiation data span from 1961 to 2014. The mean absolute bias error and root-mean-square error are smaller than 30% at most stations, and most of the mean bias error values are negative, which indicates underestimation of the UV radiation intensity. These datasets can improve our basic knowledge of the spatial and temporal variations in UV radiation. Additionally, these datasets can be used in studies of potential ozone formation and atmospheric oxidation, as well as simulations of ecological processes.

  18. Assessment of the NASA-USGS Global Land Survey (GLS) Datasets

    USGS Publications Warehouse

    Gutman, Garik; Huang, Chengquan; Chander, Gyanesh; Noojipady, Praveen; Masek, Jeffery G.

    2013-01-01

    The Global Land Survey (GLS) datasets are a collection of orthorectified, cloud-minimized Landsat-type satellite images, providing near complete coverage of the global land area decadally since the early 1970s. The global mosaics are centered on 1975, 1990, 2000, 2005, and 2010, and consist of data acquired from four sensors: Enhanced Thematic Mapper Plus, Thematic Mapper, Multispectral Scanner, and Advanced Land Imager. The GLS datasets have been widely used in land-cover and land-use change studies at local, regional, and global scales. This study evaluates the GLS datasets with respect to their spatial coverage, temporal consistency, geodetic accuracy, radiometric calibration consistency, image completeness, extent of cloud contamination, and residual gaps. In general, the three latest GLS datasets are of a better quality than the GLS-1990 and GLS-1975 datasets, with most of the imagery (85%) having cloud cover of less than 10%, the acquisition years clustered much more tightly around their target years, better co-registration relative to GLS-2000, and better radiometric absolute calibration. Probably, the most significant impediment to scientific use of the datasets is the variability of image phenology (i.e., acquisition day of year). This paper provides end-users with an assessment of the quality of the GLS datasets for specific applications, and where possible, suggestions for mitigating their deficiencies.

  19. Sensitivity of a numerical wave model on wind re-analysis datasets

    NASA Astrophysics Data System (ADS)

    Lavidas, George; Venugopal, Vengatesan; Friedrich, Daniel

    2017-03-01

    Wind is the dominant process for wave generation. Detailed evaluation of metocean conditions strengthens our understanding of issues concerning potential offshore applications. However, the scarcity of buoys and high cost of monitoring systems pose a barrier to properly defining offshore conditions. Through use of numerical wave models, metocean conditions can be hindcasted and forecasted providing reliable characterisations. This study reports the sensitivity of wind inputs on a numerical wave model for the Scottish region. Two re-analysis wind datasets with different spatio-temporal characteristics are used, the ERA-Interim Re-Analysis and the CFSR-NCEP Re-Analysis dataset. Different wind products alter results, affecting the accuracy obtained. The scope of this study is to assess different available wind databases and provide information concerning the most appropriate wind dataset for the specific region, based on temporal, spatial and geographic terms for wave modelling and offshore applications. Both wind input datasets delivered results from the numerical wave model with good correlation. Wave results by the 1-h dataset have higher peaks and lower biases, in expense of a high scatter index. On the other hand, the 6-h dataset has lower scatter but higher biases. The study shows how wind dataset affects the numerical wave modelling performance, and that depending on location and study needs, different wind inputs should be considered.

  20. Investigation and Evaluation of the open source ETL tools GeoKettle and Talend Open Studio in terms of their ability to process spatial data

    NASA Astrophysics Data System (ADS)

    Kuhnert, Kristin; Quedenau, Jörn

    2016-04-01

    Integration and harmonization of large spatial data sets is not only since the introduction of the spatial data infrastructure INSPIRE a big issue. The process of extracting and combining spatial data from heterogeneous source formats, transforming that data to obtain the required quality for particular purposes and loading it into a data store, are common tasks. The procedure of Extraction, Transformation and Loading of data is called ETL process. Geographic Information Systems (GIS) can take over many of these tasks but often they are not suitable for processing large datasets. ETL tools can make the implementation and execution of ETL processes convenient and efficient. One reason for choosing ETL tools for data integration is that they ease maintenance because of a clear (graphical) presentation of the transformation steps. Developers and administrators are provided with tools for identification of errors, analyzing processing performance and managing the execution of ETL processes. Another benefit of ETL tools is that for most tasks no or only little scripting skills are required so that also researchers without programming background can easily work with it. Investigations on ETL tools for business approaches are available for a long time. However, little work has been published on the capabilities of those tools to handle spatial data. In this work, we review and compare the open source ETL tools GeoKettle and Talend Open Studio in terms of processing spatial data sets of different formats. For evaluation, ETL processes are performed with both software packages based on air quality data measured during the BÄRLIN2014 Campaign initiated by the Institute for Advanced Sustainability Studies (IASS). The aim of the BÄRLIN2014 Campaign is to better understand the sources and distribution of particulate matter in Berlin. The air quality data are available in heterogeneous formats because they were measured with different instruments. For further data analysis, the instrument data has been complemented by other georeferenced data provided by the local environmental authorities. This includes both vector and raster data on e.g. land use categories or building heights, extracted from flat files and OGC-compliant web services. The requirements on the ETL tools are now for instance the extraction of different input datasets like Web Feature Services or vector datasets and the loading of those into databases. The tools also have to manage transformations on spatial datasets like to work with spatial functions (e.g. intersection, union) or change spatial reference systems. Preliminary results suggest that many complex transformation tasks could be accomplished with the existing set of components from both software tools, while there are still many gaps in the range of available features. Both ETL tools differ in functionality and in the way of implementation of various steps. For some tasks no predefined components are available at all, which could partly be compensated by the use of the respective API (freely configurable components in Java or JavaScript).

  1. On Spatially Explicit Models of Epidemic and Endemic Cholera: The Haiti and Lake Kivu Case Studies.

    NASA Astrophysics Data System (ADS)

    Rinaldo, A.; Bertuzzo, E.; Mari, L.; Finger, F.; Casagrandi, R.; Gatto, M.; Rodriguez-Iturbe, I.

    2014-12-01

    The first part of the Lecture deals with the predictive ability of mechanistic models for the Haitian cholera epidemic. Predictive models of epidemic cholera need to resolve at suitable aggregation levels spatial data pertaining to local communities, epidemiological records, hydrologic drivers, waterways, patterns of human mobility and proxies of exposure rates. A formal model comparison framework provides a quantitative assessment of the explanatory and predictive abilities of various model settings with different spatial aggregation levels. Intensive computations and objective model comparisons show that parsimonious spatially explicit models accounting for spatial connections have superior explanatory power than spatially disconnected ones for short-to intermediate calibration windows. In general, spatially connected models show better predictive ability than disconnected ones. We suggest limits and validity of the various approaches and discuss the pathway towards the development of case-specific predictive tools in the context of emergency management. The second part deals with approaches suitable to describe patterns of endemic cholera. Cholera outbreaks have been reported in the Democratic Republic of the Congo since the 1970s. Here we employ a spatially explicit, inhomogeneous Markov chain model to describe cholera incidence in eight health zones on the shore of lake Kivu. Remotely sensed datasets of chlorophyll a concentration in the lake, precipitation and indices of global climate anomalies are used as environmental drivers in addition to baseline seasonality. The effect of human mobility is also modelled mechanistically. We test several models on a multi-year dataset of reported cholera cases. Fourteen models, accounting for different environmental drivers, are selected in calibration. Among these, the one accounting for seasonality, El Nino Southern Oscillation, precipitation and human mobility outperforms the others in cross-validation.

  2. Digital Hydrologic Networks Supporting Applications Related to Spatially Referenced Regression Modeling

    USGS Publications Warehouse

    Brakebill, J.W.; Wolock, D.M.; Terziotti, S.E.

    2011-01-01

    Digital hydrologic networks depicting surface-water pathways and their associated drainage catchments provide a key component to hydrologic analysis and modeling. Collectively, they form common spatial units that can be used to frame the descriptions of aquatic and watershed processes. In addition, they provide the ability to simulate and route the movement of water and associated constituents throughout the landscape. Digital hydrologic networks have evolved from derivatives of mapping products to detailed, interconnected, spatially referenced networks of water pathways, drainage areas, and stream and watershed characteristics. These properties are important because they enhance the ability to spatially evaluate factors that affect the sources and transport of water-quality constituents at various scales. SPAtially Referenced Regressions On Watershed attributes (SPARROW), a process-based/statistical model, relies on a digital hydrologic network in order to establish relations between quantities of monitored contaminant flux, contaminant sources, and the associated physical characteristics affecting contaminant transport. Digital hydrologic networks modified from the River Reach File (RF1) and National Hydrography Dataset (NHD) geospatial datasets provided frameworks for SPARROW in six regions of the conterminous United States. In addition, characteristics of the modified RF1 were used to update estimates of mean-annual streamflow. This produced more current flow estimates for use in SPARROW modeling. ?? 2011 American Water Resources Association. This article is a U.S. Government work and is in the public domain in the USA.

  3. Deforestation and rainfall recycling in Brazil: Is decreased forest cover connectivity associated with decreased rainfall connectivity?

    NASA Astrophysics Data System (ADS)

    Adera, S.; Larsen, L.; Levy, M. C.; Thompson, S. E.

    2017-12-01

    In the Brazilian rainforest-savanna transition zone, deforestation has the potential to significantly affect rainfall by disrupting rainfall recycling, the process by which regional evapotranspiration contributes to regional rainfall. Understanding rainfall recycling in this region is important not only for sustaining Amazon and Cerrado ecosystems, but also for cattle ranching, agriculture, hydropower generation, and drinking water management. Simulations in previous studies suggest complex, scale-dependent interactions between forest cover connectivity and rainfall. For example, the size and distribution of deforested patches has been found to affect rainfall quantity and spatial distribution. Here we take an empirical approach, using the spatial connectivity of rainfall as an indicator of rainfall recycling, to ask: as forest cover connectivity decreased from 1981 - 2015, how did the spatial connectivity of rainfall change in the Brazilian rainforest-savanna transition zone? We use satellite forest cover and rainfall data covering this period of intensive forest cover loss in the region (forest cover from the Hansen Global Forest Change dataset; rainfall from the Climate Hazards Infrared Precipitation with Stations dataset). Rainfall spatial connectivity is quantified using transfer entropy, a metric from information theory, and summarized using network statistics. Networks of connectivity are quantified for paired deforested and non-deforested regions before deforestation (1981-1995) and during/after deforestation (2001-2015). Analyses reveal a decline in spatial connectivity networks of rainfall following deforestation.

  4. An extensive dataset of eye movements during viewing of complex images.

    PubMed

    Wilming, Niklas; Onat, Selim; Ossandón, José P; Açık, Alper; Kietzmann, Tim C; Kaspar, Kai; Gameiro, Ricardo R; Vormberg, Alexandra; König, Peter

    2017-01-31

    We present a dataset of free-viewing eye-movement recordings that contains more than 2.7 million fixation locations from 949 observers on more than 1000 images from different categories. This dataset aggregates and harmonizes data from 23 different studies conducted at the Institute of Cognitive Science at Osnabrück University and the University Medical Center in Hamburg-Eppendorf. Trained personnel recorded all studies under standard conditions with homogeneous equipment and parameter settings. All studies allowed for free eye-movements, and differed in the age range of participants (~7-80 years), stimulus sizes, stimulus modifications (phase scrambled, spatial filtering, mirrored), and stimuli categories (natural and urban scenes, web sites, fractal, pink-noise, and ambiguous artistic figures). The size and variability of viewing behavior within this dataset presents a strong opportunity for evaluating and comparing computational models of overt attention, and furthermore, for thoroughly quantifying strategies of viewing behavior. This also makes the dataset a good starting point for investigating whether viewing strategies change in patient groups.

  5. Discovering network behind infectious disease outbreak

    NASA Astrophysics Data System (ADS)

    Maeno, Yoshiharu

    2010-11-01

    Stochasticity and spatial heterogeneity are of great interest recently in studying the spread of an infectious disease. The presented method solves an inverse problem to discover the effectively decisive topology of a heterogeneous network and reveal the transmission parameters which govern the stochastic spreads over the network from a dataset on an infectious disease outbreak in the early growth phase. Populations in a combination of epidemiological compartment models and a meta-population network model are described by stochastic differential equations. Probability density functions are derived from the equations and used for the maximal likelihood estimation of the topology and parameters. The method is tested with computationally synthesized datasets and the WHO dataset on the SARS outbreak.

  6. Medical Image Retrieval Using Multi-Texton Assignment.

    PubMed

    Tang, Qiling; Yang, Jirong; Xia, Xianfu

    2018-02-01

    In this paper, we present a multi-texton representation method for medical image retrieval, which utilizes the locality constraint to encode each filter bank response within its local-coordinate system consisting of the k nearest neighbors in texton dictionary and subsequently employs spatial pyramid matching technique to implement feature vector representation. Comparison with the traditional nearest neighbor assignment followed by texton histogram statistics method, our strategies reduce the quantization errors in mapping process and add information about the spatial layout of texton distributions and, thus, increase the descriptive power of the image representation. We investigate the effects of different parameters on system performance in order to choose the appropriate ones for our datasets and carry out experiments on the IRMA-2009 medical collection and the mammographic patch dataset. The extensive experimental results demonstrate that the proposed method has superior performance.

  7. Effects of VR system fidelity on analyzing isosurface visualization of volume datasets.

    PubMed

    Laha, Bireswar; Bowman, Doug A; Socha, John J

    2014-04-01

    Volume visualization is an important technique for analyzing datasets from a variety of different scientific domains. Volume data analysis is inherently difficult because volumes are three-dimensional, dense, and unfamiliar, requiring scientists to precisely control the viewpoint and to make precise spatial judgments. Researchers have proposed that more immersive (higher fidelity) VR systems might improve task performance with volume datasets, and significant results tied to different components of display fidelity have been reported. However, more information is needed to generalize these results to different task types, domains, and rendering styles. We visualized isosurfaces extracted from synchrotron microscopic computed tomography (SR-μCT) scans of beetles, in a CAVE-like display. We ran a controlled experiment evaluating the effects of three components of system fidelity (field of regard, stereoscopy, and head tracking) on a variety of abstract task categories that are applicable to various scientific domains, and also compared our results with those from our prior experiment using 3D texture-based rendering. We report many significant findings. For example, for search and spatial judgment tasks with isosurface visualization, a stereoscopic display provides better performance, but for tasks with 3D texture-based rendering, displays with higher field of regard were more effective, independent of the levels of the other display components. We also found that systems with high field of regard and head tracking improve performance in spatial judgment tasks. Our results extend existing knowledge and produce new guidelines for designing VR systems to improve the effectiveness of volume data analysis.

  8. An ontological system for interoperable spatial generalisation in biodiversity monitoring

    NASA Astrophysics Data System (ADS)

    Nieland, Simon; Moran, Niklas; Kleinschmit, Birgit; Förster, Michael

    2015-11-01

    Semantic heterogeneity remains a barrier to data comparability and standardisation of results in different fields of spatial research. Because of its thematic complexity, differing acquisition methods and national nomenclatures, interoperability of biodiversity monitoring information is especially difficult. Since data collection methods and interpretation manuals broadly vary there is a need for automatised, objective methodologies for the generation of comparable data-sets. Ontology-based applications offer vast opportunities in data management and standardisation. This study examines two data-sets of protected heathlands in Germany and Belgium which are based on remote sensing image classification and semantically formalised in an OWL2 ontology. The proposed methodology uses semantic relations of the two data-sets, which are (semi-)automatically derived from remote sensing imagery, to generate objective and comparable information about the status of protected areas by utilising kernel-based spatial reclassification. This automatised method suggests a generalisation approach, which is able to generate delineation of Special Areas of Conservation (SAC) of the European biodiversity Natura 2000 network. Furthermore, it is able to transfer generalisation rules between areas surveyed with varying acquisition methods in different countries by taking into account automated inference of the underlying semantics. The generalisation results were compared with the manual delineation of terrestrial monitoring. For the different habitats in the two sites an accuracy of above 70% was detected. However, it has to be highlighted that the delineation of the ground-truth data inherits a high degree of uncertainty, which is discussed in this study.

  9. Detection of Movement Related Cortical Potentials from EEG Using Constrained ICA for Brain-Computer Interface Applications.

    PubMed

    Karimi, Fatemeh; Kofman, Jonathan; Mrachacz-Kersting, Natalie; Farina, Dario; Jiang, Ning

    2017-01-01

    The movement related cortical potential (MRCP), a slow cortical potential from the scalp electroencephalogram (EEG), has been used in real-time brain-computer-interface (BCI) systems designed for neurorehabilitation. Detecting MPCPs in real time with high accuracy and low latency is essential in these applications. In this study, we propose a new MRCP detection method based on constrained independent component analysis (cICA). The method was tested for MRCP detection during executed and imagined ankle dorsiflexion of 24 healthy participants, and compared with four commonly used spatial filters for MRCP detection in an offline experiment. The effect of cICA and the compared spatial filters on the morphology of the extracted MRCP was evaluated by two indices quantifying the signal-to-noise ratio and variability of the extracted MRCP. The performance of the filters for detection was then directly compared for accuracy and latency. The latency obtained with cICA (-34 ± 29 ms motor execution (ME) and 28 ± 16 ms for motor imagery (MI) dataset) was significantly smaller than with all other spatial filters. Moreover, cICA resulted in greater true positive rates (87.11 ± 11.73 for ME and 86.66 ± 6.96 for MI dataset) and lower false positive rates (20.69 ± 13.68 for ME and 19.31 ± 12.60 for MI dataset) compared to the other methods. These results confirm the superiority of cICA in MRCP detection with respect to previously proposed EEG filtering approaches.

  10. Characterizing regional-scale temporal evolution of air dose rates after the Fukushima Daiichi Nuclear Power Plant accident.

    PubMed

    Wainwright, Haruko M; Seki, Akiyuki; Mikami, Satoshi; Saito, Kimiaki

    2018-09-01

    In this study, we quantify the temporal changes of air dose rates in the regional scale around the Fukushima Dai-ichi Nuclear Power Plant in Japan, and predict the spatial distribution of air dose rates in the future. We first apply the Bayesian geostatistical method developed by Wainwright et al. (2017) to integrate multiscale datasets including ground-based walk and car surveys, and airborne surveys, all of which have different scales, resolutions, spatial coverage, and accuracy. This method is based on geostatistics to represent spatial heterogeneous structures, and also on Bayesian hierarchical models to integrate multiscale, multi-type datasets in a consistent manner. We apply this method to the datasets from three years: 2014 to 2016. The temporal changes among the three integrated maps enables us to characterize the spatiotemporal dynamics of radiation air dose rates. The data-driven ecological decay model is then coupled with the integrated map to predict future dose rates. Results show that the air dose rates are decreasing consistently across the region. While slower in the forested region, the decrease is particularly significant in the town area. The decontamination has contributed to significant reduction of air dose rates. By 2026, the air dose rates will continue to decrease, and the area above 3.8 μSv/h will be almost fully contained within the non-residential forested zone. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Using NASA Satellite Aerosol Optical Depth to Enhance PM2.5 Concentration Datasets for Use in Human Health and Epidemiology Studies

    NASA Astrophysics Data System (ADS)

    Huff, A. K.; Weber, S.; Braggio, J.; Talbot, T.; Hall, E.

    2012-12-01

    Fine particulate matter (PM2.5) is a criterion air pollutant, and its adverse impacts on human health are well established. Traditionally, studies that analyze the health effects of human exposure to PM2.5 use concentration measurements from ground-based monitors and predicted PM2.5 concentrations from air quality models, such as the U.S. EPA's Community Multi-scale Air Quality (CMAQ) model. There are shortcomings associated with these datasets, however. Monitors are not distributed uniformly across the U.S., which causes spatially inhomogeneous measurements of pollutant concentrations. There are often temporal variations as well, since not all monitors make daily measurements. Air quality model output, while spatially and temporally uniform, represents predictions of PM2.5 concentrations, not actual measurements. This study is exploring the potential of combining Aerosol Optical Depth (AOD) data from the MODIS instrument on NASA's Terra and Aqua satellites with PM2.5 monitor data and CMAQ predictions to create PM2.5 datasets that more accurately reflect the spatial and temporal variations in ambient PM2.5 concentrations on the metropolitan scale, with the overall goal of enhancing capabilities for environmental public health decision-making. AOD data provide regional information about particulate concentrations that can fill in the spatial and temporal gaps in the national PM2.5 monitor network. Furthermore, AOD is a measurement, so it reflects actual concentrations of particulates in the atmosphere, in contrast to PM2.5 predictions from air quality models. Results will be presented from the Battelle/U.S. EPA statistical Hierarchical Bayesian Model (HBM), which was used to combine three PM2.5 concentration datasets: monitor measurements, AOD data, and CMAQ model predictions. The study is focusing on the Baltimore, MD and New York City, NY metropolitan regions for the period 2004-2006. For each region, combined monitor/AOD/CMAQ PM2.5 datasets generated by the HBM are being correlated with data on inpatient hospitalizations and emergency room visits for seven respiratory and cardiovascular diseases using statistical case-crossover analyses. Preliminary results will be discussed regarding the potential for the addition of AOD data to increase the correlation between PM2.5 concentrations and health outcomes. Environmental public health tracking programs associated with the Maryland Department of Health and Mental Hygiene, the New York State Department of Health, the CDC, and the U.S. EPA have expressed interest in using the results of this study to enhance their existing environmental health surveillance activities.

  12. Virtual Morris task responses in individuals in an abstinence phase from alcohol.

    PubMed

    Ceccanti, Mauro; Coriale, Giovanna; Hamilton, Derek A; Carito, Valentina; Coccurello, Roberto; Scalese, Bruna; Ciafrè, Stefania; Codazzo, Claudia; Messina, Marisa Patrizia; Chaldakov, George N; Fiore, Marco

    2018-02-01

    The present study was aimed at examining spatial learning and memory, in 33 men and 12 women with alcohol use disorder (AUD) undergoing ethanol detoxification, by using a virtual Morris task. As controls, we recruited 29 men and 10 women among episodic drinkers without a history of alcohol addiction or alcohol-related diseases. Elevated latency to the first movement in all trials was observed only in AUD persons; furthermore, control women had longer latencies compared with control men. Increased time spent to reach the hidden platform in the learning phase was found for women of both groups compared with men, in particular during trial 3. As predicted, AUD persons (more evident in men) spent less time in the target quadrant during the probe trial; however, AUD women had longer latencies to reach the platform in the visible condition during trials 6 and 7 that resulted in a greater distance moved. As for the probe trial, men of both groups showed increased virtual locomotion compared with the women of both groups. The present investigation confirms and extends previous studies showing (i) different gender responses in spatial learning tasks, (ii) some alterations due to alcohol addiction in virtual spatial learning, and (iii) differences between AUD men and AUD women in spatial-behaviour-related paradigms.

  13. Leveling data in geochemical mapping: scope of application, pros and cons of existing methods

    NASA Astrophysics Data System (ADS)

    Pereira, Benoît; Vandeuren, Aubry; Sonnet, Philippe

    2017-04-01

    Geochemical mapping successfully met a range of needs from mineral exploration to environmental management. In Europe and around the world numerous geochemical datasets already exist. These datasets may originate from geochemical mapping projects or from the collection of sample analyses requested by environmental protection regulatory bodies. Combining datasets can be highly beneficial for establishing geochemical maps with increased resolution and/or coverage area. However this practice requires assessing the equivalence between datasets and, if needed, applying data leveling to remove possible biases between datasets. In the literature, several procedures for assessing dataset equivalence and leveling data are proposed. Daneshfar & Cameron (1998) proposed a method for the leveling of two adjacent datasets while Pereira et al. (2016) proposed two methods for the leveling of datasets that contain records located within the same geographical area. Each discussed method requires its own set of assumptions (underlying populations of data, spatial distribution of data, etc.). Here we propose to discuss the scope of application, pros, cons and practical recommendations for each method. This work is illustrated with several case studies in Wallonia (Southern Belgium) and in Europe involving trace element geochemical datasets. References: Daneshfar, B. & Cameron, E. (1998), Leveling geochemical data between map sheets, Journal of Geochemical Exploration 63(3), 189-201. Pereira, B.; Vandeuren, A.; Govaerts, B. B. & Sonnet, P. (2016), Assessing dataset equivalence and leveling data in geochemical mapping, Journal of Geochemical Exploration 168, 36-48.

  14. Multi Length Scale Imaging of Flocculated Estuarine Sediments; Insights into their Complex 3D Structure

    NASA Astrophysics Data System (ADS)

    Wheatland, Jonathan; Bushby, Andy; Droppo, Ian; Carr, Simon; Spencer, Kate

    2015-04-01

    Suspended estuarine sediments form flocs that are compositionally complex, fragile and irregularly shaped. The fate and transport of suspended particulate matter (SPM) is determined by the size, shape, density, porosity and stability of these flocs and prediction of SPM transport requires accurate measurements of these three-dimensional (3D) physical properties. However, the multi-scaled nature of flocs in addition to their fragility makes their characterisation in 3D problematic. Correlative microscopy is a strategy involving the spatial registration of information collected at different scales using several imaging modalities. Previously, conventional optical microscopy (COM) and transmission electron microscopy (TEM) have enabled 2-dimensional (2D) floc characterisation at the gross (> 1 µm) and sub-micron scales respectively. Whilst this has proven insightful there remains a critical spatial and dimensional gap preventing the accurate measurement of geometric properties and an understanding of how structures at different scales are related. Within life sciences volumetric imaging techniques such as 3D micro-computed tomography (3D µCT) and focused ion beam scanning electron microscopy [FIB-SEM (or FIB-tomography)] have been combined to characterise materials at the centimetre to micron scale. Combining these techniques with TEM enables an advanced correlative study, allowing material properties across multiple spatial and dimensional scales to be visualised. The aims of this study are; 1) to formulate an advanced correlative imaging strategy combining 3D µCT, FIB-tomography and TEM; 2) to acquire 3D datasets; 3) to produce a model allowing their co-visualisation; 4) to interpret 3D floc structure. To reduce the chance of structural alterations during analysis samples were first 'fixed' in 2.5% glutaraldehyde/2% formaldehyde before being embedding in Durcupan resin. Intermediate steps were implemented to improve contrast and remove pore water, achieved by the addition of heavy metal stains and washing samples in a series of ethanol solutions and acetone. Gross-scale characterisation involved scanning samples using a Nikon Metrology HM X 225 µCT. For micro-scale analysis a working surface was revealed by microtoming the sample. Ultrathin sections were then collected and analysed using a JEOL 1200 Ex II TEM, and FIB-tomography datasets obtained using an FEI Quanta 3D FIB-SEM. Finally, to locate the surface and relate TEM and FIB-tomography datasets to the original floc, samples were rescanned using the µCT. Image processing was initially conducted in ImageJ. Following this datasets were imported into Amira 5.5 where pixel intensity thresholding allowed particle-matrix boundaries to be defined. Using 'landmarks' datasets were then registered to enable their co-visualisation in 3D models. Analysis of registered datasets reveals the complex non-fractal nature of flocs, whose properties span several of orders of magnitude. Primary particles are organised into discrete 'bundles', the arrangement of which directly influences their gross morphology. This strategy, which allows the co-visualisation of spatially registered multi-scale 3D datasets, provides unique insights into the true nature floc which would other have been impossible.

  15. Spatial Heterogeneity of Leaf Area Index (LAI) and Its Temporal Course on Arable Land: Combining Field Measurements, Remote Sensing and Simulation in a Comprehensive Data Analysis Approach (CDAA).

    PubMed

    Reichenau, Tim G; Korres, Wolfgang; Montzka, Carsten; Fiener, Peter; Wilken, Florian; Stadler, Anja; Waldhoff, Guido; Schneider, Karl

    2016-01-01

    The ratio of leaf area to ground area (leaf area index, LAI) is an important state variable in ecosystem studies since it influences fluxes of matter and energy between the land surface and the atmosphere. As a basis for generating temporally continuous and spatially distributed datasets of LAI, the current study contributes an analysis of its spatial variability and spatial structure. Soil-vegetation-atmosphere fluxes of water, carbon and energy are nonlinearly related to LAI. Therefore, its spatial heterogeneity, i.e., the combination of spatial variability and structure, has an effect on simulations of these fluxes. To assess LAI spatial heterogeneity, we apply a Comprehensive Data Analysis Approach that combines data from remote sensing (5 m resolution) and simulation (150 m resolution) with field measurements and a detailed land use map. Test area is the arable land in the fertile loess plain of the Rur catchment on the Germany-Belgium-Netherlands border. LAI from remote sensing and simulation compares well with field measurements. Based on the simulation results, we describe characteristic crop-specific temporal patterns of LAI spatial variability. By means of these patterns, we explain the complex multimodal frequency distributions of LAI in the remote sensing data. In the test area, variability between agricultural fields is higher than within fields. Therefore, spatial resolutions less than the 5 m of the remote sensing scenes are sufficient to infer LAI spatial variability. Frequency distributions from the simulation agree better with the multimodal distributions from remote sensing than normal distributions do. The spatial structure of LAI in the test area is dominated by a short distance referring to field sizes. Longer distances that refer to soil and weather can only be derived from remote sensing data. Therefore, simulations alone are not sufficient to characterize LAI spatial structure. It can be concluded that a comprehensive picture of LAI spatial heterogeneity and its temporal course can contribute to the development of an approach to create spatially distributed and temporally continuous datasets of LAI.

  16. Spatial Heterogeneity of Leaf Area Index (LAI) and Its Temporal Course on Arable Land: Combining Field Measurements, Remote Sensing and Simulation in a Comprehensive Data Analysis Approach (CDAA)

    PubMed Central

    Korres, Wolfgang; Montzka, Carsten; Fiener, Peter; Wilken, Florian; Stadler, Anja; Waldhoff, Guido; Schneider, Karl

    2016-01-01

    The ratio of leaf area to ground area (leaf area index, LAI) is an important state variable in ecosystem studies since it influences fluxes of matter and energy between the land surface and the atmosphere. As a basis for generating temporally continuous and spatially distributed datasets of LAI, the current study contributes an analysis of its spatial variability and spatial structure. Soil-vegetation-atmosphere fluxes of water, carbon and energy are nonlinearly related to LAI. Therefore, its spatial heterogeneity, i.e., the combination of spatial variability and structure, has an effect on simulations of these fluxes. To assess LAI spatial heterogeneity, we apply a Comprehensive Data Analysis Approach that combines data from remote sensing (5 m resolution) and simulation (150 m resolution) with field measurements and a detailed land use map. Test area is the arable land in the fertile loess plain of the Rur catchment on the Germany-Belgium-Netherlands border. LAI from remote sensing and simulation compares well with field measurements. Based on the simulation results, we describe characteristic crop-specific temporal patterns of LAI spatial variability. By means of these patterns, we explain the complex multimodal frequency distributions of LAI in the remote sensing data. In the test area, variability between agricultural fields is higher than within fields. Therefore, spatial resolutions less than the 5 m of the remote sensing scenes are sufficient to infer LAI spatial variability. Frequency distributions from the simulation agree better with the multimodal distributions from remote sensing than normal distributions do. The spatial structure of LAI in the test area is dominated by a short distance referring to field sizes. Longer distances that refer to soil and weather can only be derived from remote sensing data. Therefore, simulations alone are not sufficient to characterize LAI spatial structure. It can be concluded that a comprehensive picture of LAI spatial heterogeneity and its temporal course can contribute to the development of an approach to create spatially distributed and temporally continuous datasets of LAI. PMID:27391858

  17. Accounting for Non-Gaussian Sources of Spatial Correlation in Parametric Functional Magnetic Resonance Imaging Paradigms I: Revisiting Cluster-Based Inferences.

    PubMed

    Gopinath, Kaundinya; Krishnamurthy, Venkatagiri; Sathian, K

    2018-02-01

    In a recent study, Eklund et al. employed resting-state functional magnetic resonance imaging data as a surrogate for null functional magnetic resonance imaging (fMRI) datasets and posited that cluster-wise family-wise error (FWE) rate-corrected inferences made by using parametric statistical methods in fMRI studies over the past two decades may have been invalid, particularly for cluster defining thresholds less stringent than p < 0.001; this was principally because the spatial autocorrelation functions (sACF) of fMRI data had been modeled incorrectly to follow a Gaussian form, whereas empirical data suggested otherwise. Here, we show that accounting for non-Gaussian signal components such as those arising from resting-state neural activity as well as physiological responses and motion artifacts in the null fMRI datasets yields first- and second-level general linear model analysis residuals with nearly uniform and Gaussian sACF. Further comparison with nonparametric permutation tests indicates that cluster-based FWE corrected inferences made with Gaussian spatial noise approximations are valid.

  18. EnzyNet: enzyme classification using 3D convolutional neural networks on spatial representation

    PubMed Central

    Amidi, Afshine; Megalooikonomou, Vasileios; Paragios, Nikos

    2018-01-01

    During the past decade, with the significant progress of computational power as well as ever-rising data availability, deep learning techniques became increasingly popular due to their excellent performance on computer vision problems. The size of the Protein Data Bank (PDB) has increased more than 15-fold since 1999, which enabled the expansion of models that aim at predicting enzymatic function via their amino acid composition. Amino acid sequence, however, is less conserved in nature than protein structure and therefore considered a less reliable predictor of protein function. This paper presents EnzyNet, a novel 3D convolutional neural networks classifier that predicts the Enzyme Commission number of enzymes based only on their voxel-based spatial structure. The spatial distribution of biochemical properties was also examined as complementary information. The two-layer architecture was investigated on a large dataset of 63,558 enzymes from the PDB and achieved an accuracy of 78.4% by exploiting only the binary representation of the protein shape. Code and datasets are available at https://github.com/shervinea/enzynet. PMID:29740518

  19. EnzyNet: enzyme classification using 3D convolutional neural networks on spatial representation.

    PubMed

    Amidi, Afshine; Amidi, Shervine; Vlachakis, Dimitrios; Megalooikonomou, Vasileios; Paragios, Nikos; Zacharaki, Evangelia I

    2018-01-01

    During the past decade, with the significant progress of computational power as well as ever-rising data availability, deep learning techniques became increasingly popular due to their excellent performance on computer vision problems. The size of the Protein Data Bank (PDB) has increased more than 15-fold since 1999, which enabled the expansion of models that aim at predicting enzymatic function via their amino acid composition. Amino acid sequence, however, is less conserved in nature than protein structure and therefore considered a less reliable predictor of protein function. This paper presents EnzyNet, a novel 3D convolutional neural networks classifier that predicts the Enzyme Commission number of enzymes based only on their voxel-based spatial structure. The spatial distribution of biochemical properties was also examined as complementary information. The two-layer architecture was investigated on a large dataset of 63,558 enzymes from the PDB and achieved an accuracy of 78.4% by exploiting only the binary representation of the protein shape. Code and datasets are available at https://github.com/shervinea/enzynet.

  20. Action change detection in video using a bilateral spatial-temporal constraint

    NASA Astrophysics Data System (ADS)

    Tian, Jing; Chen, Li

    2016-08-01

    Action change detection in video aims to detect action discontinuity in video. The silhouettes-based features are desirable for action change detection. This paper studies the problem of silhouette-quality assessment. For that, a non-reference approach without the need for ground truth is proposed in this paper to evaluate the quality of silhouettes, by exploiting both the boundary contrast of the silhouettes in the spatial domain and the consistency of the silhouettes in the temporal domain. This is in contrast to that either only spatial information or only temporal information of silhouettes is exploited in conventional approaches. Experiments are conducted using artificially generated degraded silhouettes to show that the proposed approach outperforms conventional approaches to achieve more accurate quality assessment. Furthermore, experiments are performed to show that the proposed approach is able to improve the accuracy performance of conventional action change approaches in two human action video data-sets. The average runtime of the proposed approach for Weizmann action video data-set is 0.08 second for one frame using Matlab programming language. It is computationally efficient and potential to real-time implementations.

  1. Supporting the operational use of process based hydrological models and NASA Earth Observations for use in land management and post-fire remediation through a Rapid Response Erosion Database (RRED).

    NASA Astrophysics Data System (ADS)

    Miller, M. E.; Elliot, W.; Billmire, M.; Robichaud, P. R.; Banach, D. M.

    2017-12-01

    We have built a Rapid Response Erosion Database (RRED, http://rred.mtri.org/rred/) for the continental United States to allow land managers to access properly formatted spatial model inputs for the Water Erosion Prediction Project (WEPP). Spatially-explicit process-based models like WEPP require spatial inputs that include digital elevation models (DEMs), soil, climate and land cover. The online database delivers either a 10m or 30m USGS DEM, land cover derived from the Landfire project, and soil data derived from SSURGO and STATSGO datasets. The spatial layers are projected into UTM coordinates and pre-registered for modeling. WEPP soil parameter files are also created along with linkage files to match both spatial land cover and soils data with the appropriate WEPP parameter files. Our goal is to make process-based models more accessible by preparing spatial inputs ahead of time allowing modelers to focus on addressing scenarios of concern. The database provides comprehensive support for post-fire hydrological modeling by allowing users to upload spatial soil burn severity maps, and within moments returns spatial model inputs. Rapid response is critical following natural disasters. After moderate and high severity wildfires, flooding, erosion, and debris flows are a major threat to life, property and municipal water supplies. Mitigation measures must be rapidly implemented if they are to be effective, but they are expensive and cannot be applied everywhere. Fire, runoff, and erosion risks also are highly heterogeneous in space, creating an urgent need for rapid, spatially-explicit assessment. The database has been used to help assess and plan remediation on over a dozen wildfires in the Western US. Future plans include expanding spatial coverage, improving model input data and supporting additional models. Our goal is to facilitate the use of the best possible datasets and models to support the conservation of soil and water.

  2. Tracking data from nine free-roaming Cheetahs (Acinonyx jubatus) collared in the Thabazimbi area, Limpopo Province, South Africa.

    PubMed

    Marnewick, Kelly; Page-Nicholson, Samantha; Roxburgh, Lizanne; Somers, Michael J

    2017-01-01

    In partnership with the University of Pretoria, the Endangered Wildlife Trust's Carnivore Conservation Programme collared six male and three female free-roaming Cheetahs ( Acinonyx jubatus ) in the Thabazimbi area in Limpopo Province, South Africa. This study was undertaken to determine the spatial ecology of free-roaming Cheetahs that occur outside of formal protected areas on private ranchland, where they frequently come into conflict with, and are sometimes killed by, private landowners. The data were collected between September 2003 and November 2008, resulting in a total of 3165 location points (65 points from VHF collars and 3100 from GPS collars) for nine individual Cheetahs. This dataset provides distribution information about this Vulnerable species occurring outside of protected areas within South Africa. The dataset has been published to the Global Biodiversity Information Facility (www.GBIF.org) and provides the largest dataset on Cheetahs thus far, and, although it is spatially limited to a relatively small region on the African continent, it is the first study of its kind within South Africa. Also of significance is that the fate of 6 of the 9 collared Cheetahs is known, all except one of which died of anthropogenic causes.

  3. Integrated remotely sensed datasets for disaster management

    NASA Astrophysics Data System (ADS)

    McCarthy, Timothy; Farrell, Ronan; Curtis, Andrew; Fotheringham, A. Stewart

    2008-10-01

    Video imagery can be acquired from aerial, terrestrial and marine based platforms and has been exploited for a range of remote sensing applications over the past two decades. Examples include coastal surveys using aerial video, routecorridor infrastructures surveys using vehicle mounted video cameras, aerial surveys over forestry and agriculture, underwater habitat mapping and disaster management. Many of these video systems are based on interlaced, television standards such as North America's NTSC and European SECAM and PAL television systems that are then recorded using various video formats. This technology has recently being employed as a front-line, remote sensing technology for damage assessment post-disaster. This paper traces the development of spatial video as a remote sensing tool from the early 1980s to the present day. The background to a new spatial-video research initiative based at National University of Ireland, Maynooth, (NUIM) is described. New improvements are proposed and include; low-cost encoders, easy to use software decoders, timing issues and interoperability. These developments will enable specialists and non-specialists collect, process and integrate these datasets within minimal support. This integrated approach will enable decision makers to access relevant remotely sensed datasets quickly and so, carry out rapid damage assessment during and post-disaster.

  4. Sunspot Pattern Classification using PCA and Neural Networks (Poster)

    NASA Technical Reports Server (NTRS)

    Rajkumar, T.; Thompson, D. E.; Slater, G. L.

    2005-01-01

    The sunspot classification scheme presented in this paper is considered as a 2-D classification problem on archived datasets, and is not a real-time system. As a first step, it mirrors the Zuerich/McIntosh historical classification system and reproduces classification of sunspot patterns based on preprocessing and neural net training datasets. Ultimately, the project intends to move from more rudimentary schemes, to develop spatial-temporal-spectral classes derived by correlating spatial and temporal variations in various wavelengths to the brightness fluctuation spectrum of the sun in those wavelengths. Once the approach is generalized, then the focus will naturally move from a 2-D to an n-D classification, where "n" includes time and frequency. Here, the 2-D perspective refers both to the actual SOH0 Michelson Doppler Imager (MDI) images that are processed, but also refers to the fact that a 2-D matrix is created from each image during preprocessing. The 2-D matrix is the result of running Principal Component Analysis (PCA) over the selected dataset images, and the resulting matrices and their eigenvalues are the objects that are stored in a database, classified, and compared. These matrices are indexed according to the standard McIntosh classification scheme.

  5. Thermal Structure and Dynamics of Saturn's Northern Springtime Disturbance

    NASA Technical Reports Server (NTRS)

    Fletcher, Leigh N.; Hesman, Brigette E.; Irwin, Patrick G.; Baines, Kevin H.; Momary, Thomas W.; SanchezLavega, Agustin; Flasar, F. Michael; Read, Peter L.; Orton, Glenn S.; SimonMiller, Amy; hide

    2011-01-01

    This article combined several infrared datasets to study the vertical properties of Saturn's northern springtime storm. Spectroscopic observations of Saturn's northern hemisphere at 0.5 and 2.5 / cm spectral resolution were provided by the Cassini Composite Infrared Spectrometer (CIRS, 17). These were supplemented with narrow-band filtered imaging from the ESO Very Large Telescope VISIR instrument (16) to provide a global spatial context for the Cassini spectroscopy. Finally, nightside imaging from the Cassini Visual and Infrared Mapping Spectrometer (VIMS, 22) provided a glimpse of the undulating cloud activity in the eastern branch of the disturbance. Each of these datasets, and the methods used to reduce and analyse them, will be described in detail below. Spatial maps of atmospheric temperatures, aerosol opacity and gaseous distributions are derived from infrared spectroscopy using a suite of radiative transfer and optimal estimation retrieval tools developed at the University of Oxford, known collectively as Nemesis (23). Synthetic spectra created from a reference atmospheric model for Saturn and appropriate sources of spectroscopic line data (6, 24) are convolved with the instrument function for each dataset. Atmospheric properties are then iteratively adjusted until the measurements are accurately reproduced with physically-realistic temperatures, compositions and cloud opacities.

  6. Multiresolution comparison of precipitation datasets for large-scale models

    NASA Astrophysics Data System (ADS)

    Chun, K. P.; Sapriza Azuri, G.; Davison, B.; DeBeer, C. M.; Wheater, H. S.

    2014-12-01

    Gridded precipitation datasets are crucial for driving large-scale models which are related to weather forecast and climate research. However, the quality of precipitation products is usually validated individually. Comparisons between gridded precipitation products along with ground observations provide another avenue for investigating how the precipitation uncertainty would affect the performance of large-scale models. In this study, using data from a set of precipitation gauges over British Columbia and Alberta, we evaluate several widely used North America gridded products including the Canadian Gridded Precipitation Anomalies (CANGRD), the National Center for Environmental Prediction (NCEP) reanalysis, the Water and Global Change (WATCH) project, the thin plate spline smoothing algorithms (ANUSPLIN) and Canadian Precipitation Analysis (CaPA). Based on verification criteria for various temporal and spatial scales, results provide an assessment of possible applications for various precipitation datasets. For long-term climate variation studies (~100 years), CANGRD, NCEP, WATCH and ANUSPLIN have different comparative advantages in terms of their resolution and accuracy. For synoptic and mesoscale precipitation patterns, CaPA provides appealing performance of spatial coherence. In addition to the products comparison, various downscaling methods are also surveyed to explore new verification and bias-reduction methods for improving gridded precipitation outputs for large-scale models.

  7. Statistical Compression for Climate Model Output

    NASA Astrophysics Data System (ADS)

    Hammerling, D.; Guinness, J.; Soh, Y. J.

    2017-12-01

    Numerical climate model simulations run at high spatial and temporal resolutions generate massive quantities of data. As our computing capabilities continue to increase, storing all of the data is not sustainable, and thus is it important to develop methods for representing the full datasets by smaller compressed versions. We propose a statistical compression and decompression algorithm based on storing a set of summary statistics as well as a statistical model describing the conditional distribution of the full dataset given the summary statistics. We decompress the data by computing conditional expectations and conditional simulations from the model given the summary statistics. Conditional expectations represent our best estimate of the original data but are subject to oversmoothing in space and time. Conditional simulations introduce realistic small-scale noise so that the decompressed fields are neither too smooth nor too rough compared with the original data. Considerable attention is paid to accurately modeling the original dataset-one year of daily mean temperature data-particularly with regard to the inherent spatial nonstationarity in global fields, and to determining the statistics to be stored, so that the variation in the original data can be closely captured, while allowing for fast decompression and conditional emulation on modest computers.

  8. Comparison of retracked coastal altimetry sea levels against high frequency radar on the continental shelf of the Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    Idris, Nurul Hazrina; Deng, Xiaoli; Idris, Nurul Hawani

    2017-07-01

    Comparison of Jason-1 altimetry retracked sea levels and high frequency (HF) radar velocity is examined within the region of the Great Barrier Reef, Australia. The comparison between both datasets is not direct because the altimetry derives only the geostrophic component, while the HF radar velocity includes information on both geostrophic and ageostrophic components, such as tides and winds. The comparison of altimetry and HF radar data is performed based on the parameter of surface velocity inferred from both datasets. The results show that 48% (10 out of 21 cases) of data have high (≥0.5) spatial correlation. The mean of spatial correlation for all 21 cases is 0.43. This value is within the range (0.42 to 0.5) observed by other studies. Low correlation is observed due to disagreement in the trend of velocity signals in which sometimes they have contradictions in the signal direction and the position of the peak is shifted. In terms of standard deviation of difference and root mean square error, both datasets show reasonable agreement with ≤2.5 cm s-1.

  9. Modelling land use change in the Ganga basin

    NASA Astrophysics Data System (ADS)

    Moulds, Simon; Mijic, Ana; Buytaert, Wouter

    2014-05-01

    Over recent decades the green revolution in India has driven substantial environmental change. Modelling experiments have identified northern India as a "hot spot" of land-atmosphere coupling strength during the boreal summer. However, there is a wide range of sensitivity of atmospheric variables to soil moisture between individual climate models. The lack of a comprehensive land use change dataset to force climate models has been identified as a major contributor to model uncertainty. This work aims to construct a monthly time series dataset of land use change for the period 1966 to 2007 for northern India to improve the quantification of regional hydrometeorological feedbacks. The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on board the Aqua and Terra satellites provides near-continuous remotely sensed datasets from 2000 to the present day. However, the quality and availability of satellite products before 2000 is poor. To complete the dataset MODIS images are extrapolated back in time using the Conversion of Land Use and its Effects at Small regional extent (CLUE-S) modelling framework, recoded in the R programming language to overcome limitations of the original interface. Non-spatial estimates of land use area published by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) for the study period, available on an annual, district-wise basis, are used as a direct model input. Land use change is allocated spatially as a function of biophysical and socioeconomic drivers identified using logistic regression. The dataset will provide an essential input to a high-resolution, physically-based land-surface model to generate the lower boundary condition to assess the impact of land use change on regional climate.

  10. Spatio-temporal Root Zone Soil Moisture Estimation for Indo - Gangetic Basin from Satellite Derived (AMSR-2 and SMOS) Surface Soil Moisture

    NASA Astrophysics Data System (ADS)

    Sure, A.; Dikshit, O.

    2017-12-01

    Root zone soil moisture (RZSM) is an important element in hydrology and agriculture. The estimation of RZSM provides insight in selecting the appropriate crops for specific soil conditions (soil type, bulk density, etc.). RZSM governs various vadose zone phenomena and subsequently affects the groundwater processes. With various satellite sensors dedicated to estimating surface soil moisture at different spatial and temporal resolutions, estimation of soil moisture at root zone level for Indo - Gangetic basin which inherits complex heterogeneous environment, is quite challenging. This study aims at estimating RZSM and understand its variation at the level of Indo - Gangetic basin with changing land use/land cover, topography, crop cycles, soil properties, temperature and precipitation patterns using two satellite derived soil moisture datasets operating at distinct frequencies with different principles of acquisition. Two surface soil moisture datasets are derived from AMSR-2 (6.9 GHz - `C' Band) and SMOS (1.4 GHz - `L' band) passive microwave sensors with coarse spatial resolution. The Soil Water Index (SWI), accounting for soil moisture from the surface, is derived by considering a theoretical two-layered water balance model and contributes in ascertaining soil moisture at the vadose zone. This index is evaluated against the widely used modelled soil moisture dataset of GLDAS - NOAH, version 2.1. This research enhances the domain of utilising the modelled soil moisture dataset, wherever the ground dataset is unavailable. The coupling between the surface soil moisture and RZSM is analysed for two years (2015-16), by defining a parameter T, the characteristic time length. The study demonstrates that deriving an optimal value of T for estimating SWI at a certain location is a function of various factors such as land, meteorological, and agricultural characteristics.

  11. Mortality patterns and detection bias from carcass data: An example from wolf recovery in Wisconsin

    USGS Publications Warehouse

    Stenglein, Jennifer L.; Van Deelen, Timothy R.; Wydeven, Adrian P.; Mladenoff, David J.; Wiedenhoft, Jane E.; Businga, Nancy K.; Langenberg, Julia A.; Thomas, Nancy J.; Heisey, Dennis M.

    2015-01-01

    We developed models and provide computer code to make carcass recovery data more useful to wildlife managers. With these tools, wildlife managers can understand the spatial, temporal (e.g., across time periods, seasons), and demographic patterns in mortality causes from carcass recovery datasets. From datasets of radio-collared and non-collared carcasses, managers can calculate the detection bias by mortality cause in a non-collared carcass dataset compared to a collared carcass dataset. As a first step, we provide a standard procedure to assign mortality causes to carcasses. We provide an example of these methods for radio-collared wolves (n = 208) and non-collared wolves (n = 668) found dead in Wisconsin (1979–2012). We analyzed differences in mortality cause relative to season, age and sex classes, wolf harvest zones, and recovery phase (1979–1995: initial recovery, 1996–2002: early growth, 2003–2012: late growth). Seasonally, illegal kills and natural deaths were proportionally higher in winter (Oct–Mar) than summer (Apr–Sep) for collared wolves, whereas vehicle strikes and legal kills were higher in summer than winter. Spatially, more illegally killed collared wolves occurred in eastern wolf harvest zones where wolves reestablished more slowly and in the central forest region where optimal habitat is isolated by agriculture. Natural mortalities of collared wolves (e.g., disease, intraspecific strife, or starvation) were highest in western wolf harvest zones where wolves established earlier and existed at higher densities. Calculating detection bias in the non-collared dataset revealed that more than half of the non-collared carcasses on the landscape are not found. The lowest detection probabilities for non-collared carcasses (0.113–0.176) occurred in winter for natural, illegal, and unknown mortality causes.

  12. A Comparison of Lung Nodule Segmentation Algorithms: Methods and Results from a Multi-institutional Study.

    PubMed

    Kalpathy-Cramer, Jayashree; Zhao, Binsheng; Goldgof, Dmitry; Gu, Yuhua; Wang, Xingwei; Yang, Hao; Tan, Yongqiang; Gillies, Robert; Napel, Sandy

    2016-08-01

    Tumor volume estimation, as well as accurate and reproducible borders segmentation in medical images, are important in the diagnosis, staging, and assessment of response to cancer therapy. The goal of this study was to demonstrate the feasibility of a multi-institutional effort to assess the repeatability and reproducibility of nodule borders and volume estimate bias of computerized segmentation algorithms in CT images of lung cancer, and to provide results from such a study. The dataset used for this evaluation consisted of 52 tumors in 41 CT volumes (40 patient datasets and 1 dataset containing scans of 12 phantom nodules of known volume) from five collections available in The Cancer Imaging Archive. Three academic institutions developing lung nodule segmentation algorithms submitted results for three repeat runs for each of the nodules. We compared the performance of lung nodule segmentation algorithms by assessing several measurements of spatial overlap and volume measurement. Nodule sizes varied from 29 μl to 66 ml and demonstrated a diversity of shapes. Agreement in spatial overlap of segmentations was significantly higher for multiple runs of the same algorithm than between segmentations generated by different algorithms (p < 0.05) and was significantly higher on the phantom dataset compared to the other datasets (p < 0.05). Algorithms differed significantly in the bias of the measured volumes of the phantom nodules (p < 0.05) underscoring the need for assessing performance on clinical data in addition to phantoms. Algorithms that most accurately estimated nodule volumes were not the most repeatable, emphasizing the need to evaluate both their accuracy and precision. There were considerable differences between algorithms, especially in a subset of heterogeneous nodules, underscoring the recommendation that the same software be used at all time points in longitudinal studies.

  13. Water Balance in the Amazon Basin from a Land Surface Model Ensemble

    NASA Technical Reports Server (NTRS)

    Getirana, Augusto C. V.; Dutra, Emanuel; Guimberteau, Matthieu; Kam, Jonghun; Li, Hong-Yi; Decharme, Bertrand; Zhang, Zhengqiu; Ducharne, Agnes; Boone, Aaron; Balsamo, Gianpaolo; hide

    2014-01-01

    Despite recent advances in land surfacemodeling and remote sensing, estimates of the global water budget are still fairly uncertain. This study aims to evaluate the water budget of the Amazon basin based on several state-ofthe- art land surface model (LSM) outputs. Water budget variables (terrestrial water storage TWS, evapotranspiration ET, surface runoff R, and base flow B) are evaluated at the basin scale using both remote sensing and in situ data. Meteorological forcings at a 3-hourly time step and 18 spatial resolution were used to run 14 LSMs. Precipitation datasets that have been rescaled to matchmonthly Global Precipitation Climatology Project (GPCP) andGlobal Precipitation Climatology Centre (GPCC) datasets and the daily Hydrologie du Bassin de l'Amazone (HYBAM) dataset were used to perform three experiments. The Hydrological Modeling and Analysis Platform (HyMAP) river routing scheme was forced with R and B and simulated discharges are compared against observations at 165 gauges. Simulated ET and TWS are compared against FLUXNET and MOD16A2 evapotranspiration datasets andGravity Recovery and ClimateExperiment (GRACE)TWSestimates in two subcatchments of main tributaries (Madeira and Negro Rivers).At the basin scale, simulated ET ranges from 2.39 to 3.26 mm day(exp -1) and a low spatial correlation between ET and precipitation indicates that evapotranspiration does not depend on water availability over most of the basin. Results also show that other simulated water budget components vary significantly as a function of both the LSM and precipitation dataset, but simulated TWS generally agrees with GRACE estimates at the basin scale. The best water budget simulations resulted from experiments using HYBAM, mostly explained by a denser rainfall gauge network and the rescaling at a finer temporal scale.

  14. Spatial distribution of pingos in Northern Asia

    USGS Publications Warehouse

    Grosse, G.; Jones, Benjamin M.

    2010-01-01

    Pingos are prominent periglacial landforms in vast regions of the Arctic and Subarctic. They are indicators of modern and past conditions of permafrost, surface geology, hydrology and climate. A first version of a detailed spatial geodatabase of more than 6000 pingo locations in a 3.5 ?? 106 km2 region of Northern Asia was assembled from topographic maps. A first order analysis was carried out with respect to permafrost, landscape characteristics, surface geology, hydrology, climate, and elevation datasets using a Geographic Information System (GIS). Pingo heights in the dataset vary between 2 and 37 m, with a mean height of 4.8 m. About 64% of the pingos occur in continuous permafrost with high ice content and thick sediments; another 19% in continuous permafrost with moderate ice content and thick sediments. The majority of these pingos likely formed through closed system freezing, typical of those located in drained thermokarst lake basins of northern lowlands with continuous permafrost. About 82% of the pingos are located in the tundra bioclimatic zone. Most pingos in the dataset are located in regions with mean annual ground temperatures between -3 and -11 ??C and mean annual air temperatures between -7 and -18 ??C. The dataset confirms that surface geology and hydrology are key factors for pingo formation and occurrence. Based on model predictions for near-future permafrost distribution, hundreds of pingos along the southern margins of permafrost will be located in regions with thawing permafrost by 2100, which ultimately may lead to increased occurrence of pingo collapse. Based on our dataset and previously published estimates of pingo numbers from other regions, we conclude that there are more than 11 000 pingos on Earth. ?? 2010 Author(s).

  15. The influence of data characteristics on detecting wetland/stream surface-water connections in the Delmarva Peninsula, Maryland and Delaware

    USGS Publications Warehouse

    Vanderhoof, Melanie; Distler, Hayley; Lang, Megan W.; Alexander, Laurie C.

    2018-01-01

    The dependence of downstream waters on upstream ecosystems necessitates an improved understanding of watershed-scale hydrological interactions including connections between wetlands and streams. An evaluation of such connections is challenging when, (1) accurate and complete datasets of wetland and stream locations are often not available and (2) natural variability in surface-water extent influences the frequency and duration of wetland/stream connectivity. The Upper Choptank River watershed on the Delmarva Peninsula in eastern Maryland and Delaware is dominated by a high density of small, forested wetlands. In this analysis, wetland/stream surface water connections were quantified using multiple wetland and stream datasets, including headwater streams and depressions mapped from a lidar-derived digital elevation model. Surface-water extent was mapped across the watershed for spring 2015 using Landsat-8, Radarsat-2 and Worldview-3 imagery. The frequency of wetland/stream connections increased as a more complete and accurate stream dataset was used and surface-water extent was included, in particular when the spatial resolution of the imagery was finer (i.e., <10 m). Depending on the datasets used, 12–60% of wetlands by count (21–93% of wetlands by area) experienced surface-water interactions with streams during spring 2015. This translated into a range of 50–94% of the watershed contributing direct surface water runoff to streamflow. This finding suggests that our interpretation of the frequency and duration of wetland/stream connections will be influenced not only by the spatial and temporal characteristics of wetlands, streams and potential flowpaths, but also by the completeness, accuracy and resolution of input datasets.

  16. Status update: is smoke on your mind? Using social media to assess smoke exposure

    NASA Astrophysics Data System (ADS)

    Ford, Bonne; Burke, Moira; Lassman, William; Pfister, Gabriele; Pierce, Jeffrey R.

    2017-06-01

    Exposure to wildland fire smoke is associated with negative effects on human health. However, these effects are poorly quantified. Accurately attributing health endpoints to wildland fire smoke requires determining the locations, concentrations, and durations of smoke events. Most current methods for assessing these smoke events (ground-based measurements, satellite observations, and chemical transport modeling) are limited temporally, spatially, and/or by their level of accuracy. In this work, we explore using daily social media posts from Facebook regarding smoke, haze, and air quality to assess population-level exposure for the summer of 2015 in the western US. We compare this de-identified, aggregated Facebook dataset to several other datasets that are commonly used for estimating exposure, such as satellite observations (MODIS aerosol optical depth and Hazard Mapping System smoke plumes), daily (24 h) average surface particulate matter measurements, and model-simulated (WRF-Chem) surface concentrations. After adding population-weighted spatial smoothing to the Facebook data, this dataset is well correlated (R2 generally above 0.5) with the other methods in smoke-impacted regions. The Facebook dataset is better correlated with surface measurements of PM2. 5 at a majority of monitoring sites (163 of 293 sites) than the satellite observations and our model simulation. We also present an example case for Washington state in 2015, for which we combine this Facebook dataset with MODIS observations and WRF-Chem-simulated PM2. 5 in a regression model. We show that the addition of the Facebook data improves the regression model's ability to predict surface concentrations. This high correlation of the Facebook data with surface monitors and our Washington state example suggests that this social-media-based proxy can be used to estimate smoke exposure in locations without direct ground-based particulate matter measurements.

  17. A Bayesian trans-dimensional approach for the fusion of multiple geophysical datasets

    NASA Astrophysics Data System (ADS)

    JafarGandomi, Arash; Binley, Andrew

    2013-09-01

    We propose a Bayesian fusion approach to integrate multiple geophysical datasets with different coverage and sensitivity. The fusion strategy is based on the capability of various geophysical methods to provide enough resolution to identify either subsurface material parameters or subsurface structure, or both. We focus on electrical resistivity as the target material parameter and electrical resistivity tomography (ERT), electromagnetic induction (EMI), and ground penetrating radar (GPR) as the set of geophysical methods. However, extending the approach to different sets of geophysical parameters and methods is straightforward. Different geophysical datasets are entered into a trans-dimensional Markov chain Monte Carlo (McMC) search-based joint inversion algorithm. The trans-dimensional property of the McMC algorithm allows dynamic parameterisation of the model space, which in turn helps to avoid bias of the post-inversion results towards a particular model. Given that we are attempting to develop an approach that has practical potential, we discretize the subsurface into an array of one-dimensional earth-models. Accordingly, the ERT data that are collected by using two-dimensional acquisition geometry are re-casted to a set of equivalent vertical electric soundings. Different data are inverted either individually or jointly to estimate one-dimensional subsurface models at discrete locations. We use Shannon's information measure to quantify the information obtained from the inversion of different combinations of geophysical datasets. Information from multiple methods is brought together via introducing joint likelihood function and/or constraining the prior information. A Bayesian maximum entropy approach is used for spatial fusion of spatially dispersed estimated one-dimensional models and mapping of the target parameter. We illustrate the approach with a synthetic dataset and then apply it to a field dataset. We show that the proposed fusion strategy is successful not only in enhancing the subsurface information but also as a survey design tool to identify the appropriate combination of the geophysical tools and show whether application of an individual method for further investigation of a specific site is beneficial.

  18. How Fit is Your Citizen Science Data?

    NASA Astrophysics Data System (ADS)

    Fischer, H. A.; Gerber, L. R.; Wentz, E. A.

    2017-12-01

    Data quality and accuracy is a fundamental concern with utilizing citizen science data. Although many methods can be used to assess quality and accuracy, these methods may not be sufficient to qualify citizen science data for widespread use in scientific research. While Data Fitness For Use (DFFU) does not provide a blanket assessment of data quality, it does assesses the data's ability to be used for a specific application, within a given area (Devillers and Bédard 2007). The STAAq (Spatial, Temporal, Aptness, and Accuracy) assessment was developed to assess the fitness for use of citizen science data, this assessment can be used on a stand alone dataset or be used to compare multiple datasets. The citizen science data used in this assessment was collected by volunteers of the Map of Life- Denali project, which is a tourist-centric citizen science project developed through a partnership with Arizona State University, Map of Life at Yale University, and Denali National Park and Preserve. Volunteers use the offline version of the Map of Life app to record their wildlife, insect, and plant observations in the park. To test the STAAq assessment data from different sources- Map of Life- Denali, Ride Observe and Record, and NPS wildlife surveys- were compared to determined which dataset is most fit for use for a specific research question; What is the recent Grizzly bear distribution in areas of high visitor use in Denali National Park and Preserve? These datasets were compared and ranked according to how well they performed in each of the components of the STAAq assessment. These components include spatial scale, temporal scale, aptness, and application. The Map of Life- Denali data and the ROAR program data were most for use for this research question. The STAAq assessment can be adjusted to assess the fitness for use of a single dataset or being used to compare any number of datasets. This data fitness for use assessment provides a means to assess data fitness instead of data quality for citizen science data.

  19. Are We Predicting the Actual or Apparent Distribution of Temperate Marine Fishes?

    PubMed Central

    Monk, Jacquomo; Ierodiaconou, Daniel; Harvey, Euan; Rattray, Alex; Versace, Vincent L.

    2012-01-01

    Planning for resilience is the focus of many marine conservation programs and initiatives. These efforts aim to inform conservation strategies for marine regions to ensure they have inbuilt capacity to retain biological diversity and ecological function in the face of global environmental change – particularly changes in climate and resource exploitation. In the absence of direct biological and ecological information for many marine species, scientists are increasingly using spatially-explicit, predictive-modeling approaches. Through the improved access to multibeam sonar and underwater video technology these models provide spatial predictions of the most suitable regions for an organism at resolutions previously not possible. However, sensible-looking, well-performing models can provide very different predictions of distribution depending on which occurrence dataset is used. To examine this, we construct species distribution models for nine temperate marine sedentary fishes for a 25.7 km2 study region off the coast of southeastern Australia. We use generalized linear model (GLM), generalized additive model (GAM) and maximum entropy (MAXENT) to build models based on co-located occurrence datasets derived from two underwater video methods (i.e. baited and towed video) and fine-scale multibeam sonar based seafloor habitat variables. Overall, this study found that the choice of modeling approach did not considerably influence the prediction of distributions based on the same occurrence dataset. However, greater dissimilarity between model predictions was observed across the nine fish taxa when the two occurrence datasets were compared (relative to models based on the same dataset). Based on these results it is difficult to draw any general trends in regards to which video method provides more reliable occurrence datasets. Nonetheless, we suggest predictions reflecting the species apparent distribution (i.e. a combination of species distribution and the probability of detecting it). Consequently, we also encourage researchers and marine managers to carefully interpret model predictions. PMID:22536325

  20. Mining and Utilizing Dataset Relevancy from Oceanographic Dataset (MUDROD) Metadata, Usage Metrics, and User Feedback to Improve Data Discovery and Access

    NASA Astrophysics Data System (ADS)

    Jiang, Y.

    2015-12-01

    Oceanographic resource discovery is a critical step for developing ocean science applications. With the increasing number of resources available online, many Spatial Data Infrastructure (SDI) components (e.g. catalogues and portals) have been developed to help manage and discover oceanographic resources. However, efficient and accurate resource discovery is still a big challenge because of the lack of data relevancy information. In this article, we propose a search engine framework for mining and utilizing dataset relevancy from oceanographic dataset metadata, usage metrics, and user feedback. The objective is to improve discovery accuracy of oceanographic data and reduce time for scientist to discover, download and reformat data for their projects. Experiments and a search example show that the propose engine helps both scientists and general users search for more accurate results with enhanced performance and user experience through a user-friendly interface.

  1. EEG Source Reconstruction Reveals Frontal-Parietal Dynamics of Spatial Conflict Processing

    PubMed Central

    Cohen, Michael X; Ridderinkhof, K. Richard

    2013-01-01

    Cognitive control requires the suppression of distracting information in order to focus on task-relevant information. We applied EEG source reconstruction via time-frequency linear constrained minimum variance beamforming to help elucidate the neural mechanisms involved in spatial conflict processing. Human subjects performed a Simon task, in which conflict was induced by incongruence between spatial location and response hand. We found an early (∼200 ms post-stimulus) conflict modulation in stimulus-contralateral parietal gamma (30–50 Hz), followed by a later alpha-band (8–12 Hz) conflict modulation, suggesting an early detection of spatial conflict and inhibition of spatial location processing. Inter-regional connectivity analyses assessed via cross-frequency coupling of theta (4–8 Hz), alpha, and gamma power revealed conflict-induced shifts in cortical network interactions: Congruent trials (relative to incongruent trials) had stronger coupling between frontal theta and stimulus-contrahemifield parietal alpha/gamma power, whereas incongruent trials had increased theta coupling between medial frontal and lateral frontal regions. These findings shed new light into the large-scale network dynamics of spatial conflict processing, and how those networks are shaped by oscillatory interactions. PMID:23451201

  2. High cognitive reserve is associated with a reduced age-related deficit in spatial conflict resolution

    PubMed Central

    Puccioni, Olga; Vallesi, Antonino

    2012-01-01

    Several studies support the existence of a specific age-related difficulty in suppressing potentially distracting information. The aim of the present study is to investigate whether spatial conflict resolution is selectively affected by aging. The way aging affects individuals could be modulated by many factors determined by the socieconomic status: we investigated whether factors such as cognitive reserve (CR) and years of education may play a compensatory role against age-related deficits in the spatial domain. A spatial Stroop task with no feature repetitions was administered to a sample of 17 non-demented older adults (69–79 years-old) and 18 younger controls (18–34 years-old) matched for gender and years of education. The two age groups were also administered with measures of intelligence and CR. The overall spatial Stroop effect did not differ according to age, neither for speed nor for accuracy. The two age groups equally showed sequential effects for congruent trials: reduced response times (RTs) if another congruent trial preceded them, and accuracy at ceiling. For incongruent trials, older adults, but not younger controls, were influenced by congruency of trialn−1, since RTs increased with preceding congruent trials. Interestingly, such an age-related modulation negatively correlated with CR. These findings suggest that spatial conflict resolution in aging is predominantly affected by general slowing, rather than by a more specific deficit. However, a high level of CR seems to play a compensatory role for both factors. PMID:23248595

  3. Influence of short incompatible practice on the Simon effect: transfer along the vertical dimension and across vertical and horizontal dimensions.

    PubMed

    Conde, Erick F Q; Fraga-Filho, Roberto Sena; Lameira, Allan Pablo; Mograbi, Daniel C; Riggio, Lucia; Gawryszewski, Luiz G

    2015-11-01

    In spatial compatibility and Simon tasks, the response is faster when stimulus and response locations are on the same side than when they are on opposite sides. It has been shown that a spatial incompatible practice leads to a subsequent modulation of the Simon effect along the horizontal dimension. It has also been reported that this modulation occurs both along and across vertical and horizontal dimensions, but only after intensive incompatible training (600 trials). In this work, we show that this modulatory effect can be obtained with a smaller number of incompatible trials, changing the spatial arrangement of the vertical response keys to obtain a stronger dimensional overlap between the spatial codes of stimuli and response keys. The results of Experiment 1 showed that 80 incompatible vertical trials abolished the Simon effect in the same dimension. Experiment 2 showed that a modulation of the vertical Simon effect could be obtained after 80 horizontal incompatible trials. Experiment 3 explored whether the transfer effect can also occur in a horizontal Simon task after a brief vertical spatial incompatibility task, and results were similar to the previous experiments. In conclusion, we suggest that the spatial arrangement between response key and stimulus locations may be critical to establish the short-term memory links that enable the transfer of learning between brief incompatible practices and the Simon effects, both along the vertical dimension and across vertical and horizontal dimensions.

  4. Downscaling global precipitation for local applications - a case for the Rhine basin

    NASA Astrophysics Data System (ADS)

    Sperna Weiland, Frederiek; van Verseveld, Willem; Schellekens, Jaap

    2017-04-01

    Within the EU FP7 project eartH2Observe a global Water Resources Re-analysis (WRR) is being developed. This re-analysis consists of meteorological and hydrological water balance variables with global coverage, spanning the period 1979-2014 at 0.25 degrees resolution (Schellekens et al., 2016). The dataset can be of special interest in regions with limited in-situ data availability, yet for local scale analysis particularly in mountainous regions, a resolution of 0.25 degrees may be too coarse and downscaling the data to a higher resolution may be required. A downscaling toolbox has been made that includes spatial downscaling of precipitation based on the global WorldClim dataset that is available at 1 km resolution as a monthly climatology (Hijmans et al., 2005). The input of the down-scaling tool are either the global eartH2Observe WRR1 and WRR2 datasets based on the WFDEI correction methodology (Weedon et al., 2014) or the global Multi-Source Weighted-Ensemble Precipitation (MSWEP) dataset (Beck et al., 2016). Here we present a validation of the datasets over the Rhine catchment by means of a distributed hydrological model (wflow, Schellekens et al., 2014) using a number of precipitation scenarios. (1) We start by running the model using the local reference dataset derived by spatial interpolation of gauge observations. Furthermore we use (2) the MSWEP dataset at the native 0.25-degree resolution followed by (3) MSWEP downscaled with the WorldClim dataset and final (4) MSWEP downscaled with the local reference dataset. The validation will be based on comparison of the modeled river discharges as well as rainfall statistics. We expect that down-scaling the MSWEP dataset with the WorldClim data to higher resolution will increase its performance. To test the performance of the down-scaling routine we have added a run with MSWEP data down-scaled with the local dataset and compare this with the run based on the local dataset itself. - Beck, H. E. et al., 2016. MSWEP: 3-hourly 0.25° global gridded precipitation (1979-2015) by merging gauge, satellite, and reanalysis data, Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-236, accepted for final publication. - Hijmans, R.J. et al., 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965-1978. - Schellekens, J. et al., 2016. A global water resources ensemble of hydrological models: the eartH2Observe Tier-1 dataset, Earth Syst. Sci. Data Discuss., doi:10.5194/essd-2016-55, under review. - Schellekens, J. et al., 2014. Rapid setup of hydrological and hydraulic models using OpenStreetMap and the SRTM derived digital elevation model. Environmental Modelling&Software - Weedon, G.P. et al., 2014. The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data. Water Resources Research, 50, doi:10.1002/2014WR015638.

  5. Clustering of Multivariate Geostatistical Data

    NASA Astrophysics Data System (ADS)

    Fouedjio, Francky

    2017-04-01

    Multivariate data indexed by geographical coordinates have become omnipresent in the geosciences and pose substantial analysis challenges. One of them is the grouping of data locations into spatially contiguous clusters so that data locations belonging to the same cluster have a certain degree of homogeneity while data locations in the different clusters have to be as different as possible. However, groups of data locations created through classical clustering techniques turn out to show poor spatial contiguity, a feature obviously inconvenient for many geoscience applications. In this work, we develop a clustering method that overcomes this problem by accounting the spatial dependence structure of data; thus reinforcing the spatial contiguity of resulting cluster. The capability of the proposed clustering method to provide spatially contiguous and meaningful clusters of data locations is assessed using both synthetic and real datasets. Keywords: clustering, geostatistics, spatial contiguity, spatial dependence.

  6. A Framework for Spatial Interaction Analysis Based on Large-Scale Mobile Phone Data

    PubMed Central

    Li, Weifeng; Cheng, Xiaoyun; Guo, Gaohua

    2014-01-01

    The overall understanding of spatial interaction and the exact knowledge of its dynamic evolution are required in the urban planning and transportation planning. This study aimed to analyze the spatial interaction based on the large-scale mobile phone data. The newly arisen mass dataset required a new methodology which was compatible with its peculiar characteristics. A three-stage framework was proposed in this paper, including data preprocessing, critical activity identification, and spatial interaction measurement. The proposed framework introduced the frequent pattern mining and measured the spatial interaction by the obtained association. A case study of three communities in Shanghai was carried out as verification of proposed method and demonstration of its practical application. The spatial interaction patterns and the representative features proved the rationality of the proposed framework. PMID:25435865

  7. High Spatial Resolution Forecasting of Long-Term Monthly Precipitation and Mean Temperature Trends in Data Scarce Regions

    NASA Astrophysics Data System (ADS)

    Mosier, T. M.; Hill, D. F.; Sharp, K. V.

    2013-12-01

    High spatial resolution time-series data are critical for many hydrological and earth science studies. Multiple groups have developed historical and forecast datasets of high-resolution monthly time-series for regions of the world such as the United States (e.g. PRISM for hindcast data and MACA for long-term forecasts); however, analogous datasets have not been available for most data scarce regions. The current work fills this data need by producing and freely distributing hindcast and forecast time-series datasets of monthly precipitation and mean temperature for all global land surfaces, gridded at a 30 arc-second resolution. The hindcast data are constructed through a Delta downscaling method, using as inputs 0.5 degree monthly time-series and 30 arc-second climatology global weather datasets developed by Willmott & Matsuura and WorldClim, respectively. The forecast data are formulated using a similar downscaling method, but with an additional step to remove bias from the climate variable's probability distribution over each region of interest. The downscaling package is designed to be compatible with a number of general circulation models (GCM) (e.g. with GCMs developed for the IPCC AR4 report and CMIP5), and is presently implemented using time-series data from the NCAR CESM1 model in conjunction with 30 arc-second future decadal climatologies distributed by the Consultative Group on International Agricultural Research. The resulting downscaled datasets are 30 arc-second time-series forecasts of monthly precipitation and mean temperature available for all global land areas. As an example of these data, historical and forecast 30 arc-second monthly time-series from 1950 through 2070 are created and analyzed for the region encompassing Pakistan. For this case study, forecast datasets corresponding to the future representative concentration pathways 45 and 85 scenarios developed by the IPCC are presented and compared. This exercise highlights a range of potential meteorological trends for the Pakistan region and more broadly serves to demonstrate the utility of the presented 30 arc-second monthly precipitation and mean temperature datasets for use in data scarce regions.

  8. GTN-G, WGI, RGI, DCW, GLIMS, WGMS, GCOS - What's all this about? (Invited)

    NASA Astrophysics Data System (ADS)

    Paul, F.; Raup, B. H.; Zemp, M.

    2013-12-01

    In a large collaborative effort, the glaciological community has compiled a new and spa-tially complete global dataset of glacier outlines, the so-called Randolph Glacier Inventory or RGI. Despite its regional shortcomings in quality (e.g. in regard to geolocation, gener-alization, and interpretation), this dataset was heavily used for global-scale modelling ap-plications (e.g. determination of total glacier volume and glacier contribution to sea-level rise) in support of the forthcoming 5th Assessment Report (AR5) of Working Group I of the IPCC. The RGI is a merged dataset that is largely based on the GLIMS database and several new datasets provided by the community (both are mostly derived from satellite data), as well as the Digital Chart of the World (DCW) and glacier attribute information (location, size) from the World Glacier Inventory (WGI). There are now two key tasks to be performed, (1) improving the quality of the RGI in all regions where the outlines do not met the quality required for local scale applications, and (2) integrating the RGI in the GLIMS glacier database to improve its spatial completeness. While (1) requires again a huge effort but is already ongoing, (2) is mainly a technical issue that is nearly solved. Apart from this technical dimension, there is also a more political or structural one. While GLIMS is responsible for the remote sensing and glacier inventory part (Tier 5) of the Global Terrestrial Network for Glaciers (GTN-G) within the Global Climate Observing System (GCOS), the World Glacier Monitoring Service (WGMS) is collecting and dis-seminating the field observations. Along with new global products derived from satellite data (e.g. elevation changes and velocity fields) and the community wish to keep a snap-shot dataset such as the RGI available, how to make all these datasets available to the community without duplicating efforts and making best use of the very limited financial resources available must now be discussed. This overview presentation describes the cur-rently available datasets, clarifying the terminology and the international framework, and suggesting a way forward to serve the community at best.

  9. Dynamic analysis, transformation, dissemination and applications of scientific multidimensional data in ArcGIS Platform

    NASA Astrophysics Data System (ADS)

    Shrestha, S. R.; Collow, T. W.; Rose, B.

    2016-12-01

    Scientific datasets are generated from various sources and platforms but they are typically produced either by earth observation systems or by modelling systems. These are widely used for monitoring, simulating, or analyzing measurements that are associated with physical, chemical, and biological phenomena over the ocean, atmosphere, or land. A significant subset of scientific datasets stores values directly as rasters or in a form that can be rasterized. This is where a value exists at every cell in a regular grid spanning the spatial extent of the dataset. Government agencies like NOAA, NASA, EPA, USGS produces large volumes of near real-time, forecast, and historical data that drives climatological and meteorological studies, and underpins operations ranging from weather prediction to sea ice loss. Modern science is computationally intensive because of the availability of an enormous amount of scientific data, the adoption of data-driven analysis, and the need to share these dataset and research results with the public. ArcGIS as a platform is sophisticated and capable of handling such complex domain. We'll discuss constructs and capabilities applicable to multidimensional gridded data that can be conceptualized as a multivariate space-time cube. Building on the concept of a two-dimensional raster, a typical multidimensional raster dataset could contain several "slices" within the same spatial extent. We will share a case from the NOAA Climate Forecast Systems Reanalysis (CFSR) multidimensional data as an example of how large collections of rasters can be efficiently organized and managed through a data model within a geodatabase called "Mosaic dataset" and dynamically transformed and analyzed using raster functions. A raster function is a lightweight, raster-valued transformation defined over a mixed set of raster and scalar input. That means, just like any tool, you can provide a raster function with input parameters. It enables dynamic processing of only the data that's being displayed on the screen or requested by an application. We will present the dynamic processing and analysis of CFSR data using the chains of raster function and share it as dynamic multidimensional image service. This workflow and capabilities can be easily applied to any scientific data formats that are supported in mosaic dataset.

  10. Building a database for long-term monitoring of benthic macrofauna in the Pertuis-Charentais (2004-2014).

    PubMed

    Philippe, Anne S; Plumejeaud-Perreau, Christine; Jourde, Jérôme; Pineau, Philippe; Lachaussée, Nicolas; Joyeux, Emmanuel; Corre, Frédéric; Delaporte, Philippe; Bocher, Pierrick

    2017-01-01

    Long-term benthic monitoring is rewarding in terms of science, but labour-intensive, whether in the field, the laboratory, or behind the computer. Building and managing databases require multiple skills, including consistency over time as well as organisation via a systematic approach. Here, we introduce and share our spatially explicit benthic database, comprising 11 years of benthic data. It is the result of intensive benthic sampling that has been conducted on a regular grid (259 stations) covering the intertidal mudflats of the Pertuis-Charentais (Marennes-Oléron Bay and Aiguillon Bay). Samples were taken by foot or by boats during winter depending on tidal height, from December 2003 to February 2014. The present dataset includes abundances and biomass densities of all mollusc species of the study regions and principal polychaetes as well as their length, accessibility to shorebirds, energy content and shell mass when appropriate and available. This database has supported many studies dealing with the spatial distribution of benthic invertebrates and temporal variations in food resources for shorebird species as well as latitudinal comparisons with other databases. In this paper, we introduce our benthos monitoring, share our data, and present a "guide of good practices" for building, cleaning and using it efficiently, providing examples of results with associated R code. The dataset has been formatted into a geo-referenced relational database, using PostgreSQL open-source DBMS. We provide density information, measurements, energy content and accessibility of thirteen bivalve, nine gastropod and two polychaete taxa (a total of 66,620 individuals)​ for 11 consecutive winters. Figures and maps are provided to describe how the dataset was built, cleaned, and how it can be used. This dataset can again support studies concerning spatial and temporal variations in species abundance, interspecific interactions as well as evaluations of the availability of food resources for small- and medium size shorebirds and, potentially, conservation and impact assessment studies.

  11. A closer look at temperature changes with remote sensing

    NASA Astrophysics Data System (ADS)

    Metz, Markus; Rocchini, Duccio; Neteler, Markus

    2014-05-01

    Temperature is a main driver for important ecological processes. Time series temperature data provide key environmental indicators for various applications and research fields. High spatial and temporal resolution is crucial in order to perform detailed analyses in various fields of research. While meteorological station data are commonly used, they often lack completeness or are not distributed in a representative way. Remotely sensed thermal images from polar orbiting satellites are considered to be a good alternative to the scarce meteorological data as they offer almost continuous coverage of the Earth with very high temporal resolution. A drawback of temperature data obtained by satellites is the occurrence of gaps (due to clouds, aerosols) that must be filled. We have reconstructed a seamless and gap-free time series for land surface temperature (LST) at continental scale for Europe from MODIS LST products (Moderate Resolution Imaging Sensor instruments onboard the Terra and Aqua satellites), keeping the temporal resolution of four records per day and enhancing the spatial resolution from 1 km to 250 m. Here we present a new procedure to reconstruct MODIS LST time series with unprecedented detail in space and time, at the same time providing continental coverage. Our method constitutes a unique new combination of weighted temporal averaging with statistical modeling and spatial interpolation. We selected as auxiliary variables datasets which are globally available in order to propose a worldwide reproducible method. Compared to existing similar datasets, the substantial quantitative difference translates to a qualitative difference in applications and results. We consider both our dataset and the new procedure for its creation to be of utmost interest to a broad interdisciplinary audience. Moreover, we provide examples for its implications and applications, such as disease risk assessment, epidemiology, environmental monitoring, and temperature anomalies. In the near future, aggregated derivatives of our dataset (following the BIOCLIM variable scheme) will be freely made online available for direct usage in GIS based applications.

  12. Development of the Vista Methane Emissions Inventory for Southern California: A GIS-Based Approach for Mapping Methane Emissions

    NASA Astrophysics Data System (ADS)

    Carranza, V.; Frausto-Vicencio, I.; Rafiq, T.; Verhulst, K. R.; Hopkins, F. M.; Rao, P.; Duren, R. M.; Miller, C. E.

    2016-12-01

    Atmospheric methane (CH4) is the second most prevalent anthropogenic greenhouse gas. Improved estimates of CH4 emissions from cities is essential for carbon cycle science and climate mitigation efforts. Development of spatially-resolved carbon emissions data sets may offer significant advances in understanding and managing carbon emissions from cities. Urban CH4 emissions in particular require spatially resolved emission maps to help resolve uncertainties in the CH4 budget. This study presents a Geographic Information System (GIS)-based approach to mapping CH4 emissions using locations of infrastructure known to handle and emit methane. We constrain the spatial distribution of sources to the facility level for the major CH4 emitting sources in the South Coast Air Basin. GIS spatial modeling was combined with publicly available datasets to determine the distribution of potential CH4 sources. The datasets were processed and validated to ensure accuracy in the location of individual sources. This information was then used to develop the Vista emissions prior, which is a one-year long, spatially-resolved CH4 emissions estimate. Methane emissions were calculated and spatially allocated to produce 1 km x 1 km gridded CH4 emission map spanning the Los Angeles Basin. In future work, the Vista CH4 emissions prior will be compared with existing, coarser-resolution emissions estimates and will be evaluated in inverse modeling studies using atmospheric observations. The Vista CH4 emissions inventory presents the first detailed spatial maps of CH4 sources and emissions estimates in the Los Angeles Basin and is a critical step towards sectoral attribution of CH4 emissions at local to regional scales.

  13. Multivariate Non-Symmetric Stochastic Models for Spatial Dependence Models

    NASA Astrophysics Data System (ADS)

    Haslauer, C. P.; Bárdossy, A.

    2017-12-01

    A copula based multivariate framework allows more flexibility to describe different kind of dependences than what is possible using models relying on the confining assumption of symmetric Gaussian models: different quantiles can be modelled with a different degree of dependence; it will be demonstrated how this can be expected given process understanding. maximum likelihood based multivariate quantitative parameter estimation yields stable and reliable results; not only improved results in cross-validation based measures of uncertainty are obtained but also a more realistic spatial structure of uncertainty compared to second order models of dependence; as much information as is available is included in the parameter estimation: incorporation of censored measurements (e.g., below detection limit, or ones that are above the sensitive range of the measurement device) yield to more realistic spatial models; the proportion of true zeros can be jointly estimated with and distinguished from censored measurements which allow estimates about the age of a contaminant in the system; secondary information (categorical and on the rational scale) has been used to improve the estimation of the primary variable; These copula based multivariate statistical techniques are demonstrated based on hydraulic conductivity observations at the Borden (Canada) site, the MADE site (USA), and a large regional groundwater quality data-set in south-west Germany. Fields of spatially distributed K were simulated with identical marginal simulation, identical second order spatial moments, yet substantially differing solute transport characteristics when numerical tracer tests were performed. A statistical methodology is shown that allows the delineation of a boundary layer separating homogenous parts of a spatial data-set. The effects of this boundary layer (macro structure) and the spatial dependence of K (micro structure) on solute transport behaviour is shown.

  14. U.S. Geological Survey spatial data access

    USGS Publications Warehouse

    Faundeen, John L.; Kanengieter, Ronald L.; Buswell, Michael D.

    2002-01-01

    The U.S. Geological Survey (USGS) has done a progress review on improving access to its spatial data holdings over the Web. The USGS EROS Data Center has created three major Web-based interfaces to deliver spatial data to the general public; they are Earth Explorer, the Seamless Data Distribution System (SDDS), and the USGS Web Mapping Portal. Lessons were learned in developing these systems, and various resources were needed for their implementation. The USGS serves as a fact-finding agency in the U.S. Government that collects, monitors, analyzes, and provides scientific information about natural resource conditions and issues. To carry out its mission, the USGS has created and managed spatial data since its inception. Originally relying on paper maps, the USGS now uses advanced technology to produce digital representations of the Earth’s features. The spatial products of the USGS include both source and derivative data. Derivative datasets include Digital Orthophoto Quadrangles (DOQ), Digital Elevation Models, Digital Line Graphs, land-cover Digital Raster Graphics, and the seamless National Elevation Dataset. These products, created with automated processes, use aerial photographs, satellite images, or other cartographic information such as scanned paper maps as source data. With Earth Explorer, users can search multiple inventories through metadata queries and can browse satellite and DOQ imagery. They can place orders and make payment through secure credit card transactions. Some USGS spatial data can be accessed with SDDS. The SDDS uses an ArcIMS map service interface to identify the user’s areas of interest and determine the output format; it allows the user to either download the actual spatial data directly for small areas or place orders for larger areas to be delivered on media. The USGS Web Mapping Portal provides views of national and international datasets through an ArcIMS map service interface. In addition, the map portal posts news about new map services available from the USGS, many simultaneously published on the Environmental Systems Research Institute Geography Network. These three information systems use new software tools and expanded hardware to meet the requirements of the users. The systems are designed to handle the required workload and are relatively easy to enhance and maintain. The software tools give users a high level of functionality and help the system conform to industry standards. The hardware and software architecture is designed to handle the large amounts of spatial data and Internet traffic required by the information systems. Last, customer support was needed to answer questions, monitor e-mail, and report customer problems.

  15. Mapping and Visualization of Storm-Surge Dynamics for Hurricane Katrina and Hurricane Rita

    USGS Publications Warehouse

    Gesch, Dean B.

    2009-01-01

    The damages caused by the storm surges from Hurricane Katrina and Hurricane Rita were significant and occurred over broad areas. Storm-surge maps are among the most useful geospatial datasets for hurricane recovery, impact assessments, and mitigation planning for future storms. Surveyed high-water marks were used to generate a maximum storm-surge surface for Hurricane Katrina extending from eastern Louisiana to Mobile Bay, Alabama. The interpolated surface was intersected with high-resolution lidar elevation data covering the study area to produce a highly detailed digital storm-surge inundation map. The storm-surge dataset and related data are available for display and query in a Web-based viewer application. A unique water-level dataset from a network of portable pressure sensors deployed in the days just prior to Hurricane Rita's landfall captured the hurricane's storm surge. The recorded sensor data provided water-level measurements with a very high temporal resolution at surveyed point locations. The resulting dataset was used to generate a time series of storm-surge surfaces that documents the surge dynamics in a new, spatially explicit way. The temporal information contained in the multiple storm-surge surfaces can be visualized in a number of ways to portray how the surge interacted with and was affected by land surface features. Spatially explicit storm-surge products can be useful for a variety of hurricane impact assessments, especially studies of wetland and land changes where knowledge of the extent and magnitude of storm-surge flooding is critical.

  16. Multispectral data processing from unmanned aerial vehicles: application in precision agriculture using different sensors and platforms

    NASA Astrophysics Data System (ADS)

    Piermattei, Livia; Bozzi, Carlo Alberto; Mancini, Adriano; Tassetti, Anna Nora; Karel, Wilfried; Pfeifer, Norbert

    2017-04-01

    Unmanned aerial vehicles (UAVs) in combination with consumer grade cameras have become standard tools for photogrammetric applications and surveying. The recent generation of multispectral, cost-efficient and lightweight cameras has fostered a breakthrough in the practical application of UAVs for precision agriculture. For this application, multispectral cameras typically use Green, Red, Red-Edge (RE) and Near Infrared (NIR) wavebands to capture both visible and invisible images of crops and vegetation. These bands are very effective for deriving characteristics like soil productivity, plant health and overall growth. However, the quality of results is affected by the sensor architecture, the spatial and spectral resolutions, the pattern of image collection, and the processing of the multispectral images. In particular, collecting data with multiple sensors requires an accurate spatial co-registration of the various UAV image datasets. Multispectral processed data in precision agriculture are mainly presented as orthorectified mosaics used to export information maps and vegetation indices. This work aims to investigate the acquisition parameters and processing approaches of this new type of image data in order to generate orthoimages using different sensors and UAV platforms. Within our experimental area we placed a grid of artificial targets, whose position was determined with differential global positioning system (dGPS) measurements. Targets were used as ground control points to georeference the images and as checkpoints to verify the accuracy of the georeferenced mosaics. The primary aim is to present a method for the spatial co-registration of visible, Red-Edge, and NIR image sets. To demonstrate the applicability and accuracy of our methodology, multi-sensor datasets were collected over the same area and approximately at the same time using the fixed-wing UAV senseFly "eBee". The images were acquired with the camera Canon S110 RGB, the multispectral cameras Canon S110 NIR and S110 RE and with the multi-camera system Parrot Sequoia, which is composed of single-band cameras (Green, Red, Red Edge, NIR and RGB). Imagery from each sensor was georeferenced and mosaicked with the commercial software Agisoft PhotoScan Pro and different approaches for image orientation were compared. To assess the overall spatial accuracy of each dataset the root mean square error was computed between check point coordinates measured with dGPS and coordinates retrieved from georeferenced image mosaics. Additionally, image datasets from different UAV platforms (i.e. DJI Phantom 4Pro, DJI Phantom 3 professional, and DJI Inspire 1 Pro) were acquired over the same area and the spatial accuracy of the orthoimages was evaluated.

  17. Tracking changes in land-use and drainage status of organic soils using heterogeneous spatial datasets

    NASA Astrophysics Data System (ADS)

    Untenecker, Johanna; Tiemeyer, Bärbel; Freibauer, Annette; Laggner, Andreas; Luterbacher, Jürg

    2016-04-01

    Tracking land-use since 1990 is one of the major challenges in greenhouse gas (GHG) reporting under the United Nations Framework Convention on Climate Change (UNFCCC) and the Kyoto Protocol, as the data availability, especially for the base year 1990, is often poor. Even if data is available, spatial and thematic resolution will often change over time or differ even within one country. Such inconsistencies will cause a strong overestimation of land use change (LUC) if not adequately accounted for. Using different spatial datasets, we present a method that allows tracking changes in land-use and drainage status of organic soils. The drainage status is relevant for the Kyoto activities grazing land management (GM) and wetland drainage and rewetting (WDR) as the GHG emissions of organic soils strongly depend on the groundwater level. We used datasets that are already used for the German national inventory report (Digital Landscape Model of official cadastre data) and high resolution spatial datasets (CIR aerial photography) derived for biodiversity monitoring of six federal states in North and East Germany. This data is combined with the legal protection status such as nature conservation areas. To create a consistent time series, we developed a translation key which allows quantifying gross and net LUC in a spatially explicit manner. The developed method fills the lack of data for 1990 and allows GHG accounting on higher Tier levels as soon as detailed emission factors are ready to be implemented. LUC can be stratified by the protection status. Areas without a protection status show a trend towards both intensification of land-use and drier conditions. Highly protected areas show an opposite trend while a moderate protection level (e.g. by nature parks) did only have very weak effects. Furthermore, there are major differences between federal states. In Schleswig-Holstein, known as a federal state of high agricultural production, organic soils tend to become drier and even highly protected areas only show a slight decrease of land-use intensity. Organic soils in Mecklenburg-Western Pomerania, on the other hand, tend to become wetter and less intensively used even in not protected areas. This can be interpreted as a result of an extensive peatland protection programme. Thus, our method does not only allow tracking drainage status and land-use in a suitable way for higher Tier levels in GHG-inventories and for Kyoto-accounting, but offers additional information on the success of large scale rewetting practises.

  18. Comparative analysis of 2D and 3D distance measurements to study spatial genome organization.

    PubMed

    Finn, Elizabeth H; Pegoraro, Gianluca; Shachar, Sigal; Misteli, Tom

    2017-07-01

    The spatial organization of genomes is non-random, cell-type specific, and has been linked to cellular function. The investigation of spatial organization has traditionally relied extensively on fluorescence microscopy. The validity of the imaging methods used to probe spatial genome organization often depends on the accuracy and precision of distance measurements. Imaging-based measurements may either use 2 dimensional datasets or 3D datasets which include the z-axis information in image stacks. Here we compare the suitability of 2D vs 3D distance measurements in the analysis of various features of spatial genome organization. We find in general good agreement between 2D and 3D analysis with higher convergence of measurements as the interrogated distance increases, especially in flat cells. Overall, 3D distance measurements are more accurate than 2D distances, but are also more susceptible to noise. In particular, z-stacks are prone to error due to imaging properties such as limited resolution along the z-axis and optical aberrations, and we also find significant deviations from unimodal distance distributions caused by low sampling frequency in z. These deviations are ameliorated by significantly higher sampling frequency in the z-direction. We conclude that 2D distances are preferred for comparative analyses between cells, but 3D distances are preferred when comparing to theoretical models in large samples of cells. In general and for practical purposes, 2D distance measurements are preferable for many applications of analysis of spatial genome organization. Published by Elsevier Inc.

  19. Optimizing tertiary storage organization and access for spatio-temporal datasets

    NASA Technical Reports Server (NTRS)

    Chen, Ling Tony; Rotem, Doron; Shoshani, Arie; Drach, Bob; Louis, Steve; Keating, Meridith

    1994-01-01

    We address in this paper data management techniques for efficiently retrieving requested subsets of large datasets stored on mass storage devices. This problem represents a major bottleneck that can negate the benefits of fast networks, because the time to access a subset from a large dataset stored on a mass storage system is much greater that the time to transmit that subset over a network. This paper focuses on very large spatial and temporal datasets generated by simulation programs in the area of climate modeling, but the techniques developed can be applied to other applications that deal with large multidimensional datasets. The main requirement we have addressed is the efficient access of subsets of information contained within much larger datasets, for the purpose of analysis and interactive visualization. We have developed data partitioning techniques that partition datasets into 'clusters' based on analysis of data access patterns and storage device characteristics. The goal is to minimize the number of clusters read from mass storage systems when subsets are requested. We emphasize in this paper proposed enhancements to current storage server protocols to permit control over physical placement of data on storage devices. We also discuss in some detail the aspects of the interface between the application programs and the mass storage system, as well as a workbench to help scientists to design the best reorganization of a dataset for anticipated access patterns.

  20. A multimodal MRI dataset of professional chess players.

    PubMed

    Li, Kaiming; Jiang, Jing; Qiu, Lihua; Yang, Xun; Huang, Xiaoqi; Lui, Su; Gong, Qiyong

    2015-01-01

    Chess is a good model to study high-level human brain functions such as spatial cognition, memory, planning, learning and problem solving. Recent studies have demonstrated that non-invasive MRI techniques are valuable for researchers to investigate the underlying neural mechanism of playing chess. For professional chess players (e.g., chess grand masters and masters or GM/Ms), what are the structural and functional alterations due to long-term professional practice, and how these alterations relate to behavior, are largely veiled. Here, we report a multimodal MRI dataset from 29 professional Chinese chess players (most of whom are GM/Ms), and 29 age matched novices. We hope that this dataset will provide researchers with new materials to further explore high-level human brain functions.

  1. Remote Sensing Applications to Water Quality Management in Florida

    EPA Science Inventory

    Increasingly, optical datasets from estuarine and coastal systems are becoming available for remote sensing algorithm development, validation, and application. With validated algorithms, the data streams from satellite sensors can provide unprecedented spatial and temporal data ...

  2. San Pedro River Basin Data Browser Report

    EPA Science Inventory

    Acquisition of primary spatial data and database development are initial features of any type of landscape assessment project. They provide contemporary land cover and the ancillary datasets necessary to establish reference condition and develop alternative future scenarios that ...

  3. Test-retest resting-state fMRI in healthy elderly persons with a family history of Alzheimer's disease.

    PubMed

    Orban, Pierre; Madjar, Cécile; Savard, Mélissa; Dansereau, Christian; Tam, Angela; Das, Samir; Evans, Alan C; Rosa-Neto, Pedro; Breitner, John C S; Bellec, Pierre

    2015-01-01

    We present a test-retest dataset of resting-state fMRI data obtained in 80 cognitively normal elderly volunteers enrolled in the "Pre-symptomatic Evaluation of Novel or Experimental Treatments for Alzheimer's Disease" (PREVENT-AD) Cohort. Subjects with a family history of Alzheimer's disease in first-degree relatives were recruited as part of an on-going double blind randomized clinical trial of Naproxen or placebo. Two pairs of scans were acquired ~3 months apart, allowing the assessment of both intra- and inter-session reliability, with the possible caveat of treatment effects as a source of inter-session variation. Using the NeuroImaging Analysis Kit (NIAK), we report on the standard quality of co-registration and motion parameters of the data, and assess their validity based on the spatial distribution of seed-based connectivity maps as well as intra- and inter-session reliability metrics in the default-mode network. This resource, released publicly as sample UM1 of the Consortium for Reliability and Reproducibility (CoRR), will benefit future studies focusing on the preclinical period preceding the appearance of dementia in Alzheimer's disease.

  4. Relationships Between Long-Range Lightning Networks and TRMM/LIS Observations

    NASA Technical Reports Server (NTRS)

    Rudlosky, Scott D.; Holzworth, Robert H.; Carey, Lawrence D.; Schultz, Chris J.; Bateman, Monte; Cummins, Kenneth L.; Cummins, Kenneth L.; Blakeslee, Richard J.; Goodman, Steven J.

    2012-01-01

    Recent advances in long-range lightning detection technologies have improved our understanding of thunderstorm evolution in the data sparse oceanic regions. Although the expansion and improvement of long-range lightning datasets have increased their applicability, these applications (e.g., data assimilation, atmospheric chemistry, and aviation weather hazards) require knowledge of the network detection capabilities. The present study intercompares long-range lightning data with observations from the Lightning Imaging Sensor (LIS) aboard the Tropical Rainfall Measurement Mission (TRMM) satellite. The study examines network detection efficiency and location accuracy relative to LIS observations, describes spatial variability in these performance metrics, and documents the characteristics of LIS flashes that are detected by the long-range networks. Improved knowledge of relationships between these datasets will allow researchers, algorithm developers, and operational users to better prepare for the spatial and temporal coverage of the upcoming GOES-R Geostationary Lightning Mapper (GLM).

  5. CELL5M: A geospatial database of agricultural indicators for Africa South of the Sahara.

    PubMed

    Koo, Jawoo; Cox, Cindy M; Bacou, Melanie; Azzarri, Carlo; Guo, Zhe; Wood-Sichra, Ulrike; Gong, Queenie; You, Liangzhi

    2016-01-01

    Recent progress in large-scale georeferenced data collection is widening opportunities for combining multi-disciplinary datasets from biophysical to socioeconomic domains, advancing our analytical and modeling capacity. Granular spatial datasets provide critical information necessary for decision makers to identify target areas, assess baseline conditions, prioritize investment options, set goals and targets and monitor impacts. However, key challenges in reconciling data across themes, scales and borders restrict our capacity to produce global and regional maps and time series. This paper provides overview, structure and coverage of CELL5M-an open-access database of geospatial indicators at 5 arc-minute grid resolution-and introduces a range of analytical applications and case-uses. CELL5M covers a wide set of agriculture-relevant domains for all countries in Africa South of the Sahara and supports our understanding of multi-dimensional spatial variability inherent in farming landscapes throughout the region.

  6. ADJUST: An automatic EEG artifact detector based on the joint use of spatial and temporal features.

    PubMed

    Mognon, Andrea; Jovicich, Jorge; Bruzzone, Lorenzo; Buiatti, Marco

    2011-02-01

    A successful method for removing artifacts from electroencephalogram (EEG) recordings is Independent Component Analysis (ICA), but its implementation remains largely user-dependent. Here, we propose a completely automatic algorithm (ADJUST) that identifies artifacted independent components by combining stereotyped artifact-specific spatial and temporal features. Features were optimized to capture blinks, eye movements, and generic discontinuities on a feature selection dataset. Validation on a totally different EEG dataset shows that (1) ADJUST's classification of independent components largely matches a manual one by experts (agreement on 95.2% of the data variance), and (2) Removal of the artifacted components detected by ADJUST leads to neat reconstruction of visual and auditory event-related potentials from heavily artifacted data. These results demonstrate that ADJUST provides a fast, efficient, and automatic way to use ICA for artifact removal. Copyright © 2010 Society for Psychophysiological Research.

  7. Compression of head-related transfer function using autoregressive-moving-average models and Legendre polynomials.

    PubMed

    Shekarchi, Sayedali; Hallam, John; Christensen-Dalsgaard, Jakob

    2013-11-01

    Head-related transfer functions (HRTFs) are generally large datasets, which can be an important constraint for embedded real-time applications. A method is proposed here to reduce redundancy and compress the datasets. In this method, HRTFs are first compressed by conversion into autoregressive-moving-average (ARMA) filters whose coefficients are calculated using Prony's method. Such filters are specified by a few coefficients which can generate the full head-related impulse responses (HRIRs). Next, Legendre polynomials (LPs) are used to compress the ARMA filter coefficients. LPs are derived on the sphere and form an orthonormal basis set for spherical functions. Higher-order LPs capture increasingly fine spatial details. The number of LPs needed to represent an HRTF, therefore, is indicative of its spatial complexity. The results indicate that compression ratios can exceed 98% while maintaining a spectral error of less than 4 dB in the recovered HRTFs.

  8. Tooth enamel oxygen "isoscapes" show a high degree of human mobility in prehistoric Britain.

    PubMed

    Pellegrini, Maura; Pouncett, John; Jay, Mandy; Pearson, Mike Parker; Richards, Michael P

    2016-10-07

    A geostatistical model to predict human skeletal oxygen isotope values (δ 18 O p ) in Britain is presented here based on a new dataset of Chalcolithic and Early Bronze Age human teeth. The spatial statistics which underpin this model allow the identification of individuals interpreted as 'non-local' to the areas where they were buried (spatial outliers). A marked variation in δ 18 O p is observed in several areas, including the Stonehenge region, the Peak District, and the Yorkshire Wolds, suggesting a high degree of human mobility. These areas, rich in funerary and ceremonial monuments, may have formed focal points for people, some of whom would have travelled long distances, ultimately being buried there. The dataset and model represent a baseline for future archaeological studies, avoiding the complex conversions from skeletal to water δ 18 O values-a process known to be problematic.

  9. Tooth enamel oxygen “isoscapes” show a high degree of human mobility in prehistoric Britain

    PubMed Central

    Pellegrini, Maura; Pouncett, John; Jay, Mandy; Pearson, Mike Parker; Richards, Michael P.

    2016-01-01

    A geostatistical model to predict human skeletal oxygen isotope values (δ18Op) in Britain is presented here based on a new dataset of Chalcolithic and Early Bronze Age human teeth. The spatial statistics which underpin this model allow the identification of individuals interpreted as ‘non-local’ to the areas where they were buried (spatial outliers). A marked variation in δ18Op is observed in several areas, including the Stonehenge region, the Peak District, and the Yorkshire Wolds, suggesting a high degree of human mobility. These areas, rich in funerary and ceremonial monuments, may have formed focal points for people, some of whom would have travelled long distances, ultimately being buried there. The dataset and model represent a baseline for future archaeological studies, avoiding the complex conversions from skeletal to water δ18O values–a process known to be problematic. PMID:27713538

  10. Tooth enamel oxygen “isoscapes” show a high degree of human mobility in prehistoric Britain

    NASA Astrophysics Data System (ADS)

    Pellegrini, Maura; Pouncett, John; Jay, Mandy; Pearson, Mike Parker; Richards, Michael P.

    2016-10-01

    A geostatistical model to predict human skeletal oxygen isotope values (δ18Op) in Britain is presented here based on a new dataset of Chalcolithic and Early Bronze Age human teeth. The spatial statistics which underpin this model allow the identification of individuals interpreted as ‘non-local’ to the areas where they were buried (spatial outliers). A marked variation in δ18Op is observed in several areas, including the Stonehenge region, the Peak District, and the Yorkshire Wolds, suggesting a high degree of human mobility. These areas, rich in funerary and ceremonial monuments, may have formed focal points for people, some of whom would have travelled long distances, ultimately being buried there. The dataset and model represent a baseline for future archaeological studies, avoiding the complex conversions from skeletal to water δ18O values-a process known to be problematic.

  11. Morningness/eveningness and the synchrony effect for spatial attention.

    PubMed

    Dorrian, Jillian; McLean, Benjamin; Banks, Siobhan; Loetscher, Tobias

    2017-02-01

    There is evidence that a decrease in alertness is associated with a rightward shift of attention. Alertness fluctuates throughout the day and peak times differ between individuals. Some individuals feel most alert in the morning; others in the evening. Our aim was to investigate the influence of morningness/eveningness and time of testing on spatial attention. It was predicted that attention would shift rightwards when individuals were tested at their non-optimal time as compared to tests at peak times. A crowdsourcing internet marketplace, Amazon Mechanical Turk (AMT) was used to collect data. Given questions surrounding the quality of data drawn from such virtual environments, this study also investigated the sensitivity of data to demonstrate known effects from the literature. Five-hundred and thirty right-handed participants took part between 6 am and 11 pm. Participants answered demographic questions, completed a question from the Horne and Östberg Morningness/Eveningness Scale, and performed a spatial attentional task (landmark task). For the landmark task, participants indicated whether the left or right segment of each of 72 pre-bisected lines was longer (longer side counterbalanced). Response bias was calculated by subtracting the 'number of left responses' from the 'number of right responses', and dividing by the number of trials. Negative values indicate a leftward attentional bias, and positive values a rightward bias. Well-supported relationships between variables were reflected in the dataset. Controlling for age, there was a significant interaction between morningness/eveningness and time of testing (morning=6 am-2.30 pm, evening=2.30 pm-11 pm) (p<0.05) such that there was a relative rightward shift of attention from peak to off-peak times of testing for those identifying as morning types, but not evening types. Findings support the utility of crowdsourcing internet marketplaces as data collection vehicles for research. Results also suggest that the deployment of spatial attention is modulated by an individual's peak time (morningness/eveningness) and time of testing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Research on reconstructing spatial distribution of historical cropland over 300 years in traditional cultivated regions of China

    NASA Astrophysics Data System (ADS)

    Yang, Xuhong; Jin, Xiaobin; Guo, Beibei; Long, Ying; Zhou, Yinkang

    2015-05-01

    Constructing a spatially explicit time series of historical cultivated land is of upmost importance for climatic and ecological studies that make use of Land Use and Cover Change (LUCC) data. Some scholars have made efforts to simulate and reconstruct the quantitative information on historical land use at the global or regional level based on "top-down" decision-making behaviors to match overall cropland area to land parcels using land arability and universal parameters. Considering the concentrated distribution of cultivated land and various factors influencing cropland distribution, including environmental and human factors, this study developed a "bottom-up" model of historical cropland based on constrained Cellular Automaton (CA). Our model takes a historical cropland area as an external variable and the cropland distribution in 1980 as the maximum potential scope of historical cropland. We selected elevation, slope, water availability, average annual precipitation, and distance to the nearest rural settlement as the main influencing factors of land use suitability. Then, an available labor force index is used as a proxy for the amount of cropland to inspect and calibrate these spatial patterns. This paper applies the model to a traditional cultivated region in China and reconstructs its spatial distribution of cropland during 6 periods. The results are shown as follows: (1) a constrained CA is well suited for simulating and reconstructing the spatial distribution of cropland in China's traditional cultivated region. (2) Taking the different factors affecting spatial pattern of cropland into consideration, the partitioning of the research area effectively reflected the spatial differences in cropland evolution rules and rates. (3) Compared with "HYDE datasets", this research has formed higher-resolution Boolean spatial distribution datasets of historical cropland with a more definitive concept of spatial pattern in terms of fractional format. We conclude that our reconstruction is closer to the actual change pattern of the traditional cultivated region in China.

  13. Evaluating satellite-derived long-term historical precipitation datasets for drought monitoring in Chile

    NASA Astrophysics Data System (ADS)

    Zambrano, Francisco; Wardlow, Brian; Tadesse, Tsegaye

    2016-10-01

    Precipitation is a key parameter for the study of climate change and variability and the detection and monitoring of natural disaster such as drought. Precipitation datasets that accurately capture the amount and spatial variability of rainfall is critical for drought monitoring and a wide range of other climate applications. This is challenging in many parts of the world, which often have a limited number of weather stations and/or historical data records. Satellite-derived precipitation products offer a viable alternative with several remotely sensed precipitation datasets now available with long historical data records (+30 years), which include the Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) datasets. This study presents a comparative analysis of three historical satellite-based precipitation datasets that include Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B43 version 7 (1998-2015), PERSIANN-CDR (1983-2015) and CHIRPS 2.0 (1981-2015) over Chile to assess their performance across the country and evaluate their applicability for agricultural drought evaluation when used in the calculation of commonly used drought indicator as the Standardized Precipitation Index (SPI). In this analysis, 278 weather stations of in-situ rainfall measurements across Chile were initially compared to the satellite-based precipitation estimates. The study area (Chile) was divided into five latitudinal zones: North, North-Central, Central, South-Central and South to determine if there were a regional difference among these satellite-based estimates. Nine statistics were used to evaluate the performance of satellite products to estimate the amount and spatial distribution of historical rainfall across Chile. Hierarchical cluster analysis, k-means and singular value decomposition were used to analyze these datasets to better understand their similarities and differences in characterizing rainfall patterns across Chile. Monthly analysis showed that all satellite products highly overestimated precipitation in the arid North zone. However, there were no major difference between all three products from North to South-Central zones. Though, in the South zone, PERSIANN-CDR shows the lowest fit with high underestimation, further CHIRPS 2.0 and TMPA 3B43 v7 had better agreement with in-situ measurements. The accuracy of satellite products were highly dependent on the amount of monthly rainfall with the best results found during winter seasons and in zones (Central to South) with higher amounts of precipitation. PERSIANN-CDR and CHIRPS 2.0 were used to derive SPI at time-scale of 1, 3 and 6 months, both satellite products presented similar results when it was compared in-situ against satellite SPI's. Because of its higher spatial resolution that allows better characterizing of spatial variation in precipitation pattern, the CHIRPS 2.0 was used to mapping the SPI-3 over Chile. The results of this study show that in order to use the CHIRPS 2.0 and PERSIANN-CDR data sets in Chile to monitor spatial patterns in the rainfall and drought intensity conditions, these products should be calibrated to adjust for the overestimation/underestimation of precipitation geographically specially in the North zone and seasonally during the summer and spring months in the other zones.

  14. OneGeology-Europe - The Challenges and progress of implementing a basic geological infrastructure for Europe

    NASA Astrophysics Data System (ADS)

    Asch, Kristine; Tellez-Arenas, Agnes

    2010-05-01

    OneGeology-Europe is making geological spatial data held by the geological surveys of Europe more easily discoverable and accessible via the internet. This will provide a fundamental scientific layer to the European Plate Observation System Rich geological data assets exist in the geological survey of each individual EC Member State, but they are difficult to discover and are not interoperable. For those outside the geological surveys they are not easy to obtain, to understand or to use. Geological spatial data is essential to the prediction and mitigation of landslides, subsidence, earthquakes, flooding and pollution. These issues are global in nature and their profile has also been raised by the OneGeology global initiative for the International Year of Planet Earth 2008. Geology is also a key dataset in the EC INSPIRE Directive, where it is also fundamental to the themes of natural risk zones, energy and mineral resources. The OneGeology-Europe project is delivering a web-accessible, interoperable geological spatial dataset for the whole of Europe at the 1:1 million scale based on existing data held by the European geological surveys. Proof of concept will be applied to key areas at a higher resolution and some geological surveys will deliver their data at high resolution. An important role is developing a European specification for basic geological map data and making significant progress towards harmonising the dataset (an essential first step to addressing harmonisation at higher data resolutions). It is accelerating the development and deployment of a nascent international interchange standard for geological data - GeoSciML, which will enable the sharing and exchange of the data within and beyond the geological community within Europe and globally. The geological dataset for the whole of Europe is not a centralized database but a distributed system. Each geological survey implements and hosts an interoperable web service, delivering their national harmonized geological data. These datasets are registered in a multilingual catalogue, who is one the main part of this system. This catalogue and a common metadata profile allows the discovery of national geological and applied geological maps at all scapes, Such an architecture is facilitating re-use and addition of value by a wide spectrum of users in the public and private sector and identifying, documenting and disseminating strategies for the reduction of technical and business barriers to re-use. In identifying and raising awareness in the user and provider communities, it is moving geological knowledge closer to the end-user where it will have greater societal impact and ensure fuller exploitation of a key data resource gathered at huge public expense. The project is providing examples of best practice in the delivery of digital geological spatial data to users, e.g. in the insurance, property, engineering, planning, mineral resource and environmental sectors. The scientifically attributed map data of the project will provide a pan-European base for science research and, importantly, a prime geoscience dataset capable of integration with other data sets within and beyond the geoscience domain. This presentation will demonstrate the first results of this project and will indicate how OneGeology-Europe is ensuring that Europe may play a leading role in the development of a geoscience spatial data infrastructure (SDI) globally.

  15. Integrative image segmentation optimization and machine learning approach for high quality land-use and land-cover mapping using multisource remote sensing data

    NASA Astrophysics Data System (ADS)

    Gibril, Mohamed Barakat A.; Idrees, Mohammed Oludare; Yao, Kouame; Shafri, Helmi Zulhaidi Mohd

    2018-01-01

    The growing use of optimization for geographic object-based image analysis and the possibility to derive a wide range of information about the image in textual form makes machine learning (data mining) a versatile tool for information extraction from multiple data sources. This paper presents application of data mining for land-cover classification by fusing SPOT-6, RADARSAT-2, and derived dataset. First, the images and other derived indices (normalized difference vegetation index, normalized difference water index, and soil adjusted vegetation index) were combined and subjected to segmentation process with optimal segmentation parameters obtained using combination of spatial and Taguchi statistical optimization. The image objects, which carry all the attributes of the input datasets, were extracted and related to the target land-cover classes through data mining algorithms (decision tree) for classification. To evaluate the performance, the result was compared with two nonparametric classifiers: support vector machine (SVM) and random forest (RF). Furthermore, the decision tree classification result was evaluated against six unoptimized trials segmented using arbitrary parameter combinations. The result shows that the optimized process produces better land-use land-cover classification with overall classification accuracy of 91.79%, 87.25%, and 88.69% for SVM and RF, respectively, while the results of the six unoptimized classifications yield overall accuracy between 84.44% and 88.08%. Higher accuracy of the optimized data mining classification approach compared to the unoptimized results indicates that the optimization process has significant impact on the classification quality.

  16. Clinical Correlations of Brain Lesion Location in Multiple Sclerosis: Voxel-Based Analysis of a Large Clinical Trial Dataset.

    PubMed

    Altermatt, Anna; Gaetano, Laura; Magon, Stefano; Häring, Dieter A; Tomic, Davorka; Wuerfel, Jens; Radue, Ernst-Wilhelm; Kappos, Ludwig; Sprenger, Till

    2018-05-29

    There is a limited correlation between white matter (WM) lesion load as determined by magnetic resonance imaging and disability in multiple sclerosis (MS). The reasons for this so-called clinico-radiological paradox are diverse and may, at least partly, relate to the fact that not just the overall lesion burden, but also the exact anatomical location of lesions predict the severity and type of disability. We aimed at studying the relationship between lesion distribution and disability using a voxel-based lesion probability mapping approach in a very large dataset of MS patients. T2-weighted lesion masks of 2348 relapsing-remitting MS patients were spatially normalized to standard stereotaxic space by non-linear registration. Relations between supratentorial WM lesion locations and disability measures were assessed using a non-parametric ANCOVA (Expanded Disability Status Scale [EDSS]; Multiple Sclerosis Functional Composite, and subscores; Modified Fatigue Impact Scale) or multinomial ordinal logistic regression (EDSS functional subscores). Data from 1907 (81%) patients were included in the analysis because of successful registration. The lesion mapping showed similar areas to be associated with the different disability scales: periventricular regions in temporal, frontal, and limbic lobes were predictive, mainly affecting the posterior thalamic radiation, the anterior, posterior, and superior parts of the corona radiata. In summary, significant associations between lesion location and clinical scores were found in periventricular areas. Such lesion clusters appear to be associated with impairment of different physical and cognitive abilities, probably because they affect commissural and long projection fibers, which are relevant WM pathways supporting many different brain functions.

  17. Exploring the temporal dynamics of sustained and transient spatial attention using steady-state visual evoked potentials.

    PubMed

    Zhang, Dan; Hong, Bo; Gao, Shangkai; Röder, Brigitte

    2017-05-01

    While the behavioral dynamics as well as the functional network of sustained and transient attention have extensively been studied, their underlying neural mechanisms have most often been investigated in separate experiments. In the present study, participants were instructed to perform an audio-visual spatial attention task. They were asked to attend to either the left or the right hemifield and to respond to deviant transient either auditory or visual stimuli. Steady-state visual evoked potentials (SSVEPs) elicited by two task irrelevant pattern reversing checkerboards flickering at 10 and 15 Hz in the left and the right hemifields, respectively, were used to continuously monitor the locus of spatial attention. The amplitude and phase of the SSVEPs were extracted for single trials and were separately analyzed. Sustained attention to one hemifield (spatial attention) as well as to the auditory modality (intermodal attention) increased the inter-trial phase locking of the SSVEP responses, whereas briefly presented visual and auditory stimuli decreased the single-trial SSVEP amplitude between 200 and 500 ms post-stimulus. This transient change of the single-trial amplitude was restricted to the SSVEPs elicited by the reversing checkerboard in the spatially attended hemifield and thus might reflect a transient re-orienting of attention towards the brief stimuli. Thus, the present results demonstrate independent, but interacting neural mechanisms of sustained and transient attentional orienting.

  18. A spatially filtered multilevel model to account for spatial dependency: application to self-rated health status in South Korea

    PubMed Central

    2014-01-01

    Background This study aims to suggest an approach that integrates multilevel models and eigenvector spatial filtering methods and apply it to a case study of self-rated health status in South Korea. In many previous health-related studies, multilevel models and single-level spatial regression are used separately. However, the two methods should be used in conjunction because the objectives of both approaches are important in health-related analyses. The multilevel model enables the simultaneous analysis of both individual and neighborhood factors influencing health outcomes. However, the results of conventional multilevel models are potentially misleading when spatial dependency across neighborhoods exists. Spatial dependency in health-related data indicates that health outcomes in nearby neighborhoods are more similar to each other than those in distant neighborhoods. Spatial regression models can address this problem by modeling spatial dependency. This study explores the possibility of integrating a multilevel model and eigenvector spatial filtering, an advanced spatial regression for addressing spatial dependency in datasets. Methods In this spatially filtered multilevel model, eigenvectors function as additional explanatory variables accounting for unexplained spatial dependency within the neighborhood-level error. The specification addresses the inability of conventional multilevel models to account for spatial dependency, and thereby, generates more robust outputs. Results The findings show that sex, employment status, monthly household income, and perceived levels of stress are significantly associated with self-rated health status. Residents living in neighborhoods with low deprivation and a high doctor-to-resident ratio tend to report higher health status. The spatially filtered multilevel model provides unbiased estimations and improves the explanatory power of the model compared to conventional multilevel models although there are no changes in the signs of parameters and the significance levels between the two models in this case study. Conclusions The integrated approach proposed in this paper is a useful tool for understanding the geographical distribution of self-rated health status within a multilevel framework. In future research, it would be useful to apply the spatially filtered multilevel model to other datasets in order to clarify the differences between the two models. It is anticipated that this integrated method will also out-perform conventional models when it is used in other contexts. PMID:24571639

  19. Spatial and temporal air quality pattern recognition using environmetric techniques: a case study in Malaysia.

    PubMed

    Syed Abdul Mutalib, Sharifah Norsukhairin; Juahir, Hafizan; Azid, Azman; Mohd Sharif, Sharifah; Latif, Mohd Talib; Aris, Ahmad Zaharin; Zain, Sharifuddin M; Dominick, Doreena

    2013-09-01

    The objective of this study is to identify spatial and temporal patterns in the air quality at three selected Malaysian air monitoring stations based on an eleven-year database (January 2000-December 2010). Four statistical methods, Discriminant Analysis (DA), Hierarchical Agglomerative Cluster Analysis (HACA), Principal Component Analysis (PCA) and Artificial Neural Networks (ANNs), were selected to analyze the datasets of five air quality parameters, namely: SO2, NO2, O3, CO and particulate matter with a diameter size of below 10 μm (PM10). The three selected air monitoring stations share the characteristic of being located in highly urbanized areas and are surrounded by a number of industries. The DA results show that spatial characterizations allow successful discrimination between the three stations, while HACA shows the temporal pattern from the monthly and yearly factor analysis which correlates with severe haze episodes that have happened in this country at certain periods of time. The PCA results show that the major source of air pollution is mostly due to the combustion of fossil fuel in motor vehicles and industrial activities. The spatial pattern recognition (S-ANN) results show a better prediction performance in discriminating between the regions, with an excellent percentage of correct classification compared to DA. This study presents the necessity and usefulness of environmetric techniques for the interpretation of large datasets aiming to obtain better information about air quality patterns based on spatial and temporal characterizations at the selected air monitoring stations.

  20. Geologic map of Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; Hults, Chad P.; Mull, Charles G.; Karl, Susan M.

    2015-12-31

    This Alaska compilation is unique in that it is integrated with a rich database of information provided in the spatial datasets and standalone attribute databases. Within the spatial files every line and polygon is attributed to its original source; the references to these sources are contained in related tables, as well as in stand-alone tables. Additional attributes include typical lithology, geologic setting, and age range for the map units. Also included are tables of radiometric ages.

  1. The Atlanta Urban Heat Island Mitigation and Air Quality Modeling Project: How High-Resoution Remote Sensing Data Can Improve Air Quality Models

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Estes, Maurice G., Jr.; Crosson, William L.; Khan, Maudood N.

    2006-01-01

    The Atlanta Urban Heat Island and Air Quality Project had its genesis in Project ATLANTA (ATlanta Land use Analysis: Temperature and Air quality) that began in 1996. Project ATLANTA examined how high-spatial resolution thermal remote sensing data could be used to derive better measurements of the Urban Heat Island effect over Atlanta. We have explored how these thermal remote sensing, as well as other imaged datasets, can be used to better characterize the urban landscape for improved air quality modeling over the Atlanta area. For the air quality modeling project, the National Land Cover Dataset and the local scale Landpro99 dataset at 30m spatial resolutions have been used to derive land use/land cover characteristics for input into the MM5 mesoscale meteorological model that is one of the foundations for the Community Multiscale Air Quality (CMAQ) model to assess how these data can improve output from CMAQ. Additionally, land use changes to 2030 have been predicted using a Spatial Growth Model (SGM). SGM simulates growth around a region using population, employment and travel demand forecasts. Air quality modeling simulations were conducted using both current and future land cover. Meteorological modeling simulations indicate a 0.5 C increase in daily maximum air temperatures by 2030. Air quality modeling simulations show substantial differences in relative contributions of individual atmospheric pollutant constituents as a result of land cover change. Enhanced boundary layer mixing over the city tends to offset the increase in ozone concentration expected due to higher surface temperatures as a result of urbanization.

  2. Analysis of multispectral and hyperspectral longwave infrared (LWIR) data for geologic mapping

    NASA Astrophysics Data System (ADS)

    Kruse, Fred A.; McDowell, Meryl

    2015-05-01

    Multispectral MODIS/ASTER Airborne Simulator (MASTER) data and Hyperspectral Thermal Emission Spectrometer (HyTES) data covering the 8 - 12 μm spectral range (longwave infrared or LWIR) were analyzed for an area near Mountain Pass, California. Decorrelation stretched images were initially used to highlight spectral differences between geologic materials. Both datasets were atmospherically corrected using the ISAC method, and the Normalized Emissivity approach was used to separate temperature and emissivity. The MASTER data had 10 LWIR spectral bands and approximately 35-meter spatial resolution and covered a larger area than the HyTES data, which were collected with 256 narrow (approximately 17nm-wide) spectral bands at approximately 2.3-meter spatial resolution. Spectra for key spatially-coherent, spectrally-determined geologic units for overlap areas were overlain and visually compared to determine similarities and differences. Endmember spectra were extracted from both datasets using n-dimensional scatterplotting and compared to emissivity spectral libraries for identification. Endmember distributions and abundances were then mapped using Mixture-Tuned Matched Filtering (MTMF), a partial unmixing approach. Multispectral results demonstrate separation of silica-rich vs non-silicate materials, with distinct mapping of carbonate areas and general correspondence to the regional geology. Hyperspectral results illustrate refined mapping of silicates with distinction between similar units based on the position, character, and shape of high resolution emission minima near 9 μm. Calcite and dolomite were separated, identified, and mapped using HyTES based on a shift of the main carbonate emissivity minimum from approximately 11.3 to 11.2 μm respectively. Both datasets demonstrate the utility of LWIR spectral remote sensing for geologic mapping.

  3. Discrimination performance in aging is vulnerable to interference and dissociable from spatial memory

    PubMed Central

    Johnson, Sarah A.; Sacks, Patricia K.; Turner, Sean M.; Gaynor, Leslie S.; Ormerod, Brandi K.; Maurer, Andrew P.; Bizon, Jennifer L.

    2016-01-01

    Hippocampal-dependent episodic memory and stimulus discrimination abilities are both compromised in the elderly. The reduced capacity to discriminate between similar stimuli likely contributes to multiple aspects of age-related cognitive impairment; however, the association of these behaviors within individuals has never been examined in an animal model. In the present study, young and aged F344×BN F1 hybrid rats were cross-characterized on the Morris water maze test of spatial memory and a dentate gyrus-dependent match-to-position test of spatial discrimination ability. Aged rats showed overall impairments relative to young in spatial learning and memory on the water maze task. Although young and aged learned to apply a match-to-position response strategy in performing easy spatial discriminations within a similar number of trials, a majority of aged rats were impaired relative to young in performing difficult spatial discriminations on subsequent tests. Moreover, all aged rats were susceptible to cumulative interference during spatial discrimination tests, such that error rate increased on later trials of test sessions. These data suggest that when faced with difficult discriminations, the aged rats were less able to distinguish current goal locations from those of previous trials. Increasing acetylcholine levels with donepezil did not improve aged rats’ abilities to accurately perform difficult spatial discriminations or reduce their susceptibility to interference. Interestingly, better spatial memory abilities were not significantly associated with higher performance on difficult spatial discriminations. This observation, along with the finding that aged rats made more errors under conditions in which interference was high, suggests that match-to-position spatial discrimination performance may rely on extra-hippocampal structures such as the prefrontal cortex, in addition to the dentate gyrus. PMID:27317194

  4. BaTMAn: Bayesian Technique for Multi-image Analysis

    NASA Astrophysics Data System (ADS)

    Casado, J.; Ascasibar, Y.; García-Benito, R.; Guidi, G.; Choudhury, O. S.; Bellocchi, E.; Sánchez, S. F.; Díaz, A. I.

    2016-12-01

    Bayesian Technique for Multi-image Analysis (BaTMAn) characterizes any astronomical dataset containing spatial information and performs a tessellation based on the measurements and errors provided as input. The algorithm iteratively merges spatial elements as long as they are statistically consistent with carrying the same information (i.e. identical signal within the errors). The output segmentations successfully adapt to the underlying spatial structure, regardless of its morphology and/or the statistical properties of the noise. BaTMAn identifies (and keeps) all the statistically-significant information contained in the input multi-image (e.g. an IFS datacube). The main aim of the algorithm is to characterize spatially-resolved data prior to their analysis.

  5. Statistical Analysis of Sport Movement Observations: the Case of Orienteering

    NASA Astrophysics Data System (ADS)

    Amouzandeh, K.; Karimipour, F.

    2017-09-01

    Study of movement observations is becoming more popular in several applications. Particularly, analyzing sport movement time series has been considered as a demanding area. However, most of the attempts made on analyzing movement sport data have focused on spatial aspects of movement to extract some movement characteristics, such as spatial patterns and similarities. This paper proposes statistical analysis of sport movement observations, which refers to analyzing changes in the spatial movement attributes (e.g. distance, altitude and slope) and non-spatial movement attributes (e.g. speed and heart rate) of athletes. As the case study, an example dataset of movement observations acquired during the "orienteering" sport is presented and statistically analyzed.

  6. Web-based access, aggregation, and visualization of future climate projections with emphasis on agricultural assessments

    NASA Astrophysics Data System (ADS)

    Villoria, Nelson B.; Elliott, Joshua; Müller, Christoph; Shin, Jaewoo; Zhao, Lan; Song, Carol

    2018-01-01

    Access to climate and spatial datasets by non-specialists is restricted by technical barriers involving hardware, software and data formats. We discuss an open-source online tool that facilitates downloading the climate data from the global circulation models used by the Inter-Sectoral Impacts Model Intercomparison Project. The tool also offers temporal and spatial aggregation capabilities for incorporating future climate scenarios in applications where spatial aggregation is important. We hope that streamlined access to these data facilitates analysis of climate related issues while considering the uncertainties derived from future climate projections and temporal aggregation choices.

  7. Age-dependent effects of neonatal methamphetamine exposure on spatial learning

    PubMed Central

    Vorhees, Charles V.; Skelton, Matthew R.; Williams, Michael T.

    2009-01-01

    Neonatal rats exposed to (+)-methamphetamine (MA) display spatial learning and reference memory deficits in the Morris water maze. In separate experiments the emergence and permanence of these effects were determined. Twenty litters were used in each experiment, and two male/female pairs/litter received saline or MA (5 mg/kg four times a day) on postnatal days (P) 11–20. In experiment 1, one MA and one saline pair from each litter began testing on either P30 or P40, whereas in experiment 2, testing began on P180 or P360. Animals received trials in a straight swimming channel and then in the Morris maze (acquisition, reversal, and reduced platform phases). In both experiments, MA-treated groups showed impaired learning in the platform trials and impaired reference memory in the probe trials, which were largely independent of age. The P30 and P40 MA impairments were seen on acquisition and reduced platform trials but not on reversal. In the probe trials, MA effects were seen during all phases. The P180 and P360 MA-induced deficits were seen in all phases of the platform trials. In probe trials, deficits were only seen during the reversal and reduced platform phases. The results demonstrate that neonatal MA treatment induces spatial learning and reference memory deficits that emerge early and persist until at least 1 year of age, suggesting permanence. PMID:17762523

  8. Evaluating the role of evapotranspiration remote sensing data in improving hydrological modeling predictability

    NASA Astrophysics Data System (ADS)

    Herman, Matthew R.; Nejadhashemi, A. Pouyan; Abouali, Mohammad; Hernandez-Suarez, Juan Sebastian; Daneshvar, Fariborz; Zhang, Zhen; Anderson, Martha C.; Sadeghi, Ali M.; Hain, Christopher R.; Sharifi, Amirreza

    2018-01-01

    As the global demands for the use of freshwater resources continues to rise, it has become increasingly important to insure the sustainability of this resources. This is accomplished through the use of management strategies that often utilize monitoring and the use of hydrological models. However, monitoring at large scales is not feasible and therefore model applications are becoming challenging, especially when spatially distributed datasets, such as evapotranspiration, are needed to understand the model performances. Due to these limitations, most of the hydrological models are only calibrated for data obtained from site/point observations, such as streamflow. Therefore, the main focus of this paper is to examine whether the incorporation of remotely sensed and spatially distributed datasets can improve the overall performance of the model. In this study, actual evapotranspiration (ETa) data was obtained from the two different sets of satellite based remote sensing data. One dataset estimates ETa based on the Simplified Surface Energy Balance (SSEBop) model while the other one estimates ETa based on the Atmosphere-Land Exchange Inverse (ALEXI) model. The hydrological model used in this study is the Soil and Water Assessment Tool (SWAT), which was calibrated against spatially distributed ETa and single point streamflow records for the Honeyoey Creek-Pine Creek Watershed, located in Michigan, USA. Two different techniques, multi-variable and genetic algorithm, were used to calibrate the SWAT model. Using the aforementioned datasets, the performance of the hydrological model in estimating ETa was improved using both calibration techniques by achieving Nash-Sutcliffe efficiency (NSE) values >0.5 (0.73-0.85), percent bias (PBIAS) values within ±25% (±21.73%), and root mean squared error - observations standard deviation ratio (RSR) values <0.7 (0.39-0.52). However, the genetic algorithm technique was more effective with the ETa calibration while significantly reducing the model performance for estimating the streamflow (NSE: 0.32-0.52, PBIAS: ±32.73%, and RSR: 0.63-0.82). Meanwhile, using the multi-variable technique, the model performance for estimating the streamflow was maintained with a high level of accuracy (NSE: 0.59-0.61, PBIAS: ±13.70%, and RSR: 0.63-0.64) while the evapotranspiration estimations were improved. Results from this assessment shows that incorporation of remotely sensed and spatially distributed data can improve the hydrological model performance if it is coupled with a right calibration technique.

  9. Spatial working memory for locations specified by vision and audition: testing the amodality hypothesis.

    PubMed

    Loomis, Jack M; Klatzky, Roberta L; McHugh, Brendan; Giudice, Nicholas A

    2012-08-01

    Spatial working memory can maintain representations from vision, hearing, and touch, representations referred to here as spatial images. The present experiment addressed whether spatial images from vision and hearing that are simultaneously present within working memory retain modality-specific tags or are amodal. Observers were presented with short sequences of targets varying in angular direction, with the targets in a given sequence being all auditory, all visual, or a sequential mixture of the two. On two thirds of the trials, one of the locations was repeated, and observers had to respond as quickly as possible when detecting this repetition. Ancillary detection and localization tasks confirmed that the visual and auditory targets were perceptually comparable. Response latencies in the working memory task showed small but reliable costs in performance on trials involving a sequential mixture of auditory and visual targets, as compared with trials of pure vision or pure audition. These deficits were statistically reliable only for trials on which the modalities of the matching location switched from the penultimate to the final target in the sequence, indicating a switching cost. The switching cost for the pair in immediate succession means that the spatial images representing the target locations retain features of the visual or auditory representations from which they were derived. However, there was no reliable evidence of a performance cost for mixed modalities in the matching pair when the second of the two did not immediately follow the first, suggesting that more enduring spatial images in working memory may be amodal.

  10. Robust Encoding of Spatial Information in Orbitofrontal Cortex and Striatum.

    PubMed

    Yoo, Seng Bum Michael; Sleezer, Brianna J; Hayden, Benjamin Y

    2018-06-01

    Knowing whether core reward regions carry information about the positions of relevant objects is crucial for adjudicating between choice models. One limitation of previous studies, including our own, is that spatial positions can be consistently differentially associated with rewards, and thus position can be confounded with attention, motor plans, or target identity. We circumvented these problems by using a task in which value-and thus choices-was determined solely by a frequently changing rule, which was randomized relative to spatial position on each trial. We presented offers asynchronously, which allowed us to control for reward expectation, spatial attention, and motor plans in our analyses. We find robust encoding of the spatial position of both offers and choices in two core reward regions, orbitofrontal Area 13 and ventral striatum, as well as in dorsal striatum of macaques. The trial-by-trial correlation in noise in encoding of position was associated with variation in choice, an effect known as choice probability correlation, suggesting that the spatial encoding is associated with choice and is not incidental to it. Spatial information and reward information are not carried by separate sets of neurons, although the two forms of information are temporally dissociable. These results highlight the ubiquity of multiplexed information in association cortex and argue against the idea that these ostensible reward regions serve as part of a pure value domain.

  11. Application of an imputation method for geospatial inventory of forest structural attributes across multiple spatial scales in the Lake States, U.S.A

    NASA Astrophysics Data System (ADS)

    Deo, Ram K.

    Credible spatial information characterizing the structure and site quality of forests is critical to sustainable forest management and planning, especially given the increasing demands and threats to forest products and services. Forest managers and planners are required to evaluate forest conditions over a broad range of scales, contingent on operational or reporting requirements. Traditionally, forest inventory estimates are generated via a design-based approach that involves generalizing sample plot measurements to characterize an unknown population across a larger area of interest. However, field plot measurements are costly and as a consequence spatial coverage is limited. Remote sensing technologies have shown remarkable success in augmenting limited sample plot data to generate stand- and landscape-level spatial predictions of forest inventory attributes. Further enhancement of forest inventory approaches that couple field measurements with cutting edge remotely sensed and geospatial datasets are essential to sustainable forest management. We evaluated a novel Random Forest based k Nearest Neighbors (RF-kNN) imputation approach to couple remote sensing and geospatial data with field inventory collected by different sampling methods to generate forest inventory information across large spatial extents. The forest inventory data collected by the FIA program of US Forest Service was integrated with optical remote sensing and other geospatial datasets to produce biomass distribution maps for a part of the Lake States and species-specific site index maps for the entire Lake State. Targeting small-area application of the state-of-art remote sensing, LiDAR (light detection and ranging) data was integrated with the field data collected by an inexpensive method, called variable plot sampling, in the Ford Forest of Michigan Tech to derive standing volume map in a cost-effective way. The outputs of the RF-kNN imputation were compared with independent validation datasets and extant map products based on different sampling and modeling strategies. The RF-kNN modeling approach was found to be very effective, especially for large-area estimation, and produced results statistically equivalent to the field observations or the estimates derived from secondary data sources. The models are useful to resource managers for operational and strategic purposes.

  12. On the potential for the Partial Triadic Analysis to grasp the spatio-temporal variability of groundwater hydrochemistry

    NASA Astrophysics Data System (ADS)

    Gourdol, L.; Hissler, C.; Pfister, L.

    2012-04-01

    The Luxembourg sandstone aquifer is of major relevance for the national supply of drinking water in Luxembourg. The city of Luxembourg (20% of the country's population) gets almost 2/3 of its drinking water from this aquifer. As a consequence, the study of both the groundwater hydrochemistry, as well as its spatial and temporal variations, are considered as of highest priority. Since 2005, a monitoring network has been implemented by the Water Department of Luxembourg City, with a view to a more sustainable management of this strategic water resource. The data collected to date forms a large and complex dataset, describing spatial and temporal variations of many hydrochemical parameters. The data treatment issue is tightly connected to this kind of water monitoring programs and complex databases. Standard multivariate statistical techniques, such as principal components analysis and hierarchical cluster analysis, have been widely used as unbiased methods for extracting meaningful information from groundwater quality data and are now classically used in many hydrogeological studies, in particular to characterize temporal or spatial hydrochemical variations induced by natural and anthropogenic factors. But these classical multivariate methods deal with two-way matrices, usually parameters/sites or parameters/time, while often the dataset resulting from qualitative water monitoring programs should be seen as a datacube parameters/sites/time. Three-way matrices, such as the one we propose here, are difficult to handle and to analyse by classical multivariate statistical tools and thus should be treated with approaches dealing with three-way data structures. One possible analysis approach consists in the use of partial triadic analysis (PTA). The PTA was previously used with success in many ecological studies but never to date in the domain of hydrogeology. Applied to the dataset of the Luxembourg Sandstone aquifer, the PTA appears as a new promising statistical instrument for hydrogeologists, in particular to characterize temporal and spatial hydrochemical variations induced by natural and anthropogenic factors. This new approach for groundwater management offers potential for 1) identifying a common multivariate spatial structure, 2) untapping the different hydrochemical patterns and explaining their controlling factors and 3) analysing the temporal variability of this structure and grasping hydrochemical changes.

  13. Protecting patient privacy when sharing patient-level data from clinical trials.

    PubMed

    Tucker, Katherine; Branson, Janice; Dilleen, Maria; Hollis, Sally; Loughlin, Paul; Nixon, Mark J; Williams, Zoë

    2016-07-08

    Greater transparency and, in particular, sharing of patient-level data for further scientific research is an increasingly important topic for the pharmaceutical industry and other organisations who sponsor and conduct clinical trials as well as generally in the interests of patients participating in studies. A concern remains, however, over how to appropriately prepare and share clinical trial data with third party researchers, whilst maintaining patient confidentiality. Clinical trial datasets contain very detailed information on each participant. Risk to patient privacy can be mitigated by data reduction techniques. However, retention of data utility is important in order to allow meaningful scientific research. In addition, for clinical trial data, an excessive application of such techniques may pose a public health risk if misleading results are produced. After considering existing guidance, this article makes recommendations with the aim of promoting an approach that balances data utility and privacy risk and is applicable across clinical trial data holders. Our key recommendations are as follows: 1. Data anonymisation/de-identification: Data holders are responsible for generating de-identified datasets which are intended to offer increased protection for patient privacy through masking or generalisation of direct and some indirect identifiers. 2. Controlled access to data, including use of a data sharing agreement: A legally binding data sharing agreement should be in place, including agreements not to download or further share data and not to attempt to seek to identify patients. Appropriate levels of security should be used for transferring data or providing access; one solution is use of a secure 'locked box' system which provides additional safeguards. This article provides recommendations on best practices to de-identify/anonymise clinical trial data for sharing with third-party researchers, as well as controlled access to data and data sharing agreements. The recommendations are applicable to all clinical trial data holders. Further work will be needed to identify and evaluate competing possibilities as regulations, attitudes to risk and technologies evolve.

  14. The Database for Aggregate Analysis of ClinicalTrials.gov (AACT) and Subsequent Regrouping by Clinical Specialty

    PubMed Central

    Tasneem, Asba; Aberle, Laura; Ananth, Hari; Chakraborty, Swati; Chiswell, Karen; McCourt, Brian J.; Pietrobon, Ricardo

    2012-01-01

    Background The ClinicalTrials.gov registry provides information regarding characteristics of past, current, and planned clinical studies to patients, clinicians, and researchers; in addition, registry data are available for bulk download. However, issues related to data structure, nomenclature, and changes in data collection over time present challenges to the aggregate analysis and interpretation of these data in general and to the analysis of trials according to clinical specialty in particular. Improving usability of these data could enhance the utility of ClinicalTrials.gov as a research resource. Methods/Principal Results The purpose of our project was twofold. First, we sought to extend the usability of ClinicalTrials.gov for research purposes by developing a database for aggregate analysis of ClinicalTrials.gov (AACT) that contains data from the 96,346 clinical trials registered as of September 27, 2010. Second, we developed and validated a methodology for annotating studies by clinical specialty, using a custom taxonomy employing Medical Subject Heading (MeSH) terms applied by an NLM algorithm, as well as MeSH terms and other disease condition terms provided by study sponsors. Clinical specialists reviewed and annotated MeSH and non-MeSH disease condition terms, and an algorithm was created to classify studies into clinical specialties based on both MeSH and non-MeSH annotations. False positives and false negatives were evaluated by comparing algorithmic classification with manual classification for three specialties. Conclusions/Significance The resulting AACT database features study design attributes parsed into discrete fields, integrated metadata, and an integrated MeSH thesaurus, and is available for download as Oracle extracts (.dmp file and text format). This publicly-accessible dataset will facilitate analysis of studies and permit detailed characterization and analysis of the U.S. clinical trials enterprise as a whole. In addition, the methodology we present for creating specialty datasets may facilitate other efforts to analyze studies by specialty groups. PMID:22438982

  15. The database for aggregate analysis of ClinicalTrials.gov (AACT) and subsequent regrouping by clinical specialty.

    PubMed

    Tasneem, Asba; Aberle, Laura; Ananth, Hari; Chakraborty, Swati; Chiswell, Karen; McCourt, Brian J; Pietrobon, Ricardo

    2012-01-01

    The ClinicalTrials.gov registry provides information regarding characteristics of past, current, and planned clinical studies to patients, clinicians, and researchers; in addition, registry data are available for bulk download. However, issues related to data structure, nomenclature, and changes in data collection over time present challenges to the aggregate analysis and interpretation of these data in general and to the analysis of trials according to clinical specialty in particular. Improving usability of these data could enhance the utility of ClinicalTrials.gov as a research resource. The purpose of our project was twofold. First, we sought to extend the usability of ClinicalTrials.gov for research purposes by developing a database for aggregate analysis of ClinicalTrials.gov (AACT) that contains data from the 96,346 clinical trials registered as of September 27, 2010. Second, we developed and validated a methodology for annotating studies by clinical specialty, using a custom taxonomy employing Medical Subject Heading (MeSH) terms applied by an NLM algorithm, as well as MeSH terms and other disease condition terms provided by study sponsors. Clinical specialists reviewed and annotated MeSH and non-MeSH disease condition terms, and an algorithm was created to classify studies into clinical specialties based on both MeSH and non-MeSH annotations. False positives and false negatives were evaluated by comparing algorithmic classification with manual classification for three specialties. The resulting AACT database features study design attributes parsed into discrete fields, integrated metadata, and an integrated MeSH thesaurus, and is available for download as Oracle extracts (.dmp file and text format). This publicly-accessible dataset will facilitate analysis of studies and permit detailed characterization and analysis of the U.S. clinical trials enterprise as a whole. In addition, the methodology we present for creating specialty datasets may facilitate other efforts to analyze studies by specialty groups.

  16. Development of Allocentric Spatial Recall from New Viewpoints in Virtual Reality

    ERIC Educational Resources Information Center

    Negen, James; Heywood-Everett, Edward; Roome, Hannah E.; Nardini, Marko

    2018-01-01

    Using landmarks and other scene features to recall locations from new viewpoints is a critical skill in spatial cognition. In an immersive virtual reality task, we asked children 3.5-4.5 years old to remember the location of a target using various cues. On some trials they could use information from their own self-motion. On some trials they could…

  17. Analysis of a large dataset of mycorrhiza inoculation field trials on potato shows highly significant increases in yield.

    PubMed

    Hijri, Mohamed

    2016-04-01

    An increasing human population requires more food production in nutrient-efficient systems in order to simultaneously meet global food needs while reducing the environmental footprint of agriculture. Arbuscular mycorrhizal fungi (AMF) have the potential to enhance crop yield, but their efficiency has yet to be demonstrated in large-scale crop production systems. This study reports an analysis of a dataset consisting of 231 field trials in which the same AMF inoculant (Rhizophagus irregularis DAOM 197198) was applied to potato over a 4-year period in North America and Europe under authentic field conditions. The inoculation was performed using a liquid suspension of AMF spores that was sprayed onto potato seed pieces, yielding a calculated 71 spores per seed piece. Statistical analysis showed a highly significant increase in marketable potato yield (ANOVA, P < 0.0001) for inoculated fields (42.2 tons/ha) compared with non-inoculated controls (38.3 tons/ha), irrespective of trial year. The average yield increase was 3.9 tons/ha, representing 9.5 % of total crop yield. Inoculation was profitable with a 0.67-tons/ha increase in yield, a threshold reached in almost 79 % of all trials. This finding clearly demonstrates the benefits of mycorrhizal-based inoculation on crop yield, using potato as a case study. Further improvements of these beneficial inoculants will help compensate for crop production deficits, both now and in the future.

  18. Spatial Covariability of Temperature and Hydroclimate as a Function of Timescale During the Common Era

    NASA Astrophysics Data System (ADS)

    McKay, N.

    2017-12-01

    As timescale increases from years to centuries, the spatial scale of covariability in the climate system is hypothesized to increase as well. Covarying spatial scales are larger for temperature than for hydroclimate, however, both aspects of the climate system show systematic changes on large-spatial scales on orbital to tectonic timescales. The extent to which this phenomenon is evident in temperature and hydroclimate at centennial timescales is largely unknown. Recent syntheses of multidecadal to century-scale variability in hydroclimate during the past 2k in the Arctic, North America, and Australasia show little spatial covariability in hydroclimate during the Common Era. To determine 1) the evidence for systematic relationships between the spatial scale of climate covariability as a function of timescale, and 2) whether century-scale hydroclimate variability deviates from the relationship between spatial covariability and timescale, we quantify this phenomenon during the Common Era by calculating the e-folding distance in large instrumental and paleoclimate datasets. We calculate this metric of spatial covariability, at different timescales (1, 10 and 100-yr), for a large network of temperature and precipitation observations from the Global Historical Climatology Network (n=2447), from v2.0.0 of the PAGES2k temperature database (n=692), and from moisture-sensitive paleoclimate records North America, the Arctic, and the Iso2k project (n = 328). Initial results support the hypothesis that the spatial scale of covariability is larger for temperature, than for precipitation or paleoclimate hydroclimate indicators. Spatially, e-folding distances for temperature are largest at low latitudes and over the ocean. Both instrumental and proxy temperature data show clear evidence for increasing spatial extent as a function of timescale, but this phenomenon is very weak in the hydroclimate data analyzed here. In the proxy hydroclimate data, which are predominantly indicators of effective moisture, e-folding distance increases from annual to decadal timescales, but does not continue to increase to centennial timescales. Future work includes examining additional instrumental and proxy datasets of moisture variability, and extending the analysis to millennial timescales of variability.

  19. Functional mechanisms of probabilistic inference in feature- and space-based attentional systems.

    PubMed

    Dombert, Pascasie L; Kuhns, Anna; Mengotti, Paola; Fink, Gereon R; Vossel, Simone

    2016-11-15

    Humans flexibly attend to features or locations and these processes are influenced by the probability of sensory events. We combined computational modeling of response times with fMRI to compare the functional correlates of (re-)orienting, and the modulation by probabilistic inference in spatial and feature-based attention systems. Twenty-four volunteers performed two task versions with spatial or color cues. Percentage of cue validity changed unpredictably. A hierarchical Bayesian model was used to derive trial-wise estimates of probability-dependent attention, entering the fMRI analysis as parametric regressors. Attentional orienting activated a dorsal frontoparietal network in both tasks, without significant parametric modulation. Spatially invalid trials activated a bilateral frontoparietal network and the precuneus, while invalid feature trials activated the left intraparietal sulcus (IPS). Probability-dependent attention modulated activity in the precuneus, left posterior IPS, middle occipital gyrus, and right temporoparietal junction for spatial attention, and in the left anterior IPS for feature-based and spatial attention. These findings provide novel insights into the generality and specificity of the functional basis of attentional control. They suggest that probabilistic inference can distinctively affect each attentional subsystem, but that there is an overlap in the left IPS, which responds to both spatial and feature-based expectancy violations. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. USDA-ARS Colorado maize water productivity data set

    USDA-ARS?s Scientific Manuscript database

    The USDA-Agricultural Research Service conducted a water productivity field trial for irrigated maize in northeastern Colorado in 2008 through 2011. The dataset, which is available online from the USDA National Agricultural Library, includes measurements of irrigation, precipitation, soil water sto...

Top